Science.gov

Sample records for 3d graphical representation

  1. Cp-curve, a Novel 3-D Graphical Representation of Proteins

    NASA Astrophysics Data System (ADS)

    Bai, Haihua; Li, Chun; Agula, Hasi; Jirimutu, Jirimutu; Wang, Jun; Xing, Lili

    2007-12-01

    Based on a five-letter model of the 20 amino acids, we propose a novel 3-D graphical representation of proteins. The method is illustrated on the mutant exon 1 of EDA gene of a Mongolian family with X-linked congenital anodontia/wavy hair.

  2. Learning from graphically integrated 2D and 3D representations improves retention of neuroanatomy

    NASA Astrophysics Data System (ADS)

    Naaz, Farah

    Visualizations in the form of computer-based learning environments are highly encouraged in science education, especially for teaching spatial material. Some spatial material, such as sectional neuroanatomy, is very challenging to learn. It involves learning the two dimensional (2D) representations that are sampled from the three dimensional (3D) object. In this study, a computer-based learning environment was used to explore the hypothesis that learning sectional neuroanatomy from a graphically integrated 2D and 3D representation will lead to better learning outcomes than learning from a sequential presentation. The integrated representation explicitly demonstrates the 2D-3D transformation and should lead to effective learning. This study was conducted using a computer graphical model of the human brain. There were two learning groups: Whole then Sections, and Integrated 2D3D. Both groups learned whole anatomy (3D neuroanatomy) before learning sectional anatomy (2D neuroanatomy). The Whole then Sections group then learned sectional anatomy using 2D representations only. The Integrated 2D3D group learned sectional anatomy from a graphically integrated 3D and 2D model. A set of tests for generalization of knowledge to interpreting biomedical images was conducted immediately after learning was completed. The order of presentation of the tests of generalization of knowledge was counterbalanced across participants to explore a secondary hypothesis of the study: preparation for future learning. If the computer-based instruction programs used in this study are effective tools for teaching anatomy, the participants should continue learning neuroanatomy with exposure to new representations. A test of long-term retention of sectional anatomy was conducted 4-8 weeks after learning was completed. The Integrated 2D3D group was better than the Whole then Sections

  3. Graphics to H.264 video encoding for 3D scene representation and interaction on mobile devices using region of interest

    NASA Astrophysics Data System (ADS)

    Le, Minh Tuan; Nguyen, Congdu; Yoon, Dae-Il; Jung, Eun Ku; Jia, Jie; Kim, Hae-Kwang

    2007-12-01

    In this paper, we propose a method of 3D graphics to video encoding and streaming that are embedded into a remote interactive 3D visualization system for rapidly representing a 3D scene on mobile devices without having to download it from the server. In particular, a 3D graphics to video framework is presented that increases the visual quality of regions of interest (ROI) of the video by performing more bit allocation to ROI during H.264 video encoding. The ROI are identified by projection 3D objects to a 2D plane during rasterization. The system offers users to navigate the 3D scene and interact with objects of interests for querying their descriptions. We developed an adaptive media streaming server that can provide an adaptive video stream in term of object-based quality to the client according to the user's preferences and the variation of network bandwidth. Results show that by doing ROI mode selection, PSNR of test sample slightly change while visual quality of objects increases evidently.

  4. The Digital Space Shuttle, 3D Graphics, and Knowledge Management

    NASA Technical Reports Server (NTRS)

    Gomez, Julian E.; Keller, Paul J.

    2003-01-01

    The Digital Shuttle is a knowledge management project that seeks to define symbiotic relationships between 3D graphics and formal knowledge representations (ontologies). 3D graphics provides geometric and visual content, in 2D and 3D CAD forms, and the capability to display systems knowledge. Because the data is so heterogeneous, and the interrelated data structures are complex, 3D graphics combined with ontologies provides mechanisms for navigating the data and visualizing relationships.

  5. Introduction to 3D Graphics through Excel

    ERIC Educational Resources Information Center

    Benacka, Jan

    2013-01-01

    The article presents a method of explaining the principles of 3D graphics through making a revolvable and sizable orthographic parallel projection of cuboid in Excel. No programming is used. The method was tried in fourteen 90 minute lessons with 181 participants, which were Informatics teachers, undergraduates of Applied Informatics and gymnasium…

  6. Postprocessing of compressed 3D graphic data by using subdivision

    NASA Astrophysics Data System (ADS)

    Cheang, Ka Man; Li, Jiankun; Kuo, C.-C. Jay

    1998-10-01

    In this work, we present a postprocessing technique applied to a 3D graphic model of a lower resolution to obtain a visually more pleasant representation. Our method is an improved version of the Butterfly subdivision scheme developed by Zorin et al. Our main contribution is to exploit the flatness information of local areas of a 3D graphic model for adaptive refinement. Consequently, we can avoid unnecessary subdivision in regions which are relatively flat. The proposed new algorithm not only reduces the computational complexity but also saves the storage space. With the hierarchical mesh compression method developed by Li and Kuo as the baseline coding method, we show that the postprocessing technique can greatly improve the visual quality of the decoded 3D graphic model.

  7. Learning with Interactive Graphical Representations.

    ERIC Educational Resources Information Center

    Saljo, Roger, Ed.

    1999-01-01

    The seven articles of this theme issue deal with the use of computer-based interactive graphical representations. Studying their use will bring answers to users of static graphics in traditional paper-based media and those who plan instruction using graphical representations that allow semantically direct manipulation. (SLD)

  8. Cooperativity and 3-D Representation

    DTIC Science & Technology

    1993-02-28

    image, to simplified mechanisms for understandingshadows and shading and to renewed interest in " isophot " models of shading. Visual searchstudies have...reversals of contrast. One such representation is the isophots of the images, the lines of equal luminance. They capture the flow field of the brightness...shading as an oriented field of isophots (or at least short oriented segments) is still at an exploratory stage. We will digitize live scenes in our

  9. Evaluation of 3-D graphics software: A case study

    NASA Technical Reports Server (NTRS)

    Lores, M. E.; Chasen, S. H.; Garner, J. M.

    1984-01-01

    An efficient 3-D geometry graphics software package which is suitable for advanced design studies was developed. The advanced design system is called GRADE--Graphics for Advanced Design. Efficiency and ease of use are gained by sacrificing flexibility in surface representation. The immediate options were either to continue development of GRADE or to acquire a commercially available system which would replace or complement GRADE. Test cases which would reveal the ability of each system to satisfy the requirements were developed. A scoring method which adequately captured the relative capabilities of the three systems was presented. While more complex multi-attribute decision methods could be used, the selected method provides all the needed information without being so complex that it is difficult to understand. If the value factors are modestly perturbed, system Z is a clear winner based on its overall capabilities. System Z is superior in two vital areas: surfacing and ease of interface with application programs.

  10. Graphical Representation of Complex Functions.

    ERIC Educational Resources Information Center

    Renka, Robert J.

    1988-01-01

    Describes methods and software for graphing representation of a complex function of a complex variable. Includes an application of a graphical interpretation of the complex zeros of the cubic and their properties. (PK)

  11. Optimization Techniques for 3D Graphics Deployment on Mobile Devices

    NASA Astrophysics Data System (ADS)

    Koskela, Timo; Vatjus-Anttila, Jarkko

    2015-03-01

    3D Internet technologies are becoming essential enablers in many application areas including games, education, collaboration, navigation and social networking. The use of 3D Internet applications with mobile devices provides location-independent access and richer use context, but also performance issues. Therefore, one of the important challenges facing 3D Internet applications is the deployment of 3D graphics on mobile devices. In this article, we present an extensive survey on optimization techniques for 3D graphics deployment on mobile devices and qualitatively analyze the applicability of each technique from the standpoints of visual quality, performance and energy consumption. The analysis focuses on optimization techniques related to data-driven 3D graphics deployment, because it supports off-line use, multi-user interaction, user-created 3D graphics and creation of arbitrary 3D graphics. The outcome of the analysis facilitates the development and deployment of 3D Internet applications on mobile devices and provides guidelines for future research.

  12. 3D Graphics Through the Internet: A "Shoot-Out"

    NASA Technical Reports Server (NTRS)

    Watson, Val; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    3D graphics through the Internet needs to move beyond the current lowest common denominator of pre-computed movies, which consume bandwidth and are non-interactive. Panelists will demonstrate and compare 3D graphical tools for accessing, analyzing, and collaborating on information through the Internet and World-wide web. The "shoot-out" will illustrate which tools are likely to be the best for the various types of information, including dynamic scientific data, 3-D objects, and virtual environments. The goal of the panel is to encourage more effective use of the Internet by encouraging suppliers and users of information to adopt the next generation of graphical tools.

  13. DspaceOgre 3D Graphics Visualization Tool

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan; Myin, Steven; Pomerantz, Marc I.

    2011-01-01

    This general-purpose 3D graphics visualization C++ tool is designed for visualization of simulation and analysis data for articulated mechanisms. Examples of such systems are vehicles, robotic arms, biomechanics models, and biomolecular structures. DspaceOgre builds upon the open-source Ogre3D graphics visualization library. It provides additional classes to support the management of complex scenes involving multiple viewpoints and different scene groups, and can be used as a remote graphics server. This software provides improved support for adding programs at the graphics processing unit (GPU) level for improved performance. It also improves upon the messaging interface it exposes for use as a visualization server.

  14. Expanding the Interaction Lexicon for 3D Graphics

    DTIC Science & Technology

    2001-11-01

    Graphics We shape out tools, and thereafter our tools shape us. Marshall McLuhan It is not reason that is the guide of life, but custom. David...Interaction Lexicon for 3D Graphics We don’t know who discovered water, but we are pretty sure it wasn’t a fish. Marshall McLuhan Successful innovation in a

  15. Spidergl: a Graphics Library for 3d Web Applications

    NASA Astrophysics Data System (ADS)

    Di Benedetto, M.; Corsini, M.; Scopigno, R.

    2011-09-01

    The recent introduction of the WebGL API for leveraging the power of 3D graphics accelerators within Web browsers opens the possibility to develop advanced graphics applications without the need for an ad-hoc plug-in. There are several contexts in which this new technology can be exploited to enhance user experience and data fruition, like e-commerce applications, games and, in particular, Cultural Heritage. In fact, it is now possible to use the Web platform to present a virtual reconstruction hypothesis of ancient pasts, to show detailed 3D models of artefacts of interests to a wide public, and to create virtual museums. We introduce SpiderGL, a JavaScript library for developing 3D graphics Web applications. SpiderGL provides data structures and algorithms to ease the use of WebGL, to define and manipulate shapes, to import 3D models in various formats, and to handle asynchronous data loading. We show the potential of this novel library with a number of demo applications and give details about its future uses in the context of Cultural Heritage applications.

  16. MAP3D: a media processor approach for high-end 3D graphics

    NASA Astrophysics Data System (ADS)

    Darsa, Lucia; Stadnicki, Steven; Basoglu, Chris

    1999-12-01

    Equator Technologies, Inc. has used a software-first approach to produce several programmable and advanced VLIW processor architectures that have the flexibility to run both traditional systems tasks and an array of media-rich applications. For example, Equator's MAP1000A is the world's fastest single-chip programmable signal and image processor targeted for digital consumer and office automation markets. The Equator MAP3D is a proposal for the architecture of the next generation of the Equator MAP family. The MAP3D is designed to achieve high-end 3D performance and a variety of customizable special effects by combining special graphics features with high performance floating-point and media processor architecture. As a programmable media processor, it offers the advantages of a completely configurable 3D pipeline--allowing developers to experiment with different algorithms and to tailor their pipeline to achieve the highest performance for a particular application. With the support of Equator's advanced C compiler and toolkit, MAP3D programs can be written in a high-level language. This allows the compiler to successfully find and exploit any parallelism in a programmer's code, thus decreasing the time to market of a given applications. The ability to run an operating system makes it possible to run concurrent applications in the MAP3D chip, such as video decoding while executing the 3D pipelines, so that integration of applications is easily achieved--using real-time decoded imagery for texturing 3D objects, for instance. This novel architecture enables an affordable, integrated solution for high performance 3D graphics.

  17. Design Application Translates 2-D Graphics to 3-D Surfaces

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Fabric Images Inc., specializing in the printing and manufacturing of fabric tension architecture for the retail, museum, and exhibit/tradeshow communities, designed software to translate 2-D graphics for 3-D surfaces prior to print production. Fabric Images' fabric-flattening design process models a 3-D surface based on computer-aided design (CAD) specifications. The surface geometry of the model is used to form a 2-D template, similar to a flattening process developed by NASA's Glenn Research Center. This template or pattern is then applied in the development of a 2-D graphic layout. Benefits of this process include 11.5 percent time savings per project, less material wasted, and the ability to improve upon graphic techniques and offer new design services. Partners include Exhibitgroup/Giltspur (end-user client: TAC Air, a division of Truman Arnold Companies Inc.), Jack Morton Worldwide (end-user client: Nickelodeon), as well as 3D Exhibits Inc., and MG Design Associates Corp.

  18. The effects of 3D interactive animated graphics on student learning and attitudes in computer-based instruction

    NASA Astrophysics Data System (ADS)

    Moon, Hye Sun

    Visuals are most extensively used as instructional tools in education to present spatially-based information. Recent computer technology allows the generation of 3D animated visuals to extend the presentation in computer-based instruction. Animated visuals in 3D representation not only possess motivational value that promotes positive attitudes toward instruction but also facilitate learning when the subject matter requires dynamic motion and 3D visual cue. In this study, three questions are explored: (1) how 3D graphics affects student learning and attitude, in comparison with 2D graphics; (2) how animated graphics affects student learning and attitude, in comparison with static graphics; and (3) whether the use of 3D graphics, when they are supported by interactive animation, is the most effective visual cues to improve learning and to develop positive attitudes. A total of 145 eighth-grade students participated in a 2 x 2 factorial design study. The subjects were randomly assigned to one of four computer-based instructions: 2D static; 2D animated; 3D static; and 3D animated. The results indicated that: (1) Students in the 3D graphic condition exhibited more positive attitudes toward instruction than those in the 2D graphic condition. No group differences were found between the posttest score of 3D graphic condition and that of 2D graphic condition. However, students in the 3D graphic condition took less time for information retrieval on posttest than those in the 2D graphic condition. (2) Students in the animated graphic condition exhibited slightly more positive attitudes toward instruction than those in the static graphic condition. No group differences were found between the posttest score of animated graphic condition and that of static graphic condition. However, students in the animated graphic condition took less time for information retrieval on posttest than those in the static graphic condition. (3) Students in the 3D animated graphic condition

  19. 3D Modeling Engine Representation Summary Report

    SciTech Connect

    Steven Prescott; Ramprasad Sampath; Curtis Smith; Timothy Yang

    2014-09-01

    Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This summary report addressed the methods, techniques, and resources used to develop a 3D modeling engine to represent risk analysis simulation for advanced small modular reactor structures and components. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

  20. Information Graphic Classification, Decomposition and Alternative Representation

    ERIC Educational Resources Information Center

    Gao, Jinglun

    2012-01-01

    This thesis work is mainly focused on two problems related to improving accessibility of information graphics for visually impaired users. The first problem is automated analysis of information graphics for information extraction and the second problem is multi-modal representations for accessibility. Information graphics are graphical…

  1. Virtual Representations in 3D Learning Environments

    ERIC Educational Resources Information Center

    Shonfeld, Miri; Kritz, Miki

    2013-01-01

    This research explores the extent to which virtual worlds can serve as online collaborative learning environments for students by increasing social presence and engagement. 3D environments enable learning, which simulates face-to-face encounters while retaining the advantages of online learning. Students in Education departments created avatars…

  2. Representation and classification of 3-D objects.

    PubMed

    Csakany, P; Wallace, A M

    2003-01-01

    This paper addresses the problem of generic object classification from three-dimensional depth or meshed data. First, surface patches are segmented on the basis of differential geometry and quadratic surface fitting. These are represented by a modified Gaussian image that includes the well-known shape index. Learning is an interactive process in which a human teacher indicates corresponding patches, but the formation of generic classes is unaided. Classification of unknown objects is based on the measurement of similarities between feature sets of the objects and the generic classes. The process is demonstrated on a group of three-dimensional (3-D) objects built from both CAD and laser-scanned depth data.

  3. Compact 2-D graphical representation of DNA

    NASA Astrophysics Data System (ADS)

    Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana

    2003-05-01

    We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.

  4. Education System Using Interactive 3D Computer Graphics (3D-CG) Animation and Scenario Language for Teaching Materials

    ERIC Educational Resources Information Center

    Matsuda, Hiroshi; Shindo, Yoshiaki

    2006-01-01

    The 3D computer graphics (3D-CG) animation using a virtual actor's speaking is very effective as an educational medium. But it takes a long time to produce a 3D-CG animation. To reduce the cost of producing 3D-CG educational contents and improve the capability of the education system, we have developed a new education system using Virtual Actor.…

  5. Detailed 3D representations for object recognition and modeling.

    PubMed

    Zia, M Zeeshan; Stark, Michael; Schiele, Bernt; Schindler, Konrad

    2013-11-01

    Geometric 3D reasoning at the level of objects has received renewed attention recently in the context of visual scene understanding. The level of geometric detail, however, is typically limited to qualitative representations or coarse boxes. This is linked to the fact that today's object class detectors are tuned toward robust 2D matching rather than accurate 3D geometry, encouraged by bounding-box-based benchmarks such as Pascal VOC. In this paper, we revisit ideas from the early days of computer vision, namely, detailed, 3D geometric object class representations for recognition. These representations can recover geometrically far more accurate object hypotheses than just bounding boxes, including continuous estimates of object pose and 3D wireframes with relative 3D positions of object parts. In combination with robust techniques for shape description and inference, we outperform state-of-the-art results in monocular 3D pose estimation. In a series of experiments, we analyze our approach in detail and demonstrate novel applications enabled by such an object class representation, such as fine-grained categorization of cars and bicycles, according to their 3D geometry, and ultrawide baseline matching.

  6. Process and representation in graphical displays

    NASA Technical Reports Server (NTRS)

    Gillan, Douglas J.; Lewis, Robert; Rudisill, Marianne

    1990-01-01

    How people comprehend graphics is examined. Graphical comprehension involves the cognitive representation of information from a graphic display and the processing strategies that people apply to answer questions about graphics. Research on representation has examined both the features present in a graphic display and the cognitive representation of the graphic. The key features include the physical components of a graph, the relation between the figure and its axes, and the information in the graph. Tests of people's memory for graphs indicate that both the physical and informational aspect of a graph are important in the cognitive representation of a graph. However, the physical (or perceptual) features overshadow the information to a large degree. Processing strategies also involve a perception-information distinction. In order to answer simple questions (e.g., determining the value of a variable, comparing several variables, and determining the mean of a set of variables), people switch between two information processing strategies: (1) an arithmetic, look-up strategy in which they use a graph much like a table, looking up values and performing arithmetic calculations; and (2) a perceptual strategy in which they use the spatial characteristics of the graph to make comparisons and estimations. The user's choice of strategies depends on the task and the characteristics of the graph. A theory of graphic comprehension is presented.

  7. Formal representation of 3D structural geological models

    NASA Astrophysics Data System (ADS)

    Wang, Zhangang; Qu, Honggang; Wu, Zixing; Yang, Hongjun; Du, Qunle

    2016-05-01

    The development and widespread application of geological modeling methods has increased demands for the integration and sharing services of three dimensional (3D) geological data. However, theoretical research in the field of geological information sciences is limited despite the widespread use of Geographic Information Systems (GIS) in geology. In particular, fundamental research on the formal representations and standardized spatial descriptions of 3D structural models is required. This is necessary for accurate understanding and further applications of geological data in 3D space. In this paper, we propose a formal representation method for 3D structural models using the theory of point set topology, which produces a mathematical definition for the major types of geological objects. The spatial relationships between geologic boundaries, structures, and units are explained in detail using the 9-intersection model. Reasonable conditions for describing the topological space of 3D structural models are also provided. The results from this study can be used as potential support for the standardized representation and spatial quality evaluation of 3D structural models, as well as for specific needs related to model-based management, query, and analysis.

  8. 3D ear identification based on sparse representation.

    PubMed

    Zhang, Lin; Ding, Zhixuan; Li, Hongyu; Shen, Ying

    2014-01-01

    Biometrics based personal authentication is an effective way for automatically recognizing, with a high confidence, a person's identity. Recently, 3D ear shape has attracted tremendous interests in research field due to its richness of feature and ease of acquisition. However, the existing ICP (Iterative Closet Point)-based 3D ear matching methods prevalent in the literature are not quite efficient to cope with the one-to-many identification case. In this paper, we aim to fill this gap by proposing a novel effective fully automatic 3D ear identification system. We at first propose an accurate and efficient template-based ear detection method. By utilizing such a method, the extracted ear regions are represented in a common canonical coordinate system determined by the ear contour template, which facilitates much the following stages of feature extraction and classification. For each extracted 3D ear, a feature vector is generated as its representation by making use of a PCA-based local feature descriptor. At the stage of classification, we resort to the sparse representation based classification approach, which actually solves an l1-minimization problem. To the best of our knowledge, this is the first work introducing the sparse representation framework into the field of 3D ear identification. Extensive experiments conducted on a benchmark dataset corroborate the effectiveness and efficiency of the proposed approach. The associated Matlab source code and the evaluation results have been made publicly online available at http://sse.tongji.edu.cn/linzhang/ear/srcear/srcear.htm.

  9. Probabilistic graphical model representation in phylogenetics.

    PubMed

    Höhna, Sebastian; Heath, Tracy A; Boussau, Bastien; Landis, Michael J; Ronquist, Fredrik; Huelsenbeck, John P

    2014-09-01

    Recent years have seen a rapid expansion of the model space explored in statistical phylogenetics, emphasizing the need for new approaches to statistical model representation and software development. Clear communication and representation of the chosen model is crucial for: (i) reproducibility of an analysis, (ii) model development, and (iii) software design. Moreover, a unified, clear and understandable framework for model representation lowers the barrier for beginners and nonspecialists to grasp complex phylogenetic models, including their assumptions and parameter/variable dependencies. Graphical modeling is a unifying framework that has gained in popularity in the statistical literature in recent years. The core idea is to break complex models into conditionally independent distributions. The strength lies in the comprehensibility, flexibility, and adaptability of this formalism, and the large body of computational work based on it. Graphical models are well-suited to teach statistical models, to facilitate communication among phylogeneticists and in the development of generic software for simulation and statistical inference. Here, we provide an introduction to graphical models for phylogeneticists and extend the standard graphical model representation to the realm of phylogenetics. We introduce a new graphical model component, tree plates, to capture the changing structure of the subgraph corresponding to a phylogenetic tree. We describe a range of phylogenetic models using the graphical model framework and introduce modules to simplify the representation of standard components in large and complex models. Phylogenetic model graphs can be readily used in simulation, maximum likelihood inference, and Bayesian inference using, for example, Metropolis-Hastings or Gibbs sampling of the posterior distribution.

  10. Graphic Representations as Tools for Decision Making.

    ERIC Educational Resources Information Center

    Howard, Judith

    2001-01-01

    Focuses on the use of graphic representations to enable students to improve their decision making skills in the social studies. Explores three visual aids used in assisting students with decision making: (1) the force field; (2) the decision tree; and (3) the decision making grid. (CMK)

  11. Process and representation in graphical displays

    NASA Technical Reports Server (NTRS)

    Gillan, Douglas J.; Lewis, Robert; Rudisill, Marianne

    1993-01-01

    Our initial model of graphic comprehension has focused on statistical graphs. Like other models of human-computer interaction, models of graphical comprehension can be used by human-computer interface designers and developers to create interfaces that present information in an efficient and usable manner. Our investigation of graph comprehension addresses two primary questions: how do people represent the information contained in a data graph?; and how do they process information from the graph? The topics of focus for graphic representation concern the features into which people decompose a graph and the representations of the graph in memory. The issue of processing can be further analyzed as two questions: what overall processing strategies do people use?; and what are the specific processing skills required?

  12. Geoinformation techniques for the 3D visualisation of historic buildings and representation of a building's pathology

    NASA Astrophysics Data System (ADS)

    Tsilimantou, Elisavet; Delegou, Ekaterini; Ioannidis, Charalabos; Moropoulou, Antonia

    2016-08-01

    In this paper, the documentation of an historic building registered as Cultural Heritage asset is presented. The aim of the survey is to create a 3D geometric representation of a historic building and in accordance with multidisciplinary study extract useful information regarding the extent of degradation, constructions' durability etc. For the implementation of the survey, a combination of different types of acquisition technologies is used. The project focuses on the study of Villa Klonaridi, in Athens, Greece. For the complete documentation of the building, conventional topography, photogrammetric and laser scanning techniques is combined. Close range photogrammetric techniques are used for the acquisition of the façades and architectural details. One of the main objectives is the development of an accurate 3D model, where the photorealistic representation of the building is achieved, along with the decay pathology, historical phases and architectural components. In order to achieve a suitable graphical representation for the study of the material and decay patterns beyond the 2D representation, 3D modelling and additional information modelling is performed for comparative analysis. The study provides various conclusions regarding the scale of deterioration obtained by the 2D and 3D analysis respectively. Considering the variation in material and decay patterns, comparative results are obtained regarding the degradation of the building. Overall, the paper describes a process performed on a Historic Building, where the 3D digital acquisition of the monuments' structure is realized with the combination of close range surveying and laser scanning methods.

  13. The three-dimensional Event-Driven Graphics Environment (3D-EDGE)

    NASA Technical Reports Server (NTRS)

    Freedman, Jeffrey; Hahn, Roger; Schwartz, David M.

    1993-01-01

    Stanford Telecom developed the Three-Dimensional Event-Driven Graphics Environment (3D-EDGE) for NASA GSFC's (GSFC) Communications Link Analysis and Simulation System (CLASS). 3D-EDGE consists of a library of object-oriented subroutines which allow engineers with little or no computer graphics experience to programmatically manipulate, render, animate, and access complex three-dimensional objects.

  14. Whole versus Part Presentations of the Interactive 3D Graphics Learning Objects

    ERIC Educational Resources Information Center

    Azmy, Nabil Gad; Ismaeel, Dina Ahmed

    2010-01-01

    The purpose of this study is to present an analysis of how the structure and design of the Interactive 3D Graphics Learning Objects can be effective and efficient in terms of Performance, Time on task, and Learning Efficiency. The study explored two treatments, namely whole versus Part Presentations of the Interactive 3D Graphics Learning Objects,…

  15. 3D Ear Identification Based on Sparse Representation

    PubMed Central

    Zhang, Lin; Ding, Zhixuan; Li, Hongyu; Shen, Ying

    2014-01-01

    Biometrics based personal authentication is an effective way for automatically recognizing, with a high confidence, a person’s identity. Recently, 3D ear shape has attracted tremendous interests in research field due to its richness of feature and ease of acquisition. However, the existing ICP (Iterative Closet Point)-based 3D ear matching methods prevalent in the literature are not quite efficient to cope with the one-to-many identification case. In this paper, we aim to fill this gap by proposing a novel effective fully automatic 3D ear identification system. We at first propose an accurate and efficient template-based ear detection method. By utilizing such a method, the extracted ear regions are represented in a common canonical coordinate system determined by the ear contour template, which facilitates much the following stages of feature extraction and classification. For each extracted 3D ear, a feature vector is generated as its representation by making use of a PCA-based local feature descriptor. At the stage of classification, we resort to the sparse representation based classification approach, which actually solves an l1-minimization problem. To the best of our knowledge, this is the first work introducing the sparse representation framework into the field of 3D ear identification. Extensive experiments conducted on a benchmark dataset corroborate the effectiveness and efficiency of the proposed approach. The associated Matlab source code and the evaluation results have been made publicly online available at http://sse.tongji.edu.cn/linzhang/ear/srcear/srcear.htm. PMID:24740247

  16. Extensible 3D (X3D) Graphics Clouds for Geographic Information Systems

    DTIC Science & Technology

    2008-03-01

    browser such as Microsoft Internet Explorer or Netscape using an X3D or VRML supporting plug-in. The benefits of diverse support can cause...typing model output with a particular method of 3D cloud production. Data-driven adaptation and production of cloud models for web -based delivery...and production of cloud models for web -based delivery is an achievable capability given continued research and development. vi THIS PAGE

  17. Standard Features and Their Impact on 3D Engineering Graphics

    ERIC Educational Resources Information Center

    Waldenmeyer, K. M.; Hartman, N. W.

    2009-01-01

    The prevalence of feature-based 3D modeling in industry has necessitated the accumulation and maintenance of standard feature libraries. Currently, firms who use standard features to design parts are storing and utilizing these libraries through their existing product data management (PDM) systems. Standard features have enabled companies to…

  18. Implementation Of True 3D Cursors In Computer Graphics

    NASA Astrophysics Data System (ADS)

    Butts, David R.; McAllister, David F.

    1988-06-01

    The advances in stereoscopic image display techniques have shown an increased need for real-time interaction with the three-dimensional image. We have developed a prototype real-time stereoscopic cursor to investigate this interaction. The results have pointed out areas where hardware speeds are a limiting factor, as well as areas where various methodologies cause perceptual difficulties. This paper addresses the psychological and perceptual anomalies involved in stereo image techniques, cursor generation and motion, and the use of the device as a 3D drawing and depth measuring tool.

  19. Creating Realistic 3D Graphics with Excel at High School--Vector Algebra in Practice

    ERIC Educational Resources Information Center

    Benacka, Jan

    2015-01-01

    The article presents the results of an experiment in which Excel applications that depict rotatable and sizable orthographic projection of simple 3D figures with face overlapping were developed with thirty gymnasium (high school) students of age 17-19 as an introduction to 3D computer graphics. A questionnaire survey was conducted to find out…

  20. Internet-based hardware/software co-design framework for embedded 3D graphics applications

    NASA Astrophysics Data System (ADS)

    Yeh, Chi-Tsai; Wang, Chun-Hao; Huang, Ing-Jer; Wong, Weng-Fai

    2011-12-01

    Advances in technology are making it possible to run three-dimensional (3D) graphics applications on embedded and handheld devices. In this article, we propose a hardware/software co-design environment for 3D graphics application development that includes the 3D graphics software, OpenGL ES application programming interface (API), device driver, and 3D graphics hardware simulators. We developed a 3D graphics system-on-a-chip (SoC) accelerator using transaction-level modeling (TLM). This gives software designers early access to the hardware even before it is ready. On the other hand, hardware designers also stand to gain from the more complex test benches made available in the software for verification. A unique aspect of our framework is that it allows hardware and software designers from geographically dispersed areas to cooperate and work on the same framework. Designs can be entered and executed from anywhere in the world without full access to the entire framework, which may include proprietary components. This results in controlled and secure transparency and reproducibility, granting leveled access to users of various roles.

  1. Graphical representation of robot grasping quality measures

    SciTech Connect

    Varma, V.K.; Tasch, U.

    1995-03-01

    There are multiple solutions to the values of the finger forces of an object held by a multi-fingered hand. An objective function, is used in conjunction with the frictional and geometric constraints of the grasp to give a unique set of finger force values. The selection o the objective function in determining the finger forces is dependent on the type of grasp required, the material properties of the object, and the limitations of the robot fingers. In this paper several optimization functions are studied and their merits highlighted. A graphical representation of the finger force values and the objective function is introduced that enable one in selecting and comparing various grasping configurations. The impending motion of the object at different torque and finger force values are determined by observing the Normalized coefficient of friction plots.

  2. Graphical representation of robot grasping quality measures

    SciTech Connect

    Varma, V.; Tasch, U.

    1993-11-01

    When an object is held by a multi-fingered hand, the values of the contact forces can be multivalued. An objective function, when used in conjunction with the frictional and geometric constraints of the grasp, can however, give a unique set of finger force values. The selection of the objective function in determining the finger forces is dependent on the type of grasp required, the material properties of the object, and the limitations of the robot fingers. In this paper several optimization functions are studied and their merits highlighted. A graphical representation of the finger force values and the objective function is introduced that enable one in selecting and comparing various grasping configurations. The impending motion of the object at different torque and finger force values are determined by observing the normalized coefficient of friction plots.

  3. Using 3D Computer Graphics Multimedia to Motivate Preservice Teachers' Learning of Geometry and Pedagogy

    ERIC Educational Resources Information Center

    Goodson-Espy, Tracy; Lynch-Davis, Kathleen; Schram, Pamela; Quickenton, Art

    2010-01-01

    This paper describes the genesis and purpose of our geometry methods course, focusing on a geometry-teaching technology we created using NVIDIA[R] Chameleon demonstration. This article presents examples from a sequence of lessons centered about a 3D computer graphics demonstration of the chameleon and its geometry. In addition, we present data…

  4. Application of 2-D graphical representation of DNA sequence

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Tan, Mingshu; Ding, Kequan

    2005-10-01

    Recently, we proposed a 2-D graphical representation of DNA sequence [Bo Liao, A 2-D graphical representation of DNA sequence, Chem. Phys. Lett. 401 (2005) 196-199]. Based on this representation, we consider properties of mutations and compute the similarities among 11 mitochondrial sequences belonging to different species. The elements of the similarity matrix are used to construct phylogenic tree. Unlike most existing phylogeny construction methods, the proposed method does not require multiple alignment.

  5. Tensor3D: A computer graphics program to simulate 3D real-time deformation and visualization of geometric bodies

    NASA Astrophysics Data System (ADS)

    Pallozzi Lavorante, Luca; Dirk Ebert, Hans

    2008-07-01

    Tensor3D is a geometric modeling program with the capacity to simulate and visualize in real-time the deformation, specified through a tensor matrix and applied to triangulated models representing geological bodies. 3D visualization allows the study of deformational processes that are traditionally conducted in 2D, such as simple and pure shears. Besides geometric objects that are immediately available in the program window, the program can read other models from disk, thus being able to import objects created with different open-source or proprietary programs. A strain ellipsoid and a bounding box are simultaneously shown and instantly deformed with the main object. The principal axes of strain are visualized as well to provide graphical information about the orientation of the tensor's normal components. The deformed models can also be saved, retrieved later and deformed again, in order to study different steps of progressive strain, or to make this data available to other programs. The shape of stress ellipsoids and the corresponding Mohr circles defined by any stress tensor can also be represented. The application was written using the Visualization ToolKit, a powerful scientific visualization library in the public domain. This development choice, allied to the use of the Tcl/Tk programming language, which is independent on the host computational platform, makes the program a useful tool for the study of geometric deformations directly in three dimensions in teaching as well as research activities.

  6. The Fermion Representation of Quantum Toroidal Algebra on 3D Young Diagrams

    NASA Astrophysics Data System (ADS)

    Cai, Li-Qiang; Wang, Li-Fang; Wu, Ke; Yang, Jie

    2014-07-01

    We develop an equivalence between the diagonal slices and the perpendicular slices of 3D Young diagrams via Maya diagrams. Furthermore, we construct the fermion representation of quantum toroidal algebra on the 3D Young diagrams perpendicularly sliced.

  7. The design and implementation of stereoscopic 3D scalable vector graphics based on WebKit

    NASA Astrophysics Data System (ADS)

    Liu, Zhongxin; Wang, Wenmin; Wang, Ronggang

    2014-03-01

    Scalable Vector Graphics (SVG), which is a language designed based on eXtensible Markup Language (XML), is used to describe basic shapes embedded in webpages, such as circles and rectangles. However, it can only depict 2D shapes. As a consequence, web pages using classical SVG can only display 2D shapes on a screen. With the increasing development of stereoscopic 3D (S3D) technology, binocular 3D devices have been widely used. Under this circumstance, we intend to extend the widely used web rendering engine WebKit to support the description and display of S3D webpages. Therefore, the extension of SVG is of necessity. In this paper, we will describe how to design and implement SVG shapes with stereoscopic 3D mode. Two attributes representing the depth and thickness are added to support S3D shapes. The elimination of hidden lines and hidden surfaces, which is an important process in this project, is described as well. The modification of WebKit is also discussed, which is made to support the generation of both left view and right view at the same time. As is shown in the result, in contrast to the 2D shapes generated by the Google Chrome web browser, the shapes got from our modified browser are in S3D mode. With the feeling of depth and thickness, the shapes seem to be real 3D objects away from the screen, rather than simple curves and lines as before.

  8. Graphic Journeys: Graphic Novels' Representations of Immigrant Experiences

    ERIC Educational Resources Information Center

    Boatright, Michael D.

    2010-01-01

    This article explores how immigrant experiences are represented in the narratives of three graphic novels published in the last decade: Tan's (2007) "The Arrival," Kiyama's (1931/1999) "The Four Immigrants Manga: A Japanese Experience in San Francisco, 1904-1924," and Yang's (2006) "American Born Chinese." Through a theoretical lens informed by…

  9. Consistent representations of and conversions between 3D rotations

    NASA Astrophysics Data System (ADS)

    Rowenhorst, D.; Rollett, A. D.; Rohrer, G. S.; Groeber, M.; Jackson, M.; Konijnenberg, P. J.; De Graef, M.

    2015-12-01

    In materials science the orientation of a crystal lattice is described by means of a rotation relative to an external reference frame. A number of rotation representations are in use, including Euler angles, rotation matrices, unit quaternions, Rodrigues-Frank vectors and homochoric vectors. Each representation has distinct advantages and disadvantages with respect to the ease of use for calculations and data visualization. It is therefore convenient to be able to easily convert from one representation to another. However, historically, each representation has been implemented using a set of often tacit conventions; separate research groups would implement different sets of conventions, thereby making the comparison of methods and results difficult and confusing. This tutorial article aims to resolve these ambiguities and provide a consistent set of conventions and conversions between common rotational representations, complete with worked examples and a discussion of the trade-offs necessary to resolve all ambiguities. Additionally, an open source Fortran-90 library of conversion routines for the different representations is made available to the community.

  10. A Microscopic Optically Tracking Navigation System That Uses High-resolution 3D Computer Graphics.

    PubMed

    Yoshino, Masanori; Saito, Toki; Kin, Taichi; Nakagawa, Daichi; Nakatomi, Hirofumi; Oyama, Hiroshi; Saito, Nobuhito

    2015-01-01

    Three-dimensional (3D) computer graphics (CG) are useful for preoperative planning of neurosurgical operations. However, application of 3D CG to intraoperative navigation is not widespread because existing commercial operative navigation systems do not show 3D CG in sufficient detail. We have developed a microscopic optically tracking navigation system that uses high-resolution 3D CG. This article presents the technical details of our microscopic optically tracking navigation system. Our navigation system consists of three components: the operative microscope, registration, and the image display system. An optical tracker was attached to the microscope to monitor the position and attitude of the microscope in real time; point-pair registration was used to register the operation room coordinate system, and the image coordinate system; and the image display system showed the 3D CG image in the field-of-view of the microscope. Ten neurosurgeons (seven males, two females; mean age 32.9 years) participated in an experiment to assess the accuracy of this system using a phantom model. Accuracy of our system was compared with the commercial system. The 3D CG provided by the navigation system coincided well with the operative scene under the microscope. Target registration error for our system was 2.9 ± 1.9 mm. Our navigation system provides a clear image of the operation position and the surrounding structures. Systems like this may reduce intraoperative complications.

  11. Methodologies for digital 3D acquisition and representation of mosaics

    NASA Astrophysics Data System (ADS)

    Manferdini, Anna Maria; Cipriani, Luca; Kniffitz, Linda

    2011-07-01

    Despite the recent improvements and widespread of digital technologies and their applications in the field of Cultural Heritage, nowadays Museums and Institutions still aren't encouraged to adopt digital procedures as a standard practice to collect data upon the heritage they are called to preserve and promote. One of the main reasons for this lack can be singled out in the high costs connected with these procedures and with their increasing due to difficulties connected with digital survey of artifacts and artworks which present evident intrinsic complexities and peculiarities that cannot be reconnected to recurrences. The aim of this paper is to show the results of a research conducted in order to find the most suitable digital methodology and procedure to be adopted to collect geometric and radiometric data upon mosaics that can straightforward both the preservation of the consistency of information about its geometry and the management of huge amount of data. One of the most immediate application of digital 3d survey of mosaics is the substitution of plaster casts that are usually built to add the third dimension to pictorial or photographic surveys before restoration interventions in order to document their conservation conditions and ease reconstruction procedures. Moreover, digital 3d surveys of mosaics allow to reproduce restoration interventions in digital environment able to perform reliable preliminary evaluations; in addition, 3d reality-based models of mosaics can be used within digital catalogues or for digital exhibitions and reconstruction aims.

  12. Multiscale 3-D shape representation and segmentation using spherical wavelets.

    PubMed

    Nain, Delphine; Haker, Steven; Bobick, Aaron; Tannenbaum, Allen

    2007-04-01

    This paper presents a novel multiscale shape representation and segmentation algorithm based on the spherical wavelet transform. This work is motivated by the need to compactly and accurately encode variations at multiple scales in the shape representation in order to drive the segmentation and shape analysis of deep brain structures, such as the caudate nucleus or the hippocampus. Our proposed shape representation can be optimized to compactly encode shape variations in a population at the needed scale and spatial locations, enabling the construction of more descriptive, nonglobal, nonuniform shape probability priors to be included in the segmentation and shape analysis framework. In particular, this representation addresses the shortcomings of techniques that learn a global shape prior at a single scale of analysis and cannot represent fine, local variations in a population of shapes in the presence of a limited dataset. Specifically, our technique defines a multiscale parametric model of surfaces belonging to the same population using a compact set of spherical wavelets targeted to that population. We further refine the shape representation by separating into groups wavelet coefficients that describe independent global and/or local biological variations in the population, using spectral graph partitioning. We then learn a prior probability distribution induced over each group to explicitly encode these variations at different scales and spatial locations. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior for segmentation. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to two different brain structures, the caudate nucleus and the hippocampus, of interest in the study of schizophrenia. We show: 1) a reconstruction task of a test set to validate the expressiveness of

  13. Software For Graphical Representation Of A Network

    NASA Technical Reports Server (NTRS)

    Mcallister, R. William; Mclellan, James P.

    1993-01-01

    System Visualization Tool (SVT) computer program developed to provide systems engineers with means of graphically representing networks. Generates diagrams illustrating structures and states of networks defined by users. Provides systems engineers powerful tool simplifing analysis of requirements and testing and maintenance of complex software-controlled systems. Employs visual models supporting analysis of chronological sequences of requirements, simulation data, and related software functions. Applied to pneumatic, hydraulic, and propellant-distribution networks. Used to define and view arbitrary configurations of such major hardware components of system as propellant tanks, valves, propellant lines, and engines. Also graphically displays status of each component. Advantage of SVT: utilizes visual cues to represent configuration of each component within network. Written in Turbo Pascal(R), version 5.0.

  14. Medical workstation design: enhancing graphical interface with 3D anatomical atlas

    NASA Astrophysics Data System (ADS)

    Hoo, Kent S., Jr.; Wong, Stephen T. C.; Grant, Ellen

    1997-05-01

    The huge data archive of the UCSF Hospital Integrated Picture Archiving and Communication System gives healthcare providers access to diverse kinds of images and text for diagnosis and patient management. Given the mass of information accessible, however, conventional graphical user interface (GUI) approach overwhelms the user with forms, menus, fields, lists, and other widgets and causes 'information overloading.' This article describes a new approach that complements the conventional GUI with 3D anatomical atlases and presents the usefulness of this approach with a clinical neuroimaging application.

  15. Development and New Directions for the RELAP5-3D Graphical Users Interface

    SciTech Connect

    Mesina, George Lee

    2001-09-01

    The direction of development for the RELAP5 Graphical User Interfaces (RGUI) has been extended. In addition to existing plans for displaying all aspects of RELAP5 calculations, the plan now includes plans to display the calculations of a variety of codes including SCDAP, RETRAN and FLUENT. Recent work has included such extensions along with the previously planned and user-requested improvements and extensions. Visualization of heat-structures has been added. Adaptations were made for another computer program, SCDAP-3D, including plant core views. An input model builder for generating RELAP5-3D input files was partially implemented. All these are reported. Plans for future work are also summarized. These include an input processor that transfers steady-state conditions into an input file.

