Introduction to 3D Graphics through Excel
ERIC Educational Resources Information Center
Benacka, Jan
2013-01-01
The article presents a method of explaining the principles of 3D graphics through making a revolvable and sizable orthographic parallel projection of cuboid in Excel. No programming is used. The method was tried in fourteen 90 minute lessons with 181 participants, which were Informatics teachers, undergraduates of Applied Informatics and gymnasium…
DspaceOgre 3D Graphics Visualization Tool
NASA Technical Reports Server (NTRS)
Jain, Abhinandan; Myin, Steven; Pomerantz, Marc I.
2011-01-01
This general-purpose 3D graphics visualization C++ tool is designed for visualization of simulation and analysis data for articulated mechanisms. Examples of such systems are vehicles, robotic arms, biomechanics models, and biomolecular structures. DspaceOgre builds upon the open-source Ogre3D graphics visualization library. It provides additional classes to support the management of complex scenes involving multiple viewpoints and different scene groups, and can be used as a remote graphics server. This software provides improved support for adding programs at the graphics processing unit (GPU) level for improved performance. It also improves upon the messaging interface it exposes for use as a visualization server.
Postprocessing of compressed 3D graphic data by using subdivision
NASA Astrophysics Data System (ADS)
Cheang, Ka Man; Li, Jiankun; Kuo, C.-C. Jay
1998-10-01
In this work, we present a postprocessing technique applied to a 3D graphic model of a lower resolution to obtain a visually more pleasant representation. Our method is an improved version of the Butterfly subdivision scheme developed by Zorin et al. Our main contribution is to exploit the flatness information of local areas of a 3D graphic model for adaptive refinement. Consequently, we can avoid unnecessary subdivision in regions which are relatively flat. The proposed new algorithm not only reduces the computational complexity but also saves the storage space. With the hierarchical mesh compression method developed by Li and Kuo as the baseline coding method, we show that the postprocessing technique can greatly improve the visual quality of the decoded 3D graphic model.
The Digital Space Shuttle, 3D Graphics, and Knowledge Management
NASA Technical Reports Server (NTRS)
Gomez, Julian E.; Keller, Paul J.
2003-01-01
The Digital Shuttle is a knowledge management project that seeks to define symbiotic relationships between 3D graphics and formal knowledge representations (ontologies). 3D graphics provides geometric and visual content, in 2D and 3D CAD forms, and the capability to display systems knowledge. Because the data is so heterogeneous, and the interrelated data structures are complex, 3D graphics combined with ontologies provides mechanisms for navigating the data and visualizing relationships.
Spidergl: a Graphics Library for 3d Web Applications
NASA Astrophysics Data System (ADS)
Di Benedetto, M.; Corsini, M.; Scopigno, R.
2011-09-01
The recent introduction of the WebGL API for leveraging the power of 3D graphics accelerators within Web browsers opens the possibility to develop advanced graphics applications without the need for an ad-hoc plug-in. There are several contexts in which this new technology can be exploited to enhance user experience and data fruition, like e-commerce applications, games and, in particular, Cultural Heritage. In fact, it is now possible to use the Web platform to present a virtual reconstruction hypothesis of ancient pasts, to show detailed 3D models of artefacts of interests to a wide public, and to create virtual museums. We introduce SpiderGL, a JavaScript library for developing 3D graphics Web applications. SpiderGL provides data structures and algorithms to ease the use of WebGL, to define and manipulate shapes, to import 3D models in various formats, and to handle asynchronous data loading. We show the potential of this novel library with a number of demo applications and give details about its future uses in the context of Cultural Heritage applications.
Design Application Translates 2-D Graphics to 3-D Surfaces
NASA Technical Reports Server (NTRS)
2007-01-01
Fabric Images Inc., specializing in the printing and manufacturing of fabric tension architecture for the retail, museum, and exhibit/tradeshow communities, designed software to translate 2-D graphics for 3-D surfaces prior to print production. Fabric Images' fabric-flattening design process models a 3-D surface based on computer-aided design (CAD) specifications. The surface geometry of the model is used to form a 2-D template, similar to a flattening process developed by NASA's Glenn Research Center. This template or pattern is then applied in the development of a 2-D graphic layout. Benefits of this process include 11.5 percent time savings per project, less material wasted, and the ability to improve upon graphic techniques and offer new design services. Partners include Exhibitgroup/Giltspur (end-user client: TAC Air, a division of Truman Arnold Companies Inc.), Jack Morton Worldwide (end-user client: Nickelodeon), as well as 3D Exhibits Inc., and MG Design Associates Corp.
Optimization Techniques for 3D Graphics Deployment on Mobile Devices
NASA Astrophysics Data System (ADS)
Koskela, Timo; Vatjus-Anttila, Jarkko
2015-03-01
3D Internet technologies are becoming essential enablers in many application areas including games, education, collaboration, navigation and social networking. The use of 3D Internet applications with mobile devices provides location-independent access and richer use context, but also performance issues. Therefore, one of the important challenges facing 3D Internet applications is the deployment of 3D graphics on mobile devices. In this article, we present an extensive survey on optimization techniques for 3D graphics deployment on mobile devices and qualitatively analyze the applicability of each technique from the standpoints of visual quality, performance and energy consumption. The analysis focuses on optimization techniques related to data-driven 3D graphics deployment, because it supports off-line use, multi-user interaction, user-created 3D graphics and creation of arbitrary 3D graphics. The outcome of the analysis facilitates the development and deployment of 3D Internet applications on mobile devices and provides guidelines for future research.
3D Graphics Through the Internet: A "Shoot-Out"
NASA Technical Reports Server (NTRS)
Watson, Val; Lasinski, T. A. (Technical Monitor)
1995-01-01
3D graphics through the Internet needs to move beyond the current lowest common denominator of pre-computed movies, which consume bandwidth and are non-interactive. Panelists will demonstrate and compare 3D graphical tools for accessing, analyzing, and collaborating on information through the Internet and World-wide web. The "shoot-out" will illustrate which tools are likely to be the best for the various types of information, including dynamic scientific data, 3-D objects, and virtual environments. The goal of the panel is to encourage more effective use of the Internet by encouraging suppliers and users of information to adopt the next generation of graphical tools.
NASA Astrophysics Data System (ADS)
Łojek, Jacek
2012-01-01
The objective of this paper was to use the ArcView 3.2 application for spatial modelling of the exploration forms (pits) in the Bykowszczyzna 8 archaeological site. The 3D digital documentation at a specific scale makes possible easy archiving, presentation, and simple spatial analyses of the examined objects. The ArcView 3.2 programme and its extensions (Spatial Analyst and 3D Analyst), commonly used as analytical tools in geomorphology, were inventively used for inventory-making in the archaeological site. Traditional field sketches were only a base, which enables entering data into the programme, and don't documentation material in itself as it used to be. The method of data visual ization proposed by the author gives new possibilities for using the GIS platform software. W artykule zaprezentowano projekt wykorzystania aplikacji ArcView 3.2 w modelowaniu obrazu form eksploracyjnych na stanowisku archeologicznym Bykowszczyzna 8. Stanowisko zostało objęte programem ratowniczych badań archeologicznych w związku z budową obwodnicy miasta Kocka na trasie krajowej nr 19 relacji Siemiatycze-Lublin-Nisko. Zasadniczy etap prac archeologicznych na stanowisku Bykowszczyzna 8 obejmował pozyskanie oraz inwentaryzację materiału zabytkowego wypełniającego formy. W wyniku wybrania tego materiału, w obszarze stanowiska pozostają charakterystyczne jamy gospodarcze, które stanowią negatywowy obraz wypełnienia formy. Kształt jam jest dokumentowany w postaci szkiców oraz fotografii. Dokumentacja ta stanowi punkt wyjścia procesu digitalizacji (materiał źródłowy). Treścią artykułu jest sporządzenie cyfrowej dokumentacji zawierającej plany stanowiska w kilku poziomach szczegółowości (dla pasa, pola oraz pojedynczych form) oraz wygenerowanie modeli w standardzie 3D. Dokumentacja taka umożliwia łatwą archiwizację oraz czytelną prezentację wybranych obiektów. Możliwe jest również wykonanie analiz przestrzennych. Funkcje programu ArcView 3.2. oraz
NASA Technical Reports Server (NTRS)
Lindsey, Patricia F.
1994-01-01
In microgravity conditions mobility is greatly enhanced and body stability is difficult to achieve. Because of these difficulties, optimum placement and accessibility of objects and controls can be critical to required tasks on board shuttle flights or on the proposed space station. Anthropometric measurement of the maximum reach of occupants of a microgravity environment provide knowledge about maximum functional placement for tasking situations. Calculations for a full body, functional reach envelope for microgravity environments are imperative. To this end, three dimensional computer modeled human figures, providing a method of anthropometric measurement, were used to locate the data points that define the full body, functional reach envelope. Virtual reality technology was utilized to enable an occupant of the microgravity environment to experience movement within the reach envelope while immersed in a simulated microgravity environment.
NASA Astrophysics Data System (ADS)
Vucinic, Dean; Deen, Danny; Oanta, Emil; Batarilo, Zvonimir; Lacor, Chris
This paper focuses on visualization and manipulation of graphical content in distributed network environments. The developed graphical middleware and 3D desktop prototypes were specialized for situational awareness. This research was done in the LArge Scale COllaborative decision support Technology (LASCOT) project, which explored and combined software technologies to support human-centred decision support system for crisis management (earthquake, tsunami, flooding, airplane or oil-tanker incidents, chemical, radio-active or other pollutants spreading, etc.). The performed state-of-the-art review did not identify any publicly available large scale distributed application of this kind. Existing proprietary solutions rely on the conventional technologies and 2D representations. Our challenge was to apply the "latest" available technologies, such Java3D, X3D and SOAP, compatible with average computer graphics hardware. The selected technologies are integrated and we demonstrate: the flow of data, which originates from heterogeneous data sources; interoperability across different operating systems and 3D visual representations to enhance the end-users interactions.
Evaluation of 3-D graphics software: A case study
NASA Technical Reports Server (NTRS)
Lores, M. E.; Chasen, S. H.; Garner, J. M.
1984-01-01
An efficient 3-D geometry graphics software package which is suitable for advanced design studies was developed. The advanced design system is called GRADE--Graphics for Advanced Design. Efficiency and ease of use are gained by sacrificing flexibility in surface representation. The immediate options were either to continue development of GRADE or to acquire a commercially available system which would replace or complement GRADE. Test cases which would reveal the ability of each system to satisfy the requirements were developed. A scoring method which adequately captured the relative capabilities of the three systems was presented. While more complex multi-attribute decision methods could be used, the selected method provides all the needed information without being so complex that it is difficult to understand. If the value factors are modestly perturbed, system Z is a clear winner based on its overall capabilities. System Z is superior in two vital areas: surfacing and ease of interface with application programs.
Internet-based hardware/software co-design framework for embedded 3D graphics applications
NASA Astrophysics Data System (ADS)
Yeh, Chi-Tsai; Wang, Chun-Hao; Huang, Ing-Jer; Wong, Weng-Fai
2011-12-01
Advances in technology are making it possible to run three-dimensional (3D) graphics applications on embedded and handheld devices. In this article, we propose a hardware/software co-design environment for 3D graphics application development that includes the 3D graphics software, OpenGL ES application programming interface (API), device driver, and 3D graphics hardware simulators. We developed a 3D graphics system-on-a-chip (SoC) accelerator using transaction-level modeling (TLM). This gives software designers early access to the hardware even before it is ready. On the other hand, hardware designers also stand to gain from the more complex test benches made available in the software for verification. A unique aspect of our framework is that it allows hardware and software designers from geographically dispersed areas to cooperate and work on the same framework. Designs can be entered and executed from anywhere in the world without full access to the entire framework, which may include proprietary components. This results in controlled and secure transparency and reproducibility, granting leveled access to users of various roles.
Software-based geometry operations for 3D computer graphics
NASA Astrophysics Data System (ADS)
Sima, Mihai; Iancu, Daniel; Glossner, John; Schulte, Michael; Mamidi, Suman
2006-02-01
In order to support a broad dynamic range and a high degree of precision, many of 3D renderings fundamental algorithms have been traditionally performed in floating-point. However, fixed-point data representation is preferable over floating-point representation in graphics applications on embedded devices where performance is of paramount importance, while the dynamic range and precision requirements are limited due to the small display sizes (current PDA's are 640 × 480 (VGA), while cell-phones are even smaller). In this paper we analyze the efficiency of a CORDIC-augmented Sandbridge processor when implementing a vertex processor in software using fixed-point arithmetic. A CORDIC-based solution for vertex processing exhibits a number of advantages over classical Multiply-and-Acumulate solutions. First, since a single primitive is used to describe the computation, the code can easily be vectorized and multithreaded, and thus fits the major Sandbridge architectural features. Second, since a CORDIC iteration consists of only a shift operation followed by an addition, the computation may be deeply pipelined. Initially, we outline the Sandbridge architecture extension which encompasses a CORDIC functional unit and the associated instructions. Then, we consider rigid-body rotation, lighting, exponentiation, vector normalization, and perspective division (which are some of the most important data-intensive 3D graphics kernels) and propose a scheme to implement them on the CORDIC-augmented Sandbridge processor. Preliminary results indicate that the performance improvement within the extended instruction set ranges from 3× to 10× (with the exception of rigid body rotation).
Standard Features and Their Impact on 3D Engineering Graphics
ERIC Educational Resources Information Center
Waldenmeyer, K. M.; Hartman, N. W.
2009-01-01
The prevalence of feature-based 3D modeling in industry has necessitated the accumulation and maintenance of standard feature libraries. Currently, firms who use standard features to design parts are storing and utilizing these libraries through their existing product data management (PDM) systems. Standard features have enabled companies to…
ERIC Educational Resources Information Center
Matsuda, Hiroshi; Shindo, Yoshiaki
2006-01-01
The 3D computer graphics (3D-CG) animation using a virtual actor's speaking is very effective as an educational medium. But it takes a long time to produce a 3D-CG animation. To reduce the cost of producing 3D-CG educational contents and improve the capability of the education system, we have developed a new education system using Virtual Actor.…
Debris Dispersion Model Using Java 3D
NASA Technical Reports Server (NTRS)
Thirumalainambi, Rajkumar; Bardina, Jorge
2004-01-01
This paper describes web based simulation of Shuttle launch operations and debris dispersion. Java 3D graphics provides geometric and visual content with suitable mathematical model and behaviors of Shuttle launch. Because the model is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models provides mechanisms to understand the complexity of launch and range operations. The main focus in the modeling and simulation covers orbital dynamics and range safety. Range safety areas include destruct limit lines, telemetry and tracking and population risk near range. If there is an explosion of Shuttle during launch, debris dispersion is explained. The shuttle launch and range operations in this paper are discussed based on the operations from Kennedy Space Center, Florida, USA.
ERIC Educational Resources Information Center
Manos, Harry
2016-01-01
Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…
Graphical postprocessing for 3-D mesh quality evaluation
NASA Technical Reports Server (NTRS)
Panthaki, M. J.; Abel, J. F.; Wawrzynek, P. A.
1989-01-01
An important objective of three-dimensional graphical finite-element postprocessing is to indicate to the engineer the accuracy of analysis results. The inclusion of mesh quality sensors permits a subjective evaluation of the adequacy of a single analysis being interpreted. For graphical approaches, both strain-energy-density gradients and discontinuities of unsmoothed responses and their gradients have proved to be effective sensors. Interactive graphical tools which can display discontinuity information effectively are described; these are essentially different from the ordinary methods used for the viewing of smoothed results.
NASA Astrophysics Data System (ADS)
Pallozzi Lavorante, Luca; Dirk Ebert, Hans
2008-07-01
Tensor3D is a geometric modeling program with the capacity to simulate and visualize in real-time the deformation, specified through a tensor matrix and applied to triangulated models representing geological bodies. 3D visualization allows the study of deformational processes that are traditionally conducted in 2D, such as simple and pure shears. Besides geometric objects that are immediately available in the program window, the program can read other models from disk, thus being able to import objects created with different open-source or proprietary programs. A strain ellipsoid and a bounding box are simultaneously shown and instantly deformed with the main object. The principal axes of strain are visualized as well to provide graphical information about the orientation of the tensor's normal components. The deformed models can also be saved, retrieved later and deformed again, in order to study different steps of progressive strain, or to make this data available to other programs. The shape of stress ellipsoids and the corresponding Mohr circles defined by any stress tensor can also be represented. The application was written using the Visualization ToolKit, a powerful scientific visualization library in the public domain. This development choice, allied to the use of the Tcl/Tk programming language, which is independent on the host computational platform, makes the program a useful tool for the study of geometric deformations directly in three dimensions in teaching as well as research activities.
Fallon FORGE 3D Geologic Model
Doug Blankenship
2016-03-01
An x,y,z scattered data file for the 3D geologic model of the Fallon FORGE site. Model created in Earthvision by Dynamic Graphic Inc. The model was constructed with a grid spacing of 100 m. Geologic surfaces were extrapolated from the input data using a minimum tension gridding algorithm. The data file is tabular data in a text file, with lithology data associated with X,Y,Z grid points. All the relevant information is in the file header (the spatial reference, the projection etc.) In addition all the fields in the data file are identified in the header.
A 3D Geometry Model Search Engine to Support Learning
ERIC Educational Resources Information Center
Tam, Gary K. L.; Lau, Rynson W. H.; Zhao, Jianmin
2009-01-01
Due to the popularity of 3D graphics in animation and games, usage of 3D geometry deformable models increases dramatically. Despite their growing importance, these models are difficult and time consuming to build. A distance learning system for the construction of these models could greatly facilitate students to learn and practice at different…
The three-dimensional Event-Driven Graphics Environment (3D-EDGE)
NASA Technical Reports Server (NTRS)
Freedman, Jeffrey; Hahn, Roger; Schwartz, David M.
1993-01-01
Stanford Telecom developed the Three-Dimensional Event-Driven Graphics Environment (3D-EDGE) for NASA GSFC's (GSFC) Communications Link Analysis and Simulation System (CLASS). 3D-EDGE consists of a library of object-oriented subroutines which allow engineers with little or no computer graphics experience to programmatically manipulate, render, animate, and access complex three-dimensional objects.
Whole versus Part Presentations of the Interactive 3D Graphics Learning Objects
ERIC Educational Resources Information Center
Azmy, Nabil Gad; Ismaeel, Dina Ahmed
2010-01-01
The purpose of this study is to present an analysis of how the structure and design of the Interactive 3D Graphics Learning Objects can be effective and efficient in terms of Performance, Time on task, and Learning Efficiency. The study explored two treatments, namely whole versus Part Presentations of the Interactive 3D Graphics Learning Objects,…
Learning from graphically integrated 2D and 3D representations improves retention of neuroanatomy
NASA Astrophysics Data System (ADS)
Naaz, Farah
Visualizations in the form of computer-based learning environments are highly encouraged in science education, especially for teaching spatial material. Some spatial material, such as sectional neuroanatomy, is very challenging to learn. It involves learning the two dimensional (2D) representations that are sampled from the three dimensional (3D) object. In this study, a computer-based learning environment was used to explore the hypothesis that learning sectional neuroanatomy from a graphically integrated 2D and 3D representation will lead to better learning outcomes than learning from a sequential presentation. The integrated representation explicitly demonstrates the 2D-3D transformation and should lead to effective learning. This study was conducted using a computer graphical model of the human brain. There were two learning groups:
Illustrative visualization of 3D city models
NASA Astrophysics Data System (ADS)
Doellner, Juergen; Buchholz, Henrik; Nienhaus, Marc; Kirsch, Florian
2005-03-01
This paper presents an illustrative visualization technique that provides expressive representations of large-scale 3D city models, inspired by the tradition of artistic and cartographic visualizations typically found in bird"s-eye view and panoramic maps. We define a collection of city model components and a real-time multi-pass rendering algorithm that achieves comprehensible, abstract 3D city model depictions based on edge enhancement, color-based and shadow-based depth cues, and procedural facade texturing. Illustrative visualization provides an effective visual interface to urban spatial information and associated thematic information complementing visual interfaces based on the Virtual Reality paradigm, offering a huge potential for graphics design. Primary application areas include city and landscape planning, cartoon worlds in computer games, and tourist information systems.
ERIC Educational Resources Information Center
Barbero, Basilio Ramos; Pedrosa, Carlos Melgosa; Mate, Esteban Garcia
2012-01-01
The purpose of this study is to determine which 3D viewers should be used for the display of interactive graphic engineering documents, so that the visualization and manipulation of 3D models provide useful support to students of industrial engineering (mechanical, organizational, electronic engineering, etc). The technical features of 26 3D…
Modified Anderson Method for Accelerating 3D-RISM Calculations Using Graphics Processing Unit.
Maruyama, Yutaka; Hirata, Fumio
2012-09-11
A fast algorithm is proposed to solve the three-dimensional reference interaction site model (3D-RISM) theory on a graphics processing unit (GPU). 3D-RISM theory is a powerful tool for investigating biomolecular processes in solution; however, such calculations are often both memory-intensive and time-consuming. We sought to accelerate these calculations using GPUs, but to work around the problem of limited memory size in GPUs, we modified the less memory-intensive "Anderson method" to give faster convergence to 3D-RISM calculations. Using this method on a Tesla C2070 GPU, we reduced the total computational time by a factor of 8, 1.4 times by the modified Andersen method and 5.7 times by GPU, compared to calculations on an Intel Xeon machine (eight cores, 3.33 GHz) with the conventional method. PMID:26605714
John C. Belland: A Pioneer in 3D Graphics.
ERIC Educational Resources Information Center
Hay, Kenneth
2000-01-01
Provides a profile of the career of John Belland and his work in instructional technology. Highlights include his educational background, teaching experience in higher education, work in learning with 3D computer-generated animation, alternative paradigms of instructional design, and ideas of postmodernism. (LRW)
NASA Astrophysics Data System (ADS)
Manos, Harry
2016-03-01
Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.
Implementation Of True 3D Cursors In Computer Graphics
NASA Astrophysics Data System (ADS)
Butts, David R.; McAllister, David F.
1988-06-01
The advances in stereoscopic image display techniques have shown an increased need for real-time interaction with the three-dimensional image. We have developed a prototype real-time stereoscopic cursor to investigate this interaction. The results have pointed out areas where hardware speeds are a limiting factor, as well as areas where various methodologies cause perceptual difficulties. This paper addresses the psychological and perceptual anomalies involved in stereo image techniques, cursor generation and motion, and the use of the device as a 3D drawing and depth measuring tool.
Development and New Directions for the RELAP5-3D Graphical Users Interface
Mesina, George Lee
2001-09-01
The direction of development for the RELAP5 Graphical User Interfaces (RGUI) has been extended. In addition to existing plans for displaying all aspects of RELAP5 calculations, the plan now includes plans to display the calculations of a variety of codes including SCDAP, RETRAN and FLUENT. Recent work has included such extensions along with the previously planned and user-requested improvements and extensions. Visualization of heat-structures has been added. Adaptations were made for another computer program, SCDAP-3D, including plant core views. An input model builder for generating RELAP5-3D input files was partially implemented. All these are reported. Plans for future work are also summarized. These include an input processor that transfers steady-state conditions into an input file.
MT3D was first developed by Chunmiao Zheng in 1990 at S.S. Papadopulos & Associates, Inc. with partial support from the U.S. Environmental Protection Agency (USEPA). Starting in 1990, MT3D was released as a pubic domain code from the USEPA. Commercial versions with enhanced capab...
Crowdsourcing Based 3d Modeling
NASA Astrophysics Data System (ADS)
Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.
2016-06-01
Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.
Creating Realistic 3D Graphics with Excel at High School--Vector Algebra in Practice
ERIC Educational Resources Information Center
Benacka, Jan
2015-01-01
The article presents the results of an experiment in which Excel applications that depict rotatable and sizable orthographic projection of simple 3D figures with face overlapping were developed with thirty gymnasium (high school) students of age 17-19 as an introduction to 3D computer graphics. A questionnaire survey was conducted to find out…
3D animation of facial plastic surgery based on computer graphics
NASA Astrophysics Data System (ADS)
Zhang, Zonghua; Zhao, Yan
2013-12-01
More and more people, especial women, are getting desired to be more beautiful than ever. To some extent, it becomes true because the plastic surgery of face was capable in the early 20th and even earlier as doctors just dealing with war injures of face. However, the effect of post-operation is not always satisfying since no animation could be seen by the patients beforehand. In this paper, by combining plastic surgery of face and computer graphics, a novel method of simulated appearance of post-operation will be given to demonstrate the modified face from different viewpoints. The 3D human face data are obtained by using 3D fringe pattern imaging systems and CT imaging systems and then converted into STL (STereo Lithography) file format. STL file is made up of small 3D triangular primitives. The triangular mesh can be reconstructed by using hash function. Top triangular meshes in depth out of numbers of triangles must be picked up by ray-casting technique. Mesh deformation is based on the front triangular mesh in the process of simulation, which deforms interest area instead of control points. Experiments on face model show that the proposed 3D animation facial plastic surgery can effectively demonstrate the simulated appearance of post-operation.
The Esri 3D city information model
NASA Astrophysics Data System (ADS)
Reitz, T.; Schubiger-Banz, S.
2014-02-01
With residential and commercial space becoming increasingly scarce, cities are going vertical. Managing the urban environments in 3D is an increasingly important and complex undertaking. To help solving this problem, Esri has released the ArcGIS for 3D Cities solution. The ArcGIS for 3D Cities solution provides the information model, tools and apps for creating, analyzing and maintaining a 3D city using the ArcGIS platform. This paper presents an overview of the 3D City Information Model and some sample use cases.
Performance and Cognitive Assessment in 3-D Modeling
ERIC Educational Resources Information Center
Fahrer, Nolan E.; Ernst, Jeremy V.; Branoff, Theodore J.; Clark, Aaron C.
2011-01-01
The purpose of this study was to investigate identifiable differences between performance and cognitive assessment scores in a 3-D modeling unit of an engineering drafting course curriculum. The study aimed to provide further investigation of the need of skill-based assessments in engineering/technical graphics courses to potentially increase…
ERIC Educational Resources Information Center
Goodson-Espy, Tracy; Lynch-Davis, Kathleen; Schram, Pamela; Quickenton, Art
2010-01-01
This paper describes the genesis and purpose of our geometry methods course, focusing on a geometry-teaching technology we created using NVIDIA[R] Chameleon demonstration. This article presents examples from a sequence of lessons centered about a 3D computer graphics demonstration of the chameleon and its geometry. In addition, we present data…
The design and implementation of stereoscopic 3D scalable vector graphics based on WebKit
NASA Astrophysics Data System (ADS)
Liu, Zhongxin; Wang, Wenmin; Wang, Ronggang
2014-03-01
Scalable Vector Graphics (SVG), which is a language designed based on eXtensible Markup Language (XML), is used to describe basic shapes embedded in webpages, such as circles and rectangles. However, it can only depict 2D shapes. As a consequence, web pages using classical SVG can only display 2D shapes on a screen. With the increasing development of stereoscopic 3D (S3D) technology, binocular 3D devices have been widely used. Under this circumstance, we intend to extend the widely used web rendering engine WebKit to support the description and display of S3D webpages. Therefore, the extension of SVG is of necessity. In this paper, we will describe how to design and implement SVG shapes with stereoscopic 3D mode. Two attributes representing the depth and thickness are added to support S3D shapes. The elimination of hidden lines and hidden surfaces, which is an important process in this project, is described as well. The modification of WebKit is also discussed, which is made to support the generation of both left view and right view at the same time. As is shown in the result, in contrast to the 2D shapes generated by the Google Chrome web browser, the shapes got from our modified browser are in S3D mode. With the feeling of depth and thickness, the shapes seem to be real 3D objects away from the screen, rather than simple curves and lines as before.
BEAMS3D Neutral Beam Injection Model
Lazerson, Samuel
2014-04-14
With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.
Modeling Cellular Processes in 3-D
Mogilner, Alex; Odde, David
2011-01-01
Summary Recent advances in photonic imaging and fluorescent protein technology offer unprecedented views of molecular space-time dynamics in living cells. At the same time, advances in computing hardware and software enable modeling of ever more complex systems, from global climate to cell division. As modeling and experiment become more closely integrated, we must address the issue of modeling cellular processes in 3-D. Here, we highlight recent advances related to 3-D modeling in cell biology. While some processes require full 3-D analysis, we suggest that others are more naturally described in 2-D or 1-D. Keeping the dimensionality as low as possible reduces computational time and makes models more intuitively comprehensible; however, the ability to test full 3-D models will build greater confidence in models generally and remains an important emerging area of cell biological modeling. PMID:22036197
Radiosity diffusion model in 3D
NASA Astrophysics Data System (ADS)
Riley, Jason D.; Arridge, Simon R.; Chrysanthou, Yiorgos; Dehghani, Hamid; Hillman, Elizabeth M. C.; Schweiger, Martin
2001-11-01
We present the Radiosity-Diffusion model in three dimensions(3D), as an extension to previous work in 2D. It is a method for handling non-scattering spaces in optically participating media. We present the extension of the model to 3D including an extension to the model to cope with increased complexity of the 3D domain. We show that in 3D more careful consideration must be given to the issues of meshing and visibility to model the transport of light within reasonable computational bounds. We demonstrate the model to be comparable to Monte-Carlo simulations for selected geometries, and show preliminary results of comparisons to measured time-resolved data acquired on resin phantoms.
3D model reconstruction of underground goaf
NASA Astrophysics Data System (ADS)
Fang, Yuanmin; Zuo, Xiaoqing; Jin, Baoxuan
2005-10-01
Constructing 3D model of underground goaf, we can control the process of mining better and arrange mining work reasonably. However, the shape of goaf and the laneway among goafs are very irregular, which produce great difficulties in data-acquiring and 3D model reconstruction. In this paper, we research on the method of data-acquiring and 3D model construction of underground goaf, building topological relation among goafs. The main contents are as follows: a) The paper proposed an efficient encoding rule employed to structure the field measurement data. b) A 3D model construction method of goaf is put forward, which by means of combining several TIN (triangulated irregular network) pieces, and an efficient automatic processing algorithm of boundary of TIN is proposed. c) Topological relation of goaf models is established. TIN object is the basic modeling element of goaf 3D model, and the topological relation among goaf is created and maintained by building the topological relation among TIN objects. Based on this, various 3D spatial analysis functions can be performed including transect and volume calculation of goaf. A prototype is developed, which can realized the model and algorithm proposed in this paper.
3D object optonumerical acquisition methods for CAD/CAM and computer graphics systems
NASA Astrophysics Data System (ADS)
Sitnik, Robert; Kujawinska, Malgorzata; Pawlowski, Michal E.; Woznicki, Jerzy M.
1999-08-01
The creation of a virtual object for CAD/CAM and computer graphics on the base of data gathered by full-field optical measurement of 3D object is presented. The experimental co- ordinates are alternatively obtained by combined fringe projection/photogrammetry based system or fringe projection/virtual markers setup. The new and fully automatic procedure which process the cloud of measured points into triangular mesh accepted by CAD/CAM and computer graphics systems is presented. Its applicability for various classes of objects is tested including the error analysis of virtual objects generated. The usefulness of the method is proved by applying the virtual object in rapid prototyping system and in computer graphics environment.
Virtual 3d City Modeling: Techniques and Applications
NASA Astrophysics Data System (ADS)
Singh, S. P.; Jain, K.; Mandla, V. R.
2013-08-01
3D city model is a digital representation of the Earth's surface and it's related objects such as Building, Tree, Vegetation, and some manmade feature belonging to urban area. There are various terms used for 3D city models such as "Cybertown", "Cybercity", "Virtual City", or "Digital City". 3D city models are basically a computerized or digital model of a city contains the graphic representation of buildings and other objects in 2.5 or 3D. Generally three main Geomatics approach are using for Virtual 3-D City models generation, in first approach, researcher are using Conventional techniques such as Vector Map data, DEM, Aerial images, second approach are based on High resolution satellite images with LASER scanning, In third method, many researcher are using Terrestrial images by using Close Range Photogrammetry with DSM & Texture mapping. We start this paper from the introduction of various Geomatics techniques for 3D City modeling. These techniques divided in to two main categories: one is based on Automation (Automatic, Semi-automatic and Manual methods), and another is Based on Data input techniques (one is Photogrammetry, another is Laser Techniques). After details study of this, finally in short, we are trying to give the conclusions of this study. In the last, we are trying to give the conclusions of this research paper and also giving a short view for justification and analysis, and present trend for 3D City modeling. This paper gives an overview about the Techniques related with "Generation of Virtual 3-D City models using Geomatics Techniques" and the Applications of Virtual 3D City models. Photogrammetry, (Close range, Aerial, Satellite), Lasergrammetry, GPS, or combination of these modern Geomatics techniques play a major role to create a virtual 3-D City model. Each and every techniques and method has some advantages and some drawbacks. Point cloud model is a modern trend for virtual 3-D city model. Photo-realistic, Scalable, Geo-referenced virtual 3
3D Modeling Engine Representation Summary Report
Steven Prescott; Ramprasad Sampath; Curtis Smith; Timothy Yang
2014-09-01
Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This summary report addressed the methods, techniques, and resources used to develop a 3D modeling engine to represent risk analysis simulation for advanced small modular reactor structures and components. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.
BEAMS3D Neutral Beam Injection Model
NASA Astrophysics Data System (ADS)
McMillan, Matthew; Lazerson, Samuel A.
2014-09-01
With the advent of applied 3D fields in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous slowing down, and pitch angle scattering are modeled with the ADAS atomic physics database. Elementary benchmark calculations are presented to verify the collisionless particle orbits, NBI model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields. Notice: this manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.
Medical workstation design: enhancing graphical interface with 3D anatomical atlas
NASA Astrophysics Data System (ADS)
Soo Hoo, Kent; Wong, Stephen T.; Grant, Ellen
1997-05-01
The huge data archive of the UCSF Hospital Integrated Picture Archiving and Communication System gives healthcare providers access to diverse kinds of images and text for diagnosis and patient management. Given the mass of information accessible, however, conventional graphical user interface (GUI) approach overwhelms the user with forms, menus, fields, lists, and other widgets and causes 'information overloading.' This article describes a new approach that complements the conventional GUI with 3D anatomical atlases and presents the usefulness of this approach with a clinical neuroimaging application.
Solar abundances and 3D model atmospheres
NASA Astrophysics Data System (ADS)
Ludwig, Hans-Günter; Caffau, Elisabetta; Steffen, Matthias; Bonifacio, Piercarlo; Freytag, Bernd; Cayrel, Roger
2010-03-01
We present solar photospheric abundances for 12 elements from optical and near-infrared spectroscopy. The abundance analysis was conducted employing 3D hydrodynamical (CO5BOLD) as well as standard 1D hydrostatic model atmospheres. We compare our results to others with emphasis on discrepancies and still lingering problems, in particular exemplified by the pivotal abundance of oxygen. We argue that the thermal structure of the lower solar photosphere is very well represented by our 3D model. We obtain an excellent match of the observed center-to-limb variation of the line-blanketed continuum intensity, also at wavelengths shortward of the Balmer jump.
3D head model classification using optimized EGI
NASA Astrophysics Data System (ADS)
Tong, Xin; Wong, Hau-san; Ma, Bo
2006-02-01
With the general availability of 3D digitizers and scanners, 3D graphical models have been used widely in a variety of applications. This has led to the development of search engines for 3D models. Especially, 3D head model classification and retrieval have received more and more attention in view of their many potential applications in criminal identifications, computer animation, movie industry and medical industry. This paper addresses the 3D head model classification problem using 2D subspace analysis methods such as 2D principal component analysis (2D PCA[3]) and 2D fisher discriminant analysis (2DLDA[5]). It takes advantage of the fact that the histogram is a 2D image, and we can extract the most useful information from these 2D images to get a good result accordingingly. As a result, there are two main advantages: First, we can perform less calculation to obtain the same rate of classification; second, we can reduce the dimensionality more than PCA to obtain a higher efficiency.
ERIC Educational Resources Information Center
Bradley, Joan; Farland-Smith, Donna
2010-01-01
Allowing a student to "see" through touch what other students see through a microscope can be a challenging task. Therefore, author Joan Bradley created three-dimensional (3-D) models with one student's visual impairment in mind. They are meant to benefit all students and can be used to teach common high school biology topics, including the…
West Flank Coso, CA FORGE 3D geologic model
Doug Blankenship
2016-03-01
This is an x,y,z file of the West Flank FORGE 3D geologic model. Model created in Earthvision by Dynamic Graphic Inc. The model was constructed with a grid spacing of 100 m. Geologic surfaces were extrapolated from the input data using a minimum tension gridding algorithm. The data file is tabular data in a text file, with lithology data associated with X,Y,Z grid points. All the relevant information is in the file header (the spatial reference, the projection etc.) In addition all the fields in the data file are identified in the header.
Development of 3-D fracture network visualization software based on graphical user interface
NASA Astrophysics Data System (ADS)
Young-Hwan, Noh; Jeong-Gi, Um; Yosoon, Choi; Myong-Ho, Park; Jaeyoung, Choi
2013-04-01
A sound understanding of the structural characteristics of fractured rock masses is important in designing and maintaining earth structures because their strength, deformability, and hydraulic behavior depend mainly on the characteristics of discontinuity network structures. Despite considerable progress in understanding the structural characteristics of rock masses, the complexity of discontinuity patterns has prevented satisfactory analysis based on a 3-D rock mass visualization model. This research presents the results of studies performed to develop rock mass visualization in 3-D to analysis the mechanical and hydraulic behavior of fractured rock masses. General and particular solutions of non-linear equations of disk-shaped fractures have been derived to calculated lines of intersection and equivalent pipes. Also, program modules of DISK3D, FNTWK3D, BOUNDARY and BDM(borehole data management) have been developed to perform the visualization of fracture network and corresponding equivalent pipes for DFN based fluid flow model. The developed software for the 3-D fractured rock mass visualization model based on MS visual studio can be used to characterize rock mass geometry and network systems effectively. The results obtained in this study will be refined and then combined for use as a tool for assessing geomechanical problems related to strength, deformability and hydraulic behaviors of the fractured rock masses. Acknowledgements. This work was supported by the 2011 Energy Efficiency and Resources Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant.
Integrated Biogeomorphological Modeling Using Delft3D
NASA Astrophysics Data System (ADS)
Ye, Q.; Jagers, B.
2011-12-01
The skill of numerical morphological models has improved significantly from the early 2D uniform, total load sediment models (with steady state or infrequent wave updates) to recent 3D hydrodynamic models with multiple suspended and bed load sediment fractions and bed stratigraphy (online coupled with waves). Although there remain many open questions within this combined field of hydro- and morphodynamics, we observe an increasing need to include biological processes in the overall dynamics. In riverine and inter-tidal environments, there is often an important influence by riparian vegetation and macrobenthos. Over the past decade more and more researchers have started to extend the simulation environment with wrapper scripts and other quick code hacks to estimate their influence on morphological development in coastal, estuarine and riverine environments. Although one can in this way quickly analyze different approaches, these research tools have generally not been designed with reuse, performance and portability in mind. We have now implemented a reusable, flexible, and efficient two-way link between the Delft3D open source framework for hydrodynamics, waves and morphology, and the water quality and ecology modules. The same link will be used for 1D, 2D and 3D modeling on networks and both structured and unstructured grids. We will describe the concepts of the overall system, and illustrate it with some first results.
Sensing and compressing 3-D models
Krumm, J.
1998-02-01
The goal of this research project was to create a passive and robust computer vision system for producing 3-D computer models of arbitrary scenes. Although the authors were unsuccessful in achieving the overall goal, several components of this research have shown significant potential. Of particular interest is the application of parametric eigenspace methods for planar pose measurement of partially occluded objects in gray-level images. The techniques presented provide a simple, accurate, and robust solution to the planar pose measurement problem. In addition, the representational efficiency of eigenspace methods used with gray-level features were successfully extended to binary features, which are less sensitive to illumination changes. The results of this research are presented in two papers that were written during the course of this project. The papers are included in sections 2 and 3. The first section of this report summarizes the 3-D modeling efforts.
Effective 3-D surface modeling for geographic information systems
NASA Astrophysics Data System (ADS)
Yüksek, K.; Alparslan, M.; Mendi, E.
2013-11-01
In this work, we propose a dynamic, flexible and interactive urban digital terrain platform (DTP) with spatial data and query processing capabilities of Geographic Information Systems (GIS), multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized Directional Replacement Policy (DRP) based buffer management scheme. Polyhedron structures are used in Digital Surface Modeling (DSM) and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g. X3-D and VRML) and services which integrate multi-dimensional spatial information and satellite/aerial imagery.
Effective 3-D surface modeling for geographic information systems
NASA Astrophysics Data System (ADS)
Yüksek, K.; Alparslan, M.; Mendi, E.
2016-01-01
In this work, we propose a dynamic, flexible and interactive urban digital terrain platform with spatial data and query processing capabilities of geographic information systems, multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized directional replacement policy (DRP) based buffer management scheme. Polyhedron structures are used in digital surface modeling and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g., X3-D and VRML) and services which integrate multi-dimensional spatial information and satellite/aerial imagery.
3D modeling of optically challenging objects.
Park, Johnny; Kak, Avinash
2008-01-01
We present a system for constructing 3D models of real-world objects with optically challenging surfaces. The system utilizes a new range imaging concept called multi-peak range imaging, which stores multiple candidates of range measurements for each point on the object surface. The multiple measurements include the erroneous range data caused by various surface properties that are not ideal for structured-light range sensing. False measurements generated by spurious reflections are eliminated by applying a series of constraint tests. The constraint tests based on local surface and local sensor visibility are applied first to individual range images. The constraint tests based on global consistency of coordinates and visibility are then applied to all range images acquired from different viewpoints. We show the effectiveness of our method by constructing 3D models of five different optically challenging objects. To evaluate the performance of the constraint tests and to examine the effects of the parameters used in the constraint tests, we acquired the ground truth data by painting those objects to suppress the surface-related properties that cause difficulties in range sensing. Experimental results indicate that our method significantly improves upon the traditional methods for constructing reliable 3D models of optically challenging objects. PMID:18192707
NASA Astrophysics Data System (ADS)
Berchtold, Waldemar; Schäfer, Marcel; Rettig, Michael; Steinebach, Martin
2014-02-01
3D models and applications are of utmost interest in both science and industry. With the increment of their usage, their number and thereby the challenge to correctly identify them increases. Content identification is commonly done by cryptographic hashes. However, they fail as a solution in application scenarios such as computer aided design (CAD), scientific visualization or video games, because even the smallest alteration of the 3D model, e.g. conversion or compression operations, massively changes the cryptographic hash as well. Therefore, this work presents a robust hashing algorithm for 3D mesh data. The algorithm applies several different bit extraction methods. They are built to resist desired alterations of the model as well as malicious attacks intending to prevent correct allocation. The different bit extraction methods are tested against each other and, as far as possible, the hashing algorithm is compared to the state of the art. The parameters tested are robustness, security and runtime performance as well as False Acceptance Rate (FAR) and False Rejection Rate (FRR), also the probability calculation of hash collision is included. The introduced hashing algorithm is kept adaptive e.g. in hash length, to serve as a proper tool for all applications in practice.
A graphic user interface for efficient 3D photo-reconstruction based on free software
NASA Astrophysics Data System (ADS)
Castillo, Carlos; James, Michael; Gómez, Jose A.
2015-04-01
Recently, different studies have stressed the applicability of 3D photo-reconstruction based on Structure from Motion algorithms in a wide range of geoscience applications. For the purpose of image photo-reconstruction, a number of commercial and freely available software packages have been developed (e.g. Agisoft Photoscan, VisualSFM). The workflow involves typically different stages such as image matching, sparse and dense photo-reconstruction, point cloud filtering and georeferencing. For approaches using open and free software, each of these stages usually require different applications. In this communication, we present an easy-to-use graphic user interface (GUI) developed in Matlab® code as a tool for efficient 3D photo-reconstruction making use of powerful existing software: VisualSFM (Wu, 2015) for photo-reconstruction and CloudCompare (Girardeau-Montaut, 2015) for point cloud processing. The GUI performs as a manager of configurations and algorithms, taking advantage of the command line modes of existing software, which allows an intuitive and automated processing workflow for the geoscience user. The GUI includes several additional features: a) a routine for significantly reducing the duration of the image matching operation, normally the most time consuming stage; b) graphical outputs for understanding the overall performance of the algorithm (e.g. camera connectivity, point cloud density); c) a number of useful options typically performed before and after the photo-reconstruction stage (e.g. removal of blurry images, image renaming, vegetation filtering); d) a manager of batch processing for the automated reconstruction of different image datasets. In this study we explore the advantages of this new tool by testing its performance using imagery collected in several soil erosion applications. References Girardeau-Montaut, D. 2015. CloudCompare documentation accessed at http://cloudcompare.org/ Wu, C. 2015. VisualSFM documentation access at http://ccwu.me/vsfm/doc.html#.
3D Models of Symbiotic Binaries
NASA Astrophysics Data System (ADS)
Mohamed, S.; Booth, R.; Podsiadlowski, Ph.; Ramstedt, S.; Vlemmings, W.; Maercker, M.
2015-12-01
Symbiotic binaries consist of a cool, mass-losing giant and an accreting, compact companion. We present 3D Smoothed Particle Hydrodynamics (SPH) models of two such interacting binaries, RS Oph and Mira AB. RS Oph is also a recurrent nova system, thus we model multiple quiescent mass transfer-nova outburst cycles. The resulting circumstellar structures of both systems are highly complex with the formation of spirals, arcs, shells, equatorial and bipolar outflows. We compare the models to recent observations and discuss the implications of our results for related systems, e.g., bipolar nebulae and jets, chemically peculiar stars, and the progenitors of Type Ia supernovae.
NASA Astrophysics Data System (ADS)
Sharkawi, K.-H.; Abdul-Rahman, A.
2013-09-01
to LoD4. The accuracy and structural complexity of the 3D objects increases with the LoD level where LoD0 is the simplest LoD (2.5D; Digital Terrain Model (DTM) + building or roof print) while LoD4 is the most complex LoD (architectural details with interior structures). Semantic information is one of the main components in CityGML and 3D City Models, and provides important information for any analyses. However, more often than not, the semantic information is not available for the 3D city model due to the unstandardized modelling process. One of the examples is where a building is normally generated as one object (without specific feature layers such as Roof, Ground floor, Level 1, Level 2, Block A, Block B, etc). This research attempts to develop a method to improve the semantic data updating process by segmenting the 3D building into simpler parts which will make it easier for the users to select and update the semantic information. The methodology is implemented for 3D buildings in LoD2 where the buildings are generated without architectural details but with distinct roof structures. This paper also introduces hybrid semantic-geometric 3D segmentation method that deals with hierarchical segmentation of a 3D building based on its semantic value and surface characteristics, fitted by one of the predefined primitives. For future work, the segmentation method will be implemented as part of the change detection module that can detect any changes on the 3D buildings, store and retrieve semantic information of the changed structure, automatically updates the 3D models and visualize the results in a userfriendly graphical user interface (GUI).
NASA Astrophysics Data System (ADS)
Schiefele, Jens; Bader, Joachim; Kastner, S.; Wiesemann, Thorsten; von Viebahn, Harro
2002-07-01
Next generation of cockpit display systems will display mass data. Mass data includes terrain, obstacle, and airport databases. Display formats will be two and eventually 3D. A prerequisite for the introduction of these new functions is the availability of certified graphics hardware. The paper describes functionality and required features of an aviation certified 2D/3D graphics board. This graphics board should be based on low-level and hi-level API calls. These graphic calls should be very similar to OpenGL. All software and the API must be aviation certified. As an example application, a 2D airport navigation function and a 3D terrain visualization is presented. The airport navigation format is based on highly precise airport database following EUROCAE ED-99/RTCA DO-272 specifications. Terrain resolution is based on EUROCAE ED-98/RTCA DO-276 requirements.
Inferential modeling of 3D chromatin structure
Wang, Siyu; Xu, Jinbo; Zeng, Jianyang
2015-01-01
For eukaryotic cells, the biological processes involving regulatory DNA elements play an important role in cell cycle. Understanding 3D spatial arrangements of chromosomes and revealing long-range chromatin interactions are critical to decipher these biological processes. In recent years, chromosome conformation capture (3C) related techniques have been developed to measure the interaction frequencies between long-range genome loci, which have provided a great opportunity to decode the 3D organization of the genome. In this paper, we develop a new Bayesian framework to derive the 3D architecture of a chromosome from 3C-based data. By modeling each chromosome as a polymer chain, we define the conformational energy based on our current knowledge on polymer physics and use it as prior information in the Bayesian framework. We also propose an expectation-maximization (EM) based algorithm to estimate the unknown parameters of the Bayesian model and infer an ensemble of chromatin structures based on interaction frequency data. We have validated our Bayesian inference approach through cross-validation and verified the computed chromatin conformations using the geometric constraints derived from fluorescence in situ hybridization (FISH) experiments. We have further confirmed the inferred chromatin structures using the known genetic interactions derived from other studies in the literature. Our test results have indicated that our Bayesian framework can compute an accurate ensemble of 3D chromatin conformations that best interpret the distance constraints derived from 3C-based data and also agree with other sources of geometric constraints derived from experimental evidence in the previous studies. The source code of our approach can be found in https://github.com/wangsy11/InfMod3DGen. PMID:25690896
Discrete Method of Images for 3D Radio Propagation Modeling
NASA Astrophysics Data System (ADS)
Novak, Roman
2016-09-01
Discretization by rasterization is introduced into the method of images (MI) in the context of 3D deterministic radio propagation modeling as a way to exploit spatial coherence of electromagnetic propagation for fine-grained parallelism. Traditional algebraic treatment of bounding regions and surfaces is replaced by computer graphics rendering of 3D reflections and double refractions while building the image tree. The visibility of reception points and surfaces is also resolved by shader programs. The proposed rasterization is shown to be of comparable run time to that of the fundamentally parallel shooting and bouncing rays. The rasterization does not affect the signal evaluation backtracking step, thus preserving its advantage over the brute force ray-tracing methods in terms of accuracy. Moreover, the rendering resolution may be scaled back for a given level of scenario detail with only marginal impact on the image tree size. This allows selection of scene optimized execution parameters for faster execution, giving the method a competitive edge. The proposed variant of MI can be run on any GPU that supports real-time 3D graphics.
3D Model of Surfactant Replacement Therapy
NASA Astrophysics Data System (ADS)
Grotberg, James; Tai, Cheng-Feng; Filoche, Marcel
2015-11-01
Surfactant Replacement Therapy (SRT) involves instillation of a liquid-surfactant mixture directly into the lung airway tree. Though successful in neonatal applications, its use in adults had early success followed by failure. We present the first mathematical model of 3D SRT where a liquid plug propagates through the tree from forced inspiration. In two separate modeling steps, the plug first deposits a coating film on the airway wall which subtracts from its volume, a ``coating cost''. Then the plug splits unevenly at the airway bifurcation due to gravity. The steps are repeated until a plug ruptures or reaches the tree endpoint alveoli/acinus. The model generates 3D images of the resulting acinar distribution and calculates two global indexes, efficiency and homogeneity. Simulating published literature, the earlier successful adult SRT studies show comparatively good index values, while the later failed studies do not. Those unsuccessful studies used smaller dose volumes with higher concentration mixtures, apparently assuming a well mixed compartment. The model shows that adult lungs are not well mixed in SRT due to the coating cost and gravity effects. Returning to the higher dose volume protocols could save many thousands of lives annually in the US. Supported by NIH Grants HL85156, HL84370 and Agence Nationale de la Recherche, ANR no. 2010-BLAN-1119-05.
MOSSFRAC: An anisotropic 3D fracture model
Moss, W C; Levatin, J L
2006-08-14
Despite the intense effort for nearly half a century to construct detailed numerical models of plastic flow and plastic damage accumulation, models for describing fracture, an equally important damage mechanism still cannot describe basic fracture phenomena. Typical fracture models set the stress tensor to zero for tensile fracture and set the deviatoric stress tensor to zero for compressive fracture. One consequence is that the simple case of the tensile fracture of a cylinder under combined compressive radial and tensile axial loads is not modeled correctly. The experimental result is a cylinder that can support compressive radial loads, but no axial load, whereas, the typical numerical result is a cylinder with all stresses equal to zero. This incorrect modeling of fracture locally also has a global effect, because material that is fracturing produces stress release waves, which propagate from the fracture and influence the surrounding material. Consequently, it would be useful to have a model that can describe the stress relief and the resulting anisotropy due to fracture. MOSSFRAC is a material model that simulates three-dimensional tensile and shear fracture in initially isotropic elastic-plastic materials, although its framework is also amenable to initially anisotropic materials. It differs from other models by accounting for the effects of cracks on the constitutive response of the material, so that the previously described experiment, as well as complicated fracture scenarios are simulated more accurately. The model is implemented currently in the LLNL hydrocodes DYNA3D, PARADYN, and ALE3D. The purpose of this technical note is to present a complete qualitative description of the model and quantitative descriptions of salient features.
CityGML - Interoperable semantic 3D city models
NASA Astrophysics Data System (ADS)
Gröger, Gerhard; Plümer, Lutz
2012-07-01
CityGML is the international standard of the Open Geospatial Consortium (OGC) for the representation and exchange of 3D city models. It defines the three-dimensional geometry, topology, semantics and appearance of the most relevant topographic objects in urban or regional contexts. These definitions are provided in different, well-defined Levels-of-Detail (multiresolution model). The focus of CityGML is on the semantical aspects of 3D city models, its structures, taxonomies and aggregations, allowing users to employ virtual 3D city models for advanced analysis and visualization tasks in a variety of application domains such as urban planning, indoor/outdoor pedestrian navigation, environmental simulations, cultural heritage, or facility management. This is in contrast to purely geometrical/graphical models such as KML, VRML, or X3D, which do not provide sufficient semantics. CityGML is based on the Geography Markup Language (GML), which provides a standardized geometry model. Due to this model and its well-defined semantics and structures, CityGML facilitates interoperable data exchange in the context of geo web services and spatial data infrastructures. Since its standardization in 2008, CityGML has become used on a worldwide scale: tools from notable companies in the geospatial field provide CityGML interfaces. Many applications and projects use this standard. CityGML is also having a strong impact on science: numerous approaches use CityGML, particularly its semantics, for disaster management, emergency responses, or energy-related applications as well as for visualizations, or they contribute to CityGML, improving its consistency and validity, or use CityGML, particularly its different Levels-of-Detail, as a source or target for generalizations. This paper gives an overview of CityGML, its underlying concepts, its Levels-of-Detail, how to extend it, its applications, its likely future development, and the role it plays in scientific research. Furthermore, its
3D Stratigraphic Modeling of Central Aachen
NASA Astrophysics Data System (ADS)
Dong, M.; Neukum, C.; Azzam, R.; Hu, H.
2010-05-01
Since 1980s, advanced computer hardware and software technologies, as well as multidisciplinary research have provided possibilities to develop advanced three dimensional (3D) simulation software for geosciences application. Some countries, such as USA1) and Canada2) 3), have built up regional 3D geological models based on archival geological data. Such models have played huge roles in engineering geology2), hydrogeology2) 3), geothermal industry1) and so on. In cooperating with the Municipality of Aachen, the Department of Engineering Geology of RWTH Aachen University have built up a computer-based 3D stratigraphic model of 50 meter' depth for the center of Aachen, which is a 5 km by 7 km geologically complex area. The uncorrelated data from multi-resources, discontinuous nature and unconformable connection of the units are main challenges for geological modeling in this area. The reliability of 3D geological models largely depends on the quality and quantity of data. Existing 1D and 2D geological data were collected, including 1) approximately 6970 borehole data of different depth compiled in Microsoft Access database and MapInfo database; 2) a Digital Elevation Model (DEM); 3) geological cross sections; and 4) stratigraphic maps in 1m, 2m and 5m depth. Since acquired data are of variable origins, they were managed step by step. The main processes are described below: 1) Typing errors of borehole data were identified and the corrected data were exported to Variowin2.2 to distinguish duplicate points; 2) The surface elevation of borehole data was compared to the DEM, and differences larger than 3m were eliminated. Moreover, where elevation data missed, it was read from the DEM; 3) Considerable data were collected from municipal constructions, such as residential buildings, factories, and roads. Therefore, many boreholes are spatially clustered, and only one or two representative points were picked out in such areas; After above procedures, 5839 boreholes with -x
Nam, Seunghoon; Akçakaya, Mehmet; Basha, Tamer; Stehning, Christian; Manning, Warren J; Tarokh, Vahid; Nezafat, Reza
2013-01-01
A disadvantage of three-dimensional (3D) isotropic acquisition in whole-heart coronary MRI is the prolonged data acquisition time. Isotropic 3D radial trajectories allow undersampling of k-space data in all three spatial dimensions, enabling accelerated acquisition of the volumetric data. Compressed sensing (CS) reconstruction can provide further acceleration in the acquisition by removing the incoherent artifacts due to undersampling and improving the image quality. However, the heavy computational overhead of the CS reconstruction has been a limiting factor for its application. In this article, a parallelized implementation of an iterative CS reconstruction method for 3D radial acquisitions using a commercial graphics processing unit is presented. The execution time of the graphics processing unit-implemented CS reconstruction was compared with that of the C++ implementation, and the efficacy of the undersampled 3D radial acquisition with CS reconstruction was investigated in both phantom and whole-heart coronary data sets. Subsequently, the efficacy of CS in suppressing streaking artifacts in 3D whole-heart coronary MRI with 3D radial imaging and its convergence properties were studied. The CS reconstruction provides improved image quality (in terms of vessel sharpness and suppression of noise-like artifacts) compared with the conventional 3D gridding algorithm, and the graphics processing unit implementation greatly reduces the execution time of CS reconstruction yielding 34-54 times speed-up compared with C++ implementation. PMID:22392604
A graphical user interface for calculation of 3D dose distribution using Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Chow, J. C. L.; Leung, M. K. K.
2008-02-01
A software graphical user interface (GUI) for calculation of 3D dose distribution using Monte Carlo (MC) simulation is developed using MATLAB. This GUI (DOSCTP) provides a user-friendly platform for DICOM CT-based dose calculation using EGSnrcMP-based DOSXYZnrc code. It offers numerous features not found in DOSXYZnrc, such as the ability to use multiple beams from different phase-space files, and has built-in dose analysis and visualization tools. DOSCTP is written completely in MATLAB, with integrated access to DOSXYZnrc and CTCREATE. The program function may be divided into four subgroups, namely, beam placement, MC simulation with DOSXYZnrc, dose visualization, and export. Each is controlled by separate routines. The verification of DOSCTP was carried out by comparing plans with different beam arrangements (multi-beam/photon arc) on an inhomogeneous phantom as well as patient CT between the GUI and Pinnacle3. DOSCTP was developed and verified with the following features: (1) a built-in voxel editor to modify CT-based DOSXYZnrc phantoms for research purposes; (2) multi-beam placement is possible, which cannot be achieved using the current DOSXYZnrc code; (3) the treatment plan, including the dose distributions, contours and image set can be exported to a commercial treatment planning system such as Pinnacle3 or to CERR using RTOG format for plan evaluation and comparison; (4) a built-in RTOG-compatible dose reviewer for dose visualization and analysis such as finding the volume of hot/cold spots in the 3D dose distributions based on a user threshold. DOSCTP greatly simplifies the use of DOSXYZnrc and CTCREATE, and offers numerous features that not found in the original user-code. Moreover, since phase-space beams can be defined and generated by the user, it is a particularly useful tool to carry out plans using specifically designed irradiators/accelerators that cannot be found in the Linac library of commercial treatment planning systems.
Teaching Geometry through Dynamic Modeling in Introductory Engineering Graphics.
ERIC Educational Resources Information Center
Wiebe, Eric N.; Branoff, Ted J.; Hartman, Nathan W.
2003-01-01
Examines how constraint-based 3D modeling can be used as a vehicle for rethinking instructional approaches to engineering design graphics. Focuses on moving from a mode of instruction based on the crafting by students and assessment by instructors of static 2D drawings and 3D models. Suggests that the new approach is better aligned with…
3D Modeling of Equatorial Plasma Bubbles
NASA Astrophysics Data System (ADS)
Huba, Joseph; Joyce, Glenn; Krall, Jonathan
2011-10-01
Post-sunset ionospheric irregularities in the equatorial F region were first observed by Booker and Wells (1938) using ionosondes. This phenomenon has become known as equatorial spread F (ESF). During ESF the equatorial ionosphere becomes unstable because of a Rayleigh-Taylor-like instability: large scale (10s km) electron density ``bubbles'' can develop and rise to high altitudes (1000 km or greater at times). Understanding and modeling ESF is important because of its impact on space weather: it causes radio wave scintillation that degrades communication and navigation systems. In fact, it is the focus of of the Air Force Communications/Navigation Outage Forecast Satellite (C/NOFS) mission. We will describe 3D simulation results from the NRL ionosphere models SAMI3 and SAMI3/ESF of this phenomenon. In particular, we will examine the causes of the day-to-day ariability of ESF which is an unresolved problem at this time. Post-sunset ionospheric irregularities in the equatorial F region were first observed by Booker and Wells (1938) using ionosondes. This phenomenon has become known as equatorial spread F (ESF). During ESF the equatorial ionosphere becomes unstable because of a Rayleigh-Taylor-like instability: large scale (10s km) electron density ``bubbles'' can develop and rise to high altitudes (1000 km or greater at times). Understanding and modeling ESF is important because of its impact on space weather: it causes radio wave scintillation that degrades communication and navigation systems. In fact, it is the focus of of the Air Force Communications/Navigation Outage Forecast Satellite (C/NOFS) mission. We will describe 3D simulation results from the NRL ionosphere models SAMI3 and SAMI3/ESF of this phenomenon. In particular, we will examine the causes of the day-to-day ariability of ESF which is an unresolved problem at this time. Research supported by ONR.
