Science.gov

Sample records for 3d graphene foam

  1. Polymer-Enriched 3D Graphene Foams for Biomedical Applications.

    PubMed

    Wang, Jun Kit; Xiong, Gordon Minru; Zhu, Minmin; Özyilmaz, Barbaros; Castro Neto, Antonio Helio; Tan, Nguan Soon; Choong, Cleo

    2015-04-22

    Graphene foams (GFs) are versatile nanoplatforms for biomedical applications because of their excellent physical, chemical, and mechanical properties. However, the brittleness and inflexibility of pristine GF (pGF) are some of the important factors restricting their widespread application. Here, a chemical-vapor-deposition-assisted method was used to synthesize 3D GFs, which were subsequently spin-coated with polymer to produce polymer-enriched 3D GFs with high conductivity and flexibility. Compared to pGF, both poly(vinylidene fluoride)-enriched GF (PVDF/GF) and polycaprolactone-enriched GF (PCL/GF) scaffolds showed improved flexibility and handleability. Despite the presence of the polymers, the polymer-enriched 3D GF scaffolds retained high levels of electrical conductivity because of the presence of microcracks that allowed for the flow of electrons through the material. In addition, polymer enrichment of GF led to an enhancement in the formation of calcium phosphate (Ca-P) compounds when the scaffolds were exposed to simulated body fluid. Between the two polymers tested, PCL enrichment of GF resulted in a higher in vitro mineralization nucleation rate because the oxygen-containing functional group of PCL had a higher affinity for Ca-P deposition and formation compared to the polar carbon-fluorine (C-F) bond in PVDF. Taken together, our current findings are a stepping stone toward future applications of polymer-enriched 3D GFs in the treatment of bone defects as well as other biomedical applications. PMID:25822669

  2. Formation of 3D graphene foams on soft templated metal monoliths.

    PubMed

    Tynan, Michael K; Johnson, David W; Dobson, Ben P; Coleman, Karl S

    2016-07-21

    Graphene foams are leading contenders as frameworks for polymer thermosets, filtration/pollution control and for use as an electrode material in energy storage devices, taking advantage of graphene's high electrical conductivity and the porous structure of the foam. Here we demonstrate a simple synthesis of a macroporous 3D graphene material templated from a dextran/metal salt gel, where the metal was cobalt, nickel, copper, and iron. The gel was annealed to form a metal oxide foam prior to a methane chemical vapour deposition (CVD). Cobalt metal gels were shown to afford the highest quality material as determined by electron microscopy (SEM and TEM) and Raman spectroscopy. PMID:27341076

  3. Formation of 3D graphene foams on soft templated metal monoliths

    NASA Astrophysics Data System (ADS)

    Tynan, Michael K.; Johnson, David W.; Dobson, Ben P.; Coleman, Karl S.

    2016-07-01

    Graphene foams are leading contenders as frameworks for polymer thermosets, filtration/pollution control and for use as an electrode material in energy storage devices, taking advantage of graphene's high electrical conductivity and the porous structure of the foam. Here we demonstrate a simple synthesis of a macroporous 3D graphene material templated from a dextran/metal salt gel, where the metal was cobalt, nickel, copper, and iron. The gel was annealed to form a metal oxide foam prior to a methane chemical vapour deposition (CVD). Cobalt metal gels were shown to afford the highest quality material as determined by electron microscopy (SEM and TEM) and Raman spectroscopy.Graphene foams are leading contenders as frameworks for polymer thermosets, filtration/pollution control and for use as an electrode material in energy storage devices, taking advantage of graphene's high electrical conductivity and the porous structure of the foam. Here we demonstrate a simple synthesis of a macroporous 3D graphene material templated from a dextran/metal salt gel, where the metal was cobalt, nickel, copper, and iron. The gel was annealed to form a metal oxide foam prior to a methane chemical vapour deposition (CVD). Cobalt metal gels were shown to afford the highest quality material as determined by electron microscopy (SEM and TEM) and Raman spectroscopy. Electronic supplementary information (ESI) available: Raman, EDX, PXRD, TGA, electrical conductivity data and SEM. See DOI: 10.1039/c6nr02455f

  4. Synthesis of ultralow density 3D graphene-CNT foams using a two-step method.

    PubMed

    Vinod, Soumya; Tiwary, Chandra Sekhar; Machado, Leonardo D; Ozden, Sehmus; Vajtai, Robert; Galvao, Douglas S; Ajayan, Pulickel M

    2016-09-21

    Here, we report a highly scalable two-step method to produce graphene foams with ordered carbon nanotube reinforcements. In our approach, we first used solution assembly methods to obtain graphene oxide foam. Next, we employed chemical vapor deposition to simultaneously grow carbon nanotubes and thermally reduce the 3D graphene oxide scaffold. The resulting structure presented increased stiffness, good mechanical stability and oil absorption properties. Molecular dynamics simulations were carried out to further elucidate failure mechanisms and to understand the enhancement of the mechanical properties. The simulations showed that mechanical failure is directly associated with bending of vertical reinforcements, and that, for similar length and contact area, much more stress is required to bend the corresponding reinforcements of carbon nanotubes, thus explaining the experimentally observed enhanced mechanical properties. PMID:27546001

  5. Nanostructured pseudocapacitive materials decorated 3D graphene foam electrodes for next generation supercapacitors

    NASA Astrophysics Data System (ADS)

    Patil, Umakant; Lee, Su Chan; Kulkarni, Sachin; Sohn, Ji Soo; Nam, Min Sik; Han, Suhyun; Jun, Seong Chan

    2015-04-01

    Nowadays, advancement in performance of proficient multifarious electrode materials lies conclusively at the core of research concerning energy storage devices. To accomplish superior capacitance performance the requirements of high capacity, better cyclic stability and good rate capability can be expected from integration of electrochemical double layer capacitor based carbonaceous materials (high power density) and pseudocapacitive based metal hydroxides/oxides or conducting polymers (high energy density). The envisioned three dimensional (3D) graphene foams are predominantly advantageous to extend potential applicability by offering a large active surface area and a highly conductive continuous porous network for fast charge transfer with decoration of nanosized pseudocapacitive materials. In this article, we review the latest methodologies and performance evaluation for several 3D graphene based metal oxides/hydroxides and conducting polymer electrodes with improved electrochemical properties for next-generation supercapacitors. The most recent research advancements of our and other groups in the field of 3D graphene based electrode materials for supercapacitors are discussed. To assess the studied materials fully, a careful interpretation and rigorous scrutiny of their electrochemical characteristics is essential. Auspiciously, both nano-structuration as well as confinement of metal hydroxides/oxides and conducting polymers onto a conducting porous 3D graphene matrix play a great role in improving the performance of electrodes mainly due to: (i) active material access over large surface area with fast charge transportation; (ii) synergetic effect of electric double layer and pseudocapacitive based charge storing.

  6. High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode

    NASA Astrophysics Data System (ADS)

    Wang, Hanyu; Wang, Gongming; Ling, Yichuan; Qian, Fang; Song, Yang; Lu, Xihong; Chen, Shaowei; Tong, Yexiang; Li, Yat

    2013-10-01

    The structure and electrical conductivity of anode play a significant role in the power generation of microbial fuel cells (MFCs). In this study, we developed a three-dimensional (3D) reduced graphene oxide-nickel (denoted as rGO-Ni) foam as an anode for MFC through controlled deposition of rGO sheets onto the nickel foam substrate. The loading amount of rGO sheets and electrode surface area can be controlled by the number of rGO loading cycles. 3D rGO-Ni foam anode provides not only a large accessible surface area for microbial colonization and electron mediators, but also a uniform macro-porous scaffold for effective mass diffusion of the culture medium. Significantly, at a steady state of the power generation, the MFC device with flexible rGO-Ni electrodes produced an optimal volumetric power density of 661 W m-3 calculated based on the volume of anode material, or 27 W m-3 based on the volume of the anode chamber. These values are substantially higher than that of plain nickel foam, and other conventional carbon based electrodes (e.g., carbon cloth, carbon felt, and carbon paper) measured in the same conditions. To our knowledge, this is the highest volumetric power density reported for mL-scale MFC device with a pure strain of Shewanella oneidensis MR-1. We also demonstrated that the MFC device can be operated effectively in a batch-mode at least for a week. These new 3D rGO-Ni electrodes show great promise for improving the power generation of MFC devices.The structure and electrical conductivity of anode play a significant role in the power generation of microbial fuel cells (MFCs). In this study, we developed a three-dimensional (3D) reduced graphene oxide-nickel (denoted as rGO-Ni) foam as an anode for MFC through controlled deposition of rGO sheets onto the nickel foam substrate. The loading amount of rGO sheets and electrode surface area can be controlled by the number of rGO loading cycles. 3D rGO-Ni foam anode provides not only a large accessible

  7. 3D graphene foams decorated by CuO nanoflowers for ultrasensitive ascorbic acid detection.

    PubMed

    Ma, Ye; Zhao, Minggang; Cai, Bin; Wang, Wei; Ye, Zhizhen; Huang, Jingyun

    2014-09-15

    When the in vitro research works of biosensing begin to mimic in vivo conditions, some certain three-dimensional (3D) structures of biosensors are needed to accommodate biomolecules, bacteria or even cells to resemble the in vivo 3D environment. To meet this end, a novel method of synthesizing CuO nanoflowers on the 3D graphene foam (GF) was first demonstrated. The 3DGF/CuO nanoflowers composite was used as a monolithic free-standing 3D biosensor for electrochemical detection of ascorbic acid (AA). The 3D conductive structure of the GF is favorable for current collection, mass transport and loading bioactive chemicals. And CuO nanoflowers further increase the active surface area and catalyze the redox of AA. Thus, all these features endows 3DGF/CuO composite with outstanding biosensing properties such as an ultrahigh sensitivity of 2.06 mA mM(-1) cm(-2) to AA at 3 s response time. PMID:24755255

  8. A Phytic Acid Induced Super-Amphiphilic Multifunctional 3D Graphene-Based Foam.

    PubMed

    Song, Xinhong; Chen, Yiying; Rong, Mingcong; Xie, Zhaoxiong; Zhao, Tingting; Wang, Yiru; Chen, Xi; Wolfbeis, Otto S

    2016-03-14

    Surfaces with super-amphiphilicity have attracted tremendous interest for fundamental and applied research owing to their special affinity to both oil and water. It is generally believed that 3D graphenes are monoliths with strongly hydrophobic surfaces. Herein, we demonstrate the preparation of a 3D super-amphiphilic (that is, highly hydrophilic and oleophilic) graphene-based assembly in a single-step using phytic acid acting as both a gelator and as a dopant. The product shows both hydrophilic and oleophilic intelligence, and this overcomes the drawbacks of presently known hydrophobic 3D graphene assemblies. It can absorb water and oils alike. The utility of the new material was demonstrated by designing a heterogeneous catalytic system through incorporation of a zeolite into its amphiphilic 3D scaffold. The resulting bulk network was shown to enable efficient epoxidation of alkenes without prior addition of a co-solvent or stirring. This catalyst also can be recovered and re-used, thereby providing a clean catalytic process with simplified work-up. PMID:26890034

  9. Enhanced hydrogen production in microbial electrolysis cell with 3D self-assembly nickel foam-graphene cathode.

    PubMed

    Cai, Weiwei; Liu, Wenzong; Han, Jinglong; Wang, Aijie

    2016-06-15

    In comparison to precious metal catalyst especially Platinum (Pt), nickel foam (NF) owned cheap cost and unique three-dimensional (3D) structure, however, it was scarcely applied as cathode material in microbial electrolysis cell (MEC) as the intrinsic laggard electrochemical activity for hydrogen recovery. In this study, a self-assembly 3D nickel foam-graphene (NF-G) cathode was fabricated by facile hydrothermal approach for hydrogen evolution in MECs. Electrochemical analysis (linear scan voltammetry and electrochemical impedance spectroscopy) revealed the improved electrochemical activity and effective mass diffusion after coating with graphene. NF-G as cathode in MEC showed a significant enhancement in hydrogen production rate compared with nickel foam at a variety of biases. Noticeably, NF-G showed a comparable averaged hydrogen production rate (1.31 ± 0.07 mL H2 mL(-1) reactor d(-1)) to Platinum/carbon (Pt/C) (1.32 ± 0.07 mL H2 mL(-1) reactor d(-1)) at 0.8 V. Profitable energy recovery could be achieved by NF-G cathode at higher applied voltage, which performed the best hydrogen yield of 3.27 ± 0.16 mol H2 mol(-1) acetate at 0.8 V and highest energy efficiency of 185.92 ± 6.48% at 0.6 V. PMID:26807526

  10. Highly efficient electrocatalytic hydrogen production by MoS(x) grown on graphene-protected 3D Ni foams.

    PubMed

    Chang, Yung-Huang; Lin, Cheng-Te; Chen, Tzu-Yin; Hsu, Chang-Lung; Lee, Yi-Hsien; Zhang, Wenjing; Wei, Kung-Hwa; Li, Lain-Jong

    2013-02-01

    A three-dimensional Ni foam deposited with graphene layers on surfaces is used as a conducting solid support to load MoS(x) catalysts for electrocatalytic hydrogen evolution. The graphene sheets grown on Ni foams provide robust protection and efficiently increase the stability in acid. The superior performance of hydrogen evolution is attributed to the relatively high catalyst loading weight as well as its relatively low resistance. PMID:23060076

  11. The effect of annealing on a 3D SnO2/graphene foam as an advanced lithium-ion battery anode

    NASA Astrophysics Data System (ADS)

    Tian, Ran; Zhang, Yangyang; Chen, Zhihang; Duan, Huanan; Xu, Biyi; Guo, Yiping; Kang, Hongmei; Li, Hua; Liu, Hezhou

    2016-01-01

    3D annealed SnO2/graphene sheet foams (ASGFs) are synthesized by in situ self-assembly of graphene sheets prepared by mild chemical reduction. L-ascorbyl acid is used to effectively reduce the SnO2 nanoparticles/graphene oxide colloidal solution and form the 3D conductive graphene networks. The annealing treatment contributes to the formation of the Sn-O-C bonds between the SnO2 nanoparticles and the reduced graphene sheets, which improves the electrochemical performance of the foams. The ASGF has features of typical aerogels: low density (about 19 mg cm-3), smooth surface and porous structure. The ASGF anodes exhibit good specific capacity, excellent cycling stability and superior rate capability. The first reversible specific capacity is as high as 984.2 mAh g-1 at a specific current of 200 mA g-1. Even at the high specific current of 1000 mA g-1 after 150 cycles, the reversible specific capacity of ASGF is still as high as 533.7 mAh g-1, about twice as much as that of SGF (297.6 mAh g-1) after the same test. This synthesis method can be scaled up to prepare other metal oxides particles/ graphene sheet foams for high performance lithium-ion batteries, supercapacitors, and catalysts, etc.

  12. The effect of annealing on a 3D SnO2/graphene foam as an advanced lithium-ion battery anode.

    PubMed

    Tian, Ran; Zhang, Yangyang; Chen, Zhihang; Duan, Huanan; Xu, Biyi; Guo, Yiping; Kang, Hongmei; Li, Hua; Liu, Hezhou

    2016-01-01

    3D annealed SnO2/graphene sheet foams (ASGFs) are synthesized by in situ self-assembly of graphene sheets prepared by mild chemical reduction. L-ascorbyl acid is used to effectively reduce the SnO2 nanoparticles/graphene oxide colloidal solution and form the 3D conductive graphene networks. The annealing treatment contributes to the formation of the Sn-O-C bonds between the SnO2 nanoparticles and the reduced graphene sheets, which improves the electrochemical performance of the foams. The ASGF has features of typical aerogels: low density (about 19 mg cm(-3)), smooth surface and porous structure. The ASGF anodes exhibit good specific capacity, excellent cycling stability and superior rate capability. The first reversible specific capacity is as high as 984.2 mAh g(-1) at a specific current of 200 mA g(-1). Even at the high specific current of 1000 mA g(-1) after 150 cycles, the reversible specific capacity of ASGF is still as high as 533.7 mAh g(-1), about twice as much as that of SGF (297.6 mAh g(-1)) after the same test. This synthesis method can be scaled up to prepare other metal oxides particles/ graphene sheet foams for high performance lithium-ion batteries, supercapacitors, and catalysts, etc. PMID:26754468

  13. The effect of annealing on a 3D SnO2/graphene foam as an advanced lithium-ion battery anode

    PubMed Central

    Tian, Ran; Zhang, Yangyang; Chen, Zhihang; Duan, Huanan; Xu, Biyi; Guo, Yiping; Kang, Hongmei; Li, Hua; Liu, Hezhou

    2016-01-01

    3D annealed SnO2/graphene sheet foams (ASGFs) are synthesized by in situ self-assembly of graphene sheets prepared by mild chemical reduction. L-ascorbyl acid is used to effectively reduce the SnO2 nanoparticles/graphene oxide colloidal solution and form the 3D conductive graphene networks. The annealing treatment contributes to the formation of the Sn-O-C bonds between the SnO2 nanoparticles and the reduced graphene sheets, which improves the electrochemical performance of the foams. The ASGF has features of typical aerogels: low density (about 19 mg cm−3), smooth surface and porous structure. The ASGF anodes exhibit good specific capacity, excellent cycling stability and superior rate capability. The first reversible specific capacity is as high as 984.2 mAh g−1 at a specific current of 200 mA g−1. Even at the high specific current of 1000 mA g−1 after 150 cycles, the reversible specific capacity of ASGF is still as high as 533.7 mAh g−1, about twice as much as that of SGF (297.6 mAh g−1) after the same test. This synthesis method can be scaled up to prepare other metal oxides particles/ graphene sheet foams for high performance lithium-ion batteries, supercapacitors, and catalysts, etc. PMID:26754468

  14. Bacteria-Affinity 3D Macroporous Graphene/MWCNTs/Fe3O4 Foams for High-Performance Microbial Fuel Cells.

    PubMed

    Song, Rong-Bin; Zhao, Cui-E; Jiang, Li-Ping; Abdel-Halim, Essam Sayed; Zhang, Jian-Rong; Zhu, Jun-Jie

    2016-06-29

    Promoting the performance of microbial fuel cells (MFCs) relies heavily on the structure design and composition tailoring of electrode materials. In this work, three-dimensional (3D) macroporous graphene foams incorporated with intercalated spacer of multiwalled carbon nanotubes (MWCNTs) and bacterial anchor of Fe3O4 nanospheres (named as G/MWCNTs/Fe3O4 foams) were first synthesized and used as anodes for Shewanella-inoculated microbial fuel cells (MFCs). Thanks to the macroporous structure of 3D graphene foams, the expanded electrode surface by MWCNTs spacing, as well as the high affinity of Fe3O4 nanospheres toward Shewanella oneidensis MR-1, the anode exhibited high bacterial loading capability. In addition to spacing graphene nanosheets for accommodating bacterial cells, MWCNTs paved a smoother way for electron transport in the electrode substrate of MFCs. Meanwhile, the embedded bioaffinity Fe3O4 nanospheres capable of preserving the bacterial metabolic activity provided guarantee for the long-term durability of the MFCs. With these merits, the constructed MFC possessed significantly higher power output and stronger stability than that with conventional graphite rod anode. PMID:27266894

  15. 3-D foam adhesive deposition

    NASA Technical Reports Server (NTRS)

    Lemons, C. R.; Salmassy, O. K.

    1976-01-01

    Bonding method, which reduces amount and weight of adhesive, is applicable to foam-filled honeycomb constructions. Novel features of process include temperature-viscosity control and removal of excess adhesive by transfer to cellophane film.

  16. Free-standing electrochemical electrode based on Ni(OH)2/3D graphene foam for nonenzymatic glucose detection.

    PubMed

    Zhan, Beibei; Liu, Changbing; Chen, Huaping; Shi, Huaxia; Wang, Lianhui; Chen, Peng; Huang, Wei; Dong, Xiaochen

    2014-07-01

    Three-dimensional graphene foam (3DGF) is a superior sensing material because of its high conductivity, large specific surface area and wide electrochemical potential windows. In this work, hexagonal Ni(OH)2 nanosheets are deposited on the surface of chemical vapor deposition-grown 3DGF through a facial hydrothermal process without any auxiliary reagents. The morphology and structure of the composite are characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), Raman spectroscopy, and X-ray diffraction (XRD). Based on the Ni(OH)2/3DGF composite, a free-standing electrochemical electrode is fabricated. Being employed as a nonenzymatic glucose detection electrochemical electrode, it exhibits a high sensitivity (∼2.65 mA mM(-1) cm(-2)), low detection limit (0.34 μM) and excellent selectivity with a linear response from 1 μM to 1.17 mM. The excellent sensing properties of the Ni(OH)2/3DGF electrode may be attributed to the synergistic effect of the high electrocatalytic activity of Ni(OH)2 nanosheets and the high conductivity and large surface area of 3DGF. PMID:24879425

  17. 3D Printable Graphene Composite.

    PubMed

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-01-01

    In human being's history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today's personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite's linear thermal coefficient is below 75 ppm·°C(-1) from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673

  18. 3D Printable Graphene Composite

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  19. 3D Printable Graphene Composite

    PubMed Central

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-01-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C−1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673

  20. Hierarchical NiMoO4 nanowire arrays supported on macroporous graphene foam as binder-free 3D anodes for high-performance lithium storage.

    PubMed

    Wang, Bo; Li, Songmei; Wu, Xiaoyu; Liu, Jianhua; Tian, Wenming

    2016-01-14

    Novel three-dimensional (3D) NiMoO4 nanowire arrays (NWAs) grown directly onto the surface of macroporous graphene foams (GF) with robust adhesion were synthesized via a facile chemical vapor deposition (CVD) and subsequent hydrothermal route. The as-prepared NiMoO4 nanowires are composed of ultra-small nanoparticles (∼5 nm) with a diameter of 70-150 nm and are several micrometers in length. Such as-grown NiMoO4 NWA/3DGF composites are then evaluated as monolithic electrodes for lithium-ion batteries (LIBs) without the need of binders or metal-based current collectors. Benefitting from the unique three-dimensional arrayed architecture and characteristics with a high specific surface area and more active sites which facilitate fast electron and ionic transport within the electrode, the NiMoO4 NWA/GF composites deliver a high reversible specific capacity of 1088.02 mA h g(-1) at a current density of 200 mA g(-1) and 867.86 mA h g(-1) after 150 cycles (79.77% retention of the second cycle), and excellent rate capability. With the advantages of excellent electrochemical performance and a facile synthesis method, the NiMoO4 nanowire arrays supported on 3DGF exhibit great potential as anode materials for LIBs. PMID:26648554

  1. 3D Printing of Graphene Aerogels.

    PubMed

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction. PMID:26861680

  2. Multifunctional, Highly Flexible, Free-Standing 3D Polypyrrole Foam.

    PubMed

    Wang, Chunhui; Ding, Yujie; Yuan, Ye; Cao, Anyuan; He, Xiaodong; Peng, Qingyu; Li, Yibin

    2016-08-01

    Multifunctional, highly flexible 3D polypyrrole (PPy) foam is fabricated via a simple electrodeposition method by using nickel foam as the template. The 3D PPy foam has a unique interior structure and is robust enough to manipulate directly. PMID:27357260

  3. Highly-Sensitive Surface-Enhanced Raman Spectroscopy (SERS)-based Chemical Sensor using 3D Graphene Foam Decorated with Silver Nanoparticles as SERS substrate

    PubMed Central

    Srichan, Chavis; Ekpanyapong, Mongkol; Horprathum, Mati; Eiamchai, Pitak; Nuntawong, Noppadon; Phokharatkul, Ditsayut; Danvirutai, Pobporn; Bohez, Erik; Wisitsoraat, Anurat; Tuantranont, Adisorn

    2016-01-01

    In this work, a novel platform for surface-enhanced Raman spectroscopy (SERS)-based chemical sensors utilizing three-dimensional microporous graphene foam (GF) decorated with silver nanoparticles (AgNPs) is developed and applied for methylene blue (MB) detection. The results demonstrate that silver nanoparticles significantly enhance cascaded amplification of SERS effect on multilayer graphene foam (GF). The enhancement factor of AgNPs/GF sensor is found to be four orders of magnitude larger than that of AgNPs/Si substrate. In addition, the sensitivity of the sensor could be tuned by controlling the size of silver nanoparticles. The highest SERS enhancement factor of ∼5 × 104 is achieved at the optimal nanoparticle size of 50 nm. Moreover, the sensor is capable of detecting MB over broad concentration ranges from 1 nM to 100 μM. Therefore, AgNPs/GF is a highly promising SERS substrate for detection of chemical substances with ultra-low concentrations. PMID:27020705

  4. Highly-Sensitive Surface-Enhanced Raman Spectroscopy (SERS)-based Chemical Sensor using 3D Graphene Foam Decorated with Silver Nanoparticles as SERS substrate

    NASA Astrophysics Data System (ADS)

    Srichan, Chavis; Ekpanyapong, Mongkol; Horprathum, Mati; Eiamchai, Pitak; Nuntawong, Noppadon; Phokharatkul, Ditsayut; Danvirutai, Pobporn; Bohez, Erik; Wisitsoraat, Anurat; Tuantranont, Adisorn

    2016-03-01

    In this work, a novel platform for surface-enhanced Raman spectroscopy (SERS)-based chemical sensors utilizing three-dimensional microporous graphene foam (GF) decorated with silver nanoparticles (AgNPs) is developed and applied for methylene blue (MB) detection. The results demonstrate that silver nanoparticles significantly enhance cascaded amplification of SERS effect on multilayer graphene foam (GF). The enhancement factor of AgNPs/GF sensor is found to be four orders of magnitude larger than that of AgNPs/Si substrate. In addition, the sensitivity of the sensor could be tuned by controlling the size of silver nanoparticles. The highest SERS enhancement factor of ∼5 × 104 is achieved at the optimal nanoparticle size of 50 nm. Moreover, the sensor is capable of detecting MB over broad concentration ranges from 1 nM to 100 μM. Therefore, AgNPs/GF is a highly promising SERS substrate for detection of chemical substances with ultra-low concentrations.

  5. Digital Reconstruction of 3D Polydisperse Dry Foam

    NASA Astrophysics Data System (ADS)

    Chieco, A.; Feitosa, K.; Roth, A. E.; Korda, P. T.; Durian, D. J.

    2012-02-01

    Dry foam is a disordered packing of bubbles that distort into familiar polyhedral shapes. We have implemented a method that uses optical axial tomography to reconstruct the internal structure of a dry foam in three dimensions. The technique consists of taking a series of photographs of the dry foam against a uniformly illuminated background at successive angles. By summing the projections we create images of the foam cross section. Image analysis of the cross sections allows us to locate Plateau borders and vertices. The vertices are then connected according to Plateau's rules to reconstruct the internal structure of the foam. Using this technique we are able to visualize a large number of bubbles of real 3D foams and obtain statistics of faces and edges.

  6. Scalable Seashell-Based Chemical Vapor Deposition Growth of Three-Dimensional Graphene Foams for Oil-Water Separation.

    PubMed

    Shi, Liurong; Chen, Ke; Du, Ran; Bachmatiuk, Alicja; Rümmeli, Mark Hermann; Xie, Kongwei; Huang, Youyuan; Zhang, Yanfeng; Liu, Zhongfan

    2016-05-25

    A seashell-based CVD technique for preparing three-dimensional (3D) graphene foams is reported. The graphene sheets in thus-obtained foams are seamlessly interconnected into a 3D flexible network, forming highly porous materials with negligible non-carbon impurities, ultralow density, and outstanding mechanical flexibility and electrical conductivity. These 3D graphene foams demonstrate a fast adsorption performance toward various oils and organic solvents, with adsorption capacity up to 250-fold weight gain. The present approach offers a practical route for scalable construction of 3D graphene foams for versatile applications such as energy storage and water remediation. PMID:27157548

  7. Highly compressible 3D periodic graphene aerogel microlattices.

    PubMed

    Zhu, Cheng; Han, T Yong-Jin; Duoss, Eric B; Golobic, Alexandra M; Kuntz, Joshua D; Spadaccini, Christopher M; Worsley, Marcus A

    2015-01-01

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young's moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications. PMID:25902277

  8. Highly compressible 3D periodic graphene aerogel microlattices

    PubMed Central

    Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; Golobic, Alexandra M.; Kuntz, Joshua D.; Spadaccini, Christopher M.; Worsley, Marcus A.

    2015-01-01

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young's moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications. PMID:25902277

  9. Highly compressible 3D periodic graphene aerogel microlattices

    SciTech Connect

    Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; Golobic, Alexandra M.; Kuntz, Joshua D.; Spadaccini, Christopher M.; Worsley, Marcus A.

    2015-04-22

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young’s moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Ultimately, adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications.

  10. Free standing SnS2 nanosheets on 3D graphene foam: an outstanding hybrid nanostructure anode for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Huang, Zhi Xiang; Wang, Ye; Wong, Jen It; Yang, Hui Ying

    2015-06-01

    Two-dimensional (2D) materials are attracting increased research interest due to their unique physical properties and potential for application in various electronic devices. Herein, the combination of 2D materials consisting of vertical aligned tin sulfide (SnS2) nanosheets and three-dimensional graphene (3DG) are designed as a superior functional anode material for energy storage devices using the merits of the two materials. The SnS2/3DG hybrid nanostructure was synthesized via a single-step solvothermal method and further used as a binder-free anode in lithium ion batteries (LIBs). The binder-free SnS2/3DG electrode shows excellent electrochemical performance including superior specific capacity, enhanced rate capability and outstanding cycling stability compared to pure SnS2 and 3DG. SnS2/3DG hybrid nanocomposite electrodes are able to deliver high reversible capacities of 771.2 mAh g-1 and 433.3 mAh g-1 at the current densities of 200 and 1000 mA g-1, respectively. The excellent electrochemical performance of SnS2/3DG nanocomposite is attributed to the synergistic effect between SnS2 and 3DG. These results demonstrate SnS2/3DG nanocomposites as a highly promising anode material for future generation LIBs.

  11. Mechanically flexible and multifunctional polymer-based graphene foams for elastic conductors and oil-water separators.

    PubMed

    Wu, Chao; Huang, Xingyi; Wu, Xinfeng; Qian, Rong; Jiang, Pingkai

    2013-10-18

    We present a novel strategy for the fabrication of ordered and flexible polymer-based graphene foams by self-assembly of graphene sheets on a 3D polymer skeleton. The obtained graphene foams show excellent mechanical, electrical, and hydrophobic properties, thus holding great potential as elastic conductors and oil-water separators. PMID:23913816

  12. Green Synthesis of Porous Three-Dimensional Nitrogen-Doped Graphene Foam for Electrochemical Applications.

    PubMed

    Yu, Hua; Ye, Delai; Butburee, Teera; Wang, Lianzhou; Dargusch, Matthew

    2016-02-01

    A facile and green approach was developed for the production of porous three-dimensional (3D) nitrogen-doped graphene with a foam structure. In comparison with conventional methods, this green approach uses environmental precursors in the preparation of graphene products. The resulting crystalline graphene foam product exhibited a uniform structure with large surface area. These appealing features render the prepared graphene foam product a prospective backbone for producing 3D charge-transport networks. The 3D graphene foam products were employed as the skeleton with an interconnected network for lithium-ion batteries. The lithium-ion batteries with the 3D porous foam structure exhibit superior cycling stability and good rate capability. There is no capacity loss after 800 cycles because the capacity stabilized for the first few cycles, and the lithium-ion batteries with 3D graphene foam showed a discharge capacity of 180 mA h g(-1) at a current density of 1000 mA g(-1). This superior cycling stability and good rate capability was ascribed to the 3D structure with an interconnected porous network and the nitrogen-doping strategy for improved conductive properties of graphene foam, which produces an efficient 3D charge-transport network. The configuration of this 3D transport network in lithium-ion cells not only can improve the electron-transport efficiency but also can suppress the volume effect during charge/discharge cycling. Besides, nitrogen doping could enhance the formation of chemical bonding between carbon and the nearby nitrogen atoms, which could accelerate the diffusion of lithium ions through the whole graphene network. PMID:26744920

  13. 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection.

    PubMed

    Dong, Xiao-Chen; Xu, Hang; Wang, Xue-Wan; Huang, Yin-Xi; Chan-Park, Mary B; Zhang, Hua; Wang, Lian-Hui; Huang, Wei; Chen, Peng

    2012-04-24

    Using a simple hydrothermal procedure, cobalt oxide (Co(3)O(4)) nanowires were in situ synthesized on three-dimensional (3D) graphene foam grown by chemical vapor deposition. The structure and morphology of the resulting 3D graphene/Co(3)O(4) composites were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. The 3D graphene/Co(3)O(4) composite was used as the monolithic free-standing electrode for supercapacitor application and for enzymeless electrochemical detection of glucose. We demonstrate that it is capable of delivering high specific capacitance of ∼1100 F g(-1) at a current density of 10 A g(-1) with excellent cycling stability, and it can detect glucose with a ultrahigh sensitivity of 3.39 mA mM(-1) cm(-2) and a remarkable lower detection limit of <25 nM (S/N = 8.5). PMID:22435881

  14. Fabrication of three-dimensional graphene foam with high electrical conductivity and large adsorption capability

    NASA Astrophysics Data System (ADS)

    Chen, Guiqiang; Liu, Yanxia; Liu, Fei; Zhang, Xiao

    2014-08-01

    A three-dimensional (3D), free-standing graphene foam was prepared by plasma-enhanced chemical vapor deposition on nickel-foam. The prepared graphene foam was found to consist of few-layered vertically-aligned graphene sheets with highly graphite structure. Owing to the 3D interconnected porous nanostructures, the graphene foam exhibited a high electrical conductivity of 125 S/cm and a large surface area of 625.4 cm2/g. For practical application, we prepared the graphene foam/epoxy composites showing a maximum conductivity of 196 S/m at 2.5 vol.% filler loading, and a rather low percolation threshold of 0.18 vol.%. Furthermore, the derived graphene oxide foam exhibited an excellent absorption capability (177.6 mg/g for As(V), 399.3 mg/g for Pb(II)) and recyclability (above 90% removal efficiency after five cycles) for the removal of heavy metal ions. The present study reveals that the multifunctional graphene foam may broaden the graphene-based materials for the applications in electrically conductive composites and environmental cleanup.

  15. Highly compressible 3D periodic graphene aerogel microlattices

    DOE PAGESBeta

    Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; Golobic, Alexandra M.; Kuntz, Joshua D.; Spadaccini, Christopher M.; Worsley, Marcus A.

    2015-04-22

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young’s modulimore » of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Ultimately, adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications.« less

  16. Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells

    NASA Astrophysics Data System (ADS)

    Li, Ning; Zhang, Qi; Gao, Song; Song, Qin; Huang, Rong; Wang, Long; Liu, Liwei; Dai, Jianwu; Tang, Mingliang; Cheng, Guosheng

    2013-04-01

    Neural stem cell (NSC) based therapy provides a promising approach for neural regeneration. For the success of NSC clinical application, a scaffold is required to provide three-dimensional (3D) cell growth microenvironments and appropriate synergistic cell guidance cues. Here, we report the first utilization of graphene foam, a 3D porous structure, as a novel scaffold for NSCs in vitro. It was found that three-dimensional graphene foams (3D-GFs) can not only support NSC growth, but also keep cell at an active proliferation state with upregulation of Ki67 expression than that of two-dimensional graphene films. Meanwhile, phenotypic analysis indicated that 3D-GFs can enhance the NSC differentiation towards astrocytes and especially neurons. Furthermore, a good electrical coupling of 3D-GFs with differentiated NSCs for efficient electrical stimulation was observed. Our findings implicate 3D-GFs could offer a powerful platform for NSC research, neural tissue engineering and neural prostheses.

  17. Foam stabilisation using surfactant exfoliated graphene.

    PubMed

    Sham, Alison Y W; Notley, Shannon M

    2016-05-01

    Liquid-air foams have been stabilised using a suspension of graphene particles at very low particle loadings. The suspension was prepared through the liquid phase exfoliation of graphite in the presence of the non-ionic tri-block surfactant, Pluronic® F108. The graphene particles possess an extremely high aspect ratio, with lateral dimensions of between 0.1 and 1.3 μm as evidenced by TEM imaging. The particles were shown to exhibit a number of other properties known to favour stabilisation of foam structures. Particle surface activity was confirmed through surface tension measurements, suggesting the particles favour adsorption at the air-water interface. The evolution of bubble size distributions over time indicated the presence of particles yielded improvements to foam stability due to a reduction in disproportionation. Foam stability measurements showed a non-linear relationship between foam half-life and graphene concentration, indicative of the rate at which particles adsorb at bubble surfaces. The wettability of the graphene particles was altered upon addition of alkali metal chlorides, with the stability of the foams being enhanced according to the series Na(+)>Li(+)>K(+)>Cs(+). This effect is indicative of the relative hydration capacity of each salt with respect to the surfactant, which is adsorbed along the graphene plane as a result of the exfoliation process. Thus, surfactant exfoliated graphene particles exhibit a number of different features that demonstrate efficient application of high-aspect ratio particles in the customisation and enhancement of foams. PMID:26890385

  18. Self-Assembled 3D Graphene Monolith from Solution.

    PubMed

    Lv, Wei; Zhang, Chen; Li, Zhengjie; Yang, Quan-Hong

    2015-02-19

    Three-dimensional (3D) graphene-assembled monoliths (GAs), especially ones prepared by self-assembly in the liquid phase, represent promising forms to realize the practical applications of graphene due to their high surface utilization and operability. However, the understanding of the assembly process and structure control of 3D GAs, as a new class of carbon materials, is quite inadequate. In this Perspective, we give a demonstration of the assembly process and discuss the key factors involved in the structure control of 3D GAs to pave the way for their future applications. It is shown that the assembly process starts with the phase separation, which is responsible for the formation of the 3D networked structure and liquid phase as the spacers avoid the parallel overlap of graphene layers and help form an interlinked pore system. Well-tailored graphene sheets and selected assembly media must be a precondition for a well-controlled assembly process and microstructure of a 3D GA. The potential applications in energy storage featuring high rate and high volumetric energy density demonstrate advantages of 3D GAs in real applications. PMID:26262482

  19. Robust Electrografting on Self-Organized 3D Graphene Electrodes.

    PubMed

    Fortgang, Philippe; Tite, Teddy; Barnier, Vincent; Zehani, Nedjla; Maddi, Chiranjeevi; Lagarde, Florence; Loir, Anne-Sophie; Jaffrezic-Renault, Nicole; Donnet, Christophe; Garrelie, Florence; Chaix, Carole

    2016-01-20

    Improving graphene-based electrode fabrication processes and developing robust methods for its functionalization are two key research routes to develop new high-performance electrodes for electrochemical applications. Here, a self-organized three-dimensional (3D) graphene electrode processed by pulsed laser deposition with thermal annealing is reported. This substrate shows great performance in electron transfer kinetics regarding ferrocene redox probes in solution. A robust electrografting strategy for covalently attaching a redox probe onto these graphene electrodes is also reported. The modification protocol consists of a combination of diazonium salt electrografting and click chemistry. An alkyne-terminated phenyl ring is first electrografted onto the self-organized 3D graphene electrode by in situ electrochemical reduction of 4-ethynylphenyl diazonium. Then the ethynylphenyl-modified surface efficiently reacts with the redox probe bearing a terminal azide moiety (2-azidoethyl ferrocene) by means of Cu(I)-catalyzed alkyne-azide cycloaddition. Our modification strategy applied to 3D graphene electrodes was analyzed by means of atomic force microscopy, scanning electron microscopy, Raman spectroscopy, cyclic voltammetry, and X-ray photoelectron spectroscopy (XPS). For XPS chemical surface analysis, special attention was paid to the distribution and chemical state of iron and nitrogen in order to highlight the functionalization of the graphene-based substrate by electrochemically grafting a ferrocene derivative. Dense grafting was observed, offering 4.9 × 10(-10) mol cm(-2) surface coverage and showing a stable signal over 22 days. The electrografting was performed in the form of multilayers, which offers higher ferrocene loading than a dense monolayer on a flat surface. This work opens highly promising perspectives for the development of self-organized 3D graphene electrodes with various sensing functionalities. PMID:26710829

  20. Anti-inflammatory effects of three-dimensional graphene foams cultured with microglial cells.

    PubMed

    Song, Qin; Jiang, Ziyun; Li, Ning; Liu, Ping; Liu, Liwei; Tang, Mingliang; Cheng, Guosheng

    2014-08-01

    One of the key goals in nerve tissue engineering is to develop new materials which cause less or no neuroinflammation. Despite the rapid advances of using graphene as a neural interface material, it still remains unknown whether graphene could provoke neuroinflammation or not, and whether and how the topographical features of graphene influence the neuroinflammation induction. By immunofluorescence, Elisa technique, western blot, scanning electron microscope (SEM) methods, we investigated the pro- and/or anti-inflammatory responses of microglia in the graphene films (2D-graphene) or graphene foams (3D-graphene) culturing systems. Furthermore, the growth situations of the neural stem cells (NSCs) in the conditioned culture medium produced in the graphene substrates were evaluated. The results show that: 1) neither 2D nor 3D graphene induced distinct neuroinflammation when compared to the tissue culture polystyrene (TCPS) substrates; 2) the topographical structures of the graphene might affect the material/cell interactions, leading to disparate effects on lipopolysaccharide (LPS)-induced neuroinflammation; 3) 3D graphene exhibited a remarkable capability of rescuing LPS-induced neuroinflammation probably through the restriction of microglia morphological transformation by the unique topographical features on the surface, showing the ability of anti-inflammation against external insults, while 2D graphene failed to. These results provide insights into the diverse biological effects of the material's topographical structures and open new opportunity for the applications of graphene in neuroscience. PMID:24875763

  1. Tough graphene-polymer microcellular foams for electromagnetic interference shielding.

    PubMed

    Zhang, Hao-Bin; Yan, Qing; Zheng, Wen-Ge; He, Zhixian; Yu, Zhong-Zhen

    2011-03-01

    Functional polymethylmethacrylate (PMMA)/graphene nanocomposite microcellular foams were prepared by blending of PMMA with graphene sheets followed by foaming with subcritical CO(2) as an environmentally benign foaming agent. The addition of graphene sheets endows the insulating PMMA foams with high electrical conductivity and improved electromagnetic interference (EMI) shielding efficiency with microwave absorption as the dominant EMI shielding mechanism. Interestingly, because of the presence of the numerous microcellular cells, the graphene-PMMA foam exhibits greatly improved ductility and tensile toughness compared to its bulk counterpart. This work provides a promising methodology to fabricate tough and lightweight graphene-PMMA nanocomposite microcellular foams with superior electrical and EMI shielding properties by simultaneously combining the functionality and reinforcement of the graphene sheets and the toughening effect of the microcellular cells. PMID:21366239

  2. Ultrafast Synthesis of Multifunctional N-Doped Graphene Foam in an Ethanol Flame.

    PubMed

    Du, Xusheng; Liu, Hong-Yuan; Mai, Yiu-Wing

    2016-01-26

    A hard template method to prepare N-doped graphene foams (NGF) with superfast template removal was developed through a pyrolyzing commercial polyurethane (PU) sponge coated with graphene oxide (GO) sheets in an ethanol flame. The removal of the template was fast and facile, and could be completed in less than 60 s in an open environment. The synthesized graphene foams consisted of a unique structure of 3D interconnected hollow struts with highly wrinkled surfaces, and the morphology of the hollow struts could be tuned by controlling the GO dispersion concentration. The foams showed high hydrophobicity and were used as absorbents for a variety of organic solvents and oils. The unique NGF structure afforded a high absorption rate and capacity, and a remarkable 98.7% pore volume of the foam could be utilized for absorption of hexane, exhibiting one of the highest capacity values among existing absorptive counterparts. The N-doping brought higher capacitive performance than conventional graphene foams prepared by chemical vapor deposition on nickel foam templates. The NGFs also displayed high elasticity and could recover completely after 50% compressive strain. Owing to easy availability and reduction environment of the flame, complete thermal decomposition of the PU sponge and highly porous open-cell structure, and flame resistance of the graphene foam, the present flame method was demonstrated to be a simple, effective, and ultrafast approach to fabricate ultra-low-density NGFs with good electromechanical response, excellent organic liquid absorption, and high-energy dissipation capabilities. PMID:26635121

  3. Elastic properties of model 3-D porous ceramics and foams

    NASA Astrophysics Data System (ADS)

    Roberts, Anthony; Garboczi, Edward

    2000-03-01

    The novel properties of many new porous materials are related to their interesting internal microstructure. Apart from simple cases, there exist no theoretical means of predicting the bulk properties of these materials. This limits our ability to guide microstructure optimization for a particular purpose. We use a large scale finite element method to demonstrate the complex relationship between microstructure and the effective properties of realistic three-dimensional model porous ceramics and foams. We find that pore-shape and interconnectivity strongly influence the properties of sintered ceramics. For porous foams we have studied the role of coordination number, random disorder, and strut shape on the Young's modulus and Poisson's ratio. We find that that Voronoi tesselations, commonly used to model solid foams, show unphysical behavior, in particular they are incompressible (rubber-like) at low densities. Deletion of just 10% of the bonds in the model reduces the bulk modulus by 75%, more in line with experimental evidence. The FEM results are generally in good agreement with experimental data for ceramics and foams, and can be used as both a predictive and interpretative tool by experimentalists.

  4. 3D stereolithography printing of graphene oxide reinforced complex architectures.

    PubMed

    Lin, Dong; Jin, Shengyu; Zhang, Feng; Wang, Chao; Wang, Yiqian; Zhou, Chi; Cheng, Gary J

    2015-10-30

    Properties of polymer based nanocomposites reply on distribution, concentration, geometry and property of nanofillers in polymer matrix. Increasing the concentration of carbon based nanomaterials, such as CNTs, in polymer matrix often results in stronger but more brittle material. Here, we demonstrated the first three-dimensional (3D) printed graphene oxide complex structures by stereolithography with good combination of strength and ductility. With only 0.2% GOs, the tensile strength is increased by 62.2% and elongation increased by 12.8%. Transmission electron microscope results show that the GOs were randomly aligned in the cross section of polymer. We investigated the strengthening mechanism of the 3D printed structure in terms of tensile strength and Young's modulus. It is found that an increase in ductility of the 3D printed nanocomposites is related to increase in crystallinity of GOs reinforced polymer. Compression test of 3D GOs structure reveals the metal-like failure model of GOs nanocomposites. PMID:26443263

  5. Mechanical Properties of 3-D Printed Cellular Foams with triangular cells

    NASA Astrophysics Data System (ADS)

    Bunga, Pratap Kumar

    In the present work, poly lactic acid (PLA) is used as a model system to investigate the mechanical behavior of 3-D printed foams with triangular cells. Solid PLA tension and compression specimens and foams made of PLA were fabricated using fused deposition 3-D printing technique. The solid PLA tension specimens were characterized for their densities and found to be about 10% lower in density as compared to their bulk counter parts. The triangular foams had a relative density of about 64%. The relationships between the structure of the foams and its deformation behavior under compression along two in-plane directions were characterized. Furthermore, simple finite element models were developed to understand the observed deformation behavior of triangular foams.

  6. Preparation of Three-Dimensional Graphene Foams Using Powder Metallurgy Templates.

    PubMed

    Sha, Junwei; Gao, Caitian; Lee, Seoung-Ki; Li, Yilun; Zhao, Naiqin; Tour, James M

    2016-01-26

    A simple and scalable method which combines traditional powder metallurgy and chemical vapor deposition is developed for the synthesis of mesoporous free-standing 3D graphene foams. The powder metallurgy templates for 3D graphene foams (PMT-GFs) consist of particle-like carbon shells which are connected by multilayered graphene that shows high specific surface area (1080 m(2) g(-1)), good crystallization, good electrical conductivity (13.8 S cm(-1)), and a mechanically robust structure. The PMT-GFs did not break under direct flushing with DI water, and they were able to recover after being compressed. These properties indicate promising applications of PMT-GFs for fields requiring 3D carbon frameworks such as in energy-based electrodes and mechanical dampening. PMID:26678869

  7. 3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response

    NASA Astrophysics Data System (ADS)

    Maiti, A.; Small, W.; Lewicki, J. P.; Weisgraber, T. H.; Duoss, E. B.; Chinn, S. C.; Pearson, M. A.; Spadaccini, C. M.; Maxwell, R. S.; Wilson, T. S.

    2016-04-01

    3D printing of polymeric foams by direct-ink-write is a recent technological breakthrough that enables the creation of versatile compressible solids with programmable microstructure, customizable shapes, and tunable mechanical response including negative elastic modulus. However, in many applications the success of these 3D printed materials as a viable replacement for traditional stochastic foams critically depends on their mechanical performance and micro-architectural stability while deployed under long-term mechanical strain. To predict the long-term performance of the two types of foams we employed multi-year-long accelerated aging studies under compressive strain followed by a time-temperature-superposition analysis using a minimum-arc-length-based algorithm. The resulting master curves predict superior long-term performance of the 3D printed foam in terms of two different metrics, i.e., compression set and load retention. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. This indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material, which might explain the latter’s improved long-term stability and mechanical performance.

  8. 3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response.

    PubMed

    Maiti, A; Small, W; Lewicki, J P; Weisgraber, T H; Duoss, E B; Chinn, S C; Pearson, M A; Spadaccini, C M; Maxwell, R S; Wilson, T S

    2016-01-01

    3D printing of polymeric foams by direct-ink-write is a recent technological breakthrough that enables the creation of versatile compressible solids with programmable microstructure, customizable shapes, and tunable mechanical response including negative elastic modulus. However, in many applications the success of these 3D printed materials as a viable replacement for traditional stochastic foams critically depends on their mechanical performance and micro-architectural stability while deployed under long-term mechanical strain. To predict the long-term performance of the two types of foams we employed multi-year-long accelerated aging studies under compressive strain followed by a time-temperature-superposition analysis using a minimum-arc-length-based algorithm. The resulting master curves predict superior long-term performance of the 3D printed foam in terms of two different metrics, i.e., compression set and load retention. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. This indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material, which might explain the latter's improved long-term stability and mechanical performance. PMID:27117858

  9. 3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response

    DOE PAGESBeta

    Maiti, A.; Small, W.; Lewicki, J.; Weisgraber, T. H.; Duoss, E. B.; Chinn, S. C.; Pearson, M. A.; Spadaccini, C. M.; Maxwell, R. S.; Wilson, T. S.

    2016-04-27

    3D printing of polymeric foams by direct-ink-write is a recent technological breakthrough that enables the creation of versatile compressible solids with programmable microstructure, customizable shapes, and tunable mechanical response including negative elastic modulus. However, in many applications the success of these 3D printed materials as a viable replacement for traditional stochastic foams critically depends on their mechanical performance and micro-architectural stability while deployed under long-term mechanical strain. To predict the long-term performance of the two types of foams we employed multi-year-long accelerated aging studies under compressive strain followed by a time-temperature-superposition analysis using a minimum-arc-length-based algorithm. The resulting master curvesmore » predict superior long-term performance of the 3D printed foam in terms of two different metrics, i.e., compression set and load retention. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. As a result, this indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material, which might explain the latter’s improved long-term stability and mechanical performance.« less

  10. 3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response

    PubMed Central

    Maiti, A.; Small, W.; Lewicki, J. P.; Weisgraber, T. H.; Duoss, E. B.; Chinn, S. C.; Pearson, M. A.; Spadaccini, C. M.; Maxwell, R. S.; Wilson, T. S.

    2016-01-01

    3D printing of polymeric foams by direct-ink-write is a recent technological breakthrough that enables the creation of versatile compressible solids with programmable microstructure, customizable shapes, and tunable mechanical response including negative elastic modulus. However, in many applications the success of these 3D printed materials as a viable replacement for traditional stochastic foams critically depends on their mechanical performance and micro-architectural stability while deployed under long-term mechanical strain. To predict the long-term performance of the two types of foams we employed multi-year-long accelerated aging studies under compressive strain followed by a time-temperature-superposition analysis using a minimum-arc-length-based algorithm. The resulting master curves predict superior long-term performance of the 3D printed foam in terms of two different metrics, i.e., compression set and load retention. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. This indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material, which might explain the latter’s improved long-term stability and mechanical performance. PMID:27117858

  11. 3D Printing Variable Stiffness Foams Using Viscous Thread Instability

    PubMed Central

    Lipton, Jeffrey I.; Lipson, Hod

    2016-01-01

    Additive manufacturing of cellular structures has numerous applications ranging from fabrication of biological scaffolds and medical implants, to mechanical weight reduction and control over mechanical properties. Various additive manufacturing processes have been used to produce open regular cellular structures limited only by the resolution of the printer. These efforts have focused on printing explicitly designed cells or explicitly planning offsets between strands. Here we describe a technique for producing cellular structures implicitly by inducing viscous thread instability when extruding material. This process allows us to produce complex cellular structures at a scale that is finer than the native resolution of the printer. We demonstrate tunable effective elastic modulus and density that span two orders of magnitude. Fine grained cellular structures allow for fabrication of foams for use in a wide range of fields ranging from bioengineering, to robotics to food printing. PMID:27503148

  12. 3D Printing Variable Stiffness Foams Using Viscous Thread Instability

    NASA Astrophysics Data System (ADS)

    Lipton, Jeffrey I.; Lipson, Hod

    2016-08-01

    Additive manufacturing of cellular structures has numerous applications ranging from fabrication of biological scaffolds and medical implants, to mechanical weight reduction and control over mechanical properties. Various additive manufacturing processes have been used to produce open regular cellular structures limited only by the resolution of the printer. These efforts have focused on printing explicitly designed cells or explicitly planning offsets between strands. Here we describe a technique for producing cellular structures implicitly by inducing viscous thread instability when extruding material. This process allows us to produce complex cellular structures at a scale that is finer than the native resolution of the printer. We demonstrate tunable effective elastic modulus and density that span two orders of magnitude. Fine grained cellular structures allow for fabrication of foams for use in a wide range of fields ranging from bioengineering, to robotics to food printing.

  13. 3D Printing Variable Stiffness Foams Using Viscous Thread Instability.

    PubMed

    Lipton, Jeffrey I; Lipson, Hod

    2016-01-01

    Additive manufacturing of cellular structures has numerous applications ranging from fabrication of biological scaffolds and medical implants, to mechanical weight reduction and control over mechanical properties. Various additive manufacturing processes have been used to produce open regular cellular structures limited only by the resolution of the printer. These efforts have focused on printing explicitly designed cells or explicitly planning offsets between strands. Here we describe a technique for producing cellular structures implicitly by inducing viscous thread instability when extruding material. This process allows us to produce complex cellular structures at a scale that is finer than the native resolution of the printer. We demonstrate tunable effective elastic modulus and density that span two orders of magnitude. Fine grained cellular structures allow for fabrication of foams for use in a wide range of fields ranging from bioengineering, to robotics to food printing. PMID:27503148

  14. Development of a 3D graphene electrode dielectrophoretic device.

    PubMed

    Xie, Hongyu; Tewari, Radheshyam; Fukushima, Hiroyuki; Narendra, Jeffri; Heldt, Caryn; King, Julia; Minerick, Adrienne R

    2014-01-01

    The design and fabrication of a novel 3D electrode microdevice using 50 µm thick graphene paper and 100 µm double sided tape is described. The protocol details the procedures to construct a versatile, reusable, multiple layer, laminated dielectrophoresis chamber. Specifically, six layers of 50 µm x 0.7 cm x 2 cm graphene paper and five layers of double sided tape were alternately stacked together, then clamped to a glass slide. Then a 700 μm diameter micro-well was drilled through the laminated structure using a computer-controlled micro drilling machine. Insulating properties of the tape layer between adjacent graphene layers were assured by resistance tests. Silver conductive epoxy connected alternate layers of graphene paper and formed stable connections between the graphene paper and external copper wire electrodes. The finished device was then clamped and sealed to a glass slide. The electric field gradient was modeled within the multi-layer device. Dielectrophoretic behaviors of 6 μm polystyrene beads were demonstrated in the 1 mm deep micro-well, with medium conductivities ranging from 0.0001 S/m to 1.3 S/m, and applied signal frequencies from 100 Hz to 10 MHz. Negative dielectrophoretic responses were observed in three dimensions over most of the conductivity-frequency space and cross-over frequency values are consistent with previously reported literature values. The device did not prevent AC electroosmosis and electrothermal flows, which occurred in the low and high frequency regions, respectively. The graphene paper utilized in this device is versatile and could subsequently function as a biosensor after dielectrophoretic characterizations are complete. PMID:24998694

  15. Development of a 3D Graphene Electrode Dielectrophoretic Device

    PubMed Central

    Xie, Hongyu; Tewari, Radheshyam; Fukushima, Hiroyuki; Narendra, Jeffri; Heldt, Caryn; King, Julia; Minerick, Adrienne R.

    2014-01-01

    The design and fabrication of a novel 3D electrode microdevice using 50 µm thick graphene paper and 100 µm double sided tape is described. The protocol details the procedures to construct a versatile, reusable, multiple layer, laminated dielectrophoresis chamber. Specifically, six layers of 50 µm x 0.7 cm x 2 cm graphene paper and five layers of double sided tape were alternately stacked together, then clamped to a glass slide. Then a 700 μm diameter micro-well was drilled through the laminated structure using a computer-controlled micro drilling machine. Insulating properties of the tape layer between adjacent graphene layers were assured by resistance tests. Silver conductive epoxy connected alternate layers of graphene paper and formed stable connections between the graphene paper and external copper wire electrodes. The finished device was then clamped and sealed to a glass slide. The electric field gradient was modeled within the multi-layer device. Dielectrophoretic behaviors of 6 μm polystyrene beads were demonstrated in the 1 mm deep micro-well, with medium conductivities ranging from 0.0001 S/m to 1.3 S/m, and applied signal frequencies from 100 Hz to 10 MHz. Negative dielectrophoretic responses were observed in three dimensions over most of the conductivity-frequency space and cross-over frequency values are consistent with previously reported literature values. The device did not prevent AC electroosmosis and electrothermal flows, which occurred in the low and high frequency regions, respectively. The graphene paper utilized in this device is versatile and could subsequently function as a biosensor after dielectrophoretic characterizations are complete. PMID:24998694

  16. Compressible Graphene-Coated Polymer Foams with Ultralow Density for Adjustable Electromagnetic Interference (EMI) Shielding.

    PubMed

    Shen, Bin; Li, Yang; Zhai, Wentao; Zheng, Wenge

    2016-03-01

    The fabrication of low-density and compressible polymer/graphene composite (PGC) foams for adjustable electromagnetic interference (EMI) shielding remains a daunting challenge. Herein, ultralightweight and compressible PGC foams have been developed by simple solution dip-coating of graphene on commercial polyurethane (PU) sponges with highly porous network structure. The resultant PU/graphene (PUG) foams had a density as low as ∼0.027-0.030 g/cm(3) and possessed good comprehensive EMI shielding performance together with an absorption-dominant mechanism, possibly due to both conductive dissipation and multiple reflections and scattering of EM waves by the inside 3D conductive graphene network. Moreover, by taking advantage of their remarkable compressibility, the shielding performance of the PUG foams could be simply adjusted through a simple mechanical compression, showing promise for adjustable EMI shielding. We believe that the strategy for fabricating PGC foams through a simple dip-coating method could potentially promote the large-scale production of lightweight foam materials for EMI shielding. PMID:26974443

  17. Solar-thermal conversion and thermal energy storage of graphene foam-based composites

    NASA Astrophysics Data System (ADS)

    Zhang, Lianbin; Li, Renyuan; Tang, Bo; Wang, Peng

    2016-07-01

    Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy the continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a commonly used PCM, paraffin wax. The high macroporosity and low density of the graphene foam allow for high weight fraction of the PCM to be incorporated, which enhances the heat storage capacity of the composite. The interconnected graphene sheets in the composite provide (1) the solar-thermal conversion capability, (2) high thermal conductivity and (3) form stability of the composite. Under light irradiation, the composite effectively collects and converts the light energy into thermal energy, and the converted thermal energy is stored in the PCM and released in an elongated period of time for sustained utilization. This study provides a promising route for sustainable utilization of solar energy.Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy the continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a

  18. Molybdenum dioxide-anchored graphene foam as a negative electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Mu, Xuemei; Liu, Xiaozhi; Zhang, Ke; Li, Jian; Zhou, Jinyuan; Xie, Erqing; Zhang, Zhenxing

    2016-03-01

    Molybdenum dioxide nanoparticles of diameter 100 nm were anchored uniformly to a three-dimensional (3D) graphene foam using an ultrasonication-assisted deposition method. X-ray diffraction and Raman spectroscopy indicated that the molybdenum dioxide nanoparticles had a monoclinic crystal structure. The 3D graphene/MoO2 nanoparticle composite showed excellent pseudocapacitive ability as its specific capacitance reached 404 F g-1 at a scan rate of 2 mV s-1 in the negative potential range, -1.0 to -0.2 V, in a neutral solution. Overall, the 3D graphene/MoO2 nanoparticle composite has great potential as an anode material for the next generation of high-performance supercapacitors. [Figure not available: see fulltext.