  16. 3D animation of facial plastic surgery based on computer graphics

    NASA Astrophysics Data System (ADS)

    Zhang, Zonghua; Zhao, Yan

    2013-12-01

    More and more people, especial women, are getting desired to be more beautiful than ever. To some extent, it becomes true because the plastic surgery of face was capable in the early 20th and even earlier as doctors just dealing with war injures of face. However, the effect of post-operation is not always satisfying since no animation could be seen by the patients beforehand. In this paper, by combining plastic surgery of face and computer graphics, a novel method of simulated appearance of post-operation will be given to demonstrate the modified face from different viewpoints. The 3D human face data are obtained by using 3D fringe pattern imaging systems and CT imaging systems and then converted into STL (STereo Lithography) file format. STL file is made up of small 3D triangular primitives. The triangular mesh can be reconstructed by using hash function. Top triangular meshes in depth out of numbers of triangles must be picked up by ray-casting technique. Mesh deformation is based on the front triangular mesh in the process of simulation, which deforms interest area instead of control points. Experiments on face model show that the proposed 3D animation facial plastic surgery can effectively demonstrate the simulated appearance of post-operation.

  17. Interactive 3-D graphics workstations in stereotaxy: clinical requirements, algorithms, and solutions

    NASA Astrophysics Data System (ADS)

    Ehricke, Hans-Heino; Daiber, Gerhard; Sonntag, Ralf; Strasser, Wolfgang; Lochner, Mathias; Rudi, Lothar S.; Lorenz, Walter J.

    1992-09-01

    In stereotactic treatment planning the spatial relationships between a variety of objects has to be taken into account in order to avoid destruction of vital brain structures and rupture of vasculature. The visualization of these highly complex relations may be supported by 3-D computer graphics methods. In this context the three-dimensional display of the intracranial vascular tree and additional objects, such as neuroanatomy, pathology, stereotactic devices, or isodose surfaces, is of high clinical value. We report an advanced rendering method for a depth-enhanced maximum intensity projection from magnetic resonance angiography (MRA) and a walk-through approach to the analysis of MRA volume data. Furthermore, various methods for a multiple-object 3-D rendering in stereotaxy are discussed. The development of advanced applications in medical imaging can hardly be successful if image acquisition problems are disregarded. We put particular emphasis on the use of conventional MRI and MRA for stereotactic guidance. The problem of MR distortion is discussed and a novel three- dimensional approach to the quantification and correction of the distortion patterns is presented. Our results suggest that the sole use of MR for stereotactic guidance is highly practical. The true three-dimensionality of the acquired datasets opens up new perspectives to stereotactic treatment planning. For the first time it is possible now to integrate all the necessary information into 3-D scenes, thus enabling an interactive 3-D planning.

  18. Eye Tracking to Explore the Impacts of Photorealistic 3d Representations in Pedstrian Navigation Performance

    NASA Astrophysics Data System (ADS)

    Dong, Weihua; Liao, Hua

    2016-06-01

    Despite the now-ubiquitous two-dimensional (2D) maps, photorealistic three-dimensional (3D) representations of cities (e.g., Google Earth) have gained much attention by scientists and public users as another option. However, there is no consistent evidence on the influences of 3D photorealism on pedestrian navigation. Whether 3D photorealism can communicate cartographic information for navigation with higher effectiveness and efficiency and lower cognitive workload compared to the traditional symbolic 2D maps remains unknown. This study aims to explore whether the photorealistic 3D representation can facilitate processes of map reading and navigation in digital environments using a lab-based eye tracking approach. Here we show the differences of symbolic 2D maps versus photorealistic 3D representations depending on users' eye-movement and navigation behaviour data. We found that the participants using the 3D representation were less effective, less efficient and were required higher cognitive workload than using the 2D map for map reading. However, participants using the 3D representation performed more efficiently in self-localization and orientation at the complex decision points. The empirical results can be helpful to improve the usability of pedestrian navigation maps in future designs.

  19. Assessment of 3D Viewers for the Display of Interactive Documents in the Learning of Graphic Engineering

    ERIC Educational Resources Information Center

    Barbero, Basilio Ramos; Pedrosa, Carlos Melgosa; Mate, Esteban Garcia

    2012-01-01

    The purpose of this study is to determine which 3D viewers should be used for the display of interactive graphic engineering documents, so that the visualization and manipulation of 3D models provide useful support to students of industrial engineering (mechanical, organizational, electronic engineering, etc). The technical features of 26 3D…

  20. Introduction to the special section on 3D representation, compression, and rendering.

    PubMed

    Vetro, Anthony; Frossard, Pascal; Lee, Sanghoon; Mueller, Karsten; Ohm, Jens-Rainer; Sullivan, Gary

    2013-09-01

    A new set of three-dimensional (3D) data formats and associated compression technologies are emerging with the aim to achieve more flexible representation and higher compression of 3D and multiview video content. These new tools will facilitate the generation of multiview output (e.g., as needed for multiview auto-stereoscopic displays), provide richer immersive multimedia experiences, and allow new interactive applications. This special section includes a timely set of papers covering the most recent technical developments in this area with papers covering topics in the different aspects of 3D systems, from representation and compression algorithms to rendering techniques and quality assessment. This special section includes a good balance on topics that are of interest to academic, industrial, and standardization communities. We believe that this collection of papers represent the most recent advances in representation, compression, rendering, and quality assessment of 3D scenes.

  1. Real time 3D structural and Doppler OCT imaging on graphics processing units

    NASA Astrophysics Data System (ADS)

    Sylwestrzak, Marcin; Szlag, Daniel; Szkulmowski, Maciej; Gorczyńska, Iwona; Bukowska, Danuta; Wojtkowski, Maciej; Targowski, Piotr

    2013-03-01

    In this report the application of graphics processing unit (GPU) programming for real-time 3D Fourier domain Optical Coherence Tomography (FdOCT) imaging with implementation of Doppler algorithms for visualization of the flows in capillary vessels is presented. Generally, the time of the data processing of the FdOCT data on the main processor of the computer (CPU) constitute a main limitation for real-time imaging. Employing additional algorithms, such as Doppler OCT analysis, makes this processing even more time consuming. Lately developed GPUs, which offers a very high computational power, give a solution to this problem. Taking advantages of them for massively parallel data processing, allow for real-time imaging in FdOCT. The presented software for structural and Doppler OCT allow for the whole processing with visualization of 2D data consisting of 2000 A-scans generated from 2048 pixels spectra with frame rate about 120 fps. The 3D imaging in the same mode of the volume data build of 220 × 100 A-scans is performed at a rate of about 8 frames per second. In this paper a software architecture, organization of the threads and optimization applied is shown. For illustration the screen shots recorded during real time imaging of the phantom (homogeneous water solution of Intralipid in glass capillary) and the human eye in-vivo is presented.

  2. The Graphical Representation of Algorithmic Processes. Volume 1

    DTIC Science & Technology

    1989-12-01

    systems and their classifications. Static Dynamic PegaSys [18] BALSA [6] Booch Diagrams [4] PV [5] Process Data Flow Diagrams Structure Charts...techniques that attempt to show data or control flow in a static graphical representation of an algorithm. The PegaSys system strad- dles the fields of...Through PegaSys ," Computer, 18(8):72-85 (August 1985). 19. Myers, Brad A. "Incense: A system For Displaying Data Structures," Computer Graphics, 17(3):115

  3. Compressed sensing reconstruction for whole-heart imaging with 3D radial trajectories: a graphics processing unit implementation.

    PubMed

    Nam, Seunghoon; Akçakaya, Mehmet; Basha, Tamer; Stehning, Christian; Manning, Warren J; Tarokh, Vahid; Nezafat, Reza

    2013-01-01

    A disadvantage of three-dimensional (3D) isotropic acquisition in whole-heart coronary MRI is the prolonged data acquisition time. Isotropic 3D radial trajectories allow undersampling of k-space data in all three spatial dimensions, enabling accelerated acquisition of the volumetric data. Compressed sensing (CS) reconstruction can provide further acceleration in the acquisition by removing the incoherent artifacts due to undersampling and improving the image quality. However, the heavy computational overhead of the CS reconstruction has been a limiting factor for its application. In this article, a parallelized implementation of an iterative CS reconstruction method for 3D radial acquisitions using a commercial graphics processing unit is presented. The execution time of the graphics processing unit-implemented CS reconstruction was compared with that of the C++ implementation, and the efficacy of the undersampled 3D radial acquisition with CS reconstruction was investigated in both phantom and whole-heart coronary data sets. Subsequently, the efficacy of CS in suppressing streaking artifacts in 3D whole-heart coronary MRI with 3D radial imaging and its convergence properties were studied. The CS reconstruction provides improved image quality (in terms of vessel sharpness and suppression of noise-like artifacts) compared with the conventional 3D gridding algorithm, and the graphics processing unit implementation greatly reduces the execution time of CS reconstruction yielding 34-54 times speed-up compared with C++ implementation.

  4. A graphical representation model for telemedicine and telehealth center sustainability.

    PubMed

    Gundim, Rosângela Simões; Chao, Wen Lung

    2011-04-01

    This study shows the creation of a graphical representation after the application of a questionnaire to evaluate the indicative factors of a sustainable telemedicine and telehealth center in São Paulo, Brazil. We categorized the factors into seven domain areas: institutional, functional, economic-financial, renewal, academic-scientific, partnerships, and social welfare, which were plotted into a graphical representation. The developed graph was shown to be useful when used in the same institution over a long period and complemented with secondary information from publications, archives, and administrative documents to support the numerical indicators. Its use may contribute toward monitoring the factors that define telemedicine and telehealth center sustainability. When systematically applied, it may also be useful for identifying the specific characteristics of the telemedicine and telehealth center, to support its organizational development.

  5. A graphical user interface for calculation of 3D dose distribution using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Chow, J. C. L.; Leung, M. K. K.

    2008-02-01

    A software graphical user interface (GUI) for calculation of 3D dose distribution using Monte Carlo (MC) simulation is developed using MATLAB. This GUI (DOSCTP) provides a user-friendly platform for DICOM CT-based dose calculation using EGSnrcMP-based DOSXYZnrc code. It offers numerous features not found in DOSXYZnrc, such as the ability to use multiple beams from different phase-space files, and has built-in dose analysis and visualization tools. DOSCTP is written completely in MATLAB, with integrated access to DOSXYZnrc and CTCREATE. The program function may be divided into four subgroups, namely, beam placement, MC simulation with DOSXYZnrc, dose visualization, and export. Each is controlled by separate routines. The verification of DOSCTP was carried out by comparing plans with different beam arrangements (multi-beam/photon arc) on an inhomogeneous phantom as well as patient CT between the GUI and Pinnacle3. DOSCTP was developed and verified with the following features: (1) a built-in voxel editor to modify CT-based DOSXYZnrc phantoms for research purposes; (2) multi-beam placement is possible, which cannot be achieved using the current DOSXYZnrc code; (3) the treatment plan, including the dose distributions, contours and image set can be exported to a commercial treatment planning system such as Pinnacle3 or to CERR using RTOG format for plan evaluation and comparison; (4) a built-in RTOG-compatible dose reviewer for dose visualization and analysis such as finding the volume of hot/cold spots in the 3D dose distributions based on a user threshold. DOSCTP greatly simplifies the use of DOSXYZnrc and CTCREATE, and offers numerous features that not found in the original user-code. Moreover, since phase-space beams can be defined and generated by the user, it is a particularly useful tool to carry out plans using specifically designed irradiators/accelerators that cannot be found in the Linac library of commercial treatment planning systems.

  6. Phylogenetic tree construction based on 2D graphical representation

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Shan, Xinzhou; Zhu, Wen; Li, Renfa

    2006-04-01

    A new approach based on the two-dimensional (2D) graphical representation of the whole genome sequence [Bo Liao, Chem. Phys. Lett., 401(2005) 196.] is proposed to analyze the phylogenetic relationships of genomes. The evolutionary distances are obtained through measuring the differences among the 2D curves. The fuzzy theory is used to construct phylogenetic tree. The phylogenetic relationships of H5N1 avian influenza virus illustrate the utility of our approach.

  7. The Graphical Representation of the Digital Astronaut Physiology Backbone

    NASA Technical Reports Server (NTRS)

    Briers, Demarcus

    2010-01-01

    This report summarizes my internship project with the NASA Digital Astronaut Project to analyze the Digital Astronaut (DA) physiology backbone model. The Digital Astronaut Project (DAP) applies integrated physiology models to support space biomedical operations, and to assist NASA researchers in closing knowledge gaps related to human physiologic responses to space flight. The DA physiology backbone is a set of integrated physiological equations and functions that model the interacting systems of the human body. The current release of the model is HumMod (Human Model) version 1.5 and was developed over forty years at the University of Mississippi Medical Center (UMMC). The physiology equations and functions are scripted in an XML schema specifically designed for physiology modeling by Dr. Thomas G. Coleman at UMMC. Currently it is difficult to examine the physiology backbone without being knowledgeable of the XML schema. While investigating and documenting the tags and algorithms used in the XML schema, I proposed a standard methodology for a graphical representation. This standard methodology may be used to transcribe graphical representations from the DA physiology backbone. In turn, the graphical representations can allow examination of the physiological functions and equations without the need to be familiar with the computer programming languages or markup languages used by DA modeling software.

  8. Dynamic 3-D computer graphics for designing a diagnostic tool for patients with schizophrenia.

    PubMed

    Farkas, Attila; Papathomas, Thomas V; Silverstein, Steven M; Kourtev, Hristiyan; Papayanopoulos, John F

    2016-11-01

    We introduce a novel procedure that uses dynamic 3-D computer graphics as a diagnostic tool for assessing disease severity in schizophrenia patients, based on their reduced influence of top-down cognitive processes in interpreting bottom-up sensory input. Our procedure uses the hollow-mask illusion, in which the concave side of the mask is misperceived as convex, because familiarity with convex faces dominates sensory cues signaling a concave mask. It is known that schizophrenia patients resist this illusion and their resistance increases with illness severity. Our method uses virtual masks rendered with two competing textures: (a) realistic features that enhance the illusion; (b) random-dot visual noise that reduces the illusion. We control the relative weights of the two textures to obtain psychometric functions for controls and patients and assess illness severity. The primary novelty is the use of a rotating mask that is easy to implement on a wide variety of portable devices and avoids the use of elaborate stereoscopic devices that have been used in the past. Thus our method, which can also be used to assess the efficacy of treatments, provides clinicians the advantage to bring the test to the patient's own environment, instead of having to bring patients to the clinic.

  9. Towards a More Effective Use of 3D-Graphics in Mathematics Education--Utilisation of KETpic to Insert Figures into LATEX Documents

    ERIC Educational Resources Information Center

    Kitahara, Kiyoshi; Abe, Takayuki; Kaneko, Masataka; Yamashita, Satoshi; Takato, Setsuo

    2010-01-01

    Computer Algebra Systems (CAS) are equipped with rich facilities to show graphics, so the use of CAS to show 3D-graphics on screen is a popular tool for mathematics education. However, showing 3D-graphics in mass printed materials is a different story, since the clarity and preciseness of figures tend to be lost. To fill this gap, we developed…

  10. Graphical representations and cluster algorithms I. Discrete spin systems

    NASA Astrophysics Data System (ADS)

    Chayes, L.; Machta, J.

    1997-02-01

    Graphical representations similar to the FK representation are developed for a variety of spin-systems. In several cases, it is established that these representations have (FKG) monotonicity properties which enables characterization theorems for the uniqueness phase and the low-temperature phase of the spin system. Certain systems with intermediate phases and/or first-order transitions are also described in terms of the percolation properties of the representations. In all cases, these representations lead, in a natural fashion, to Swendsen-Wang-type algorithms. Hence, at least in the above-mentioned instances, these algorithms realize the program described by Kandel and Domany, Phys. Rev. B 43 (1991) 8539-8548. All of the algorithms are shown to satisfy a Li-Sokal bound which (at least for systems with a divergent specific heat) implies critical slowing down. However, the representations also give rise to invaded cluster algorithms which may allow for the rapid simulation of some of these systems at their transition points.

  11. Effectiveness of Applying 2D Static Depictions and 3D Animations to Orthographic Views Learning in Graphical Course

    ERIC Educational Resources Information Center

    Wu, Chih-Fu; Chiang, Ming-Chin

    2013-01-01

    This study provides experiment results as an educational reference for instructors to help student obtain a better way to learn orthographic views in graphical course. A visual experiment was held to explore the comprehensive differences between 2D static and 3D animation object features; the goal was to reduce the possible misunderstanding…

  12. 3D Face Recognition Based on Multiple Keypoint Descriptors and Sparse Representation

    PubMed Central

    Zhang, Lin; Ding, Zhixuan; Li, Hongyu; Shen, Ying; Lu, Jianwei

    2014-01-01

    Recent years have witnessed a growing interest in developing methods for 3D face recognition. However, 3D scans often suffer from the problems of missing parts, large facial expressions, and occlusions. To be useful in real-world applications, a 3D face recognition approach should be able to handle these challenges. In this paper, we propose a novel general approach to deal with the 3D face recognition problem by making use of multiple keypoint descriptors (MKD) and the sparse representation-based classification (SRC). We call the proposed method 3DMKDSRC for short. Specifically, with 3DMKDSRC, each 3D face scan is represented as a set of descriptor vectors extracted from keypoints by meshSIFT. Descriptor vectors of gallery samples form the gallery dictionary. Given a probe 3D face scan, its descriptors are extracted at first and then its identity can be determined by using a multitask SRC. The proposed 3DMKDSRC approach does not require the pre-alignment between two face scans and is quite robust to the problems of missing data, occlusions and expressions. Its superiority over the other leading 3D face recognition schemes has been corroborated by extensive experiments conducted on three benchmark databases, Bosphorus, GavabDB, and FRGC2.0. The Matlab source code for 3DMKDSRC and the related evaluation results are publicly available at http://sse.tongji.edu.cn/linzhang/3dmkdsrcface/3dmkdsrc.htm. PMID:24940876

  13. 3D face recognition based on multiple keypoint descriptors and sparse representation.

    PubMed

    Zhang, Lin; Ding, Zhixuan; Li, Hongyu; Shen, Ying; Lu, Jianwei

    2014-01-01

    Recent years have witnessed a growing interest in developing methods for 3D face recognition. However, 3D scans often suffer from the problems of missing parts, large facial expressions, and occlusions. To be useful in real-world applications, a 3D face recognition approach should be able to handle these challenges. In this paper, we propose a novel general approach to deal with the 3D face recognition problem by making use of multiple keypoint descriptors (MKD) and the sparse representation-based classification (SRC). We call the proposed method 3DMKDSRC for short. Specifically, with 3DMKDSRC, each 3D face scan is represented as a set of descriptor vectors extracted from keypoints by meshSIFT. Descriptor vectors of gallery samples form the gallery dictionary. Given a probe 3D face scan, its descriptors are extracted at first and then its identity can be determined by using a multitask SRC. The proposed 3DMKDSRC approach does not require the pre-alignment between two face scans and is quite robust to the problems of missing data, occlusions and expressions. Its superiority over the other leading 3D face recognition schemes has been corroborated by extensive experiments conducted on three benchmark databases, Bosphorus, GavabDB, and FRGC2.0. The Matlab source code for 3DMKDSRC and the related evaluation results are publicly available at http://sse.tongji.edu.cn/linzhang/3dmkdsrcface/3dmkdsrc.htm.

  14. Profile of students' comprehension of 3D molecule representation and its interconversion on chirality

    NASA Astrophysics Data System (ADS)

    Setyarini, M.; Liliasari, Kadarohman, Asep; Martoprawiro, Muhamad A.

    2016-02-01

    This study aims at describing (1) students' level comprehension; (2) factors causing difficulties to 3D comprehend molecule representation and its interconversion on chirality. Data was collected using multiple-choice test consisting of eight questions. The participants were required to give answers along with their reasoning. The test was developed based on the indicators of concept comprehension. The study was conducted to 161 college students enrolled in stereochemistry topic in the odd semester (2014/2015) from two LPTK (teacher training institutes) in Bandar Lampung and Gorontalo, and one public university in Bandung. The result indicates that college students' level of comprehension towards 3D molecule representations and its inter-conversion was 5% on high level, 22 % on the moderate level, and 73 % on the low level. The dominant factors identified as the cause of difficulties to comprehend 3D molecule representation and its interconversion were (i) the lack of spatial awareness, (ii) violation of absolute configuration determination rules, (iii) imprecise placement of observers, (iv) the lack of rotation operation, and (v) the lack of understanding of correlation between the representations. This study recommends that learning show more rigorous spatial awareness training tasks accompanied using dynamic visualization media of molecules associated. Also students learned using static molecular models can help them overcome their difficulties encountered.

  15. Segmentation of Blood Vessels and 3D Representation of CMR Image

    NASA Astrophysics Data System (ADS)

    Jiji, G. W.

    2013-06-01

    Current cardiac magnetic resonance imaging (CMR) technology allows the determination of patient-individual coronary tree structure, detection of infarctions, and assessment of myocardial perfusion. The purpose of this work is to segment heart blood vessels and visualize it in 3D. In this work, 3D visualisation of vessel was performed into four phases. The first step is to detect the tubular structures using multiscale medialness function, which distinguishes tube-like structures from and other structures. Second step is to extract the centrelines of the tubes. From the centreline radius the cylindrical tube model is constructed. The third step is segmentation of the tubular structures. The cylindrical tube model is used in segmentation process. Fourth step is to 3D representation of the tubular structure using Volume . The proposed approach is applied to 10 datasets of patients from the clinical routine and tested the results with radiologists.

  16. Depth representation of moving 3-D objects in apparent-motion path.

    PubMed

    Hidaka, Souta; Kawachi, Yousuke; Gyoba, Jiro

    2008-01-01

    Apparent motion is perceived when two objects are presented alternately at different positions. The internal representations of apparently moving objects are formed in an apparent-motion path which lacks physical inputs. We investigated the depth information contained in the representation of 3-D moving objects in an apparent-motion path. We examined how probe objects-briefly placed in the motion path-affected the perceived smoothness of apparent motion. The probe objects comprised 3-D objects which were defined by being shaded or by disparity (convex/concave) or 2-D (flat) objects, while the moving objects were convex/concave objects. We found that flat probe objects induced a significantly smoother motion perception than concave probe objects only in the case of the convex moving objects. However, convex probe objects did not lead to smoother motion as the flat objects did, although the convex probe objects contained the same depth information for the moving objects. Moreover, the difference between probe objects was reduced when the moving objects were concave. These counterintuitive results were consistent in conditions when both depth cues were used. The results suggest that internal representations contain incomplete depth information that is intermediate between that of 2-D and 3-D objects.

  17. Superpose3D: A Local Structural Comparison Program That Allows for User-Defined Structure Representations

    PubMed Central

    Gherardini, Pier Federico; Ausiello, Gabriele; Helmer-Citterich, Manuela

    2010-01-01

    Local structural comparison methods can be used to find structural similarities involving functional protein patches such as enzyme active sites and ligand binding sites. The outcome of such analyses is critically dependent on the representation used to describe the structure. Indeed different categories of functional sites may require the comparison program to focus on different characteristics of the protein residues. We have therefore developed superpose3D, a novel structural comparison software that lets users specify, with a powerful and flexible syntax, the structure description most suited to the requirements of their analysis. Input proteins are processed according to the user's directives and the program identifies sets of residues (or groups of atoms) that have a similar 3D position in the two structures. The advantages of using such a general purpose program are demonstrated with several examples. These test cases show that no single representation is appropriate for every analysis, hence the usefulness of having a flexible program that can be tailored to different needs. Moreover we also discuss how to interpret the results of a database screening where a known structural motif is searched against a large ensemble of structures. The software is written in C++ and is released under the open source GPL license. Superpose3D does not require any external library, runs on Linux, Mac OSX, Windows and is available at http://cbm.bio.uniroma2.it/superpose3D. PMID:20700534

  18. Improving Low-dose Cardiac CT Images based on 3D Sparse Representation

    NASA Astrophysics Data System (ADS)

    Shi, Luyao; Hu, Yining; Chen, Yang; Yin, Xindao; Shu, Huazhong; Luo, Limin; Coatrieux, Jean-Louis

    2016-03-01

    Cardiac computed tomography (CCT) is a reliable and accurate tool for diagnosis of coronary artery diseases and is also frequently used in surgery guidance. Low-dose scans should be considered in order to alleviate the harm to patients caused by X-ray radiation. However, low dose CT (LDCT) images tend to be degraded by quantum noise and streak artifacts. In order to improve the cardiac LDCT image quality, a 3D sparse representation-based processing (3D SR) is proposed by exploiting the sparsity and regularity of 3D anatomical features in CCT. The proposed method was evaluated by a clinical study of 14 patients. The performance of the proposed method was compared to the 2D spares representation-based processing (2D SR) and the state-of-the-art noise reduction algorithm BM4D. The visual assessment, quantitative assessment and qualitative assessment results show that the proposed approach can lead to effective noise/artifact suppression and detail preservation. Compared to the other two tested methods, 3D SR method can obtain results with image quality most close to the reference standard dose CT (SDCT) images.

  19. Improving Low-dose Cardiac CT Images based on 3D Sparse Representation

    PubMed Central

    Shi, Luyao; Hu, Yining; Chen, Yang; Yin, Xindao; Shu, Huazhong; Luo, Limin; Coatrieux, Jean-Louis

    2016-01-01

    Cardiac computed tomography (CCT) is a reliable and accurate tool for diagnosis of coronary artery diseases and is also frequently used in surgery guidance. Low-dose scans should be considered in order to alleviate the harm to patients caused by X-ray radiation. However, low dose CT (LDCT) images tend to be degraded by quantum noise and streak artifacts. In order to improve the cardiac LDCT image quality, a 3D sparse representation-based processing (3D SR) is proposed by exploiting the sparsity and regularity of 3D anatomical features in CCT. The proposed method was evaluated by a clinical study of 14 patients. The performance of the proposed method was compared to the 2D spares representation-based processing (2D SR) and the state-of-the-art noise reduction algorithm BM4D. The visual assessment, quantitative assessment and qualitative assessment results show that the proposed approach can lead to effective noise/artifact suppression and detail preservation. Compared to the other two tested methods, 3D SR method can obtain results with image quality most close to the reference standard dose CT (SDCT) images. PMID:26980176

  20. Improving Low-dose Cardiac CT Images based on 3D Sparse Representation.

    PubMed

    Shi, Luyao; Hu, Yining; Chen, Yang; Yin, Xindao; Shu, Huazhong; Luo, Limin; Coatrieux, Jean-Louis

    2016-03-16

    Cardiac computed tomography (CCT) is a reliable and accurate tool for diagnosis of coronary artery diseases and is also frequently used in surgery guidance. Low-dose scans should be considered in order to alleviate the harm to patients caused by X-ray radiation. However, low dose CT (LDCT) images tend to be degraded by quantum noise and streak artifacts. In order to improve the cardiac LDCT image quality, a 3D sparse representation-based processing (3D SR) is proposed by exploiting the sparsity and regularity of 3D anatomical features in CCT. The proposed method was evaluated by a clinical study of 14 patients. The performance of the proposed method was compared to the 2D spares representation-based processing (2D SR) and the state-of-the-art noise reduction algorithm BM4D. The visual assessment, quantitative assessment and qualitative assessment results show that the proposed approach can lead to effective noise/artifact suppression and detail preservation. Compared to the other two tested methods, 3D SR method can obtain results with image quality most close to the reference standard dose CT (SDCT) images.

  1. Representation of 3-D surface orientation by velocity and disparity gradient cues in area MT.

    PubMed

    Sanada, Takahisa M; Nguyenkim, Jerry D; Deangelis, Gregory C

    2012-04-01

    Neural coding of the three-dimensional (3-D) orientation of planar surface patches may be an important intermediate step in constructing representations of complex 3-D surface structure. Spatial gradients of binocular disparity, image velocity, and texture provide potent cues to the 3-D orientation (tilt and slant) of planar surfaces. Previous studies have described neurons in both dorsal and ventral stream areas that are selective for surface tilt based on one or more of these gradient cues. However, relatively little is known about whether single neurons provide consistent information about surface orientation from multiple gradient cues. Moreover, it is unclear how neural responses to combinations of surface orientation cues are related to responses to the individual cues. We measured responses of middle temporal (MT) neurons to random dot stimuli that simulated planar surfaces at a variety of tilts and slants. Four cue conditions were tested: disparity, velocity, and texture gradients alone, as well as all three gradient cues combined. Many neurons showed robust tuning for surface tilt based on disparity and velocity gradients, with relatively little selectivity for texture gradients. Some neurons showed consistent tilt preferences for disparity and velocity cues, whereas others showed large discrepancies. Responses to the combined stimulus were generally well described as a weighted linear sum of responses to the individual cues, even when disparity and velocity preferences were discrepant. These findings suggest that area MT contains a rudimentary representation of 3-D surface orientation based on multiple cues, with single neurons implementing a simple cue integration rule.

  2. Graphic representations: keys to disclose the codex of nature

    NASA Astrophysics Data System (ADS)

    Caramelo, Liliana; Gonçalves, Norberto; Pereira, Mário; Soares, Armando; Naia, Marco

    2010-05-01

    Undergraduate and university level students present some difficulties to understand and interpret many of the geosciences concepts, in particular those represented by vector and scalar fields. Our experience reveals that these difficulties are associated with a lack in the development of their abstraction and mental picturing abilities. On the other hand, these students have easy access to communication and information technology software which can be used to built graphic representations of experimental data, time series and vector and scalar fields. This transformation allows an easiest extraction, interpretation and summary of the most important characteristics in the data. There is already commercial and open source software with graphical tools that can be used for this purpose but commercial software packs with user friendly interfaces but their price is not negligible. Open source software can circumvent this difficulty even if, in general, their graphical user interface hasn't reached the desirable level of the commercial ones. We will show a simple procedure to generate an image from the data that characterizes the generation of the suitable images illustrating the key concepts in study, using a freeware code, exactly as it is presented to the students in our open teaching sessions to the general student community. Our experience demonstrated that the students are very enthusiastic using this approach. Furthermore, the use of this software can easily be adopted by teachers and students of secondary schools as part of curricular activities.

  3. Shape representation for efficient landmark-based segmentation in 3-d.

    PubMed

    Ibragimov, Bulat; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž

    2014-04-01

    In this paper, we propose a novel approach to landmark-based shape representation that is based on transportation theory, where landmarks are considered as sources and destinations, all possible landmark connections as roads, and established landmark connections as goods transported via these roads. Landmark connections, which are selectively established, are identified through their statistical properties describing the shape of the object of interest, and indicate the least costly roads for transporting goods from sources to destinations. From such a perspective, we introduce three novel shape representations that are combined with an existing landmark detection algorithm based on game theory. To reduce computational complexity, which results from the extension from 2-D to 3-D segmentation, landmark detection is augmented by a concept known in game theory as strategy dominance. The novel shape representations, game-theoretic landmark detection and strategy dominance are combined into a segmentation framework that was evaluated on 3-D computed tomography images of lumbar vertebrae and femoral heads. The best shape representation yielded symmetric surface distance of 0.75 mm and 1.11 mm, and Dice coefficient of 93.6% and 96.2% for lumbar vertebrae and femoral heads, respectively. By applying strategy dominance, the computational costs were further reduced for up to three times.

  4. Production of 3D consistent image representation of outdoor scenery for multimedia ambiance communication from multiviewpoint range data measured with a 3D laser scanner

    NASA Astrophysics Data System (ADS)

    Saito, Takahiro; Imamura, Hiroshi; Sunaga, Shin-ichi; Komatsu, Takashi

    2002-03-01

    Toward future 3D image communication, we have started studying the Multimedia Ambiance Communication, a kind of shared-space communication, and adopted an approach to design the 3D-image space using actual images of outdoor scenery, by introducing the concept of the three-layer model of long-, mid- and short-range views. The long- and mid-range views do not require precise representation of their 3D structure, and hence we employ the setting representation like stage settings to approximate their 3D structure according to the slanting-plane-model. We deal with an approach to produce the consistent setting representation for describing long- and mid-range views from range and texture data measured with a laser scanner and a digital camera located at multiple viewpoints. The production of such a representation requires the development of several techniques: nonlinear smoothing of raw range data, plane segmentation of range data, registration of multi-viewpoint range data, integration of multi-viewpoint setting representations and texture mapping onto each setting plane. In this paper, we concentrate on the plane segmentation and the multi-viewpoint data registration. Our plane segmentation method is based on the concept of the region competition, and can precisely extract fitting planes from the range data. Our registration method uses the equations of the segmented planes corresponding between two different viewpoints to determine the 3D Euclidean transformation between them. A unifying consistent setting representation can be constructed by integrating multiple setting representations for multiple viewpoints.

  5. Use of a graphics processing unit (GPU) to facilitate real-time 3D graphic presentation of the patient skin-dose distribution during fluoroscopic interventional procedures

    NASA Astrophysics Data System (ADS)

    Rana, Vijay; Rudin, Stephen; Bednarek, Daniel R.

    2012-03-01

    We have developed a dose-tracking system (DTS) that calculates the radiation dose to the patient's skin in realtime by acquiring exposure parameters and imaging-system-geometry from the digital bus on a Toshiba Infinix C-arm unit. The cumulative dose values are then displayed as a color map on an OpenGL-based 3D graphic of the patient for immediate feedback to the interventionalist. Determination of those elements on the surface of the patient 3D-graphic that intersect the beam and calculation of the dose for these elements in real time demands fast computation. Reducing the size of the elements results in more computation load on the computer processor and therefore a tradeoff occurs between the resolution of the patient graphic and the real-time performance of the DTS. The speed of the DTS for calculating dose to the skin is limited by the central processing unit (CPU) and can be improved by using the parallel processing power of a graphics processing unit (GPU). Here, we compare the performance speed of GPU-based DTS software to that of the current CPU-based software as a function of the resolution of the patient graphics. Results show a tremendous improvement in speed using the GPU. While an increase in the spatial resolution of the patient graphics resulted in slowing down the computational speed of the DTS on the CPU, the speed of the GPU-based DTS was hardly affected. This GPU-based DTS can be a powerful tool for providing accurate, real-time feedback about patient skin-dose to physicians while performing interventional procedures.

  6. Use of a graphics processing unit (GPU) to facilitate real-time 3D graphic presentation of the patient skin-dose distribution during fluoroscopic interventional procedures.

    PubMed

    Rana, Vijay; Rudin, Stephen; Bednarek, Daniel R

    2012-02-23

    We have developed a dose-tracking system (DTS) that calculates the radiation dose to the patient's skin in real-time by acquiring exposure parameters and imaging-system-geometry from the digital bus on a Toshiba Infinix C-arm unit. The cumulative dose values are then displayed as a color map on an OpenGL-based 3D graphic of the patient for immediate feedback to the interventionalist. Determination of those elements on the surface of the patient 3D-graphic that intersect the beam and calculation of the dose for these elements in real time demands fast computation. Reducing the size of the elements results in more computation load on the computer processor and therefore a tradeoff occurs between the resolution of the patient graphic and the real-time performance of the DTS. The speed of the DTS for calculating dose to the skin is limited by the central processing unit (CPU) and can be improved by using the parallel processing power of a graphics processing unit (GPU). Here, we compare the performance speed of GPU-based DTS software to that of the current CPU-based software as a function of the resolution of the patient graphics. Results show a tremendous improvement in speed using the GPU. While an increase in the spatial resolution of the patient graphics resulted in slowing down the computational speed of the DTS on the CPU, the speed of the GPU-based DTS was hardly affected. This GPU-based DTS can be a powerful tool for providing accurate, real-time feedback about patient skin-dose to physicians while performing interventional procedures.

  7. Representation and coding of large-scale 3D dynamic maps

    NASA Astrophysics Data System (ADS)

    Cohen, Robert A.; Tian, Dong; Krivokuća, Maja; Sugimoto, Kazuo; Vetro, Anthony; Wakimoto, Koji; Sekiguchi, Shunichi

    2016-09-01

    combined with depth and color measurements of the surrounding environment. Localization could be achieved with GPS, inertial measurement units (IMU), cameras, or combinations of these and other devices, while the depth measurements could be achieved with time-of-flight, radar or laser scanning systems. The resulting 3D maps, which are composed of 3D point clouds with various attributes, could be used for a variety of applications, including finding your way around indoor spaces, navigating vehicles around a city, space planning, topographical surveying or public surveying of infrastructure and roads, augmented reality, immersive online experiences, and much more. This paper discusses application requirements related to the representation and coding of large-scale 3D dynamic maps. In particular, we address requirements related to different types of acquisition environments, scalability in terms of progressive transmission and efficiently rendering different levels of details, as well as key attributes to be included in the representation. Additionally, an overview of recently developed coding techniques is presented, including an assessment of current performance. Finally, technical challenges and needs for future standardization are discussed.

  8. Surveying, Modeling and 3d Representation of a wreck for Diving Purposes: Cargo Ship "vera"

    NASA Astrophysics Data System (ADS)

    Ktistis, A.; Tokmakidis, P.; Papadimitriou, K.

    2017-02-01

    This paper presents the results from an underwater recording of the stern part of a contemporary cargo-ship wreck. The aim of this survey was to create 3D representations of this wreck mainly for recreational diving purposes. The key points of this paper are: a) the implementation of the underwater recording at a diving site; b) the reconstruction of a 3d model from data that have been captured by recreational divers; and c) the development of a set of products to be used by the general public for the ex situ presentation or for the in situ navigation. The idea behind this project is to define a simple and low cost procedure for the surveying, modeling and 3D representation of a diving site. The perspective of our team is to repeat the proposed methodology for the documentation and the promotion of other diving sites with cultural features, as well as to train recreational divers in underwater surveying procedures towards public awareness and community engagement in the maritime heritage.

  9. Graphics processing units accelerated semiclassical initial value representation molecular dynamics

    SciTech Connect

    Tamascelli, Dario; Dambrosio, Francesco Saverio; Conte, Riccardo; Ceotto, Michele

    2014-05-07

    This paper presents a Graphics Processing Units (GPUs) implementation of the Semiclassical Initial Value Representation (SC-IVR) propagator for vibrational molecular spectroscopy calculations. The time-averaging formulation of the SC-IVR for power spectrum calculations is employed. Details about the GPU implementation of the semiclassical code are provided. Four molecules with an increasing number of atoms are considered and the GPU-calculated vibrational frequencies perfectly match the benchmark values. The computational time scaling of two GPUs (NVIDIA Tesla C2075 and Kepler K20), respectively, versus two CPUs (Intel Core i5 and Intel Xeon E5-2687W) and the critical issues related to the GPU implementation are discussed. The resulting reduction in computational time and power consumption is significant and semiclassical GPU calculations are shown to be environment friendly.

  10. The Visual Representation of 3D Object Orientation in Parietal Cortex

    PubMed Central

    Cowan, Noah J.; Angelaki, Dora E.

    2013-01-01

    An accurate representation of three-dimensional (3D) object orientation is essential for interacting with the environment. Where and how the brain visually encodes 3D object orientation remains unknown, but prior studies suggest the caudal intraparietal area (CIP) may be involved. Here, we develop rigorous analytical methods for quantifying 3D orientation tuning curves, and use these tools to the study the neural coding of surface orientation. Specifically, we show that single neurons in area CIP of the rhesus macaque jointly encode the slant and tilt of a planar surface, and that across the population, the distribution of preferred slant-tilts is not statistically different from uniform. This suggests that all slant-tilt combinations are equally represented in area CIP. Furthermore, some CIP neurons are found to also represent the third rotational degree of freedom that determines the orientation of the image pattern on the planar surface. Together, the present results suggest that CIP is a critical neural locus for the encoding of all three rotational degrees of freedom specifying an object's 3D spatial orientation. PMID:24305830

  11. JTHERGAS: Thermodynamic Estimation from 2D Graphical Representations of Molecules

    PubMed Central

    Blurock, Edward; Warth, V.; Grandmougin, X.; Bounaceur, R.; Glaude, P.A.; Battin-Leclerc, F.

    2013-01-01

    JTHERGAS is a versatile calculator (implemented in JAVA) to estimate thermodynamic information from two dimensional graphical representations of molecules and radicals involving covalent bonds based on the Benson additivity method. The versatility of JTHERGAS stems from its inherent philosophy that all the fundamental data used in the calculation should be visible, to see exactly where the final values came from, and modifiable, to account for new data that can appear in the literature. The main use of this method is within automatic combustion mechanism generation systems where fast estimation of a large number and variety of chemical species is needed. The implementation strategy is based on meta-atom definitions and substructure analysis allowing a highly extensible database without modification of the core algorithms. Several interfaces for the database and the calculations are provided from terminal line commands, to graphical interfaces to web-services. The first order estimation of thermodynamics is based summing up the contributions of each heavy atom bonding description. Second order corrections due to steric hindrance and ring strain are made. Automatic estimate of contributions due to internal, external and optical symmetries are also made. The thermodynamical data for radicals is calculated by taking the difference due to the lost of a hydrogen radical taking into account changes in symmetry, spin, rotations, vibrations and steric hindrances. The software is public domain and is based on standard libraries such as CDK and CML. PMID:23761949

  12. Progressive Shape-Distribution-Encoder for Learning 3D Shape Representation.

    PubMed

    Xie, Jin; Zhu, Fan; Dai, Guoxian; Shao, Ling; Fang, Yi

    2017-03-01

    Since there are complex geometric variations with 3D shapes, extracting efficient 3D shape features is one of the most challenging tasks in shape matching and retrieval. In this paper, we propose a deep shape descriptor by learning shape distributions at different diffusion time via a progressive shape-distribution-encoder (PSDE). First, we develop a shape distribution representation with the kernel density estimator to characterize the intrinsic geometry structures of 3D shapes. Then, we propose to learn a deep shape feature through an unsupervised PSDE. Specially, the unsupervised PSDE aims at modeling the complex non-linear transform of the estimated shape distributions between consecutive diffusion time. In order to characterize the intrinsic structures of 3D shapes more efficiently, we stack multiple PSDEs to form a network structure. Finally, we concatenate all neurons in the middle hidden layers of the unsupervised PSDE network to form an unsupervised shape descriptor for retrieval. Furthermore, by imposing an additional constraint on the outputs of all hidden layers, we propose a supervised PSDE to form a supervised shape descriptor. For each hidden layer, the similarity between a pair of outputs from the same class is as large as possible and the similarity between a pair of outputs from different classes is as small as possible. The proposed method is evaluated on three benchmark 3D shape data sets with large geometric variations, i.e., McGill, SHREC'10 ShapeGoogle, and SHREC'14 Human data sets, and the experimental results demonstrate the superiority of the proposed method to the existing approaches.

  13. A Graphical Exposition of the Link between Two Representations of the Excess Burden of Taxation

    ERIC Educational Resources Information Center

    Liu, Liqun; Rettenmaier, Andrew J.

    2005-01-01

    The excess burden of taxation typically has two graphical representations in undergraduate microeconomics and public finance textbooks: the IC/BC (indifference curve/budget constraint) representation and the demand/supply representation. The IC/BC representation has the advantage of showing the behavioral response to a distortionary tax and how a…

  14. 3D planar representation of stereo depth images for 3DTV applications.

    PubMed

    Özkalaycı, Burak O; Alatan, A Aydın

    2014-12-01

    The depth modality of the multiview video plus depth (MVD) format is an active research area, whose main objective is to develop depth image based rendering friendly efficient compression methods. As a part of this research, a novel 3D planar-based depth representation is proposed. The planar approximation of multiple depth images are formulated as an energy-based co-segmentation problem by a Markov random field model. The energy terms of this problem are designed to mimic the rate-distortion tradeoff for a depth compression application. A novel algorithm is developed for practical utilization of the proposed planar approximations in stereo depth compression. The co-segmented regions are also represented as layered planar structures forming a novel single-reference MVD format. The ability of the proposed layered planar MVD representation in decoupling the texture and geometric distortions make it a promising approach. Proposed 3D planar depth compression approaches are compared against the state-of-the-art image/video coding standards by objective and visual evaluation and yielded competitive performance.

  15. 3D graphics, virtual reality, and motion-onset visual evoked potentials in neurogaming.

    PubMed

    Beveridge, R; Wilson, S; Coyle, D

    2016-01-01

    A brain-computer interface (BCI) offers movement-free control of a computer application and is achieved by reading and translating the cortical activity of the brain into semantic control signals. Motion-onset visual evoked potentials (mVEP) are neural potentials employed in BCIs and occur when motion-related stimuli are attended visually. mVEP dynamics are correlated with the position and timing of the moving stimuli. To investigate the feasibility of utilizing the mVEP paradigm with video games of various graphical complexities including those of commercial quality, we conducted three studies over four separate sessions comparing the performance of classifying five mVEP responses with variations in graphical complexity and style, in-game distractions, and display parameters surrounding mVEP stimuli. To investigate the feasibility of utilizing contemporary presentation modalities in neurogaming, one of the studies compared mVEP classification performance when stimuli were presented using the oculus rift virtual reality headset. Results from 31 independent subjects were analyzed offline. The results show classification performances ranging up to 90% with variations in conditions in graphical complexity having limited effect on mVEP performance; thus, demonstrating the feasibility of using the mVEP paradigm within BCI-based neurogaming.