RGUI 1.0, New Graphical User Interface for RELAP5-3D
Mesina, George Lee; Galbraith, James Andrew
1999-04-01
With the advent of three-dimensional modeling in nuclear safety analysis codes, the need has arisen for a new display methodology. Currently, analysts either sort through voluminous numerical displays of data at points in a region, or view color coded interpretations of the data on a two-dimensional rendition of the plant. RGUI 1.0 provides 3D capability for displaying data. The 3D isometric hydrodynamic image is built automatically from the input deck without additional input from the user. Standard view change features allow the user to focus on only the important data. Familiar features that are standard to the nuclear industry, such as run, interact, and monitor, are included. RGUI 1.0 reduces the difficulty of analyzing complex three dimensional plants.
RGUI 1.0, New Graphical User Interface for RELAP5-3D
G. L. Mesina; J. Galbraith
1999-04-01
With the advent of three-dimensional modeling in nuclear safety analysis codes, the need has arisen for a new display methodology. Currently, analysts either sort through voluminous numerical displays of data at points in a region, or view color coded interpretations of the data on a two-dimensional rendition of the plant. RGUI 1.0 provides 3D capability for displaying data. The 3D isometric hydrodynamic image is built automatically from the input deck without additional input from the user. Standard view change features allow the user to focus on only the important data. Familiar features that are standard to the nuclear industry, such as run, interact, and monitor, are included. RGUI 1.0 reduces the difficulty of analyzing complex three-dimensional plants.
Reservoir geology using 3D modelling tools
Dubrule, O.; Samson, P.; Segonds, D.
1996-12-31
The last decade has seen tremendous developments in the area of quantitative geological modelling. These developments have a significant impact on the current practice of constructing reservoir models. A structural model can first be constructed on the basis of depth-converted structural interpretations produced on a seismic interpretation workstation. Surfaces and faults can be represented as geological objects, and interactively modified. Once the tectonic framework has been obtained, intermediate stratigraphic surfaces can be constructed between the main structural surfaces. Within each layer, reservoir attributes can be represented using various techniques. Examples show how the distribution of different facies (i.e. from fine to coarse grain) can be represented, or how various depositional units (for instance channels, crevasses and lobes in a turbidite setting) can be modelled as geological {open_quotes}objects{close_quotes} with complex geometries. Elf Aquitaine, in close co-operation with the GOCAD project in Nancy (France) is investigating how geological models can be made more realistic by developing interactive functionalities. Examples show that, contrary to standard deterministic or geostatistical modelling techniques (which tend to be difficult to control) the use of new 3D tools allows the geologist to interactively modify geological surfaces (including faults) or volumetric properties. Thus, the sensitivity of various economic parameters (oil in place, connected volumes, reserves) to major geological uncertainties can be evaluated. It is argued that future breakthroughs in geological modelling techniques are likely to happen in the development of interactive approaches rather than in the research of new mathematical algorithms.
Reservoir geology using 3D modelling tools
Dubrule, O. ); Samson, P. ); Segonds, D. )
1996-01-01
The last decade has seen tremendous developments in the area of quantitative geological modelling. These developments have a significant impact on the current practice of constructing reservoir models. A structural model can first be constructed on the basis of depth-converted structural interpretations produced on a seismic interpretation workstation. Surfaces and faults can be represented as geological objects, and interactively modified. Once the tectonic framework has been obtained, intermediate stratigraphic surfaces can be constructed between the main structural surfaces. Within each layer, reservoir attributes can be represented using various techniques. Examples show how the distribution of different facies (i.e. from fine to coarse grain) can be represented, or how various depositional units (for instance channels, crevasses and lobes in a turbidite setting) can be modelled as geological [open quotes]objects[close quotes] with complex geometries. Elf Aquitaine, in close co-operation with the GOCAD project in Nancy (France) is investigating how geological models can be made more realistic by developing interactive functionalities. Examples show that, contrary to standard deterministic or geostatistical modelling techniques (which tend to be difficult to control) the use of new 3D tools allows the geologist to interactively modify geological surfaces (including faults) or volumetric properties. Thus, the sensitivity of various economic parameters (oil in place, connected volumes, reserves) to major geological uncertainties can be evaluated. It is argued that future breakthroughs in geological modelling techniques are likely to happen in the development of interactive approaches rather than in the research of new mathematical algorithms.
Isoparametric 3-D Finite Element Mesh Generation Using Interactive Computer Graphics
NASA Technical Reports Server (NTRS)
Kayrak, C.; Ozsoy, T.
1985-01-01
An isoparametric 3-D finite element mesh generator was developed with direct interface to an interactive geometric modeler program called POLYGON. POLYGON defines the model geometry in terms of boundaries and mesh regions for the mesh generator. The mesh generator controls the mesh flow through the 2-dimensional spans of regions by using the topological data and defines the connectivity between regions. The program is menu driven and the user has a control of element density and biasing through the spans and can also apply boundary conditions, loads interactively.
Regional geothermal 3D modelling in Denmark
NASA Astrophysics Data System (ADS)
Poulsen, S. E.; Balling, N.; Bording, T. S.; Nielsen, S. B.
2012-04-01
In the pursuit of sustainable and low carbon emission energy sources, increased global attention has been given to the exploration and exploitation of geothermal resources within recent decades. In 2009 a national multi-disciplinary geothermal research project was established. As a significant part of this project, 3D temperature modelling is to be carried out, with special emphasis on temperatures of potential geothermal reservoirs in the Danish area. The Danish subsurface encompasses low enthalpy geothermal reservoirs of mainly Triassic and Jurassic age. Geothermal plants at Amager (Copenhagen) and Thisted (Northern Jutland) have the capacity of supplying the district heating network with up to 14 MW and 7 MW, respectively, by withdrawing warm pore water from the Gassum (Lower Jurassic/Upper Triassic) and Bunter (Lower Triassic) sandstone reservoirs, respectively. Explorative studies of the subsurface temperature regime typically are based on a combination of observations and modelling. In this study, the open-source groundwater modelling code MODFLOW is modified to simulate the subsurface temperature distribution in three dimensions by taking advantage of the mathematical similarity between saturated groundwater flow (Darcy flow) and heat conduction. A numerical model of the subsurface geology in Denmark is built and parameterized from lithological information derived from joint interpretation of seismic surveys and borehole information. Boundary conditions are constructed from knowledge about the heat flow from the Earth's interior and the shallow ground temperature. Matrix thermal conductivities have been estimated from analysis of high-resolution temperature logs measured in deep wells and porosity-depth relations are included using interpreted main lithologies. The model takes into account the dependency of temperature and pressure on thermal conductivity. Moreover, a transient model based correction of the paleoclimatic thermal disturbance caused by the
ERIC Educational Resources Information Center
Kitahara, Kiyoshi; Abe, Takayuki; Kaneko, Masataka; Yamashita, Satoshi; Takato, Setsuo
2010-01-01
Computer Algebra Systems (CAS) are equipped with rich facilities to show graphics, so the use of CAS to show 3D-graphics on screen is a popular tool for mathematics education. However, showing 3D-graphics in mass printed materials is a different story, since the clarity and preciseness of figures tend to be lost. To fill this gap, we developed…
NASA Technical Reports Server (NTRS)
Godfrey, Gary S.
2003-01-01
This project illustrates an animation of the orbiter mate to the external tank, an animation of the OMS POD installation to the orbiter, and a simulation of the landing gear mechanism at the Kennedy Space Center. A detailed storyboard was created to reflect each animation or simulation. Solid models were collected and translated into Pro/Engineer's prt and asm formats. These solid models included computer files of the: orbiter, external tank, solid rocket booster, mobile launch platform, transporter, vehicle assembly building, OMS POD fixture, and landing gear. A depository of the above solid models was established. These solid models were translated into several formats. This depository contained the following files: stl for sterolithography, stp for neutral file work, shrinkwrap for compression, tiff for photoshop work, jpeg for Internet use, and prt and asm for Pro/Engineer use. Solid models were created of the material handling sling, bay 3 platforms, and orbiter contact points. Animations were developed using mechanisms to reflect each storyboard. Every effort was made to build all models technically correct for engineering use. The result was an animated routine that could be used by NASA for training material handlers and uncovering engineering safety issues.
ERIC Educational Resources Information Center
Wu, Chih-Fu; Chiang, Ming-Chin
2013-01-01
This study provides experiment results as an educational reference for instructors to help student obtain a better way to learn orthographic views in graphical course. A visual experiment was held to explore the comprehensive differences between 2D static and 3D animation object features; the goal was to reduce the possible misunderstanding…
3-D physical models of amitosis (cytokinesis).
Cheng, Kang; Zou, Changhua
2005-01-01
Based on Newton's laws, extended Coulomb's law and published biological data, we develop our 3-D physical models of natural and normal amitosis (cytokinesis), for prokaryotes (bacterial cells) in M phase. We propose following hypotheses: Chromosome rings exclusion: No normally and naturally replicated chromosome rings (RCR) can occupy the same prokaryote, a bacterial cell. The RCR produce spontaneous and strong electromagnetic fields (EMF), that can be alternated environmentally, in protoplasm and cortex. The EMF is approximately a repulsive quasi-static electric (slowly variant and mostly electric) field (EF). The EF forces between the RCR are strong enough, and orderly accumulate contractile proteins that divide the procaryotes in the cell cortex of division plane or directly split the cell compartment envelope longitudinally. The radial component of the EF forces could also make furrows or cleavages of procaryotes. The EF distribution controls the protoplasm partition and completes the amitosis (cytokinesis). After the cytokinesis, the spontaneous and strong EF disappear because the net charge accumulation becomes weak, in the protoplasm. The exclusion is because the two sets of informative objects (RCR) have identical DNA codes information and they are electro magnetically identical, therefore they repulse from each other. We also compare divisions among eukaryotes, prokaryotes, mitochondria and chloroplasts and propose our hypothesis: The principles of our models are applied to divisions of mitochondria and chloroplasts of eucaryotes too because these division mechanisms are closer than others in a view of physics. Though we develop our model using 1 division plane (i.e., 1 cell is divided into 2 cells) as an example, the principle of our model is applied to the cases with multiple division planes (i.e., 1 cell is divided into multiple cells) too. PMID:15533619
3D Models of Stellar Interactions
NASA Astrophysics Data System (ADS)
Mohamed, S.; Podsiadlowski, Ph.; Booth, R.; Maercker, M.; Ramstedt, S.; Vlemmings, W.; Harries, T.; Mackey, J.; Langer, N.; Corradi, R.
2014-04-01
Symbiotic binaries consist of a cool, evolved mass-losing giant and an accreting compact companion. As symbiotic nebulae show similar morphologies to those in planetary nebulae (so much so that it is often difficult to distinguish between the two), they are ideal laboratories for understanding the role a binary companion plays in shaping the circumstellar envelopes in these evolved systems. We will present 3D Smoothed Particle Hydrodynamics (SPH) models of interacting binaries, e.g. R Aquarii and Mira, and discuss the formation of spiral outflows, arcs, shells and equatorial density enhancements.We will also discuss the implications of the former for planetary nebulae, e.g. the Egg Nebula and Cat's Eye, and the latter for the formation of bipolar geometries, e.g. M2-9. We also investigate accretion and angular momentum evolution in symbiotic binaries which may be important to understand the formation of jets and more episodic mass-loss features we see in circumstellar envelopes and the orbital characteristics of binary central stars of planetary nebulae.
Multi-view and 3D deformable part models.
Pepik, Bojan; Stark, Michael; Gehler, Peter; Schiele, Bernt
2015-11-01
As objects are inherently 3D, they have been modeled in 3D in the early days of computer vision. Due to the ambiguities arising from mapping 2D features to 3D models, 3D object representations have been neglected and 2D feature-based models are the predominant paradigm in object detection nowadays. While such models have achieved outstanding bounding box detection performance, they come with limited expressiveness, as they are clearly limited in their capability of reasoning about 3D shape or viewpoints. In this work, we bring the worlds of 3D and 2D object representations closer, by building an object detector which leverages the expressive power of 3D object representations while at the same time can be robustly matched to image evidence. To that end, we gradually extend the successful deformable part model [1] to include viewpoint information and part-level 3D geometry information, resulting in several different models with different level of expressiveness. We end up with a 3D object model, consisting of multiple object parts represented in 3D and a continuous appearance model. We experimentally verify that our models, while providing richer object hypotheses than the 2D object models, provide consistently better joint object localization and viewpoint estimation than the state-of-the-art multi-view and 3D object detectors on various benchmarks (KITTI [2] , 3D object classes [3] , Pascal3D+ [4] , Pascal VOC 2007 [5] , EPFL multi-view cars[6] ). PMID:26440264
3D-GNOME: an integrated web service for structural modeling of the 3D genome
Szalaj, Przemyslaw; Michalski, Paul J.; Wróblewski, Przemysław; Tang, Zhonghui; Kadlof, Michal; Mazzocco, Giovanni; Ruan, Yijun; Plewczynski, Dariusz
2016-01-01
Recent advances in high-throughput chromosome conformation capture (3C) technology, such as Hi-C and ChIA-PET, have demonstrated the importance of 3D genome organization in development, cell differentiation and transcriptional regulation. There is now a widespread need for computational tools to generate and analyze 3D structural models from 3C data. Here we introduce our 3D GeNOme Modeling Engine (3D-GNOME), a web service which generates 3D structures from 3C data and provides tools to visually inspect and annotate the resulting structures, in addition to a variety of statistical plots and heatmaps which characterize the selected genomic region. Users submit a bedpe (paired-end BED format) file containing the locations and strengths of long range contact points, and 3D-GNOME simulates the structure and provides a convenient user interface for further analysis. Alternatively, a user may generate structures using published ChIA-PET data for the GM12878 cell line by simply specifying a genomic region of interest. 3D-GNOME is freely available at http://3dgnome.cent.uw.edu.pl/. PMID:27185892
3D-GNOME: an integrated web service for structural modeling of the 3D genome.
Szalaj, Przemyslaw; Michalski, Paul J; Wróblewski, Przemysław; Tang, Zhonghui; Kadlof, Michal; Mazzocco, Giovanni; Ruan, Yijun; Plewczynski, Dariusz
2016-07-01
Recent advances in high-throughput chromosome conformation capture (3C) technology, such as Hi-C and ChIA-PET, have demonstrated the importance of 3D genome organization in development, cell differentiation and transcriptional regulation. There is now a widespread need for computational tools to generate and analyze 3D structural models from 3C data. Here we introduce our 3D GeNOme Modeling Engine (3D-GNOME), a web service which generates 3D structures from 3C data and provides tools to visually inspect and annotate the resulting structures, in addition to a variety of statistical plots and heatmaps which characterize the selected genomic region. Users submit a bedpe (paired-end BED format) file containing the locations and strengths of long range contact points, and 3D-GNOME simulates the structure and provides a convenient user interface for further analysis. Alternatively, a user may generate structures using published ChIA-PET data for the GM12878 cell line by simply specifying a genomic region of interest. 3D-GNOME is freely available at http://3dgnome.cent.uw.edu.pl/. PMID:27185892
Exploiting Textured 3D Models for Developing Serious Games
NASA Astrophysics Data System (ADS)
Kontogianni, G.; Georgopoulos, A.
2015-08-01
Digital technologies have affected significantly many fields of computer graphics such as Games and especially the field of the Serious Games. These games are usually used for educational proposes in many fields such as Health Care, Military applications, Education, Government etc. Especially Digital Cultural Heritage is a scientific area that Serious Games are applied and lately many applications appear in the related literature. Realistic 3D textured models which have been produced using different photogrammetric methods could be a useful tool for the creation of Serious Game applications in order to make the final result more realistic and close to the reality. The basic goal of this paper is how 3D textured models which are produced by photogrammetric methods can be useful for developing a more realistic environment of a Serious Game. The application of this project aims at the creation of an educational game for the Ancient Agora of Athens. The 3D models used vary not only as far as their production methods (i.e. Time of Flight laser scanner, Structure from Motion, Virtual historical reconstruction etc.) is concerned, but also as far as their era as some of them illustrated according to their existing situation and some others according to how these monuments looked like in the past. The Unity 3D® game developing environment was used for creating this application, in which all these models were inserted in the same file format. For the application two diachronic virtual tours of the Athenian Agora were produced. The first one illustrates the Agora as it is today and the second one at the 2nd century A.D. Finally the future perspective for the evolution of this game is presented which includes the addition of some questions that the user will be able to answer. Finally an evaluation is scheduled to be performed at the end of the project.
Automatic Assessment of 3D Modeling Exams
ERIC Educational Resources Information Center
Sanna, A.; Lamberti, F.; Paravati, G.; Demartini, C.
2012-01-01
Computer-based assessment of exams provides teachers and students with two main benefits: fairness and effectiveness in the evaluation process. This paper proposes a fully automatic evaluation tool for the Graphic and Virtual Design (GVD) curriculum at the First School of Architecture of the Politecnico di Torino, Italy. In particular, the tool is…
3D fast wavelet network model-assisted 3D face recognition
NASA Astrophysics Data System (ADS)
Said, Salwa; Jemai, Olfa; Zaied, Mourad; Ben Amar, Chokri
2015-12-01
In last years, the emergence of 3D shape in face recognition is due to its robustness to pose and illumination changes. These attractive benefits are not all the challenges to achieve satisfactory recognition rate. Other challenges such as facial expressions and computing time of matching algorithms remain to be explored. In this context, we propose our 3D face recognition approach using 3D wavelet networks. Our approach contains two stages: learning stage and recognition stage. For the training we propose a novel algorithm based on 3D fast wavelet transform. From 3D coordinates of the face (x,y,z), we proceed to voxelization to get a 3D volume which will be decomposed by 3D fast wavelet transform and modeled after that with a wavelet network, then their associated weights are considered as vector features to represent each training face . For the recognition stage, an unknown identity face is projected on all the training WN to obtain a new vector features after every projection. A similarity score is computed between the old and the obtained vector features. To show the efficiency of our approach, experimental results were performed on all the FRGC v.2 benchmark.
A 3-D shape model of Interamnia
NASA Astrophysics Data System (ADS)
Sato, Isao
2015-08-01
A 3-D shape model of the sixth largest of the main belt asteroids, (704) Interamnia, is presented. The model is reproduced from its two stellar occultation observations and six lightcurves between 1969 and 2011. The first stellar occultation was the occultation of TYC 234500183 on 1996 December 17 observed from 13 sites in the USA. An elliptical cross section of (344.6±9.6km)×(306.2±9.1km), for position angle P=73.4±12.5 was fitted. The lightcurve around the occultation shows that the peak-to-peak amplitude was 0.04 mag. and the occultation phase was just before the minimum. The second stellar occultation was the occultation of HIP 036189 on 2003 March 23 observed from 39 sites in Japan and Hawaii. An elliptical cross section of (349.8±0.9km)×(303.7±1.7km), for position angle P=86.0±1.1 was fitted. A companion of 8.5 mag. of the occulted star was discovered whose separation is 12±2 mas (milli-arcseconds), P=148±11 . A combined analysis of rotational lightcurves and occultation chords can return more information than can be obtained with either technique alone. From follow-up photometric observations of the asteroid between 2003 and 2011, its rotation period is determined to be 8.728967167±0.00000007 hours, which is accurate enough to fix the rotation phases at other occultation events. The derived north pole is λ2000=259±8, β2000=-50±5 (retrograde rotation); the lengths of the three principal axes are 2a=361.8±2.8km, 2b=324.4±5.0km, 2c=297.3±3.5km, and the mean diameter is D=326.8±3.0km. Supposing the mass of Interamnia as (3.5±0.9)×10-11 solar masses, the density is then ρ=3.8±1.0 g cm-3.
AnimatLab: a 3D graphics environment for neuromechanical simulations.
Cofer, David; Cymbalyuk, Gennady; Reid, James; Zhu, Ying; Heitler, William J; Edwards, Donald H
2010-03-30
The nervous systems of animals evolved to exert dynamic control of behavior in response to the needs of the animal and changing signals from the environment. To understand the mechanisms of dynamic control requires a means of predicting how individual neural and body elements will interact to produce the performance of the entire system. AnimatLab is a software tool that provides an approach to this problem through computer simulation. AnimatLab enables a computational model of an animal's body to be constructed from simple building blocks, situated in a virtual 3D world subject to the laws of physics, and controlled by the activity of a multicellular, multicompartment neural circuit. Sensor receptors on the body surface and inside the body respond to external and internal signals and then excite central neurons, while motor neurons activate Hill muscle models that span the joints and generate movement. AnimatLab provides a common neuromechanical simulation environment in which to construct and test models of any skeletal animal, vertebrate or invertebrate. The use of AnimatLab is demonstrated in a neuromechanical simulation of human arm flexion and the myotactic and contact-withdrawal reflexes. PMID:20074588
3D Modeling Techniques for Print and Digital Media
NASA Astrophysics Data System (ADS)
Stephens, Megan Ashley
In developing my thesis, I looked to gain skills using ZBrush to create 3D models, 3D scanning, and 3D printing. The models created compared the hearts of several vertebrates and were intended for students attending Comparative Vertebrate Anatomy. I used several resources to create a model of the human heart and was able to work from life while creating heart models from other vertebrates. I successfully learned ZBrush and 3D scanning, and successfully printed 3D heart models. ZBrush allowed me to create several intricate models for use in both animation and print media. The 3D scanning technique did not fit my needs for the project, but may be of use for later projects. I was able to 3D print using two different techniques as well.
NASA Astrophysics Data System (ADS)
Childs, Scott L.; Hagen, Karl S.
1996-10-01
The visualization of molecular and solid state chemical structures in three dimensions is a particularly difficult problem for students to overcome when the primary means of communication is the two-dimensional world of textbooks, blackboards, and overhead projector screens. Recent editions of popular textbooks in organic, inorganic, and biochemistry have included stereoviews of molecules to aid the student, and stereoviews of crystal structures have been used in inorganic chemistry publications for many years. These are powerful aids for visualizing complex molecules, but with the exception of the biochemistry text mentioned above, they are limited to single, static images generally in black and white. Molecular model kits are routinely used very effectively in organic chemistry but their utility in inorganic chemistry is limited to all but the most simple molecules encountered. Now that personal computers are generally accessible and multimedia tools are starting to make an appearance in chemistry lecture halls (1), we can make our inorganic and bioinorganic chemistry and crystallography lectures come alive with the aid of the computer-based resources, which are the essence of this project. As part of this project we are accumulating a database of representative crystal structures of main group molecules, coordination complexes, organometallic compounds, small metalloproteins, bioinorganic model complexes, clusters, and solid state materials in Chem3D Plus format to be viewed with Chem3D Viewer, which is free software from Cambridge Scientific Computing. We are also generating a library of high-quality graphic images of these same molecules and structures using Cerius2 package from Molecular Simulations. These include polyhedral representations of clusters and solid state structures (see Fig. 1). Figure 1. Representation of the user interface: the title page and an example of polyhedral and ball-and-stick representation of an octanuclear iron-oxo cluster. The
3D modeling of metallic grain growth
George, D.; Carlson, N.; Gammel, J.T.; Kuprat, A.
1999-06-01
This paper will describe simulating metallic grain growth using the Gradient Weighted Moving Finite Elements code, GRAIN3D. The authors also describe the set of mesh topology change operations developed to respond to changes in the physical topology such as the collapse of grains and to maintain uniform calculational mesh quality. Validation of the method is demonstrated by comparison to analytic calculations. The authors present results of multigrain simulations where grain boundaries evolve by mean curvature motion and include results which incorporate grain boundary orientation dependence.
The 3D rocket combustor acoustics model
NASA Technical Reports Server (NTRS)
Priem, Richard J.; Breisacher, Kevin J.
1992-01-01
The theory and procedures for determining the characteristics of pressure oscillations in rocket engines with prescribed burning rate oscillations are presented. Analyses including radial and hub baffles and absorbers can be performed in one, two, and three dimensions. Pressure and velocity oscillations calculated using this procedure are presented for the SSME to show the influence of baffles and absorbers on the burning rate oscillations required to achieve neutral stability. Comparisons are made between the results obtained utilizing 1-D, 2-D, and 3-D assumptions with regards to capturing the physical phenomena of interest and computational requirements.
NASA Astrophysics Data System (ADS)
Kerschke, Dorit; Schilling, Maik; Simon, Andreas; Wächter, Joachim
2014-05-01
The Energiewende and the increasing scarcity of raw materials will lead to an intensified utilization of the subsurface in Germany. Within this context, geological 3D modeling is a fundamental approach for integrated decision and planning processes. Initiated by the development of the European Geospatial Infrastructure INSPIRE, the German State Geological Offices started digitizing their predominantly analog archive inventory. Until now, a comprehensive 3D subsurface model of Brandenburg did not exist. Therefore the project B3D strived to develop a new 3D model as well as a subsequent infrastructure node to integrate all geological and spatial data within the Geodaten-Infrastruktur Brandenburg (Geospatial Infrastructure, GDI-BB) and provide it to the public through an interactive 2D/3D web application. The functionality of the web application is based on a client-server architecture. Server-sided, all available spatial data is published through GeoServer. GeoServer is designed for interoperability and acts as the reference implementation of the Open Geospatial Consortium (OGC) Web Feature Service (WFS) standard that provides the interface that allows requests for geographical features. In addition, GeoServer implements, among others, the high performance certified compliant Web Map Service (WMS) that serves geo-referenced map images. For publishing 3D data, the OGC Web 3D Service (W3DS), a portrayal service for three-dimensional geo-data, is used. The W3DS displays elements representing the geometry, appearance, and behavior of geographic objects. On the client side, the web application is solely based on Free and Open Source Software and leans on the JavaScript API WebGL that allows the interactive rendering of 2D and 3D graphics by means of GPU accelerated usage of physics and image processing as part of the web page canvas without the use of plug-ins. WebGL is supported by most web browsers (e.g., Google Chrome, Mozilla Firefox, Safari, and Opera). The web
Impact of the 3-D model strategy on science learning of the solar system
NASA Astrophysics Data System (ADS)
Alharbi, Mohammed
The purpose of this mixed method study, quantitative and descriptive, was to determine whether the first-middle grade (seventh grade) students at Saudi schools are able to learn and use the Autodesk Maya software to interact and create their own 3-D models and animations and whether their use of the software influences their study habits and their understanding of the school subject matter. The study revealed that there is value to the science students regarding the use of 3-D software to create 3-D models to complete science assignments. Also, this study aimed to address the middle-school students' ability to learn 3-D software in art class, and then ultimately use it in their science class. The success of this study may open the way to consider the impact of 3-D modeling on other school subjects, such as mathematics, art, and geography. When the students start using graphic design, including 3-D software, at a young age, they tend to develop personal creativity and skills. The success of this study, if applied in schools, will provide the community with skillful young designers and increase awareness of graphic design and the new 3-D technology. Experimental method was used to answer the quantitative research question, are there significant differences applying the learning method using 3-D models (no 3-D, premade 3-D, and create 3-D) in a science class being taught about the solar system and its impact on the students' science achievement scores? Descriptive method was used to answer the qualitative research questions that are about the difficulty of learning and using Autodesk Maya software, time that students take to use the basic levels of Polygon and Animation parts of the Autodesk Maya software, and level of students' work quality.
3D Face Modeling Using the Multi-Deformable Method
Hwang, Jinkyu; Yu, Sunjin; Kim, Joongrock; Lee, Sangyoun
2012-01-01
In this paper, we focus on the problem of the accuracy performance of 3D face modeling techniques using corresponding features in multiple views, which is quite sensitive to feature extraction errors. To solve the problem, we adopt a statistical model-based 3D face modeling approach in a mirror system consisting of two mirrors and a camera. The overall procedure of our 3D facial modeling method has two primary steps: 3D facial shape estimation using a multiple 3D face deformable model and texture mapping using seamless cloning that is a type of gradient-domain blending. To evaluate our method's performance, we generate 3D faces of 30 individuals and then carry out two tests: accuracy test and robustness test. Our method shows not only highly accurate 3D face shape results when compared with the ground truth, but also robustness to feature extraction errors. Moreover, 3D face rendering results intuitively show that our method is more robust to feature extraction errors than other 3D face modeling methods. An additional contribution of our method is that a wide range of face textures can be acquired by the mirror system. By using this texture map, we generate realistic 3D face for individuals at the end of the paper. PMID:23201976
Integrating Surface Modeling into the Engineering Design Graphics Curriculum
ERIC Educational Resources Information Center
Hartman, Nathan W.
2006-01-01
It has been suggested there is a knowledge base that surrounds the use of 3D modeling within the engineering design process and correspondingly within engineering design graphics education. While solid modeling receives a great deal of attention and discussion relative to curriculum efforts, and rightly so, surface modeling is an equally viable 3D…
Life in 3D is never flat: 3D models to optimise drug delivery.
Fitzgerald, Kathleen A; Malhotra, Meenakshi; Curtin, Caroline M; O' Brien, Fergal J; O' Driscoll, Caitriona M
2015-10-10
The development of safe, effective and patient-acceptable drug products is an expensive and lengthy process and the risk of failure at different stages of the development life-cycle is high. Improved biopharmaceutical tools which are robust, easy to use and accurately predict the in vivo response are urgently required to help address these issues. In this review the advantages and challenges of in vitro 3D versus 2D cell culture models will be discussed in terms of evaluating new drug products at the pre-clinical development stage. Examples of models with a 3D architecture including scaffolds, cell-derived matrices, multicellular spheroids and biochips will be described. The ability to simulate the microenvironment of tumours and vital organs including the liver, kidney, heart and intestine which have major impact on drug absorption, distribution, metabolism and toxicity will be evaluated. Examples of the application of 3D models including a role in formulation development, pharmacokinetic profiling and toxicity testing will be critically assessed. Although utilisation of 3D cell culture models in the field of drug delivery is still in its infancy, the area is attracting high levels of interest and is likely to become a significant in vitro tool to assist in drug product development thus reducing the requirement for unnecessary animal studies. PMID:26220617
Assessing the RELAPS-3D Heat Conduction Enclosure Model
McCann, Larry D.
2008-09-30
Three heat conduction problems that have exact solutions are modeled with RELAP5-3D using the conduction enclosure model. These comparisons are designed to be used in the RELAP5-3D development assessment scheduled to be completed in 2009. It is shown that with proper input choices and adequate model detail the exact solutions can be matched. In addition, this analysis identified an error and the required correction in the cylindrical and spherical heat conductor models in RELAP5-3D which will be corrected in a future version of RELAP5-3D.
3D Printing of Protein Models in an Undergraduate Laboratory: Leucine Zippers
ERIC Educational Resources Information Center
Meyer, Scott C.
2015-01-01
An upper-division undergraduate laboratory experiment is described that explores the structure/function relationship of protein domains, namely leucine zippers, through a molecular graphics computer program and physical models fabricated by 3D printing. By generating solvent accessible surfaces and color-coding hydrophobic, basic, and acidic amino…
3D scene modeling from multiple range views
NASA Astrophysics Data System (ADS)
Sequeira, Vitor; Goncalves, Joao G. M.; Ribeiro, M. Isabel
1995-09-01
This paper presents a new 3D scene analysis system that automatically reconstructs the 3D geometric model of real-world scenes from multiple range images acquired by a laser range finder on board of a mobile robot. The reconstruction is achieved through an integrated procedure including range data acquisition, geometrical feature extraction, registration, and integration of multiple views. Different descriptions of the final 3D scene model are obtained: a polygonal triangular mesh, a surface description in terms of planar and biquadratics surfaces, and a 3D boundary representation. Relevant experimental results from the complete 3D scene modeling are presented. Direct applications of this technique include 3D reconstruction and/or update of architectual or industrial plans into a CAD model, design verification of buildings, navigation of autonomous robots, and input to virtual reality systems.
Visualization of 3D Geological Models on Google Earth
NASA Astrophysics Data System (ADS)
Choi, Y.; Um, J.; Park, M.
2013-05-01
Google Earth combines satellite imagery, aerial photography, thematic maps and various data sets to make a three-dimensional (3D) interactive image of the world. Currently, Google Earth is a popular visualization tool in a variety of fields and plays an increasingly important role not only for private users in daily life, but also for scientists, practitioners, policymakers and stakeholders in research and application. In this study, a method to visualize 3D geological models on Google Earth is presented. COLLAborative Design Activity (COLLADA, an open standard XML schema for establishing interactive 3D applications) was used to represent different 3D geological models such as borehole, fence section, surface-based 3D volume and 3D grid by triangle meshes (a set of triangles connected by their common edges or corners). In addition, we designed Keyhole Markup Language (KML, the XML-based scripting language of Google Earth) codes to import the COLLADA files into the 3D render window of Google Earth. The method was applied to the Grosmont formation in Alberta, Canada. The application showed that the combination of COLLADA and KML enables Google Earth to effectively visualize 3D geological structures and properties.; Visualization of the (a) boreholes, (b) fence sections, (c) 3D volume model and (d) 3D grid model of Grossmont formation on Google Earth
Comparing a quasi-3D to a full 3D nearshore circulation model: SHORECIRC and ROMS
NASA Astrophysics Data System (ADS)
Haas, Kevin A.; Warner, John C.
Predictions of nearshore and surf zone processes are important for determining coastal circulation, impacts of storms, navigation, and recreational safety. Numerical modeling of these systems facilitates advancements in our understanding of coastal changes and can provide predictive capabilities for resource managers. There exists many nearshore coastal circulation models, however they are mostly limited or typically only applied as depth integrated models. SHORECIRC is an established surf zone circulation model that is quasi-3D to allow the effect of the variability in the vertical structure of the currents while maintaining the computational advantage of a 2DH model. Here we compare SHORECIRC to ROMS, a fully 3D ocean circulation model which now includes a three dimensional formulation for the wave-driven flows. We compare the models with three different test applications for: (i) spectral waves approaching a plane beach with an oblique angle of incidence; (ii) monochromatic waves driving longshore currents in a laboratory basin; and (iii) monochromatic waves on a barred beach with rip channels in a laboratory basin. Results identify that the models are very similar for the depth integrated flows and qualitatively consistent for the vertically varying components. The differences are primarily the result of the vertically varying radiation stress utilized by ROMS and the utilization of long wave theory for the radiation stress formulation in vertical varying momentum balance by SHORECIRC. The quasi-3D model is faster, however the applicability of the fully 3D model allows it to extend over a broader range of processes, temporal, and spatial scales.
Comparing a quasi-3D to a full 3D nearshore circulation model: SHORECIRC and ROMS
Haas, K.A.; Warner, J.C.
2009-01-01
Predictions of nearshore and surf zone processes are important for determining coastal circulation, impacts of storms, navigation, and recreational safety. Numerical modeling of these systems facilitates advancements in our understanding of coastal changes and can provide predictive capabilities for resource managers. There exists many nearshore coastal circulation models, however they are mostly limited or typically only applied as depth integrated models. SHORECIRC is an established surf zone circulation model that is quasi-3D to allow the effect of the variability in the vertical structure of the currents while maintaining the computational advantage of a 2DH model. Here we compare SHORECIRC to ROMS, a fully 3D ocean circulation model which now includes a three dimensional formulation for the wave-driven flows. We compare the models with three different test applications for: (i) spectral waves approaching a plane beach with an oblique angle of incidence; (ii) monochromatic waves driving longshore currents in a laboratory basin; and (iii) monochromatic waves on a barred beach with rip channels in a laboratory basin. Results identify that the models are very similar for the depth integrated flows and qualitatively consistent for the vertically varying components. The differences are primarily the result of the vertically varying radiation stress utilized by ROMS and the utilization of long wave theory for the radiation stress formulation in vertical varying momentum balance by SHORECIRC. The quasi-3D model is faster, however the applicability of the fully 3D model allows it to extend over a broader range of processes, temporal, and spatial scales. ?? 2008 Elsevier Ltd.
a Fast Method for Measuring the Similarity Between 3d Model and 3d Point Cloud
NASA Astrophysics Data System (ADS)
Zhang, Zongliang; Li, Jonathan; Li, Xin; Lin, Yangbin; Zhang, Shanxin; Wang, Cheng
2016-06-01
This paper proposes a fast method for measuring the partial Similarity between 3D Model and 3D point Cloud (SimMC). It is crucial to measure SimMC for many point cloud-related applications such as 3D object retrieval and inverse procedural modelling. In our proposed method, the surface area of model and the Distance from Model to point Cloud (DistMC) are exploited as measurements to calculate SimMC. Here, DistMC is defined as the weighted distance of the distances between points sampled from model and point cloud. Similarly, Distance from point Cloud to Model (DistCM) is defined as the average distance of the distances between points in point cloud and model. In order to reduce huge computational burdens brought by calculation of DistCM in some traditional methods, we define SimMC as the ratio of weighted surface area of model to DistMC. Compared to those traditional SimMC measuring methods that are only able to measure global similarity, our method is capable of measuring partial similarity by employing distance-weighted strategy. Moreover, our method is able to be faster than other partial similarity assessment methods. We demonstrate the superiority of our method both on synthetic data and laser scanning data.
Learning Graphical Models With Hubs
Tan, Kean Ming; London, Palma; Mohan, Karthik; Lee, Su-In; Fazel, Maryam; Witten, Daniela
2014-01-01
We consider the problem of learning a high-dimensional graphical model in which there are a few hub nodes that are densely-connected to many other nodes. Many authors have studied the use of an ℓ1 penalty in order to learn a sparse graph in the high-dimensional setting. However, the ℓ1 penalty implicitly assumes that each edge is equally likely and independent of all other edges. We propose a general framework to accommodate more realistic networks with hub nodes, using a convex formulation that involves a row-column overlap norm penalty. We apply this general framework to three widely-used probabilistic graphical models: the Gaussian graphical model, the covariance graph model, and the binary Ising model. An alternating direction method of multipliers algorithm is used to solve the corresponding convex optimization problems. On synthetic data, we demonstrate that our proposed framework outperforms competitors that do not explicitly model hub nodes. We illustrate our proposal on a webpage data set and a gene expression data set. PMID:25620891
3D graphics, virtual reality, and motion-onset visual evoked potentials in neurogaming.
Beveridge, R; Wilson, S; Coyle, D
2016-01-01
A brain-computer interface (BCI) offers movement-free control of a computer application and is achieved by reading and translating the cortical activity of the brain into semantic control signals. Motion-onset visual evoked potentials (mVEP) are neural potentials employed in BCIs and occur when motion-related stimuli are attended visually. mVEP dynamics are correlated with the position and timing of the moving stimuli. To investigate the feasibility of utilizing the mVEP paradigm with video games of various graphical complexities including those of commercial quality, we conducted three studies over four separate sessions comparing the performance of classifying five mVEP responses with variations in graphical complexity and style, in-game distractions, and display parameters surrounding mVEP stimuli. To investigate the feasibility of utilizing contemporary presentation modalities in neurogaming, one of the studies compared mVEP classification performance when stimuli were presented using the oculus rift virtual reality headset. Results from 31 independent subjects were analyzed offline. The results show classification performances ranging up to 90% with variations in conditions in graphical complexity having limited effect on mVEP performance; thus, demonstrating the feasibility of using the mVEP paradigm within BCI-based neurogaming. PMID:27590974
Representing Learning With Graphical Models
NASA Technical Reports Server (NTRS)
Buntine, Wray L.; Lum, Henry, Jr. (Technical Monitor)
1994-01-01
Probabilistic graphical models are being used widely in artificial intelligence, for instance, in diagnosis and expert systems, as a unified qualitative and quantitative framework for representing and reasoning with probabilities and independencies. Their development and use spans several fields including artificial intelligence, decision theory and statistics, and provides an important bridge between these communities. This paper shows by way of example that these models can be extended to machine learning, neural networks and knowledge discovery by representing the notion of a sample on the graphical model. Not only does this allow a flexible variety of learning problems to be represented, it also provides the means for representing the goal of learning and opens the way for the automatic development of learning algorithms from specifications.
Graphical Models for Ordinal Data
Guo, Jian; Levina, Elizaveta; Michailidis, George; Zhu, Ji
2014-01-01
A graphical model for ordinal variables is considered, where it is assumed that the data are generated by discretizing the marginal distributions of a latent multivariate Gaussian distribution. The relationships between these ordinal variables are then described by the underlying Gaussian graphical model and can be inferred by estimating the corresponding concentration matrix. Direct estimation of the model is computationally expensive, but an approximate EM-like algorithm is developed to provide an accurate estimate of the parameters at a fraction of the computational cost. Numerical evidence based on simulation studies shows the strong performance of the algorithm, which is also illustrated on data sets on movie ratings and an educational survey. PMID:26120267
Evaluation of 3D-Jury on CASP7 models
Kaján, László; Rychlewski, Leszek
2007-01-01
Background 3D-Jury, the structure prediction consensus method publicly available in the Meta Server , was evaluated using models gathered in the 7th round of the Critical Assessment of Techniques for Protein Structure Prediction (CASP7). 3D-Jury is an automated expert process that generates protein structure meta-predictions from sets of models obtained from partner servers. Results The performance of 3D-Jury was analysed for three aspects. First, we examined the correlation between the 3D-Jury score and a model quality measure: the number of correctly predicted residues. The 3D-Jury score was shown to correlate significantly with the number of correctly predicted residues, the correlation is good enough to be used for prediction. 3D-Jury was also found to improve upon the competing servers' choice of the best structure model in most cases. The value of the 3D-Jury score as a generic reliability measure was also examined. We found that the 3D-Jury score separates bad models from good models better than the reliability score of the original server in 27 cases and falls short of it in only 5 cases out of a total of 38. We report the release of a new Meta Server feature: instant 3D-Jury scoring of uploaded user models. Conclusion The 3D-Jury score continues to be a good indicator of structural model quality. It also provides a generic reliability score, especially important for models that were not assigned such by the original server. Individual structure modellers can also benefit from the 3D-Jury scoring system by testing their models in the new instant scoring feature available in the Meta Server. PMID:17711571
Computational modeling of RNA 3D structures and interactions.
Dawson, Wayne K; Bujnicki, Janusz M
2016-04-01
RNA molecules have key functions in cellular processes beyond being carriers of protein-coding information. These functions are often dependent on the ability to form complex three-dimensional (3D) structures. However, experimental determination of RNA 3D structures is difficult, which has prompted the development of computational methods for structure prediction from sequence. Recent progress in 3D structure modeling of RNA and emerging approaches for predicting RNA interactions with ions, ligands and proteins have been stimulated by successes in protein 3D structure modeling. PMID:26689764
An Automated 3d Indoor Topological Navigation Network Modelling
NASA Astrophysics Data System (ADS)
Jamali, A.; Rahman, A. A.; Boguslawski, P.; Gold, C. M.
2015-10-01
Indoor navigation is important for various applications such as disaster management and safety analysis. In the last decade, indoor environment has been a focus of wide research; that includes developing techniques for acquiring indoor data (e.g. Terrestrial laser scanning), 3D indoor modelling and 3D indoor navigation models. In this paper, an automated 3D topological indoor network generated from inaccurate 3D building models is proposed. In a normal scenario, 3D indoor navigation network derivation needs accurate 3D models with no errors (e.g. gap, intersect) and two cells (e.g. rooms, corridors) should touch each other to build their connections. The presented 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. For reducing time and cost of indoor building data acquisition process, Trimble LaserAce 1000 as surveying instrument is used. The modelling results were validated against an accurate geometry of indoor building environment which was acquired using Trimble M3 total station.
Highway 3D model from image and lidar data
NASA Astrophysics Data System (ADS)
Chen, Jinfeng; Chu, Henry; Sun, Xiaoduan
2014-05-01
We present a new method of highway 3-D model construction developed based on feature extraction in highway images and LIDAR data. We describe the processing road coordinate data that connect the image frames to the coordinates of the elevation data. Image processing methods are used to extract sky, road, and ground regions as well as significant objects (such as signs and building fronts) in the roadside for the 3D model. LIDAR data are interpolated and processed to extract the road lanes as well as other features such as trees, ditches, and elevated objects to form the 3D model. 3D geometry reasoning is used to match the image features to the 3D model. Results from successive frames are integrated to improve the final model.
Simulation of 3D infrared scenes using random fields model
NASA Astrophysics Data System (ADS)
Shao, Xiaopeng; Zhang, Jianqi
2001-09-01
Analysis and simulation of smart munitions requires imagery for the munition's sensor to view. The traditional infrared background simulations are always limited in the plane scene studies. A new method is described to synthesize the images in 3D view and with various terrains texture. We develop the random fields model and temperature fields to simulate 3D infrared scenes. Generalized long-correlation (GLC) model, one of random field models, will generate both the 3D terrains skeleton data and the terrains texture in this work. To build the terrain mesh with the random fields, digital elevation models (DEM) are introduced in the paper. And texture mapping technology will perform the task of pasting the texture in the concavo-convex surfaces of the 3D scene. The simulation using random fields model is a very available method to produce 3D infrared scene with great randomicity and reality.
An Automatic Registration Algorithm for 3D Maxillofacial Model
NASA Astrophysics Data System (ADS)
Qiu, Luwen; Zhou, Zhongwei; Guo, Jixiang; Lv, Jiancheng
2016-09-01
3D image registration aims at aligning two 3D data sets in a common coordinate system, which has been widely used in computer vision, pattern recognition and computer assisted surgery. One challenging problem in 3D registration is that point-wise correspondences between two point sets are often unknown apriori. In this work, we develop an automatic algorithm for 3D maxillofacial models registration including facial surface model and skull model. Our proposed registration algorithm can achieve a good alignment result between partial and whole maxillofacial model in spite of ambiguous matching, which has a potential application in the oral and maxillofacial reparative and reconstructive surgery. The proposed algorithm includes three steps: (1) 3D-SIFT features extraction and FPFH descriptors construction; (2) feature matching using SAC-IA; (3) coarse rigid alignment and refinement by ICP. Experiments on facial surfaces and mandible skull models demonstrate the efficiency and robustness of our algorithm.
Extending 3D city models with legal information
NASA Astrophysics Data System (ADS)
Frank, A. U.; Fuhrmann, T.; Navratil, G.
2012-10-01
3D city models represent existing physical objects and their topological and functional relations. In everyday life the rights and responsibilities connected to these objects, primarily legally defined rights and obligations but also other socially and culturally established rights, are of importance. The rights and obligations are defined in various laws and it is often difficult to identify the rules applicable for a certain case. The existing 2D cadastres show civil law rights and obligations and plans to extend them to provide information about public law restrictions for land use are in several countries under way. It is tempting to design extensions to the 3D city models to provide information about legal rights in 3D. The paper analyses the different types of information that are needed to reduce conflicts and to facilitate decisions about land use. We identify the role 3D city models augmented with planning information in 3D can play, but do not advocate a general conversion from 2D to 3D for the legal cadastre. Space is not anisotropic and the up/down dimension is practically very different from the two dimensional plane - this difference must be respected when designing spatial information systems. The conclusions are: (1) continue the current regime for ownership of apartments, which is not ownership of a 3D volume, but co-ownership of a building with exclusive use of some rooms; such exclusive use rights could be shown in a 3D city model; (2) ownership of 3D volumes for complex and unusual building situations can be reported in a 3D city model, but are not required everywhere; (3) indicate restrictions for land use and building in 3D city models, with links to the legal sources.
3D scanning modeling method application in ancient city reconstruction
NASA Astrophysics Data System (ADS)
Ren, Pu; Zhou, Mingquan; Du, Guoguang; Shui, Wuyang; Zhou, Pengbo
2015-07-01
With the development of optical engineering technology, the precision of 3D scanning equipment becomes higher, and its role in 3D modeling is getting more distinctive. This paper proposed a 3D scanning modeling method that has been successfully applied in Chinese ancient city reconstruction. On one hand, for the existing architectures, an improved algorithm based on multiple scanning is adopted. Firstly, two pieces of scanning data were rough rigid registered using spherical displacers and vertex clustering method. Secondly, a global weighted ICP (iterative closest points) method is used to achieve a fine rigid registration. On the other hand, for the buildings which have already disappeared, an exemplar-driven algorithm for rapid modeling was proposed. Based on the 3D scanning technology and the historical data, a system approach was proposed for 3D modeling and virtual display of ancient city.
3-D model-based Bayesian classification
Soenneland, L.; Tenneboe, P.; Gehrmann, T.; Yrke, O.
1994-12-31
The challenging task of the interpreter is to integrate different pieces of information and combine them into an earth model. The sophistication level of this earth model might vary from the simplest geometrical description to the most complex set of reservoir parameters related to the geometrical description. Obviously the sophistication level also depend on the completeness of the available information. The authors describe the interpreter`s task as a mapping between the observation space and the model space. The information available to the interpreter exists in observation space and the task is to infer a model in model-space. It is well-known that this inversion problem is non-unique. Therefore any attempt to find a solution depend son constraints being added in some manner. The solution will obviously depend on which constraints are introduced and it would be desirable to allow the interpreter to modify the constraints in a problem-dependent manner. They will present a probabilistic framework that gives the interpreter the tools to integrate the different types of information and produce constrained solutions. The constraints can be adapted to the problem at hand.
Opportunity Landing Spot Panorama (3-D Model)
NASA Technical Reports Server (NTRS)
2004-01-01
The rocky outcrop traversed by the Mars Exploration Rover Opportunity is visible in this three-dimensional model of the rover's landing site. Opportunity has acquired close-up images along the way, and scientists are using the rover's instruments to closely examine portions of interest. The white fragments that look crumpled near the center of the image are portions of the airbags. Distant scenery is displayed on a spherical backdrop or 'billboard' for context. Artifacts near the top rim of the crater are a result of the transition between the three-dimensional model and the billboard. Portions of the terrain model lacking sufficient data appear as blank spaces or gaps, colored reddish-brown for better viewing. This image was generated using special software from NASA's Ames Research Center and a mosaic of images taken by the rover's panoramic camera.
[figure removed for brevity, see original site] Click on image for larger view
The rocky outcrop traversed by the Mars Exploration Rover Opportunity is visible in this zoomed-in portion of a three-dimensional model of the rover's landing site. Opportunity has acquired close-up images along the way, and scientists are using the rover's instruments to closely examine portions of interest. The white fragments that look crumpled near the center of the image are portions of the airbags. Distant scenery is displayed on a spherical backdrop or 'billboard' for context. Artifacts near the top rim of the crater are a result of the transition between the three-dimensional model and the billboard. Portions of the terrain model lacking sufficient data appear as blank spaces or gaps, colored reddish-brown for better viewing. This image was generated using special software from NASA's Ames Research Center and a mosaic of images taken by the rover's panoramic camera.
Venusian Applications of 3D Convection Modeling
NASA Technical Reports Server (NTRS)
Bonaccorso, Timary Annie
2011-01-01
This study models mantle convection on Venus using the 'cubed sphere' code OEDIPUS, which models one-sixth of the planet in spherical geometry. We are attempting to balance internal heating, bottom mantle viscosity, and temperature difference across Venus' mantle, in order to create a realistic model that matches with current planetary observations. We also have begun to run both lower and upper mantle simulations to determine whether layered (as opposed to whole-mantle) convection might produce more efficient heat transfer, as well as to model coronae formation in the upper mantle. Upper mantle simulations are completed using OEDIPUS' Cartesian counterpart, JOCASTA. This summer's central question has been how to define a mantle plume. Traditionally, we have defined a hot plume the region with temperature at or above 40% of the difference between the maximum and horizontally averaged temperature, and a cold plume as the region with 40% of the difference between the minimum and average temperature. For less viscous cases (1020 Pa?s), the plumes generated by that definition lacked vigor, displaying buoyancies 1/100th of those found in previous, higher viscosity simulations (1021 Pa?s). As the mantle plumes with large buoyancy flux are most likely to produce topographic uplift and volcanism, the low viscosity cases' plumes may not produce observable deformation. In an effort to eliminate the smallest plumes, we experimented with different lower bound parameters and temperature percentages.
James E. Fisher; Cliff B. Davis; Walter L. Weaver
2005-06-01
A compressor model has been implemented in the RELAP5-3D© code. The model is similar to that of the existing pump model, and performs the same function on a gas as the pump performs on a single-phase or two-phase fluid. The compressor component consists of an inlet junction and a control volume, and optionally, an outlet junction. This feature permits cascading compressor components in series. The equations describing the physics of the compressor are derived from first principles. These equations are used to obtain the head, the torque, and the energy dissipation. Compressor performance is specified using a map, specific to the design of the machine, in terms of the ratio of outlet-to-inlet total (or stagnation) pressure and adiabatic efficiency as functions of rotational velocity and flow rate. The input quantities are specified in terms of dimensionless variables, which are corrected to stagnation density and stagnation sound speed. A small correction was formulated for the input of efficiency to account for the error introduced by assumption of constant density when integrating the momentum equation. Comparison of the results of steady-state operation of the compressor model to those of the MIT design calculation showed excellent agreement for both pressure ratio and power.
Image based 3D city modeling : Comparative study
NASA Astrophysics Data System (ADS)
Singh, S. P.; Jain, K.; Mandla, V. R.
2014-06-01
3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing rapidly for various engineering and non-engineering applications. Generally four main image based approaches were used for virtual 3D city models generation. In first approach, researchers were used Sketch based modeling, second method is Procedural grammar based modeling, third approach is Close range photogrammetry based modeling and fourth approach is mainly based on Computer Vision techniques. SketchUp, CityEngine, Photomodeler and Agisoft Photoscan are the main softwares to represent these approaches respectively. These softwares have different approaches & methods suitable for image based 3D city modeling. Literature study shows that till date, there is no complete such type of comparative study available to create complete 3D city model by using images. This paper gives a comparative assessment of these four image based 3D modeling approaches. This comparative study is mainly based on data acquisition methods, data processing techniques and output 3D model products. For this research work, study area is the campus of civil engineering department, Indian Institute of Technology, Roorkee (India). This 3D campus acts as a prototype for city. This study also explains various governing parameters, factors and work experiences. This research work also gives a brief introduction, strengths and weakness of these four image based techniques. Some personal comment is also given as what can do or what can't do from these softwares. At the last, this study shows; it concluded that, each and every software has some advantages and limitations. Choice of software depends on user requirements of 3D project. For normal visualization project, SketchUp software is a good option. For 3D documentation record, Photomodeler gives good result. For Large city
NoSQL Based 3D City Model Management System
NASA Astrophysics Data System (ADS)
Mao, B.; Harrie, L.; Cao, J.; Wu, Z.; Shen, J.
2014-04-01
To manage increasingly complicated 3D city models, a framework based on NoSQL database is proposed in this paper. The framework supports import and export of 3D city model according to international standards such as CityGML, KML/COLLADA and X3D. We also suggest and implement 3D model analysis and visualization in the framework. For city model analysis, 3D geometry data and semantic information (such as name, height, area, price and so on) are stored and processed separately. We use a Map-Reduce method to deal with the 3D geometry data since it is more complex, while the semantic analysis is mainly based on database query operation. For visualization, a multiple 3D city representation structure CityTree is implemented within the framework to support dynamic LODs based on user viewpoint. Also, the proposed framework is easily extensible and supports geoindexes to speed up the querying. Our experimental results show that the proposed 3D city management system can efficiently fulfil the analysis and visualization requirements.
Modelling Polymer Deformation during 3D Printing
NASA Astrophysics Data System (ADS)
McIlroy, Claire; Olmsted, Peter
Three-dimensional printing has the potential to transform manufacturing processes, yet improving the strength of printed parts, to equal that of traditionally-manufactured parts, remains an underlying issue. The fused deposition modelling technique involves melting a thermoplastic, followed by layer-by-layer extrusion to fabricate an object. The key to ensuring strength at the weld between layers is successful inter-diffusion. However, prior to welding, both the extrusion process and the cooling temperature profile can significantly deform the polymer micro-structure and, consequently, how well the polymers are able to ``re-entangle'' across the weld. In particular, polymer alignment in the flow can cause de-bonding of the layers and create defects. We have developed a simple model of the non-isothermal extrusion process to explore the effects that typical printing conditions and material rheology have on the conformation of a polymer melt. In particular, we incorporate both stretch and orientation using the Rolie-Poly constitutive equation to examine the melt structure as it flows through the nozzle, the subsequent alignment with the build plate and the resulting deformation due to the fixed nozzle height, which is typically less than the nozzle radius.
Dastane, A; Vaidyanathan, T K; Vaidyanathan, J; Mehra, R; Hesby, R
1996-01-01
It is necessary to visualize and reconstruct tissue anatomic surfaces accurately for a variety of oral rehabilitation applications such as surface wear characterization and automated fabrication of dental restorations, accuracy of reproduction of impression and die materials, etc. In this investigation, a 3-D digitization and computer-graphic system was developed for surface characterization. The hardware consists of a profiler assembly for digitization in an MTS biomechanical test system with an artificial mouth, an IBM PS/2 computer model 70 for data processing and a Hewlett-Packard laser printer for hardcopy outputs. The software used includes a commercially available Surfer 3-D graphics package, a public domain data-fitting alignment software and an inhouse Pascal program for intercommunication plus some other limited tasks. Surfaces were digitized before and after rotation by angular displacement, the digital data were interpolated by Surfer to provide a data grid and the surfaces were computer graphically reconstructed: Misaligned surfaces were aligned by the data-fitting alignment software under different choices of parameters. The effect of different interpolation parameters (e.g. grid size, method of interpolation) and extent of rotation on the alignment accuracy was determined. The results indicate that improved alignment accuracy results from optimization of interpolation parameters and minimization of the initial misorientation between the digitized surfaces. The method provides important advantages for surface reconstruction and visualization, such as overlay of sequentially generated surfaces and accurate alignment of pairs of surfaces with small misalignment. PMID:8850158
NASA Astrophysics Data System (ADS)
Przyborska, Anna; Kosecki, Szymon; Jakacki, Jaromir
2014-05-01
Kongsfjorden is a West Svalbard fjord with a surface area of about 210 km2. It is obvious that the depths of the outer and central basins are influenced by the open sea, under influence of West Spitsbergen Current (WSC), which curry out warm Atlantic water and cold East Spitsbergen Current, while the shallower, inner basin has a large glacial outflow and its maximum depths do not exceed 100 m. Freshwater stored in Spitsbergen glaciers have strong influence on local hydrology and physical fjord conditions. Both, local and shelf conditions have impact on state of the fjord. External forces like tides, velocities at the boundary and atmospheric forces together with sources of cold and dens fresh water in the fjords will give reliable representation of physical conditions in Kongsfjorden. Modeling could help to solve this problem and we have hope that we find answer which one is the most important for local conditions in fjord. Calculations of balances between cold fresh water and warm and salt will provide additional information that could help to answer the main question of the GAME (Growing of the Arctic Marine Ecosystem) project - what is the reaction of physically controlled Arctic marine ecosystem to temperature rise.
3D PIC Modeling of Microcavity Discharge
NASA Astrophysics Data System (ADS)
Hopkins, Matthew; Manginell, Ronald; Moore, Christopher; Yee, Benjamin; Moorman, Matthew
2015-09-01
We present a number of techniques and challenges in simulating the transient behavior of a microcavity discharge. Our microcavities are typically cylindrical with diameters approximately 50 - 100 μm, heights of 50 - 200 μm, pressure near atmospheric, and operate at a few hundred volts. We employ a fully kinetic simulation methodology, the Particle-in-Cell (PIC) method, with interparticle collisions handled via methods based on direct simulation Monte Carlo (DSMC). In particular, we explicitly include kinetic electrons. Some of the challenges we encounter include variations in number densities, external circuit coupling, and time step resolution constraints. By employing dynamic particle weighting (particle weights vary over time by species and location) we can mitigate some of the challenges modeling systems with 107 variations in number densities. Smoothing mechanisms have been used to attempt to mitigate external circuit response. We perform our simulations on hundreds or thousands of processing cores to accommodate the computational work inherent in using relatively small time step sizes (e.g., 50 fs for a 100 ns calculation). In addition, particle weighting issues inherent to three-dimensional low temperature plasma systems will be mentioned. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract DE-AC04-94AL85000.
Design of a VLSI scan conversion processor for high-performance 3-D graphics systems
Huang, H.U.
1988-01-01
Scan-conversion processing is the bottleneck in the image generation process. To solve the problem of smooth shading and hidden surface elimination, a new processor architecture was invented which has been labeled as a scan-conversion processor architecture (SCP). The SCP is designed to perform hidden surface elimination and scan conversion for 64 pixels. The color intensities are dual-buffered so that when one buffer is being updated the other can be scanned out. Z-depth is used to perform the hidden surface elimination. The key operation performed by the SCP is the evaluation of linear functions of a form like F(X,Y) = A X + B Y + C. The computation is further simplified by using incremental addition. The z-depth buffer and the color buffers are incorporated onto the same chip. The SCP receives from its preprocessor the information for the definition of polygons and the computation of z-depth and RGB color intensities. Many copies of this processor will be used in a high-performance graphics system.
Dong, Xiaoqing; Fang, Yiliang; Wang, Kejing; Zhu, Lijuan; Wang, Ke; Huang, Tao
2016-01-01
With the development of new technologies in transcriptome and epigenetics, RNAs have been identified to play more and more important roles in life processes. Consequently, various methods have been proposed to assess the biological functions of RNAs and thus classify them functionally, among which comparative study of RNA structures is perhaps the most important one. To measure the structural similarity of RNAs and classify them, we propose a novel three dimensional (3D) graphical representation of RNA secondary structure, in which an RNA secondary structure is first transformed into a characteristic sequence based on chemical property of nucleic acids; a dynamic 3D graph is then constructed for the characteristic sequence; and lastly a numerical characterization of the 3D graph is used to represent the RNA secondary structure. We tested our algorithm on three datasets: (1) Dataset I consisting of nine RNA secondary structures of viruses, (2) Dataset II consisting of complex RNA secondary structures including pseudo-knots, and (3) Dataset III consisting of 18 non-coding RNA families. We also compare our method with other nine existing methods using Dataset II and III. The results demonstrate that our method is better than other methods in similarity measurement and classification of RNA secondary structures. PMID:27213271
Zhang, Yi; Huang, Haiyun; Dong, Xiaoqing; Fang, Yiliang; Wang, Kejing; Zhu, Lijuan; Wang, Ke; Huang, Tao; Yang, Jialiang
2016-01-01
With the development of new technologies in transcriptome and epigenetics, RNAs have been identified to play more and more important roles in life processes. Consequently, various methods have been proposed to assess the biological functions of RNAs and thus classify them functionally, among which comparative study of RNA structures is perhaps the most important one. To measure the structural similarity of RNAs and classify them, we propose a novel three dimensional (3D) graphical representation of RNA secondary structure, in which an RNA secondary structure is first transformed into a characteristic sequence based on chemical property of nucleic acids; a dynamic 3D graph is then constructed for the characteristic sequence; and lastly a numerical characterization of the 3D graph is used to represent the RNA secondary structure. We tested our algorithm on three datasets: (1) Dataset I consisting of nine RNA secondary structures of viruses, (2) Dataset II consisting of complex RNA secondary structures including pseudo-knots, and (3) Dataset III consisting of 18 non-coding RNA families. We also compare our method with other nine existing methods using Dataset II and III. The results demonstrate that our method is better than other methods in similarity measurement and classification of RNA secondary structures. PMID:27213271
The 3D model: explaining densification and deformation mechanisms by using 3D parameter plots.