  19. Experimental and Numerical Investigation of Forging Process to Reproduce a 3D Aluminium Foam Complex Shape

    SciTech Connect

    Filice, Luigino; Gagliardi, Francesco; Umbrello, Domenico; Shivpuri, Rajiv

    2007-05-17

    Metallic foams represent one of the most exciting materials introduced in the manufacturing scenario in the last years. In the study here addressed, the experimental and numerical investigations on the forging process of a simple foam billet shaped into complex sculptured parts were carried out. In particular, the deformation behavior of metallic foams and the development of density gradients were investigated through a series of experimental forging tests in order to produce a selected portion of a hip prosthesis. The human bone replacement was chosen as case study due to its industrial demand and for its particular 3D complex shape. A finite element code (Deform 3D) was utilized for modeling the foam behavior during the forging process and an accurate material rheology description was used based on a porous material model which includes the measured local density. Once the effectiveness of the utilized Finite Element model was verified through the comparison with the experimental evidences, a numerical study of the influence of the foam density was investigated. The obtained numerical results shown as the initial billet density plays an important role on the prediction of the final shape, the optimization of the flash as well as the estimation of the punch load.

  20. Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells

    PubMed Central

    Li, Ning; Zhang, Qi; Gao, Song; Song, Qin; Huang, Rong; Wang, Long; Liu, Liwei; Dai, Jianwu; Tang, Mingliang; Cheng, Guosheng

    2013-01-01

    Neural stem cell (NSC) based therapy provides a promising approach for neural regeneration. For the success of NSC clinical application, a scaffold is required to provide three-dimensional (3D) cell growth microenvironments and appropriate synergistic cell guidance cues. Here, we report the first utilization of graphene foam, a 3D porous structure, as a novel scaffold for NSCs in vitro. It was found that three-dimensional graphene foams (3D-GFs) can not only support NSC growth, but also keep cell at an active proliferation state with upregulation of Ki67 expression than that of two-dimensional graphene films. Meanwhile, phenotypic analysis indicated that 3D-GFs can enhance the NSC differentiation towards astrocytes and especially neurons. Furthermore, a good electrical coupling of 3D-GFs with differentiated NSCs for efficient electrical stimulation was observed. Our findings implicate 3D-GFs could offer a powerful platform for NSC research, neural tissue engineering and neural prostheses. PMID:23549373

  1. Hydrothermal deposition of manganese dioxide nanosheets on electrodeposited graphene covered nickel foam as a high-performance electrode for supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Yiju; Cao, Dianxue; Wang, Ying; Yang, Sainan; Zhang, Dongming; Ye, Ke; Cheng, Kui; Yin, Jinling; Wang, Guiling; Xu, Yang

    2015-04-01

    In this paper, the graphene oxide nanosheets are simultaneously reduced and deposited on nickel foam (denoted as Ni-foam@GNS) by one step electrodeposition method. The interconnected crumpled graphene nanosheets grown on Ni foam serve as a three-dimensional (3D) conductive skeleton for hydrothermal deposition of MnO2 nanosheets by in-situ redox reaction. The MnO2 nanosheets anchored on the graphene covered nickel foam (denoted as Ni-foam@GNS@MnO2) show unique 3D porous interconnected networks. The samples are characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), N2 adsorption-desorption measurements and fourier transform infrared spectroscopy (FT-IR). The capacitive performances are researched by cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS). The results reveal that the Ni-foam@GNS@MnO2 electrode exhibits a high specific capacitance of 462 F g-1 at 0.5 A g-1 and excellent capacitance retention of 93.1% after 5000 cycles at 10 A g-1. Furthermore, the Ni-foam@GNS@MnO2 electrode delivers a high energy density of 26.1 Wh kg-1 even at a high power density of 3981 W kg-1. These results demonstrate that the Ni-foam@GNS@MnO2 composite offers great promise in large-scale energy storage device applications.

  2. A facile synthesis of graphene foam as electrode material for supercapacitor

    NASA Astrophysics Data System (ADS)

    Sivaprakash, S.; Sivaprakash, Prabhavathy

    2016-07-01

    We report here a versatile fabrication approach of graphene foam (GF) with three dimensional (3D) porous conductive networks which reveal great potential for application in energy storage devices. This facile fabrication technique is believed to be favorable for supercapacitor application as the 3D-GF comprises conductive continuous porous networks with large active surface area. Supercapacitors utilize this high surface area electrode to attain improved capacitance. The resulting graphene foam exhibited satisfactory double layer capacitive behavior with improved electrochemical performance having good electrochemical cycling stability and high specific capacitance of 310 F g‑1 at current density of 5 A g‑1 and 160 F g‑1 at current density of 20 A g‑1.

  3. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam.

    PubMed

    Zhang, Yi; Huang, Yi; Zhang, Tengfei; Chang, Huicong; Xiao, Peishuang; Chen, Honghui; Huang, Zhiyu; Chen, Yongsheng

    2015-03-25

    The broadband and tunable high-performance microwave absorption properties of an ultralight and highly compressible graphene foam (GF) are investigated. Simply via physical compression, the microwave absorption performance can be tuned. The qualified bandwidth coverage of 93.8% (60.5 GHz/64.5 GHz) is achieved for the GF under 90% compressive strain (1.0 mm thickness). This mainly because of the 3D conductive network. PMID:25689269

  4. Solar-thermal conversion and thermal energy storage of graphene foam-based composites.

    PubMed

    Zhang, Lianbin; Li, Renyuan; Tang, Bo; Wang, Peng

    2016-08-14

    Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy the continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a commonly used PCM, paraffin wax. The high macroporosity and low density of the graphene foam allow for high weight fraction of the PCM to be incorporated, which enhances the heat storage capacity of the composite. The interconnected graphene sheets in the composite provide (1) the solar-thermal conversion capability, (2) high thermal conductivity and (3) form stability of the composite. Under light irradiation, the composite effectively collects and converts the light energy into thermal energy, and the converted thermal energy is stored in the PCM and released in an elongated period of time for sustained utilization. This study provides a promising route for sustainable utilization of solar energy. PMID:27430282

  5. Experimental and Numerical Investigation of Forging Process to Reproduce a 3D Aluminium Foam Complex Shape

    NASA Astrophysics Data System (ADS)

    Filice, Luigino; Gagliardi, Francesco; Shivpuri, Rajiv; Umbrello, Domenico

    2007-05-01

    Metallic foams represent one of the most exciting materials introduced in the manufacturing scenario in the last years. In the study here addressed, the experimental and numerical investigations on the forging process of a simple foam billet shaped into complex sculptured parts were carried out. In particular, the deformation behavior of metallic foams and the development of density gradients were investigated through a series of experimental forging tests in order to produce a selected portion of a hip prosthesis. The human bone replacement was chosen as case study due to its industrial demand and for its particular 3D complex shape. A finite element code (Deform 3D®) was utilized for modeling the foam behavior during the forging process and an accurate material rheology description was used based on a porous material model which includes the measured local density. Once the effectiveness of the utilized Finite Element model was verified through the comparison with the experimental evidences, a numerical study of the influence of the foam density was investigated. The obtained numerical results shown as the initial billet density plays an important role on the prediction of the final shape, the optimization of the flash as well as the estimation of the punch load.

  6. Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode.

    PubMed

    Zhu, Guoyin; He, Zhi; Chen, Jun; Zhao, Jin; Feng, Xiaomiao; Ma, Yanwen; Fan, Quli; Wang, Lianhui; Huang, Wei

    2014-01-21

    Carbon nanotube (CNT)-graphene hybrids grown on porous Ni foam are used as substrates to immobilize MnO2 nanoflakes, thus forming three-dimensional (3D) MnO2-CNT-graphene-Ni hybrid foam. The as-prepared hybrid materials could be used as supercapacitor electrodes directly without any binder and conductive additives, and fully maintain the high conductivity and high surface-to-volume ratio of CNTs, large pseudocapacitance of MnO2 nanoflakes and high porosity provided by the framework of Ni foam. The conductivity of the 3D MnO2-CNT-graphene-Ni foam is as high as 117 S cm(-1) due to the seamless integration of MnO2 nanoflakes, CNTs, graphene and Ni foam among the 3D frameworks, which guarantee its low internal resistance (1.25 ohm) when compacted into supercapacitor devices. In aqueous electrolytes, the 3D MnO2-CNT-graphene-Ni based prototype supercapacitors show specific capacitances of ~251 F g(-1) with good cycling stability at a current density of 1.0 A g(-1). In addition, these 3D hybrids also demonstrate their potential in all-solid-state flexible supercapacitors. PMID:24296659

  7. Freestanding 3D mesoporous Co₃O₄@carbon foam nanostructures for ethanol gas sensing.

    PubMed

    Li, Lei; Liu, Minmin; He, Shuijian; Chen, Wei

    2014-08-01

    Metal oxide materials have been widely used as gas-sensing platforms, and their sensing performances are largely dependent on the morphology and surface structure. Here, freestanding flower-like Co3O4 nanostructures supported on three-dimensional (3D) carbon foam (Co3O4@CF) were successfully synthesized by a facile and low-cost hydrothermal route and annealing procedure. The morphology and structure of the nanocomposites were studied by X-ray diffraction, X-ray photoelectron spectroscopy, energy-dispersive spectroscopy, and scanning electron microscopy (SEM). The SEM characterizations showed that the skeleton of the porous carbon foam was fully covered by flower-like Co3O4 nanostructures. Moreover, each Co3O4 nanoflower is composed of densely packed nanoneedles with a length of ~10 μm, which can largely enhance the surface area (about 286.117 m(2)/g) for ethanol sensing. Gas sensor based on the as-synthesized 3D Co3O4@CF nanostructures was fabricated to study the sensing performance for ethanol at a temperature range from 180 to 360 °C. Due to the 3D porous structure and the improvement in sensing surface/interface, the Co3O4@CF nanostructure exhibited enhanced sensing performance for ethanol detection with low resistance, fast response and recovery time, high sensitivity, and limit of detection as low as 15 ppm at 320 °C. The present study shows that such novel 3D metal oxide/carbon hybrid nanostructures are promising platforms for gas sensing. PMID:25011608

  8. 3D Freeze-Casting of Cellular Graphene Films for Ultrahigh-Power-Density Supercapacitors.

    PubMed

    Shao, Yuanlong; El-Kady, Maher F; Lin, Cheng-Wei; Zhu, Guanzhou; Marsh, Kristofer L; Hwang, Jee Youn; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi; Kaner, Richard B

    2016-08-01

    3D cellular graphene films with open porosity, high electrical conductivity, and good tensile strength, can be synthesized by a method combining freeze-casting and filtration. The resulting supercapacitors based on 3D porous reduced graphene oxide (RGO) film exhibit extremely high specific power densities and high energy densities. The fabrication process provides an effective means for controlling the pore size, electronic conductivity, and loading mass of the electrode materials, toward devices with high energy-storage performance. PMID:27214752

  9. 3D Oxidized Graphene Frameworks for Efficient Nano Sieving.

    PubMed

    Pawar, Pranav Bhagwan; Saxena, Sumit; Badhe, Dhanashree Kamlesh; Chaudhary, Raghvendra Pratap; Shukla, Shobha

    2016-01-01

    The small size of Na(+) and Cl(-) ions provides a bottleneck in desalination and is a challenge in providing alternatives for continuously depleting fresh water resources. Graphene by virtue of its structural properties has the potential to address this issue. Studies have indicated that use of monolayer graphene can be used to filter micro volumes of saline solution. Unfortunately it is extremely difficult, resource intensive and almost impractical with current technology to fabricate operational devices using mono-layered graphene. Nevertheless, graphene based devices still hold the key to solve this problem due to its nano-sieving ability. Here we report synthesis of oxidized graphene frameworks and demonstrate a functional device to desalinate and purify seawater from contaminants including Na(+) and Cl(-) ions, dyes and other microbial pollutants. Micro-channels in these frameworks help in immobilizing larger suspended solids including bacteria, while nano-sieving through graphene enables the removal of dissolved ions (e.g. Cl(-)). Nano-sieving incorporated with larger frameworks has been used in filtering Na(+) and Cl(-) ions in functional devices. PMID:26892277

  10. 3D Oxidized Graphene Frameworks for Efficient Nano Sieving

    PubMed Central

    Pawar, Pranav Bhagwan; Saxena, Sumit; Badhe, Dhanashree Kamlesh; Chaudhary, Raghvendra Pratap; Shukla, Shobha

    2016-01-01

    The small size of Na+ and Cl− ions provides a bottleneck in desalination and is a challenge in providing alternatives for continuously depleting fresh water resources. Graphene by virtue of its structural properties has the potential to address this issue. Studies have indicated that use of monolayer graphene can be used to filter micro volumes of saline solution. Unfortunately it is extremely difficult, resource intensive and almost impractical with current technology to fabricate operational devices using mono-layered graphene. Nevertheless, graphene based devices still hold the key to solve this problem due to its nano-sieving ability. Here we report synthesis of oxidized graphene frameworks and demonstrate a functional device to desalinate and purify seawater from contaminants including Na+ and Cl− ions, dyes and other microbial pollutants. Micro-channels in these frameworks help in immobilizing larger suspended solids including bacteria, while nano-sieving through graphene enables the removal of dissolved ions (e.g. Cl−). Nano-sieving incorporated with larger frameworks has been used in filtering Na+ and Cl− ions in functional devices. PMID:26892277

  11. Facile synthesis 3D flexible core-shell graphene/glass fiber via chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Yang, Cheng; Xu, Yuanyuan; Zhang, Chao; Sun, Zhencui; Chen, Chuansong; Li, Xiuhua; Jiang, Shouzhen; Man, Baoyuan

    2014-08-01

    Direct deposition of graphene layers on the flexible glass fiber surface to form the three-dimensional (3D) core-shell structures is offered using a two-heating reactor chemical vapor deposition system. The two-heating reactor is utilized to offer sufficient, well-proportioned floating C atoms and provide a facile way for low-temperature deposition. Graphene layers, which are controlled by changing the growth time, can be grown on the surface of wire-type glass fiber with the diameter from 30 nm to 120 um. The core-shell graphene/glass fiber deposition mechanism is proposed, suggesting that the 3D graphene films can be deposited on any proper wire-type substrates. These results open a facile way for direct and high-efficiency deposition of the transfer-free graphene layers on the low-temperature dielectric wire-type substrates.

  12. Stacked 3D RRAM Array with Graphene/CNT as Edge Electrodes.

    PubMed

    Bai, Yue; Wu, Huaqiang; Wang, Kun; Wu, Riga; Song, Lin; Li, Tianyi; Wang, Jiangtao; Yu, Zhiping; Qian, He

    2015-01-01

    There are two critical challenges which determine the array density of 3D RRAM: 1) the scaling limit in both horizontal and vertical directions; 2) the integration of selector devices in 3D structure. In this work, we present a novel 3D RRAM structure using low-dimensional materials, including 2D graphene and 1D carbon nanotube (CNT), as the edge electrodes. A two-layer 3D RRAM with monolayer graphene as edge electrode is demonstrated. The electrical results reveal that the RRAM devices could switch normally with this very thin edge electrode at nanometer scale. Meanwhile, benefited from the asymmetric carrier transport induced by Schottky barrier at metal/CNT and oxide/CNT interfaces, a selector built-in 3D RRAM structure using CNT as edge electrode is successfully fabricated and characterized. Furthermore, the discussion of high array density potential is presented. PMID:26348797

  13. Stacked 3D RRAM Array with Graphene/CNT as Edge Electrodes

    PubMed Central

    Bai, Yue; Wu, Huaqiang; Wang, Kun; Wu, Riga; Song, Lin; Li, Tianyi; Wang, Jiangtao; Yu, Zhiping; Qian, He

    2015-01-01

    There are two critical challenges which determine the array density of 3D RRAM: 1) the scaling limit in both horizontal and vertical directions; 2) the integration of selector devices in 3D structure. In this work, we present a novel 3D RRAM structure using low-dimensional materials, including 2D graphene and 1D carbon nanotube (CNT), as the edge electrodes. A two-layer 3D RRAM with monolayer graphene as edge electrode is demonstrated. The electrical results reveal that the RRAM devices could switch normally with this very thin edge electrode at nanometer scale. Meanwhile, benefited from the asymmetric carrier transport induced by Schottky barrier at metal/CNT and oxide/CNT interfaces, a selector built-in 3D RRAM structure using CNT as edge electrode is successfully fabricated and characterized. Furthermore, the discussion of high array density potential is presented. PMID:26348797

  14. 3D graphene-based hybrid materials: synthesis and applications in energy storage and conversion.

    PubMed

    Shi, Qiurong; Cha, Younghwan; Song, Yang; Lee, Jung-In; Zhu, Chengzhou; Li, Xiaoyu; Song, Min-Kyu; Du, Dan; Lin, Yuehe

    2016-08-25

    Porous 3D graphene-based hybrid materials (3D GBHMs) are currently attractive nanomaterials employed in the field of energy. Heteroatom-doped 3D graphene and metal, metal oxide, and polymer-decorated 3D graphene with modified electronic and atomic structures provide promising performance as electrode materials in energy storage and conversion. Numerous synthesis methods such as self-assembly, templating, electrochemical deposition, and supercritical CO2, pave the way to mass production of 3D GBHMs in the commercialization of energy devices. This review summarizes recent advances in the fabrication of 3D GBHMs with well-defined architectures such as finely controlled pore sizes, heteroatom doping types and levels. Moreover, current progress toward applications in fuel cells, supercapacitors and batteries employing 3D GBHMs is also highlighted, along with the detailed mechanisms of the enhanced electrochemical performance. Furthermore, current critical issues, challenges and future prospects with respect to applications of 3D GBHMs in practical devices are discussed at the end of this review. PMID:27531643

  15. Magnetic graphene foam for efficient adsorption of oil and organic solvents.

    PubMed

    Yang, Sudong; Chen, Lin; Mu, Lei; Ma, Peng-Cheng

    2014-09-15

    This paper reported the preparation of magnetic graphene foam loaded with magnetite (Fe3O4) nanoparticles and its application for the adsorption of oil and organic solvents. The foam with porous and hierarchical structures was derived from graphene oxide film reduced by gaseous reduction in a hydrothermal system. Drastically different morphologies of Fe3O4 nanoparticles with nanosheet arrays or cubic structures were observed on graphene foam by controlling the reduction degree of graphene oxide under mild conditions. Benefiting from the integration of porous structures and magnetic properties, the graphene foam manifests outstanding oil adsorption capacity, high restoration for absorbates as well as excellent recyclability and stability under cyclic operations. The simple and effective strategy for the preparation of graphene foams developed in this study may offer a new alternative for scale-up production of graphene materials used for the cleanup of oil spills. PMID:24974246

  16. Solution-Processed Ultraelastic and Strong Air-Bubbled Graphene Foams.

    PubMed

    Lv, Lingxiao; Zhang, Panpan; Cheng, Huhu; Zhao, Yang; Zhang, Zhipan; Shi, Gaoquan; Qu, Liangti

    2016-06-01

    Solution-processed ultraelastic graphene foams are prepared via a convenient air-bubble-promoted synthesis. These foams can dissipate external compression through the ordered interconnecting graphene network between the bubbles without causing a local fracture and thus reliably show compressive stress of 5.4 MPa at a very high strain of 99%, setting a new benchmark for solution-processed graphene foams. PMID:27171551

  17. A 3D insight on the catalytic nanostructuration of few-layer graphene

    PubMed Central

    Melinte, G.; Florea, I.; Moldovan, S.; Janowska, I.; Baaziz, W.; Arenal, R.; Wisnet, A.; Scheu, C.; Begin-Colin, S.; Begin, D.; Pham-Huu, C.; Ersen, O.

    2014-01-01

    The catalytic cutting of few-layer graphene is nowadays a hot topic in materials research due to its potential applications in the catalysis field and the graphene nanoribbons fabrication. We show here a 3D analysis of the nanostructuration of few-layer graphene by iron-based nanoparticles under hydrogen flow. The nanoparticles located at the edges or attached to the steps on the FLG sheets create trenches and tunnels with orientations, lengths and morphologies defined by the crystallography and the topography of the carbon substrate. The cross-sectional analysis of the 3D volumes highlights the role of the active nanoparticle identity on the trench size and shape, with emphasis on the topographical stability of the basal planes within the resulting trenches and channels, no matter the obstacle encountered. The actual study gives a deep insight on the impact of nanoparticles morphology and support topography on the 3D character of nanostructures built up by catalytic cutting. PMID:24916201

  18. Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries.

    PubMed

    Fu, Kun; Wang, Yibo; Yan, Chaoyi; Yao, Yonggang; Chen, Yanan; Dai, Jiaqi; Lacey, Steven; Wang, Yanbin; Wan, Jiayu; Li, Tian; Wang, Zhengyang; Xu, Yue; Hu, Liangbing

    2016-04-01

    All-component 3D-printed lithium-ion batteries are fabricated by printing graphene-oxide-based composite inks and solid-state gel polymer electrolyte. An entirely 3D-printed full cell features a high electrode mass loading of 18 mg cm(-2) , which is normalized to the overall area of the battery. This all-component printing can be extended to the fabrication of multidimensional/multiscale complex-structures of more energy-storage devices. PMID:26833897

  19. Mechanical Simulation of the Localized Deformation in the Aluminum Foams: A Three-dimensional (3D) Structure Based Study

    NASA Astrophysics Data System (ADS)

    Kai, Zhu; Enyu, Guo; Wenqian, Zhou; Sansan, Shuai; Tao, Jing; Hongliang, Hou; Yanjin, Xu

    2015-06-01

    Metal-foam materials have been used increasingly in industry for their low-density, high-toughness and high impact resistance properties. Understanding the macro-scale mechanical properties of these materials is essential to evaluate their actual performance and thus to optimize the structures and properties accordingly. Synchrotron radiation X-ray microtomographytechnique is a promising method to study 3D structures at small length scales, which provides high spatial resolution and allows the researchers to observe the change of structures/features in situ without destroying the original objects. In this work, the real 3D structure of closed-cell aluminum foam was obtained by using synchrotron radiation X-ray microtomography. The reconstructed 3D model of the foam was further utilized as input for the subsequent mechanical study to investigate the localized deformation behaviors and evolution process of the foam under longitudinal quasi-static uniaxial compressive loading. By analyzing the simulated results, it is demonstrated that the deformation bands always initiate and propagate along the cell walls which are finally folded upon loading. And the large spherical cells are more susceptible to yielding, as well as to the stress concentration than the cells with other shapes. This finding is consistent with the experimental results.

  20. Direct synthesis of graphene 3D-coated Cu nanosilks network for antioxidant transparent conducting electrode

    NASA Astrophysics Data System (ADS)

    Xu, Hongmei; Wang, Huachun; Wu, Chenping; Lin, Na; Soomro, Abdul Majid; Guo, Huizhang; Liu, Chuan; Yang, Xiaodong; Wu, Yaping; Cai, Duanjun; Kang, Junyong

    2015-06-01

    Transparent conducting film occupies an important position in various optoelectronic devices. To replace the costly tin-doped indium oxide (ITO), promising materials, such as metal nanowires and graphene, have been widely studied. Moreover, a long-pursued goal is to consolidate these two materials together and express their outstanding properties simultaneously. We successfully achieved a direct 3D coating of a graphene layer on an interlacing Cu nanosilks network by the low pressure chemical vapor deposition method. High aspect ratio Cu nanosilks (13 nm diameter with 40 μm length) were synthesized through the nickel ion catalytic process. Large-size, transparent conducting film was successfully fabricated with Cu nanosilks ink by the imprint method. A magnetic manipulator equipped with a copper capsule was used to produce high Cu vapor pressure on Cu nanosilks and realize the graphene 3D-coating. The coated Cu@graphene nanosilks network achieved high transparency, low sheet resistance (41 Ohm sq-1 at 95% transmittance) and robust antioxidant ability. With this technique, the transfer process of graphene is no longer needed, and a flexible, uniform and high-performance transparent conducting film could be fabricated in unlimited size.Transparent conducting film occupies an important position in various optoelectronic devices. To replace the costly tin-doped indium oxide (ITO), promising materials, such as metal nanowires and graphene, have been widely studied. Moreover, a long-pursued goal is to consolidate these two materials together and express their outstanding properties simultaneously. We successfully achieved a direct 3D coating of a graphene layer on an interlacing Cu nanosilks network by the low pressure chemical vapor deposition method. High aspect ratio Cu nanosilks (13 nm diameter with 40 μm length) were synthesized through the nickel ion catalytic process. Large-size, transparent conducting film was successfully fabricated with Cu nanosilks ink by

  1. 3D graphene nanomaterials for binder-free supercapacitors: scientific design for enhanced performance

    NASA Astrophysics Data System (ADS)

    He, Shuijian; Chen, Wei

    2015-04-01

    Because of the excellent intrinsic properties, especially the strong mechanical strength, extraordinarily high surface area and extremely high conductivity, graphene is deemed as a versatile building block for fabricating functional materials for energy production and storage applications. In this article, the recent progress in the assembly of binder-free and self-standing graphene-based materials, as well as their application in supercapacitors are reviewed, including electrical double layer capacitors, pseudocapacitors, and asymmetric supercapacitors. Various fabrication strategies and the influence of structures on the capacitance performance of 3D graphene-based materials are discussed. We finally give concluding remarks and an outlook on the scientific design of binder-free and self-standing graphene materials for achieving better capacitance performance.

  2. Highly Stretchable and Sensitive Strain Sensor Based on Facilely Prepared Three-Dimensional Graphene Foam Composite.

    PubMed

    Li, Jinhui; Zhao, Songfang; Zeng, Xiaoliang; Huang, Wangping; Gong, Zhengyu; Zhang, Guoping; Sun, Rong; Wong, Ching-Ping

    2016-07-27

    Wearable strain sensors with excellent stretchability and sensitivity have emerged as a very promising field which could be used for human motion detection and biomechanical systems, etc. Three-dimensional (3D) graphene foam (GF) has been reported before for high-performance strain sensors, however, some problems such as high cost preparation, low sensitivity, and stretchability still remain. In this paper, we report a highly stretchable and sensitive strain sensor based on 3D GF and polydimethylsiloxane (PDMS) composite. The GF is prepared by assembly process from graphene oxide via a facile and scalable method and possesses excellent mechanical property which facilitates the infiltration of PDMS prepolymer into the graphene framework. The as-prepared strain sensor can be stretched as high as 30% of its original length and the gauge factor of this sensor is as high as 98.66 under 5% of applied strain. Moreover, the strain sensor shows long-term stability in 200 cycles of stretching-relaxing. Implementation of the device for monitoring the bending of elbow and finger results in reproducibility and various responses in the form of resistance change. Thus, the developed strain sensors exhibit great application potential in fields of biomechanical systems and human-interactive applications. PMID:27384320

  3. Direct synthesis of graphene 3D-coated Cu nanosilks network for antioxidant transparent conducting electrode.

    PubMed

    Xu, Hongmei; Wang, Huachun; Wu, Chenping; Lin, Na; Soomro, Abdul Majid; Guo, Huizhang; Liu, Chuan; Yang, Xiaodong; Wu, Yaping; Cai, Duanjun; Kang, JunYong

    2015-06-28

    Transparent conducting film occupies an important position in various optoelectronic devices. To replace the costly tin-doped indium oxide (ITO), promising materials, such as metal nanowires and graphene, have been widely studied. Moreover, a long-pursued goal is to consolidate these two materials together and express their outstanding properties simultaneously. We successfully achieved a direct 3D coating of a graphene layer on an interlacing Cu nanosilks network by the low pressure chemical vapor deposition method. High aspect ratio Cu nanosilks (13 nm diameter with 40 μm length) were synthesized through the nickel ion catalytic process. Large-size, transparent conducting film was successfully fabricated with Cu nanosilks ink by the imprint method. A magnetic manipulator equipped with a copper capsule was used to produce high Cu vapor pressure on Cu nanosilks and realize the graphene 3D-coating. The coated Cu@graphene nanosilks network achieved high transparency, low sheet resistance (41 Ohm sq(-1) at 95% transmittance) and robust antioxidant ability. With this technique, the transfer process of graphene is no longer needed, and a flexible, uniform and high-performance transparent conducting film could be fabricated in unlimited size. PMID:26018299

  4. 3D scaffold alters cellular response to graphene in a polymer composite for orthopedic applications.

    PubMed

    Kumar, Sachin; Azam, Dilkash; Raj, Shammy; Kolanthai, Elayaraja; Vasu, K S; Sood, A K; Chatterjee, Kaushik

    2016-05-01

    Graphene-based polymer nanocomposites are being studied for biomedical applications. Polymer nanocomposites can be processed differently to generate planar two-dimensional (2D) substrates and porous three-dimensional (3D) scaffolds. The objective of this work was to investigate potential differences in biological response to graphene in polymer composites in the form of 2D substrates and 3D scaffolds. Polycaprolactone (PCL) nanocomposites were prepared by incorporating 1% of graphene oxide (GO) and reduced graphene oxide (RGO). GO increased modulus and strength of PCL by 44 and 22% respectively, whereas RGO increased modulus and strength by 22 and 16%, respectively. RGO increased the water contact angle of PCL from 81° to 87° whereas GO decreased it to 77°. In 2D, osteoblast proliferated 15% more on GO composites than on PCL whereas RGO composite showed 17% decrease in cell proliferation, which may be attributed to differences in water wettability. In 3D, initial cell proliferation was markedly retarded in both GO (36% lower) and RGO (55% lower) composites owing to increased roughness due to the presence of the protruding nanoparticles. Cells organized into aggregates in 3D in contrast to spread and randomly distributed cells on 2D discs due to the macro-porous architecture of the scaffolds. Increased cell-cell contact and altered cellular morphology led to significantly higher mineralization in 3D. This study demonstrates that the cellular response to nanoparticles in composites can change markedly by varying the processing route and has implications for designing orthopedic implants such as resorbable fracture fixation devices and tissue scaffolds using such nanocomposites. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 732-749, 2016. PMID:26482196

  5. Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors.

    PubMed

    Wang, Wei; Guo, Shirui; Lee, Ilkeun; Ahmed, Kazi; Zhong, Jiebin; Favors, Zachary; Zaera, Francisco; Ozkan, Mihrimah; Ozkan, Cengiz S

    2014-01-01

    In real life applications, supercapacitors (SCs) often can only be used as part of a hybrid system together with other high energy storage devices due to their relatively lower energy density in comparison to other types of energy storage devices such as batteries and fuel cells. Increasing the energy density of SCs will have a huge impact on the development of future energy storage devices by broadening the area of application for SCs. Here, we report a simple and scalable way of preparing a three-dimensional (3D) sub-5 nm hydrous ruthenium oxide (RuO2) anchored graphene and CNT hybrid foam (RGM) architecture for high-performance supercapacitor electrodes. This RGM architecture demonstrates a novel graphene foam conformally covered with hybrid networks of RuO2 nanoparticles and anchored CNTs. SCs based on RGM show superior gravimetric and per-area capacitive performance (specific capacitance: 502.78 F g(-1), areal capacitance: 1.11 F cm(-2)) which leads to an exceptionally high energy density of 39.28 Wh kg(-1) and power density of 128.01 kW kg(-1). The electrochemical stability, excellent capacitive performance, and the ease of preparation suggest this RGM system is promising for future energy storage applications. PMID:24663242

  6. Controllable Synthesis of Tetraethylenepentamine Modified Graphene Foam (TEPA-GF) for the Removal of Lead ions

    PubMed Central

    Han, Zhuo; Tang, Zhihong; Sun, Yuhang; Yang, Junhe; Zhi, Linjie

    2015-01-01

    3D graphene foam for water purification has become pervasive recently, not only because it has high specific surface area for adsorption capacity, but also it is easily separated from solution after adsorption. However, it is still challenging because it is hard to improve the adsorption capacity as well as maintain the high mechanical strength. To overcome the challenge, Tetraethylenepentamine modified Graphene Foam (TEPA-GF) was synthesized via a one-step hydrothermal method by using GO and TEPA as raw materials. TEPA acted as both cross-linker to combine GO sheets together and reductant of GO during hydrothermal process. Results indicated that the resultant hydrogel’s formation was highly dependent on the mass ratio of TEPA to GO, they cross-linked into a stable hydrogel with perfect cylindrical only when MTEPA: MGO ≥ 1. What’s more, the highest mechanical strength of GF happened at the mass ratio of MTEPA: MGO = 3, which was up to 0.58 kPa. It was worth noting that TEPA-GF demonstrated high adsorption capacity for lead ions, which reached as high as 304.9 mg g−1, much higher than that of other absorbents. Furthermore, TEPA-GF was easily separated from water after adsorption of Pb2+, making it a great potential material for water purification. PMID:26581493

  7. Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors

    SciTech Connect

    Wang, Wei; Guo, S.; Lee, I.; Ahmed, K.; Zhong, J.; Favors, Z.; Zaera, F.; Ozkan, M.; Ozkan, C. S

    2014-03-25

    In real life applications, supercapacitors (SCs) often can only be used as part of a hybrid system together with other high energy storage devices due to their relatively lower energy density in comparison to other types of energy storage devices such as batteries and fuel cells. Increasing the energy density of SCs will have a huge impact on the development of future energy storage devices by broadening the area of application for SCs. Here, we report a simple and scalable way of preparing a three-dimensional (3D) sub-5 nm hydrous ruthenium oxide (RuO₂) anchored graphene and CNT hybrid foam (RGM) architecture for high-performance supercapacitor electrodes. This RGM architecture demonstrates a novel graphene foam conformally covered with hybrid networks of RuO₂ nanoparticles and anchored CNTs. SCs based on RGM show superior gravimetric and per-area capacitive performance (specific capacitance: 502.78 F g⁻¹, areal capacitance: 1.11 F cm⁻²) which leads to an exceptionally high energy density of 39.28 Wh kg⁻¹ and power density of 128.01 kW kg⁻¹. The electrochemical stability, excellent capacitive performance, and the ease of preparation suggest this RGM system is promising for future energy storage applications.

  8. Hydrous Ruthenium Oxide Nanoparticles Anchored to Graphene and Carbon Nanotube Hybrid Foam for Supercapacitors

    PubMed Central

    Wang, Wei; Guo, Shirui; Lee, Ilkeun; Ahmed, Kazi; Zhong, Jiebin; Favors, Zachary; Zaera, Francisco; Ozkan, Mihrimah; Ozkan, Cengiz S.

    2014-01-01

    In real life applications, supercapacitors (SCs) often can only be used as part of a hybrid system together with other high energy storage devices due to their relatively lower energy density in comparison to other types of energy storage devices such as batteries and fuel cells. Increasing the energy density of SCs will have a huge impact on the development of future energy storage devices by broadening the area of application for SCs. Here, we report a simple and scalable way of preparing a three-dimensional (3D) sub-5 nm hydrous ruthenium oxide (RuO2) anchored graphene and CNT hybrid foam (RGM) architecture for high-performance supercapacitor electrodes. This RGM architecture demonstrates a novel graphene foam conformally covered with hybrid networks of RuO2 nanoparticles and anchored CNTs. SCs based on RGM show superior gravimetric and per-area capacitive performance (specific capacitance: 502.78 F g−1, areal capacitance: 1.11 F cm−2) which leads to an exceptionally high energy density of 39.28 Wh kg−1 and power density of 128.01 kW kg−1. The electrochemical stability, excellent capacitive performance, and the ease of preparation suggest this RGM system is promising for future energy storage applications. PMID:24663242

  9. 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy.

    PubMed

    Chen, Qian; Smith, Jessica M; Park, Jungwon; Kim, Kwanpyo; Ho, Davy; Rasool, Haider I; Zettl, Alex; Alivisatos, A Paul

    2013-09-11

    Liquid-phase transmission electron microscopy (TEM) can probe and visualize dynamic events with structural or functional details at the nanoscale in a liquid medium. Earlier efforts have focused on the growth and transformation kinetics of hard material systems, relying on their stability under electron beam. Our recently developed graphene liquid cell technique pushed the spatial resolution of such imaging to the atomic scale but still focused on growth trajectories of metallic nanocrystals. Here, we adopt this technique to imaging three-dimensional (3D) dynamics of soft materials instead, double strand (dsDNA) connecting Au nanocrystals as one example, at nanometer resolution. We demonstrate first that a graphene liquid cell can seal an aqueous sample solution of a lower vapor pressure than previously investigated well against the high vacuum in TEM. Then, from quantitative analysis of real time nanocrystal trajectories, we show that the status and configuration of dsDNA dictate the motions of linked nanocrystals throughout the imaging time of minutes. This sustained connecting ability of dsDNA enables this unprecedented continuous imaging of its dynamics via TEM. Furthermore, the inert graphene surface minimizes sample-substrate interaction and allows the whole nanostructure to rotate freely in the liquid environment; we thus develop and implement the reconstruction of 3D configuration and motions of the nanostructure from the series of 2D projected TEM images captured while it rotates. In addition to further proving the nanoconjugate structural stability, this reconstruction demonstrates 3D dynamic imaging by TEM beyond its conventional use in seeing a flattened and dry sample. Altogether, we foresee the new and exciting use of graphene liquid cell TEM in imaging 3D biomolecular transformations or interaction dynamics at nanometer resolution. PMID:23944844

  10. Hyperbolically Patterned 3D Graphene Metamaterial with Negative Poisson's Ratio and Superelasticity.

    PubMed

    Zhang, Qiangqiang; Xu, Xiang; Lin, Dong; Chen, Wenli; Xiong, Guoping; Yu, Yikang; Fisher, Timothy S; Li, Hui

    2016-03-16

    A hyperbolically patterned 3D graphene metamaterial (GM) with negative Poisson's ratio and superelasticity is highlighted. It is synthesized by a modified hydrothermal approach and subsequent oriented freeze-casting strategy. GM presents a tunable Poisson's ratio by adjusting the structural porosity, macroscopic aspect ratio (L/D), and freeze-casting conditions. Such a GM suggests promising applications as soft actuators, sensors, robust shock absorbers, and environmental remediation. PMID:26788692

  11. Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding.

    PubMed

    Ling, Jianqiang; Zhai, Wentao; Feng, Weiwei; Shen, Bin; Zhang, Jianfeng; Zheng, Wen ge

    2013-04-10

    We report a facile approach to produce lightweight microcellular polyetherimide (PEI)/graphene nanocomposite foams with a density of about 0.3 g/cm3 by a phase separation process. It was observed that the strong extensional flow generated during cell growth induced the enrichment and orientation of graphene on cell walls. This action decreased the electrical conductivity percolation from 0.21 vol % for PEI/graphene nanocomposite to 0.18 vol % for PEI/graphene foam. Furthermore, the foaming process significantly increased the specific electromagnetic interference (EMI) shielding effectiveness from 17 to 44 dB/(g/cm3). In addition, PEI/graphene nanocomposite foams possessed low thermal conductivity of 0.065-0.037 W/m·K even at 200 °C and high Young's modulus of 180-290 MPa. PMID:23465462

  12. Graphene oxide foams and their excellent adsorption ability for acetone gas

    SciTech Connect

    He, Yongqiang; Zhang, Nana; Wu, Fei; Xu, Fangqiang; Liu, Yu; Gao, Jianping

    2013-09-01

    Graphical abstract: - Highlights: • GO and RGO foams were prepared using a simple and green method, unidirectional freeze-drying. • The porous structure of the foams can be adjusted by changing GO concentrations. • GO and RGO foams show good adsorption efficiency for acetone gas. - Abstract: Graphene oxide (GO) and reduced graphene oxide (RGO) foams were prepared using a unidirectional freeze-drying method. These porous carbon materials were characterized by thermal gravimetric analysis, differential scanning calorimetry, X-ray photoelectron spectroscopy and scanning electron microscopy. The adsorption behavior of the two kinds of foams for acetone was studied. The result showed that the saturated adsorption efficiency of the GO foams was over 100%, and was higher than that of RGO foams and other carbon materials.

  13. Novel graphene foam composite with adjustable sensitivity for sensor applications.

    PubMed

    Samad, Yarjan Abdul; Li, Yuanqing; Alhassan, Saeed M; Liao, Kin

    2015-05-01

    In this study, free-standing graphene foam (GF) was developed by a three-step method: (1) vacuum-assisted dip-coating of nickel foam (Ni-F) with graphene oxide (GO), (2) reduction of GO to reduced graphene oxide (rGO), and then (3) etching out the nickel scaffold. Pure GF samples were tested for their morphology, chemistry, and mechanical integrity. GF mimics the microstructure of Ni-F while individual bones of GF were hollow, because of the complete removal of nickel. The GF-PDMS composites were tested for their ability to sense both compressive and bending strains in the form of change in electrical resistance. The composite showed different sensitivity to bending and compression. Upon applying a 30% compressive strain on the GF-PDMS composite, its resistance increased to ∼120% of its original value. Similarly, bending a sample to a radius of 1 mm caused the composite to change its resistance to ∼52% of its original resistance value. The relative change in resistance of the composite by an applied pressure/strain can be tuned to considerably different values by heat-treating the GF at different temperatures prior to infusing PDMS into its scaffold. Upon heat treating the GF at 800 °C prior to PDMS infusion, the GF-PDMS demonstrated ∼10 times better sensitivity than the untreated sample for a compressive strain of 20%. The composite was also tested for its ability to retain a change in electrical resistance when a brief load/strain is applied. The GF-PDMS composite was tested for at least 500 cycles under compressive cyclic loading and showed good electromechanical durability. Finally, it was demonstrated that the composite can be used to measure human blood pressure when attached to human skin. PMID:25872792

  14. 3-D Wizardry: Design in Papier-Mache, Plaster, and Foam.

    ERIC Educational Resources Information Center

    Wolfe, George

    Papier-mache, plaster, and foam are inexpensive and versatile media for 3-dimensional classroom and studio art experiences. They can be used equally well by elementary, high school, or college students. Each medium has its own characteristic. Papier-mache is pliable but dries into a hard, firm surface that can be waterproofed. Plaster can be…

  15. High temperature dependence of thermal transport in graphene foam.

    PubMed

    Li, Man; Sun, Yi; Xiao, Huying; Hu, Xuejiao; Yue, Yanan

    2015-03-13

    In contrast to the decreased thermal property of carbon materials with temperature according to the Umklapp phonon scattering theory, highly porous free-standing graphene foam (GF) exhibits an abnormal characteristic that its thermal property increases with temperature above room temperature. In this work, the temperature dependence of thermal properties of free-standing GF is investigated by using the transient electro-thermal technique. Significant increase for thermal conductivity and thermal diffusivity from ∼0.3 to 1.5 W m(-1) K(-1) and ∼4 × 10(-5) to ∼2 × 10(-4) m(2) s(-1) respectively is observed with temperature from 310 K to 440 K for three GF samples. The quantitative analysis based on a physical model for porous media of Schuetz confirms that the thermal conductance across graphene contacts rather than the heat conductance inside graphene dominates thermal transport of our GFs. The thermal expansion effect at an elevated temperature makes the highly porous structure much tighter is responsible for the reduction in thermal contact resistance. Besides, the radiation heat exchange inside the pores of GFs improves the thermal transport at high temperatures. Since free-standing GF has great potential for being used as supercapacitor and battery electrode where the working temperature is always above room temperature, this finding is beneficial for thermal design of GF-based energy applications. PMID:25683178

  16. Significantly reduced thermal diffusivity of free-standing two-layer graphene in graphene foam.

    PubMed

    Lin, Huan; Xu, Shen; Wang, Xinwei; Mei, Ning

    2013-10-18

    We report on a thermal diffusivity study of suspended graphene foam (GF) using the transient electro-thermal technique. Our Raman study confirms the GF is composed of two-layer graphene. By measuring GF of different lengths, we are able to exclude the radiation effect. Using Schuetz's model, the intrinsic thermal diffusivity of the free-standing two-layer graphene is determined with a high accuracy without using knowledge of the porosity of the GF. The intrinsic thermal diffusivity of the two-layer graphene is determined at 1.16-2.22 × 10(-4) m(2) s(-1). The corresponding intrinsic thermal conductivity is 182-349 W m(-1) K(-1), about one order of magnitude lower than those reported for single-layer graphene. Extensive surface impurity defects, wrinkles and rough edges are observed under a scanning electron microscope for the studied GF. These structural defects induce substantial phonon scattering and explain the observed significant thermal conductivity reduction. Our thermal diffusivity characterization of GF provides an advanced way to look into the thermal transport capacity of free-standing graphene with high accuracy and ease of experimental implementation. PMID:24060813

  17. The improved electrochemical performance of cross-linked 3D graphene nanoribbon monolith electrodes

    NASA Astrophysics Data System (ADS)

    Vineesh, Thazhe Veettil; Alwarappan, Subbiah; Narayanan, Tharangattu N.

    2015-04-01

    Technical advancement in the field of ultra-small sensors and devices demands the development of novel micro- or nano-based architectures. Here we report the design and assembly of cross-linked three dimensional graphene nanoribbons (3D GNRs) using solution based covalent binding of individual 2D GNRs and demonstrate its electrochemical application as a 3D electrode. The enhanced performance of 3D GNRs over individual 2D GNRs is established using standard redox probes - [Ru(NH3)6]3+/2+, [Fe(CN)6]3-/4- and important bio-analytes - dopamine and ascorbic acid. 3D GNRs are found to have high double layer capacitance (2482 μF cm-2) and faster electron transfer kinetics; their exceptional electrocatalytic activity towards the oxygen reduction reaction is indicative of their potential over a wide range of electrochemical applications. Moreover, this study opens a new platform for the design of novel point-of-care devices and electrodes for energy devices.Technical advancement in the field of ultra-small sensors and devices demands the development of novel micro- or nano-based architectures. Here we report the design and assembly of cross-linked three dimensional graphene nanoribbons (3D GNRs) using solution based covalent binding of individual 2D GNRs and demonstrate its electrochemical application as a 3D electrode. The enhanced performance of 3D GNRs over individual 2D GNRs is established using standard redox probes - [Ru(NH3)6]3+/2+, [Fe(CN)6]3-/4- and important bio-analytes - dopamine and ascorbic acid. 3D GNRs are found to have high double layer capacitance (2482 μF cm-2) and faster electron transfer kinetics; their exceptional electrocatalytic activity towards the oxygen reduction reaction is indicative of their potential over a wide range of electrochemical applications. Moreover, this study opens a new platform for the design of novel point-of-care devices and electrodes for energy devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c

  18. 3D hierarchical porous graphene aerogel with tunable meso-pores on graphene nanosheets for high-performance energy storage.

    PubMed

    Ren, Long; Hui, K N; Hui, K S; Liu, Yundan; Qi, Xiang; Zhong, Jianxin; Du, Yi; Yang, Jianping

    2015-01-01

    New and novel 3D hierarchical porous graphene aerogels (HPGA) with uniform and tunable meso-pores (e.g., 21 and 53 nm) on graphene nanosheets (GNS) were prepared by a hydrothermal self-assembly process and an in-situ carbothermal reaction. The size and distribution of the meso-pores on the individual GNS were uniform and could be tuned by controlling the sizes of the Co3O4 NPs used in the hydrothermal reaction. This unique architecture of HPGA prevents the stacking of GNS and promises more electrochemically active sites that enhance the electrochemical storage level significantly. HPGA, as a lithium-ion battery anode, exhibited superior electrochemical performance, including a high reversible specific capacity of 1100 mAh/g at a current density of 0.1 A/g, outstanding cycling stability and excellent rate performance. Even at a large current density of 20 A/g, the reversible capacity was retained at 300 mAh/g, which is larger than that of most porous carbon-based anodes reported, suggesting it to be a promising candidate for energy storage. The proposed 3D HPGA is expected to provide an important platform that can promote the development of 3D topological porous systems in a range of energy storage and generation fields. PMID:26382852

  19. 3D hierarchical porous graphene aerogel with tunable meso-pores on graphene nanosheets for high-performance energy storage

    PubMed Central

    Ren, Long; Hui, K. N.; Hui, K. S.; Liu, Yundan; Qi, Xiang; Zhong, Jianxin; Du, Yi; Yang, Jianping

    2015-01-01

    New and novel 3D hierarchical porous graphene aerogels (HPGA) with uniform and tunable meso-pores (e.g., 21 and 53 nm) on graphene nanosheets (GNS) were prepared by a hydrothermal self-assembly process and an in-situ carbothermal reaction. The size and distribution of the meso-pores on the individual GNS were uniform and could be tuned by controlling the sizes of the Co3O4 NPs used in the hydrothermal reaction. This unique architecture of HPGA prevents the stacking of GNS and promises more electrochemically active sites that enhance the electrochemical storage level significantly. HPGA, as a lithium-ion battery anode, exhibited superior electrochemical performance, including a high reversible specific capacity of 1100 mAh/g at a current density of 0.1 A/g, outstanding cycling stability and excellent rate performance. Even at a large current density of 20 A/g, the reversible capacity was retained at 300 mAh/g, which is larger than that of most porous carbon-based anodes reported, suggesting it to be a promising candidate for energy storage. The proposed 3D HPGA is expected to provide an important platform that can promote the development of 3D topological porous systems in a range of energy storage and generation fields. PMID:26382852

  20. 3D hierarchical porous graphene aerogel with tunable meso-pores on graphene nanosheets for high-performance energy storage

    NASA Astrophysics Data System (ADS)

    Ren, Long; Hui, K. N.; Hui, K. S.; Liu, Yundan; Qi, Xiang; Zhong, Jianxin; Du, Yi; Yang, Jianping

    2015-09-01

    New and novel 3D hierarchical porous graphene aerogels (HPGA) with uniform and tunable meso-pores (e.g., 21 and 53 nm) on graphene nanosheets (GNS) were prepared by a hydrothermal self-assembly process and an in-situ carbothermal reaction. The size and distribution of the meso-pores on the individual GNS were uniform and could be tuned by controlling the sizes of the Co3O4 NPs used in the hydrothermal reaction. This unique architecture of HPGA prevents the stacking of GNS and promises more electrochemically active sites that enhance the electrochemical storage level significantly. HPGA, as a lithium-ion battery anode, exhibited superior electrochemical performance, including a high reversible specific capacity of 1100 mAh/g at a current density of 0.1 A/g, outstanding cycling stability and excellent rate performance. Even at a large current density of 20 A/g, the reversible capacity was retained at 300 mAh/g, which is larger than that of most porous carbon-based anodes reported, suggesting it to be a promising candidate for energy storage. The proposed 3D HPGA is expected to provide an important platform that can promote the development of 3D topological porous systems in a range of energy storage and generation fields.

  1. Graphene hydrogels deposited in nickel foams for high-rate electrochemical capacitors.

    PubMed

    Chen, Ji; Sheng, Kaixuan; Luo, Peihui; Li, Chun; Shi, Gaoquan

    2012-08-28

    Graphene hydrogel/nickel foam composite electrodes for high-rate electrochemical capacitors are produced by reduction of an aqueous dispersion of graphene oxide in a nickel foam (upper half of figure). The micropores of the hydrogel are exposed to the electrolyte so that ions can enter and form electrochemical double-layers. The nickel framework shortens the distances of charge transfer. Therefore, the electrochemical capacitor exhibits highrate performance (see plots). PMID:22786775

  2. Morphology-Tuned Synthesis of NiCo2 O4 -Coated 3D Graphene Architectures Used as Binder-Free Electrodes for Lithium-Ion Batteries.

    PubMed

    Zhang, Chunfei; Yu, Jong-Sung

    2016-03-18

    Nanostructured NiCo2 O4 is directly grown on the surface of three-dimensional graphene-coated nickel foam (3D-GNF) by a facile electrodeposition technique and subsequent annealing. The resulting NiCo2 O4 possesses a distinct flower or sheet morphology, tuned by potential or current variation electrodeposition, which are used as binder-free lithium-ion battery anodes for the first time. Both samples exhibit high lithium storage capacity, profiting from the unique binder-free electrode structures. The flower-type NiCo2 O4 demonstrates high reversible discharge capacity (1459 mAh g(-1) at 200 mA g(-1) ) and excellent cyclability with around 71 % retention of the reversible capacity after 60 cycles, which are superior to the sheet-type NiCo2 O4 . Such superb performance can be attributed to high volume utilization efficiency with unique morphological character, a well-preserved connection between the active materials and the current collector, a short lithium-ion diffusion path, and fast electrolyte transfer in the binder-free NiCo2 O4 -coated 3D graphene structure. The simple preparation process and easily controllable morphology make the binder-free NiCo2 O4 /3D-GNF hybrid a potential material for commercial applications. PMID:26918287

  3. Three-dimensional electrochemical immunosensor for sensitive detection of carcinoembryonic antigen based on monolithic and macroporous graphene foam.

    PubMed

    Liu, Jiyang; Wang, Jiao; Wang, Tianshu; Li, Dan; Xi, Fengna; Wang, Jin; Wang, Erkang

    2015-03-15

    A high performance three-dimensional (3D) electrochemical immunosensor was developed for sensitive detection of the tumor biomarker, carcinoembryonic antigen (CEA). Monolithic and macroporous graphene foam grown by chemical vapor deposition (CVD) served as the scaffold of the free-standing 3D electrode. Immuno-recognition interface was fabricated via simple and non-covalent immobilization of antibody using lectin-mediated strategy. Briefly, the well-known lectin macromolecule (concanavalin A, Con A) monolayer was functionalized on 3D graphene (3D-G) using in-situ polymerized polydopamine as the linker. Then the widely used horseradish peroxidase (HRP)-labeled antibody (anti-CEA) in immunoassays was efficiently immobilized to demonstrate the recognition interface via the biospecific affinity of lectin with sugarprotein. The 3D immunosensor is able to detect CEA with a wide linear range (0.1-750.0ngml(-1)), low detection limit (~90pgml(-1) at a signal-to-noise ratio of 3), and short incubation time (30min). Furthermore, this biosensor was used for the detection of the CEA level in real serum samples. PMID:25461170

  4. Preparation of graphene foam with high performance by modified self-assembly method

    NASA Astrophysics Data System (ADS)

    Zhang, Wenhui; Sun, Youyi; Liu, Tantan; Li, Diansen; Hou, Chunlin; Gao, Li; Liu, Yaqing

    2016-03-01

    Recently, self-assembly method was applied for preparation of graphene foam. However, it is still a great challenge to obtain a three-dimensional graphene network with high performance (e.g., low density, high mechanical strength and high conductivity together) for the self-assembly method. Herein, a modified self-assembly method applied for preparation of graphene foam was investigated, in which, L-ascorbic acid and HI were firstly chosen as the reducing agent, and further reduced by hydrazine hydrate. The results demonstrated that the graphene foam showed high compressive strength (ca. 320 kPa), high electrical conductivity (20.6 S/m) and low density (14.7 mg/cm-1). Especially, the obtained compressive strength (ca. 320 kPa) is the highest value compared to the data of graphene foam reported in previous works. This phenomenon may be due to following three reasons: (1) the reaction between hydrazine hydrate and graphene brought some covalent bonds among graphene sheets; (2) graphene foam was achieved by high hydrophobicity and electrostatic repulsion which inhibit the restacking of graphene sheets; (3) the removal of the oxygen groups by hydrazine hydrate efficiently restores conjugation of sp2 regions and the π-π interaction in the cross-linking sites, which tightly bonds the sheets together. The obtained graphene foam not only had good porous structure and mechanical strength, but also showed excellent satisfactory double-layer capacitive behavior with good electrochemical cyclic stability and high specific capacitance of 171.0 F/g for application in electrode of supercapacitors and absorption capacities for the removal of various oils and dyes from water.

  5. A Robust and Cost-Effective Superhydrophobic Graphene Foam for Efficient Oil and Organic Solvent Recovery.

    PubMed

    Zhu, Haiguang; Chen, Dongyun; An, Wei; Li, Najun; Xu, Qingfeng; Li, Hua; He, Jinghui; Lu, Jianmei

    2015-10-21

    Water pollution caused by chemical reagent leaking, industrial wastewater discharging, and crude oil spills has raised global concerns on environmental sustainability, calling for high-performance absorbent materials for effective treatments. However, low-cost materials capable of effectively separating oils and organic solvents from water with a high adsorption capacity and good recyclability are rare on the market. Here, a cost-effective method is reported to fabricate high-performance graphene modified absorbents through the facile thermal reduction of graphene oxide on the skeletons of melamine foam. By integrating the high porosity, superior elasticity, and mechanical stability of raw sponge with the chemical stability and hydrophobicity of graphene sheets, the as-fabricated graphene foam not only possesses a rough and superhydrophobic surface, but also exhibits an excellent adsorption performance and extraordinary recyclability for various oils and organic solvents. It is worth mentioning that the superhydrophobic surface also endows the graphene foam with an excellent efficiency for oil/water separation. More importantly, the cost-effective fabrication method without involving expensive raw materials and sophisticated equipment permits a scale-up of the graphene foam for pollution disposal. All these features make the graphene foam an ideal candidate for removal and collection of oils and organic solvents from water. PMID:26265103

  6. 3D nitrogen-doped graphene/β-cyclodextrin: host-guest interactions for electrochemical sensing

    NASA Astrophysics Data System (ADS)

    Liu, Jilun; Leng, Xuanye; Xiao, Yao; Hu, Chengguo; Fu, Lei

    2015-07-01

    Host-guest interactions, especially those between cyclodextrins (CDs, including α-, β- and γ-CD) and various guest molecules, exhibit a very high supramolecular recognition ability. Thus, they have received considerable attention in different fields. These specific interactions between host and guest molecules are promising for biosensing and clinical detection. However, there is a lack of an ideal electrode substrate for CDs to increase their performance in electrochemical sensing. Herein, we propose a new 3D nitrogen-doped graphene (3D-NG) based electrochemical sensor, taking advantage of the superior sensitivity of host-guest interactions. Our 3D-NG was fabricated by a template-directed chemical vapour deposition (CVD) method, and it showed a large specific surface area, a high capacity for biomolecules and a high electron transfer efficiency. Thus, for the first time, we took 3D-NG as an electrode substrate for β-CD to establish a new type of biosensor. Using dopamine (DA) and acetaminophen (APAP) as representative guest molecules, our 3D-NG/β-CD biosensor shows extremely high sensitivities (5468.6 μA mM-1 cm-2 and 2419.2 μA mM-1 cm-2, respectively), which are significantly higher than those reported in most previous studies. The stable adsorption of β-CD on 3D-NG indicates potential applications in clinical detection and medical testing.Host-guest interactions, especially those between cyclodextrins (CDs, including α-, β- and γ-CD) and various guest molecules, exhibit a very high supramolecular recognition ability. Thus, they have received considerable attention in different fields. These specific interactions between host and guest molecules are promising for biosensing and clinical detection. However, there is a lack of an ideal electrode substrate for CDs to increase their performance in electrochemical sensing. Herein, we propose a new 3D nitrogen-doped graphene (3D-NG) based electrochemical sensor, taking advantage of the superior sensitivity

  7. A novel graphene based nanocomposite for application in 3D flexible micro-supercapacitors

    NASA Astrophysics Data System (ADS)

    Marasso, S. L.; Rivolo, P.; Giardi, R.; Mombello, D.; Gigot, A.; Serrapede, M.; Benetto, S.; Enrico, A.; Cocuzza, M.; Tresso, E.; Pirri, C. F.

    2016-06-01

    In this work a hybrid graphene-based flexible micro-supercapacitor (MSC) exploiting a novel composite material was fabricated and extensively characterized. The MSC electrodes have been obtained from a synthesized composite aerogel of reduced graphene oxide and polycrystalline nanoparticles of molybdenum (IV) oxide (MoO2) and then dispersed in a solution containing poly(3,4-ethylenedioxythiophene) (PEDOT). Usually in MSCs the electrons have to percolate through the nanostructured Three-dimensional (3D) matrix in order to reach the collectors, made by metal thin films that provide electrical contacts only on the surface of active material. In the attempt to enable a more efficient charge transfer and to allow direct electrical contact without metal deposition, in this study a highly doped PEDOT acting both as current collector and as binder for the nanocomposite material has been employed. 3D MSCs were fabricated through a Lithographie, Galvanoformung, Abformung (LIGA)-like process to obtain high aspect ratio microstructures in polydimethylsiloxane replicas. Capacitance values of 94 F g‑1 for the nanocomposite and of 14 mF cm‑2 for the device were achieved. Moreover, bending test has demonstrated good performance preservation in a U shape conformation of the device.

  8. Micro supercapacitors based on a 3D structure with symmetric graphene or activated carbon electrodes

    NASA Astrophysics Data System (ADS)

    Li, Siwei; Wang, Xiaohong; Xing, Hexin; Shen, Caiwei

    2013-11-01

    This paper presents three-dimensional (3D) micro supercapacitors with thick interdigital electrodes supported and separated by SU-8. Nanoporous carbon materials including graphene and activated carbon (AC) are used as active materials in self-supporting composites to build the electrodes. The SU-8 separators provide mechanical support for thick electrodes and allow a considerable amount of material to be loaded in a limited footprint area. The prototypes have been accomplished by a simple microelectromechanical systems (MEMS) fabrication process and sealed by polydimethylsiloxane (PDMS) caps with ionic liquid electrolytes injected into the electrode area. Electrochemical tests demonstrate that the graphene-based prototype with 100 µm thick electrodes shows good power performance and provides a considerable specific capacitance of about 60 mF cm-2. Two AC-based prototypes show larger capacitance of 160 mF cm-2 and 311 mF cm-2 with 100 µm and 200 µm thick electrodes respectively, because of higher volume density of the material. The results demonstrate that both thick 3D electrode structure and volume capacitance of the electrode material are key factors for high-performance micro supercapacitors, which can be potentially used in specific applications such as power suppliers and storage components for harvesters.