  16. RGUI 1.0, New Graphical User Interface for RELAP5-3D

    SciTech Connect

    Mesina, George Lee; Galbraith, James Andrew

    1999-04-01

    With the advent of three-dimensional modeling in nuclear safety analysis codes, the need has arisen for a new display methodology. Currently, analysts either sort through voluminous numerical displays of data at points in a region, or view color coded interpretations of the data on a two-dimensional rendition of the plant. RGUI 1.0 provides 3D capability for displaying data. The 3D isometric hydrodynamic image is built automatically from the input deck without additional input from the user. Standard view change features allow the user to focus on only the important data. Familiar features that are standard to the nuclear industry, such as run, interact, and monitor, are included. RGUI 1.0 reduces the difficulty of analyzing complex three dimensional plants.

  17. RGUI 1.0, New Graphical User Interface for RELAP5-3D

    SciTech Connect

    G. L. Mesina; J. Galbraith

    1999-04-01

    With the advent of three-dimensional modeling in nuclear safety analysis codes, the need has arisen for a new display methodology. Currently, analysts either sort through voluminous numerical displays of data at points in a region, or view color coded interpretations of the data on a two-dimensional rendition of the plant. RGUI 1.0 provides 3D capability for displaying data. The 3D isometric hydrodynamic image is built automatically from the input deck without additional input from the user. Standard view change features allow the user to focus on only the important data. Familiar features that are standard to the nuclear industry, such as run, interact, and monitor, are included. RGUI 1.0 reduces the difficulty of analyzing complex three-dimensional plants.

  18. Techniques for efficient, real-time, 3D visualization of multi-modality cardiac data using consumer graphics hardware.

    PubMed

    Levin, David; Aladl, Usaf; Germano, Guido; Slomka, Piotr

    2005-09-01

    We exploit consumer graphics hardware to perform real-time processing and visualization of high-resolution, 4D cardiac data. We have implemented real-time, realistic volume rendering, interactive 4D motion segmentation of cardiac data, visualization of multi-modality cardiac data and 3D display of multiple series cardiac MRI. We show that an ATI Radeon 9700 Pro can render a 512x512x128 cardiac Computed Tomography (CT) study at 0.9 to 60 frames per second (fps) depending on rendering parameters and that 4D motion based segmentation can be performed in real-time. We conclude that real-time rendering and processing of cardiac data can be implemented on consumer graphics cards.

  19. Absolute value equations - what can we learn from their graphical representation?

    NASA Astrophysics Data System (ADS)

    Stupel, Moshe; Ben-Chaim, David

    2014-08-01

    Understanding graphical representations of algebraic equations, particularly graphical representations of absolute value equations, significantly improves students' mathematical comprehension and ignites within them an appreciation of the beauty and aesthetics of mathematics. In this paper, we focus on absolute value equations of linear and quadratic expressions, by examining various cases, presenting different methods of solving them by graphical representation, exhibiting the advantage of using dynamic software such as GeoGebra in solving them, and illustrating some examples of interesting graphical solutions. We recommend that teachers take advantage of the rapid development in technology to help learners tangibly visualize the solutions of absolute value equations before proceeding to the analytical solutions.

  20. Real World Issues in Developing a Malaysian Forest Battlefield Environment for Small Unit Tactics Using 3D Graphics

    NASA Astrophysics Data System (ADS)

    Alsagoff, Syed Nasir

    In the military, training is essential as preparation for war. Small unit training involves training for platoon and section sized unit. The soldiers must train to maneuver, shoot and communicate. In order for the training to be successful, it must be as realistic as possible. Realistic training allows for the soldiers to be mentally and physically prepared for the battlefield. Unfortunately, there is a wide gap between training and the resources required to properly conduct the training [5]. Resources consist of suitable training location and material support such as ammunition, ration and fuel. Limitation on the resources means that training cannot be as realistic as possible. To ensure effective use of the limited training resources, training should be conducted in a simulated environment before migrating to a live environment. This paper will attempt to discuss the real world issues in developing a Malaysian Forest Battlefield Environment 3D Simulation for Small Unit Tactic using 3D Graphics.

  1. Separating the Representation from the Science: Training Students in Comprehending 3D Diagrams

    NASA Astrophysics Data System (ADS)

    Bemis, K. G.; Silver, D.; Chiang, J.; Halpern, D.; Oh, K.; Tremaine, M.

    2011-12-01

    Studies of students taking first year geology and earth science courses at universities find that a remarkable number of them are confused by the three-dimensional representations used to explain the science [1]. Comprehension of these 3D representations has been found to be related to an individual's spatial ability [2]. A variety of interactive programs and animations have been created to help explain the diagrams to beginning students [3, 4]. This work has demonstrated comprehension improvement and removed a gender gap between male (high spatial) and female (low spatial) students [5]. However, not much research has examined what makes the 3D diagrams so hard to understand or attempted to build a theory for creating training designed to remove these difficulties. Our work has separated the science labeling and comprehension of the diagrams from the visualizations to examine how individuals mentally see the visualizations alone. In particular, we asked subjects to create a cross-sectional drawing of the internal structure of various 3D diagrams. We found that viewing planes (the coordinate system the designer applies to the diagram), cutting planes (the planes formed by the requested cross sections) and visual property planes (the planes formed by the prominent features of the diagram, e.g., a layer at an angle of 30 degrees to the top surface of the diagram) that deviated from a Cartesian coordinate system imposed by the viewer caused significant problems for subjects, in part because these deviations forced them to mentally re-orient their viewing perspective. Problems with deviations in all three types of plane were significantly harder than those deviating on one or two planes. Our results suggest training that does not focus on showing how the components of various 3D geologic formations are put together but rather training that guides students in re-orienting themselves to deviations that differ from their right-angle view of the world, e.g., by showing how

  2. Isoparametric 3-D Finite Element Mesh Generation Using Interactive Computer Graphics

    NASA Technical Reports Server (NTRS)

    Kayrak, C.; Ozsoy, T.

    1985-01-01

    An isoparametric 3-D finite element mesh generator was developed with direct interface to an interactive geometric modeler program called POLYGON. POLYGON defines the model geometry in terms of boundaries and mesh regions for the mesh generator. The mesh generator controls the mesh flow through the 2-dimensional spans of regions by using the topological data and defines the connectivity between regions. The program is menu driven and the user has a control of element density and biasing through the spans and can also apply boundary conditions, loads interactively.

  3. Perceptual hashing of sheet music based on graphical representation

    NASA Astrophysics Data System (ADS)

    Kremser, Gert; Schmucker, Martin

    2006-02-01

    For the protection of Intellectual Property Rights (IPR), different passive protection methods have been developed. These watermarking and fingerprinting technologies protect content beyond access control and thus tracing illegal distributions as well as the identification of people who are responsible for a illegal distribution is possible. The public's attention was attracted especially to the second application by the illegal distribution of the so called 'Hollywood screeners'. The focus of current research is on audio and video content and images. These are the common content types we are faced with every day, and which mostly have a huge commercial value. Especially the illegal distribution of content that has not been officially published shows the potential commercial impact of illegal distributions. Content types, however, are not limited to audio, video and images. There is a range of other content types, which also deserve the development of passive protection technologies. For sheet music for instance, different watermarking technologies have been developed, which up to this point only function within certain limitations. This is the reason why we wanted to find out how to develop a fingerprinting or perceptual hashing method for sheet music. In this article, we describe the development of our algorithm for sheet music, which is based on simple graphical features. We describe the selection of these features and the subsequent processing steps. The resulting compact representation is analyzed and the first performance results are reported.

  4. Cross-Platform Graphical User Interface with fast 3-D Rendering for Particle-in-Cell Simulations

    NASA Astrophysics Data System (ADS)

    Bruhwiler, David; Luetkemeyer, Kelly; Cary, John

    1999-11-01

    The Graphical User Interface (GUI) for XOOPIC (X11-based Object-Oriented Particle-in-Cell) is being ported to Qt, a cross-platform C++ windowing toolkit, thus permitting the code to run on PC's running both Windows 95/98/NT and Linux, as well as all commercial Unix platforms. All 3-D graphics will be handled through OpenGL, the cross-platform standard for fast 3-D rendering. The use of object-oriented design (OOD) techniques keeps the GUI/physics interface clean, and minimizes the impact of GUI development on the physics code. OOD also improves the maintainability and extensibility of large scientific simulation codes, while allowing for cross-platform portability and ready interchange of individual algorithms or entire physics kernels. Planned new GUI features include interactive modifications of the simulation parameters, including generation of a slowly-varying mesh and automatic updating of a corresponding input file. Improved modeling of high-power microwave tubes is one of the primary applications being targeted by this project.

  5. Foundations of Representation: Where Might Graphical Symbol Systems Come from?

    ERIC Educational Resources Information Center

    Garrod, Simon; Fay, Nicolas; Lee, John; Oberlander, Jon; MacLeod, Tracy

    2007-01-01

    It has been suggested that iconic graphical signs evolve into symbolic graphical signs through repeated usage. This article reports a series of interactive graphical communication experiments using a "pictionary" task to establish the conditions under which the evolution might occur. Experiment 1 rules out a simple repetition based account in…

  6. 3D Computer graphics simulation to obtain optimal surgical exposure during microvascular decompression of the glossopharyngeal nerve.

    PubMed

    Hiraishi, Tetsuya; Matsushima, Toshio; Kawashima, Masatou; Nakahara, Yukiko; Takahashi, Yuichi; Ito, Hiroshi; Oishi, Makoto; Fujii, Yukihiko

    2013-10-01

    The affected artery in glossopharyngeal neuralgia (GPN) is most often the posterior inferior cerebellar artery (PICA) from the caudal side or the anterior inferior cerebellar artery (AICA) from the rostral side. This technical report describes two representative cases of GPN, one with PICA as the affected artery and the other with AICA, and demonstrates the optimal approach for each affected artery. We used 3D computer graphics (3D CG) simulation to consider the ideal transposition of the affected artery in any position and approach. Subsequently, we performed microvascular decompression (MVD) surgery based on this simulation. For PICA, we used the transcondylar fossa approach in the lateral recumbent position, very close to the prone position, with the patient's head tilted anteriorly for caudal transposition of PICA. In contrast, for AICA, we adopted a lateral suboccipital approach with opening of the lateral cerebellomedullary fissure, to visualize better the root entry zone of the glossopharyngeal nerve and to obtain a wide working space in the cerebellomedullary cistern, for rostral transposition of AICA. Both procedures were performed successfully. The best surgical approach for MVD in patients with GPN is contingent on the affected artery--PICA or AICA. 3D CG simulation provides tailored approach for MVD of the glossopharyngeal nerve, thereby ensuring optimal surgical exposure.

  7. High-Performance Active Liquid Crystalline Shutters for Stereo Computer Graphics and Other 3-D Technologies

    NASA Astrophysics Data System (ADS)

    Sergan, Tatiana; Sergan, Vassili; MacNaughton, Boyd

    2007-03-01

    Stereoscopic computer displays create a 3-D image by alternating two separate images for each of the viewer's eyes. Field-sequential viewing systems supply each eye with the appropriate image by blocking the wrong image for the wrong eye. In our work, we have developed a new mode of operation of a liquid crystal shutter that provides for highly effective blockage of undesired images when the screen is viewed in all viewing directions and eliminates color shifts associated with long turn-off times. The goal was achieved by using a π-cell filled with low-rotational-viscosity and high-birefringence fluid and additional negative birefringence films with splay optic axis distribution. The shutter demonstrates a contrast ratio higher than 800:1 for head-on viewing and 10:1 in the viewing cone of about 45°. The relaxation time of the shutter does not exceed 2 ms and is the same for all three primary colors.

  8. Student Thinking Processes While Constructing Graphic Representations of Textbook Content: What Insights Do Think-Alouds Provide?

    ERIC Educational Resources Information Center

    Scott, D. Beth; Dreher, Mariam Jean

    2016-01-01

    This study examined the thinking processes students engage in while constructing graphic representations of textbook content. Twenty-eight students who either used graphic representations in a routine manner during social studies instruction or learned to construct graphic representations based on the rhetorical patterns used to organize textbook…

  9. Microvision system (MVS): a 3D computer graphic-based microrobot telemanipulation and position feedback by vision

    NASA Astrophysics Data System (ADS)

    Sulzmann, Armin; Breguet, Jean-Marc; Jacot, Jacques

    1995-12-01

    The aim of our project is to control the position in 3D-space of a micro robot with sub micron accuracy and manipulate Microsystems aided by a real time 3D computer graphics (virtual reality). As Microsystems and micro structures become smaller, it is necessary to build a micro robot ((mu) -robot) capable of manipulating these systems and structures with a precision of 1 micrometers or even higher. These movements have to be controlled and guided. The first part of our project was to develop a real time 3D computer graphics (virtual reality) environment man-machine interface to guide the newly developed robot similar to the environment we built in a macroscopic robotics. Secondly we want to evaluate measurement techniques to verify its position in the region of interest (workspace). A new type of microrobot has been developed for our purposed. Its simple and compact design is believed to be of promise in the microrobotics field. Stepping motion allows speed up to 4 mm/s. Resolution smaller than 10 nm is achievable. We also focus on the vision system and on the virtual reality interface of the complex system. Basically the user interacts with the virtual 3D microscope and sees the (mu) -robot as if he is looking through a real microscope. He is able to simulate the assembly of the missing parts, e.g. parts of the micrometer, beforehand in order to verify the assembly manipulation steps such assembly of the missing parts, e.g. parts of a micromotor, beforehand in order to verify the assembly manipulation steps such as measuring, moving the table to the right position or performing the manipulation. Micro manipulation is form of a teleoperation is then performed by the robot-unit and the position is controlled by vision. First results have shown, that a guided manipulations with submicronics absolute accuracy can be achieved. Key idea of this approach is to use the intuitiveness of immersed vision to perform robotics tasks in an environment where human has only access

  10. Graphical interface for the physics-based generation of inputs to 3D MEEC SGEMP and SREMP simulations

    SciTech Connect

    Bland, M; Wondra, J; Nunan, S; Walters, D

    1998-12-01

    A graphical user interface (GUI) is under development for the MEEC family of SGEMP and SREMP simulation codes. These codes are workhorse legacy codes that have been in use for nearly two decades, with modifications and enhanced physics models added throughout the years. The MEEC codes are currently being evaluated for use by the DOE in the Dual Revalidation program and experiments at NIF. The new GUI makes the codes more accessible and less prone to input errors by automatically generating the parameters and grids that previously had to be designed by hand. physics-based algorithms define the simulation volume with expanding meshes. Users are able to specify objects, materials, and emission surfaces through dialogs and input boxes. 3D and orthographic views are available to view objects in the volume. Zone slice views are available for stepping through the overlay of objects on the mesh in planes aligned with the primary axes.

  11. Graphical interface for the physics-based generation of inputs to 3D MEEC SGEMP and SREMP simulations

    SciTech Connect

    Bland, M; Walters, D; Wondra, J

    1999-06-01

    A graphical user interface (GUI) is under development for the MEEC family of SGEMP and SREMP simulation codes [1,2]. These codes are ''workhorse'' legacy codes that have been in use for nearly two decades, with modifications and enhanced physics models added throughout the years. The MEEC codes are currently being evaluated for use by the DOE in the Dual Revalidation Program and experiments at NIF. The new GUI makes the codes more accessible and less prone to input errors by automatically generating the parameters and grids that previously had to be designed ''by hand''. Physics-based algorithms define the simulation volume with expanding meshes. Users are able to specify objects, materials, and emission surfaces through dialogs and input boxes. 3D and orthographic views are available to view objects in the volume. Zone slice views are available for stepping through the overlay of objects on the mesh in planes aligned with the primary axes.

  12. Depth-based representations: Which coding format for 3D video broadcast applications?

    NASA Astrophysics Data System (ADS)

    Kerbiriou, Paul; Boisson, Guillaume; Sidibé, Korian; Huynh-Thu, Quan

    2011-03-01

    3D Video (3DV) delivery standardization is currently ongoing in MPEG. Now time is to choose 3DV data representation format. What is at stake is the final quality for end-users, i.e. synthesized views' visual quality. We focus on two major rival depth-based formats, namely Multiview Video plus Depth (MVD) and Layered Depth Video (LDV). MVD can be considered as the basic depth-based 3DV format, generated by disparity estimation from multiview sequences. LDV is more sophisticated, with the compaction of multiview data into color- and depth-occlusions layers. We compare final views quality using MVD2 and LDV (both containing two color channels plus two depth components) coded with MVC at various compression ratios. Depending on the format, the appropriate synthesis process is performed to generate final stereoscopic pairs. Comparisons are provided in terms of SSIM and PSNR with respect to original views and to synthesized references (obtained without compression). Eventually, LDV outperforms significantly MVD when using state-of-the-art reference synthesis algorithms. Occlusions management before encoding is advantageous in comparison with handling redundant signals at decoder side. Besides, we observe that depth quantization does not induce much loss on the final view quality until a significant degradation level. Improvements in disparity estimation and view synthesis algorithms are therefore still expected during the remaining standardization steps.

  13. Scale Space Graph Representation and Kernel Matching for Non Rigid and Textured 3D Shape Retrieval.

    PubMed

    Garro, Valeria; Giachetti, Andrea

    2016-06-01

    In this paper we introduce a novel framework for 3D object retrieval that relies on tree-based shape representations (TreeSha) derived from the analysis of the scale-space of the Auto Diffusion Function (ADF) and on specialized graph kernels designed for their comparison. By coupling maxima of the Auto Diffusion Function with the related basins of attraction, we can link the information at different scales encoding spatial relationships in a graph description that is isometry invariant and can easily incorporate texture and additional geometrical information as node and edge features. Using custom graph kernels it is then possible to estimate shape dissimilarities adapted to different specific tasks and on different categories of models, making the procedure a powerful and flexible tool for shape recognition and retrieval. Experimental results demonstrate that the method can provide retrieval scores similar or better than state-of-the-art on textured and non textured shape retrieval benchmarks and give interesting insights on effectiveness of different shape descriptors and graph kernels.

  14. Anticipatory Spatial Representation of 3D Regions Explored by Sighted Observers and a Deaf-and-Blind-Observer

    ERIC Educational Resources Information Center

    Intraub, Helene

    2004-01-01

    Viewers who study photographs of scenes tend to remember having seen beyond the boundaries of the view ["boundary extension"; J. Exp. Psychol. Learn. Mem. Cogn. 15 (1989) 179]. Is this a fundamental aspect of scene representation? Forty undergraduates explored bounded regions of six common (3D) scenes, visually or haptically (while blindfolded)…

  15. Solving Additive Problems at Pre-Elementary School Level with the Support of Graphical Representation

    ERIC Educational Resources Information Center

    Selva, Ana Coelho Vieira; Falcao, Jorge Tarcisio da Rocha; Nunes, Terezinha

    2005-01-01

    This research offers empirical evidence of the importance of supplying diverse symbolic representations in order to support concept development in mathematics. Graphical representation can be a helpful symbolic tool for concept development in the conceptual field of additive structures. Nevertheless, this symbolic tool has specific difficulties…

  16. How to Schedule Multiple Graphical Representations? A Classroom Experiment with an Intelligent Tutoring System for Fractions

    ERIC Educational Resources Information Center

    Rau, M. A.; Aleven, V.; Rummel, N.

    2011-01-01

    Graphical representations (GRs) of the learning content are often used for instruction (Ainsworth, 2006). When used in learning technology, GRs can be especially useful since they allow for interactions across representations that are physically impossible, for instance by dragging and dropping symbolic statements into a chart that automatically…

  17. Simplification of 3D Graphics for Mobile Devices: Exploring the Trade-off Between Energy Savings and User Perceptions of Visual Quality

    NASA Astrophysics Data System (ADS)

    Vatjus-Anttila, Jarkko; Koskela, Timo; Lappalainen, Tuomas; Häkkilä, Jonna

    2017-03-01

    3D graphics have quickly become a popular form of media that can also be accessed with today's mobile devices. However, the use of 3D applications with mobile devices is typically a very energy-consuming task due to the processing complexity and the large file size of 3D graphics. As a result, their use may lead to rapid depletion of the limited battery life. In this paper, we investigate how much energy savings can be gained in the transmission and rendering of 3D graphics by simplifying geometry data. In this connection, we also examine users' perceptions on the visual quality of the simplified 3D models. The results of this paper provide new knowledge on the energy savings that can be gained through geometry simplification, as well as on how much the geometry can be simplified before the visual quality of 3D models becomes unacceptable for the mobile users. Based on the results, it can be concluded that geometry simplification can provide significant energy savings for mobile devices without disturbing the users. When geometry simplification is combined with distance based adjustment of detail, up to 52% energy savings were gained in our experiments compared to using only a single high quality 3D model.

  18. Analyzing women's roles through graphic representation of narratives.

    PubMed

    Hall, Joanne M

    2003-08-01

    A 1992 triangulated international nursing study of women's health was reported. The researchers used the perspectives of feminism and symbolic interactionism, specifically role theory. A narrative analysis was done to clarify the concept of role integration. The narrative analysis was reported in 1992, but graphic/visual techniques used in the team dialogue process of narrative analysis were not reported due to space limitations. These techniques have not been reported elsewhere and thus remain innovative. Specific steps in the method are outlined here in detail as an audit trail. The process would be useful to other qualitative researchers as an exemplar of one novel way that verbal data can be abstracted visually/graphically. Suggestions are included for aspects of narrative, in addition to roles, that could be depicted graphically in qualitative research.

  19. Deformable modeling using a 3D boundary representation with quadratic constraints on the branching structure of the Blum skeleton.

    PubMed

    Yushkevich, Paul A; Zhang, Hui Gary

    2013-01-01

    We propose a new approach for statistical shape analysis of 3D anatomical objects based on features extracted from skeletons. Like prior work on medial representations, the approach involves deforming a template to target shapes in a way that preserves the branching structure of the skeleton and provides intersubject correspondence. However, unlike medial representations, which parameterize the skeleton surfaces explicitly, our representation is boundary-centric, and the skeleton is implicit. Similar to prior constrained modeling methods developed 2D objects or tube-like 3D objects, we impose symmetry constraints on tuples of boundary points in a way that guarantees the preservation of the skeleton's topology under deformation. Once discretized, the problem of deforming a template to a target shape is formulated as a quadratically constrained quadratic programming problem. The new technique is evaluated in terms of its ability to capture the shape of the corpus callosum tract extracted from diffusion-weighted MRI.

  20. Sinking & Floating: A Graphical Representation of the Concept Density

    ERIC Educational Resources Information Center

    Benedis-Grab, Gregory

    2006-01-01

    Density is a derived quantity that can be confusing for middle school students. In this article, the author describes how he used a graphical depiction of mass and volume to guide his sixth-grade students in understanding and applying this concept. In the activity, students collected various materials, then discussed and tested whether each of the…

  1. Multicultural Canada: A Graphic Overview = Un Canada Multicuturel: Representation Graphique.

    ERIC Educational Resources Information Center

    Ledoux, Michel; Pendakur, Ravi

    This graphic overview uses 28 bar and pie graphs to illustrate Canada's ethnic and linguistic diversity. Information was drawn primarily from 1986 census figures. The following categories are examined: (1) ethnic origin; (2) language; (3) visible minorities (nonwhites); (4) aboriginal peoples; and (5) immigration. Information is reported for the…

  2. Graphical Representation of University Image: A Correspondence Analysis.

    ERIC Educational Resources Information Center

    Yavas, Ugar; Shemwell, Donald J.

    1996-01-01

    Correspondence analysis, an easy-to-interpret interdependence technique, portrays data graphically to show associations of factors more clearly. A study used the technique with 58 students in one university to determine factors in college choice. Results identified the institution's closest competitors and its positioning in terms of college…

  3. Study on Information Management for the Conservation of Traditional Chinese Architectural Heritage - 3d Modelling and Metadata Representation

    NASA Astrophysics Data System (ADS)

    Yen, Y. N.; Weng, K. H.; Huang, H. Y.

    2013-07-01

    After over 30 years of practise and development, Taiwan's architectural conservation field is moving rapidly into digitalization and its applications. Compared to modern buildings, traditional Chinese architecture has considerably more complex elements and forms. To document and digitize these unique heritages in their conservation lifecycle is a new and important issue. This article takes the caisson ceiling of the Taipei Confucius Temple, octagonal with 333 elements in 8 types, as a case study for digitization practise. The application of metadata representation and 3D modelling are the two key issues to discuss. Both Revit and SketchUp were appliedin this research to compare its effectiveness to metadata representation. Due to limitation of the Revit database, the final 3D models wasbuilt with SketchUp. The research found that, firstly, cultural heritage databasesmustconvey that while many elements are similar in appearance, they are unique in value; although 3D simulations help the general understanding of architectural heritage, software such as Revit and SketchUp, at this stage, could onlybe used tomodel basic visual representations, and is ineffective indocumenting additional critical data ofindividually unique elements. Secondly, when establishing conservation lifecycle information for application in management systems, a full and detailed presentation of the metadata must also be implemented; the existing applications of BIM in managing conservation lifecycles are still insufficient. Results of the research recommends SketchUp as a tool for present modelling needs, and BIM for sharing data between users, but the implementation of metadata representation is of the utmost importance.

  4. Conceptual Learning with Multiple Graphical Representations: Intelligent Tutoring Systems Support for Sense-Making and Fluency-Building Processes

    ERIC Educational Resources Information Center

    Rau, Martina A.

    2013-01-01

    Most learning environments in the STEM disciplines use multiple graphical representations along with textual descriptions and symbolic representations. Multiple graphical representations are powerful learning tools because they can emphasize complementary aspects of complex learning contents. However, to benefit from multiple graphical…

  5. A real-time 3D end-to-end augmented reality system (and its representation transformations)

    NASA Astrophysics Data System (ADS)

    Tytgat, Donny; Aerts, Maarten; De Busser, Jeroen; Lievens, Sammy; Rondao Alface, Patrice; Macq, Jean-Francois

    2016-09-01

    The new generation of HMDs coming to the market is expected to enable many new applications that allow free viewpoint experiences with captured video objects. Current applications usually rely on 3D content that is manually created or captured in an offline manner. In contrast, this paper focuses on augmented reality applications that use live captured 3D objects while maintaining free viewpoint interaction. We present a system that allows live dynamic 3D objects (e.g. a person who is talking) to be captured in real-time. Real-time performance is achieved by traversing a number of representation formats and exploiting their specific benefits. For instance, depth images are maintained for fast neighborhood retrieval and occlusion determination, while implicit surfaces are used to facilitate multi-source aggregation for both geometry and texture. The result is a 3D reconstruction system that outputs multi-textured triangle meshes at real-time rates. An end-to-end system is presented that captures and reconstructs live 3D data and allows for this data to be used on a networked (AR) device. For allocating the different functional blocks onto the available physical devices, a number of alternatives are proposed considering the available computational power and bandwidth for each of the components. As we will show, the representation format can play an important role in this functional allocation and allows for a flexible system that can support a highly heterogeneous infrastructure.

  6. A Unified Graphical Representation of Chemical Thermodynamics and Equilibrium

    ERIC Educational Resources Information Center

    Hanson, Robert M.

    2012-01-01

    During the years 1873-1879, J. Willard Gibbs published his now-famous set of articles that form the basis of the current perspective on chemical thermodynamics. The second article of this series, "A Method of Geometrical Representation of the Thermodynamic Properties of Substances by Means of Surfaces," published in 1873, is particularly notable…

  7. Adaptive optimal quantization for 3D mesh representation in the spherical coordinate system

    NASA Astrophysics Data System (ADS)

    Ahn, Jeong-Hwan; Ho, Yo-Sung

    1998-12-01

    In recent days, applications using 3D models are increasing. Since the 3D model contains a huge amount of information, compression of the 3D model data is necessary for efficient storage or transmission. In this paper, we propose an adaptive encoding scheme to compress the geometry information of the 3D model. Using the Levinson-Durbin algorithm, the encoder first predicts vertex positions along a vertex spanning tree. After each prediction error is normalized, the prediction error vector of each vertex point is represented in the spherical coordinate system (r,(theta) ,(phi) ). Each r is then quantizes by an optimal uniform quantizer. A pair of each ((theta) ,(phi) ) is also successively encoded by partitioning the surface of the sphere according to the quantized value of r. The proposed scheme demonstrates improved coding efficiency by exploiting the statistical properties of r and ((theta) ,(phi) ).

  8. Uncertainty analysis in 3D global models: Aerosol representation in MOZART-4

    NASA Astrophysics Data System (ADS)

    Gasore, J.; Prinn, R. G.

    2012-12-01

    The Probabilistic Collocation Method (PCM) has been proven to be an efficient general method of uncertainty analysis in atmospheric models (Tatang et al 1997, Cohen&Prinn 2011). However, its application has been mainly limited to urban- and regional-scale models and chemical source-sink models, because of the drastic increase in computational cost when the dimension of uncertain parameters increases. Moreover, the high-dimensional output of global models has to be reduced to allow a computationally reasonable number of polynomials to be generated. This dimensional reduction has been mainly achieved by grouping the model grids into a few regions based on prior knowledge and expectations; urban versus rural for instance. As the model output is used to estimate the coefficients of the polynomial chaos expansion (PCE), the arbitrariness in the regional aggregation can generate problems in estimating uncertainties. To address these issues in a complex model, we apply the probabilistic collocation method of uncertainty analysis to the aerosol representation in MOZART-4, which is a 3D global chemical transport model (Emmons et al., 2010). Thereafter, we deterministically delineate the model output surface into regions of homogeneous response using the method of Principal Component Analysis. This allows the quantification of the uncertainty associated with the dimensional reduction. Because only a bulk mass is calculated online in Mozart-4, a lognormal number distribution is assumed with a priori fixed scale and location parameters, to calculate the surface area for heterogeneous reactions involving tropospheric oxidants. We have applied the PCM to the six parameters of the lognormal number distributions of Black Carbon, Organic Carbon and Sulfate. We have carried out a Monte-Carlo sampling from the probability density functions of the six uncertain parameters, using the reduced PCE model. The global mean concentration of major tropospheric oxidants did not show a

  9. Constructed vs. received graphical representations for learning about scientific controversy: Implications for learning and coaching

    NASA Astrophysics Data System (ADS)

    Cavalli-Sforza, Violetta Laura Maria

    Students in science classes hardly ever study scientific controversy, especially in terms of the different types of arguments used to support and criticize theories and hypotheses. Yet, learning the reasons for scientific debate and scientific change is an important part of appreciating the nature of the scientific enterprise and communicating it to the non-scientific world. This dissertation explores the usefulness of graphical representations in teaching students about scientific arguments. Subjects participating in an extended experiment studied instructional materials and used the Belvedere graphical interface to analyze texts drawn from an actual scientific debate. In one experimental condition, subjects used a box-and-arrow representation whose primitive graphical elements had preassigned meanings tailored to the domain of instruction. In the other experimental condition, subjects could use the graphical elements as they wished, thereby creating their own representation. The development of a representation, by forcing a deeper analysis, can potentially yield a greater understanding of the domain under study. The results of the research suggest two conclusions. From the perspective of learning target concepts, asking subjects to develop their own representation may not hurt those subjects who gain a sufficient understanding of the possibilities of abstract representation. The risks are much greater for less able subjects because, if they develop a representation that is inadequate for expressing the target concepts, they will use those concepts less or not at all. From the perspective of coaching subjects as they diagram their analysis of texts, a predefined representation has significant advantages. If it is appropriately expressive for the task, it provides a common language and clearer shared meaning between the subject and the coach. It also enables the coach to understand subjects' analysis more easily, and to evaluate it more effectively against the

  10. Cosine series representation of 3D curves and its application to white matter fiber bundles in diffusion tensor imaging

    PubMed Central

    Adluru, Nagesh; Lee, Jee Eun; Lazar, Mariana; Lainhart, Janet E.; Alexander, Andrew L.

    2011-01-01

    We present a novel cosine series representation for encoding fiber bundles consisting of multiple 3D curves. The coordinates of curves are parameterized as coefficients of cosine series expansion. We address the issue of registration, averaging and statistical inference on curves in a unified Hilbert space framework. Unlike traditional splines, the proposed method does not have internal knots and explicitly represents curves as a linear combination of cosine basis. This simplicity in the representation enables us to design statistical models, register curves and perform subsequent analysis in a more unified statistical framework than splines. The proposed representation is applied in characterizing abnormal shape of white matter fiber tracts passing through the splenium of the corpus callosum in autistic subjects. For an arbitrary tract, a 19 degree expansion is usually found to be sufficient to reconstruct the tract with 60 parameters. PMID:23316267

  11. A Graphical Filter/Flow Representation of Boolean Queries: A Prototype Implementation and Evaluation.

    ERIC Educational Resources Information Center

    Young, Degi; Shneiderman, Ben

    1993-01-01

    Literature showing the disadvantages of Boolean logic in online searching is reviewed, and research comparing the Filter/Flow visual interface (i.e., a graphical representation of Boolean operators) with a text-only interface is described. A significant difference in the total number of correct queries is reported that favored Filter/Flow. (16…

  12. Relational, Structural, and Semantic Analysis of Graphical Representations and Concept Maps

    ERIC Educational Resources Information Center

    Ifenthaler, Dirk

    2010-01-01

    The demand for good instructional environments presupposes valid and reliable analytical instruments for educational research. This paper introduces the "SMD Technology" (Surface, Matching, Deep Structure), which measures relational, structural, and semantic levels of graphical representations and concept maps. The reliability and validity of the…

  13. GRAPHICAL REPRESENTATIONS OF 1991 STEAM-ELECTRIC POWER PLANT OPERATION AND AIR EMISSIONS DATA

    EPA Science Inventory

    The report provides graphical representations of data derived from the U.S. Department of Energy's (DOE's) Energy Information Administration, s Form EIA-767 (Steam Electric Plant Operation and Design Report). or more than 10 years, EIA has collected monthly boiler level data from...

  14. Handling the Difficulties of Technical School Students in the Construction and Interpretation of Graphic Representations

    ERIC Educational Resources Information Center

    Marinos, Andreas

    2010-01-01

    In this work, an attempt is made to evaluate the errors that have to do with the interpretation and construction of graphic representations. Although the students are studying in the second year of technical high school (secondary education), i.e. in schools with an emphasis in technical subjects (post junior secondary), it is observed that they…

  15. Longer Bars for Bigger Numbers? Children's Usage and Understanding of Graphical Representations of Algebraic Problems

    ERIC Educational Resources Information Center

    Lee, Kerry; Khng, Kiat Hui; Ng, Swee Fong; Ng Lan Kong, Jeremy

    2013-01-01

    In Singapore, primary school students are taught to use bar diagrams to represent known and unknown values in algebraic word problems. However, little is known about students' understanding of these graphical representations. We investigated whether students use and think of the bar diagrams in a concrete or a more abstract fashion. We also…

  16. 2D-dynamic representation of DNA sequences as a graphical tool in bioinformatics

    NASA Astrophysics Data System (ADS)

    Bielińska-Wa̧Ż, D.; Wa̧Ż, P.

    2016-10-01

    2D-dynamic representation of DNA sequences is briefly reviewed. Some new examples of 2D-dynamic graphs which are the graphical tool of the method are shown. Using the examples of the complete genome sequences of the Zika virus it is shown that the present method can be applied for the study of the evolution of viral genomes.

  17. Graphic Representation of Organs and Organ Systems: Psychological View and Developmental Patterns

    ERIC Educational Resources Information Center

    Bartoszeck, Amauri Betini; Machado, Danielle Zagonel; Amann-Gainotti, Merete

    2011-01-01

    The objective of this exploratory study is to characterize by means of drawings if the developmental patterns in the graphic representation of organ and organ systems progresses related to age of participants. Secondly, whether there is an integration of sex organs into the internal body image. The drawings representing the inside of the body in…

  18. Graphical Representations and the Perception of Motion: Integrating Isomorphism through Kinesthesia into Physics Instruction

    ERIC Educational Resources Information Center

    Espinoza, Fernando

    2015-01-01

    The incorporation of engaging and meaningful learning experiences is essential for the enhancement of critical thinking and the development of scientific literacy. The study engaged several groups of students in activities designed to elicit their understanding of a graphical representation of motion, and to determine the kinesthetic effect of…

  19. The Representation of Cultural Heritage from Traditional Drawing to 3d Survey: the Case Study of Casamary's Abbey

    NASA Astrophysics Data System (ADS)

    Canciani, M.; Saccone, M.

    2016-06-01

    In 3D survey the aspects most discussed in the scientific community are those related to the acquisition of data from integrated survey (laser scanner, photogrammetric, topographic and traditional direct), rather than those relating to the interpretation of the data. Yet in the methods of traditional representation, the data interpretation, such as that of the philological reconstruction, constitutes the most important aspect. It is therefore essential in modern systems of survey and representation, filter the information acquired. In the system, based on the integrated survey that we have adopted, the 3D object, characterized by a cloud of georeferenced points, defined but their color values, defines the core of the elaboration. It allows to carry out targeted analysis, using section planes as a tool of selection and filtering data, comparable with those of traditional drawings. In the case study of the Abbey of Casamari (Veroli), one of the most important Cistercian Settlement in Italy, the survey made for an Agreement with the Ministry of Cultural Heritage and Activities and Tourism (MiBACT) and University of RomaTre, within the project "Accessment of the sismic safety of the state museum", the reference 3D model, consisting of the superposition and geo-references data from various surveys, is the tool with which yo develop representative models comparable to traditional ones. It provides the necessary spatial environment for drawing up plans and sections with a definition such as to develop thematic analysis related to phases of construction, state of deterioration and structural features.

  20. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The Apollo implementation of PLOT3D uses some of the capabilities of

  1. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The Apollo implementation of PLOT3D uses some of the capabilities of

  2. Representation and visualization of variability in a 3D anatomical atlas using the kidney as an example

    NASA Astrophysics Data System (ADS)

    Hacker, Silke; Handels, Heinz

    2006-03-01

    Computer-based 3D atlases allow an interactive exploration of the human body. However, in most cases such 3D atlases are derived from one single individual, and therefore do not regard the variability of anatomical structures concerning their shape and size. Since the geometric variability across humans plays an important role in many medical applications, our goal is to develop a framework of an anatomical atlas for representation and visualization of the variability of selected anatomical structures. The basis of the project presented is the VOXEL-MAN atlas of inner organs that was created from the Visible Human data set. For modeling anatomical shapes and their variability we utilize "m-reps" which allow a compact representation of anatomical objects on the basis of their skeletons. As an example we used a statistical model of the kidney that is based on 48 different variants. With the integration of a shape description into the VOXEL-MAN atlas it is now possible to query and visualize different shape variations of an organ, e.g. by specifying a person's age or gender. In addition to the representation of individual shape variants, the average shape of a population can be displayed. Besides a surface representation, a volume-based representation of the kidney's shape variants is also possible. It results from the deformation of the reference kidney of the volume-based model using the m-rep shape description. In this way a realistic visualization of the shape variants becomes possible, as well as the visualization of the organ's internal structures.

  3. Dynamic shape modeling of the mitral valve from real-time 3D ultrasound images using continuous medial representation

    NASA Astrophysics Data System (ADS)

    Pouch, Alison M.; Yushkevich, Paul A.; Jackson, Benjamin M.; Gorman, Joseph H., III; Gorman, Robert C.; Sehgal, Chandra M.

    2012-03-01

    Purpose: Patient-specific shape analysis of the mitral valve from real-time 3D ultrasound (rt-3DUS) has broad application to the assessment and surgical treatment of mitral valve disease. Our goal is to demonstrate that continuous medial representation (cm-rep) is an accurate valve shape representation that can be used for statistical shape modeling over the cardiac cycle from rt-3DUS images. Methods: Transesophageal rt-3DUS data acquired from 15 subjects with a range of mitral valve pathology were analyzed. User-initialized segmentation with level sets and symmetric diffeomorphic normalization delineated the mitral leaflets at each time point in the rt-3DUS data series. A deformable cm-rep was fitted to each segmented image of the mitral leaflets in the time series, producing a 4D parametric representation of valve shape in a single cardiac cycle. Model fitting accuracy was evaluated by the Dice overlap, and shape interpolation and principal component analysis (PCA) of 4D valve shape were performed. Results: Of the 289 3D images analyzed, the average Dice overlap between each fitted cm-rep and its target segmentation was 0.880+/-0.018 (max=0.912, min=0.819). The results of PCA represented variability in valve morphology and localized leaflet thickness across subjects. Conclusion: Deformable medial modeling accurately captures valve geometry in rt-3DUS images over the entire cardiac cycle and enables statistical shape analysis of the mitral valve.

  4. Average Cross-Sectional Area of DebriSat Fragments Using Volumetrically Constructed 3D Representations

    NASA Technical Reports Server (NTRS)

    Scruggs, T.; Moraguez, M.; Patankar, K.; Fitz-Coy, N.; Liou, J.-C.; Sorge, M.; Huynh, T.

    2016-01-01

    Debris fragments from the hypervelocity impact testing of DebriSat are being collected and characterized for use in updating existing satellite breakup models. One of the key parameters utilized in these models is the ballistic coefficient of the fragment which is directly related to its area-to-mass ratio. However, since the attitude of fragments varies during their orbital lifetime, it is customary to use the average cross-sectional area in the calculation of the area-to-mass ratio. The average cross-sectional area is defined as the average of the projected surface areas perpendicular to the direction of motion and has been shown to be equal to one-fourth of the total surface area of a convex object. Unfortunately, numerous fragments obtained from the DebriSat experiment show significant concavity (i.e., shadowing) and thus we have explored alternate methods for computing the average cross-sectional area of the fragments. An imaging system based on the volumetric reconstruction of a 3D object from multiple 2D photographs of the object was developed for use in determining the size characteristic (i.e., characteristics length) of the DebriSat fragments. For each fragment, the imaging system generates N number of images from varied azimuth and elevation angles and processes them using a space-carving algorithm to construct a 3D point cloud of the fragment. This paper describes two approaches for calculating the average cross-sectional area of debris fragments based on the 3D imager. Approach A utilizes the constructed 3D object to generate equally distributed cross-sectional area projections and then averages them to determine the average cross-sectional area. Approach B utilizes a weighted average of the area of the 2D photographs to directly compute the average cross-sectional area. A comparison of the accuracy and computational needs of each approach is described as well as preliminary results of an analysis to determine the "optimal" number of images needed for

  5. Research on the Dynamic Problems of 3D Cross Coupling Quantum Harmonic Oscillator by Virtue of Intermediate Representation | x> λ, ν

    NASA Astrophysics Data System (ADS)

    Xu, Shi-Min; Xu, Xing-Lei; Li, Hong-Qi

    2008-06-01

    The intermediate representation (namely intermediate coordinate-momentum representation) | x> λ, ν are introduced and employed to research the expression of the operator tauhat{p}+σhat{x} in intermediate representation | x> λ, ν . The systematic Hamilton operator hat{H} of 3D cross coupling quantum harmonic oscillator was diagonalized by virtue of quadratic form theory. The quantity of λ, ν, τand σ were figured out. The dynamic problems of 3D cross coupling quantum harmonic oscillator are researched by virtue of intermediate representation. The energy eigen-value and eigenwave function of 3D cross coupling quantum harmonic oscillator were obtained in intermediate representation. The importance of intermediate representation was discussed. The results show that the Radon transformation of Wigner operator is just the projectional operator | x> λ, ν λ, ν < x|, and the Radon transformation of Wigner function is just a margin distribution.