Picker, Katharina M
2004-04-01
The aim of the study was to analyze very differently deforming materials using 3D parameter plots and consequently to gain deeper insights into the densification and deformation process described with the 3D model in order to define an ideal tableting excipient. The excipients used were dicalcium phosphate dihydrate (DCPD), sodium chloride (NaCl), microcrystalline cellulose (MCC), xylitol, mannitol, alpha-lactose monohydrate, maltose, hydroxypropyl methylcellulose (HPMC), sodium carboxymethylcellulose (NaCMC), cellulose acetate (CAC), maize starch, potato starch, pregelatinized starch, and maltodextrine. All of the materials were tableted to graded maximum relative densities (rhorel, max) using an eccentric tableting machine. The data which resulted, namely force, displacement, and time, were analyzed by the application of 3D modeling. Different particle size fractions of DCPD, CAC, and MCC were analyzed in addition. Brittle deforming materials such as DCPD exhibited a completely different 3D parameter plot, with low time plasticity, d, and low pressure plasticity, e, and a strong decrease in omega values when densification increased, in contrast to the plastically deforming MCC, which had much higher d, e, and omega values. e and omega values changed only slightly when densification increased for MCC. NaCl showed less of a decrease in omega values than DCPD did, and the d and e values were between those of MCC and DCPD. The sugar alcohols, xylitol and mannitol, behaved in a similar fashion to sodium chloride. This is also valid for the crystalline sugars, alpha-lactose monohydrate, and maltose. However, the sugars are more brittle than the sugar alcohols. The cellulose derivatives, HPMC, NaCMC, and CAC, are as plastic as MCC, however, their elasticity depends on substitution indicated by lower (more elastic) or higher (less elastic) omega values. The native starches, maize starch and potato starch, are very elastic, and pregelatinized starch and maltodextrine are
3D-model building of the jaw impression
NASA Astrophysics Data System (ADS)
Ahmed, Moumen T.; Yamany, Sameh M.; Hemayed, Elsayed E.; Farag, Aly A.
1997-03-01
A novel approach is proposed to obtain a record of the patient's occlusion using computer vision. Data acquisition is obtained using intra-oral video cameras. The technique utilizes shape from shading to extract 3D information from 2D views of the jaw, and a novel technique for 3D data registration using genetic algorithms. The resulting 3D model can be used for diagnosis, treatment planning, and implant purposes. The overall purpose of this research is to develop a model-based vision system for orthodontics to replace traditional approaches. This system will be flexible, accurate, and will reduce the cost of orthodontic treatments.
3D model-based still image object categorization
NASA Astrophysics Data System (ADS)
Petre, Raluca-Diana; Zaharia, Titus
2011-09-01
This paper proposes a novel recognition scheme algorithm for semantic labeling of 2D object present in still images. The principle consists of matching unknown 2D objects with categorized 3D models in order to infer the semantics of the 3D object to the image. We tested our new recognition framework by using the MPEG-7 and Princeton 3D model databases in order to label unknown images randomly selected from the web. Results obtained show promising performances, with recognition rate up to 84%, which opens interesting perspectives in terms of semantic metadata extraction from still images/videos.
Summary on Several Key Techniques in 3D Geological Modeling
2014-01-01
Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of various geometric computations such as the intersection of surfaces. Discrete geometric surfaces that represent geological interfaces can be generated by creating planar meshes first and then spatially interpolating; those surfaces intersect and then form volumes that represent three-dimensional geological objects such as rock bodies. In this paper, the most commonly used algorithms of the key techniques in 3D geological modeling are summarized. PMID:24772029
Formal representation of 3D structural geological models
NASA Astrophysics Data System (ADS)
Wang, Zhangang; Qu, Honggang; Wu, Zixing; Yang, Hongjun; Du, Qunle
2016-05-01
The development and widespread application of geological modeling methods has increased demands for the integration and sharing services of three dimensional (3D) geological data. However, theoretical research in the field of geological information sciences is limited despite the widespread use of Geographic Information Systems (GIS) in geology. In particular, fundamental research on the formal representations and standardized spatial descriptions of 3D structural models is required. This is necessary for accurate understanding and further applications of geological data in 3D space. In this paper, we propose a formal representation method for 3D structural models using the theory of point set topology, which produces a mathematical definition for the major types of geological objects. The spatial relationships between geologic boundaries, structures, and units are explained in detail using the 9-intersection model. Reasonable conditions for describing the topological space of 3D structural models are also provided. The results from this study can be used as potential support for the standardized representation and spatial quality evaluation of 3D structural models, as well as for specific needs related to model-based management, query, and analysis.
Metrological validation for 3D modeling of dental plaster casts.
Brusco, Nicola; Andreetto, Marco; Lucchese, Luca; Carmignato, Simone; Cortelazzo, Guido M
2007-11-01
The contribution of this paper is twofold: (1) it presents an automatic 3D modeling technique and (2) it advances a procedure for its metrological evaluation in the context of a medical application, the 3D modeling of dental plaster casts. The motivation for this work is the creation of a "virtual gypsotheque" where cumbersome dental plaster casts can be replaced by numerical 3D models, thereby alleviating storage and access problems and allowing dentists and orthodontists the use of novel and unprecedented software tools for their medical evaluations. Modeling free-form surfaces of anatomical interest is an intriguing mixture of open issues concerning 3D modeling, geometrical metrology, and medicine. Of general interest is both the fact that a widespread use of 3D modeling in non-engineering applications requires automatic procedures of the kind presented in this work and the adopted validation paradigm for free-form surfaces, rather useful for practical purposes. In this latter respect, the metrological analysis we advance is the first seminal attempt in the field of 3D modeling and can be readily extended to contexts other than the medical one discussed in this paper. PMID:17126062
Interactive graphical model building using telepresence and virtual reality
Cooke, C.; Stansfield, S.
1993-10-01
This paper presents a prototype system developed at Sandia National Laboratories to create and verify computer-generated graphical models of remote physical environments. The goal of the system is to create an interface between an operator and a computer vision system so that graphical models can be created interactively. Virtual reality and telepresence are used to allow interaction between the operator, computer, and remote environment. A stereo view of the remote environment is produced by two CCD cameras. The cameras are mounted on a three degree-of-freedom platform which is slaved to a mechanically-tracked, stereoscopic viewing device. This gives the operator a sense of immersion in the physical environment. The stereo video is enhanced by overlaying the graphical model onto it. Overlay of the graphical model onto the stereo video allows visual verification of graphical models. Creation of a graphical model is accomplished by allowing the operator to assist the computer in modeling. The operator controls a 3-D cursor to mark objects to be modeled. The computer then automatically extracts positional and geometric information about the object and creates the graphical model.
Models Ion Trajectories in 2D and 3D Electrostatic and Magnetic Fields
2000-02-21
SIMION3D7.0REV is a C based ion optics simulation program that can model complex problems using Laplace equation solutions for potential fields. The program uses an ion optics workbench that can hold up to 200 2D and/or 3D electrostatic/magnetic potential arrays. Arrays can have up to 50,000,000 points. SIMION3D7.0''s 32 bit virtual Graphics User Interface provides a highly interactive advanced user environment. All potential arrays are visualized as 3D objects that the user can cut awaymore » to inspect ion trajectories and potential energy surfaces. User programs allow the user to customize the program for specific simulations. A geometry file option supports the definition of highly complex array geometry. Algorithm modifications have improved this version''s computational speed and accuracy.« less
Models Ion Trajectories in 2D and 3D Electrostatic and Magnetic Fields
Dahl, David
2000-02-21
SIMION3D7.0REV is a C based ion optics simulation program that can model complex problems using Laplace equation solutions for potential fields. The program uses an ion optics workbench that can hold up to 200 2D and/or 3D electrostatic/magnetic potential arrays. Arrays can have up to 50,000,000 points. SIMION3D7.0''s 32 bit virtual Graphics User Interface provides a highly interactive advanced user environment. All potential arrays are visualized as 3D objects that the user can cut away to inspect ion trajectories and potential energy surfaces. User programs allow the user to customize the program for specific simulations. A geometry file option supports the definition of highly complex array geometry. Algorithm modifications have improved this version''s computational speed and accuracy.
3D Modeling from Photos Given Topological Information.
Kim, Young Min; Cho, Junghyun; Ahn, Sang Chul
2016-09-01
Reconstructing 3D models given a single-view 2D information is inherently an ill-posed problem and requires additional information such as shape prior or user input.We introduce a method to generate multiple 3D models of a particular category given corresponding photographs when the topological information is known. While there is a wide range of shapes for an object of a particular category, the basic topology usually remains constant.In consequence, the topological prior needs to be provided only once for each category and can be easily acquired by consulting an existing database of 3D models or by user input. The input of topological description is only connectivity information between parts; this is in contrast to previous approaches that have required users to interactively mark individual parts. Given the silhouette of an object and the topology, our system automatically finds a skeleton and generates a textured 3D model by jointly fitting multiple parts. The proposed method, therefore, opens the possibility of generating a large number of 3D models by consulting a massive number of photographs. We demonstrate examples of the topological prior and reconstructed 3D models using photos. PMID:26661474
Performance Evaluation of 3d Modeling Software for Uav Photogrammetry
NASA Astrophysics Data System (ADS)
Yanagi, H.; Chikatsu, H.
2016-06-01
UAV (Unmanned Aerial Vehicle) photogrammetry, which combines UAV and freely available internet-based 3D modeling software, is widely used as a low-cost and user-friendly photogrammetry technique in the fields such as remote sensing and geosciences. In UAV photogrammetry, only the platform used in conventional aerial photogrammetry is changed. Consequently, 3D modeling software contributes significantly to its expansion. However, the algorithms of the 3D modelling software are black box algorithms. As a result, only a few studies have been able to evaluate their accuracy using 3D coordinate check points. With this motive, Smart3DCapture and Pix4Dmapper were downloaded from the Internet and commercial software PhotoScan was also employed; investigations were performed in this paper using check points and images obtained from UAV.
Properties of the EM cascade: A tutorial utilizing high resolution 3D color graphics
Nelson, W R
1987-02-01
The fundamental interactions of electrons and photons are reviewed that are important to shower physics. The shower is then described, including a simple model, an advanced analytic model, and Monte Carlo approaches. Examples of real, as well as simulated, EM showers are discussed, and some ''rules of thumb'' are provided. (LEW)
Modeling and modification of medical 3D objects. The benefit of using a haptic modeling tool.
Kling-Petersen, T; Rydmark, M
2000-01-01
any given amount of smoothing to the object. While the final objects need to be exported for further 3D graphic manipulation, FreeForm addresses one of the most time consuming problems of 3D modeling: modification and creation of non-geometric 3D objects. PMID:10977532
Automatic Texture Mapping of Architectural and Archaeological 3d Models
NASA Astrophysics Data System (ADS)
Kersten, T. P.; Stallmann, D.
2012-07-01
Today, detailed, complete and exact 3D models with photo-realistic textures are increasingly demanded for numerous applications in architecture and archaeology. Manual texture mapping of 3D models by digital photographs with software packages, such as Maxon Cinema 4D, Autodesk 3Ds Max or Maya, still requires a complex and time-consuming workflow. So, procedures for automatic texture mapping of 3D models are in demand. In this paper two automatic procedures are presented. The first procedure generates 3D surface models with textures by web services, while the second procedure textures already existing 3D models with the software tmapper. The program tmapper is based on the Multi Layer 3D image (ML3DImage) algorithm and developed in the programming language C++. The studies showing that the visibility analysis using the ML3DImage algorithm is not sufficient to obtain acceptable results of automatic texture mapping. To overcome the visibility problem the Point Cloud Painter algorithm in combination with the Z-buffer-procedure will be applied in the future.
Gis-Based Smart Cartography Using 3d Modeling
NASA Astrophysics Data System (ADS)
Malinverni, E. S.; Tassetti, A. N.
2013-08-01
3D City Models have evolved to be important tools for urban decision processes and information systems, especially in planning, simulation, analysis, documentation and heritage management. On the other hand existing and in use numerical cartography is often not suitable to be used in GIS because not geometrically and topologically correctly structured. The research aim is to 3D structure and organize a numeric cartography for GIS and turn it into CityGML standardized features. The work is framed around a first phase of methodological analysis aimed to underline which existing standard (like ISO and OGC rules) can be used to improve the quality requirement of a cartographic structure. Subsequently, from this technical specifics, it has been investigated the translation in formal contents, using an owner interchange software (SketchUp), to support some guide lines implementations to generate a GIS3D structured in GML3. It has been therefore predisposed a test three-dimensional numerical cartography (scale 1:500, generated from range data captured by 3D laser scanner), tested on its quality according to the previous standard and edited when and where necessary. Cad files and shapefiles are converted into a final 3D model (Google SketchUp model) and then exported into a 3D city model (CityGML LoD1/LoD2). The GIS3D structure has been managed in a GIS environment to run further spatial analysis and energy performance estimate, not achievable in a 2D environment. In particular geometrical building parameters (footprint, volume etc.) are computed and building envelop thermal characteristics are derived from. Lastly, a simulation is carried out to deal with asbestos and home renovating charges and show how the built 3D city model can support municipal managers with risk diagnosis of the present situation and development of strategies for a sustainable redevelop.
2D face database diversification based on 3D face modeling
NASA Astrophysics Data System (ADS)
Wang, Qun; Li, Jiang; Asari, Vijayan K.; Karim, Mohammad A.
2011-05-01
Pose and illumination are identified as major problems in 2D face recognition (FR). It has been theoretically proven that the more diversified instances in the training phase, the more accurate and adaptable the FR system appears to be. Based on this common awareness, researchers have developed a large number of photographic face databases to meet the demand for data training purposes. In this paper, we propose a novel scheme for 2D face database diversification based on 3D face modeling and computer graphics techniques, which supplies augmented variances of pose and illumination. Based on the existing samples from identical individuals of the database, a synthesized 3D face model is employed to create composited 2D scenarios with extra light and pose variations. The new model is based on a 3D Morphable Model (3DMM) and genetic type of optimization algorithm. The experimental results show that the complemented instances obviously increase diversification of the existing database.
Combined registration of 3D tibia and femur implant models in 3D magnetic resonance images
NASA Astrophysics Data System (ADS)
Englmeier, Karl-Hans; Siebert, Markus; von Eisenhart-Rothe, Ruediger; Graichen, Heiko
2008-03-01
The most frequent reasons for revision of total knee arthroplasty are loosening and abnormal axial alignment leading to an unphysiological kinematic of the knee implant. To get an idea about the postoperative kinematic of the implant, it is essential to determine the position and orientation of the tibial and femoral prosthesis. Therefore we developed a registration method for fitting 3D CAD-models of knee joint prostheses into an 3D MR image. This rigid registration is the basis for a quantitative analysis of the kinematics of knee implants. Firstly the surface data of the prostheses models are converted into a voxel representation; a recursive algorithm determines all boundary voxels of the original triangular surface data. Secondly an initial preconfiguration of the implants by the user is still necessary for the following step: The user has to perform a rough preconfiguration of both remaining prostheses models, so that the fine matching process gets a reasonable starting point. After that an automated gradient-based fine matching process determines the best absolute position and orientation: This iterative process changes all 6 parameters (3 rotational- and 3 translational parameters) of a model by a minimal amount until a maximum value of the matching function is reached. To examine the spread of the final solutions of the registration, the interobserver variability was measured in a group of testers. This variability, calculated by the relative standard deviation, improved from about 50% (pure manual registration) to 0.5% (rough manual preconfiguration and subsequent fine registration with the automatic fine matching process).
Building Regression Models: The Importance of Graphics.
ERIC Educational Resources Information Center
Dunn, Richard
1989-01-01
Points out reasons for using graphical methods to teach simple and multiple regression analysis. Argues that a graphically oriented approach has considerable pedagogic advantages in the exposition of simple and multiple regression. Shows that graphical methods may play a central role in the process of building regression models. (Author/LS)
3D Bioprinting of Tissue/Organ Models.
Pati, Falguni; Gantelius, Jesper; Svahn, Helene Andersson
2016-04-01
In vitro tissue/organ models are useful platforms that can facilitate systematic, repetitive, and quantitative investigations of drugs/chemicals. The primary objective when developing tissue/organ models is to reproduce physiologically relevant functions that typically require complex culture systems. Bioprinting offers exciting prospects for constructing 3D tissue/organ models, as it enables the reproducible, automated production of complex living tissues. Bioprinted tissues/organs may prove useful for screening novel compounds or predicting toxicity, as the spatial and chemical complexity inherent to native tissues/organs can be recreated. In this Review, we highlight the importance of developing 3D in vitro tissue/organ models by 3D bioprinting techniques, characterization of these models for evaluating their resemblance to native tissue, and their application in the prioritization of lead candidates, toxicity testing, and as disease/tumor models. PMID:26895542
3D web visualization of huge CityGML models
NASA Astrophysics Data System (ADS)
Prandi, F.; Devigili, F.; Soave, M.; Di Staso, U.; De Amicis, R.
2015-08-01
Nowadays, rapid technological development into acquiring geo-spatial information; joined to the capabilities to process these data in a relative short period of time, allows the generation of detailed 3D textured city models that will become an essential part of the modern city information infrastructure (Spatial Data Infrastructure) and, can be used to integrate various data from different sources for public accessible visualisation and many other applications. One of the main bottlenecks, which at the moment limit the use of these datasets to few experts, is a lack on efficient visualization systems through the web and interoperable frameworks that allow standardising the access to the city models. The work presented in this paper tries to satisfy these two requirements developing a 3D web-based visualization system based on OGC standards and effective visualization concepts. The architectural framework, based on Services Oriented Architecture (SOA) concepts, provides the 3D city data to a web client designed to support the view process in a very effective way. The first part of the work is to design a framework compliant to the 3D Portrayal Service drafted by the of the Open Geospatial Consortium (OGC) 3D standardization working group. The latter is related to the development of an effective web client able to render in an efficient way the 3D city models.
3D Geologic Model of the Southern Great Basin
NASA Astrophysics Data System (ADS)
Wagoner, J. L.; Myers, S. C.
2006-12-01
We have constructed a regional 3D geologic model of the southern Great Basin, in support of a seismic wave propagation investigation of the 1993 Nonproliferation Experiment (NPE) at the Nevada Test Site (NTS). The model is centered on the NPE and spans longitude -119.5° to -112.6°, latitude 34.5° to 39.8°, and a depth from the surface to 150 km below sea level. Hence, the model includes the southern half of Nevada, as well as parts of eastern California, western Utah, and a portion of northwestern Arizona. The upper crust is constrained by geologic and geophysical studies, and the lower crust and upper mantle are constrained by geophysical studies. The upper crustal geologic units are Quaternary basin fill, Tertiary deposits, pre-Tertiary deposits, intrusive rocks, and calderas. The lower crust and upper mantle are parameterized with 8 layers, including the Moho. Detailed geologic data, including surface maps, borehole data, and geophysical surveys, were used to define the geology at the NTS. Digital geologic outcrop data were available for both Nevada and Arizona, whereas we scanned and hand digitized geologic maps for California and Utah. Published gravity data (2km spacing) were used to determine the thickness of the Cenozoic deposits and constrain the depth of the basins. The free surface is based on a 10m lateral resolution DEM at the NTS and a 90m resolution DEM elsewhere. The gross geophysical structure of the crust and upper mantle is taken from regional surface-wave studies. Variations in crustal thickness are based on receiver function analysis and a compilation of reflection/refraction studies. We used the Earthvision (Dynamic Graphics, Inc.) software to integrate the geologic and geophysical information into a model of x,y,z,p nodes, where p is an integer index representing the geologic unit. For regional seismic simulations we convert this realistic geologic model into elastic parameters. Upper crustal units are treated as seismically homogeneous
3-D electromagnetic modeling of wakefields in accelerator components
Poole, B.R.; Caporaso, G.J.; Ng, Wang C.; Shang, C.C.; Steich, D.
1996-09-18
We discuss the use of 3-D finite-difference time-domain (FDTD) electromagnetic codes for modeling accelerator components. Computational modeling of cylindrically symmetric structures such as induction accelerator cells has been very successful in predicting the wake potential and wake impedances of these structures, but full 3-D modeling of complex structures has been limited due to substantial computer resources required for a full 3-D model. New massively parallel 3-D time domain electromagnetic codes now under development using conforming unstructured meshes allow a substantial increase in the geometric fidelity of the structures being modeled. Development of these new codes are discussed in context of applicability to accelerator problems. Various 3-D structures are tested with an existing cubical cell FDTD code and wake impedances compared with simple analytic models for the structures; results will be used as benchmarks for testing the new time time domain codes. Structures under consideration include a stripline beam position monitor as well as circular and elliptical apertures in circular waveguides. Excellent agreement for monopole and dipole impedances with models were found for these structures below the cutoff frequency of the beam line.
3-D electromagnetic modeling of wakefields in accelerator components
Poole, Brian R.; Caporaso, George J.; Ng, Wang C.; Shang, Clifford C.; Steich, David
1997-02-01
We discuss the use of 3-D finite-difference time-domain (FDTD) electromagnetic codes for the modeling of accelerator components. Computational modeling of cylindrically symmetric structures such as induction accelerator cells has been extremely successful in predicting the wake potential and wake impedances of these structures, but fully 3-D modeling of complex structures has been limited due to the substantial computer resources required for a fully 3-D model. New massively parallel 3-D time domain electromagnetic codes now under development using conforming unstructured meshes allow a substantial increase in the geometric fidelity of the structures being modeled. Development of these new codes will be discussed in the context of their applicability to accelerator problems. A variety of 3-D structures are tested with an existing cubical cell FDTD code and the wake impedances are compared with simple analytic models for the structures. These results will provide a set of benchmarks for testing the new time domain codes. Structures under consideration include a stripline beam position monitor as well as circular and elliptical apertures in circular waveguides. Excellent agreement for the monopole and dipole impedances with the models are found for these structures below the cutoff frequency of the beam line.
Cavity approximation for graphical models.
Rizzo, T; Wemmenhove, B; Kappen, H J
2007-07-01
We reformulate the cavity approximation (CA), a class of algorithms recently introduced for improving the Bethe approximation estimates of marginals in graphical models. In our formulation, which allows for the treatment of multivalued variables, a further generalization to factor graphs with arbitrary order of interaction factors is explicitly carried out, and a message passing algorithm that implements the first order correction to the Bethe approximation is described. Furthermore, we investigate an implementation of the CA for pairwise interactions. In all cases considered we could confirm that CA[k] with increasing k provides a sequence of approximations of markedly increasing precision. Furthermore, in some cases we could also confirm the general expectation that the approximation of order k , whose computational complexity is O(N(k+1)) has an error that scales as 1/N(k+1) with the size of the system. We discuss the relation between this approach and some recent developments in the field. PMID:17677405
Models the Electromagnetic Response of a 3D Distribution using MP COMPUTERS
1999-05-01
EM3D models the electromagnetic response of a 3D distribution of conductivity, dielectric permittivity and magnetic permeability within the earth for geophysical applications using massively parallel computers. The simulations are carried out in the frequency domain for either electric or magnetic sources for either scattered or total filed formulations of Maxwell''s equations. The solution is based on the method of finite differences and includes absorbing boundary conditions so that responses can be modeled up into themore » radar range where wave propagation is dominant. Recent upgrades in the software include the incorporation of finite size sources, that in addition to dipolar source fields, and a low induction number preconditioner that can significantly reduce computational run times. A graphical user interface (GUI) is bundled with the software so that complicated 3D models can be easily constructed and simulated with the software. The GUI also allows for plotting of the output.« less
Multivariate 3D modelling of Scottish soil properties
NASA Astrophysics Data System (ADS)
Poggio, Laura; Gimona, Alessandro
2015-04-01
Information regarding soil properties across landscapes at national or continental scales is critical for better soil and environmental management and for climate regulation and adaptation policy. The prediction of soil properties variation in space and time and their uncertainty is an important part of environmental modelling. Soil properties, and in particular the 3 fractions of soil texture, exhibit strong co-variation among themselves and therefore taking into account this correlation leads to spatially more accurate results. In this study the continuous vertical and lateral distributions of relevant soil properties in Scottish soils were modelled with a multivariate 3D-GAM+GS approach. The approach used involves 1) modelling the multivariate trend with full 3D spatial correlation, i.e., exploiting the values of the neighbouring pixels in 3D-space, and 2) 3D kriging to interpolate the residuals. The values at each cell for each of the considered depth layers were defined using a hybrid GAM-geostatistical 3D model, combining the fitting of a GAM (generalised Additive Models) to estimate multivariate trend of the variables, using a 3D smoother with related covariates. Gaussian simulations of the model residuals were used as spatial component to account for local details. A dataset of about 26,000 horizons (7,800 profiles) was used for this study. A validation set was randomly selected as 25% of the full dataset. Numerous covariates derived from globally available data, such as MODIS and SRTM, are considered. The results of the 3D-GAM+kriging showed low RMSE values, good R squared and an accurate reproduction of the spatial structure of the data for a range of soil properties. The results have an out-of-sample RMSE between 10 to 15% of the observed range when taking into account the whole profile. The approach followed allows the assessment of the uncertainty of both the trend and the residuals.
Perception-based shape retrieval for 3D building models
NASA Astrophysics Data System (ADS)
Zhang, Man; Zhang, Liqiang; Takis Mathiopoulos, P.; Ding, Yusi; Wang, Hao
2013-01-01
With the help of 3D search engines, a large number of 3D building models can be retrieved freely online. A serious disadvantage of most rotation-insensitive shape descriptors is their inability to distinguish between two 3D building models which are different at their main axes, but appear similar when one of them is rotated. To resolve this problem, we present a novel upright-based normalization method which not only correctly rotates such building models, but also greatly simplifies and accelerates the abstraction and the matching of building models' shape descriptors. Moreover, the abundance of architectural styles significantly hinders the effective shape retrieval of building models. Our research has shown that buildings with different designs are not well distinguished by the widely recognized shape descriptors for general 3D models. Motivated by this observation and to further improve the shape retrieval quality, a new building matching method is introduced and analyzed based on concepts found in the field of perception theory and the well-known Light Field descriptor. The resulting normalized building models are first classified using the qualitative shape descriptors of Shell and Unevenness which outline integral geometrical and topological information. These models are then put in on orderly fashion with the help of an improved quantitative shape descriptor which we will term as Horizontal Light Field Descriptor, since it assembles detailed shape characteristics. To accurately evaluate the proposed methodology, an enlarged building shape database which extends previous well-known shape benchmarks was implemented as well as a model retrieval system supporting inputs from 2D sketches and 3D models. Various experimental performance evaluation results have shown that, as compared to previous methods, retrievals employing the proposed matching methodology are faster and more consistent with human recognition of spatial objects. In addition these performance
Microfluidic 3D cell culture: from tools to tissue models.
van Duinen, Vincent; Trietsch, Sebastiaan J; Joore, Jos; Vulto, Paul; Hankemeier, Thomas
2015-12-01
The transition from 2D to 3D cell culture techniques is an important step in a trend towards better biomimetic tissue models. Microfluidics allows spatial control over fluids in micrometer-sized channels has become a valuable tool to further increase the physiological relevance of 3D cell culture by enabling spatially controlled co-cultures, perfusion flow and spatial control over of signaling gradients. This paper reviews most important developments in microfluidic 3D culture since 2012. Most efforts were exerted in the field of vasculature, both as a tissue on its own and as part of cancer models. We observe that the focus is shifting from tool building to implementation of specific tissue models. The next big challenge for the field is the full validation of these models and subsequently the implementation of these models in drug development pipelines of the pharmaceutical industry and ultimately in personalized medicine applications. PMID:26094109
Evaluating Biomaterial- and Microfluidic-Based 3D Tumor Models.
Carvalho, Mariana R; Lima, Daniela; Reis, Rui L; Correlo, Vitor M; Oliveira, Joaquim M
2015-11-01
Cancer is a major cause of morbidity and mortality worldwide, with a disease burden estimated to increase over the coming decades. Disease heterogeneity and limited information on cancer biology and disease mechanisms are aspects that 2D cell cultures fail to address. Here, we review the current ‘state-of-the-art’ in 3D tissue-engineering (TE) models developed for, and used in, cancer research. We assess the potential for scaffold-based TE models and microfluidics to fill the gap between 2D models and clinical application. We also discuss recent advances in combining the principles of 3D TE models and microfluidics, with a special focus on biomaterials and the most promising chip-based 3D models. PMID:26603572
Eck, Simon; Wörz, Stefan; Müller-Ott, Katharina; Hahn, Matthias; Biesdorf, Andreas; Schotta, Gunnar; Rippe, Karsten; Rohr, Karl
2016-08-01
The genome is partitioned into regions of euchromatin and heterochromatin. The organization of heterochromatin is important for the regulation of cellular processes such as chromosome segregation and gene silencing, and their misregulation is linked to cancer and other diseases. We present a model-based approach for automatic 3D segmentation and 3D shape analysis of heterochromatin foci from 3D confocal light microscopy images. Our approach employs a novel 3D intensity model based on spherical harmonics, which analytically describes the shape and intensities of the foci. The model parameters are determined by fitting the model to the image intensities using least-squares minimization. To characterize the 3D shape of the foci, we exploit the computed spherical harmonics coefficients and determine a shape descriptor. We applied our approach to 3D synthetic image data as well as real 3D static and real 3D time-lapse microscopy images, and compared the performance with that of previous approaches. It turned out that our approach yields accurate 3D segmentation results and performs better than previous approaches. We also show that our approach can be used for quantifying 3D shape differences of heterochromatin foci. PMID:27037463
NASA Astrophysics Data System (ADS)
Uznir, U.; Anton, F.; Suhaibah, A.; Rahman, A. A.; Mioc, D.
2013-09-01
The advantages of three dimensional (3D) city models can be seen in various applications including photogrammetry, urban and regional planning, computer games, etc.. They expand the visualization and analysis capabilities of Geographic Information Systems on cities, and they can be developed using web standards. However, these 3D city models consume much more storage compared to two dimensional (2D) spatial data. They involve extra geometrical and topological information together with semantic data. Without a proper spatial data clustering method and its corresponding spatial data access method, retrieving portions of and especially searching these 3D city models, will not be done optimally. Even though current developments are based on an open data model allotted by the Open Geospatial Consortium (OGC) called CityGML, its XML-based structure makes it challenging to cluster the 3D urban objects. In this research, we propose an opponent data constellation technique of space-filling curves (3D Hilbert curves) for 3D city model data representation. Unlike previous methods, that try to project 3D or n-dimensional data down to 2D or 3D using Principal Component Analysis (PCA) or Hilbert mappings, in this research, we extend the Hilbert space-filling curve to one higher dimension for 3D city model data implementations. The query performance was tested using a CityGML dataset of 1,000 building blocks and the results are presented in this paper. The advantages of implementing space-filling curves in 3D city modeling will improve data retrieval time by means of optimized 3D adjacency, nearest neighbor information and 3D indexing. The Hilbert mapping, which maps a subinterval of the [0, 1] interval to the corresponding portion of the d-dimensional Hilbert's curve, preserves the Lebesgue measure and is Lipschitz continuous. Depending on the applications, several alternatives are possible in order to cluster spatial data together in the third dimension compared to its
STELLOPT Modeling of the 3D Diagnostic Response in ITER
Lazerson, Samuel A
2013-05-07
The ITER three dimensional diagnostic response to an n=3 resonant magnetic perturbation is modeled using the STELLOPT code. The in-vessel coils apply a resonant magnetic perturbation (RMP) fi eld which generates a 4 cm edge displacement from axisymmetry as modeled by the VMEC 3D equilibrium code. Forward modeling of flux loop and magnetic probe response with the DIAGNO code indicates up to 20 % changes in measured plasma signals. Simulated LIDAR measurements of electron temperature indicate 2 cm shifts on the low field side of the plasma. This suggests that the ITER diagnostic will be able to diagnose the 3D structure of the equilibria.
MR image denoising method for brain surface 3D modeling
NASA Astrophysics Data System (ADS)
Zhao, De-xin; Liu, Peng-jie; Zhang, De-gan
2014-11-01
Three-dimensional (3D) modeling of medical images is a critical part of surgical simulation. In this paper, we focus on the magnetic resonance (MR) images denoising for brain modeling reconstruction, and exploit a practical solution. We attempt to remove the noise existing in the MR imaging signal and preserve the image characteristics. A wavelet-based adaptive curve shrinkage function is presented in spherical coordinates system. The comparative experiments show that the denoising method can preserve better image details and enhance the coefficients of contours. Using these denoised images, the brain 3D visualization is given through surface triangle mesh model, which demonstrates the effectiveness of the proposed method.
Potential of 3D City Models to assess flood vulnerability
NASA Astrophysics Data System (ADS)
Schröter, Kai; Bochow, Mathias; Schüttig, Martin; Nagel, Claus; Ross, Lutz; Kreibich, Heidi
2016-04-01
Vulnerability, as the product of exposure and susceptibility, is a key factor of the flood risk equation. Furthermore, the estimation of flood loss is very sensitive to the choice of the vulnerability model. Still, in contrast to elaborate hazard simulations, vulnerability is often considered in a simplified manner concerning the spatial resolution and geo-location of exposed objects as well as the susceptibility of these objects at risk. Usually, area specific potential flood loss is quantified on the level of aggregated land-use classes, and both hazard intensity and resistance characteristics of affected objects are represented in highly simplified terms. We investigate the potential of 3D City Models and spatial features derived from remote sensing data to improve the differentiation of vulnerability in flood risk assessment. 3D City Models are based on CityGML, an application scheme of the Geography Markup Language (GML), which represents the 3D geometry, 3D topology, semantics and appearance of objects on different levels of detail. As such, 3D City Models offer detailed spatial information which is useful to describe the exposure and to characterize the susceptibility of residential buildings at risk. This information is further consolidated with spatial features of the building stock derived from remote sensing data. Using this database a spatially detailed flood vulnerability model is developed by means of data-mining. Empirical flood damage data are used to derive and to validate flood susceptibility models for individual objects. We present first results from a prototype application in the city of Dresden, Germany. The vulnerability modeling based on 3D City Models and remote sensing data is compared i) to the generally accepted good engineering practice based on area specific loss potential and ii) to a highly detailed representation of flood vulnerability based on a building typology using urban structure types. Comparisons are drawn in terms of
3D MHD Models of Active Region Loops
NASA Technical Reports Server (NTRS)
Ofman, Leon
2004-01-01
Present imaging and spectroscopic observations of active region loops allow to determine many physical parameters of the coronal loops, such as the density, temperature, velocity of flows in loops, and the magnetic field. However, due to projection effects many of these parameters remain ambiguous. Three dimensional imaging in EUV by the STEREO spacecraft will help to resolve the projection ambiguities, and the observations could be used to setup 3D MHD models of active region loops to study the dynamics and stability of active regions. Here the results of 3D MHD models of active region loops are presented, and the progress towards more realistic 3D MHD models of active regions. In particular the effects of impulsive events on the excitation of active region loop oscillations, and the generation, propagations and reflection of EIT waves are shown. It is shown how 3D MHD models together with 3D EUV observations can be used as a diagnostic tool for active region loop physical parameters, and to advance the science of the sources of solar coronal activity.
3-D Geometric Modeling for the 21st Century.
ERIC Educational Resources Information Center
Ault, Holly K.
1999-01-01
Describes new geometric computer models used in contemporary computer-aided design (CAD) software including wire frame, surface, solid, and parametric models. Reviews their use in engineering design and discusses the impact of these new technologies on the engineering design graphics curriculum. (Author/CCM)
Vhrs Stereo Images for 3d Modelling of Buildings
NASA Astrophysics Data System (ADS)
Bujakiewicz, A.; Holc, M.
2012-07-01
The paper presents the project which was carried out in the Photogrammetric Laboratory of Warsaw University of Technology. The experiment is concerned with the extraction of 3D vector data for buildings creation from 3D photogrammetric model based on the Ikonos stereo images. The model was reconstructed with photogrammetric workstation - Summit Evolution combined with ArcGIS 3D platform. Accuracy of 3D model was significantly improved by use for orientation of pair of satellite images the stereo measured tie points distributed uniformly around the model area in addition to 5 control points. The RMS for model reconstructed on base of the RPC coefficients only were 16,6 m, 2,7 m and 47,4 m, for X, Y and Z coordinates, respectively. By addition of 5 control points the RMS were improved to 0,7 m, 0,7 m 1,0 m, where the best results were achieved when RMS were estimated from deviations in 17 check points (with 5 control points)and amounted to 0,4 m, 0,5 m and 0,6 m, for X, Y, and Z respectively. The extracted 3D vector data for buildings were integrated with 2D data of the ground footprints and afterwards they were used for 3D modelling of buildings in Google SketchUp software. The final results were compared with the reference data obtained from other sources. It was found that the shape of buildings (in concern to the number of details) had been reconstructed on level of LoD1, when the accuracy of these models corresponded to the level of LoD2.
3D model of amphioxus steroid receptor complexed with estradiol
Baker, Michael E.; Chang, David J.
2009-08-28
The origins of signaling by vertebrate steroids are not fully understood. An important advance was the report that an estrogen-binding steroid receptor [SR] is present in amphioxus, a basal chordate with a similar body plan as vertebrates. To investigate the evolution of estrogen-binding to steroid receptors, we constructed a 3D model of amphioxus SR complexed with estradiol. This 3D model indicates that although the SR is activated by estradiol, some interactions between estradiol and human ER{alpha} are not conserved in the SR, which can explain the low affinity of estradiol for the SR. These differences between the SR and ER{alpha} in the steroid-binding domain are sufficient to suggest that another steroid is the physiological regulator of the SR. The 3D model predicts that mutation of Glu-346 to Gln will increase the affinity of testosterone for amphioxus SR and elucidate the evolution of steroid-binding to nuclear receptors.
Quality of 3D Models Generated by SFM Technology
NASA Astrophysics Data System (ADS)
Marčiš, Marián
2013-12-01
Using various types of automation in digital photogrammetry is associated with questions such as the accuracy of a 3D model generated on various types of surfaces and textures, the financial costs of the equipment needed, and also the time costs of the processing. This topic deals with the actual technology of computer vision, which allows the automated exterior orientation of images, camera calibration, and the generation of 3D models directly from images of the object itself, based on the automatic detection of significant points. Detailed testing is done using the Agisoft PhotoScan system, and the camera configuration is solved with respect to the accuracy of the 3D model generated and the time consumption of the calculations for the different types of textures and the different settings for the processing.
3D surface digitizing and modeling development at ITRI
NASA Astrophysics Data System (ADS)
Hsueh, Wen-Jean
2000-06-01
This paper gives an overview of the research and development activities in 3D surface digitizing and modeling conducted at the Industrial Technology Research Institute (ITRI) of Taiwan in the past decade. As a major technology and consulting service provider of the area, ITRI has developed 3D laser scanning digitizers ranging from low-cost compacts, industrial CAD/CAM digitizing, to large human body scanner, with in-house 3D surface modeling software to provide total solution in reverse engineering that requires processing capabilities of large number of 3D data. Based on both hardware and software technologies in scanning, merging, registration, surface fitting, reconstruction, and compression, ITRI is now exploring innovative methodologies that provide higher performances, including hardware-based correlation algorithms with advanced camera designs, animation surface model reconstruction, and optical tracking for motion capture. It is expected that the need for easy and fast high-quality 3D information in the near future will grow exponentially, at the same amazing rate as the internet and the human desire for realistic and natural images.
Diffusion approximation for modeling of 3-D radiation distributions
Zardecki, A.; Gerstl, S.A.W.; De Kinder, R.E. Jr.
1985-01-01
A three-dimensional transport code DIF3D, based on the diffusion approximation, is used to model the spatial distribution of radiation energy arising from volumetric isotropic sources. Future work will be concerned with the determination of irradiances and modeling of realistic scenarios, relevant to the battlefield conditions. 8 refs., 4 figs.
Modelling Gaia CCD pixels with Silvaco 3D engineering software
NASA Astrophysics Data System (ADS)
Seabroke, G. M.; Prod'Homme, T.; Hopkinson, G.; Burt, D.; Robbins, M.; Holland, A.
2011-02-01
Gaia will only achieve its unprecedented measurement accuracy requirements with detailed calibration and correction for radiation damage. We present our Silvaco 3D engineering software model of the Gaia CCD pixel and two of its applications for Gaia: (1) physically interpreting supplementary buried channel (SBC) capacity measurements (pocket-pumping and first pixel response) in terms of e2v manufacturing doping alignment tolerances; and (2) deriving electron densities within a charge packet as a function of the number of constituent electrons and 3D position within the charge packet as input to microscopic models being developed to simulate radiation damage.
Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU
Xia, Yong; Wang, Kuanquan; Zhang, Henggui
2015-01-01
Large-scale 3D virtual heart model simulations are highly demanding in computational resources. This imposes a big challenge to the traditional computation resources based on CPU environment, which already cannot meet the requirement of the whole computation demands or are not easily available due to expensive costs. GPU as a parallel computing environment therefore provides an alternative to solve the large-scale computational problems of whole heart modeling. In this study, using a 3D sheep atrial model as a test bed, we developed a GPU-based simulation algorithm to simulate the conduction of electrical excitation waves in the 3D atria. In the GPU algorithm, a multicellular tissue model was split into two components: one is the single cell model (ordinary differential equation) and the other is the diffusion term of the monodomain model (partial differential equation). Such a decoupling enabled realization of the GPU parallel algorithm. Furthermore, several optimization strategies were proposed based on the features of the virtual heart model, which enabled a 200-fold speedup as compared to a CPU implementation. In conclusion, an optimized GPU algorithm has been developed that provides an economic and powerful platform for 3D whole heart simulations. PMID:26581957
Geospatial Modelling Approach for 3d Urban Densification Developments
NASA Astrophysics Data System (ADS)
Koziatek, O.; Dragićević, S.; Li, S.
2016-06-01
With growing populations, economic pressures, and the need for sustainable practices, many urban regions are rapidly densifying developments in the vertical built dimension with mid- and high-rise buildings. The location of these buildings can be projected based on key factors that are attractive to urban planners, developers, and potential buyers. Current research in this area includes various modelling approaches, such as cellular automata and agent-based modelling, but the results are mostly linked to raster grids as the smallest spatial units that operate in two spatial dimensions. Therefore, the objective of this research is to develop a geospatial model that operates on irregular spatial tessellations to model mid- and high-rise buildings in three spatial dimensions (3D). The proposed model is based on the integration of GIS, fuzzy multi-criteria evaluation (MCE), and 3D GIS-based procedural modelling. Part of the City of Surrey, within the Metro Vancouver Region, Canada, has been used to present the simulations of the generated 3D building objects. The proposed 3D modelling approach was developed using ESRI's CityEngine software and the Computer Generated Architecture (CGA) language.
An approach to 3D model fusion in GIS systems and its application in a future ECDIS
NASA Astrophysics Data System (ADS)
Liu, Tao; Zhao, Depeng; Pan, Mingyang
2016-04-01
Three-dimensional (3D) computer graphics technology is widely used in various areas and causes profound changes. As an information carrier, 3D models are becoming increasingly important. The use of 3D models greatly helps to improve the cartographic expression and design. 3D models are more visually efficient, quicker and easier to understand and they can express more detailed geographical information. However, it is hard to efficiently and precisely fuse 3D models in local systems. The purpose of this study is to propose an automatic and precise approach to fuse 3D models in geographic information systems (GIS). It is the basic premise for subsequent uses of 3D models in local systems, such as attribute searching, spatial analysis, and so on. The basic steps of our research are: (1) pose adjustment by principal component analysis (PCA); (2) silhouette extraction by simple mesh silhouette extraction and silhouette merger; (3) size adjustment; (4) position matching. Finally, we implement the above methods in our system Automotive Intelligent Chart (AIC) 3D Electronic Chart Display and Information Systems (ECDIS). The fusion approach we propose is a common method and each calculation step is carefully designed. This approach solves the problem of cross-platform model fusion. 3D models can be from any source. They may be stored in the local cache or retrieved from Internet, or may be manually created by different tools or automatically generated by different programs. The system can be any kind of 3D GIS system.
Robust model-based 3d/3D fusion using sparse matching for minimally invasive surgery.
Neumann, Dominik; Grbic, Sasa; John, Matthias; Navab, Nassir; Hornegger, Joachim; Ionasec, Razvan
2013-01-01
Classical surgery is being disrupted by minimally invasive and transcatheter procedures. As there is no direct view or access to the affected anatomy, advanced imaging techniques such as 3D C-arm CT and C-arm fluoroscopy are routinely used for intra-operative guidance. However, intra-operative modalities have limited image quality of the soft tissue and a reliable assessment of the cardiac anatomy can only be made by injecting contrast agent, which is harmful to the patient and requires complex acquisition protocols. We propose a novel sparse matching approach for fusing high quality pre-operative CT and non-contrasted, non-gated intra-operative C-arm CT by utilizing robust machine learning and numerical optimization techniques. Thus, high-quality patient-specific models can be extracted from the pre-operative CT and mapped to the intra-operative imaging environment to guide minimally invasive procedures. Extensive quantitative experiments demonstrate that our model-based fusion approach has an average execution time of 2.9 s, while the accuracy lies within expert user confidence intervals. PMID:24505663
3D Model Generation From the Engineering Drawing
NASA Astrophysics Data System (ADS)
Vaský, Jozef; Eliáš, Michal; Bezák, Pavol; Červeňanská, Zuzana; Izakovič, Ladislav
2010-01-01
The contribution deals with the transformation of engineering drawings in a paper form into a 3D computer representation. A 3D computer model can be further processed in CAD/CAM system, it can be modified, archived, and a technical drawing can be then generated from it as well. The transformation process from paper form to the data one is a complex and difficult one, particularly owing to the different types of drawings, forms of displayed objects and encountered errors and deviations from technical standards. The algorithm for 3D model generating from an orthogonal vector input representing a simplified technical drawing of the rotational part is described in this contribution. The algorithm was experimentally implemented as ObjectARX application in the AutoCAD system and the test sample as the representation of the rotational part was used for verificaton.
3D shape decomposition and comparison for gallbladder modeling
NASA Astrophysics Data System (ADS)
Huang, Weimin; Zhou, Jiayin; Liu, Jiang; Zhang, Jing; Yang, Tao; Su, Yi; Law, Gim Han; Chui, Chee Kong; Chang, Stephen
2011-03-01
This paper presents an approach to gallbladder shape comparison by using 3D shape modeling and decomposition. The gallbladder models can be used for shape anomaly analysis and model comparison and selection in image guided robotic surgical training, especially for laparoscopic cholecystectomy simulation. The 3D shape of a gallbladder is first represented as a surface model, reconstructed from the contours segmented in CT data by a scheme of propagation based voxel learning and classification. To better extract the shape feature, the surface mesh is further down-sampled by a decimation filter and smoothed by a Taubin algorithm, followed by applying an advancing front algorithm to further enhance the regularity of the mesh. Multi-scale curvatures are then computed on the regularized mesh for the robust saliency landmark localization on the surface. The shape decomposition is proposed based on the saliency landmarks and the concavity, measured by the distance from the surface point to the convex hull. With a given tolerance the 3D shape can be decomposed and represented as 3D ellipsoids, which reveal the shape topology and anomaly of a gallbladder. The features based on the decomposed shape model are proposed for gallbladder shape comparison, which can be used for new model selection. We have collected 19 sets of abdominal CT scan data with gallbladders, some shown in normal shape and some in abnormal shapes. The experiments have shown that the decomposed shapes reveal important topology features.
Geodiversity: Exploration of 3D geological model space
NASA Astrophysics Data System (ADS)
Lindsay, M. D.; Jessell, M. W.; Ailleres, L.; Perrouty, S.; de Kemp, E.; Betts, P. G.
2013-05-01
The process of building a 3D model necessitates the reconciliation of field observations, geophysical interpretation, geological data uncertainty and the prevailing tectonic evolution hypotheses and interpretations. Uncertainty is compounded when clustered data points collected at local scales are statistically upscaled to one or two points for use in regional models. Interpretation is required to interpolate between sparse field data points using ambiguous geophysical data in covered terranes. It becomes clear that multiple interpretations are possible during model construction. The various interpretations are considered as potential natural representatives, but pragmatism typically dictates that just a single interpretation is offered by the modelling process. Uncertainties are introduced into the 3D model during construction from a variety of sources and through data set optimisation that produces a single model. Practices such as these are likely to result in a model that does not adequately represent the target geology. A set of geometrical ‘geodiversity’ metrics are used to analyse a 3D model of the Gippsland Basin, southeastern Australia after perturbing geological input data via uncertainty simulation. The resulting sets of perturbed geological observations are used to calculate a suite of geological 3D models that display a range of geological architectures. The concept of biodiversity has been adapted for the geosciences to quantify geometric variability, or geodiversity, between models in order to understand the effect uncertainty has models geometry. Various geometrical relationships (depth, volume, contact surface area, curvature and geological complexity) are used to describe the range of possibilities exhibited throughout the model suite. End-member models geodiversity metrics are classified in a similar manner to taxonomic descriptions. Further analysis of the model suite is performed using principal component analysis (PCA) to determine
A graphical language for reliability model generation
NASA Technical Reports Server (NTRS)
Howell, Sandra V.; Bavuso, Salvatore J.; Haley, Pamela J.
1990-01-01
A graphical interface capability of the hybrid automated reliability predictor (HARP) is described. The graphics-oriented (GO) module provides the user with a graphical language for modeling system failure modes through the selection of various fault tree gates, including sequence dependency gates, or by a Markov chain. With this graphical input language, a fault tree becomes a convenient notation for describing a system. In accounting for any sequence dependencies, HARP converts the fault-tree notation to a complex stochastic process that is reduced to a Markov chain which it can then solve for system reliability. The graphics capability is available for use on an IBM-compatible PC, a Sun, and a VAX workstation. The GO module is written in the C programming language and uses the Graphical Kernel System (GKS) standard for graphics implementation. The PC, VAX, and Sun versions of the HARP GO module are currently in beta-testing.
Evaluation of the 3d Urban Modelling Capabilities in Geographical Information Systems
NASA Astrophysics Data System (ADS)
Dogru, A. O.; Seker, D. Z.
2010-12-01
Geographical Information System (GIS) Technology, which provides successful solutions to basic spatial problems, is currently widely used in 3 dimensional (3D) modeling of physical reality with its developing visualization tools. The modeling of large and complicated phenomenon is a challenging problem in terms of computer graphics currently in use. However, it is possible to visualize that phenomenon in 3D by using computer systems. 3D models are used in developing computer games, military training, urban planning, tourism and etc. The use of 3D models for planning and management of urban areas is very popular issue of city administrations. In this context, 3D City models are produced and used for various purposes. However the requirements of the models vary depending on the type and scope of the application. While a high level visualization, where photorealistic visualization techniques are widely used, is required for touristy and recreational purposes, an abstract visualization of the physical reality is generally sufficient for the communication of the thematic information. The visual variables, which are the principle components of cartographic visualization, such as: color, shape, pattern, orientation, size, position, and saturation are used for communicating the thematic information. These kinds of 3D city models are called as abstract models. Standardization of technologies used for 3D modeling is now available by the use of CityGML. CityGML implements several novel concepts to support interoperability, consistency and functionality. For example it supports different Levels-of-Detail (LoD), which may arise from independent data collection processes and are used for efficient visualization and efficient data analysis. In one CityGML data set, the same object may be represented in different LoD simultaneously, enabling the analysis and visualization of the same object with regard to different degrees of resolution. Furthermore, two CityGML data sets
Creating Physical 3D Stereolithograph Models of Brain and Skull
Kelley, Daniel J.; Farhoud, Mohammed; Meyerand, M. Elizabeth; Nelson, David L.; Ramirez, Lincoln F.; Dempsey, Robert J.; Wolf, Alan J.; Alexander, Andrew L.; Davidson, Richard J.
2007-01-01
The human brain and skull are three dimensional (3D) anatomical structures with complex surfaces. However, medical images are often two dimensional (2D) and provide incomplete visualization of structural morphology. To overcome this loss in dimension, we developed and validated a freely available, semi-automated pathway to build 3D virtual reality (VR) and hand-held, stereolithograph models. To evaluate whether surface visualization in 3D was more informative than in 2D, undergraduate students (n = 50) used the Gillespie scale to rate 3D VR and physical models of both a living patient-volunteer's brain and the skull of Phineas Gage, a historically famous railroad worker whose misfortune with a projectile tamping iron provided the first evidence of a structure-function relationship in brain. Using our processing pathway, we successfully fabricated human brain and skull replicas and validated that the stereolithograph model preserved the scale of the VR model. Based on the Gillespie ratings, students indicated that the biological utility and quality of visual information at the surface of VR and stereolithograph models were greater than the 2D images from which they were derived. The method we developed is useful to create VR and stereolithograph 3D models from medical images and can be used to model hard or soft tissue in living or preserved specimens. Compared to 2D images, VR and stereolithograph models provide an extra dimension that enhances both the quality of visual information and utility of surface visualization in neuroscience and medicine. PMID:17971879
Teaching the geological subsurface with 3D models
NASA Astrophysics Data System (ADS)
Thorpe, Steve; Ward, Emma
2014-05-01
3D geological models have great potential as a resource when teaching geological concepts as it allows the student to visualise and interrogate UK geology. They are especially useful when dealing with the conversion of 2D field, map and GIS outputs into three dimensional geological units, which is a common problem for many students. Today's earth science students use a variety of skills and processes during their learning experience including spatial thinking, image construction, detecting patterns, making predictions and deducing the orientation of themselves. 3D geological models can reinforce spatial thinking strategies and encourage students to think about processes and properties, in turn helping the student to recognise pre-learnt geological principles in the field and to convert what they see at the surface into a picture of what is going on at depth. The British Geological Survey (BGS) has been producing digital 3D geological models for over 10 years. The models produced are revolutionising the working practices, data standards and products of the BGS. Sharing our geoscience information with academia is highlighted throughout the BGS strategy as is instilling practical skills in future geoscience professionals, such as model building and interpretation. In 2009 a project was launched to investigate the potential of the models as a teaching resource. The study included justifying if and how the models help students to learn, how models have been used historically, and how other forms of modelling are being used today. BGS now produce 3D geological models for use by anyone teaching or learning geoscience. They incorporate educational strategies that will develop geospatial skills and alleviate potential problems that some students experience. They are contained within contemporary case studies and show standard geological concepts, structures, sedimentary rocks, cross sections and field techniques. 3D geological models of the Isle of Wight and Ingleborough
3D Geological Model for "LUSI" - a Deep Geothermal System
NASA Astrophysics Data System (ADS)
Sohrabi, Reza; Jansen, Gunnar; Mazzini, Adriano; Galvan, Boris; Miller, Stephen A.
2016-04-01
Geothermal applications require the correct simulation of flow and heat transport processes in porous media, and many of these media, like deep volcanic hydrothermal systems, host a certain degree of fracturing. This work aims to understand the heat and fluid transport within a new-born sedimentary hosted geothermal system, termed Lusi, that began erupting in 2006 in East Java, Indonesia. Our goal is to develop conceptual and numerical models capable of simulating multiphase flow within large-scale fractured reservoirs such as the Lusi region, with fractures of arbitrary size, orientation and shape. Additionally, these models can also address a number of other applications, including Enhanced Geothermal Systems (EGS), CO2 sequestration (Carbon Capture and Storage CCS), and nuclear waste isolation. Fractured systems are ubiquitous, with a wide-range of lengths and scales, making difficult the development of a general model that can easily handle this complexity. We are developing a flexible continuum approach with an efficient, accurate numerical simulator based on an appropriate 3D geological model representing the structure of the deep geothermal reservoir. Using previous studies, borehole information and seismic data obtained in the framework of the Lusi Lab project (ERC grant n°308126), we present here the first 3D geological model of Lusi. This model is calculated using implicit 3D potential field or multi-potential fields, depending on the geological context and complexity. This method is based on geological pile containing the geological history of the area and relationship between geological bodies allowing automatic computation of intersections and volume reconstruction. Based on the 3D geological model, we developed a new mesh algorithm to create hexahedral octree meshes to transfer the structural geological information for 3D numerical simulations to quantify Thermal-Hydraulic-Mechanical-Chemical (THMC) physical processes.
Graphical Models via Univariate Exponential Family Distributions
Yang, Eunho; Ravikumar, Pradeep; Allen, Genevera I.; Liu, Zhandong
2016-01-01
Undirected graphical models, or Markov networks, are a popular class of statistical models, used in a wide variety of applications. Popular instances of this class include Gaussian graphical models and Ising models. In many settings, however, it might not be clear which subclass of graphical models to use, particularly for non-Gaussian and non-categorical data. In this paper, we consider a general sub-class of graphical models where the node-wise conditional distributions arise from exponential families. This allows us to derive multivariate graphical model distributions from univariate exponential family distributions, such as the Poisson, negative binomial, and exponential distributions. Our key contributions include a class of M-estimators to fit these graphical model distributions; and rigorous statistical analysis showing that these M-estimators recover the true graphical model structure exactly, with high probability. We provide examples of genomic and proteomic networks learned via instances of our class of graphical models derived from Poisson and exponential distributions. PMID:27570498
Tracking people and cars using 3D modeling and CCTV.
Edelman, Gerda; Bijhold, Jurrien
2010-10-10
The aim of this study was to find a method for the reconstruction of movements of people and cars using CCTV footage and a 3D model of the environment. A procedure is proposed, in which video streams are synchronized and displayed in a 3D model, by using virtual cameras. People and cars are represented by cylinders and boxes, which are moved in the 3D model, according to their movements as shown in the video streams. The procedure was developed and tested in an experimental setup with test persons who logged their GPS coordinates as a recording of the ground truth. Results showed that it is possible to implement this procedure and to reconstruct movements of people and cars from video recordings. The procedure was also applied to a forensic case. In this work we experienced that more situational awareness was created by the 3D model, which made it easier to track people on multiple video streams. Based on all experiences from the experimental set up and the case, recommendations are formulated for use in practice. PMID:20439141
A Sketching Interface for Freeform 3D Modeling
NASA Astrophysics Data System (ADS)
Igarashi, Takeo
This chapter introduces Teddy, a sketch-based modeling system to quickly and easily design freeform models such as stuffed animals and other rotund objects. The user draws several 2D freeform strokes interactively on the screen and the system automatically constructs plausible 3D polygonal surfaces. Our system supports several modeling operations, including the operation to construct a 3D polygonal surface from a 2D silhouette drawn by the user: it inflates the region surrounded by the silhouette making a wide area fat, and a narrow area thin. Teddy, our prototype system, is implemented as a Java program, and the mesh construction is done in real-time on a standard PC. Our informal user study showed that a first-time user masters the operations within 10 minutes, and can construct interesting 3D models within minutes. We also report the result of a case study where a high school teacher taught various 3D concepts in geography using the system.
Assessment of 3D Models Used in Contours Studies
ERIC Educational Resources Information Center
Alvarez, F. J. Ayala; Parra, E. B. Blazquez; Tubio, F. Montes
2015-01-01
This paper presents an experimental research focusing on the view of first year students. The aim is to check the quality of implementing 3D models integrated in the curriculum. We search to determine students' preference between the various means facilitated in order to understand the given subject. Students have been respondents to prove the…
3d model for site effect assessment at Nice (France)
NASA Astrophysics Data System (ADS)
Bertrand, E.; Courrioux, G.; Bourgine, B.; Bour, M.; Guillen, A.; Mouroux, P.; Devaux, E.; Duval, A. M.