  9. High-performance hybrid supercapacitor with 3D hierarchical porous flower-like layered double hydroxide grown on nickel foam as binder-free electrode

    NASA Astrophysics Data System (ADS)

    Zhang, Luojiang; Hui, Kwun Nam; San Hui, Kwan; Lee, Haiwon

    2016-06-01

    The synthesis of layered double hydroxide (LDH) as electroactive material has been well reported; however, fabricating an LDH electrode with excellent electrochemical performance at high current density remains a challenge. In this paper, we report a 3D hierarchical porous flower-like NiAl-LDH grown on nickel foam (NF) through a liquid-phase deposition method as a high-performance binder-free electrode for energy storage. With large ion-accessible surface area as well as efficient electron and ion transport pathways, the prepared LDH-NF electrode achieves high specific capacity (1250 C g-1 at 2 A g-1 and 401 C g-1 at 50 A g-1) after 5000 cycles of activation at 20 A g-1 and high cycling stability (76.7% retention after another 5000 cycles at 50 A g-1), which is higher than those of most previously reported NiAl-LDH-based materials. Moreover, a hybrid supercapacitor with LDH-NF as the positive electrode and porous graphene nanosheet coated on NF (GNS-NF) as the negative electrode, delivers high energy density (30.2 Wh kg-1 at a power density of 800 W kg-1) and long cycle life, which outperforms the other devices reported in the literature. This study shows that the prepared LDH-NF electrode offers great potential in energy storage device applications.

  10. Three-dimensional B,N-doped graphene foam as a metal-free catalyst for oxygen reduction reaction.

    PubMed

    Xue, Yuhua; Yu, Dingshan; Dai, Liming; Wang, Ruigang; Li, Dingqiang; Roy, Ajit; Lu, Fan; Chen, Hao; Liu, Yong; Qu, Jia

    2013-08-01

    Using a modified chemical vapor deposition (CVD) method, we have prepared a class of new graphene foams (GFs) doped with nitrogen, boron or both. Nitrogen-doped graphene foams (N-GFs) with a nitrogen doping level of 3.1 atom% were prepared by CVD of CH4 in the presence of NH3 while boron-doped graphene foams (B-GFs) with a boron doping level of 2.1 atom% were produced by using toluene and triethyl borate as a carbon and a boron source. On the other hand, graphene foams co-doped with nitrogen (4.5 atom%) and boron (3 atom%) (BN-GFs) were prepared by CVD using melamine diborate as the precursor. In all cases, scanning electron microscope (SEM) images revealed well-defined foam-like microstructures, while electrochemical measurements showed much higher electrocatalytic activities toward oxygen reduction reaction for the doped graphene foams than their undoped counterparts. PMID:23770584

  11. Ice-templated Self-assembly of VOPO4–Graphene Nanocomposites for Vertically Porous 3D Supercapacitor Electrodes

    PubMed Central

    Lee, Kwang Hoon; Lee, Young-Woo; Lee, Seung Woo; Ha, Jeong Sook; Lee, Sang-Soo; Son, Jeong Gon

    2015-01-01

    A simple ice-templated self-assembly process is used to prepare a three-dimensional (3D) and vertically porous nanocomposite of layered vanadium phosphates (VOPO4) and graphene nanosheets with high surface area and high electrical conductivity. The resulting 3D VOPO4–graphene nanocomposite has a much higher capacitance of 527.9 F g−1 at a current density of 0.5 A g−1, compared with ~247 F g−1 of simple 3D VOPO4, with solid cycling stability. The enhanced pseudocapacitive behavior mainly originates from vertically porous structures from directionally grown ice crystals and simultaneously inducing radial segregation and forming inter-stacked structures of VOPO4–graphene nanosheets. This VOPO4–graphene nanocomposite electrode exhibits high surface area, vertically porous structure to the separator, structural stability from interstacked structure and high electrical conductivity, which would provide the short diffusion paths of electrolyte ions and fast transportation of charges within the conductive frameworks. In addition, an asymmetric supercapacitor (ASC) is fabricated by using vertically porous VOPO4–graphene as the positive electrode and vertically porous 3D graphene as the negative electrode; it exhibits a wide cell voltage of 1.6 V and a largely enhanced energy density of 108 Wh kg−1. PMID:26333591

  12. In situ growth of manganese oxide on 3D graphene by a reverse microemulsion method for supercapacitors

    NASA Astrophysics Data System (ADS)

    Wei, Bing; Wang, Lidong; Wang, Yang; Yuan, Yinan; Miao, Qinghua; Yang, Ziyue; Fei, Weidong

    2016-03-01

    In this study, a new, effective strategy is reported for the fabrication of composites using manganese oxide (MnO2) grown in situ on three-dimensional (3D) graphene by the reverse microemulsion (water-in-oil) method. A uniform coating of nanoscale MnO2 layers can be observed on the internal surface of 3D graphene, which could benefit rapid ionic and electronic transport. The electrochemical performance of the MnO2/3D graphene composites is optimized by the control of the composite structure and mass loading of MnO2. The MnO2/3D graphene composite thus prepared exhibits a significantly high specific capacitance of 659.7 F g-1 at 0.3 A g-1 and an excellent retention life of 106% after 1000 cycles. The facile synthesis and excellent electrochemical performance of the MnO2/3D graphene composites indicate that the developed method demonstrates potential applications for the fabrication of novel electrode materials for use in energy storage devices.

  13. Multifunctional Polymer-Based Graphene Foams with Buckled Structure and Negative Poisson’s Ratio

    PubMed Central

    Dai, Zhaohe; Weng, Chuanxin; Liu, Luqi; Hou, Yuan; Zhao, Xuanliang; Kuang, Jun; Shi, Jidong; Wei, Yueguang; Lou, Jun; Zhang, Zhong

    2016-01-01

    In this study, we report the polymer-based graphene foams through combination of bottom-up assembly and simple triaxially buckled structure design. The resulting polymer-based graphene foams not only effectively transfer the functional properties of graphene, but also exhibit novel negative Poisson’s ratio (NPR) behaviors due to the presence of buckled structure. Our results show that after the introduction of buckled structure, improvement in stretchability, toughness, flexibility, energy absorbing ability, hydrophobicity, conductivity, piezoresistive sensitivity and crack resistance could be achieved simultaneously. The combination of mechanical properties, multifunctional performance and unusual deformation behavior would lead to the use of our polymer-based graphene foams for a variety of novel applications in future such as stretchable capacitors or conductors, sensors and oil/water separators and so on. PMID:27608928

  14. Multifunctional Polymer-Based Graphene Foams with Buckled Structure and Negative Poisson's Ratio.

    PubMed

    Dai, Zhaohe; Weng, Chuanxin; Liu, Luqi; Hou, Yuan; Zhao, Xuanliang; Kuang, Jun; Shi, Jidong; Wei, Yueguang; Lou, Jun; Zhang, Zhong

    2016-01-01

    In this study, we report the polymer-based graphene foams through combination of bottom-up assembly and simple triaxially buckled structure design. The resulting polymer-based graphene foams not only effectively transfer the functional properties of graphene, but also exhibit novel negative Poisson's ratio (NPR) behaviors due to the presence of buckled structure. Our results show that after the introduction of buckled structure, improvement in stretchability, toughness, flexibility, energy absorbing ability, hydrophobicity, conductivity, piezoresistive sensitivity and crack resistance could be achieved simultaneously. The combination of mechanical properties, multifunctional performance and unusual deformation behavior would lead to the use of our polymer-based graphene foams for a variety of novel applications in future such as stretchable capacitors or conductors, sensors and oil/water separators and so on. PMID:27608928

  15. Layer-by-layer assembly of 3D tissue constructs with functionalized graphene

    PubMed Central

    Shin, Su Ryon; Aghaei-Ghareh-Bolagh, Behnaz; Gao, Xiguang; Nikkhah, Mehdi; Jung, Sung Mi; Dolatshahi-Pirouz, Alireza; Kim, Sang Bok; Kim, Sun Min; Dokmeci, Mehmet R.; Tang, Xiaowu (Shirley); Khademhosseini, Ali

    2014-01-01

    Carbon-based nanomaterials have been considered as promising candidates to mimic certain structure and function of native extracellular matrix materials for tissue engineering. Significant progress has been made in fabricating carbon nanoparticle-incorporated cell culture substrates, but limited studies have been reported on the development of three-dimensional (3D) tissue constructs using these nanomaterials. Here, we present a novel approach to engineer 3D multi-layered constructs using layer-by-layer (LbL) assembly of cells separated with self-assembled graphene oxide (GO)-based thin films. The GO-based structures are shown to serve as cell adhesive sheets that effectively facilitate the formation of multi-layer cell constructs with interlayer connectivity. By controlling the amount of GO deposited in forming the thin films, the thickness of the multi-layer tissue constructs could be tuned with high cell viability. Specifically, this approach could be useful for creating dense and tightly connected cardiac tissues through the co-culture of cardiomyocytes and other cell types. In this work, we demonstrated the fabrication of stand-alone multi-layer cardiac tissues with strong spontaneous beating behavior and programmable pumping properties. Therefore, this LbL-based cell construct fabrication approach, utilizing GO thin films formed directly on cell surfaces, has great potential in engineering 3D tissue structures with improved organization, electrophysiological function, and mechanical integrity. PMID:25419209

  16. Layer-by-layer assembly of 3D tissue constructs with functionalized graphene.

    PubMed

    Shin, Su Ryon; Aghaei-Ghareh-Bolagh, Behnaz; Gao, Xiguang; Nikkhah, Mehdi; Jung, Sung Mi; Dolatshahi-Pirouz, Alireza; Kim, Sang Bok; Kim, Sun Min; Dokmeci, Mehmet R; Tang, Xiaowu Shirley; Khademhosseini, Ali

    2014-10-22

    Carbon-based nanomaterials have been considered as promising candidates to mimic certain structure and function of native extracellular matrix materials for tissue engineering. Significant progress has been made in fabricating carbon nanoparticle-incorporated cell culture substrates, but limited studies have been reported on the development of three-dimensional (3D) tissue constructs using these nanomaterials. Here, we present a novel approach to engineer 3D multi-layered constructs using layer-by-layer (LbL) assembly of cells separated with self-assembled graphene oxide (GO)-based thin films. The GO-based structures are shown to serve as cell adhesive sheets that effectively facilitate the formation of multi-layer cell constructs with interlayer connectivity. By controlling the amount of GO deposited in forming the thin films, the thickness of the multi-layer tissue constructs could be tuned with high cell viability. Specifically, this approach could be useful for creating dense and tightly connected cardiac tissues through the co-culture of cardiomyocytes and other cell types. In this work, we demonstrated the fabrication of stand-alone multi-layer cardiac tissues with strong spontaneous beating behavior and programmable pumping properties. Therefore, this LbL-based cell construct fabrication approach, utilizing GO thin films formed directly on cell surfaces, has great potential in engineering 3D tissue structures with improved organization, electrophysiological function, and mechanical integrity. PMID:25419209

  17. 3D label-free prostate specific antigen (PSA) immunosensor based on graphene-gold composites.

    PubMed

    Jang, Hee Dong; Kim, Sun Kyung; Chang, Hankwon; Choi, Jeong-Woo

    2015-01-15

    Highly sensitive and label-free detection of the prostate specific antigen (PSA) remains a challenge in the diagnosis of prostate cancer. Here, a novel three-dimensional (3D) electrochemical immunosensor capable of sensitive and label-free detection of PSA is reported. This unique immunosensor is equipped with a highly conductive graphene (GR)-based gold (Au) composite modified electrode. The GR-based Au composite is prepared using aerosol spray pyrolysis and the morphology of the composite is the shape of a crumpled GR ball decorated with Au nanoparticles. Unlike the previous research, this novel 3D immunosensor functions very well over a broad linear range of 0-10 ng/mL with a low detection limit of 0.59 ng/mL; furthermore, it exhibits a significantly increased electron transfer and high sensitivity toward PSA. The highest rate of current change with respect to the PSA concentration is 5 μA/(ng/mL). Satisfactory selectivity, reproducibility, and stability of the 3D immunosensor are also exhibited. PMID:25150936

  18. Vanadium nanobelts coated nickel foam 3D bifunctional electrode with excellent catalytic activity and stability for water electrolysis.

    PubMed

    Yu, Yu; Li, Pei; Wang, Xiaofang; Gao, Wenyu; Shen, Zongxu; Zhu, Yanan; Yang, Shuliang; Song, Weiguo; Ding, Kejian

    2016-05-19

    Pursuit of highly active, stable and low-cost electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is the key point for large-scale water splitting. A vanadium nanobelts coating on a nickel foam (V/NF) is proposed as an excellent 3D bifunctional electrode for water electrolysis here, which exhibits high activities with overpotentials of 292 and 176 mV at 10 mA cm(-2) for OER and HER, respectively. When employed as a bifunctional electrocatalyst in an alkaline water electrolyzer, a cell voltage of 1.80 V was required to achieve 20 mA cm(-2) with a slight increase during a 24 h durability test. The existence of the appropriate amount of nitrogen and oxygen elements in the surface region of vanadium nanobelts is regarded to be responsible for the electrocatalytic activity. PMID:27152646

  19. Vanadium nanobelts coated nickel foam 3D bifunctional electrode with excellent catalytic activity and stability for water electrolysis

    NASA Astrophysics Data System (ADS)

    Yu, Yu; Li, Pei; Wang, Xiaofang; Gao, Wenyu; Shen, Zongxu; Zhu, Yanan; Yang, Shuliang; Song, Weiguo; Ding, Kejian

    2016-05-01

    Pursuit of highly active, stable and low-cost electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is the key point for large-scale water splitting. A vanadium nanobelts coating on a nickel foam (V/NF) is proposed as an excellent 3D bifunctional electrode for water electrolysis here, which exhibits high activities with overpotentials of 292 and 176 mV at 10 mA cm-2 for OER and HER, respectively. When employed as a bifunctional electrocatalyst in an alkaline water electrolyzer, a cell voltage of 1.80 V was required to achieve 20 mA cm-2 with a slight increase during a 24 h durability test. The existence of the appropriate amount of nitrogen and oxygen elements in the surface region of vanadium nanobelts is regarded to be responsible for the electrocatalytic activity.Pursuit of highly active, stable and low-cost electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is the key point for large-scale water splitting. A vanadium nanobelts coating on a nickel foam (V/NF) is proposed as an excellent 3D bifunctional electrode for water electrolysis here, which exhibits high activities with overpotentials of 292 and 176 mV at 10 mA cm-2 for OER and HER, respectively. When employed as a bifunctional electrocatalyst in an alkaline water electrolyzer, a cell voltage of 1.80 V was required to achieve 20 mA cm-2 with a slight increase during a 24 h durability test. The existence of the appropriate amount of nitrogen and oxygen elements in the surface region of vanadium nanobelts is regarded to be responsible for the electrocatalytic activity. Electronic supplementary information (ESI) available: More SEM, TEM images, XRD patterns, LSV curves, XPS spectra. See DOI: 10.1039/c6nr02395a

  20. Self-Sensing, Ultralight, and Conductive 3D Graphene/Iron Oxide Aerogel Elastomer Deformable in a Magnetic Field.

    PubMed

    Xu, Xiang; Li, Hui; Zhang, Qiangqiang; Hu, Han; Zhao, Zongbin; Li, Jihao; Li, Jingye; Qiao, Yu; Gogotsi, Yury

    2015-04-28

    Three-dimensional (3D) graphene aerogels (GA) show promise for applications in supercapacitors, electrode materials, gas sensors, and oil absorption due to their high porosity, mechanical strength, and electrical conductivity. However, the control, actuation, and response properties of graphene aerogels have not been well studied. In this paper, we synthesized 3D graphene aerogels decorated with Fe3O4 nanoparticles (Fe3O4/GA) by self-assembly of graphene with simultaneous decoration by Fe3O4 nanoparticles using a modified hydrothermal reduction process. The aerogels exhibit up to 52% reversible magnetic field-induced strain and strain-dependent electrical resistance that can be used to monitor the degree of compression/stretching of the material. The density of Fe3O4/GA is only about 5.8 mg cm(-3), making it an ultralight magnetic elastomer with potential applications in self-sensing soft actuators, microsensors, microswitches, and environmental remediation. PMID:25792130

  1. Parametric Characterization of Porous 3D Bioscaffolds Fabricated by an Adaptive Foam Reticulation Technique

    NASA Astrophysics Data System (ADS)

    Winnett, James; Mallick, Kajal K.

    2014-04-01

    Commercially pure titanium (Ti) and its alloys, in particular, titanium-vanadium-aluminium (Ti-6Al-4V), have been used as biomaterials due to their mechanical similarities to bone, good biocompatibility, and inertness in vivo. The introduction of porosity to the scaffolds leads to optimized mechanical properties and enhanced biological activity. The adaptive foam reticulation (AFR) technique has been previously used to generate hydroxyapatite bioscaffolds with enhanced cell behavior due to the generation of macroporous structures with microporous struts that provided routes for cell infiltration as well as attachment sites. Sacrificial polyurethane templates of 45 ppi and 90 ppi were coated in biomaterial-based slurries containing either Ti or Ti-6Al-4V as the biomaterial and camphene as the porogen. The resultant macropore sizes of 100-550 μm corresponded well with the initial template pore sizes while camphene produced micropores of 1-10 μm, with the level of microporosity related to the amount of porogen inclusion.

  2. Nitrogen-doped 3D macroporous graphene frameworks as anode for high performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Xiaowu; Wu, Ying; Yang, Zhenzhong; Pan, Fusen; Zhong, Xiongwu; Wang, Jiaqing; Gu, Lin; Yu, Yan

    2015-10-01

    Nitrogen-doped 3D graphene frameworks (N-3D GFs) were synthesized by a facile two-step method: Polystyrene (PS) encapsulated in graphene oxide (GO) composites (denoted as PS@GO) are first synthesized, followed by a post-thermal annealing in ammonia step to get N-doped 3D GFs. The resulting N-3D GFs inherit the advantages of graphene, which possesses high electrical conductivity and high specific surface area. Furthermore, the well-defined 3D interconnected structure can facilitate the access of the electrolyte to the electrode surface, thus shortening the diffusion length of both Li+/e-, keeping the overall electrode highly conductive and active in lithium storage. Simultaneously, the in-situ formation of pyridinic N and pyrrolic N in 3D GFs provide high electronic conductivity and structure stability for lithium storage. The designed N-3D GFs electrode delivers a high specific capacity of 1094 mAhg-1 after 100 cycles at 200 mAg-1 and superior rate capability (691 mAhg-1 after 500 cycles at 1000 mAg-1) when used as anode for LIBs. We believe that such an inherently inexpensive, scalable, facile method can significantly increase the feasibility of building high performance energy storage system.

  3. Nickel/cobalt oxide-decorated 3D graphene nanocomposite electrode for enhanced electrochemical detection of urea.

    PubMed

    Nguyen, Nhi Sa; Das, Gautam; Yoon, Hyon Hee

    2016-03-15

    A NiCo2O4 bimetallic electro-catalyst was synthesized on three-dimensional graphene (3D graphene) for the non-enzymatic detection of urea. The structural and morphological properties of the NiCo2O4/3D graphene nanocomposite were characterized by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. The NiCo2O4/3D graphene was deposited on an indium tin oxide (ITO) glass to fabricate a highly sensitive urea sensor. The electrochemical properties of the prepared electrode were studied by cyclic voltammetry. A high sensitivity of 166 μAmM(-)(1)cm(-)(2) was obtained for the NiCo2O4/3D graphene/ITO sensor. The sensor exhibited a linear range of 0.06-0.30 mM (R(2)=0.998) and a fast response time of approximately 1.0 s with a detection limit of 5.0 µM. Additionally, the sensor exhibited high stability with a sensitivity decrease of only 5.5% after four months of storage in ambient conditions. The urea sensor demonstrates feasibility for urea analysis in urine samples. PMID:26433071

  4. Facile fabrication of three-dimensional graphene foam/poly(dimethylsiloxane) composites and their potential application as strain sensor.

    PubMed

    Xu, Rongqing; Lu, Yunqing; Jiang, Chunhui; Chen, Jing; Mao, Peng; Gao, Guanghua; Zhang, Labao; Wu, Shan

    2014-08-27

    A three-dimensional (3D) graphene foam (GF)/poly(dimethylsiloxane) (PDMS) composite was fabricated by infiltrating PDMS into 3D GF, which was synthesized by chemical vapor deposition (CVD) with nickel foam as template. The electrical properties of the GF/PDMS composite under bending stress were investigated, indicating the resistance of the GF/PDMS composite was increased with the bending curvature. To improve the bending sensitivity of the GF/PDMS composite, a thin layer of poly(ethylene terephthalate) (PET) was introduced as substrate to form double-layer GF/PDMS-PET composite, whose measurements showed that the resistance of the GF/PDMS-PET composite was still increased when bended to the side of PET, whereas its resistance would be decreased when bended to the side of GF. For both cases, the absolute value of the relative variation of electrical resistance was increased with the bending curvature. More importantly, the relative variation of electrical resistance for double-layer GF/PDMS-PET composite can be up to six times higher than single-layer GF/PDMS composite for the same bending curvature. These observations were further supported by the principle of mechanics of material. The 3D GF/PDMS-PET composite also has higher flexibility and environment stability and can be utilized as a strain sensor with high sensitivity, which can find important applications in real-time monitoring of buildings, such as a bridge, dam, and high-speed railway. PMID:25070179

  5. High-coverage stable structures of 3d transition metal intercalated bilayer graphene.

    PubMed

    Liao, Ji-Hai; Zhao, Yu-Jun; Tang, Jia-Jun; Yang, Xiao-Bao; Xu, Hu

    2016-06-01

    Alkali-metal intercalated graphite and graphene have been intensively studied for decades, where alkali-metal atoms are found to form ordered structures at the hollow sites of hexagonal carbon rings. Using first-principles calculations, we have predicted various stable structures of high-coverage 3d transition metal (TM) intercalated bilayer graphene (BLG) stabilized by the strain. Specifically, with reference to the bulk metal, Sc and Ti can form stable TM-intercalated BLG without strain, while the stabilization of Fe, Co, and Ni intercalated BLG requires the biaxial strain of over 7%. Under the biaxial strain ranging from 0% to 10%, there are four ordered sandwich structures for Sc with the coverage of 0.25, 0.571, 0.684, and 0.75, in which the Sc atoms are all distributed homogenously instead of locating at the hollow sites. According to the phase diagram, a homogenous configuration of C8Ti3C8 with the coverage of 0.75 and another inhomogeneous structure with the coverage of 0.692 were found. The electronic and magnetic properties as a function of strain were also analyzed to indicate that the strain was important for the stabilities of the high-coverage TM-intercalated BLG. PMID:27167998

  6. 3D nanostructured inkjet printed graphene via UV-pulsed laser irradiation enables paper-based electronics and electrochemical devices.

    PubMed

    Das, Suprem R; Nian, Qiong; Cargill, Allison A; Hondred, John A; Ding, Shaowei; Saei, Mojib; Cheng, Gary J; Claussen, Jonathan C

    2016-09-21

    Emerging research on printed and flexible graphene-based electronics is beginning to show tremendous promise for a wide variety of fields including wearable sensors and thin film transistors. However, post-print annealing/reduction processes that are necessary to increase the electrical conductivity of the printed graphene degrade sensitive substrates (e.g., paper) and are whole substrate processes that are unable to selectively anneal/reduce only the printed graphene-leaving sensitive device components exposed to damaging heat or chemicals. Herein a pulsed laser process is introduced that can selectively irradiate inkjet printed reduced graphene oxide (RGO) and subsequently improve the electrical conductivity (Rsheet∼0.7 kΩ□(-1)) of printed graphene above previously published reports. Furthermore, the laser process is capable of developing 3D petal-like graphene nanostructures from 2D planar printed graphene. These visible morphological changes display favorable electrochemical sensing characteristics-ferricyanide cyclic voltammetry with a redox peak separation (ΔEp) ≈ 0.7 V as well as hydrogen peroxide (H2O2) amperometry with a sensitivity of 3.32 μA mM(-1) and a response time of <5 s. Thus this work paves the way for not only paper-based electronics with graphene circuits, it enables the creation of low-cost and disposable graphene-based electrochemical electrodes for myriad applications including sensors, biosensors, fuel cells, and theranostic devices. PMID:27510913

  7. Direct fabrication of 3D graphene on nanoporous anodic alumina by plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhan, Hualin; Garrett, David J.; Apollo, Nicholas V.; Ganesan, Kumaravelu; Lau, Desmond; Prawer, Steven; Cervenka, Jiri

    2016-01-01

    High surface area electrode materials are of interest for a wide range of potential applications such as super-capacitors and electrochemical cells. This paper describes a fabrication method of three-dimensional (3D) graphene conformally coated on nanoporous insulating substrate with uniform nanopore size. 3D graphene films were formed by controlled graphitization of diamond-like amorphous carbon precursor films, deposited by plasma-enhanced chemical vapour deposition (PECVD). Plasma-assisted graphitization was found to produce better quality graphene than a simple thermal graphitization process. The resulting 3D graphene/amorphous carbon/alumina structure has a very high surface area, good electrical conductivity and exhibits excellent chemically stability, providing a good material platform for electrochemical applications. Consequently very large electrochemical capacitance values, as high as 2.1 mF for a sample of 10 mm3, were achieved. The electrochemical capacitance of the material exhibits a dependence on bias voltage, a phenomenon observed by other groups when studying graphene quantum capacitance. The plasma-assisted graphitization, which dominates the graphitization process, is analyzed and discussed in detail.

  8. Direct fabrication of 3D graphene on nanoporous anodic alumina by plasma-enhanced chemical vapor deposition.

    PubMed

    Zhan, Hualin; Garrett, David J; Apollo, Nicholas V; Ganesan, Kumaravelu; Lau, Desmond; Prawer, Steven; Cervenka, Jiri

    2016-01-01

    High surface area electrode materials are of interest for a wide range of potential applications such as super-capacitors and electrochemical cells. This paper describes a fabrication method of three-dimensional (3D) graphene conformally coated on nanoporous insulating substrate with uniform nanopore size. 3D graphene films were formed by controlled graphitization of diamond-like amorphous carbon precursor films, deposited by plasma-enhanced chemical vapour deposition (PECVD). Plasma-assisted graphitization was found to produce better quality graphene than a simple thermal graphitization process. The resulting 3D graphene/amorphous carbon/alumina structure has a very high surface area, good electrical conductivity and exhibits excellent chemically stability, providing a good material platform for electrochemical applications. Consequently very large electrochemical capacitance values, as high as 2.1 mF for a sample of 10 mm(3), were achieved. The electrochemical capacitance of the material exhibits a dependence on bias voltage, a phenomenon observed by other groups when studying graphene quantum capacitance. The plasma-assisted graphitization, which dominates the graphitization process, is analyzed and discussed in detail. PMID:26805546

  9. Direct fabrication of 3D graphene on nanoporous anodic alumina by plasma-enhanced chemical vapor deposition

    PubMed Central

    Zhan, Hualin; Garrett, David J.; Apollo, Nicholas V.; Ganesan, Kumaravelu; Lau, Desmond; Prawer, Steven; Cervenka, Jiri

    2016-01-01

    High surface area electrode materials are of interest for a wide range of potential applications such as super-capacitors and electrochemical cells. This paper describes a fabrication method of three-dimensional (3D) graphene conformally coated on nanoporous insulating substrate with uniform nanopore size. 3D graphene films were formed by controlled graphitization of diamond-like amorphous carbon precursor films, deposited by plasma-enhanced chemical vapour deposition (PECVD). Plasma-assisted graphitization was found to produce better quality graphene than a simple thermal graphitization process. The resulting 3D graphene/amorphous carbon/alumina structure has a very high surface area, good electrical conductivity and exhibits excellent chemically stability, providing a good material platform for electrochemical applications. Consequently very large electrochemical capacitance values, as high as 2.1 mF for a sample of 10 mm3, were achieved. The electrochemical capacitance of the material exhibits a dependence on bias voltage, a phenomenon observed by other groups when studying graphene quantum capacitance. The plasma-assisted graphitization, which dominates the graphitization process, is analyzed and discussed in detail. PMID:26805546

  10. Pillared Graphene: A New 3-D Innovative Network Nanostructure Augments Hydrogen Storage

    NASA Astrophysics Data System (ADS)

    Georgios, Dimitrakakis K.; Emmanuel, Tylianakis; George, Froudakis E.

    2009-08-01

    Nowadays, people have turned into finding an alternative power source for everyday applications. One of the most promising energy fuels is hydrogen. It can be used as an energy carrier at small portable devices (e.g. laptops and/or cell phones) up to larger, like cars. Hydrogen is considered as the perfect fuel. It can be burnt in combustion engines and the only by-product is water. For hydrogen-powered vehicles a big liming factor is the gas tank and is the reason for not using widely hydrogen in automobile applications. According to United States' Department of Energy (D.O.E.) the target for reversible hydrogen storage in mobile applications is 6% wt. and 45 gr. H2/L and these should be met by 2010. After their synthesis Carbon Nanotubes (CNTs) were considered as ideal candidates for hydrogen storage especially after some initially incorrect but invitingly results. As it was proven later, pristine carbon nanotubes cannot achieve D.O.E.'s targets in ambient conditions of pressure and temperature. Therefore, a way to increase their hydrogen storage capacity should be found. An attempt was done by doping CNTs with alkali metal atoms. Although the results were promising, even that increment was not enough. Consequently, new architectures were suggested as materials that could potentially enhance hydrogen storage. In this work a novel three dimensional (3-D) nanoporous carbon structure called Pillared Graphene (Figure 1) is proposed for augmented hydrogen storage in ambient conditions. Pillared Graphene consists of parallel graphene sheets and CNTs that act like pillars and support the graphene sheets. The entire structure (Figure 1) can be resembled like a building in its early stages of construction, where the floors are represented by graphene sheets and the pillars are the CNTs. As shown in Figure 1, CNTs do not penetrate the structure from top to bottom. Instead, they alternately go up and down, so that on the same plane do not exist two neighboring CNTs with the

  11. Convenient recycling of 3D AgX/graphene aerogels (X = Br, Cl) for efficient photocatalytic degradation of water pollutants.

    PubMed

    Fan, Yingying; Ma, Weiguang; Han, Dongxue; Gan, Shiyu; Dong, Xiandui; Niu, Li

    2015-07-01

    3D AgX/graphene aerogel (GA) composites (X = Br, Cl) are synthesized. Not only is the photocatalytic performance increased in comparison with pristine AgX, but also the photocatalytic cycling process is facilitated just using tweezers Thus, the comprehensive performance of the AgX/GA composites provides robust support for future industrial applications of the photocatalyst. PMID:25994835

  12. Graphene oxide/chitin nanofibril composite foams as column adsorbents for aqueous pollutants.

    PubMed

    Ma, Zhongshi; Liu, Dagang; Zhu, Yi; Li, Zehui; Li, Zhenxuan; Tian, Huafeng; Liu, Haiqing

    2016-06-25

    A novel graphene oxide/chitin nanofibrils (GO-CNF) composite foam as a column adsorbent was prepared for aqueous contaminant disposal. The structures, morphologies and properties of composite foams supported by nanofibrils were characterized. As a special case, the adsorption of methylene blue (MB) on GO-CNF was investigated regarding the static adsorption and column adsorption-desorption tests. Results from equilibrium adsorption isotherms indicated that the adsorption behavior was well-fitted to Langmuir model. The composite foams reinforced by CNF were dimensionally stable during the column adsorption process and could be reused after elution. The removal efficiency of MB was still nearly 90% after 3 cycles. Furthermore, other inorganic or organic pollutants adsorbed by composite foams were also explored. Therefore, this novel composite foam with remarkable properties such as dimensional stability, universal adsorbent for cationic pollutants, high adsorption capacity, and ease of regeneration was a desirable adsorbent in the future practical application of water pollutant treatment. PMID:27083813

  13. Polyaniline nanofiber sponge filled graphene foam as high gravimetric and volumetric capacitance electrode

    NASA Astrophysics Data System (ADS)

    Pedrós, J.; Boscá, A.; Martínez, J.; Ruiz-Gómez, S.; Pérez, L.; Barranco, V.; Calle, F.

    2016-06-01

    A 3D hierarchical porous composite structure is developed via the controlled electrodeposition of a polyaniline nanofiber sponge (PANI-NFS) that fills the pores of a chemical vapor deposited graphene foam (GF). The PANI-NFS/GF composite combines the efficient electronic transport in the GF scaffold (with 100-500 μm pore size) with the rapid diffusion of the electrolyte ions into the high-specific-surface-area and densely-packed PANI-NFS (with 100-500 nm pore size). The factor of 1000 in the pore hierarchy and the synergy between the materials, that form a supercapacitor composite electrode with an integrated extended current collector, lead to both very high gravimetric and volumetric capacitances. In particular, values of 1474 F g-1 and 86 F cm-3 for a GF filling factor of 11% (leading to an estimated value of 782 F cm-3 for 100%), respectively, are obtained at a current density of 0.47 A g-1. Moreover, the composite electrode presents a capacitance retention of 83% after 15000 cycles. This excellent behavior makes the PANI-NFS/GF composite electrodes very attractive for high-performance supercapacitors.

  14. Preparation and characterization of three dimensional graphene foam supported platinum-ruthenium bimetallic nanocatalysts for hydrogen peroxide based electrochemical biosensors.

    PubMed

    Kung, Chih-Chien; Lin, Po-Yuan; Buse, Frederick John; Xue, Yuhua; Yu, Xiong; Dai, Liming; Liu, Chung-Chiun

    2014-02-15

    The large surface, the excellent dispersion and the high degrees of sensitivity of bimetallic nanocatalysts were the attractive features of this investigation. Graphene foam (GF) was a three dimensional (3D) porous architecture consisting of extremely large surface and high conductive pathways. In this study, 3D GF was used incorporating platinum-ruthenium (PtRu) bimetallic nanoparticles as an electrochemical nanocatalyst for the detection of hydrogen peroxide (H2O2). PtRu/3D GF nanocatalyst exhibited a remarkable performance toward electrochemical oxidation of H2O2 without any additional mediator showing a high sensitivity (1023.1 µA mM(-1)cm(-2)) and a low detection limit (0.04 µM) for H2O2. Amperometric results demonstrated that GF provided a promising platform for the development of electrochemical sensors in biosensing and PtRu/3D GF nanocatalyst possessed the excellent catalytic activity toward the H2O2 detection. A small particle size and a high degree of the dispersion in obtaining of large active surface area were important for the nanocatalyst for the best H2O2 detection in biosensing. Moreover, potential interference by ascorbic acid and uric acid appeared to be negligible. PMID:24012804

  15. Rationally designed graphene-nanotube 3D architectures with a seamless nodal junction for efficient energy conversion and storage

    PubMed Central

    Xue, Yuhua; Ding, Yong; Niu, Jianbing; Xia, Zhenhai; Roy, Ajit; Chen, Hao; Qu, Jia; Wang, Zhong Lin; Dai, Liming

    2015-01-01

    One-dimensional (1D) carbon nanotubes (CNTs) and 2D single-atomic layer graphene have superior thermal, electrical, and mechanical properties. However, these nanomaterials exhibit poor out-of-plane properties due to the weak van der Waals interaction in the transverse direction between graphitic layers. Recent theoretical studies indicate that rationally designed 3D architectures could have desirable out-of-plane properties while maintaining in-plane properties by growing CNTs and graphene into 3D architectures with a seamless nodal junction. However, the experimental realization of seamlessly-bonded architectures remains a challenge. We developed a strategy of creating 3D graphene-CNT hollow fibers with radially aligned CNTs (RACNTs) seamlessly sheathed by a cylindrical graphene layer through a one-step chemical vapor deposition using an anodized aluminum wire template. By controlling the aluminum wire diameter and anodization time, the length of the RACNTs and diameter of the graphene hollow fiber can be tuned, enabling efficient energy conversion and storage. These fibers, with a controllable surface area, meso-/micropores, and superior electrical properties, are excellent electrode materials for all-solid-state wire-shaped supercapacitors with poly(vinyl alcohol)/H2SO4 as the electrolyte and binder, exhibiting a surface-specific capacitance of 89.4 mF/cm2 and length-specific capacitance up to 23.9 mF/cm, — one to four times the corresponding record-high capacities reported for other fiber-like supercapacitors. Dye-sensitized solar cells, fabricated using the fiber as a counter electrode, showed a power conversion efficiency of 6.8% and outperformed their counterparts with an expensive Pt wire counter electrode by a factor of 2.5. These novel fiber-shaped graphene-RACNT energy conversion and storage devices are so flexible they can be woven into fabrics as power sources. PMID:26601246

  16. Rationally designed graphene-nanotube 3D architectures with a seamless nodal junction for efficient energy conversion and storage.

    PubMed

    Xue, Yuhua; Ding, Yong; Niu, Jianbing; Xia, Zhenhai; Roy, Ajit; Chen, Hao; Qu, Jia; Wang, Zhong Lin; Dai, Liming

    2015-09-01

    One-dimensional (1D) carbon nanotubes (CNTs) and 2D single-atomic layer graphene have superior thermal, electrical, and mechanical properties. However, these nanomaterials exhibit poor out-of-plane properties due to the weak van der Waals interaction in the transverse direction between graphitic layers. Recent theoretical studies indicate that rationally designed 3D architectures could have desirable out-of-plane properties while maintaining in-plane properties by growing CNTs and graphene into 3D architectures with a seamless nodal junction. However, the experimental realization of seamlessly-bonded architectures remains a challenge. We developed a strategy of creating 3D graphene-CNT hollow fibers with radially aligned CNTs (RACNTs) seamlessly sheathed by a cylindrical graphene layer through a one-step chemical vapor deposition using an anodized aluminum wire template. By controlling the aluminum wire diameter and anodization time, the length of the RACNTs and diameter of the graphene hollow fiber can be tuned, enabling efficient energy conversion and storage. These fibers, with a controllable surface area, meso-/micropores, and superior electrical properties, are excellent electrode materials for all-solid-state wire-shaped supercapacitors with poly(vinyl alcohol)/H2SO4 as the electrolyte and binder, exhibiting a surface-specific capacitance of 89.4 mF/cm(2) and length-specific capacitance up to 23.9 mF/cm, - one to four times the corresponding record-high capacities reported for other fiber-like supercapacitors. Dye-sensitized solar cells, fabricated using the fiber as a counter electrode, showed a power conversion efficiency of 6.8% and outperformed their counterparts with an expensive Pt wire counter electrode by a factor of 2.5. These novel fiber-shaped graphene-RACNT energy conversion and storage devices are so flexible they can be woven into fabrics as power sources. PMID:26601246

  17. Polymer/Pristine graphene based composites: from emulsions to strong, electrically conducting foams

    SciTech Connect

    Woltornist, Steven J.; Carrillo, Jan-Michael Y.; Xu, Thomas O.; Dobrynin, Andrey V.; Adamson, Douglas H.

    2015-01-21

    The unique electrical, thermal, and mechanical properties of graphene make it a perfect candidate for applications in graphene/graphite based polymer composites, yet challenges due to the lack of solubility of pristine graphene/graphite in water and common organic solvents have limited its practical utilization. In this paper, we report a scalable and environmentally friendly technique to form water-in-oil type emulsions stabilized by overlapping pristine graphene sheets, enabling the synthesis of open cell foams containing a continuous graphitic network. Our approach utilizes the insolubility of graphene/graphite in both water and organic solvents and so does not require oxidation, reduction, surfactants, high boiling solvents, chemical functionalization, or the input of large amounts of mechanical energy or heat. At the heart of our technique is the strong attraction of graphene to high-energy oil and water interfaces. This allows for the creation of stable water-in-oil emulsions with controlled droplet size and overlapping graphene sheets playing the role of surfactant by covering the droplet surface and stabilizing the interfaces with a thin graphitic skin. Finally, these emulsions are used as templates for the synthesis of open cell foams with densities below 0.35 g/cm3 that exhibit remarkable mechanical and electrical properties including compressive moduli up to ~100 MPa, compressive strengths of over 8.3 MPa (1200 psi), and bulk conductivities approaching 7 S/m.

  18. Polymer/Pristine graphene based composites: from emulsions to strong, electrically conducting foams

    DOE PAGESBeta

    Woltornist, Steven J.; Carrillo, Jan-Michael Y.; Xu, Thomas O.; Dobrynin, Andrey V.; Adamson, Douglas H.

    2015-01-21

    The unique electrical, thermal, and mechanical properties of graphene make it a perfect candidate for applications in graphene/graphite based polymer composites, yet challenges due to the lack of solubility of pristine graphene/graphite in water and common organic solvents have limited its practical utilization. In this paper, we report a scalable and environmentally friendly technique to form water-in-oil type emulsions stabilized by overlapping pristine graphene sheets, enabling the synthesis of open cell foams containing a continuous graphitic network. Our approach utilizes the insolubility of graphene/graphite in both water and organic solvents and so does not require oxidation, reduction, surfactants, high boilingmore » solvents, chemical functionalization, or the input of large amounts of mechanical energy or heat. At the heart of our technique is the strong attraction of graphene to high-energy oil and water interfaces. This allows for the creation of stable water-in-oil emulsions with controlled droplet size and overlapping graphene sheets playing the role of surfactant by covering the droplet surface and stabilizing the interfaces with a thin graphitic skin. Finally, these emulsions are used as templates for the synthesis of open cell foams with densities below 0.35 g/cm3 that exhibit remarkable mechanical and electrical properties including compressive moduli up to ~100 MPa, compressive strengths of over 8.3 MPa (1200 psi), and bulk conductivities approaching 7 S/m.« less

  19. Synthesis of 3D structured graphene as a high performance catalyst support for methanol electro-oxidation.

    PubMed

    Li, Yecheng; Zhang, Lei; Hu, Zhuofeng; Yu, Jimmy C

    2015-07-01

    A simple process for preparing 3D structured graphene (3D-G) by a solution combustion method is reported. The product was deposited with platinum and used for methanol electro-oxidation. The catalyst shows a considerable enhancement in both the activity and stability towards methanol electro-oxidation reaction. Characterization reveals that the Pt/3D-G catalyst has a more negative onset potential as well as a higher electrochemically active specific surface area than a commercial Pt/C catalyst. Moreover, the catalyst exhibits higher tolerance to corrosion than carbon black. This work provides an efficient way for preparing 3D-G as a promising support for the oxidation of small organic molecules in fuel cells. PMID:26058677

  20. Synthesis of 3D structured graphene as a high performance catalyst support for methanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Li, Yecheng; Zhang, Lei; Hu, Zhuofeng; Yu, Jimmy C.

    2015-06-01

    A simple process for preparing 3D structured graphene (3D-G) by a solution combustion method is reported. The product was deposited with platinum and used for methanol electro-oxidation. The catalyst shows a considerable enhancement in both the activity and stability towards methanol electro-oxidation reaction. Characterization reveals that the Pt/3D-G catalyst has a more negative onset potential as well as a higher electrochemically active specific surface area than a commercial Pt/C catalyst. Moreover, the catalyst exhibits higher tolerance to corrosion than carbon black. This work provides an efficient way for preparing 3D-G as a promising support for the oxidation of small organic molecules in fuel cells.

  1. 3D Bridged Carbon Nanoring/Graphene Hybrid Paper as a High-Performance Lateral Heat Spreader.

    PubMed

    Zhang, Jianwei; Shi, Gang; Jiang, Cai; Ju, Su; Jiang, Dazhi

    2015-12-01

    Graphene paper (GP) has attracted great attention as a heat dissipation material due to its unique thermal transfer property exceeding the limit of graphite. However, the relatively poor thermal transfer properties in the normal direction of GP restricts its wider applications in thermal management. In this work, a 3D bridged carbon nanoring (CNR)/graphene hybrid paper is constructed by the intercalation of polymer carbon source and metal catalyst particles, and the subsequent in situ growth of CNRs in the confined intergallery spaces between graphene sheets through thermal annealing. Further investigation demonstrates that the CNRs are covalently bonded to the graphene sheets and highly improve the thermal transport in the normal direction of the CNR/graphene hybrid paper. This full-carbon architecture shows excellent heat dissipation ability and is much more efficient in removing hot spots than the reduced GP without CNR bridges. This highly thermally conductive CNR/graphene hybrid paper can be easily integrated into next generation commercial high-power electronics and stretchable/foldable devices as high-performance lateral heat spreader materials. This full-carbon architecture also has a great potential in acting as electrodes in supercapacitors or hydrogen storage devices due to the high surface area. PMID:26476622

  2. MoS2 Nanosheets Supported on 3D Graphene Aerogel as a Highly Efficient Catalyst for Hydrogen Evolution.

    PubMed

    Zhao, Yufei; Xie, Xiuqiang; Zhang, Jinqiang; Liu, Hao; Ahn, Hyo-Jun; Sun, Kening; Wang, Guoxiu

    2015-11-01

    The development of efficient catalysts for electrochemical hydrogen evolution is essential for energy conversion technologies. Molybdenum disulfide (MoS2 ) has emerged as a promising electrocatalyst for hydrogen evolution reaction, and its performance greatly depends on its exposed edge sites and conductivity. Layered MoS2 nanosheets supported on a 3D graphene aerogel network (GA-MoS2 ) exhibit significant catalytic activity in hydrogen evolution. The GA-MoS2 composite displays a unique 3D architecture with large active surface areas, leading to high catalytic performance with low overpotential, high current density, and good stability. PMID:26338014

  3. The fabrication of foam-like 3D mesoporous NiO-Ni as anode for high performance Li-ion batteries

    SciTech Connect

    Huang, Peng; Zhang, Xin; Wei, Jumeng; Pan, Jiaqi; Sheng, Yingzhou; Feng, Boxue

    2015-03-15

    Graphical abstract: Foam-like 3 dimensional (3D) mesoporous NiO on 3D micro-porous Ni was fabricated. - Highlights: • We prepare NiO-Ni foam composite via hydrothermal etching and subsequent annealing. • The NiO exhibits novel foam-like 3D mesoporous architecture. • The NiO-Ni anode shows good cycle stability. - Abstract: Foam-like three dimensional mesoporous NiO on Ni foam was fabricated via facile hydrothermal etching and subsequent annealing treatment. The porous NiO consists of a large number of nanosheets with mean thickness about 50 nm, among which a large number of mesoscopic pores with size ranges from 100 nm to 1 μm distribute. The electrochemical performance of the as-prepared NiO-Ni as anode for lithium ion battery was studied by conventional charge/discharge test, which shows excellent cycle stability and rate capability. It exhibits initial discharge and charge capacities of 979 and 707 mA h g{sup −1} at a charge/discharge rate of 0.7 C, which maintain of 747 and 738 mA h g{sup −1} after 100 cycles. Even after 60 cycles at various rates from 0.06 to 14 C, the 10th discharge and charge capacities of the NiO-Ni electrode can revert to 699 and 683 mA h g{sup −1} when lowering the charge/discharge rate to 0.06 C.

  4. SnS2 nanoplates embedded in 3D interconnected graphene network as anode material with superior lithium storage performance

    NASA Astrophysics Data System (ADS)

    Tang, Hongli; Qi, Xiang; Han, Weijia; Ren, Long; Liu, Yundan; Wang, Xingyan; Zhong, Jianxin

    2015-11-01

    Three-dimensional (3D) interconnected graphene network embedded with uniformly distributed tin disulfide (SnS2) nanoplates was prepared by a facile two-step method. The microstructures and morphologies of the SnS2/graphene nanocomposite (SSG) are experimentally confirmed by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Using the as-prepared SSG as an anode material for lithium batteries, its electrochemical performances were investigated by cyclic voltammograms (CV), charge/discharge tests, galvanostatic cycling performance and AC impedance spectroscopy. The results demonstrate that the as-prepared SSG exhibits excellent cycling performance with a capacity of 1060 mAh g-1 retained after 200 charge/discharge cycles at a current density of 100 mA g-1, also a superior rate capability of 670 mAh g-1 even at such a high current density of 2000 mA g-1. This favorable performance can be attributed to the unique 3D interconnected architecture with great electro-conductivity and its intimate contact with SnS2. Our results indicate a potential application of this novel 3D SnS2/graphene nanocomposite in lithium-ion battery.

  5. Polymer/Pristine Graphene Based Composites: From Emulsions to Strong, Electrically Conducting Foams

    NASA Astrophysics Data System (ADS)

    Woltornist, Steven; Carrillo, Jan-Michael; Xu, Thomas; Dobrynin, Andrey; Adamson, Douglas

    2015-03-01

    The unique electrical, thermal and mechanical properties of graphene make it a perfect candidate for applications in graphene/graphite based polymer composites, yet challenges due to the lack of solubility of pristine graphene/graphite in water, common organic solvents, and polymer solutions and melts have limited its practical utilization. Here we report a scalable and environmentally friendly technique to form water-in-oil type emulsions stabilized by a graphitic skin consisting of overlapping pristine graphene sheets that enables the synthesis of open cell foams containing a continuous graphitic skin network. At the heart of our technique is the strong attraction of graphene to high-energy oil and water interfaces. This allows for the creation of stable water-in-oil emulsions with controlled droplet size and overlapping graphene sheets playing the role of surfactant by covering the droplet surface and stabilizing the interfaces with a thin graphitic skin. These emulsions are used as templates for the synthesis of the open cell foams with densities below 0.35 g/cm3 and exhibiting remarkable mechanical and electrical properties including compressive moduli up to ~ 100 MPa, compressive strengths of over 8.3 MPa, and bulk conductivities approaching 7 S/m.

  6. Direct Growth of Graphene Films on 3D Grating Structural Quartz Substrates for High-Performance Pressure-Sensitive Sensors.

    PubMed

    Song, Xuefen; Sun, Tai; Yang, Jun; Yu, Leyong; Wei, Dacheng; Fang, Liang; Lu, Bin; Du, Chunlei; Wei, Dapeng

    2016-07-01

    Conformal graphene films have directly been synthesized on the surface of grating microstructured quartz substrates by a simple chemical vapor deposition process. The wonderful conformality and relatively high quality of the as-prepared graphene on the three-dimensional substrate have been verified by scanning electron microscopy and Raman spectra. This conformal graphene film possesses excellent electrical and optical properties with a sheet resistance of <2000 Ω·sq(-1) and a transmittance of >80% (at 550 nm), which can be attached with a flat graphene film on a poly(dimethylsiloxane) substrate, and then could work as a pressure-sensitive sensor. This device possesses a high-pressure sensitivity of -6.524 kPa(-1) in a low-pressure range of 0-200 Pa. Meanwhile, this pressure-sensitive sensor exhibits super-reliability (≥5000 cycles) and an ultrafast response time (≤4 ms). Owing to these features, this pressure-sensitive sensor based on 3D conformal graphene is adequately introduced to test wind pressure, expressing higher accuracy and a lower background noise level than a market anemometer. PMID:27269362

  7. Hierarchical graphene nanocones over 3D platform of carbon fabrics: A route towards fully foldable graphene based electron source

    NASA Astrophysics Data System (ADS)

    Maiti, Uday N.; Maiti, Soumen; Das, Nirmalya S.; Chattopadhyay, Kalyan K.

    2011-10-01

    A three dimensional field emitter comprising hierarchical nanostructures of graphene over flexible fabric substrate is presented. The nanostructuring is realized through plasma treatment of graphene, coaxially deposited over individual carbon fiber by means of simple aqueous phase electrophoretic deposition technique. Hierarchical graphene nanocone, acting as a cold electron emitter, exhibits outstanding electron emission performance with a turn-on field as low as 0.41 V μm-1 and a threshold field down to 0.81 V μm-1. Electric field modification around the special woven like geometry of the underlying base fabric substrate serves as the booster to the nanostructured graphene related field amplification at the electron emission site. Superb robustness in the emission stability can be attributed to suppressed joule heating on behalf of higher inborn accessible surface area of graphene nanocone as well as excellent electrical and thermal conductivity of both the graphene and carbon fabrics. Superior flexibility of this high-performance graphene based emitter ensures their potential use in completely foldable and wearable field emission devices.A three dimensional field emitter comprising hierarchical nanostructures of graphene over flexible fabric substrate is presented. The nanostructuring is realized through plasma treatment of graphene, coaxially deposited over individual carbon fiber by means of simple aqueous phase electrophoretic deposition technique. Hierarchical graphene nanocone, acting as a cold electron emitter, exhibits outstanding electron emission performance with a turn-on field as low as 0.41 V μm-1 and a threshold field down to 0.81 V μm-1. Electric field modification around the special woven like geometry of the underlying base fabric substrate serves as the booster to the nanostructured graphene related field amplification at the electron emission site. Superb robustness in the emission stability can be attributed to suppressed joule heating on

  8. A 3D scaffold for ultra-sensitive reduced graphene oxide gas sensors.

    PubMed

    Yun, Yong Ju; Hong, Won G; Choi, Nak-Jin; Park, Hyung Ju; Moon, Seung Eon; Kim, Byung Hoon; Song, Ki-Bong; Jun, Yongseok; Lee, Hyung-Kun

    2014-06-21

    An ultra-sensitive gas sensor based on a reduced graphene oxide nanofiber mat was successfully fabricated using a combination of an electrospinning method and graphene oxide wrapping through an electrostatic self-assembly, followed by a low-temperature chemical reduction. The sensor showed excellent sensitivity to NO2 gas. PMID:24839129

  9. Ni foam supported three-dimensional vertically aligned and networked layered CoO nanosheet/graphene hybrid array as a high-performance oxygen evolution electrode

    NASA Astrophysics Data System (ADS)

    Yuan, Weiyong; Zhao, Ming; Yuan, Jia; Li, Chang Ming

    2016-07-01

    The sluggish oxygen evolution reaction (OER) represents a major kinetic bottleneck in water splitting. Herein we report the synthesis of a novel Ni foam (NF) supported 3-D vertically aligned and interconnected layered CoO nanosheet array with controlled density, layer thickness, and interlayer spacing, and the conformal self-assembly of graphene on this nanosheet array. The obtained CoO layered nanosheet/graphene hybrid nanoarray was directly used as an OER electrode, showing a current density of 10 mA cm-2 at an overpotential of 330 mV and a Tafel slope of 79 mV dec-1, both of which are much lower than pristine NF and the nanosheet array without graphene, and are among the lowest reported for Co-based OER catalysts and transition metal oxide-based ones measured under the same conditions. In addition, it can retain 92.4% of the current density after 66 h of chronoamperometry testing at a potential of 1.0 V vs. SCE, and 94.3% of the current density at 1.0 V vs. SCE after 200 cyclic voltammetry cycles (0-1.0 V vs. SCE). The excellent catalytic activity and stability toward OER are ascribed to the 3-D NF supported robustly grown networked layered nanosheet array structure and the synergistic effects between CoO layered nanosheets and graphene.

  10. Growth and Transfer of Seamless 3D Graphene-Nanotube Hybrids.

    PubMed

    Kim, Nam Dong; Li, Yilun; Wang, Gunuk; Fan, Xiujun; Jiang, Jinlong; Li, Lei; Ji, Yongsung; Ruan, Gedeng; Hauge, Robert H; Tour, James M

    2016-02-10

    Seamlessly connected graphene and carbon nanotube hybrids (GCNTs) have great potential as carbon platform structures in electronics due to their high conductivity and high surface area. Here, we introduce a facile method for making patterned GCNTs and their intact transfer onto other substrates. The mechanism for selective growth of vertically aligned CNTs (VA-CNTs) on the patterned graphene is discussed. The complete transfer of the GCNT pattern onto other substrates is possible because of the mechanical strength of the GCNT hybrids. Electrical conductivity measurements of the transferred GCNT structures show Ohmic contact through the VA-CNTs to graphene--evidence of its integrity after the transfer process. PMID:26789079

  11. Graphene-encapsulated Si on ultrathin-graphite foam as anode for high capacity lithium-ion batteries.

    PubMed

    Ji, Junyi; Ji, Hengxing; Zhang, Li Li; Zhao, Xin; Bai, Xin; Fan, Xiaobin; Zhang, Fengbao; Ruoff, Rodney S

    2013-09-01

    A Si/graphene composite is drop-casted on an ultrathin-graphite foam (UGF) with three dimensional conductive network. The Si/graphene/UGF composite presents excellent stability and relatively high overall capacity when tested as an anode for rechargeable lithium ion batteries. PMID:23847098

  12. A 3D scaffold for ultra-sensitive reduced graphene oxide gas sensors

    NASA Astrophysics Data System (ADS)

    Yun, Yong Ju; Hong, Won G.; Choi, Nak-Jin; Park, Hyung Ju; Moon, Seung Eon; Kim, Byung Hoon; Song, Ki-Bong; Jun, Yongseok; Lee, Hyung-Kun

    2014-05-01

    An ultra-sensitive gas sensor based on a reduced graphene oxide nanofiber mat was successfully fabricated using a combination of an electrospinning method and graphene oxide wrapping through an electrostatic self-assembly, followed by a low-temperature chemical reduction. The sensor showed excellent sensitivity to NO2 gas.An ultra-sensitive gas sensor based on a reduced graphene oxide nanofiber mat was successfully fabricated using a combination of an electrospinning method and graphene oxide wrapping through an electrostatic self-assembly, followed by a low-temperature chemical reduction. The sensor showed excellent sensitivity to NO2 gas. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00332b

  13. A 3D tunable and multi-frequency graphene plasmonic cloak.

    PubMed

    Farhat, Mohamed; Rockstuhl, Carsten; Bağcı, Hakan

    2013-05-20

    We demonstrate the possibility of cloaking three-dimensional objects at multi-frequencies in the far-infrared part of the spectrum. The proposed cloaking mechanism exploits graphene layers wrapped around the object to be concealed. Graphene layers are doped via a variable external voltage difference permitting continuous tuning of the cloaking frequencies. Particularly, two configurations are investigated: (i) Only one graphene layer is used to suppress the scattering from a dielectric sphere. (ii) Several of these layers biased at different gate voltages are used to achieve a multi-frequency cloak. These frequencies can be set independently. The proposed cloak's functionality is verified by near- and far-field computations. By considering geometry and material parameters that are realizable by practical experiments, we contribute to the development of graphene based plasmonic applications that may find use in disruptive photonic technologies. PMID:23736478

  14. Zirconia-Nanoparticle-Reinforced Morphology-Engineered Graphene-Based Foams.

    PubMed

    Chakravarty, Dibyendu; Tiwary, Chandra Sekhar; Machado, Leonardo Dantas; Brunetto, Gustavo; Vinod, Soumya; Yadav, Ram Manohar; Galvao, Douglas S; Joshi, Shrikant V; Sundararajan, Govindan; Ajayan, Pulickel M

    2015-08-19

    The morphology of graphene-based foams can be engineered by reinforcing them with nanocrystalline zirconia, thus improving their oil-adsorption capacity; This can be observed experimentally and explained theoretically. Low zirconia fractions yield flaky microstructures where zirconia nanoparticles arrest propagating cracks. Higher zirconia concentrations possess a mesh-like interconnected structure where the degree of coiling is dependant on the local zirconia content. PMID:26171602

  15. Efficient 3D conducting networks built by graphene sheets and carbon nanoparticles for high-performance silicon anode.

    PubMed

    Zhou, Xiaosi; Yin, Ya-Xia; Cao, An-Min; Wan, Li-Jun; Guo, Yu-Guo

    2012-05-01

    The utilization of silicon particles as anode materials for lithium-ion batteries is hindered by their low intrinsic electric conductivity and large volume changes during cycling. Here we report a novel Si nanoparticle-carbon nanoparticle/graphene composite, in which the addition of carbon nanoparticles can effectively alleviate the aggregation of Si nanoparticles by separating them from each other, and help graphene sheets build efficient 3D conducting networks for Si nanoparticles. Such Si-C/G composite shows much improved electrochemical properties in terms of specific capacity and cycling performance (ca. 1521 mA h g(-1) at 0.2 C after 200 cycles), as well as a favorable high-rate capability. PMID:22563769

  16. Incorporation of Nitrogen Defects for Efficient Reduction of CO2 via Two-Electron Pathway on Three-Dimensional Graphene Foam.