  6. A 3D sequence-independent representation of the protein data bank.

    PubMed

    Fischer, D; Tsai, C J; Nussinov, R; Wolfson, H

    1995-10-01

    Here we address the following questions. How many structurally different entries are there in the Protein Data Bank (PDB)? How do the proteins populate the structural universe? To investigate these questions a structurally non-redundant set of representative entries was selected from the PDB. Construction of such a dataset is not trivial: (i) the considerable size of the PDB requires a large number of comparisons (there were more than 3250 structures of protein chains available in May 1994); (ii) the PDB is highly redundant, containing many structurally similar entries, not necessarily with significant sequence homology, and (iii) there is no clear-cut definition of structural similarity. The latter depend on the criteria and methods used. Here, we analyze structural similarity ignoring protein topology. To date, representative sets have been selected either by hand, by sequence comparison techniques which ignore the three-dimensional (3D) structures of the proteins or by using sequence comparisons followed by linear structural comparison (i.e. the topology, or the sequential order of the chains, is enforced in the structural comparison). Here we describe a 3D sequence-independent automated and efficient method to obtain a representative set of protein molecules from the PDB which contains all unique structures and which is structurally non-redundant. The method has two novel features. The first is the use of strictly structural criteria in the selection process without taking into account the sequence information. To this end we employ a fast structural comparison algorithm which requires on average approximately 2 s per pairwise comparison on a workstation. The second novel feature is the iterative application of a heuristic clustering algorithm that greatly reduces the number of comparisons required. We obtain a representative set of 220 chains with resolution better than 3.0 A, or 268 chains including lower resolution entries, NMR entries and models. The

  7. Status of the phenomena representation, 3D modeling, and cloud-based software architecture development

    SciTech Connect

    Smith, Curtis L.; Prescott, Steven; Kvarfordt, Kellie; Sampath, Ram; Larson, Katie

    2015-09-01

    Early in 2013, researchers at the Idaho National Laboratory outlined a technical framework to support the implementation of state-of-the-art probabilistic risk assessment to predict the safety performance of advanced small modular reactors. From that vision of the advanced framework for risk analysis, specific tasks have been underway in order to implement the framework. This report discusses the current development of a several tasks related to the framework implementation, including a discussion of a 3D physics engine that represents the motion of objects (including collision and debris modeling), cloud-based analysis tools such as a Bayesian-inference engine, and scenario simulations. These tasks were performed during 2015 as part of the technical work associated with the Advanced Reactor Technologies Program.

  8. Cognitive/emotional models for human behavior representation in 3D avatar simulations

    NASA Astrophysics Data System (ADS)

    Peterson, James K.

    2004-08-01

    Simplified models of human cognition and emotional response are presented which are based on models of auditory/ visual polymodal fusion. At the core of these models is a computational model of Area 37 of the temporal cortex which is based on new isocortex models presented recently by Grossberg. These models are trained using carefully chosen auditory (musical sequences), visual (paintings) and higher level abstract (meta level) data obtained from studies of how optimization strategies are chosen in response to outside managerial inputs. The software modules developed are then used as inputs to character generation codes in standard 3D virtual world simulations. The auditory and visual training data also enable the development of simple music and painting composition generators which significantly enhance one's ability to validate the cognitive model. The cognitive models are handled as interacting software agents implemented as CORBA objects to allow the use of multiple language coding choices (C++, Java, Python etc) and efficient use of legacy code.

  9. SEISVIZ3D: Stereoscopic system for the representation of seismic data - Interpretation and Immersion

    NASA Astrophysics Data System (ADS)

    von Hartmann, Hartwig; Rilling, Stefan; Bogen, Manfred; Thomas, Rüdiger

    2015-04-01

    The seismic method is a valuable tool for getting 3D-images from the subsurface. Seismic data acquisition today is not only a topic for oil and gas exploration but is used also for geothermal exploration, inspections of nuclear waste sites and for scientific investigations. The system presented in this contribution may also have an impact on the visualization of 3D-data of other geophysical methods. 3D-seismic data can be displayed in different ways to give a spatial impression of the subsurface.They are a combination of individual vertical cuts, possibly linked to a cubical portion of the data volume, and the stereoscopic view of the seismic data. By these methods, the spatial perception for the structures and thus of the processes in the subsurface should be increased. Stereoscopic techniques are e. g. implemented in the CAVE and the WALL, both of which require a lot of space and high technical effort. The aim of the interpretation system shown here is stereoscopic visualization of seismic data at the workplace, i.e. at the personal workstation and monitor. The system was developed with following criteria in mind: • Fast rendering of large amounts of data so that a continuous view of the data when changing the viewing angle and the data section is possible, • defining areas in stereoscopic view to translate the spatial impression directly into an interpretation, • the development of an appropriate user interface, including head-tracking, for handling the increased degrees of freedom, • the possibility of collaboration, i.e. teamwork and idea exchange with the simultaneous viewing of a scene at remote locations. The possibilities offered by the use of a stereoscopic system do not replace a conventional interpretation workflow. Rather they have to be implemented into it as an additional step. The amplitude distribution of the seismic data is a challenge for the stereoscopic display because the opacity level and the scaling and selection of the data have to

  10. High Resolution Ultrasonic Method for 3D Fingerprint Representation in Biometrics

    NASA Astrophysics Data System (ADS)

    Maev, R. Gr.; Bakulin, E. Y.; Maeva, E. Y.; Severin, F. M.

    Biometrics is an important field which studies different possible ways of personal identification. Among a number of existing biometric techniques fingerprint recognition stands alone - because very large database of fingerprints has already been acquired. Also, fingerprints are an important evidence that can be collected at a crime scene. Therefore, of all automated biometric techniques, especially in the field of law enforcement, fingerprint identification seems to be the most promising. Ultrasonic method of fingerprint imaging was originally introduced over a decade as the mapping of the reflection coefficient at the interface between the finger and a covering plate and has shown very good reliability and free from imperfections of previous two methods. This work introduces a newer development of the ultrasonic fingerprint imaging, focusing on the imaging of the internal structures of fingerprints (including sweat pores) with raw acoustic resolution of about 500 dpi (0.05 mm) using a scanning acoustic microscope to obtain images and acoustic data in the form of 3D data array. C-scans from different depths inside the fingerprint area of fingers of several volunteers were obtained and showed good contrast of ridges-and-valleys patterns and practically exact correspondence to the standard ink-and-paper prints of the same areas. Important feature reveled on the acoustic images was the clear appearance of the sweat pores, which could provide additional means of identification.

  11. On the uniqueness of quantitative DNA difference descriptors in 2D graphical representation models

    NASA Astrophysics Data System (ADS)

    Nandy, A.; Nandy, P.

    2003-01-01

    The rapid growth in additions to databases of DNA primary sequence data have led to searches for methods to numerically characterize these data and help in fast identification and retrieval of relevant sequences. The DNA descriptors derived from the 2D graphical representation technique have already been proposed to index chemical toxicity and single nucleotide polymorphic (SNP) genes but the inherent degeneracies in this representation have given rise to doubts about their suitability. We prove in this paper that such degeneracies will exist only in very restricted cases and that the method can be relied upon to provide unique descriptors for, in particular, the SNP genes and several other classes of DNA sequences.

  12. Compact Graphical Representation of Phylogenetic Data and Metadata with GraPh1An

    DTIC Science & Technology

    2016-09-12

    Francesco Asnicar1, George Weingart2, Timothy L. Tickle3, Curtis Huttenhower2,3 and Nicola Segata1 1 Centre for Integrative Biology (CIBIO), University of...Computational Biology , Genomics, Microbiology Keywords Phylogenetic visualization, Graphical representation, Phylogenomics, Metagenomics INTRODUCTION...grant agreement no PCIG13-GA-2013-618833, startup funds from the Centre for Integrative Biology (University of Trento), by MIUR “Futuro in Ricerca

  13. User's Guide for Subroutine PLOT3D. Physical Processes in Terrestrial and Aquatic Ecosystems, Computer Programs and Graphics Capabilities.

    ERIC Educational Resources Information Center

    Gales, Larry

    This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. PLOT3D is a subroutine package which generates a variety of three dimensional hidden…

  14. Programmer's Guide for Subroutine PLOT3D. Physical Processes in Terrestrial and Aquatic Ecosystems, Computer Programs and Graphics Capabilities.

    ERIC Educational Resources Information Center

    Gales, Larry

    This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. PLOT3D is a subroutine package which generates a variety of three-dimensional hidden…

  15. User's Guide for Subroutine PRNT3D. Physical Processes in Terrestrial and Aquatic Ecosystems, Computer Programs and Graphics Capabilities.

    ERIC Educational Resources Information Center

    Gales, Larry

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. PRNT3D is a subroutine package which generates a variety of printer plot displays. The displays…

  16. Programmer's Guide for Subroutine PRNT3D. Physical Processes in Terrestrial and Aquatic Ecosystems, Computer Programs and Graphics Capabilities.

    ERIC Educational Resources Information Center

    Gales, Larry

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. PRNT3D is a subroutine package which generates a variety of printed plot displays. The displays…

  17. A Novel Multi-Purpose Matching Representation of Local 3D Surfaces: A Rotationally Invariant, Efficient, and Highly Discriminative Approach With an Adjustable Sensitivity.

    PubMed

    Al-Osaimi, Faisal R

    2016-02-01

    In this paper, a novel approach to local 3D surface matching representation suitable for a range of 3D vision applications is introduced. Local 3D surface patches around key points on the 3D surface are represented by 2D images such that the representing 2D images enjoy certain characteristics which positively impact the matching accuracy, robustness, and speed. First, the proposed representation is complete, in the sense, there is no information loss during their computation. Second, the 3DoF 2D representations are strictly invariant to all the 3DoF rotations. To optimally avail surface information, the sensitivity of the representations to surface information is adjustable. This also provides the proposed matching representation with the means to optimally adjust to a particular class of problems/applications or an acquisition technology. Each 2D matching representation is a sequence of adjustable integral kernels, where each kernel is efficiently computed from a triple of precise 3D curves (profiles) formed by intersecting three concentric spheres with the 3D surface. Robust techniques for sampling the profiles and establishing correspondences among them were devised. Based on the proposed matching representation, two techniques for the detection of key points were presented. The first is suitable for static images, while the second is suitable for 3D videos. The approach was tested on the face recognition grand challenge v2.0, the 3D twins expression challenge, and the Bosphorus data sets, and a superior face recognition performance was achieved. In addition, the proposed approach was used in object class recognition and tested on a Kinect data set.

  18. A graphically oriented specification language for automatic code generation. GRASP/Ada: A Graphical Representation of Algorithms, Structure, and Processes for Ada, phase 1

    NASA Technical Reports Server (NTRS)

    Cross, James H., II; Morrison, Kelly I.; May, Charles H., Jr.; Waddel, Kathryn C.

    1989-01-01

    The first phase of a three-phase effort to develop a new graphically oriented specification language which will facilitate the reverse engineering of Ada source code into graphical representations (GRs) as well as the automatic generation of Ada source code is described. A simplified view of the three phases of Graphical Representations for Algorithms, Structure, and Processes for Ada (GRASP/Ada) with respect to three basic classes of GRs is presented. Phase 1 concentrated on the derivation of an algorithmic diagram, the control structure diagram (CSD) (CRO88a) from Ada source code or Ada PDL. Phase 2 includes the generation of architectural and system level diagrams such as structure charts and data flow diagrams and should result in a requirements specification for a graphically oriented language able to support automatic code generation. Phase 3 will concentrate on the development of a prototype to demonstrate the feasibility of this new specification language.

  19. Natural frequencies and mode shapes of an automotive tire with interpretation and classification using 3-D computer graphics

    NASA Astrophysics Data System (ADS)

    Kung, L. E.; Soedel, W.; Yang, T. Y.; Charek, L. T.

    1985-10-01

    Natural frequencies and mode shapes of a radial tire have been obtained by using an efficient, 12 degree of freedom, doubly curved thin shell finite element of revolution with smeared-out properties of laminate composite materials. The finite element formulation includes the geometrical non-linearities so that the prestressed state of the tire due to inflation is taken into account. While the basic formulation follows that of earlier work done at Purdue University, a general and efficient computational procedure and program have been developed, with a main feature being integration with computer graphics. Thus the complex tire geometry can be modeled more accurately and the free vibration mode shapes can be displayed graphically. This allows an interpretation and classification of mode shapes beyond the classical mode shapes of tires that have been presented in the literature. It allows further insight into the relationship between transverse and tangential motions beyond what has been conceived at the present state of the art of experimentation. Theoretical results are compared with experimental results obtained from modal analysis and good agreement is shown.

  20. The Use of 3D Graphic Modelling in Geoarchaeological Investigations (Bykowszczyzna Archaeological Site near Kock, E Poland)

    NASA Astrophysics Data System (ADS)

    Łojek, Jacek

    2012-01-01

    The objective of this paper was to use the ArcView 3.2 application for spatial modelling of the exploration forms (pits) in the Bykowszczyzna 8 archaeological site. The 3D digital documentation at a specific scale makes possible easy archiving, presentation, and simple spatial analyses of the examined objects. The ArcView 3.2 programme and its extensions (Spatial Analyst and 3D Analyst), commonly used as analytical tools in geomorphology, were inventively used for inventory-making in the archaeological site. Traditional field sketches were only a base, which enables entering data into the programme, and don't documentation material in itself as it used to be. The method of data visual ization proposed by the author gives new possibilities for using the GIS platform software. W artykule zaprezentowano projekt wykorzystania aplikacji ArcView 3.2 w modelowaniu obrazu form eksploracyjnych na stanowisku archeologicznym Bykowszczyzna 8. Stanowisko zostało objęte programem ratowniczych badań archeologicznych w związku z budową obwodnicy miasta Kocka na trasie krajowej nr 19 relacji Siemiatycze-Lublin-Nisko. Zasadniczy etap prac archeologicznych na stanowisku Bykowszczyzna 8 obejmował pozyskanie oraz inwentaryzację materiału zabytkowego wypełniającego formy. W wyniku wybrania tego materiału, w obszarze stanowiska pozostają charakterystyczne jamy gospodarcze, które stanowią negatywowy obraz wypełnienia formy. Kształt jam jest dokumentowany w postaci szkiców oraz fotografii. Dokumentacja ta stanowi punkt wyjścia procesu digitalizacji (materiał źródłowy). Treścią artykułu jest sporządzenie cyfrowej dokumentacji zawierającej plany stanowiska w kilku poziomach szczegółowości (dla pasa, pola oraz pojedynczych form) oraz wygenerowanie modeli w standardzie 3D. Dokumentacja taka umożliwia łatwą archiwizację oraz czytelną prezentację wybranych obiektów. Możliwe jest również wykonanie analiz przestrzennych. Funkcje programu ArcView 3.2. oraz

  1. Graphical Representation of the Effects of Antenna Locations on Path Loss Data

    NASA Technical Reports Server (NTRS)

    Jafri, Madiha; Ely, Jay; Vahala, Linda

    2003-01-01

    The use of portable wireless technology has increased dramatically over the past few years. This increased use has caused a heightened concern for electromagnetic interference from wireless-enabled technologies, such as laptop computers and cellular phones to aircraft communication and navigation radios. Researchers at NASA Langley Research Center, United Airlines and Eagles Wings Incorporated, have tested and collected interference path loss data on a United Airlines out-of-service B737 aircraft near Victorville, CA. This paper summarizes the results found from the measured data sets as well as includes graphical representations of the interference path loss data on a B737 plane with different system antennas.

  2. Extracellular vesicles of calcifying turkey leg tendon characterized by immunocytochemistry and high voltage electron microscopic tomography and 3-D graphic image reconstruction

    NASA Technical Reports Server (NTRS)

    Landis, W. J.; Hodgens, K. J.; McKee, M. D.; Nanci, A.; Song, M. J.; Kiyonaga, S.; Arena, J.; McEwen, B.

    1992-01-01

    To gain insight into the structure and possible function of extracellular vesicles in certain calcifying vertebrate tissues, normally mineralizing leg tendons from the domestic turkey, Meleagris gallopavo, have been studied in two separate investigations, one concerning the electron microscopic immunolocalization of the 66 kDa phosphoprotein, osteopontin, and the other detailing the organization and distribution of mineral crystals associated with the vesicles as determined by high voltage microscopic tomography and 3-D graphic image reconstruction. Immunolabeling shows that osteopontin is related to extracellular vesicles of the tendon in the sense that its initial presence appears coincident with the development of mineral associated with the vesicle loci. By high voltage electron microscopy and 3-D imaging techniques, mineral crystals are found to consist of small irregularly shaped particles somewhat randomly oriented throughout individual vesicles sites. Their appearance is different from that found for the mineral observed within calcifying tendon collagen, and their 3-D disposition is not regularly ordered. Possible spatial and temporal relationships of vesicles, osteopontin, mineral, and collagen are being examined further by these approaches.

  3. Impact of representational systems on color selections for graphic user interfaces

    SciTech Connect

    Brown-VanHoozer, S.A.; Brownson, L.W.

    1996-04-01

    This paper is based on a study involving representational systems and color preference on graphic user interfaces (GUI). The study is an extension of a general exploratory experiment (GEE) conducted in October of 1993, wherein individuals` favored sensory representational systems (visual, auditory and kinesthetic) (FRS) were compared to their GUI comfort parameters. The results of the study show that an individual`s FRS is a significant factor in their acceptance of a GUI design, and that further in-depth study of the various display attributes to an individual`s FRS is required. This research is the first in the series of follow-up studies to be conducted regarding specific characteristics of GUI (i.e., fonts, character density, etc.) with respect to an individual`s FRS. The study focus on the attribute of color preferences for GUI design.

  4. Graphics

    ERIC Educational Resources Information Center

    Post, Susan

    1975-01-01

    An art teacher described an elective course in graphics which was designed to enlarge a student's knowledge of value, color, shape within a shape, transparency, line and texture. This course utilized the technique of working a multi-colored print from a single block that was first introduced by Picasso. (Author/RK)

  5. FastScript3D - A Companion to Java 3D

    NASA Technical Reports Server (NTRS)

    Koenig, Patti

    2005-01-01

    FastScript3D is a computer program, written in the Java 3D(TM) programming language, that establishes an alternative language that helps users who lack expertise in Java 3D to use Java 3D for constructing three-dimensional (3D)-appearing graphics. The FastScript3D language provides a set of simple, intuitive, one-line text-string commands for creating, controlling, and animating 3D models. The first word in a string is the name of a command; the rest of the string contains the data arguments for the command. The commands can also be used as an aid to learning Java 3D. Developers can extend the language by adding custom text-string commands. The commands can define new 3D objects or load representations of 3D objects from files in formats compatible with such other software systems as X3D. The text strings can be easily integrated into other languages. FastScript3D facilitates communication between scripting languages [which enable programming of hyper-text markup language (HTML) documents to interact with users] and Java 3D. The FastScript3D language can be extended and customized on both the scripting side and the Java 3D side.

  6. Graphical Representations for the Successive Lorentz Transformations. Application: Lorentz Contraction and Its Dependence on Thomas Rotation

    NASA Astrophysics Data System (ADS)

    Chamseddine, Riad

    2016-04-01

    A new vectorial representation for the successive Lorentz transformations (SLT) has recently been proved very convenient to achieve a straightforward treatment of the Thomas rotation effect. Such a representation rests on equivalent forms for the pure Lorentz transformation (PLT) and SLT whose physical meaning escaped us. The present paper fills this gap in by showing that those equivalent forms could represent appropriate world lines, lines and planes of simultaneity. Those geometric elements are particularly convenient to build up two new graphical representations for the SLT: the first rests on that equivalent form for the SLT, while the second takes the SLT as a PLT preceded or followed by a Thomas rotation and uses the equivalent form for the PLT. As an application, the SLT Lorentz contraction (SLTLC) formulas are derived for the first time. The dependence of the SLTLC on the Thomas rotation is put in evidence. The SLTLC along directions transverse and parallel to the composite velocity is studied. Original SLT Minkowski diagrams are given for the first time.

  7. A Multiresolution Graphical Representation for Similarity Relationship and Multiresolution Clustering for Biological Sequences.

    PubMed

    Yang, Lianping; Zhang, Weilin

    2017-04-01

    How we can describe the similarity relationship between the biological sequences is a basic but important problem in bioinformatics. The first graphical representation method for the similarity relationship rather than for single sequence is proposed in this article, which makes the similarity intuitional. Some properties such as sensitivity and continuity of the similarity are proved theoretically, which indicate that the similarity describer has the advantage of both alignment and alignment-free methods. With the aid of multiresolution analysis tools, we can exhibit the similarity's different profiles, from high resolution to low resolution. Then the idea of multiresolution clustering is raised first. A reassortment analysis on a benchmark flu virus genome data set is to test our method and it shows a better performance than alignment method, especially in dealing with problems involving segments' order.

  8. Evaluating the Effectiveness of Organic Chemistry Textbooks in Promoting Representational Fluency and Understanding of 2D-3D Diagrammatic Relationships

    ERIC Educational Resources Information Center

    Kumi, Bryna C.; Olimpo, Jeffrey T.; Bartlett, Felicia; Dixon, Bonnie L.

    2013-01-01

    The use of two-dimensional (2D) representations to communicate and reason about micromolecular phenomena is common practice in chemistry. While experts are adept at using such representations, research suggests that novices often exhibit great difficulty in understanding, manipulating, and translating between various representational forms. When…

  9. Comparison of 3D representations depicting micro folds: overlapping imagery vs. time-of-flight laser scanner

    NASA Astrophysics Data System (ADS)

    Vaiopoulos, Aristidis D.; Georgopoulos, Andreas; Lozios, Stylianos G.

    2012-10-01

    A relatively new field of interest, which continuously gains grounds nowadays, is digital 3D modeling. However, the methodologies, the accuracy and the time and effort required to produce a high quality 3D model have been changing drastically the last few years. Whereas in the early days of digital 3D modeling, 3D models were only accessible to computer experts in animation, working many hours in expensive sophisticated software, today 3D modeling has become reasonably fast and convenient. On top of that, with online 3D modeling software, such as 123D Catch, nearly everyone can produce 3D models with minimum effort and at no cost. The only requirement is panoramic overlapping images, of the (still) objects the user wishes to model. This approach however, has limitations in the accuracy of the model. An objective of the study is to examine these limitations by assessing the accuracy of this 3D modeling methodology, with a Terrestrial Laser Scanner (TLS). Therefore, the scope of this study is to present and compare 3D models, produced with two different methods: 1) Traditional TLS method with the instrument ScanStation 2 by Leica and 2) Panoramic overlapping images obtained with DSLR camera and processed with 123D Catch free software. The main objective of the study is to evaluate advantages and disadvantages of the two 3D model producing methodologies. The area represented with the 3D models, features multi-scale folding in a cipollino marble formation. The most interesting part and most challenging to capture accurately, is an outcrop which includes vertically orientated micro folds. These micro folds have dimensions of a few centimeters while a relatively strong relief is evident between them (perhaps due to different material composition). The area of interest is located in Mt. Hymittos, Greece.

  10. Graphic jokes and children's mind: an unusual way to approach children's representational activity.

    PubMed

    Puche-Navarro, Rebeca

    2004-09-01

    The purpose of this study was to examine the development of representational activity through the comprehension of graphic jokes in 2, 3 and 4-year-old children. In experiment 1 we worked with three kinds of jokes, specifically mentalistic jokes, jokes based on substitution and complex jokes. We found differentiated performances on each kind of joke, as had been expected based on the semiological analysis of the jokes prior to the experiment. The earliest comprehension, at 3 years old, occurred with mentalistic jokes where more than 70% of the total sample was successful. The substitution jokes reached 47% in the three-year-old subjects, and the latest kind of joke to be understood by this group were the complex jokes, with only 31% comprehension. In experiment 2 we wanted to specify the cognitive functioning that was taking place in the comprehension of mentalistic jokes. We found similar successful performances in two mentalistic jokes with both the 3 and 4 year-olds in the study. Children's performances were analyzed from the point of view of processes of redescription which were involved in the understanding of the jokes. We conclude that humor tasks are appropriate instruments to examine development of children's representational abilities.

  11. Inter-Level Scaffolding and Sequences of Representational Activities in Teaching a Chemical System with Graphical Simulations

    ERIC Educational Resources Information Center

    Li, Na; Black, John B.

    2016-01-01

    Chemistry knowledge can be represented at macro-, micro- and symbolic levels, and learning a chemistry topic requires students to engage in multiple representational activities. This study focused on scaffolding for inter-level connection-making in learning chemistry knowledge with graphical simulations. We also tested whether different sequences…

  12. "No One's the Boss of My Painting:" A Model of the Early Development of Artistic Graphic Representation

    ERIC Educational Resources Information Center

    Louis, Linda

    2013-01-01

    This article reports on the most recent phase of an ongoing research program that examines the artistic graphic representational behavior and paintings of children between the ages of four and seven. The goal of this research program is to articulate a contemporary account of artistic growth and to illuminate how young children's changing…

  13. Brain Activity Associated with Translation between Graphical and Symbolic Representations of Functions in Generally Gifted and Excelling in Mathematics Adolescents

    ERIC Educational Resources Information Center

    Waisman, Ilana; Leikin, Mark; Shaul, Shelley; Leikin, Roza

    2014-01-01

    In this study, we examine the impact and the interplay of general giftedness (G) and excellence in mathematics (EM) on high school students' mathematical performance associated with translations from graphical to symbolic representations of functions, as reflected in cortical electrical activity (by means of ERP--event-related…

  14. A computer-controlled near-field electrospinning setup and its graphic user interface for precision patterning of functional nanofibers on 2D and 3D substrates.

    PubMed

    Bisht, Gobind; Nesterenko, Sergiy; Kulinsky, Lawrence; Madou, Marc

    2012-08-01

    Electrospinning is a versatile technique for production of nanofibers. However, it lacks the precision and control necessary for fabrication of nanofiber-based devices. The positional control of the nanofiber placement can be dramatically improved using low-voltage near-field electrospinning (LV-NFES). LV-NFES allows nanofibers to be patterned on 2D and 3D substrates. However, use of NFES requires low working distance between the electrospinning nozzle and substrate, manual jet initiation, and precise substrate movement to control fiber deposition. Environmental factors such as humidity also need to be controlled. We developed a computer-controlled automation strategy for LV-NFES to improve performance and reliability. With this setup, the user is able to control the relevant sensor and actuator parameters through a custom graphic user interface application programmed on the C#.NET platform. The stage movement can be programmed as to achieve any desired nanofiber pattern and thickness. The nanofiber generation step is initiated through a software-controlled linear actuator. Parameter setting files can be saved into an Excel sheet and can be used subsequently in running multiple experiments. Each experiment is automatically video recorded and stamped with the pertinent real-time parameters. Humidity is controlled with ±3% accuracy through a feedback loop. Further improvements, such as real-time droplet size control for feed rate regulation are in progress.

  15. Graphical representation and mathematical characterization of protein sequences and applications to viral proteins.

    PubMed

    Ghosh, Ambarnil; Nandy, Ashesh

    2011-01-01

    Graphical representation and numerical characterization (GRANCH) of nucleotide and protein sequences is a new field that is showing a lot of promise in analysis of such sequences. While formulation and applications of GRANCH techniques for DNA/RNA sequences started just over a decade ago, analyses of protein sequences by these techniques are of more recent origin. The emphasis is still on developing the underlying technique, but significant results have been achieved in using these methods for protein phylogeny, mass spectral data of proteins and protein serum profiles in parasites, toxicoproteomics, determination of different indices for use in QSAR studies, among others. We briefly mention these in this chapter, with some details on protein phylogeny and viral diseases. In particular, we cover a systematic method developed in GRANCH to determine conserved surface exposed peptide segments in selected viral proteins that can be used for drug and vaccine targeting. The new GRANCH techniques and applications for DNAs and proteins are covered briefly to provide an overview to this nascent field.

  16. Symbolic and graphical representation scheme for sensors deployed in large-scale structures.

    PubMed

    Park, Hyo Seon; Shin, Yunah; Choi, Se Woon; Kim, Yousok

    2013-07-31

    As wireless sensor network (WSN)-based structural health monitoring (SHM) systems are increasingly being employed in civil infrastructures and building structures, the management of large numbers of sensing devices and the large amount of data acquired from WSNs will become increasingly difficult unless systematic expressions of the sensor network are provided. This study introduces a practical WSN for SHM that consists of sensors, wireless sensor nodes, repeater nodes, master nodes, and monitoring servers. This study also proposes a symbolic and graphical representation scheme (SGRS) for this system, in which the communication relationships and respective location information of the distributed sensing components are expressed in a concise manner. The SGRS was applied to the proposed WSN, which is employed in an actual large-scale irregular structure in which three types of sensors (75 vibrating wire strain gauges, 10 inclinometers, and three laser displacement sensors) and customized wireless sensor nodes are installed. The application results demonstrate that prompt identification of sensing units and effective management of the distributed sensor network can be realized from the SGRS. The results also demonstrate the superiority of the SGRS over conventional expression methods in which a box diagram or tree diagram representing the ID of sensors and data loggers is used.

  17. Student difficulties in translating between mathematical and graphical representations in introductory physics

    NASA Astrophysics Data System (ADS)

    Lin, Shih-Yin; Maries, Alexandru; Singh, Chandralekha

    2013-01-01

    We investigate introductory physics students' difficulties in translating between mathematical and graphical representations and the effect of scaffolding on students' performance. We gave a typical problem that can be solved using Gauss's law involving a spherically symmetric charge distribution (a conducting sphere concentric with a conducting spherical shell) to 95 calculus-based introductory physics students. We asked students to write a mathematical expression for the electric field in various regions and asked them to graph the electric field. We knew from previous experience that students have great difficulty in graphing the electric field. Therefore, we implemented two scaffolding interventions to help them. Students who received the scaffolding support were either (1) asked to plot the electric field in each region first (before having to plot it as a function of distance from the center of the sphere) or (2) asked to plot the electric field in each region after explicitly evaluating the electric field at the beginning, mid and end points of each region. The comparison group was only asked to plot the electric field at the end of the problem. We found that students benefited the most from intervention (1) and that intervention (2), although intended to aid students, had an adverse effect. Also, recorded interviews were conducted with a few students in order to understand how students were impacted by the aforementioned interventions.

  18. Symbolic and Graphical Representation Scheme for Sensors Deployed in Large-Scale Structures

    PubMed Central

    Park, Hyo Seon; Shin, Yunah; Choi, Se Woon; Kim, Yousok

    2013-01-01

    As wireless sensor network (WSN)-based structural health monitoring (SHM) systems are increasingly being employed in civil infrastructures and building structures, the management of large numbers of sensing devices and the large amount of data acquired from WSNs will become increasingly difficult unless systematic expressions of the sensor network are provided. This study introduces a practical WSN for SHM that consists of sensors, wireless sensor nodes, repeater nodes, master nodes, and monitoring servers. This study also proposes a symbolic and graphical representation scheme (SGRS) for this system, in which the communication relationships and respective location information of the distributed sensing components are expressed in a concise manner. The SGRS was applied to the proposed WSN, which is employed in an actual large-scale irregular structure in which three types of sensors (75 vibrating wire strain gauges, 10 inclinometers, and three laser displacement sensors) and customized wireless sensor nodes are installed. The application results demonstrate that prompt identification of sensing units and effective management of the distributed sensor network can be realized from the SGRS. The results also demonstrate the superiority of the SGRS over conventional expression methods in which a box diagram or tree diagram representing the ID of sensors and data loggers is used. PMID:23912426

  19. Les Representations Graphiques Dans La Resolution De Problemes: Une Experience D'Entrainement D'Etudiants Dans Un Club Mathematique (Graphic Representations in Problem Solving: A Training Program for Students in a Mathematical Club).

    ERIC Educational Resources Information Center

    Callejo, Maria Luz

    1994-01-01

    Reports, in French, an investigation on the use of graphic representations in problem-solving tasks of the type in Spanish Mathematical Olympiads. Analysis showed that the choice and interpretation of the first graphic representation played a decisive role in the discovery of the solution. (34 references) (Author/MKR)

  20. 3D visualization of the human cerebral vasculature

    NASA Astrophysics Data System (ADS)

    Zrimec, Tatjana; Mander, Tom; Lambert, Timothy; Parker, Geoffrey

    1995-04-01

    Computer assisted 3D visualization of the human cerebro-vascular system can help to locate blood vessels during diagnosis and to approach them during treatment. Our aim is to reconstruct the human cerebro-vascular system from the partial information collected from a variety of medical imaging instruments and to generate a 3D graphical representation. This paper describes a tool developed for 3D visualization of cerebro-vascular structures. It also describes a symbolic approach to modeling vascular anatomy. The tool, called Ispline, is used to display the graphical information stored in a symbolic model of the vasculature. The vascular model was developed to assist image processing and image fusion. The model consists of a structural symbolic representation using frames and a geometrical representation of vessel shapes and vessel topology. Ispline has proved to be useful for visualizing both the synthetically constructed vessels of the symbolic model and the vessels extracted from a patient's MR angiograms.

  1. Segmentation of Textures Defined on Flat vs. Layered Surfaces using Neural Networks: Comparison of 2D vs. 3D Representations.

    PubMed

    Oh, Sejong; Choe, Yoonsuck

    2007-08-01

    Texture boundary detection (or segmentation) is an important capability in human vision. Usually, texture segmentation is viewed as a 2D problem, as the definition of the problem itself assumes a 2D substrate. However, an interesting hypothesis emerges when we ask a question regarding the nature of textures: What are textures, and why did the ability to discriminate texture evolve or develop? A possible answer to this question is that textures naturally define physically distinct (i.e., occluded) surfaces. Hence, we can hypothesize that 2D texture segmentation may be an outgrowth of the ability to discriminate surfaces in 3D. In this paper, we conducted computational experiments with artificial neural networks to investigate the relative difficulty of learning to segment textures defined on flat 2D surfaces vs. those in 3D configurations where the boundaries are defined by occluding surfaces and their change over time due to the observer's motion. It turns out that learning is faster and more accurate in 3D, very much in line with our expectation. Furthermore, our results showed that the neural network's learned ability to segment texture in 3D transfers well into 2D texture segmentation, bolstering our initial hypothesis, and providing insights on the possible developmental origin of 2D texture segmentation function in human vision.

  2. A Graphical Representation of the Evaporation Solution Space and the Complementary Relationship

    NASA Astrophysics Data System (ADS)

    Crago, R. D.

    2011-12-01

    The Complementary Relationship (CR) between regional evapotranspiration E and potential or pan evaporation Ep can be written as Ep-E0 = b(E0-E), where E0 is the evaporation rate if the entire regional surface was wet. The CR corresponds to the idea that reduced evaporation due to drying of the land surface results in increased sensible heat fluxes and an increased potential for evaporation. Recent (2009) contributions to the theory behind the CR by Pettijohn and Salvucci and by Szilagyi and Jozsa led to a much clearer grasp of the physics behind the CR by examining the role of two-dimensional heat and vapor transport. Recent papers such as those mentioned above have questioned the traditional idea that b=1, while at the same time raising questions about the proper representations of E0 and Ep. As a result, the conceptual simplicity of the original CR models by Bouchet, Morton, and Brutsaert and Stricker is no longer obvious. The goal of this work was to provide a visual representation of local evaporation as defined by the Penman-Monteith equation, and to illustrate different CR models by highlighting those parts of the Penman-Monteith evaporation solution-space that are also part of a CR model solution-space. Specifically, EF is found for a wide range of values of rs/ra and EA/Qn, where EF=E/Qn, Qn is the available energy, rs is the stomatal resistance, ra is the aerodynamic resistance, and EA is the drying power of the air. These results are used to create a 3-dimensional EF surface as a function of rs/ra and EA/Qn. Representations of several CR models based on different values of b, E0 and Ep are represented as curves drawn on the 3-D EF surface. Variations in models include those for which b=1 or b=5; for which E0 is defined with the Priestley Taylor α=1 or α=1.26; and for which Ep is found from Penman's equation or from simulated pan evaporation. Differences in the curves for different versions of the CR are noted. One conclusion is that, while b tends to be

  3. TACO3D. 3-D Finite Element Heat Transfer Code

    SciTech Connect

    Mason, W.E.

    1992-03-04

    TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.

  4. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  5. Urbanisation and 3d Spatial - a Geometric Approach

    NASA Astrophysics Data System (ADS)

    Duncan, E. E.; Rahman, A. Abdul

    2013-09-01

    Urbanisation creates immense competition for space, this may be attributed to an increase in population owing to domestic and external tourism. Most cities are constantly exploring all avenues in maximising its limited space. Hence, urban or city authorities need to plan, expand and use such three dimensional (3D) space above, on and below the city space. Thus, difficulties in property ownership and the geometric representation of the 3D city space is a major challenge. This research, investigates the concept of representing a geometric topological 3D spatial model capable of representing 3D volume parcels for man-made constructions above and below the 3D surface volume parcel. A review of spatial data models suggests that the 3D TIN (TEN) model is significant and can be used as a unified model. The concepts, logical and physical models of 3D TIN for 3D volumes using tetrahedrons as the base geometry is presented and implemented to show man-made constructions above and below the surface parcel within a user friendly graphical interface. Concepts for 3D topology and 3D analysis are discussed. Simulations of this model for 3D cadastre are implemented. This model can be adopted by most countries to enhance and streamline geometric 3D property ownership for urban centres. 3D TIN concept for spatial modelling can be adopted for the LA_Spatial part of the Land Administration Domain Model (LADM) (ISO/TC211, 2012), this satisfies the concept of 3D volumes.

  6. Representation of protein 3D structures in spherical (ρ, ϕ, θ) coordinates and two of its potential applications.

    PubMed

    Reyes, Vicente M

    2011-09-01

    Three-dimensional objects can be represented using cartesian, spherical or cylindrical coordinate systems, among many others. Currently all protein 3D structures in the PDB are in cartesian coordinates. We wanted to explore the possibility that protein 3D structures, especially the globular type (spheroproteins), when represented in spherical coordinates might find useful novel applications. A Fortran program was written to transform protein 3D structure files in cartesian coordinates (x,y,z) to spherical coordinates (ρ, ϕ, θ), with the centroid of the protein molecule as origin. We present here two applications, namely, (1) separation of the protein outer layer (OL) from the inner core (IC); and (2) identifying protrusions and invaginations on the protein surface. In the first application, ϕ and θ were partitioned into suitable intervals and the point with maximum ρ in each such 'ϕ-θ bin' was determined. A suitable cutoff value for ρ is adopted, and for each ϕ-θ bin, all points with ρ values less than the cutoff are considered part of the IC, and those with ρ values equal to or greater than the cutoff are considered part of the OL. We show that this separation procedure is successful as it gives rise to an OL that is significantly more enriched in hydrophilic amino acid residues, and an IC that is significantly more enriched in hydrophobic amino acid residues, as expected. In the second application, the point with maximum ρ in each ϕ-θ bin are sequestered and their frequency distribution constructed (i.e., maximum ρ's sorted from lowest to highest, collected into 1.50Å-intervals, and the frequency in each interval plotted). We show in such plots that invaginations on the protein surface give rise to subpeaks or shoulders on the lagging side of the main peak, while protrusions give rise to similar subpeaks or shoulders, but on the leading side of the main peak. We used the dataset of Laskowski et al. (1996) to demonstrate both applications.

  7. On the Road to Graphicacy: The Learning of Graphical Representation Systems

    ERIC Educational Resources Information Center

    Postigo, Yolanda; Pozo, Juan Ignacio

    2004-01-01

    This article examines the learning of different types of graphic information by subjects with different levels of education and knowledge of the content represented. Three levels of graphic information learning were distinguished (explicit, implicit, and conceptual information processing) and two experiments were conducted, looking at graph and…

  8. The appropriateness of the helical axis technique and six available cardan sequences for the representation of 3-d lead leg kinematics during the fencing lunge.

    PubMed

    Sinclair, Jonathan; Taylor, Paul J; Bottoms, Lindsay

    2013-01-01

    Cardan/Euler angles represent the most common technique for the quantification of segmental rotations. Cardan angles are influenced by their ordered sequence, and sensitive to planar-cross talk from the dominant rotation plane, which may affect the angular parameters. The International Society of Biomechanics (ISB) currently recommends a sagittal, coronal, and then transverse (XYZ) ordered sequence, although it has been proposed that when quantifying non-sagittal rotations this may not be the most appropriate technique. This study examined the influence of the helical and six available Cardan sequences on lower extremity three-dimensional (3-D) kinematics of the lead leg during the fencing lunge. Kinematic data were obtained using a 3-D motion capture system as participants completed simulated lunges. Repeated measures ANOVAs were used to compare discrete kinematic parameters, and intraclass correlations were also utilized to determine evidence of planar crosstalk. The results indicate that in all three planes of rotation, peak angle and range of motion angles using the YXZ and ZXY sequences were significantly greater than the other sequences. It was also noted that the utilization of the YXZ and ZXY sequences was associated with the strongest correlations from the sagittal plane, and the XYZ sequence was found habitually to be associated with the lowest correlations. It appears that for accurate representation of 3-D kinematics of the lead leg during the fencing lunge, the XYZ sequence is the most appropriate and as such its continued utilization is encouraged.

  9. The Appropriateness of the Helical Axis Technique and Six Available Cardan Sequences for the Representation of 3-D Lead Leg Kinematics During the Fencing Lunge

    PubMed Central

    Sinclair, Jonathan; Taylor, Paul J; Bottoms, Lindsay

    Cardan/Euler angles represent the most common technique for the quantification of segmental rotations. Cardan angles are influenced by their ordered sequence, and sensitive to planar-cross talk from the dominant rotation plane, which may affect the angular parameters. The International Society of Biomechanics (ISB) currently recommends a sagittal, coronal, and then transverse (XYZ) ordered sequence, although it has been proposed that when quantifying non-sagittal rotations this may not be the most appropriate technique. This study examined the influence of the helical and six available Cardan sequences on lower extremity three-dimensional (3-D) kinematics of the lead leg during the fencing lunge. Kinematic data were obtained using a 3-D motion capture system as participants completed simulated lunges. Repeated measures ANOVAs were used to compare discrete kinematic parameters, and intraclass correlations were also utilized to determine evidence of planar crosstalk. The results indicate that in all three planes of rotation, peak angle and range of motion angles using the YXZ and ZXY sequences were significantly greater than the other sequences. It was also noted that the utilization of the YXZ and ZXY sequences was associated with the strongest correlations from the sagittal plane, and the XYZ sequence was found habitually to be associated with the lowest correlations. It appears that for accurate representation of 3-D kinematics of the lead leg during the fencing lunge, the XYZ sequence is the most appropriate and as such its continued utilization is encouraged. PMID:24146700

  10. [The graphic representation of the temperature field of the skin surface in the orbital area].

    PubMed

    Cherednichenko, V M; Barsukov, V V

    1990-01-01

    The paper describes results of researches on the possibility of graphic presentation of a temperature field of skin surface of the orbital area. A method of liquid crystal thermography and electron thermometry was used for examination of 30 patients with practically healthy eyes. It was shown that graphic presentation of data of liquid crystal thermography and electron thermometry remarkably facilitates documentation and analysis of the results obtained.

  11. PLOT3D/AMES, DEC VAX VMS VERSION USING DISSPLA (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The VAX/VMS/DISSPLA implementation of PLOT3D supports 2-D polygons as

  12. PLOT3D/AMES, DEC VAX VMS VERSION USING DISSPLA (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P. G.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The VAX/VMS/DISSPLA implementation of PLOT3D supports 2-D polygons as

  13. A 3D map of the hindlimb motor representation in the lumbar spinal cord in Sprague Dawley rats

    NASA Astrophysics Data System (ADS)

    Borrell, Jordan A.; Frost, Shawn B.; Peterson, Jeremy; Nudo, Randolph J.

    2017-02-01

    Objective. Spinal cord injury (SCI) is a devastating neurological trauma with a prevalence of about 282 000 people living with an SCI in the United States in 2016. Advances in neuromodulatory devices hold promise for restoring function by incorporating the delivery of electrical current directly into the spinal cord grey matter via intraspinal microstimulation (ISMS). In such designs, detailed topographic maps of spinal cord outputs are needed to determine ISMS locations for eliciting hindlimb movements. The primary goal of the present study was to derive a topographic map of functional motor outputs in the lumbar spinal cord to hindlimb skeletal muscles as defined by ISMS in a rat model. Approach. Experiments were carried out in nine healthy, adult, male, Sprague Dawley rats. After a laminectomy of the T13-L1 vertebrae and removal of the dura mater, a four-shank, 16-channel microelectrode array was inserted along a 3D (200 µm) stimulation grid. Trains of three biphasic current pulses were used to determine evoked movements and electromyographic (EMG) activity. Via fine wire EMG electrodes, stimulus-triggered averaging (StTA) was used on rectified EMG data to determine response latency. Main results. Hindlimb movements were elicited at a median current intensity of 6 µA, and thresholds were significantly lower in ventrolateral sites. Movements typically consisted of whole leg, hip, knee, ankle, toe, and trunk movements. Hip movements dominated rostral to the T13 vertebral segment, knee movements were evoked at the T13-L1 vertebral junction, while ankle and digit movements were found near the rostral L1 vertebra. Whole leg movements spanned the entire rostrocaudal region explored, while trunk movements dominated medially. StTAs of EMG activity demonstrated a latency of ~4 ms. Significance. The derived motor map provides insight into the parameters needed for future neuromodulatory devices.