2003-04-01
Assessment of lithologic site effects is based on an accurate knowledge of properties and geometry of superficial geological formations, i.e. ideally a 3D-4G subsurface model (Geology, Geomorphology, Geophysics, Geotechnics). Such a model has been achieved using a 3D geomodeler ("Geological Editor" developed at BRGM) that allows building 3D volumes of geological formations starting from drill-holes data, sections, and geological maps. This software uses a pseudo-stratigraphic pile in order to reproduce geological history and structural relationships (erosion, deposit). The interpolation is achieved through a 3D potential field. A geostatistical formulation allows to consider data points of a geological limit as equipotential, and sructural dips as gradient inputs for the 3D field interpolation. Then isosurfaces corresponding to each limit are combined using formation relationships to provide volumic models of geological formations. The first task was to identify the relevant geological formations underlying in Nice area. In a first approach Mesozoic bedrock, Pliocene bedrock, and Quaternary alluvial deposits have been distinguished considering their seismic properties. Then alluvions have been subdivided into 9 groups according to their lithology and granulometry. Modelling has been performed considering 2 major erosion surfaces, post-Mesozoic and post-Pliocene. The succession of Quaternary alluviums have been considered as "onlap deposits". Given adjacent lithologies contained in maps and drill holes, these relations lead to logical identification of the roof of formations to be interpolated. The distribution of modeled geological formations can be visualised in 3 dimensions or in 2D sections. Besides the visual interest of 3D representations, the model is first used to build a series of earth columns over a 50m/50m 2D grid. A statistical analysis allowed to identify 73 existing configurations in the Nice district area. Among these, only 15 configurations
Thermal 3D Modeling of Geothermal Area Using Terrestrial Photogrammetry
NASA Astrophysics Data System (ADS)
Akcay, Ozgun; Cuneyt Erenoglu, Ramazan; Erenoglu, Oya; Yılmazturk, Ferruh; Karaca, Zeki
2015-04-01
Photogrammetry and computer vision, sciences producing high accuracy 3D models from digital images based on projective geometry. 3D models can also be produced using thermal camera images using photogrammetry and computer vision techniques. Thermal images are capable of displaying hotspots on geothermal areas as a heat source in details. In the research, Tuzla geothermal area in Çanakkale province of Turkey is inspected using imaging techniques of terrestrial photogrammetry. Both a digital camera Canon EOS 650D and an infrared camera Optris PI 450 are used to obtain images of the thermal site. Calibration parameters (focal length, principle point, distortion coefficients) of thermal and digital cameras are determined using the calibration test field at the laboratory before the field work. In order to provide the georeferencing and the robustness of the 3D model, aluminum discs having diameter of 30 centimeters as ground control points (GCPs) are set to the geothermal area appropriately before imaging. Aluminum targets are chosen as the GCP because they are determined on the image depending on the contrast reflectance rate of the aluminum. Using GNSS RTK receivers supplying ±1 cm accuracy positioning, GCPs are measured so as to implement photogrammetric process successfully with thermal images. Numerous corresponding points are detected on the overlapped images with image matching techniques. Later on, bundle block adjustment is applied to calculate the revised interior orientation parameters of camera and exterior orientation parameters of camera positions. The 3D model showing details of the surface temperatures of the geothermal area are produced with multi view stereo (MVS) technique. The technique is able to produce 3D representation (point cloud, mesh and textured surface) of the field from both the thermal and digital images. The research presents that photogrammetric evaluation of thermal images is a noteworthy method to obtain a quick- accurate 3D
3D geometric modelling of hand-woven textile
NASA Astrophysics Data System (ADS)
Shidanshidi, H.; Naghdy, F.; Naghdy, G.; Conroy, D. Wood
2008-02-01
Geometric modeling and haptic rendering of textile has attracted significant interest over the last decade. A haptic representation is created by adding the physical properties of an object to its geometric configuration. While research has been conducted into geometric modeling of fabric, current systems require time-consuming manual recognition of textile specifications and data entry. The development of a generic approach for construction of the 3D geometric model of a woven textile is pursued in this work. The geometric model would be superimposed by a haptic model in the future work. The focus at this stage is on hand-woven textile artifacts for display in museums. A fuzzy rule based algorithm is applied to the still images of the artifacts to generate the 3D model. The derived model is exported as a 3D VRML model of the textile for visual representation and haptic rendering. An overview of the approach is provided and the developed algorithm is described. The approach is validated by applying the algorithm to different textile samples and comparing the produced models with the actual structure and pattern of the samples.
A biochemical/biophysical 3D FE intervertebral disc model.
Schroeder, Y; Huyghe, J M; van Donkelaar, C C; Ito, K
2010-10-01
Present research focuses on different strategies to preserve the degenerated disc. To assure long-term success of novel approaches, favorable mechanical conditions in the disc tissue are essential. To evaluate these, a model is required that can determine internal mechanical conditions which cannot be directly measured as a function of assessable biophysical characteristics. Therefore, the objective is to evaluate if constitutive and material laws acquired on isolated samples of nucleus and annulus tissue can be used directly in a whole-organ 3D FE model to describe intervertebral disc behavior. The 3D osmo-poro-visco-hyper-elastic disc (OVED) model describes disc behavior as a function of annulus and nucleus tissue biochemical composition, organization and specific constituent properties. The description of the 3D collagen network was enhanced to account for smaller fibril structures. Tissue mechanical behavior tests on isolated nucleus and annulus samples were simulated with models incorporating tissue composition to calculate the constituent parameter values. The obtained constitutive laws were incorporated into the whole-organ model. The overall behavior and disc properties of the model were corroborated against in vitro creep experiments of human L4/L5 discs. The OVED model simulated isolated tissue experiments on confined compression and uniaxial tensile test and whole-organ disc behavior. This was possible, provided that secondary fiber structures were accounted for. The fair agreement (radial bulge, axial creep deformation and intradiscal pressure) between model and experiment was obtained using constitutive properties that are the same for annulus and nucleus. Both tissue models differed in the 3D OVED model only by composition. The composition-based modeling presents the advantage of reducing the numbers of material parameters to a minimum and to use tissue composition directly as input. Hence, this approach provides the possibility to describe internal
Use Models like Maps in a 3D SDI
NASA Astrophysics Data System (ADS)
Gietzel, Jan; Gabriel, Paul; Schaeben, Helmut; Le, Hai Ha
2013-04-01
Digital geological applications have become 3D up to 4D modelling of the underground. The modellers are working very heterogeneously in terms of its applied software systems. On the other hand the 3D/4D modelling of the subsurface has become part of the geological surveys all around the world. This implies a wide spread group of users working in different institutions aiming to work together on one subsurface model. Established 3D/4D-modelling software systems mainly use a file based approach to store data, which is in a high contrast to the needs of a central administrated and network based data transfer approach. At the department of geophysics and geo information sciences at the Technical University Bergakademie Freiberg, the GST system for managing 3D and 4D geosciences data in a databases system was developed and is now continued by the company GiGa infosystems. The GST-Framework includes a storage engine, a web service for sharing and a number of client software including a browser based client interface for visualising, accessing and manipulating geological CAD data. Including a check out system GST supports multi user editing on huge models, designed to manage seamless high resolution models of the subsurface. While working on complex projects various software is used for the creation of the model, the prediction of properties and final simulation. A problem rising from the use of several software is the interoperability of the models. Due to conversion errors different working groups use mainly different raw data. This results in different models, which have to be corrected with additional effort. One platform sharing the models is strongly demanded. One high potential solution is a centralized and software independent storage, which will be presented.
Robust 3D reconstruction system for human jaw modeling
NASA Astrophysics Data System (ADS)
Yamany, Sameh M.; Farag, Aly A.; Tazman, David; Farman, Allan G.
1999-03-01
This paper presents a model-based vision system for dentistry that will replace traditional approaches used in diagnosis, treatment planning and surgical simulation. Dentistry requires accurate 3D representation of the teeth and jaws for many diagnostic and treatment purposes. For example orthodontic treatment involves the application of force systems to teeth over time to correct malocclusion. In order to evaluate tooth movement progress, the orthodontists monitors this movement by means of visual inspection, intraoral measurements, fabrication of plastic models, photographs and radiographs, a process which is both costly and time consuming. In this paper an integrate system has been developed to record the patient's occlusion using computer vision. Data is acquired with an intraoral video camera. A modified shape from shading (SFS) technique, using perspective projection and camera calibration, is used to extract accurate 3D information from a sequence of 2D images of the jaw. A new technique for 3D data registration, using a Grid Closest Point transform and genetic algorithms, is used to register the SFS output. Triangulization is then performed, and a solid 3D model is obtained via a rapid prototype machine.
3D Geological modelling - towards a European level infrastructure
NASA Astrophysics Data System (ADS)
Lee, Kathryn A.; van der Krogt, Rob; Busschers, Freek S.
2013-04-01
The joint European Geological Surveys are preparing the ground for a "European Geological Data Infrastructure" (EGDI), under the framework of the FP7-project EGDI-Scope. This scoping study, started in June 2012, for a pan-European e-Infrastructure is based on the successes of earlier joint projects including 'OneGeology-Europe' and aims to provide the backbone for serving interoperable, geological data currently held by European Geological Surveys. Also data from past, ongoing and future European projects will be incorporated. The scope will include an investigation of the functional and technical requirements for serving 3D geological models and will look to research the potential for providing a framework to integrate models at different scales, and form a structure for enabling the development of new and innovative model delivery mechanisms. The EGDI-scope project encourages pan-European inter-disciplinary collaboration between all European Geological Surveys. It aims to enhance emerging web based technologies that will facilitate the delivery of geological data to user communities involved in European policy making and international industry, but also to geoscientific research communities and the general public. Therefore, stakeholder input and communication is imperative to the success, as is the collaboration with all the Geological Surveys of Europe. The most important functional and technical requirements for delivery of such information at pan-European level will be derived from exchanges with relevant European stakeholder representatives and providers of geological data. For handling and delivering 3D geological model data the project will need to address a number of strategic issues: • Which are the most important issues and queries for the relevant stakeholders, requiring 3D geological models? How can this be translated to functional requirements for development and design of an integrated European application? • How to handle the very large
Quasi-3D Multi-scale Modeling Framework Development
NASA Astrophysics Data System (ADS)
Arakawa, A.; Jung, J.
2008-12-01
When models are truncated in or near an energetically active range of the spectrum, model physics must be changed as the resolution changes. The model physics of GCMs and that of CRMs are, however, quite different from each other and at present there is no unified formulation of model physics that automatically provides transition between these model physics. The Quasi-3D (Q3D) Multi-scale Modeling Framework (MMF) is an attempt to bridge this gap. Like the recently proposed Heterogeneous Multiscale Method (HMM) (E and Engquist 2003), MMF combines a macroscopic model, GCM, and a microscopic model, CRM. Unlike the traditional multiscale methods such as the multi-grid and adapted mesh refinement techniques, HMM and MMF are for solving multi-physics problems. They share the common objective "to design combined macroscopic-microscopic computational methods that are much more efficient than solving the full microscopic model and at the same time give the information we need" (E et al. 2008). The question is then how to meet this objective in practice, which can be highly problem dependent. In HHM, the efficiency is gained typically by localization of the microscale problem. Following the pioneering work by Grabowski and Smolarkiewicz (1999) and Grabowski (2001), MMF takes advantage of the fact that 2D CRMs are reasonably successful in simulating deep clouds. In this approach, the efficiency is gained by sacrificing the three-dimensionality of cloud-scale motion. It also "localizes" the algorithm through embedding a CRM in each GCM grid box using cyclic boundary condition. The Q3D MMF is an attempt to reduce the expense due to these constraints by partially including the cloud-scale 3D effects and extending the CRM beyond individual GCM grid boxes. As currently formulated, the Q3D MMF is a 4D estimation/prediction framework that combines a GCM with a 3D anelastic cloud-resolving vector vorticity equation model (VVM) applied to a network of horizontal grids. The network
Learning the Structure of Mixed Graphical Models
Lee, Jason D.; Hastie, Trevor J.
2014-01-01
We consider the problem of learning the structure of a pairwise graphical model over continuous and discrete variables. We present a new pairwise model for graphical models with both continuous and discrete variables that is amenable to structure learning. In previous work, authors have considered structure learning of Gaussian graphical models and structure learning of discrete models. Our approach is a natural generalization of these two lines of work to the mixed case. The penalization scheme involves a novel symmetric use of the group-lasso norm and follows naturally from a particular parametrization of the model. Supplementary materials for this paper are available online. PMID:26085782
3-D HYDRODYNAMIC MODELING IN A GEOSPATIAL FRAMEWORK
Bollinger, J; Alfred Garrett, A; Larry Koffman, L; David Hayes, D
2006-08-24
3-D hydrodynamic models are used by the Savannah River National Laboratory (SRNL) to simulate the transport of thermal and radionuclide discharges in coastal estuary systems. Development of such models requires accurate bathymetry, coastline, and boundary condition data in conjunction with the ability to rapidly discretize model domains and interpolate the required geospatial data onto the domain. To facilitate rapid and accurate hydrodynamic model development, SRNL has developed a pre- and post-processor application in a geospatial framework to automate the creation of models using existing data. This automated capability allows development of very detailed models to maximize exploitation of available surface water radionuclide sample data and thermal imagery.
NASA Astrophysics Data System (ADS)
Mock, Samuel; Allenbach, Robin; Reynolds, Lance; Wehrens, Philip; Kurmann-Matzenauer, Eva; Kuhn, Pascal; Michael, Salomè; Di Tommaso, Gennaro; Herwegh, Marco
2016-04-01
The Swiss Molasse Basin comprises the western and central part of the North Alpine Foreland Basin. In recent years it has come under closer scrutiny due to its promising geopotentials such as geothermal energy and CO2 sequestration. In order to adress these topics good knowledge of the subsurface is a key prerequisite. For that matter, geological 3D models serve as valuable tools. In collaboration with the Swiss Geological Survey (swisstopo) and as part of the project GeoMol CH, a geological 3D model of the Swiss Molasse Basin in the Canton of Bern has been built. The model covers an area of 1810 km2and reaches depth of up to 6.7 km. It comprises 10 major Cenozoic and Mesozoic units and numerous faults. The 3D model is mainly based on 2D seismic data complemented by information from few deep wells. Additionally, data from geological maps and profiles were used for refinement at shallow depths. In total, 1163 km of reflection seismic data, along 77 seismic lines, have been interpreted by different authors with respect to stratigraphy and structures. Both, horizons and faults, have been interpreted in 2D and modelled in 3D using IHS's Kingdom Suite and Midland Valley's MOVE software packages, respectively. Given the variable degree of subsurface information available, each 3D model is subject of uncertainty. With the primary input data coming from interpretation of reflection seismic data, a variety of uncertainties comes into play. Some of them are difficult to address (e.g. author's style of interpretation) while others can be quantified (e.g. mis-tie correction, well-tie). An important source of uncertainties is the quality of seismic data; this affects the traceability and lateral continuation of seismic reflectors. By defining quality classes we can semi-quantify this source of uncertainty. In order to visualize the quality and density of the input data in a meaningful way, we introduce quality-weighted data density maps. In combination with the geological 3D
A method for building 3D models of barchan dunes
NASA Astrophysics Data System (ADS)
Nai, Yang; Li-lan, Su; Lin, Wan; Jie, Yang; Shi-yi, Chen; Wei-lu, Hu
2016-01-01
The distributions of barchan dunes are usually represented by digital terrain models (DTMs) overlaid with digital orthophoto maps. Given that most regions with barchan dues have low relief, a 3D map obtained from a DTM may ineffectively show the stereoscopic shape of each dune. The method of building 3D models of barchan dunes using existing modeling software seldom considers the geographical environment. As a result, barchan dune models are often inconsistent with actual DTMs and incompletely express the morphological characteristics of dunes. Manual construction of barchan dune models is also costly and time consuming. Considering these problems, the morphological characteristics of barchan dunes and the mathematical relationships between the morphological parameters of the dunes, such as length, height, and width, are analyzed in this study. The methods of extracting the morphological feature points of barchan dunes, calculating their morphological parameters and building dune outlines and skeleton lines based on the medial axes, are also presented. The dune outlines, skeleton lines, and part of the medial axes of dunes are used to construct a constrained triangulated irregular network. C# and ArcEngine are employed to build 3D models of barchan dunes automatically. Experimental results of a study conducted in Tengger Desert show that the method can be used to approximate the morphological characteristics of barchan dunes and is less time consuming than manual methods.
Geometric and colour data fusion for outdoor 3D models.
Merchán, Pilar; Adán, Antonio; Salamanca, Santiago; Domínguez, Vicente; Chacón, Ricardo
2012-01-01
This paper deals with the generation of accurate, dense and coloured 3D models of outdoor scenarios from scanners. This is a challenging research field in which several problems still remain unsolved. In particular, the process of 3D model creation in outdoor scenes may be inefficient if the scene is digitalized under unsuitable technical (specific scanner on-board camera) and environmental (rain, dampness, changing illumination) conditions. We address our research towards the integration of images and range data to produce photorealistic models. Our proposal is based on decoupling the colour integration and geometry reconstruction stages, making them independent and controlled processes. This issue is approached from two different viewpoints. On the one hand, given a complete model (geometry plus texture), we propose a method to modify the original texture provided by the scanner on-board camera with the colour information extracted from external images taken at given moments and under specific environmental conditions. On the other hand, we propose an algorithm to directly assign external images onto the complete geometric model, thus avoiding tedious on-line calibration processes. We present the work conducted on two large Roman archaeological sites dating from the first century A.D., namely, the Theatre of Segobriga and the Fori Porticus of Emerita Augusta, both in Spain. The results obtained demonstrate that our approach could be useful in the digitalization and 3D modelling fields. PMID:22969327
3D Hydrodynamical and Radiative Transfer Modeling of Eta Carinae's Colliding Winds
NASA Astrophysics Data System (ADS)
Madura, Thomas Ignatius; Clementel, Nicola; Gull, Theodore R.; Kruip, Chael J. H.; Paardekooper, Jan-Pieter; Icke, Vincent
2015-08-01
We present the results of full 3D hydrodynamical and radiative transfer simulations of the colliding stellar winds in the massive binary system Eta Carinae (Clementel, Madura, et al. 2014, MNRAS, 443, 2475 and Clementel, Madura, et al. 2015, MNRAS, 447, 2445). We accomplish this by applying the SimpleX algorithm for 3D radiative transfer on an unstructured Voronoi-Delaunay grid to 3D smoothed particle hydrodynamics simulations of the binary colliding winds. We use SimpleX to obtain detailed ionization fractions of hydrogen and helium in 3D. We investigate several computational domain sizes and Luminous Blue Variable primary-star mass-loss rates. We show how the SimpleX simulations can be used to generate synthetic spectral data cubes for comparison to data obtained with the Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph as part of a multi-cycle program to map changes in Eta Carinae's spatially extended interacting wind structures across one binary cycle. Comparison of the HST observations to the SimpleX models can help lead to more accurate constraints on the orbital, stellar, and wind parameters of the Eta Carinae system, such as the LBV primary's mass-loss rate and the companion star's temperature and luminosity. We furthermore present new methods of visualizing and interacting with output from complex 3D numerical simulations, including 3D interactive graphics and 3D printing (Madura et al. 2015, arXiv:1503.00716). While we initially focus specifically on Eta Carinae, the methods employed can be applied to numerous other colliding wind (WR 140, WR 137, WR 19) and dusty ‘pinwheel’ (WR 112, WR 104, WR 98a) binary systems. Coupled with 3D hydrodynamical simulations, SimpleX simulations have the potential to help determine the regions where dust can form and survive in these unique objects.
Methods of constructing a 3D geological model from scatter data
Horsman, J.; Bethel, W.
1995-04-01
Most geoscience applications, such as assessment of an oil reservoir or hazardous waste site, require geological characterization of the site. Geological characterization involves analysis of spatial distributions of lithology, porosity, etc. Because of the complexity of the spatial relationships, the authors find that a 3-D model of geology is better suited for integration of many different types of data and provides a better representation of a site than a 2-D one. A 3-D model of geology is constructed from sample data obtained from field measurements, which are usually scattered. To create a volume model from scattered data, interpolation between points is required. The interpolation can be computed using one of several computational algorithms. Alternatively, a manual method may be employed, in which an interactive graphics device is used to input by hand the information that lies between the data points. For example, a mouse can be used to draw lines connecting data points with equal values. The combination of these two methods presents yet another approach. In this study, the authors will compare selected methods of 3-D geological modeling, They used a flow-based, modular visualization environment (AVS) to construct the geological models computationally. Within this system, they used three modules, scat{_}3d, trivar and scatter{_}to{_}ucd, as examples of computational methods. They compare these methods to the combined manual and computational approach. Because there are no tools readily available in AVS for this type of construction, they used a geological modeling system to demonstrate this method.
Towards a 3d Spatial Urban Energy Modelling Approach
NASA Astrophysics Data System (ADS)
Bahu, J.-M.; Koch, A.; Kremers, E.; Murshed, S. M.
2013-09-01
Today's needs to reduce the environmental impact of energy use impose dramatic changes for energy infrastructure and existing demand patterns (e.g. buildings) corresponding to their specific context. In addition, future energy systems are expected to integrate a considerable share of fluctuating power sources and equally a high share of distributed generation of electricity. Energy system models capable of describing such future systems and allowing the simulation of the impact of these developments thus require a spatial representation in order to reflect the local context and the boundary conditions. This paper describes two recent research approaches developed at EIFER in the fields of (a) geo-localised simulation of heat energy demand in cities based on 3D morphological data and (b) spatially explicit Agent-Based Models (ABM) for the simulation of smart grids. 3D city models were used to assess solar potential and heat energy demand of residential buildings which enable cities to target the building refurbishment potentials. Distributed energy systems require innovative modelling techniques where individual components are represented and can interact. With this approach, several smart grid demonstrators were simulated, where heterogeneous models are spatially represented. Coupling 3D geodata with energy system ABMs holds different advantages for both approaches. On one hand, energy system models can be enhanced with high resolution data from 3D city models and their semantic relations. Furthermore, they allow for spatial analysis and visualisation of the results, with emphasis on spatially and structurally correlations among the different layers (e.g. infrastructure, buildings, administrative zones) to provide an integrated approach. On the other hand, 3D models can benefit from more detailed system description of energy infrastructure, representing dynamic phenomena and high resolution models for energy use at component level. The proposed modelling strategies
3-D model-based tracking for UAV indoor localization.
Teulière, Céline; Marchand, Eric; Eck, Laurent
2015-05-01
This paper proposes a novel model-based tracking approach for 3-D localization. One main difficulty of standard model-based approach lies in the presence of low-level ambiguities between different edges. In this paper, given a 3-D model of the edges of the environment, we derive a multiple hypotheses tracker which retrieves the potential poses of the camera from the observations in the image. We also show how these candidate poses can be integrated into a particle filtering framework to guide the particle set toward the peaks of the distribution. Motivated by the UAV indoor localization problem where GPS signal is not available, we validate the algorithm on real image sequences from UAV flights. PMID:25099967
3D Babcock-Leighton Solar Dynamo Models
NASA Astrophysics Data System (ADS)
Miesch, Mark S.; Hazra, Gopal; Karak, Bidya Binay; Teweldebirhan, Kinfe; Upton, Lisa
2016-05-01
We present results from the new STABLE (Surface flux Transport and Babcock Leighton) Dynamo Model. STABLE is a 3D Babcock-Leighton/Flux Transport dynamo model in which the source of poloidal field is the explicit emergence, distortion, and dispersal of bipolar magnetic regions (BMRs). In this talk I will discuss initial results with axisymmetric flow fields, focusing on the operation of the model, the general features of the cyclic solutions, and the challenge of achieving supercritical dynamo solutions using only the Babcock-Leighton source term. Then I will present dynamo simulations that include 3D convective flow fields based on the observed velocity power spectrum inferred from photospheric Dopplergrams. I'll use these simulations to assess how the explicit transport and amplification of fields by surface convection influences the operation of the dynamo. I will also discuss the role of surface magnetic fields in regulating the subsurface toroidal flux budget.
3D Multispectral Light Propagation Model For Subcutaneous Veins Imaging
Paquit, Vincent C; Price, Jeffery R; Meriaudeau, Fabrice; Tobin Jr, Kenneth William
2008-01-01
In this paper, we describe a new 3D light propagation model aimed at understanding the effects of various physiological properties on subcutaneous vein imaging. In particular, we build upon the well known MCML (Monte Carlo Multi Layer) code and present a tissue model that improves upon the current state-of-the-art by: incorporating physiological variation, such as melanin concentration, fat content, and layer thickness; including veins of varying depth and diameter; using curved surfaces from real arm shapes; and modeling the vessel wall interface. We describe our model, present results from the Monte Carlo modeling, and compare these results with those obtained with other Monte Carlo methods.
Texture blending on 3D models using casual images
NASA Astrophysics Data System (ADS)
Liu, Xingming; Liu, Xiaoli; Li, Ameng; Liu, Junyao; Wang, Huijing
2013-12-01
In this paper, a method for constructing photorealistic textured model using 3D structured light digitizer is presented. Our method acquisition of range images and texture images around object, and range images are registered and integrated to construct geometric model of object. System is calibrated and poses of texture-camera are determined so that the relationship between texture and geometric model is established. After that, a global optimization is applied to assign compatible texture to adjacent surface and followed with a level procedure to remove artifacts due to vary lighting, approximate geometric model and so on. Lastly, we demonstrate the effect of our method on constructing a real model of world.
A 3D alcoholic liver disease model on a chip.
Lee, JaeSeo; Choi, BongHwan; No, Da Yoon; Lee, GeonHui; Lee, Seung-Ri; Oh, HyunJik; Lee, Sang-Hoon
2016-03-14
Alcohol is one of the main causes of liver diseases, and the development of alcoholic liver disease (ALD) treatment methods has been one of the hottest issues. For this purpose, development of in vitro models mimicking the in vivo physiology is one of the critical requirements, and they help to determine the disease mechanisms and to discover the treatment method. Herein, a three-dimensional (3D) ALD model was developed and its superior features in mimicking the in vivo condition were demonstrated. A spheroid-based microfluidic chip was employed for the development of the 3D in vitro model of ALD progression. We co-cultured rat primary hepatocytes and hepatic stellate cells (HSCs) in a fluidic chip to investigate the role of HSCs in the recovery of liver with ALD. An interstitial level of flow derived by an osmotic pump was applied to the chip to provide in vivo mimicking of fluid activity. Using this in vitro tool, we were able to observe structural changes and decreased hepatic functions with the increase in ethanol concentration. The recovery process of liver injured by alcohol was observed by providing fresh culture medium to the damaged 3D liver tissue for few days. A reversibly- and irreversibly-injured ALD model was established. The proposed model can not only be used for the research of alcoholic disease mechanism, but also has the potential for use in studies of hepatotoxicity and drug screening applications. PMID:26857817
Two-equation turbulence modeling for 3-D hypersonic flows
NASA Technical Reports Server (NTRS)
Bardina, J. E.; Coakley, T. J.; Marvin, J. G.
1992-01-01
An investigation to verify, incorporate and develop two-equation turbulence models for three-dimensional high speed flows is presented. The current design effort of hypersonic vehicles has led to an intensive study of turbulence models for compressible hypersonic flows. This research complements an extensive review of experimental data and the current development of 2D turbulence models. The review of experimental data on 2D and 3D flows includes complex hypersonic flows with pressure profiles, skin friction, wall heat transfer, and turbulence statistics data. In a parallel effort, turbulence models for high speed flows have been tested against flat plate boundary layers, and are being tested against the 2D database. In the present paper, we present the results of 3D Navier-Stokes numerical simulations with an improved k-omega two-equation turbulence model against experimental data and empirical correlations of an adiabatic flat plate boundary layer, a cold wall flat plate boundary layer, and a 3D database flow, the interaction of an oblique shock wave and a thick turbulent boundary layer with a free stream Mach number = 8.18 and Reynolds number = 5 x 10 to the 6th.
Generation and use of human 3D-CAD models
NASA Astrophysics Data System (ADS)
Grotepass, Juergen; Speyer, Hartmut; Kaiser, Ralf
2002-05-01
Individualized Products are one of the ten mega trends of the 21st Century with human modeling as the key issue for tomorrow's design and product development. The use of human modeling software for computer based ergonomic simulations within the production process increases quality while reducing costs by 30- 50 percent and shortening production time. This presentation focuses on the use of human 3D-CAD models for both, the ergonomic design of working environments and made to measure garment production. Today, the entire production chain can be designed, individualized models generated and analyzed in 3D computer environments. Anthropometric design for ergonomics is matched to human needs, thus preserving health. Ergonomic simulation includes topics as human vision, reachability, kinematics, force and comfort analysis and international design capabilities. In German more than 17 billions of Mark are moved to other industries, because clothes do not fit. Individual clothing tailored to the customer's preference means surplus value, pleasure and perfect fit. The body scanning technology is the key to generation and use of human 3D-CAD models for both, the ergonomic design of working environments and made to measure garment production.
3D cartographic modeling of the Alpine arc
NASA Astrophysics Data System (ADS)
Vouillamoz, Naomi; Sue, Christian; Champagnac, Jean-Daniel; Calcagno, Philippe
2012-12-01
We built a 3D cartography of the Alpine arc, a highly non-cylindrical mountain belt, using the 3D GeoModeller of the BRGM (French geological survey). The model allows to handle the large-scale 3D structure of seventeen major crustal units of the belt (from the lower crust to the sedimentary cover nappes), and two main discontinuities (the Insubric Line and the Crustal Penninic Front). It provides a unique document to better understand their structural relationships and to produce new sections. The study area comprises the western Alpine arc, from the Jura to the Northwest, up to the Bergell granite intrusion and the Lepontine Dome to the East, and is limited to the South by the Ligurian basin. The model is limited vertically 10 km above sea level at the top, and the moho interface at the bottom. We discarded the structural relationships between the Alps sensus stricto and the surrounding geodynamic systems such as the Rhine graben or the connection with the Apennines. The 3D-model is based on the global integration of various data such as the DEM of the Alps, the moho isobaths, the simplified geological and tectonic maps of the belt, the crustal cross-sections ECORS-CROP and NFP-20, and complementary cross-sections specifically built to precise local complexities. The database has first been integrated in a GIS-project to prepare their implementation in the GeoModeller, by homogenizing the different spatial referencing systems. The global model is finally interpolated from all these data, using the potential field method. The final document is a new tri-dimensional cartography that would be used as input for further alpine studies.
3D modeling of dual-gate FinFET.
Mil'shtein, Samson; Devarakonda, Lalitha; Zanchi, Brian; Palma, John
2012-01-01
The tendency to have better control of the flow of electrons in a channel of field-effect transistors (FETs) did lead to the design of two gates in junction field-effect transistors, field plates in a variety of metal semiconductor field-effect transistors and high electron mobility transistors, and finally a gate wrapping around three sides of a narrow fin-shaped channel in a FinFET. With the enhanced control, performance trends of all FETs are still challenged by carrier mobility dependence on the strengths of the electrical field along the channel. However, in cases when the ratio of FinFET volume to its surface dramatically decreases, one should carefully consider the surface boundary conditions of the device. Moreover, the inherent non-planar nature of a FinFET demands 3D modeling for accurate analysis of the device performance. Using the Silvaco modeling tool with quantization effects, we modeled a physical FinFET described in the work of Hisamoto et al. (IEEE Tran. Elec. Devices 47:12, 2000) in 3D. We compared it with a 2D model of the same device. We demonstrated that 3D modeling produces more accurate results. As 3D modeling results came close to experimental measurements, we made the next step of the study by designing a dual-gate FinFET biased at Vg1 >Vg2. It is shown that the dual-gate FinFET carries higher transconductance than the single-gate device. PMID:23148493
Interchain coupling and 3D modeling of trans-polyacetylene
Bronold, F.; Saxena, A.; Bishop, A.R.
1992-01-01
In spite of the success of the SSH model for trans-polyacetylene in interpreting many experimental results (e.g. optical and magnetic properties) there remain some aspects of the real material which are outside the scope of the simple 1D model. Especially ordering phenomena of doped and undoped trans-polyacetylene as well as transport properties (e.g. electronic and thermal conductivity) are beyond a 1D description. There are many attempts to construct a transport theory for this novel class of materials using solitons or polaxons as the basic ingredients. But so far it is not yet clear whether these typical 1D excitations still exist in crystalline transpolyacetylene. Therefore, to clarify the role which intrinsic self-localized nonlinear excitations characteristic of 1D models play in the bulk (3D) material, we study the stability of a polaronic excitation against interchain coupling. As a preliminary step we consider first two coupled t-(CH){sub x}-chains where the {pi}-electrons are allowed to hop from one chain to the other. Then we introduce a 3D generalization of the SSH model and study a polaron in a 3D crystalline environment.
Interchain coupling and 3D modeling of trans-polyacetylene
Bronold, F.; Saxena, A.; Bishop, A.R.
1992-09-01
In spite of the success of the SSH model for trans-polyacetylene in interpreting many experimental results (e.g. optical and magnetic properties) there remain some aspects of the real material which are outside the scope of the simple 1D model. Especially ordering phenomena of doped and undoped trans-polyacetylene as well as transport properties (e.g. electronic and thermal conductivity) are beyond a 1D description. There are many attempts to construct a transport theory for this novel class of materials using solitons or polaxons as the basic ingredients. But so far it is not yet clear whether these typical 1D excitations still exist in crystalline transpolyacetylene. Therefore, to clarify the role which intrinsic self-localized nonlinear excitations characteristic of 1D models play in the bulk (3D) material, we study the stability of a polaronic excitation against interchain coupling. As a preliminary step we consider first two coupled t-(CH){sub x}-chains where the {pi}-electrons are allowed to hop from one chain to the other. Then we introduce a 3D generalization of the SSH model and study a polaron in a 3D crystalline environment.
The 3D model control of image processing
NASA Technical Reports Server (NTRS)
Nguyen, An H.; Stark, Lawrence
1989-01-01
Telerobotics studies remote control of distant robots by a human operator using supervisory or direct control. Even if the robot manipulators has vision or other senses, problems arise involving control, communications, and delay. The communication delays that may be expected with telerobots working in space stations while being controlled from an Earth lab have led to a number of experiments attempting to circumvent the problem. This delay in communication is a main motivating factor in moving from well understood instantaneous hands-on manual control to less well understood supervisory control; the ultimate step would be the realization of a fully autonomous robot. The 3-D model control plays a crucial role in resolving many conflicting image processing problems that are inherent in resolving in the bottom-up approach of most current machine vision processes. The 3-D model control approach is also capable of providing the necessary visual feedback information for both the control algorithms and for the human operator.
3D root canal modeling for advanced endodontic treatment
NASA Astrophysics Data System (ADS)
Hong, Shane Y.; Dong, Janet
2002-06-01
More than 14 million teeth receive endodontic (root canal) treatment annually. Before a clinician's inspection and diagnosis, destructive access preparation by removing teeth crown and dentin is usually needed. This paper presents a non-invasive method for accessing internal tooth geometry by building 3-D tooth model from 2-D radiographic and endoscopic images to be used for an automatic prescription system of computer-aided treatment procedure planning, and for the root canal preparation by an intelligent micro drilling machine with on-line monitoring. It covers the techniques specific for dental application in the radiographic images acquirement, image enhancement, image segmentation and feature recognition, distance measurement and calibration, merging 2D image into 3D mathematical model representation and display. Included also are the methods to form references for irregular teeth geometry and to do accurately measurement with self-calibration.
Understanding human functioning using graphical models
2010-01-01
Background Functioning and disability are universal human experiences. However, our current understanding of functioning from a comprehensive perspective is limited. The development of the International Classification of Functioning, Disability and Health (ICF) on the one hand and recent developments in graphical modeling on the other hand might be combined and open the door to a more comprehensive understanding of human functioning. The objective of our paper therefore is to explore how graphical models can be used in the study of ICF data for a range of applications. Methods We show the applicability of graphical models on ICF data for different tasks: Visualization of the dependence structure of the data set, dimension reduction and comparison of subpopulations. Moreover, we further developed and applied recent findings in causal inference using graphical models to estimate bounds on intervention effects in an observational study with many variables and without knowing the underlying causal structure. Results In each field, graphical models could be applied giving results of high face-validity. In particular, graphical models could be used for visualization of functioning in patients with spinal cord injury. The resulting graph consisted of several connected components which can be used for dimension reduction. Moreover, we found that the differences in the dependence structures between subpopulations were relevant and could be systematically analyzed using graphical models. Finally, when estimating bounds on causal effects of ICF categories on general health perceptions among patients with chronic health conditions, we found that the five ICF categories that showed the strongest effect were plausible. Conclusions Graphical Models are a flexible tool and lend themselves for a wide range of applications. In particular, studies involving ICF data seem to be suited for analysis using graphical models. PMID:20149230
Modeling 3D faces from samplings via compressive sensing
NASA Astrophysics Data System (ADS)
Sun, Qi; Tang, Yanlong; Hu, Ping
2013-07-01
3D data is easier to acquire for family entertainment purpose today because of the mass-production, cheapness and portability of domestic RGBD sensors, e.g., Microsoft Kinect. However, the accuracy of facial modeling is affected by the roughness and instability of the raw input data from such sensors. To overcome this problem, we introduce compressive sensing (CS) method to build a novel 3D super-resolution scheme to reconstruct high-resolution facial models from rough samples captured by Kinect. Unlike the simple frame fusion super-resolution method, this approach aims to acquire compressed samples for storage before a high-resolution image is produced. In this scheme, depth frames are firstly captured and then each of them is measured into compressed samples using sparse coding. Next, the samples are fused to produce an optimal one and finally a high-resolution image is recovered from the fused sample. This framework is able to recover 3D facial model of a given user from compressed simples and this can reducing storage space as well as measurement cost in future devices e.g., single-pixel depth cameras. Hence, this work can potentially be applied into future applications, such as access control system using face recognition, and smart phones with depth cameras, which need high resolution and little measure time.
Operations for Learning with Graphical Models
NASA Technical Reports Server (NTRS)
Buntine, Wray L.
1994-01-01
This paper is a multidisciplinary review of empirical, statistical learning from a graphical model perspective. Well-known examples of graphical models include Bayesian net- works, directed graphs representing a Markov chain, and undirected networks representing a Markov field. These graphical models are extended to model data analysis and empirical learning using the notation of plates. Graphical operations for simplifying and manipulating a problem are provided including decomposition, differentiation, and the manipulation of probability models from the exponential family. These operations adapt existing techniques from statistics and automatic differentiation to graphs. Two standard algorithm schemes for learning are reviewed in a graphical framework: Gibbs sampling and the expectation maximization algorithm. Some algorithms are developed in this graphical framework including a generalized version of linear regression, techniques for feed-forward networks, and learning Gaussian and discrete Bayesian networks from data. The paper concludes by sketching some implications for data analysis and summarizing some popular algorithms that fall within the framework presented. The main original contributions here are the decomposition techniques and the demonstration that graphical models provide a framework for understanding and developing complex learning algorithms.
A 3D Model Based Imdoor Navigation System for Hubei Provincial Museum
NASA Astrophysics Data System (ADS)
Xu, W.; Kruminaite, M.; Onrust, B.; Liu, H.; Xiong, Q.; Zlatanova, S.
2013-11-01
3D models are more powerful than 2D maps for indoor navigation in a complicate space like Hubei Provincial Museum because they can provide accurate descriptions of locations of indoor objects (e.g., doors, windows, tables) and context information of these objects. In addition, the 3D model is the preferred navigation environment by the user according to the survey. Therefore a 3D model based indoor navigation system is developed for Hubei Provincial Museum to guide the visitors of museum. The system consists of three layers: application, web service and navigation, which is built to support localization, navigation and visualization functions of the system. There are three main strengths of this system: it stores all data needed in one database and processes most calculations on the webserver which make the mobile client very lightweight, the network used for navigation is extracted semi-automatically and renewable, the graphic user interface (GUI), which is based on a game engine, has high performance of visualizing 3D model on a mobile display.
ERIC Educational Resources Information Center
Steinhauer, H. M.
2012-01-01
Engineering graphics has historically been viewed as a challenging course to teach as students struggle to grasp and understand the fundamental concepts and then to master their proper application. The emergence of stable, fast, affordable 3D parametric modeling platforms such as CATIA, Pro-E, and AutoCAD while providing several pedagogical…
3D modelling of the Black Sea ecosystem
NASA Astrophysics Data System (ADS)
Capet, A.; Gregoire, M.; Beckers, J.-M.; Joassin, P.; Naithani, J.; Soetart, K.
2009-04-01
A coupled physical-biogeochemical model has been developed to simulate the ecosystem of the Black Sea at the end of the 80's when eutrophication and invasion by gelatinous organisms seriously affected the stability and dynamics of the system. The biogeochemical model describes the cycle of carbon, nitrogen, silicate, oxygen and phosphorus through the foodweb from bacteria to gelatinous carnivores and explicitly represents processes in the anoxic layer down to the bottom. For calibration and analyses purposes, the coupled model has first been run in 1D at several places in the Black Sea. The biogeochemical model involves some hundred parameters which have been first calibrated by hand using published values. Then, an identifiability analysis has been performed in order to determine a subset of 15 identifiable parameters. An automatic calibration subroutine has been used to fine tune these parameters. In 1D, the model solution exhibits a complex dynamics with several years of transient adjustment. This complexity is imparted by the explicit modelling of top predators. The model has been calibrated and validated using a large set of data available in the Black Sea TU Ocean Base. The calibrated biogeochemical model is implemented in a 3D hydrodynamical model of the Black Sea. Results of these 3D simulations will be presented and compared with maps of in-situ data reconstructed from available data base using the software DIVA (Data Interpolation and Variational analysis).
2D quantum double models from a 3D perspective
NASA Astrophysics Data System (ADS)
Bernabé Ferreira, Miguel Jorge; Padmanabhan, Pramod; Teotonio-Sobrinho, Paulo
2014-09-01
In this paper we look at three dimensional (3D) lattice models that are generalizations of the state sum model used to define the Kuperberg invariant of 3-manifolds. The partition function is a scalar constructed as a tensor network where the building blocks are tensors given by the structure constants of an involutory Hopf algebra A. These models are very general and are hard to solve in its entire parameter space. One can obtain familiar models, such as ordinary gauge theories, by letting A be the group algebra {C}(G) of a discrete group G and staying on a certain region of the parameter space. We consider the transfer matrix of the model and show that quantum double Hamiltonians are derived from a particular choice of the parameters. Such a construction naturally leads to the star and plaquette operators of the quantum double Hamiltonians, of which the toric code is a special case when A={C}({{{Z}}_{2}}). This formulation is convenient to study ground states of these generalized quantum double models where they can naturally be interpreted as tensor network states. For a surface Σ, the ground state degeneracy is determined by the Kuperberg 3-manifold invariant of \\Sigma \\times {{S}^{1}}. It is also possible to obtain extra models by simply enlarging the allowed parameter space but keeping the solubility of the model. While some of these extra models have appeared before in the literature, our 3D perspective allows for an uniform description of them.
3D modeling, custom implants and its future perspectives in craniofacial surgery
Parthasarathy, Jayanthi
2014-01-01
Custom implants for the reconstruction of craniofacial defects have gained importance due to better performance over their generic counterparts. This is due to the precise adaptation to the region of implantation, reduced surgical times and better cosmesis. Application of 3D modeling in craniofacial surgery is changing the way surgeons are planning surgeries and graphic designers are designing custom implants. Advances in manufacturing processes and ushering of additive manufacturing for direct production of implants has eliminated the constraints of shape, size and internal structure and mechanical properties making it possible for the fabrication of implants that conform to the physical and mechanical requirements of the region of implantation. This article will review recent trends in 3D modeling and custom implants in craniofacial reconstruction. PMID:24987592
Probabilistic Graphical Model Representation in Phylogenetics
Höhna, Sebastian; Heath, Tracy A.; Boussau, Bastien; Landis, Michael J.; Ronquist, Fredrik; Huelsenbeck, John P.
2014-01-01
Recent years have seen a rapid expansion of the model space explored in statistical phylogenetics, emphasizing the need for new approaches to statistical model representation and software development. Clear communication and representation of the chosen model is crucial for: (i) reproducibility of an analysis, (ii) model development, and (iii) software design. Moreover, a unified, clear and understandable framework for model representation lowers the barrier for beginners and nonspecialists to grasp complex phylogenetic models, including their assumptions and parameter/variable dependencies. Graphical modeling is a unifying framework that has gained in popularity in the statistical literature in recent years. The core idea is to break complex models into conditionally independent distributions. The strength lies in the comprehensibility, flexibility, and adaptability of this formalism, and the large body of computational work based on it. Graphical models are well-suited to teach statistical models, to facilitate communication among phylogeneticists and in the development of generic software for simulation and statistical inference. Here, we provide an introduction to graphical models for phylogeneticists and extend the standard graphical model representation to the realm of phylogenetics. We introduce a new graphical model component, tree plates, to capture the changing structure of the subgraph corresponding to a phylogenetic tree. We describe a range of phylogenetic models using the graphical model framework and introduce modules to simplify the representation of standard components in large and complex models. Phylogenetic model graphs can be readily used in simulation, maximum likelihood inference, and Bayesian inference using, for example, Metropolis–Hastings or Gibbs sampling of the posterior distribution. [Computation; graphical models; inference; modularization; statistical phylogenetics; tree plate.] PMID:24951559
Right approach to 3D modeling using CAD tools
NASA Astrophysics Data System (ADS)
Baddam, Mounica Reddy
The thesis provides a step-by-step methodology to enable an instructor dealing with CAD tools to optimally guide his/her students through an understandable 3D modeling approach which will not only enhance their knowledge about the tool's usage but also enable them to achieve their desired result in comparatively lesser time. In the known practical field, there is particularly very little information available to apply CAD skills to formal beginners' training sessions. Additionally, advent of new software in 3D domain cumulates updating into a more difficult task. Keeping up to the industry's advanced requirements emphasizes the importance of more skilled hands in the field of CAD development, rather than just prioritizing manufacturing in terms of complex software features. The thesis analyses different 3D modeling approaches specified to the varieties of CAD tools currently available in the market. Utilizing performance-time databases, learning curves have been generated to measure their performance time, feature count etc. Based on the results, improvement parameters have also been provided for (Asperl, 2005).
Northern California Seismic Attenuation: 3-D Qp and Qs models
NASA Astrophysics Data System (ADS)
Eberhart-Phillips, D. M.
2015-12-01
The northern California crust exhibits a wide range of rock types and deformation processes which produce pronounced heterogeneity in regional attenuation. Using local earthquakes, 3-D Qp and Qs crustal models have been obtained for this region which includes the San Andreas fault system, the Central Valley, the Sierra Nevada batholith, and the Mendocino subduction volcanic system. Path attenuation t* values were determined from P and S spectra of 959 spatially distributed earthquakes, magnitude 2.5-6.0 from 2005-2014, using 1254 stations from NCEDC networks and IRIS Mendocino and Sierra Nevada temporary arrays. The t* data were used in Q inversions, using existing hypocenters and 3-D velocity models, with basic 10-km node spacing. The uneven data coverage was accounted for with linking of nodes into larger areas in order to provide useful Q images across the 3-D volume. The results at shallow depth (< 2 km) show very low Q in the Sacramento Delta, the Eureka area, and parts of the Bay Area. In the brittle crust, fault zones that have high seismicity exhibit low Q. In the lower crust, low Q is observed along fault zones that have large cumulative displacement and have experienced grain size reduction. Underlying active volcanic areas, low Q features are apparent below 20-km depth. Moderately high Q is associated with igneous rocks of the Sierra Nevada and Salinian block, while the Franciscan subduction complex shows moderately low Q. The most prominent high Q feature is related to the Great Valley Ophiolite.
3D Geologic Model of the San Diego Area
NASA Astrophysics Data System (ADS)
Danskin, W. R.; Cromwell, G.; Glockhoff, C.; Martin, D.
2015-12-01
Prior geologic studies of the San Diego area, including northern Baja California, Mexico, focused on site investigations, characterization of rock formations, or earthquake hazards. No comprehensive, quantitative model characterizing the three-dimensional (3D) geology of the entire area has been developed. The lack of such a model limits understanding of large-scale processes, such as development of ancient landforms, and groundwater movement and availability. To evaluate these regional processes, the United States Geological Survey (USGS) conducted a study to better understand the geologic structure of the San Diego area. A cornerstone of this study is the installation and analysis of 77 wells at 12 multiple-depth monitoring-well sites. Geologic information from these wells was combined with lithologic data from 81 oil exploration wells and municipal and private water wells, gravity and seismic interpretations, and paleontological interpretations. These data were analyzed in conjunction with geologic maps and digital elevation models to develop a 3D geologic model of the San Diego area, in particular of the San Diego embayment. Existing interpretations of regional surficial geology, faulting, and tectonic history provided the framework for this model, which was refined by independent evaluation of subsurface geology. Geologic formations were simplified into five sedimentary units (Quaternary, Plio-Pleistocene, Oligocene, Eocene and Cretaceous ages), and one basal crystalline unit (primarily Cretaceous and Jurassic). Complex fault systems are represented in the model by ten fault strands that maintain overall displacement. The 3D geologic model corroborates existing geologic concepts of the San Diego area, refines the extent of subsurface geology, and allows users to holistically evaluate subsurface structures and regional hydrogeology.
Modeling and Processing of Continuous 3D Elastic Wavefield Data
NASA Astrophysics Data System (ADS)
Milkereit, B.; Bohlen, T.
2001-12-01
Continuous seismic wavefields are excited by earthquake clustering, induced seismicity in reservoirs, and mining. In hydrocarbon reservoirs, for example, pore pressure changes and fluid flow (mass transfer) will cause incremental deviatoric stresses sufficient to trigger and sustain seismic activity. Here we address three aspects of seismic wavefields in three-dimensional heterogeneous media triggered by distributed sources in space and time: forward modeling, multichannel data processing, and source location imaging. A power law distribution of seismic sources (such as the Gutenberg-Richter law) is used for the modeling of viscoelastic/elastic wave propagation through a realistic earth model. 3D modeling provides new insight in the interaction of multi-source wavefields and the role of scale-dependend elastic model parameters on transmitted and reflected/back-scattered wavefields. There exists a strong correlation between the spatial properties of the compressional, shear wave and density perturbations and the lateral correlation length of the resulting reflected or transmitted seismic wavefields. Modeling is based on the implementation of 3D elastic/viscoelastic FD codes on massive parallel and/or distributed computing resources using MPI (message passing interface). For parallelization, large grid 3D earth models are decomposed into subvolume processing elements whereby each processing element is updating the wavefield within its portion of the grid. Processing of continuous seismic wavefields excited by multiple distributed sources is based on a combination of crosscorrelated or slowness-transformed array data and Kirchhoff or reverse time migration for source location or source volume imaging. The appearance of slowness in both migration and array data processing suggests the possibility of combining them into a single process. In order to place further constraints on the migration, the directivity properties of 3-component receiver arrays can be included in
Underwater 3d Modeling: Image Enhancement and Point Cloud Filtering
NASA Astrophysics Data System (ADS)
Sarakinou, I.; Papadimitriou, K.; Georgoula, O.; Patias, P.
2016-06-01
This paper examines the results of image enhancement and point cloud filtering on the visual and geometric quality of 3D models for the representation of underwater features. Specifically it evaluates the combination of effects from the manual editing of images' radiometry (captured at shallow depths) and the selection of parameters for point cloud definition and mesh building (processed in 3D modeling software). Such datasets, are usually collected by divers, handled by scientists and used for geovisualization purposes. In the presented study, have been created 3D models from three sets of images (seafloor, part of a wreck and a small boat's wreck) captured at three different depths (3.5m, 10m and 14m respectively). Four models have been created from the first dataset (seafloor) in order to evaluate the results from the application of image enhancement techniques and point cloud filtering. The main process for this preliminary study included a) the definition of parameters for the point cloud filtering and the creation of a reference model, b) the radiometric editing of images, followed by the creation of three improved models and c) the assessment of results by comparing the visual and the geometric quality of improved models versus the reference one. Finally, the selected technique is tested on two other data sets in order to examine its appropriateness for different depths (at 10m and 14m) and different objects (part of a wreck and a small boat's wreck) in the context of an ongoing research in the Laboratory of Photogrammetry and Remote Sensing.
CELSS-3D: a broad computer model simulating a controlled ecological life support system.
Schneegurt, M A; Sherman, L A
1997-01-01
CELSS-3D is a dynamic, deterministic, and discrete computer simulation of a controlled ecological life support system (CELSS) focusing on biological issues. A series of linear difference equations within a graphic-based modeling environment, the IThink program, was used to describe a modular CELSS system. The overall model included submodels for crop growth chambers, food storage reservoirs, the human crew, a cyanobacterial growth chamber, a waste processor, fixed nitrogen reservoirs, and the atmospheric gases, CO, O2, and N2. The primary process variable was carbon, although oxygen and nitrogen flows were also modeled. Most of the input data used in CELSS-3D were from published sources. A separate linear optimization program, What'sBest!, was used to compare options for the crew's vegetarian diet. CELSS-3D simulations were run for the equivalent of 3 years with a 1-h time interval. Output from simulations run under nominal conditions was used to illustrate dynamic changes in the concentrations of atmospheric gases. The modular design of CELSS-3D will allow other configurations and various failure scenarios to be tested and compared. PMID:11540449
Subduction zone guided waves: 3D modelling and attenuation effects
NASA Astrophysics Data System (ADS)
Garth, T.; Rietbrock, A.
2013-12-01
Waveform modelling is an important tool for understanding complex seismic structures such as subduction zone waveguides. These structures are often simplified to 2D structures for modelling purposes to reduce computational costs. In the case of subduction zone waveguide affects, 2D models have shown that dispersed arrivals are caused by a low velocity waveguide, inferred to be subducted oceanic crust and/or hydrated outer rise normal faults. However, due to the 2D modelling limitations the inferred seismic properties such as velocity contrast and waveguide thickness are still debated. Here we test these limitations with full 3D waveform modelling. For waveguide effects to be observable the waveform must be accurately modelled to relatively high frequencies (> 2 Hz). This requires a small grid spacing due to the high seismic velocities present in subduction zones. A large area must be modelled as well due to the long propagation distances (400 - 600 km) of waves interacting with subduction zone waveguides. The combination of the large model area and small grid spacing required means that these simulations require a large amount of computational resources, only available at high performance computational centres like the UK National super computer HECTOR (used in this study). To minimize the cost of modelling for such a large area, the width of the model area perpendicular to the subduction trench (the y-direction) is made as small as possible. This reduces the overall volume of the 3D model domain. Therefore the wave field is simulated in a model ';corridor' of the subduction zone velocity structure. This introduces new potential sources of error particularly from grazing wave side reflections in the y-direction. Various dampening methods are explored to reduce these grazing side reflections, including perfectly matched layers (PML) and more traditional exponential dampening layers. Defining a corridor model allows waveguide affects to be modelled up to at least 2
3D flare particle model for ShipIR/NTCS
NASA Astrophysics Data System (ADS)
Ramaswamy, Srinivasan; Vaitekunas, David A.
2016-05-01
A key component in any soft-kill response to an incoming guided missile is the flare /chaff decoy used to distract or seduce the seeker homing system away from the naval platform. This paper describes a new 3D flare particle model in the naval threat countermeasure simulator (NTCS) of the NATO-standard ship signature model (ShipIR), which provides independent control over the size and radial distribution of its signature. The 3D particles of each flare sub-munition are modelled stochastically and rendered using OpenGL z-buffering, 2D projection, and alpha-blending to produce a unique and time varying signature. A sensitivity analysis on each input parameter provides the data and methods needed to synthesize a model from an IR measurement of a decoy. The new model also eliminated artifacts and deficiencies in our previous model which prevented reliable tracks from the adaptive track gate algorithm already presented by Ramaswamy and Vaitekunas (2015). A sequence of scenarios are used to test and demonstrate the new flare model during a missile engagement.
3D finite element model for treatment of cleft lip
NASA Astrophysics Data System (ADS)
Jiao, Chun; Hong, Dongming; Lu, Hongbing; Wang, Jianqi; Lin, Qin; Liang, Zhengrong
2009-02-01
Cleft lip is a congenital facial deformity with high occurrence rate in China. Surgical procedure involving Millard or Tennison methods is usually employed for treatment of cleft lip. However, due to the elasticity of the soft tissues and the mechanical interaction between skin and maxillary, the occurrence rate of facial abnormality or dehisce is still high after the surgery, leading to multiple operations of the patient. In this study, a framework of constructing a realistic 3D finite element model (FEM) for the treatment of cleft lip has been established. It consists of two major steps. The first one is the reconstruction of a 3D geometrical model of the cleft lip from scanning CT data. The second step is the build-up of a FEM for cleft lip using the geometric model, where the material property of all the tetrahedrons was calculated from the CT densities directly using an empirical curve. The simulation results demonstrated (1) the deformation procedure of the model step-by-step when forces were applied, (2) the stress distribution inside the model, and (3) the displacement of all elements in the model. With the computer simulation, the minimal force of having the cleft be repaired is predicted, as well as whether a given force sufficient for the treatment of a specific individual. It indicates that the proposed framework could integrate the treatment planning with stress analysis based on a realistic patient model.
NASA Astrophysics Data System (ADS)
Norajitra, Tobias; Meinzer, Hans-Peter; Maier-Hein, Klaus H.
2015-03-01
During image segmentation, 3D Statistical Shape Models (SSM) usually conduct a limited search for target landmarks within one-dimensional search profiles perpendicular to the model surface. In addition, landmark appearance is modeled only locally based on linear profiles and weak learners, altogether leading to segmentation errors from landmark ambiguities and limited search coverage. We present a new method for 3D SSM segmentation based on 3D Random Forest Regression Voting. For each surface landmark, a Random Regression Forest is trained that learns a 3D spatial displacement function between the according reference landmark and a set of surrounding sample points, based on an infinite set of non-local randomized 3D Haar-like features. Landmark search is then conducted omni-directionally within 3D search spaces, where voxelwise forest predictions on landmark position contribute to a common voting map which reflects the overall position estimate. Segmentation experiments were conducted on a set of 45 CT volumes of the human liver, of which 40 images were randomly chosen for training and 5 for testing. Without parameter optimization, using a simple candidate selection and a single resolution approach, excellent results were achieved, while faster convergence and better concavity segmentation were observed, altogether underlining the potential of our approach in terms of increased robustness from distinct landmark detection and from better search coverage.
Modelling structured data with Probabilistic Graphical Models
NASA Astrophysics Data System (ADS)
Forbes, F.
2016-05-01
Most clustering and classification methods are based on the assumption that the objects to be clustered are independent. However, in more and more modern applications, data are structured in a way that makes this assumption not realistic and potentially misleading. A typical example that can be viewed as a clustering task is image segmentation where the objects are the pixels on a regular grid and depend on neighbouring pixels on this grid. Also, when data are geographically located, it is of interest to cluster data with an underlying dependence structure accounting for some spatial localisation. These spatial interactions can be naturally encoded via a graph not necessarily regular as a grid. Data sets can then be modelled via Markov random fields and mixture models (e.g. the so-called MRF and Hidden MRF). More generally, probabilistic graphical models are tools that can be used to represent and manipulate data in a structured way while modeling uncertainty. This chapter introduces the basic concepts. The two main classes of probabilistic graphical models are considered: Bayesian networks and Markov networks. The key concept of conditional independence and its link to Markov properties is presented. The main problems that can be solved with such tools are described. Some illustrations are given associated with some practical work.
Graphical Models and Computerized Adaptive Testing.
ERIC Educational Resources Information Center
Almond, Russell G.; Mislevy, Robert J.
1999-01-01
Considers computerized adaptive testing from the perspective of graphical modeling (GM). GM provides methods for making inferences about multifaceted skills and knowledge and for extracting data from complex performances. Provides examples from language-proficiency assessment. (SLD)
Computerised 3-D anatomical modelling using plastinates: an example utilising the human heart.
Tunali, S; Kawamoto, K; Farrell, M L; Labrash, S; Tamura, K; Lozanoff, S
2011-08-01
Computerised modelling methods have become highly useful for generating electronic representations of anatomical structures. These methods rely on crosssectional tissue slices in databases such as the Visible Human Male and Female, the Visible Korean Human, and the Visible Chinese Human. However, these databases are time consuming to generate and require labour-intensive manual digitisation while the number of specimens is very limited. Plastinated anatomical material could provide a possible alternative to data collection, requiring less time to prepare and enabling the use of virtually any anatomical or pathological structure routinely obtained in a gross anatomy laboratory. The purpose of this study was to establish an approach utilising plastinated anatomical material, specifically human hearts, for the purpose computerised 3-D modelling. Human hearts were collected following gross anatomical dissection and subjected to routine plastination procedures including dehydration (-25(o)C), defatting, forced impregnation, and curing at room temperature. A graphics pipeline was established comprising data collection with a hand-held scanner, 3-D modelling, model polishing, file conversion, and final rendering. Representative models were viewed and qualitatively assessed for accuracy and detail. The results showed that the heart model provided detailed surface information necessary for gross anatomical instructional purposes. Rendering tools facilitated optional model manipulation for further structural clarification if selected by the user. The use of plastinated material for generating 3-D computerised models has distinct advantages compared to cross-sectional tissue images. PMID:21866531
Bazhenov fm unconventional reservoir 3D geological modeling methodology
NASA Astrophysics Data System (ADS)
Telnova, A.; Baranov, V.; Bukhanov, N.
2016-03-01
The Bazhenov Formation has been studied for more than 50 years, but its petroleum potential, optimal STOIIP or resource estimation approaches, the methodology used to select a reservoir, determine its properties are still unclear. The distinctive features of bituminous shale are specific geochemical properties chosen as basic parameters to perform the geological modeling of the Bazhenov deposits and determine the key areas. The main objective of this paper is to choose an optimal 3D geological modeling algorithm and test conventional (petrophysical) and specific (geochemical) properties.
Towards Forward Modeling of 3D Heterogeneity in D" region
NASA Astrophysics Data System (ADS)
To, A.; Capdeville, Y.; Romanowicz, B.
2002-12-01
The presence of strong lateral heterogeneity in D" is now well documented. While tomographic modeling provides constraints on the large scale patterns, strong variations on shorter scales are best addressed by forward modeling. Appropriate tools are needed for forward modeling that will handle strong 3D heterogeneity, at relatively short periods and including diffracted waves. We use a coupled mode/SEM (Spectral Element Method) to compute synthetic seismograms in 3D models of the D" layer down to 1/12s. This coupled method (Capdeville, 2001) affords faster computations than SEM in cases where heterogeneity can be restricted to a specific layer. We compare them with observed waveforms for several events in the Western Pacific. Observed and synthetic travel time trends are very consistent, although in most cases the observed residuals are significantly larger. Waveform amplitudes are less consistent. In order to understand the origin of the amplitude difference, we test the effect of 3D heterogeneity on Sdiff phase. In particular, the results show opposite trends in the amplitude of Sdiff due to heterogeneity located near the CMB or well above it. This provides constraints on the location of the causative velocity heterogeneity. Because the forward modeling approach requires many iterations, the coupled mode/SEM approach is still computationally intensive. It is more efficient to use a less accurate traditional approach to first get closer to a final model, and only then use coupled mode/SEM to refine the model. Ray theory is the most expedient way to calculate travel times. However, it is an infinite frequency approximation and not appropriate to handle diffracting waves. We show that ray theory predicts larger travel time anomaly for Sdiff phase than the one obtained by coupled mode/SEM. Although it is based on a weak heterogeneity assumption, Non-linear Asymptotic Coupling Theory(NACT) (Li and Romanowicz, 1995) helps to overcome this difficulty. It can handle
Digital 3D Borobudur - Integration of 3D surveying and modeling techniques
NASA Astrophysics Data System (ADS)
Suwardhi, D.; Menna, F.; Remondino, F.; Hanke, K.; Akmalia, R.