    PubMed

    Wu, Jingjie; Liu, Mingjie; Sharma, Pranav P; Yadav, Ram Manohar; Ma, Lulu; Yang, Yingchao; Zou, Xiaolong; Zhou, Xiao-Dong; Vajtai, Robert; Yakobson, Boris I; Lou, Jun; Ajayan, Pulickel M

    2016-01-13

    The practical recycling of carbon dioxide (CO2) by the electrochemical reduction route requires an active, stable, and affordable catalyst system. Although noble metals such as gold and silver have been demonstrated to reduce CO2 into carbon monoxide (CO) efficiently, they suffer from poor durability and scarcity. Here we report three-dimensional (3D) graphene foam incorporated with nitrogen defects as a metal-free catalyst for CO2 reduction. The nitrogen-doped 3D graphene foam requires negligible onset overpotential (-0.19 V) for CO formation, and it exhibits superior activity over Au and Ag, achieving similar maximum Faradaic efficiency for CO production (∼85%) at a lower overpotential (-0.47 V) and better stability for at least 5 h. The dependence of catalytic activity on N-defect structures is unraveled by systematic experimental investigations. Indeed, the density functional theory calculations confirm pyridinic N as the most active site for CO2 reduction, consistent with experimental results. PMID:26651056

  17. Nanosized LiFePO4-decorated emulsion-templated carbon foam for 3D micro batteries: a study of structure and electrochemical performance

    NASA Astrophysics Data System (ADS)

    Asfaw, Habtom D.; Roberts, Matthew R.; Tai, Cheuk-Wai; Younesi, Reza; Valvo, Mario; Nyholm, Leif; Edström, Kristina

    2014-07-01

    In this article, we report a novel 3D composite cathode fabricated from LiFePO4 nanoparticles deposited conformally on emulsion-templated carbon foam by a sol-gel method. The carbon foam is synthesized via a facile and scalable method which involves the carbonization of a high internal phase emulsion (polyHIPE) polymer template. Various techniques (XRD, SEM, TEM and electrochemical methods) are used to fully characterize the porous electrode and confirm the distribution and morphology of the cathode active material. The major benefits of the carbon foam used in our work are closely connected with its high surface area and the plenty of space suitable for sequential coating with battery components. After coating with a cathode material (LiFePO4 nanoparticles), the 3D electrode presents a hierarchically structured electrode in which a porous layer of the cathode material is deposited on the rigid and bicontinuous carbon foam. The composite electrodes exhibit impressive cyclability and rate performance at different current densities affirming their importance as viable power sources in miniature devices. Footprint area capacities of 1.72 mA h cm-2 at 0.1 mA cm-2 (lowest rate) and 1.1 mA h cm-2 at 6 mA cm-2 (highest rate) are obtained when the cells are cycled in the range 2.8 to 4.0 V vs. lithium.In this article, we report a novel 3D composite cathode fabricated from LiFePO4 nanoparticles deposited conformally on emulsion-templated carbon foam by a sol-gel method. The carbon foam is synthesized via a facile and scalable method which involves the carbonization of a high internal phase emulsion (polyHIPE) polymer template. Various techniques (XRD, SEM, TEM and electrochemical methods) are used to fully characterize the porous electrode and confirm the distribution and morphology of the cathode active material. The major benefits of the carbon foam used in our work are closely connected with its high surface area and the plenty of space suitable for sequential coating

  18. Self-Assembled 3D Foam-Like NiCo2O4 as Efficient Catalyst for Lithium Oxygen Batteries.

    PubMed

    Liu, Lili; Wang, Jun; Hou, Yuyang; Chen, Jun; Liu, Hua-Kun; Wang, Jiazhao; Wu, Yuping

    2016-02-01

    A self-assembled 3D foam-like NiCo2O4 catalyst has been synthesized via a simple and environmental friendly approach, wherein starch acts as the template to form the unique 3D architecture. Interestingly, when employed as a cathode for lithium oxygen batteries, it demonstrates superior bifunctional electrocatalytic activities toward both the oxygen reduction reaction and the oxygen evolution reaction, with a relatively high round-trip efficiency of 70% and high discharge capacity of 10 137 mAh g(-1) at a current density of 200 mA g(-1), which is much higher than those in previously reported results. Meanwhile, rotating disk electrode measurements in both aqueous and nonaqueous electrolyte are also employed to confirm the electrocatalytic activity for the first time. This excellent performance is attributed to the synergistic benefits of the unique 3D foam-like structure and the intrinsically high catalytic activity of NiCo2O4 . PMID:26670821

  19. Strain-rate sensitivity of foam materials: A numerical study using 3D image-based finite element model

    NASA Astrophysics Data System (ADS)

    Sun, Yongle; Li, Q. M.; Withers, P. J.

    2015-09-01

    Realistic simulations are increasingly demanded to clarify the dynamic behaviour of foam materials, because, on one hand, the significant variability (e.g. 20% scatter band) of foam properties and the lack of reliable dynamic test methods for foams bring particular difficulty to accurately evaluate the strain-rate sensitivity in experiments; while on the other hand numerical models based on idealised cell structures (e.g. Kelvin and Voronoi) may not be sufficiently representative to capture the actual structural effect. To overcome these limitations, the strain-rate sensitivity of the compressive and tensile properties of closed-cell aluminium Alporas foam is investigated in this study by means of meso-scale realistic finite element (FE) simulations. The FE modelling method based on X-ray computed tomography (CT) image is introduced first, as well as its applications to foam materials. Then the compression and tension of Alporas foam at a wide variety of applied nominal strain-rates are simulated using FE model constructed from the actual cell geometry obtained from the CT image. The stain-rate sensitivity of compressive strength (collapse stress) and tensile strength (0.2% offset yield point) are evaluated when considering different cell-wall material properties. The numerical results show that the rate dependence of cell-wall material is the main cause of the strain-rate hardening of the compressive and tensile strengths at low and intermediate strain-rates. When the strain-rate is sufficiently high, shock compression is initiated, which significantly enhances the stress at the loading end and has complicated effect on the stress at the supporting end. The plastic tensile wave effect is evident at high strain-rates, but shock tension cannot develop in Alporas foam due to the softening associated with single fracture process zone occurring in tensile response. In all cases the micro inertia of individual cell walls subjected to localised deformation is found to

  20. Microwave-assisted synthesis of simonkolleite nanoplatelets on nickel foam-graphene with enhanced surface area for high-performance supercapacitors.

    PubMed

    Khamlich, S; Mokrani, T; Dhlamini, M S; Mothudi, B M; Maaza, M

    2016-01-01

    Simonkolleite (Zn5(OH)8Cl2·H2O) nanoplatelets has been deposited on nickel foam-supported graphene by using an efficient microwave-assisted hydrothermal method. The three-dimensional (3D) porous microstructure of the as-fabricated nickel foam-graphene/simonkolleite (NiF-G/SimonK) composite is beneficial to electrolyte penetration and ions exchange, whereas graphene provide improved electronic conductivity. Structural and morphological characterizations confirmed the presence of highly crystalline hexagonal-shaped nanoplatelets of simonkolleite. Field emission scanning electron microscope (FE-SEM) of the NiF-G/SimonK composite revealed that the SimonK nanoplatelets were evenly distributed on the surface of NiF-G and interlaced with each other, resulting in a higher specific surface area of 35.69 m(2) g(-1) compared to SimonK deposited directly on NiF 17.2 m(2) g(-1). Electrochemical measurements demonstrated that the NiF-G/SimonK composite exhibit a high specific capacitance of 836 F g(-1) at a current density of 1 A g(-1), and excellent rate capability and cycling stability with capacitance retention of 92% after 5000 charge/discharge cycles. PMID:26397922

  1. Coordinated assembly of a new 3D mesoporous Fe₃O₄@Cu₂O-graphene oxide framework as a highly efficient and reusable catalyst for the synthesis of quinoxalines.

    PubMed

    Wang, Zhiyi; Hu, Guowen; Liu, Jian; Liu, Weisheng; Zhang, Haoli; Wang, Baodui

    2015-03-25

    A new three-dimensional (3D) mesoporous hybrid framework was synthesized by coordinated layer-by-layer assembly between nanosheets of reduced graphene oxide and Fe3O4@Cu2O. This 3D mesoporous framework shows an excellent catalytic performance with a remarkable activity, selectivity (>99%), and strong durability in the synthesis of quinoxalines. PMID:25712163

  2. A novel role of three dimensional graphene foam to prevent heater failure during boiling.

    PubMed

    Ahn, Ho Seon; Kim, Ji Min; Park, Chibeom; Jang, Ji-Wook; Lee, Jae Sung; Kim, Hyungdae; Kaviany, Massoud; Kim, Moo Hwan

    2013-01-01

    We report a novel boiling heat transfer (NBHT) in reduced graphene oxide (RGO) suspended in water (RGO colloid) near critical heat flux (CHF), which is traditionally the dangerous limitation of nucleate boiling heat transfer because of heater failure. When the heat flux reaches the maximum value (CHF) in RGO colloid pool boiling, the wall temperature increases gradually and slowly with an almost constant heat flux, contrary to the rapid wall temperature increase found during water pool boiling. The gained time by NBHT would provide the safer margin of the heat transfer and the amazing impact on the thermal system as the first report of graphene application. In addition, the CHF and boiling heat transfer performance also increase. This novel boiling phenomenon can effectively prevent heater failure because of the role played by the self-assembled three-dimensional foam-like graphene network (SFG). PMID:23743619

  3. A Novel Role of Three Dimensional Graphene Foam to Prevent Heater Failure during Boiling

    PubMed Central

    Ahn, Ho Seon; Kim, Ji Min; Park, Chibeom; Jang, Ji-Wook; Lee, Jae Sung; Kim, Hyungdae; Kaviany, Massoud; Kim, Moo Hwan

    2013-01-01

    We report a novel boiling heat transfer (NBHT) in reduced graphene oxide (RGO) suspended in water (RGO colloid) near critical heat flux (CHF), which is traditionally the dangerous limitation of nucleate boiling heat transfer because of heater failure. When the heat flux reaches the maximum value (CHF) in RGO colloid pool boiling, the wall temperature increases gradually and slowly with an almost constant heat flux, contrary to the rapid wall temperature increase found during water pool boiling. The gained time by NBHT would provide the safer margin of the heat transfer and the amazing impact on the thermal system as the first report of graphene application. In addition, the CHF and boiling heat transfer performance also increase. This novel boiling phenomenon can effectively prevent heater failure because of the role played by the self-assembled three-dimensional foam-like graphene network (SFG). PMID:23743619

  4. Self-assembled foam-like graphene networks formed through nucleate boiling

    PubMed Central

    Ahn, Ho Seon; Jang, Ji-Wook; Seol, Minsu; Kim, Ji Min; Yun, Dong-Jin; Park, Chibeom; Kim, Hyungdae; Youn, Duck Hyun; Kim, Jae Young; Park, Gunyeop; Park, Su Cheong; Kim, Jin Man; Yu, Dong In; Yong, Kijung; Kim, Moo Hwan; Lee, Jae Sung

    2013-01-01

    Self-assembled foam-like graphene (SFG) structures were formed using a simple nucleate boiling method, which is governed by the dynamics of bubble generation and departure in the graphene colloid solution. The conductivity and sheet resistance of the calcined (400°C) SFG film were 11.8 S·cm–1 and 91.2 Ω□−1, respectively, and were comparable to those of graphene obtained by chemical vapor deposition (CVD) (~10 S·cm–1). The SFG structures can be directly formed on any substrate, including transparent conductive oxide (TCO) glasses, metals, bare glasses, and flexible polymers. As a potential application, SFG formed on fluorine-doped tin oxide (FTO) exhibited a slightly better overall efficiency (3.6%) than a conventional gold electrode (3.4%) as a cathode of quantum dot sensitized solar cells (QDSSCs). PMID:23466511

  5. Poly (vinylidene fluoride)/graphene nano-platelets electrically conductive composite foam for thermoelectric applications

    NASA Astrophysics Data System (ADS)

    Sun, Yu-Chen; Terakita, Daryl; Tseng, Alex C.; Naguib, Hani E.

    2015-04-01

    In this paper, we present the next generation of polymer based composite foam material fabricated from poly(vinylidene fluoride) (PVDF) and graphene nano-platelets (GNPs) as secondary fillers. We discovered that such composite material has thermoelectric properties and has the potential to be used in energy harvesting applications. The samples were fabricated though melt blending methods, which is a cheaper, simpler process and can be easily scaled up to industrial level for mass production. Our results indicate that melt blending processes can produce either similar or superior results compared to traditional solvent casting methods. In addition, we utilized a novel batch foaming method and successfully created closed-cell structure for the composite material. Our results also show that the thermal conductivity of PVDF/GNP foam samples have approximately an order of magnitude drop compared to solid samples, which is desired for thermoelectric materials. Furthermore, we observed a change in the electrical conductivity threshold of the GNP fillers after foaming. We report a Seebeck coefficient of 217 μV/K for 15 wt% GNP/PVDF foam samples, which is approximately 10 times higher than values reported previously.

  6. Foam

    NASA Astrophysics Data System (ADS)

    Cornick, Marc

    Phenolic foam is a unique cellular material that can be utilized in either a fully open cell structure or a completely closed cell structure in a diversity of applications such as open cellular material for floral foam, soil propagation media and/or orthopedic use, and closed cell phenolic foam primarily for thermal insulation. Thus, phenolic foam is much more versatile than other competitive organic foams such as polystyrene and polyurethane with the latter materials being more heavily involved in thermal insulation. Foam processing can consider batch, semi-continuous, or continuous conditions, and the features and weaknesses of the appropriate processes are discussed along with continuous mix heads involving high and low pressure conditions.

  7. Strontium eluting graphene hybrid nanoparticles augment osteogenesis in a 3D tissue scaffold

    NASA Astrophysics Data System (ADS)

    Kumar, Sachin; Chatterjee, Kaushik

    2015-01-01

    The objective of this work was to prepare hybrid nanoparticles of graphene sheets decorated with strontium metallic nanoparticles and demonstrate their advantages in bone tissue engineering. Strontium-decorated reduced graphene oxide (RGO_Sr) hybrid nanoparticles were synthesized by the facile reduction of graphene oxide and strontium nitrate. X-ray diffraction, transmission electron microscopy, and atomic force microscopy revealed that the hybrid particles were composed of RGO sheets decorated with 200-300 nm metallic strontium particles. Thermal gravimetric analysis further confirmed the composition of the hybrid particles as 22 wt% of strontium. Macroporous tissue scaffolds were prepared by incorporating RGO_Sr particles in poly(ε-caprolactone) (PCL). The PCL/RGO_Sr scaffolds were found to elute strontium ions in aqueous medium. Osteoblast proliferation and differentiation was significantly higher in the PCL scaffolds containing the RGO_Sr particles in contrast to neat PCL and PCL/RGO scaffolds. The increased biological activity can be attributed to the release of strontium ions from the hybrid nanoparticles. This study demonstrates that composites prepared using hybrid nanoparticles that elute strontium ions can be used to prepare multifunctional scaffolds with good mechanical and osteoinductive properties. These findings have important implications for designing the next generation of biomaterials for use in tissue regeneration.The objective of this work was to prepare hybrid nanoparticles of graphene sheets decorated with strontium metallic nanoparticles and demonstrate their advantages in bone tissue engineering. Strontium-decorated reduced graphene oxide (RGO_Sr) hybrid nanoparticles were synthesized by the facile reduction of graphene oxide and strontium nitrate. X-ray diffraction, transmission electron microscopy, and atomic force microscopy revealed that the hybrid particles were composed of RGO sheets decorated with 200-300 nm metallic strontium

  8. Unimpeded permeation of water through biocidal graphene oxide sheets anchored on to 3D porous polyolefinic membranes

    NASA Astrophysics Data System (ADS)

    Mural, Prasanna Kumar S.; Jain, Shubham; Kumar, Sachin; Madras, Giridhar; Bose, Suryasarathi

    2016-04-01

    3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and hot-pressed samples revealed a clear picture as to how the morphology develops and coarsens over a function of time during post-processing operations like compression molding. The coarsening of PE/PEO blends was traced using X-ray micro-computed tomography and scanning electron microscopy (SEM) of annealed blends at different times. It is now understood from X-ray micro-computed tomography that by the addition of a compatibilizer (here lightly maleated PE), a stable morphology can be visualized in 3D. In order to anchor biocidal graphene oxide sheets onto these 3D porous membranes, the PE membranes were chemically modified with acid/ethylene diamine treatment to anchor the GO sheets which were further confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and surface Raman mapping. The transport properties through the membrane clearly reveal unimpeded permeation of water which suggests that anchoring GO on to the membranes does not clog the pores. Antibacterial studies through the direct contact of bacteria with GO anchored PE membranes resulted in 99% of bacterial inactivation. The possible bacterial inactivation through physical disruption of the bacterial cell wall and/or reactive oxygen species (ROS) is discussed herein. Thus this study opens new avenues in designing polyolefin based antibacterial 3D porous membranes for water purification.3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and

  9. 3D Graphene Functionalized by Covalent Organic Framework Thin Film as Capacitive Electrode in Alkaline Media.

    PubMed

    Zha, Zeqi; Xu, Lirong; Wang, Zhikui; Li, Xiaoguang; Pan, Qinmin; Hu, Pingan; Lei, Shengbin

    2015-08-19

    To harness the electroactivity of anthraquinone as an electrode material, a great recent effort have been invested to composite anthraquinone with carbon materials to improve the conductivity. Here we report on a noncovalent way to modify three-dimensional graphene with anthraquinone moieties through on-surface synthesis of two-dimensional covalent organic frameworks. We incorporate 2,6-diamino-anthraquinone moieties into COF through Schiff-base reaction with benzene-1,3,5-tricarbaldehyde. The synthesized COF -graphene composite exhibits large specific capacitance of 31.7 mF/cm(2). Long-term galvanostatic charge/discharge cycling experiments revealed a decrease of capacitance, which was attributed to the loss of COF materials and electrostatic repulsion accumulated during charge-discharge circles which result in the poor electrical conductivity between 2D COF layers. PMID:26203782

  10. Unimpeded permeation of water through biocidal graphene oxide sheets anchored on to 3D porous polyolefinic membranes.

    PubMed

    Mural, Prasanna Kumar S; Jain, Shubham; Kumar, Sachin; Madras, Giridhar; Bose, Suryasarathi

    2016-04-14

    3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and hot-pressed samples revealed a clear picture as to how the morphology develops and coarsens over a function of time during post-processing operations like compression molding. The coarsening of PE/PEO blends was traced using X-ray micro-computed tomography and scanning electron microscopy (SEM) of annealed blends at different times. It is now understood from X-ray micro-computed tomography that by the addition of a compatibilizer (here lightly maleated PE), a stable morphology can be visualized in 3D. In order to anchor biocidal graphene oxide sheets onto these 3D porous membranes, the PE membranes were chemically modified with acid/ethylene diamine treatment to anchor the GO sheets which were further confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and surface Raman mapping. The transport properties through the membrane clearly reveal unimpeded permeation of water which suggests that anchoring GO on to the membranes does not clog the pores. Antibacterial studies through the direct contact of bacteria with GO anchored PE membranes resulted in 99% of bacterial inactivation. The possible bacterial inactivation through physical disruption of the bacterial cell wall and/or reactive oxygen species (ROS) is discussed herein. Thus this study opens new avenues in designing polyolefin based antibacterial 3D porous membranes for water purification. PMID:27020773

  11. A 3D Porous Architecture of Si/graphene Nanocomposite as High-performance Anode Materials for Li-ion Batteries

    SciTech Connect

    Xin X.; Zhu Y.; Zhou, X.; Wang, F.; Yao, X.; Xu, X.; Liu, Z.

    2012-04-28

    A 3D porous architecture of Si/graphene nanocomposite has been rationally designed and constructed through a series of controlled chemical processes. In contrast to random mixture of Si nanoparticles and graphene nanosheets, the porous nanoarchitectured composite has superior electrochemical stability because the Si nanoparticles are firmly riveted on the graphene nanosheets through a thin SiO{sub x} layer. The 3D graphene network enhances electrical conductivity, and improves rate performance, demonstrating a superior rate capability over the 2D nanostructure. This 3D porous architecture can deliver a reversible capacity of {approx}900 mA h g{sup -1} with very little fading when the charge rates change from 100 mA g{sup -1} to 1 A g{sup -1}. Furthermore, the 3D nanoarchitechture of Si/graphene can be cycled at extremely high Li{sup +} extraction rates, such as 5 A g{sup -1} and 10 A g{sup -1}, for over than 100 times. Both the highly conductive graphene network and porous architecture are considered to contribute to the remarkable rate capability and cycling stability, thereby pointing to a new synthesis route to improving the electrochemical performances of the Si-based anode materials for advanced Li-ion batteries.

  12. 3D Epitaxy of Graphene nanostructures in the Matrix of Ag, Al and Cu

    NASA Astrophysics Data System (ADS)

    Salamanca-Riba, Lourdes; Isaacs, Romaine; Wuttig, Manfred; Lemieux, Melburne; Hu, Liangbing; Iftekhar, Jaim; Rashkeev, Sergey; Kukla, Maija; Rabin, Oded; Mansour, Azzam

    2015-03-01

    Graphene nanostructures in the form ribbons were embedded in the lattice of metals such as Ag, Cu, and Al in concentrations up to 36.4 at.%, 21.8 at% and 10.5 at.%, respectively. These materials are called covetics. Raman scattering from Ag and Al covetics indicate variations in the intensity of peaks at ~ 1,300 cm-1 and 1,600 cm-1 with position on the sample. These peaks are associated with the D (defects) and G (graphite E2g mode) peaks of graphitic carbon with sp2 bonding and reveal various degrees of imperfections in the graphene layers. First principles calculations of the dynamic matrix of Ag and Al covetics show bonding between C and the metal. EELS mapping of the C-K edge and high resolution lattice images show that the graphene-like regions form ribbons with epitaxial orientation with the metal lattice of Ag and Al. The temperature dependences of the resistivites of Ag and Cu covetics are similar to those of the pure metals with only slight increase in resistivity. Films of Cu covetic deposited by e-beam evaporation and PLD show higher transmittance and resistance to oxidation than pure metal films of the same thickness indicating that copper covetic films can be used for transparent electrodes. Funded by DARPA/ARL Grant No. W911NF-13-1-0058, and ONR Award No N000141410042.

  13. Fabrication of graphene foam supported carbon nanotube/polyaniline hybrids for high-performance supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Yang, Hongxia; Wang, Nan; Xu, Qun; Chen, Zhimin; Ren, Yumei; Razal, Joselito M.; Chen, Jun

    2014-12-01

    A large-scale, high-powered energy storage system is crucial for addressing the energy problem. The development of high-performance materials is a key issue in realizing the grid-scale applications of energy-storage devices. In this work, we describe a simple and scalable method for fabricating hybrids (graphene-pyrrole/carbon nanotube-polyaniline (GPCP)) using graphene foam as the supporting template. Graphene-pyrrole (G-Py) aerogels are prepared via a green hydrothermal route from two-dimensional materials such as graphene sheets, while a carbon nanotube/polyaniline (CNT/PANI) composite dispersion is obtained via the in situ polymerization method. The functional nanohybrid materials of GPCP can be assembled by simply dipping the prepared G-py aerogels into the CNT/PANI dispersion. The morphology of the obtained GPCP is investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which revealed that the CNT/PANI was uniformly deposited onto the surfaces of the graphene. The as-synthesized GPCP maintains its original three-dimensional hierarchical porous architecture, which favors the diffusion of the electrolyte ions into the inner region of the active materials. Such hybrid materials exhibit significant specific capacitance of up to 350 F g-1, making them promising in large-scale energy-storage device applications.

  14. 3D Graphene-Infused Polyimide with Enhanced Electrothermal Performance for Long-Term Flexible Space Applications.

    PubMed

    Loeblein, Manuela; Bolker, Asaf; Tsang, Siu Hon; Atar, Nurit; Uzan-Saguy, Cecile; Verker, Ronen; Gouzman, Irina; Grossman, Eitan; Teo, Edwin Hang Tong

    2015-12-22

    Polyimides (PIs) have been praised for their high thermal stability, high modulus of elasticity and tensile strength, ease of fabrication, and moldability. They are currently the standard choice for both substrates for flexible electronics and space shielding, as they render high temperature and UV stability and toughness. However, their poor thermal conductivity and completely electrically insulating characteristics have caused other limitations, such as thermal management challenges for flexible high-power electronics and spacecraft electrostatic charging. In order to target these issues, a hybrid of PI with 3D-graphene (3D-C), 3D-C/PI, is developed here. This composite renders extraordinary enhancements of thermal conductivity (one order of magnitude) and electrical conductivity (10 orders of magnitude). It withstands and keeps a stable performance throughout various bending and thermal cycles, as well as the oxidative and aggressive environment of ground-based, simulated space environments. This makes this new hybrid film a suitable material for flexible space applications. PMID:26479496

  15. Lanthanum-catalysed synthesis of microporous 3D graphene-like carbons in a zeolite template

    NASA Astrophysics Data System (ADS)

    Kim, Kyoungsoo; Lee, Taekyoung; Kwon, Yonghyun; Seo, Yongbeom; Song, Jongchan; Park, Jung Ki; Lee, Hyunsoo; Park, Jeong Young; Ihee, Hyotcherl; Cho, Sung June; Ryoo, Ryong

    2016-07-01

    Three-dimensional graphene architectures with periodic nanopores—reminiscent of zeolite frameworks—are of topical interest because of the possibility of combining the characteristics of graphene with a three-dimensional porous structure. Lately, the synthesis of such carbons has been approached by using zeolites as templates and small hydrocarbon molecules that can enter the narrow pore apertures. However, pyrolytic carbonization of the hydrocarbons (a necessary step in generating pure carbon) requires high temperatures and results in non-selective carbon deposition outside the pores. Here, we demonstrate that lanthanum ions embedded in zeolite pores can lower the temperature required for the carbonization of ethylene or acetylene. In this way, a graphene-like carbon structure can be selectively formed inside the zeolite template, without carbon being deposited at the external surfaces. X-ray diffraction data from zeolite single crystals after carbonization indicate that electron densities corresponding to carbon atoms are generated along the walls of the zeolite pores. After the zeolite template is removed, the carbon framework exhibits an electrical conductivity that is two orders of magnitude higher than that of amorphous mesoporous carbon. Lanthanum catalysis allows a carbon framework to form in zeolite pores with diameters of less than 1 nanometre; as such, microporous carbon nanostructures can be reproduced with various topologies corresponding to different zeolite pore sizes and shapes. We demonstrate carbon synthesis for large-pore zeolites (FAU, EMT and beta), a one-dimensional medium-pore zeolite (LTL), and even small-pore zeolites (MFI and LTA). The catalytic effect is a common feature of lanthanum, yttrium and calcium, which are all carbide-forming metal elements. We also show that the synthesis can be readily scaled up, which will be important for practical applications such as the production of lithium-ion batteries and zeolite-like catalyst

  16. Lanthanum-catalysed synthesis of microporous 3D graphene-like carbons in a zeolite template.

    PubMed

    Kim, Kyoungsoo; Lee, Taekyoung; Kwon, Yonghyun; Seo, Yongbeom; Song, Jongchan; Park, Jung Ki; Lee, Hyunsoo; Park, Jeong Young; Ihee, Hyotcherl; Cho, Sung June; Ryoo, Ryong

    2016-07-01

    Three-dimensional graphene architectures with periodic nanopores—reminiscent of zeolite frameworks—are of topical interest because of the possibility of combining the characteristics of graphene with a three-dimensional porous structure. Lately, the synthesis of such carbons has been approached by using zeolites as templates and small hydrocarbon molecules that can enter the narrow pore apertures. However, pyrolytic carbonization of the hydrocarbons (a necessary step in generating pure carbon) requires high temperatures and results in non-selective carbon deposition outside the pores. Here, we demonstrate that lanthanum ions embedded in zeolite pores can lower the temperature required for the carbonization of ethylene or acetylene. In this way, a graphene-like carbon structure can be selectively formed inside the zeolite template, without carbon being deposited at the external surfaces. X-ray diffraction data from zeolite single crystals after carbonization indicate that electron densities corresponding to carbon atoms are generated along the walls of the zeolite pores. After the zeolite template is removed, the carbon framework exhibits an electrical conductivity that is two orders of magnitude higher than that of amorphous mesoporous carbon. Lanthanum catalysis allows a carbon framework to form in zeolite pores with diameters of less than 1 nanometre; as such, microporous carbon nanostructures can be reproduced with various topologies corresponding to different zeolite pore sizes and shapes. We demonstrate carbon synthesis for large-pore zeolites (FAU, EMT and beta), a one-dimensional medium-pore zeolite (LTL), and even small-pore zeolites (MFI and LTA). The catalytic effect is a common feature of lanthanum, yttrium and calcium, which are all carbide-forming metal elements. We also show that the synthesis can be readily scaled up, which will be important for practical applications such as the production of lithium-ion batteries and zeolite-like catalyst

  17. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide.

    PubMed

    Wicklein, Bernd; Kocjan, Andraž; Salazar-Alvarez, German; Carosio, Federico; Camino, Giovanni; Antonietti, Markus; Bergström, Lennart

    2015-03-01

    High-performance thermally insulating materials from renewable resources are needed to improve the energy efficiency of buildings. Traditional fossil-fuel-derived insulation materials such as expanded polystyrene and polyurethane have thermal conductivities that are too high for retrofitting or for building new, surface-efficient passive houses. Tailored materials such as aerogels and vacuum insulating panels are fragile and susceptible to perforation. Here, we show that freeze-casting suspensions of cellulose nanofibres, graphene oxide and sepiolite nanorods produces super-insulating, fire-retardant and strong anisotropic foams that perform better than traditional polymer-based insulating materials. The foams are ultralight, show excellent combustion resistance and exhibit a thermal conductivity of 15 mW m(-1) K(-1), which is about half that of expanded polystyrene. At 30 °C and 85% relative humidity, the foams retained more than half of their initial strength. Our results show that nanoscale engineering is a promising strategy for producing foams with excellent properties using cellulose and other renewable nanosized fibrous materials. PMID:25362476

  18. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide

    NASA Astrophysics Data System (ADS)

    Wicklein, Bernd; Kocjan, Andraž; Salazar-Alvarez, German; Carosio, Federico; Camino, Giovanni; Antonietti, Markus; Bergström, Lennart

    2015-03-01

    High-performance thermally insulating materials from renewable resources are needed to improve the energy efficiency of buildings. Traditional fossil-fuel-derived insulation materials such as expanded polystyrene and polyurethane have thermal conductivities that are too high for retrofitting or for building new, surface-efficient passive houses. Tailored materials such as aerogels and vacuum insulating panels are fragile and susceptible to perforation. Here, we show that freeze-casting suspensions of cellulose nanofibres, graphene oxide and sepiolite nanorods produces super-insulating, fire-retardant and strong anisotropic foams that perform better than traditional polymer-based insulating materials. The foams are ultralight, show excellent combustion resistance and exhibit a thermal conductivity of 15 mW m-1 K-1, which is about half that of expanded polystyrene. At 30 °C and 85% relative humidity, the foams retained more than half of their initial strength. Our results show that nanoscale engineering is a promising strategy for producing foams with excellent properties using cellulose and other renewable nanosized fibrous materials.

  19. Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution.

    PubMed

    Shen, Bin; Zhai, Wentao; Tao, Mimi; Ling, Jianqiang; Zheng, Wenge

    2013-11-13

    Novel high-performance polyetherimide (PEI)/graphene@Fe3O4 (G@Fe3O4) composite foams with flexible character and low density of about 0.28-0.4 g/cm(3) have been developed by using a phase separation method. The obtained PEI/G@Fe3O4 foam with G@Fe3O4 loading of 10 wt % exhibited excellent specific EMI shielding effectiveness (EMI SE) of ~41.5 dB/(g/cm(3)) at 8-12 GHz. Moreover, most the applied microwave was verified to be absorbed rather than being reflected back, resulting from the improved impedance matching, electromagnetic wave attenuation, as well as multiple reflections. Meanwhile, the resulting foams also possessed a superparamagnetic behavior and low thermal conductiviy of 0.042-0.071 W/(m K). This technique is fast, highly reproducible, and scalable, which may facilitate the commercialization of such composite foams and generalize the use of them as EMI shielding materials in the fields of spacecraft and aircraft. PMID:24134429

  20. Improved functionality of graphene and carbon nanotube hybrid foam architecture by UV-ozone treatment.

    PubMed

    Wang, Wei; Ruiz, Isaac; Lee, Ilkeun; Zaera, Francisco; Ozkan, Mihrimah; Ozkan, Cengiz S

    2015-04-28

    Optimization of the electrode/electrolyte double-layer interface is a key factor for improving electrode performance of aqueous electrolyte based supercapacitors (SCs). Here, we report the improved functionality of carbon materials via a non-invasive, high-throughput, and inexpensive UV generated ozone (UV-ozone) treatment. This process allows precise tuning of the graphene and carbon nanotube hybrid foam (GM) transitionally from ultrahydrophobic to hydrophilic within 60 s. The continuous tuning of surface energy can be controlled by simply varying the UV-ozone exposure time, while the ozone-oxidized carbon nanostructure maintains its integrity. Symmetric SCs based on the UV-ozone treated GM foam demonstrated enhanced rate performance. This technique can be readily applied to other CVD-grown carbonaceous materials by taking advantage of its ease of processing, low cost, scalability, and controllability. PMID:25695726

  1. 3D porous and ultralight carbon hybrid nanostructure fabricated from carbon foam covered by monolayer of nitrogen-doped carbon nanotubes for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    He, Shuijian; Hou, Haoqing; Chen, Wei

    2015-04-01

    3D porous and self-supported carbon hybrids are promising electrode materials for supercapacitor application attributed to their prominent properties such as binder-free electrode fabrication process, excellent electric conductivity and high power density etc. We present here a facile chemical vapor deposition method to fabricate a novel 3D flexible carbon hybrid nanostructure by growing a monolayer of nitrogen-doped carbon nanotubes on the skeleton of carbon foam (N-CNTs/CF) with Fe nanoparticle as catalyst. With such 3D porous, flexible and ultralight carbon nanostructure as binder-free electrode material, large surface area is available and fast ionic transport is facilitated. Moreover, the carbon-based network can provide excellent electronic conductivity. The electrochemical studies demonstrate that the supercapacitor constructed from the N-CNTs/CF hybrid exhibit high power density of 69.3 kW kg-1 and good stability with capacitance retention ration above 95% after cycled at 50 A g-1 for 5000 cycles. Therefore, the prepared porous N-CNTs/CF nanostructure is expected to be a type of excellent electrode material for electrical double layer capacitors.

  2. Mesoporous Co3O4 sheets/3D graphene networks nanohybrids for high-performance sodium-ion battery anode

    NASA Astrophysics Data System (ADS)

    Liu, Yanguo; Cheng, Zhiying; Sun, Hongyu; Arandiyan, Hamidreza; Li, Jinpeng; Ahmad, Mashkoor

    2015-01-01

    Co3O4 mesoporous nanosheets/three-dimensional graphene networks (Co3O4 MNSs/3DGNs) nanohybrids have been successfully synthesized and investigated as anode materials for sodium ion batteries (SIBs). Microstructure characterizations have been performed to confirm the 3DGNs and Co3O4 MNSs nanostructures. It has been found that the present Co3O4 MNSs/3DGNs nanohybrids exhibit better SIB performance with enhanced reversible capacity, good cycle performance and rate capability as compared to Co3O4 MNSs and Co3O4 nanoparticles. The improved electrochemical performance is considered due to the mesoporous nature of the products, the addition of 3DGNs, 3D assembled hierarchical architecture and decrease in volume expansion during cycling. Thus, SIB is considered as a low cost alternative to LIBs for large-scale electric storage applications.

  3. Lightweight, Superelastic, and Mechanically Flexible Graphene/Polyimide Nanocomposite Foam for Strain Sensor Application.

    PubMed

    Qin, Yuyang; Peng, Qingyu; Ding, Yujie; Lin, Zaishan; Wang, Chunhui; Li, Ying; Xu, Fan; Li, Jianjun; Yuan, Ye; He, Xiaodong; Li, Yibin

    2015-09-22

    The creation of superelastic, flexible three-dimensional (3D) graphene-based architectures is still a great challenge due to structure collapse or significant plastic deformation. Herein, we report a facile approach of transforming the mechanically fragile reduced graphene oxide (rGO) aerogel into superflexible 3D architectures by introducing water-soluble polyimide (PI). The rGO/PI nanocomposites are fabricated using strategies of freeze casting and thermal annealing. The resulting monoliths exhibit low density, excellent flexibility, superelasticity with high recovery rate, and extraordinary reversible compressibility. The synergistic effect between rGO and PI endows the elastomer with desirable electrical conductivity, remarkable compression sensitivity, and excellent durable stability. The rGO/PI nanocomposites show potential applications in multifunctional strain sensors under the deformations of compression, bending, stretching, and torsion. PMID:26301319

  4. A hierarchically structured graphene foam and its potential as a large-scale strain-gauge sensor.

    PubMed

    Kuang, Jun; Liu, Luqi; Gao, Yun; Zhou, Ding; Chen, Zhuo; Han, Baohang; Zhang, Zhong

    2013-12-21

    A hierarchically structured thermal-reduced graphene (ReG) foam with 0.5 S cm(-1) electrical conductivity is fabricated from a well-dispersed graphene oxide suspension via a directional freezing method followed by high-temperature thermal treatment. The as-prepared three-dimensional ReG foam has an ordered macroporous honeycomb-like structure with straight and parallel voids in the range of 30 μm to 75 μm separated by cell walls of several tens of nanometers thick. Despite its ultra-low density, the ReG foam has an excellent compression recovery along its in-plane direction. This property of the ReG foam can be attributed to its hierarchically porous structure, as demonstrated by the compression test. The excellent compression recovery and high conductivity provide the ReG foam with exceptional piezoresistive capabilities. The electrical resistance of the ReG foam shows a linearly decreasing trend with compressive strain increments of up to 60%, which cannot be observed in conventional rigid material-based sensors and carbon nanotube-based polymer sensors. Such intriguing linear strain-responsive behavior, along with the fast response time and high thermal stability, makes the ReG foam a promising candidate for strain sensing. We demonstrated that it could be used as a wearable device for real-time monitoring of human health. PMID:24142261

  5. Non-Enzymatic Glucose Sensor Based on 3D Graphene Oxide Hydrogel Crosslinked by Various Diamines.

    PubMed

    Hoa, Le Thuy; Hur, Seung Hyun

    2015-11-01

    The non-enzymatic glucose sensor was fabricated by well-controlled and chemically crosslinked graphene oxide hydrogels (GOHs). By using various diamines such as ethylenediamine (EDA), p-phenylene diamine (pPDA) and o-phenylene diamine (oPDA) that have different amine to amine distance, we can control the structures of GOHs such as surface area and pore volume. The pPDA-GOH fabricated by pPDA exhibited the largest surface area and pore volume due to its longest amine to amine distance, which resulted in highest sensitivity in glucose and other monosaccharide sensing such as fructose (C6H12O6), galactose (C6H12O6) and sucrose (C12H22O11). It also showed fast and wide range glucose sensing ability in the amperometric test, and an excellent selectivity toward other interference species such as an Ascorbic acid. PMID:26726578

  6. Simultaneous optimization of surface chemistry and pore morphology of 3D graphene-sulfur cathode via multi-ion modulation

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Cheng, Shuang; Li, Wanfei; Zhang, Su; Li, Hongfei; Zheng, Zhaozhao; Li, Fujin; Shi, Liyi; Lin, Hongzhen; Zhang, Yuegang

    2016-07-01

    Lithium/sulfur (Li/S) battery is a promising next-generation energy storage system owing to its high theoretical energy density. However, for practical use there remains some key problems to be solved, such as low active material utilization and rapid capacity fading, especially at high areal sulfur loadings. Here, we report a facile one-pot method to prepare porous three-dimensional nitrogen, sulfur-codoped graphene through hydrothermal reduction of graphene oxide with multi-ion mixture modulation. We show solid evidence that the results of multi-ion mixture modulation can not only improve the surface affinity of the nanocarbons to polysulfides, but also alter their assembling manner and render the resultant 3D network a more favorable pore morphology for accommodating and confining sulfur. It also had an excellent rate performance and cycling stability, showing an initial capacity of 1304 mA h g-1 at 0.05C, 613 mA h g-1 at 5C and maintaining a reversible capacity of 462 mA h g-1 after 1500 cycles at 2C with capacity fading as low as 0.028% per cycle. Moreover, a high areal capacity of 5.1 mA h cm-2 at 0.2C is achieved at an areal sulfur loading of 6.3 mg cm-2, which are the best values reported so far for dual-doped sulfur cathodes.

  7. Spatial mobility fluctuation induced giant linear magnetoresistance in multilayered graphene foam

    NASA Astrophysics Data System (ADS)

    Li, Peng; Zhang, Qiang; He, Xin; Ren, Wencai; Cheng, Hui-Ming; Zhang, Xi-xiang

    2016-07-01

    Giant, positive, and near-temperature-independent linear magnetoresistance (LMR), as large as 340%, was observed in graphene foam with a three-dimensional flexible network. Careful analysis of the magnetoresistance revealed that Shubnikov-de Haas (SdH) oscillations occurred at low temperatures and decayed with increasing temperature. The average classical mobility ranged from 300 (2 K) to 150 (300 K) c m2V-1s-1 , which is much smaller than that required by the observed SdH oscillations. To understand the mechanism behind the observation, we performed the same measurements on the microsized graphene sheets that constitute the graphene foam. Much more pronounced SdH oscillations superimposed on the LMR background were observed in these microscaled samples, which correspond to a quantum mobility as high as 26 ,500 c m2V-1s-1 . Moreover, the spatial mobility fluctuated significantly from 64 ,200 c m2V-1s-1 to 1370 c m2V-1s-1 , accompanied by a variation of magnetoresistance from near 20,000% to less than 20%. The presence of SdH oscillations actually excludes the possibility that the observed LMR originated from the extreme quantum limit, because this would demand all electrons to be in the first Landau level. Instead, we ascribe the large LMR to the second case of the classical Parish and Littlewood model, in which spatial mobility fluctuation dominates electrical transport. This is an experimental confirmation of the Parish and Littlewood model by measuring the local mobility randomly (by measuring the microsized graphene sheets) and finding the spatial mobility fluctuation.

  8. 3D Hierarchical Pt-Nitrogen-Doped-Graphene-Carbonized Commercially Available Sponge as a Superior Electrocatalyst for Low-Temperature Fuel Cells.

    PubMed

    Zhao, Lei; Sui, Xu-Lei; Li, Jia-Long; Zhang, Jing-Jia; Zhang, Li-Mei; Wang, Zhen-Bo

    2016-06-29

    Three-dimensional hierarchical nitrogen-doped graphene (3D-NG) frameworks were successfully fabricated through a feasible solution dip-coating method with commercially available sponges as the initial backbone. A spongy template can help hinder the graphene plates restacking in the period of the annealing process. The Pt/3D-NG catalyst was synthesized employing a polyol reduction process. The resultant Pt/3D-NG exhibits 2.3 times higher activity for methanol electro-oxidation along with the improvement in stability as compared with Pt/G owing to their favorable features including large specific surface area, high pore volume, high N doping level, and the homogeneous dispersion of Pt nanoparticles. Besides, Pt/3D-NG also presents high oxygen reduction reaction (ORR) performance in acid media when compared with Pt/3D-G and Pt/G. This work raises a valid solution for the fabrication of 3D functional freestanding graphene-based composites for a variety of applications in fuel cell catalysis, energy storage, and conversion. PMID:27266527

  9. Hierarchical Assembly of Tungsten Spheres and Epoxy Composites in Three-Dimensional Graphene Foam and Its Enhanced Acoustic Performance as a Backing Material.

    PubMed

    Qiu, Yunfeng; Liu, Jingjing; Lu, Yue; Zhang, Rui; Cao, Wenwu; Hu, PingAn

    2016-07-20

    Backing materials play important role in enhancing the acoustic performance of an ultrasonic transducer. Most backing materials prepared by conventional methods failed to show both high acoustic impedance and attenuation, which however determine the bandwidth and axial resolution of acoustic transducer, respectively. In the present work, taking advantage of the structural feature of 3D graphene foam as a confined space for dense packing of tungsten spheres with the assistance of centrifugal force, the desired structural requirement for high impedance is obtained. Meanwhile, superior thermal conductivity of graphene contributes to the acoustic attenuation via the conversion of acoustic waves to thermal energy. The tight contact between tungstate spheres, epoxy matrix, or graphene makes the acoustic wave depleted easily for the absence of air barrier. The as-prepared 3DG/W80 wt %/epoxy film in 1 mm, prepared using ∼41 μm W spheres in diameter, not only displays acoustic impedance of 13.05 ± 0.11 MRayl but also illustrates acoustic attenuation of 110.15 ± 1.23 dB/cm MHz. Additionally, the composite film exhibits a high acoustic absorption coefficient, which is 94.4% at 1 MHz and 100% at 3 MHz, respectively. Present composite film outperforms most of the reported backing materials consisting of metal fillers/polymer blending in terms of the acoustic impedance and attenuation. PMID:27352024

  10. Composite System of Graphene Oxide and Polypeptide Thermogel As an Injectable 3D Scaffold for Adipogenic Differentiation of Tonsil-Derived Mesenchymal Stem Cells.

    PubMed

    Patel, Madhumita; Moon, Hyo Jung; Ko, Du Young; Jeong, Byeongmoon

    2016-03-01

    As two-dimensional (2D) nanomaterials, graphene (G) and graphene oxide (GO) have evolved into new platforms for biomedical research as biosensors, imaging agents, and drug delivery carriers. In particular, the unique surface properties of GO can be an important tool in modulating cellular behavior and various biological sequences. Here, we report that a composite system of graphene oxide/polypeptide thermogel (GO/P), prepared by temperature-sensitive sol-to-gel transition of a GO-suspended poly(ethylene glycol)-poly(l-alanine) (PEG-PA) aqueous solution significantly enhances the expression of adipogenic biomarkers, including PPAR-γ, CEBP-α, LPL, AP2, ELOVL3, and HSL, compared to both a pure hydrogel system and a composite system of G/P, graphene-incorporated hydrogel. We prove that insulin, an adipogenic differentiation factor, preferentially adhered to GO, is supplied to the incorporated stem cells in a sustained manner over the three-dimensional (3D) cell culture period. On the other hand, insulin is partially denatured in the presence of G and interferes with the adipogenic differentiation of the stem cells. The study suggests that a 2D/3D composite system is a promising platform as a 3D cell culture matrix, where the surface properties of 2D materials in modulating the fates of the stem cells are effectively transcribed in a 3D culture system. PMID:26844684

  11. Enhanced simultaneous detection of ractopamine and salbutamol--Via electrochemical-facial deposition of MnO2 nanoflowers onto 3D RGO/Ni foam templates.

    PubMed

    Wang, Ming Yan; Zhu, Wei; Ma, Lin; Ma, Juan Juan; Zhang, Dong En; Tong, Zhi Wei; Chen, Jun

    2016-04-15

    In this paper, we report a facile method to successfully fabricate MnO2 nanoflowers loaded onto 3D RGO@nickel foam, showing enhanced biosensing activity due to the improved structural integration of different electrode materials components. When the as-prepared 3D hybrid electrodes were investigated as a binder-free biosensor, two well-defined and separate differential pulse voltammetric peaks for ractopamine (RAC) and salbutamol (SAL) were observed, indicating the simultaneous selective detection of both β-agonists possible. The MnO2/RGO@NF sensor also demonstrated a linear relationship over a wide concentration range of 17 nM to 962 nM (R=0.9997) for RAC and 42 nM to 1463 nM (R=0.9996) for SAL, with the detection limits of 11.6 nM for RAC and 23.0 nM for SAL. In addition, the developed MnO2/RGO@NF sensor was further investigated to detect RAC and SAL in pork samples, showing satisfied comparable results in comparison with analytic results from HPLC. PMID:26623510

  12. Growth of hierarchical 3D mesoporous NiSix /NiCo2 O4 core/shell heterostructures on nickel foam for lithium-ion batteries.

    PubMed

    Zhang, Qiaobao; Chen, Huixin; Wang, Jiexi; Xu, Daguo; Li, Xinhai; Yang, Yong; Zhang, Kaili

    2014-08-01

    We demonstrate the facile and well-controlled design and fabrication of heterostructured and hierarchical 3D mesoporous NiSix /NiCo2 O4 core/shell nanowire arrays on nickel foam through a facile chemical vapor deposition (CVD) technique combined with a simple but powerful chemical bath deposition (CBD) technique. The smart hybridization of NiCo2 O4 and NiSix nanostructures results in an intriguing mesoporous hierarchical core/shell nanowire-array architecture. The nanowire arrays demonstrate enhanced electrochemical performance as binder- and conductive-agent-free electrodes for lithium ion batteries (LIBs) with excellent capacity retention and high rate capability on cycling. The electrodes can maintain a high reversible capacity of 1693 mA h g(-1) after 50 cycles at 20 mA g(-1) . Given the outstanding performance and simple, efficient, cost-effective fabrication, we believe that these 3D NiSix /NiCo2 O4 core/shell heterostructured arrays have great potential application in high-performance LIBs. PMID:24828680

  13. Crystalline Hybrid Polyphenylene Macromolecules from Octaalkynylsilsesquioxanes, Crystal Structures, and a Potential Route to 3-D Graphenes

    SciTech Connect

    Roll, Mark F.; Kampf, Jeffrey W.; Laine, Richard M.

    2011-05-10

    We report here the Diels–Alder reaction of octa(diphenylacetylene)silsesquioxane [DPA₈OS] with tetraphenylcyclopentadienone or tetra(p-tolyl)cyclopentadienone to form octa(hexaphenylbenzene)octasilsesquioxane, (Ph₆C₆)₈OS, or octa(tetratolyldiphenylbenzene)octasilsesquioxane, (p-Tolyl₄Ph₂C₆)₈OS. Likewise, tetra(p-tolyl)cyclopentadienone reacts with octa(p-tolylethynylphenyl)OS to form octa(pentatolylphenylbenzene)octasilsesquioxane (p-Tolyl₅PhC₆)₈OS. These compounds, with molecular weights of 4685–5245 Da, were isolated and characterized using a variety of analytical methods. The crystal structure of DPA₈OS offers a 3 nm³ unit cell with Z = 1. The crystal structure of (Ph₆C₆)₈OS was determined to have a triclinic unit cell of 11 nm³ with Z = 1. The latter structure is believed to be the largest discrete molecular structure reported with 330 carbons. Efforts to dehydrogenatively cyclize (Scholl reaction) the hexaarylbenzene groups to form 3-D octgraphene compounds are described.

  14. Assessing the improved performance of freestanding, flexible graphene and carbon nanotube hybrid foams for lithium ion battery anodes

    NASA Astrophysics Data System (ADS)

    Cohn, Adam P.; Oakes, Landon; Carter, Rachel; Chatterjee, Shahana; Westover, Andrew S.; Share, Keith; Pint, Cary L.

    2014-04-01

    We demonstrate the fabrication of three-dimensional freestanding foams of hybrid graphene-single-walled carbon nanotube nanomanufactured materials with reversible capacities of 2640 mA h g-1 at 0.186 A g-1 and 236 mA h g-1 at 27.9 A g-1. The Li storage behavior of this material is compared against other nanostructures in similar flexible foam platforms including graphene, ultra-thin graphite, and single-walled carbon nanotubes (SWNTs), and we elucidate the improved hybrid material performance due to the decoupling of lithium storage reaction energetics dictated by the SWNTs from the total storage capacity of the hybrid material. This work demonstrates a route to develop mechanically robust all-carbon electrodes with the potential for reversible Li-ion storage capacity approaching silicon, power capability of the best supercapacitors, and based on a material simultaneously usable as a charge collector and anode.We demonstrate the fabrication of three-dimensional freestanding foams of hybrid graphene-single-walled carbon nanotube nanomanufactured materials with reversible capacities of 2640 mA h g-1 at 0.186 A g-1 and 236 mA h g-1 at 27.9 A g-1. The Li storage behavior of this material is compared against other nanostructures in similar flexible foam platforms including graphene, ultra-thin graphite, and single-walled carbon nanotubes (SWNTs), and we elucidate the improved hybrid material performance due to the decoupling of lithium storage reaction energetics dictated by the SWNTs from the total storage capacity of the hybrid material. This work demonstrates a route to develop mechanically robust all-carbon electrodes with the potential for reversible Li-ion storage capacity approaching silicon, power capability of the best supercapacitors, and based on a material simultaneously usable as a charge collector and anode. Electronic supplementary information (ESI) available: ESI is available that includes (i) SEM and photographs of ultra-thin graphite foams, (ii) Raman

  15. Fabrication of a novel dual mode cholesterol biosensor using titanium dioxide nanowire bridged 3D graphene nanostacks.

    PubMed

    Komathi, S; Muthuchamy, N; Lee, K-P; Gopalan, A-I

    2016-10-15

    Herein, we fabricated a novel electrochemical-photoelectrochemical (PEC) dual-mode cholesterol biosensor based on graphene (G) sheets interconnected-graphene embedded titanium nanowires (TiO2(G)-NWs) 3D nanostacks (designated as G/Ti(G) 3DNS) by exploiting the beneficial characteristics of G and TiO2-NWs to achieve good selectivity and high sensitivity for cholesterol detection. The G/Ti(G) 3DNS was fabricated by the reaction between functionalized G and TiO2(G)-NWs. Cholesterol oxidase (ChOx) was subsequently immobilized in to G/Ti(G) 3DNS using chitosan (CS) as the binder and the dual mode G/Ti(G) 3DNS/CS/ChOx biosensor was fabricated. The electro-optical properties of the G/Ti(G) 3DNS/CS/ChOx bioelectrode were characterized by cyclic voltammetry and UV-vis diffuse reflection spectroscopy. The cyclic voltammetry of immobilized ChOx showed a pair of well-defined redox peaks indicating direct electron transfer (DET) of ChOx. The amperometric reduction peak current (at -0.05V) linearly increased with increase in cholesterol concentration. The G/Ti(G) 3DNS/CS/ChOx bioelectrode was selective to cholesterol with a remarkable sensitivity (3.82μA/cm(2)mM) and a lower detection limit (6μM). Also, G/Ti(G) 3DNS/CS/ChOx functioned as photoelectrode and exhibited selective detection of cholesterol under a low bias voltage and light irradiation. Kinetic parameters, reproducibility, repeatability, storage stability and effect of temperature and pH were evaluated. We envisage that G/Ti(G) 3DNS with its prospective characteristics, would be a promising material for wide range of biosensing applications. PMID:26611566

  16. Electrodeposition of palladium and reduced graphene oxide nanocomposites on foam-nickel electrode for electrocatalytic hydrodechlorination of 4-chlorophenol.

    PubMed

    Liu, Yong; Liu, Lan; Shan, Jun; Zhang, Jingdong

    2015-06-15

    A high-performance palladium (Pd) and reduced graphene oxide (RGO) composite electrode was prepared on foam-nickel (foam-Ni) via two-step electrodeposition processes. The scanning electron microscopic (SEM) observation showed that the obtained Pd/RGO/foam-Ni composite electrode displayed a uniform and compact morphology. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopic (XPS) analysis confirmed the successful deposition of Pd and RGO on nickel substrate. The cyclic voltammetric (CV) measurements indicated that the presence of RGO greatly enhanced the active surface area of Pd particles deposited on foam-Ni. The as-deposited Pd/RGO/foam-Ni electrode was applied to electrocatalytic hydrodechlorination (ECH) of 4-chlorophenol (4-CP). Various factors influencing the dechlorination of 4-CP such as dechlorination current, initial concentration of 4-CP, Na2SO4 concentration and initial pH were systematically investigated. The thermodynamic analysis showed that the dechlorination reaction of 4-CP at different temperatures followed the first-order kinetics and the activation energy for 4-CP dechlorination on Pd/RGO/foam-Ni electrode was calculated to be 51.96 kJ mol(-1). Under the optimum conditions, the dechlorination efficiency of 4-CP could reach 100% after 60-min ECH treatment. Moreover, the prepared Pd/RGO/foam-Ni composite electrode showed good stability for recycling utilization in ECH of 4-CP. PMID:25731146

  17. Mechanical behavior of carbon nanotube and graphene junction as a building block for 3D carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Moradi, Mina; Aghazadeh Mohandesi, Jamshid

    2015-11-01

    The incorporation of defects in junction area of 1D and 2D carbon nanostructures has a major impact on properties of their 3D structures. In the present study, molecular dynamics simulation is utilized to examine the mechanical behavior of graphene sheet (GS) in carbon nanotube (CNT)-GS junctions. The tensile load was applied along the GS in connection with CNTs of different chiralities. The adaptive intermolecular reactive empirical bond order potential was chosen to model C-C interactions. It provided a reliable model for CNT, GS and their junctions. The results revealed that the connection of CNT to the GS with a hole could improve the mechanical properties of defective GS, which appeared to be independent of CNT type. It was found that the high strength C-C bonds postpone the crack propagation and motivates new crack nucleation. When a hole or CNT placed on the GS, it caused stress concentration, exactly along a line on its side. The lower mechanical properties were consequently associated with crack nucleation and propagation on both sides in a way that cracks encountered each other during the failure; while, the cracks in pristine GS propagate parallel to each other and could not encounter each other.

  18. A hierarchically structured graphene foam and its potential as a large-scale strain-gauge sensor

    NASA Astrophysics Data System (ADS)

    Kuang, Jun; Liu, Luqi; Gao, Yun; Zhou, Ding; Chen, Zhuo; Han, Baohang; Zhang, Zhong

    2013-11-01

    A hierarchically structured thermal-reduced graphene (ReG) foam with 0.5 S cm-1 electrical conductivity is fabricated from a well-dispersed graphene oxide suspension via a directional freezing method followed by high-temperature thermal treatment. The as-prepared three-dimensional ReG foam has an ordered macroporous honeycomb-like structure with straight and parallel voids in the range of 30 μm to 75 μm separated by cell walls of several tens of nanometers thick. Despite its ultra-low density, the ReG foam has an excellent compression recovery along its in-plane direction. This property of the ReG foam can be attributed to its hierarchically porous structure, as demonstrated by the compression test. The excellent compression recovery and high conductivity provide the ReG foam with exceptional piezoresistive capabilities. The electrical resistance of the ReG foam shows a linearly decreasing trend with compressive strain increments of up to 60%, which cannot be observed in conventional rigid material-based sensors and carbon nanotube-based polymer sensors. Such intriguing linear strain-responsive behavior, along with the fast response time and high thermal stability, makes the ReG foam a promising candidate for strain sensing. We demonstrated that it could be used as a wearable device for real-time monitoring of human health.A hierarchically structured thermal-reduced graphene (ReG) foam with 0.5 S cm-1 electrical conductivity is fabricated from a well-dispersed graphene oxide suspension via a directional freezing method followed by high-temperature thermal treatment. The as-prepared three-dimensional ReG foam has an ordered macroporous honeycomb-like structure with straight and parallel voids in the range of 30 μm to 75 μm separated by cell walls of several tens of nanometers thick. Despite its ultra-low density, the ReG foam has an excellent compression recovery along its in-plane direction. This property of the ReG foam can be attributed to its hierarchically

  19. NiSe Nanowire Film Supported on Nickel Foam: An Efficient and Stable 3D Bifunctional Electrode for Full Water Splitting.

    PubMed

    Tang, Chun; Cheng, Ningyan; Pu, Zonghua; Xing, Wei; Sun, Xuping

    2015-08-01

    Active and stable electrocatalysts made from earth-abundant elements are key to water splitting for hydrogen production through electrolysis. The growth of NiSe nanowire film on nickel foam (NiSe/NF) in situ by hydrothermal treatment of NF using NaHSe as Se source is presented. When used as a 3D oxygen evolution electrode, the NiSe/NF exhibits high activity with an overpotential of 270 mV required to achieve 20 mA cm(-2) and strong durability in 1.0 M KOH, and the NiOOH species formed at the NiSe surface serves as the actual catalytic site. The system is also highly efficient for catalyzing the hydrogen evolution reaction in basic media. This bifunctional electrode enables a high-performance alkaline water electrolyzer with 10 mA cm(-2) at a cell voltage of 1.63 V. PMID:26136347

  20. High Energy Density Asymmetric Supercapacitor Based on NiOOH/Ni3S2/3D Graphene and Fe3O4/Graphene Composite Electrodes

    PubMed Central

    Lin, Tsung-Wu; Dai, Chao-Shuan; Hung, Kuan-Chung

    2014-01-01

    The application of the composite of Ni3S2 nanoparticles and 3D graphene as a novel cathode material for supercapacitors is systematically investigated in this study. It is found that the electrode capacitance increases by up to 111% after the composite electrode is activated by the consecutive cyclic voltammetry scanning in 1 M KOH. Due to the synergistic effect, the capacitance and the diffusion coefficient of electrolyte ions of the activated composite electrode are ca. 3.7 and 6.5 times higher than those of the Ni3S2 electrode, respectively. Furthermore, the activated composite electrode exhibits an ultrahigh specific capacitance of 3296 F/g and great cycling stability at a current density of 16 A/g. To obtain the reasonable matching of cathode/anode electrodes, the composite of Fe3O4 nanoparticles and chemically reduced graphene oxide (Fe3O4/rGO) is synthesized as the anode material. The Fe3O4/rGO electrode exhibits the specific capacitance of 661 F/g at 1 A/g and excellent rate capability. More importantly, an asymmetric supercapacitor fabricated by two different composite electrodes can be operated reversibly between 0 and 1.6 V and obtain a high specific capacitance of 233 F/g at 5 mV/s, which delivers a maximum energy density of 82.5 Wh/kg at a power density of 930 W/kg. PMID:25449978

  1. Assessing the improved performance of freestanding, flexible graphene and carbon nanotube hybrid foams for lithium ion battery anodes.

    PubMed

    Cohn, Adam P; Oakes, Landon; Carter, Rachel; Chatterjee, Shahana; Westover, Andrew S; Share, Keith; Pint, Cary L

    2014-05-01

    We demonstrate the fabrication of three-dimensional freestanding foams of hybrid graphene-single-walled carbon nanotube nanomanufactured materials with reversible capacities of 2640 mA h g(-1) at 0.186 A g(-1) and 236 mA h g(-1) at 27.9 A g(-1). The Li storage behavior of this material is compared against other nanostructures in similar flexible foam platforms including graphene, ultra-thin graphite, and single-walled carbon nanotubes (SWNTs), and we elucidate the improved hybrid material performance due to the decoupling of lithium storage reaction energetics dictated by the SWNTs from the total storage capacity of the hybrid material. This work demonstrates a route to develop mechanically robust all-carbon electrodes with the potential for reversible Li-ion storage capacity approaching silicon, power capability of the best supercapacitors, and based on a material simultaneously usable as a charge collector and anode. PMID:24647668

  2. Synergetic adsorption and photocatalytic degradation of pollutants over 3D TiO2-graphene aerogel composites synthesized via a facile one-pot route.