  14. Application of a roughness-length representation to parameterize energy loss in 3-D numerical simulations of large rivers

    NASA Astrophysics Data System (ADS)

    Sandbach, S. D.; Lane, S. N.; Hardy, R. J.; Amsler, M. L.; Ashworth, P. J.; Best, J. L.; Nicholas, A. P.; Orfeo, O.; Parsons, D. R.; Reesink, A. J. H.; Szupiany, R. N.

    2012-12-01

    Recent technological advances in remote sensing have enabled investigation of the morphodynamics and hydrodynamics of large rivers. However, measuring topography and flow in these very large rivers is time consuming and thus often constrains the spatial resolution and reach-length scales that can be monitored. Similar constraints exist for computational fluid dynamics (CFD) studies of large rivers, requiring maximization of mesh- or grid-cell dimensions and implying a reduction in the representation of bedform-roughness elements that are of the order of a model grid cell or less, even if they are represented in available topographic data. These "subgrid" elements must be parameterized, and this paper applies and considers the impact of roughness-length treatments that include the effect of bed roughness due to "unmeasured" topography. CFD predictions were found to be sensitive to the roughness-length specification. Model optimization was based on acoustic Doppler current profiler measurements and estimates of the water surface slope for a variety of roughness lengths. This proved difficult as the metrics used to assess optimal model performance diverged due to the effects of large bedforms that are not well parameterized in roughness-length treatments. However, the general spatial flow patterns are effectively predicted by the model. Changes in roughness length were shown to have a major impact upon flow routing at the channel scale. The results also indicate an absence of secondary flow circulation cells in the reached studied, and suggest simpler two-dimensional models may have great utility in the investigation of flow within large rivers.

  15. Stochastic Representation and Uncertainty Assessment of a Deep Geothermal Reservoir Using Cross-Borehole ERT: A 3D Synthetic Case

    NASA Astrophysics Data System (ADS)

    Brunet, P.; Gloaguen, E.

    2014-12-01

    Designing and monitoring of geothermal systems is a complex task which requires a multidisciplinary approach. Deep geothermal reservoir models are prone to greater uncertainty, with a lack of direct data and lower resolution of surface geophysical methods. However, recent technical advances have enabled the potential use of permanent downhole vertical resistivity arrays for monitoring fluid injection. As electrical resistivity is sensitive to temperature changes, such data could provide valuable information for deep geothermal reservoir characterization. The objective of this study is to assess the potential of time-lapse cross-borehole ERT to constrain 3D realizations of geothermal reservoir properties. The synthetic case of a permeable geothermal reservoir in a sedimentary basin was set up, as a confined deep and saline sandstone aquifer with intermediate reservoir temperatures (150ºC), depth (1 km) and 30m thickness. The reservoir permeability distribution is heterogeneous, as the result of a fluvial depositional environment. The ERT monitoring system design is a triangular arrangement of 3 wells at 150 m spacing, including 1 injection and 1 extraction well. The optimal number and spacing of electrodes of the ERT array design is site-specific and has been assessed through a sensibility study. Dipole-dipole and pole-pole electrode configurations were used. The study workflow was the following: 1) Generation of a reference reservoir model and 100 stochastic realizations of permeability; 2) Simulation of saturated single-phase flow and heat transport of reinjection of cooled formation fluid (50ºC) with TOUGH2 software; 3) Time-lapse forward ERT modeling on the reference model and all realizations (observed and simulated apparent resistivity change); 4) heuristic optimization on ERT computed and calculated data. Preliminary results show significant reduction of parameter uncertainty, hence realization space, with assimilation of cross-borehole ERT data. Loss in

  16. PLOT3D/AMES, UNIX SUPERCOMPUTER AND SGI IRIS VERSION (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. In addition to providing the advantages of performing complex

  17. PLOT3D/AMES, UNIX SUPERCOMPUTER AND SGI IRIS VERSION (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. In addition to providing the advantages of performing complex

  18. How Should Intelligent Tutoring Systems Sequence Multiple Graphical Representations of Fractions? A Multi-Methods Study

    ERIC Educational Resources Information Center

    Rau, M. A.; Aleven, V.; Rummel, N.; Pardos, Z.

    2014-01-01

    Providing learners with multiple representations of learning content has been shown to enhance learning outcomes. When multiple representations are presented across consecutive problems, we have to decide in what sequence to present them. Prior research has demonstrated that interleaving "tasks types" (as opposed to blocking them) can…

  19. Enhancing Undergraduate Chemistry Learning by Helping Students Make Connections among Multiple Graphical Representations

    ERIC Educational Resources Information Center

    Rau, Martina A.

    2015-01-01

    Multiple representations are ubiquitous in chemistry education. To benefit from multiple representations, students have to make connections between them. However, connection making is a difficult task for students. Prior research shows that supporting connection making enhances students' learning in math and science domains. Most prior research…

  20. Modelling the impact of the light regime on single tree transpiration based on 3D representations of plant architecture

    NASA Astrophysics Data System (ADS)

    Bittner, S.; Priesack, E.

    2012-04-01

    We apply a functional-structural model of tree water flow to single old-growth trees in a temperate broad-leaved forest stand. Roots, stems and branches are represented by connected porous cylinder elements further divided into the inner heartwood cylinders surrounded by xylem and phloem. Xylem water flow is simulated by applying a non-linear Darcy flow in porous media driven by the water potential gradient according to the cohesion-tension theory. The flow model is based on physiological input parameters such as the hydraulic conductivity, stomatal response to leaf water potential and root water uptake capability and, thus, can reflect the different properties of tree species. The actual root water uptake is calculated using also a non-linear Darcy law based on the gradient between root xylem water potential and rhizosphere soil water potential and by the simulation of soil water flow applying Richards equation. A leaf stomatal conductance model is combined with the hydrological tree and soil water flow model and a spatially explicit three-dimensional canopy light model. The structure of the canopy and the tree architectures are derived by applying an automatic tree skeleton extraction algorithm from point clouds obtained by use of a terrestrial laser scanner allowing an explicit representation of the water flow path in the stem and branches. The high spatial resolution of the root and branch geometry and their connectivity makes the detailed modelling of the water use of single trees possible and allows for the analysis of the interaction between single trees and the influence of the canopy light regime (including different fractions of direct sunlight and diffuse skylight) on the simulated sap flow and transpiration. The model can be applied at various sites and to different tree species, enabling the up-scaling of the water usage of single trees to the total transpiration of mixed stands. Examples are given to reveal differences between diffuse- and ring

  1. PLOT3D/AMES, GENERIC UNIX VERSION USING DISSPLA (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The UNIX/DISSPLA implementation of PLOT3D supports 2-D polygons as

  2. PLOT3D/AMES, GENERIC UNIX VERSION USING DISSPLA (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The UNIX/DISSPLA implementation of PLOT3D supports 2-D polygons as

  3. PLOT3D/AMES, SGI IRIS VERSION (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. In each of these areas, the IRIS implementation of PLOT3D offers

  4. PLOT3D/AMES, SGI IRIS VERSION (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. In each of these areas, the IRIS implementation of PLOT3D offers

  5. Image-based 3D modeling for the knowledge and the representation of archaeological dig and pottery: Sant'Omobono and Sarno project's strategies

    NASA Astrophysics Data System (ADS)

    Gianolio, S.; Mermati, F.; Genovese, G.

    2014-06-01

    This paper presents a "standard" method that is being developed by ARESlab of Rome's La Sapienza University for the documentation and the representation of the archaeological artifacts and structures through automatic photogrammetry software. The image-based 3D modeling technique was applied in two projects: in Sarno and in Rome. The first is a small city in Campania region along Via Popilia, known as the ancient way from Capua to Rhegion. The interest in this city is based on the recovery of over 2100 tombs from local necropolis that contained more than 100.000 artifacts collected in "Museo Nazionale Archeologico della Valle del Sarno". In Rome the project regards the archaeological area of Insula Volusiana placed in Forum Boarium close to Sant'Omobono sacred area. During the studies photographs were taken by Canon EOS 5D Mark II and Canon EOS 600D cameras. 3D model and meshes were created in Photoscan software. The TOF-CW Z+F IMAGER® 5006h laser scanner is used to dense data collection of archaeological area of Rome and to make a metric comparison between range-based and image-based techniques. In these projects the IBM as a low-cost technique proved to be a high accuracy improvement if planned correctly and it shown also how it helps to obtain a relief of complex strata and architectures compared to traditional manual documentation methods (e.g. two-dimensional drawings). The multidimensional recording can be used for future studies of the archaeological heritage, especially for the "destructive" character of an excavation. The presented methodology is suitable for the 3D registration and the accuracy of the methodology improved also the scientific value.

  6. Comparing Graphical and Verbal Representations of Measurement Error in Test Score Reports

    ERIC Educational Resources Information Center

    Zwick, Rebecca; Zapata-Rivera, Diego; Hegarty, Mary

    2014-01-01

    Research has shown that many educators do not understand the terminology or displays used in test score reports and that measurement error is a particularly challenging concept. We investigated graphical and verbal methods of representing measurement error associated with individual student scores. We created four alternative score reports, each…

  7. The Representation of Highly Non-Ideal Phase Equilibria Using Computer Graphics.

    ERIC Educational Resources Information Center

    Charos, Georgios N.; And Others

    1986-01-01

    Previous work focused on use of computer graphics in teaching thermodynamic phase equilibria for classes I and II. Extends this work to include the considerably more non-ideal phase behavior shown by classes III, IV, and V. Student and instructor response has been overwhelmingly positive about the approach. (JN)

  8. Modern Teaching Methods in Physics with the Aid of Original Computer Codes and Graphical Representations

    ERIC Educational Resources Information Center

    Ivanov, Anisoara; Neacsu, Andrei

    2011-01-01

    This study describes the possibility and advantages of utilizing simple computer codes to complement the teaching techniques for high school physics. The authors have begun working on a collection of open source programs which allow students to compare the results and graphics from classroom exercises with the correct solutions and further more to…

  9. Evaluating the Effectiveness of Waterside Security Alternatives for Force Protection of Navy Ships and Installations Using X3D Graphics and Agent-Based Simulation

    DTIC Science & Technology

    2006-09-01

    MOTIVATION ................................................................................................2 D. OBJECTIVES...16 Figure 9. Flux Studio 2.0 (formerly VizX3D) screen capture showing a close up of a female terrorist...since the USS Cole attack in Aden Harbor, Yemen on October 12, 2000 (CRS 2001). The Cole attack was a primary motivation for Harney’s work. On

  10. Development of visual 3D virtual environment for control software

    NASA Technical Reports Server (NTRS)

    Hirose, Michitaka; Myoi, Takeshi; Amari, Haruo; Inamura, Kohei; Stark, Lawrence

    1991-01-01

    Virtual environments for software visualization may enable complex programs to be created and maintained. A typical application might be for control of regional electric power systems. As these encompass broader computer networks than ever, construction of such systems becomes very difficult. Conventional text-oriented environments are useful in programming individual processors. However, they are obviously insufficient to program a large and complicated system, that includes large numbers of computers connected to each other; such programming is called 'programming in the large.' As a solution for this problem, the authors are developing a graphic programming environment wherein one can visualize complicated software in virtual 3D world. One of the major features of the environment is the 3D representation of concurrent process. 3D representation is used to supply both network-wide interprocess programming capability (capability for 'programming in the large') and real-time programming capability. The authors' idea is to fuse both the block diagram (which is useful to check relationship among large number of processes or processors) and the time chart (which is useful to check precise timing for synchronization) into a single 3D space. The 3D representation gives us a capability for direct and intuitive planning or understanding of complicated relationship among many concurrent processes. To realize the 3D representation, a technology to enable easy handling of virtual 3D object is a definite necessity. Using a stereo display system and a gesture input device (VPL DataGlove), our prototype of the virtual workstation has been implemented. The workstation can supply the 'sensation' of the virtual 3D space to a programmer. Software for the 3D programming environment is implemented on the workstation. According to preliminary assessments, a 50 percent reduction of programming effort is achieved by using the virtual 3D environment. The authors expect that the 3D

  11. 3D Visualization Development of SIUE Campus

    NASA Astrophysics Data System (ADS)

    Nellutla, Shravya

    Geographic Information Systems (GIS) has progressed from the traditional map-making to the modern technology where the information can be created, edited, managed and analyzed. Like any other models, maps are simplified representations of real world. Hence visualization plays an essential role in the applications of GIS. The use of sophisticated visualization tools and methods, especially three dimensional (3D) modeling, has been rising considerably due to the advancement of technology. There are currently many off-the-shelf technologies available in the market to build 3D GIS models. One of the objectives of this research was to examine the available ArcGIS and its extensions for 3D modeling and visualization and use them to depict a real world scenario. Furthermore, with the advent of the web, a platform for accessing and sharing spatial information on the Internet, it is possible to generate interactive online maps. Integrating Internet capacity with GIS functionality redefines the process of sharing and processing the spatial information. Enabling a 3D map online requires off-the-shelf GIS software, 3D model builders, web server, web applications and client server technologies. Such environments are either complicated or expensive because of the amount of hardware and software involved. Therefore, the second objective of this research was to investigate and develop simpler yet cost-effective 3D modeling approach that uses available ArcGIS suite products and the free 3D computer graphics software for designing 3D world scenes. Both ArcGIS Explorer and ArcGIS Online will be used to demonstrate the way of sharing and distributing 3D geographic information on the Internet. A case study of the development of 3D campus for the Southern Illinois University Edwardsville is demonstrated.

  12. Volumetric 3D display using a DLP projection engine

    NASA Astrophysics Data System (ADS)

    Geng, Jason

    2012-03-01

    In this article, we describe a volumetric 3D display system based on the high speed DLPTM (Digital Light Processing) projection engine. Existing two-dimensional (2D) flat screen displays often lead to ambiguity and confusion in high-dimensional data/graphics presentation due to lack of true depth cues. Even with the help of powerful 3D rendering software, three-dimensional (3D) objects displayed on a 2D flat screen may still fail to provide spatial relationship or depth information correctly and effectively. Essentially, 2D displays have to rely upon capability of human brain to piece together a 3D representation from 2D images. Despite the impressive mental capability of human visual system, its visual perception is not reliable if certain depth cues are missing. In contrast, volumetric 3D display technologies to be discussed in this article are capable of displaying 3D volumetric images in true 3D space. Each "voxel" on a 3D image (analogous to a pixel in 2D image) locates physically at the spatial position where it is supposed to be, and emits light from that position toward omni-directions to form a real 3D image in 3D space. Such a volumetric 3D display provides both physiological depth cues and psychological depth cues to human visual system to truthfully perceive 3D objects. It yields a realistic spatial representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them.

  13. Representation, Exemplification, and Risk: Resonance of Tobacco Graphic Health Warnings Across Diverse Populations.

    PubMed

    Bigman, Cabral A; Nagler, Rebekah H; Viswanath, K

    2016-08-01

    As countries implement Article 11 of the World Health Organization (WHO) Framework Convention on Tobacco Control, graphic warning labels that use images of people and their body parts to illustrate the consequences of smoking are being added to cigarette packs. According to exemplification theory, these case examples-exemplars-can shape perceptions about risk and may resonate differently among demographic subpopulations. Drawing on data from eight focus groups (N = 63) with smokers and nonsmokers from vulnerable populations, this qualitative study explores whether people considered exemplars in their reactions to and evaluations of U.S. graphic health warning labels initially proposed by the Food and Drug Administration. Participants made reference to prior and concurrent mass media messages and exemplars during the focus groups and used demographic cues in making sense of the images on the warning labels. Participants were particularly sensitive to age of the exemplars and how it might affect label effectiveness and beliefs about smoking. Race and socioeconomic status also were salient for some participants. We recommend that exemplars and exemplification be considered when selecting and evaluating graphic health warnings for tobacco labels and associated media campaigns.

  14. The Influence of Prior Knowledge on Viewing and Interpreting Graphics with Macroscopic and Molecular Representations

    ERIC Educational Resources Information Center

    Cook, Michelle; Wiebe, Eric N.; Carter, Glenda

    2008-01-01

    Previous research has indicated that the use of multiple representations with macroscopic and molecular features can improve conceptual understanding; however, the influence of prior knowledge of the domain cannot be overlooked. Using eye-tracking technology and sequential analysis, this study investigated how high school students (n = 54) with…

  15. What does a graphical representation mean for students at the beginning of function teaching?

    NASA Astrophysics Data System (ADS)

    Yavuz, İlyas

    2010-06-01

    This study examines how students in the early stages of learning about the concept of functions, describe a curve and, in particular, evaluate the appropriateness of their argument about the representation of a function. Students are offered a message game which is related to a curve drawn on a coordinate system, representing an 'imaginary function'. In this message game, one half of the class must describe a curve to the other half who will then try to reproduce it as similarly as possible. Data analysis indicates that the idea of the curve that consists of series of points is very effective, while the idea of variation does not exist or is too limited among students at the beginning of learning functions. Thus, the concept of variation is not used as a criterion to describe a curve. More surprisingly, the students are working on the curve as if it was just a picture on a grid regardless of the representation of the function.

  16. Inter-level Scaffolding and Sequences of Representational Activities in Teaching a Chemical System with Graphical Simulations

    NASA Astrophysics Data System (ADS)

    Li, Na; Black, John B.

    2016-10-01

    Chemistry knowledge can be represented at macro-, micro- and symbolic levels, and learning a chemistry topic requires students to engage in multiple representational activities. This study focused on scaffolding for inter-level connection-making in learning chemistry knowledge with graphical simulations. We also tested whether different sequences of representational activities produced different student learning outcomes in learning a chemistry topic. A sample of 129 seventh graders participated in this study. In a simulation-based environment, participants completed three representational activities to learn several ideal gas law concepts. We conducted a 2 × 3 factorial design experiment. We compared two scaffolding conditions: (1) the inter- level scaffolding condition in which participants received inter-level questions and experienced the dynamic link function in the simulation-based environment and (2) the intra- level scaffolding condition in which participants received intra-level questions and did not experience the dynamic link function. We also compared three different sequences of representational activities: macro-symbolic-micro, micro-symbolic-macro and symbolic-micro-macro. For the scaffolding variable, we found that the inter- level scaffolding condition produced significantly better performance in both knowledge comprehension and application, compared to the intra- level scaffolding condition. For the sequence variable, we found that the macro-symbolic-micro sequence produced significantly better knowledge comprehension performance than the other two sequences; however, it did not benefit knowledge application performance. There was a trend that the treatment group who experienced inter- level scaffolding and the micro-symbolic-macro sequence achieved the best knowledge application performance.

  17. An efficient numerical method for protein sequences similarity analysis based on a new two-dimensional graphical representation.

    PubMed

    El-Lakkani, A; Mahran, H

    2015-01-01

    A new two-dimensional graphical representation of protein sequences is introduced. Twenty concentric evenly spaced circles divided by n radial lines into equal divisions are selected to represent any protein sequence of length n. Each circle represents one of the different 20 amino acids, and each radial line represents a single amino acid of the protein sequence. An efficient numerical method based on the graph is proposed to measure the similarity between two protein sequences. To prove the accuracy of our approach, the method is applied to NADH dehydrogenase subunit 5 (ND5) proteins of nine different species and 24 transferrin sequences from vertebrates. High values of correlation coefficient between our results and the results of ClustalW are obtained (approximately perfect correlations). These values are higher than the values obtained in many other related works.

  18. DUC-Curve, a highly compact 2D graphical representation of DNA sequences and its application in sequence alignment

    NASA Astrophysics Data System (ADS)

    Li, Yushuang; Liu, Qian; Zheng, Xiaoqi

    2016-08-01

    A highly compact and simple 2D graphical representation of DNA sequences, named DUC-Curve, is constructed through mapping four nucleotides to a unit circle with a cyclic order. DUC-Curve could directly detect nucleotide, di-nucleotide compositions and microsatellite structure from DNA sequences. Moreover, it also could be used for DNA sequence alignment. Taking geometric center vectors of DUC-Curves as sequence descriptor, we perform similarity analysis on the first exons of β-globin genes of 11 species, oncogene TP53 of 27 species and twenty-four Influenza A viruses, respectively. The obtained reasonable results illustrate that the proposed method is very effective in sequence comparison problems, and will at least play a complementary role in classification and clustering problems.

  19. Compact graphical representation of phylogenetic data and metadata with GraPhlAn.

    PubMed

    Asnicar, Francesco; Weingart, George; Tickle, Timothy L; Huttenhower, Curtis; Segata, Nicola

    2015-01-01

    The increased availability of genomic and metagenomic data poses challenges at multiple analysis levels, including visualization of very large-scale microbial and microbial community data paired with rich metadata. We developed GraPhlAn (Graphical Phylogenetic Analysis), a computational tool that produces high-quality, compact visualizations of microbial genomes and metagenomes. This includes phylogenies spanning up to thousands of taxa, annotated with metadata ranging from microbial community abundances to microbial physiology or host and environmental phenotypes. GraPhlAn has been developed as an open-source command-driven tool in order to be easily integrated into complex, publication-quality bioinformatics pipelines. It can be executed either locally or through an online Galaxy web application. We present several examples including taxonomic and phylogenetic visualization of microbial communities, metabolic functions, and biomarker discovery that illustrate GraPhlAn's potential for modern microbial and community genomics.

  20. Graphical representation of life paths to better convey results of decision models to patients.

    PubMed

    Rubrichi, Stefania; Rognoni, Carla; Sacchi, Lucia; Parimbelli, Enea; Napolitano, Carlo; Mazzanti, Andrea; Quaglini, Silvana

    2015-04-01

    The inclusion of patients' perspectives in clinical practice has become an important matter for health professionals, in view of the increasing attention to patient-centered care. In this regard, this report illustrates a method for developing a visual aid that supports the physician in the process of informing patients about a critical decisional problem. In particular, we focused on interpretation of the results of decision trees embedding Markov models implemented with the commercial tool TreeAge Pro. Starting from patient-level simulations and exploiting some advanced functionalities of TreeAge Pro, we combined results to produce a novel graphical output that represents the distributions of outcomes over the lifetime for the different decision options, thus becoming a more informative decision support in a context of shared decision making. The training example used to illustrate the method is a decision tree for thromboembolism risk prevention in patients with nonvalvular atrial fibrillation.

  1. Illustrative visualization of 3D city models

    NASA Astrophysics Data System (ADS)

    Doellner, Juergen; Buchholz, Henrik; Nienhaus, Marc; Kirsch, Florian

    2005-03-01

    This paper presents an illustrative visualization technique that provides expressive representations of large-scale 3D city models, inspired by the tradition of artistic and cartographic visualizations typically found in bird"s-eye view and panoramic maps. We define a collection of city model components and a real-time multi-pass rendering algorithm that achieves comprehensible, abstract 3D city model depictions based on edge enhancement, color-based and shadow-based depth cues, and procedural facade texturing. Illustrative visualization provides an effective visual interface to urban spatial information and associated thematic information complementing visual interfaces based on the Virtual Reality paradigm, offering a huge potential for graphics design. Primary application areas include city and landscape planning, cartoon worlds in computer games, and tourist information systems.

  2. DspaceOgreTerrain 3D Terrain Visualization Tool

    NASA Technical Reports Server (NTRS)

    Myint, Steven; Jain, Abhinandan; Pomerantz, Marc I.

    2012-01-01

    DspaceOgreTerrain is an extension to the DspaceOgre 3D visualization tool that supports real-time visualization of various terrain types, including digital elevation maps, planets, and meshes. DspaceOgreTerrain supports creating 3D representations of terrains and placing them in a scene graph. The 3D representations allow for a continuous level of detail, GPU-based rendering, and overlaying graphics like wheel tracks and shadows. It supports reading data from the SimScape terrain- modeling library. DspaceOgreTerrain solves the problem of displaying the results of simulations that involve very large terrains. In the past, it has been used to visualize simulations of vehicle traverses on Lunar and Martian terrains. These terrains were made up of billions of vertices and would not have been renderable in real-time without using a continuous level of detail rendering technique.

  3. [3D emulation of epicardium dynamic mapping].

    PubMed

    Lu, Jun; Yang, Cui-Wei; Fang, Zu-Xiang

    2005-03-01

    In order to realize epicardium dynamic mapping of the whole atria, 3-D graphics are drawn with OpenGL. Some source codes are introduced in the paper to explain how to produce, read, and manipulate 3-D model data.

  4. Neural Schematics as a unified formal graphical representation of large-scale Neural Network Structures

    PubMed Central

    Ehrlich, Matthias; Schüffny, René

    2013-01-01

    One of the major outcomes of neuroscientific research are models of Neural Network Structures (NNSs). Descriptions of these models usually consist of a non-standardized mixture of text, figures, and other means of visual information communication in print media. However, as neuroscience is an interdisciplinary domain by nature, a standardized way of consistently representing models of NNSs is required. While generic descriptions of such models in textual form have recently been developed, a formalized way of schematically expressing them does not exist to date. Hence, in this paper we present Neural Schematics as a concept inspired by similar approaches from other disciplines for a generic two dimensional representation of said structures. After introducing NNSs in general, a set of current visualizations of models of NNSs is reviewed and analyzed for what information they convey and how their elements are rendered. This analysis then allows for the definition of general items and symbols to consistently represent these models as Neural Schematics on a two dimensional plane. We will illustrate the possibilities an agreed upon standard can yield on sampled diagrams transformed into Neural Schematics and an example application for the design and modeling of large-scale NNSs. PMID:24167490

  5. Graphical representations of the chemistry of garnets in a three-dimensional MATLAB based provenance plot

    NASA Astrophysics Data System (ADS)

    Knierzinger, Wolfgang; Palzer, Markus; Wagreich, Michael; Meszar, Maria; Gier, Susanne

    2016-04-01

    A newly developed, MATLAB based garnet provenance plot allows a three-dimensional tetrahedral representation of the chemistry of garnets for the endmembers almandine, pyrope, spessartine and grossular. Based on a freely accessible database of Suggate & Hall (2013) and additional EPMA-data on the internet, the chemistry of more than 2500 garnets was evaluated and used to create various subfields that correspond to different facies conditions of metapelitic, metasomatic and metaigneous rocks as well as granitic rocks. These triangulated subfields act as reference structures within the tetrahedron, facilitating assignments of garnet chemistries to different lithologies. In comparison with conventional tenary garnet discrimination diagrams by Mange & Morton (2007), Wright/Preston et al. (1938/2002) and Aubrecht et al. (2009), this tetrahedral provenance plot enables a better assessment of the conditions of formation of garnets by reducing the overlapping of certain subfields. In particular, a clearer distinction between greenschist facies rocks, amphibolite facies rocks and granitic rocks can be achieved. First applications of the tetrahedral garnet plot provided new insights on sedimentary processes during the Lower Miocene in the pre-Alpine Molasse basin. Bibliography Aubrecht, R., Meres, S., Sykora, M., Mikus, T. (2009). Provenance of the detrital garnets and spinels from the Albian sediments of the Czorsztyn Unit (Pieniny Klippen Belt , Western Carpathians, Slovakia). In: Geologica Carpathica, Dec. 2009, 60, 6, pp. 463-483. Mange, M.A., Morton, A.C. (2007). Geochemistry of Heavy Minerals. In: Mange, M.A. & Wright, D.T.(2007).Heavy Minerals in Use, Amsterdam, pp. 345-391. Preston, J., Hartley, A., Mange-Rajetzky, M., Hole, M., May, G., Buck, S., Vaughan, L. (2002). The provenance of Triassic continental sandstones from the Beryl Field, northern North Sea: Mineralogical, geochemical and sedimentological constraints. In: Journal of Sedimentary Research, 72, pp. 18

  6. Preformulation studies for direct compression suitability of cefuroxime axetil and paracetamol: a graphical representation using SeDeM diagram.

    PubMed

    Singh, Inderbir; Kumar, Pradeep

    2012-01-01

    The direct compression suitability of active pharmaceutical ingredients could be studied by SeDeM diagram method. Cefuroxime axetil (CfA) and paracetamol (PCM) were employed for SeDeM studies as these powders are well-characterized and known to be particularly difficult with respect to flowability and compactibility. Twelve different selected pharmacotechnical parameters were determined experimentally and were treated mathematically for being expressed in graphic representation as SeDeM diagram. Parameter index, parameter profile index and good compression index were calculated for both the selected drugs. Good compression index was found to be 2.19 and 1.36 for CfA and PCM, respectively, indicating poor direct compression characteristics of the selected drugs. The results from this SeDeM diagram method are in line with the previously reported studies where it was established as a reliable method for preformulation studies and as a quality control tool for studying batch-to-batch reproducibility of API's. Furthermore, it once again established the notion that blending poorly compressible drugs with suitable ingredients followed by SeDeM studies could be used as method for identifying best excipient and calculating maximum amount of excipient required for direct compression of API.

  7. Graphics and Flow Visualization of Computer Generated Flow Fields

    NASA Technical Reports Server (NTRS)

    Kathong, M.; Tiwari, S. N.

    1987-01-01

    Flow field variables are visualized using color representations described on surfaces that are interpolated from computational grids and transformed to digital images. Techniques for displaying two and three dimensional flow field solutions are addressed. The transformations and the use of an interactive graphics program for CFD flow field solutions, called PLOT3D, which runs on the color graphics IRIS workstation are described. An overview of the IRIS workstation is also described.

  8. From Surface Data to 3D Geologic Maps

    NASA Astrophysics Data System (ADS)

    Dhont, D.; Luxey, P.; Longuesserre, V.; Monod, B.; Guillaume, B.

    2008-12-01

    New trends in earth sciences are mostly related to technologies allowing graphical representations of the geology in 3D. However, the concept of 3D geologic map is commonly misused. For instance, displays of geologic maps draped onto DEM in rotating perspective views have been misleadingly called 3D geologic maps, but this still cannot provide any volumetric underground information as a true 3D geologic map should. Here, we present a way to produce mathematically and geometrically correct 3D geologic maps constituted by the volume and shape of all geologic features of a given area. The originality of the method is that it is based on the integration of surface data only consisting of (1) geologic maps, (2) satellite images, (3) DEM and (4) bedding dips and strikes. To generate 3D geologic maps, we used a 3D geologic modeler that combines and extrapolates the surface information into a coherent 3D data set. The significance of geometrically correct 3D geologic maps is demonstrated for various geologic settings and applications. 3D models are of primarily importance for educational purposes because they reveal features that standard 2D geologic maps by themselves could not show. The 3D visualization helps in the understanding of the geometrical relationship between the different geologic features and, in turn, for the quantification of the geology at the regional scale. Furthermore, given the logistical challenges associated with modern oil and mineral exploration in remote and rugged terrain, these volume-based models can provide geological and commercial insight prior to seismic evaluation.

  9. PLOT3D user's manual

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  10. GRASP/Ada: Graphical Representations of Algorithms, Structures, and Processes for Ada. The development of a program analysis environment for Ada: Reverse engineering tools for Ada, task 2, phase 3

    NASA Technical Reports Server (NTRS)

    Cross, James H., II

    1991-01-01

    The main objective is the investigation, formulation, and generation of graphical representations of algorithms, structures, and processes for Ada (GRASP/Ada). The presented task, in which various graphical representations that can be extracted or generated from source code are described and categorized, is focused on reverse engineering. The following subject areas are covered: the system model; control structure diagram generator; object oriented design diagram generator; user interface; and the GRASP library.

  11. Interaction Design and Usability of Learning Spaces in 3D Multi-user Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Minocha, Shailey; Reeves, Ahmad John

    Three-dimensional virtual worlds are multimedia, simulated environments, often managed over the Web, which users can 'inhabit' and interact via their own graphical, self-representations known as 'avatars'. 3D virtual worlds are being used in many applications: education/training, gaming, social networking, marketing and commerce. Second Life is the most widely used 3D virtual world in education. However, problems associated with usability, navigation and way finding in 3D virtual worlds may impact on student learning and engagement. Based on empirical investigations of learning spaces in Second Life, this paper presents design guidelines to improve the usability and ease of navigation in 3D spaces. Methods of data collection include semi-structured interviews with Second Life students, educators and designers. The findings have revealed that design principles from the fields of urban planning, Human- Computer Interaction, Web usability, geography and psychology can influence the design of spaces in 3D multi-user virtual environments.

  12. A Thermal Model Preprocessor For Graphics And Material Database Generation

    NASA Astrophysics Data System (ADS)

    Jones, Jack C.; Gonda, Teresa G.

    1989-08-01

    The process of developing a physical description of a target for thermal models is a time consuming and tedious task. The problem is one of data collection, data manipulation, and data storage. Information on targets can come from many sources and therefore could be in any form (2-D drawings, 3-D wireframe or solid model representations, etc.). TACOM has developed a preprocessor that decreases the time involved in creating a faceted target representation. This program allows the user to create the graphics for the vehicle and to assign the material properties to the graphics. The vehicle description file is then automatically generated by the preprocessor. By containing all the information in one database, the modeling process is made more accurate and data tracing can be done easily. A bridge to convert other graphics packages (such as BRL-CAD) to a faceted representation is being developed. When the bridge is finished, this preprocessor will be used to manipulate the converted data.

  13. 3D field harmonics

    SciTech Connect

    Caspi, S.; Helm, M.; Laslett, L.J.

    1991-03-30

    We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.

  14. A 3D Geostatistical Mapping Tool

    SciTech Connect

    Weiss, W. W.; Stevenson, Graig; Patel, Ketan; Wang, Jun

    1999-02-09

    This software provides accurate 3D reservoir modeling tools and high quality 3D graphics for PC platforms enabling engineers and geologists to better comprehend reservoirs and consequently improve their decisions. The mapping algorithms are fractals, kriging, sequential guassian simulation, and three nearest neighbor methods.

  15. Simulation of hip fracture in sideways fall using a 3D finite element model of pelvis-femur-soft tissue complex with simplified representation of whole body.

    PubMed

    Majumder, Santanu; Roychowdhury, Amit; Pal, Subrata

    2007-12-01

    Hip fractures due to sideways falls are a worldwide health problem, especially among the elderly population. The objective of this study was to simulate a real life sideways fall leading to hip fracture. To achieve this a computed tomography (CT) scan based three-dimensional (3D) finite element (FE) model of the pelvis-femur complex was developed using a wide range of mechanical properties in the bone of the complex. For impact absorption through large deformation, surrounding soft tissue was also included in the FE model from CT scan data. To incorporate the inertia effect, the whole body was represented by a spring-mass-dashpot system. For trochanteric soft tissue thickness of 14 mm, body weight of 77.47 kg and average hip impact velocity of 3.17 m/s, this detailed FE model could approximately simulate a sideways fall configuration and examine femoral fracture situation. At the contact surface, the peak impact load was 8331 N. In spite of the presence of 14 mm thick trochanteric soft tissue, within the trochanteric zone the most compressive peak principal strain was 3.5% which exceeds ultimate compressive strain. The modeled trochanteric fracture was consistent with clinical findings and with the findings of previous studies. Further, this detailed FE model may be used to find the effect of trochanteric soft tissue thickness variations on peak impact force, peak strain in sideways fall, and to simulate automobile side impact and backward fall situations.

  16. Interactive 2D to 3D stereoscopic image synthesis

    NASA Astrophysics Data System (ADS)

    Feldman, Mark H.; Lipton, Lenny

    2005-03-01

    Advances in stereoscopic display technologies, graphic card devices, and digital imaging algorithms have opened up new possibilities in synthesizing stereoscopic images. The power of today"s DirectX/OpenGL optimized graphics cards together with adapting new and creative imaging tools found in software products such as Adobe Photoshop, provide a powerful environment for converting planar drawings and photographs into stereoscopic images. The basis for such a creative process is the focus of this paper. This article presents a novel technique, which uses advanced imaging features and custom Windows-based software that utilizes the Direct X 9 API to provide the user with an interactive stereo image synthesizer. By creating an accurate and interactive world scene with moveable and flexible depth map altered textured surfaces, perspective stereoscopic cameras with both visible frustums and zero parallax planes, a user can precisely model a virtual three-dimensional representation of a real-world scene. Current versions of Adobe Photoshop provide a creative user with a rich assortment of tools needed to highlight elements of a 2D image, simulate hidden areas, and creatively shape them for a 3D scene representation. The technique described has been implemented as a Photoshop plug-in and thus allows for a seamless transition of these 2D image elements into 3D surfaces, which are subsequently rendered to create stereoscopic views.

  17. Implementing psychophysiology in clinical assessments of adolescent social anxiety: use of rater judgments based on graphical representations of psychophysiology.

    PubMed

    De Los Reyes, Andres; Augenstein, Tara M; Aldao, Amelia; Thomas, Sarah A; Daruwala, Samantha; Kline, Kathryn; Regan, Timothy

    2015-01-01

    Social stressor tasks induce adolescents' social distress as indexed by low-cost psychophysiological methods. Unknown is how to incorporate these methods within clinical assessments. Having assessors judge graphical depictions of psychophysiological data may facilitate detections of data patterns that may be difficult to identify using judgments about numerical depictions of psychophysiological data. Specifically, the Chernoff Face method involves graphically representing data using features on the human face (eyes, nose, mouth, and face shape). This method capitalizes on humans' abilities to discern subtle variations in facial features. Using adolescent heart rate norms and Chernoff Faces, we illustrated a method for implementing psychophysiology within clinical assessments of adolescent social anxiety. Twenty-two clinic-referred adolescents completed a social anxiety self-report and provided psychophysiological data using wireless heart rate monitors during a social stressor task. We graphically represented participants' psychophysiological data and normative adolescent heart rates. For each participant, two undergraduate coders made comparative judgments between the dimensions (eyes, nose, mouth, and face shape) of two Chernoff Faces. One Chernoff Face represented a participant's heart rate within a context (baseline, speech preparation, or speech-giving). The second Chernoff Face represented normative heart rate data matched to the participant's age. Using Chernoff Faces, coders reliably and accurately identified contextual variation in participants' heart rate responses to social stress. Further, adolescents' self-reported social anxiety symptoms predicted Chernoff Face judgments, and judgments could be differentiated by social stress context. Our findings have important implications for implementing psychophysiology within clinical assessments of adolescent social anxiety.

  18. Interpreting Association from Graphical Displays

    ERIC Educational Resources Information Center

    Fitzallen, Noleine

    2016-01-01

    Research that has explored students' interpretations of graphical representations has not extended to include how students apply understanding of particular statistical concepts related to one graphical representation to interpret different representations. This paper reports on the way in which students' understanding of covariation, evidenced…

  19. Graphical functions in parametric space

    NASA Astrophysics Data System (ADS)

    Golz, Marcel; Panzer, Erik; Schnetz, Oliver

    2016-12-01

    Graphical functions are positive functions on the punctured complex plane Csetminus {0,1} which arise in quantum field theory. We generalize a parametric integral representation for graphical functions due to Lam, Lebrun and Nakanishi, which implies the real analyticity of graphical functions. Moreover, we prove a formula that relates graphical functions of planar dual graphs.

  20. Implementing Psychophysiology in Clinical Assessments of Adolescent Social Anxiety: Use of Rater Judgments Based on Graphical Representations of Psychophysiology

    PubMed Central

    De Los Reyes, Andres; Augenstein, Tara M.; Aldao, Amelia; Thomas, Sarah A.; Daruwala, Samantha; Kline, Kathryn; Regan, Timothy

    2014-01-01

    OBJECTIVE Social stressor tasks induce adolescents’ social distress as indexed by low-cost psychophysiological methods. Unknown is how to incorporate these methods within clinical assessments. Having assessors judge graphical depictions of psychophysiological data may facilitate detections of data patterns that may be difficult to identify using judgments about numerical depictions of psychophysiological data. Specifically, the Chernoff Face method involves graphically representing data using features on the human face (eyes, nose, mouth, and face shape). This method capitalizes on humans’ abilities to discern subtle variations in facial features. Using adolescent heart rate norms and Chernoff Faces, we illustrated a method for implementing psychophysiology within clinical assessments of adolescent social anxiety. METHOD Twenty-two clinic-referred adolescents completed a social anxiety self-report and provided psychophysiological data using wireless heart rate monitors during a social stressor task. We graphically represented participants’ psychophysiological data and normative adolescent heart rates. For each participant, two undergraduate coders made comparative judgments between the dimensions (eyes, nose, mouth, and face shape) of two Chernoff Faces. One Chernoff Face represented a participant’s heart rate within a context (baseline, speech preparation, or speech-giving). The second Chernoff Face represented normative heart rate data matched to the participant’s age. RESULTS Using Chernoff faces, coders reliably and accurately identified contextual variation in participants’ heart rate responses to social stress. Further, adolescents’ self-reported social anxiety symptoms predicted Chernoff Face judgments, and judgments could be differentiated by social stress context. CONCLUSIONS Our findings have important implications for implementing psychophysiology within clinical assessments of adolescent social anxiety. PMID:24320027

  1. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2004-04-05

    This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.

  2. Improving Semantic Updating Method on 3d City Models Using Hybrid Semantic-Geometric 3d Segmentation Technique

    NASA Astrophysics Data System (ADS)

    Sharkawi, K.-H.; Abdul-Rahman, A.

    2013-09-01

    Cities and urban areas entities such as building structures are becoming more complex as the modern human civilizations continue to evolve. The ability to plan and manage every territory especially the urban areas is very important to every government in the world. Planning and managing cities and urban areas based on printed maps and 2D data are getting insufficient and inefficient to cope with the complexity of the new developments in big cities. The emergence of 3D city models have boosted the efficiency in analysing and managing urban areas as the 3D data are proven to represent the real world object more accurately. It has since been adopted as the new trend in buildings and urban management and planning applications. Nowadays, many countries around the world have been generating virtual 3D representation of their major cities. The growing interest in improving the usability of 3D city models has resulted in the development of various tools for analysis based on the 3D city models. Today, 3D city models are generated for various purposes such as for tourism, location-based services, disaster management and urban planning. Meanwhile, modelling 3D objects are getting easier with the emergence of the user-friendly tools for 3D modelling available in the market. Generating 3D buildings with high accuracy also has become easier with the availability of airborne Lidar and terrestrial laser scanning equipments. The availability and accessibility to this technology makes it more sensible to analyse buildings in urban areas using 3D data as it accurately represent the real world objects. The Open Geospatial Consortium (OGC) has accepted CityGML specifications as one of the international standards for representing and exchanging spatial data, making it easier to visualize, store and manage 3D city models data efficiently. CityGML able to represents the semantics, geometry, topology and appearance of 3D city models in five well-defined Level-of-Details (LoD), namely LoD0

  3. The near real time Forensic Disaster Analysis of the central European flood in June 2013 - A graphical representation of the main results

    NASA Astrophysics Data System (ADS)

    Schröter, Kai; Elmer, Florian; Trieselmann, Werner; Kreibich, Heidi; Kunz, Michael; Khazai, Bijan; Dransch, Doris; Wenzel, Friedemann; Zschau, Jochen; Merz, Bruno; Mühr, Bernhard; Kunz-Plapp, Tina; Möhrle, Stella; Bessel, Tina; Fohringer, Joachim

    2014-05-01

    The Central European flood of June 2013 is one of the most severe flood events that have occurred in Central Europe in the past decades. All major German river basins were affected (Rhine, Danube, and Elbe as well as the smaller Weser catchment).In terms of spatial extent and event magnitude, it was the most severe event at least since 1950. Within the current research focus on near real time forensic disaster analysis, the Center for Disaster Management and Risk Reduction Technology (CEDIM) assessed and analysed the multiple facets of the flood event from the beginning. The aim is to describe the on-going event, analyse the event sources, link the physical characteristics to the impact and consequences of the event and to understand the root causes that turn the physical event into a disaster (or prevent it from becoming disastrous). For the near real time component of this research, tools for rapid assessment and concise presentation of analysis results are essential. This contribution provides a graphical summary of the results of the CEDIM-FDA analyses on the June 2013 flood. It demonstrates the potential of visual representations for improving the communication and hence usability of findings in a rapid, intelligible and expressive way as a valuable supplement to usual event reporting. It is based on analyses of the hydrometeorological sources, the flood pathways (from satellite imagery, data extraction from social media), the resilience of the affected regions, and causal loss analysis. The prototypical representation of the FDA-results for the June 2013 flood provides an important step in the development of graphical event templates for the visualisation of forensic disaster analyses. These are intended to become a standard component of future CEDIM-FDA event activities.