2015-08-01
The Borobudur temple (Indonesia) is one of the greatest Buddhist monuments in the world, now listed as an UNESCO World Heritage Site. The present state of the temple is the result of restorations after being exposed to natural disasters several times. Today there is still a growing rate of deterioration of the building stones whose causes need further researches. Monitoring programs, supported at institutional level, have been effectively executed to observe the problem. The paper presents the latest efforts to digitally document the Borobudur Temple and its surrounding area in 3D with photogrammetric techniques. UAV and terrestrial images were acquired to completely digitize the temple, produce DEM, orthoimages and maps at 1:100 and 1:1000 scale. The results of the project are now employed by the local government organizations to manage the heritage area and plan new policies for the conservation and preservation of the UNESCO site. In order to help data management and policy makers, a web-based information system of the heritage area was also built to visualize and easily access all the data and achieved 3D results.
3D Building Evacuation Route Modelling and Visualization
NASA Astrophysics Data System (ADS)
Chan, W.; Armenakis, C.
2014-11-01
The most common building evacuation approach currently applied is to have evacuation routes planned prior to these emergency events. These routes are usually the shortest and most practical path from each building room to the closest exit. The problem with this approach is that it is not adaptive. It is not responsively configurable relative to the type, intensity, or location of the emergency risk. Moreover, it does not provide any information to the affected persons or to the emergency responders while not allowing for the review of simulated hazard scenarios and alternative evacuation routes. In this paper we address two main tasks. The first is the modelling of the spatial risk caused by a hazardous event leading to choosing the optimal evacuation route for a set of options. The second is to generate a 3D visual representation of the model output. A multicriteria decision making (MCDM) approach is used to model the risk aiming at finding the optimal evacuation route. This is achieved by using the analytical hierarchy process (AHP) on the criteria describing the different alternative evacuation routes. The best route is then chosen to be the alternative with the least cost. The 3D visual representation of the model displays the building, the surrounding environment, the evacuee's location, the hazard location, the risk areas and the optimal evacuation pathway to the target safety location. The work has been performed using ESRI's ArcGIS. Using the developed models, the user can input the location of the hazard and the location of the evacuee. The system then determines the optimum evacuation route and displays it in 3D.
Modeling the GFR with RELAP5-3D
Cliff B. Davis; Theron D. Marshall; K. D. Weaver
2005-09-01
Significant improvements have been made to the RELAP5-3D computer code for analysis of the Gas Fast Reactor (GFR). These improvements consisted of adding carbon dioxide as a working fluid, improving the turbine component, developing a compressor model, and adding the Gnielinski heat transfer correlation. The code improvements were validated, generally through comparisons with independent design calculations. A model of the power conversion unit of the GFR was developed. The model of the power conversion unit was coupled to a reactor model to develop a complete model of the GFR system. The RELAP5 model of the GFR was used to simulate two transients, one initiated by a reactor trip and the other initiated by a loss of load.
Testing Mercury Porosimetry with 3D Printed Porosity Models
NASA Astrophysics Data System (ADS)
Hasiuk, F.; Ewing, R. P.; Hu, Q.
2014-12-01
Mercury intrusion porosimetry is one of the most widely used techniques to study the porous nature of a geological and man-made materials. In the geosciences, it is commonly used to describe petroleum reservoir and seal rocks as well as to grade aggregates for the design of asphalt and portland cement concretes. It's wide utility stems from its ability to characterize a wide range of pore throat sizes (from nanometers to around a millimeter). The fundamental physical model underlying mercury intrusion porosimetry, the Washburn Equation, is based on the assumption that rock porosity can be described as a bundle of cylindrical tubes. 3D printing technology, also known as rapid prototyping, allows the construction of intricate and accurate models, exactly what is required to build models of rock porosity. We evaluate the applicability of the Washburn Equation by comparing properties (like porosity, pore and pore throat size distribution, and surface area) computed on digital porosity models (built from CT data, CAD designs, or periodic geometries) to properties measured via mercury intrusion porosimetry on 3D printed versions of the same digital porosity models.
3D model tools for architecture and archaeology reconstruction
NASA Astrophysics Data System (ADS)
Vlad, Ioan; Herban, Ioan Sorin; Stoian, Mircea; Vilceanu, Clara-Beatrice
2016-06-01
The main objective of architectural and patrimonial survey is to provide a precise documentation of the status quo of the surveyed objects (monuments, buildings, archaeological object and sites) for preservation and protection, for scientific studies and restoration purposes, for the presentation to the general public. Cultural heritage documentation includes an interdisciplinary approach having as purpose an overall understanding of the object itself and an integration of the information which characterize it. The accuracy and the precision of the model are directly influenced by the quality of the measurements realized on field and by the quality of the software. The software is in the process of continuous development, which brings many improvements. On the other side, compared to aerial photogrammetry, close range photogrammetry and particularly architectural photogrammetry is not limited to vertical photographs with special cameras. The methodology of terrestrial photogrammetry has changed significantly and various photographic acquisitions are widely in use. In this context, the present paper brings forward a comparative study of TLS (Terrestrial Laser Scanner) and digital photogrammetry for 3D modeling. The authors take into account the accuracy of the 3D models obtained, the overall costs involved for each technology and method and the 4th dimension - time. The paper proves its applicability as photogrammetric technologies are nowadays used at a large scale for obtaining the 3D model of cultural heritage objects, efficacious in their assessment and monitoring, thus contributing to historic conservation. Its importance also lies in highlighting the advantages and disadvantages of each method used - very important issue for both the industrial and scientific segment when facing decisions such as in which technology to invest more research and funds.
Graphical workstation capability for reliability modeling
NASA Technical Reports Server (NTRS)
Bavuso, Salvatore J.; Koppen, Sandra V.; Haley, Pamela J.
1992-01-01
In addition to computational capabilities, software tools for estimating the reliability of fault-tolerant digital computer systems must also provide a means of interfacing with the user. Described here is the new graphical interface capability of the hybrid automated reliability predictor (HARP), a software package that implements advanced reliability modeling techniques. The graphics oriented (GO) module provides the user with a graphical language for modeling system failure modes through the selection of various fault-tree gates, including sequence-dependency gates, or by a Markov chain. By using this graphical input language, a fault tree becomes a convenient notation for describing a system. In accounting for any sequence dependencies, HARP converts the fault-tree notation to a complex stochastic process that is reduced to a Markov chain, which it can then solve for system reliability. The graphics capability is available for use on an IBM-compatible PC, a Sun, and a VAX workstation. The GO module is written in the C programming language and uses the graphical kernal system (GKS) standard for graphics implementation. The PC, VAX, and Sun versions of the HARP GO module are currently in beta-testing stages.
The Engelbourg's ruins: from 3D TLS point cloud acquisition to 3D virtual and historic models
NASA Astrophysics Data System (ADS)
Koehl, Mathieu; Berger, Solveig; Nobile, Sylvain
2014-05-01
The Castle of Engelbourg was built at the beginning of the 13th century, at the top of the Schlossberg. It is situated on the territory of the municipality of Thann (France), at the crossroads of Alsace and Lorraine, and dominates the outlet of the valley of Thur. Its strategic position was one of the causes of its systematic destructions during the 17th century, and Louis XIV finished his fate by ordering his demolition in 1673. Today only few vestiges remain, of which a section of the main tower from about 7m of diameter and 4m of wide laying on its slice, unique characteristic in the regional castral landscape. It is visible since the valley, was named "the Eye of the witch", and became a key attraction of the region. The site, which extends over approximately one hectare, is for several years the object of numerous archaeological studies and is at the heart of a project of valuation of the vestiges today. It was indeed a key objective, among the numerous planned works, to realize a 3D model of the site in its current state, in other words, a virtual model "such as seized", exploitable as well from a cultural and tourist point of view as by scientists and in archaeological researches. The team of the ICube/INSA lab had in responsibility the realization of this model, the acquisition of the data until the delivery of the virtual model, thanks to 3D TLS and topographic surveying methods. It was also planned to integrate into this 3D model, data of 2D archives, stemming from series of former excavations. The objectives of this project were the following ones: • Acquisition of 3D digital data of the site and 3D modelling • Digitization of the 2D archaeological data and integration in the 3D model • Implementation of a database connected to the 3D model • Virtual Visit of the site The obtained results allowed us to visualize every 3D object individually, under several forms (point clouds, 3D meshed objects and models, etc.) and at several levels of detail
Recent progress in modelling 3D lithospheric deformation
NASA Astrophysics Data System (ADS)
Kaus, B. J. P.; Popov, A.; May, D. A.
2012-04-01
Modelling 3D lithospheric deformation remains a challenging task, predominantly because the variations in rock types, as well as nonlinearities due to for example plastic deformation result in sharp and very large jumps in effective viscosity contrast. As a result, there are only a limited number of 3D codes available, most of which are using direct solvers which are computationally and memory-wise very demanding. As a result, the resolutions for typical model runs are quite modest, despite the use of hundreds of processors (and using much larger computers is unlikely to bring much improvement in this situation). For this reason we recently developed a new 3D deformation code,called LaMEM: Lithosphere and Mantle Evolution Model. LaMEM is written on top of PETSc, and as a result it runs on massive parallel machines and we have a large number of iterative solvers available (including geometric and algebraic multigrid methods). As it remains unclear which solver combinations work best under which conditions, we have implemented most currently suggested methods (such as schur complement reduction or Fully coupled iterations). In addition, we can use either a finite element discretization (with Q1P0, stabilized Q1Q1 or Q2P-1 elements) or a staggered finite difference discretization for the same input geometry, which is based on a marker and cell technique). This gives us he flexibility to test various solver methodologies on the same model setup, in terms of accuracy, speed, memory usage etc. Here, we will report on some features of LaMEM, on recent code additions, as well as on some lessons we learned which are important for modelling 3D lithospheric deformation. Specifically we will discuss: 1) How we combine a particle-and-cell method to make it work with both a finite difference and a (lagrangian, eulerian or ALE) finite element formulation, with only minor code modifications code 2) How finite difference and finite element discretizations compare in terms of
3-D Modeling of a Nearshore Dye Release
NASA Astrophysics Data System (ADS)
Maxwell, A. R.; Hibler, L. F.; Miller, L. M.
2006-12-01
The usage of computer modeling software in predicting the behavior of a plume discharged into deep water is well established. Nearfield plume spreading in coastal areas with complex bathymetry is less commonly studied; in addition to geometry, some of the difficulties of this environment include: tidal exchange, temperature, and salinity gradients. Although some researchers have applied complex hydrodynamic models to this problem, nearfield regions are typically modeled by calibration of an empirical or expert system model. In the present study, the 3D hydrodynamic model Delft3D-FLOW was used to predict the advective transport from a point release in Sequim Bay, Washington. A nested model approach was used, wherein a coarse model using a mesh extending to nearby tide gages (cell sizes up to 1 km) was run over several tidal cycles in order to provide boundary conditions to a smaller area. The nested mesh (cell sizes up to 30 m) was forced on two open boundaries using the water surface elevation derived from the coarse model. Initial experiments with the uncalibrated model were conducted in order to predict plume propagation based on the best available field data. Field experiments were subsequently carried out by releasing rhodamine dye into the bay at near-peak flood tidal current and near high slack tidal conditions. Surface and submerged releases were carried out from an anchored vessel. Concurrently collected data from the experiment include temperature, salinity, dye concentration, and hyperspectral imagery, collected from boats and aircraft. A REMUS autonomous underwater vehicle was used to measure current velocity and dye concentration at varying depths, as well as to acquire additional bathymetric information. Preliminary results indicate that the 3D hydrodynamic model offers a reasonable prediction of plume propagation speed and shape. A sensitivity analysis is underway to determine the significant factors in effectively using the model as a predictive tool
Discussion of Source Reconstruction Models Using 3D MCG Data
NASA Astrophysics Data System (ADS)
Melis, Massimo De; Uchikawa, Yoshinori
In this study we performed the source reconstruction of magnetocardiographic signals generated by the human heart activity to localize the site of origin of the heart activation. The localizations were performed in a four compartment model of the human volume conductor. The analyses were conducted on normal subjects and on a subject affected by the Wolff-Parkinson-White syndrome. Different models of the source activation were used to evaluate whether a general model of the current source can be applied in the study of the cardiac inverse problem. The data analyses were repeated using normal and vector component data of the MCG. The results show that a distributed source model has the better accuracy in performing the source reconstructions, and that 3D MCG data allow finding smaller differences between the different source models.
Modeling moving systems with RELAP5-3D
Mesina, G. L.; Aumiller, David L.; Buschman, Francis X.; Kyle, Matt R.
2015-12-04
RELAP5-3D is typically used to model stationary, land-based reactors. However, it can also model reactors in other inertial and accelerating frames of reference. By changing the magnitude of the gravitational vector through user input, RELAP5-3D can model reactors on a space station or the moon. The field equations have also been modified to model reactors in a non-inertial frame, such as occur in land-based reactors during earthquakes or onboard spacecraft. Transient body forces affect fluid flow in thermal-fluid machinery aboard accelerating crafts during rotational and translational accelerations. It is useful to express the equations of fluid motion in the acceleratingmore » frame of reference attached to the moving craft. However, careful treatment of the rotational and translational kinematics is required to accurately capture the physics of the fluid motion. Correlations for flow at angles between horizontal and vertical are generated via interpolation where no experimental studies or data exist. The equations for three-dimensional fluid motion in a non-inertial frame of reference are developed. As a result, two different systems for describing rotational motion are presented, user input is discussed, and an example is given.« less
Modeling moving systems with RELAP5-3D
Mesina, G. L.; Aumiller, David L.; Buschman, Francis X.; Kyle, Matt R.
2015-12-04
RELAP5-3D is typically used to model stationary, land-based reactors. However, it can also model reactors in other inertial and accelerating frames of reference. By changing the magnitude of the gravitational vector through user input, RELAP5-3D can model reactors on a space station or the moon. The field equations have also been modified to model reactors in a non-inertial frame, such as occur in land-based reactors during earthquakes or onboard spacecraft. Transient body forces affect fluid flow in thermal-fluid machinery aboard accelerating crafts during rotational and translational accelerations. It is useful to express the equations of fluid motion in the accelerating frame of reference attached to the moving craft. However, careful treatment of the rotational and translational kinematics is required to accurately capture the physics of the fluid motion. Correlations for flow at angles between horizontal and vertical are generated via interpolation where no experimental studies or data exist. The equations for three-dimensional fluid motion in a non-inertial frame of reference are developed. As a result, two different systems for describing rotational motion are presented, user input is discussed, and an example is given.
Probabilistic graphical model representation in phylogenetics.
Höhna, Sebastian; Heath, Tracy A; Boussau, Bastien; Landis, Michael J; Ronquist, Fredrik; Huelsenbeck, John P
2014-09-01
Recent years have seen a rapid expansion of the model space explored in statistical phylogenetics, emphasizing the need for new approaches to statistical model representation and software development. Clear communication and representation of the chosen model is crucial for: (i) reproducibility of an analysis, (ii) model development, and (iii) software design. Moreover, a unified, clear and understandable framework for model representation lowers the barrier for beginners and nonspecialists to grasp complex phylogenetic models, including their assumptions and parameter/variable dependencies. Graphical modeling is a unifying framework that has gained in popularity in the statistical literature in recent years. The core idea is to break complex models into conditionally independent distributions. The strength lies in the comprehensibility, flexibility, and adaptability of this formalism, and the large body of computational work based on it. Graphical models are well-suited to teach statistical models, to facilitate communication among phylogeneticists and in the development of generic software for simulation and statistical inference. Here, we provide an introduction to graphical models for phylogeneticists and extend the standard graphical model representation to the realm of phylogenetics. We introduce a new graphical model component, tree plates, to capture the changing structure of the subgraph corresponding to a phylogenetic tree. We describe a range of phylogenetic models using the graphical model framework and introduce modules to simplify the representation of standard components in large and complex models. Phylogenetic model graphs can be readily used in simulation, maximum likelihood inference, and Bayesian inference using, for example, Metropolis-Hastings or Gibbs sampling of the posterior distribution. PMID:24951559
Reassessing Geophysical Models of the Bushveld Complex in 3D
NASA Astrophysics Data System (ADS)
Cole, J.; Webb, S. J.; Finn, C.
2012-12-01
Conceptual geophysical models of the Bushveld Igneous Complex show three possible geometries for its mafic component: 1) Separate intrusions with vertical feeders for the eastern and western lobes (Cousins, 1959) 2) Separate dipping sheets for the two lobes (Du Plessis and Kleywegt, 1987) 3) A single saucer-shaped unit connected at depth in the central part between the two lobes (Cawthorn et al, 1998) Model three incorporates isostatic adjustment of the crust in response to the weight of the dense mafic material. The model was corroborated by results of a broadband seismic array over southern Africa, known as the Southern African Seismic Experiment (SASE) (Nguuri, et al, 2001; Webb et al, 2004). This new information about the crustal thickness only became available in the last decade and could not be considered in the earlier models. Nevertheless, there is still on-going debate as to which model is correct. All of the models published up to now have been done in 2 or 2.5 dimensions. This is not well suited to modelling the complex geometry of the Bushveld intrusion. 3D modelling takes into account effects of variations in geometry and geophysical properties of lithologies in a full three dimensional sense and therefore affects the shape and amplitude of calculated fields. The main question is how the new knowledge of the increased crustal thickness, as well as the complexity of the Bushveld Complex, will impact on the gravity fields calculated for the existing conceptual models, when modelling in 3D. The three published geophysical models were remodelled using full 3Dl potential field modelling software, and including crustal thickness obtained from the SASE. The aim was not to construct very detailed models, but to test the existing conceptual models in an equally conceptual way. Firstly a specific 2D model was recreated in 3D, without crustal thickening, to establish the difference between 2D and 3D results. Then the thicker crust was added. Including the less
3D simulation of the Cluster-Cluster Aggregation model
NASA Astrophysics Data System (ADS)
Li, Chao; Xiong, Hailing
2014-12-01
We write a program to implement the Cluster-Cluster Aggregation (CCA) model with java programming language. By using the simulation program, the fractal aggregation growth process can be displayed dynamically in the form of a three-dimensional (3D) figure. Meanwhile, the related kinetics data of aggregation simulation can be also recorded dynamically. Compared to the traditional programs, the program has better real-time performance and is more helpful to observe the fractal growth process, which contributes to the scientific study in fractal aggregation. Besides, because of adopting java programming language, the program has very good cross-platform performance.
A generic 3D kinetic model of gene expression
NASA Astrophysics Data System (ADS)
Zhdanov, Vladimir P.
2012-04-01
Recent experiments show that mRNAs and proteins can be localized both in prokaryotic and eukaryotic cells. To describe such situations, I present a 3D mean-field kinetic model aimed primarily at gene expression in prokaryotic cells, including the formation of mRNA, its translation into protein, and slow diffusion of these species. Under steady-state conditions, the mRNA and protein spatial distribution is described by simple exponential functions. The protein concentration near the gene transcribed into mRNA is shown to depend on the protein and mRNA diffusion coefficients and degradation rate constants.
Unstructured 3D grid toolbox for modeling and simulation
George, D.
1997-11-01
Computable 3D grids that accurately represent complex multimaterial geometries are essential for both static and time-dependent modeling and simulation. LaGriT, the grid toolbox developed at Los Alamos provides a sophisticated set of initial grid generation, grid maintenance and grid optimization tools. We present example grids that demonstrate the flexibility of the grid generator. Additionally, we present the results of an electrostatic calculation and a grain growth problem that illustrate the grid optimization features and the utility of the grid server architecture.
Simulation of 3D Global Wave Propagation Through Geodynamic Models
NASA Astrophysics Data System (ADS)
Schuberth, B.; Piazzoni, A.; Bunge, H.; Igel, H.; Steinle-Neumann, G.
2005-12-01
This project aims at a better understanding of the forward problem of global 3D wave propagation. We use the spectral element program "SPECFEM3D" (Komatitsch and Tromp, 2002a,b) with varying input models of seismic velocities derived from mantle convection simulations (Bunge et al., 2002). The purpose of this approach is to obtain seismic velocity models independently from seismological studies. In this way one can test the effects of varying parameters of the mantle convection models on the seismic wave field. In order to obtain the seismic velocities from the temperature field of the geodynamical simulations we follow a mineral physics approach. Assuming a certain mantle composition (e.g. pyrolite with CMASF composition) we compute the stable phases for each depth (i.e. pressure) and temperature by system Gibbs free energy minimization. Elastic moduli and density are calculated from the equations of state of the stable mineral phases. For this we use a mineral physics database derived from calorimetric experiments (enthalphy and entropy of formation, heat capacity) and EOS parameters.
3D Model of Melt Distribution in Partially Molten Dunite
NASA Astrophysics Data System (ADS)
Garapic, G.; Faul, U.; Brisson, E.
2010-12-01
The currently existing model of grain-scale melt geometry in the Earth’s upper mantle is derived from theoretical considerations that stem from material science research, combined with relatively low-resolution observations of polished two-dimensional surfaces. This model predicts a simple, interconnected network of melt along three-grain edges in static surface energy equilibrium. However, due to a continuous rearrangements of neighboring grains caused by grain growth, melt forms complex shapes among the grains. As a result, it is impossible to construct a 3D image of the pore space from 2D surfaces, which makes it particularly challenging to resolve the current controversy on whether all two-grain boundaries are wetted or melt-free. We present a new method for reconstruction of the 3D pore space in partially molten rocks. The method consists of serial sectioning and high resolution imaging (Field Emission SEM) of polished surfaces, followed by image alignment and rendering. The ablation rate during serial sectioning is determined by measuring the depth of a laser hole by interferometry. We removed a total of 25 layers with a spacing of of 1.3.microns between layers. Each layer consists of a mosaic of images approximately 300 x 320 microns in size. Melt regions are identified within each layer by hand-digitizing SEM images. We obtain a 3D model by stacking the slices, registering each slice, and using alpha shapes as a surface reconstruction technique. The sample we investigated is a partially molten dunite consisting of Fo90 olivine with a mean grain size of 33 microns and 4% melt. It was run in a piston cylinder at 1350°C and 1 GPa for 432 hours to achieve steady state grain growth. Rendering of the 3D pore space shows that the larger melt pockets at multi-grain junctions change within only a few microns in depth, whereas thin inclusions along two-grain boundaries persist over the entire depth of the imaged volume, which is similar to the mean grain size
Light reflection models for computer graphics.
Greenberg, D P
1989-04-14
During the past 20 years, computer graphic techniques for simulating the reflection of light have progressed so that today images of photorealistic quality can be produced. Early algorithms considered direct lighting only, but global illumination phenomena with indirect lighting, surface interreflections, and shadows can now be modeled with ray tracing, radiosity, and Monte Carlo simulations. This article describes the historical development of computer graphic algorithms for light reflection and pictorially illustrates what will be commonly available in the near future. PMID:17835348
ERIC Educational Resources Information Center
Rowe, Jeremy; Razdan, Anshuman
The Partnership for Research in Spatial Modeling (PRISM) project at Arizona State University (ASU) developed modeling and analytic tools to respond to the limitations of two-dimensional (2D) data representations perceived by affiliated discipline scientists, and to take advantage of the enhanced capabilities of three-dimensional (3D) data that…
Canada in 3D - Toward a Sustainable 3D Model for Canadian Geology from Diverse Data Sources
NASA Astrophysics Data System (ADS)
Brodaric, B.; Pilkington, M.; Snyder, D. B.; St-Onge, M. R.; Russell, H.
2015-12-01
Many big science issues span large areas and require data from multiple heterogeneous sources, for example climate change, resource management, and hazard mitigation. Solutions to these issues can significantly benefit from access to a consistent and integrated geological model that would serve as a framework. However, such a model is absent for most large countries including Canada, due to the size of the landmass and the fragmentation of the source data into institutional and disciplinary silos. To overcome these barriers, the "Canada in 3D" (C3D) pilot project was recently launched by the Geological Survey of Canada. C3D is designed to be evergreen, multi-resolution, and inter-disciplinary: (a) it is to be updated regularly upon acquisition of new data; (b) portions vary in resolution and will initially consist of four layers (surficial, sedimentary, crystalline, and mantle) with intermediary patches of higher-resolution fill; and (c) a variety of independently managed data sources are providing inputs, such as geophysical, 3D and 2D geological models, drill logs, and others. Notably, scalability concerns dictate a decentralized and interoperable approach, such that only key control objects, denoting anchors for the modeling process, are imported into the C3D database while retaining provenance links to original sources. The resultant model is managed in the database, contains full modeling provenance as well as links to detailed information on rock units, and is to be visualized in desktop and online environments. It is anticipated that C3D will become the authoritative state of knowledge for the geology of Canada at a national scale.
Comparative 3-D Modeling of tmRNA
Burks, Jody; Zwieb, Christian; Müller, Florian; Wower, Iwona; Wower, Jacek
2005-01-01
Background Trans-translation releases stalled ribosomes from truncated mRNAs and tags defective proteins for proteolytic degradation using transfer-messenger RNA (tmRNA). This small stable RNA represents a hybrid of tRNA- and mRNA-like domains connected by a variable number of pseudoknots. Comparative sequence analysis of tmRNAs found in bacteria, plastids, and mitochondria provides considerable insights into their secondary structures. Progress toward understanding the molecular mechanism of template switching, which constitutes an essential step in trans-translation, is hampered by our limited knowledge about the three-dimensional folding of tmRNA. Results To facilitate experimental testing of the molecular intricacies of trans-translation, which often require appropriately modified tmRNA derivatives, we developed a procedure for building three-dimensional models of tmRNA. Using comparative sequence analysis, phylogenetically-supported 2-D structures were obtained to serve as input for the program ERNA-3D. Motifs containing loops and turns were extracted from the known structures of other RNAs and used to improve the tmRNA models. Biologically feasible 3-D models for the entire tmRNA molecule could be obtained. The models were characterized by a functionally significant close proximity between the tRNA-like domain and the resume codon. Potential conformational changes which might lead to a more open structure of tmRNA upon binding to the ribosome are discussed. The method, described in detail for the tmRNAs of Escherichia coli, Bacillus anthracis, and Caulobacter crescentus, is applicable to every tmRNA. Conclusion Improved molecular models of biological significance were obtained. These models will guide in the design of experiments and provide a better understanding of trans-translation. The comparative procedure described here for tmRNA is easily adopted for the modeling the members of other RNA families. PMID:15958166
SEARCHBreast Workshop Proceedings: 3D Modelling of Breast Cancer.
Morrissey, Bethny; Blyth, Karen; Carter, Phil; Chelala, Claude; Holen, Ingunn; Jones, Louise; Speirs, Valerie
2015-12-01
SEARCHBreast, a UK initiative supported by the NC3Rs, organised a workshop entitled 3D Modelling of Breast Cancer. The workshop focused on providing researchers with solutions to overcome some of the perceived barriers to working with human-derived tumour cells, cell lines and tissues, namely: a) the limited access to human-derived material; and b) the difficulty in working with these samples. The workshop presentations provided constructive advice and information on how to best prepare human cells or tissues for further downstream applications. Techniques in developing primary cultures from patient samples, and considerations when preserving tissue slices, were discussed. A common theme throughout the workshop was the importance of ensuring that the cells are grown in conditions as similar to the in vivo microenvironment as possible. Comparisons of the advantages of several in vitro options, such as primary cell cultures, cell line cultures, explants or tissue slices, suggest that all offer great potential applications for breast cancer research, and highlight that it need not be a case of choosing one over the other. The workshop also offered cutting-edge examples of on-chip technologies and 3-D tumour modelling by using virtual pathology, which can contribute to clinically relevant studies and provide insights into breast cancer metastatic mechanisms. PMID:26753939
Dynamic deformable models for 3D MRI heart segmentation
NASA Astrophysics Data System (ADS)
Zhukov, Leonid; Bao, Zhaosheng; Gusikov, Igor; Wood, John; Breen, David E.
2002-05-01
Automated or semiautomated segmentation of medical images decreases interstudy variation, observer bias, and postprocessing time as well as providing clincally-relevant quantitative data. In this paper we present a new dynamic deformable modeling approach to 3D segmentation. It utilizes recently developed dynamic remeshing techniques and curvature estimation methods to produce high-quality meshes. The approach has been implemented in an interactive environment that allows a user to specify an initial model and identify key features in the data. These features act as hard constraints that the model must not pass through as it deforms. We have employed the method to perform semi-automatic segmentation of heart structures from cine MRI data.
Stochastic Modeling of Calcium in 3D Geometry
Mazel, Tomáš; Raymond, Rebecca; Raymond-Stintz, Mary; Jett, Stephen; Wilson, Bridget S.
2009-01-01
Release of inflammatory mediators by mast cells in type 1 immediate-hypersensitivity allergic reactions relies on antigen-dependent increases in cytosolic calcium. Here, we used a series of electron microscopy images to build a 3D reconstruction representing a slice through a rat tumor mast cell, which then served as a basis for stochastic modeling of inositol-trisphosphate-mediated calcium responses. The stochastic approach was verified by reaction-diffusion modeling within the same geometry. Local proximity of the endoplasmic reticulum to either the plasma membrane or mitochondria is predicted to differentially impact local inositol trisphosphate receptor transport. The explicit consideration of organelle spatial relationships represents an important step toward building a comprehensive, realistic model of cellular calcium dynamics. PMID:19254531
Topological order in an exactly solvable 3D spin model
Bravyi, Sergey; Leemhuis, Bernhard; Terhal, Barbara M.
2011-04-15
Research highlights: RHtriangle We study exactly solvable spin model with six-qubit nearest neighbor interactions on a 3D face centered cubic lattice. RHtriangle The ground space of the model exhibits topological quantum order. RHtriangle Elementary excitations can be geometrically described as the corners of rectangular-shaped membranes. RHtriangle The ground space can encode 4g qubits where g is the greatest common divisor of the lattice dimensions. RHtriangle Logical operators acting on the encoded qubits are described in terms of closed strings and closed membranes. - Abstract: We study a 3D generalization of the toric code model introduced recently by Chamon. This is an exactly solvable spin model with six-qubit nearest-neighbor interactions on an FCC lattice whose ground space exhibits topological quantum order. The elementary excitations of this model which we call monopoles can be geometrically described as the corners of rectangular-shaped membranes. We prove that the creation of an isolated monopole separated from other monopoles by a distance R requires an operator acting on {Omega}(R{sup 2}) qubits. Composite particles that consist of two monopoles (dipoles) and four monopoles (quadrupoles) can be described as end-points of strings. The peculiar feature of the model is that dipole-type strings are rigid, that is, such strings must be aligned with face-diagonals of the lattice. For periodic boundary conditions the ground space can encode 4g qubits where g is the greatest common divisor of the lattice dimensions. We describe a complete set of logical operators acting on the encoded qubits in terms of closed strings and closed membranes.
GM3D: interactive three-dimensional gravity and magnetic modeling program (GM3D. REV1 user's guide)
Maurer, J.; Atwood, J.W.
1980-10-01
GM3D has been developed for computering the gravity or magnetic anomaly due to a three-dimensional body, and for plotting the resulting contour map. A complex body may be constructed from several right-rectilinear vertical-sided prisms. The program allows the input and editing of the prism data which are then used to calculate the anomaly map for plotting. Plotting is done on either a Tekronix 4014 graphics terminal, a Statos electrostatic plotter, or a CalComp pen plotter. A terminal plot is also available which can be printed on any terminal and on a line printer. The program is written in FORTRAN IV code and operates on a PRIME 400 computer system. Adaptation of the program to other systems is relatively straightforward.
Development of an aquifer management model AQMAN3D
Puig, Juan Carlos; Rolon-Collazo, L. I.; Pagan-Trinidad, Ishmael
1990-01-01
A computer code that enables the use of the USGS Modular groundwater flow model for aquifermanagement modeling has been developed. Aquifermanagement techniques integrate groundwater flow modeling with linear quadratic optimization methods for the solution of various aquifer management problems. The model AQMAN3D, is a modified version of a previously developed two-dimensional AQMAN model. The idea of coupling the AQMAN model with the MODULAR model arose because actual groundwater flow systems behave in a three dimensional manner, therefore requiring treatment as such, and due to the widespread use of MODULAR. The use of the AQMAN3D model permits the implementation of the technique known as aquifer managementmodeling. A generalized approach to obtain an optimal solution to an aquifer management problem is proposed, and a sample test problem is presented to illustrate the use of the model. Even though the model provides the hydrologist with a new and powerful investigative tool, its applicability is limited to confined or quasiconfined systems.
Active Exploration of Large 3D Model Repositories.
Gao, Lin; Cao, Yan-Pei; Lai, Yu-Kun; Huang, Hao-Zhi; Kobbelt, Leif; Hu, Shi-Min
2015-12-01
With broader availability of large-scale 3D model repositories, the need for efficient and effective exploration becomes more and more urgent. Existing model retrieval techniques do not scale well with the size of the database since often a large number of very similar objects are returned for a query, and the possibilities to refine the search are quite limited. We propose an interactive approach where the user feeds an active learning procedure by labeling either entire models or parts of them as "like" or "dislike" such that the system can automatically update an active set of recommended models. To provide an intuitive user interface, candidate models are presented based on their estimated relevance for the current query. From the methodological point of view, our main contribution is to exploit not only the similarity between a query and the database models but also the similarities among the database models themselves. We achieve this by an offline pre-processing stage, where global and local shape descriptors are computed for each model and a sparse distance metric is derived that can be evaluated efficiently even for very large databases. We demonstrate the effectiveness of our method by interactively exploring a repository containing over 100 K models. PMID:26529460
Modeling tree crown dynamics with 3D partial differential equations.
Beyer, Robert; Letort, Véronique; Cournède, Paul-Henry
2014-01-01
We characterize a tree's spatial foliage distribution by the local leaf area density. Considering this spatially continuous variable allows to describe the spatiotemporal evolution of the tree crown by means of 3D partial differential equations. These offer a framework to rigorously take locally and adaptively acting effects into account, notably the growth toward light. Biomass production through photosynthesis and the allocation to foliage and wood are readily included in this model framework. The system of equations stands out due to its inherent dynamic property of self-organization and spontaneous adaptation, generating complex behavior from even only a few parameters. The density-based approach yields spatially structured tree crowns without relying on detailed geometry. We present the methodological fundamentals of such a modeling approach and discuss further prospects and applications. PMID:25101095
3D Tissue-Engineered Model of Ewing Sarcoma
Lamhamedi-Cherradi, Salah-Eddine; Santoro, Marco; Ramammoorthy, Vandhana; Menegaz, Brian A.; Bartholomeusz, Geoffrey; Iles, Lakesla R.; Amin, Hesham M.; Livingston, Andrew J.; Mikos, Antonios G.; Ludwig, Joseph A.
2015-01-01
Despite longstanding reliance upon monolayer culture for studying cancer cells, and numerous advantages from both a practical and experimental standpoint, a growing body of evidence suggests more complex three-dimensional (3D) models are necessary to properly mimic many of the critical hallmarks associated with the oncogenesis, maintenance and spread of Ewing sarcoma (ES), the second most common pediatric bone tumor. And as clinicians increasingly turn to biologically-targeted therapies that exert their effects not only on the tumor cells themselves, but also on the surrounding extracellular matrix, it is especially important that preclinical models evolve in parallel to reliably measure antineoplastic effects and possible mechanisms of de novo and acquired drug resistance. Herein, we highlight a number of innovative methods used to fabricate biomimetic ES tumors, encompassing both the surrounding cellular milieu and extracellular matrix (ECM), and suggest potential applications to advance our understanding of ES biology, preclinical drug testing, and personalized medicine. PMID:25109853
3D Model of the Eta Carinae Little Homunculus Nebula
NASA Astrophysics Data System (ADS)
Steffen, Wolfgang; Teodoro, Mairan; Madura, Thomas; Groh, Jose H.; Gull, Theodore R.; Corcoran, Michael F.; Damineli, Augusto; Hamaguchi, Kenji
2015-01-01
We extend our morpho-kinematic 3D modeling of the Homunculus nebula (Steffen et al., 2014) to the interior nested Little Homunculus. The model is based on spectroscopic observations from HST/STIS. We find that the structure of the interior Little Homunculus is rather flat in the polar regions and interacts with the main Homunculus nebula only on one side, towards the periastron direction of the binary orbit. Furthermore, the two lobes of the LH are misaligned, also towards the periastron direction. As an explanation for the misalignment we propose that, in both cases, shortly after the eruptions that created the bipolar nebulae from the primary star, the off-center wind of the secondary has pushed the ejecta towards the periastron directions, since the secondary is most of the time near the apastron. Future hydrodynamic simulations are warranted to confirm this scenario.
3D in vitro modeling of the central nervous system
Hopkins, Amy M.; DeSimone, Elise; Chwalek, Karolina; Kaplan, David L.
2015-01-01
There are currently more than 600 diseases characterized as affecting the central nervous system (CNS) which inflict neural damage. Unfortunately, few of these conditions have effective treatments available. Although significant efforts have been put into developing new therapeutics, drugs which were promising in the developmental phase have high attrition rates in late stage clinical trials. These failures could be circumvented if current 2D in vitro and in vivo models were improved. 3D, tissue-engineered in vitro systems can address this need and enhance clinical translation through two approaches: (1) bottom-up, and (2) top-down (developmental/regenerative) strategies to reproduce the structure and function of human tissues. Critical challenges remain including biomaterials capable of matching the mechanical properties and extracellular matrix (ECM) composition of neural tissues, compartmentalized scaffolds that support heterogeneous tissue architectures reflective of brain organization and structure, and robust functional assays for in vitro tissue validation. The unique design parameters defined by the complex physiology of the CNS for construction and validation of 3D in vitro neural systems are reviewed here. PMID:25461688
Graphical Model Theory for Wireless Sensor Networks
Davis, William B.
2002-12-08
Information processing in sensor networks, with many small processors, demands a theory of computation that allows the minimization of processing effort, and the distribution of this effort throughout the network. Graphical model theory provides a probabilistic theory of computation that explicitly addresses complexity and decentralization for optimizing network computation. The junction tree algorithm, for decentralized inference on graphical probability models, can be instantiated in a variety of applications useful for wireless sensor networks, including: sensor validation and fusion; data compression and channel coding; expert systems, with decentralized data structures, and efficient local queries; pattern classification, and machine learning. Graphical models for these applications are sketched, and a model of dynamic sensor validation and fusion is presented in more depth, to illustrate the junction tree algorithm.
Polygonal Shapes Detection in 3d Models of Complex Architectures
NASA Astrophysics Data System (ADS)
Benciolini, G. B.; Vitti, A.
2015-02-01
A sequential application of two global models defined on a variational framework is proposed for the detection of polygonal shapes in 3D models of complex architectures. As a first step, the procedure involves the use of the Mumford and Shah (1989) 1st-order variational model in dimension two (gridded height data are processed). In the Mumford-Shah model an auxiliary function detects the sharp changes, i.e., the discontinuities, of a piecewise smooth approximation of the data. The Mumford-Shah model requires the global minimization of a specific functional to simultaneously produce both the smooth approximation and its discontinuities. In the proposed procedure, the edges of the smooth approximation derived by a specific processing of the auxiliary function are then processed using the Blake and Zisserman (1987) 2nd-order variational model in dimension one (edges are processed in the plane). This second step permits to describe the edges of an object by means of piecewise almost-linear approximation of the input edges themselves and to detects sharp changes of the first-derivative of the edges so to detect corners. The Mumford-Shah variational model is used in two dimensions accepting the original data as primary input. The Blake-Zisserman variational model is used in one dimension for the refinement of the description of the edges. The selection among all the boundaries detected by the Mumford-Shah model of those that present a shape close to a polygon is performed by considering only those boundaries for which the Blake-Zisserman model identified discontinuities in their first derivative. The output of the procedure are hence shapes, coming from 3D geometric data, that can be considered as polygons. The application of the procedure is suitable for, but not limited to, the detection of objects such as foot-print of polygonal buildings, building facade boundaries or windows contours. v The procedure is applied to a height model of the building of the Engineering
NASA Astrophysics Data System (ADS)
Sulzmann, Armin; Carlier, Jerome; Jacot, Jacques
1996-10-01
The aim of this project is to telecontrol the movements in 3D-space of a microscope in order to manipulate and measure microsystems or micro parts aided by multi-user virtual reality (VR) environments. Presently microsystems are gaining in interest. Microsystems are small, independent modules, incorporating various functions, such as electronic, micro mechanical, data processing, optical, chemical, medical and biological functions. Though improving the manufacturing technologies, the measurement of the small structures to insure the quality of the process is a key information for the development. So far to measure the micro structures strong microscopes are needed. The use of highly magnifying computerized microscopes is expensive. To insure high quality measurements and distribute the acquired information to multi-user our proposed system is divided into three parts: the virtual reality microscopic environment (VRME)-based user-interface on a SGI workstation to prepare the manipulations and measurements. Secondly the computerized light microscope with the vision system inspecting the scene and getting the images of the specimen. Newly developed vision algorithms are used to analyze micro structures in the scene corresponding to the known a priori model. This vision is extracting position and shape of the objects and then transmitted as feedback to the user of the VRME-system to update his virtual environment. The internet demon is the third part of the system and distributes the information about the position of the micro structures, their shape and the images to the connected users who themselves may interact with the microscope (turn and displace the specimen on the back of a moving platform, or adding their structures to the scene and compare). The key idea behind our project VRME is to use the intuitiveness and the 3D visualization of VR environments coupled with a vision system to perform measurements of micro structures at a high accuracy. The direct
Advanced prior modeling for 3D bright field electron tomography
NASA Astrophysics Data System (ADS)
Sreehari, Suhas; Venkatakrishnan, S. V.; Drummy, Lawrence F.; Simmons, Jeffrey P.; Bouman, Charles A.
2015-03-01
Many important imaging problems in material science involve reconstruction of images containing repetitive non-local structures. Model-based iterative reconstruction (MBIR) could in principle exploit such redundancies through the selection of a log prior probability term. However, in practice, determining such a log prior term that accounts for the similarity between distant structures in the image is quite challenging. Much progress has been made in the development of denoising algorithms like non-local means and BM3D, and these are known to successfully capture non-local redundancies in images. But the fact that these denoising operations are not explicitly formulated as cost functions makes it unclear as to how to incorporate them in the MBIR framework. In this paper, we formulate a solution to bright field electron tomography by augmenting the existing bright field MBIR method to incorporate any non-local denoising operator as a prior model. We accomplish this using a framework we call plug-and-play priors that decouples the log likelihood and the log prior probability terms in the MBIR cost function. We specifically use 3D non-local means (NLM) as the prior model in the plug-and-play framework, and showcase high quality tomographic reconstructions of a simulated aluminum spheres dataset, and two real datasets of aluminum spheres and ferritin structures. We observe that streak and smear artifacts are visibly suppressed, and that edges are preserved. Also, we report lower RMSE values compared to the conventional MBIR reconstruction using qGGMRF as the prior model.
Ma, Nina K L; Lim, Jia Kai; Leong, Meng Fatt; Sandanaraj, Edwin; Ang, Beng Ti; Tang, Carol; Wan, Andrew C A
2016-02-01
A hierarchy of cellular stemness exists in certain cancers, and any successful strategy to treat such cancers would have to eliminate the self-renewing tumor-initiating cells at the apex of the hierarchy. The cellular microenvironment, in particular the extracellular matrix (ECM), is believed to have a role in regulating stemness. In this work, U251 glioblastoma cells are cultured on electrospun polystyrene (ESPS) scaffolds coated with an array of 7 laminin isoforms to provide a 3D model for stem cell-related genes and proteins expression studies. We observed collaboration between 3D context and laminins in promoting glioma stemness. Depending on the laminin isoform presented, U251 cells cultured on ESPS scaffolds (3D) exhibited increased expression of stemness markers compared to those cultured on tissue culture polystyrene (2D). Our results indicate the influence of 3D (versus 2D) context on integrin expression, specifically, the upregulation of the laminin-binding integrins alpha 6 and beta 4. By a colony forming assay, we showed enhanced clonogenicity of cells grown on ESPS scaffolds in collaboration with laminins 411, 421, 511 and 521. Evaluation of patient glioma databases demonstrated significant enrichment of integrin and ECM pathway networks in tumors of worse prognosis, consistent with our observations. The present results demonstrate how 3D versus 2D context profoundly affects ECM signaling, leading to stemness. PMID:26684838
3D density model of the Central Andes
NASA Astrophysics Data System (ADS)
Prezzi, Claudia B.; Götze, Hans-Jürgen; Schmidt, Sabine
2009-12-01
We developed a 3D density model of the continental crust, the subducted plate and the upper mantle of the Central Andes between 20-29°S and 74-61°W through the forward modelling of Bouguer anomaly. The goal of this contribution is to gain insight on the lithospheric structure integrating the available information (geophysical, geologic, petrologic, and geochemical) in a single model. The geometry of our model is defined and constrained by hypocentre location, reflection and refraction on and offshore seismic lines, travel time and attenuation tomography, receiver function analysis, magnetotelluric studies, thermal models and balanced structural cross-sections. The densities allocated to the different bodies are calculated considering petrologic and geochemical data and pressure and temperature conditions. The model consists of 31 parallel E-W vertical planes, where the continental crust comprises distinct bodies, which represent the different morphotectonic units of the Central Andes. We include a partial melting zone at midcrustal depths under the Altiplano-Puna (low-velocity zone) and consider the presence of a rheologically strong block beneath the Salar de Atacama basin, according to recent seismic studies. Contour maps of the depth of the continental Moho, the thickness of the lower crust and the depth to the bottom of the lithosphere below South America are produced. The possible percentage of partial melt in the Central Andes low-velocity zone is estimated. The residual anomaly is calculated by subtracting from the Bouguer anomaly the gravimetric effect of the modelled subducted slab and of the modelled Moho. Isostatic anomalies are calculated from regional and local isostatic Mohos calculated with and without internal loads, derived from our gravity model, which are then compared to the modelled continental Moho. This study contributes to a more detailed knowledge of the lithospheric structure of this region of the Andes and provides an integrated 3D
Faceless identification: a model for person identification using the 3D shape and 3D motion as cues
NASA Astrophysics Data System (ADS)
Klasen, Lena M.; Li, Haibo
1999-02-01
Person identification by using biometric methods based on image sequences, or still images, often requires a controllable and cooperative environment during the image capturing stage. In the forensic case the situation is more likely to be the opposite. In this work we propose a method that makes use of the anthropometry of the human body and human actions as cues for identification. Image sequences from surveillance systems are used, which can be seen as monocular image sequences. A 3D deformable wireframe body model is used as a platform to handle the non-rigid information of the 3D shape and 3D motion of the human body from the image sequence. A recursive method for estimating global motion and local shape variations is presented, using two recursive feedback systems.
The USGS 3D Seismic Velocity Model for Northern California
NASA Astrophysics Data System (ADS)
Brocher, T. M.; Aagaard, B.; Simpson, R. W.; Jachens, R. C.
2006-12-01
We present a new regional 3D seismic velocity model for Northern California for use in strong motion simulations of the 1906 San Francisco and other earthquakes. The model includes compressional-wave velocity (Vp), shear-wave velocity (Vs), density, and intrinsic attenuation (Qp, Qs). These properties were assigned for each rock type in a 3D geologic model derived from surface outcrops, boreholes, gravity and magnetic data, and seismic reflection, refraction, and tomography studies. A detailed description of the model, USGS Bay Area Velocity Model 05.1.0, is available online [http://www.sf06simulation.org/geology/velocitymodel]. For ground motion simulations Vs and Qs are more important parameters than Vp and Qp because the strongest ground motions are generated chiefly by shear and surface wave arrivals. Because Vp data are more common than Vs data, however, we first developed Vp versus depth relations for each rock type and then converted these to Vs versus depth relations. For the most important rock types in Northern California we compiled measurements of Vp versus depth using borehole logs, laboratory measurements on hand samples, seismic refraction profiles, and tomography models. These rock types include Salinian and Sierran granitic rocks, metagraywackes and greenstones of the Franciscan Complex, Tertiary and Mesozoic sedimentary and volcanic rocks, and Quaternary and Holocene deposits (Brocher, USGS OFR 05-1317, 2005). Vp versus depth curves were converted to Vs versus depth curves using new empirical nonlinear relations between Vs and Vp (Brocher, BSSA, 2005). These relations, showing that Poisson's ratio is a nonlinear function of Vp, were similarly based on compilations of diverse Vs and Vp measurements on a large suite of rock types, mainly from California and the Pacific Northwest. The model is distributed in a discretized form with routines to query the model using C++, C, and Fortran 77 programming languages. The geologic model was discretized at
A 3D Bubble Merger Model for RTI Mixing
NASA Astrophysics Data System (ADS)
Cheng, Baolian
2015-11-01
In this work we present a model for the merger processes of bubbles at the edge of an unstable acceleration driven mixing layer. Steady acceleration defines a self-similar mixing process, with a time-dependent inverse cascade of structures of increasing size. The time evolution is itself a renormalization group evolution. The model predicts the growth rate of a Rayleigh-Taylor chaotic fluid-mixing layer. The 3-D model differs from the 2-D merger model in several important ways. Beyond the extension of the model to three dimensions, the model contains one phenomenological parameter, the variance of the bubble radii at fixed time. The model also predicts several experimental numbers: the bubble mixing rate, the mean bubble radius, and the bubble height separation at the time of merger. From these we also obtain the bubble height to the radius aspect ratio, which is in good agreement with experiments. Applications to recent NIF and Omega experiments will be discussed. This work was performed under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under Contract No. W-7405-ENG-36.
3-D numerical modeling of plume-induced subduction initiation
NASA Astrophysics Data System (ADS)
Baes, Marzieh; Gerya, taras; Sobolev, Stephan
2016-04-01
Investigation of mechanisms involved in formation of a new subduction zone can help us to better understand plate tectonics. Despite numerous previous studies, it is still unclear how and where an old oceanic plate starts to subduct beneath the other plate. One of the proposed scenarios for nucleation of subduction is plume-induced subduction initiation, which was investigated in detail, using 2-D models, by Ueda et al. (2008). Recently. Gerya et al. (2015), using 3D numerical models, proposed that plume-lithosphere interaction in the Archean led to the subduction initiation and onset of plate tectonic. In this study, we aim to pursue work of Ueda et al. (2008) by incorporation of 3-D thermo-mechanical models to investigate conditions leading to oceanic subduction initiation as a result of thermal-chemical mantle plume-lithosphere interaction in the modern earth. Results of our experiments show four different deformation regimes in response to plume-lithosphere interaction, that are a) self-sustaining subduction initiation where subduction becomes self-sustained, b) freezing subduction initiation where subduction stops at shallow depths, c) slab break-off where subducting circular slab breaks off soon after formation and d) plume underplating where plume does not pass through the lithosphere but spreads beneath it (failed subduction initiation). These different regimes depend on several parameters such as plume's size, composition and temperature, lithospheric brittle/plastic strength, age of the oceanic lithosphere and presence/absence of lithospheric heterogeneities. Results show that subduction initiates and becomes self-sustained when lithosphere is older than 10 Myr and non-dimensional ratio of the plume buoyancy force and lithospheric strength above the plume is higher than 2.
3D model generation using an airborne swarm
NASA Astrophysics Data System (ADS)
Clark, R. A.; Punzo, G.; Dobie, G.; MacLeod, C. N.; Summan, R.; Pierce, G.; Macdonald, M.; Bolton, G.
2015-03-01
Using an artificial kinematic field to provide co-ordination between multiple inspection UAVs, the authors herein demonstrate full 3D modelling capability based on a photogrammetric system. The operation of the system is demonstrated by generating a full 3D surface model of an intermediate level nuclear waste storage drum. Such drums require periodic inspection to ensure that drum distortion or corrosion is carefully monitored. Performing this inspection with multiple airborne platforms enables rapid inspection of structures that are inaccessible to on-surface remote vehicles and are in human-hazardous environments. A three-dimensional surface-meshed model of the target can then be constructed in post-processing through photogrammetry analysis of the visual inspection data. The inspection environment uses a tracking system to precisely monitor the position of each aerial vehicle within the enclosure. The vehicles used are commercially available Parrot AR. Drone quadcopters, controlled through a computer interface connected over an IEEE 802.11n (WiFi) network, implementing a distributed controller for each vehicle. This enables the autonomous and distributed elements of the control scheme to be retained, while alleviating the vehicles of the control algorithm's computational load. The control scheme relies on a kinematic field defined with the target at its centre. This field defines the trajectory for all the drones in the volume relative to the central target, enabling the drones to circle the target at a set radius while avoiding drone collisions. This function enables complete coverage along the height of the object, which is assured by transitioning to another inspection band only after completing circumferential coverage. Using a swarm of vehicles, the time until complete coverage can be significantly reduced.
3D model generation using an airborne swarm
Clark, R. A.; Punzo, G.; Macdonald, M.; Dobie, G.; MacLeod, C. N.; Summan, R.; Pierce, G.; Bolton, G.
2015-03-31
Using an artificial kinematic field to provide co-ordination between multiple inspection UAVs, the authors herein demonstrate full 3D modelling capability based on a photogrammetric system. The operation of the system is demonstrated by generating a full 3D surface model of an intermediate level nuclear waste storage drum. Such drums require periodic inspection to ensure that drum distortion or corrosion is carefully monitored. Performing this inspection with multiple airborne platforms enables rapid inspection of structures that are inaccessible to on-surface remote vehicles and are in human-hazardous environments. A three-dimensional surface-meshed model of the target can then be constructed in post-processing through photogrammetry analysis of the visual inspection data. The inspection environment uses a tracking system to precisely monitor the position of each aerial vehicle within the enclosure. The vehicles used are commercially available Parrot AR. Drone quadcopters, controlled through a computer interface connected over an IEEE 802.11n (WiFi) network, implementing a distributed controller for each vehicle. This enables the autonomous and distributed elements of the control scheme to be retained, while alleviating the vehicles of the control algorithm’s computational load. The control scheme relies on a kinematic field defined with the target at its centre. This field defines the trajectory for all the drones in the volume relative to the central target, enabling the drones to circle the target at a set radius while avoiding drone collisions. This function enables complete coverage along the height of the object, which is assured by transitioning to another inspection band only after completing circumferential coverage. Using a swarm of vehicles, the time until complete coverage can be significantly reduced.
Operations on Graphical Models with Plates
NASA Technical Reports Server (NTRS)
Buntine, Wray L.; Lum, Henry, Jr. (Technical Monitor)
1994-01-01
This paper explains how graphical models, for instance Bayesian or Markov networks, can be extended to model problems in data analysis and learning. This provides a unified framework that combines lessons learned from the artificial intelligence, statistical and connectionist communities. This also offers a set of principles for developing a software generator for data analysis, whereby a learning or discovery system can be compiled from specifications. Many of the popular learning algorithms can be compiled in this way from graphical specifications. While in a sense this paper is a multidisciplinary review of learning, the main contribution here is the presentation of the material within the unifying framework of graphical models, and the observation that, as a result, the process of developing learning algorithms can be partly automated.
3D Modeling of Branching Structures for Anatomical Instruction
Mattingly, William A.; Chariker, Julia H.; Paris, Richard; Chang, Dar-jen; Pani, John R.
2015-01-01
Branching tubular structures are prevalent in many different organic and synthetic settings. From trees and vegetation in nature, to vascular structures throughout human and animal biology, these structures are always candidates for new methods of graphical and visual expression. We present a modeling tool for the creation and interactive modification of these structures. Parameters such as thickness and position of branching structures can be modified, while geometric constraints ensure that the resulting mesh will have an accurate anatomical structure by not having inconsistent geometry. We apply this method to the creation of accurate representations of the different types of retinal cells in the human eye. This method allows a user to quickly produce anatomically accurate structures with low polygon counts that are suitable for rendering at interactive rates on commodity computers and mobile devices. PMID:27087764
Data Analysis with Graphical Models: Software Tools
NASA Technical Reports Server (NTRS)
Buntine, Wray L.
1994-01-01
Probabilistic graphical models (directed and undirected Markov fields, and combined in chain graphs) are used widely in expert systems, image processing and other areas as a framework for representing and reasoning with probabilities. They come with corresponding algorithms for performing probabilistic inference. This paper discusses an extension to these models by Spiegelhalter and Gilks, plates, used to graphically model the notion of a sample. This offers a graphical specification language for representing data analysis problems. When combined with general methods for statistical inference, this also offers a unifying framework for prototyping and/or generating data analysis algorithms from graphical specifications. This paper outlines the framework and then presents some basic tools for the task: a graphical version of the Pitman-Koopman Theorem for the exponential family, problem decomposition, and the calculation of exact Bayes factors. Other tools already developed, such as automatic differentiation, Gibbs sampling, and use of the EM algorithm, make this a broad basis for the generation of data analysis software.
Optimising GPR modelling: A practical, multi-threaded approach to 3D FDTD numerical modelling
NASA Astrophysics Data System (ADS)
Millington, T. M.; Cassidy, N. J.
2010-09-01
The demand for advanced interpretational tools has lead to the development of highly sophisticated, computationally demanding, 3D GPR processing and modelling techniques. Many of these methods solve very large problems with stepwise methods that utilise numerically similar functions within iterative computational loops. Problems of this nature are readily parallelised by splitting the computational domain into smaller, independent chunks for direct use on cluster-style, multi-processor supercomputers. Unfortunately, the implications of running such facilities, as well as time investment needed to develop the parallel codes, means that for most researchers, the use of these advanced methods is too impractical. In this paper, we propose an alternative method of parallelisation which exploits the capabilities of the modern multi-core processors (upon which today's desktop PCs are built) by multi-threading the calculation of a problem's individual sub-solutions. To illustrate the approach, we have applied it to an advanced, 3D, finite-difference time-domain (FDTD) GPR modelling tool in which the calculation of the individual vector field components is multi-threaded. To be of practical use, the FDTD scheme must be able to deliver accurate results with short execution times and we, therefore, show that the performance benefits of our approach can deliver runtimes less than half those of the more conventional, serial programming techniques. We evaluate implementations of the technique using different programming languages (e.g., Matlab, Java, C++), which will facilitate the construction of a flexible modelling tool for use in future GPR research. The implementations are compared on a variety of typical hardware platforms, having between one and eight processing cores available, and also a modern Graphical Processing Unit (GPU)-based computer. Our results show that a multi-threaded xyz modelling approach is easy to implement and delivers excellent results when implemented
Crashworthiness analysis using advanced material models in DYNA3D
Logan, R.W.; Burger, M.J.; McMichael, L.D.; Parkinson, R.D.
1993-10-22
As part of an electric vehicle consortium, LLNL and Kaiser Aluminum are conducting experimental and numerical studies on crashworthy aluminum spaceframe designs. They have jointly explored the effect of heat treat on crush behavior and duplicated the experimental behavior with finite-element simulations. The major technical contributions to the state of the art in numerical simulation arise from the development and use of advanced material model descriptions for LLNL`s DYNA3D code. Constitutive model enhancements in both flow and failure have been employed for conventional materials such as low-carbon steels, and also for lighter weight materials such as aluminum and fiber composites being considered for future vehicles. The constitutive model enhancements are developed as extensions from LLNL`s work in anisotropic flow and multiaxial failure modeling. Analysis quality as a function of level of simplification of material behavior and mesh is explored, as well as the penalty in computation cost that must be paid for using more complex models and meshes. The lightweight material modeling technology is being used at the vehicle component level to explore the safety implications of small neighborhood electric vehicles manufactured almost exclusively from these materials.
3D Printed Molecules and Extended Solid Models for Teaching Symmetry and Point Groups
ERIC Educational Resources Information Center
Scalfani, Vincent F.; Vaid, Thomas P.
2014-01-01
Tangible models help students and researchers visualize chemical structures in three dimensions (3D). 3D printing offers a unique and straightforward approach to fabricate plastic 3D models of molecules and extended solids. In this article, we prepared a series of digital 3D design files of molecular structures that will be useful for teaching…
Energy flow in passive and active 3D cochlear model
Wang, Yanli; Steele, Charles; Puria, Sunil
2015-12-31
Energy flow in the cochlea is an important characteristic of the cochlear traveling wave, and many investigators, such as von Békésy and Lighthill, have discussed this phenomenon. Particularly after the discovery of the motility of the outer hair cells (OHCs), the nature of the power gain of the cochlea has been a fundamental research question. In the present work, direct three-dimensional (3D) calculations of the power on cross sections of the cochlea and on the basilar membrane are performed based on a box model of the mouse cochlea. The distributions of the fluid pressure and fluid velocity in the scala vestibuli are presented. The power output from the OHCs and the power loss due to fluid viscous damping are calculated along the length of the cochlea. This work provides a basis for theoretical calculations of the power gain of the OHCs from mechanical considerations.
Energy flow in passive and active 3D cochlear model
NASA Astrophysics Data System (ADS)
Wang, Yanli; Puria, Sunil; Steele, Charles
2015-12-01
Energy flow in the cochlea is an important characteristic of the cochlear traveling wave, and many investigators, such as von Békésy and Lighthill, have discussed this phenomenon. Particularly after the discovery of the motility of the outer hair cells (OHCs), the nature of the power gain of the cochlea has been a fundamental research question. In the present work, direct three-dimensional (3D) calculations of the power on cross sections of the cochlea and on the basilar membrane are performed based on a box model of the mouse cochlea. The distributions of the fluid pressure and fluid velocity in the scala vestibuli are presented. The power output from the OHCs and the power loss due to fluid viscous damping are calculated along the length of the cochlea. This work provides a basis for theoretical calculations of the power gain of the OHCs from mechanical considerations.
3D Model of the San Emidio Geothermal Area
James E. Faulds
2013-12-31
The San Emidio geothermal system is characterized by a left-step in a west-dipping normal fault system that bounds the western side of the Lake Range. The 3D geologic model consists of 5 geologic units and 55 faults. Overlying Jurrassic-Triassic metasedimentary basement is a ~500 m-1000 m thick section of the Miocene lower Pyramid sequence, pre- syn-extensional Quaternary sedimentary rocks and post-extensional Quaternary rocks. 15-30º eastward dip of the stratigraphy is controlled by the predominant west-dipping fault set. Both geothermal production and injection are concentrated north of the step over in an area of closely spaced west dipping normal faults.