    PubMed

    Zhang, Jing-Jie; Wu, Yu-Hui; Mei, Jin-Ya; Zheng, Guang-Ping; Yan, Ting-Ting; Zheng, Xiu-Cheng; Liu, Pu; Guan, Xin-Xin

    2016-08-01

    A series of composites consisting of anatase TiO2 nanocrystals and three-dimensional (3D) graphene aerogel (TiO2-GA) were self-assembled directly from tetrabutyl titanate and graphene oxides via a one-pot hydrothermal process. TiO2 was found to uniformly distribute inside the 3D network of GA in the resulting composites with large surface areas (SBET > 125 m(2) g(-1)) and high pore volumes (Vp > 0.22 cm(3) g(-1)). In comparison with GA and TiO2, the composites possessed much higher adsorption capacities and visible light photocatalytic activity in the degradation of rhodamine B (RhB). With an initial concentration of 20.0 mg L(-1) of RhB, the adsorptive decolourization of RhB was as high as 95.1% and the total decolourization value reached up to 98.7% under visible light irradiation over 5.0 mg of the resulting composites. It was elucidated that the physical and chemical properties of the TiO2-GA composites could be ascribed to their unique 3D nanoporous structure with high surface areas and the synergetic activities of graphene nanosheets and TiO2 nanoparticles. PMID:27417708

  3. In Situ Activation of Nitrogen-Doped Graphene Anchored on Graphite Foam for a High-Capacity Anode.

    PubMed

    Ji, Junyi; Liu, Jilei; Lai, Linfei; Zhao, Xin; Zhen, Yongda; Lin, Jianyi; Zhu, Yanwu; Ji, Hengxing; Zhang, Li Li; Ruoff, Rodney S

    2015-08-25

    We report the fabrication of a three-dimensional free-standing nitrogen-doped porous graphene/graphite foam by in situ activation of nitrogen-doped graphene on highly conductive graphite foam (GF). After in situ activation, intimate "sheet contact" was observed between the graphene sheets and the GF. The sheet contact produced by in situ activation is found to be superior to the "point contact" obtained by the traditional drop-casting method and facilitates electron transfer. Due to the intimate contact as well as the use of an ultralight GF current collector, the composite electrode delivers a gravimetric capacity of 642 mAh g(-1) and a volumetric capacity of 602 mAh cm(-3) with respect to the whole electrode mass and volume (including the active materials and the GF current collector). When normalized based on the mass of the active material, the composite electrode delivers a high specific capacity of up to 1687 mAh g(-1), which is superior to that of most graphene-based electrodes. Also, after ∼90 s charging, the anode delivers a capacity of about 100 mAh g(-1) (with respect to the total mass of the electrode), indicating its potential use in high-rate lithium-ion batteries. PMID:26258909

  4. Graphene-encapsulated Fe3O4 nanoparticles with 3D laminated structure as superior anode in lithium ion batteries.

    PubMed

    Wang, Jia-Zhao; Zhong, Chao; Wexler, David; Idris, Nurul Hayati; Wang, Zhao-Xiang; Chen, Li-Quan; Liu, Hua-Kun

    2011-01-10

    Fe(3)O(4)-graphene composites with three-dimensional laminated structures have been synthesised by a simple in situ hydrothermal method. From field-emission and transmission electron microscopy results, the Fe(3)O(4) nanoparticles, around 3-15 nm in size, are highly encapsulated in a graphene nanosheet matrix. The reversible Li-cycling properties of Fe(3)O(4)-graphene have been evaluated by galvanostatic discharge-charge cycling, cyclic voltammetry and impedance spectroscopy. Results show that the Fe(3)O(4)-graphene nanocomposite with a graphene content of 38.0 wt % exhibits a stable capacity of about 650 mAh  g(-1) with no noticeable fading for up to 100 cycles in the voltage range of 0.0-3.0 V. The superior performance of Fe(3)O(4)-graphene is clearly established by comparison of the results with those from bare Fe(3)O(4). The graphene nanosheets in the composite materials could act not only as lithium storage active materials, but also as an electronically conductive matrix to improve the electrochemical performance of Fe(3)O(4). PMID:21207587

  5. Nitrogen-doped graphene interpenetrated 3D Ni-nanocages: efficient and stable water-to-dioxygen electrocatalysts

    NASA Astrophysics Data System (ADS)

    Dhavale, Vishal M.; Gaikwad, Sachin S.; George, Leena; Devi, R. Nandini; Kurungot, Sreekumar

    2014-10-01

    Herein, we report the synthesis of a nitrogen-doped graphene (NGr) interpenetrated 3D Ni-nanocage (Ni-NGr) electrocatalyst by a simple water-in-oil (w/o) emulsion technique for oxidation of water to dioxygen. Correlation of adsorption of NGr and subsequent interpenetration through the specific surface plane of nickel particles as well as the concomitant interaction of N and C with Ni in the nano-regime has been investigated. Apart from the benefits of the synergistic interactions between Ni, N, and C, the overall integrity of the structure and its intra-molecular connectivity within the framework help in achieving better oxygen evolution characteristics at a significantly reduced overpotential. The engineered Ni-NGr nanocage displays a substantially low overpotential of ~290 mV at a practical current density of 20 mA cm-2 in 0.1 M KOH. In comparison, NGr and Ni-particles as separate entities give overpotentials of ~570 and ~370 mV under similar conditions. Moreover, the long term stability of Ni-NGr was investigated by anodic potential cycling for 500 cycles and an 8.5% increment in the overpotential at 20 mA cm-2 was observed. Additionally, a chronoamperometric test was performed for 15 h at 20 mA cm-2, which highlights the better sustainability of Ni-NGr under the actual operating conditions. Finally, the quantitative estimation of evolved oxygen was monitored by gas chromatography and was found to be 70 mmol h-1 g-1 of oxygen, which is constant in the second cycle as well.Herein, we report the synthesis of a nitrogen-doped graphene (NGr) interpenetrated 3D Ni-nanocage (Ni-NGr) electrocatalyst by a simple water-in-oil (w/o) emulsion technique for oxidation of water to dioxygen. Correlation of adsorption of NGr and subsequent interpenetration through the specific surface plane of nickel particles as well as the concomitant interaction of N and C with Ni in the nano-regime has been investigated. Apart from the benefits of the synergistic interactions between Ni, N

  6. Graphene Porous Foam Loaded with Molybdenum Carbide Nanoparticulate Electrocatalyst for Effective Hydrogen Generation.

    PubMed

    Wang, Jie; Xia, Han; Peng, Zhen; Lv, Cuncai; Jin, Lihuang; Zhao, Yaoxing; Huang, Zhipeng; Zhang, Chi

    2016-04-21

    A facile method is developed for the synthesis of graphene porous foam (Gr PF) loaded with dispersed molybdenum carbide (Mo2 C) nanoparticles; the material exhibits effective catalytic activity in the hydrogen evolution reaction (HER). Mo2 C/Gr PF is synthesized by the carbonization of glucose and the carbothermal reduction of hexaammonium molybdate in a confined space defined by the intervals between sodium chloride nanoparticles. The synthesis in the confined space results in thin Gr PF (≈8 nm) loaded with aggregation-free small Mo2 C nanoparticles [(13±2) nm]. The overpotential required for a current density of 20 mA cm(-2) in the electrochemical hydrogen generation is as small as 199 mV in acidic solution and 380 mV in basic solution. The performance is superior to that of a Mo2 C/C composite and compares favorably to those reported for Mo2 C nanostructures. The Mo2 C/Gr PF affords stable water electrolysis in both acidic and basic solution and exhibits nearly 100 % faradaic efficiency. The prominent performance, long-term stability, and high faradic efficiency make Mo2 C/Gr PF a promising HER catalyst for practical hydrogen generation from water electrolysis. PMID:26968136

  7. Synthesis of functionalized 3D porous graphene using both ionic liquid and SiO2 spheres as ``spacers'' for high-performance application in supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Tingting; Li, Na; Liu, Jiawei; Cai, Kai; Foda, Mohamed F.; Lei, Xiaomin; Han, Heyou

    2014-12-01

    In this work, a high-capacity supercapacitor material based on functionalized three-dimensional (3D) porous graphene was fabricated by low temperature hydrothermal treatment of graphene oxide (GO) using both ionic liquid (IL) and SiO2 spheres as ``spacers''. In the synthesis, the introduction of dual ``spacers'' effectively enlarged the interspace between graphene sheets and suppressed their re-stacking. In addition, the IL also acted as a structure-directing agent playing a crucial role in inducing the formation of unique 3D architectures. Consequently, fast electron/ion transport channels were successfully constructed and numerous oxygen-containing groups on graphene sheets were effectively reserved, which had unique advantages in decreasing ion diffusion resistance and providing additional pseudocapacitance. As expected, the obtained material exhibited superior specific capacitance and rate capability compared to single ``spacer'' designed electrodes and simultaneously maintained excellent cycling stability. In particular, there was nearly no loss of its initial capacitance after 3000 cycles. In addition, we further assembled a symmetric two-electrode device using the material, which showed outstanding flexibility and low equivalent series resistance (ESR). More importantly, it was capable of yielding a maximum power density of about 13.3 kW kg-1 with an energy density of about 7.0 W h kg-1 at a voltage of 1.0 V in 1 M H2SO4 electrolyte. All these impressive results demonstrate that the material obtained by this approach is greatly promising for application in high-performance supercapacitors.In this work, a high-capacity supercapacitor material based on functionalized three-dimensional (3D) porous graphene was fabricated by low temperature hydrothermal treatment of graphene oxide (GO) using both ionic liquid (IL) and SiO2 spheres as ``spacers''. In the synthesis, the introduction of dual ``spacers'' effectively enlarged the interspace between graphene sheets

  8. Synthesis of functionalized 3D porous graphene using both ionic liquid and SiO2 spheres as "spacers" for high-performance application in supercapacitors.

    PubMed

    Li, Tingting; Li, Na; Liu, Jiawei; Cai, Kai; Foda, Mohamed F; Lei, Xiaomin; Han, Heyou

    2015-01-14

    In this work, a high-capacity supercapacitor material based on functionalized three-dimensional (3D) porous graphene was fabricated by low temperature hydrothermal treatment of graphene oxide (GO) using both ionic liquid (IL) and SiO2 spheres as "spacers". In the synthesis, the introduction of dual "spacers" effectively enlarged the interspace between graphene sheets and suppressed their re-stacking. In addition, the IL also acted as a structure-directing agent playing a crucial role in inducing the formation of unique 3D architectures. Consequently, fast electron/ion transport channels were successfully constructed and numerous oxygen-containing groups on graphene sheets were effectively reserved, which had unique advantages in decreasing ion diffusion resistance and providing additional pseudocapacitance. As expected, the obtained material exhibited superior specific capacitance and rate capability compared to single "spacer" designed electrodes and simultaneously maintained excellent cycling stability. In particular, there was nearly no loss of its initial capacitance after 3000 cycles. In addition, we further assembled a symmetric two-electrode device using the material, which showed outstanding flexibility and low equivalent series resistance (ESR). More importantly, it was capable of yielding a maximum power density of about 13.3 kW kg(-1) with an energy density of about 7.0 W h kg(-1) at a voltage of 1.0 V in 1 M H2SO4 electrolyte. All these impressive results demonstrate that the material obtained by this approach is greatly promising for application in high-performance supercapacitors. PMID:25427664

  9. Nickel–cobalt layered double hydroxide ultrathin nanoflakes decorated on graphene sheets with a 3D nanonetwork structure as supercapacitive materials

    SciTech Connect

    Yan, Tao; Li, Ruiyi; Li, Zaijun

    2014-03-01

    Graphical abstract: The microwave heating reflux approach was developed for the fabrication of nickel–cobalt layered double hydroxide ultrathin nanoflakes decorated on graphene sheets, in which ammonia and ethanol were used as the precipitator and medium for the synthesis. The obtained composite shows a 3D flowerclusters morphology with nanonetwork structure and largely enhanced supercapacitive performance. - Highlights: • The paper reported the microwave synthesis of nickel–cobalt layered double hydroxide/graphene composite. • The novel synthesis method is rapid, green, efficient and can be well used to the mass production. • The as-synthesized composite offers a 3D flowerclusters morphology with nanonetwork structure. • The composite offers excellent supercapacitive performance. • This study provides a promising route to design and synthesis of advanced graphene-based materials with the superiorities of time-saving and cost-effective characteristics. - Abstract: The study reported a novel microwave heating reflux method for the fabrication of nickel–cobalt layered double hydroxide ultrathin nanoflakes decorated on graphene sheets (GS/NiCo-LDH). Ammonia and ethanol were employed as precipitant and reaction medium for the synthesis, respectively. The resulting GS/NiCo-LDH offers a 3D flowerclusters morphology with nanonetwork structure. Due to the greatly enhanced rate of electron transfer and mass transport, the GS/NiCo-LDH electrode exhibits excellent supercapacitive performances. The maximum specific capacitance was found to be 1980.7 F g{sup −1} at the current density of 1 A g{sup −1}. The specific capacitance can remain 1274.7 F g{sup −1} at the current density of 15 A g{sup −1} and it has an increase of about 2.9% after 1500 cycles. Moreover, the study also provides a promising approach for the design and synthesis of metallic double hydroxides/graphene hybrid materials with time-saving and cost-effective characteristics, which can be

  10. Nanohole-Structured and Palladium-Embedded 3D Porous Graphene for Ultrahigh Hydrogen Storage and CO Oxidation Multifunctionalities.

    PubMed

    Kumar, Rajesh; Oh, Jung-Hwan; Kim, Hyun-Jun; Jung, Jung-Hwan; Jung, Chan-Ho; Hong, Won G; Kim, Hae-Jin; Park, Jeong-Young; Oh, Il-Kwon

    2015-07-28

    Atomic-scale defects on carbon nanostructures have been considered as detrimental factors and critical problems to be eliminated in order to fully utilize their intrinsic material properties such as ultrahigh mechanical stiffness and electrical conductivity. However, defects that can be intentionally controlled through chemical and physical treatments are reasonably expected to bring benefits in various practical engineering applications such as desalination thin membranes, photochemical catalysts, and energy storage materials. Herein, we report a defect-engineered self-assembly procedure to produce a three-dimensionally nanohole-structured and palladium-embedded porous graphene hetero-nanostructure having ultrahigh hydrogen storage and CO oxidation multifunctionalities. Under multistep microwave reactions, agglomerated palladium nanoparticles having diameters of ∼10 nm produce physical nanoholes in the basal-plane structure of graphene sheets, while much smaller palladium nanoparticles are readily impregnated inside graphene layers and bonded on graphene surfaces. The present results show that the defect-engineered hetero-nanostructure has a ∼5.4 wt % hydrogen storage capacity under 7.5 MPa and CO oxidation catalytic activity at 190 °C. The defect-laden graphene can be highly functionalized for multipurpose applications such as molecule absorption, electrochemical energy storage, and catalytic activity, resulting in a pathway to nanoengineering based on underlying atomic scale and physical defects. PMID:26061778

  11. Structural, electronic and magnetic properties of 3d transition metals embedded graphene-like carbon nitride sheet: A DFT + U study

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Chi, Runze; Li, Chong; Jia, Yu

    2016-03-01

    Using first-principles calculations, we have investigated the structural, electronic and magnetic properties of 3d transition-metals (TMs) embedded two dimensional graphene-like carbon nitride sheet (TMs@g-CN). Our results show that TMs embed in the cavity of g-CN sheet regularly and keep intact of the planar structure, though there is Jahn-Teller distortion inevitably. Additionally, the nonmagnetic and semiconducting sheet can be significantly modulated to be magnetic and metallic behaviors induced by the resonant impurity states between TMs 3d and g-CN 2p orbitals. Moreover, we also explore the magnetic coupling of TMs@g-CN and find that it varies dramatically with the change of the distance between TMs, i.e., from ferromagnetic (FM) to antiferromagnetic (AFM) transition. Finally, the underlying physical mechanism of the above findings is discussed.

  12. Li2S@C composite incorporated into 3D reduced graphene oxide as a cathode material for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Wang, D. H.; Xie, D.; Yang, T.; Zhong, Y.; Wang, X. L.; Xia, X. H.; Gu, C. D.; Tu, J. P.

    2016-05-01

    Surface conductive engineering on Li2S is critical for construction of advanced cathodes of lithium-sulfur batteries. Herein, we construct a high-performance Li2S-based composite cathode with the help of three-dimensional reduced graphene oxide (3D-rGO) network and outer carbon coating. Typically, the Li2S@C particles are uniformly embedded into 3D-rGO to form a binder-free 3D-rGO-Li2S@C cathode by the combination of a liquid solution-evaporation coating and PVP (Polyvinyl Pyrrolidone) carbonization. The 3D-rGO-Li2S@C cathode exhibits a high initial discharge capacity of 856 mAh g-1 at 0.1C, superior cycling stability with a capacity of 388.4 mAh g-1 after 200 cycles at 1C, corresponding to a low capacity fading rate. It is demonstrated that the outer conductive coating is effective and necessary for electrochemical enhancement of Li2S cathodes by improving electrical conductivity and prohibiting polysulfide from shuttling during cycling.

  13. Fabrication of Highly Stretchable Conductors Based on 3D Printed Porous Poly(dimethylsiloxane) and Conductive Carbon Nanotubes/Graphene Network.

    PubMed

    Duan, Shasha; Yang, Ke; Wang, Zhihui; Chen, Mengting; Zhang, Ling; Zhang, Hongbo; Li, Chunzhong

    2016-01-27

    The combination of carbon nanomaterial with three-dimensional (3D) porous polymer substrates has been demonstrated to be an effective approach to manufacture high-performance stretchable conductive materials (SCMs). However, it remains a challenge to fabricate 3D-structured SCMs with outstanding electrical conductivity capability under large strain in a facile way. In this work, the 3D printing technique was employed to prepare 3D porous poly(dimethylsiloxane) (O-PDMS) which was then integrated with carbon nanotubes and graphene conductive network and resulted in highly stretchable conductors (OPCG). Two types of OPCG were prepared, and it has been demonstrated that the OPCG with split-level structure exhibited both higher electrical conductivity and superior retention capability under deformations, which was illustrated by using a finite element method. The specially designed split-level OPCG is capable of sustaining both large strain and repeated deformations showing huge potential in the application of next-generation stretchable electronics. PMID:26713456

  14. Synthesis and Application of Novel 3D Magnetic Chlorogenic Acid Imprinted Polymers Based on a Graphene-Carbon Nanotube Composite.

    PubMed

    Yan, Liang; Yin, Yuli; Lv, Piaopiao; Zhang, Zhaohui; Wang, Jing; Long, Fang

    2016-04-20

    A novel three-dimensional (3D) magnetic chlorogenic acid (CGA) imprinted polymer (MMIP) was prepared with novel carbon hybrid nanocomposite as the carrier, chlorogenic acid as the template molecule, and methacrylic acid as the functional monomer. The 3D MMIPs were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, vibrating sample magnetometer, and UV spectrometry in detail. The results showed that the imprinted layer was attached successfully on the surface of a 3D magnetic carbon hybrid nanocomposite. The adsorption performance of the 3D MMIPs was investigated, and the results showed that the 3D MMIPs exhibited high adsorption capacity and fast adsorption rate toward CGA with a maximum adsorption capacity of 10.88 mg g(-1). The extraction conditions involving washing solvent, the pH of eluent solvent, elution volume, and desorption time were also investigated in detail. Combined with high-performance liquid chromatography, the 3D MMIPs have been applied to successfully extract CGA from Eucommia leaf extract samples. PMID:27049929

  15. Bio-Conjugated CNT-Bridged 3D Porous Graphene Oxide Membrane for Highly Efficient Disinfection of Pathogenic Bacteria and Removal of Toxic Metals from Water.

    PubMed

    Nellore, Bhanu Priya Viraka; Kanchanapally, Rajashekhar; Pedraza, Francisco; Sinha, Sudarson Sekhar; Pramanik, Avijit; Hamme, Ashton T; Arslan, Zikri; Sardar, Dhiraj; Ray, Paresh Chandra

    2015-09-01

    More than a billion people lack access to safe drinking water that is free from pathogenic bacteria and toxic metals. The World Health Organization estimates several million people, mostly children, die every year due to the lack of good quality water. Driven by this need, we report the development of PGLa antimicrobial peptide and glutathione conjugated carbon nanotube (CNT) bridged three-dimensional (3D) porous graphene oxide membrane, which can be used for highly efficient disinfection of Escherichia coli O157:H7 bacteria and removal of As(III), As(V), and Pb(II) from water. Reported results demonstrate that versatile membrane has the capability to capture and completely disinfect pathogenic pathogenic E. coli O157:H7 bacteria from water. Experimentally observed disinfection data indicate that the PGLa attached membrane can dramatically enhance the possibility of destroying pathogenic E. coli bacteria via synergistic mechanism. Reported results show that glutathione attached CNT-bridged 3D graphene oxide membrane can be used to remove As(III), As(V), and Pb(II) from water sample at 10 ppm level. Our data demonstrated that PGLa and glutathione attached membrane has the capability for high efficient removal of E. coli O157:H7 bacteria, As(III), As(V), and Pb(II) simultaneously from Mississippi River water. PMID:26273843

  16. Graphene-Protected 3D Sb-based Anodes Fabricated via Electrostatic Assembly and Confinement Replacement for Enhanced Lithium and Sodium Storage.

    PubMed

    Ding, Yuan-Li; Wu, Chao; Kopold, Peter; van Aken, Peter A; Maier, Joachim; Yu, Yan

    2015-12-01

    Alloy anodes have shown great potential for next-generation lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). However, these applications are still limited by inherent huge volume changes and sluggish kinetics. To overcome such limitations, graphene-protected 3D Sb-based anodes grown on conductive substrate are designed and fabricated by a facile electrostatic-assembling and subsequent confinement replacement strategy. As binder-free anodes for LIBs, the obtained electrode exhibits reversible capacities of 442 mAh g(-1) at 100 mA g(-1) and 295 mAh g(-1) at 1000 mA g(-1), and a capacity retention of above 90% (based on the 10th cycle) after 200 cycles at 500 mA g(-1). As for sodium storage properties, the reversible capacities of 517 mAh g(-1) at 50 mA g(-1) and 315 mAh g(-1) at 1000 mA g(-1), the capacity retention of 305 mAh g(-1) after 100 cycles at 300 mA g(-1) are obtained, respectively. Furthermore, the 3D architecture retains good structural integrity after cycling, confirming that the introduction of high-stretchy and robust graphene layers can effectively buffer alloying anodes, and simultaneously provide sustainable contact and protection of the active materials. Such findings show its great potential as superior binder-free anodes for LIBs and SIBs. PMID:26456169

  17. Facile one-pot surfactant-free synthesis of uniform Pd6Co nanocrystals on 3D graphene as an efficient electrocatalyst toward formic acid oxidation

    NASA Astrophysics Data System (ADS)

    Zhang, Lian Ying; Zhao, Zhi Liang; Yuan, Weiyong; Li, Chang Ming

    2016-01-01

    Ultrasmall and uniform Pd6Co nanocrystals were deposited on 3D graphene by a facile one-pot surfactant-free route for a catalyst toward formic acid oxidation, showing a much higher electrocatalytic activity, larger peak current density and better stability than Pd/3DG, Pd/C as well as commercial Pd-C, and thus offering great potential for an efficient anode catalyst toward high performance direct formic acid fuel cells.Ultrasmall and uniform Pd6Co nanocrystals were deposited on 3D graphene by a facile one-pot surfactant-free route for a catalyst toward formic acid oxidation, showing a much higher electrocatalytic activity, larger peak current density and better stability than Pd/3DG, Pd/C as well as commercial Pd-C, and thus offering great potential for an efficient anode catalyst toward high performance direct formic acid fuel cells. Electronic supplementary information (ESI) available: Experimental section and supplementary figures. See DOI: 10.1039/c5nr08512h

  18. 3D nanospherical CdxZn1-xS/reduced graphene oxide composites with superior photocatalytic activity and photocorrosion resistance

    NASA Astrophysics Data System (ADS)

    Huang, Meina; Yu, Jianhua; Deng, Changshun; Huang, Yingheng; Fan, Minguang; Li, Bin; Tong, Zhangfa; Zhang, Feiyue; Dong, Lihui

    2016-03-01

    Herein, a series of CdxZn1-xS and sulfide/graphene photocatalysts with 3D nanospherical framework have been successfully fabricated by one-pot solvothermal method for the first time. The morphology and structure of samples were confirmed by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray (EDX) spectrometry, N2 adsorption, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS). The as-prepared samples exhibit excellent photocatalytic activities and photocorrosion resistance in the degradation of dyes under visible light. The Cd0.5Zn0.5S/rGO sample shows the most efficient in the photodegradation of methyl orange (MO). It takes about 30 min for degradation completely. The enhanced photocatalytic activity is mainly attributed to the slow photon enhancement of the 3D structure, and the heterojunction between the 3D nanospherical Cd0.5Zn0.5S solid solutions and a high quality 2D rGO support, which can greatly promote the separation of light-induced electrons and holes. Moreover, the large SBET and extended light absorption range also play an important role for improving the photocatalytic activity. The high photocatalytic stability is due to the successful inhibition of the photocorrosion of Cd0.5Zn0.5S/rGO by forming heterojunction between CdS and ZnS, and transferring the photogenerated electrons of Cd0.5Zn0.5S to rGO. The present work can provide rational design of graphene-based photocatalysts with large contact interface and strong interaction between the composites for other application.

  19. Instructive Conductive 3D Silk Foam-Based Bone Tissue Scaffolds Enable Electrical Stimulation of Stem Cells for Enhanced Osteogenic Differentiation.

    PubMed

    Hardy, John G; Geissler, Sydney A; Aguilar, David; Villancio-Wolter, Maria K; Mouser, David J; Sukhavasi, Rushi C; Cornelison, R Chase; Tien, Lee W; Preda, R Carmen; Hayden, Rebecca S; Chow, Jacqueline K; Nguy, Lindsey; Kaplan, David L; Schmidt, Christine E

    2015-11-01

    Stimuli-responsive materials enabling the behavior of the cells that reside within them to be controlled are vital for the development of instructive tissue scaffolds for tissue engineering. Herein, we describe the preparation of conductive silk foam-based bone tissue scaffolds that enable the electrical stimulation of human mesenchymal stem cells (HMSCs) to enhance their differentiation toward osteogenic outcomes. PMID:26033953

  20. 3D periodic multiscale TiO2 architecture: a platform decorated with graphene quantum dots for enhanced photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Xu, Zhen; Yin, Min; Sun, Jing; Ding, Guqiao; Lu, Linfeng; Chang, Paichun; Chen, Xiaoyuan; Li, Dongdong

    2016-03-01

    Micropatterned TiO2 nanorods (TiO2NRs) via three-dimensional (3D) geometry engineering in both microscale and nanoscale decorated with graphene quantum dots (GQDs) have been demonstrated successfully. First, micropillar (MP) and microcave (MC) arrays of anatase TiO2 films are obtained through the sol-gel based thermal nanoimprinting method. Then they are employed as seed layers in hydrothermal growth to fabricate the 3D micropillar/microcave arrays of rutile TiO2NRs (NR), which show much-improved photoelectrochemical water-splitting performance than the TiO2NRs grown on flat seed layer. The zero-dimensional GQDs are sequentially deposited onto the surfaces of the microscale patterned nanorods. Owing to the fast charge separation that resulted from the favorable band alignment of the GQDs and rutile TiO2, the MP-NR-GQDs electrode achieves a photocurrent density up to 2.92 mA cm-2 under simulated one-sun illumination. The incident-photon-to-current-conversion efficiency (IPCE) value up to 72% at 370 nm was achieved on the MP-NR-GQDs electrode, which outperforms the flat-NR counterpart by 69%. The IPCE results also imply that the improved photocurrent mainly benefits from the distinctly enhanced ultraviolet response. The work provides a cost-effective and flexible pathway to develop periodic 3D micropatterned photoelectrodes and is promising for the future deployment of high performance optoelectronic devices.

  1. Three-dimensional nitrogen-doped graphene as an ultrasensitive electrochemical sensor for the detection of dopamine.

    PubMed

    Feng, Xiaomiao; Zhang, Yu; Zhou, Jinhua; Li, Yi; Chen, Shufen; Zhang, Lei; Ma, Yanwen; Wang, Lianhui; Yan, Xiaohong

    2015-02-14

    Three-dimensional nitrogen-doped graphene (3D N-doped graphene) was prepared through chemical vapor deposition (CVD) by using porous nickel foam as a substrate. As a model, a dopamine biosensor was constructed based on the 3D N-doped graphene porous foam. Electrochemical experiments exhibited that this biosensor had a remarkable detection ability with a wide linear detection range from 3 × 10(-6) M to 1 × 10(-4) M and a low detection limit of 1 nM. Moreover, the fabricated biosensor also showed an excellent anti-interference ability, reproducibility, and stability. PMID:25565111

  2. Three-dimensional nitrogen-doped graphene as an ultrasensitive electrochemical sensor for the detection of dopamine

    NASA Astrophysics Data System (ADS)

    Feng, Xiaomiao; Zhang, Yu; Zhou, Jinhua; Li, Yi; Chen, Shufen; Zhang, Lei; Ma, Yanwen; Wang, Lianhui; Yan, Xiaohong

    2015-01-01

    Three-dimensional nitrogen-doped graphene (3D N-doped graphene) was prepared through chemical vapor deposition (CVD) by using porous nickel foam as a substrate. As a model, a dopamine biosensor was constructed based on the 3D N-doped graphene porous foam. Electrochemical experiments exhibited that this biosensor had a remarkable detection ability with a wide linear detection range from 3 × 10-6 M to 1 × 10-4 M and a low detection limit of 1 nM. Moreover, the fabricated biosensor also showed an excellent anti-interference ability, reproducibility, and stability.

  3. 3D dual-confined sulfur encapsulated in porous carbon nanosheets and wrapped with graphene aerogels as a cathode for advanced lithium sulfur batteries

    NASA Astrophysics Data System (ADS)

    Hou, Yang; Li, Jianyang; Gao, Xianfeng; Wen, Zhenhai; Yuan, Chris; Chen, Junhong

    2016-04-01

    Although lithium-sulfur (Li-S) batteries have attracted much attention due to their high theoretical specific energy and low cost, their practical applications have been severely hindered by poor cycle life, inadequate sulfur utilization, and the insulating nature of sulfur. Here, we report a rationally designed Li-S cathode with a dual-confined configuration formed by confining sulfur in 2D carbon nanosheets with an abundant porous structure followed by 3D graphene aerogel wrapping. The porous carbon nanosheets act as the sulfur host and suppress the diffusion of polysulfide, while the graphene conductive networks anchor the sulfur-adsorbed carbon nanosheets, providing pathways for rapid electron/ion transport and preventing polysulfide dissolution. As a result, the hybrid electrode exhibits superior electrochemical performance, including a large reversible capacity of 1328 mA h g-1 in the first cycle, excellent cycling stability (maintaining a reversible capacity of 647 mA h g-1 at 0.2 C after 300 cycles) with nearly 100% Coulombic efficiency, and a high rate capability of 512 mA h g-1 at 8 C for 30 cycles, which is among the best reported rate capabilities.Although lithium-sulfur (Li-S) batteries have attracted much attention due to their high theoretical specific energy and low cost, their practical applications have been severely hindered by poor cycle life, inadequate sulfur utilization, and the insulating nature of sulfur. Here, we report a rationally designed Li-S cathode with a dual-confined configuration formed by confining sulfur in 2D carbon nanosheets with an abundant porous structure followed by 3D graphene aerogel wrapping. The porous carbon nanosheets act as the sulfur host and suppress the diffusion of polysulfide, while the graphene conductive networks anchor the sulfur-adsorbed carbon nanosheets, providing pathways for rapid electron/ion transport and preventing polysulfide dissolution. As a result, the hybrid electrode exhibits superior

  4. Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors

    PubMed Central

    Zhang, Long; Zhang, Fan; Yang, Xi; Long, Guankui; Wu, Yingpeng; Zhang, Tengfei; Leng, Kai; Huang, Yi; Ma, Yanfeng; Yu, Ao; Chen, Yongsheng

    2013-01-01

    Until now, few sp2 carbon materials simultaneously exhibit superior performance for specific surface area (SSA) and electrical conductivity at bulk state. Thus, it is extremely important to make such materials at bulk scale with those two outstanding properties combined together. Here, we present a simple and green but very efficient approach using two standard and simple industry steps to make such three-dimensional graphene-based porous materials at the bulk scale, with ultrahigh SSA (3523 m2/g) and excellent bulk conductivity. We conclude that these materials consist of mainly defected/wrinkled single layer graphene sheets in the dimensional size of a few nanometers, with at least some covalent bond between each other. The outstanding properties of these materials are demonstrated by their superior supercapacitor performance in ionic liquid with specific capacitance and energy density of 231 F/g and 98 Wh/kg, respectively, so far the best reported capacitance performance for all bulk carbon materials. PMID:23474952

  5. Morphology-controlled MnO2-graphene oxide-diatomaceous earth 3-dimensional (3D) composites for high-performance supercapacitors.

    PubMed

    Wen, Zhong Quan; Li, Min; Li, Fei; Zhu, Shi Jin; Liu, Xiao Ying; Zhang, Yu Xin; Kumeria, Tushar; Losic, Dusan; Gao, Yang; Zhang, Wei; He, Shi Xuan

    2016-01-21

    3-Dimensional (3D) composites based on a unique combination of MnO2-nanostructures, graphene oxide nanosheets and porous Diatomaceous Earth (DE) microparticles (GO-DE@MnO2) were synthesized and explored for application in high-performance supercapacitors. To explore the influence of the structural properties of MnO2 nanostructures on supercapacitor performances, several MnO2 structures with nanosheet and nanowire morphologies were synthesized and characterized. The prepared GO-DE@MnO2 composites with MnO2 nanosheets due to their higher conductivity and higher surface area showed a larger specific capacitance of 152.5 F g(-1) and a relatively better cycle stability (83.3% capacitance retention after 2000 cycles at a scan rate of 2 A g(-1)), indicating great potential for application in supercapacitors. PMID:26645931

  6. 3D-architectured nickel-cobalt-manganese layered double hydroxide/reduced graphene oxide composite for high-performance supercapacitor

    NASA Astrophysics Data System (ADS)

    Li, M.; Cheng, J. P.; Liu, F.; Zhang, X. B.

    2015-11-01

    Pure flower-like NiCoMn layered double hydroxide (LDH) and 3D-architectured NiCoMn LDH/reduced graphene oxide (rGO) composite are fabricated by a solution method. The NiCoMn hydroxide nanoflakes are tightly deposited on the surface of rGO. Electrochemical measurements prove that rGO can greatly improve its capacitive performances, compared with the pure counterpart. A high-specific capacitance of 912 F g-1, high-rate capability and long cycle life are achieved for the composite. A NiCoMn LDH/rGO//activated carbon hybrid capacitor is also fabricated. It possesses a high-specific capacitance of 206 F g-1 and an energy density of 92.8 W h kg-1 in 1.8 V.

  7. How We 3D-Print Aerogel

    SciTech Connect

    2015-04-23

    A new type of graphene aerogel will make for better energy storage, sensors, nanoelectronics, catalysis and separations. Lawrence Livermore National Laboratory researchers have made graphene aerogel microlattices with an engineered architecture via a 3D printing technique known as direct ink writing. The research appears in the April 22 edition of the journal, Nature Communications. The 3D printed graphene aerogels have high surface area, excellent electrical conductivity, are lightweight, have mechanical stiffness and exhibit supercompressibility (up to 90 percent compressive strain). In addition, the 3D printed graphene aerogel microlattices show an order of magnitude improvement over bulk graphene materials and much better mass transport.

  8. Facile Fabrication of Graphene-Containing Foam as a High-Performance Anode for Microbial Fuel Cells.

    PubMed

    Yang, Lu; Wang, Shuqin; Peng, Shuqin; Jiang, Hongmei; Zhang, Youming; Deng, Wenfang; Tan, Yueming; Ma, Ming; Xie, Qingji

    2015-07-20

    Facile fabrication of novel three-dimensional anode materials to increase the bacterial loading capacity and improve substrate transport in microbial fuel cells (MFCs) is of great interest and importance. Herein, a novel graphene-containing foam (GCF) was fabricated easily by freeze-drying and pyrolysis of a graphene oxide-agarose gel. Owing to the involvement of graphene and stainless-steel mesh in the GCF, the GCF shows high electrical conductivity, enabling the GCF to be a conductive electrode for MFC applications. With the aid of agarose, the GCF electrode possesses a supermacroporous structure with pore sizes ranging from 100-200 μm and a high surface area, which greatly increase the bacterial loading capacity. Cell viability measurements indicate that the GCF possesses excellent biocompatibility. The MFC, equipped with a 0.4 mm-thick GCF anode, shows a maximum area power density of 786 mW m(-2) , which is 4.1 times that of a MFC equipped with a commercial carbon cloth anode. The simple fabrication route in combination with the outstanding electrochemical performance of the GCF indicates a promising anode for MFC applications. PMID:26095648

  9. Integrated 3D porous C-MoS2/nitrogen-doped graphene electrode for high capacity and prolonged stability lithium storage

    NASA Astrophysics Data System (ADS)

    Xie, D.; Tang, W. J.; Xia, X. H.; Wang, D. H.; Zhou, D.; Shi, F.; Wang, X. L.; Gu, C. D.; Tu, J. P.

    2015-11-01

    Scrupulous design and fabrication of advanced anode materials are of great importance for developing high-performance lithium ion batteries. Herein, we report a facile strategy for construction of free-standing and free-binder 3D porous carbon coated MoS2/nitrogen-doped graphene (C-MoS2/N-G) integrated electrode via a hydrothermal-induced self-assembly process. The preformed carbon coated MoS2 is strongly anchored on the porous nitrogen-doped graphene aerogel architecture. As an anode for lithium ion batteries, the C-MoS2/N-G electrode delivers a high first discharge capacity of 1600 mAh g-1 and maintains 900 mAh g-1 after 500 cycles at a current density of 200 mA g-1. Impressively, superior high-rate capability is achieved for the C-MoS2/N-G with a reversible capacity of 500 mAh g-1 at a high current density of 4000 mA g-1. Furthermore, the lithium storage mechanism of the obtained integrated electrode is investigated by ex-situ X-ray photoelectron spectroscopy and transmission electron microscopy in detail.

  10. 3D dual-confined sulfur encapsulated in porous carbon nanosheets and wrapped with graphene aerogels as a cathode for advanced lithium sulfur batteries.

    PubMed

    Hou, Yang; Li, Jianyang; Gao, Xianfeng; Wen, Zhenhai; Yuan, Chris; Chen, Junhong

    2016-04-21

    Although lithium-sulfur (Li-S) batteries have attracted much attention due to their high theoretical specific energy and low cost, their practical applications have been severely hindered by poor cycle life, inadequate sulfur utilization, and the insulating nature of sulfur. Here, we report a rationally designed Li-S cathode with a dual-confined configuration formed by confining sulfur in 2D carbon nanosheets with an abundant porous structure followed by 3D graphene aerogel wrapping. The porous carbon nanosheets act as the sulfur host and suppress the diffusion of polysulfide, while the graphene conductive networks anchor the sulfur-adsorbed carbon nanosheets, providing pathways for rapid electron/ion transport and preventing polysulfide dissolution. As a result, the hybrid electrode exhibits superior electrochemical performance, including a large reversible capacity of 1328 mA h g(-1) in the first cycle, excellent cycling stability (maintaining a reversible capacity of 647 mA h g(-1) at 0.2 C after 300 cycles) with nearly 100% Coulombic efficiency, and a high rate capability of 512 mA h g(-1) at 8 C for 30 cycles, which is among the best reported rate capabilities. PMID:27029963

  11. Integrating 3D Flower-Like Hierarchical Cu2NiSnS4 with Reduced Graphene Oxide as Advanced Anode Materials for Na-Ion Batteries.

    PubMed

    Yuan, Shuang; Wang, Sai; Li, Lin; Zhu, Yun-hai; Zhang, Xin-bo; Yan, Jun-min

    2016-04-13

    Development of an anode material with high performance and low cost is crucial for implementation of next-generation Na-ion batteries (NIBs) electrode, which is proposed to meet the challenges of large scale renewable energy storage. Metal chalcogenides are considered as promising anode materials for NIBs due to their high theoretical capacity, low cost, and abundant sources. Unfortunately, their practical application in NIBs is still hindered because of low conductivity and morphological collapse caused by their volume expansion and shrinkage during Na(+) intercalation/deintercalation. To solve the daunting challenges, herein, we fabricated novel three-dimensional (3D) Cu2NiSnS4 nanoflowers (CNTSNs) as a proof-of-concept experiment using a facile and low-cost method. Furthermore, homogeneous integration with reduced graphene oxide nanosheets (RGNs) endows intrinsically insulated CNTSNs with superior electrochemical performances, including high specific capacity (up to 837 mAh g(-1)), good rate capability, and long cycling stability, which could be attributed to the unique 3D hierarchical structure providing fast ion diffusion pathway and high contact area at the electrode/electrolyte interface. PMID:26986821

  12. 3D nanoporous gold scaffold supported on graphene paper: Freestanding and flexible electrode with high loading of ultrafine PtCo alloy nanoparticles for electrochemical glucose sensing.

    PubMed

    Zhao, Anshun; Zhang, Zhaowei; Zhang, Penghui; Xiao, Shuang; Wang, Lu; Dong, Yue; Yuan, Hao; Li, Peiwu; Sun, Yimin; Jiang, Xueliang; Xiao, Fei

    2016-09-28

    Recent advances in on-body wearable medical apparatus and implantable devices drive the development of light-weight and bendable electrochemical sensors, which require the design of high-performance flexible electrode system. In this work, we reported a new type of freestanding and flexible electrode based on graphene paper (GP) supported 3D monolithic nanoporous gold (NPG) scaffold (NPG/GP), which was further modified by a layer of highly dense, well dispersed and ultrafine binary PtCo alloy nanoparticles via a facile and effective ultrasonic electrodeposition method. Our results demonstrated that benefited from the synergistic effect of the electrocatalytically active PtCo alloy nanoparticles, the large-active-area and highly conductive 3D NPG scaffold, and the mechanically strong and stable GP electrode substrate, the resultant PtCo alloy nanoparticles modified NPG/GP (PtCo/NPG/GP) exhibited high mechanical strength and good electrochemical sensing performances toward nonenzymatic detection of glucose, including a wide linear range from 35 μM- to 30 mM, a low detection limit of 5 μM (S/N = 3) and a high sensitivity of 7.84 μA cm(-2) mM(-1) as well as good selectivity, long-term stability and reproducibility. The practical application of the proposed PtCo/NPG/GP has also been demonstrated in in vitro detection of blood glucose in real clinic samples. PMID:27619087

  13. A 3D graphene oxide microchip and a Au-enwrapped silica nanocomposite-based supersandwich cytosensor toward capture and analysis of circulating tumor cells

    NASA Astrophysics Data System (ADS)

    Li, Na; Xiao, Tingyu; Zhang, Zhengtao; He, Rongxiang; Wen, Dan; Cao, Yiping; Zhang, Weiying; Chen, Yong

    2015-10-01

    Determination of the presence and number of circulating tumor cells (CTCs) in peripheral blood can provide clinically important data for prognosis and therapeutic response patterns. In this study, a versatile supersandwich cytosensor was successfully developed for the highly sensitive and selective analysis of CTCs using Au-enwrapped silica nanocomposites (Si/AuNPs) and three-dimensional (3D) microchips. First, 3D microchips were fabricated by a photolithography method. Then, the prepared substrate was applied to bind graphene oxide, streptavidin and biotinylated epithelial-cell adhesion-molecule antibody, resulting in high stability, bioactivity, and capability for CTCs capture. Furthermore, horseradish peroxidase and anti-CA153 were co-linked to the Si/AuNPs for signal amplification. The performance of the cytosensor was evaluated with MCF7 breast cancer cells. Under optimal conditions, the proposed supersandwich cytosensor showed high sensitivity with a wide range of 101 to 107 cells per mL and a detection limit of 10 cells per mL. More importantly, it could effectively distinguish CTCs from normal cells, which indicated the promising applications of our method for the clinical diagnosis and therapeutic monitoring of cancers.

  14. A 3D graphene oxide microchip and a Au-enwrapped silica nanocomposite-based supersandwich cytosensor toward capture and analysis of circulating tumor cells.

    PubMed

    Li, Na; Xiao, Tingyu; Zhang, Zhengtao; He, Rongxiang; Wen, Dan; Cao, Yiping; Zhang, Weiying; Chen, Yong

    2015-10-21

    Determination of the presence and number of circulating tumor cells (CTCs) in peripheral blood can provide clinically important data for prognosis and therapeutic response patterns. In this study, a versatile supersandwich cytosensor was successfully developed for the highly sensitive and selective analysis of CTCs using Au-enwrapped silica nanocomposites (Si/AuNPs) and three-dimensional (3D) microchips. First, 3D microchips were fabricated by a photolithography method. Then, the prepared substrate was applied to bind graphene oxide, streptavidin and biotinylated epithelial-cell adhesion-molecule antibody, resulting in high stability, bioactivity, and capability for CTCs capture. Furthermore, horseradish peroxidase and anti-CA153 were co-linked to the Si/AuNPs for signal amplification. The performance of the cytosensor was evaluated with MCF7 breast cancer cells. Under optimal conditions, the proposed supersandwich cytosensor showed high sensitivity with a wide range of 10(1) to 10(7) cells per mL and a detection limit of 10 cells per mL. More importantly, it could effectively distinguish CTCs from normal cells, which indicated the promising applications of our method for the clinical diagnosis and therapeutic monitoring of cancers. PMID:26391313

  15. Porous three-dimensional graphene foam/Prussian blue composite for efficient removal of radioactive 137Cs

    NASA Astrophysics Data System (ADS)

    Jang, Sung-Chan; Haldorai, Yuvaraj; Lee, Go-Woon; Hwang, Seung-Kyu; Han, Young-Kyu; Roh, Changhyun; Huh, Yun Suk

    2015-12-01

    In this study, a simple one-step hydrothermal reaction is developed to prepare composite based on Prussian blue (PB)/reduced graphene oxide foam (RGOF) for efficient removal of radioactive cesium (137Cs) from contaminated water. Scanning electron microscopy and transmission electron microscopy show that cubic PB nanoparticles are decorated on the RGO surface. Owing to the combined benefits of RGOF and PB, the composite shows excellent removal efficiency (99.5%) of 137Cs from the contaminated water. The maximum adsorption capacity is calculated to be 18.67 mg/g. An adsorption isotherm fit-well the Langmuir model with a linear regression correlation value of 0.97. This type of composite is believed to hold great promise for the clean-up of 137Cs from contaminated water around nuclear plants and/or after nuclear accidents.

  16. Porous three-dimensional graphene foam/Prussian blue composite for efficient removal of radioactive (137)Cs.

    PubMed

    Jang, Sung-Chan; Haldorai, Yuvaraj; Lee, Go-Woon; Hwang, Seung-Kyu; Han, Young-Kyu; Roh, Changhyun; Huh, Yun Suk

    2015-01-01

    In this study, a simple one-step hydrothermal reaction is developed to prepare composite based on Prussian blue (PB)/reduced graphene oxide foam (RGOF) for efficient removal of radioactive cesium ((137)Cs) from contaminated water. Scanning electron microscopy and transmission electron microscopy show that cubic PB nanoparticles are decorated on the RGO surface. Owing to the combined benefits of RGOF and PB, the composite shows excellent removal efficiency (99.5%) of (137)Cs from the contaminated water. The maximum adsorption capacity is calculated to be 18.67 mg/g. An adsorption isotherm fit-well the Langmuir model with a linear regression correlation value of 0.97. This type of composite is believed to hold great promise for the clean-up of (137)Cs from contaminated water around nuclear plants and/or after nuclear accidents. PMID:26670798

  17. Porous three-dimensional graphene foam/Prussian blue composite for efficient removal of radioactive 137Cs

    PubMed Central

    Jang, Sung-Chan; Haldorai, Yuvaraj; Lee, Go-Woon; Hwang, Seung-Kyu; Han, Young-Kyu; Roh, Changhyun; Huh, Yun Suk

    2015-01-01

    In this study, a simple one-step hydrothermal reaction is developed to prepare composite based on Prussian blue (PB)/reduced graphene oxide foam (RGOF) for efficient removal of radioactive cesium (137Cs) from contaminated water. Scanning electron microscopy and transmission electron microscopy show that cubic PB nanoparticles are decorated on the RGO surface. Owing to the combined benefits of RGOF and PB, the composite shows excellent removal efficiency (99.5%) of 137Cs from the contaminated water. The maximum adsorption capacity is calculated to be 18.67 mg/g. An adsorption isotherm fit-well the Langmuir model with a linear regression correlation value of 0.97. This type of composite is believed to hold great promise for the clean-up of 137Cs from contaminated water around nuclear plants and/or after nuclear accidents. PMID:26670798

  18. Synergistic effects from graphene and carbon nanotubes endow ordered hierarchical structure foams with a combination of compressibility, super-elasticity and stability and potential application as pressure sensors

    NASA Astrophysics Data System (ADS)

    Kuang, Jun; Dai, Zhaohe; Liu, Luqi; Yang, Zhou; Jin, Ming; Zhang, Zhong

    2015-05-01

    Nanostructured carbon material based three-dimensional porous architectures have been increasingly developed for various applications, e.g. sensors, elastomer conductors, and energy storage devices. Maintaining architectures with good mechanical performance, including elasticity, load-bearing capacity, fatigue resistance and mechanical stability, is prerequisite for realizing these functions. Though graphene and CNT offer opportunities as nanoscale building blocks, it still remains a great challenge to achieve good mechanical performance in their microarchitectures because of the need to precisely control the structure at different scales. Herein, we fabricate a hierarchical honeycomb-like structured hybrid foam based on both graphene and CNT. The resulting materials possess excellent properties of combined high specific strength, elasticity and mechanical stability, which cannot be achieved in neat CNT and graphene foams. The improved mechanical properties are attributed to the synergistic-effect-induced highly organized, multi-scaled hierarchical architectures. Moreover, with their excellent electrical conductivity, we demonstrated that the hybrid foams could be used as pressure sensors in the fields related to artificial skin.Nanostructured carbon material based three-dimensional porous architectures have been increasingly developed for various applications, e.g. sensors, elastomer conductors, and energy storage devices. Maintaining architectures with good mechanical performance, including elasticity, load-bearing capacity, fatigue resistance and mechanical stability, is prerequisite for realizing these functions. Though graphene and CNT offer opportunities as nanoscale building blocks, it still remains a great challenge to achieve good mechanical performance in their microarchitectures because of the need to precisely control the structure at different scales. Herein, we fabricate a hierarchical honeycomb-like structured hybrid foam based on both graphene and

  19. Intertwined nanocarbon and manganese oxide hybrid foam for high-energy supercapacitors.

    PubMed

    Wang, Wei; Guo, Shirui; Bozhilov, Krassimir N; Yan, Dong; Ozkan, Mihrimah; Ozkan, Cengiz S

    2013-11-11

    Rapid charging and discharging supercapacitors are promising alternative energy storage systems for applications such as portable electronics and electric vehicles. Integration of pseudocapacitive metal oxides with single-structured materials has received a lot of attention recently due to their superior electrochemical performance. In order to realize high energy-density supercapacitors, a simple and scalable method is developed to fabricate a graphene/MWNT/MnO2 nanowire (GMM) hybrid nanostructured foam, via a two-step process. The 3D few-layer graphene/MWNT (GM) architecture is grown on foamed metal foils (nickel foam) via ambient pressure chemical vapor deposition. Hydrothermally synthesized α-MnO2 nanowires are conformally coated onto the GM foam by a simple bath deposition. The as-prepared hierarchical GMM foam yields a monographical graphene foam conformally covered with an intertwined, densely packed CNT/MnO2 nanowire nanocomposite network. Symmetrical electrochemical capacitors (ECs) based on GMM foam electrodes show an extended operational voltage window of 1.6 V in aqueous electrolyte. A superior energy density of 391.7 Wh kg(-1) is obtained for the supercapacitor based on the GMM foam, which is much higher than ECs based on GM foam only (39.72 Wh kg(-1) ). A high specific capacitance (1108.79 F g(-1) ) and power density (799.84 kW kg(-1) ) are also achieved. Moreover, the great capacitance retention (97.94%) after 13 000 charge-discharge cycles and high current handability demonstrate the high stability of the electrodes of the supercapacitor. These excellent performances enable the innovative 3D hierarchical GMM foam to serve as EC electrodes, resulting in energy-storage devices with high stability and power density in neutral aqueous electrolyte. PMID:23650047

  20. Nanogold/mesoporous carbon foam-mediated silver enhancement for graphene-enhanced electrochemical immunosensing of carcinoembryonic antigen.

    PubMed

    Lin, Dajie; Wu, Jie; Ju, Huangxian; Yan, Feng

    2014-02-15

    Nanogold functionalized mesoporous carbon foam (Au/MCF) coupling with a signal amplification by C-Au synergistic silver enhancement was designed for sensitive electrochemical immunosensing of biomarker. The Au/MCF was prepared by in situ growth of nanogold on carboxylated MCF and used as a tracing tag to label signal antibody via the inherent interaction between protein and nanogold. The immunosensor was prepared by covalently immobilizing capture antibody on an electrochemically reduced graphene oxide/chitosan film modified glassy carbon electrode. Through a sandwich-type immunoreaction, Au/MCF tags were captured on the immunoconjugates to induce a silver deposition process. The electrochemical stripping signal of the deposited silver was used to monitor the immunoreaction. The Au/MCF-mediated silver enhancement along with the graphene-promoted electron transfer led to high detection sensitivity of carcinoembryonic antigen. Under optimal conditions, the proposed immunoassay method showed wide linear range from 0.05 pg mL(-1) to 1 ng mL(-1) and a detection limit down to 0.024 pg mL(-1). The newly designed amplification strategy holds great potential for ultrasensitive electrochemical biosensing of other analytes. PMID:24041661

  1. Dually functional, N-doped porous graphene foams as counter electrodes for dye-sensitized solar cells.

    PubMed

    Song, Long; Luo, Qiang; Zhao, Fei; Li, Yang; Lin, Hong; Qu, Liangti; Zhang, Zhipan

    2014-10-21

    A series of nitrogen-doped porous graphene foams (NPGFs) have been prepared by hydrothermally treating a mixed solution of graphite oxide (GO) and ammonia. The NPGFs are used as the counter electrode (CE) material for dye-sensitized solar cells (DSCs) in conjunction with the conventional iodide-based electrolyte and the recently developed sulfide-based electrolyte. Tafel-polarization tests and electrochemical impedance spectroscopic (EIS) measurements confirmed that the NPGFs work efficiently in both electrolyte systems, and under air mass (AM) 1.5G 100 mW cm(-2) light illumination, optimal efficiencies of 4.5% and 2.1% were obtained for the iodide-based electrolyte and sulfide-based electrolyte, respectively. To the best of our knowledge, this is the first study on N-doped graphene CEs in conjunction with sulfide-based electrolytes and therefore, the current results are deemed to provide new insights into developing novel low-cost and metal-free CEs for DSCs. PMID:25199841

  2. Direct Synthesis of Few-Layer F-Doped Graphene Foam and Its Lithium/Potassium Storage Properties.

    PubMed

    Ju, Zhicheng; Zhang, Shuai; Xing, Zheng; Zhuang, Quanchao; Qiang, Yinghuai; Qian, Yitai

    2016-08-17

    Heteroatom-doped graphene is considered a potential electrode materials for lithium-ion batteries (LIBs). However, potassium-ion batteries (PIBs) systems are possible alternatives due to the comparatively higher abundance. Here, a practical solid-state method is described for the preparation of few-layer F-doped graphene foam (FFGF) with thickness of about 4 nm and high surface area (874 m(2)g(-1)). As anode material for LIBs, FFGF exhibits 800 mAh·g(-1) after 50 cycles at a current density of 100 mA·g(-1) and 555 mAh·g(-1) after 100 cycles at 200 mA·g(-1) as well as remarkable rate capability. FFGF also shows 165.9 mAh·g(-1) at 500 mA·g(-1) for 200 cycles for PIBs. Research suggests that the multiple synergistic effects of the F-modification, high surface area, and mesoporous membrane structures endow the ions and electrons throughout the electrode matrix with fast transportation as well as offering sufficient active sites for lithium and potassium storage, resulting in excellent electrochemical performance. Furthermore, the insights obtained will be of benefit to the design of reasonable electrode materials for alkali metal ion batteries. PMID:27467782

  3. Functionalization of monolithic and porous three-dimensional graphene by one-step chitosan electrodeposition for enzymatic biosensor.

    PubMed

    Liu, Jiyang; Wang, Xiaohui; Wang, Tianshu; Li, Dan; Xi, Fengna; Wang, Jin; Wang, Erkang

    2014-11-26

    Biological modification of monolithic and porous 3D graphene is of great significance for extending its application in fabricating highly sensitive biosensors. The present work reports on the first biofunctionalization of monolithic and freestanding 3D graphene foam for one-step preparation of reagentless enzymatic biosensors by controllable chitosan (CS) electrodeposition technology. Using a homogeneous three-component electrodeposition solution containing a ferrocene (Fc) grafted CS hybrid (Fc-CS), glucose oxidase (GOD), and single-walled carbon nanotubes (SWNTs), a homogeneous biocomposite film of Fc-CS/SWNTs/GOD was immobilized on the surface of 3D graphene foam by one-step electrodeposition. The Fc groups grafted on chitosan can be stably immobilized on the 3D graphene surface and keep their original electrochemical activity. The SWNTs doped into the Fc-CS matrix act as a nanowire to facilitate electron transfer and improve the conductivity of the biocomposite film. Combined with the extraordinary properties of 3D graphene foam including large active surface area, high conductivity, and fast mass transport dynamics, the 3D graphene based enzymatic biosensor achieved a large linear range (5.0 μM to 19.8 mM), a low detection limit (1.2 μM), and rapid response (reaching the 95% steady-state response within 8 s) for reagentless detection of glucose in the phosphate buffer solution. PMID:25384251

  4. 3D macroporous electrode and high-performance in lithium-ion batteries using SnO2 coated on Cu foam

    NASA Astrophysics Data System (ADS)

    Um, Ji Hyun; Choi, Myounggeun; Park, Hyeji; Cho, Yong-Hun; Dunand, David C.; Choe, Heeman; Sung, Yung-Eun

    2016-01-01

    A three-dimensional porous architecture makes an attractive electrode structure, as it has an intrinsic structural integrity and an ability to buffer stress in lithium-ion batteries caused by the large volume changes in high-capacity anode materials during cycling. Here we report the first demonstration of a SnO2-coated macroporous Cu foam anode by employing a facile and scalable combination of directional freeze-casting and sol-gel coating processes. The three-dimensional interconnected anode is composed of aligned microscale channels separated by SnO2-coated Cu walls and much finer micrometer pores, adding to surface area and providing space for volume expansion of SnO2 coating layer. With this anode, we achieve a high reversible capacity of 750 mAh g-1 at current rate of 0.5 C after 50 cycles and an excellent rate capability of 590 mAh g-1 at 2 C, which is close to the best performance of Sn-based nanoscale material so far.

  5. 3D macroporous electrode and high-performance in lithium-ion batteries using SnO2 coated on Cu foam

    PubMed Central

    Um, Ji Hyun; Choi, Myounggeun; Park, Hyeji; Cho, Yong-Hun; Dunand, David C.; Choe, Heeman; Sung, Yung-Eun

    2016-01-01

    A three-dimensional porous architecture makes an attractive electrode structure, as it has an intrinsic structural integrity and an ability to buffer stress in lithium-ion batteries caused by the large volume changes in high-capacity anode materials during cycling. Here we report the first demonstration of a SnO2-coated macroporous Cu foam anode by employing a facile and scalable combination of directional freeze-casting and sol-gel coating processes. The three-dimensional interconnected anode is composed of aligned microscale channels separated by SnO2-coated Cu walls and much finer micrometer pores, adding to surface area and providing space for volume expansion of SnO2 coating layer. With this anode, we achieve a high reversible capacity of 750 mAh g−1 at current rate of 0.5 C after 50 cycles and an excellent rate capability of 590 mAh g−1 at 2 C, which is close to the best performance of Sn-based nanoscale material so far. PMID:26725652

  6. Foam Microrheology

    SciTech Connect

    KRAYNIK,ANDREW M.; LOEWENBERG,MICHAEL; REINELT,DOUGLAS A.