  4. Output-sensitive 3D line integral convolution.

    PubMed

    Falk, Martin; Weiskopf, Daniel

    2008-01-01

    We propose an output-sensitive visualization method for 3D line integral convolution (LIC) whose rendering speed is largely independent of the data set size and mostly governed by the complexity of the output on the image plane. Our approach of view-dependent visualization tightly links the LIC generation with the volume rendering of the LIC result in order to avoid the computation of unnecessary LIC points: early-ray termination and empty-space leaping techniques are used to skip the computation of the LIC integral in a lazy-evaluation approach; both ray casting and texture slicing can be used as volume-rendering techniques. The input noise is modeled in object space to allow for temporal coherence under object and camera motion. Different noise models are discussed, covering dense representations based on filtered white noise all the way to sparse representations similar to oriented LIC. Aliasing artifacts are avoided by frequency control over the 3D noise and by employing a 3D variant of MIPmapping. A range of illumination models is applied to the LIC streamlines: different codimension-2 lighting models and a novel gradient-based illumination model that relies on precomputed gradients and does not require any direct calculation of gradients after the LIC integral is evaluated. We discuss the issue of proper sampling of the LIC and volume-rendering integrals by employing a frequency-space analysis of the noise model and the precomputed gradients. Finally, we demonstrate that our visualization approach lends itself to a fast graphics processing unit (GPU) implementation that supports both steady and unsteady flow. Therefore, this 3D LIC method allows users to interactively explore 3D flow by means of high-quality, view-dependent, and adaptive LIC volume visualization. Applications to flow visualization in combination with feature extraction and focus-and-context visualization are described, a comparison to previous methods is provided, and a detailed performance

  5. An interactive multiview 3D display system

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoxing; Geng, Zheng; Zhang, Mei; Dong, Hui

    2013-03-01

    The progresses in 3D display systems and user interaction technologies will help more effective 3D visualization of 3D information. They yield a realistic representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them. In this paper, we describe an autostereoscopic multiview 3D display system with capability of real-time user interaction. Design principle of this autostereoscopic multiview 3D display system is presented, together with the details of its hardware/software architecture. A prototype is built and tested based upon multi-projectors and horizontal optical anisotropic display structure. Experimental results illustrate the effectiveness of this novel 3D display and user interaction system.

  6. Novel fully integrated computer system for custom footwear: from 3D digitization to manufacturing

    NASA Astrophysics Data System (ADS)

    Houle, Pascal-Simon; Beaulieu, Eric; Liu, Zhaoheng

    1998-03-01

    This paper presents a recently developed custom footwear system, which integrates 3D digitization technology, range image fusion techniques, a 3D graphical environment for corrective actions, parametric curved surface representation and computer numerical control (CNC) machining. In this system, a support designed with the help of biomechanics experts can stabilize the foot in a correct and neutral position. The foot surface is then captured by a 3D camera using active ranging techniques. A software using a library of documented foot pathologies suggests corrective actions on the orthosis. Three kinds of deformations can be achieved. The first method uses previously scanned pad surfaces by our 3D scanner, which can be easily mapped onto the foot surface to locally modify the surface shape. The second kind of deformation is construction of B-Spline surfaces by manipulating control points and modifying knot vectors in a 3D graphical environment to build desired deformation. The last one is a manual electronic 3D pen, which may be of different shapes and sizes, and has an adjustable 'pressure' information. All applied deformations should respect a G1 surface continuity, which ensure that the surface can accustom a foot. Once the surface modification process is completed, the resulting data is sent to manufacturing software for CNC machining.

  7. Three-dimensional representations of complex carbohydrates and polysaccharides--SweetUnityMol: a video game-based computer graphic software.

    PubMed

    Pérez, Serge; Tubiana, Thibault; Imberty, Anne; Baaden, Marc

    2015-05-01

    A molecular visualization program tailored to deal with the range of 3D structures of complex carbohydrates and polysaccharides, either alone or in their interactions with other biomacromolecules, has been developed using advanced technologies elaborated by the video games industry. All the specific structural features displayed by the simplest to the most complex carbohydrate molecules have been considered and can be depicted. This concerns the monosaccharide identification and classification, conformations, location in single or multiple branched chains, depiction of secondary structural elements and the essential constituting elements in very complex structures. Particular attention was given to cope with the accepted nomenclature and pictorial representation used in glycoscience. This achievement provides a continuum between the most popular ways to depict the primary structures of complex carbohydrates to visualizing their 3D structures while giving the users many options to select the most appropriate modes of representations including new features such as those provided by the use of textures to depict some molecular properties. These developments are incorporated in a stand-alone viewer capable of displaying molecular structures, biomacromolecule surfaces and complex interactions of biomacromolecules, with powerful, artistic and illustrative rendering methods. They result in an open source software compatible with multiple platforms, i.e., Windows, MacOS and Linux operating systems, web pages, and producing publication-quality figures. The algorithms and visualization enhancements are demonstrated using a variety of carbohydrate molecules, from glycan determinants to glycoproteins and complex protein-carbohydrate interactions, as well as very complex mega-oligosaccharides and bacterial polysaccharides and multi-stranded polysaccharide architectures.

  8. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  9. Accelerating a 3D finite-difference wave propagation code by a factor of 50 and a spectral-element code by a factor of 25 using a cluster of GPU graphics cards

    NASA Astrophysics Data System (ADS)

    Komatitsch, Dimitri; Michéa, David; Erlebacher, Gordon; Göddeke, Dominik

    2010-05-01

    We first accelerate a three-dimensional finite-difference in the time domain (FDTD) wave propagation code by a factor of about 50 using Graphics Processing Unit (GPU) computing on a cheap NVIDIA graphics card with the CUDA programming language. We implement the code in CUDA in the case of the fully heterogeneous elastic wave equation. We also implement Convolution Perfectly Matched Layers (CPMLs) on the graphics card to efficiently absorb outgoing waves on the fictitious edges of the grid. We show that the code that runs on the graphics card gives the expected results by comparing our results to those obtained by running the same simulation on a classical processor core. The methodology that we present can be used for Maxwell's equations as well because their form is similar to that of the seismic wave equation written in velocity vector and stress tensor. We then implement a high-order finite-element (spectral-element) application, which performs the numerical simulation of seismic wave propagation resulting for instance from earthquakes at the scale of a continent or from active seismic acquisition experiments in the oil industry, on a cluster of NVIDIA Tesla graphics cards using the CUDA programming language and non blocking message passing based on MPI. We compare it to the implementation in C language and MPI on a classical cluster of CPU nodes. We use mesh coloring to efficiently handle summation operations over degrees of freedom on an unstructured mesh, and we exchange information between nodes using non blocking MPI messages. Using non-blocking communications allows us to overlap the communications across the network and the data transfer between the GPU card and the CPU node on which it is installed with calculations on that GPU card. We perform a number of numerical tests to validate the single-precision CUDA and MPI implementation and assess its accuracy. We then analyze performance measurements and in average we obtain a speedup of 20x to 25x.

  10. Using graphical and pictorial representations to teach introductory astronomy students about the detection of extrasolar planets via gravitational microlensing

    NASA Astrophysics Data System (ADS)

    Wallace, Colin S.; Chambers, Timothy G.; Prather, Edward E.; Brissenden, Gina

    2016-05-01

    The detection and study of extrasolar planets is an exciting and thriving field in modern astrophysics and an increasingly popular topic in introductory astronomy courses. One detection method relies on searching for stars whose light has been gravitationally microlensed by an extrasolar planet. In order to facilitate instructors' abilities to bring this interesting mix of general relativity and extrasolar planet detection into the introductory astronomy classroom, we have developed a new Lecture-Tutorial called "Detecting Exoplanets with Gravitational Microlensing." In this paper, we describe how this new Lecture-Tutorial's representations of astrophysical phenomena, which we selected and created based on theoretically motivated considerations of their pedagogical affordances, are used to help introductory astronomy students develop more expert-like reasoning abilities.

  11. RT3D tutorials for GMS users

    SciTech Connect

    Clement, T.P.; Jones, N.L.

    1998-02-01

    RT3D (Reactive Transport in 3-Dimensions) is a computer code that solves coupled partial differential equations that describe reactive-flow and transport of multiple mobile and/or immobile species in a three dimensional saturated porous media. RT3D was developed from the single-species transport code, MT3D (DoD-1.5, 1997 version). As with MT3D, RT3D also uses the USGS groundwater flow model MODFLOW for computing spatial and temporal variations in groundwater head distribution. This report presents a set of tutorial problems that are designed to illustrate how RT3D simulations can be performed within the Department of Defense Groundwater Modeling System (GMS). GMS serves as a pre- and post-processing interface for RT3D. GMS can be used to define all the input files needed by RT3D code, and later the code can be launched from within GMS and run as a separate application. Once the RT3D simulation is completed, the solution can be imported to GMS for graphical post-processing. RT3D v1.0 supports several reaction packages that can be used for simulating different types of reactive contaminants. Each of the tutorials, described below, provides training on a different RT3D reaction package. Each reaction package has different input requirements, and the tutorials are designed to describe these differences. Furthermore, the tutorials illustrate the various options available in GMS for graphical post-processing of RT3D results. Users are strongly encouraged to complete the tutorials before attempting to use RT3D and GMS on a routine basis.

  12. 3D Stereo Data Visualization and Representation

    DTIC Science & Technology

    1994-09-01

    addition, the state of our minds, our psycological make-up, and human factors play a very important role in this process. 2.2.1.1 Ambient Mode and...year, if available (e.g. . limitations or special markings in all capitals (e.g. I Jan 88). Must cite at least the year. NOFORN, REL, ITAR). Block 3

  13. Animation graphic interface for the space shuttle onboard computer

    NASA Technical Reports Server (NTRS)

    Wike, Jeffrey; Griffith, Paul

    1989-01-01

    Graphics interfaces designed to operate on space qualified hardware challenge software designers to display complex information under processing power and physical size constraints. Under contract to Johnson Space Center, MICROEXPERT Systems is currently constructing an intelligent interface for the LASER DOCKING SENSOR (LDS) flight experiment. Part of this interface is a graphic animation display for Rendezvous and Proximity Operations. The displays have been designed in consultation with Shuttle astronauts. The displays show multiple views of a satellite relative to the shuttle, coupled with numeric attitude information. The graphics are generated using position data received by the Shuttle Payload and General Support Computer (PGSC) from the Laser Docking Sensor. Some of the design considerations include crew member preferences in graphic data representation, single versus multiple window displays, mission tailoring of graphic displays, realistic 3D images versus generic icon representations of real objects, the physical relationship of the observers to the graphic display, how numeric or textual information should interface with graphic data, in what frame of reference objects should be portrayed, recognizing conditions of display information-overload, and screen format and placement consistency.

  14. Real-Time 3D Visualization

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Butler Hine, former director of the Intelligent Mechanism Group (IMG) at Ames Research Center, and five others partnered to start Fourth Planet, Inc., a visualization company that specializes in the intuitive visual representation of dynamic, real-time data over the Internet and Intranet. Over a five-year period, the then NASA researchers performed ten robotic field missions in harsh climes to mimic the end- to-end operations of automated vehicles trekking across another world under control from Earth. The core software technology for these missions was the Virtual Environment Vehicle Interface (VEVI). Fourth Planet has released VEVI4, the fourth generation of the VEVI software, and NetVision. VEVI4 is a cutting-edge computer graphics simulation and remote control applications tool. The NetVision package allows large companies to view and analyze in virtual 3D space such things as the health or performance of their computer network or locate a trouble spot on an electric power grid. Other products are forthcoming. Fourth Planet is currently part of the NASA/Ames Technology Commercialization Center, a business incubator for start-up companies.

  15. 3d-3d correspondence revisited

    DOE PAGES

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; ...

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  16. A 3D visualization system for molecular structures

    NASA Technical Reports Server (NTRS)

    Green, Terry J.

    1989-01-01

    The properties of molecules derive in part from their structures. Because of the importance of understanding molecular structures various methodologies, ranging from first principles to empirical technique, were developed for computing the structure of molecules. For large molecules such as polymer model compounds, the structural information is difficult to comprehend by examining tabulated data. Therefore, a molecular graphics display system, called MOLDS, was developed to help interpret the data. MOLDS is a menu-driven program developed to run on the LADC SNS computer systems. This program can read a data file generated by the modeling programs or data can be entered using the keyboard. MOLDS has the following capabilities: draws the 3-D representation of a molecule using stick, ball and ball, or space filled model from Cartesian coordinates, draws different perspective views of the molecule; rotates the molecule on the X, Y, Z axis or about some arbitrary line in space, zooms in on a small area of the molecule in order to obtain a better view of a specific region; and makes hard copy representation of molecules on a graphic printer. In addition, MOLDS can be easily updated and readily adapted to run on most computer systems.

  17. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  18. Constructing topologically connected surfaces for the comprehensive analysis of 3-D medical structures

    NASA Astrophysics Data System (ADS)

    Kalvin, Alan D.; Cutting, Court B.; Haddad, Betsy; Noz, Marilyn E.

    1991-06-01

    Three-dimensional (3D) medical imaging deals with the visualization, manipulation, and measuring of objects in 3D medical images. So far, research efforts have concentrated primarily on visualization, using well-developed methods from computer graphics. Very little has been achieved in developing techniques for manipulating medical objects, or for extracting quantitative measurements from them beyond volume calculation (by counting voxels), and computing distances and angles between manually located surface points. A major reason for the slow pace in the development of manipulation and quantification methods lies with the limitations of current algorithms for constructing surfaces from 3D solid objects. We show that current surface construction algorithms either (a) do not construct valid surface descriptions of solid objects or (b) produce surface representations that are not particularly suitable for anything other than visualization. We present ALLIGATOR, a new surface construction algorithm that produces valid, topologically connected surface representations of solid objects. We have developed a modeling system based on the surface representations created by ALLIGATOR that is suitable for developing algorithms to visualize, manipulate, and quantify 3D medical objects. Using this modeling system we have developed a method for efficiently computing principle curvatures and directions on surfaces. These measurements form the basis for a new metric system being developed for morphometrics. The modeling system is also being used in the development of systems for quantitative pre-surgical planning and surgical augmentation.

  19. SNL3dFace

    SciTech Connect

    Russ, Trina; Koch, Mark; Koudelka, Melissa; Peters, Ralph; Little, Charles; Boehnen, Chris; Peters, Tanya

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial features of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.

  20. A modern approach to storing of 3D geometry of objects in machine engineering industry

    NASA Astrophysics Data System (ADS)

    Sokolova, E. A.; Aslanov, G. A.; Sokolov, A. A.

    2017-02-01

    3D graphics is a kind of computer graphics which has absorbed a lot from the vector and raster computer graphics. It is used in interior design projects, architectural projects, advertising, while creating educational computer programs, movies, visual images of parts and products in engineering, etc. 3D computer graphics allows one to create 3D scenes along with simulation of light conditions and setting up standpoints.

  1. Integration of real-time 3D image acquisition and multiview 3D display

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Li, Wei; Wang, Jingyi; Liu, Yongchun

    2014-03-01

    Seamless integration of 3D acquisition and 3D display systems offers enhanced experience in 3D visualization of the real world objects or scenes. The vivid representation of captured 3D objects displayed on a glasses-free 3D display screen could bring the realistic viewing experience to viewers as if they are viewing real-world scene. Although the technologies in 3D acquisition and 3D display have advanced rapidly in recent years, effort is lacking in studying the seamless integration of these two different aspects of 3D technologies. In this paper, we describe our recent progress on integrating a light-field 3D acquisition system and an autostereoscopic multiview 3D display for real-time light field capture and display. This paper focuses on both the architecture design and the implementation of the hardware and the software of this integrated 3D system. A prototype of the integrated 3D system is built to demonstrate the real-time 3D acquisition and 3D display capability of our proposed system.

  2. Description of graphics translation software between Intergraph and Tektronix systems

    NASA Technical Reports Server (NTRS)

    Rieckhoff, Tom; Hixson, Jeff; Covan, Mark

    1988-01-01

    The requirement for Marshall Space Flight Center's Photo Analysis to use existing 3-D Intergraph graphic files on an existing Tektronix 4129 3-D graphics workstation and the unavailability of an off-the-shelf Intergraph to Tektronix translator required the development of such a translater. Using the output of Intergraph's standard interchange format converter, the 3-D graphic information of Intergraph's files are reformatted and compressed. The 3-D image is reconstructed using Tektronix's software terminal interface graphic library (STI).

  3. Optical 3D surface digitizing in forensic medicine: 3D documentation of skin and bone injuries.

    PubMed

    Thali, Michael J; Braun, Marcel; Dirnhofer, Richard

    2003-11-26

    Photography process reduces a three-dimensional (3D) wound to a two-dimensional level. If there is a need for a high-resolution 3D dataset of an object, it needs to be three-dimensionally scanned. No-contact optical 3D digitizing surface scanners can be used as a powerful tool for wound and injury-causing instrument analysis in trauma cases. The 3D skin wound and a bone injury documentation using the optical scanner Advanced TOpometric Sensor (ATOS II, GOM International, Switzerland) will be demonstrated using two illustrative cases. Using this 3D optical digitizing method the wounds (the virtual 3D computer model of the skin and the bone injuries) and the virtual 3D model of the injury-causing tool are graphically documented in 3D in real-life size and shape and can be rotated in the CAD program on the computer screen. In addition, the virtual 3D models of the bone injuries and tool can now be compared in a 3D CAD program against one another in virtual space, to see if there are matching areas. Further steps in forensic medicine will be a full 3D surface documentation of the human body and all the forensic relevant injuries using optical 3D scanners.

  4. 3-D Mesh Generation Nonlinear Systems

    SciTech Connect

    Christon, M. A.; Dovey, D.; Stillman, D. W.; Hallquist, J. O.; Rainsberger, R. B

    1994-04-07

    INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D, NIKE3D, FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surface equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The primary new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition.

  5. TractRender: a new generalized 3D medical image visualization and output platform

    NASA Astrophysics Data System (ADS)

    Hwang, Darryl H.; Tsao, Sinchai; Gajawelli, Niharika; Law, Meng; Lepore, Natasha

    2015-01-01

    Diffusion MRI allows us not only voxelized diffusion characteristics but also the potential to delineate neuronal fiber path through tractography. There is a dearth of flexible open source tractography software programs for visualizing these complicated 3D structures. Moreover, rendering these structures using various shading, lighting, and representations will result in vastly different graphical feel. In addition, the ability to output these objects in various formats increases the utility of this platform. We have created TractRender that leverages openGL features through Matlab, allowing for maximum ease of use but still maintain the flexibility of custom scene rendering.

  6. Graphical Representation of Thermodynamic Functions

    ERIC Educational Resources Information Center

    Wood, A.

    1975-01-01

    Outlines a teaching method using graphs for explaining phase changes and the effect of pressure and the relationships between temperature, entropy, enthalpy, energy, Gibbs function, Helmholtz function and volume. (GS)

  7. [Real time 3D echocardiography

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  8. ShowMe3D

    SciTech Connect

    Sinclair, Michael B

    2012-01-05

    ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from the displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.

  9. AE3D

    SciTech Connect

    Spong, Donald A

    2016-06-20

    AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.

  10. CityGML - Interoperable semantic 3D city models

    NASA Astrophysics Data System (ADS)

    Gröger, Gerhard; Plümer, Lutz

    2012-07-01

    CityGML is the international standard of the Open Geospatial Consortium (OGC) for the representation and exchange of 3D city models. It defines the three-dimensional geometry, topology, semantics and appearance of the most relevant topographic objects in urban or regional contexts. These definitions are provided in different, well-defined Levels-of-Detail (multiresolution model). The focus of CityGML is on the semantical aspects of 3D city models, its structures, taxonomies and aggregations, allowing users to employ virtual 3D city models for advanced analysis and visualization tasks in a variety of application domains such as urban planning, indoor/outdoor pedestrian navigation, environmental simulations, cultural heritage, or facility management. This is in contrast to purely geometrical/graphical models such as KML, VRML, or X3D, which do not provide sufficient semantics. CityGML is based on the Geography Markup Language (GML), which provides a standardized geometry model. Due to this model and its well-defined semantics and structures, CityGML facilitates interoperable data exchange in the context of geo web services and spatial data infrastructures. Since its standardization in 2008, CityGML has become used on a worldwide scale: tools from notable companies in the geospatial field provide CityGML interfaces. Many applications and projects use this standard. CityGML is also having a strong impact on science: numerous approaches use CityGML, particularly its semantics, for disaster management, emergency responses, or energy-related applications as well as for visualizations, or they contribute to CityGML, improving its consistency and validity, or use CityGML, particularly its different Levels-of-Detail, as a source or target for generalizations. This paper gives an overview of CityGML, its underlying concepts, its Levels-of-Detail, how to extend it, its applications, its likely future development, and the role it plays in scientific research. Furthermore, its

  11. Quon 3D language for quantum information

    PubMed Central

    Liu, Zhengwei; Wozniakowski, Alex; Jaffe, Arthur M.

    2017-01-01

    We present a 3D topological picture-language for quantum information. Our approach combines charged excitations carried by strings, with topological properties that arise from embedding the strings in the interior of a 3D manifold with boundary. A quon is a composite that acts as a particle. Specifically, a quon is a hemisphere containing a neutral pair of open strings with opposite charge. We interpret multiquons and their transformations in a natural way. We obtain a type of relation, a string–genus “joint relation,” involving both a string and the 3D manifold. We use the joint relation to obtain a topological interpretation of the C∗-Hopf algebra relations, which are widely used in tensor networks. We obtain a 3D representation of the controlled NOT (CNOT) gate that is considerably simpler than earlier work, and a 3D topological protocol for teleportation. PMID:28167790

  12. Multi-view and 3D deformable part models.

    PubMed

    Pepik, Bojan; Stark, Michael; Gehler, Peter; Schiele, Bernt

    2015-11-01

    As objects are inherently 3D, they have been modeled in 3D in the early days of computer vision. Due to the ambiguities arising from mapping 2D features to 3D models, 3D object representations have been neglected and 2D feature-based models are the predominant paradigm in object detection nowadays. While such models have achieved outstanding bounding box detection performance, they come with limited expressiveness, as they are clearly limited in their capability of reasoning about 3D shape or viewpoints. In this work, we bring the worlds of 3D and 2D object representations closer, by building an object detector which leverages the expressive power of 3D object representations while at the same time can be robustly matched to image evidence. To that end, we gradually extend the successful deformable part model [1] to include viewpoint information and part-level 3D geometry information, resulting in several different models with different level of expressiveness. We end up with a 3D object model, consisting of multiple object parts represented in 3D and a continuous appearance model. We experimentally verify that our models, while providing richer object hypotheses than the 2D object models, provide consistently better joint object localization and viewpoint estimation than the state-of-the-art multi-view and 3D object detectors on various benchmarks (KITTI [2] , 3D object classes [3] , Pascal3D+ [4] , Pascal VOC 2007 [5] , EPFL multi-view cars[6] ).

  13. The 3D visualization technology research of submarine pipeline based Horde3D GameEngine

    NASA Astrophysics Data System (ADS)

    Yao, Guanghui; Ma, Xiushui; Chen, Genlang; Ye, Lingjian

    2013-10-01

    With the development of 3D display and virtual reality technology, its application gets more and more widespread. This paper applies 3D display technology to the monitoring of submarine pipeline. We reconstruct the submarine pipeline and its surrounding submarine terrain in computer using Horde3D graphics rendering engine on the foundation database "submarine pipeline and relative landforms landscape synthesis database" so as to display the virtual scene of submarine pipeline based virtual reality and show the relevant data collected from the monitoring of submarine pipeline.

  14. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  15. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  16. [Graphic reconstruction of anatomic surfaces].

    PubMed

    Ciobanu, O

    2004-01-01

    The paper deals with the graphic reconstruction of anatomic surfaces in a virtual 3D setting. Scanning technologies and soft provides a greater flexibility in the digitization of surfaces and a higher resolution and accuracy. An alternative cheap method for the reconstruction of 3D anatomic surfaces is presented in connection with some studies and international projects developed by Medical Design research team.

  17. Bootstrapping 3D fermions

    DOE PAGES

    Iliesiu, Luca; Kos, Filip; Poland, David; ...

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  18. Bootstrapping 3D fermions

    SciTech Connect

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  19. Techniques for interactive 3-D scientific visualization

    SciTech Connect

    Glinert, E.P. . Dept. of Computer Science); Blattner, M.M. Hospital and Tumor Inst., Houston, TX . Dept. of Biomathematics California Univ., Davis, CA . Dept. of Applied Science Lawrence Livermore National Lab., CA ); Becker, B.G. . Dept. of Applied Science Lawrence Livermore National La

    1990-09-24

    Interest in interactive 3-D graphics has exploded of late, fueled by (a) the allure of using scientific visualization to go where no-one has gone before'' and (b) by the development of new input devices which overcome some of the limitations imposed in the past by technology, yet which may be ill-suited to the kinds of interaction required by researchers active in scientific visualization. To resolve this tension, we propose a flat 5-D'' environment in which 2-D graphics are augmented by exploiting multiple human sensory modalities using cheap, conventional hardware readily available with personal computers and workstations. We discuss how interactions basic to 3-D scientific visualization, like searching a solution space and comparing two such spaces, are effectively carried out in our environment. Finally, we describe 3DMOVE, an experimental microworld we have implemented to test out some of our ideas. 40 refs., 4 figs.

  20. Debris Dispersion Model Using Java 3D

    NASA Technical Reports Server (NTRS)

    Thirumalainambi, Rajkumar; Bardina, Jorge

    2004-01-01

    This paper describes web based simulation of Shuttle launch operations and debris dispersion. Java 3D graphics provides geometric and visual content with suitable mathematical model and behaviors of Shuttle launch. Because the model is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models provides mechanisms to understand the complexity of launch and range operations. The main focus in the modeling and simulation covers orbital dynamics and range safety. Range safety areas include destruct limit lines, telemetry and tracking and population risk near range. If there is an explosion of Shuttle during launch, debris dispersion is explained. The shuttle launch and range operations in this paper are discussed based on the operations from Kennedy Space Center, Florida, USA.

  1. Reviews Book: Visible Learning Book: Getting to Grips with Graphs Book: A Teacher's Guide to Classroom Research Book: Relativity: A Graphic Guide Book: The Last Man Who Knew Everything Game: Planet Quest Equipment: Minoru 3D Web Camera Equipment: Throwies Equipment: Go Science Optics Kit Web Watch

    NASA Astrophysics Data System (ADS)

    2009-05-01

    WE RECOMMEND Visible Learning A compilation of more than 800 meta-analyses of achievement A Teacher's Guide to Classroom Research A useful aid for teachers who want to improve standards in class The Last Man Who Knew Everything This biography of Thomas Young is a 'lucid account' of his life Novo Minoru 3D Web Camera Welcome a mini alien to your classroom for fun 3D lessons WORTH A LOOK Getting to Grips with Graphs A useful collection of worksheets for teaching about graphs Relativity: A Graphic Guide This book works best as a supplementary text on relativity Planet Quest A space board game that will engage younger children Throwies Make a torch and liven up lessons on conductors and insulators Go Science Optics Kit Do-it-yourself optics kit should be priced a little lower WEB WATCH This month we take a look at NASA's technology and education web pages, which offer a great selection of space-related topics and activities for young scientists

  2. A 3D Geometry Model Search Engine to Support Learning

    ERIC Educational Resources Information Center

    Tam, Gary K. L.; Lau, Rynson W. H.; Zhao, Jianmin

    2009-01-01

    Due to the popularity of 3D graphics in animation and games, usage of 3D geometry deformable models increases dramatically. Despite their growing importance, these models are difficult and time consuming to build. A distance learning system for the construction of these models could greatly facilitate students to learn and practice at different…

  3. Venus in 3D

    NASA Technical Reports Server (NTRS)

    Plaut, Jeffrey J.

    1993-01-01

    Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.

  4. PLOT3D Export Tool for Tecplot

    NASA Technical Reports Server (NTRS)

    Alter, Stephen

    2010-01-01

    The PLOT3D export tool for Tecplot solves the problem of modified data being impossible to output for use by another computational science solver. The PLOT3D Exporter add-on enables the use of the most commonly available visualization tools to engineers for output of a standard format. The exportation of PLOT3D data from Tecplot has far reaching effects because it allows for grid and solution manipulation within a graphical user interface (GUI) that is easily customized with macro language-based and user-developed GUIs. The add-on also enables the use of Tecplot as an interpolation tool for solution conversion between different grids of different types. This one add-on enhances the functionality of Tecplot so significantly, it offers the ability to incorporate Tecplot into a general suite of tools for computational science applications as a 3D graphics engine for visualization of all data. Within the PLOT3D Export Add-on are several functions that enhance the operations and effectiveness of the add-on. Unlike Tecplot output functions, the PLOT3D Export Add-on enables the use of the zone selection dialog in Tecplot to choose which zones are to be written by offering three distinct options - output of active, inactive, or all zones (grid blocks). As the user modifies the zones to output with the zone selection dialog, the zones to be written are similarly updated. This enables the use of Tecplot to create multiple configurations of a geometry being analyzed. For example, if an aircraft is loaded with multiple deflections of flaps, by activating and deactivating different zones for a specific flap setting, new specific configurations of that aircraft can be easily generated by only writing out specific zones. Thus, if ten flap settings are loaded into Tecplot, the PLOT3D Export software can output ten different configurations, one for each flap setting.

  5. 3D photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.

    2010-06-01

    Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of

  6. Robot graphic simulation testbed

    NASA Technical Reports Server (NTRS)

    Cook, George E.; Sztipanovits, Janos; Biegl, Csaba; Karsai, Gabor; Springfield, James F.

    1991-01-01

    The objective of this research was twofold. First, the basic capabilities of ROBOSIM (graphical simulation system) were improved and extended by taking advantage of advanced graphic workstation technology and artificial intelligence programming techniques. Second, the scope of the graphic simulation testbed was extended to include general problems of Space Station automation. Hardware support for 3-D graphics and high processing performance make high resolution solid modeling, collision detection, and simulation of structural dynamics computationally feasible. The Space Station is a complex system with many interacting subsystems. Design and testing of automation concepts demand modeling of the affected processes, their interactions, and that of the proposed control systems. The automation testbed was designed to facilitate studies in Space Station automation concepts.

  7. Watermarking 3D Objects for Verification

    DTIC Science & Technology

    1999-01-01

    signal ( audio /image/video) pro- cessing and steganography fields, and even newer to the computer graphics community. Inherently, digital watermarking of...Many view digital watermarking as a potential solution for copyright protection of valuable digital materials like CD-quality audio , publication...watermark. The object can be an image, an audio clip, a video clip, or a 3D model. Some papers discuss watermarking other forms of multime- dia data

  8. To What Degree Does Handling Concrete Molecular Models Promote the Ability to Translate and Coordinate between 2D and 3D Molecular Structure Representations? A Case Study with Algerian Students

    ERIC Educational Resources Information Center

    Mohamed-Salah, Boukhechem; Alain, Dumon

    2016-01-01

    This study aims to assess whether the handling of concrete ball-and-stick molecular models promotes translation between diagrammatic representations and a concrete model (or vice versa) and the coordination of the different types of structural representations of a given molecular structure. Forty-one Algerian undergraduate students were requested…

  9. Scalable 3D GIS environment managed by 3D-XML-based modeling

    NASA Astrophysics Data System (ADS)

    Shi, Beiqi; Rui, Jianxun; Chen, Neng

    2008-10-01

    Nowadays, the namely 3D GIS technologies become a key factor in establishing and maintaining large-scale 3D geoinformation services. However, with the rapidly increasing size and complexity of the 3D models being acquired, a pressing needed for suitable data management solutions has become apparent. This paper outlines that storage and exchange of geospatial data between databases and different front ends like 3D models, GIS or internet browsers require a standardized format which is capable to represent instances of 3D GIS models, to minimize loss of information during data transfer and to reduce interface development efforts. After a review of previous methods for spatial 3D data management, a universal lightweight XML-based format for quick and easy sharing of 3D GIS data is presented. 3D data management based on XML is a solution meeting the requirements as stated, which can provide an efficient means for opening a new standard way to create an arbitrary data structure and share it over the Internet. To manage reality-based 3D models, this paper uses 3DXML produced by Dassault Systemes. 3DXML uses opening XML schemas to communicate product geometry, structure and graphical display properties. It can be read, written and enriched by standard tools; and allows users to add extensions based on their own specific requirements. The paper concludes with the presentation of projects from application areas which will benefit from the functionality presented above.

  10. Visualization and analysis of 3D gene expression patterns in zebrafish using web services

    NASA Astrophysics Data System (ADS)

    Potikanond, D.; Verbeek, F. J.

    2012-01-01

    The analysis of patterns of gene expression patterns analysis plays an important role in developmental biology and molecular genetics. Visualizing both quantitative and spatio-temporal aspects of gene expression patterns together with referenced anatomical structures of a model-organism in 3D can help identifying how a group of genes are expressed at a certain location at a particular developmental stage of an organism. In this paper, we present an approach to provide an online visualization of gene expression data in zebrafish (Danio rerio) within 3D reconstruction model of zebrafish in different developmental stages. We developed web services that provide programmable access to the 3D reconstruction data and spatial-temporal gene expression data maintained in our local repositories. To demonstrate this work, we develop a web application that uses these web services to retrieve data from our local information systems. The web application also retrieve relevant analysis of microarray gene expression data from an external community resource; i.e. the ArrayExpress Atlas. All the relevant gene expression patterns data are subsequently integrated with the reconstruction data of the zebrafish atlas using ontology based mapping. The resulting visualization provides quantitative and spatial information on patterns of gene expression in a 3D graphical representation of the zebrafish atlas in a certain developmental stage. To deliver the visualization to the user, we developed a Java based 3D viewer client that can be integrated in a web interface allowing the user to visualize the integrated information over the Internet.

  11. Fast and Efficient Radiological Interventions via a Graphical User Interface Commanded Magnetic Resonance Compatible Robotic Device

    PubMed Central

    Özcan, Alpay; Christoforou, Eftychios; Brown, Daniel; Tsekos, Nikolaos

    2011-01-01

    The graphical user interface for an MR compatible robotic device has the capability of displaying oblique MR slices in 2D and a 3D virtual environment along with the representation of the robotic arm in order to swiftly complete the intervention. Using the advantages of the MR modality the device saves time and effort, is safer for the medical staff and is more comfortable for the patient. PMID:17946067

  12. Nonlaser-based 3D surface imaging

    SciTech Connect

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J.

    1994-11-15

    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  13. RAG-3D: A search tool for RNA 3D substructures

    SciTech Connect

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; Schlick, Tamar

    2015-08-24

    In this study, to address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.

  14. RAG-3D: A search tool for RNA 3D substructures

    DOE PAGES

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; ...

    2015-08-24

    In this study, to address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally describedmore » in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.« less

  15. 3-D visualization of geologic structures and processes

    NASA Astrophysics Data System (ADS)

    Pflug, R.; Klein, H.; Ramshorn, Ch.; Genter, M.; Stärk, A.

    Interactive 3-D computer graphics techniques are used to visualize geologic structures and simulated geologic processes. Geometric models that serve as input to 3-D viewing programs are generated from contour maps, from serial sections, or directly from simulation program output. Choice of viewing parameters strongly affects the perception of irregular surfaces. An interactive 3-D rendering program and its graphical user interface provide visualization tools for structural geology, seismic interpretation, and visual post-processing of simulations. Dynamic display of transient ground-water simulations and sedimentary process simulations can visualize processes developing through time.

  16. 3D Simulation: Microgravity Environments and Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Steve L.; Dischinger, Charles; Estes, Samantha; Parker, Nelson C. (Technical Monitor)

    2001-01-01

    Most, if not all, 3-D and Virtual Reality (VR) software programs are designed for one-G gravity applications. Space environments simulations require gravity effects of one one-thousandth to one one-million of that of the Earth's surface (10(exp -3) - 10(exp -6) G), thus one must be able to generate simulations that replicate those microgravity effects upon simulated astronauts. Unfortunately, the software programs utilized by the National Aeronautical and Space Administration does not have the ability to readily neutralize the one-G gravity effect. This pre-programmed situation causes the engineer or analysis difficulty during micro-gravity simulations. Therefore, microgravity simulations require special techniques or additional code in order to apply the power of 3D graphic simulation to space related applications. This paper discusses the problem and possible solutions to allow microgravity 3-D/VR simulations to be completed successfully without program code modifications.

  17. GRASP/Ada (Graphical Representations of Algorithms, Structures, and Processes for Ada): The development of a program analysis environment for Ada. Reverse engineering tools for Ada, task 1, phase 2

    NASA Technical Reports Server (NTRS)

    Cross, James H., II

    1990-01-01

    The study, formulation, and generation of structures for Ada (GRASP/Ada) are discussed in this second phase report of a three phase effort. Various graphical representations that can be extracted or generated from source code are described and categorized with focus on reverse engineering. The overall goal is to provide the foundation for a CASE (computer-aided software design) environment in which reverse engineering and forward engineering (development) are tightly coupled. Emphasis is on a subset of architectural diagrams that can be generated automatically from source code with the control structure diagram (CSD) included for completeness.

  18. Computer Graphics.

    ERIC Educational Resources Information Center

    Halpern, Jeanne W.

    1970-01-01

    Computer graphics have been called the most exciting development in computer technology. At the University of Michigan, three kinds of graphics output equipment are now being used: symbolic printers, line plotters or drafting devices, and cathode-ray tubes (CRT). Six examples are given that demonstrate the range of graphics use at the University.…

  19. Der Aufbau mentaler Modelle durch bildliche Darstellungen: Eine experimentalle Studie uber die Bedeutung der Merkmalsdimensionen Elaboriertheit und Strukturierheit im Sachunterricht der Grundschule (The Development of Mental Processes through Graphic Representation with Diverging Degrees of Elaboration and Structurization: An Experimental Study Carried Out in Elementary Science Instruction in Primary School).

    ERIC Educational Resources Information Center

    Martschinke, Sabine

    1996-01-01

    Examines types of graphical representation as to their suitability for knowledge acquisition in primary grades. Uses the concept of mental models to clarify the relationship between external presentation and internal representation of knowledge. Finds that students who learned with highly elaborated and highly structured pictures displayed the…

  20. 3-D Object Recognition from Point Cloud Data

    NASA Astrophysics Data System (ADS)

    Smith, W.; Walker, A. S.; Zhang, B.

    2011-09-01

    The market for real-time 3-D mapping includes not only traditional geospatial applications but also navigation of unmanned autonomous vehicles (UAVs). Massively parallel processes such as graphics processing unit (GPU) computing make real-time 3-D object recognition and mapping achievable. Geospatial technologies such as digital photogrammetry and GIS offer advanced capabilities to produce 2-D and 3-D static maps using UAV data. The goal is to develop real-time UAV navigation through increased automation. It is challenging for a computer to identify a 3-D object such as a car, a tree or a house, yet automatic 3-D object recognition is essential to increasing the productivity of geospatial data such as 3-D city site models. In the past three decades, researchers have used radiometric properties to identify objects in digital imagery with limited success, because these properties vary considerably from image to image. Consequently, our team has developed software that recognizes certain types of 3-D objects within 3-D point clouds. Although our software is developed for modeling, simulation and visualization, it has the potential to be valuable in robotics and UAV applications. The locations and shapes of 3-D objects such as buildings and trees are easily recognizable by a human from a brief glance at a representation of a point cloud such as terrain-shaded relief. The algorithms to extract these objects have been developed and require only the point cloud and minimal human inputs such as a set of limits on building size and a request to turn on a squaring option. The algorithms use both digital surface model (DSM) and digital elevation model (DEM), so software has also been developed to derive the latter from the former. The process continues through the following steps: identify and group 3-D object points into regions; separate buildings and houses from trees; trace region boundaries; regularize and simplify boundary polygons; construct complex roofs. Several case

  1. Development of 3D video and 3D data services for T-DMB

    NASA Astrophysics Data System (ADS)

    Yun, Kugjin; Lee, Hyun; Hur, Namho; Kim, Jinwoong

    2008-02-01

    In this paper, we present motivation, system concept, and implementation details of stereoscopic 3D visual services on T-DMB. We have developed two types of 3D visual service : one is '3D video service', which provides 3D depth feeling for a video program by sending left and right view video streams, and the other is '3D data service', which provides presentation of 3D objects overlaid on top of 2D video program. We have developed several highly efficient and sophisticated transmission schemes for the delivery of 3D visual data in order to meet the system requirements such as (1) minimization of bitrate overhead to comply with the strict constraint of T-DMB channel bandwidth; (2) backward and forward compatibility with existing T-DMB; (3) maximize the eye-catching effect of 3D visual representation while reducing eye fatigue. We found that, in contrast to conventional way of providing a stereo version of a program as a whole, the proposed scheme can lead to variety of efficient and effective 3D visual services which can be adapted to many business models.

  2. Twin Peaks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The two hills in the distance, approximately one to two kilometers away, have been dubbed the 'Twin Peaks' and are of great interest to Pathfinder scientists as objects of future study. 3D glasses are necessary to identify surface detail. The white areas on the left hill, called the 'Ski Run' by scientists, may have been formed by hydrologic processes.

    The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  3. 3D and beyond

    NASA Astrophysics Data System (ADS)

    Fung, Y. C.

    1995-05-01

    This conference on physiology and function covers a wide range of subjects, including the vasculature and blood flow, the flow of gas, water, and blood in the lung, the neurological structure and function, the modeling, and the motion and mechanics of organs. Many technologies are discussed. I believe that the list would include a robotic photographer, to hold the optical equipment in a precisely controlled way to obtain the images for the user. Why are 3D images needed? They are to achieve certain objectives through measurements of some objects. For example, in order to improve performance in sports or beauty of a person, we measure the form, dimensions, appearance, and movements.

  4. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  5. Computer aided surface representation

    SciTech Connect

    Barnhill, R.E.

    1991-04-02

    Modern computing resources permit the generation of large amounts of numerical data. These large data sets, if left in numerical form, can be overwhelming. Such large data sets are usually discrete points from some underlying physical phenomenon. Because we need to evaluate the phenomenon at places where we don't have data, a continuous representation (a surface'') is required. A simple example is a weather map obtained from a discrete set of weather stations. (For more examples including multi-dimensional ones, see the article by Dr. Rosemary Chang in the enclosed IRIS Universe). In order to create a scientific structure encompassing the data, we construct an interpolating mathematical surface which can evaluate at arbitrary locations. We can also display and analyze the results via interactive computer graphics. In our research we construct a very wide variety of surfaces for applied geometry problems that have sound theoretical foundations. However, our surfaces have the distinguishing feature that they are constructed to solve short or long term practical problems. This DOE-funded project has developed the premiere research team in the subject of constructing surfaces (3D and higher dimensional) that provide smooth representations of real scientific and engineering information, including state of the art computer graphics visualizations. However, our main contribution is in the development of fundamental constructive mathematical methods and visualization techniques which can be incorporated into a wide variety of applications. This project combines constructive mathematics, algorithms, and computer graphics, all applied to real problems. The project is a unique resource, considered by our peers to be a de facto national center for this type of research.

  6. 3D Surgical Simulation

    PubMed Central

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  7. Martian terrain - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An area of rocky terrain near the landing site of the Sagan Memorial Station can be seen in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  8. The Effect of Data Acquisition-Probeware and Digital Video Analysis on Accurate Graphical Representation of Kinetics in a High School Physics Class

    ERIC Educational Resources Information Center

    Struck, William; Yerrick, Randy

    2010-01-01

    The effects of two types of two well-established microcomputer-based teaching methods were examined for their effect on teaching high school students kinetics. The use of data acquisition probeware and digital video analysis were studied for their impact on students' conceptions and ability to interpret graphical relationships to real world…

  9. Graphic engine resource management

    NASA Astrophysics Data System (ADS)

    Bautin, Mikhail; Dwarakinath, Ashok; Chiueh, Tzi-cker

    2008-01-01

    Modern consumer-grade 3D graphic cards boast a computation/memory resource that can easily rival or even exceed that of standard desktop PCs. Although these cards are mainly designed for 3D gaming applications, their enormous computational power has attracted developers to port an increasing number of scientific computation programs to these cards, including matrix computation, collision detection, cryptography, database sorting, etc. As more and more applications run on 3D graphic cards, there is a need to allocate the computation/memory resource on these cards among the sharing applications more fairly and efficiently. In this paper, we describe the design, implementation and evaluation of a Graphic Processing Unit (GPU) scheduler based on Deficit Round Robin scheduling that successfully allocates to every process an equal share of the GPU time regardless of their demand. This scheduler, called GERM, estimates the execution time of each GPU command group based on dynamically collected statistics, and controls each process's GPU command production rate through its CPU scheduling priority. Measurements on the first GERM prototype show that this approach can keep the maximal GPU time consumption difference among concurrent GPU processes consistently below 5% for a variety of application mixes.