3D lithography modeling for ground rule development
NASA Astrophysics Data System (ADS)
Sarma, Chandra; Bailey, Todd; Lyons, Adam; Shao, Dongbing
2011-04-01
The ability to incorporate the effect of patterned underlayers in a 3-dimensional physical resist model that truly mimics the process on real wafers could be used to formulate robust ground rules for design. We have shown as an example block level simulations, where the resist critical dimension is determined by the presence of STI (shallow trench isolation) and/or patterned gate level underneath & their relative spacing, as confirmed on wafer. We will demonstrate how the results of such study could be used for creating ground rules which are truly dependent on the interaction between the current layer resist & the patterned layers underneath. We have also developed a new way to visualize lithographic process variations in 3-D space that is useful for simulation analysis that can prove very helpful in ground rule development and process optimization. Such visualization capability in the dataprep flow to flag issues or dispose critical structures increases speed and efficiency in the mask tapeout process.
Massive fermion model in 3d and higher spin currents
NASA Astrophysics Data System (ADS)
Bonora, L.; Cvitan, M.; Prester, P. Dominis; de Souza, B. Lima; Smolić, I.
2016-05-01
We analyze the 3d free massive fermion theory coupled to external sources. The presence of a mass explicitly breaks parity invariance. We calculate two- and three-point functions of a gauge current and the energy momentum tensor and, for instance, obtain the well-known result that in the IR limit (but also in the UV one) we reconstruct the relevant CS action. We then couple the model to higher spin currents and explicitly work out the spin 3 case. In the UV limit we obtain an effective action which was proposed many years ago as a possible generalization of spin 3 CS action. In the IR limit we derive a different higher spin action. This analysis can evidently be generalized to higher spins. We also discuss the conservation and properties of the correlators we obtain in the intermediate steps of our derivation.
3D Model of the Neal Hot Springs Geothermal Area
Faulds, James E.
2013-12-31
The Neal Hot Springs geothermal system lies in a left-step in a north-striking, west-dipping normal fault system, consisting of the Neal Fault to the south and the Sugarloaf Butte Fault to the north (Edwards, 2013). The Neal Hot Springs 3D geologic model consists of 104 faults and 13 stratigraphic units. The stratigraphy is sub-horizontal to dipping <10 degrees and there is no predominant dip-direction. Geothermal production is exclusively from the Neal Fault south of, and within the step-over, while geothermal injection is into both the Neal Fault to the south of the step-over and faults within the step-over.
On Building a 3D Model of the M87 Jet
NASA Astrophysics Data System (ADS)
Li, Kunyang; Kosak, Katie; Avachat, Sayali S.; Perlman, Eric S.
2016-01-01
Optical and radio images of the M87 jet show a huge variety of parsec-scale bends and helical distortion from HST-1 to knot C. The sinusoidal pattern in the outer jet is observed in both bands, suggesting a possible double helical structure. We developed a mathematical model that converts the observed 2D projection of the jet to a 3D configuration by using three inputs: the viewing angle (estimated from 20 years of HST monitoring of the jet), distances and relative angles between bends measured from the HST optical and VLA/VLBA radio images of the M87 jet. Our model is written in Python, combining nonlinear optimization methods and computer graphics to describe and demonstrate the jet geometry. We are extensively testing the scripts to compare stability of the model, optimization techniques, and model with the data of galactic jets, focusing on M87.
3D Model of the Tuscarora Geothermal Area
Faulds, James E.
2013-12-31
The Tuscarora geothermal system sits within a ~15 km wide left-step in a major west-dipping range-bounding normal fault system. The step over is defined by the Independence Mountains fault zone and the Bull Runs Mountains fault zone which overlap along strike. Strain is transferred between these major fault segments via and array of northerly striking normal faults with offsets of 10s to 100s of meters and strike lengths of less than 5 km. These faults within the step over are one to two orders of magnitude smaller than the range-bounding fault zones between which they reside. Faults within the broad step define an anticlinal accommodation zone wherein east-dipping faults mainly occupy western half of the accommodation zone and west-dipping faults lie in the eastern half of the accommodation zone. The 3D model of Tuscarora encompasses 70 small-offset normal faults that define the accommodation zone and a portion of the Independence Mountains fault zone, which dips beneath the geothermal field. The geothermal system resides in the axial part of the accommodation, straddling the two fault dip domains. The Tuscarora 3D geologic model consists of 10 stratigraphic units. Unconsolidated Quaternary alluvium has eroded down into bedrock units, the youngest and stratigraphically highest bedrock units are middle Miocene rhyolite and dacite flows regionally correlated with the Jarbidge Rhyolite and modeled with uniform cumulative thickness of ~350 m. Underlying these lava flows are Eocene volcanic rocks of the Big Cottonwood Canyon caldera. These units are modeled as intracaldera deposits, including domes, flows, and thick ash deposits that change in thickness and locally pinch out. The Paleozoic basement of consists metasedimenary and metavolcanic rocks, dominated by argillite, siltstone, limestone, quartzite, and metabasalt of the Schoonover and Snow Canyon Formations. Paleozoic formations are lumped in a single basement unit in the model. Fault blocks in the eastern
A 3D parallel model of Ganymede's exosphere
NASA Astrophysics Data System (ADS)
Leclercq, Ludivine; Turc, Lucile; François, Leblanc; Ronan, Modolo
2013-04-01
Ganymede is a unique object : it is the biggest moon of our solar system, and the only satellite which has its own intrinsic magnetic field. Its surface is covered by water ice and by regolith. Some previous observations suggest that below its surface may exist an ocean of liquid water. The atmosphere of the planet is poorly known but should be composed essentially of water, hydrogen and oxygen (Marconi et al., Icarus, 2007). These atmospheric particles mainly originate from the surface thanks to sublimation of water-ice and sputtering, a process driven by the magnetospheric Jovian particles impacting Ganymede surface and leading to ejection of atoms and molecules into Ganymede atmosphere. We developed a model of Ganymede's atmosphere based on a 3D Monte Carlo description of the fate of the ejected particles from the surface. This model has been parallelized allowing a much better statistical, spatial and temporal description of Ganymede's environment. This model includes the main sources of the neutral atmosphere and is able to calculate all its characteristics. It was successfully compared to the few known observations as well as to previous modeling. In this presentation, we will present the main characteristics of this model and what it tells us on Ganymede's atmosphere, in terms of spatial structure, composition, temporal variability and relations with both magnetosphere and surface.
Modeling Electric Current Flow in 3D Fractured Media
NASA Astrophysics Data System (ADS)
Demirel, S.; Roubinet, D.; Irving, J.
2014-12-01
The study of fractured rocks is extremely important in a variety of research fields and applications such as hydrogeology, hydrocarbon extraction and long-term storage of toxic waste. As fractures are highly conductive structures in comparison to the surrounding rock, their presence can be either an advantage or a drawback. For hydrocarbon extraction, fractures allow for quick and easy access to the resource whereas for toxic waste storage their presence increases the risk of leakage and migration of pollutants. In both cases, the identification of fracture network characteristics is an essential step. Recently, we have developed an approach for modeling electric current flow in 2D fractured media. This approach is based on a discrete-dual-porosity model where fractures are represented explicitly, the matrix is coarsely discretized into blocks, and current flow exchange between the fractures and matrix is analytically evaluated at the fracture-scale and integrated at the block-scale [1]. Although this approach has shown much promise and has proven its efficiency for 2D simulations, its extension to 3D remains to be addressed. To this end, we assume that fractures can be represented as two-dimensional finite planes embedded in the surrounding matrix, and we express analytically the distribution of electric potential at the fracture scale. This fracture-scale expression takes into account the electric-current-flow exchange with the surrounding matrix and flow conservation is enforced at the fracture intersections. The fracture-matrix exchange is then integrated at the matrix-block scale where the electric current flow conservation at the block boundaries is formulated with a modified finite volume method. With the objective of providing a low-computational-cost modeling approach adapted to 3D simulations in fractured media, our model is (i) validated and compared to existing modeling approaches and, (ii) used to evaluate the impact of the presence of fractures on
Joint estimation of multiple graphical models
Guo, Jian; Levina, Elizaveta; Michailidis, George; Zhu, Ji
2011-01-01
Summary Gaussian graphical models explore dependence relationships between random variables, through the estimation of the corresponding inverse covariance matrices. In this paper we develop an estimator for such models appropriate for data from several graphical models that share the same variables and some of the dependence structure. In this setting, estimating a single graphical model would mask the underlying heterogeneity, while estimating separate models for each category does not take advantage of the common structure. We propose a method that jointly estimates the graphical models corresponding to the different categories present in the data, aiming to preserve the common structure, while allowing for differences between the categories. This is achieved through a hierarchical penalty that targets the removal of common zeros in the inverse covariance matrices across categories. We establish the asymptotic consistency and sparsity of the proposed estimator in the high-dimensional case, and illustrate its performance on a number of simulated networks. An application to learning semantic connections between terms from webpages collected from computer science departments is included. PMID:23049124
A hybrid-3D hillslope hydrological model for use in Earth system models
NASA Astrophysics Data System (ADS)
Hazenberg, P.; Fang, Y.; Broxton, P.; Gochis, D.; Niu, G.-Y.; Pelletier, J. D.; Troch, P. A.; Zeng, X.
2015-10-01
Hillslope-scale rainfall-runoff processes leading to a fast catchment response are not explicitly included in land surface models (LSMs) for use in earth system models (ESMs) due to computational constraints. This study presents a hybrid-3D hillslope hydrological model (h3D) that couples a 1-D vertical soil column model with a lateral pseudo-2D saturated zone and overland flow model for use in ESMs. By representing vertical and lateral responses separately at different spatial resolutions, h3D is computationally efficient. The h3D model was first tested for three different hillslope planforms (uniform, convergent and divergent). We then compared h3D (with single and multiple soil columns) with a complex physically based 3-D model and a simple 1-D soil moisture model coupled with an unconfined aquifer (as typically used in LSMs). It is found that simulations obtained by the simple 1-D model vary considerably from the complex 3-D model and are not able to represent hillslope-scale variations in the lateral flow response. In contrast, the single soil column h3D model shows a much better performance and saves computational time by 2-3 orders of magnitude compared with the complex 3-D model. When multiple vertical soil columns are implemented, the resulting hydrological responses (soil moisture, water table depth, and base flow along the hillslope) from h3D are nearly identical to those predicted by the complex 3-D model, but still saves computational time. As such, the computational efficiency of the h3D model provides a valuable and promising approach to incorporating hillslope-scale hydrological processes into continental and global-scale ESMs.
Efficient sensitivity computations in 3D air quality models
NASA Astrophysics Data System (ADS)
Kioutsioukis, Ioannis; Melas, Dimitrios; Zerefos, Christos; Ziomas, Ioannis
2005-04-01
The prediction of ground level ozone for air quality monitoring and assessment is simulated through an integrated system of gridded models (meteorological, photochemical), where the atmosphere is represented with a three-dimensional grid that may include thousands of grid cells. The continuity equation solved by the Photochemical Air Quality Model (PAQM) reproduces the atmospheric processes (dynamical, physical, chemical and radiative), such as moving and mixing air parcels from one grid cell to another, calculating chemical reactions, injecting new emissions. The whole modeling procedure includes several sources of uncertainty, especially in the large data sets that describe the status of the domain (boundary conditions, emissions, chemical reaction rates and several others). The robustness of the photochemical simulation is addressed in this work through the deterministic approach of sensitivity analysis. The automatic differentiation tool ADIFOR is applied on the 3D PAQM CAMx and augments its Fortran 77 code by introducing new lines of code that additionally calculate, in only one run, the gradient of the solution vector with respect to its input parameters. The applicability of the approach is evaluated through a sensitivity study of the modeled concentrations to perturbations at the boundary conditions and the emissions, for three essentially dissimilar European Metropolises of the Auto-Oil II programme (Athens, Milan, and London).
Indoor Modelling Benchmark for 3D Geometry Extraction
NASA Astrophysics Data System (ADS)
Thomson, C.; Boehm, J.
2014-06-01
A combination of faster, cheaper and more accurate hardware, more sophisticated software, and greater industry acceptance have all laid the foundations for an increased desire for accurate 3D parametric models of buildings. Pointclouds are the data source of choice currently with static terrestrial laser scanning the predominant tool for large, dense volume measurement. The current importance of pointclouds as the primary source of real world representation is endorsed by CAD software vendor acquisitions of pointcloud engines in 2011. Both the capture and modelling of indoor environments require great effort in time by the operator (and therefore cost). Automation is seen as a way to aid this by reducing the workload of the user and some commercial packages have appeared that provide automation to some degree. In the data capture phase, advances in indoor mobile mapping systems are speeding up the process, albeit currently with a reduction in accuracy. As a result this paper presents freely accessible pointcloud datasets of two typical areas of a building each captured with two different capture methods and each with an accurate wholly manually created model. These datasets are provided as a benchmark for the research community to gauge the performance and improvements of various techniques for indoor geometry extraction. With this in mind, non-proprietary, interoperable formats are provided such as E57 for the scans and IFC for the reference model. The datasets can be found at: http://indoor-bench.github.io/indoor-bench.
3-D Eutrophication Modeling for Lake Simcoe, Canada
NASA Astrophysics Data System (ADS)
Lu, Q.; Duckett, F.; Nairn, R.; Brunton, A.
2006-12-01
The Lake Simcoe Region Conservation Authority (LSRCA) and the Province of Ontario are undertaking a series of studies to facilitate management of the pressures of population growth in the Lake Simcoe watershed. With rapid population growth and urban development comes additional land clearing, storm water runoff and the discharge of treated sewage, all of which are sources of increased phosphorus loading to Lake Simcoe. Depressed oxygen levels were linked to phosphorous enrichment of the lake, with the resultant stimulation of algal growth in the sunlit upper waters of the lake, and its subsequent senescence and settling into the hypolimnion where bacterial decomposition consumes oxygen from the stratified waters. This poster describes a 3-D hydrodynamic, thermal and water quality model of Lake Simcoe developed using the Danish Hydraulics Institute (DHI) MIKE3 model. The hydrodynamic module includes wind-driven circulation, temperature variation, development of the thermocline and thermal stratification, and hydraulic forcing from inflowing tributaries. This is linked to the water quality module which simulates the eutrophication processes in the response of the lake to loadings of phosphorus, such as algal growth, the growth of aquatic plants and subsequent oxygen consumption. The model has been calibrated against Acoustic Doppler Current Profiler velocity data, plus measured temperature and water quality data at MOE stations in the lake and water intakes. The model is an important assessment tool for the management of the lake and its watersheds, allowing assessment of the impacts of the urban growth and land use change on the water quality in Lake Simcoe.
Planetary subsurface investigation by 3D visualization model .
NASA Astrophysics Data System (ADS)
Seu, R.; Catallo, C.; Tragni, M.; Abbattista, C.; Cinquepalmi, L.
Subsurface data analysis and visualization represents one of the main aspect in Planetary Observation (i.e. search for water or geological characterization). The data are collected by subsurface sounding radars as instruments on-board of deep space missions. These data are generally represented as 2D radargrams in the perspective of space track and z axes (perpendicular to the subsurface) but without direct correlation to other data acquisition or knowledge on the planet . In many case there are plenty of data from other sensors of the same mission, or other ones, with high continuity in time and in space and specially around the scientific sites of interest (i.e. candidate landing areas or particular scientific interesting sites). The 2D perspective is good to analyse single acquisitions and to perform detailed analysis on the returned echo but are quite useless to compare very large dataset as now are available on many planets and moons of solar system. The best way is to approach the analysis on 3D visualization model generated from the entire stack of data. First of all this approach allows to navigate the subsurface in all directions and analyses different sections and slices or moreover navigate the iso-surfaces respect to a value (or interval). The last one allows to isolate one or more iso-surfaces and remove, in the visualization mode, other data not interesting for the analysis; finally it helps to individuate the underground 3D bodies. Other aspect is the needs to link the on-ground data, as imaging, to the underground one by geographical and context field of view.
Modeling the Coast Mountains Batholith, British Columbia, Canada with 3D Seismic Tomography
NASA Astrophysics Data System (ADS)
Quinonez, S. M.; Olaya, J. C.; Miller, K. C.; Romero, R.; Velasco, A. A.; Harder, S. H.; Cerda, I.
2011-12-01
The Coast Mountains Batholith on the west coast of British Columbia, Canada comprises a series of granitic to tonalitic plutons; where felsic continental crust is generated from the subduction of mafic oceanic crust by partial melting and fractionation, leaving ultra-mafic roots. In July of 2009, a large controlled-source experiment was conducted along a 400km east - west transect from Bella Bella into central British Columbia. Student volunteers from multiple universities deployed 1,800 one-component and 200 three-component geophones plus 2400 Texan data recorders with 200-m spacing intervals and shot spacing at 30-km. The 18-point sources ranged from 160 to 1,000 kg of high explosive. The geoscience component of the NSF-funded Cyber-ShARE project at UTEP focuses on fusing models developed from different data sets to develop 3-D Earth models. Created in 2007, the Cyber-ShARE Center brings together experts in computer science, computational mathematics, education, earth science, and environmental science. We leverage the Cyber-ShARE work to implement an enhanced 3-D finite difference tomography approach for P-wave delays times (Hole, 1992) with a graphical user interface and visualization framework. In particular, to account for model sensitivity to picked P-wave arrival times, we use a model fusion approach (Ochoa et al., 2010) to generate a model with the lowest RMS residual that a combination of a set of Monte Carlo sample models. In order to make the seismic tomography process more interactive at many points, visualizations of model perturbation at each iteration will help to troubleshoot when a model is not converging to highlight where the RMS residual values are the highest to pinpoint where changes need to be made to achieve model convergence. Finally, a model of the upper mantle using 3-D P-wave tomography will be made to determine the location of these ultra-mafic roots.
Accurate, low-cost 3D-models of gullies
NASA Astrophysics Data System (ADS)
Onnen, Nils; Gronz, Oliver; Ries, Johannes B.; Brings, Christine
2015-04-01
Soil erosion is a widespread problem in arid and semi-arid areas. The most severe form is the gully erosion. They often cut into agricultural farmland and can make a certain area completely unproductive. To understand the development and processes inside and around gullies, we calculated detailed 3D-models of gullies in the Souss Valley in South Morocco. Near Taroudant, we had four study areas with five gullies different in size, volume and activity. By using a Canon HF G30 Camcorder, we made varying series of Full HD videos with 25fps. Afterwards, we used the method Structure from Motion (SfM) to create the models. To generate accurate models maintaining feasible runtimes, it is necessary to select around 1500-1700 images from the video, while the overlap of neighboring images should be at least 80%. In addition, it is very important to avoid selecting photos that are blurry or out of focus. Nearby pixels of a blurry image tend to have similar color values. That is why we used a MATLAB script to compare the derivatives of the images. The higher the sum of the derivative, the sharper an image of similar objects. MATLAB subdivides the video into image intervals. From each interval, the image with the highest sum is selected. E.g.: 20min. video at 25fps equals 30.000 single images. The program now inspects the first 20 images, saves the sharpest and moves on to the next 20 images etc. Using this algorithm, we selected 1500 images for our modeling. With VisualSFM, we calculated features and the matches between all images and produced a point cloud. Then, MeshLab has been used to build a surface out of it using the Poisson surface reconstruction approach. Afterwards we are able to calculate the size and the volume of the gullies. It is also possible to determine soil erosion rates, if we compare the data with old recordings. The final step would be the combination of the terrestrial data with the data from our aerial photography. So far, the method works well and we
3D numerical modeling of India-Asia-like collision
NASA Astrophysics Data System (ADS)
-Erika Püsök, Adina; Kaus, Boris; Popov, Anton
2013-04-01
above a strong mantle lithosphere - the jelly sandwich model (Burov and Watts, 2006). 3D models are thus needed to investigate these hypotheses. However, fully 3D models of the dynamics of continent collision zones have only been developed very recently, and presently most research groups have relied on certain explicit assumptions for their codes. Here, we employ the parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model), with a finite difference staggered grid solver, which is capable of simulating lithospheric deformation while simultaneously taking mantle flow and a free surface into account. We here report on first lithospheric and upper-mantle scale simulations in which the Indian lithosphere is indented into Asia. Acknowledgements. Funding was provided by the European Research Council under the European Community's Seventh Framework Program (FP7/2007-2013) / ERC Grant agreement #258830. Numerical computations have been performed on JUQUEEN of the Jülich high-performance computing center. • Beaumont, C., Jamieson, R.A., Nguyen, M.H., Medvedev, S.E., 2004. Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogeny. J. Geophys. Res. 109, B06406. • Burov, E. & Watts, W.S., 2006. The long-term strength of continental lithosphere: "jelly sandwich" or "crème brûlée"?. GSA Today, 16, doi: 10.1130/1052-5173(2006)1016<1134:TLTSOC>1132.1130.CO;1132. • England P., Houseman, G., 1986. Finite strain calculations of continental deformation. 2. Comparison with the India-Asia collision zone. J. Geophys. Res.- Solid Earth and Planets 91 (B3), 3664-3676. • Jackson, J., 2002. Strength of the continental lithosphere: time to abandon the jelly sandwich?. GSA Today, September, 4-10. • Lechmann, S.M., May, D.A., Kaus, B.J.P., Schmalholz, S.M., 2011. Comparing thin-sheet models with 3D multilayer models for continental collision. Geophy. Int. J. doi: 10.1111/j.1365-246X.2011.05164.x • Royden, L.H., Burchfiel, B
Planar graphical models which are easy
Chertkov, Michael; Chernyak, Vladimir
2009-01-01
We describe a rich family of binary variables statistical mechanics models on planar graphs which are equivalent to Gaussian Grassmann Graphical models (free fermions). Calculation of partition function (weighted counting) in the models is easy (of polynomial complexity) as reduced to evaluation of determinants of matrixes linear in the number of variables. In particular, this family of models covers Holographic Algorithms of Valiant and extends on the Gauge Transformations discussed in our previous works.
3D Printing of Molecular Potential Energy Surface Models
ERIC Educational Resources Information Center
Lolur, Phalgun; Dawes, Richard
2014-01-01
Additive manufacturing, commonly known as 3D printing, is gaining popularity in a variety of applications and has recently become routinely available. Today, 3D printing services are not only found in engineering design labs and through online companies, but also in university libraries offering student access. In addition, affordable options for…
Open source 3D visualization and interaction dedicated to hydrological models
NASA Astrophysics Data System (ADS)
Richard, Julien; Giangola-Murzyn, Agathe; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel
2014-05-01
Climate change and surface urbanization strongly modify the hydrological cycle in urban areas, increasing the consequences of extreme events such as floods or draughts. These issues lead to the development of the Multi-Hydro model at the Ecole des Ponts ParisTech (A. Giangola-Murzyn et al., 2012). This fully distributed model allows to compute the hydrological response of urban and peri-urban areas. Unfortunately such models are seldom user friendly. Indeed generating the inputs before launching a new simulation is usually a tricky tasks, and understanding and interpreting the outputs remains specialist tasks not accessible to the wider public. The MH-AssimTool was developed to overcome these issues. To enable an easier and improved understanding of the model outputs, we decided to convert the raw output data (grids file in ascii format) to a 3D display. Some commercial paying models provide a 3D visualization. Because of the cost of their licenses, this kind of tools may not be accessible to the most concerned stakeholders. So, we are developing a new tool based on C++ for the computation, Qt for the graphic user interface, QGIS for the geographical side and OpenGL for the 3D display. All these languages and libraries are open source and multi-platform. We will discuss some preprocessing issues for the data conversion from 2.5D to 3D. Indeed, the GIS data, is considered as a 2.5D (e.i. 2D polygon + one height) and the its transform to 3D display implies a lot of algorithms. For example,to visualize in 3D one building, it is needed to have for each point the coordinates and the elevation according to the topography. Furthermore one have to create new points to represent the walls. Finally the interactions between the model and stakeholders through this new interface and how this helps converting a research tool into a an efficient operational decision tool will be discussed. This ongoing research on the improvement of the visualization methods is supported by the
3D-Digital soil property mapping by geoadditive models
NASA Astrophysics Data System (ADS)
Papritz, Andreas
2016-04-01
In many digital soil mapping (DSM) applications, soil properties must be predicted not only for a single but for multiple soil depth intervals. In the GlobalSoilMap project, as an example, predictions are computed for the 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, 100-200 cm depth intervals (Arrouays et al., 2014). Legacy soil data are often used for DSM. It is common for such datasets that soil properties were measured for soil horizons or for layers at varying soil depth and with non-constant thickness (support). This poses problems for DSM: One strategy is to harmonize the soil data to common depth prior to the analyses (e.g. Bishop et al., 1999) and conduct the statistical analyses for each depth interval independently. The disadvantage of this approach is that the predictions for different depths are computed independently from each other so that the predicted depth profiles may be unrealistic. Furthermore, the error induced by the harmonization to common depth is ignored in this approach (Orton et al. 2016). A better strategy is therefore to process all soil data jointly without prior harmonization by a 3D-analysis that takes soil depth and geographical position explicitly into account. Usually, the non-constant support of the data is then ignored, but Orton et al. (2016) presented recently a geostatistical approach that accounts for non-constant support of soil data and relies on restricted maximum likelihood estimation (REML) of a linear geostatistical model with a separable, heteroscedastic, zonal anisotropic auto-covariance function and area-to-point kriging (Kyriakidis, 2004.) Although this model is theoretically coherent and elegant, estimating its many parameters by REML and selecting covariates for the spatial mean function is a formidable task. A simpler approach might be to use geoadditive models (Kammann and Wand, 2003; Wand, 2003) for 3D-analyses of soil data. geoAM extend the scope of the linear model with spatially correlated errors to
ERIC Educational Resources Information Center
Gales, Larry
These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. PRNT3D is a subroutine package which generates a variety of printed plot displays. The displays…
ERIC Educational Resources Information Center
Gales, Larry
This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. PLOT3D is a subroutine package which generates a variety of three dimensional hidden…
ERIC Educational Resources Information Center
Gales, Larry
This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. PLOT3D is a subroutine package which generates a variety of three-dimensional hidden…
ERIC Educational Resources Information Center
Gales, Larry
These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. PRNT3D is a subroutine package which generates a variety of printer plot displays. The displays…
3D-Digital soil property mapping by geoadditive models
NASA Astrophysics Data System (ADS)
Papritz, Andreas
2016-04-01
In many digital soil mapping (DSM) applications, soil properties must be predicted not only for a single but for multiple soil depth intervals. In the GlobalSoilMap project, as an example, predictions are computed for the 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, 100-200 cm depth intervals (Arrouays et al., 2014). Legacy soil data are often used for DSM. It is common for such datasets that soil properties were measured for soil horizons or for layers at varying soil depth and with non-constant thickness (support). This poses problems for DSM: One strategy is to harmonize the soil data to common depth prior to the analyses (e.g. Bishop et al., 1999) and conduct the statistical analyses for each depth interval independently. The disadvantage of this approach is that the predictions for different depths are computed independently from each other so that the predicted depth profiles may be unrealistic. Furthermore, the error induced by the harmonization to common depth is ignored in this approach (Orton et al. 2016). A better strategy is therefore to process all soil data jointly without prior harmonization by a 3D-analysis that takes soil depth and geographical position explicitly into account. Usually, the non-constant support of the data is then ignored, but Orton et al. (2016) presented recently a geostatistical approach that accounts for non-constant support of soil data and relies on restricted maximum likelihood estimation (REML) of a linear geostatistical model with a separable, heteroscedastic, zonal anisotropic auto-covariance function and area-to-point kriging (Kyriakidis, 2004.) Although this model is theoretically coherent and elegant, estimating its many parameters by REML and selecting covariates for the spatial mean function is a formidable task. A simpler approach might be to use geoadditive models (Kammann and Wand, 2003; Wand, 2003) for 3D-analyses of soil data. geoAM extend the scope of the linear model with spatially correlated errors to
3D Finite Difference Modelling of Basaltic Region
NASA Astrophysics Data System (ADS)
Engell-Sørensen, L.
2003-04-01
The main purpose of the work was to generate realistic data to be applied for testing of processing and migration tools for basaltic regions. The project is based on the three - dimensional finite difference code (FD), TIGER, made by Sintef. The FD code was optimized (parallelized) by the author, to run on parallel computers. The parallel code enables us to model large-scale realistic geological models and to apply traditional seismic and micro seismic sources. The parallel code uses multiple processors in order to manipulate subsets of large amounts of data simultaneously. The general anisotropic code uses 21 elastic coefficients. Eight independent coefficients are needed as input parameters for the general TI medium. In the FD code, the elastic wave field computation is implemented by a higher order FD solution to the elastic wave equation and the wave fields are computed on a staggered grid, shifted half a node in one or two directions. The geological model is a gridded basalt model, which covers from 24 km to 37 km of a real shot line in horizontal direction and from the water surface to the depth of 3.5 km. The 2frac {1}{2}D model has been constructed using the compound modeling software from Norsk Hydro. The vertical parameter distribution is obtained from observations in two wells. At The depth of between 1100 m to 1500 m, a basalt horizon covers the whole sub surface layers. We have shown that it is possible to simulate a line survey in realistic (3D) geological models in reasonable time by using high performance computers. The author would like to thank Norsk Hydro, Statoil, GEUS, and SINTEF for very helpful discussions and Parallab for being helpful with the new IBM, p690 Regatta system.
Predicted 3D Model of the Rabies Virus Glycoprotein Trimer.
Fernando, Bastida-González; Yersin, Celaya-Trejo; José, Correa-Basurto; Paola, Zárate-Segura
2016-01-01
The RABVG ectodomain is a homotrimer, and trimers are often called spikes. They are responsible for the attachment of the virus through the interaction with nicotinic acetylcholine receptors, neural cell adhesion molecule (NCAM), and the p75 neurotrophin receptor (p75NTR). This makes them relevant in viral pathogenesis. The antigenic structure differs significantly between the trimers and monomers. Surfaces rich in hydrophobic amino acids are important for trimer stabilization in which the C-terminal of the ectodomain plays an important role; to understand these interactions between the G proteins, a mechanistic study of their functions was performed with a molecular model of G protein in its trimeric form. This verified its 3D conformation. The molecular modeling of G protein was performed by a I-TASSER server and was evaluated via a Rachamandran plot and ERRAT program obtained 84.64% and 89.9% of the residues in the favorable regions and overall quality factor, respectively. The molecular dynamics simulations were carried out on RABVG trimer at 310 K. From these theoretical studies, we retrieved the RMSD values from Cα atoms to assess stability. Preliminary model of G protein of rabies virus stable at 12 ns with molecular dynamics was obtained. PMID:27294109
Predicted 3D Model of the Rabies Virus Glycoprotein Trimer
Fernando, Bastida-González; Yersin, Celaya-Trejo; José, Correa-Basurto; Paola, Zárate-Segura
2016-01-01
The RABVG ectodomain is a homotrimer, and trimers are often called spikes. They are responsible for the attachment of the virus through the interaction with nicotinic acetylcholine receptors, neural cell adhesion molecule (NCAM), and the p75 neurotrophin receptor (p75NTR). This makes them relevant in viral pathogenesis. The antigenic structure differs significantly between the trimers and monomers. Surfaces rich in hydrophobic amino acids are important for trimer stabilization in which the C-terminal of the ectodomain plays an important role; to understand these interactions between the G proteins, a mechanistic study of their functions was performed with a molecular model of G protein in its trimeric form. This verified its 3D conformation. The molecular modeling of G protein was performed by a I-TASSER server and was evaluated via a Rachamandran plot and ERRAT program obtained 84.64% and 89.9% of the residues in the favorable regions and overall quality factor, respectively. The molecular dynamics simulations were carried out on RABVG trimer at 310 K. From these theoretical studies, we retrieved the RMSD values from Cα atoms to assess stability. Preliminary model of G protein of rabies virus stable at 12 ns with molecular dynamics was obtained. PMID:27294109
Collision of continental corner from 3-D numerical modeling
NASA Astrophysics Data System (ADS)
Li, Zhong-Hai; Xu, Zhiqin; Gerya, Taras; Burg, Jean-Pierre
2013-10-01
Continental collision has been extensively investigated with 2-D numerical models assuming infinitely wide plates or insignificant along-strike deformation in the third dimension. However, the corners of natural collision zones normally have structural characteristics that differ from linear parts of mountain belt. We conducted 3-D high-resolution numerical simulations to study the dynamics of a continental corner (lateral continental/oceanic transition zone) during subduction/collision. The results demonstrate different modes between the oceanic subduction side (continuous subduction and retreating trench) and the continental collision side (slab break-off and topography uplift). Slab break-off occurs at a depth (⩽100 km to ˜300 km) that depends on the convergence velocity. The numerical models produce lateral extrusion of the overriding crust from the collisional side to the subduction side, which is also a phenomenon recognized around natural collision of continental corners, for instance around the western corner of the Arabia-Asia collision zone and around the eastern corner of the India-Asia collision zone. Modeling results also indicate that extrusion tectonics may be driven both from above by the topography and gravitational potentials and from below by the trench retreat and asthenospheric mantle return flow, which supports the link between deep mantle dynamics and shallower crustal deformation.
NASA Astrophysics Data System (ADS)
Tegtmeier, W.; Zlatanova, S.; van Oosterom, P. J. M.; Hack, H. R. G. K.
2014-03-01
In infrastructural projects, communication as well as information exchange and (re-)use in and between involved parties is difficult. Mainly this is caused by a lack of information harmonisation. Various specialists are working together on the development of an infrastructural project and all use their own specific software and definitions for various information types. In addition, the lack of and/or differences in the use and definition of thematic semantic information regarding the various information types adds to the problem. Realistic 3D models describing and integrating parts of the earth already exist, but are generally neglecting the subsurface, and especially the aspects of geology and geo-technology. This paper summarises the research towards the extension of an existing integrated semantic information model to include surface as well as subsurface objects and in particular, subsurface geological and geotechnical objects. The major contributions of this research are the definition of geotechnical objects and the mechanism to link them with CityGML, GeoSciML and O&M standard models. The model is called 3D-GEM, short for 3D Geotechnical Extension Model.
Software for Data Analysis with Graphical Models
NASA Technical Reports Server (NTRS)
Buntine, Wray L.; Roy, H. Scott
1994-01-01
Probabilistic graphical models are being used widely in artificial intelligence and statistics, for instance, in diagnosis and expert systems, as a framework for representing and reasoning with probabilities and independencies. They come with corresponding algorithms for performing statistical inference. This offers a unifying framework for prototyping and/or generating data analysis algorithms from graphical specifications. This paper illustrates the framework with an example and then presents some basic techniques for the task: problem decomposition and the calculation of exact Bayes factors. Other tools already developed, such as automatic differentiation, Gibbs sampling, and use of the EM algorithm, make this a broad basis for the generation of data analysis software.
Item Screening in Graphical Loglinear Rasch Models
ERIC Educational Resources Information Center
Kreiner, Svend; Christensen, Karl Bang
2011-01-01
In behavioural sciences, local dependence and DIF are common, and purification procedures that eliminate items with these weaknesses often result in short scales with poor reliability. Graphical loglinear Rasch models (Kreiner & Christensen, in "Statistical Methods for Quality of Life Studies," ed. by M. Mesbah, F.C. Cole & M.T. Lee, Kluwer…
3D Model Segmentation and Representation with Implicit Polynomials
NASA Astrophysics Data System (ADS)
Zheng, Bo; Takamatsu, Jun; Ikeuchi, Katsushi
When large-scale and complex 3D objects are obtained by range finders, it is often necessary to represent them by algebraic surfaces for such purposes as data compression, multi-resolution, noise elimination, and 3D recognition. Representing the 3D data with algebraic surfaces of an implicit polynomial (IP) has proved to offer the advantages that IP representation is capable of encoding geometric properties easily with desired smoothness, few parameters, algebraic/geometric invariants, and robustness to noise and missing data. Unfortunately, generating a high-degree IP surface for a whole complex 3D shape is impossible because of high computational cost and numerical instability. In this paper we propose a 3D segmentation method based on a cut-and-merge approach. Two cutting procedures adopt low-degree IPs to divide and fit the surface segments simultaneously, while avoiding generating high-curved segments. A merging procedure merges the similar adjacent segments to avoid over-segmentation. To prove the effectiveness of this segmentation method, we open up some new vistas for 3D applications such as 3D matching, recognition, and registration.
3D Elastic Seismic Wave Propagation Code
1998-09-23
E3D is capable of simulating seismic wave propagation in a 3D heterogeneous earth. Seismic waves are initiated by earthquake, explosive, and/or other sources. These waves propagate through a 3D geologic model, and are simulated as synthetic seismograms or other graphical output.
Object-oriented urban 3D spatial data model organization method
NASA Astrophysics Data System (ADS)
Li, Jing-wen; Li, Wen-qing; Lv, Nan; Su, Tao
2015-12-01
This paper combined the 3d data model with object-oriented organization method, put forward the model of 3d data based on object-oriented method, implemented the city 3d model to quickly build logical semantic expression and model, solved the city 3d spatial information representation problem of the same location with multiple property and the same property with multiple locations, designed the space object structure of point, line, polygon, body for city of 3d spatial database, and provided a new thought and method for the city 3d GIS model and organization management.
MAGIC: Model and Graphic Information Converter
NASA Technical Reports Server (NTRS)
Herbert, W. C.
2009-01-01
MAGIC is a software tool capable of converting highly detailed 3D models from an open, standard format, VRML 2.0/97, into the proprietary DTS file format used by the Torque Game Engine from GarageGames. MAGIC is used to convert 3D simulations from authoritative sources into the data needed to run the simulations in NASA's Distributed Observer Network. The Distributed Observer Network (DON) is a simulation presentation tool built by NASA to facilitate the simulation sharing requirements of the Data Presentation and Visualization effort within the Constellation Program. DON is built on top of the Torque Game Engine (TGE) and has chosen TGE's Dynamix Three Space (DTS) file format to represent 3D objects within simulations.
A 3D world model builder with a mobile robot
Zhang, Z.; Faugeras, O. )
1992-08-01
This article describes a system to incrementally build a world model with a mobile robot in an unknown environment. The model is, for the moment, segment based. A trinocular stereo system is used to build a local map about the environment. A global map is obtained by integrating a sequence of stereo frames taken when the robot navigates in the environment. The emphasis of this article is on the representation of the uncertainty of 3D segments from stereo and on the integration of segments from multiple views. The proposed representation is simple and very convenient to characterize the uncertainty of segment. A Kalman filter is used to merge matched line segments. An important characteristic of this integration strategy is that a segment observed by the stereo system corresponds only to one part of the segment in space, so the union of the different observations gives a better estimate on the segment in space. The authors have succeeded in integrating 35 stereo frames taken in their robot room.
Pros and Cons of ID vs. 3D Modeling
NASA Technical Reports Server (NTRS)
Klimchuk, James A.
2012-01-01
Advances in computing capability have led to tremendous improvements in 3D modeling. Entire active regions are being simulated in what might be described as a first principles way, in which plasma heating is treated self consistently rather than through the specification of heating functions. There are limitations to this approach, however, as actual heating mechanisms on the Sun involve spatial scales orders of magnitude smaller than what these simulations can resolve. Other simulations begin to resolve these scales, but they only treat a tiny volume and do not include the all important coupling with larger scales or with other parts of the atmosphere, and so cannot be readily compared with observations. Finally, ID hydrodynamic models capture the field-aligned evolution of the plasma extremely well and are ideally suited for data comparison, but they treat the heating in a totally ad hoc manner. All of these approaches have important contributions to make, but we must be aware of their limitations. I will highlight some of the strengths. and weaknesses of each.
Flexible building primitives for 3D building modeling
NASA Astrophysics Data System (ADS)
Xiong, B.; Jancosek, M.; Oude Elberink, S.; Vosselman, G.
2015-03-01
3D building models, being the main part of a digital city scene, are essential to all applications related to human activities in urban environments. The development of range sensors and Multi-View Stereo (MVS) technology facilitates our ability to automatically reconstruct level of details 2 (LoD2) models of buildings. However, because of the high complexity of building structures, no fully automatic system is currently available for producing building models. In order to simplify the problem, a lot of research focuses only on particular buildings shapes, and relatively simple ones. In this paper, we analyze the property of topology graphs of object surfaces, and find that roof topology graphs have three basic elements: loose nodes, loose edges, and minimum cycles. These elements have interesting physical meanings: a loose node is a building with one roof face; a loose edge is a ridge line between two roof faces whose end points are not defined by a third roof face; and a minimum cycle represents a roof corner of a building. Building primitives, which introduce building shape knowledge, are defined according to these three basic elements. Then all buildings can be represented by combining such building primitives. The building parts are searched according to the predefined building primitives, reconstructed independently, and grouped into a complete building model in a CSG-style. The shape knowledge is inferred via the building primitives and used as constraints to improve the building models, in which all roof parameters are simultaneously adjusted. Experiments show the flexibility of building primitives in both lidar point cloud and stereo point cloud.
IGMAS+ A New 3D Gravity, FTG and Magnetic Modeling Software
NASA Astrophysics Data System (ADS)
Goetze, H.; Schmidt, S.; Fichler, C.; Alvers, M. R.
2007-12-01
Modern geophysical interpretation requires an interdisciplinary approach, particularly when considering the available amount of 'state of the art' information contained in comprehensive data bases. A combination of different geophysical surveys employing seismics, gravity and geoelectrics, together with geological and petrological studies, can provide new insights into the structures and tectonic evolution of the lithosphere and natural deposits. Interdisciplinary interpretation is essential for any numerical modelling of these structures and the processes acting on them. Three-dimensional (3D) interactive modeling with the IGMAS+ software provides means for integrated processing and interpretation of geoid, gravity and magnetic fields and their gradients (full tensor), yielding improved geological interpretation. IGMAS+ is an acronym standing for "Interactive Geophysical Modelling Application System". It bases on the existing software IGMAS (http://www.gravity.uni-kiel.de/igmas), a tool developed during the past twenty years for potential field modelling. The new IGMAS+, however, will comprise the advantages of the "old" IGMAS (e.g. flexible geometry concept and a fast and stable algorithm) with automated interpretation tools and a modern graphical GUI based on leading edge insights from psychological computer graphics research and thus provide optimal man machine communication. IGMAS+ fully three-dimensional models are constructed using triangulated polyhedra and/or triangulated grids, to which constant density and/or induced and remanent susceptibility are assigned. Interactive modifications of model parameters (geometry, density, susceptibility, magnetization), access to the numerical modeling process, and direct visualization of both calculated and measured fields of gravity and magnetics, enable the interpreter to design the model as realistically as possible. IGMAS+ allows easy integration of constraining data into interactive modeling processes
IGMAS+ a new 3D Gravity, FTG and Magnetic Modeling Software
NASA Astrophysics Data System (ADS)
Götze, Hans-Jürgen; Schmidt, Sabine; Fichler, Christine; Planka, Christian
2010-05-01
Modern geophysical interpretation requires an interdisciplinary approach, particularly when considering the available amount of 'state of the art' information contained in comprehensive data bases. A combination of different geophysical surveys employing seismics, gravity and geoelectrics, together with geological and petrological studies, can provide new insights into the structures and tectonic evolution of the lithosphere and natural deposits. Interdisciplinary interpretation is essential for any numerical modelling of these structures and the processes acting on them Three-dimensional (3D) interactive modeling with the IGMAS+ software provides means for integrated processing and interpretation of geoid, gravity and magnetic fields and their gradients (full tensor), yielding improved geological interpretation. IGMAS+ is an acronym standing for "Interactive Geophysical Modelling Application System". It bases on the existing software IGMAS (http://www.gravity.uni-kiel.de/igmas), a tool developed during the past twenty years for potential field modelling. The new IGMAS+, however, will comprise the advantages of the "old" IGMAS (e.g. flexible geometry concept and a fast and stable algorithm) with automated interpretation tools and a modern graphical GUI based on leading edge insights from psychological computer graphics research and thus provide optimal man machine communication. IGMAS+ fully three-dimensional models are constructed using triangulated polyhedra and/or triangulated grids, to which constant density and/or induced and remanent susceptibility are assigned. Interactive modifications of model parameters (geometry, density, susceptibility, magnetization), access to the numerical modeling process, and direct visualization of both calculated and measured fields of gravity and magnetics, enable the interpreter to design the model as realistically as possible. IGMAS+ allows easy integration of constraining data into interactive modeling processes
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
Numerical model of sonic boom in 3D kinematic turbulence
NASA Astrophysics Data System (ADS)
Coulouvrat, François; Luquet, David; Marchiano, Régis
2015-10-01
stratified wind superimposed to a 3D random turbulent realization. Propagation is performed either in the case of a shadow zone or of an atmospheric waveguide. To model the turbulent ABL, the mean flow and the fluctuations are handled separately. The wind fluctuations are generated using the Random Fluctuations Generation method assuming a von Kármán spectrum and a homogeneous and isotropic turbulence. The mean stratified wind is modeled based on the Monin-Obhukov Similarity Theory (MOST). To illustrate the method, the typical case of a sunny day with a strong wind has been chosen. Statistics are obtained on several parameters. It shows the importance of turbulence, which leads to an increase of the mean maximum peak pressure in the shadow zone and to its decrease in the waveguide. Moreover, the formation of random caustics that can lead to an increase of the noise perceived locally is outlined.
Methods for Geometric Data Validation of 3d City Models
NASA Astrophysics Data System (ADS)
Wagner, D.; Alam, N.; Wewetzer, M.; Pries, M.; Coors, V.
2015-12-01
Geometric quality of 3D city models is crucial for data analysis and simulation tasks, which are part of modern applications of the data (e.g. potential heating energy consumption of city quarters, solar potential, etc.). Geometric quality in these contexts is however a different concept as it is for 2D maps. In the latter case, aspects such as positional or temporal accuracy and correctness represent typical quality metrics of the data. They are defined in ISO 19157 and should be mentioned as part of the metadata. 3D data has a far wider range of aspects which influence their quality, plus the idea of quality itself is application dependent. Thus, concepts for definition of quality are needed, including methods to validate these definitions. Quality on this sense means internal validation and detection of inconsistent or wrong geometry according to a predefined set of rules. A useful starting point would be to have correct geometry in accordance with ISO 19107. A valid solid should consist of planar faces which touch their neighbours exclusively in defined corner points and edges. No gaps between them are allowed, and the whole feature must be 2-manifold. In this paper, we present methods to validate common geometric requirements for building geometry. Different checks based on several algorithms have been implemented to validate a set of rules derived from the solid definition mentioned above (e.g. water tightness of the solid or planarity of its polygons), as they were developed for the software tool CityDoctor. The method of each check is specified, with a special focus on the discussion of tolerance values where they are necessary. The checks include polygon level checks to validate the correctness of each polygon, i.e. closeness of the bounding linear ring and planarity. On the solid level, which is only validated if the polygons have passed validation, correct polygon orientation is checked, after self-intersections outside of defined corner points and edges
Parida, Bikram K; Panda, Prasanna K; Misra, Namrata; Mishra, Barada K
2015-02-01
Modeling the three-dimensional (3D) structures of proteins assumes great significance because of its manifold applications in biomolecular research. Toward this goal, we present MaxMod, a graphical user interface (GUI) of the MODELLER program that combines profile hidden Markov model (profile HMM) method with Clustal Omega program to significantly improve the selection of homologous templates and target-template alignment for construction of accurate 3D protein models. MaxMod distinguishes itself from other existing GUIs of MODELLER software by implementing effortless modeling of proteins using templates that bear modified residues. Additionally, it provides various features such as loop optimization, express modeling (a feature where protein model can be generated directly from its sequence, without any further user intervention) and automatic update of PDB database, thus enhancing the user-friendly control of computational tasks. We find that HMM-based MaxMod performs better than other modeling packages in terms of execution time and model quality. MaxMod is freely available as a downloadable standalone tool for academic and non-commercial purpose at http://www.immt.res.in/maxmod/. PMID:25636267
Development of topography in 3-D continental-collision models
NASA Astrophysics Data System (ADS)
Pusok, A. E.; Kaus, Boris J. P.
2015-05-01
Understanding the formation and evolution of high mountain belts, such as the Himalayas and the adjacent Tibetan Plateau, has been the focus of many tectonic and numerical models. Here we employ 3-D numerical simulations to investigate the role that subduction, collision, and indentation play on lithosphere dynamics at convergent margins, and to analyze the conditions under which large topographic plateaus can form in an integrated lithospheric and upper mantle-scale model. Distinct dynamics are obtained for the oceanic subduction side (trench retreat, slab rollback) and the continental-collision side (trench advance, slab detachment, topographic uplift, lateral extrusion). We show that slab pull alone is insufficient to generate high topography in the upper plate, and that external forcing and the presence of strong blocks such as the Tarim Basin are necessary to create and shape anomalously high topographic fronts and plateaus. Moreover, scaling is used to predict four different modes of surface expression in continental-collision models: (I) low-amplitude homogeneous shortening, (II) high-amplitude homogeneous shortening, (III) Alpine-type topography with topographic front and low plateau, and (IV) Tibet-Himalaya-type topography with topographic front and high plateau. Results of semianalytical models suggest that the Argand number governs the formation of high topographic fronts, while the amplitude of plateaus is controlled by the initial buoyancy ratio of the upper plate. Applying these results to natural examples, we show that the Alps belong to regime (III), the Himalaya-Tibet to regime (IV), whereas the Andes-Altiplano fall at the boundary between regimes (III) and (IV).
EM modeling for GPIR using 3D FDTD modeling codes
Nelson, S.D.
1994-10-01
An analysis of the one-, two-, and three-dimensional electrical characteristics of structural cement and concrete is presented. This work connects experimental efforts in characterizing cement and concrete in the frequency and time domains with the Finite Difference Time Domain (FDTD) modeling efforts of these substances. These efforts include Electromagnetic (EM) modeling of simple lossless homogeneous materials with aggregate and targets and the modeling dispersive and lossy materials with aggregate and complex target geometries for Ground Penetrating Imaging Radar (GPIR). Two- and three-dimensional FDTD codes (developed at LLNL) where used for the modeling efforts. Purpose of the experimental and modeling efforts is to gain knowledge about the electrical properties of concrete typically used in the construction industry for bridges and other load bearing structures. The goal is to optimize the performance of a high-sample-rate impulse radar and data acquisition system and to design an antenna system to match the characteristics of this material. Results show agreement to within 2 dB of the amplitudes of the experimental and modeled data while the frequency peaks correlate to within 10% the differences being due to the unknown exact nature of the aggregate placement.
West Flank Coso, CA FORGE 3D temperature model
Doug Blankenship
2016-03-01
x,y,z data of the 3D temperature model for the West Flank Coso FORGE site. Model grid spacing is 250m. The temperature model for the Coso geothermal field used over 100 geothermal production sized wells and intermediate-depth temperature holes. At the near surface of this model, two boundary temperatures were assumed: (1) areas with surface manifestations, including fumaroles along the northeast striking normal faults and northwest striking dextral faults with the hydrothermal field, a temperature of ~104ËšC was applied to datum at +1066 meters above sea level elevation, and (2) a near-surface temperature at about 10 meters depth, of 20ËšC was applied below the diurnal and annual conductive temperature perturbations. These assumptions were based on heat flow studies conducted at the CVF and for the Mojave Desert. On the edges of the hydrothermal system, a 73ËšC/km (4ËšF/100â€™) temperature gradient contour was established using conductive gradient data from shallow and intermediate-depth temperature holes. This contour was continued to all elevation datums between the 20ËšC surface and -1520 meters below mean sea level. Because the West Flank is outside of the geothermal field footprint, during Phase 1, the three wells inside the FORGE site were incorporated into the preexisting temperature model. To ensure a complete model was built based on all the available data sets, measured bottom-hole temperature gradients in certain wells were downward extrapolated to the next deepest elevation datum (or a maximum of about 25% of the well depth where conductive gradients are evident in the lower portions of the wells). After assuring that the margins of the geothermal field were going to be adequately modelled, the data was contoured using the Kriging method algorithm. Although the extrapolated temperatures and boundary conditions are not rigorous, the calculated temperatures are anticipated to be within ~6ËšC (20ËšF), or one contour interval, of the
3D Smoothed Particle Hydrodynamics Models of Betelgeuse's Bow Shock
NASA Astrophysics Data System (ADS)
Mohamed, S.; Mackey, J.; Langer, N.
2013-05-01
Betelgeuse, the bright red supergiant (RSG) in Orion, is a runaway star. Its supersonic motion through the interstellar medium has resulted in the formation of a bow shock, a cometary structure pointing in the direction of motion. We present the first 3D hydrodynamic simulations of the formation and evolution of Betelgeuse's bow shock. We show that the bow shock morphology depends substantially on the growth timescale for Rayleigh-Taylor versus Kelvin-Helmholtz instabilities. We discuss our models in light of the recent Herschel, GALEX and VLA observations. If the mass in the bow shock shell is low (~few × 10-3 M⊙), as seems to be implied by the AKARI and Herschel observations, then Betelgeuse's bow shock is very young and is unlikely to have reached a steady state. The circular, smooth bow shock shell is consistent with this conclusion. We further discuss the implications of our results, in particular, the possibility that Betelgeuse may have only recently entered the RSG phase.
3D Simulation Modeling of the Tooth Wear Process
Dai, Ning; Hu, Jian; Liu, Hao
2015-01-01
Severe tooth wear is the most common non-caries dental disease, and it can seriously affect oral health. Studying the tooth wear process is time-consuming and difficult, and technological tools are frequently lacking. This paper presents a novel method of digital simulation modeling that represents a new way to study tooth wear. First, a feature extraction algorithm is used to obtain anatomical feature points of the tooth without attrition. Second, after the alignment of non-attrition areas, the initial homogeneous surface is generated by means of the RBF (Radial Basic Function) implicit surface and then deformed to the final homogeneous by the contraction and bounding algorithm. Finally, the method of bilinear interpolation based on Laplacian coordinates between tooth with attrition and without attrition is used to inversely reconstruct the sequence of changes of the 3D tooth morphology during gradual tooth wear process. This method can also be used to generate a process simulation of nonlinear tooth wear by means of fitting an attrition curve to the statistical data of attrition index in a certain region. The effectiveness and efficiency of the attrition simulation algorithm are verified through experimental simulation. PMID:26241942
3-D model of beam kicker in DARHT-2 accelerator
NASA Astrophysics Data System (ADS)
Thoma, Carsten; Genoni, Thomas; Hughes, Thomas
2003-10-01
The DARHT-2 beamline uses a fast stripline kicker developed at LLNL [1] to create a series of short pulses out of a 2 microsecond pulse for use in high resolution x-ray radiography. Normally, a static bias dipole bends the 2 kA, 18 MeV electron beam off axis into a dump. When the fast stripline kicker is activated, the static dipole kick is cancelled by the dynamic dipole field of the kicker, and the beam travels to the x-ray converter. 3-D PIC simulations are performed to compute the effect of the kicker on the beam. The calculations incorporate the kicker biplate conductor geometry, allowing for accurate modeling of the effects of higher multipole fields as well as beam wakefield effects. Beam emittance growth through the kicker is investigated for various beam loads. [1] B.R. Poole and Y.-J. Chen, "Particle Simulations of DARHT-2 Transport System", Proc. PAC 2001 Conference (http://accelconf.web.cern.ch/AccelConf/p01/PAPERS/RPPH034.PDF).
A 3D numerical model for Kepler's supernova remnant
NASA Astrophysics Data System (ADS)
Toledo-Roy, J. C.; Esquivel, A.; Velázquez, P. F.; Reynoso, E. M.
2014-07-01
We present new 3D numerical simulations for Kepler's supernova remnant. In this work we revisit the possibility that the asymmetric shape of the remnant in X-rays is the product of a Type Ia supernova explosion which occurs inside the wind bubble previously created by an AGB companion star. Due to the large peculiar velocity of the system, the interaction of the strong AGB wind with the interstellar medium results in a bow shock structure. In this new model we propose that the AGB wind is anisotropic, with properties such as mass-loss rate and density having a latitude dependence, and that the orientation of the polar axis of the AGB star is not aligned with the direction of motion. The ejecta from the Type Ia supernova explosion is modelled using a power-law density profile, and we let the remnant evolve for 400 yr. We computed synthetic X-ray maps from the numerical results. We find that the estimated size and peculiar X-ray morphology of Kepler's supernova remnant are well reproduced by considering an AGB mass-loss rate of 10-5 M⊙ yr-1, a wind terminal velocity of 10 km s-1, an ambient medium density of 10-3 cm-3 and an explosion energy of 7 × 1050 erg. The obtained total X-ray luminosity of the remnant in this model reaches 6 × 1050 erg, which is within a factor of 2 of the observed value, and the time evolution of the luminosity shows a rate of decrease in recent decades of ˜2.4 per cent yr-1 that is consistent with the observations.
3D modeling of carbonates petro-acoustic heterogeneities
NASA Astrophysics Data System (ADS)
Baden, Dawin; Guglielmi, Yves; Saracco, Ginette; Marié, Lionel; Viseur, Sophie
2015-04-01
Characterizing carbonate reservoirs heterogeneity is a challenging issue for Oil & Gas Industry, CO2 sequestration and all kinds of fluid manipulations in natural reservoirs, due to the significant impact of heterogeneities on fluid flow and storage within the reservoir. Although large scale (> meter) heterogeneities such as layers petrophysical contrasts are well addressed by computing facies-based models, low scale (< meter) heterogeneities are often poorly constrained because of the complexity in predicting their spatial arrangement. In this study, we conducted petro-acoustic measurements on cores of different size and diameter (Ø = 1", 1.5" and 5") in order to evaluate anisotropy or heterogeneity in carbonates at different laboratory scales. Different types of heterogeneities which generally occur in carbonate reservoir units (e.g. petrographic, diagenetic, and tectonic related) were sampled. Dry / wet samples were investigated with different ultrasonic apparatus and using different sensors allowing acoustic characterization through a bandwidth varying from 50 to 500 kHz. Comprehensive measurements realized on each samples allowed statistical analyses of petro-acoustic properties such as attenuation, shear and longitudinal wave velocity. The cores properties (geological and acoustic facies) were modeled in 3D using photogrammetry and GOCAD geo-modeler. This method successfully allowed detecting and imaging in three dimensions differential diagenesis effects characterized by the occurrence of decimeter-scale diagenetic horizons in samples assumed to be homogeneous and/or different diagenetic sequences between shells filling and the packing matrix. We then discuss how small interfaces such as cracks, stylolithes and laminations which are also imaged may have guided these differential effects, considering that understanding the processes may be taken as an analogue to actual fluid drainage complexity in deep carbonate reservoir.
Research on graphical workflow modeling tool
NASA Astrophysics Data System (ADS)
Gu, Hongjiu
2013-07-01
Through the technical analysis of existing modeling tools, combined with Web technology, this paper presents a graphical workflow modeling tool design program, through which designers can draw process directly in the browser and automatically transform the drawn process description in XML description file, to facilitate the workflow engine analysis and barrier-free sharing of workflow data in a networked environment. The program has software reusability, cross-platform, scalability, and strong practicality.
Graphics modelling of non-contact thickness measuring robotics work cell
NASA Technical Reports Server (NTRS)
Warren, Charles W.
1990-01-01
A system was developed for measuring, in real time, the thickness of a sprayable insulation during its application. The system was graphically modelled, off-line, using a state-of-the-art graphics workstation and associated software. This model was to contain a 3D color model of a workcell containing a robot and an air bearing turntable. A communication link was established between the graphics workstations and the robot's controller. Sequences of robot motion generated by the computer simulation are transmitted to the robot for execution.
Garcia-Molla, V M; Liberos, A; Vidal, A; Guillem, M S; Millet, J; Gonzalez, A; Martinez-Zaldivar, F J; Climent, A M
2014-01-01
In this paper we studied the implementation and performance of adaptive step methods for large systems of ordinary differential equations systems in graphics processing units, focusing on the simulation of three-dimensional electric cardiac activity. The Rush-Larsen method was applied in all the implemented solvers to improve efficiency. We compared the adaptive methods with the fixed step methods, and we found that the fixed step methods can be faster while the adaptive step methods are better in terms of accuracy and robustness. PMID:24377685
Brien, Dianne L.; Reid, Mark E.
2007-01-01
Landslides are a common problem on coastal bluffs throughout the world. Along the coastal bluffs of the Puget Sound in Seattle, Washington, landslides range from small, shallow failures to large, deep-seated landslides. Landslides of all types can pose hazards to human lives and property, but deep-seated landslides are of significant concern because their large areal extent can cause extensive property damage. Although many geomorphic processes shape the coastal bluffs of Seattle, we focus on large (greater than 3,000 m3), deepseated, rotational landslides that occur on the steep bluffs along Puget Sound. Many of these larger failures occur in advance outwash deposits of the Vashon Drift (Qva); some failures extend into the underlying Lawton Clay Member of the Vashon Drift (Qvlc). The slope stability of coastal bluffs is controlled by the interplay of three-dimensional (3-D) variations in gravitational stress, strength, and pore-water pressure. We assess 3-D slope-stability using SCOOPS (Reid and others, 2000), a computer program that allows us to search a high-resolution digital-elevation model (DEM) to quantify the relative stability of all parts of the landscape by computing the stability and volume of thousands of potential spherical failures. SCOOPS incorporates topography, 3-D strength variations, and 3-D pore pressures. Initially, we use our 3-D analysis methods to examine the effects of topography and geology by using heterogeneous material properties, as defined by stratigraphy, without pore pressures. In this scenario, the least-stable areas are located on the steepest slopes, commonly in Qva or Qvlc. However, these locations do not agree well with observations of deep-seated landslides. Historically, both shallow colluvial landslides and deep-seated landslides have been observed near the contact between Qva and Qvlc, and commonly occur in Qva. The low hydraulic conductivity of Qvlc impedes ground-water flow, resulting in elevated pore pressures at the
Verification and Validation of the k-kL Turbulence Model in FUN3D and CFL3D Codes
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.; Carlson, Jan-Renee; Rumsey, Christopher L.
2015-01-01
The implementation of the k-kL turbulence model using multiple computational uid dy- namics (CFD) codes is reported herein. The k-kL model is a two-equation turbulence model based on Abdol-Hamid's closure and Menter's modi cation to Rotta's two-equation model. Rotta shows that a reliable transport equation can be formed from the turbulent length scale L, and the turbulent kinetic energy k. Rotta's equation is well suited for term-by-term mod- eling and displays useful features compared to other two-equation models. An important di erence is that this formulation leads to the inclusion of higher-order velocity derivatives in the source terms of the scale equations. This can enhance the ability of the Reynolds- averaged Navier-Stokes (RANS) solvers to simulate unsteady ows. The present report documents the formulation of the model as implemented in the CFD codes Fun3D and CFL3D. Methodology, veri cation and validation examples are shown. Attached and sepa- rated ow cases are documented and compared with experimental data. The results show generally very good comparisons with canonical and experimental data, as well as matching results code-to-code. The results from this formulation are similar or better than results using the SST turbulence model.