    1999-09-01

    The microrheology of liquid foams is discussed for two different regimes: static equilibrium where the capillary number Ca is zero, and the viscous regime where viscosity and surface tension are important and Ca is finite. The Surface Evolver is used to calculate the equilibrium structure of wet Kelvin foams and dry soap froths with random structure, i.e., topological disorder. The distributions of polyhedra and faces are compared with the experimental data of Matzke. Simple shearing flow of a random foam under quasistatic conditions is also described. Viscous phenomena are explored in the context of uniform expansion of 2D and 3D foams at low Reynolds number. Boundary integral methods are used to calculate the influence of Ca on the evolution of foam microstructure, which includes bubble shape and the distribution of liquid between films, Plateau borders, and (in 3D) the nodes where Plateau borders meet. The micromechanical point of view guides the development of structure-property-processing relationships for foams.

  7. Conversion of uniform graphene oxide/polypyrrole composites into functionalized 3D carbon nanosheet frameworks with superior supercapacitive and sodium-ion storage properties

    NASA Astrophysics Data System (ADS)

    Wang, Huanwen; Zhang, Yu; Sun, Wenping; Tan, Hui Teng; Franklin, Joseph B.; Guo, Yuanyuan; Fan, Haosen; Ulaganathan, Mani; Wu, Xing-Long; Luo, Zhong-Zhen; Madhavi, Srinivasan; Yan, Qingyu

    2016-03-01

    Two-dimensional (2D) graphene oxide/polypyrrole (GO/PPy) hybrid materials derived from in-situ polymerization are used as precursors for constructing functionalized three-dimensional (3D) porous nitrogen-doped carbon nanosheet frameworks (FT-PNCNFs) through a one-step activation strategy. In the formation process of FT-PNCNFs, PPY is directly converted into hierarchical porous nitrogen-doped carbon layers, while GO is simultaneously reduced to become electrically conductive. The complementary functions of individual components endow the FT-PNCNFs with excellent properties for both supercapacitors (SCs) and sodium ion batteries (SIBs) applications. When tested in symmetrical SC, the FT-PNCNFs demonstrate superior energy storage behaviour. At an extremely high scan rate of 3000 mV s-1, the cyclic voltammetry (CV) curve retains an inspiring quasi-rectangle shape in KOH solution. Meanwhile, high capacitances (∼247 F g-1 at 10 mV s-1; ∼146 F g-1 at 3000 mV s-1) and good cycling stability (∼95% retention after 8000 cycles) are achieved. In addition, an attractive SIB anode performance could be achieved. The FT-PNCNFs electrode delivers a reversible capacity of 187 mAh g-1 during 160th cycle at 100 mA g-1. Its reversible capacity retains 144 mAh g-1 after extending the number of cycles to 500 at 500 mA g-1.

  8. Synergistic effects from graphene and carbon nanotubes endow ordered hierarchical structure foams with a combination of compressibility, super-elasticity and stability and potential application as pressure sensors.

    PubMed

    Kuang, Jun; Dai, Zhaohe; Liu, Luqi; Yang, Zhou; Jin, Ming; Zhang, Zhong

    2015-01-01

    Nanostructured carbon material based three-dimensional porous architectures have been increasingly developed for various applications, e.g. sensors, elastomer conductors, and energy storage devices. Maintaining architectures with good mechanical performance, including elasticity, load-bearing capacity, fatigue resistance and mechanical stability, is prerequisite for realizing these functions. Though graphene and CNT offer opportunities as nanoscale building blocks, it still remains a great challenge to achieve good mechanical performance in their microarchitectures because of the need to precisely control the structure at different scales. Herein, we fabricate a hierarchical honeycomb-like structured hybrid foam based on both graphene and CNT. The resulting materials possess excellent properties of combined high specific strength, elasticity and mechanical stability, which cannot be achieved in neat CNT and graphene foams. The improved mechanical properties are attributed to the synergistic-effect-induced highly organized, multi-scaled hierarchical architectures. Moreover, with their excellent electrical conductivity, we demonstrated that the hybrid foams could be used as pressure sensors in the fields related to artificial skin. PMID:25932597

  9. Hollow SnO2@Co3O4 core-shell spheres encapsulated in three-dimensional graphene foams for high performance supercapacitors and lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Huang, Sheng-Yun; Wang, Tao; Zhang, Kai; Yuen, Matthew M. F.; Xu, Jian-Bin; Fu, Xian-Zhu; Sun, Rong; Wong, Ching-Ping

    2015-12-01

    Hollow SnO2@Co3O4 spheres are fabricated using 300 nm spherical SiO2 particles as template. Then three-dimensional graphene foams encapsulated hollow SnO2@Co3O4 spheres are successfully obtained through self-assembly in hydrothermal process from graphene oxide nanosheets and metal oxide hollow spheres. The three-dimensional graphene foams encapsulated architectures could greatly improve the capacity, cycling stability and rate capability of hollow SnO2@Co3O4 spheres electrodes due to the highly conductive networks and flexible buffering matrix. The three-dimensional graphene foams encapsulated hollow SnO2@Co3O4 spheres are promising electrode materials for supercapacitors and lithium-ion batteries.

  10. Solvothermal synthesis of NiAl double hydroxide microspheres on a nickel foam-graphene as an electrode material for pseudo-capacitors

    SciTech Connect

    Momodu, Damilola; Bello, Abdulhakeem; Dangbegnon, Julien; Barzeger, Farshad; Taghizadeh, Fatimeh; Fabiane, Mopeli; Manyala, Ncholu; Johnson, A. T. Charlie

    2014-09-15

    In this paper, we demonstrate excellent pseudo-capacitance behavior of nickel-aluminum double hydroxide microspheres (NiAl DHM) synthesized by a facile solvothermal technique using tertbutanol as a structure-directing agent on nickel foam-graphene (NF-G) current collector as compared to use of nickel foam current collector alone. The structure and surface morphology were studied by X-ray diffraction analysis, Raman spectroscopy and scanning and transmission electron microscopies respectively. NF-G current collector was fabricated by chemical vapor deposition followed by an ex situ coating method of NiAl DHM active material which forms a composite electrode. The pseudocapacitive performance of the composite electrode was investigated by cyclic voltammetry, constant charge–discharge and electrochemical impedance spectroscopy measurements. The composite electrode with the NF-G current collector exhibits an enhanced electrochemical performance due to the presence of the conductive graphene layer on the nickel foam and gives a specific capacitance of 1252 F g{sup −1} at a current density of 1 A g{sup −1} and a capacitive retention of about 97% after 1000 charge–discharge cycles. This shows that these composites are promising electrode materials for energy storage devices.

  11. Improved wetting behavior and thermal conductivity of the three-dimensional nickel foam/epoxy composites with graphene oxide as interfacial modifier

    NASA Astrophysics Data System (ADS)

    Huang, Liang; Zhu, Pengli; Li, Gang; Sun, Rong

    2016-05-01

    The partial reduced graphene oxide (P-rGO) sheets-wrapped nickel foams (NF@P-rGO) were prepared by hydrothermal method, and then their epoxy composites were fabricated via a simple drop-wetting process. The P-rGO sheets on the metal networks could effectively improve the compatibility between nickel foam and epoxy resin, thus greatly accelerate the wetting of epoxy resin on the foams and avoid cracks in the network-polymer interface. Owing to the existence of high-efficiency conductive metal networks, the NF@P-rGO/epoxy composite has a high thermal conductivity of 0.584 W m-1 K-1, which is 2.6 times higher than that of neat epoxy resin. Additionally, owing to the improved wetting ability, NF@P-rGO-10 wt% boron nitride (BN) microsheets/epoxy composites could be fabricated and have a further higher thermal conductivity of 0.71 W m-1 K-1. We believe the use of P-rGO as a novel surface modifier and the following liquid polymer drop-wetting could be an effective method to obtain novel and outstanding metal foam/polymer composites.

  12. 1.5 V battery driven reduced graphene oxide-silver nanostructure coated carbon foam (rGO-Ag-CF) for the purification of drinking water.

    PubMed

    Kumar, Surender; Ghosh, Somnath; Munichandraiah, N; Vasan, H N

    2013-06-14

    A porous carbon foam (CF) electrode modified with a reduced graphene oxide-Ag (rGO-Ag) nanocomposite has been fabricated to purify water. It can perform as an antibacterial device by killing pathogenic microbes with the aid of a 1.5 V battery, with very little power consumption. The device is recycled ten times with good performance for long term usage. It is shown that the device may be implemented as a fast water purifier to deactivate the pathogens in drinking water. PMID:23670243

  13. 3D Networked Tin Oxide/Graphene Aerogel with a Hierarchically Porous Architecture for High-Rate Performance Sodium-Ion Batteries.

    PubMed

    Xie, Xiuqiang; Chen, Shuangqiang; Sun, Bing; Wang, Chengyin; Wang, Guoxiu

    2015-09-01

    Low-cost and sustainable sodium-ion batteries are regarded as a promising technology for large-scale energy storage and conversion. The development of high-rate anode materials is highly desirable for sodium-ion batteries. The optimization of mass transport and electron transfer is crucial in the discovery of electrode materials with good high-rate performances. Herein, we report the synthesis of 3 D interconnected SnO2 /graphene aerogels with a hierarchically porous structure as anode materials for sodium-ion batteries. The unique 3 D architecture was prepared by a facile in situ process, during which cross-linked 3 D conductive graphene networks with macro-/meso-sized hierarchical pores were formed and SnO2 nanoparticles were dispersed uniformly on the graphene surface simultaneously. Such a 3 D functional architecture not only facilitates the electrode-electrolyte interaction but also provides an efficient electron pathway within the graphene networks. When applied as anode materials in sodium-ion batteries, the as-prepared SnO2 /graphene aerogel exhibited high reversible capacity, improved cycling performance compared to SnO2 , and promising high-rate capability. PMID:26079600

  14. Foam Micromechanics

    SciTech Connect

    Kraynik, A.M.; Neilsen, M.K.; Reinelt, D.A.; Warren, W.E.

    1998-11-03

    -dimensional situation is always easier to visualize and usually easier to analyze, the roots of foam micromechanics lie in the plane packed with polygons. There are striking similarities as well as obvious differences between 2D and 3D.

  15. 3D graphene oxide-polymer hydrogel: near-infrared light-triggered active scaffold for reversible cell capture and on-demand release.

    PubMed

    Li, Wen; Wang, Jiasi; Ren, Jinsong; Qu, Xiaogang

    2013-12-10

    An active cell scaffold based on a graphene-polymer hydrogel has been successfully fabricated. The macroporous hydrogel can efficiently capture cells not only through the bioadhesive ligand RGD but also through on-demand release of cells with an NIR light stimulus. The latter process shows better dynamic control over cells than traditional passive-hydrogel-based cell depots. PMID:24123218

  16. Facile synthesis of Fe3O4 nanoparticles decorated on 3D graphene aerogels as broad-spectrum sorbents for water treatment

    NASA Astrophysics Data System (ADS)

    Li, Yong; Zhang, Ruofang; Tian, Xike; Yang, Chao; Zhou, Zhaoxin

    2016-04-01

    In order to develop efficient and environment benign sorbents for water purification, the macroscopic multifunctional magnetite-reduced graphene oxides aerogels (M-RGOs) with strong interconnected networks were prepared via a one pot solvothermal method of graphene oxide sheets adsorbing iron ions and in situ simultaneous deposition of Fe3O4 nanoparticles in ethylene glycol or triethylene glycol solvents. Such M-RGOs exhibited excellent sorption capacity to different contaminants, including oils, organic solvents, arsenite ions, as well as dyes. In addition, it was demonstrated that the M-RGOs could be used as column packing materials to manufacture column for water purification by filtration. The method proposed was proved to be versatile to induce synergistic assembly of RGO sheets with other functional metal oxides nanoparticles and as a kind of broad-spectrum sorbents for removing different types of contaminants in water purification, simultaneously.

  17. Design of Stable and Powerful Nanobiocatalysts, Based on Enzyme Laccase Immobilized on Self-Assembled 3D Graphene/Polymer Composite Hydrogels.

    PubMed

    Ormategui, Nerea; Veloso, Antonio; Leal, Gracia Patricia; Rodriguez-Couto, Susana; Tomovska, Radmila

    2015-07-01

    Graphene-based materials appear as a suitable answer to the demand for novel nanostructured materials for effective nanobiocatalytic systems design. In this work, a design of stable and efficient nanobiocatalysts made of enzyme laccase immobilized on composite hydrogels [reduced graphene oxide (rGO)/polymer] is presented. The composite hydrogel supports were synthesized by self-assembly of graphene oxide nanoplatelets in the frame of a polymer latex matrix, where the polymer nanoparticles were adsorbed onto the GO surface, creating hybrid nanoplatelets. These hybrids self-assembled when ascorbic acid was added as a GO reducing agent and formed three-dimensional porous structures, greatly swollen with water, e.g., the composite hydrogels. The hydrogels were used as a support for covalent immobilization of the laccase. The performance of the nanobiocatalysts was tested in the oxidative degradation of the recalcitrant synthetic dye Remazol Brilliant Blue R in aqueous solutions. The biocatalysts showed strong dye discoloration ability and high stability as they preserved their catalytic action in four successive batches of dye degradation. The presented biocatalysts offer possibilities for overcoming the main disadvantages of the enzyme catalysts (fragile nature, high cost, and high loading of the enzyme), which would lead to a step forward toward their industrial application. PMID:26075472

  18. Nano-Composite Material Development for 3-D Printers

    SciTech Connect

    Satches, Michael Randolph

    2015-10-14

    The objectives of the project was to create a graphene reinforced polymer nano-composite viable in a commercial 3-D printer; study the effects of ultra-high loading of graphene in polymer matrices; and determine the functional upper limit of graphene loading.

  19. Core-Shell Co/CoO Integrated on 3D Nitrogen Doped Reduced Graphene Oxide Aerogel as an Enhanced Electrocatalyst for the Oxygen Reduction Reaction.

    PubMed

    Wang, Meng; Hou, Yuyang; Slade, Robert C T; Wang, Jiazhao; Shi, Dongqi; Wexler, David; Liu, Huakun; Chen, Jun

    2016-01-01

    Here, we demonstrate that Cobalt/cobalt oxide core-shell nanoparticles integrated on nitrogen-doped (N-doped) three-dimensional reduced graphene oxide aerogel-based architecture (Co/CoO-NGA) were synthesized through a facile hydrothermal method followed by annealing treatment. The unique endurable porous structure could provide sufficient mass transfer channels and ample active sites on Co/CoO-NGA to facilitate the catalytic reaction. The synthesized Co/CoO-NGA was explored as an electrocatalyst for the oxygen reduction reaction, showing comparable oxygen reduction performance with excellent methanol resistance and better durability compared with Pt/C. PMID:27597939

  20. Core-Shell Co/CoO Integrated on 3D Nitrogen Doped Reduced Graphene Oxide Aerogel as an Enhanced Electrocatalyst for the Oxygen Reduction Reaction

    PubMed Central

    Wang, Meng; Hou, Yuyang; Slade, Robert C. T.; Wang, Jiazhao; Shi, Dongqi; Wexler, David; Liu, Huakun; Chen, Jun

    2016-01-01

    Here, we demonstrate that Cobalt/cobalt oxide core-shell nanoparticles integrated on nitrogen-doped (N-doped) three-dimensional reduced graphene oxide aerogel-based architecture (Co/CoO-NGA) were synthesized through a facile hydrothermal method followed by annealing treatment. The unique endurable porous structure could provide sufficient mass transfer channels and ample active sites on Co/CoO-NGA to facilitate the catalytic reaction. The synthesized Co/CoO-NGA was explored as an electrocatalyst for the oxygen reduction reaction, showing comparable oxygen reduction performance with excellent methanol resistance and better durability compared with Pt/C. PMID:27597939

  1. 3D Mesoporous Graphene: CVD Self-Assembly on Porous Oxide Templates and Applications in High-Stable Li-S Batteries.

    PubMed

    Shi, Jia-Le; Tang, Cheng; Peng, Hong-Jie; Zhu, Lin; Cheng, Xin-Bing; Huang, Jia-Qi; Zhu, Wancheng; Zhang, Qiang

    2015-10-21

    A nanostructured carbon with high specific surface area (SSA), tunable pore structure, superior electrical conductivity, mechanically robust framework, and high chemical stability is an important requirement for electrochemical energy storage. Porous graphene fabricated by chemical activation and liquid etching has a high surface area but very limited volume of electrochemically accessible mesopores. Herein, an effective strategy of in situ formation of hierarchically mesoporous oxide templates with small pores induced by Kirkendall diffusion and large pores attributed to evaporation of deliberately introduced volatile metal is proposed for chemical vapor deposition assembly of porous graphene frameworks (PGFs). The PGFs inherit the hierarchical mesoporous structure of the templates. A high SSA of 1448 m(2) g(-1), 91.6% of which is contributed by mesopores, and a mesopore volume of 2.40 cm(3) g(-1) are attained for PGFs serving as reservoirs of ions or active materials in electrochemical energy storage applications. When the PGFs are applied in lithium-sulfur batteries, a very high sulfur utilization of 71% and a very low fading rate of ≈0.04% per cycle after the second cycle are achieved at a current rate of 1.0 C. This work provides a general strategy for the rational construction of mesoporous structures induced by a volatile metal, with a view toward the design of hierarchical nanomaterials for advanced energy storage. PMID:26265205

  2. Ni(OH){sub 2} nanoflakes electrodeposited on Ni foam-supported vertically oriented graphene nanosheets for application in asymmetric supercapacitors

    SciTech Connect

    Wang, Xin; Liu, Jiyue; Wang, Yayu; Zhao, Cuimei; Zheng, Weitao

    2014-04-01

    Highlights: • Ni(OH){sub 2}/vertically oriented graphene nanosheets (V-GNs) was prepared. • Ni(OH){sub 2}/V-GNs had enhanced specific capacitance, cycling reversibility and stability. • Performance of Ni(OH){sub 2}/GNs/NF-AC asymmetric supercapacitor was studied. - Abstract: Binderless Ni(OH){sub 2} nanoflakes grown on Ni foam (NF)-supported vertically oriented graphene nanosheets (V-GNs) has been fabricated as a positive electrode material for asymmetric supercapacitor (ASC), coupled with activated carbon (AC) as a counter electrode material. The introduction of V-GNs leads to dense growth of nanocrystalline β-Ni(OH){sub 2} that is confirmed by X-ray diffraction, transmission electron microscopic and scanning electron microscopic analyses. The electrochemical performances of the Ni(OH){sub 2}/GNs/NF electrode are characterized by cyclic voltammetry and charge–discharge tests, which exhibit high specific capacitance of 2215 F g{sup −1} at a scan current density of 2.3 A g{sup −1}, enhanced cycling stability and high rate capability. The Ni(OH){sub 2}/GNs/NF-AC-based ASC can achieve a cell voltage of 1.4 V and a specific energy density of 11.11 Wh kg{sup −1} at 0.5 mA cm{sup −2} with a nearly 100% coulombic efficiency at room temperature.

  3. Self-Construction from 2D to 3D: One-Pot Layer-by-Layer Assembly of Graphene Oxide Sheets Held Together by Coordination Polymers.

    PubMed

    Zakaria, Mohamed B; Li, Cuiling; Ji, Qingmin; Jiang, Bo; Tominaka, Satoshi; Ide, Yusuke; Hill, Jonathan P; Ariga, Katsuhiko; Yamauchi, Yusuke

    2016-07-11

    Deposition of Ni-based cyanide bridged coordination polymer (NiCNNi) flakes onto the surfaces of graphene oxide (GO) sheets, which allows precise control of the resulting lamellar nanoarchitecture by in situ crystallization, is reported. GO sheets are utilized as nucleation sites that promote the optimized crystal growth of NiCNNi flakes. The NiCNNi-coated GO sheets then self-assemble and are stabilized as ordered lamellar nanomaterials. Regulated thermal treatment under nitrogen results in a Ni3 C-GO composite with a similar morphology to the starting material, and the Ni3 C-GO composite exhibits outstanding electrocatalytic activity and excellent durability for the oxygen reduction reaction. PMID:27167720

  4. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  5. Foam Dispenser

    NASA Technical Reports Server (NTRS)

    1985-01-01

    William G. Simpson, a NASA/Marshall employee, invented and patented a foam mixing dispensing device. He is supplying his Simpson mixer to a number of foam applications where it is used to apply foam for insulation purposes.

  6. Ab initio study of 3d, 4d, and 5d transition metal adatoms and dimers adsorbed on hydrogen-passivated zigzag graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Longo, R. C.; Carrete, J.; Gallego, L. J.

    2011-06-01

    We performed extensive density-functional calculations of the structural, electronic, and magnetic properties of systems comprising one or two adatoms of Fe, Co, Ni, Ru, Rh, Pd, or Pt adsorbed on a hydrogen-passivated zigzag graphene nanoribbon (GNR). In all cases, the most stable structure featured the adatom(s) at positions near one of the edges of the GNR. However, whereas in the most stable structures of the single-adatom systems Ni/GNR, Ru/GNR, Rh/GNR, and Pd/GNR the adatom was located above a bay of the zigzag edge, Fe/GNR and Co/GNR were found to be most stable when the adatoms were at a first-row hole site, while the two configurations were nearly equienergetic for Pt/GNR. Similarly, whereas the most stable structures of the two-adatom systems Ni2/GNR, Ru2/GNR, Rh2/GNR, and Pd2/GNR had the adatoms above two neighboring edge bays, Co2/GNR and Pt2/GNR were most stable with the adatoms stacked in a double-decker configuration above a single edge bay, and Fe2/GNR with the adatoms stacked at a single first-row hole site. Adatom adsorption involved strong hybridization between the metal d states and the GNR states, and adsorption at sites near a GNR edge generally reduced the average magnetic moment of carbon atoms at that edge to near zero, though in some cases—notably two Co2/GNR configurations—it led to the GNR edges having non-negligible magnetic moments of the same sign even though at the start of the optimization the metal atoms were nonmagnetic and the GNR edges had opposite signs (the preferred configuration of the pristine GNR). The electronic character of GNRs with adsorbed transition metal atoms or dimers depended on the species and concentration of the adsorbate and on the adsorption site(s), different stable or near-stable systems exhibiting semiconducting, zero-gap semiconducting, metallic, or half-metallic behavior.

  7. 3d-3d correspondence revisited

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  8. Three Dimensional P-doped Graphene Synthesized by Eco-Friendly Chemical Vapor Deposition for Oxygen Reduction Reactions.

    PubMed

    Li, Xiaoguang; Qiu, Yunfeng; Hu, Ping An

    2016-06-01

    Heteroatom doping provides possibilities for changing the electronic properties of graphene. Three Dimensional P-doped graphene (3DPG) was fabricated via chemical vapor deposition (CVD) using nickel foam as template and triphenylphosphine (TPP) as C and P sources simultaneously without using toxic organic solvent as carrier liquid. The invasion of P atoms into graphene networks make them non-electroneutral and consequently favor the adsorption of oxygen and O-O bond cleavage due to the charge polarization increase of the P-C bond. Thus, the as-prepared 3DPG served as an efficient electrocatalyst for oxygen reduction reaction (ORR). Additionally, the 3D porous structure is favorable for the mass transfer of electrolytes ions, hence 3DPG exhibit better electrocatalytic activity, long-term stability, and tolerance to crossover effect of methanol than pristine 3D graphene and Pt/C for ORR. PMID:27427693

  9. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  10. Fiber-reinforced syntactic foams

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Jen

    to produce ultralight sandwich core materials was explored in which towpreg (fiber bundles impregnated with resin) were configured to produce 3D pyramidal truss structures. The composite truss structures were subsequently filled with foam to improve resistance to buckling. Mechanical properties of the foam-filled truss structures were measured and contrasted with analytical predictions based on simple truss theory. Results indicated that combination of foams and carbon fiber truss structures had synergistic effects that enhanced the capacity to carry compressive and shear loads.

  11. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  12. Springback Foam

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A decade ago, NASA's Ames Research Center developed a new foam material for protective padding of airplane seats. Now known as Temper Foam, the material has become one of the most widely-used spinoffs. Latest application is a line of Temper Foam cushioning produced by Edmont-Wilson, Coshocton, Ohio for office and medical furniture. The example pictured is the Classic Dental Stool, manufactured by Dentsply International, Inc., York, Pennsylvania, one of four models which use Edmont-Wilson Temper Foam. Temper Foam is an open-cell, flameresistant foam with unique qualities.

  13. Fluid Physics of Foam Evolution and Flow

    NASA Technical Reports Server (NTRS)

    Aref, H.; Thoroddsen, S. T.; Sullivan, J. M.

    2003-01-01

    The grant supported theoretical, numerical and experimental work focused on the elucidation of the fluid physics of foam structure, evolution and flow. The experimental work concentrated on these subject areas: (a) Measurements of the speed of reconnections within a foam; (b) statistics of bubble rearrangements; and (c) three-dimensional reconstruction of the foam structure. On the numerical simulation and theory side our efforts concentrated on the subjects: (a) simulation techniques for 2D and 3D foams; (b) phase transition in a compressible foam; and (c) TCP structures.

  14. TRACE 3-D documentation

    SciTech Connect

    Crandall, K.R.

    1987-08-01

    TRACE 3-D is an interactive beam-dynamics program that calculates the envelopes of a bunched beam, including linear space-charge forces, through a user-defined transport system. TRACE 3-D provides an immediate graphics display of the envelopes and the phase-space ellipses and allows nine types of beam-matching options. This report describes the beam-dynamics calculations and gives detailed instruction for using the code. Several examples are described in detail.

  15. Advances in cryogenic foam insulations.

    NASA Technical Reports Server (NTRS)

    Lemons, C. R.; Salmassy, O. K.; Watts, C. R.

    1971-01-01

    Description of a discretely oriented thread-reinforced polyurethane foam thermal insulation system for liquid hydrogen fuel tanks. The 3-D foam and glass liner composite is designed to be adhesively bonded to the inside surface of the tank wall and to be in direct contact with liquid hydrogen. All elements of this insulation composite are capable of sustaining the loads and environmental conditions imposed by testing under simulated Space Shuttle vehicle requirements at temperatures between -423 and +350 F.

  16. Synthesis of carbon nanotubes over 3D cubical Co-KIT-6 and nickel decorated graphene by Hummer's method, its application as counter electrode in dye sensitive solar cell

    NASA Astrophysics Data System (ADS)

    Subramanian, Sunu; Pandurangan, Arumugam

    2016-04-01

    The challenges on carbon nanotubes and graphene are still the subject of many research works due to its unique properties. There are three main methods to synthesis carbon nanotubes in which chemical vapor deposition (CVD) method can use for large scale production. The principle of CVD is the decomposition of various hydrocarbons over transition metal supported catalyst. KIT-6 molecular sieve was used as a support to prepare cobalt catalyst for CVD method using metal impregnation method to produce cobalt loadings of 2, 4 and 6 wt%. The catalysts were characterized by XRD, FTIR &TEM. Carbon nanotubes (CNTs) synthesized on Co-KIT-6 was also characterized by XRD, TGA, SEM & Raman spectra. Graphene was synthesized by Hummers method, which is the most common method for preparing graphene oxide. Graphene oxide was prepared by oxidation of graphite using some oxidizing agents like sulphuric acid, sodium nitrate and potassium permanganate. This graphene oxide is further treated with hydrazine solution to convert it into chemically converted graphene and also decorated with nickel metal and characterized. Hummer's method is important for large scale production of graphene. Both Graphene and carbon nanotubes are used in different fields due to its unique properties. Both Graphene and carbon nanotubes are fabricated in counter electrode of Dye sensitized solar cells (DSSC). By cyclic voltammetry study, it confirms that both materials are good and efficient to replace platinum in the DSSC.

  17. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  18. Bootstrapping 3D fermions

    NASA Astrophysics Data System (ADS)

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-01

    We study the conformal bootstrap for a 4-point function of fermions < ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C T . We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N . We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  19. Foaming volume and foam stability

    NASA Technical Reports Server (NTRS)

    Ross, Sydney

    1947-01-01

    A method of measuring foaming volume is described and investigated to establish the critical factors in its operation. Data on foaming volumes and foam stabilities are given for a series of hydrocarbons and for a range of concentrations of aqueous ethylene-glycol solutions. It is shown that the amount of foam formed depends on the machinery of its production as well as on properties of the liquid, whereas the stability of the foam produced, within specified mechanical limitations, is primarily a function of the liquid.

  20. Graphene nanoarchitecture in batteries.

    PubMed

    Wei, Di; Astley, Michael R; Harris, Nadine; White, Richard; Ryhänen, Tapani; Kivioja, Jani

    2014-08-21

    We compare three different carbon nanoarchitectures used to produce standard coin cell batteries: graphene monolayer, graphite paper and graphene foam. The batteries' electrochemical performances are characterised using cyclic voltammetry, constant-current discharge and dynamic galvanostatic techniques. Even though graphene is the fundamental building block of graphite its properties are intrinsically different when used in batteries because there is no ion intercalation in graphene. The nanoarchitecture of the graphene electrode is shown to have a strong influence over the battery's electrochemical performance. This provides a versatile way to design various battery electrodes on different demands. PMID:24990483

  1. Culturing Cells in 3D Ordered Cellular Solids

    NASA Astrophysics Data System (ADS)

    Lin, Keng-Hui; Lin, Wang-Jung; Lin, Jing-Ying

    2011-03-01

    Constructing a well-defined 3D microenvironment for cell growth is a key step for tissue engineering and mechanobiology. We demonstrate high-throughput fabrication of gelatin-based ordered cellular solids with tunable pore size and solid fraction. This process involves generating monodisperse liquid foam with a cross-flow microfluidic device. The monodisperse liquid foam was further processed into open-cell solid foam, which was used as scaffolds for 3D cell culture. Three distinct cell types were cultured under these conditions and displayed appropriate physiological, morphological, and functional characteristics. Epithelial cells formed cyst-like structures and were polarized inside pores, myoblasts adopted a tubular structure and fused into myotubes, and fibroblasts exhibited wide varieties of morphologies depending on their location inside the scaffolds. These ordered cellular solids therefore make possible the study of pore-size effects on cells.

  2. 3D microscope

    NASA Astrophysics Data System (ADS)

    Iizuka, Keigo

    2008-02-01

    In order to circumvent the fact that only one observer can view the image from a stereoscopic microscope, an attachment was devised for displaying the 3D microscopic image on a large LCD monitor for viewing by multiple observers in real time. The principle of operation, design, fabrication, and performance are presented, along with tolerance measurements relating to the properties of the cellophane half-wave plate used in the design.

  3. Nano-Composite Material Development for 3-D Printers

    SciTech Connect

    Satches, Michael Randolph

    2015-12-01

    Graphene possesses excellent mechanical properties with a tensile strength that may exceed 130 GPa, excellent electrical conductivity, and good thermal properties. Future nano-composites can leverage many of these material properties in an attempt to build designer materials for a broad range of applications. 3-D printing has also seen vast improvements in recent years that have allowed many companies and individuals to realize rapid prototyping for relatively low capital investment. This research sought to create a graphene reinforced, polymer matrix nano-composite that is viable in commercial 3D printer technology, study the effects of ultra-high loading percentages of graphene in polymer matrices and determine the functional upper limit for loading. Loadings varied from 5 wt. % to 50 wt. % graphene nanopowder loaded in Acrylonitrile Butadiene Styrene (ABS) matrices. Loaded sample were characterized for their mechanical properties using three point bending, tensile tests, as well as dynamic mechanical analysis.

  4. Multiviewer 3D monitor

    NASA Astrophysics Data System (ADS)

    Kostrzewski, Andrew A.; Aye, Tin M.; Kim, Dai Hyun; Esterkin, Vladimir; Savant, Gajendra D.

    1998-09-01

    Physical Optics Corporation has developed an advanced 3-D virtual reality system for use with simulation tools for training technical and military personnel. This system avoids such drawbacks of other virtual reality (VR) systems as eye fatigue, headaches, and alignment for each viewer, all of which are due to the need to wear special VR goggles. The new system is based on direct viewing of an interactive environment. This innovative holographic multiplexed screen technology makes it unnecessary for the viewer to wear special goggles.

  5. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  6. Polyimide foams

    NASA Technical Reports Server (NTRS)

    Gagliani, John (Inventor); Lee, Raymond (Inventor); Sorathia, Usman A. K. (Inventor)

    1983-01-01

    Copolyimide foams derived from a diester of 3,3',4,4'-benzophenonetetracarboxylic acid, an aromatic diamine, and a heterocyclic diamine. A molar concentration of the heterocyclic diamine approaching but not exceeding 0.42 is employed. This results in a flexible foam with a homogeneous cellular structure and a reduced compression set loss.

  7. Polyimide foams

    NASA Technical Reports Server (NTRS)

    Gagliani, John (Inventor); Lee, Raymond (Inventor); Sorathia, Usman A. K. (Inventor)

    1982-01-01

    Copolymide foams derived from a diester of 3,3',4,4'-benzophenonetetracarboxylic acid, an aromatic diamine, and a heterocyclic diamine. A molar concentration of the heterocyclic diamine approaching but not exceeding 0.42 is employed. This results in a flexible foam with a homogeneous cellular structure and a reduced compression set loss.

  8. Polyimide foams

    NASA Technical Reports Server (NTRS)

    Gagliani, John (Inventor); Lee, Raymond (Inventor); Sorathia, Usman A. K. (Inventor)

    1982-01-01

    Copolyimide foams derived from a diester of 3,3',4,4'-benzophenonetetracarboxylic acid, an aromatic diamine, and a heterocyclic diamine. A molar concentration of the heterocyclic diamine approaching but not exceeding 0.42 is employed. This results in a flexible foam with a homogeneous cellular structure and a reduced compression set loss.

  9. 3D Surgical Simulation

    PubMed Central

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  10. Composite foams

    DOEpatents

    Williams, Jr., Joel M.; Nyitray, Alice M.; Wilkerson, Mark H.

    1990-01-01

    Composite foams are provided comprising a first rigid, microcellular, open-celled organic polymer foam having a density of from about 0.015 g/cm.sup.3 to about 0.20 g/cm.sup.3 and a pore size of from about 1 micron to about 30 microns, said first foam containing a second polymer having a density of from about 0.015 g/cm.sup.3 to about 0.20 g/cm.sup.3 or a second polymer foam having a density of from about 0.015 g/cm.sup.3 to about 0.20 g/cm.sup.3 and a pore size of from about 0.01 microns to about 1.0 micron within the open cells of said first foam.

  11. Composite foams

    DOEpatents

    Williams, Jr., Joel M.; Nyitray, Alice M.; Wilkerson, Mark H.

    1991-01-01

    Composite foams are provided comprising a first rigid, microcellular, open-celled organic polymer foam having a density of from about 0.015 g/cm.sup.3 to about 0.20 g/cm.sup.3 and a pore size of from about 1 micron to about 30 microns, said first foam containing a second polymer having a density of from about 0.015 g/cm.sup.3 to about 0.20 g/cm.sup.3 or a second polymer foam having a density of from about 0.015 g/cm.sup.3 to about 0.20 g/cm.sup.3 and a pore size of from about 0.01 microns to about 1.0 micron within the open cells of said first foam.

  12. 3D Surface Topology Guides Stem Cell Adhesion and Differentiation

    PubMed Central

    Viswanathan, Priyalakshmi; Ondeck, Matthew G.; Chirasatitsin, Somyot; Nghamkham, Kamolchanok; Reilly, Gwendolen C.; Engler, Adam J.; Battaglia, Giuseppe

    2015-01-01

    Polymerized high internal phase emulsion (polyHIPE) foams are extremely versatile materials for investigating cell-substrate interactions in vitro. Foam morphologies can be controlled by polymerization conditions to result in either open or closed pore structures with different levels of connectivity, consequently enabling the comparison between 2D and 3D matrices using the same substrate with identical surface chemistry conditions. Additionally, here we achieve the control of pore surface topology (i.e. how different ligands are clustered together) using amphiphilic block copolymers as emulsion stabilisers. We demonstrate that adhesion of human mesenchymal progenitor (hES-MP) cells cultured on polyHIPE foams is dependent on foam surface topology and chemistry but is independent of porosity and interconnectivity. We also demonstrate that the interconnectivity, architecture and surface topology of the foams has an effect on the osteogenic differentiation potential of hES-MP cells. Together these data demonstrate that the adhesive heterogeneity of a 3D scaffold could regulate not only mesenchymal stem cell attachment but also cell behavior in the absence of soluble growth factors. PMID:25818420

  13. 3D polarimetric purity

    NASA Astrophysics Data System (ADS)

    Gil, José J.; San José, Ignacio

    2010-11-01

    From our previous definition of the indices of polarimetric purity for 3D light beams [J.J. Gil, J.M. Correas, P.A. Melero and C. Ferreira, Monogr. Semin. Mat. G. de Galdeano 31, 161 (2004)], an analysis of their geometric and physical interpretation is presented. It is found that, in agreement with previous results, the first parameter is a measure of the degree of polarization, whereas the second parameter (called the degree of directionality) is a measure of the mean angular aperture of the direction of propagation of the corresponding light beam. This pair of invariant, non-dimensional, indices of polarimetric purity contains complete information about the polarimetric purity of a light beam. The overall degree of polarimetric purity is obtained as a weighted quadratic average of the degree of polarization and the degree of directionality.

  14. 3D field harmonics

    SciTech Connect

    Caspi, S.; Helm, M.; Laslett, L.J.

    1991-03-30

    We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.

  15. 'Bonneville' in 3-D!

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Mars Exploration Rover Spirit took this 3-D navigation camera mosaic of the crater called 'Bonneville' after driving approximately 13 meters (42.7 feet) to get a better vantage point. Spirit's current position is close enough to the edge to see the interior of the crater, but high enough and far enough back to get a view of all of the walls. Because scientists and rover controllers are so pleased with this location, they will stay here for at least two more martian days, or sols, to take high resolution panoramic camera images of 'Bonneville' in its entirety. Just above the far crater rim, on the left side, is the rover's heatshield, which is visible as a tiny reflective speck.

  16. Optical Tomography of Polydisperse Dry Foam

    NASA Astrophysics Data System (ADS)

    Chieco, Anthony; Feitosa, Klebert; Korda, P. T.; Roth, A. E.; Durian, D. J.

    2011-11-01

    Dry foam is a disordered packing of bubbles that distort into familiar polyhedral shapes. We have implemented a method that uses optical axial tomography to reconstruct the internal structure of a dry foam in three dimensions. The technique consists of taking a series of photographs of the dry foam against a uniformly illuminated background at successive angles. By summing the projections we create images of the cross section of the foam and analyze them to locate the Plateau borders and vertices. The vertices are then connected according to Plateau's rules to reconstruct the internal structure of the foam. Using this technique we are able to visualize a large number of bubbles of real 3D foams and obtain statistics of faces and edges. We gratefully acknowledge support from DOD-ASSURE/NSF-REU grant # DMR-0851367.

  17. The defect level and ideal thermal conductivity of graphene uncovered by residual thermal reffusivity at the 0 K limit.

    PubMed

    Xie, Yangsu; Xu, Zaoli; Xu, Shen; Cheng, Zhe; Hashemi, Nastaran; Deng, Cheng; Wang, Xinwei

    2015-06-14

    Due to its intriguing thermal and electrical properties, graphene has been widely studied for potential applications in sensor and energy devices. However, the reported value for its thermal conductivity spans from dozens to thousands of W m(-1) K(-1) due to different levels of alternations and defects in graphene samples. In this work, the thermal diffusivity of suspended four-layered graphene foam (GF) is characterized from room temperature (RT) down to 17 K. For the first time, we identify the defect level in graphene by evaluating the inverse of thermal diffusivity (termed "thermal reffusivity": Θ) at the 0 K limit. By using the Debye model of Θ = Θ0 + C× e(-θ/2T) and fitting the Θ-T curve to the point of T = 0 K, we identify the defect level (Θ0) and determine the Debye temperature of graphene. Θ0 is found to be 1878 s m(-2) for the studied GF and 43-112 s m(-2) for three highly crystalline graphite materials. This uncovers a 16-43-fold higher defect level in GF than that in pyrolytic graphite. In GF, the phonon mean free path solely induced by defects and boundary scattering is determined as 166 nm. The Debye temperature of graphene is determined to be 1813 K, which is very close to the average theoretical Debye temperature (1911 K) of the three acoustic phonon modes in graphene. By subtracting the defect effect, we report the ideal thermal diffusivity and conductivity (κideal) of graphene presented in the 3D foam structure in the range of 33-299 K. Detailed physics based on chemical composition and structure analysis are given to explain the κideal-T profile by comparing with those reported for suspended graphene. PMID:25981826

  18. Dynamical Lorentz symmetry breaking in 3D and charge fractionalization

    SciTech Connect

    Charneski, B.; Gomes, M.; Silva, A. J. da; Mariz, T.; Nascimento, J. R.

    2009-03-15

    We analyze the breaking of Lorentz invariance in a 3D model of fermion fields self-coupled through four-fermion interactions. The low-energy limit of the theory contains various submodels which are similar to those used in the study of graphene or in the description of irrational charge fractionalization.

  19. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  20. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  1. Forming foam structures with carbon foam substrates

    DOEpatents

    Landingham, Richard L.; Satcher, Jr., Joe H.; Coronado, Paul R.; Baumann, Theodore F.

    2012-11-06

    The invention provides foams of desired cell sizes formed from metal or ceramic materials that coat the surfaces of carbon foams which are subsequently removed. For example, metal is located over a sol-gel foam monolith. The metal is melted to produce a metal/sol-gel composition. The sol-gel foam monolith is removed, leaving a metal foam.

  2. Foam patterns

    SciTech Connect

    Chaudhry, Anil R; Dzugan, Robert; Harrington, Richard M; Neece, Faurice D; Singh, Nipendra P; Westendorf, Travis

    2013-11-26

    A method of creating a foam pattern comprises mixing a polyol component and an isocyanate component to form a liquid mixture. The method further comprises placing a temporary core having a shape corresponding to a desired internal feature in a cavity of a mold and inserting the mixture into the cavity of the mold so that the mixture surrounds a portion of the temporary core. The method optionally further comprises using supporting pins made of foam to support the core in the mold cavity, with such pins becoming integral part of the pattern material simplifying subsequent processing. The method further comprises waiting for a predetermined time sufficient for a reaction from the mixture to form a foam pattern structure corresponding to the cavity of the mold, wherein the foam pattern structure encloses a portion of the temporary core and removing the temporary core from the pattern independent of chemical leaching.

  3. Synthesis of reduced graphene oxide intercalated ZnO quantum dots nanoballs for selective biosensing detection

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Zhao, Minggang; Li, Yingchun; Fan, Sisi; Ding, Longjiang; Liang, Jingjing; Chen, Shougang

    2016-07-01

    ZnO quantum dots (QDs), reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs) are always used in sensors due to their excellent electrochemical characteristics. In this work, ZnO QDs were intercalated by rGO sheets with cross-linked MWCNTs to construct intercalation nanoballs. A MWCNTs/rGO/ZnO QDs 3D hierarchical architecture was fabricated on supporting Ni foam, which exhibited excellent mechanical, kinetic and electrochemical properties. The intercalation construction can introduce strong interfacial effects to improve the surface electronic state. The selectively determinate of uric acid, dopamine, and ascorbic acid by an electrode material using distinct applied potentials was realized.

  4. Temper Foam

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Fabricated by Expanded Rubber & Plastics Corporation, Temper Foam provides better impact protection for airplane passengers and enhances passenger comfort on long flights because it distributes body weight and pressure evenly over the entire contact area. Called a "memory foam" it matches the contour of the body pressing against it and returns to its original shape once the pressure is removed. As a shock absorber, a three-inch foam pad has the ability to absorb the impact of a 10-foot fall by an adult. Applications include seat cushioning for transportation vehicles, padding for furniture and a variety of athletic equipment medical applications including wheelchair padding, artificial limb socket lining, finger splint and hand padding for burn patients, special mattresses for the bedridden and dental stools. Production and sales rights are owned by Temper Foam, Inc. Material is manufactured under license by the Dewey and Almy Division of Grace Chemical Corporation. Distributors of the product are Kees Goebel Medical Specialties, Inc. and Alimed, Inc. They sell Temper Foam in bulk to the fabricators who trim it to shapes required by their customers.

  5. Flexible graphene based microwave attenuators.

    PubMed

    Byun, Kisik; Ju Park, Yong; Ahn, Jong-Hyun; Min, Byung-Wook

    2015-02-01

    We demonstrate flexible 3 dB and 6 dB microwave attenuators using multilayer graphene grown by the chemical vapor deposition method. On the basis of the characterized results of multilayer graphene and graphene-Au ohmic contacts, the graphene attenuators are designed and measured. The flexible graphene-based attenuators have 3 dB and 6 dB attenuation with a return loss of less than -15 dB at higher than 5 GHz. The devices have shown durability in a bending cycling test of 100 times. The circuit model of the attenuator based on the characterized results matches the experimental results well. PMID:25590144

  6. The edges of graphene.

    PubMed

    Zhang, Xiuyun; Xin, John; Ding, Feng

    2013-04-01

    The edge of two dimensional (2D) graphene, as the surface of a three dimensional (3D) crystal, plays a crucial role in the determination of its physical, electronic and chemical properties and thus has been extensively studied recently. In this review, we summarize the recent advances in the study of graphene edges, including edge formation energy, edge reconstruction, method of graphene edge synthesis and the recent progress on metal-passivated graphene edges and the role of edges in graphene CVD growth. We expect this review to provide a guideline for readers to gain a clear picture of graphene edges from several aspects, especially the catalyst-passivated graphene edges and their role in graphene CVD growth. PMID:23420074

  7. The edges of graphene

    NASA Astrophysics Data System (ADS)

    Zhang, Xiuyun; Xin, John; Ding, Feng

    2013-03-01

    The edge of two dimensional (2D) graphene, as the surface of a three dimensional (3D) crystal, plays a crucial role in the determination of its physical, electronic and chemical properties and thus has been extensively studied recently. In this review, we summarize the recent advances in the study of graphene edges, including edge formation energy, edge reconstruction, method of graphene edge synthesis and the recent progress on metal-passivated graphene edges and the role of edges in graphene CVD growth. We expect this review to provide a guideline for readers to gain a clear picture of graphene edges from several aspects, especially the catalyst-passivated graphene edges and their role in graphene CVD growth.

  8. Full-field characterization of mechanical behavior of polyurethane foams.

    SciTech Connect

    Lu, Wei-Yang; Neilsen, Michael K.; Hinnerichs, Terry Dean; Scheffel, Simon; Jin, Huiqing

    2006-02-01

    The foam material of interest in this investigation is a rigid closed-cell polyurethane foam PMDI with a nominal density of 20 pcf (320 kg/m{sup 3}). Three separate types of compression experiments were conducted on foam specimens. The heterogeneous deformation of foam specimens and strain concentration at the foam-steel interface were obtained using the 3-dimensional digital image correlation (3D-DIC) technique. These experiments demonstrated that the 3D-DIC technique is able to obtain accurate and full-field large deformation of foam specimens, including strain concentrations. The experiments also showed the effects of loading configurations on deformation and strain concentration in foam specimens. These DIC results provided experimental data to validate the previously developed viscoplastic foam model (VFM). In the first experiment, cubic foam specimens were compressed uniaxially up to 60%. The full-field surface displacement and strain distributions obtained using the 3D-DIC technique provided detailed information about the inhomogeneous deformation over the area of interest during compression. In the second experiment, compression tests were conducted for cubic foam specimens with a steel cylinder inclusion, which imitate the deformation of foam components in a package under crush conditions. The strain concentration at the interface between the steel cylinder and the foam specimen was studied in detail. In the third experiment, the foam specimens were loaded by a steel cylinder passing through the center of the specimens rather than from its end surface, which created a loading condition of the foam components similar to a package that has been dropped. To study the effects of confinement, the strain concentration and displacement distribution over the defined sections were compared for cases with and without a confinement fixture.

  9. Three-dimensional, flexible graphene bioelectronics.

    PubMed

    Chun, SungGyu; Choi, Jonghyun; Ashraf, Ali; Nam, SungWoo

    2014-01-01

    We report 3-dimensional (3D) graphene-based biosensors fabricated via 3D transfer of monolithic graphene-graphite structures. This mechanically flexible all-carbon structure is a prospective candidate for intimate 3D interfacing with biological systems. Monolithic graphene-graphite structures were synthesized using low pressure chemical vapor deposition (LPCVD) process relying on the heterostructured metal catalyst layers. Nonplanar substrates and wet-transfer method were used with a thin Au film as a transfer layer to achieve the 3D graphene structure. Instead of the typical wet-etching method, vapor-phase etching was performed to minimize the delamination of the graphene while removing the transfer layer. We believe that the monolithic graphene-graphite synthesis combined with the conformal 3D transfer will pave the way for the 3D conformal sensing capability as well as the intracellular recording of living cells in the future. PMID:25571182

  10. From graphene to silicon carbide: ultrathin silicon carbide flakes.

    PubMed

    Chabi, Sakineh; Chang, Hong; Xia, Yongde; Zhu, Yanqiu

    2016-02-19

    This study presents a new ultrathin SiC structure prepared by a catalyst free carbothermal method and post-sonication process. We have found that merging ultra-light 3D graphene foam and SiO together at high temperature leads to the formation of a complex SiC structure consisting of 3D SiC foam covered with traditional 1D nanowires. Upon breaking off, the 3D SiC was confirmed to be made from 2D nanosheets. The resulting novel 2D SiC nanosheets/nanoflakes were thoroughly investigated by using optical microscope, SEM, EDS, TEM, STEM, AFM, and Raman, which verified the highly crystallised structure feature. AFM results revealed an average thickness of 2-3 nm and average size of 2 μm for the flakes. This new SiC structure could not only actualise SiC usage for nano-electronic devices but is also expected to open new applications as well. PMID:26775658

  11. From graphene to silicon carbide: ultrathin silicon carbide flakes

    NASA Astrophysics Data System (ADS)

    Chabi, Sakineh; Chang, Hong; Xia, Yongde; Zhu, Yanqiu

    2016-02-01

    This study presents a new ultrathin SiC structure prepared by a catalyst free carbothermal method and post-sonication process. We have found that merging ultra-light 3D graphene foam and SiO together at high temperature leads to the formation of a complex SiC structure consisting of 3D SiC foam covered with traditional 1D nanowires. Upon breaking off, the 3D SiC was confirmed to be made from 2D nanosheets. The resulting novel 2D SiC nanosheets/nanoflakes were thoroughly investigated by using optical microscope, SEM, EDS, TEM, STEM, AFM, and Raman, which verified the highly crystallised structure feature. AFM results revealed an average thickness of 2-3 nm and average size of 2 μm for the flakes. This new SiC structure could not only actualise SiC usage for nano-electronic devices but is also expected to open new applications as well.

  12. 3D Spectroscopy in Astronomy

    NASA Astrophysics Data System (ADS)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  13. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  14. System and method for 3D printing of aerogels

    DOEpatents

    Worsley, Marcus A.; Duoss, Eric; Kuntz, Joshua; Spadaccini, Christopher; Zhu, Cheng

    2016-03-08

    A method of forming an aerogel. The method may involve providing a graphene oxide powder and mixing the graphene oxide powder with a solution to form an ink. A 3D printing technique may be used to write the ink into a catalytic solution that is contained in a fluid containment member to form a wet part. The wet part may then be cured in a sealed container for a predetermined period of time at a predetermined temperature. The cured wet part may then be dried to form a finished aerogel part.

  15. Polyimide Foams

    NASA Technical Reports Server (NTRS)

    Vazquez, Juan M. (Inventor); Cano, Roberto J. (Inventor); Jensen, Brian J. (Inventor); Weiser, Erik S. (Inventor)

    2005-01-01

    A fully imidized, solvent-free polyimide foam having excellent mechanical, acoustic, thermal, and flame resistant properties is produced. A first solution is provided, which includes one or more aromatic dianhydrides or derivatives of aromatic dianhydrides, and may include one or more aromatic diamines, dissolved in one or more polar solvents, along with an effective amount of one or more blowing agents. This first solution may also advantageously include effective amounts respectively of one or mores catalysts, one or more surfactants, and one or more fire retardants. A second solution is also provided which includes one or more isocyanates. The first and second solutions are rapidly and thoroughly mixed to produce an admixture, which is allowed to foam-in an open container, or in a closed mold-under ambient conditions to completion produce a foamed product. This foamed product is then cured by high frequency electromagnetic radiation, thermal energy, or a combination thereof. Alternatively, the process is adapted for spraying or extrusion.

  16. Polyimide foams

    NASA Technical Reports Server (NTRS)

    Vazquez, Juan M. (Inventor); Cano, Roberto J. (Inventor); Jensen, Brian J. (Inventor); Weiser, Erik S. (Inventor)

    2005-01-01

    A fully imidized, solvent-free polyimide foam having excellent mechanical, acoustic, thermal, and flame resistant properties is produced. A first solution is provided, which includes one or more aromatic dianhydrides or derivatives of aromatic dianhydrides, and may include one or more aromatic diamines, dissolved in one or more polar solvents, along with an effective amount of one or more blowing agents. This first solution may also advantageously include effective amounts respectively of one or mores catalysts, one or more surfactants, and one or more fire retardants. A second solution is also provided which includes one or more isocyanates. The first and second solutions are rapidly and thoroughly mixed to produce an admixture, which is allowed to foam?in an open container, or in a closed mold?under ambient conditions to completion produce a foamed product. This foamed product is then cured by high frequency electromagnetic radiation, thermal energy, or a combination thereof. Alternatively, the process is adapted for spraying or extrusion.

  17. Polyimide foams

    NASA Technical Reports Server (NTRS)

    Vazquez, Juan M. (Inventor); Cano, Roberto J. (Inventor); Jensen, Brian J. (Inventor); Weiser, Erik S. (Inventor)

    2009-01-01

    A fully imidized, solvent-free polyimide foam having excellent mechanical, acoustic, thermal, and flame resistant properties is produced. A first solution is provided, which includes one or more aromatic dianhydrides or derivatives of aromatic dianhydrides, and may include one or more aromatic diamines, dissolved in one or more polar solvents, along with an effective amount of one or more blowing agents. This first solution may also advantageously include effective amounts respectively of one or mores catalysts, one or more surfactants, and one or more fire retardants. A second solution is also provided which includes one or more isocyanates. The first and second solutions are rapidly and thoroughly mixed to produce an admixture, which is allowed to foam--in an open container, or in a closed mold--under ambient conditions to completion produce a foamed product. This foamed product is then cured by high frequency electromagnetic radiation, thermal energy, or a combination thereof. Alternatively, the process is adapted for spraying or extrusion.

  18. Modular 3-D Transport model

    EPA Science Inventory

    MT3D was first developed by Chunmiao Zheng in 1990 at S.S. Papadopulos & Associates, Inc. with partial support from the U.S. Environmental Protection Agency (USEPA). Starting in 1990, MT3D was released as a pubic domain code from the USEPA. Commercial versions with enhanced capab...

  19. Market study: 3-D eyetracker

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  20. LLNL-Earth3D

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  1. [3-D ultrasound in gastroenterology].

    PubMed

    Zoller, W G; Liess, H

    1994-06-01

    Three-dimensional (3D) sonography represents a development of noninvasive diagnostic imaging by real-time two-dimensional (2D) sonography. The use of transparent rotating scans, comparable to a block of glass, generates a 3D effect. The objective of the present study was to optimate 3D presentation of abdominal findings. Additional investigations were made with a new volumetric program to determine the volume of selected findings of the liver. The results were compared with the estimated volumes of 2D sonography and 2D computer tomography (CT). For the processing of 3D images, typical parameter constellations were found for the different findings, which facilitated processing of 3D images. In more than 75% of the cases examined we found an optimal 3D presentation of sonographic findings with respect to the evaluation criteria developed by us for the 3D imaging of processed data. Great differences were found for the estimated volumes of the findings of the liver concerning the three different techniques applied. 3D ultrasound represents a valuable method to judge morphological appearance in abdominal findings. The possibility of volumetric measurements enlarges its potential diagnostic significance. Further clinical investigations are necessary to find out if definite differentiation between benign and malign findings is possible. PMID:7919882

  2. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  3. 3D World Building System

    ScienceCinema

    None

    2014-02-26

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  4. Graphene and Graphene Oxide: Biofunctionalization and Applications in Biotechnology

    SciTech Connect

    Wang, Ying; Li, Zhaohui; Wang, Jun; Li, Jinghong; Lin, Yuehe

    2011-05-01

    Graphene is the basic building block of zero-dimensional fullerene, 1D carbon nanotubes, and 3D graphite. Graphene has a unique planar structure as well as novel electronic properties, which have attracted great interest from scientists. This review selectively analyzes current advances in the field of graphene bioapplications. In particular, the functionalization of graphene for biological applications, FRET-based biosensor development by using graphene-based nanomaterials, and the investigation of graphene for living cell studies have been summarized in more details. Future perspectives and possible challenges in this rapidly developing area are also discussed.

  5. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  6. PLOT3D user's manual

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  7. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery. PMID:26657435

  8. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  9. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  10. Damping of liquid sloshing by foams

    NASA Astrophysics Data System (ADS)

    Sauret, A.; Boulogne, F.; Cappello, J.; Dressaire, E.; Stone, H. A.

    2015-02-01

    When a container is set in motion, the free surface of the liquid starts to oscillate or slosh. Such effects can be observed when a glass of water is handled carelessly and the fluid sloshes or even spills over the rims of the container. However, beer does not slosh as readily as water, which suggests that foam could be used to damp sloshing. In this work, we study experimentally the effect on sloshing of a liquid foam placed on top of a liquid bath. We generate a monodisperse two-dimensional liquid foam in a rectangular container and track the motion of the foam. The influence of the foam on the sloshing dynamics is experimentally characterized: only a few layers of bubbles are sufficient to significantly damp the oscillations. We rationalize our experimental findings with a model that describes the foam contribution to the damping coefficient through viscous dissipation on the walls of the container. Then we extend our study to confined three-dimensional liquid foam and observe that the behavior of 2D and confined 3D systems are very similar. Thus, we conclude that only the bubbles close to the walls have a significant impact on the dissipation of energy. The possibility to damp liquid sloshing using foam is promising in numerous industrial applications such as the transport of liquefied gas in tankers or for propellants in rocket engines.

  11. Bioprinting of 3D hydrogels.

    PubMed

    Stanton, M M; Samitier, J; Sánchez, S

    2015-08-01

    Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models. PMID:26066320

  12. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  13. Arena3D: visualization of biological networks in 3D

    PubMed Central

    Pavlopoulos, Georgios A; O'Donoghue, Seán I; Satagopam, Venkata P; Soldatos, Theodoros G; Pafilis, Evangelos; Schneider, Reinhard

    2008-01-01

    Background Complexity is a key problem when visualizing biological networks; as the number of entities increases, most graphical views become incomprehensible. Our goal is to enable many thousands of entities to be visualized meaningfully and with high performance. Results We present a new visualization tool, Arena3D, which introduces a new concept of staggered layers in 3D space. Related data – such as proteins, chemicals, or pathways – can be grouped onto separate layers and arranged via layout algorithms, such as Fruchterman-Reingold, distance geometry, and a novel hierarchical layout. Data on a layer can be clustered via k-means, affinity propagation, Markov clustering, neighbor joining, tree clustering, or UPGMA ('unweighted pair-group method with arithmetic mean'). A simple input format defines the name and URL for each node, and defines connections or similarity scores between pairs of nodes. The use of Arena3D is illustrated with datasets related to Huntington's disease. Conclusion Arena3D is a user friendly visualization tool that is able to visualize biological or any other network in 3D space. It is free for academic use and runs on any platform. It can be downloaded or lunched directly from . Java3D library and Java 1.5 need to be pre-installed for the software to run. PMID:19040715

  14. Fdf in US3D

    NASA Astrophysics Data System (ADS)

    Otis, Collin; Ferrero, Pietro; Candler, Graham; Givi, Peyman

    2013-11-01

    The scalar filtered mass density function (SFMDF) methodology is implemented into the computer code US3D. This is an unstructured Eulerian finite volume hydrodynamic solver and has proven very effective for simulation of compressible turbulent flows. The resulting SFMDF-US3D code is employed for large eddy simulation (LES) on unstructured meshes. Simulations are conducted of subsonic and supersonic flows under non-reacting and reacting conditions. The consistency and the accuracy of the simulated results are assessed along with appraisal of the overall performance of the methodology. The SFMDF-US3D is now capable of simulating high speed flows in complex configurations.

  15. Foam Cushioning

    NASA Technical Reports Server (NTRS)

    1988-01-01

    One innovation developed by a contractor at Ames Research Center was an open cell polymeric foam material with unusual properties. Intended as padding for aircraft seats the material offered better impact protection against accidents, and also enhanced passenger comfort because it distributed body weight evenly over the entire contact area. Called a slow springback foam, it flows to match the contour of the body pressing against it, and returns to its original shape once the pressure is removed. It has many applications including aircraft cushions and padding, dental stools, and athletic equipment. Now it's used by Dynamic Systems, Inc. for medical applications such as wheel chairs for severely disabled people which allow them to sit for 3-8 hours where they used to be uncomfortable in 15-30 minutes.

  16. Wavefront construction in 3-D

    SciTech Connect

    Chilcoat, S.R. Hildebrand, S.T.

    1995-12-31

    Travel time computation in inhomogeneous media is essential for pre-stack Kirchhoff imaging in areas such as the sub-salt province in the Gulf of Mexico. The 2D algorithm published by Vinje, et al, has been extended to 3D to compute wavefronts in complicated inhomogeneous media. The 3D wavefront construction algorithm provides many advantages over conventional ray tracing and other methods of computing travel times in 3D. The algorithm dynamically maintains a reasonably consistent ray density without making a priori guesses at the number of rays to shoot. The determination of caustics in 3D is a straight forward geometric procedure. The wavefront algorithm also enables the computation of multi-valued travel time surfaces.