  10. Perception in statistical graphics

    NASA Astrophysics Data System (ADS)

    VanderPlas, Susan Ruth

    There has been quite a bit of research on statistical graphics and visualization, generally focused on new types of graphics, new software to create graphics, interactivity, and usability studies. Our ability to interpret and use statistical graphics hinges on the interface between the graph itself and the brain that perceives and interprets it, and there is substantially less research on the interplay between graph, eye, brain, and mind than is sufficient to understand the nature of these relationships. The goal of the work presented here is to further explore the interplay between a static graph, the translation of that graph from paper to mental representation (the journey from eye to brain), and the mental processes that operate on that graph once it is transferred into memory (mind). Understanding the perception of statistical graphics should allow researchers to create more effective graphs which produce fewer distortions and viewer errors while reducing the cognitive load necessary to understand the information presented in the graph. Taken together, these experiments should lay a foundation for exploring the perception of statistical graphics. There has been considerable research into the accuracy of numerical judgments viewers make from graphs, and these studies are useful, but it is more effective to understand how errors in these judgments occur so that the root cause of the error can be addressed directly. Understanding how visual reasoning relates to the ability to make judgments from graphs allows us to tailor graphics to particular target audiences. In addition, understanding the hierarchy of salient features in statistical graphics allows us to clearly communicate the important message from data or statistical models by constructing graphics which are designed specifically for the perceptual system.

  11. Methods of constructing a 3D geological model from scatter data

    SciTech Connect

    Horsman, J.; Bethel, W.

    1995-04-01

    Most geoscience applications, such as assessment of an oil reservoir or hazardous waste site, require geological characterization of the site. Geological characterization involves analysis of spatial distributions of lithology, porosity, etc. Because of the complexity of the spatial relationships, the authors find that a 3-D model of geology is better suited for integration of many different types of data and provides a better representation of a site than a 2-D one. A 3-D model of geology is constructed from sample data obtained from field measurements, which are usually scattered. To create a volume model from scattered data, interpolation between points is required. The interpolation can be computed using one of several computational algorithms. Alternatively, a manual method may be employed, in which an interactive graphics device is used to input by hand the information that lies between the data points. For example, a mouse can be used to draw lines connecting data points with equal values. The combination of these two methods presents yet another approach. In this study, the authors will compare selected methods of 3-D geological modeling, They used a flow-based, modular visualization environment (AVS) to construct the geological models computationally. Within this system, they used three modules, scat{_}3d, trivar and scatter{_}to{_}ucd, as examples of computational methods. They compare these methods to the combined manual and computational approach. Because there are no tools readily available in AVS for this type of construction, they used a geological modeling system to demonstrate this method.

  12. Scoops3D: software to analyze 3D slope stability throughout a digital landscape

    USGS Publications Warehouse

    Reid, Mark E.; Christian, Sarah B.; Brien, Dianne L.; Henderson, Scott T.

    2015-01-01

    The computer program, Scoops3D, evaluates slope stability throughout a digital landscape represented by a digital elevation model (DEM). The program uses a three-dimensional (3D) method of columns approach to assess the stability of many (typically millions) potential landslides within a user-defined size range. For each potential landslide (or failure), Scoops3D assesses the stability of a rotational, spherical slip surface encompassing many DEM cells using a 3D version of either Bishop’s simplified method or the Ordinary (Fellenius) method of limit-equilibrium analysis. Scoops3D has several options for the user to systematically and efficiently search throughout an entire DEM, thereby incorporating the effects of complex surface topography. In a thorough search, each DEM cell is included in multiple potential failures, and Scoops3D records the lowest stability (factor of safety) for each DEM cell, as well as the size (volume or area) associated with each of these potential landslides. It also determines the least-stable potential failure for the entire DEM. The user has a variety of options for building a 3D domain, including layers or full 3D distributions of strength and pore-water pressures, simplistic earthquake loading, and unsaturated suction conditions. Results from Scoops3D can be readily incorporated into a geographic information system (GIS) or other visualization software. This manual includes information on the theoretical basis for the slope-stability analysis, requirements for constructing and searching a 3D domain, a detailed operational guide (including step-by-step instructions for using the graphical user interface [GUI] software, Scoops3D-i) and input/output file specifications, practical considerations for conducting an analysis, results of verification tests, and multiple examples illustrating the capabilities of Scoops3D. Easy-to-use software installation packages are available for the Windows or Macintosh operating systems; these packages

  13. 3D face analysis for demographic biometrics

    SciTech Connect

    Tokola, Ryan A; Mikkilineni, Aravind K; Boehnen, Chris Bensing

    2015-01-01

    Despite being increasingly easy to acquire, 3D data is rarely used for face-based biometrics applications beyond identification. Recent work in image-based demographic biometrics has enjoyed much success, but these approaches suffer from the well-known limitations of 2D representations, particularly variations in illumination, texture, and pose, as well as a fundamental inability to describe 3D shape. This paper shows that simple 3D shape features in a face-based coordinate system are capable of representing many biometric attributes without problem-specific models or specialized domain knowledge. The same feature vector achieves impressive results for problems as diverse as age estimation, gender classification, and race classification.

  14. What Are the Learning Affordances of 3-D Virtual Environments?

    ERIC Educational Resources Information Center

    Dalgarno, Barney; Lee, Mark J. W.

    2010-01-01

    This article explores the potential learning benefits of three-dimensional (3-D) virtual learning environments (VLEs). Drawing on published research spanning two decades, it identifies a set of unique characteristics of 3-D VLEs, which includes aspects of their representational fidelity and aspects of the learner-computer interactivity they…

  15. NATURAL graphics

    NASA Technical Reports Server (NTRS)

    Jones, R. H.

    1984-01-01

    The hardware and software developments in computer graphics are discussed. Major topics include: system capabilities, hardware design, system compatibility, and software interface with the data base management system.

  16. Restoring Fort Frontenac in 3D: Effective Usage of 3D Technology for Heritage Visualization

    NASA Astrophysics Data System (ADS)

    Yabe, M.; Goins, E.; Jackson, C.; Halbstein, D.; Foster, S.; Bazely, S.

    2015-02-01

    This paper is composed of three elements: 3D modeling, web design, and heritage visualization. The aim is to use computer graphics design to inform and create an interest in historical visualization by rebuilding Fort Frontenac using 3D modeling and interactive design. The final model will be integr ated into an interactive website to learn more about the fort's historic imp ortance. It is apparent that using computer graphics can save time and money when it comes to historical visualization. Visitors do not have to travel to the actual archaeological buildings. They can simply use the Web in their own home to learn about this information virtually. Meticulously following historical records to create a sophisticated restoration of archaeological buildings will draw viewers into visualizations, such as the historical world of Fort Frontenac. As a result, it allows the viewers to effectively understand the fort's social sy stem, habits, and historical events.

  17. Multi-Source 3d Models Supporting Ultrasonic Test to Investigate AN Egyptian Sculpture of the Archaeological Museum in Bologna

    NASA Astrophysics Data System (ADS)

    Di Pietra, V.; Donadio, E.; Picchi, D.; Sambuelli, L.; Spanò, A.

    2017-02-01

    The paper presents the workflow and the results of an ultrasonic 3D investigation and a 3D survey application aimed at the assessment of the internal integrity of an ancient sculpture. The work aimed at highlighting the ability of methods devoted to the 3D geometry acquisition of small objects when applied to diagnosis performed by geophysical investigation. In particular, two methods widely applied for small objects modelling are considered and compared, the digital Photogrammetry with the Structure from Motion (SFM) technique and hand-held 3D scanners. The study concludes with the aim to enhance the final graphical representation of the tomographic results and to subject the obtained results to a quantitative analysis. The survey is applied to the Egyptian naophorous statue of Amenmes and Reshpu, which dates to the reign of Ramses II (1279-1213 BC) or later and is now preserved in the Civic Archaeological Museum in Bologna. In order to evaluate the internal persistency of fractures and visible damages, a 3D Ultrasonic Tomographic Imaging (UTI) test has been performed and a multi-sensor survey (image and range based) was conducted, in order to evaluate the locations of the source and receiver points as accurate as possible The presented test allowed to evaluate the material characteristics, its porosity and degradation state, which particularly affect the lower part of the statue. More in general, the project demonstrated how solution coming from the field of 3D modelling of Cultural Heritage allow the application of 3D ultrasonic tomography also on objects with complex shapes, in addition to the improved representation of the obtained results.

  18. Intraoral 3D scanner

    NASA Astrophysics Data System (ADS)

    Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther

    2007-09-01

    Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.

  19. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  20. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  1. Business Graphics

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Genigraphics Corporation's Masterpiece 8770 FilmRecorder is an advanced high resolution system designed to improve and expand a company's in-house graphics production. GRAFTIME/software package was designed to allow office personnel with minimal training to produce professional level graphics for business communications and presentations. Products are no longer being manufactured.

  2. Graphic Storytelling

    ERIC Educational Resources Information Center

    Thompson, John

    2009-01-01

    Graphic storytelling is a medium that allows students to make and share stories, while developing their art communication skills. American comics today are more varied in genre, approach, and audience than ever before. When considering the impact of Japanese manga on the youth, graphic storytelling emerges as a powerful player in pop culture. In…

  3. Fallon FORGE 3D Geologic Model

    SciTech Connect

    Doug Blankenship

    2016-03-01

    An x,y,z scattered data file for the 3D geologic model of the Fallon FORGE site. Model created in Earthvision by Dynamic Graphic Inc. The model was constructed with a grid spacing of 100 m. Geologic surfaces were extrapolated from the input data using a minimum tension gridding algorithm. The data file is tabular data in a text file, with lithology data associated with X,Y,Z grid points. All the relevant information is in the file header (the spatial reference, the projection etc.) In addition all the fields in the data file are identified in the header.

  4. Faster Aerodynamic Simulation With Cart3D

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A NASA-developed aerodynamic simulation tool is ensuring the safety of future space operations while providing designers and engineers with an automated, highly accurate computer simulation suite. Cart3D, co-winner of NASA's 2002 Software of the Year award, is the result of over 10 years of research and software development conducted by Michael Aftosmis and Dr. John Melton of Ames Research Center and Professor Marsha Berger of the Courant Institute at New York University. Cart3D offers a revolutionary approach to computational fluid dynamics (CFD), the computer simulation of how fluids and gases flow around an object of a particular design. By fusing technological advancements in diverse fields such as mineralogy, computer graphics, computational geometry, and fluid dynamics, the software provides a new industrial geometry processing and fluid analysis capability with unsurpassed automation and efficiency.

  5. Visualizing realistic 3D urban environments

    NASA Astrophysics Data System (ADS)

    Lee, Aaron; Chen, Tuolin; Brunig, Michael; Schmidt, Hauke

    2003-05-01

    Visualizing complex urban environments has been an active research topic due to its wide variety of applications in city planning: road construction, emergency facilities planning, and optimal placement of wireless carrier base stations. Traditional 2D visualizations have been around for a long time but they only provide a schematic line-drawing bird's eye view and are sometimes confusing to understand due to the lack of depth information. Early versions of 3D systems have been developed for very expensive graphics workstations which seriously limited the availability. In this paper we describe a 3D visualization system for a desktop PC which integrates multiple resolutions of data and provides a realistic view of the urban environment.

  6. Scalable large format 3D displays

    NASA Astrophysics Data System (ADS)

    Chang, Nelson L.; Damera-Venkata, Niranjan

    2010-02-01

    We present a general framework for the modeling and optimization of scalable large format 3-D displays using multiple projectors. Based on this framework, we derive algorithms that can robustly optimize the visual quality of an arbitrary combination of projectors (e.g. tiled, superimposed, combinations of the two) without manual adjustment. The framework creates for the first time a new unified paradigm that is agnostic to a particular configuration of projectors yet robustly optimizes for the brightness, contrast, and resolution of that configuration. In addition, we demonstrate that our algorithms support high resolution stereoscopic video at real-time interactive frame rates achieved on commodity graphics hardware. Through complementary polarization, the framework creates high quality multi-projector 3-D displays at low hardware and operational cost for a variety of applications including digital cinema, visualization, and command-and-control walls.

  7. Inertial Motion-Tracking Technology for Virtual 3-D

    NASA Technical Reports Server (NTRS)

    2005-01-01

    In the 1990s, NASA pioneered virtual reality research. The concept was present long before, but, prior to this, the technology did not exist to make a viable virtual reality system. Scientists had theories and ideas they knew that the concept had potential, but the computers of the 1970s and 1980s were not fast enough, sensors were heavy and cumbersome, and people had difficulty blending fluidly with the machines. Scientists at Ames Research Center built upon the research of previous decades and put the necessary technology behind them, making the theories of virtual reality a reality. Virtual reality systems depend on complex motion-tracking sensors to convey information between the user and the computer to give the user the feeling that he is operating in the real world. These motion-tracking sensors measure and report an object s position and orientation as it changes. A simple example of motion tracking would be the cursor on a computer screen moving in correspondence to the shifting of the mouse. Tracking in 3-D, necessary to create virtual reality, however, is much more complex. To be successful, the perspective of the virtual image seen on the computer must be an accurate representation of what is seen in the real world. As the user s head or camera moves, turns, or tilts, the computer-generated environment must change accordingly with no noticeable lag, jitter, or distortion. Historically, the lack of smooth and rapid tracking of the user s motion has thwarted the widespread use of immersive 3-D computer graphics. NASA uses virtual reality technology for a variety of purposes, mostly training of astronauts. The actual missions are costly and dangerous, so any opportunity the crews have to practice their maneuvering in accurate situations before the mission is valuable and instructive. For that purpose, NASA has funded a great deal of virtual reality research, and benefited from the results.

  8. Methods For Electronic 3-D Moving Pictures Without Glasses

    NASA Astrophysics Data System (ADS)

    Collender, Robert B.

    1987-06-01

    This paper describes implementation approaches in image acquisition and playback for 3-D computer graphics, 3-D television and 3-D theatre movies without special glasses. Projection lamps, spatial light modulators, CRT's and dynamic scanning are all eliminated by the application of an active image array, all static components and a semi-specular screen. The resulting picture shows horizontal parallax with a wide horizontal view field (up to 360 de-grees) giving a holographic appearance in full color with smooth continuous viewing without speckle. Static component systems are compared with dynamic component systems using both linear and circular arrays. Implementation of computer graphic systems are shown that allow complex shaded color images to extend from the viewer's eyes to infinity. Large screen systems visible by hundreds of people are feasible by the use of low f-stops and high gain screens in projection. Screen geometries and special screen properties are shown. Viewing characteristics offer no restrictions in view-position over the entire view-field and have a "look-around" feature for all the categories of computer graphics, television and movies. Standard video cassettes and optical discs can also interface the system to generate a 3-D window viewable without glasses. A prognosis is given for technology application to 3-D pictures without glasses that replicate the daily viewing experience. Super-position of computer graphics on real-world pictures is shown feasible.

  9. 3D-CDTI User Manual v2.1

    NASA Technical Reports Server (NTRS)

    Johnson, Walter; Battiste, Vernol

    2016-01-01

    The 3D-Cockpit Display of Traffic Information (3D-CDTI) is a flight deck tool that presents aircrew with: proximal traffic aircraft location, their current status and flight plan data; strategic conflict detection and alerting; automated conflict resolution strategies; the facility to graphically plan manual route changes; time-based, in-trail spacing on approach. The CDTI is manipulated via a touchpad on the flight deck, and by mouse when presented as part of a desktop flight simulator.

  10. CASTLE3D - A Computer Aided System for Labelling Archaeological Excavations in 3D

    NASA Astrophysics Data System (ADS)

    Houshiar, H.; Borrmann, D.; Elseberg, J.; Nüchter, A.; Näth, F.; Winkler, S.

    2015-08-01

    Documentation of archaeological excavation sites with conventional methods and tools such as hand drawings, measuring tape and archaeological notes is time consuming. This process is prone to human errors and the quality of the documentation depends on the qualification of the archaeologist on site. Use of modern technology and methods in 3D surveying and 3D robotics facilitate and improve this process. Computer-aided systems and databases improve the documentation quality and increase the speed of data acquisition. 3D laser scanning is the state of the art in modelling archaeological excavation sites, historical sites and even entire cities or landscapes. Modern laser scanners are capable of data acquisition of up to 1 million points per second. This provides a very detailed 3D point cloud of the environment. 3D point clouds and 3D models of an excavation site provide a better representation of the environment for the archaeologist and for documentation. The point cloud can be used both for further studies on the excavation and for the presentation of results. This paper introduces a Computer aided system for labelling archaeological excavations in 3D (CASTLE3D). Consisting of a set of tools for recording and georeferencing the 3D data from an excavation site, CASTLE3D is a novel documentation approach in industrial archaeology. It provides a 2D and 3D visualisation of the data and an easy-to-use interface that enables the archaeologist to select regions of interest and to interact with the data in both representations. The 2D visualisation and a 3D orthogonal view of the data provide cuts of the environment that resemble the traditional hand drawings. The 3D perspective view gives a realistic view of the environment. CASTLE3D is designed as an easy-to-use on-site semantic mapping tool for archaeologists. Each project contains a predefined set of semantic information that can be used to label findings in the data. Multiple regions of interest can be joined under

  11. Graphic pathogeographies.

    PubMed

    Donovan, Courtney

    2014-09-01

    This paper focuses on the graphic pathogeographies in David B.'s Epileptic and David Small's Stitches: A Memoir to highlight the significance of geographic concepts in graphic novels of health and disease. Despite its importance in such works, few scholars have examined the role of geography in their narrative and structure. I examine the role of place in Epileptic and Stitches to extend the academic discussion on graphic novels of health and disease and identify how such works bring attention to the role of geography in the individual's engagement with health, disease, and related settings.

  12. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.

    The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.

    This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these

  13. Graphical programming of telerobotic tasks

    SciTech Connect

    Small, D.E.; McDonald, M.J.

    1996-11-01

    With a goal of producing faster, safer, and cheaper technologies for nuclear waste cleanup, Sandia is actively developing and extending intelligent systems technologies through the US Department of Energy Office of Technology Development (DOE OTD) Robotic Technology Development Program (RTDP). Graphical programming is a key technology for robotic waste cleanup that Sandia is developing for this goal. Graphical programming uses simulation such as TELEGRIP `on-line` to program and control robots. Characterized by its model-based control architecture, integrated simulation, `point-and-click` graphical user interfaces, task and path planning software, and network communications, Sandia`s Graphical Programming systems allow operators to focus on high-level robotic tasks rather than the low-level details. Use of scripted tasks, rather than customized programs minimizes the necessity of recompiling supervisory control systems and enhances flexibility. Rapid world-modelling technologies allow Graphical Programming to be used in dynamic and unpredictable environments including digging and pipe-cutting. This paper describes Sancho, Sandia`s most advanced graphical programming supervisory software. Sancho, now operational on several robot systems, incorporates all of Sandia`s recent advances in supervisory control. Graphical programming uses 3-D graphics models as intuitive operator interfaces to program and control complex robotic systems. The goal of the paper is to help the reader understand how Sandia implements graphical programming systems and which key features in Sancho have proven to be most effective.

  14. Graphical representations of adolescents' psychophysiological reactivity to social stressor tasks: Reliability and validity of the Chernoff Face approach and person-centered profiles for clinical use.

    PubMed

    De Los Reyes, Andres; Aldao, Amelia; Qasmieh, Noor; Dunn, Emily J; Lipton, Melanie F; Hartman, Catharina; Youngstrom, Eric A; Dougherty, Lea R; Lerner, Matthew D

    2017-04-01

    Low-cost methods exist for measuring physiology when clinically assessing adolescent social anxiety. Two barriers to widespread use involve lack of (a) physiological expertise among mental health professionals, and (b) techniques for modeling individual-level physiological profiles. We require a "bridge approach" for interpreting physiology that does not require users to have a physiological background to make judgments, and is amenable to developing individual-level physiological profiles. One method-Chernoff Faces-involves graphically representing data using human facial features (eyes, nose, mouth, face shape), thus capitalizing on humans' abilities to detect even subtle variations among facial features. We examined 327 adolescents from the Tracking Adolescents' Individual Lives Survey (TRAILS) study who completed baseline social anxiety self-reports and physiological assessments within the social scenarios of the Groningen Social Stressor Task (GSST). Using heart rate (HR) norms and Chernoff Faces, 2 naïve coders made judgments about graphically represented HR data and HR norms. For each adolescent, coders made 4 judgments about the features of 2 Chernoff Faces: (a) HR within the GSST and (b) aged-matched HR norms. Coders' judgments reliably and accurately identified elevated HR relative to norms. Using latent class analyses, we identified 3 profiles of Chernoff Face judgments: (a) consistently below HR norms across scenarios (n = 193); (b) above HR norms mainly when speech making (n = 35); or (c) consistently above HR norms across scenarios (n = 99). Chernoff Face judgments displayed validity evidence in relation to self-reported social anxiety and resting HR variability. This study has important implications for implementing physiology within adolescent social anxiety assessments. (PsycINFO Database Record

  15. Teaching Molecular 3-D Literacy

    ERIC Educational Resources Information Center

    Richardson, David C.; Richardson, Jane S.

    2002-01-01

    This article describes how the use of interactive molecular graphics makes a unique and important contribution to student learning of biochemistry and molecular biology at any level. These authors developed the concept of the kinemage (from "kinetic image"), a different way of organizing computer graphics that is aimed explicitly at the…

  16. 3D Geo: An Alternative Approach

    NASA Astrophysics Data System (ADS)

    Georgopoulos, A.

    2016-10-01

    The expression GEO is mostly used to denote relation to the earth. However it should not be confined to what is related to the earth's surface, as other objects also need three dimensional representation and documentation, like cultural heritage objects. They include both tangible and intangible ones. In this paper the 3D data acquisition and 3D modelling of cultural heritage assets are briefly described and their significance is also highlighted. Moreover the organization of such information, related to monuments and artefacts, into relational data bases and its use for various purposes, other than just geometric documentation is also described and presented. In order to help the reader understand the above, several characteristic examples are presented and their methodology explained and their results evaluated.

  17. 3D Visualization of Cooperative Trajectories

    NASA Technical Reports Server (NTRS)

    Schaefer, John A.

    2014-01-01

    Aerodynamicists and biologists have long recognized the benefits of formation flight. When birds or aircraft fly in the upwash region of the vortex generated by leaders in a formation, induced drag is reduced for the trail bird or aircraft, and efficiency improves. The major consequence of this is that fuel consumption can be greatly reduced. When two aircraft are separated by a large enough longitudinal distance, the aircraft are said to be flying in a cooperative trajectory. A simulation has been developed to model autonomous cooperative trajectories of aircraft; however it does not provide any 3D representation of the multi-body system dynamics. The topic of this research is the development of an accurate visualization of the multi-body system observable in a 3D environment. This visualization includes two aircraft (lead and trail), a landscape for a static reference, and simplified models of the vortex dynamics and trajectories at several locations between the aircraft.

  18. 3D Elevation Program: summary for Vermont

    USGS Publications Warehouse

    Carswell, William J.

    2015-01-01

    The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 interferometric synthetic aperture radar (ifsar) data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey, the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.

  19. 3D Elevation Program: summary for Nebraska

    USGS Publications Warehouse

    Carswell, William J.

    2015-01-01

    The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 interferometric synthetic aperture radar (ifsar) data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey, the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.

  20. Sensing and compressing 3-D models

    SciTech Connect

    Krumm, J.

    1998-02-01

    The goal of this research project was to create a passive and robust computer vision system for producing 3-D computer models of arbitrary scenes. Although the authors were unsuccessful in achieving the overall goal, several components of this research have shown significant potential. Of particular interest is the application of parametric eigenspace methods for planar pose measurement of partially occluded objects in gray-level images. The techniques presented provide a simple, accurate, and robust solution to the planar pose measurement problem. In addition, the representational efficiency of eigenspace methods used with gray-level features were successfully extended to binary features, which are less sensitive to illumination changes. The results of this research are presented in two papers that were written during the course of this project. The papers are included in sections 2 and 3. The first section of this report summarizes the 3-D modeling efforts.

  1. Glnemo2: Interactive Visualization 3D Program

    NASA Astrophysics Data System (ADS)

    Lambert, Jean-Charles

    2011-10-01

    Glnemo2 is an interactive 3D visualization program developed in C++ using the OpenGL library and Nokia QT 4.X API. It displays in 3D the particles positions of the different components of an nbody snapshot. It quickly gives a lot of information about the data (shape, density area, formation of structures such as spirals, bars, or peanuts). It allows for in/out zooms, rotations, changes of scale, translations, selection of different groups of particles and plots in different blending colors. It can color particles according to their density or temperature, play with the density threshold, trace orbits, display different time steps, take automatic screenshots to make movies, select particles using the mouse, and fly over a simulation using a given camera path. All these features are accessible from a very intuitive graphic user interface. Glnemo2 supports a wide range of input file formats (Nemo, Gadget 1 and 2, phiGrape, Ramses, list of files, realtime gyrfalcON simulation) which are automatically detected at loading time without user intervention. Glnemo2 uses a plugin mechanism to load the data, so that it is easy to add a new file reader. It's powered by a 3D engine which uses the latest OpenGL technology, such as shaders (glsl), vertex buffer object, frame buffer object, and takes in account the power of the graphic card used in order to accelerate the rendering. With a fast GPU, millions of particles can be rendered in real time. Glnemo2 runs on Linux, Windows (using minGW compiler), and MaxOSX, thanks to the QT4API.

  2. ProteinVista: a fast molecular visualization system using Microsoft Direct3D.

    PubMed

    Park, Chan-Yong; Park, Sung-Hee; Park, Soo-Jun; Park, Sun-Hee; Hwang, Chi-Jung

    2008-09-01

    Many tools have been developed to visualize protein and molecular structures. Most high quality protein visualization tools use the OpenGL graphics library as a 3D graphics system. Currently, the performance of recent 3D graphics hardware has rapidly improved. Recent high-performance 3D graphics hardware support Microsoft Direct3D graphics library more than OpenGL and have become very popular in personal computers (PCs). In this paper, a molecular visualization system termed ProteinVista is proposed. ProteinVista is well-designed visualization system using the Microsoft Direct3D graphics library. It provides various visualization styles such as the wireframe, stick, ball and stick, space fill, ribbon, and surface model styles, in addition to display options for 3D visualization. As ProteinVista is optimized for recent 3D graphics hardware platforms and because it uses a geometry instancing technique, its rendering speed is 2.7 times faster compared to other visualization tools.

  3. 3D Spectroscopy in Astronomy

    NASA Astrophysics Data System (ADS)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  4. Spherical 3D isotropic wavelets

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2012-04-01

    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html

  5. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  6. Performance and Cognitive Assessment in 3-D Modeling

    ERIC Educational Resources Information Center

    Fahrer, Nolan E.; Ernst, Jeremy V.; Branoff, Theodore J.; Clark, Aaron C.

    2011-01-01

    The purpose of this study was to investigate identifiable differences between performance and cognitive assessment scores in a 3-D modeling unit of an engineering drafting course curriculum. The study aimed to provide further investigation of the need of skill-based assessments in engineering/technical graphics courses to potentially increase…

  7. 3D scientific visualization of reservoir simulation post-processing

    SciTech Connect

    Sousa, M.C.; Miranda-Filho, D.N.

    1994-12-31

    This paper describes a 3D visualization software designed at PETROBRAS and TecGraf/PUC-RJ in Brazil for the analysis of reservoir engineering post-processing data. It offers an advanced functional environment on graphical workstations with intuitive and ergonomic interface. Applications to real reservoir models show the enriching features of the software.

  8. Postprocessing techniques for 3D non-linear structures

    NASA Technical Reports Server (NTRS)

    Gallagher, Richard S.

    1987-01-01

    How graphics postprocessing techniques are currently used to examine the results of 3-D nonlinear analyses, some new techniques which take advantage of recent technology, and how these results relate to both the finite element model and its geometric parent are reviewed.

  9. Filming Underwater in 3d Respecting Stereographic Rules

    NASA Astrophysics Data System (ADS)

    Rinaldi, R.; Hordosch, H.

    2015-04-01

    After an experimental phase of many years, 3D filming is now effective and successful. Improvements are still possible, but the film industry achieved memorable success on 3D movie's box offices due to the overall quality of its products. Special environments such as space ("Gravity") and the underwater realm look perfect to be reproduced in 3D. "Filming in space" was possible in "Gravity" using special effects and computer graphic. The underwater realm is still difficult to be handled. Underwater filming in 3D was not that easy and effective as filming in 2D, since not long ago. After almost 3 years of research, a French, Austrian and Italian team realized a perfect tool to film underwater, in 3D, without any constrains. This allows filmmakers to bring the audience deep inside an environment where they most probably will never have the chance to be.

  10. Safety Case Notations: Alternatives for the Non-Graphically Inclined?

    NASA Technical Reports Server (NTRS)

    Holloway, C. M.

    2008-01-01

    This working paper presents preliminary ideas of five possible text-based notations for representing safety cases, which may be easier for non-graphically inclined people to use and understand than the currently popular graphics-based representations.

  11. VPython: Writing Real-time 3D Physics Programs

    NASA Astrophysics Data System (ADS)

    Chabay, Ruth

    2001-06-01

    VPython (http://cil.andrew.cmu.edu/projects/visual) combines the Python programming language with an innovative 3D graphics module called Visual, developed by David Scherer. Designed to make 3D physics simulations accessible to novice programmers, VPython allows the programmer to write a purely computational program without any graphics code, and produces an interactive realtime 3D graphical display. In a program 3D objects are created and their positions modified by computational algorithms. Running in a separate thread, the Visual module monitors the positions of these objects and renders them many times per second. Using the mouse, one can zoom and rotate to navigate through the scene. After one hour of instruction, students in an introductory physics course at Carnegie Mellon University, including those who have never programmed before, write programs in VPython to model the behavior of physical systems and to visualize fields in 3D. The Numeric array processing module allows the construction of more sophisticated simulations and models as well. VPython is free and open source. The Visual module is based on OpenGL, and runs on Windows, Linux, and Macintosh.

  12. The Representational Value of Hats

    ERIC Educational Resources Information Center

    Watson, Jane M.; Fitzallen, Noleine E.; Wilson, Karen G.; Creed, Julie F.

    2008-01-01

    The literature that is available on the topic of representations in mathematics is vast. One commonly discussed item is graphical representations. From the history of mathematics to modern uses of technology, a variety of graphical forms are available for middle school students to use to represent mathematical ideas. The ideas range from algebraic…

  13. INCORPORATING DYNAMIC 3D SIMULATION INTO PRA

    SciTech Connect

    Steven R Prescott; Curtis Smith

    2011-07-01

    Through continued advancement in computational resources, development that was previously done by trial and error production is now performed through computer simulation. These virtual physical representations have the potential to provide accurate and valid modeling results and are being used in many different technical fields. Risk assessment now has the opportunity to use 3D simulation to improve analysis results and insights, especially for external event analysis. By using simulations, the modeler only has to determine the likelihood of an event without having to also predict the results of that event. The 3D simulation automatically determines not only the outcome of the event, but when those failures occur. How can we effectively incorporate 3D simulation into traditional PRA? Most PRA plant modeling is made up of components with different failure modes, probabilities, and rates. Typically, these components are grouped into various systems and then are modeled together (in different combinations) as a “system” with logic structures to form fault trees. Applicable fault trees are combined through scenarios, typically represented by event tree models. Though this method gives us failure results for a given model, it has limitations when it comes to time-based dependencies or dependencies that are coupled to physical processes which may themselves be space- or time-dependent. Since, failures from a 3D simulation are naturally time related, they should be used in that manner. In our simulation approach, traditional static models are converted into an equivalent state diagram representation with start states, probabilistic driven movements between states and terminal states. As the state model is run repeatedly, it converges to the same results as the PRA model in cases where time-related factors are not important. In cases where timing considerations are important (e.g., when events are dependent upon each other), then the simulation approach will typically

  14. 3D World Building System

    ScienceCinema

    None

    2016-07-12

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  15. 3D Buckligami: Digital Matter

    NASA Astrophysics Data System (ADS)

    van Hecke, Martin; de Reus, Koen; Florijn, Bastiaan; Coulais, Corentin

    2014-03-01

    We present a class of elastic structures which exhibit collective buckling in 3D, and create these by a 3D printing/moulding technique. Our structures consist of cubic lattice of anisotropic unit cells, and we show that their mechanical properties are programmable via the orientation of these unit cells.

  16. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  17. LLNL-Earth3D

    SciTech Connect

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  18. Market study: 3-D eyetracker

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  19. 3D-CANVENT: An interactive mine ventilation simulator

    SciTech Connect

    Hardcastle, S.G.

    1995-12-31

    3D-CANVENT is a software package that integrates advanced computer aided design (ACAD) true 3D graphics with a mine ventilation simulator. The package runs as a Windows{trademark} application to access its printer drivers environment and does not need third party CAD software. It is composed of two primary modules: DMVENT and MINEDESIGNER. DMVENT is a traditional Fortran coded Hardy-Cross iterative ventilation network solver written in 1980 with thermodynamic capabilities. This module is relatively unchanged with the traditional data input options for branch type, specified or calculated resistances, fixed flows, and fixed or variable pressure fans. MINEDESIGNER is the graphics engine that optimizes the ventilation design process. It performs the front-end transformation of input data entered in the graphical interface into the correct format for the solver. At the back-end it reconverts the historically standard tabular data output from the solver into an easily viewed graphical format. ACAD features of MINEDESIGNER are used to generate a 3D wire-frame node and branch network of the mine`s ventilation system. The network can be displayed in up to 4 views orientated to XYZ planes or a 3D view. AU the views have zoom, pan, slice and rotate options. The graphical interface efficiently permits data entry and editing via a mouse with pick-and-point item selection. Branches can be found or added with {open_quotes}search{close_quotes} and {open_quotes}join{close_quotes} options. Visual interpretation is enhanced by the 16 colour options for branches and numerous graphical attributes. Network locations are readily identified by alpha-numeric names for branches, junctions and fans, and also the logical numbering of junctions. The program is also readily expandable for pollutant simulation and control/monitoring applications.

  20. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  1. Bringing 3D Printing to Geophysical Science Education

    NASA Astrophysics Data System (ADS)

    Boghosian, A.; Turrin, M.; Porter, D. F.

    2014-12-01

    3D printing technology has been embraced by many technical fields, and is rapidly making its way into peoples' homes and schools. While there is a growing educational and hobbyist community engaged in the STEM focused technical and intellectual challenges associated with 3D printing, there is unrealized potential for the earth science community to use 3D printing to communicate scientific research to the public. Moreover, 3D printing offers scientists the opportunity to connect students and the public with novel visualizations of real data. As opposed to introducing terrestrial measurements through the use of colormaps and gradients, scientists can represent 3D concepts with 3D models, offering a more intuitive education tool. Furthermore, the tactile aspect of models make geophysical concepts accessible to a wide range of learning styles like kinesthetic or tactile, and learners including both visually impaired and color-blind students.We present a workflow whereby scientists, students, and the general public will be able to 3D print their own versions of geophysical datasets, even adding time through layering to include a 4th dimension, for a "4D" print. This will enable scientists with unique and expert insights into the data to easily create the tools they need to communicate their research. It will allow educators to quickly produce teaching aids for their students. Most importantly, it will enable the students themselves to translate the 2D representation of geophysical data into a 3D representation of that same data, reinforcing spatial reasoning.

  2. Towards a Normalised 3D Geovisualisation: The Viewpoint Management

    NASA Astrophysics Data System (ADS)

    Neuville, R.; Poux, F.; Hallot, P.; Billen, R.

    2016-10-01

    This paper deals with the viewpoint management in 3D environments considering an allocentric environment. The recent advances in computer sciences and the growing number of affordable remote sensors lead to impressive improvements in the 3D visualisation. Despite some research relating to the analysis of visual variables used in 3D environments, we notice that it lacks a real standardisation of 3D representation rules. In this paper we study the "viewpoint" as being the first considered parameter for a normalised visualisation of 3D data. Unlike in a 2D environment, the viewing direction is not only fixed in a top down direction in 3D. A non-optimal camera location means a poor 3D representation in terms of relayed information. Based on this statement we propose a model based on the analysis of the computational display pixels that determines a viewpoint maximising the relayed information according to one kind of query. We developed an OpenGL prototype working on screen pixels that allows to determine the optimal camera location based on a screen pixels colour algorithm. The viewpoint management constitutes a first step towards a normalised 3D geovisualisation.

  3. 3D vision system assessment

    NASA Astrophysics Data System (ADS)

    Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Bryan; Chenault, David B.; Kingston, David; Geulen, Vanilynmae; Newell, Scott; Pettijohn, Brad

    2009-02-01

    In this paper, we report on the development of a 3D vision system consisting of a flat panel stereoscopic display and auto-converging stereo camera and an assessment of the system's use for robotic driving, manipulation, and surveillance operations. The 3D vision system was integrated onto a Talon Robot and Operator Control Unit (OCU) such that direct comparisons of the performance of a number of test subjects using 2D and 3D vision systems were possible. A number of representative scenarios were developed to determine which tasks benefited most from the added depth perception and to understand when the 3D vision system hindered understanding of the scene. Two tests were conducted at Fort Leonard Wood, MO with noncommissioned officers ranked Staff Sergeant and Sergeant First Class. The scenarios; the test planning, approach and protocols; the data analysis; and the resulting performance assessment of the 3D vision system are reported.

  4. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  5. Motion estimation in the 3-D Gabor domain.

    PubMed

    Feng, Mu; Reed, Todd R

    2007-08-01

    Motion estimation methods can be broadly classified as being spatiotemporal or frequency domain in nature. The Gabor representation is an analysis framework providing localized frequency information. When applied to image sequences, the 3-D Gabor representation displays spatiotemporal/spatiotemporal-frequency (st/stf) information, enabling the application of robust frequency domain methods with adjustable spatiotemporal resolution. In this work, the 3-D Gabor representation is applied to motion analysis. We demonstrate that piecewise uniform translational motion can be estimated by using a uniform translation motion model in the st/stf domain. The resulting motion estimation method exhibits both good spatiotemporal resolution and substantial noise resistance compared to existing spatiotemporal methods. To form the basis of this model, we derive the signature of the translational motion in the 3-D Gabor domain. Finally, to obtain higher spatiotemporal resolution for more complex motions, a dense motion field estimation method is developed to find a motion estimate for every pixel in the sequence.

  6. Parallel CARLOS-3D code development

    SciTech Connect

    Putnam, J.M.; Kotulski, J.D.

    1996-02-01

    CARLOS-3D is a three-dimensional scattering code which was developed under the sponsorship of the Electromagnetic Code Consortium, and is currently used by over 80 aerospace companies and government agencies. The code has been extensively validated and runs on both serial workstations and parallel super computers such as the Intel Paragon. CARLOS-3D is a three-dimensional surface integral equation scattering code based on a Galerkin method of moments formulation employing Rao- Wilton-Glisson roof-top basis for triangular faceted surfaces. Fully arbitrary 3D geometries composed of multiple conducting and homogeneous bulk dielectric materials can be modeled. This presentation describes some of the extensions to the CARLOS-3D code, and how the operator structure of the code facilitated these improvements. Body of revolution (BOR) and two-dimensional geometries were incorporated by simply including new input routines, and the appropriate Galerkin matrix operator routines. Some additional modifications were required in the combined field integral equation matrix generation routine due to the symmetric nature of the BOR and 2D operators. Quadrilateral patched surfaces with linear roof-top basis functions were also implemented in the same manner. Quadrilateral facets and triangular facets can be used in combination to more efficiently model geometries with both large smooth surfaces and surfaces with fine detail such as gaps and cracks. Since the parallel implementation in CARLOS-3D is at high level, these changes were independent of the computer platform being used. This approach minimizes code maintenance, while providing capabilities with little additional effort. Results are presented showing the performance and accuracy of the code for some large scattering problems. Comparisons between triangular faceted and quadrilateral faceted geometry representations will be shown for some complex scatterers.

  7. 3D face recognition by projection-based methods

    NASA Astrophysics Data System (ADS)

    Dutagaci, Helin; Sankur, Bülent; Yemez, Yücel

    2006-02-01

    In this paper, we investigate recognition performances of various projection-based features applied on registered 3D scans of faces. Some features are data driven, such as ICA-based features or NNMF-based features. Other features are obtained using DFT or DCT-based schemes. We apply the feature extraction techniques to three different representations of registered faces, namely, 3D point clouds, 2D depth images and 3D voxel. We consider both global and local features. Global features are extracted from the whole face data, whereas local features are computed over the blocks partitioned from 2D depth images. The block-based local features are fused both at feature level and at decision level. The resulting feature vectors are matched using Linear Discriminant Analysis. Experiments using different combinations of representation types and feature vectors are conducted on the 3D-RMA dataset.

  8. 3D Integration for Wireless Multimedia

    NASA Astrophysics Data System (ADS)

    Kimmich, Georg

    The convergence of mobile phone, internet, mapping, gaming and office automation tools with high quality video and still imaging capture capability is becoming a strong market trend for portable devices. High-density video encode and decode, 3D graphics for gaming, increased application-software complexity and ultra-high-bandwidth 4G modem technologies are driving the CPU performance and memory bandwidth requirements close to the PC segment. These portable multimedia devices are battery operated, which requires the deployment of new low-power-optimized silicon process technologies and ultra-low-power design techniques at system, architecture and device level. Mobile devices also need to comply with stringent silicon-area and package-volume constraints. As for all consumer devices, low production cost and fast time-to-volume production is key for success. This chapter shows how 3D architectures can bring a possible breakthrough to meet the conflicting power, performance and area constraints. Multiple 3D die-stacking partitioning strategies are described and analyzed on their potential to improve the overall system power, performance and cost for specific application scenarios. Requirements and maturity of the basic process-technology bricks including through-silicon via (TSV) and die-to-die attachment techniques are reviewed. Finally, we highlight new challenges which will arise with 3D stacking and an outlook on how they may be addressed: Higher power density will require thermal design considerations, new EDA tools will need to be developed to cope with the integration of heterogeneous technologies and to guarantee signal and power integrity across the die stack. The silicon/wafer test strategies have to be adapted to handle high-density IO arrays, ultra-thin wafers and provide built-in self-test of attached memories. New standards and business models have to be developed to allow cost-efficient assembly and testing of devices from different silicon and technology

  9. Interactive 3d Landscapes on Line

    NASA Astrophysics Data System (ADS)

    Fanini, B.; Calori, L.; Ferdani, D.; Pescarin, S.

    2011-09-01

    The paper describes challenges identified while developing browser embedded 3D landscape rendering applications, our current approach and work-flow and how recent development in browser technologies could affect. All the data, even if processed by optimization and decimation tools, result in very huge databases that require paging, streaming and Level-of-Detail techniques to be implemented to allow remote web based real time fruition. Our approach has been to select an open source scene-graph based visual simulation library with sufficient performance and flexibility and adapt it to the web by providing a browser plug-in. Within the current Montegrotto VR Project, content produced with new pipelines has been integrated. The whole Montegrotto Town has been generated procedurally by CityEngine. We used this procedural approach, based on algorithms and procedures because it is particularly functional to create extensive and credible urban reconstructions. To create the archaeological sites we used optimized mesh acquired with laser scanning and photogrammetry techniques whereas to realize the 3D reconstructions of the main historical buildings we adopted computer-graphic software like blender and 3ds Max. At the final stage, semi-automatic tools have been developed and used up to prepare and clusterise 3D models and scene graph routes for web publishing. Vegetation generators have also been used with the goal of populating the virtual scene to enhance the user perceived realism during the navigation experience. After the description of 3D modelling and optimization techniques, the paper will focus and discuss its results and expectations.