3D Geological Model of Nihe ore deposit Constrained by Gravity and Magnetic Modeling
NASA Astrophysics Data System (ADS)
Qi, Guang; Yan, Jiayong; Lv, Qingtan; Zhao, Jinhua
2016-04-01
We present a case study on using integrated geologic model in mineral exploration at depth. Nihe ore deposit in Anhui Province, is deep hidden ore deposit which was discovered in recent years, this finding is the major driving force of deep mineral exploration work in Luzong. Building 3D elaborate geological model has the important significance for prospecting to deep or surround in this area, and can help us better understand the metallogenic law and ore-controlling regularity. A 3D geological model, extending a depth from +200m to -1500m in Nihe ore deposit, has been compiled from surface geological map, cross-section, borehole logs and amounts of geological inference. And then the 3D geological models have been given physical property parameter for calculating the potential field. Modelling the potential response is proposed as means of evaluating the viability of the 3D geological models, and the evidence of making small changes to the uncertain parts of the original 3D geological models. It is expected that the final models not only reproduce supplied prior geological knowledge, but also explain the observed geophysical data. The workflow used to develop the 3D geologic model in this study includes the three major steps, as follows: (1) Determine the basic information of Model: Defining the 3D limits of the model area, the basic geological and structural unit, and the tectonic contact relations and the sedimentary sequences between these units. (2) 3D model construction: Firstly, a series of 2D geological cross sections over the model area are built by using all kinds of prior information, including surface geology, borehole data, seismic sections, and local geologists' knowledge and intuition. Lastly, we put these sections into a 3D environment according to their profile locations to build a 3D model by using geostatistics method. (3) 3D gravity and magnetic modeling: we calculate the potential field responses of the 3D model, and compare the predicted and
3d Modelling of Convective Flow In The Rhine Graben
NASA Astrophysics Data System (ADS)
Bächler, D.; Kohl, T.; Rybach, L.
Detailed investigations of the temperature distribution in the Rhine Graben indi- cate regular pattern of thermal anomalies following major north-south striking faults. These anomalies remain unexplained by conventional Rhine Graben studies based on 2D east-west striking sections. First analytical solutions for convective flow in vertical faults are applied for a clearly observable anomalous temperature pattern along ma- jor Rhine Graben faults. By these calculations the fault height, fault aperture, minimal fault permeability and time to convective onset is derived from the observed distances. Since analytical solutions are limited to simple model geometries further improvement was achieved by numerical model simulations, which allow to assume more com- plex initial and boundary conditions. Using the finite volume code TOUGH2 series of anomalies following the same fault were simulated by a 3D numerical model. Fo- cussing on the predominant north-south permeability structure the model consists of a vertical north-south striking fault and surrounding matrix. The fault geometries are based on the analytically predicted fault geometries (aperture=200m, height=3500m) and on the observed temperatures. Comparison of simulation results with observed temperatures shows that the fault is situated between 500 to 600m and 4200m. The fault permeability is taken as 5*10-13m2 and the fluid velocity in the fault is calcu- lated as 10-9 to 10-10 m/s. These results indicate the importance of our considerations since mass flux is much higher in the faults than across them. The minimal age of the anomaly is considered to be 77'000 years, since steady state is reached after this time span. The study proves that the observed temperature anomaly pattern along the gamma fault at Landau can be explained by north-south striking convection systems within fault zones. Similar situations have been found at Soultz. This may be a hint on a general feature of the major north-south striking
Numerical Results of 3-D Modeling of Moon Accumulation
NASA Astrophysics Data System (ADS)
Khachay, Yurie; Anfilogov, Vsevolod; Antipin, Alexandr
2014-05-01
For the last time for the model of the Moon usually had been used the model of mega impact in which the forming of the Earth and its sputnik had been the consequence of the Earth's collision with the body of Mercurial mass. But all dynamical models of the Earth's accumulation and the estimations after the Pb-Pb system, lead to the conclusion that the duration of the planet accumulation was about 1 milliard years. But isotopic results after the W-Hf system testify about a very early (5-10) million years, dividing of the geochemical reservoirs of the core and mantle. In [1,2] it is shown, that the account of energy dissipating by the decay of short living radioactive elements and first of all Al26,it is sufficient for heating even small bodies with dimensions about (50-100) km up to the iron melting temperature and can be realized a principal new differentiation mechanism. The inner parts of the melted preplanets can join and they are mainly of iron content, but the cold silicate fragments return to the supply zone and additionally change the content of Moon forming to silicates. Only after the increasing of the gravitational radius of the Earth, the growing area of the future Earth's core can save also the silicate envelope fragments [3]. For understanding the further system Earth-Moon evolution it is significant to trace the origin and evolution of heterogeneities, which occur on its accumulation stage.In that paper we are modeling the changing of temperature,pressure,velocity of matter flowing in a block of 3d spherical body with a growing radius. The boundary problem is solved by the finite-difference method for the system of equations, which include equations which describe the process of accumulation, the Safronov equation, the equation of impulse balance, equation Navier-Stocks, equation for above litho static pressure and heat conductivity in velocity-pressure variables using the Businesque approach.The numerical algorithm of the problem solution in velocity
Towards an Anisotropic Whole Mantle 3D Elastic Velocity Model
NASA Astrophysics Data System (ADS)
Panning, M. P.; Romanowicz, B.; Gung, Y.
2001-12-01
Many studies have documented the existence of anisotropy in the earth's upper mantle, concentrated in the top 200 km. This evidence comes from the study of surface waves as well as shear wave splitting. There is also evidence for shear wave splitting in D", at least in well sampled regions. There are some hints of anisotropy at the base of the transition zone. Tomographic models of the upper mantle have been developed with simplifying assumptions about the nature of the anisotropy, in order to minimize the number of free parameters in the inversions. Some assume transverse isotropy (e.g Ekström and Dziewonski, 1997), others include additional degrees of freedom with some realistic constraints on mineralogy (e.g. Montagner and Tanimoto, 1991). Our goal is to investigate anisotropy in the whole mantle, using the framework of waveform inversion, and the nonlinear asymptotic mode coupling theory (NACT), previously developed and applied to the construction of whole-mantle SH velocity models (Li and Romanowicz, 1996; Mégnin and Romanowicz, 2000). For this we require a 3 component dataset, and we have extended our automatic transverse (T) component wavepicking procedures to the vertical (Z) and longitudinal (L) component - a non-trivial task given the large number of phases present in the coupled P-SV system. A useful initial assumption, for which the theory has been readily adapted, is that of transverse isotropy. As a first step towards this, we have been investigating inversions using T component and Z,L component data separately. In particular, this allows us to explore the sampling that can be achieved with Z,L component data alone in the deepest part of the mantle. Indeed, D" is in general much better sampled in SH than in SV, owing to the availability of SHdiff at large distances, while SVdiff decays more rapidly due to mantle-core coupling. We present the results of our resolution experiments and discuss the differences between the 3D SV model obtained in well
NASA Astrophysics Data System (ADS)
Klimeck, Gerhard
2001-03-01
The quantum mechanical functionality of commercially pursued heterostructure devices such as resonant tunneling diodes (RTDs), quantum well infrared photodetectors, and quantum well lasers are enabled by material variations on an atomic scale. The creation of these heterostructure devices is realized in a vast design space of material compositions, layer thicknesses and doping profiles. The full experimental exploration of this design space is unfeasible and a reliable design tool is needed. The Nanoelectronic Modeling tool (NEMO) is one of the first commercial grade attempts for such a modeling tool. NEMO was developed as a general-purpose quantum mechanics-based 1-D device design and analysis tool from 1993-97 by the Central Research Laboratory of Texas Instruments (later Raytheon Systems). NEMO enables(R. Lake, G. Klimeck, R. C. Bowen, and D. Jovanovic, J. Appl. Phys. 81), 7845 (1997). the fundamentally sound inclusion of the required(G. Klimeck et al.), in the 1997 55th Annual Device Research Conference Digest, (IEEE, NJ, 1997), p. 92^,(R. C. Bowen et al.), J. Appl. Phys 81, 3207 (1997). physics: bandstructure, scattering, and charge self-consistency based on the non-equilibrium Green function approach. A new class of devices which require full 3-D quantum mechanics based models is starting to emerge: quantum dots, or in general semiconductor based deca-nano devices. We are currently building a 3-D modeling tool based on NEMO to include the important physics to understand electronic stated in such superscaled structures. This presentation will overview various facets of the NEMO 1-D tool such electron transport physics in RTDs, numerical technology, software engineering and graphical user interface. The lessons learned from that work are now entering the 3D>NEMO 3-D development and first results using the NEMO 3-D prototype will be shown. More information about
Orbiter/External Tank Mate 3-D Solid Modeling
NASA Technical Reports Server (NTRS)
Godfrey, G. S.; Brandt, B.; Rorden, D.; Kapr, F.
2004-01-01
This research and development project presents an overview of the work completed while attending a summer 2004 American Society of Engineering Education/National Aeronautics and Space Administration (ASEE/NASA) Faculty Fellowship. This fellowship was completed at the Kennedy Space Center, Florida. The scope of the project was to complete parts, assemblies, and drawings that could be used by Ground Support Equipment (GSE) personnel to simulate situations and scenarios commonplace to the space shuttle Orbiter/External Tank (ET) Mate (50004). This mate takes place in the Vehicle Assembly Building (VAB). These simulations could then be used by NASA engineers as decision-making tools. During the summer of 2004, parts were created that defined the Orbiter/ET structural interfaces. Emphasis was placed upon assemblies that included the Orbiter/ET forward attachment (EO-1), aft left thrust strut (EO-2), aft right tripod support structure (EO-3), and crossbeam and aft feedline/umbilical supports. These assemblies are used to attach the Orbiter to the ET. The Orbiter/ET Mate assembly was then used to compare and analyze clearance distances using different Orbiter hang angles. It was found that a 30-minute arc angle change in Orbiter hang angle affected distance at the bipod strut to Orbiter yoke fitting 8.11 inches. A 3-D solid model library was established as a result of this project. This library contains parts, assemblies, and drawings translated into several formats. This library contains a collection of the following files: sti for sterolithography, stp for neutral file work, shrinkwrap for compression. tiff for photoshop work, jpeg for Internet use, and prt and asm for Pro/Engineer use. This library was made available to NASA engineers so that they could access its contents to make angle, load, and clearance analysis studies. These decision-making tools may be used by Pro/Engineer users and non-users.
Automated robust generation of compact 3D statistical shape models
NASA Astrophysics Data System (ADS)
Vrtovec, Tomaz; Likar, Bostjan; Tomazevic, Dejan; Pernus, Franjo
2004-05-01
Ascertaining the detailed shape and spatial arrangement of anatomical structures is important not only within diagnostic settings but also in the areas of planning, simulation, intraoperative navigation, and tracking of pathology. Robust, accurate and efficient automated segmentation of anatomical structures is difficult because of their complexity and inter-patient variability. Furthermore, the position of the patient during image acquisition, the imaging device and protocol, image resolution, and other factors induce additional variations in shape and appearance. Statistical shape models (SSMs) have proven quite successful in capturing structural variability. A possible approach to obtain a 3D SSM is to extract reference voxels by precisely segmenting the structure in one, reference image. The corresponding voxels in other images are determined by registering the reference image to each other image. The SSM obtained in this way describes statistically plausible shape variations over the given population as well as variations due to imperfect registration. In this paper, we present a completely automated method that significantly reduces shape variations induced by imperfect registration, thus allowing a more accurate description of variations. At each iteration, the derived SSM is used for coarse registration, which is further improved by describing finer variations of the structure. The method was tested on 64 lumbar spinal column CT scans, from which 23, 38, 45, 46 and 42 volumes of interest containing vertebra L1, L2, L3, L4 and L5, respectively, were extracted. Separate SSMs were generated for each vertebra. The results show that the method is capable of reducing the variations induced by registration errors.
Research on urban rapid 3D modeling and application based on CGA rule
NASA Astrophysics Data System (ADS)
Li, Jing-wen; Jiang, Jian-wu; Zhou, Song; Yin, Shou-qiang
2015-12-01
Use CityEngine as the 3D modeling platform, research on urban rapid 3D modeling technology based on the CGA(Computer Generated Architectur) rule , solved the problem of the rapid creation of urban 3D model in large scenes , and research on building texture processing and 3D model optimization techniques based on CGA rule , using component modeling method , solved the problem of texture distortion and model redundancy in the traditional fast modeling 3D model , and development of a three-dimensional view and analysis system based on ArcGIS Engine , realization of 3D model query , distance measurement , specific path flight , 3D marking , Scene export,etc.
3-D Solid Modeling: Making the Modeling-to-Drawing Interface Seamless.
ERIC Educational Resources Information Center
Ross, William A.
1991-01-01
An approach to reduce the barrier between two-dimensional computer-aided drafting and three-dimensional constructive solids modeling is graphically illustrated. This process, or some derivative, encompasses a significant portion of the future direction for engineering graphics education. (KR)
Examination of 1D Solar Cell Model Limitations Using 3D SPICE Modeling: Preprint
McMahon, W. E.; Olson, J. M.; Geisz, J. F.; Friedman, D. J.
2012-06-01
To examine the limitations of one-dimensional (1D) solar cell modeling, 3D SPICE-based modeling is used to examine in detail the validity of the 1D assumptions as a function of sheet resistance for a model cell. The internal voltages and current densities produced by this modeling give additional insight into the differences between the 1D and 3D models.
Using 3D Geometric Models to Teach Spatial Geometry Concepts.
ERIC Educational Resources Information Center
Bertoline, Gary R.
1991-01-01
An explanation of 3-D Computer Aided Design (CAD) usage to teach spatial geometry concepts using nontraditional techniques is presented. The software packages CADKEY and AutoCAD are described as well as their usefulness in solving space geometry problems. (KR)
NASA Astrophysics Data System (ADS)
Fadel, I.; van der Meijde, M.; Kerle, N.; Lauritsen, N.
2015-03-01
Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D interactive modelling environment IGMAS+, and their density contrast values were calculated using an object-based inversion technique to calculate the forward signal of the objects and compare it with the measured satellite gravity. Thus, a new object-based approach was implemented to interpret and extract the 3D subsurface objects from 3D geophysical data. We also introduce a new approach to constrain the interpretation of the satellite gravity measurements that can be applied using any 3D geophysical model.
Quasi-Facial Communication for Online Learning Using 3D Modeling Techniques
ERIC Educational Resources Information Center
Wang, Yushun; Zhuang, Yueting
2008-01-01
Online interaction with 3D facial animation is an alternative way of face-to-face communication for distance education. 3D facial modeling is essential for virtual educational environments establishment. This article presents a novel 3D facial modeling solution that facilitates quasi-facial communication for online learning. Our algorithm builds…
Planar graphical models which are easy
NASA Astrophysics Data System (ADS)
Chernyak, Vladimir Y.; Chertkov, Michael
2010-11-01
We describe a rich family of binary variables statistical mechanics models on a given planar graph which are equivalent to Gaussian Grassmann graphical models (free fermions) defined on the same graph. Calculation of the partition function (weighted counting) for such a model is easy (of polynomial complexity) as it is reducible to evaluation of a Pfaffian of a matrix of size equal to twice the number of edges in the graph. In particular, this approach touches upon holographic algorithms of Valiant and utilizes the gauge transformations discussed in our previous works.
Howard Barker; Jason Cole
2012-05-17
Utilization of cloud-resolving models and multi-dimensional radiative transfer models to investigate the importance of 3D radiation effects on the numerical simulation of cloud fields and their properties.
Transforming 2d Cadastral Data Into a Dynamic Smart 3d Model
NASA Astrophysics Data System (ADS)
Tsiliakou, E.; Labropoulos, T.; Dimopoulou, E.
2013-08-01
3D property registration has become an imperative need in order to optimally reflect all complex cases of the multilayer reality of property rights and restrictions, revealing their vertical component. This paper refers to the potentials and multiple applications of 3D cadastral systems and explores the current state-of-the art, especially the available software with which 3D visualization can be achieved. Within this context, the Hellenic Cadastre's current state is investigated, in particular its data modeling frame. Presenting the methodologies and specifications addressing the registration of 3D properties, the operating cadastral system's shortcomings and merits are pointed out. Nonetheless, current technological advances as well as the availability of sophisticated software packages (proprietary or open source) call for 3D modeling. In order to register and visualize the complex reality in 3D, Esri's CityEngine modeling software has been used, which is specialized in the generation of 3D urban environments, transforming 2D GIS Data into Smart 3D City Models. The application of the 3D model concerns the Campus of the National Technical University of Athens, in which a complex ownership status is established along with approved special zoning regulations. The 3D model was built using different parameters based on input data, derived from cadastral and urban planning datasets, as well as legal documents and architectural plans. The process resulted in a final 3D model, optimally describing the cadastral situation and built environment and proved to be a good practice example of 3D visualization.
Multi Sensor Data Integration for AN Accurate 3d Model Generation
NASA Astrophysics Data System (ADS)
Chhatkuli, S.; Satoh, T.; Tachibana, K.
2015-05-01
The aim of this paper is to introduce a novel technique of data integration between two different data sets, i.e. laser scanned RGB point cloud and oblique imageries derived 3D model, to create a 3D model with more details and better accuracy. In general, aerial imageries are used to create a 3D city model. Aerial imageries produce an overall decent 3D city models and generally suit to generate 3D model of building roof and some non-complex terrain. However, the automatically generated 3D model, from aerial imageries, generally suffers from the lack of accuracy in deriving the 3D model of road under the bridges, details under tree canopy, isolated trees, etc. Moreover, the automatically generated 3D model from aerial imageries also suffers from undulated road surfaces, non-conforming building shapes, loss of minute details like street furniture, etc. in many cases. On the other hand, laser scanned data and images taken from mobile vehicle platform can produce more detailed 3D road model, street furniture model, 3D model of details under bridge, etc. However, laser scanned data and images from mobile vehicle are not suitable to acquire detailed 3D model of tall buildings, roof tops, and so forth. Our proposed approach to integrate multi sensor data compensated each other's weakness and helped to create a very detailed 3D model with better accuracy. Moreover, the additional details like isolated trees, street furniture, etc. which were missing in the original 3D model derived from aerial imageries could also be integrated in the final model automatically. During the process, the noise in the laser scanned data for example people, vehicles etc. on the road were also automatically removed. Hence, even though the two dataset were acquired in different time period the integrated data set or the final 3D model was generally noise free and without unnecessary details.
Numerical Results of Earth's Core Accumulation 3-D Modelling
NASA Astrophysics Data System (ADS)
Khachay, Yurie; Anfilogov, Vsevolod
2013-04-01
For a long time as a most convenient had been the model of mega impact in which the early forming of the Earth's core and mantle had been the consequence of formed protoplanet collision with the body of Mercurial mass. But all dynamical models of the Earth's accumulation and the estimations after the Pb-Pb system, lead to the conclusion that the duration of the planet accumulation was about 1 milliard years. But isotopic results after the W-Hf system testify about a very early (5-10) million years, dividing of the geochemical reservoirs of the core and mantle. In [1,3] it is shown, that the account of energy dissipating by the decay of short living radioactive elements and first of all Al,it is sufficient for heating even small bodies with dimensions about (50-100) km up to the iron melting temperature and can be realized a principal new differentiation mechanism. The inner parts of the melted preplanets can join and they are mainly of iron content, but the cold silicate fragments return to the supply zone. Only after the increasing of the gravitational radius, the growing area of the future core can save also the silicate envelope fragments. All existing dynamical accumulation models are constructed by using a spherical-symmetrical model. Hence for understanding the further planet evolution it is significant to trace the origin and evolution of heterogeneities, which occur on the planet accumulation stage. In that paper we are modeling distributions of temperature, pressure, velocity of matter flowing in a block of 3D- spherical body with a growing radius. The boundary problem is solved by the finite-difference method for the system of equations, which include equations which describe the process of accumulation, the Safronov equation, the equation of impulse balance, equation Navier-Stocks, equation for above litho static pressure and heat conductivity in velocity-pressure variables using the Businesque approach. The numerical algorithm of the problem solution in
Teo, B G; Sarinder, K K S; Lim, L H S
2010-08-01
Three-dimensional (3D) models of the marginal hooks, dorsal and ventral anchors, bars and haptoral reservoirs of a parasite, Sundatrema langkawiense Lim & Gibson, 2009 (Monogenea) were developed using the polygonal modelling method in Autodesk 3ds Max (Version 9) based on two-dimensional (2D) illustrations. Maxscripts were written to rotate the modelled 3D structures. Appropriately orientated 3D haptoral hard-parts were then selected and positioned within the transparent 3D outline of the haptor and grouped together to form a complete 3D haptoral entity. This technique is an inexpensive tool for constructing 3D models from 2D illustrations for 3D visualisation of the spatial relationships between the different structural parts within organisms. PMID:20962723
NASA Technical Reports Server (NTRS)
Landis, W. J.; Hodgens, K. J.; McKee, M. D.; Nanci, A.; Song, M. J.; Kiyonaga, S.; Arena, J.; McEwen, B.
1992-01-01
To gain insight into the structure and possible function of extracellular vesicles in certain calcifying vertebrate tissues, normally mineralizing leg tendons from the domestic turkey, Meleagris gallopavo, have been studied in two separate investigations, one concerning the electron microscopic immunolocalization of the 66 kDa phosphoprotein, osteopontin, and the other detailing the organization and distribution of mineral crystals associated with the vesicles as determined by high voltage microscopic tomography and 3-D graphic image reconstruction. Immunolabeling shows that osteopontin is related to extracellular vesicles of the tendon in the sense that its initial presence appears coincident with the development of mineral associated with the vesicle loci. By high voltage electron microscopy and 3-D imaging techniques, mineral crystals are found to consist of small irregularly shaped particles somewhat randomly oriented throughout individual vesicles sites. Their appearance is different from that found for the mineral observed within calcifying tendon collagen, and their 3-D disposition is not regularly ordered. Possible spatial and temporal relationships of vesicles, osteopontin, mineral, and collagen are being examined further by these approaches.
3D Modeling of the ALICE Photoinjector Upgrade
McKenzie, J. W.; Militsyn, B. L.; Saveliev, Y. M.
2009-08-04
The injector for the ALICE machine (Accelerators and Lasers In Combined Experiments) at Daresbury Laboratory is based around a 350 kV DC photocathode electron gun. An upgrade is proposed to introduce a load-lock GaAs photocathode preparation facility to allow rapid transfer of photocathodes to the gun without breaking the vacuum system. In the current design this requires side-loading of the photocathodes into the cathode ball. An alternative is to relocate the ceramic insulator vertically which will allow back-loading and also backillumination of the photocathodes. 3D electrostatic simulations of the gun chamber are presented for both options along with 3D beam dynamic simulations for an off-axis photocathode, introduced to increase photocathode lifetime by reducing damage by ion backbombardment. Beam dynamic simulations are also presented for the entire injector beamline as well as for a proposed extension to the injector beamline to include a diagnostic section.
3D numerical model for NGC 6888 Nebula
NASA Astrophysics Data System (ADS)
Reyes-Iturbide, J.; Velázquez, P. F.; Rosado, M.
We present 3D numerical simulations of the NGC6888 nebula considering the proper motion and the evolution of the star, from the red supergiant (RSG) to the Wolf-Rayet (WR) phase. Our simulations reproduce the limb-brightened morphology observed in [OIII] and X-ray emission maps. The synthetic maps computed by the numerical simulations show filamentary and clumpy structures produced by instabilities triggered in the interaction between the WR wind and the RSG shell.
ERIC Educational Resources Information Center
Post, Susan
1975-01-01
An art teacher described an elective course in graphics which was designed to enlarge a student's knowledge of value, color, shape within a shape, transparency, line and texture. This course utilized the technique of working a multi-colored print from a single block that was first introduced by Picasso. (Author/RK)
Simulation of Current Generation in a 3-D Plasma Model
NASA Astrophysics Data System (ADS)
Tsung, F. S.; Dawson, J. M.
1996-11-01
In the advanced tokamak regime, transport phenomena can account for a signficant fraction of the toroidal current, possibly over that driven directly by the ohmic heating electric fields. Bootstrap theory accounts for contributions of the collisional modification of banana orbits on the toroidal currents. In our previous simulations in 21/2-D, currents were spontaneously generated in both the cylindrical and the toroidal geometries, contrary to neoclassical predictions. In these calculations, it was believed that the driving mechanism is the preferential loss of particles whose initial velocity is opposite to that of the plasma current. We are extending these simulations to three dimensions. A parallel 3-D electromagnetic PIC code running on the IBM SP2, with a localized field-solver has been developed to investigate the effects of perturbations parallel to the field lines, and direct comparisons has been made between the 21/2-D and 3-D simulations and we have found good agreements between the 2 1/2-D calculations and the 3-D results. We will present our new results at the meeting. Research partially supported by NSF and DOE.
NASA Astrophysics Data System (ADS)
Maljers, Denise; den Dulk, Maryke; ten Veen, Johan; Hummelman, Jan; Gunnink, Jan; van Gessel, Serge
2016-04-01
applied for DGM Deep proves to be an effective way to (graphically) represent the reliability of the DGM Deep model, although the relative contribution of the various error sources needs further attention. For the DGM Shallow model a cross-validation procedure in a moving window environment has been used to calculate mean deviations and standard errors on a sub-regional scale. Subsequently, these cross validation standard errors have been rescaled to account for local data configuration and clustering. This resulted in standard deviations expressing both regional and local uncertainties. Both workflows are state-of-the-art, form an integral part of the geological modelling and result in reproducible uncertainty values. They can be considered a good starting point for incorporating other errors that contribute to uncertainties of geological 3D raster layer models. For example, the mis-positioning of data used or the error underlying mis-ties at well locations. An additional, perhaps more easy-to-read, parameter that can be calculated to visualize these uncertainties would be the information entropy, as proposed by Wellmann & Regenauer-Lieb (2012). Where a value of 0 means there is no uncertainty, and a value of 1 means there is a high uncertainty. At the moment depth uncertainty information is disseminated through our webportals (www.dinoloket.nl and www.nlog.nl) in an on-line map viewer and as downloadable GIS products.
Virtual and Printed 3D Models for Teaching Crystal Symmetry and Point Groups
ERIC Educational Resources Information Center
Casas, Lluís; Estop, Euge`nia
2015-01-01
Both, virtual and printed 3D crystal models can help students and teachers deal with chemical education topics such as symmetry and point groups. In the present paper, two freely downloadable tools (interactive PDF files and a mobile app) are presented as examples of the application of 3D design to study point-symmetry. The use of 3D printing to…
Models and simulation of 3D neuronal dendritic trees using Bayesian networks.
López-Cruz, Pedro L; Bielza, Concha; Larrañaga, Pedro; Benavides-Piccione, Ruth; DeFelipe, Javier
2011-12-01
Neuron morphology is crucial for neuronal connectivity and brain information processing. Computational models are important tools for studying dendritic morphology and its role in brain function. We applied a class of probabilistic graphical models called Bayesian networks to generate virtual dendrites from layer III pyramidal neurons from three different regions of the neocortex of the mouse. A set of 41 morphological variables were measured from the 3D reconstructions of real dendrites and their probability distributions used in a machine learning algorithm to induce the model from the data. A simulation algorithm is also proposed to obtain new dendrites by sampling values from Bayesian networks. The main advantage of this approach is that it takes into account and automatically locates the relationships between variables in the data instead of using predefined dependencies. Therefore, the methodology can be applied to any neuronal class while at the same time exploiting class-specific properties. Also, a Bayesian network was defined for each part of the dendrite, allowing the relationships to change in the different sections and to model heterogeneous developmental factors or spatial influences. Several univariate statistical tests and a novel multivariate test based on Kullback-Leibler divergence estimation confirmed that virtual dendrites were similar to real ones. The analyses of the models showed relationships that conform to current neuroanatomical knowledge and support model correctness. At the same time, studying the relationships in the models can help to identify new interactions between variables related to dendritic morphology. PMID:21305364
ODTLES : a model for 3D turbulent flow based on one-dimensional turbulence modeling concepts.
McDermott, Randy; Kerstein, Alan R.; Schmidt, Rodney Cannon
2005-01-01
This report describes an approach for extending the one-dimensional turbulence (ODT) model of Kerstein [6] to treat turbulent flow in three-dimensional (3D) domains. This model, here called ODTLES, can also be viewed as a new LES model. In ODTLES, 3D aspects of the flow are captured by embedding three, mutually orthogonal, one-dimensional ODT domain arrays within a coarser 3D mesh. The ODTLES model is obtained by developing a consistent approach for dynamically coupling the different ODT line sets to each other and to the large scale processes that are resolved on the 3D mesh. The model is implemented computationally and its performance is tested and evaluated by performing simulations of decaying isotropic turbulence, a standard turbulent flow benchmarking problem.
Numerical modelling of gravel unconstrained flow experiments with the DAN3D and RASH3D codes
NASA Astrophysics Data System (ADS)
Sauthier, Claire; Pirulli, Marina; Pisani, Gabriele; Scavia, Claudio; Labiouse, Vincent
2015-12-01
Landslide continuum dynamic models have improved considerably in the last years, but a consensus on the best method of calibrating the input resistance parameter values for predictive analyses has not yet emerged. In the present paper, numerical simulations of a series of laboratory experiments performed at the Laboratory for Rock Mechanics of the EPF Lausanne were undertaken with the RASH3D and DAN3D numerical codes. They aimed at analysing the possibility to use calibrated ranges of parameters (1) in a code different from that they were obtained from and (2) to simulate potential-events made of a material with the same characteristics as back-analysed past-events, but involving a different volume and propagation path. For this purpose, one of the four benchmark laboratory tests was used as past-event to calibrate the dynamic basal friction angle assuming a Coulomb-type behaviour of the sliding mass, and this back-analysed value was then used to simulate the three other experiments, assumed as potential-events. The computational findings show good correspondence with experimental results in terms of characteristics of the final deposits (i.e., runout, length and width). Furthermore, the obtained best fit values of the dynamic basal friction angle for the two codes turn out to be close to each other and within the range of values measured with pseudo-dynamic tilting tests.
3D hydrodynamical and radiative transfer modeling of η Carinae's colliding winds
NASA Astrophysics Data System (ADS)
Madura, T. I.; Clementel, N.; Gull, T. R.; Kruip, C. J. H.; Paardekooper, J.-P.; Icke, V.
We present results of full 3D hydrodynamical and radiative transfer simulations of the colliding stellar winds in the massive binary system η Carinae. We accomplish this by applying the SimpleX algorithm for 3D radiative transfer on an unstructured Voronoi-Delaunay grid to recent 3D smoothed particle hydrodynamics (SPH) simulations of the binary colliding winds. We use SimpleX to obtain detailed ionization fractions of hydrogen and helium, in 3D, at the resolution of the original SPH simulations. We investigate several computational domain sizes and Luminous Blue Variable primary star mass-loss rates. We furthermore present new methods of visualizing and interacting with output from complex 3D numerical simulations, including 3D interactive graphics and 3D printing. While we initially focus on η Car, the methods employed can be applied to numerous other colliding wind (WR 140, WR 137, WR 19) and dusty `pinwheel' (WR 104, WR 98a) binary systems. Coupled with 3D hydrodynamical simulations, SimpleX simulations have the potential to help determine the regions where various observed time-variable emission and absorption lines form in these unique objects.
Advances in 3D electromagnetic finite element modeling
Nelson, E.M.
1997-08-01
Numerous advances in electromagnetic finite element analysis (FEA) have been made in recent years. The maturity of frequency domain and eigenmode calculations, and the growth of time domain applications is briefly reviewed. A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will also be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis is also discussed.
Automatic 3D Building Detection and Modeling from Airborne LiDAR Point Clouds
NASA Astrophysics Data System (ADS)
Sun, Shaohui
Urban reconstruction, with an emphasis on man-made structure modeling, is an active research area with broad impact on several potential applications. Urban reconstruction combines photogrammetry, remote sensing, computer vision, and computer graphics. Even though there is a huge volume of work that has been done, many problems still remain unsolved. Automation is one of the key focus areas in this research. In this work, a fast, completely automated method to create 3D watertight building models from airborne LiDAR (Light Detection and Ranging) point clouds is presented. The developed method analyzes the scene content and produces multi-layer rooftops, with complex rigorous boundaries and vertical walls, that connect rooftops to the ground. The graph cuts algorithm is used to separate vegetative elements from the rest of the scene content, which is based on the local analysis about the properties of the local implicit surface patch. The ground terrain and building rooftop footprints are then extracted, utilizing the developed strategy, a two-step hierarchical Euclidean clustering. The method presented here adopts a "divide-and-conquer" scheme. Once the building footprints are segmented from the terrain and vegetative areas, the whole scene is divided into individual pendent processing units which represent potential points on the rooftop. For each individual building region, significant features on the rooftop are further detected using a specifically designed region-growing algorithm with surface smoothness constraints. The principal orientation of each building rooftop feature is calculated using a minimum bounding box fitting technique, and is used to guide the refinement of shapes and boundaries of the rooftop parts. Boundaries for all of these features are refined for the purpose of producing strict description. Once the description of the rooftops is achieved, polygonal mesh models are generated by creating surface patches with outlines defined by detected
Computational approaches to 3D modeling of RNA.
Laing, Christian; Schlick, Tamar
2010-07-21
Many exciting discoveries have recently revealed the versatility of RNA and its importance in a variety of functions within the cell. Since the structural features of RNA are of major importance to their biological function, there is much interest in predicting RNA structure, either in free form or in interaction with various ligands, including proteins, metabolites and other molecules. In recent years, an increasing number of researchers have developed novel RNA algorithms for predicting RNA secondary and tertiary structures. In this review, we describe current experimental and computational advances and discuss recent ideas that are transforming the traditional view of RNA folding. To evaluate the performance of the most recent RNA 3D folding algorithms, we provide a comparative study in order to test the performance of available 3D structure prediction algorithms for an RNA data set of 43 structures of various lengths and motifs. We find that the algorithms vary widely in terms of prediction quality across different RNA lengths and topologies; most predictions have very large root mean square deviations from the experimental structure. We conclude by outlining some suggestions for future RNA folding research. PMID:21399271
A Framework for 3D Model-Based Visual Tracking Using a GPU-Accelerated Particle Filter.
Brown, J A; Capson, D W
2012-01-01
A novel framework for acceleration of particle filtering approaches to 3D model-based, markerless visual tracking in monocular video is described. Specifically, we present a methodology for partitioning and mapping the computationally expensive weight-update stage of a particle filter to a graphics processing unit (GPU) to achieve particle- and pixel-level parallelism. Nvidia CUDA and Direct3D are employed to harness the massively parallel computational power of modern GPUs for simulation (3D model rendering) and evaluation (segmentation, feature extraction, and weight calculation) of hundreds of particles at high speeds. The proposed framework addresses the computational intensity that is intrinsic to all particle filter approaches, including those that have been modified to minimize the number of particles required for a particular task. Performance and tracking quality results for rigid object and articulated hand tracking experiments demonstrate markerless, model-based visual tracking on consumer-grade graphics hardware with pixel-level accuracy up to 95 percent at 60+ frames per second. The framework accelerates particle evaluation up to 49 times over a comparable CPU-only implementation, providing an increased particle count while maintaining real-time frame rates. PMID:21301027
Numerical modeling of Tibetan Plateau formation: Thin-sheet versus fully 3D models
NASA Astrophysics Data System (ADS)
Lechmann, S. M.; Schmalholz, S. M.; Kaus, B. J. P.
2009-04-01
Knowledge about the tectonic evolution of the Tibetan Plateau is still incomplete and many open questions remain concerning the deformation style of the crustal thickening, causing the abnormally high elevation of the Tibetan Plateau. Different models have been suggested explaining the crustal thickening by (1) homogeneous, continuous deformation using thin-sheet models, (2) discrete movement along thrusts developing crustal wedges and (3) lateral crustal flow due to pressure gradients resulting from topography. Most existing models are not fully three-dimensional (3D) models (e.g. thin-sheet models) and assume a certain deformation style a priori, which makes it difficult to judge the applicability of such constrained models to the formation of the Tibetan Plateau. We present a comparison of deformation styles during continent indentation resulting from a fully 3D numerical model and a thin-sheet model. The rheology for both models is power-law. The 3D model consists of four layers representing a simplified lithosphere: strong upper crust, weak lower crust, strong upper mantle and weak lower mantle. From the effective viscosity distribution of the 3D model a vertically averaged effective viscosity is calculated and used for the thin-sheet model to make direct comparisons between the two models. Simulating indentation is achieved by assigning free slip at one lateral side of the model, and fixing two other sides. The boundary at which indentation is taking place, exhibits a tripartite velocity profile: Next to the free slip side a section with constant horizontal velocity is applied. The velocity then gradually decreases towards zero, applying a cosine-function. The last section of the indenting boundary next to the fixed side is also fixed. The 3D model additionally exhibits a free surface and a bottom boundary allowing free slip. The 3D code employs the finite element method with a mixed velocity-pressure formulation to simulate incompressible flow. A Lagrangian
NASA Astrophysics Data System (ADS)
Brasebin, M.; Perret, J.; Mustière, S.; Weber, C.
2012-10-01
The increased availability of 3D urban data reflects a growing interest in 3D spatial analysis. As 3D spatial analysis often uses complex 3D data, studies of the potential gains of using more detailed 3D urban databases for specific uses is an important issue. First, more complex data implies an increase in time and memory usage for the analysis (and calls for more research on the efficiency of the algorithms used). Second, detailed 3D urban data are complex to produce, expensive and it is important to be well informed in order to decide whether of not to invest in such data. Currently, many studies have been led about the fitness for use of 2D data but they are very scarce concerning 3D data. This article presents a method to determine the influence of 3D modeling on the results of 3D analysis by isolating the potential sources of errors (such as roof modeling and geometric accuracy). This method is applied on two 3D datasets (LOD1 and LOD2) and a 3D indicator (the sky view factor or SVF). The results show that the significant influence of roof modeling is globally compensated by the difference in geometric modeling but that important local variations are noticed. Nevertheless, for 75% of the SVF processed the difference between the results using these two databases is lower than 2%.
A Deformable Generic 3D Model of Haptoral Anchor of Monogenean
Teo, Bee Guan; Dhillon, Sarinder Kaur; Lim, Lee Hong Susan
2013-01-01
In this paper, a digital 3D model which allows for visualisation in three dimensions and interactive manipulation is explored as a tool to help us understand the structural morphology and elucidate the functions of morphological structures of fragile microorganisms which defy live studies. We developed a deformable generic 3D model of haptoral anchor of dactylogyridean monogeneans that can subsequently be deformed into different desired anchor shapes by using direct manipulation deformation technique. We used point primitives to construct the rectangular building blocks to develop our deformable 3D model. Point primitives are manually marked on a 2D illustration of an anchor on a Cartesian graph paper and a set of Cartesian coordinates for each point primitive is manually extracted from the graph paper. A Python script is then written in Blender to construct 3D rectangular building blocks based on the Cartesian coordinates. The rectangular building blocks are stacked on top or by the side of each other following their respective Cartesian coordinates of point primitive. More point primitives are added at the sites in the 3D model where more structural variations are likely to occur, in order to generate complex anchor structures. We used Catmull-Clark subdivision surface modifier to smoothen the surface and edge of the generic 3D model to obtain a smoother and more natural 3D shape and antialiasing option to reduce the jagged edges of the 3D model. This deformable generic 3D model can be deformed into different desired 3D anchor shapes through direct manipulation deformation technique by aligning the vertices (pilot points) of the newly developed deformable generic 3D model onto the 2D illustrations of the desired shapes and moving the vertices until the desire 3D shapes are formed. In this generic 3D model all the vertices present are deployed for displacement during deformation. PMID:24204903
A deformable generic 3D model of haptoral anchor of Monogenean.
Teo, Bee Guan; Dhillon, Sarinder Kaur; Lim, Lee Hong Susan
2013-01-01
In this paper, a digital 3D model which allows for visualisation in three dimensions and interactive manipulation is explored as a tool to help us understand the structural morphology and elucidate the functions of morphological structures of fragile microorganisms which defy live studies. We developed a deformable generic 3D model of haptoral anchor of dactylogyridean monogeneans that can subsequently be deformed into different desired anchor shapes by using direct manipulation deformation technique. We used point primitives to construct the rectangular building blocks to develop our deformable 3D model. Point primitives are manually marked on a 2D illustration of an anchor on a Cartesian graph paper and a set of Cartesian coordinates for each point primitive is manually extracted from the graph paper. A Python script is then written in Blender to construct 3D rectangular building blocks based on the Cartesian coordinates. The rectangular building blocks are stacked on top or by the side of each other following their respective Cartesian coordinates of point primitive. More point primitives are added at the sites in the 3D model where more structural variations are likely to occur, in order to generate complex anchor structures. We used Catmull-Clark subdivision surface modifier to smoothen the surface and edge of the generic 3D model to obtain a smoother and more natural 3D shape and antialiasing option to reduce the jagged edges of the 3D model. This deformable generic 3D model can be deformed into different desired 3D anchor shapes through direct manipulation deformation technique by aligning the vertices (pilot points) of the newly developed deformable generic 3D model onto the 2D illustrations of the desired shapes and moving the vertices until the desire 3D shapes are formed. In this generic 3D model all the vertices present are deployed for displacement during deformation. PMID:24204903
3D simulation studies of tokamak plasmas using MHD and extended-MHD models
Park, W.; Chang, Z.; Fredrickson, E.; Fu, G.Y.
1996-12-31
The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented; high-{beta} disruption studies in reversed shear plasmas using the MHD level MH3D code, {omega}{sub *i} stabilization and nonlinear island saturation of TAE mode using the hybrid particle/MHD level MH3D-K code, and unstructured mesh MH3D{sup ++} code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree which agree well with experimental data.
2010-01-01
Background Simulation of sophisticated biological models requires considerable computational power. These models typically integrate together numerous biological phenomena such as spatially-explicit heterogeneous cells, cell-cell interactions, cell-environment interactions and intracellular gene networks. The recent advent of programming for graphical processing units (GPU) opens up the possibility of developing more integrative, detailed and predictive biological models while at the same time decreasing the computational cost to simulate those models. Results We construct a 3D model of epidermal development and provide a set of GPU algorithms that executes significantly faster than sequential central processing unit (CPU) code. We provide a parallel implementation of the subcellular element method for individual cells residing in a lattice-free spatial environment. Each cell in our epidermal model includes an internal gene network, which integrates cellular interaction of Notch signaling together with environmental interaction of basement membrane adhesion, to specify cellular state and behaviors such as growth and division. We take a pedagogical approach to describing how modeling methods are efficiently implemented on the GPU including memory layout of data structures and functional decomposition. We discuss various programmatic issues and provide a set of design guidelines for GPU programming that are instructive to avoid common pitfalls as well as to extract performance from the GPU architecture. Conclusions We demonstrate that GPU algorithms represent a significant technological advance for the simulation of complex biological models. We further demonstrate with our epidermal model that the integration of multiple complex modeling methods for heterogeneous multicellular biological processes is both feasible and computationally tractable using this new technology. We hope that the provided algorithms and source code will be a starting point for modelers to
Developing and Testing a 3d Cadastral Data Model a Case Study in Australia
NASA Astrophysics Data System (ADS)
Aien, A.; Kalantari, M.; Rajabifard, A.; Williamson, I. P.; Shojaei, D.
2012-07-01
Population growth, urbanization and industrialization place more pressure on land use with the need for increased space. To extend the use and functionality of the land, complex infrastructures are being built, both vertically and horizontally, layered and stacked. These three-dimensional (3D) developments affect the interests (Rights, Restrictions, and Responsibilities (RRRs)) attached to the underlying land. A 3D cadastre will assist in managing the effects of 3D development on a particular extent of land. There are many elements that contribute to developing a 3D cadastre, such as existing of 3D property legislations, 3D DBMS, 3D visualization. However, data modelling is one of the most important elements of a successful 3D cadastre. As architectural models of houses and high rise buildings help their users visualize the final product, 3D cadastre data model supports 3D cadastre users to understand the structure or behavior of the system and has a template that guides them to construct and implement the 3D cadastre. Many jurisdictions, organizations and software developers have built their own cadastral data model. Land Administration Domain Model (DIS-ISO 19152, The Netherlands) and ePlan (Intergovernmental Committee on Surveying and Mapping, Australia) are examples of existing data models. The variation between these data models is the result of different attitudes towards cadastres. However, there is a basic common thread among them all. Current cadastral data models use a 2D land-parcel concept and extend it to support 3D requirements. These data models cannot adequately manage and represent the spatial extent of 3D RRRs. Most of the current cadastral data models have been influenced by a very broad understanding of 3D cadastral concepts because better clarity in what needs to be represented and analysed in the cadastre needs to be established. This paper presents the first version of a 3D Cadastral Data Model (3DCDM_Version 1.0). 3DCDM models both the legal
Implementation of algebraic stress models in a general 3-D Navier-Stokes method (PAB3D)
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.
1995-01-01
A three-dimensional multiblock Navier-Stokes code, PAB3D, which was developed for propulsion integration and general aerodynamic analysis, has been used extensively by NASA Langley and other organizations to perform both internal (exhaust) and external flow analysis of complex aircraft configurations. This code was designed to solve the simplified Reynolds Averaged Navier-Stokes equations. A two-equation k-epsilon turbulence model has been used with considerable success, especially for attached flows. Accurate predicting of transonic shock wave location and pressure recovery in separated flow regions has been more difficult. Two algebraic Reynolds stress models (ASM) have been recently implemented in the code that greatly improved the code's ability to predict these difficult flow conditions. Good agreement with Direct Numerical Simulation (DNS) for a subsonic flat plate was achieved with ASM's developed by Shih, Zhu, and Lumley and Gatski and Speziale. Good predictions were also achieved at subsonic and transonic Mach numbers for shock location and trailing edge boattail pressure recovery on a single-engine afterbody/nozzle model.
A new approach towards image based virtual 3D city modeling by using close range photogrammetry
NASA Astrophysics Data System (ADS)
Singh, S. P.; Jain, K.; Mandla, V. R.
2014-05-01
3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing day to day for various engineering and non-engineering applications. Generally three main image based approaches are using for virtual 3D city models generation. In first approach, researchers used Sketch based modeling, second method is Procedural grammar based modeling and third approach is Close range photogrammetry based modeling. Literature study shows that till date, there is no complete solution available to create complete 3D city model by using images. These image based methods also have limitations This paper gives a new approach towards image based virtual 3D city modeling by using close range photogrammetry. This approach is divided into three sections. First, data acquisition process, second is 3D data processing, and third is data combination process. In data acquisition process, a multi-camera setup developed and used for video recording of an area. Image frames created from video data. Minimum required and suitable video image frame selected for 3D processing. In second section, based on close range photogrammetric principles and computer vision techniques, 3D model of area created. In third section, this 3D model exported to adding and merging of other pieces of large area. Scaling and alignment of 3D model was done. After applying the texturing and rendering on this model, a final photo-realistic textured 3D model created. This 3D model transferred into walk-through model or in movie form. Most of the processing steps are automatic. So this method is cost effective and less laborious. Accuracy of this model is good. For this research work, study area is the campus of department of civil engineering, Indian Institute of Technology, Roorkee. This campus acts as a prototype for city. Aerial photography is restricted in many country
Ground and Structure Deformation 3d Modelling with a Tin Based Property Model
NASA Astrophysics Data System (ADS)
TIAN, T.; Zhang, J.; Jiang, W.
2013-12-01
With the development of 3D( three-dimensional) modeling and visualization, more and more 3D tectonics are used to assist the daily work in Engineering Survey, in which the prediction of deformation field in strata and structure induced by underground construction is an essential part. In this research we developed a TIN (Triangulated Irregular Network) based property model for the 3D (three dimensional) visualization of ground deformation filed. By record deformation vector for each nodes, the new model can express the deformation with geometric-deformation-style by drawing each node in its new position and deformation-attribute-distribution-style by drawing each node in the color correspond with its deformation attribute at the same time. Comparing with the volume model based property model, this new property model can provide a more precise geometrical shape for structure objects. Furthermore, by recording only the deformation data of the user-interested 3d surface- such as the ground surface or the underground digging surface, the new property model can save a lot of space, which makes it possible to build the deformation filed model of a much more large scale. To construct the models of deformation filed based on TIN model, the refinement of the network is needed to increase the nodes number, which is necessary to express the deformation filed with a certain resolution. The TIN model refinement is a process of sampling the 3D deformation field values on points on the TIN surface, for which we developed a self-adapting TIN refinement method. By set the parameter of the attribute resolution, this self-adapting method refines the input geometric-expressing TIN model by adding more vertexes and triangles where the 3D deformation filed changing faster. Comparing with the even refinement method, the self-adapting method can generate a refined TIN model with nodes counted less by two thirds. Efficiency Comparison between Self-adapting Refinement Method and Even
Quasi 3D modeling of water flow in vadose zone and groundwater
NASA Astrophysics Data System (ADS)
Kuznetsov, M.; Yakirevich, A.; Pachepsky, Y. A.; Sorek, S.; Weisbrod, N.
2012-07-01
SummaryThe complexity of subsurface flow systems calls for a variety of concepts leading to the multiplicity of simplified flow models. One habitual simplification is based on the assumption that lateral flow and transport in unsaturated zone are not significant unless the capillary fringe is involved. In such cases the flow and transport in the unsaturated zone above groundwater level can be simulated as a 1D phenomenon, whereas the flow and transport through groundwater are viewed as 2D or 3D phenomena. A new approach for a numerical scheme for 3D variably saturated flow using quasi 3D Richards' equation and finite difference scheme is presented. The corresponding numerical algorithm and the QUASI-3D computer code were developed. Results of the groundwater level simulations were compared with transient laboratory experimental data for 2D data constant-flux infiltration, quasi-3D HYDRUS-MODFLOW numerical model and a FULL-3D numerical model using Richards' equation. Hypothetical 3D examples of infiltration, pumping and groundwater mound dissipation for different spatial-time scales are presented. Water flow simulation for the Alto Piura aquifer (Peru) demonstrates the QUASI-3D model application at the regional scale. Computationally the QUASI-3D code was found to be more efficient by an order of 10-300%, while being accurate with respect to the benchmark fully 3D variable saturation code, when the capillary fringe was considered.
NASA Astrophysics Data System (ADS)
Dolžan, Erazem; Vrabec, Marko
2015-04-01
georeferenced geological field data acquired along mountain trail transects, mainly using the MVE Field Move software application. In our experience, vertical aerophotos were sufficient to generate precise surface models in all but the steepest mountain cliffs. Therefore, using existing vertical photoimagery (where available) is a very cost-effective alternative to organizing shooting campaigns with rented aircraft. For handling reasonably large models (cca 3 x 3 km, up to 10 million triangles), a low-end computer workstation with mid-range professional 3D graphic card is sufficient. The biggest bottleneck is the photogrammetric processing step which is time-consuming (10s of hrs) and has large RAM requirements, although those can be offset by dividing models into smaller parts. The major problem with geological modeling software like Gocad or Move is that it at present does not handle well projecting of phototextures. Whereas Photoscan-generated orthophotos can be vertically projected onto mesh models, this results in unacceptable distortions and gaps in subvertical or overhanging parts of the mountain cliff models. A real 3D UV texture mapping method, such as implemented in Photoscan, would be required to realistically model such areas. This limitations notwithstanding, digital geological mapping of photogrammetric models of mountains is a very promising, cost- and time-effective method for rapid structural interpretation and mapping of barren mountainous terrains, particularly when it is complemented by field measurements and observations.
Detection of Disease Symptoms on Hyperspectral 3d Plant Models
NASA Astrophysics Data System (ADS)
Roscher, Ribana; Behmann, Jan; Mahlein, Anne-Katrin; Dupuis, Jan; Kuhlmann, Heiner; Plümer, Lutz
2016-06-01
We analyze the benefit of combining hyperspectral images information with 3D geometry information for the detection of Cercospora leaf spot disease symptoms on sugar beet plants. Besides commonly used one-class Support Vector Machines, we utilize an unsupervised sparse representation-based approach with group sparsity prior. Geometry information is incorporated by representing each sample of interest with an inclination-sorted dictionary, which can be seen as an 1D topographic dictionary. We compare this approach with a sparse representation based approach without geometry information and One-Class Support Vector Machines. One-Class Support Vector Machines are applied to hyperspectral data without geometry information as well as to hyperspectral images with additional pixelwise inclination information. Our results show a gain in accuracy when using geometry information beside spectral information regardless of the used approach. However, both methods have different demands on the data when applied to new test data sets. One-Class Support Vector Machines require full inclination information on test and training data whereas the topographic dictionary approach only need spectral information for reconstruction of test data once the dictionary is build by spectra with inclination.
The cluster graphical lasso for improved estimation of Gaussian graphical models
Tan, Kean Ming; Witten, Daniela; Shojaie, Ali
2015-01-01
The task of estimating a Gaussian graphical model in the high-dimensional setting is considered. The graphical lasso, which involves maximizing the Gaussian log likelihood subject to a lasso penalty, is a well-studied approach for this task. A surprising connection between the graphical lasso and hierarchical clustering is introduced: the graphical lasso in effect performs a two-step procedure, in which (1) single linkage hierarchical clustering is performed on the variables in order to identify connected components, and then (2) a penalized log likelihood is maximized on the subset of variables within each connected component. Thus, the graphical lasso determines the connected components of the estimated network via single linkage clustering. The single linkage clustering is known to perform poorly in certain finite-sample settings. Therefore, the cluster graphical lasso, which involves clustering the features using an alternative to single linkage clustering, and then performing the graphical lasso on the subset of variables within each cluster, is proposed. Model selection consistency for this technique is established, and its improved performance relative to the graphical lasso is demonstrated in a simulation study, as well as in applications to a university webpage and a gene expression data sets. PMID:25642008
Dynamics of free subduction from 3-D boundary element modeling
NASA Astrophysics Data System (ADS)
Li, Zhong-Hai; Ribe, Neil M.
2012-06-01
In order better to understand the physical mechanisms underlying free subduction, we perform three-dimensional boundary-element numerical simulations of a dense fluid sheet with thickness h and viscosity η2 sinking in an `ambient mantle' with viscosity η1. The mantle layer is bounded above by a traction-free surface, and is either (1) infinitely deep or (2) underlain by a rigid boundary at a finite depth H + d, similar to the typical geometry used in laboratory experiments. Instantaneous solutions in configuration (1) show that the sheet's dimensionless `stiffness' S determines whether the slab's sinking speed is controlled by the viscosity of the ambient mantle (S < 1) or the viscosity of the sheet itself (S > 10). Time-dependent solutions with tracers in configuration (2) demonstrate a partial return flow around the leading edge of a retreating slab and return flow around its sides. The extra `edge drag' exerted by the flow around the sides causes transverse deformation of the slab, and makes the sinking speed of a 3-D slab up to 40% less than that of a 2-D slab. A systematic investigation of the slab's interaction with the bottom boundary as a function of η2/η1 and H/h delineates a rich regime diagram of different subduction modes (trench retreating, slab folding, trench advancing) and reveals a new `advancing-folding' mode in which slab folding is preceded by advancing trench motion. The solutions demonstrate that mode selection is controlled by the dip of the leading edge of the slab at the time when it first encounters the bottom boundary.
Selection and estimation for mixed graphical models
Chen, Shizhe; Witten, Daniela M.; shojaie, Ali
2016-01-01
Summary We consider the problem of estimating the parameters in a pairwise graphical model in which the distribution of each node, conditioned on the others, may have a different exponential family form. We identify restrictions on the parameter space required for the existence of a well-defined joint density, and establish the consistency of the neighbourhood selection approach for graph reconstruction in high dimensions when the true underlying graph is sparse. Motivated by our theoretical results, we investigate the selection of edges between nodes whose conditional distributions take different parametric forms, and show that efficiency can be gained if edge estimates obtained from the regressions of particular nodes are used to reconstruct the graph. These results are illustrated with examples of Gaussian, Bernoulli, Poisson and exponential distributions. Our theoretical findings are corroborated by evidence from simulation studies.
NASA Astrophysics Data System (ADS)
Khallaghi, Siavash; Abolmaesumi, Purang; Gong, Ren Hui; Chen, Elvis; Gill, Sean; Boisvert, Jonathan; Pichora, David; Borschneck, Dan; Fichtinger, Gabor; Mousavi, Parvin
2011-03-01
We present a parallel implementation of a statistical shape model registration to 3D ultrasound images of the lumbar vertebrae (L2-L4). Covariance Matrix Adaptation Evolution Strategy optimization technique, along with Linear Correlation of Linear Combination similarity metric have been used, to improve the robustness and capture range of the registration approach. Instantiation and ultrasound simulation have been implemented on a graphics processing unit for a faster registration. Phantom studies show a mean target registration error of 3.2 mm, while 80% of all the cases yield target registration error of below 3.5 mm.
Learning structured models for segmentation of 2-D and 3-D imagery.
Lucchi, Aurelien; Marquez-Neila, Pablo; Becker, Carlos; Li, Yunpeng; Smith, Kevin; Knott, Graham; Fua, Pascal
2015-05-01
Efficient and accurate segmentation of cellular structures in microscopic data is an essential task in medical imaging. Many state-of-the-art approaches to image segmentation use structured models whose parameters must be carefully chosen for optimal performance. A popular choice is to learn them using a large-margin framework and more specifically structured support vector machines (SSVM). Although SSVMs are appealing, they suffer from certain limitations. First, they are restricted in practice to linear kernels because the more powerful nonlinear kernels cause the learning to become prohibitively expensive. Second, they require iteratively finding the most violated constraints, which is often intractable for the loopy graphical models used in image segmentation. This requires approximation that can lead to reduced quality of learning. In this paper, we propose three novel techniques to overcome these limitations. We first introduce a method to "kernelize" the features so that a linear SSVM framework can leverage the power of nonlinear kernels without incurring much additional computational cost. Moreover, we employ a working set of constraints to increase the reliability of approximate subgradient methods and introduce a new way to select a suitable step size at each iteration. We demonstrate the strength of our approach on both 2-D and 3-D electron microscopic (EM) image data and show consistent performance improvement over state-of-the-art approaches. PMID:25438309
Evaluation of Model Recognition for Grammar-Based Automatic 3d Building Model Reconstruction
NASA Astrophysics Data System (ADS)
Yu, Qian; Helmholz, Petra; Belton, David
2016-06-01
In recent years, 3D city models are in high demand by many public and private organisations, and the steadily growing capacity in both quality and quantity are increasing demand. The quality evaluation of these 3D models is a relevant issue both from the scientific and practical points of view. In this paper, we present a method for the quality evaluation of 3D building models which are reconstructed automatically from terrestrial laser scanning (TLS) data based on an attributed building grammar. The entire evaluation process has been performed in all the three dimensions in terms of completeness and correctness of the reconstruction. Six quality measures are introduced to apply on four datasets of reconstructed building models in order to describe the quality of the automatic reconstruction, and also are assessed on their validity from the evaluation point of view.
Wind forcing of upland lake hydrodynamics: implementation and validation of a 3D numerical model
NASA Astrophysics Data System (ADS)
Morales, L.; French, J.; Burningham, H.; Evans, C.; Battarbee, R.
2010-12-01
Upland lakes act as important archives of environmental change, yet inferences based on the analysis of sediment cores are frequently compromised by an incomplete understanding of the hydrodynamic processes controlling the distribution and completeness of lake sediment sequences and their linkages to wider environmental factors. Many upland lakes are characterized by complex vertical and horizontal circulation patterns induced by the action of wind on the water surface. Wind forcing is important not only for the resuspension of bottom sediments in shallow marginal areas, but may also control the broader distribution of sediment accumulation. The work presented here represents the first stage of a project aimed at elucidating the linkages between wind forcing and the distribution of bottom sediments in upland lakes and the extent to which simple 'sediment focusing' models provide an adequate basis for predicting optimal locations for the acquisition of core samples for palaeolimnological analysis. As a first step, a 3D numerical hydrodynamic model is implemented for Llyn Conwy, a small oligotrophic upland lake in North Wales, UK. This utilises the community ocean model, FVCOM, that solves the Navier-Stokes equations in 3D on an unstructured triangular mesh using the finite volume method. A new graphical user interface has been developed for FVCOM to facilitate pre- and post-processing of lake modelling problems. At Llyn Conwy, the model is forced using local meteorological data and validated against vertical temperature profiles recorded by a long-term buoy deployment and short-term observations of vertical current structure measured using an upward-looking acoustic doppler profiler and surface circulation obtained from GPS drifters. Challenges in the application of FVCOM to a small lake include the design of a mesh that ensures numerical stability whilst resolving a complex bathymetry, and the need for careful treatment of model 'spin-up'. Once calibrated, the
NASA Astrophysics Data System (ADS)
Koehl, M.; Brigand, N.
2012-08-01
The site of the Engelbourg ruined castle in Thann, Alsace, France, has been for some years the object of all the attention of the city, which is the owner, and also of partners like historians and archaeologists who are in charge of its study. The valuation of the site is one of the main objective, as well as its conservation and its knowledge. The aim of this project is to use the environment of the virtual tour viewer as new base for an Archaeological Knowledge and Information System (AKIS). With available development tools we add functionalities in particular through diverse scripts that convert the viewer into a real 3D interface. By beginning with a first virtual tour that contains about fifteen panoramic images, the site of about 150 times 150 meters can be completely documented by offering the user a real interactivity and that makes visualization very concrete, almost lively. After the choice of pertinent points of view, panoramic images were realized. For the documentation, other sets of images were acquired at various seasons and climate conditions, which allow documenting the site in different environments and states of vegetation. The final virtual tour was deducted from them. The initial 3D model of the castle, which is virtual too, was also joined in the form of panoramic images for completing the understanding of the site. A variety of types of hotspots were used to connect the whole digital documentation to the site, including videos (as reports during the acquisition phases, during the restoration works, during the excavations, etc.), digital georeferenced documents (archaeological reports on the various constituent elements of the castle, interpretation of the excavations and the searches, description of the sets of collected objects, etc.). The completely personalized interface of the system allows either to switch from a panoramic image to another one, which is the classic case of the virtual tours, or to go from a panoramic photographic image
Towards Precise Metadata-set for Discovering 3D Geospatial Models in Geo-portals
NASA Astrophysics Data System (ADS)
Zamyadi, A.; Pouliot, J.; Bédard, Y.