  17. Heterodyne 3D ghost imaging

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Zhang, Yong; Yang, Chenghua; Xu, Lu; Wang, Qiang; Zhao, Yuan

    2016-06-01

    Conventional three dimensional (3D) ghost imaging measures range of target based on pulse fight time measurement method. Due to the limit of data acquisition system sampling rate, range resolution of the conventional 3D ghost imaging is usually low. In order to take off the effect of sampling rate to range resolution of 3D ghost imaging, a heterodyne 3D ghost imaging (HGI) system is presented in this study. The source of HGI is a continuous wave laser instead of pulse laser. Temporal correlation and spatial correlation of light are both utilized to obtain the range image of target. Through theory analysis and numerical simulations, it is demonstrated that HGI can obtain high range resolution image with low sampling rate.

  18. Combinatorial 3D Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  19. Infiltrated carbon foam composites

    NASA Technical Reports Server (NTRS)

    Lucas, Rick D. (Inventor); Danford, Harry E. (Inventor); Plucinski, Janusz W. (Inventor); Merriman, Douglas J. (Inventor); Blacker, Jesse M. (Inventor)

    2012-01-01

    An infiltrated carbon foam composite and method for making the composite is described. The infiltrated carbon foam composite may include a carbonized carbon aerogel in cells of a carbon foam body and a resin is infiltrated into the carbon foam body filling the cells of the carbon foam body and spaces around the carbonized carbon aerogel. The infiltrated carbon foam composites may be useful for mid-density ablative thermal protection systems.

  20. Facile synthesis of porous graphene as binder-free electrode for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Luo, Guangsheng; Huang, Haifu; Lei, Chenglong; Cheng, Zhenzhi; Wu, Xiaoshan; Tang, Shaolong; Du, Youwei

    2016-03-01

    Here, porous grapheme oxide (GO) gel deposited on nickel foam was prepared by using polystyrene (PS) colloidal particles as spacers for use as electrodes in high rate supercapacitors, then reduced by Vitamin C aqueous solution in ambient condition. The PS particles were surrounded by reduced graphene oxide (rGO) sheets, forming crinkles and rough textures. When PS particles were selectively removed, rGO gel coated on the skeleton of Ni foam can formed an open porous structure, which prevents elf-aggregation and restacking of graphene sheets. The porous rGO-based supercapacitors exhibit excellent electrochemical performances such as a specific capacitance of 152 F g-1 at 1 A g-1, high rate capability of 53% capacitance retention upon a current increase to 100 A g-1 and good cycle stability, due to effective rapid and short pathways for ionic and electronic transport provided by the sub-micrometer structure of rGO gel and 3D interconnected network of Ni foam.

  1. Single-layer graphene-assembled 3D porous carbon composites with PVA and Fe₃O₄ nano-fillers: an interface-mediated superior dielectric and EMI shielding performance.

    PubMed

    Rao, B V Bhaskara; Yadav, Prasad; Aepuru, Radhamanohar; Panda, H S; Ogale, Satishchandra; Kale, S N

    2015-07-28

    In this study, a novel composite of Fe3O4 nanofiller-decorated single-layer graphene-assembled porous carbon (SLGAPC) with polyvinyl alcohol (PVA) having flexibility and a density of 0.75 g cm(-3) is explored for its dielectric and electromagnetic interference (EMI) response properties. The composite is prepared by the solution casting method and its constituents are optimized as 15 wt% SLGAPC and 20 wt% Fe3O4 through a novel solvent relaxation nuclear magnetic resonance experiment. The PVA-SLGAPC-Fe3O4 composite shows high dielectric permittivity in the range of 1 Hz-10 MHz, enhanced by a factor of 4 as compared to that of the PVA-SLGAPC composite, with a reduced loss by a factor of 2. The temperature dependent dielectric properties reveal the activation energy behaviour with reference to the glass transition temperature (80 °C) of PVA. The dielectric hysteresis with the temperature cycle reveals a remnant polarization. The enhanced dielectric properties are suggested to be the result of improvement in the localized polarization of the integrated interface system (Maxwell-Wagner-Sillars (MWS) polarization) formed by the uniform adsorption of Fe3O4 on the surface of SLGAPC conjugated with PVA. The EMI shielding property of the composite with a low thickness of 0.3 mm in the X-band (8.2-12.4 GHz) shows a very impressive shielding efficiency of ∼15 dB and a specific shielding effectiveness of 20 dB (g cm(-3))(-1), indicating the promising character of this material for flexible EMI shielding applications. PMID:26105548

  2. From 3D view to 3D print

    NASA Astrophysics Data System (ADS)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  3. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    NASA Astrophysics Data System (ADS)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  4. Remote 3D Medical Consultation

    NASA Astrophysics Data System (ADS)

    Welch, Greg; Sonnenwald, Diane H.; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Krishnan, Srinivas; Söderholm, Hanna M.

    Two-dimensional (2D) video-based telemedical consultation has been explored widely in the past 15-20 years. Two issues that seem to arise in most relevant case studies are the difficulty associated with obtaining the desired 2D camera views, and poor depth perception. To address these problems we are exploring the use of a small array of cameras to synthesize a spatially continuous range of dynamic three-dimensional (3D) views of a remote environment and events. The 3D views can be sent across wired or wireless networks to remote viewers with fixed displays or mobile devices such as a personal digital assistant (PDA). The viewpoints could be specified manually or automatically via user head or PDA tracking, giving the remote viewer virtual head- or hand-slaved (PDA-based) remote cameras for mono or stereo viewing. We call this idea remote 3D medical consultation (3DMC). In this article we motivate and explain the vision for 3D medical consultation; we describe the relevant computer vision/graphics, display, and networking research; we present a proof-of-concept prototype system; and we present some early experimental results supporting the general hypothesis that 3D remote medical consultation could offer benefits over conventional 2D televideo.

  5. Speaking Volumes About 3-D

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  6. 3D-Printed Microfluidics.

    PubMed

    Au, Anthony K; Huynh, Wilson; Horowitz, Lisa F; Folch, Albert

    2016-03-14

    The advent of soft lithography allowed for an unprecedented expansion in the field of microfluidics. However, the vast majority of PDMS microfluidic devices are still made with extensive manual labor, are tethered to bulky control systems, and have cumbersome user interfaces, which all render commercialization difficult. On the other hand, 3D printing has begun to embrace the range of sizes and materials that appeal to the developers of microfluidic devices. Prior to fabrication, a design is digitally built as a detailed 3D CAD file. The design can be assembled in modules by remotely collaborating teams, and its mechanical and fluidic behavior can be simulated using finite-element modeling. As structures are created by adding materials without the need for etching or dissolution, processing is environmentally friendly and economically efficient. We predict that in the next few years, 3D printing will replace most PDMS and plastic molding techniques in academia. PMID:26854878

  7. Quantum Foam

    SciTech Connect

    Lincoln, Don

    2014-10-24

    The laws of quantum mechanics and relativity are quite perplexing however it is when the two theories are merged that things get really confusing. This combined theory predicts that empty space isn’t empty at all – it’s a seething and bubbling cauldron of matter and antimatter particles springing into existence before disappearing back into nothingness. Scientists call this complicated state of affairs “quantum foam.” In this video, Fermilab’s Dr. Don Lincoln discusses this mind-bending idea and sketches some of the experiments that have convinced scientists that this crazy prediction is actually true.

  8. Foam sclerotherapy.

    PubMed

    Alder, Glen; Lees, Tim

    2015-11-01

    Foam sclerotherapy is a minimally invasive treatment for lower limb varicose veins. Current evidence indicates that its efficacy may not be as high as surgery or endovenous ablation. The minimally invasive nature of the treatment however means that it has a wide application, and it can be particularly useful in patients who are not suitable for other types of treatment. NICE guidelines recommend its use as a second line after endovenous ablation. Complication rates are low and most of these are of little clinical consequence. PMID:26556698

  9. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2004-04-05

    This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.

  10. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2003-05-12

    This project is in its first full year after the combining of two previously funded projects: ''3D Code Development'' and ''Dynamic Material Properties''. The motivation behind this move was to emphasize and strengthen the ties between the experimental work and the computational model development in the materials area. The next year's activities will indicate the merging of the two efforts. The current activity is structured in two tasks. Task A, ''Simulations and Measurements'', combines all the material model development and associated numerical work with the materials-oriented experimental activities. Task B, ''ALE3D Development'', is a continuation of the non-materials related activities from the previous project.

  11. SNL3dFace

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial featuresmore » of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.« less

  12. Making Inexpensive 3-D Models

    ERIC Educational Resources Information Center

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  13. SNL3dFace

    SciTech Connect

    Russ, Trina; Koch, Mark; Koudelka, Melissa; Peters, Ralph; Little, Charles; Boehnen, Chris; Peters, Tanya

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial features of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.

  14. 3D Printing: Exploring Capabilities

    ERIC Educational Resources Information Center

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  15. Electrochemical Energy Storage Application and Degradation Analysis of Carbon-Coated Hierarchical NiCo2S4 Core-Shell Nanowire Arrays Grown Directly on Graphene/Nickel Foam

    NASA Astrophysics Data System (ADS)

    Zou, Rujia; Yuen, Muk Fung; Yu, Li; Hu, Junqing; Lee, Chun-Sing; Zhang, Wenjun

    2016-02-01

    We developed a new electrode comprising thin carbon layer coated hierarchical NiCo2S4 core-shell nanowire arrays (NiCo2S4@C CSNAs) on graphene/Ni foam (Ni@G) substrates. The electrode showed outstanding electrochemical characteristics including a high specific capacitance of 253 mAh g-1 at 3 A g-1, high rate capability of 163 mAh g-1 at 50 A g-1 (~64.4% of that at 3 A g-1), and long-term cycling stability with a capacity retention of 93.9% after 5000 cycles. Comparative studies on the degradation of hierarchical NiCo2S4 CSNA electrodes with and without carbon coatings revealed that the morphology pulverization, structural separation at core/shell interface, and irretrievably chemical composition change of NiCo2S4 CSNAs electrode are major factors that deteriorate the electrochemical performance of the electrodes without carbon coating. The favorable roles of carbon coatings on hierarchical NiCo2S4 CSNAs were further clarified: (1) serving as a physical buffering layer that suppresses the structural breakdown; (2) retarding the chemical composition conversion of the NiCo2S4 CSNAs; and (3) providing extra path for charge transition in addition to the NiCo2S4 core nanowires. Understanding of the degradation mechanisms and the significance of the surface carbon coatings would provide useful guidelines for the design of new electrode materials for high-performance electrochemical devices.

  16. Electrochemical Energy Storage Application and Degradation Analysis of Carbon-Coated Hierarchical NiCo2S4 Core-Shell Nanowire Arrays Grown Directly on Graphene/Nickel Foam.

    PubMed

    Zou, Rujia; Yuen, Muk Fung; Yu, Li; Hu, Junqing; Lee, Chun-Sing; Zhang, Wenjun

    2016-01-01

    We developed a new electrode comprising thin carbon layer coated hierarchical NiCo2S4 core-shell nanowire arrays (NiCo2S4@C CSNAs) on graphene/Ni foam (Ni@G) substrates. The electrode showed outstanding electrochemical characteristics including a high specific capacitance of 253 mAh g(-1) at 3 A g(-1), high rate capability of 163 mAh g(-1) at 50 A g(-1) (~64.4% of that at 3 A g(-1)), and long-term cycling stability with a capacity retention of 93.9% after 5000 cycles. Comparative studies on the degradation of hierarchical NiCo2S4 CSNA electrodes with and without carbon coatings revealed that the morphology pulverization, structural separation at core/shell interface, and irretrievably chemical composition change of NiCo2S4 CSNAs electrode are major factors that deteriorate the electrochemical performance of the electrodes without carbon coating. The favorable roles of carbon coatings on hierarchical NiCo2S4 CSNAs were further clarified: (1) serving as a physical buffering layer that suppresses the structural breakdown; (2) retarding the chemical composition conversion of the NiCo2S4 CSNAs; and (3) providing extra path for charge transition in addition to the NiCo2S4 core nanowires. Understanding of the degradation mechanisms and the significance of the surface carbon coatings would provide useful guidelines for the design of new electrode materials for high-performance electrochemical devices. PMID:26833359

  17. Electrochemical Energy Storage Application and Degradation Analysis of Carbon-Coated Hierarchical NiCo2S4 Core-Shell Nanowire Arrays Grown Directly on Graphene/Nickel Foam

    PubMed Central

    Zou, Rujia; Yuen, Muk Fung; Yu, Li; Hu, Junqing; Lee, Chun-Sing; Zhang, Wenjun

    2016-01-01

    We developed a new electrode comprising thin carbon layer coated hierarchical NiCo2S4 core-shell nanowire arrays (NiCo2S4@C CSNAs) on graphene/Ni foam (Ni@G) substrates. The electrode showed outstanding electrochemical characteristics including a high specific capacitance of 253 mAh g−1 at 3 A g−1, high rate capability of 163 mAh g−1 at 50 A g−1 (~64.4% of that at 3 A g−1), and long-term cycling stability with a capacity retention of 93.9% after 5000 cycles. Comparative studies on the degradation of hierarchical NiCo2S4 CSNA electrodes with and without carbon coatings revealed that the morphology pulverization, structural separation at core/shell interface, and irretrievably chemical composition change of NiCo2S4 CSNAs electrode are major factors that deteriorate the electrochemical performance of the electrodes without carbon coating. The favorable roles of carbon coatings on hierarchical NiCo2S4 CSNAs were further clarified: (1) serving as a physical buffering layer that suppresses the structural breakdown; (2) retarding the chemical composition conversion of the NiCo2S4 CSNAs; and (3) providing extra path for charge transition in addition to the NiCo2S4 core nanowires. Understanding of the degradation mechanisms and the significance of the surface carbon coatings would provide useful guidelines for the design of new electrode materials for high-performance electrochemical devices. PMID:26833359

  18. Density functional theory calculations for the oxygen dissociation on nitrogen and transition metal doped graphenes

    NASA Astrophysics Data System (ADS)

    Zheng, Yongping; Xiao, Wei; Cho, Maenghyo; Cho, Kyeongjae

    2013-10-01

    Oxygen adsorption and dissociation on a pristine graphene, nitrogen doped graphene (N-graphene), and transition metal doped graphene (M-graphene) are studied with density functional theory calculations coupled with nudged elastic band (NEB) method. Four 3d transition metals (Fe, Co, Ni, and Cu) are selected as the doping atoms. The O binding energies on the Co-graphene and Ni-graphene have intermediate strength. The O2 dissociation barriers for these two types of doped graphenes are also lower than that on the pristine graphene and N-graphene. The Co and Ni doped graphenes are predicted to be promising ORR catalysts.

  19. Responsive aqueous foams.

    PubMed

    Fameau, Anne-Laure; Carl, Adrian; Saint-Jalmes, Arnaud; von Klitzing, Regine

    2015-01-12

    Remarkable properties have emerged recently for aqueous foams, including ultrastability and responsiveness. Responsive aqueous foams refer to foams for which the stability can be switched between stable and unstable states with a change in environment or with external stimuli. Responsive foams have been obtained from various foam stabilizers, such as surfactants, proteins, polymers, and particles, and with various stimuli. Different strategies have been developed to design this type of soft material. We briefly review the two main approaches used to obtain responsive foams. The first approach is based on the responsiveness of the interfacial layer surrounding the gas bubbles, which leads to responsive foams. The second approach is based on modifications that occur in the aqueous phase inside the foam liquid channels to tune the foam stability. We will highlight the most sophisticated approaches, which use light, temperature, and magnetic fields and lead to switchable foam stability. PMID:25384466

  20. TACO3D. 3-D Finite Element Heat Transfer Code

    SciTech Connect

    Mason, W.E.

    1992-03-04

    TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.

  1. Fabrication of Open-Cell Al Foams and Evaluation of their Mechanical Response under Tension

    NASA Astrophysics Data System (ADS)

    Michailidis, N.; Stergioudi, F.; Omar, H.; Tsipas, D. N.

    2010-01-01

    In the present paper a novel procedure for describing the solid geometry of open cell foams is introduced, facilitating the establishment of a corresponding FEM model for simulating the material behaviour in micro-tension. Open-cell Al-foams were fabricated using the polymer impregnating method. A serial sectioning image-based process is described to capture, reproduce and visualize the exact three-dimensional (3D) microstructure of the examined foam. The generated 3D geometry of the Al-foam, derived from the synthesis of digital cross sectional images of the foam, was appropriately adjusted to build a FE model simulating the deformation conditions of the Al-foam under micro-tension loads. The obtained results enabled the visualisation of the stress fields in the Al-foam, allowing for a full investigation of its mechanical behaviour.

  2. Heterogeneous, three-dimensional texturing of graphene.

    PubMed

    Wang, Michael Cai; Chun, SungGyu; Han, Ryan Steven; Ashraf, Ali; Kang, Pilgyu; Nam, SungWoo

    2015-03-11

    We report a single-step strategy to achieve heterogeneous, three-dimensional (3D) texturing of graphene and graphite by using a thermally activated shape-memory polymer substrate. Uniform arrays of graphene crumples can be created on the centimeter scale by controlling simple thermal processing parameters without compromising the electrical properties of graphene. In addition, we show the capability to selectively pattern crumples from otherwise flat graphene and graphene/graphite in a localized manner, which has not been previously achievable using other methods. Finally, we demonstrate 3D crumpled graphene field-effect transistor arrays in a solution-gated configuration. The presented approach has the capability to conform onto arbitrary 3D surfaces, a necessary prerequisite for adaptive electronics, and will enable facile large-scale topography engineering of not only graphene but also other thin-film and 2D materials in the future. PMID:25667959

  3. Foam stability in microgravity

    NASA Astrophysics Data System (ADS)

    Vandewalle, N.; Caps, H.; Delon, G.; Saint-Jalmes, A.; Rio, E.; Saulnier, L.; Adler, M.; Biance, A. L.; Pitois, O.; Cohen Addad, S.; Hohler, R.; Weaire, D.; Hutzler, S.; Langevin, D.

    2011-12-01

    Within the context of the ESA FOAM project, we have studied the stability of aqueous and non-aqueous foams both on Earth and in microgravity. Foams are dispersions of gas into liquid or solid. On Earth, the lifetime of a foam is limited by the free drainage. By drainage, we are referring to the irreversible flow of liquid through the foam (leading to the accumulation of liquid at the foam bottom, and to a global liquid content decreases within the foam). When the liquid films become thinner, they eventually break, and the foam collapses. In microgravity, this process is no more present and foams containing large amounts of liquid can be studied for longer time. While the difference between foaming and not-foaming solutions is clear, the case of slightly-foaming solutions is more complicated. On Earth, such mixtures are observed to produce unstable froth for a couple of seconds. However, these latter solutions may produce foam in microgravity. We have studied both configurations for different solutions composed of common surfactant, proteins, anti-foaming agents or silicon oil. Surprising results have been obtained, emphasizing the role played by gravity on the foam stabilization process.

  4. [Foam sclerotherapy].

    PubMed

    Partsch, Bernhard

    2011-03-01

    Leg ulcers are often caused by varicose veins, with only little or no tendency to spontaneous healing. Compression therapy is the main treatment for this ailment, but even with optimal compression by short stretch bandages healing rates are rarely better than 70 - 80 % after 6 months. Experience shows, that healing times can be shortened significantly by elimination of superficial venous refluxes. For different reasons varicose vein surgery is rarely performed in patients with open leg ulcers. The increased age of ulcer patients with frequent comorbidities or the fear of an increased intraoperative risk of infection are reasons to avoid an operative elimination of refluxes. Foam sclerotherapy is a simple alternative to an operation, which can be performed irrespective of the existence of a venous leg ulcer. PMID:21360462

  5. Optoplasmonics: hybridization in 3D

    NASA Astrophysics Data System (ADS)

    Rosa, L.; Gervinskas, G.; Žukauskas, A.; Malinauskas, M.; Brasselet, E.; Juodkazis, S.

    2013-12-01

    Femtosecond laser fabrication has been used to make hybrid refractive and di ractive micro-optical elements in photo-polymer SZ2080. For applications in micro- uidics, axicon lenses were fabricated (both single and arrays), for generation of light intensity patterns extending through the entire depth of a typically tens-of-micrometers deep channel. Further hybridisation of an axicon with a plasmonic slot is fabricated and demonstrated nu- merically. Spiralling chiral grooves were inscribed into a 100-nm-thick gold coating sputtered over polymerized micro-axicon lenses, using a focused ion beam. This demonstrates possibility of hybridisation between optical and plasmonic 3D micro-optical elements. Numerical modelling of optical performance by 3D-FDTD method is presented.

  6. 3-D Relativistic MHD Simulations

    NASA Astrophysics Data System (ADS)

    Nishikawa, K.-I.; Frank, J.; Koide, S.; Sakai, J.-I.; Christodoulou, D. M.; Sol, H.; Mutel, R. L.

    1998-12-01

    We present 3-D numerical simulations of moderately hot, supersonic jets propagating initially along or obliquely to the field lines of a denser magnetized background medium with Lorentz factors of W = 4.56 and evolving in a four-dimensional spacetime. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently in the simulations. This effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure.

  7. Forensic 3D Scene Reconstruction

    SciTech Connect

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.

    1999-10-12

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  8. Forensic 3D scene reconstruction

    NASA Astrophysics Data System (ADS)

    Little, Charles Q.; Small, Daniel E.; Peters, Ralph R.; Rigdon, J. B.

    2000-05-01

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a fieldable prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  9. 360-degree 3D profilometry

    NASA Astrophysics Data System (ADS)

    Song, Yuanhe; Zhao, Hong; Chen, Wenyi; Tan, Yushan

    1997-12-01

    A new method of 360 degree turning 3D shape measurement in which light sectioning and phase shifting techniques are both used is presented in this paper. A sine light field is applied in the projected light stripe, meanwhile phase shifting technique is used to calculate phases of the light slit. Thereafter wrapped phase distribution of the slit is formed and the unwrapping process is made by means of the height information based on the light sectioning method. Therefore phase measuring results with better precision can be obtained. At last the target 3D shape data can be produced according to geometric relationships between phases and the object heights. The principles of this method are discussed in detail and experimental results are shown in this paper.

  10. 3D Printed Robotic Hand

    NASA Technical Reports Server (NTRS)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  11. 3D light scanning macrography.

    PubMed

    Huber, D; Keller, M; Robert, D

    2001-08-01

    The technique of 3D light scanning macrography permits the non-invasive surface scanning of small specimens at magnifications up to 200x. Obviating both the problem of limited depth of field inherent to conventional close-up macrophotography and the metallic coating required by scanning electron microscopy, 3D light scanning macrography provides three-dimensional digital images of intact specimens without the loss of colour, texture and transparency information. This newly developed technique offers a versatile, portable and cost-efficient method for the non-invasive digital and photographic documentation of small objects. Computer controlled device operation and digital image acquisition facilitate fast and accurate quantitative morphometric investigations, and the technique offers a broad field of research and educational applications in biological, medical and materials sciences. PMID:11489078

  12. 3D-graphite structure

    SciTech Connect

    Belenkov, E. A. Ali-Pasha, V. A.

    2011-01-15

    The structure of clusters of some new carbon 3D-graphite phases have been calculated using the molecular-mechanics methods. It is established that 3D-graphite polytypes {alpha}{sub 1,1}, {alpha}{sub 1,3}, {alpha}{sub 1,5}, {alpha}{sub 2,1}, {alpha}{sub 2,3}, {alpha}{sub 3,1}, {beta}{sub 1,2}, {beta}{sub 1,4}, {beta}{sub 1,6}, {beta}{sub 2,1}, and {beta}{sub 3,2} consist of sp{sup 2}-hybridized atoms, have hexagonal unit cells, and differ in regards to the structure of layers and order of their alternation. A possible way to experimentally synthesize new carbon phases is proposed: the polymerization and carbonization of hydrocarbon molecules.

  13. [Real time 3D echocardiography].

    PubMed

    Bauer, F; Shiota, T; Thomas, J D

    2001-07-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients. PMID:11494630

  14. [Real time 3D echocardiography

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  15. Quantitative Analysis of the Microstructure of Auxetic Foams

    SciTech Connect

    Gaspar, N.; Smith, C.W.; Miller, E.A.; Seidler, G.T.; Evans, K.E.

    2008-07-28

    The auxetic foams first produced by Lakes have been modelled in a variety of ways, each model trying to reproduce some observed feature of the microscale of the foams. Such features include bent or broken ribs or inverted angles between ribs. These models can reproduce the Poisson's ratio or Poisson's function of auxetic foam if the model parameters are carefully chosen. However these model parameters may not actually reflect the internal structure of the foams. A big problem is that measurement of parameters such as lengths and angles is not straightforward within a 3-d sample. In this work a sample of auxetic foam has been imaged by 3-d X-ray computed tomography. The resulting image is translated to a form that emphasises the geometrical structure of connected ribs. This connected rib data are suitably analysed to describe both the microstructural construction of auxetic foams and the statistical spread of structure, that is, the heterogeneity of an auxetic foam. From the analysis of the microstructure, observations are made about the requirements for microstructural models and comparisons made to previous existing models. From the statistical data, measures of heterogeneity are made that will help with future modelling that includes the heterogeneous aspect of auxetic foams.

  16. GPU-Accelerated Denoising in 3D (GD3D)

    2013-10-01

    The raw computational power GPU Accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. This software addresses two facets of this promising application: what tuning is necessary to achieve optimal performance on a modern GPU? And what parameters yield the best denoising results in practice? To answer the first question, the software performs an autotuning step to empirically determine optimal memory blocking on the GPU. To answer themore » second, it performs a sweep of algorithm parameters to determine the combination that best reduces the mean squared error relative to a noiseless reference image.« less

  17. Magmatic Systems in 3-D

    NASA Astrophysics Data System (ADS)

    Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.

    2002-12-01

    Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated

  18. Pitch based foam with particulate

    DOEpatents

    Klett, James W.

    2001-01-01

    A thermally conductive, pitch based foam composite having a particulate content. The particulate alters the mechanical characteristics of the foam without severely degrading the foam thermal conductivity. The composite is formed by mixing the particulate with pitch prior to foaming.

  19. FY05 Xradia 3D (mu)XCT System Accomplishments

    SciTech Connect

    Martz, Jr., H E; Brown, W D

    2005-08-26

    The Xradia 3D {mu}XCT system was delivered to LLNL on April 5, 2005. The system became operational the week of April 11, 2005. The Xradia 3D {mu}XCT system has been extensively used to scan several high-energy density physics (see Table 1) and other programmatic (NIF, E&E and DNT) materials, components and full assemblies. In this summary we only focus on the HEDP program. X-ray radiographs and tomograms of materials such as aerogel foams and gradient density reservoirs are being used to better understand material synthesis. Radiographs and tomograms of components include a glass capsule encapsulated within a 50-mg/cm{sup 3} SiO{sub 2} aerogel foam and then machined to final outer dimensions, while full up assemblies include low-temperature Raleigh-Taylor (LoTRT) [Brown, et al. 2005] and DDP targets. We highlight two full up assembled targets: DDPs and LoTRTs. Representative X-ray digital radiographs are shown in Figures 1 and 2 for the DDP and LoTRT, respectively. The examples very clearly show that the assemblies were performed correctly.

  20. Phonon-drag thermopower in 3D Dirac semimetals.

    PubMed

    Kubakaddi, S S

    2015-11-18

    A theory of low-temperature phonon-drag thermopower S(g) in three-dimensional (3D) Dirac semimetals has been developed considering screened electron-phonon deformation potential coupling. Numerical investigations of S(g), in the boundary scattering regime for phonons, are made in 3D Dirac semimetal Cd3As2, as a function of temperature T and electron concentration n e. S(g) is found to increase rapidly for about T  <  1 K and nearly levels off for higher T. It is also seen that S(g) increases (decreases) with decreasing n e at lower (higher) T (<2 K). A screening effect is found to be very significant, strongly affecting T and n e dependence for about  <1 K and becoming negligible at higher temperature. In the Bloch-Gruneisen (BG) regime the power laws S(g) ~ T(8) (T(4)) and S(g) ~ n(e)(-5/3)(n(e)(-1/3) with (without) screening are obtained. These laws with respect to T and n e are, respectively, characteristics of 3D phonons and Dirac 3D electrons. Comparison with diffusion thermopower S(d) shows that S (g) dominates (and is much greater than) S(d) for about T  >  0.2 K. Herring's law S(g) μ p ~ T (-1), relating phonon limited mobility μ p and S(g) in the BG regime, is shown to be valid in 3D Dirac semimetals. The results obtained here are compared with those in 3D semiconductors, low-dimensional semiconductor heterojunctions and graphene. We conclude that n e-dependent measurements, rather than T-dependent ones, provide a clearer signature of the 3D Dirac semimetal phase. PMID:26490643

  1. Phonon-drag thermopower in 3D Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Kubakaddi, S. S.

    2015-11-01

    A theory of low-temperature phonon-drag thermopower S g in three-dimensional (3D) Dirac semimetals has been developed considering screened electron-phonon deformation potential coupling. Numerical investigations of S g, in the boundary scattering regime for phonons, are made in 3D Dirac semimetal Cd3As2, as a function of temperature T and electron concentration n e. S g is found to increase rapidly for about T  <  1 K and nearly levels off for higher T. It is also seen that S g increases (decreases) with decreasing n e at lower (higher) T (<2 K). A screening effect is found to be very significant, strongly affecting T and n e dependence for about  <1 K and becoming negligible at higher temperature. In the Bloch-Gruneisen (BG) regime the power laws S g ~ T 8 (T 4) and S g ~ n\\text{e}-5/3 (n\\text{e}-1/3) with (without) screening are obtained. These laws with respect to T and n e are, respectively, characteristics of 3D phonons and Dirac 3D electrons. Comparison with diffusion thermopower S d shows that S g dominates (and is much greater than) S d for about T  >  0.2 K. Herring’s law S g μ p ~ T -1, relating phonon limited mobility μ p and S g in the BG regime, is shown to be valid in 3D Dirac semimetals. The results obtained here are compared with those in 3D semiconductors, low-dimensional semiconductor heterojunctions and graphene. We conclude that n e-dependent measurements, rather than T-dependent ones, provide a clearer signature of the 3D Dirac semimetal phase.

  2. Mesoscale simulation of shocked poly-(4-methyl-1-pentene) (PMP) foams.

    SciTech Connect

    Schroen, Diana Grace; Flicker, Dawn G.; Haill, Thomas A.; Root, Seth; Mattsson, Thomas Kjell Rene

    2011-06-01

    Hydrocarbon foams are commonly used in HEDP experiments, and are subject to shock compression from tens to hundreds of GPa. Modeling foams is challenging due to the heterogeneous character of the foam. A quantitative understanding of foams under strong dynamic compression is sought. We use Sandia's ALEGRA-MHD code to simulate 3D mesoscale models of pure poly(4-methyl-1-petene) (PMP) foams. We employ two models of the initial polymer-void structure of the foam and analyze the statistical properties of the initial and shocked states. We compare the simulations to multi-Mbar shock experiments at various initial foam densities and flyer impact velocities. Scatter in the experimental data may be a consequence of the initial foam inhomogeneity. We compare the statistical properties the simulations with the scatter in the experimental data.

  3. Interactive 3D Mars Visualization

    NASA Technical Reports Server (NTRS)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  4. A Clean Adirondack (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is a 3-D anaglyph showing a microscopic image taken of an area measuring 3 centimeters (1.2 inches) across on the rock called Adirondack. The image was taken at Gusev Crater on the 33rd day of the Mars Exploration Rover Spirit's journey (Feb. 5, 2004), after the rover used its rock abrasion tool brush to clean the surface of the rock. Dust, which was pushed off to the side during cleaning, can still be seen to the left and in low areas of the rock.

  5. Making Inexpensive 3-D Models

    NASA Astrophysics Data System (ADS)

    Manos, Harry

    2016-03-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.

  6. What Lies Ahead (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D cylindrical-perspective mosaic taken by the navigation camera on the Mars Exploration Rover Spirit on sol 82 shows the view south of the large crater dubbed 'Bonneville.' The rover will travel toward the Columbia Hills, seen here at the upper left. The rock dubbed 'Mazatzal' and the hole the rover drilled in to it can be seen at the lower left. The rover's position is referred to as 'Site 22, Position 32.' This image was geometrically corrected to make the horizon appear flat.

  7. Vacant Lander in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D image captured by the Mars Exploration Rover Opportunity's rear hazard-identification camera shows the now-empty lander that carried the rover 283 million miles to Meridiani Planum, Mars. Engineers received confirmation that Opportunity's six wheels successfully rolled off the lander and onto martian soil at 3:01 a.m. PST, January 31, 2004, on the seventh martian day, or sol, of the mission. The rover is approximately 1 meter (3 feet) in front of the lander, facing north.

  8. Silica Foams for Fire Prevention and Firefighting.

    PubMed

    Vinogradov, Alexander V; Kuprin, D S; Abduragimov, I M; Kuprin, G N; Serebriyakov, Evgeniy; Vinogradov, Vladimir V

    2016-01-13

    We report the new development of fire-extinguishing agents employing the latest technology of fighting and preventing fires. The in situ technology of fighting fires and explosions involves using large-scale ultrafast-gelated foams, which possess new properties and unique characteristics, in particular, exceptional thermal stability, mechanical durability, and full biocompatibility. We provide a detailed description of the physicochemical processes of silica foam formation at the molecular level and functional comparison with current fire-extinguishing and fire-fighting agents. The new method allows to produce controllable gelation silica hybrid foams in the range from 2 to 30 s up to 100 Pa·s viscosity. Chemical structure and hierarchical morphology obtained by scanning electron microscopy and transmission electron microscopy images develop thermal insulation capabilities of the foams, reaching a specific heat value of more than 2.5 kJ/(kg·°C). The produced foam consists of organized silica nanoparticles as determined by X-ray photoelectron spectroscopy and X-ray diffraction analysis with a narrow particle size distribution of ∼10-20 nm. As a result of fire-extinguishing tests, it is shown that the extinguishing efficiency exhibited by silica-based sol-gel foams is almost 50 times higher than that for ordinary water and 15 times better than that for state-of-the-art firefighting agent aqueous film forming foam. The biodegradation index determined by the time of the induction period was only 3 d, while even for conventional foaming agents this index is several times higher. PMID:26492207

  9. Positional Awareness Map 3D (PAM3D)

    NASA Technical Reports Server (NTRS)

    Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise

    2012-01-01

    The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.

  10. 3D acoustic atmospheric tomography

    NASA Astrophysics Data System (ADS)

    Rogers, Kevin; Finn, Anthony

    2014-10-01

    This paper presents a method for tomographically reconstructing spatially varying 3D atmospheric temperature profiles and wind velocity fields based. Measurements of the acoustic signature measured onboard a small Unmanned Aerial Vehicle (UAV) are compared to ground-based observations of the same signals. The frequency-shifted signal variations are then used to estimate the acoustic propagation delay between the UAV and the ground microphones, which are also affected by atmospheric temperature and wind speed vectors along each sound ray path. The wind and temperature profiles are modelled as the weighted sum of Radial Basis Functions (RBFs), which also allow local meteorological measurements made at the UAV and ground receivers to supplement any acoustic observations. Tomography is used to provide a full 3D reconstruction/visualisation of the observed atmosphere. The technique offers observational mobility under direct user control and the capacity to monitor hazardous atmospheric environments, otherwise not justifiable on the basis of cost or risk. This paper summarises the tomographic technique and reports on the results of simulations and initial field trials. The technique has practical applications for atmospheric research, sound propagation studies, boundary layer meteorology, air pollution measurements, analysis of wind shear, and wind farm surveys.

  11. 3D Printed Bionic Ears

    PubMed Central

    Mannoor, Manu S.; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A.; Soboyejo, Winston O.; Verma, Naveen; Gracias, David H.; McAlpine, Michael C.

    2013-01-01

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the precise anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  12. 3-D Relativistic MHD Simulations

    NASA Astrophysics Data System (ADS)

    Nishikaw, K.-I.; Frank, J.; Christodoulou, D. M.; Koide, S.; Sakai, J.-I.; Sol, H.; Mutel, R. L.

    1998-12-01

    We present 3-D numerical simulations of moderately hot, supersonic jets propagating initially along or obliquely to the field lines of a denser magnetized background medium with Lorentz factors of W=4.56 and evolving in a four-dimensional spacetime. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently in the simulations. This effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure. We also simulate jets with the more realistic initial conditions for injecting jets for helical mangetic field, perturbed density, velocity, and internal energy, which are supposed to be caused in the process of jet generation. Three possible explanations for the observed variability are (i) tidal disruption of a star falling into the black hole, (ii) instabilities in the relativistic accretion disk, and (iii) jet-related PRocesses. New results will be reported at the meeting.

  13. 3D printed bionic ears.

    PubMed

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  14. 3D medical thermography device

    NASA Astrophysics Data System (ADS)

    Moghadam, Peyman

    2015-05-01

    In this paper, a novel handheld 3D medical thermography system is introduced. The proposed system consists of a thermal-infrared camera, a color camera and a depth camera rigidly attached in close proximity and mounted on an ergonomic handle. As a practitioner holding the device smoothly moves it around the human body parts, the proposed system generates and builds up a precise 3D thermogram model by incorporating information from each new measurement in real-time. The data is acquired in motion, thus it provides multiple points of view. When processed, these multiple points of view are adaptively combined by taking into account the reliability of each individual measurement which can vary due to a variety of factors such as angle of incidence, distance between the device and the subject and environmental sensor data or other factors influencing a confidence of the thermal-infrared data when captured. Finally, several case studies are presented to support the usability and performance of the proposed system.

  15. 3D Ion Temperature Reconstruction

    NASA Astrophysics Data System (ADS)

    Tanabe, Hiroshi; You, Setthivoine; Balandin, Alexander; Inomoto, Michiaki; Ono, Yasushi

    2009-11-01

    The TS-4 experiment at the University of Tokyo collides two spheromaks to form a single high-beta compact toroid. Magnetic reconnection during the merging process heats and accelerates the plasma in toroidal and poloidal directions. The reconnection region has a complex 3D topology determined by the pitch of the spheromak magnetic fields at the merging plane. A pair of multichord passive spectroscopic diagnostics have been established to measure the ion temperature and velocity in the reconnection volume. One setup measures spectral lines across a poloidal plane, retrieving velocity and temperature from Abel inversion. The other, novel setup records spectral lines across another section of the plasma and reconstructs velocity and temperature from 3D vector and 2D scalar tomography techniques. The magnetic field linking both measurement planes is determined from in situ magnetic probe arrays. The ion temperature is then estimated within the volume between the two measurement planes and at the reconnection region. The measurement is followed over several repeatable discharges to follow the heating and acceleration process during the merging reconnection.

  16. LOTT RANCH 3D PROJECT

    SciTech Connect

    Larry Lawrence; Bruce Miller

    2004-09-01

    The Lott Ranch 3D seismic prospect located in Garza County, Texas is a project initiated in September of 1991 by the J.M. Huber Corp., a petroleum exploration and production company. By today's standards the 126 square mile project does not seem monumental, however at the time it was conceived it was the most intensive land 3D project ever attempted. Acquisition began in September of 1991 utilizing GEO-SEISMIC, INC., a seismic data contractor. The field parameters were selected by J.M. Huber, and were of a radical design. The recording instruments used were GeoCor IV amplifiers designed by Geosystems Inc., which record the data in signed bit format. It would not have been practical, if not impossible, to have processed the entire raw volume with the tools available at that time. The end result was a dataset that was thought to have little utility due to difficulties in processing the field data. In 1997, Yates Energy Corp. located in Roswell, New Mexico, formed a partnership to further develop the project. Through discussions and meetings with Pinnacle Seismic, it was determined that the original Lott Ranch 3D volume could be vastly improved upon reprocessing. Pinnacle Seismic had shown the viability of improving field-summed signed bit data on smaller 2D and 3D projects. Yates contracted Pinnacle Seismic Ltd. to perform the reprocessing. This project was initiated with high resolution being a priority. Much of the potential resolution was lost through the initial summing of the field data. Modern computers that are now being utilized have tremendous speed and storage capacities that were cost prohibitive when this data was initially processed. Software updates and capabilities offer a variety of quality control and statics resolution, which are pertinent to the Lott Ranch project. The reprocessing effort was very successful. The resulting processed data-set was then interpreted using modern PC-based interpretation and mapping software. Production data, log data

  17. Fire retardant polyisocyanurate foam

    NASA Technical Reports Server (NTRS)

    Riccitiello, S. R.; Parker, J. A.

    1972-01-01

    Fire retardant properties of low density polymer foam are increased. Foam has pendant nitrile groups which form thermally-stable heterocyclic structures at temperature below degradation temperature of urethane linkages.

  18. Polyurethane-Foam Maskant

    NASA Technical Reports Server (NTRS)

    Bodemeijer, R.

    1985-01-01

    Brown wax previously used to mask hardware replaced with polyurethane foam in electroplating and electroforming operations. Foam easier to apply and remove than wax and does not contaminate electrolytes.

  19. The Construction of Spin Foam Vertex Amplitudes

    NASA Astrophysics Data System (ADS)

    Bianchi, Eugenio; Hellmann, Frank

    2013-01-01

    Spin foam vertex amplitudes are the key ingredient of spin foam models for quantum gravity. These fall into the realm of discretized path integral, and can be seen as generalized lattice gauge theories. They can be seen as an attempt at a 4-dimensional generalization of the Ponzano-Regge model for 3d quantum gravity. We motivate and review the construction of the vertex amplitudes of recent spin foam models, giving two different and complementary perspectives of this construction. The first proceeds by extracting geometric configurations from a topological theory of the BF type, and can be seen to be in the tradition of the work of Barrett, Crane, Freidel and Krasnov. The second keeps closer contact to the structure of Loop Quantum Gravity and tries to identify an appropriate set of constraints to define a Lorentz-invariant interaction of its quanta of space. This approach is in the tradition of the work of Smolin, Markopoulous, Engle, Pereira, Rovelli and Livine.

  20. 3D X-rays application for precision measurement of the cell structure of extruded polystyrene

    NASA Astrophysics Data System (ADS)

    Lim, J. Y.; Kim, K. Y.; Shin, H. S.; Yeom, S.; Lee, S. E.

    2015-12-01

    While the thermal performance of existing insulation materials have been determined by blister gases, the thermal performance of future insulation materials will be dependent on the cell size and independent foam content as we use eco-friendly blister gases with a higher thermal conductivity. However, with the current technology we are only able to guess the whole cell size and independent foam content through SEM applied 2D fragmentary scanning but are still far from the level of accurate cell structure data extraction. Under this situation, we utilized X-ray CT scanned 3D images to identify and shape the cell structure and proposed a method of inferring the whole distribution and independent foam content as accurately as possible. According to X-ray CT scanning images and SEM images, the shape was similar but according to tracer applied CT scanning images, the cell size distribution was 380∼400 pm within the range of the general insulation diameter distribution which had the highest reliability. As for extrusion foaming polystyrene, we need additional image processing to identify the independent foam content as its density is too low. So, it is recommended to raise the 3D cell structure completeness of XPS by improving the scanning accuracy.

  1. Viscoelastic foam cushion

    NASA Technical Reports Server (NTRS)

    Kubokawa, C. C.; Yost, C.

    1977-01-01

    Foam is viscous and elastic with unusual and useful temperature, humidity, and compression responses. Applied weight and pressure distributed equally along entire interface with foam eliminates any pressure points. Flexible urethane foam is ideal for orthopedic and prosthetic devices, sports equipment, furniture, and crash protection.

  2. Metallized polymeric foam material

    NASA Technical Reports Server (NTRS)

    Birnbaum, B. A.; Bilow, N.

    1974-01-01

    Open-celled polyurethane foams can be coated uniformly with thin film of metal by vapor deposition of aluminum or by sensitization of foam followed by electroless deposition of nickel or copper. Foam can be further processed to increase thickness of metal overcoat to impart rigidity or to provide inert surface with only modest increase in weight.

  3. ShowMe3D

    2012-01-05

    ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from themore » displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.« less

  4. ShowMe3D

    SciTech Connect

    Sinclair, Michael B

    2012-01-05

    ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from the displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.

  5. 3D Elastic Wavefield Tomography

    NASA Astrophysics Data System (ADS)

    Guasch, L.; Warner, M.; Stekl, I.; Umpleby, A.; Shah, N.

    2010-12-01

    Wavefield tomography, or waveform inversion, aims to extract the maximum information from seismic data by matching trace by trace the response of the solid earth to seismic waves using numerical modelling tools. Its first formulation dates from the early 80's, when Albert Tarantola developed a solid theoretical basis that is still used today with little change. Due to computational limitations, the application of the method to 3D problems has been unaffordable until a few years ago, and then only under the acoustic approximation. Although acoustic wavefield tomography is widely used, a complete solution of the seismic inversion problem requires that we account properly for the physics of wave propagation, and so must include elastic effects. We have developed a 3D tomographic wavefield inversion code that incorporates the full elastic wave equation. The bottle neck of the different implementations is the forward modelling algorithm that generates the synthetic data to be compared with the field seismograms as well as the backpropagation of the residuals needed to form the direction update of the model parameters. Furthermore, one or two extra modelling runs are needed in order to calculate the step-length. Our approach uses a FD scheme explicit time-stepping by finite differences that are 4th order in space and 2nd order in time, which is a 3D version of the one developed by Jean Virieux in 1986. We chose the time domain because an explicit time scheme is much less demanding in terms of memory than its frequency domain analogue, although the discussion of wich domain is more efficient still remains open. We calculate the parameter gradients for Vp and Vs by correlating the normal and shear stress wavefields respectively. A straightforward application would lead to the storage of the wavefield at all grid points at each time-step. We tackled this problem using two different approaches. The first one makes better use of resources for small models of dimension equal

  6. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.

    The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.

    This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these

  7. Structural assessment of metal foam using combined NDE and FEA

    NASA Astrophysics Data System (ADS)

    Ghosn, Louis J.; Abdul-Aziz, Ali; Young, Philippe G.; Rauser, Richard W.

    2005-05-01

    Metal foams are expected to find use in structural applications where weight is of particular concern, such as space vehicles, rotorcraft blades, car bodies or portable electronic devices. The obvious structural application of metal foam is for light weight sandwich panels, made up of thin solid face sheets and a metallic foam core. The stiffness of the sandwich structure is increased by separating the two face sheets by a light weight foam core. The resulting high-stiffness structure is lighter than that constructed only out of the solid metal material. Since the face sheets carry the applied in-plane and bending loads, the sandwich architecture is a viable engineering concept. However, the metal foam core must resist transverse shear loads and compressive loads while remaining integral with the face sheets. Challenges relating to the fabrication and testing of these metal foam panels remain due to some mechanical properties falling short of their theoretical potential. Theoretical mechanical properties are based on an idealized foam microstructure and assumed cell geometry. But the actual testing is performed on as fabricated foam microstructure. Hence in this study, a high fidelity finite element analysis is conducted on as fabricated metal foam microstructures, to compare the calculated mechanical properties with the idealized theory. The high fidelity geometric models for the FEA are generated using series of 2D CT scans of the foam structure to reconstruct the 3D metal foam geometry. The metal foam material is an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. Tensile, compressive, and shear mechanical properties are deduced from the FEA model and compared with the theoretical values. The combined NDE/FEA provided insight in the variability of the mechanical properties compared to idealized theory.

  8. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.

    The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.

    This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these

  9. An Accurate von Neumann's Law for Three-Dimensional Foams

    SciTech Connect

    Hilgenfeldt, Sascha; Kraynik, Andrew M.; Koehler, Stephan A.; Stone, Howard A.

    2001-03-19

    The diffusive coarsening of 2D soap froths is governed by von Neumann's law. A statistical version of this law for dry 3D foams has long been conjectured. A new derivation, based on a theorem by Minkowski, yields an explicit analytical von Neumann's law in 3D which is in very good agreement with detailed simulations and experiments. The average growth rate of a bubble with F faces is shown to be proportional to F{sup 1/2} for large F , in contrast to the conjectured linear dependence. Accounting for foam disorder in the model further improves the agreement with data.

  10. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  11. NIF Ignition Target 3D Point Design

    SciTech Connect

    Jones, O; Marinak, M; Milovich, J; Callahan, D

    2008-11-05

    We have developed an input file for running 3D NIF hohlraums that is optimized such that it can be run in 1-2 days on parallel computers. We have incorporated increasing levels of automation into the 3D input file: (1) Configuration controlled input files; (2) Common file for 2D and 3D, different types of capsules (symcap, etc.); and (3) Can obtain target dimensions, laser pulse, and diagnostics settings automatically from NIF Campaign Management Tool. Using 3D Hydra calculations to investigate different problems: (1) Intrinsic 3D asymmetry; (2) Tolerance to nonideal 3D effects (e.g. laser power balance, pointing errors); and (3) Synthetic diagnostics.

  12. 3D multiplexed immunoplasmonics microscopy.

    PubMed

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-21

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K(+) channel subunit KV1.1) on human cancer CD44(+) EGFR(+) KV1.1(+) MDA-MB-231 cells and reference CD44(-) EGFR(-) KV1.1(+) 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third

  13. Structural graphitic carbon foams

    SciTech Connect

    Kearns, K.M.; Anderson, H.J.

    1998-12-31

    Graphitic carbon foams are a unique material form with very high structural and thermal properties at a light weight. A process has been developed to produce microcellular, open-celled graphitic foams. The process includes heating a mesophase pitch preform above the pitch melting temperature in a pressurized reactor. At the appropriate time, the pressure is released, the gas nucleates bubbles, and these bubbles grow forming the pitch into the foam structure. The resultant foamed pitch is then stabilized in an oxygen environment. At this point a rigid structure exists with some mechanical integrity. The foam is then carbonized to 800 C followed by a graphitization to 2700 C. The shear action from the growing bubbles aligns the graphitic planes along the foam struts to provide the ideal structure for good mechanical properties. Some of these properties have been characterized for some of the foam materials. It is known that variations of the blowing temperature, blowing pressure and saturation time result in foams of variously sized with mostly open pores; however, the mechanism of bubble nucleation is not known. Therefore foams were blown with various gases to begin to determine the nucleation method. These gases are comprised of a variety of molecular weights as well as a range of various solubility levels. By examining the resultant structures of the foam, differences were noted to develop an explanation of the foaming mechanism.

  14. Foam process models.

    SciTech Connect

    Moffat, Harry K.; Noble, David R.; Baer, Thomas A.; Adolf, Douglas Brian; Rao, Rekha Ranjana; Mondy, Lisa Ann

    2008-09-01

    In this report, we summarize our work on developing a production level foam processing computational model suitable for predicting the self-expansion of foam in complex geometries. The model is based on a finite element representation of the equations of motion, with the movement of the free surface represented using the level set method, and has been implemented in SIERRA/ARIA. An empirically based time- and temperature-dependent density model is used to encapsulate the complex physics of foam nucleation and growth in a numerically tractable model. The change in density with time is at the heart of the foam self-expansion as it creates the motion of the foam. This continuum-level model uses an homogenized description of foam, which does not include the gas explicitly. Results from the model are compared to temperature-instrumented flow visualization experiments giving the location of the foam front as a function of time for our EFAR model system.

  15. Soft Robotics: Poroelastic Foams for Simple Fabrication of Complex Soft Robots (Adv. Mater. 41/2015).

    PubMed

    Mac Murray, Benjamin C; An, Xintong; Robinson, Sanlin S; van Meerbeek, Ilse M; O'Brien, Kevin W; Zhao, Huichan; Shepherd, Robert F

    2015-11-01

    On page 6334, R. F. Shepherd and co-workers present pneumatically actuated soft machines based on elastomer foams. These foams are easily molded into complex, 3D shapes and retain an innate pore network for inflation. This is demonstrated through fabrication of both simple actuators and an entirely soft, functional fluid pump formed in the shape of the human heart. PMID:26906270

  16. 3D Kitaev spin liquids

    NASA Astrophysics Data System (ADS)

    Hermanns, Maria

    The Kitaev honeycomb model has become one of the archetypal spin models exhibiting topological phases of matter, where the magnetic moments fractionalize into Majorana fermions interacting with a Z2 gauge field. In this talk, we discuss generalizations of this model to three-dimensional lattice structures. Our main focus is the metallic state that the emergent Majorana fermions form. In particular, we discuss the relation of the nature of this Majorana metal to the details of the underlying lattice structure. Besides (almost) conventional metals with a Majorana Fermi surface, one also finds various realizations of Dirac semi-metals, where the gapless modes form Fermi lines or even Weyl nodes. We introduce a general classification of these gapless quantum spin liquids using projective symmetry analysis. Furthermore, we briefly outline why these Majorana metals in 3D Kitaev systems provide an even richer variety of Dirac and Weyl phases than possible for electronic matter and comment on possible experimental signatures. Work done in collaboration with Kevin O'Brien and Simon Trebst.

  17. Yogi the rock - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Yogi, a rock taller than rover Sojourner, is the subject of this image, taken in stereo by the deployed Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. The soil in the foreground has been the location of multiple soil mechanics experiments performed by Sojourner's cleated wheels. Pathfinder scientists were able to control the force inflicted on the soil beneath the rover's wheels, giving them insight into the soil's mechanical properties. The soil mechanics experiments were conducted after this image was taken.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  18. 3D ultrafast laser scanner

    NASA Astrophysics Data System (ADS)

    Mahjoubfar, A.; Goda, K.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.

    2013-03-01

    Laser scanners are essential for scientific research, manufacturing, defense, and medical practice. Unfortunately, often times the speed of conventional laser scanners (e.g., galvanometric mirrors and acousto-optic deflectors) falls short for many applications, resulting in motion blur and failure to capture fast transient information. Here, we present a novel type of laser scanner that offers roughly three orders of magnitude higher scan rates than conventional methods. Our laser scanner, which we refer to as the hybrid dispersion laser scanner, performs inertia-free laser scanning by dispersing a train of broadband pulses both temporally and spatially. More specifically, each broadband pulse is temporally processed by time stretch dispersive Fourier transform and further dispersed into space by one or more diffractive elements such as prisms and gratings. As a proof-of-principle demonstration, we perform 1D line scans at a record high scan rate of 91 MHz and 2D raster scans and 3D volumetric scans at an unprecedented scan rate of 105 kHz. The method holds promise for a broad range of scientific, industrial, and biomedical applications. To show the utility of our method, we demonstrate imaging, nanometer-resolved surface vibrometry, and high-precision flow cytometry with real-time throughput that conventional laser scanners cannot offer due to their low scan rates.

  19. Crowdsourcing Based 3d Modeling

    NASA Astrophysics Data System (ADS)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  20. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  1. Graphene nano-devices and nano-composites for structural, thermal and sensing applications

    NASA Astrophysics Data System (ADS)

    Yavari, Fazel

    In this dissertation we have developed graphene-based nano-devices for applications in integrated circuits and gas sensors; as well as graphene-based nano-composites for applications in structures and thermal management. First, we have studied the bandgap of graphene for semiconductor applications. Graphene as a zero-bandgap material cannot be used in the semiconductor industry unless an effective method is developed to open the bandgap in this material. We have demonstrated that a bandgap of 0.206 eV can be opened in graphene by adsorption of water vapor molecules on its surface. Water molecules break the molecular symmetries of graphene resulting in a significant bandgap opening. We also illustrate that the lack of bandgap in graphene can be used to our advantage by making sensors that are able to detect low concentrations of gas molecules mixed in air. We have shown that 1-2 layers of graphene synthesized by chemical vapor deposition enables detection of trace amounts of NO 2 and NH3 in air at room temperature and atmospheric pressure. The gas species are detected by monitoring changes in electrical resistance of the graphene film due to gas adsorption. The sensor response time is inversely proportional to the gas concentration. Heating the film expels chemisorbed molecules from the graphene surface enabling reversible operation. The detection limits of ~100 parts-per-billion (ppb) for NO2 and ~500 ppb for NH3 obtained using this device are markedly superior to commercially available NO2 and NH3 detectors. This sensor is fabricated using individual graphene sheets that are exquisitely sensitive to the chemical environment. However, the fabrication and operation of devices that use individual nanostructures for sensing is complex, expensive and suffers from poor reliability due to contamination and large variability from sample-to-sample. To overcome these problems we have developed a gas sensor based on a porous 3D network of graphene sheets called graphene foam

  2. Micromechanics of Spray-On Foam Insulation

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Aboudi, Jacob; Arnold, Steven M.; Sullivan, Roy M.

    2007-01-01

    Understanding the thermo-mechanical response of the Space Shuttle External Tank spray-on foam insulation (SOFI) material is critical, to NASA's Return to Flight effort. This closed-cell rigid polymeric foam is used to insulate the metallic Space Shuttle External Tank, which is at cryogenic temperatures immediately prior to and during lift off. The shedding of the SOFI during ascent led to the loss of the Columbia, and eliminating/minimizing foam lass from the tank has become a priority for NASA as it seeks to resume scheduled space shuttle missions. Determining the nature of the SOFI material behavior in response to both thermal and mechanical loading plays an important role as any structural modeling of the shedding phenomenon k predicated on knowledge of the constitutive behavior of the foam. In this paper, the SOFI material has been analyzed using the High-Fidelity Generalized Method of Cells (HFGMC) micromechanics model, which has recently been extended to admit a triply-periodic 3-D repeating unit cell (RUC). Additional theoretical extensions that mere made in order to enable modeling of the closed-cell-foam material include the ability to represent internal boundaries within the RUC (to simulated internal pores) and the ability to impose an internal pressure within the simulated pores. This latter extension is crucial as two sources contribute to significant internal pressure changes within the SOFI pores. First, gas trapped in the pores during the spray process will expand or contract due to temperature changes. Second, the pore pressure will increase due to outgassing of water and other species present in the foam skeleton polymer material. With HFGMC's new pore pressure modeling capabilities, a nonlinear pressure change within the simulated pore can be imposed that accounts for both of these sources, in addition to stmdar&-thermal and mechanical loading; The triply-periodic HFGMC micromechanics model described above was implemented within NASA GRC's MAC

  3. Vibrational stability of graphene

    NASA Astrophysics Data System (ADS)

    Hu, Yangfan; Wang, Biao

    2013-05-01

    The mechanical stability of graphene as temperature rises is analyzed based on three different self-consistent phonon (SCP) models. Compared with three-dimensional (3-D) materials, the critical temperature Ti at which instability occurs for graphene is much closer to its melting temperature Tm obtained from Monte Carlo simulation (Ti ≃ 2Tm, K. V. Zakharchenko, A. Fasolino, J. H. Los, and M. I. Katsnelson, J. Phys. Condens. Matter 23, 202202). This suggests that thermal vibration plays a significant role in melting of graphene while melting for 3-D materials is often dominated by topologic defects. This peculiar property of graphene derives from its high structural anisotropy, which is characterized by the vibrational anisotropic coefficient (VAC), defined upon its Lindermann ratios in different directions. For any carbon based material with a graphene-like structure, the VAC value must be smaller than 5.4 to maintain its stability. It is also found that the high VAC value of graphene is responsible for its negative thermal expansion coefficient at low temperature range. We believe that the VAC can be regarded as a new criterion concerning the vibrational stability of any low-dimensional (low-D) materials.

  4. 3-D Cavern Enlargement Analyses

    SciTech Connect

    EHGARTNER, BRIAN L.; SOBOLIK, STEVEN R.

    2002-03-01

    Three-dimensional finite element analyses simulate the mechanical response of enlarging existing caverns at the Strategic Petroleum Reserve (SPR). The caverns are located in Gulf Coast salt domes and are enlarged by leaching during oil drawdowns as fresh water is injected to displace the crude oil from the caverns. The current criteria adopted by the SPR limits cavern usage to 5 drawdowns (leaches). As a base case, 5 leaches were modeled over a 25 year period to roughly double the volume of a 19 cavern field. Thirteen additional leaches where then simulated until caverns approached coalescence. The cavern field approximated the geometries and geologic properties found at the West Hackberry site. This enabled comparisons are data collected over nearly 20 years to analysis predictions. The analyses closely predicted the measured surface subsidence and cavern closure rates as inferred from historic well head pressures. This provided the necessary assurance that the model displacements, strains, and stresses are accurate. However, the cavern field has not yet experienced the large scale drawdowns being simulated. Should they occur in the future, code predictions should be validated with actual field behavior at that time. The simulations were performed using JAS3D, a three dimensional finite element analysis code for nonlinear quasi-static solids. The results examine the impacts of leaching and cavern workovers, where internal cavern pressures are reduced, on surface subsidence, well integrity, and cavern stability. The results suggest that the current limit of 5 oil drawdowns may be extended with some mitigative action required on the wells and later on to surface structure due to subsidence strains. The predicted stress state in the salt shows damage to start occurring after 15 drawdowns with significant failure occurring at the 16th drawdown, well beyond the current limit of 5 drawdowns.

  5. Experimental techniques for studying the structure of foams and froths.

    PubMed

    Pugh, R J

    2005-06-30

    Several techniques are described in this review to study the structure and the stability of froths and foams. Image analysis proved useful for detecting structure changes in 2-D foams and has enabled the drainage process and the gradients in bubble size distribution to be determined. However, studies on 3-D foams require more complex techniques such as Multiple-Light Scattering Methods, Microphones and Optical Tomography. Under dynamic foaming conditions, the Foam Scan Column enables the water content of foams to be determined by conductivity analysis. It is clear that the same factors, which play a role in foam stability (film thickness, elasticity, etc.) also have a decisive influence on the stability of isolated froth or foam films. Therefore, the experimental thin film balance (developed by the Bulgarian Researchers) to study thinning of microfilms formed by a concave liquid drop suspended in a short vertical capillary tube has proved useful. Direct measurement of the thickness of the aqueous microfilm is determined by a micro-reflectance method and can give fundamental information on drainage and thin film stability. It is also important to consider the influence of the mineral particles on the stability of the froth and it have been shown that particles of well defined size and hydrophobicity can be introduced into the thin film enabling stabilization/destabilization mechanisms to be proposed. It has also been shown that the dynamic and static stability can be increased by a reduction in particle size and an increase in particle concentration. PMID:15913531

  6. Imaging a Sustainable Future in 3D

    NASA Astrophysics Data System (ADS)

    Schuhr, W.; Lee, J. D.; Kanngieser, E.

    2012-07-01

    It is the intention of this paper, to contribute to a sustainable future by providing objective object information based on 3D photography as well as promoting 3D photography not only for scientists, but also for amateurs. Due to the presentation of this article by CIPA Task Group 3 on "3D Photographs in Cultural Heritage", the presented samples are masterpieces of historic as well as of current 3D photography concentrating on cultural heritage. In addition to a report on exemplarily access to international archives of 3D photographs, samples for new 3D photographs taken with modern 3D cameras, as well as by means of a ground based high resolution XLITE staff camera and also 3D photographs taken from a captive balloon and the use of civil drone platforms are dealt with. To advise on optimum suited 3D methodology, as well as to catch new trends in 3D, an updated synoptic overview of the 3D visualization technology, even claiming completeness, has been carried out as a result of a systematic survey. In this respect, e.g., today's lasered crystals might be "early bird" products in 3D, which, due to lack in resolution, contrast and color, remember to the stage of the invention of photography.

  7. Teaching Geography with 3-D Visualization Technology

    ERIC Educational Resources Information Center

    Anthamatten, Peter; Ziegler, Susy S.

    2006-01-01

    Technology that helps students view images in three dimensions (3-D) can support a broad range of learning styles. "Geo-Wall systems" are visualization tools that allow scientists, teachers, and students to project stereographic images and view them in 3-D. We developed and presented 3-D visualization exercises in several undergraduate courses.…

  8. 3D Printing and Its Urologic Applications

    PubMed Central

    Soliman, Youssef; Feibus, Allison H; Baum, Neil

    2015-01-01

    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology. PMID:26028997

  9. 3D Flow Visualization Using Texture Advection

    NASA Technical Reports Server (NTRS)

    Kao, David; Zhang, Bing; Kim, Kwansik; Pang, Alex; Moran, Pat (Technical Monitor)

    2001-01-01

    Texture advection is an effective tool for animating and investigating 2D flows. In this paper, we discuss how this technique can be extended to 3D flows. In particular, we examine the use of 3D and 4D textures on 3D synthetic and computational fluid dynamics flow fields.

  10. 3D Elastic Seismic Wave Propagation Code

    1998-09-23

    E3D is capable of simulating seismic wave propagation in a 3D heterogeneous earth. Seismic waves are initiated by earthquake, explosive, and/or other sources. These waves propagate through a 3D geologic model, and are simulated as synthetic seismograms or other graphical output.

  11. 3D Printing and Its Urologic Applications.

    PubMed

    Soliman, Youssef; Feibus, Allison H; Baum, Neil

    2015-01-01

    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology. PMID:26028997

  12. Electrodeposited lead-foam grids on copper-foam substrates as positive current collectors for lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Ji, Keju; Xu, Chen; Zhao, Huihui; Dai, Zhendong

    2014-02-01

    Contemporary lead-acid batteries have a high internal resistance and a limited utilization of their positive active materials (PAM). In order to alleviate these problems, lead (alloy) foam-based positive electrodes for lead-acid batteries are prepared by electrodepositing lead on a copper-foam substrate. Using scanning electron microscopy, flame atomic absorption spectrometry, finite element analysis, cyclic voltammetry, and galvanostatic charge/discharge tests, the effect of the lead foam collectors on the electrochemical performance of the positive electrodes is characterized. The thickness of the lead coating has a strong effect on the corrosion-stability of the copper-foam substrate. In addition, the charge/discharge performance of the batteries is greatly improved by the lead-foam collectors. At the 20-2 h discharge rates, the utilization efficiency of the PAM of 40-PPI lead-foam battery is improved by 19-36% from the cast-grid battery. Combined with the finite element analysis, it appears that the 3D connected network structure of the positive lead foam electrode can reduce the surface current density, the polarization resistance, and the ohmic resistance of the battery because of its larger contact area with the active material. As a result, the lead foam battery has a higher utilization efficiency of the PAM.

  13. High-strength cellular ceramic composites with 3D microarchitecture

    PubMed Central

    Bauer, Jens; Hengsbach, Stefan; Tesari, Iwiza; Schwaiger, Ruth; Kraft, Oliver

    2014-01-01

    To enhance the strength-to-weight ratio of a material, one may try to either improve the strength or lower the density, or both. The lightest solid materials have a density in the range of 1,000 kg/m3; only cellular materials, such as technical foams, can reach considerably lower values. However, compared with corresponding bulk materials, their specific strength generally is significantly lower. Cellular topologies may be divided into bending- and stretching-dominated ones. Technical foams are structured randomly and behave in a bending-dominated way, which is less weight efficient, with respect to strength, than stretching-dominated behavior, such as in regular braced frameworks. Cancellous bone and other natural cellular solids have an optimized architecture. Their basic material is structured hierarchically and consists of nanometer-size elements, providing a benefit from size effects in the material strength. Designing cellular materials with a specific microarchitecture would allow one to exploit the structural advantages of stretching-dominated constructions as well as size-dependent strengthening effects. In this paper, we demonstrate that such materials may be fabricated. Applying 3D laser lithography, we produced and characterized micro-truss and -shell structures made from alumina–polymer composite. Size-dependent strengthening of alumina shells has been observed, particularly when applied with a characteristic thickness below 100 nm. The presented artificial cellular materials reach compressive strengths up to 280 MPa with densities well below 1,000 kg/m3. PMID:24550268

  14. 3-D Perspective Pasadena, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This perspective view shows the western part of the city of Pasadena, California, looking north towards the San Gabriel Mountains. Portions of the cities of Altadena and La Canada, Flintridge are also shown. The image was created from three datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation data; Landsat data from November 11, 1986 provided the land surface color (not the sky) and U.S. Geological Survey digital aerial photography provides the image detail. The Rose Bowl, surrounded by a golf course, is the circular feature at the bottom center of the image. The Jet Propulsion Laboratory is the cluster of large buildings north of the Rose Bowl at the base of the mountains. A large landfill, Scholl Canyon, is the smooth area in the lower left corner of the scene. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Wildfires strip the mountains of vegetation, increasing the hazards from flooding and mudflows for several years afterwards. Data such as shown on this image can be used to predict both how wildfires will spread over the terrain and also how mudflows will be channeled down the canyons. The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency

  15. The Esri 3D city information model

    NASA Astrophysics Data System (ADS)

    Reitz, T.; Schubiger-Banz, S.

    2014-02-01

    With residential and commercial space becoming increasingly scarce, cities are going vertical. Managing the urban environments in 3D is an increasingly important and complex undertaking. To help solving this problem, Esri has released the ArcGIS for 3D Cities solution. The ArcGIS for 3D Cities solution provides the information model, tools and apps for creating, analyzing and maintaining a 3D city using the ArcGIS platform. This paper presents an overview of the 3D City Information Model and some sample use cases.

  16. Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion

    NASA Astrophysics Data System (ADS)

    Handy Turner, Tara

    2010-02-01

    From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.

  17. Flame retardancy and thermal stability of polyurethane foam composites containing carbon additives

    NASA Astrophysics Data System (ADS)

    Lee, Pyoung-Chan; Kim, Bo-Ram; Jeoung, Sun Kyoung; Lee, Geesoo; Han, San Wook; Kim, Hyunchul; Lee, Ki-Dong; Han, Joo-Kwon

    2016-03-01

    Polyurethane (PU) is an important class of polymers that have wide application in a number of different industrial sectors. The goal of this work was the synthesis of flame-retarded PU foam with expandable graphite (EG) or commercial graphene. The flame retardancy and thermal stability of the foams has been studied through cone calorimeter analysis, the limited oxygen index and thermal conductivity. The presence of expandable graphite brings an improvement in fire behavior. In particular, the limited oxygen index increases in a linear way and the highest limited oxygen index values are obtained for EG-PU foams. The results from the cone calorimeter are in agreement with those of oxygen index; EG filled foams show a considerable decrease of maximum-heat release rate (M-HRR) with respect to unfilled foams. The results of thermal conductivity show that an increase in expandable graphite amount in PU foams lead to an increased conductivity.

  18. Orbital foamed material extruder

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S. (Inventor)

    2009-01-01

    This invention is a process for producing foamed material in space comprising the steps of: rotating the material to simulate the force of gravity; heating the rotating material until it is molten; extruding the rotating, molten material; injecting gas into the extruded, rotating, molten material to produce molten foamed material; allowing the molten foamed material to cool to below melting temperature to produce the foamed material. The surface of the extruded foam may be heated to above melting temperature and allowed to cool to below melting temperature. The extruded foam may also be cut to predetermined length. The starting material may be metal or glass. Heating may be accomplished by electrical heating elements or by solar heating.

  19. Structure of random foam.

    SciTech Connect

    Reinelt, Douglas A.; van Swol, Frank B.; Kraynik, Andrew Michael

    2004-06-01

    The Surface Evolver was used to compute the equilibrium microstructure of dry soap foams with random structure and a wide range of cell-size distributions. Topological and geometric properties of foams and individual cells were evaluated. The theory for isotropic Plateau polyhedra describes the dependence of cell geometric properties on their volume and number of faces. The surface area of all cells is about 10% greater than a sphere of equal volume; this leads to a simple but accurate theory for the surface free energy density of foam. A novel parameter based on the surface-volume mean bubble radius R32 is used to characterize foam polydispersity. The foam energy, total cell edge length, and average number of faces per cell all decrease with increasing polydispersity. Pentagonal faces are the most common in monodisperse foam but quadrilaterals take over in highly polydisperse structures.

  20. 3D laptop for defense applications

    NASA Astrophysics Data System (ADS)

    Edmondson, Richard; Chenault, David

    2012-06-01

    Polaris Sensor Technologies has developed numerous 3D display systems using a US Army patented approach. These displays have been developed as prototypes for handheld controllers for robotic systems and closed hatch driving, and as part of a TALON robot upgrade for 3D vision, providing depth perception for the operator for improved manipulation and hazard avoidance. In this paper we discuss the prototype rugged 3D laptop computer and its applications to defense missions. The prototype 3D laptop combines full temporal and spatial resolution display with the rugged Amrel laptop computer. The display is viewed through protective passive polarized eyewear, and allows combined 2D and 3D content. Uses include robot tele-operation with live 3D video or synthetically rendered scenery, mission planning and rehearsal, enhanced 3D data interpretation, and simulation.

  1. The science of foaming.

    PubMed

    Drenckhan, Wiebke; Saint-Jalmes, Arnaud

    2015-08-01

    The generation of liquid foams is at the heart of numerous natural, technical or scientific processes. Even though the subject of foam generation has a long-standing history, many recent progresses have been made in an attempt to elucidate the fundamental processes at play. We review the subject by providing an overview of the relevant key mechanisms of bubble generation within a coherent hydrodynamic context; and we discuss different foaming techniques which exploit these mechanisms. PMID:26056064

  2. Repairing Foam Insulation

    NASA Technical Reports Server (NTRS)

    Corbin, J.; Buras, D.

    1986-01-01

    Large holes in polyurethane foam insulation repaired reliably by simple method. Little skill needed to apply method, used for overhead repairs as well as for those in other orientations. Plug positioned in hole to be filled and held in place with mounting fixture. Fresh liquid foam injected through plug to bond it in place. As foam cures and expands, it displaces plug outward. Protrusion later removed.

  3. Thermosetting Fluoropolymer Foams

    NASA Technical Reports Server (NTRS)

    Lee, Sheng Yen

    1987-01-01

    New process makes fluoropolymer foams with controllable amounts of inert-gas fillings in foam cells. Thermosetting fluoropolymers do not require foaming additives leaving undesirable residues and do not have to be molded and sintered at temperatures of about 240 to 400 degree C. Consequently, better for use with electronic or other parts sensitive to high temperatures or residues. Uses include coatings, electrical insulation, and structural parts.

  4. High performance polymeric foams

    SciTech Connect

    Gargiulo, M.; Sorrentino, L.; Iannace, S.

    2008-08-28

    The aim of this work was to investigate the foamability of high-performance polymers (polyethersulfone, polyphenylsulfone, polyetherimide and polyethylenenaphtalate). Two different methods have been used to prepare the foam samples: high temperature expansion and two-stage batch process. The effects of processing parameters (saturation time and pressure, foaming temperature) on the densities and microcellular structures of these foams were analyzed by using scanning electron microscopy.

  5. Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications.

    PubMed

    Georgakilas, Vasilios; Tiwari, Jitendra N; Kemp, K Christian; Perman, Jason A; Bourlinos, Athanasios B; Kim, Kwang S; Zboril, Radek

    2016-05-11

    This Review focuses on noncovalent functionalization of graphene and graphene oxide with various species involving biomolecules, polymers, drugs, metals and metal oxide-based nanoparticles, quantum dots, magnetic nanostructures, other carbon allotropes (fullerenes, nanodiamonds, and carbon nanotubes), and graphene analogues (MoS2, WS2). A brief description of π-π interactions, van der Waals forces, ionic interactions, and hydrogen bonding allowing noncovalent modification of graphene and graphene oxide is first given. The main part of this Review is devoted to tailored functionalization for applications in drug delivery, energy materials, solar cells, water splitting, biosensing, bioimaging, environmental, catalytic, photocatalytic, and biomedical technologies. A significant part of this Review explores the possibilities of graphene/graphene oxide-based 3D superstructures and their use in lithium-ion batteries. This Review ends with a look at challenges and future prospects of noncovalently modified graphene and graphene oxide. PMID:27033639

  6. Ultrasonication assisted preparation of carbonaceous nanoparticles modified polyurethane foam with good conductivity and high oil absorption properties

    NASA Astrophysics Data System (ADS)

    Shi, Hengchong; Shi, Dean; Yin, Ligang; Yang, Zhihua; Luan, Shifang; Gao, Jiefeng; Zha, Junwei; Yin, Jinghua; Li, Robert K. Y.

    2014-10-01

    In this work, we report a facile, low cost and time-saving method for the fabrication of compressible, electrically conductive, oil absorptive, cost-effective and flexible polyurethane (PU) foam through ultrasonication induced carbonaceous nanoparticles (CNP) onto flexible PU foam (CNP-PU foam). SEM images showed that the CNP could be firmly anchored onto the PU foam, and made the PU foam surface much rougher. Zero-dimensional carbonaceous nanoparticles were easier to anchor onto the PU foam surface than one-dimensional nanoparticles (e.g., carbon nanotube) or two-dimensional nanoparticles (e.g., graphene oxide). The CNP-PU foam exhibited excellent elasticity and high mechanical durability even when it was subjected to 500 cyclic compression. The CNP-PU foam had excellent absorption of organic solvents up to 121 times the weight of the initial PU foam. In addition, the electrical conductivity of PU foams was considerably increased with the anchoring of CNP onto the matrix. In addition, compression experiments confirmed that the electrical conductivity of CNP-PU foams changed with their compression ratios, thus exhibiting excellent pressure sensitivity. The as-prepared materials have significant potential as oil absorbents, elastic conductors, flexible electrodes, pressure sensors, etc.In this work, we report a facile, low cost and time-saving method for the fabrication of compressible, electrically conductive, oil absorptive, cost-effective and flexible polyurethane (PU) foam through ultrasonication induced carbonaceous nanoparticles (CNP) onto flexible PU foam (CNP-PU foam). SEM images showed that the CNP could be firmly anchored onto the PU foam, and made the PU foam surface much rougher. Zero-dimensional carbonaceous nanoparticles were easier to anchor onto the PU foam surface than one-dimensional nanoparticles (e.g., carbon nanotube) or two-dimensional nanoparticles (e.g., graphene oxide). The CNP-PU foam exhibited excellent elasticity and high mechanical

  7. Optimization of HIPE Foams

    SciTech Connect

    Steckle, W.P. Jr.; Smith, M.E.; Sebring, R.J.; Nobile, A. Jr.

    2004-03-15

    High Internal Phase Emulsion (HIPE) polystyrene foams have been made at LANL for the past decade. It is a robust system that offers flexibility in tailoring density and the incorporation of halogens and metals. As target designs become more complex the demands placed on the foams are more stringent. Parts are machined from 30 mg/cm{sup 3} foams to thicknesses of 50 {mu}m. At three percent of full density these foams are to withstand extraction with ethanol to remove the wax utilized as a machining aid and not allow shrinkage or warpage. In order to accomplish this the formulation of the HIPE foam had to be modified. Recently some new processing issues have arisen. At low densities voids have become a problem. To determine a formulation that reduces void content and allows minimum shrinkage, experimental design was utilized. We also developed image analysis techniques that allow us to quantify the amount of voids in the system. These techniques also allow us to evaluate the surface finish of the foam. In order to machine these low density foams to the tolerance required with an optimum surface finish the foams are backfilled with Brij 78, an alcohol soluble wax. After the part is machined, the Brij is leached out. Recent batches of Brij have exhibited high shrinkage, which in turn affects the surface finish of the foam.

  8. Shape memory polymer foams

    NASA Astrophysics Data System (ADS)

    Santo, Loredana

    2016-02-01

    Recent advances in shape memory polymer (SMP) foam research are reviewed. The SMPs belong to a new class of smart polymers which can have interesting applications in microelectromechanical systems, actuators and biomedical devices. They can respond to specific external stimulus changing their configuration and then remember the original shape. In the form of foams, the shape memory behaviour can be enhanced because they generally have higher compressibility. Considering also the low weight, and recovery force, the SMP foams are expected to have great potential applications primarily in aerospace. This review highlights the recent progress in characterization, evaluation, and proposed applications of SMP foams mainly for aerospace applications.

  9. 3D Interconnected Electrode Materials with Ultrahigh Areal Sulfur Loading for Li-S Batteries.

    PubMed

    Fang, Ruopian; Zhao, Shiyong; Hou, Pengxiang; Cheng, Min; Wang, Shaogang; Cheng, Hui-Ming; Liu, Chang; Li, Feng

    2016-05-01

    Sulfur electrodes based on a 3D integrated hollow carbon fiber foam (HCFF) are synthesized with high sulfur loadings of 6.2-21.2 mg cm(-2) . Benefiting from the high electrolyte absorbability of the HCFF and the multiple conductive channels, the obtained electrode demonstrates excellent cycling stability and a high areal capacity of 23.32 mAh cm(-2) , showing great promise in commercially viable Li-S batteries. PMID:26932832

  10. Liquid evaporation-driven folding of graphene sheets

    NASA Astrophysics Data System (ADS)

    Liu, Qingchang; Gao, Yuan; Xu, Baoxing

    2016-04-01

    We propose a theory of folding graphene sheets from rapid evaporation of its liquid suspension. Using an energy criterion that contains the competition among bending energy of graphene sheets, surface energy of graphene sheets and liquid and their interfacial energy, and binding energy of folded graphene sheets, we are able to quantitatively correlate folded three-dimensional (3D) graphene structures with both geometric size and surface wettability of original graphene sheets. Theoretical predictions of folded 3D graphene patterns and sizes agree well with the parallel molecular dynamics simulations. Our theory is of immediate interest to the study of crumpling/folding original two-dimensional structures to 3D shapes through evaporation of a liquid suspension.

  11. 3-D Technology Approaches for Biological Ecologies

    NASA Astrophysics Data System (ADS)

    Liu, Liyu; Austin, Robert; U. S-China Physical-Oncology Sciences Alliance (PS-OA) Team

    Constructing three dimensional (3-D) landscapes is an inevitable issue in deep study of biological ecologies, because in whatever scales in nature, all of the ecosystems are composed by complex 3-D environments and biological behaviors. Just imagine if a 3-D technology could help complex ecosystems be built easily and mimic in vivo microenvironment realistically with flexible environmental controls, it will be a fantastic and powerful thrust to assist researchers for explorations. For years, we have been utilizing and developing different technologies for constructing 3-D micro landscapes for biophysics studies in in vitro. Here, I will review our past efforts, including probing cancer cell invasiveness with 3-D silicon based Tepuis, constructing 3-D microenvironment for cell invasion and metastasis through polydimethylsiloxane (PDMS) soft lithography, as well as explorations of optimized stenting positions for coronary bifurcation disease with 3-D wax printing and the latest home designed 3-D bio-printer. Although 3-D technologies is currently considered not mature enough for arbitrary 3-D micro-ecological models with easy design and fabrication, I hope through my talk, the audiences will be able to sense its significance and predictable breakthroughs in the near future. This work was supported by the State Key Development Program for Basic Research of China (Grant No. 2013CB837200), the National Natural Science Foundation of China (Grant No. 11474345) and the Beijing Natural Science Foundation (Grant No. 7154221).

  12. RT3D tutorials for GMS users

    SciTech Connect

    Clement, T.P.; Jones, N.L.

    1998-02-01

    RT3D (Reactive Transport in 3-Dimensions) is a computer code that solves coupled partial differential equations that describe reactive-flow and transport of multiple mobile and/or immobile species in a three dimensional saturated porous media. RT3D was developed from the single-species transport code, MT3D (DoD-1.5, 1997 version). As with MT3D, RT3D also uses the USGS groundwater flow model MODFLOW for computing spatial and temporal variations in groundwater head distribution. This report presents a set of tutorial problems that are designed to illustrate how RT3D simulations can be performed within the Department of Defense Groundwater Modeling System (GMS). GMS serves as a pre- and post-processing interface for RT3D. GMS can be used to define all the input files needed by RT3D code, and later the code can be launched from within GMS and run as a separate application. Once the RT3D simulation is completed, the solution can be imported to GMS for graphical post-processing. RT3D v1.0 supports several reaction packages that can be used for simulating different types of reactive contaminants. Each of the tutorials, described below, provides training on a different RT3D reaction package. Each reaction package has different input requirements, and the tutorials are designed to describe these differences. Furthermore, the tutorials illustrate the various options available in GMS for graphical post-processing of RT3D results. Users are strongly encouraged to complete the tutorials before attempting to use RT3D and GMS on a routine basis.

  13. Multifunctional Porous Graphene for High-Efficiency Steam Generation by Heat Localization.

    PubMed

    Ito, Yoshikazu; Tanabe, Yoichi; Han, Jiuhui; Fujita, Takeshi; Tanigaki, Katsumi; Chen, Mingwei

    2015-08-01

    Multifunctional nanoporous graphene is realized as a heat generator to convert solar illumination into high-energy steam. The novel 3D nanoporous graphene demonstrates a highly energy-effective steam generation with an energy conversation of 80%. PMID:26079440

  14. High Temperature Structural Foam

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S.; Baillif, Faye F.; Grimsley, Brian W.; Marchello, Joseph M.

    1997-01-01

    The Aerospace Industry is experiencing growing demand for high performance polymer foam. The X-33 program needs structural foam insulation capable of retaining its strength over a wide range of environmental conditions. The High Speed Research Program has a need for low density core splice and potting materials. This paper reviews the state of the art in foam materials and describes experimental work to fabricate low density, high shear strength foam which can withstand temperatures from -220 C to 220 C. Commercially available polymer foams exhibit a wide range of physical properties. Some with densities as low as 0.066 g/cc are capable of co-curing at temperatures as high as 182 C. Rohacell foams can be resin transfer molded at temperatures up to 180 C. They have moduli of elasticity of 0.19 MPa, tensile strengths of 3.7 Mpa and compressive strengths of 3.6 MPa. The Rohacell foams cannot withstand liquid hydrogen temperatures, however Imi-Tech markets Solimide (trademark) foams which withstand temperatures from -250 C to 200 C, but they do not have the required structural integrity. The research activity at NASA Langley Research Center focuses on using chemical blowing agents to produce polyimide thermoplastic foams capable of meeting the above performance requirements. The combination of blowing agents that decompose at the minimum melt viscosity temperature together with plasticizers to lower the viscosity has been used to produce foams by both extrusion and oven heating. The foams produced exhibit good environmental stability while maintaining structural properties.

  15. 3D Dynamic Echocardiography with a Digitizer

    NASA Astrophysics Data System (ADS)

    Oshiro, Osamu; Matani, Ayumu; Chihara, Kunihiro

    1998-05-01

    In this paper,a three-dimensional (3D) dynamic ultrasound (US) imaging system,where a US brightness-mode (B-mode) imagetriggered with an R-wave of electrocardiogram (ECG)was obtained with an ultrasound diagnostic deviceand the location and orientation of the US probewere simultaneously measured with a 3D digitizer, is described.The obtained B-mode imagewas then projected onto a virtual 3D spacewith the proposed interpolation algorithm using a Gaussian operator.Furthermore, a 3D image was presented on a cathode ray tube (CRT)and stored in virtual reality modeling language (VRML).We performed an experimentto reconstruct a 3D heart image in systole using this system.The experimental results indicatethat the system enables the visualization ofthe 3D and internal structure of a heart viewed from any angleand has potential for use in dynamic imaging,intraoperative ultrasonography and tele-medicine.

  16. Coarsening foams robustly reach a self-similar growth regime.

    PubMed

    Lambert, Jérôme; Mokso, Rajmund; Cantat, Isabelle; Cloetens, Peter; Glazier, James A; Graner, François; Delannay, Renaud

    2010-06-18

    Dry liquid foams coarsen like other diphasic systems governed by interfacial energy: gas slowly diffuses across liquid films, resulting in large bubbles growing at the expense of smaller ones which eventually shrink and disappear. A foam scatters light very effectively, preventing direct optical observation of bubble sizes and shapes in large foams. Using high speed x-ray tomography, we have produced 4D movies (i.e., 3D + time) of up to 30,000 bubbles. After a transient regime, the successive images look alike, except that the average bubble size increases as the square root of time: This scaling state is the long sought self-similar growth regime. The bubble size and face-number distributions in this regime are compared with experimental distributions for grains in crystals and with numerical simulations of foams. PMID:20867343

  17. Digital 3D facial reconstruction of George Washington

    NASA Astrophysics Data System (ADS)

    Razdan, Anshuman; Schwartz, Jeff; Tocheri, Mathew; Hansford, Dianne

    2006-02-01

    PRISM is a focal point of interdisciplinary research in geometric modeling, computer graphics and visualization at Arizona State University. Many projects in the last ten years have involved laser scanning, geometric modeling and feature extraction from such data as archaeological vessels, bones, human faces, etc. This paper gives a brief overview of a recently completed project on the 3D reconstruction of George Washington (GW). The project brought together forensic anthropologists, digital artists and computer scientists in the 3D digital reconstruction of GW at 57, 45 and 19 including detailed heads and bodies. Although many other scanning projects such as the Michelangelo project have successfully captured fine details via laser scanning, our project took it a step further, i.e. to predict what that individual (in the sculpture) might have looked like both in later and earlier years, specifically the process to account for reverse aging. Our base data was GWs face mask at Morgan Library and Hudons bust of GW at Mount Vernon, both done when GW was 53. Additionally, we scanned the statue at the Capitol in Richmond, VA; various dentures, and other items. Other measurements came from clothing and even portraits of GW. The digital GWs were then milled in high density foam for a studio to complete the work. These will be unveiled at the opening of the new education center at Mt Vernon in fall 2006.

  18. 3D Scientific Visualization with Blender

    NASA Astrophysics Data System (ADS)

    Kent, Brian R.

    2015-03-01

    This is the first book written on using Blender for scientific visualization. It is a practical and interesting introduction to Blender for understanding key parts of 3D rendering and animation that pertain to the sciences via step-by-step guided tutorials. 3D Scientific Visualization with Blender takes you through an understanding of 3D graphics and modelling for different visualization scenarios in the physical sciences.

  19. Graphene nano-devices and nano-composites for structural, thermal and sensing applications

    NASA Astrophysics Data System (ADS)

    Yavari, Fazel

    In this dissertation we have developed graphene-based nano-devices for applications in integrated circuits and gas sensors; as well as graphene-based nano-composites for applications in structures and thermal management. First, we have studied the bandgap of graphene for semiconductor applications. Graphene as a zero-bandgap material cannot be used in the semiconductor industry unless an effective method is developed to open the bandgap in this material. We have demonstrated that a bandgap of 0.206 eV can be opened in graphene by adsorption of water vapor molecules on its surface. Water molecules break the molecular symmetries of graphene resulting in a significant bandgap opening. We also illustrate that the lack of bandgap in graphene can be used to our advantage by making sensors that are able to detect low concentrations of gas molecules mixed in air. We have shown that 1-2 layers of graphene synthesized by chemical vapor deposition enables detection of trace amounts of NO 2 and NH3 in air at room temperature and atmospheric pressure. The gas species are detected by monitoring changes in electrical resistance of the graphene film due to gas adsorption. The sensor response time is inversely proportional to the gas concentration. Heating the film expels chemisorbed molecules from the graphene surface enabling reversible operation. The detection limits of ~100 parts-per-billion (ppb) for NO2 and ~500 ppb for NH3 obtained using this device are markedly superior to commercially available NO2 and NH3 detectors. This sensor is fabricated using individual graphene sheets that are exquisitely sensitive to the chemical environment. However, the fabrication and operation of devices that use individual nanostructures for sensing is complex, expensive and suffers from poor reliability due to contamination and large variability from sample-to-sample. To overcome these problems we have developed a gas sensor based on a porous 3D network of graphene sheets called graphene foam

  20. Software for 3D radiotherapy dosimetry. Validation

    NASA Astrophysics Data System (ADS)

    Kozicki, Marek; Maras, Piotr; Karwowski, Andrzej C.

    2014-08-01

    The subject of this work is polyGeVero® software (GeVero Co., Poland), which has been developed to fill the requirements of fast calculations of 3D dosimetry data with the emphasis on polymer gel dosimetry for radiotherapy. This software comprises four workspaces that have been prepared for: (i) calculating calibration curves and calibration equations, (ii) storing the calibration characteristics of the 3D dosimeters, (iii) calculating 3D dose distributions in irradiated 3D dosimeters, and (iv) comparing 3D dose distributions obtained from measurements with the aid of 3D dosimeters and calculated with the aid of treatment planning systems (TPSs). The main features and functions of the software are described in this work. Moreover, the core algorithms were validated and the results are presented. The validation was performed using the data of the new PABIGnx polymer gel dosimeter. The polyGeVero® software simplifies and greatly accelerates the calculations of raw 3D dosimetry data. It is an effective tool for fast verification of TPS-generated plans for tumor irradiation when combined with a 3D dosimeter. Consequently, the software may facilitate calculations by the 3D dosimetry community. In this work, the calibration characteristics of the PABIGnx obtained through four calibration methods: multi vial, cross beam, depth dose, and brachytherapy, are discussed as well.

  1. Dimensional accuracy of 3D printed vertebra

    NASA Astrophysics Data System (ADS)

    Ogden, Kent; Ordway, Nathaniel; Diallo, Dalanda; Tillapaugh-Fay, Gwen; Aslan, Can

    2014-03-01

    3D printer applications in the biomedical sciences and medical imaging are expanding and will have an increasing impact on the practice of medicine. Orthopedic and reconstructive surgery has been an obvious area for development of 3D printer applications as the segmentation of bony anatomy to generate printable models is relatively straightforward. There are important issues that should be addressed when using 3D printed models for applications that may affect patient care; in particular the dimensional accuracy of the printed parts needs to be high to avoid poor decisions being made prior to surgery or therapeutic procedures. In this work, the dimensional accuracy of 3D printed vertebral bodies derived from CT data for a cadaver spine is compared with direct measurements on the ex-vivo vertebra and with measurements made on the 3D rendered vertebra using commercial 3D image processing software. The vertebra was printed on a consumer grade 3D printer using an additive print process using PLA (polylactic acid) filament. Measurements were made for 15 different anatomic features of the vertebral body, including vertebral body height, endplate width and depth, pedicle height and width, and spinal canal width and depth, among others. It is shown that for the segmentation and printing process used, the results of measurements made on the 3D printed vertebral body are substantially the same as those produced by direct measurement on the vertebra and measurements made on the 3D rendered vertebra.

  2. Stereo 3-D Vision in Teaching Physics

    NASA Astrophysics Data System (ADS)

    Zabunov, Svetoslav

    2012-03-01

    Stereo 3-D vision is a technology used to present images on a flat surface (screen, paper, etc.) and at the same time to create the notion of three-dimensional spatial perception of the viewed scene. A great number of physical processes are much better understood when viewed in stereo 3-D vision compared to standard flat 2-D presentation. The current paper describes the modern stereo 3-D technologies that are applicable to various tasks in teaching physics in schools, colleges, and universities. Examples of stereo 3-D simulations developed by the author can be observed on online.

  3. Accuracy in Quantitative 3D Image Analysis

    PubMed Central

    Bassel, George W.

    2015-01-01

    Quantitative 3D imaging is becoming an increasingly popular and powerful approach to investigate plant growth and development. With the increased use of 3D image analysis, standards to ensure the accuracy and reproducibility of these data are required. This commentary highlights how image acquisition and postprocessing can introduce artifacts into 3D image data and proposes steps to increase both the accuracy and reproducibility of these analyses. It is intended to aid researchers entering the field of 3D image processing of plant cells and tissues and to help general readers in understanding and evaluating such data. PMID:25804539

  4. Micromodel foam flow study

    SciTech Connect

    Chambers, K.T.; Radke, C.J.

    1990-10-01

    Foams are often utilized as part of enhanced oil recovery techniques. This report presents the results of a micromodel foam flow study. Micromodels are valuable tools in uncovering capillary phenomena responsible for lamellae generation and coalescence during foam flow in porous media. Among the mechanisms observed are snap-off, weeping-flow breakup, and lamella division and leave behind. Coalescence mechanisms include dynamic capillary-pressure-induced lamella drainage and gas diffusion. These phenomena are sensitive to the mode of injection, the local capillary environment, and the geometry of the pore structure. An important consideration in presenting a tractable model of foam flow behavior is the ability to identify the pore-level mechanisms having the greatest impact on foam texture. The predominant mechanisms will vary depending upon the application for foam as an enhanced oil recovery (EOR) fluid. Both simultaneous gas and surfactant injection and surfactant alternating with gas injection (SAG) have been used to create foam for mobility control in EOR projects. The model developed is based on simultaneous gas and surfactant injection during steady-state conditions into a Berea sandstone core. The lamellae generation and coalescence mechanisms included in this model are snap-off, lamella division, and dynamic capillary-pressure-induced lamella drainage. This simplified steady-state model serves as a foundation for developing more complete rate expressions and for extending the population balance to handle transient foam flow behavior. 70 refs., 30 figs.

  5. Evaluating foam heterogeneity

    NASA Technical Reports Server (NTRS)

    Liou, D. W.; Lee, W. M.

    1972-01-01

    New analytical tool is available to calculate the degree of foam heterogeneity based on the measurement of gas diffusivity values. Diffusion characteristics of plastic foam are described by a system of differential equations based on conventional diffusion theory. This approach saves research and computation time in studying mass or heat diffusion problems.

  6. Chronicles of foam films.

    PubMed

    Gochev, G; Platikanov, D; Miller, R

    2016-07-01

    The history of the scientific research on foam films, traditionally known as soap films, dates back to as early as the late 17th century when Boyle and Hooke paid special attention to the colours of soap bubbles. Their inspiration was transferred to Newton, who began systematic study of the science of foam films. Over the next centuries, a number of scientists dealt with the open questions of the drainage, stability and thickness of foam films. The significant contributions of Plateau and Gibbs in the middle/late 19th century are particularly recognized. After the "colours" method of Newton, Reinold and Rücker as well as Johhonnot developed optical methods for measuring the thickness of the thinner "non-colour" films (first order black) that are still in use today. At the beginning of the 20th century, various aspects of the foam film science were elucidated by the works of Dewar and Perrin and later by Mysels. Undoubtedly, the introduction of the disjoining pressure by Derjaguin and the manifestation of the DLVO theory in describing the film stability are considered as milestones in the theoretical development of foam films. The study of foam films gained momentum with the introduction of the microscopic foam film methodology by Scheludko and Exerowa, which is widely used today. This historical perspective serves as a guide through the chronological development of knowledge on foam films achieved over several centuries. PMID:26361708

  7. FastScript3D - A Companion to Java 3D

    NASA Technical Reports Server (NTRS)

    Koenig, Patti

    2005-01-01

    FastScript3D is a computer program, written in the Java 3D(TM) programming language, that establishes an alternative language that helps users who lack expertise in Java 3D to use Java 3D for constructing three-dimensional (3D)-appearing graphics. The FastScript3D language provides a set of simple, intuitive, one-line text-string commands for creating, controlling, and animating 3D models. The first word in a string is the name of a command; the rest of the string contains the data arguments for the command. The commands can also be used as an aid to learning Java 3D. Developers can extend the language by adding custom text-string commands. The commands can define new 3D objects or load representations of 3D objects from files in formats compatible with such other software systems as X3D. The text strings can be easily integrated into other languages. FastScript3D facilitates communication between scripting languages [which enable programming of hyper-text markup language (HTML) documents to interact with users] and Java 3D. The FastScript3D language can be extended and customized on both the scripting side and the Java 3D side.

  8. Foamed Bulk Metallic Glass (Foam) Investigation

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This soldering iron has an evacuated copper capsule at the tip that contains a pellet of Bulk Metallic Glass (BMG) aboard the International Space Station (ISS). Prior to flight, researchers sealed a pellet of bulk metallic glass mixed with microscopic gas-generating particles into the copper ampoule under vacuum. Once heated in space, such as in this photograph, the particles generated gas and the BMG becomes a viscous liquid. The released gas made the sample foam within the capsule where each microscopic particle formed a gas-filled pore within the foam. The inset image shows the oxidation of the sample after several minutes of applying heat. Although hidden within the brass sleeve, the sample retained the foam shape when cooled, because the viscosity increased during cooling until it was solid.

  9. 3D PDF - a means of public access to geological 3D - objects, using the example of GTA3D

    NASA Astrophysics Data System (ADS)

    Slaby, Mark-Fabian; Reimann, Rüdiger

    2013-04-01

    In geology, 3D modeling has become very important. In the past, two-dimensional data such as isolines, drilling profiles, or cross-sections based on those, were used to illustrate the subsurface geology, whereas now, we can create complex digital 3D models. These models are produced with special software, such as GOCAD ®. The models can be viewed, only through the software used to create them, or through viewers available for free. The platform-independent PDF (Portable Document Format), enforced by Adobe, has found a wide distribution. This format has constantly evolved over time. Meanwhile, it is possible to display CAD data in an Adobe 3D PDF file with the free Adobe Reader (version 7). In a 3D PDF, a 3D model is freely rotatable and can be assembled from a plurality of objects, which can thus be viewed from all directions on their own. In addition, it is possible to create moveable cross-sections (profiles), and to assign transparency to the objects. Based on industry-standard CAD software, 3D PDFs can be generated from a large number of formats, or even be exported directly from this software. In geoinformatics, different approaches to creating 3D PDFs exist. The intent of the Authority for Mining, Energy and Geology to allow free access to the models of the Geotectonic Atlas (GTA3D), could not be realized with standard software solutions. A specially designed code converts the 3D objects to VRML (Virtual Reality Modeling Language). VRML is one of the few formats that allow using image files (maps) as textures, and to represent colors and shapes correctly. The files were merged in Acrobat X Pro, and a 3D PDF was generated subsequently. A topographic map, a display of geographic directions and horizontal and vertical scales help to facilitate the use.

  10. An aerial 3D printing test mission

    NASA Astrophysics Data System (ADS)

    Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy

    2016-05-01

    This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.

  11. 3D ultrafast ultrasound imaging in vivo

    NASA Astrophysics Data System (ADS)

    Provost, Jean; Papadacci, Clement; Esteban Arango, Juan; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra—and inter-observer variability.

  12. Topology dictionary for 3D video understanding.

    PubMed

    Tung, Tony; Matsuyama, Takashi

    2012-08-01

    This paper presents a novel approach that achieves 3D video understanding. 3D video consists of a stream of 3D models of subjects in motion. The acquisition of long sequences requires large storage space (2 GB for 1 min). Moreover, it is tedious to browse data sets and extract meaningful information. We propose the topology dictionary to encode and describe 3D video content. The model consists of a topology-based shape descriptor dictionary which can be generated from either extracted patterns or training sequences. The model relies on 1) topology description and classification using Reeb graphs, and 2) a Markov motion graph to represent topology change states. We show that the use of Reeb graphs as the high-level topology descriptor is relevant. It allows the dictionary to automatically model complex sequences, whereas other strategies would require prior knowledge on the shape and topology of the captured subjects. Our approach serves to encode 3D video sequences, and can be applied for content-based description and summarization of 3D video sequences. Furthermore, topology class labeling during a learning process enables the system to perform content-based event recognition. Experiments were carried out on various 3D videos. We showcase an application for 3D video progressive summarization using the topology dictionary. PMID:22745004

  13. 3-D seismology in the Arabian Gulf

    SciTech Connect

    Al-Husseini, M.; Chimblo, R.

    1995-08-01

    Since 1977 when Aramco and GSI (Geophysical Services International) pioneered the first 3-D seismic survey in the Arabian Gulf, under the guidance of Aramco`s Chief Geophysicist John Hoke, 3-D seismology has been effectively used to map many complex subsurface geological phenomena. By the mid-1990s extensive 3-D surveys were acquired in Abu Dhabi, Oman, Qatar and Saudi Arabia. Also in the mid-1990`s Bahrain, Kuwait and Dubai were preparing to record surveys over their fields. On the structural side 3-D has refined seismic maps, focused faults and fractures systems, as well as outlined the distribution of facies, porosity and fluid saturation. In field development, 3D has not only reduced drilling costs significantly, but has also improved the understanding of fluid behavior in the reservoir. In Oman, Petroleum Development Oman (PDO) has now acquired the first Gulf 4-D seismic survey (time-lapse 3D survey) over the Yibal Field. The 4-D survey will allow PDO to directly monitor water encroachment in the highly-faulted Cretaceous Shu`aiba reservoir. In exploration, 3-D seismology has resolved complex prospects with structural and stratigraphic complications and reduced the risk in the selection of drilling locations. The many case studies from Saudi Arabia, Oman, Qatar and the United Arab Emirates, which are reviewed in this paper, attest to the effectiveness of 3D seismology in exploration and producing, in clastics and carbonates reservoirs, and in the Mesozoic and Paleozoic.

  14. A 3D Geostatistical Mapping Tool

    1999-02-09

    This software provides accurate 3D reservoir modeling tools and high quality 3D graphics for PC platforms enabling engineers and geologists to better comprehend reservoirs and consequently improve their decisions. The mapping algorithms are fractals, kriging, sequential guassian simulation, and three nearest neighbor methods.

  15. 3D, or Not to Be?

    ERIC Educational Resources Information Center

    Norbury, Keith

    2012-01-01

    It may be too soon for students to be showing up for class with popcorn and gummy bears, but technology similar to that behind the 3D blockbuster movie "Avatar" is slowly finding its way into college classrooms. 3D classroom projectors are taking students on fantastic voyages inside the human body, to the ruins of ancient Greece--even to faraway…

  16. Stereoscopic Investigations of 3D Coulomb Balls

    SciTech Connect

    Kaeding, Sebastian; Melzer, Andre; Arp, Oliver; Block, Dietmar; Piel, Alexander

    2005-10-31

    In dusty plasmas particles are arranged due to the influence of external forces and the Coulomb interaction. Recently Arp et al. were able to generate 3D spherical dust clouds, so-called Coulomb balls. Here, we present measurements that reveal the full 3D particle trajectories from stereoscopic imaging.

  17. 3-D structures of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Steffen, W.

    2016-07-01

    Recent advances in the 3-D reconstruction of planetary nebulae are reviewed. We include not only results for 3-D reconstructions, but also the current techniques in terms of general methods and software. In order to obtain more accurate reconstructions, we suggest to extend the widely used assumption of homologous nebula expansion to map spectroscopically measured velocity to position along the line of sight.

  18. Wow! 3D Content Awakens the Classroom

    ERIC Educational Resources Information Center

    Gordon, Dan

    2010-01-01

    From her first encounter with stereoscopic 3D technology designed for classroom instruction, Megan Timme, principal at Hamilton Park Pacesetter Magnet School in Dallas, sensed it could be transformative. Last spring, when she began pilot-testing 3D content in her third-, fourth- and fifth-grade classrooms, Timme wasn't disappointed. Students…

  19. 3D Printed Block Copolymer Nanostructures

    ERIC Educational Resources Information Center

    Scalfani, Vincent F.; Turner, C. Heath; Rupar, Paul A.; Jenkins, Alexander H.; Bara, Jason E.

    2015-01-01

    The emergence of 3D printing has dramatically advanced the availability of tangible molecular and extended solid models. Interestingly, there are few nanostructure models available both commercially and through other do-it-yourself approaches such as 3D printing. This is unfortunate given the importance of nanotechnology in science today. In this…

  20. Static & Dynamic Response of 3D Solids

    1996-07-15

    NIKE3D is a large deformations 3D finite element code used to obtain the resulting displacements and stresses from multi-body static and dynamic structural thermo-mechanics problems with sliding interfaces. Many nonlinear and temperature dependent constitutive models are available.

  1. Immersive 3D Geovisualization in Higher Education

    ERIC Educational Resources Information Center

    Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold

    2015-01-01

    In this study, we investigate how immersive 3D geovisualization can be used in higher education. Based on MacEachren and Kraak's geovisualization cube, we examine the usage of immersive 3D geovisualization and its usefulness in a research-based learning module on flood risk, called GEOSimulator. Results of a survey among participating students…

  2. Stereo 3-D Vision in Teaching Physics

    ERIC Educational Resources Information Center

    Zabunov, Svetoslav

    2012-01-01

    Stereo 3-D vision is a technology used to present images on a flat surface (screen, paper, etc.) and at the same time to create the notion of three-dimensional spatial perception of the viewed scene. A great number of physical processes are much better understood when viewed in stereo 3-D vision compared to standard flat 2-D presentation. The…

  3. Pathways for Learning from 3D Technology

    ERIC Educational Resources Information Center

    Carrier, L. Mark; Rab, Saira S.; Rosen, Larry D.; Vasquez, Ludivina; Cheever, Nancy A.

    2012-01-01

    The purpose of this study was to find out if 3D stereoscopic presentation of information in a movie format changes a viewer's experience of the movie content. Four possible pathways from 3D presentation to memory and learning were considered: a direct connection based on cognitive neuroscience research; a connection through "immersion" in that 3D…

  4. Toughening of phenolic foam

    NASA Astrophysics Data System (ADS)

    Shen, Hongbin

    2003-06-01

    Phenolic foam has excellent FST performance with relatively low cost, and thus is an attractive material for many applications. However, it is extremely brittle and fragile, precluding it from load-bearing applications. In order to make it tougher and more viable for structural purposes, an effective approach has been proposed and investigated in this study. Composite phenolic foam with short fiber reinforcements resulted in significant improvement in mechanical performance while retaining FST properties comparable to conventional phenolic foam. For example, composite phenolic foam with aramid fibers exhibited a seven-fold increase in peel resistance together with a five-fold reduction in friability. In shear tests, aramid composite foam endured prolonged loading to high levels of strain, indicating the potential for use in structural applications. On the other hand, glass fiber-reinforced phenolic foam produced substantial improvement in the stiffness and strength relative to the unreinforced counterpart. In particular, the Young's modulus of the glass fiber composite foam was increased by as much as 100% relative to the plain phenolic foam in the foam rise direction. In addition, different mechanical behavior was observed for aramid and glass fiber-reinforced foams. In an attempt to understand the mechanical behavior of composite foam, a novel NDT technique, micro-CT, was used to acquire information on fiber length distribution (FLD) and fiber orientation distribution (FOD). Results from micro-CT measurements were compared with theoretical distribution models, achieving various degrees of agreement. Despite some limitations of current micro-CT technology, the realistic observation and measurement of cellular morphology and fiber distribution within composite foams portend future advances in modeling of reinforced polymer foam. To explain the discrepancy observed in shear stiffness between traditional shear test results and those by the short sandwich beam test, a

  5. 3D structure of individual nanocrystals in solution by electron microscopy

    NASA Astrophysics Data System (ADS)

    Park, Jungwon; Elmlund, Hans; Ercius, Peter; Yuk, Jong Min; Limmer, David T.; Chen, Qian; Kim, Kwanpyo; Han, Sang Hoon; Weitz, David A.; Zettl, A.; Alivisatos, A. Paul

    2015-07-01

    Knowledge about the synthesis, growth mechanisms, and physical properties of colloidal nanoparticles has been limited by technical impediments. We introduce a method for determining three-dimensional (3D) structures of individual nanoparticles in solution. We combine a graphene liquid cell, high-resolution transmission electron microscopy, a direct electron detector, and an algorithm for single-particle 3D reconstruction originally developed for analysis of biological molecules. This method yielded two 3D structures of individual platinum nanocrystals at near-atomic resolution. Because our method derives the 3D structure from images of individual nanoparticles rotating freely in solution, it enables the analysis of heterogeneous populations of potentially unordered nanoparticles that are synthesized in solution, thereby providing a means to understand the structure and stability of defects at the nanoscale.

  6. Electrically conductive rigid polyurethane foam

    DOEpatents

    Neet, Thomas E.; Spieker, David A.

    1985-03-19

    A rigid, polyurethane foam comprises about 2-10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.

  7. Electrically conductive rigid polyurethane foam

    DOEpatents

    Neet, T.E.; Spieker, D.A.

    1983-12-08

    A rigid, moldable polyurethane foam comprises about 2 to 10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.

  8. Clinical applications of 3-D dosimeters

    NASA Astrophysics Data System (ADS)

    Wuu, Cheng-Shie

    2015-01-01

    Both 3-D gels and radiochromic plastic dosimeters, in conjunction with dose image readout systems (MRI or optical-CT), have been employed to measure 3-D dose distributions in many clinical applications. The 3-D dose maps obtained from these systems can provide a useful tool for clinical dose verification for complex treatment techniques such as IMRT, SRS/SBRT, brachytherapy, and proton beam therapy. These complex treatments present high dose gradient regions in the boundaries between the target and surrounding critical organs. Dose accuracy in these areas can be critical, and may affect treatment outcome. In this review, applications of 3-D gels and PRESAGE dosimeter are reviewed and evaluated in terms of their performance in providing information on clinical dose verification as well as commissioning of various treatment modalities. Future interests and clinical needs on studies of 3-D dosimetry are also discussed.

  9. Biocompatible 3D Matrix with Antimicrobial Properties.

    PubMed

    Ion, Alberto; Andronescu, Ecaterina; Rădulescu, Dragoș; Rădulescu, Marius; Iordache, Florin; Vasile, Bogdan Ștefan; Surdu, Adrian Vasile; Albu, Madalina Georgiana; Maniu, Horia; Chifiriuc, Mariana Carmen; Grumezescu, Alexandru Mihai; Holban, Alina Maria

    2016-01-01

    The aim of this study was to develop, characterize and assess the biological activity of a new regenerative 3D matrix with antimicrobial properties, based on collagen (COLL), hydroxyapatite (HAp), β-cyclodextrin (β-CD) and usnic acid (UA). The prepared 3D matrix was characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Microscopy (FT-IRM), Transmission Electron Microscopy (TEM), and X-ray Diffraction (XRD). In vitro qualitative and quantitative analyses performed on cultured diploid cells demonstrated that the 3D matrix is biocompatible, allowing the normal development and growth of MG-63 osteoblast-like cells and exhibited an antimicrobial effect, especially on the Staphylococcus aureus strain, explained by the particular higher inhibitory activity of usnic acid (UA) against Gram positive bacterial strains. Our data strongly recommend the obtained 3D matrix to be used as a successful alternative for the fabrication of three dimensional (3D) anti-infective regeneration matrix for bone tissue engineering. PMID:26805790

  10. Fabrication of 3D Silicon Sensors

    SciTech Connect

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; Kenney, C.; Hasi, J.; Da Via, C.; Parker, S.I.; /Hawaii U.

    2012-06-06

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  11. BEAMS3D Neutral Beam Injection Model

    SciTech Connect

    Lazerson, Samuel

    2014-04-14

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  12. Conductive polymer nanocomposites with hierarchical multi-scale structures via self-assembly of carbon-nanotubes on graphene on polymer-microspheres.

    PubMed

    Tang, Changyu; Long, Gucheng; Hu, Xin; Wong, Ka-wai; Lau, Woon-ming; Fan, Meikun; Mei, Jun; Xu, Tao; Wang, Bin; Hui, David

    2014-07-21

    A novel and highly conductive 3-dimensional (3D) hierarchical multi-scale structure is formed by a new, simple, facile, and water-based method that enables practical production of conductive carbon nanofiller/polymer composites. More specifically, the π-π interaction between CNTs and graphene oxide (GO) is exploited to disperse conductive but non-polar CNTs with amphiphilic GO sheets to form a stable aqueous colloidal solution. Aqueous-dispersible latex-polystyrene microspheres are then added to enable the self-assembly processes of anchoring CNTs on GO and wrapping microspheres with GO-stabilized CNTs for the formation of an intriguing 3D hierarchical multi-scale structure. During this process, GO is reduced to conductive reduced-graphene oxide (RGO). The resultant RGO sheets act as "nano-walls" to prevent CNTs from randomly diffusing into the polymer bulk during thermal pressing of RGO-CNT/microspheres, which results in the formation of a 3D foam-like network of RGO-CNTs with high quality. The resultant composite with such a structure gives an ultra-low percolation threshold (0.03 vol% RGO-CNTs) and a reasonably high conductivity (153 S m(-1) at 4 vol% RGO-CNTs), which could satisfy various applications requiring both transparency and electrical conduction characteristics (e.g. transparent antistatic coatings, capacitive touch-screens, and transparent electronic devices). PMID:24791273

  13. 3D Visualization Development of SIUE Campus

    NASA Astrophysics Data System (ADS)

    Nellutla, Shravya

    Geographic Information Systems (GIS) has progressed from the traditional map-making to the modern technology where the information can be created, edited, managed and analyzed. Like any other models, maps are simplified representations of real world. Hence visualization plays an essential role in the applications of GIS. The use of sophisticated visualization tools and methods, especially three dimensional (3D) modeling, has been rising considerably due to the advancement of technology. There are currently many off-the-shelf technologies available in the market to build 3D GIS models. One of the objectives of this research was to examine the available ArcGIS and its extensions for 3D modeling and visualization and use them to depict a real world scenario. Furthermore, with the advent of the web, a platform for accessing and sharing spatial information on the Internet, it is possible to generate interactive online maps. Integrating Internet capacity with GIS functionality redefines the process of sharing and processing the spatial information. Enabling a 3D map online requires off-the-shelf GIS software, 3D model builders, web server, web applications and client server technologies. Such environments are either complicated or expensive because of the amount of hardware and software involved. Therefore, the second objective of this research was to investigate and develop simpler yet cost-effective 3D modeling approach that uses available ArcGIS suite products and the free 3D computer graphics software for designing 3D world scenes. Both ArcGIS Explorer and ArcGIS Online will be used to demonstrate the way of sharing and distributing 3D geographic information on the Internet. A case study of the development of 3D campus for the Southern Illinois University Edwardsville is demonstrated.

  14. 3D Ultrafast Ultrasound Imaging In Vivo

    PubMed Central

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-01-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative real-time imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in three dimensions based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32×32 matrix-array probe. Its capability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3-D Shear-Wave Imaging, 3-D Ultrafast Doppler Imaging and finally 3D Ultrafast combined Tissue and Flow Doppler. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3-D Ultrafast Doppler was used to obtain 3-D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, for the first time, the complex 3-D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, and the 3-D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3-D Ultrafast Ultrasound Imaging for the 3-D real-time mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra- and inter-observer variability. PMID:25207828

  15. The psychology of the 3D experience

    NASA Astrophysics Data System (ADS)

    Janicke, Sophie H.; Ellis, Andrew

    2013-03-01

    With 3D televisions expected to reach 50% home saturation as early as 2016, understanding the psychological mechanisms underlying the user response to 3D technology is critical for content providers, educators and academics. Unfortunately, research examining the effects of 3D technology has not kept pace with the technology's rapid adoption, resulting in large-scale use of a technology about which very little is actually known. Recognizing this need for new research, we conducted a series of studies measuring and comparing many of the variables and processes underlying both 2D and 3D media experiences. In our first study, we found narratives within primetime dramas had the power to shift viewer attitudes in both 2D and 3D settings. However, we found no difference in persuasive power between 2D and 3D content. We contend this lack of effect was the result of poor conversion quality and the unique demands of 3D production. In our second study, we found 3D technology significantly increased enjoyment when viewing sports content, yet offered no added enjoyment when viewing a movie trailer. The enhanced enjoyment of the sports content was shown to be the result of heightened emotional arousal and attention in the 3D condition. We believe the lack of effect found for the movie trailer may be genre-related. In our final study, we found 3D technology significantly enhanced enjoyment of two video games from different genres. The added enjoyment was found to be the result of an increased sense of presence.

  16. Foam For Filtering

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Like nature's honeycomb, foam is a structure of many-sided cells, apparently solid but actually only three percent material and 97 percent air. Foam is made by a heat-producing chemical reaction which expands a plastic material in a manner somewhat akin to the heat-induced rising of a loaf of bread. The resulting structure of interconnected cells is flexible yet strong and extremely versatile in applicati6n. Foam can, for example, be a sound absorber in one form, while in another it allows sound to pass through it. It can be a very soft powder puff material and at the same time a highly abrasive scrubber. A sampling of foam uses includes stereo speaker grilles, applying postage meter ink, filtering lawnmower carburetor air; deadening noise in trucks and tractors, applying cosmetics, releasing fabric softener and antistatic agents in home clothes dryers, painting, filtering factory heating and ventilating systems, shining shoes, polishing cars, sponge-mopping floors, acting as pre-operative surgical scrubbers-the list is virtually limitless. The process by which foam is made produces "windows," thin plastic membranes connecting the cell walls. Windowed foam is used in many applications but for certain others-filtering, for example-it is desirable to have a completely open network. Scott Paper Company's Foam Division, Chester, Pennsylvania, improved a patented method of "removing the windows," to create an open structure that affords special utility in filtering applications. NASA technology contributed to Scott's improvement.

  17. Unusually stable liquid foams.

    PubMed

    Rio, Emmanuelle; Drenckhan, Wiebke; Salonen, Anniina; Langevin, Dominique

    2014-03-01

    Obtaining stable liquid foams is an important issue in view of their numerous applications. In some of these, the liquid foam in itself is of interest, in others, the liquid foam acts as a precursor for the generation of solid foam. In this short review, we will make a survey of the existing results in the area. This will include foams stabilised by surfactants, proteins and particles. The origin of the stability is related to the slowing down of coarsening, drainage or coalescence, and eventually to their arrest. The three effects are frequently coupled and in many cases, they act simultaneously and enhance one another. Drainage can be arrested if the liquid of the foam either gels or solidifies. Coalescence is slowed down by gelified foam films, and it can be arrested if the films become very thick and/or rigid. These mechanisms are thus qualitatively easy to identify, but they are less easy to model in order to obtain quantitative predictions. The slowing down of coarsening requests either very thick or small films, and its arrest was observed in cases where the surface compression modulus was large. The detail of the mechanisms at play remains unclear. PMID:24342735

  18. Low density microcellular foams

    DOEpatents

    Aubert, James H.; Clough, Roger L.; Curro, John G.; Quintana, Carlos A.; Russick, Edward M.; Shaw, Montgomery T.

    1987-01-01

    Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the resultant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Means for subjecting such a solvent to one-dimensional cooling are also provided. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 .mu.m and a volume such that the foams have a length greater than 1 cm are provided.

  19. Low density microcellular foams

    DOEpatents

    Aubert, J.H.; Clough, R.L.; Curro, J.G.; Quintana, C.A.; Russick, E.M.; Shaw, M.T.

    1985-10-02

    Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the reusltant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 ..mu..m and a volume such that the foams have a length greater than 1 cm are provided.

  20. The foaming of lavas

    NASA Technical Reports Server (NTRS)

    Okeefe, J. A.; Walton, W.

    1976-01-01

    Foaming is of great practical and theoretical significance for volcanic processes on the earth, the moon, and perhaps the meteorite parent bodies. The theory of foams agrees with steelmaking experience to indicate that their presence depends on the existence of solutes in the lavas which reduce the surface tension, and are not saturated. These solutes concentrate at the surface, and are called surfactants. The surfactant responsible for the formation of volcanic ash was not identified; it appears to be related to the oxygen partial pressure above the lava. This fact may explain why lunar and meteoritic melts are not observed to foam. Experimental studies are needed to clarify the process.