2013-09-01
Accessing 3D geospatial models, eventually at no cost and for unrestricted use, is certainly an important issue as they become popular among participatory communities, consultants, and officials. Various geo-portals, mainly established for 2D resources, have tried to provide access to existing 3D resources such as digital elevation model, LIDAR or classic topographic data. Describing the content of data, metadata is a key component of data discovery in geo-portals. An inventory of seven online geo-portals and commercial catalogues shows that the metadata referring to 3D information is very different from one geo-portal to another as well as for similar 3D resources in the same geo-portal. The inventory considered 971 data resources affiliated with elevation. 51% of them were from three geo-portals running at Canadian federal and municipal levels whose metadata resources did not consider 3D model by any definition. Regarding the remaining 49% which refer to 3D models, different definition of terms and metadata were found, resulting in confusion and misinterpretation. The overall assessment of these geo-portals clearly shows that the provided metadata do not integrate specific and common information about 3D geospatial models. Accordingly, the main objective of this research is to improve 3D geospatial model discovery in geo-portals by adding a specific metadata-set. Based on the knowledge and current practices on 3D modeling, and 3D data acquisition and management, a set of metadata is proposed to increase its suitability for 3D geospatial models. This metadata-set enables the definition of genuine classes, fields, and code-lists for a 3D metadata profile. The main structure of the proposal contains 21 metadata classes. These classes are classified in three packages as General and Complementary on contextual and structural information, and Availability on the transition from storage to delivery format. The proposed metadata set is compared with Canadian Geospatial
Why 3D? The Need for Solution Based Modeling in a National Geoscience Organization.
NASA Astrophysics Data System (ADS)
Terrington, Ricky; Napier, Bruce; Howard, Andy; Ford, Jon; Hatton, William
2008-05-01
In recent years national geoscience organizations have increasingly utilized 3D model data as an output to the stakeholder community. Advances in both software and hardware have led to an increasing use of 3D depictions of geoscience data alongside the standard 2D data formats such as maps and GIS data. By characterizing geoscience data in 3D, knowledge transfer between geoscientists and stakeholders is improved as the mindset and thought processes are communicated more effectively in a 3D model than in a 2D flat file format. 3D models allow the user to understand the conceptual basis of the 2D data and aids the decision making process at local, regional and national scales. Some of these issues include foundation and engineering conditions, ground water vulnerability, aquifer recharge and flow, and resource extraction and storage. The British Geological Survey has established a mechanism and infrastructure through the Digital Geoscience Spatial Model Programme (DGSM) to produce these types of 3D geoscience outputs. This cyber-infrastructure not only allows good data and information management, it enables geoscientists to capture their know-how and implicit and tacit knowledge for their 3D interpretations. A user of this data will then have access to value-added information for the 3D dataset including the knowledge, approach, inferences, uncertainty, wider context and best practice acquired during the 3D interpretation. To complement this cyber-infrastructure, an immersive 3D Visualization Facility was constructed at the British Geological Survey offices in Keyworth, Nottingham and Edinburgh. These custom built facilities allow stereo projection of geoscience data, immersing the users and stakeholders in a wealth of 3D geological data. Successful uses of these facilities include collaborative 3D modeling, demonstrations to public stakeholders and Virtual Field Mapping Reconnaissance.
Souza, W.R.
1999-01-01
This report documents a graphical display post-processor (SutraPlot) for the U.S. Geological Survey Saturated-Unsaturated flow and solute or energy TRAnsport simulation model SUTRA, Version 2D3D.1. This version of SutraPlot is an upgrade to SutraPlot for the 2D-only SUTRA model (Souza, 1987). It has been modified to add 3D functionality, a graphical user interface (GUI), and enhanced graphic output options. Graphical options for 2D SUTRA (2-dimension) simulations include: drawing the 2D finite-element mesh, mesh boundary, and velocity vectors; plots of contours for pressure, saturation, concentration, and temperature within the model region; 2D finite-element based gridding and interpolation; and 2D gridded data export files. Graphical options for 3D SUTRA (3-dimension) simulations include: drawing the 3D finite-element mesh; plots of contours for pressure, saturation, concentration, and temperature in 2D sections of the 3D model region; 3D finite-element based gridding and interpolation; drawing selected regions of velocity vectors (projected on principal coordinate planes); and 3D gridded data export files. Installation instructions and a description of all graphic options are presented. A sample SUTRA problem is described and three step-by-step SutraPlot applications are provided. In addition, the methodology and numerical algorithms for the 2D and 3D finite-element based gridding and interpolation, developed for SutraPlot, are described. 1
A 3D Geostatistical Mapping Tool
1999-02-09
This software provides accurate 3D reservoir modeling tools and high quality 3D graphics for PC platforms enabling engineers and geologists to better comprehend reservoirs and consequently improve their decisions. The mapping algorithms are fractals, kriging, sequential guassian simulation, and three nearest neighbor methods.
Integration of 3D photogrammetric outcrop models in the reservoir modelling workflow
NASA Astrophysics Data System (ADS)
Deschamps, Remy; Joseph, Philippe; Lerat, Olivier; Schmitz, Julien; Doligez, Brigitte; Jardin, Anne
2014-05-01
3D technologies are now widely used in geosciences to reconstruct outcrops in 3D. The technology used for the 3D reconstruction is usually based on Lidar, which provides very precise models. Such datasets offer the possibility to build well-constrained outcrop analogue models for reservoir study purposes. The photogrammetry is an alternate methodology which principles are based in determining the geometric properties of an object from photographic pictures taken from different angles. Outcrop data acquisition is easy, and this methodology allows constructing 3D outcrop models with many advantages such as: - light and fast acquisition, - moderate processing time (depending on the size of the area of interest), - integration of field data and 3D outcrops into the reservoir modelling tools. Whatever the method, the advantages of digital outcrop model are numerous as already highlighted by Hodgetts (2013), McCaffrey et al. (2005) and Pringle et al. (2006): collection of data from otherwise inaccessible areas, access to different angles of view, increase of the possible measurements, attributes analysis, fast rate of data collection, and of course training and communication. This paper proposes a workflow where 3D geocellular models are built by integrating all sources of information from outcrops (surface picking, sedimentological sections, structural and sedimentary dips…). The 3D geomodels that are reconstructed can be used at the reservoir scale, in order to compare the outcrop information with subsurface models: the detailed facies models of the outcrops are transferred into petrophysical and acoustic models, which are used to test different scenarios of seismic and fluid flow modelling. The detailed 3D models are also used to test new techniques of static reservoir modelling, based either on geostatistical approaches or on deterministic (process-based) simulation techniques. A modelling workflow has been designed to model reservoir geometries and properties from
Rethinking Design Process: Using 3D Digital Models as an Interface in Collaborative Session
ERIC Educational Resources Information Center
Ding, Suining
2008-01-01
This paper describes a pilot study for an alternative design process by integrating a designer-user collaborative session with digital models. The collaborative session took place in a 3D AutoCAD class for a real world project. The 3D models served as an interface for designer-user collaboration during the design process. Students not only learned…
3D Modeling from Multi-views Images for Cultural Heritage in Wat-Pho, Thailand
NASA Astrophysics Data System (ADS)
Soontranon, N.; Srestasathiern, P.; Lawawirojwong, S.
2015-08-01
In Thailand, there are several types of (tangible) cultural heritages. This work focuses on 3D modeling of the heritage objects from multi-views images. The images are acquired by using a DSLR camera which costs around 1,500 (camera and lens). Comparing with a 3D laser scanner, the camera is cheaper and lighter than the 3D scanner. Hence, the camera is available for public users and convenient for accessing narrow areas. The acquired images consist of various sculptures and architectures in Wat-Pho which is a Buddhist temple located behind the Grand Palace (Bangkok, Thailand). Wat-Pho is known as temple of the reclining Buddha and the birthplace of traditional Thai massage. To compute the 3D models, a diagram is separated into following steps; Data acquisition, Image matching, Image calibration and orientation, Dense matching and Point cloud processing. For the initial work, small heritages less than 3 meters height are considered for the experimental results. A set of multi-views images of an interested object is used as input data for 3D modeling. In our experiments, 3D models are obtained from MICMAC (open source) software developed by IGN, France. The output of 3D models will be represented by using standard formats of 3D point clouds and triangulated surfaces such as .ply, .off, .obj, etc. To compute for the efficient 3D models, post-processing techniques are required for the final results e.g. noise reduction, surface simplification and reconstruction. The reconstructed 3D models can be provided for public access such as website, DVD, printed materials. The high accurate 3D models can also be used as reference data of the heritage objects that must be restored due to deterioration of a lifetime, natural disasters, etc.
A 3D Earth orbit model; visualization and analysis of Milankovitch cycles and insolation
NASA Astrophysics Data System (ADS)
Gilb, R. D.; Kostadinov, T. S.
2012-12-01
An astronomically precise and accurate Earth orbit graphical model, Earth orbit v2.0, is presented. The model offers 3D visualizations of Earth's orbital geometry, Milankovitch parameters and the ensuing insolation forcings. Prevalent paleoclimatic theories invoke Milankovitch cycles as a major forcing mechanism capable of shifting Earth's climate regimes on time scales of tens to hundreds of thousands of years. Variability of eccentricity (ellipticity of orbit), precession (longitude of perihelion) and obliquity (Earth's axial tilt) changes parameters such as amplitude of seasonal insolation, timing of seasons with respect to perihelion, and total annual insolation. Hays et al. (1976) demonstrated a strong link between Milankovitch cycles and paleoclimatological records, which has been confirmed and expanded many times since (e.g. Berger et al., 1994; Berger et al., 2010). The complex interplay of several orbital parameters on various time scales makes assessment and visualization of Earth's orbit and spatio-temporal insolation variability challenging. It is difficult to appreciate the pivotal importance of Kepler's laws of planetary motion in controlling the effects of Milankovitch cycles on insolation patterns on various spatio-temporal scales. These factors also make Milankovitch theory difficult to teach effectively. The model allows substantial user control in a robust, yet intuitive and user-friendly graphical user interface (GUI) developed in Matlab. We present the user with a choice between Berger et al. (1978) and Laskar et al. (2004) astronomical solutions for eccentricity, obliquity and precession. Berger solutions span from -1 Myr to +1 Myr, while Laskar provides solutions from -101 Myr to +21 Myr since J2000. Users can also choose a "demo" mode which allows the three Milankovitch parameters to be varied independently of each other, so the user can isolate the effects of each on orbital geometry and insolation. For example, extreme eccentricity can be
A topological framework for interactive queries on 3D models in the Web.
Figueiredo, Mauro; Rodrigues, José I; Silvestre, Ivo; Veiga-Pires, Cristina
2014-01-01
Several technologies exist to create 3D content for the web. With X3D, WebGL, and X3DOM, it is possible to visualize and interact with 3D models in a web browser. Frequently, three-dimensional objects are stored using the X3D file format for the web. However, there is no explicit topological information, which makes it difficult to design fast algorithms for applications that require adjacency and incidence data. This paper presents a new open source toolkit TopTri (Topological model for Triangle meshes) for Web3D servers that builds the topological model for triangular meshes of manifold or nonmanifold models. Web3D client applications using this toolkit make queries to the web server to get adjacent and incidence information of vertices, edges, and faces. This paper shows the application of the topological information to get minimal local points and iso-lines in a 3D mesh in a web browser. As an application, we present also the interactive identification of stalactites in a cave chamber in a 3D web browser. Several tests show that even for large triangular meshes with millions of triangles, the adjacency and incidence information is returned in real time making the presented toolkit appropriate for interactive Web3D applications. PMID:24977236
A Topological Framework for Interactive Queries on 3D Models in the Web
Figueiredo, Mauro; Rodrigues, José I.; Silvestre, Ivo; Veiga-Pires, Cristina
2014-01-01
Several technologies exist to create 3D content for the web. With X3D, WebGL, and X3DOM, it is possible to visualize and interact with 3D models in a web browser. Frequently, three-dimensional objects are stored using the X3D file format for the web. However, there is no explicit topological information, which makes it difficult to design fast algorithms for applications that require adjacency and incidence data. This paper presents a new open source toolkit TopTri (Topological model for Triangle meshes) for Web3D servers that builds the topological model for triangular meshes of manifold or nonmanifold models. Web3D client applications using this toolkit make queries to the web server to get adjacent and incidence information of vertices, edges, and faces. This paper shows the application of the topological information to get minimal local points and iso-lines in a 3D mesh in a web browser. As an application, we present also the interactive identification of stalactites in a cave chamber in a 3D web browser. Several tests show that even for large triangular meshes with millions of triangles, the adjacency and incidence information is returned in real time making the presented toolkit appropriate for interactive Web3D applications. PMID:24977236
Intriligator, Devrie S.; Detman, Thomas; Fry, Craig D.; Sun Wei; Deehr, Charles; Intriligator, James
2005-08-01
A first-generation 3D kinematic, space weather forecasting solar wind model (HAFv2) has been used to show the importance of solar generated disturbances in Voyager 1 and Voyager 2 observations in the outer heliosphere. We extend this work by using a 3D MHD model (HHMS) that, like HAFv2, incorporates a global, pre-event, inhomogeneous, background solar wind plasma and interplanetary magnetic field. Initial comparisons are made between the two models of the solar wind out to 6 AU and with in-situ observations at the ACE spacecraft before and after the October/November 2003 solar events.
Connections between Graphical Gaussian Models and Factor Analysis
ERIC Educational Resources Information Center
Salgueiro, M. Fatima; Smith, Peter W. F.; McDonald, John W.
2010-01-01
Connections between graphical Gaussian models and classical single-factor models are obtained by parameterizing the single-factor model as a graphical Gaussian model. Models are represented by independence graphs, and associations between each manifest variable and the latent factor are measured by factor partial correlations. Power calculations…
ERIC Educational Resources Information Center
Lim, Kah Heng Alexander; Loo, Zhou Yaw; Goldie, Stephen J.; Adams, Justin W.; McMenamin, Paul G.
2016-01-01
Three-dimensional (3D) printing is an emerging technology capable of readily producing accurate anatomical models, however, evidence for the use of 3D prints in medical education remains limited. A study was performed to assess their effectiveness against cadaveric materials for learning external cardiac anatomy. A double blind randomized…
Majka, Piotr; Kowalski, Jakub M; Chlodzinska, Natalia; Wójcik, Daniel K
2013-10-01
Brain atlases are important tools of neuroscience. Traditionally prepared in paper book format, more and more commonly they take digital form which extends their utility. To simplify work with different atlases, to lay the ground for developing universal tools which could abstract from the origin of the atlas, efforts are being made to provide common interfaces to these atlases. 3D Brain Atlas Reconstructor service (3dBARs) described here is a repository of digital representations of different brain atlases in CAF format which we recently proposed and a repository of 3D models of brain structures. A graphical front-end is provided for creating and viewing the reconstructed models as well as the underlying 2D atlas data. An application programming interface (API) facilitates programmatic access to the service contents from other websites. From a typical user's point of view, 3dBARs offers an accessible way to mine publicly available atlasing data with a convenient browser based interface, without the need to install extra software. For a developer of services related to brain atlases, 3dBARs supplies mechanisms for enhancing functionality of other software. The policy of the service is to accept new datasets as delivered by interested parties and we work with the researchers who obtain original data to make them available to the neuroscience community at large. The functionality offered by the 3dBARs situates it at the core of present and future general atlasing services tying it strongly to the global atlasing neuroinformatics infrastructure. PMID:23943281
Magnetic charge model for 3D MMM signals
NASA Astrophysics Data System (ADS)
Pengpeng, Shi; Xiaojing, Zheng
2016-01-01
Stress concentration is a major cause of metal structure failures. Based on the metal magnetic memory (MMM) technique, detailed information of stress concentration or defects on ferromagnetic materials can be obtained from the changed magnetic signals. The magnetic charge model of MMM signal is described, and simulations based on this model are performed for a sample with stress-concentration zone or a long elliptical defect. Some basic characteristics produced by present model are coincident with existed experimental measurements. The agreements between simulations and experimental results confirm that the present magnetic charge model can be used as an MMM signal forward technique.
Indoor 3D Route Modeling Based On Estate Spatial Data
NASA Astrophysics Data System (ADS)
Zhang, H.; Wen, Y.; Jiang, J.; Huang, W.
2014-04-01
Indoor three-dimensional route model is essential for space intelligence navigation and emergency evacuation. This paper is motivated by the need of constructing indoor route model automatically and as far as possible. By comparing existing building data sources, this paper firstly explained the reason why the estate spatial management data is chosen as the data source. Then, an applicable method of construction three-dimensional route model in a building is introduced by establishing the mapping relationship between geographic entities and their topological expression. This data model is a weighted graph consist of "node" and "path" to express the spatial relationship and topological structure of a building components. The whole process of modelling internal space of a building is addressed by two key steps: (1) each single floor route model is constructed, including path extraction of corridor using Delaunay triangulation algorithm with constrained edge, fusion of room nodes into the path; (2) the single floor route model is connected with stairs and elevators and the multi-floor route model is eventually generated. In order to validate the method in this paper, a shopping mall called "Longjiang New City Plaza" in Nanjing is chosen as a case of study. And the whole building space is constructed according to the modelling method above. By integrating of existing path finding algorithm, the usability of this modelling method is verified, which shows the indoor three-dimensional route modelling method based on estate spatial data in this paper can support indoor route planning and evacuation route design very well.
Reconstructing photorealistic 3D models from image sequence using domain decomposition method
NASA Astrophysics Data System (ADS)
Xiong, Hanwei; Pan, Ming; Zhang, Xiangwei
2009-11-01
In the fields of industrial design, artistic design and heritage conservation, physical objects are usually digitalized by reverse engineering through some 3D scanning methods. Structured light and photogrammetry are two main methods to acquire 3D information, and both are expensive. Even if these expensive instruments are used, photorealistic 3D models are seldom available. In this paper, a new method to reconstruction photorealistic 3D models using a single camera is proposed. A square plate glued with coded marks is used to place the objects, and a sequence of about 20 images is taken. From the coded marks, the images are calibrated, and a snake algorithm is used to segment object from the background. A rough 3d model is obtained using shape from silhouettes algorithm. The silhouettes are decomposed into a combination of convex curves, which are used to partition the rough 3d model into some convex mesh patches. For each patch, the multi-view photo consistency constraints and smooth regulations are expressed as a finite element formulation, which can be resolved locally, and the information can be exchanged along the patches boundaries. The rough model is deformed into a fine 3d model through such a domain decomposition finite element method. The textures are assigned to each element mesh, and a photorealistic 3D model is got finally. A toy pig is used to verify the algorithm, and the result is exciting.
Services Oriented Smart City Platform Based On 3d City Model Visualization
NASA Astrophysics Data System (ADS)
Prandi, F.; Soave, M.; Devigili, F.; Andreolli, M.; De Amicis, R.
2014-04-01
The rapid technological evolution, which is characterizing all the disciplines involved within the wide concept of smart cities, is becoming a key factor to trigger true user-driven innovation. However to fully develop the Smart City concept to a wide geographical target, it is required an infrastructure that allows the integration of heterogeneous geographical information and sensor networks into a common technological ground. In this context 3D city models will play an increasingly important role in our daily lives and become an essential part of the modern city information infrastructure (Spatial Data Infrastructure). The work presented in this paper describes an innovative Services Oriented Architecture software platform aimed at providing smartcities services on top of 3D urban models. 3D city models are the basis of many applications and can became the platform for integrating city information within the Smart-Cites context. In particular the paper will investigate how the efficient visualisation of 3D city models using different levels of detail (LODs) is one of the pivotal technological challenge to support Smart-Cities applications. The goal is to provide to the final user realistic and abstract 3D representations of the urban environment and the possibility to interact with a massive amounts of semantic information contained into the geospatial 3D city model. The proposed solution, using OCG standards and a custom service to provide 3D city models, lets the users to consume the services and interact with the 3D model via Web in a more effective way.
An object-oriented 3D integral data model for digital city and digital mine
NASA Astrophysics Data System (ADS)
Wu, Lixin; Wang, Yanbing; Che, Defu; Xu, Lei; Chen, Xuexi; Jiang, Yun; Shi, Wenzhong
2005-10-01
With the rapid development of urban, city space extended from surface to subsurface. As the important data source for the representation of city spatial information, 3D city spatial data have the characteristics of multi-object, heterogeneity and multi-structure. It could be classified referring to the geo-surface into three kinds: above-surface data, surface data and subsurface data. The current research on 3D city spatial information system is divided naturally into two different branch, 3D City GIS (3D CGIS) and 3D Geological Modeling (3DGM). The former emphasizes on the 3D visualization of buildings and the terrain of city, while the latter emphasizes on the visualization of geological bodies and structures. Although, it is extremely important for city planning and construction to integrate all the city spatial information including above-surface, surface and subsurface objects to conduct integral analysis and spatial manipulation. However, either 3D CGIS or 3DGM is currently difficult to realize the information integration, integral analysis and spatial manipulation. Considering 3D spatial modeling theory and methodologies, an object-oriented 3D integral spatial data model (OO3D-ISDM) is presented and software realized. The model integrates geographical objects, surface buildings and geological objects together seamlessly with TIN being its coupling interface. This paper introduced the conceptual model of OO3D-ISDM, which is comprised of 4 spatial elements, i.e. point, line, face and body, and 4 geometric primitives, i.e. vertex, segment, triangle and generalized tri-prism (GTP). The spatial model represents the geometry of surface buildings and geographical objects with triangles, and geological objects with GTP. Any of the represented objects, no mater surface buildings, terrain or subsurface objects, could be described with the basic geometry element, i.e. triangle. So the 3D spatial objects, surface buildings, terrain and geological objects can be
3D Fluid-Structure Modeling of a Monofin
NASA Astrophysics Data System (ADS)
Monier, L.; Razafimahery, F.; Rakotomanana, L.
2010-10-01
The purpose of this paper is to develop a numerical modelisation for the behaviour of a monofin. We have developped a fluid struture model simulating the movement of a fin in a swimming pool. We first present the geometry and the equations and then proceed to different numerical experiments in order to validate the model.
Computational 3-D Model of the Human Respiratory System
We are developing a comprehensive, morphologically-realistic computational model of the human respiratory system that can be used to study the inhalation, deposition, and clearance of contaminants, while being adaptable for age, race, gender, and health/disease status. The model ...
Assessing a 3D smoothed seismicity model of induced earthquakes
NASA Astrophysics Data System (ADS)
Zechar, Jeremy; Király, Eszter; Gischig, Valentin; Wiemer, Stefan
2016-04-01
As more energy exploration and extraction efforts cause earthquakes, it becomes increasingly important to control induced seismicity. Risk management schemes must be improved and should ultimately be based on near-real-time forecasting systems. With this goal in mind, we propose a test bench to evaluate models of induced seismicity based on metrics developed by the CSEP community. To illustrate the test bench, we consider a model based on the so-called seismogenic index and a rate decay; to produce three-dimensional forecasts, we smooth past earthquakes in space and time. We explore four variants of this model using the Basel 2006 and Soultz-sous-Forêts 2004 datasets to make short-term forecasts, test their consistency, and rank the model variants. Our results suggest that such a smoothed seismicity model is useful for forecasting induced seismicity within three days, and giving more weight to recent events improves forecast performance. Moreover, the location of the largest induced earthquake is forecast well by this model. Despite the good spatial performance, the model does not estimate the seismicity rate well: it frequently overestimates during stimulation and during the early post-stimulation period, and it systematically underestimates around shut-in. In this presentation, we also describe a robust estimate of information gain, a modification that can also benefit forecast experiments involving tectonic earthquakes.
3D Modeling of CMEs observed with STEREO
NASA Astrophysics Data System (ADS)
Bosman, E.; Bothmer, V.
2012-04-01
From January 2007 until end of 2010, 565 typical large-scale coronal mass ejections (CMEs) have been identified in the SECCHI/COR2 synoptic movies of the STEREO Mission. A subset comprising 114 CME events, selected based on the CME's brightness appearance in the SECCHI/COR2 images, has been modeled through the Graduated Cylindrical Shell (GCS) Model developed by Thernisien et al. (2006). This study presents an overview of the GCS forward-modeling results and an interpretation of the CME characteristics in relationship to their solar source region properties and solar cycle appearances.
Pacia, Marta Z; Buczek, Elzbieta; Blazejczyk, Agnieszka; Gregorius, Aleksandra; Wietrzyk, Joanna; Chlopicki, Stefan; Baranska, Malgorzata; Kaczor, Agnieszka
2016-05-01
It was recently reported in the murine model of metastatic breast cancer (4T1) that tumor progression and development of metastasis is associated with systemic endothelial dysfunction characterized by impaired nitric oxide (NO) production. Using Raman 3D confocal imaging with the analysis of the individual layers of the vascular wall combined with AFM endothelial surface imaging, we demonstrated that metastasis-induced systemic endothelial dysfunction resulted in distinct chemical changes in the endothelium of the aorta. These changes, manifested as a significant increase in the protein content (18 %) and a slight decrease in the lipid content (4 %), were limited to the endothelium and did not occur in the deeper layers of the vascular wall. The altered lipid to protein ratio in the endothelium, although more pronounced in the fixed vascular wall, was also observed in the freshly isolated unfixed vascular wall samples in the aqueous environment (12 and 7 % change of protein and lipid content, respectively). Our results support the finding that the metastasis induces systemic endothelial dysfunction that may contribute to cancer progression. Graphical Abstract Schematic illustration of methodology of sample preparation and measurement. PMID:26935932
Incorporation of 3D Shortwave Radiative Effects within the Weather Research and Forecasting Model
O'Hirok, W.; Ricchiazzi, P.; Gautier, C.
2005-03-18
A principal goal of the Atmospheric Radiation Measurement (ARM) Program is to understand the 3D cloud-radiation problem from scales ranging from the local to the size of global climate model (GCM) grid squares. For climate models using typical cloud overlap schemes, 3D radiative effects are minimal for all but the most complicated cloud fields. However, with the introduction of ''superparameterization'' methods, where sub-grid cloud processes are accounted for by embedding high resolution 2D cloud system resolving models within a GCM grid cell, the impact of 3D radiative effects on the local scale becomes increasingly relevant (Randall et al. 2003). In a recent study, we examined this issue by comparing the heating rates produced from a 3D and 1D shortwave radiative transfer model for a variety of radar derived cloud fields (O'Hirok and Gautier 2005). As demonstrated in Figure 1, the heating rate differences for a large convective field can be significant where 3D effects produce areas o f intense local heating. This finding, however, does not address the more important question of whether 3D radiative effects can alter the dynamics and structure of a cloud field. To investigate that issue we have incorporated a 3D radiative transfer algorithm into the Weather Research and Forecasting (WRF) model. Here, we present very preliminary findings of a comparison between cloud fields generated from a high resolution non-hydrostatic mesoscale numerical weather model using 1D and 3D radiative transfer codes.
Modelling Galaxies with a 3D Multi-Phase ISM
NASA Astrophysics Data System (ADS)
Harfst, Stefan; Theis, Christian; Hensler, Gerhard
We present a modified TREE-SPH code to model galaxies in three dimensions. The model includes a multi-phase description of the interstellar medium which combines two numerical techniques. A diffuse warm/hot gas phase is modelled by SPH, whereas a cloudy medium is represented by a sticky particle scheme. Interaction processes (such as star formation and feedback), cooling, and mixing by condensation and evaporation, are taken into account. Here we apply our model to the evolution of a Milky Way type galaxy. After an initial stage, a quasi-equilibrium state is reached. It is characterised by a star formation rate of ~1 Msolar yr-1. Condensation and evaporation rates are in balance at 0.1-1 Msolar yr-1.
Automated mask creation from a 3D model using Faethm.
Schiek, Richard Louis; Schmidt, Rodney Cannon
2007-11-01
We have developed and implemented a method which given a three-dimensional object can infer from topology the two-dimensional masks needed to produce that object with surface micro-machining. The masks produced by this design tool can be generic, process independent masks, or if given process constraints, specific for a target process. This design tool calculates the two-dimensional mask set required to produce a given three-dimensional model by investigating the vertical topology of the model.
Computational ocean acoustics: Advances in 3D ocean acoustic modeling
NASA Astrophysics Data System (ADS)
Schmidt, Henrik; Jensen, Finn B.
2012-11-01
The numerical model of ocean acoustic propagation developed in the 1980's are still in widespread use today, and the field of computational ocean acoustics is often considered a mature field. However, the explosive increase in computational power available to the community has created opportunities for modeling phenomena that earlier were beyond reach. Most notably, three-dimensional propagation and scattering problems have been prohibitive computationally, but are now addressed routinely using brute force numerical approaches such as the Finite Element Method, in particular for target scattering problems, where they are being combined with the traditional wave theory propagation models in hybrid modeling frameworks. Also, recent years has seen the development of hybrid approaches coupling oceanographic circulation models with acoustic propagation models, enabling the forecasting of sonar performance uncertainty in dynamic ocean environments. These and other advances made over the last couple of decades support the notion that the field of computational ocean acoustics is far from being mature. [Work supported by the Office of Naval Research, Code 321OA].
Complex 3D crustal model of Asia region
NASA Astrophysics Data System (ADS)
Baranov, A. A.
2009-04-01
The Southern and Central Asia is tectonically complex region with great collision between Asian and Indian plates and its evolution is strongly related to the active subduction along the Pacific border. Previous global crustal model (CRUST 2.0.) for Asia region have resolution 2x2 degree. Model AsCRUST-08 (Baranov et al., 2008) of Central and Southern Asia with resolution of 1x1 degree was sufficiently improved in several regions and we built integrated model of the crust for Asia region. Also we add several regions in North Eurasia as Mongolia, Kazahstan and others. For such regions as Red and Dead sea, Northern China, Southern India we built regional maps with more detailed resolution. It was used data of deep seismic reflection, refraction and receiver functions studies from published papers. The existing data were verified and crosschecked. As the first result, we demonstrate a new Moho map for the region. The complex crustal model consists of three layers: upper, middle and lower crust. Besides depth to the boundaries, we provide average P-wave velocities in the upper, middle and lower parts of the crystalline crust. Limits for Vp velocities are: for upper crust 5.5-6.2 km/s, for middle 6.0-6.6 km/s, for lower crust 6.6-7.5km/s. Also we recalculated seismic P velocity data to density in crustal layers using rheology properties and geology data. Conclusions: Moho map and the velocity structure of the crust are much more heterogeneous than in previous maps CRUST 2.0. (Bassin et al., 2000), and CRUST 5.1. (Mooney et al., 1998). Our model offers a starting point for numerical modeling of deep structures by allowing correction for crustal effects beforehand and to resolve trade-off with mantle heterogeneities. This model will be used as a starting point in the gravity modeling of the lithosphere and mantle structure. [1] A. Baranov et al., First steps towards a new crustal model of South and Central Asia , Geophysical Research Abstracts, Vol. 10, EGU2008-A-05313
Congruence of 3-D Whole Mantle Models of Shear Velocity
NASA Astrophysics Data System (ADS)
Dziewonski, A. M.; Lekic, V.; Romanowicz, B. A.
2012-12-01
The range of shear velocity anomalies in published whole mantle models is considerable. This impedes drawing conclusions of importance for geodynamic modeling and for interpretation of mineral physics results. However, if one considers only the models that were built using data that are sensitive to mantle structure at all depths, these models show robust features in their power spectra as a function of depth. On this basis we propose that there are five depth intervals with distinct spectral characteristics. 1. Heterosphere (Moho - 300 km) is characterized by strong power spectrum relatively flat up to degree 6. With lateral shear wavespeed variations as large as 15%, this zone accounts for more than 50% of the entire heterogeneity in the mantle. Differences among models for different tectonic regions decrease rapidly below 300 km depth. 2. Upper mantle buffer zone (300- 500 km) has a flat spectrum and the overall power of heterogeneity drops by an order of magnitude compared to the region above. There may be still weak difference between continents and oceans, but the oceanic regions lose their age dependence. The spectral characteristics do not change across the 410 km discontinuity. 3. Transition zone (500 - 650 km) The degree 2 anomaly becomes dominant. There are long wavelength anomalies in regions of the fastest plate subduction during the last 15-20 Ma, suggesting slab ponding above the 650 km discontinuity. Several slower-than-average anomalies of unknown origin are present in this depth range. 4. Lower mantle buffer zone (650 - 2300 km) has a weak, flat spectrum without long wavelength velocity anomalies that could be interpreted as unfragmented subducted slabs. However, there are three relatively narrow and short high velocity anomalies under Peru, Tonga and Indonesia that may indicate limited slab penetration. 5 Abyssal layer (2300 - CMB) Strong spectrum dominated by degrees 2 and 3. The amplitude is the largest at the CMB and decreases rapidly up to
Teaching "Instant Experience" with Graphical Model Validation Techniques
ERIC Educational Resources Information Center
Ekstrøm, Claus Thorn
2014-01-01
Graphical model validation techniques for linear normal models are often used to check the assumptions underlying a statistical model. We describe an approach to provide "instant experience" in looking at a graphical model validation plot, so it becomes easier to validate if any of the underlying assumptions are violated.
3D shape modeling by integration visual and tactile cues
NASA Astrophysics Data System (ADS)
Xiong, Hanwei; Xu, Jun; Xu, Chenxi; Pan, Ming
2015-10-01
With the progress in CAD (Computer Aided Design) systems, many mechanical components can be designed efficiently with high precision. But, such a system is unfit for some organic shapes, for example, a toy. In this paper, an easy way to dealing with such shapes is presented, combing visual perception with tangible interaction. The method is divided into three phases: two tangible interaction phases and one visual reconstruction. In the first tangible phase, a clay model is used to represent the raw shape, and the designer can change the shape intuitively with his hands. Then the raw shape is scanned into a digital volume model through a low cost vision system. In the last tangible phase, a desktop haptic device from SensAble is used to refine the scanned volume model and convert it into a surface model. A physical clay model and a virtual clay mode are all used in this method to deal with the main shape and the details respectively, and the vision system is used to bridge the two tangible phases. The vision reconstruction system is only made of a camera to acquire raw shape through shape from silhouettes method. All of the systems are installed on a single desktop, make it convenient for designers. The vision system details and a design example are presented in the papers.
MT3D: a 3 dimensional magnetotelluric modeling program (user's guide and documentation for Rev. 1)
Nutter, C.; Wannamaker, P.E.
1980-11-01
MT3D.REV1 is a non-interactive computer program written in FORTRAN to do 3-dimensional magnetotelluric modeling. A 3-D volume integral equation has been adapted to simulate the MT response of a 3D body in the earth. An integro-difference scheme has been incorporated to increase the accuracy. This is a user's guide for MT3D.REV1 on the University of Utah Research Institute's (UURI) PRIME 400 computer operating under PRIMOS IV, Rev. 17.
Parallel processing for efficient 3D slope stability modelling
NASA Astrophysics Data System (ADS)
Marchesini, Ivan; Mergili, Martin; Alvioli, Massimiliano; Metz, Markus; Schneider-Muntau, Barbara; Rossi, Mauro; Guzzetti, Fausto
2014-05-01
We test the performance of the GIS-based, three-dimensional slope stability model r.slope.stability. The model was developed as a C- and python-based raster module of the GRASS GIS software. It considers the three-dimensional geometry of the sliding surface, adopting a modification of the model proposed by Hovland (1977), and revised and extended by Xie and co-workers (2006). Given a terrain elevation map and a set of relevant thematic layers, the model evaluates the stability of slopes for a large number of randomly selected potential slip surfaces, ellipsoidal or truncated in shape. Any single raster cell may be intersected by multiple sliding surfaces, each associated with a value of the factor of safety, FS. For each pixel, the minimum value of FS and the depth of the associated slip surface are stored. This information is used to obtain a spatial overview of the potentially unstable slopes in the study area. We test the model in the Collazzone area, Umbria, central Italy, an area known to be susceptible to landslides of different type and size. Availability of a comprehensive and detailed landslide inventory map allowed for a critical evaluation of the model results. The r.slope.stability code automatically splits the study area into a defined number of tiles, with proper overlap in order to provide the same statistical significance for the entire study area. The tiles are then processed in parallel by a given number of processors, exploiting a multi-purpose computing environment at CNR IRPI, Perugia. The map of the FS is obtained collecting the individual results, taking the minimum values on the overlapping cells. This procedure significantly reduces the processing time. We show how the gain in terms of processing time depends on the tile dimensions and on the number of cores.
A Cartesian scheme for compressible multimaterial models in 3D
NASA Astrophysics Data System (ADS)
de Brauer, Alexia; Iollo, Angelo; Milcent, Thomas
2016-05-01
We model the three-dimensional interaction of compressible materials separated by sharp interfaces. We simulate fluid and hyperelastic solid flows in a fully Eulerian framework. The scheme is the same for all materials and can handle large deformations and frictionless contacts. Necessary conditions for hyperbolicity of the hyperelastic neohookean model in three dimensions are proved thanks to an explicit computation of the characteristic speeds. We present stiff multimaterial interactions including air-helium and water-air shock interactions, projectile-shield impacts in air and rebounds.
NASA Technical Reports Server (NTRS)
Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.
1990-01-01
PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.
3D modelling of stellar auroral radio emission
NASA Astrophysics Data System (ADS)
Leto, P.; Trigilio, C.; Buemi, C. S.; Umana, G.; Ingallinera, A.; Cerrigone, L.
2016-06-01
The electron cyclotron maser is the coherent emission process that gives rise to the radio lighthouse effect observed in the hot magnetic chemically peculiar star CU Virginis. It has also been proposed to explain the highly circularly polarized radio pulses observed in some ultracool dwarfs with spectral type earlier than M7. Coherent events of this kind resemble auroral radio emission from the magnetized planets of the Solar system. In this article, we present a three-dimensional model able to simulate the timing and profile of the pulses emitted by those stars characterized by a dipolar magnetic field by following the hypothesis of the laminar source model, used to explain the beaming of terrestrial auroral kilometric radiation. This model proves to be a powerful tool with which to understand the auroral radio emission phenomenon, allowing us to derive some general conclusions about the effects of the model's free parameters on the features of coherent pulses and to learn more about the detectability of such pulsed radio emission.
Cotranslational processing mechanisms: towards a dynamic 3D model.
Giglione, Carmela; Fieulaine, Sonia; Meinnel, Thierry
2009-08-01
Recent major advances have been made in understanding how cotranslational events are achieved in the course of protein biosynthesis. Specifically, several studies have shed light into the dynamic process of how nascent chains emerging from the ribosome are supported by protein biogenesis factors to ensure both processing and folding mechanisms. To take into account the awareness that coordination is needed, a new 'concerted model' recently proposed simultaneous action of both processes on the ribosome. In the model, any emerging nascent chain is first encountered by the chaperone trigger factor (TF), which forms an open cradle underneath the ribosomal exit tunnel. This cradle serves as a passive router that channels the nascent chains to the first cotranslational event, the proteolysis event performed by the N-terminal methionine excision machinery. Although fascinating, this model clearly raises more questions than it answers. Does the data used to develop this model stand up to scrutiny and, if not, what are the alternative mechanisms that the data suggest? PMID:19647435
The modeling of portable 3D vision coordinate measuring system
NASA Astrophysics Data System (ADS)
Liu, Shugui; Huang, Fengshan; Peng, Kai
2005-02-01
The portable three-dimensional vision coordinate measuring system, which consists of a light pen, a CCD camera and a laptop computer, can be widely applied in most coordinate measuring fields especially on the industrial spots. On the light pen there are at least three point-shaped light sources (LEDs) acting as the measured control characteristic points and a touch trigger probe with a spherical stylus which is used to contact the point to be measured. The most important character of this system is that three light sources and the probe stylus are aligned in one line with known positions. In building and studying this measuring system, how to construct the system"s mathematical model is the most key problem called perspective of three-collinear-points problem, which is a particular case of perspective of three-points problem (P3P). On the basis of P3P and spatial analytical geometry theory, the system"s mathematical model is established in this paper. What"s more, it is verified that perspective of three-collinear-points problem has a unique solution. And the analytical equations of the measured point"s coordinates are derived by using the system"s mathematical model and the restrict condition that three light sources and the probe stylus are aligned in one line. Finally, the effectiveness of the mathematical model is confirmed by experiments.
3-D orbital evolution model of outer asteroid belt
NASA Technical Reports Server (NTRS)
Solovaya, Nina A.; Gerasimov, Igor A.; Pittich, Eduard M.
1992-01-01
The evolution of minor planets in the outer part of the asteroid belt is considered. In the framework of the semi-averaged elliptic restricted three-dimensional three-body model, the boundary of regions of the Hill's stability is found. As was shown in our work, the Jacobian integral exists.
3D pharmacophore models for thromboxane A(2) receptor antagonists.
Wei, Jing; Liu, Yixi; Wang, Songqing
2009-10-01
Thromboxane A(2) (TXA(2)) is an endogenous arachidonic acid derivative closely correlated to thrombosis and other cardiovascular diseases. The action of TXA(2) can be effectively inhibited with TXA(2) receptor antagonists (TXRAs). Previous studies have attempted to describe the interactions between the TXA(2) receptor and its ligands, but their conclusions are still controversial. In this study, ligand-based computational drug design is used as a new and effective way to investigate the structure-activity relationship of TXRAs. Three-dimensional pharmacophore models of TXRAs were built with HypoGenRefine and HipHop modules in CATALYST software. The optimal HypoGenRefine model was developed on the basis of 25 TXRAs. It consists of two hydrophobic groups, one aromatic ring, one hydrogen-bond acceptor and four excluded volumes. The optimal HipHop model contains two hydrophobic groups and two hydrogen-bond acceptors. These models describe the key structure-activity relationship of TXRAs, can predict their activities, and can thus be used to design novel antagonists. PMID:19263096
Modeling cell migration on filamentous tracks in 3D
NASA Astrophysics Data System (ADS)
Schwarz, J. M.
2014-03-01
Cell motility is integral to a number of physiological processes ranging from wound healing to immune response to cancer metastasis. Many studies of cell migration, both experimental and theoretical, have addressed various aspects of it in two dimensions, including protrusion and retraction at the level of single cells. However, the in vivo environment for a crawling cell is typically a three-dimensional environment, consisting of the extracellular matrix (ECM) and surrounding cells. Recent experiments demonstrate that some cells crawling along fibers of the ECM mimic the geometry of the fibers to become long and thin, as opposed to fan-like in two dimensions, and can remodel the ECM. Inspired by these experiments, a model cell consisting of beads and springs that moves along a tense semiflexible filamentous track is constructed and studied, paying particular attention to the mechanical feedback between the model cell and the track, as mediated by the active myosin-driven contractility and the catch/slip bond behavior of the focal adhesions, as the model cell crawls. This simple construction can then be scaled up to a model cell moving along a three-dimensional filamentous network, with a prescribed microenvironment, in order to make predictions for proposed experiments.
New 3D parallel SGILD modeling and inversion
Xie, G.; Li, J.; Majer, E.
1998-09-01
In this paper, a new parallel modeling and inversion algorithm using a Stochastic Global Integral and Local Differential equation (SGILD) is presented. The authors derived new acoustic integral equations and differential equation for statistical moments of the parameters and field. The new statistical moments integral equation on the boundary and local differential equations in domain will be used together to obtain mean wave field and its moments in the modeling. The new moments global Jacobian volume integral equation and the local Jacobian differential equations in domain will be used together to update the mean parameters and their moments in the inversion. A new parallel multiple hierarchy substructure direct algorithm or direct-iteration hybrid algorithm will be used to solve the sparse matrices and one smaller full matrix from domain to the boundary, in parallel. The SGILD modeling and imaging algorithm has many advantages over the conventional imaging approaches. The SGILD algorithm can be used for the stochastic acoustic, electromagnetic, and flow modeling and inversion, and are important for the prediction of oil, gas, coal, and geothermal energy reservoirs in geophysical exploration.
Modelling galaxies with a 3d multi-phase ISM
NASA Astrophysics Data System (ADS)
Harfst, S.; Theis, Ch.; Hensler, G.
2006-04-01
We present a new particle code for modelling the evolution of galaxies. The code is based on a multi-phase description for the interstellar medium (ISM). We include star formation (SF), stellar feedback by massive stars and planetary nebulae, phase transitions, and interactions between gas clouds and ambient diffuse gas, namely condensation, evaporation, drag, and energy dissipation. The last is realised by radiative cooling and inelastic cloud-cloud collisions. We present new schemes for SF and stellar feedback that include a consistent calculation of the star-formation efficiency (SFE) based on ISM properties, as well as a detailed redistribution of the feedback energy into the different ISM phases. As a first test we show a model of the evolution of a present day Milky-Way-type galaxy. Though the model exhibits a quasi-stationary behaviour in global properties like mass fractions or surface densities, the evolution of the ISM is strongly variable locally depending on the local SF and stellar feedback. We start only with two distinct phases, but a three-phase ISM is formed soon and consists of cold molecular clouds, a warm gas disk, and a hot gaseous halo. Hot gas is also found in bubbles in the disk accompanied by type II supernovae explosions. The volume-filling factor of the hot gas in the disk is 35%. The mass spectrum of the clouds follows a power-law with an index of α ≈ -2. The star-formation rate (SFR) is 1.6 M⊙ yr-1 on average, decreasing slowly with time due to gas consumption. In order to maintain a constant SFR, gas replenishment, e.g. by infall, of the order 1 M⊙ yr-1 is required. Our model is in fair agreement with Kennicutt's (1998, ApJ, 498, 541) SF law including the cut-off at 10 M⊙ pc-2. Models with a constant SFE, i.e. no feedback on the SF, fail to reproduce Kennicutt's law. We performed a parameter study varying the particle resolution, feedback energy, cloud radius, SF time scale, and metallicity. In most these cases the evolution
3D Scientific Visualization with Blender
NASA Astrophysics Data System (ADS)
Kent, Brian R.
2015-03-01
This is the first book written on using Blender for scientific visualization. It is a practical and interesting introduction to Blender for understanding key parts of 3D rendering and animation that pertain to the sciences via step-by-step guided tutorials. 3D Scientific Visualization with Blender takes you through an understanding of 3D graphics and modelling for different visualization scenarios in the physical sciences.
Possibility of reconstruction of dental plaster cast from 3D digital study models
2013-01-01
Objectives To compare traditional plaster casts, digital models and 3D printed copies of dental plaster casts based on various criteria. To determine whether 3D printed copies obtained using open source system RepRap can replace traditional plaster casts in dental practice. To compare and contrast the qualities of two possible 3D printing options – open source system RepRap and commercially available 3D printing. Design and settings A method comparison study on 10 dental plaster casts from the Orthodontic department, Department of Stomatology, 2nd medical Faulty, Charles University Prague, Czech Republic. Material and methods Each of 10 plaster casts were scanned by inEos Blue scanner and the printed on 3D printer RepRap [10 models] and ProJet HD3000 3D printer [1 model]. Linear measurements between selected points on the dental arches of upper and lower jaws on plaster casts and its 3D copy were recorded and statistically analyzed. Results 3D printed copies have many advantages over traditional plaster casts. The precision and accuracy of the RepRap 3D printed copies of plaster casts were confirmed based on the statistical analysis. Although the commercially available 3D printing enables to print more details than the RepRap system, it is expensive and for the purpose of clinical use can be replaced by the cheaper prints obtained from RepRap printed copies. Conclusions Scanning of the traditional plaster casts to obtain a digital model offers a pragmatic approach. The scans can subsequently be used as a template to print the plaster casts as required. Using 3D printers can replace traditional plaster casts primarily due to their accuracy and price. PMID:23721330
Time efficient 3-D electromagnetic modeling on massively parallel computers
Alumbaugh, D.L.; Newman, G.A.
1995-08-01
A numerical modeling algorithm has been developed to simulate the electromagnetic response of a three dimensional earth to a dipole source for frequencies ranging from 100 to 100MHz. The numerical problem is formulated in terms of a frequency domain--modified vector Helmholtz equation for the scattered electric fields. The resulting differential equation is approximated using a staggered finite difference grid which results in a linear system of equations for which the matrix is sparse and complex symmetric. The system of equations is solved using a preconditioned quasi-minimum-residual method. Dirichlet boundary conditions are employed at the edges of the mesh by setting the tangential electric fields equal to zero. At frequencies less than 1MHz, normal grid stretching is employed to mitigate unwanted reflections off the grid boundaries. For frequencies greater than this, absorbing boundary conditions must be employed by making the stretching parameters of the modified vector Helmholtz equation complex which introduces loss at the boundaries. To allow for faster calculation of realistic models, the original serial version of the code has been modified to run on a massively parallel architecture. This modification involves three distinct tasks; (1) mapping the finite difference stencil to a processor stencil which allows for the necessary information to be exchanged between processors that contain adjacent nodes in the model, (2) determining the most efficient method to input the model which is accomplished by dividing the input into ``global`` and ``local`` data and then reading the two sets in differently, and (3) deciding how to output the data which is an inherently nonparallel process.
Some results on hyperscaling in the 3D Ising model
Baker, G.A. Jr.; Kawashima, Naoki
1995-09-01
The authors review exact studies on finite-sized 2 dimensional Ising models and show that the point for an infinite-sized model at the critical temperature is a point of nonuniform approach in the temperature-size plane. They also illuminate some strong effects of finite-size on quantities which do not diverge at the critical point. They then review Monte Carlo studies for 3 dimensional Ising models of various sizes (L = 2--100) at various temperatures. From these results they find that the data for the renormalized coupling constant collapses nicely when plotted against the correlation length, determined in a system of edge length L, divided by L. They also find that {zeta}{sub L}/L {ge} 0.26 is definitely too large for reliable studies of the critical value, g*, of the renormalized coupling constant. They have reasonable evidence that {zeta}{sub L}/L {approx} 0.1 is adequate for results that are within one percent of those for the infinite system size. On this basis, they have conducted a series of Monte Carlo calculations with this condition imposed. These calculations were made practical by the development of improved estimators for use in the Swendsen-Wang cluster method. The authors found from these results, coupled with a reversed limit computation (size increases with the temperature fixed at the critical temperature), that g* > 0, although there may well be a sharp downward drop in g as the critical temperature is approached in accord with the predictions of series analysis. The results support the validity of hyperscaling in the 3 dimensional Ising model.
Multiple-Relaxation-Time Lattice Boltzmann Models in 3D
NASA Technical Reports Server (NTRS)
dHumieres, Dominique; Ginzburg, Irina; Krafczyk, Manfred; Lallemand, Pierre; Luo, Li-Shi; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
This article provides a concise exposition of the multiple-relaxation-time lattice Boltzmann equation, with examples of fifteen-velocity and nineteen-velocity models in three dimensions. Simulation of a diagonally lid-driven cavity flow in three dimensions at Re=500 and 2000 is performed. The results clearly demonstrate the superior numerical stability of the multiple-relaxation-time lattice Boltzmann equation over the popular lattice Bhatnagar-Gross-Krook equation.
The Martian Water Cycle Based on 3-D Modeling
NASA Technical Reports Server (NTRS)
Houben, H.; Haberle, R. M.; Joshi, M. M.
1999-01-01
Understanding the distribution of Martian water is a major goal of the Mars Surveyor program. However, until the bulk of the data from the nominal missions of TES, PMIRR, GRS, MVACS, and the DS2 probes are available, we are bound to be in a state where much of our knowledge of the seasonal behavior of water is based on theoretical modeling. We therefore summarize the results of this modeling at the present time. The most complete calculations come from a somewhat simplified treatment of the Martian climate system which is capable of simulating many decades of weather. More elaborate meteorological models are now being applied to study of the problem. The results show a high degree of consistency with observations of aspects of the Martian water cycle made by Viking MAWD, a large number of ground-based measurements of atmospheric column water vapor, studies of Martian frosts, and the widespread occurrence of water ice clouds. Additional information is contained in the original extended abstract.
3-D model of ICME in the interplanetary medium
NASA Astrophysics Data System (ADS)
Borgazzi, A.; Lara, A.; Niembro, T.
2011-12-01
We developed a method that describes with simply geometry the coordinates of intersection between the leading edge of an ICME and the position of an arbitrary satellite. When a fast CME is ejected from the Sun to the interplanetary space in most of the cases drives a shock. As the CME moves in the corona and later in the interplanetary space more material is stacking in the front and edges of the ejecta. In a first approximation, it is possible to assume the shape of these structures, the CME and the stacked material as a cone of revolution, (the ice-cream model [Schwenn et al., (2005)]). The interface may change due to the interaction of the structure and the non-shocked material in front of the ICME but the original shape of a cone of revolution is preserved. We assume, in a three dimensional geometry, an ice-cream cone shape for the ICME and apply an analytical model for its transport in the interplanetary medium. The goal of the present method is to give the time and the intersection coordinates between the leading edge of the ICME and any satellite that may be in the path of the ICME. With this information we can modelate the travel of the ICME in the interplanetary space using STEREO data.
Introducing a New 3D Dynamical Model for Barred Galaxies
NASA Astrophysics Data System (ADS)
Jung, Christof; Zotos, Euaggelos E.
2015-11-01
The regular or chaotic dynamics of an analytical realistic three dimensional model composed of a spherically symmetric central nucleus, a bar and a flat disk is investigated. For describing the properties of the bar, we introduce a new simple dynamical model and we explore the influence on the character of orbits of all the involved parameters of it, such as the mass and the scale length of the bar, the major semi-axis and the angular velocity of the bar, as well as the energy. Regions of phase space with ordered and chaotic motion are identified in dependence on these parameters and for breaking the rotational symmetry. First, we study in detail the dynamics in the invariant plane z = pz = 0 using the Poincaré map as a basic tool and then study the full three-dimensional case using the Smaller Alignment index method as principal tool for distinguishing between order and chaos. We also present strong evidence obtained through the numerical simulations that our new bar model can realistically describe the formation and the evolution of the observed twin spiral structure in barred galaxies.
Elastic properties of model 3-D porous ceramics and foams
NASA Astrophysics Data System (ADS)
Roberts, Anthony; Garboczi, Edward
2000-03-01
The novel properties of many new porous materials are related to their interesting internal microstructure. Apart from simple cases, there exist no theoretical means of predicting the bulk properties of these materials. This limits our ability to guide microstructure optimization for a particular purpose. We use a large scale finite element method to demonstrate the complex relationship between microstructure and the effective properties of realistic three-dimensional model porous ceramics and foams. We find that pore-shape and interconnectivity strongly influence the properties of sintered ceramics. For porous foams we have studied the role of coordination number, random disorder, and strut shape on the Young's modulus and Poisson's ratio. We find that that Voronoi tesselations, commonly used to model solid foams, show unphysical behavior, in particular they are incompressible (rubber-like) at low densities. Deletion of just 10% of the bonds in the model reduces the bulk modulus by 75%, more in line with experimental evidence. The FEM results are generally in good agreement with experimental data for ceramics and foams, and can be used as both a predictive and interpretative tool by experimentalists.
Blind watermark algorithm on 3D motion model based on wavelet transform
NASA Astrophysics Data System (ADS)
Qi, Hu; Zhai, Lang
2013-12-01
With the continuous development of 3D vision technology, digital watermark technology, as the best choice for copyright protection, has fused with it gradually. This paper proposed a blind watermark plan of 3D motion model based on wavelet transform, and made it loaded into the Vega real-time visual simulation system. Firstly, put 3D model into affine transform, and take the distance from the center of gravity to the vertex of 3D object in order to generate a one-dimensional discrete signal; then make this signal into wavelet transform to change its frequency coefficients and embed watermark, finally generate 3D motion model with watermarking. In fixed affine space, achieve the robustness in translation, revolving and proportion transforms. The results show that this approach has better performances not only in robustness, but also in watermark- invisibility.
Approximate analytic solutions to 3D unconfined groundwater flow within regional 2D models
NASA Astrophysics Data System (ADS)
Luther, K.; Haitjema, H. M.
2000-04-01
We present methods for finding approximate analytic solutions to three-dimensional (3D) unconfined steady state groundwater flow near partially penetrating and horizontal wells, and for combining those solutions with regional two-dimensional (2D) models. The 3D solutions use distributed singularities (analytic elements) to enforce boundary conditions on the phreatic surface and seepage faces at vertical wells, and to maintain fixed-head boundary conditions, obtained from the 2D model, at the perimeter of the 3D model. The approximate 3D solutions are analytic (continuous and differentiable) everywhere, including on the phreatic surface itself. While continuity of flow is satisfied exactly in the infinite 3D flow domain, water balance errors can occur across the phreatic surface.
Supernova Spectrum Synthesis for 3D Composition Models with the Monte Carlo Method
NASA Astrophysics Data System (ADS)
Thomas, Rollin
2002-07-01
newcommandBruteextttBrute Relying on spherical symmetry when modelling supernova spectra is clearly at best a good approximation. Recent polarization measurements, interesting features in flux spectra, and the clumpy textures of supernova remnants suggest that supernova envelopes are rife with fine structure. To account for this fine structure and create a complete picture of supernovae, new 3D explosion models will be forthcoming. To reconcile these models with observed spectra, 3D radiative transfer will be necessary. We propose a 3D Monte Carlo radiative transfer code, Brute, and improvements that will move it toward a fully self-consistent 3D transfer code. Spectroscopic HST observations of supernovae past, present and future will definitely benefit. Other 3D transfer problems of interest to HST users like AGNs will benefit from the techniques developed.
Temporal-spatial modeling of fast-moving and deforming 3D objects
NASA Astrophysics Data System (ADS)
Wu, Xiaoliang; Wei, Youzhi
1998-09-01
This paper gives a brief description of the method and techniques developed for the modeling and reconstruction of fast moving and deforming 3D objects. A new approach using close-range digital terrestrial photogrammetry in conjunction with high speed photography and videography is proposed. A sequential image matching method (SIM) has been developed to automatically process pairs of images taken continuously of any fast moving and deforming 3D objects. Using the SIM technique a temporal-spatial model (TSM) of any fast moving and deforming 3D objects can be developed. The TSM would include a series of reconstructed surface models of the fast moving and deforming 3D object in the form of 3D images. The TSM allows the 3D objects to be visualized and analyzed in sequence. The SIM method, specifically the left-right matching and forward-back matching techniques are presented in the paper. An example is given which deals with the monitoring of a typical blast rock bench in a major open pit mine in Australia. With the SIM approach and the TSM model it is possible to automatically and efficiently reconstruct the 3D images of the blasting process. This reconstruction would otherwise be impossible to achieve using a labor intensive manual processing approach based on 2D images taken from conventional high speed cameras. The case study demonstrates the potential of the SIM approach and the TSM for the automatic identification, tracking and reconstruction of any fast moving and deforming 3D targets.
RETRAN-3D MOD003 Peach Bottom Turbine Trip 2 Multidimensional Kinetics Analysis Models and Results
Mori, Michitsugu; Ogura, Katsunori; Gose, Garry C.; Wu, J.-Y
2003-04-15
An analysis of the Peach Bottom Unit 2 Turbine Trip Test 2 (PB2/TT2) has been performed using RETRAN-3D MOD003. The purpose of the analysis was to investigate the PB2/TT2 overpressurization transient using the RETRAN-3D multidimensional kinetics model.
Modeling the diffusion of phosphorus in silicon in 3-D
Baker, K.R.
1994-12-31
The use of matrix preconditioning in semiconductor process simulation is examined. The simplified nonlinear single-species model for the diffusion of phosphorus into silicon is considered. The experimental three-dimensional simulator, PEPPER3, which uses finite differences and the numerical method of lines to implement the reaction-diffusion equation is modified to allow NSPCG to be called to solve the linear system in the inner Newton loop. Use of NSPCG allowed various accelerators such as Generalized Minimal Residual (GMRES) and Conjugate Gradient (CG) to be used in conjunction with preconditioners such as Richardson, Jacobi, and Incomplete Cholesky.
Modeling of 3-D Woven Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Sullivan, Roy M.; Mital, Subodh K.
2003-01-01
Three different approaches are being pursued at the NASA Glenn Research Center to predict the nanostructural behavior of three-dimensional woven ceramic matrix composites. These are: a micromechanics-based approach using W-CEMCAN (Woven Ceramic Matrix Composite Analyzer), a laminate analogy method and a structural frame approach (based on the finite element method). All three techniques are applied to predict the thermomechanical properties of a three-dimensional woven angle interlock C/SiC composite. The properties are predicted for room temperature and 1100 C and the predicted properties are compared to measurements. General observations regarding the three approaches for three-dimensional composite modeling are discussed.
3D Monte Carlo radiation transfer modelling of photodynamic therapy
NASA Astrophysics Data System (ADS)
Campbell, C. Louise; Christison, Craig; Brown, C. Tom A.; Wood, Kenneth; Valentine, Ronan M.; Moseley, Harry
2015-06-01
The effects of ageing and skin type on Photodynamic Therapy (PDT) for different treatment methods have been theoretically investigated. A multilayered Monte Carlo Radiation Transfer model is presented where both daylight activated PDT and conventional PDT are compared. It was found that light penetrates deeper through older skin with a lighter complexion, which translates into a deeper effective treatment depth. The effect of ageing was found to be larger for darker skin types. The investigation further strengthens the usage of daylight as a potential light source for PDT where effective treatment depths of about 2 mm can be achieved.
Synergia: an accelerator modeling tool with 3-D space charge
Amundson, James F.; Spentzouris, P.; Qiang, J.; Ryne, R.; /LBL, Berkeley
2004-07-01
High precision modeling of space-charge effects, together with accurate treatment of single-particle dynamics, is essential for designing future accelerators as well as optimizing the performance of existing machines. We describe Synergia, a high-fidelity parallel beam dynamics simulation package with fully three dimensional space-charge capabilities and a higher order optics implementation. We describe the computational techniques, the advanced human interface, and the parallel performance obtained using large numbers of macroparticles. We also perform code benchmarks comparing to semi-analytic results and other codes. Finally, we present initial results on particle tune spread, beam halo creation, and emittance growth in the Fermilab b