  10. Met.3D - a new open-source tool for interactive 3D visualization of ensemble weather forecasts

    NASA Astrophysics Data System (ADS)

    Rautenhaus, Marc; Kern, Michael; Schäfler, Andreas; Westermann, Rüdiger

    2015-04-01

    We introduce Met.3D, a new open-source tool for the interactive 3D visualization of numerical ensemble weather predictions. The tool has been developed to support weather forecasting during aircraft-based atmospheric field campaigns, however, is applicable to further forecasting, research and teaching activities. Our work approaches challenging topics related to the visual analysis of numerical atmospheric model output -- 3D visualisation, ensemble visualization, and how both can be used in a meaningful way suited to weather forecasting. Met.3D builds a bridge from proven 2D visualization methods commonly used in meteorology to 3D visualization by combining both visualization types in a 3D context. It implements methods that address the issue of spatial perception in the 3D view as well as approaches to using the ensemble in order to assess forecast uncertainty. Interactivity is key to the Met.3D approach. The tool uses modern graphics hardware technology to achieve interactive visualization of present-day numerical weather prediction datasets on standard consumer hardware. Met.3D supports forecast data from the European Centre for Medium Range Weather Forecasts and operates directly on ECMWF hybrid sigma-pressure level grids. In this presentation, we provide an overview of the software --illustrated with short video examples--, and give information on its availability.

  11. Graphic Arts.

    ERIC Educational Resources Information Center

    Towler, Alan L.

    This guide to teaching graphic arts, one in a series of instructional materials for junior high industrial arts education, is designed to assist teachers as they plan and implement new courses of study and as they make revisions and improvements in existing courses in order to integrate classroom learning with real-life experiences. This graphic…

  12. 3D Human Motion Editing and Synthesis: A Survey

    PubMed Central

    Wang, Xin; Chen, Qiudi; Wang, Wanliang

    2014-01-01

    The ways to compute the kinematics and dynamic quantities of human bodies in motion have been studied in many biomedical papers. This paper presents a comprehensive survey of 3D human motion editing and synthesis techniques. Firstly, four types of methods for 3D human motion synthesis are introduced and compared. Secondly, motion capture data representation, motion editing, and motion synthesis are reviewed successively. Finally, future research directions are suggested. PMID:25045395

  13. Bird's Eye View - A 3-D Situational Awareness Tool for the Space Station

    NASA Technical Reports Server (NTRS)

    Dershowitz, Adam; Chamitoff, Gregory

    2002-01-01

    Even as space-qualified computer hardware lags well behind the latest home computers, the possibility of using high-fidelity interactive 3-D graphics for displaying important on board information has finally arrived, and is being used on board the International Space Station (ISS). With the quantity and complexity of space-flight telemetry, 3-D displays can greatly enhance the ability of users, both onboard and on the ground, to interpret data quickly and accurately. This is particularly true for data related to vehicle attitude, position, configuration, and relation to other objects on the ground or in-orbit Bird's Eye View (BEV) is a 3-D real-time application that provides a high degree of Situational Awareness for the crew. Its purpose is to instantly convey important motion-related parameters to the crew and mission controllers by presenting 3-D simulated camera views of the International Space Station (ISS) in its actual environment Driven by actual telemetry, and running on board, as well as on the ground, the user can visualize the Space Station relative to the Earth, Sun, stars, various reference frames, and selected targets, such as ground-sites or communication satellites. Since the actual ISS configuration (geometry) is also modeled accurately, everything from the alignment of the solar panels to the expected view from a selected window can be visualized accurately. A virtual representation of the Space Station in real time has many useful applications. By selecting different cameras, the crew or mission control can monitor the station's orientation in space, position over the Earth, transition from day to night, direction to the Sun, the view from a particular window, or the motion of the robotic arm. By viewing the vehicle attitude and solar panel orientations relative to the Sun, the power status of the ISS can be easily visualized and understood. Similarly, the thermal impacts of vehicle attitude can be analyzed and visually confirmed. Communication

  14. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  15. CASTOR3D: linear stability studies for 2D and 3D tokamak equilibria

    NASA Astrophysics Data System (ADS)

    Strumberger, E.; Günter, S.

    2017-01-01

    The CASTOR3D code, which is currently under development, is able to perform linear stability studies for 2D and 3D, ideal and resistive tokamak equilibria in the presence of ideal and resistive wall structures and coils. For these computations ideal equilibria represented by concentric nested flux surfaces serve as input (e.g. computed with the NEMEC code). Solving an extended eigenvalue problem, the CASTOR3D code takes simultaneously plasma inertia and wall resistivity into account. The code is a hybrid of the CASTOR_3DW stability code and the STARWALL code. The former is an extended version of the CASTOR and CASTOR_FLOW code, respectively. The latter is a linear 3D code computing the growth rates of resistive wall modes in the presence of multiply-connected wall structures. The CASTOR_3DW code, and some parts of the STARWALL code have been reformulated in a general 3D flux coordinate representation that allows to choose between various types of flux coordinates. Furthermore, the implemented many-valued current potentials in the STARWALL part allow a correct treatment of the m  =  0, n  =  0 perturbation. In this paper, we outline the theoretical concept, and present some numerical results which illustrate the present status of the code and demonstrate its numerous application possibilities.

  16. 3D multifocus astigmatism and compressed sensing (3D MACS) based superresolution reconstruction

    PubMed Central

    Huang, Jiaqing; Sun, Mingzhai; Gumpper, Kristyn; Chi, Yuejie; Ma, Jianjie

    2015-01-01

    Single molecule based superresolution techniques (STORM/PALM) achieve nanometer spatial resolution by integrating the temporal information of the switching dynamics of fluorophores (emitters). When emitter density is low for each frame, they are located to the nanometer resolution. However, when the emitter density rises, causing significant overlapping, it becomes increasingly difficult to accurately locate individual emitters. This is particularly apparent in three dimensional (3D) localization because of the large effective volume of the 3D point spread function (PSF). The inability to precisely locate the emitters at a high density causes poor temporal resolution of localization-based superresolution technique and significantly limits its application in 3D live cell imaging. To address this problem, we developed a 3D high-density superresolution imaging platform that allows us to precisely locate the positions of emitters, even when they are significantly overlapped in three dimensional space. Our platform involves a multi-focus system in combination with astigmatic optics and an ℓ1-Homotopy optimization procedure. To reduce the intrinsic bias introduced by the discrete formulation of compressed sensing, we introduced a debiasing step followed by a 3D weighted centroid procedure, which not only increases the localization accuracy, but also increases the computation speed of image reconstruction. We implemented our algorithms on a graphic processing unit (GPU), which speeds up processing 10 times compared with central processing unit (CPU) implementation. We tested our method with both simulated data and experimental data of fluorescently labeled microtubules and were able to reconstruct a 3D microtubule image with 1000 frames (512×512) acquired within 20 seconds. PMID:25798314

  17. 3D Scan Systems Integration

    DTIC Science & Technology

    2007-11-02

    AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 5 Feb 98 4. TITLE AND SUBTITLE 3D Scan Systems Integration REPORT TYPE AND DATES COVERED...2-89) Prescribed by ANSI Std. Z39-1 298-102 [ EDO QUALITY W3PECTEDI DLA-ARN Final Report for US Defense Logistics Agency on DDFG-T2/P3: 3D...SCAN SYSTEMS INTEGRATION Contract Number SPO100-95-D-1014 Contractor Ohio University Delivery Order # 0001 Delivery Order Title 3D Scan Systems

  18. Two Eyes, 3D: Stereoscopic Design Principles

    NASA Astrophysics Data System (ADS)

    Price, Aaron; Subbarao, M.; Wyatt, R.

    2013-01-01

    Two Eyes, 3D is a NSF-funded research project about how people perceive highly spatial objects when shown with 2D or stereoscopic ("3D") representations. As part of the project, we produced a short film about SN 2011fe. The high definition film has been rendered in both 2D and stereoscopic formats. It was developed according to a set of stereoscopic design principles we derived from the literature and past experience producing and studying stereoscopic films. Study participants take a pre- and post-test that involves a spatial cognition assessment and scientific knowledge questions about Type-1a supernovae. For the evaluation, participants use iPads in order to record spatial manipulation of the device and look for elements of embodied cognition. We will present early results and also describe the stereoscopic design principles and the rationale behind them. All of our content and software is available under open source licenses. More information is at www.twoeyes3d.org.

  19. Computer graphics and the graphic artist

    NASA Technical Reports Server (NTRS)

    Taylor, N. L.; Fedors, E. G.; Pinelli, T. E.

    1985-01-01

    A centralized computer graphics system is being developed at the NASA Langley Research Center. This system was required to satisfy multiuser needs, ranging from presentation quality graphics prepared by a graphic artist to 16-mm movie simulations generated by engineers and scientists. While the major thrust of the central graphics system was directed toward engineering and scientific applications, hardware and software capabilities to support the graphic artists were integrated into the design. This paper briefly discusses the importance of computer graphics in research; the central graphics system in terms of systems, software, and hardware requirements; the application of computer graphics to graphic arts, discussed in terms of the requirements for a graphic arts workstation; and the problems encountered in applying computer graphics to the graphic arts. The paper concludes by presenting the status of the central graphics system.

  20. Emerging Applications of Bedside 3D Printing in Plastic Surgery

    PubMed Central

    Chae, Michael P.; Rozen, Warren M.; McMenamin, Paul G.; Findlay, Michael W.; Spychal, Robert T.; Hunter-Smith, David J.

    2015-01-01

    Modern imaging techniques are an essential component of preoperative planning in plastic and reconstructive surgery. However, conventional modalities, including three-dimensional (3D) reconstructions, are limited by their representation on 2D workstations. 3D printing, also known as rapid prototyping or additive manufacturing, was once the province of industry to fabricate models from a computer-aided design (CAD) in a layer-by-layer manner. The early adopters in clinical practice have embraced the medical imaging-guided 3D-printed biomodels for their ability to provide tactile feedback and a superior appreciation of visuospatial relationship between anatomical structures. With increasing accessibility, investigators are able to convert standard imaging data into a CAD file using various 3D reconstruction softwares and ultimately fabricate 3D models using 3D printing techniques, such as stereolithography, multijet modeling, selective laser sintering, binder jet technique, and fused deposition modeling. However, many clinicians have questioned whether the cost-to-benefit ratio justifies its ongoing use. The cost and size of 3D printers have rapidly decreased over the past decade in parallel with the expiration of key 3D printing patents. Significant improvements in clinical imaging and user-friendly 3D software have permitted computer-aided 3D modeling of anatomical structures and implants without outsourcing in many cases. These developments offer immense potential for the application of 3D printing at the bedside for a variety of clinical applications. In this review, existing uses of 3D printing in plastic surgery practice spanning the spectrum from templates for facial transplantation surgery through to the formation of bespoke craniofacial implants to optimize post-operative esthetics are described. Furthermore, we discuss the potential of 3D printing to become an essential office-based tool in plastic surgery to assist in preoperative planning, developing

  1. Emerging Applications of Bedside 3D Printing in Plastic Surgery.

    PubMed

    Chae, Michael P; Rozen, Warren M; McMenamin, Paul G; Findlay, Michael W; Spychal, Robert T; Hunter-Smith, David J

    2015-01-01

    Modern imaging techniques are an essential component of preoperative planning in plastic and reconstructive surgery. However, conventional modalities, including three-dimensional (3D) reconstructions, are limited by their representation on 2D workstations. 3D printing, also known as rapid prototyping or additive manufacturing, was once the province of industry to fabricate models from a computer-aided design (CAD) in a layer-by-layer manner. The early adopters in clinical practice have embraced the medical imaging-guided 3D-printed biomodels for their ability to provide tactile feedback and a superior appreciation of visuospatial relationship between anatomical structures. With increasing accessibility, investigators are able to convert standard imaging data into a CAD file using various 3D reconstruction softwares and ultimately fabricate 3D models using 3D printing techniques, such as stereolithography, multijet modeling, selective laser sintering, binder jet technique, and fused deposition modeling. However, many clinicians have questioned whether the cost-to-benefit ratio justifies its ongoing use. The cost and size of 3D printers have rapidly decreased over the past decade in parallel with the expiration of key 3D printing patents. Significant improvements in clinical imaging and user-friendly 3D software have permitted computer-aided 3D modeling of anatomical structures and implants without outsourcing in many cases. These developments offer immense potential for the application of 3D printing at the bedside for a variety of clinical applications. In this review, existing uses of 3D printing in plastic surgery practice spanning the spectrum from templates for facial transplantation surgery through to the formation of bespoke craniofacial implants to optimize post-operative esthetics are described. Furthermore, we discuss the potential of 3D printing to become an essential office-based tool in plastic surgery to assist in preoperative planning, developing

  2. 3-D QSAutogrid/R: an alternative procedure to build 3-D QSAR models. Methodologies and applications.

    PubMed

    Ballante, Flavio; Ragno, Rino

    2012-06-25

    Since it first appeared in 1988 3-D QSAR has proved its potential in the field of drug design and activity prediction. Although thousands of citations now exist in 3-D QSAR, its development was rather slow with the majority of new 3-D QSAR applications just extensions of CoMFA. An alternative way to build 3-D QSAR models, based on an evolution of software, has been named 3-D QSAutogrid/R and has been developed to use only software freely available to academics. 3-D QSAutogrid/R covers all the main features of CoMFA and GRID/GOLPE with implementation by multiprobe/multiregion variable selection (MPGRS) that improves the simplification of interpretation of the 3-D QSAR map. The methodology is based on the integration of the molecular interaction fields as calculated by AutoGrid and the R statistical environment that can be easily coupled with many free graphical molecular interfaces such as UCSF-Chimera, AutoDock Tools, JMol, and others. The description of each R package is reported in detail, and, to assess its validity, 3-D QSAutogrid/R has been applied to three molecular data sets of which either CoMFA or GRID/GOLPE models were reported in order to compare the results. 3-D QSAutogrid/R has been used as the core engine to prepare more that 240 3-D QSAR models forming the very first 3-D QSAR server ( www.3d-qsar.com ) with its code freely available through R-Cran distribution.

  3. 3D polymer scaffold arrays.

    PubMed

    Simon, Carl G; Yang, Yanyin; Dorsey, Shauna M; Ramalingam, Murugan; Chatterjee, Kaushik

    2011-01-01

    We have developed a combinatorial platform for fabricating tissue scaffold arrays that can be used for screening cell-material interactions. Traditional research involves preparing samples one at a time for characterization and testing. Combinatorial and high-throughput (CHT) methods lower the cost of research by reducing the amount of time and material required for experiments by combining many samples into miniaturized specimens. In order to help accelerate biomaterials research, many new CHT methods have been developed for screening cell-material interactions where materials are presented to cells as a 2D film or surface. However, biomaterials are frequently used to fabricate 3D scaffolds, cells exist in vivo in a 3D environment and cells cultured in a 3D environment in vitro typically behave more physiologically than those cultured on a 2D surface. Thus, we have developed a platform for fabricating tissue scaffold libraries where biomaterials can be presented to cells in a 3D format.

  4. Autofocus for 3D imaging

    NASA Astrophysics Data System (ADS)

    Lee-Elkin, Forest

    2008-04-01

    Three dimensional (3D) autofocus remains a significant challenge for the development of practical 3D multipass radar imaging. The current 2D radar autofocus methods are not readily extendable across sensor passes. We propose a general framework that allows a class of data adaptive solutions for 3D auto-focus across passes with minimal constraints on the scene contents. The key enabling assumption is that portions of the scene are sparse in elevation which reduces the number of free variables and results in a system that is simultaneously solved for scatterer heights and autofocus parameters. The proposed method extends 2-pass interferometric synthetic aperture radar (IFSAR) methods to an arbitrary number of passes allowing the consideration of scattering from multiple height locations. A specific case from the proposed autofocus framework is solved and demonstrates autofocus and coherent multipass 3D estimation across the 8 passes of the "Gotcha Volumetric SAR Data Set" X-Band radar data.

  5. Using Graphic Organizers in Intercultural Education

    ERIC Educational Resources Information Center

    Ciascai, Liliana

    2009-01-01

    Graphic organizers are instruments of representation, illustration and modeling of information. In the educational practice they are used for building, and systematization of knowledge. Graphic organizers are instruments that addressed mostly visual learning style, but their use is beneficial to all learners. In this paper we illustrate the use of…

  6. Program For Editing Graphical Displays Of Schedules

    NASA Technical Reports Server (NTRS)

    Mulnix, Cassie L.; Miller, Kevin

    1995-01-01

    XOPPS is window-based software tool from graphics providing easy and fast "what you see is what you get" (WYSIWYG) on-screen editing capabilities. Provides area, analogous to canvas, displaying full image of schedule being edited. Canvas contains header area (for test) and schedule area (for plotting graphical representations of milestone objects in flexible time line). Written in C language.

  7. Combinatorial 3D Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  8. Engineering Graphics Educational Outcomes for the Global Engineer: An Update

    ERIC Educational Resources Information Center

    Barr, R. E.

    2012-01-01

    This paper discusses the formulation of educational outcomes for engineering graphics that span the global enterprise. Results of two repeated faculty surveys indicate that new computer graphics tools and techniques are now the preferred mode of engineering graphical communication. Specifically, 3-D computer modeling, assembly modeling, and model…

  9. 3-D adaptive nonlinear complex-diffusion despeckling filter.

    PubMed

    Rodrigues, Pedro; Bernardes, Rui

    2012-12-01

    This work aims to improve the process of speckle noise reduction while preserving edges and other relevant features through filter expansion from 2-D to 3-D. Despeckling is very important for data visual inspection and as a preprocessing step for other algorithms, as they are usually notably influenced by speckle noise. To that intent, a 3-D approach is proposed for the adaptive complex-diffusion filter. This 3-D iterative filter was applied to spectral-domain optical coherence tomography medical imaging volumes of the human retina and a quantitative evaluation of the results was performed to allow a demonstration of the better performance of the 3-D over the 2-D filtering and to choose the best total diffusion time. In addition, we propose a fast graphical processing unit parallel implementation so that the filter can be used in a clinical setting.

  10. IMRT vs. 3D Noncoplanar Treatment Plans for Maxillary Sinus Tumors: A New Tool for Quantitative Evaluation

    SciTech Connect

    Levin, Daphne Menhel, Janna; Alezra, Dror; Pfeffer, Raphael

    2008-01-01

    We compared 9-field, equispaced intensity modulated radiation therapy (IMRT), 4- to 5-field, directionally optimized IMRT, and 3-dimensional (3D) noncoplanar planning approaches for tumors of the maxillary sinus. Ten patients were planned retrospectively to compare the different treatment techniques. Prescription doses were 60 to 70 Gy. Critical structures contoured included optic nerves and chiasm, lacrimal glands, lenses, and retinas. As an aid for plan assessment, we introduced a new tool: Critical Organ Scoring Index (COSI), which allows quantitative evaluation of the tradeoffs between target coverage and critical organ sparing. This index was compared with other, commonly used conformity indices. For a reliable assessment of both tumor coverage and dose to critical organs in the different planning techniques, we introduced a 2D, graphical representation of COSI vs. conformity index (CI). Dose-volume histograms and mean, maximum, and minimum organ doses were also compared. IMRT plans delivered lower doses to ipsilateral structures, but were unable to spare them. 3D plans delivered less dose to contralateral structures, and were more homogeneous, as well. Both IMRT approaches gave similar results. In cases where choice of optimal plan was difficult, the novel 2D COSI-CI representation gave an accurate picture of the tradeoffs between target coverage and organ sparing, even in cases where other conformity indices failed. Due to their unique anatomy, maxillary sinus tumors may benefit more from a noncoplanar approach than from IMRT. The new graphical representation proposed is a quick, visual, reliable tool, which may facilitate the physician's choice of best treatment plan for a given patient.

  11. New Instruments for Survey: on Line Softwares for 3d Recontruction from Images

    NASA Astrophysics Data System (ADS)

    Fratus de Balestrini, E.; Guerra, F.

    2011-09-01

    3d scanning technologies had a significant development and have been widely used in documentation of cultural, architectural and archeological heritages. Modern methods of three-dimensional acquiring and modeling allow to represent an object through a digital model that combines visual potentialities of images (normally used for documentation) to the accuracy of the survey, becoming at the same time support for the visualization that for metric evaluation of any artefact that have an historical or artistic interest, opening up new possibilities for cultural heritage's fruition, cataloging and study. Despite this development, because of the small catchment area and the 3D laser scanner's sophisticated technologies, the cost of these instruments is very high and beyond the reach of most operators in the field of cultural heritages. This is the reason why they have appeared low-cost technologies or even free, allowing anyone to approach the issues of acquisition and 3D modeling, providing tools that allow to create three-dimensional models in a simple and economical way. The research, conducted by the Laboratory of Photogrammetry of the University IUAV of Venice, of which we present here some results, is intended to figure out whether, with Arc3D, it is possible to obtain results that can be somehow comparable, in therms of overall quality, to those of the laser scanner, and/or whether it is possible to integrate them. They were carried out a series of tests on certain types of objects, models made with Arc3D, from raster images, were compared with those obtained using the point clouds from laser scanner. We have also analyzed the conditions for an optimal use of Arc3D: environmental conditions (lighting), acquisition tools (digital cameras) and type and size of objects. After performing the tests described above, we analyzed the patterns generated by Arc3D to check what other graphic representations can be obtained from them: orthophotos and drawings. The research

  12. From 3D view to 3D print

    NASA Astrophysics Data System (ADS)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  13. Three-dimensional graphic analysis for studies of neural disorders of movement

    NASA Astrophysics Data System (ADS)

    Kothari, Abhay; Poizner, Howard; Figel, Terry

    1992-06-01

    The analysis of human motion can be advanced by analyzing motion, not only numerically, but also graphically. We present a system for the three-dimensional graphical analysis of human motion. The system involves the integrated operation of an image acquisition unit, a robot arm for 3-D target presentation, an image reconstruction unit, graphic analysis, and animation software. A five degree of freedom robot arm is used to present single targets or target trajectories for subjects to track. All the locations are software generated based on mathematical formulation of the desired sectoring of space. Two optoelectronic cameras are used to directly sense the positions of the diodes. Three-dimensional trajectories of each point are computed from the two sets of 2-D images. The 3-D trajectories of the robot and of the subject are reconstructed and displayed on a Silicon Graphics Iris Workstation. A variety of programs display kinematic features of the hand and joint trajectories synchronized with reconstructed images of the three-dimensional trajectory paths of individual limb segments. The user has real-time interactive control over the viewing angle, size, and screen position of the limb trajectories. Image representing all 3-D target and finger positions and scatterplots of target and finger distance, azimuth, and elevation from the shoulder can also be presented. Finally, software was developed to display the reconstructed motion of the arm by representing the various segments of the arm as surfaced cylinders. Effects of light source, shading and shadowing are used for calculations of brightness over the surface of the various cylinders. The end points of each cylinder are determined by the 3-D locations of infrared diodes which were attached to the subject's limb segments. The arm is animated to reproduce the velocity patterns inherent in the digital trajectory records. There are various interactive options for viewing the moving image of the arm together with

  14. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    NASA Astrophysics Data System (ADS)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  15. Graphical user interface concepts for tactical augmented reality

    NASA Astrophysics Data System (ADS)

    Argenta, Chris; Murphy, Anne; Hinton, Jeremy; Cook, James; Sherrill, Todd; Snarski, Steve

    2010-04-01

    Applied Research Associates and BAE Systems are working together to develop a wearable augmented reality system under the DARPA ULTRA-Vis program†. Our approach to achieve the objectives of ULTRAVis, called iLeader, incorporates a full color 40° field of view (FOV) see-thru holographic waveguide integrated with sensors for full position and head tracking to provide an unobtrusive information system for operational maneuvers. iLeader will enable warfighters to mark-up the 3D battle-space with symbologic identification of graphical control measures, friendly force positions and enemy/target locations. Our augmented reality display provides dynamic real-time painting of symbols on real objects, a pose-sensitive 360° representation of relevant object positions, and visual feedback for a variety of system activities. The iLeader user interface and situational awareness graphical representations are highly intuitive, nondisruptive, and always tactically relevant. We used best human-factors practices, system engineering expertise, and cognitive task analysis to design effective strategies for presenting real-time situational awareness to the military user without distorting their natural senses and perception. We present requirements identified for presenting information within a see-through display in combat environments, challenges in designing suitable visualization capabilities, and solutions that enable us to bring real-time iconic command and control to the tactical user community.

  16. Speaking Volumes About 3-D

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  17. Shape: A 3D Modeling Tool for Astrophysics.

    PubMed

    Steffen, Wolfgang; Koning, Nicholas; Wenger, Stephan; Morisset, Christophe; Magnor, Marcus

    2011-04-01

    We present a flexible interactive 3D morpho-kinematical modeling application for astrophysics. Compared to other systems, our application reduces the restrictions on the physical assumptions, data type, and amount that is required for a reconstruction of an object's morphology. It is one of the first publicly available tools to apply interactive graphics to astrophysical modeling. The tool allows astrophysicists to provide a priori knowledge about the object by interactively defining 3D structural elements. By direct comparison of model prediction with observational data, model parameters can then be automatically optimized to fit the observation. The tool has already been successfully used in a number of astrophysical research projects.

  18. 3-D world modeling for an autonomous robot

    SciTech Connect

    Goldstein, M.; Pin, F.G.; Weisbin, C.R.

    1987-08-01

    This paper presents a methodology for a concise representation of the 3-D world model for a mobile robot, using range data. The process starts with the segmentation of the scene into ''objects'' that are given a unique label, based on principles of range continuity. Then the external surface of each object is partitioned into homogeneous surface patches. Contours of surface patches in 3-D space are identified by estimating the normal and curvature associated with each pixel. The resulting surface patches are then classified as planar, convex or concave. Since the world model uses a volumetric representation for the 3-D environment, planar surfaces are represented by thin volumetric polyhedra. Spherical and cylindrical surfaces are extracted and represented by appropriate volumetric primitives. All other surfaces are represented using the boolean union of spherical volumes (as described in a separate paper by the same authors). The result is a general, concise representation of the external 3-D world, which allows for efficient and robust 3-D object recognition. 20 refs., 14 figs.

  19. Communicating Experience of 3D Space: Mathematical and Everyday Discourse

    ERIC Educational Resources Information Center

    Morgan, Candia; Alshwaikh, Jehad

    2012-01-01

    In this article we consider data arising from student-teacher-researcher interactions taking place in the context of an experimental teaching program making use of multiple modes of communication and representation to explore three-dimensional (3D) shape. As teachers/researchers attempted to support student use of a logo-like formal language for…

  20. Demonstration of a 3D vision algorithm for space applications

    NASA Technical Reports Server (NTRS)

    Defigueiredo, Rui J. P. (Editor)

    1987-01-01

    This paper reports an extension of the MIAG algorithm for recognition and motion parameter determination of general 3-D polyhedral objects based on model matching techniques and using movement invariants as features of object representation. Results of tests conducted on the algorithm under conditions simulating space conditions are presented.

  1. Teaching 3-D Geometry--The Multi Representational Way

    ERIC Educational Resources Information Center

    Kalbitzer, Sonja; Loong, Esther

    2013-01-01

    Many students have difficulties in geometric and spatial thinking (see Pittalis & Christou, 2010). Students who are asked to construct models of geometric thought not previously learnt may be forced into rote learning and only gain temporary or superficial success (Van de Walle & Folk, 2008, p. 431). Therefore it is imperative for…

  2. Macrophage podosomes go 3D.

    PubMed

    Van Goethem, Emeline; Guiet, Romain; Balor, Stéphanie; Charrière, Guillaume M; Poincloux, Renaud; Labrousse, Arnaud; Maridonneau-Parini, Isabelle; Le Cabec, Véronique

    2011-01-01

    Macrophage tissue infiltration is a critical step in the immune response against microorganisms and is also associated with disease progression in chronic inflammation and cancer. Macrophages are constitutively equipped with specialized structures called podosomes dedicated to extracellular matrix (ECM) degradation. We recently reported that these structures play a critical role in trans-matrix mesenchymal migration mode, a protease-dependent mechanism. Podosome molecular components and their ECM-degrading activity have been extensively studied in two dimensions (2D), but yet very little is known about their fate in three-dimensional (3D) environments. Therefore, localization of podosome markers and proteolytic activity were carefully examined in human macrophages performing mesenchymal migration. Using our gelled collagen I 3D matrix model to obligate human macrophages to perform mesenchymal migration, classical podosome markers including talin, paxillin, vinculin, gelsolin, cortactin were found to accumulate at the tip of F-actin-rich cell protrusions together with β1 integrin and CD44 but not β2 integrin. Macrophage proteolytic activity was observed at podosome-like protrusion sites using confocal fluorescence microscopy and electron microscopy. The formation of migration tunnels by macrophages inside the matrix was accomplished by degradation, engulfment and mechanic compaction of the matrix. In addition, videomicroscopy revealed that 3D F-actin-rich protrusions of migrating macrophages were as dynamic as their 2D counterparts. Overall, the specifications of 3D podosomes resembled those of 2D podosome rosettes rather than those of individual podosomes. This observation was further supported by the aspect of 3D podosomes in fibroblasts expressing Hck, a master regulator of podosome rosettes in macrophages. In conclusion, human macrophage podosomes go 3D and take the shape of spherical podosome rosettes when the cells perform mesenchymal migration. This work

  3. 3D Printed Bionic Nanodevices.

    PubMed

    Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C

    2016-06-01

    The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the

  4. Petal, terrain & airbags - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Portions of the lander's deflated airbags and a petal are at the lower area of this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. The metallic object at lower right is part of the lander's low-gain antenna. This image is part of a 3D 'monster

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  5. 3D Model Generation From the Engineering Drawing

    NASA Astrophysics Data System (ADS)

    Vaský, Jozef; Eliáš, Michal; Bezák, Pavol; Červeňanská, Zuzana; Izakovič, Ladislav

    2010-01-01

    The contribution deals with the transformation of engineering drawings in a paper form into a 3D computer representation. A 3D computer model can be further processed in CAD/CAM system, it can be modified, archived, and a technical drawing can be then generated from it as well. The transformation process from paper form to the data one is a complex and difficult one, particularly owing to the different types of drawings, forms of displayed objects and encountered errors and deviations from technical standards. The algorithm for 3D model generating from an orthogonal vector input representing a simplified technical drawing of the rotational part is described in this contribution. The algorithm was experimentally implemented as ObjectARX application in the AutoCAD system and the test sample as the representation of the rotational part was used for verificaton.

  6. NoSQL Based 3D City Model Management System

    NASA Astrophysics Data System (ADS)

    Mao, B.; Harrie, L.; Cao, J.; Wu, Z.; Shen, J.

    2014-04-01

    To manage increasingly complicated 3D city models, a framework based on NoSQL database is proposed in this paper. The framework supports import and export of 3D city model according to international standards such as CityGML, KML/COLLADA and X3D. We also suggest and implement 3D model analysis and visualization in the framework. For city model analysis, 3D geometry data and semantic information (such as name, height, area, price and so on) are stored and processed separately. We use a Map-Reduce method to deal with the 3D geometry data since it is more complex, while the semantic analysis is mainly based on database query operation. For visualization, a multiple 3D city representation structure CityTree is implemented within the framework to support dynamic LODs based on user viewpoint. Also, the proposed framework is easily extensible and supports geoindexes to speed up the querying. Our experimental results show that the proposed 3D city management system can efficiently fulfil the analysis and visualization requirements.

  7. A Prototype Digital Library for 3D Collections: Tools To Capture, Model, Analyze, and Query Complex 3D Data.

    ERIC Educational Resources Information Center

    Rowe, Jeremy; Razdan, Anshuman

    The Partnership for Research in Spatial Modeling (PRISM) project at Arizona State University (ASU) developed modeling and analytic tools to respond to the limitations of two-dimensional (2D) data representations perceived by affiliated discipline scientists, and to take advantage of the enhanced capabilities of three-dimensional (3D) data that…

  8. The World of 3-D.

    ERIC Educational Resources Information Center

    Mayshark, Robin K.

    1991-01-01

    Students explore three-dimensional properties by creating red and green wall decorations related to Christmas. Students examine why images seem to vibrate when red and green pieces are small and close together. Instructions to conduct the activity and construct 3-D glasses are given. (MDH)

  9. 3D Printing: Exploring Capabilities

    ERIC Educational Resources Information Center

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  10. Making Inexpensive 3-D Models

    ERIC Educational Resources Information Center

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  11. Voice and gesture-based 3D multimedia presentation tool

    NASA Astrophysics Data System (ADS)

    Fukutake, Hiromichi; Akazawa, Yoshiaki; Okada, Yoshihiro

    2007-09-01

    This paper proposes a 3D multimedia presentation tool that allows the user to manipulate intuitively only through the voice input and the gesture input without using a standard keyboard or a mouse device. The authors developed this system as a presentation tool to be used in a presentation room equipped a large screen like an exhibition room in a museum because, in such a presentation environment, it is better to use voice commands and the gesture pointing input rather than using a keyboard or a mouse device. This system was developed using IntelligentBox, which is a component-based 3D graphics software development system. IntelligentBox has already provided various types of 3D visible, reactive functional components called boxes, e.g., a voice input component and various multimedia handling components. IntelligentBox also provides a dynamic data linkage mechanism called slot-connection that allows the user to develop 3D graphics applications by combining already existing boxes through direct manipulations on a computer screen. Using IntelligentBox, the 3D multimedia presentation tool proposed in this paper was also developed as combined components only through direct manipulations on a computer screen. The authors have already proposed a 3D multimedia presentation tool using a stage metaphor and its voice input interface. This time, we extended the system to make it accept the user gesture input besides voice commands. This paper explains details of the proposed 3D multimedia presentation tool and especially describes its component-based voice and gesture input interfaces.

  12. Object-oriented urban 3D spatial data model organization method

    NASA Astrophysics Data System (ADS)

    Li, Jing-wen; Li, Wen-qing; Lv, Nan; Su, Tao

    2015-12-01

    This paper combined the 3d data model with object-oriented organization method, put forward the model of 3d data based on object-oriented method, implemented the city 3d model to quickly build logical semantic expression and model, solved the city 3d spatial information representation problem of the same location with multiple property and the same property with multiple locations, designed the space object structure of point, line, polygon, body for city of 3d spatial database, and provided a new thought and method for the city 3d GIS model and organization management.

  13. Grid cells in 3-D: Reconciling data and models.

    PubMed

    Horiuchi, Timothy K; Moss, Cynthia F

    2015-12-01

    It is well documented that place cells and grid cells in echolocating bats show properties similar to those described in rodents, and yet, continuous theta-frequency oscillations, proposed to play a central role in grid/place cell formation, are not present in bat recordings. These comparative neurophysiological data have raised many questions about the role of theta-frequency oscillations in spatial memory and navigation. Additionally, spatial navigation in three-dimensions poses new challenges for the representation of space in neural models. Inspired by the literature on space representation in the echolocating bat, we have developed a nonoscillatory model of 3-D grid cell creation that shares many of the features of existing oscillatory-interference models. We discuss the model in the context of current knowledge of 3-D space representation and highlight directions for future research.

  14. IGES Interface for Medical 3-D Volume Data.

    PubMed

    Chen, Gong; Yi, Hong; Ni, Zhonghua

    2005-01-01

    Although there are many medical image processing and virtual surgery systems that provide rather consummate 3D-visualization and data manipulation techniques, few of them can export the volume data for engineering analyze. The thesis presents an interface implementing IGES (initial graphics exchange specification). Volume data such as bones, skins and other tissues can be exported as IGES files to be directly used for engineering analysis.

  15. Research and Teaching: Methods for Creating and Evaluating 3D Tactile Images to Teach STEM Courses to the Visually Impaired

    ERIC Educational Resources Information Center

    Hasper, Eric; Windhorst, Rogier; Hedgpeth, Terri; Van Tuyl, Leanne; Gonzales, Ashleigh; Martinez, Britta; Yu, Hongyu; Farkas, Zolton; Baluch, Debra P.

    2015-01-01

    Project 3D IMAGINE or 3D Image Arrays to Graphically Implement New Education is a pilot study that researches the effectiveness of incorporating 3D tactile images, which are critical for learning science, technology, engineering, and mathematics, into entry-level lab courses. The focus of this project is to increase the participation and…

  16. Backhoe 3D "gold standard" image

    NASA Astrophysics Data System (ADS)

    Gorham, LeRoy; Naidu, Kiranmai D.; Majumder, Uttam; Minardi, Michael A.

    2005-05-01

    ViSUAl-D (VIsual Sar Using ALl Dimensions), a 2004 DARPA/IXO seedling effort, is developing a capability for reliable high confidence ID from standoff ranges. Recent conflicts have demonstrated that the warfighter would greatly benefit from the ability to ID targets beyond visual and electro-optical ranges[1]. Forming optical-quality SAR images while exploiting full polarization, wide angles, and large bandwidth would be key evidence such a capability is achievable. Using data generated by the Xpatch EM scattering code, ViSUAl-D investigates all degrees of freedom available to the radar designer, including 6 GHz bandwidth, full polarization and angle sampling over 2π steradians (upper hemisphere), in order to produce a "literal" image or representation of the target. This effort includes the generation of a "Gold Standard" image that can be produced at X-band utilizing all available target data. This "Gold Standard" image of the backhoe will serve as a test bed for future more relevant military targets and their image development. The seedling team produced a public release data which was released at the 2004 SPIE conference, as well as a 3D "Gold Standard" backhoe image using a 3D image formation algorithm. This paper describes the full backhoe data set, the image formation algorithm, the visualization process and the resulting image.

  17. Graphical representation of the excess entropy

    NASA Astrophysics Data System (ADS)

    Bednorz, Adam

    2001-09-01

    The generalized Mayer graphs invented by Nettleton and Green are used to express the probability distribution of statistical systems by reduced distribution functions. The entropy is expressed in terms of graphs and a simple rule of counting them is presented. The hyper-netted chain approximations are discussed.

  18. A Cognitive Approach to the Design of Information Graphics

    DTIC Science & Technology

    1991-09-14

    GOPs) that are admitted when the designer of a graphical representation elects to use one or more of the primitive langus ges in a graphic. For example...if we elect to use the "horizontal position" language we admit a family of perceptual operators (POPs) such as determining the horizontal position...pedagogical challenges in the educational use of graphical representation of functions, Journal of Mathematical Behavior 7, 1988, 135-173. 14. Gould

  19. Innovative 3D Visualization of Electro-optic Data for MCM

    DTIC Science & Technology

    2001-09-30

    The long-term goal is to develop innovative methods for transforming data taken by electro - optic and acoustic MCM sensors into graphical representations better suited to human interpretation, specifically to aid mine classification.

  20. Forensic 3D scene reconstruction

    NASA Astrophysics Data System (ADS)

    Little, Charles Q.; Small, Daniel E.; Peters, Ralph R.; Rigdon, J. B.

    2000-05-01

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a fieldable prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  1. 3D Printed Robotic Hand

    NASA Technical Reports Server (NTRS)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  2. Comparing swimsuits in 3D.

    PubMed

    van Geer, Erik; Molenbroek, Johan; Schreven, Sander; deVoogd-Claessen, Lenneke; Toussaint, Huib

    2012-01-01

    In competitive swimming, suits have become more important. These suits influence friction, pressure and wave drag. Friction drag is related to the surface properties whereas both pressure and wave drag are greatly influenced by body shape. To find a relationship between the body shape and the drag, the anthropometry of several world class female swimmers wearing different suits was accurately defined using a 3D scanner and traditional measuring methods. The 3D scans delivered more detailed information about the body shape. On the same day the swimmers did performance tests in the water with the tested suits. Afterwards the result of the performance tests and the differences found in body shape was analyzed to determine the deformation caused by a swimsuit and its effect on the swimming performance. Although the amount of data is limited because of the few test subjects, there is an indication that the deformation of the body influences the swimming performance.

  3. Forensic 3D Scene Reconstruction

    SciTech Connect

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.

    1999-10-12

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  4. 3D-graphite structure

    SciTech Connect

    Belenkov, E. A. Ali-Pasha, V. A.

    2011-01-15

    The structure of clusters of some new carbon 3D-graphite phases have been calculated using the molecular-mechanics methods. It is established that 3D-graphite polytypes {alpha}{sub 1,1}, {alpha}{sub 1,3}, {alpha}{sub 1,5}, {alpha}{sub 2,1}, {alpha}{sub 2,3}, {alpha}{sub 3,1}, {beta}{sub 1,2}, {beta}{sub 1,4}, {beta}{sub 1,6}, {beta}{sub 2,1}, and {beta}{sub 3,2} consist of sp{sup 2}-hybridized atoms, have hexagonal unit cells, and differ in regards to the structure of layers and order of their alternation. A possible way to experimentally synthesize new carbon phases is proposed: the polymerization and carbonization of hydrocarbon molecules.

  5. 3D-Fun: predicting enzyme function from structure.

    PubMed

    von Grotthuss, Marcin; Plewczynski, Dariusz; Vriend, Gert; Rychlewski, Leszek

    2008-07-01

    The 'omics' revolution is causing a flurry of data that all needs to be annotated for it to become useful. Sequences of proteins of unknown function can be annotated with a putative function by comparing them with proteins of known function. This form of annotation is typically performed with BLAST or similar software. Structural genomics is nowadays also bringing us three dimensional structures of proteins with unknown function. We present here software that can be used when sequence comparisons fail to determine the function of a protein with known structure but unknown function. The software, called 3D-Fun, is implemented as a server that runs at several European institutes and is freely available for everybody at all these sites. The 3D-Fun servers accept protein coordinates in the standard PDB format and compare them with all known protein structures by 3D structural superposition using the 3D-Hit software. If structural hits are found with proteins with known function, these are listed together with their function and some vital comparison statistics. This is conceptually very similar in 3D to what BLAST does in 1D. Additionally, the superposition results are displayed using interactive graphics facilities. Currently, the 3D-Fun system only predicts enzyme function but an expanded version with Gene Ontology predictions will be available soon. The server can be accessed at http://3dfun.bioinfo.pl/ or at http://3dfun.cmbi.ru.nl/.

  6. Graphical programming at Sandia National Laboratories

    SciTech Connect

    McDonald, M.J.; Palmquist, R.D.; Desjarlais, L.

    1993-09-01

    Sandia has developed an advanced operational control system approach, called Graphical Programming, to design, program, and operate robotic systems. The Graphical Programming approach produces robot systems that are faster to develop and use, safer in operation, and cheaper overall than altemative teleoperation or autonomous robot control systems. Graphical Programming also provides an efficient and easy-to-use interface to traditional robot systems for use in setup and programming tasks. This paper provides an overview of the Graphical Programming approach and lists key features of Graphical Programming systems. Graphical Programming uses 3-D visualization and simulation software with intuitive operator interfaces for the programming and control of complex robotic systems. Graphical Programming Supervisor software modules allow an operator to command and simulate complex tasks in a graphic preview mode and, when acceptable, command the actual robots and monitor their motions with the graphic system. Graphical Programming Supervisors maintain registration with the real world and allow the robot to perform tasks that cannot be accurately represented with models alone by using a combination of model and sensor-based control.

  7. The 3D widgets for exploratory scientific visualization

    NASA Technical Reports Server (NTRS)

    Herndon, Kenneth P.; Meyer, Tom

    1995-01-01

    Computational fluid dynamics (CFD) techniques are used to simulate flows of fluids like air or water around such objects as airplanes and automobiles. These techniques usually generate very large amounts of numerical data which are difficult to understand without using graphical scientific visualization techniques. There are a number of commercial scientific visualization applications available today which allow scientists to control visualization tools via textual and/or 2D user interfaces. However, these user interfaces are often difficult to use. We believe that 3D direct-manipulation techniques for interactively controlling visualization tools will provide opportunities for powerful and useful interfaces with which scientists can more effectively explore their datasets. A few systems have been developed which use these techniques. In this paper, we will present a variety of 3D interaction techniques for manipulating parameters of visualization tools used to explore CFD datasets, and discuss in detail various techniques for positioning tools in a 3D scene.

  8. Algorithms for Haptic Rendering of 3D Objects

    NASA Technical Reports Server (NTRS)

    Basdogan, Cagatay; Ho, Chih-Hao; Srinavasan, Mandayam

    2003-01-01

    Algorithms have been developed to provide haptic rendering of three-dimensional (3D) objects in virtual (that is, computationally simulated) environments. The goal of haptic rendering is to generate tactual displays of the shapes, hardnesses, surface textures, and frictional properties of 3D objects in real time. Haptic rendering is a major element of the emerging field of computer haptics, which invites comparison with computer graphics. We have already seen various applications of computer haptics in the areas of medicine (surgical simulation, telemedicine, haptic user interfaces for blind people, and rehabilitation of patients with neurological disorders), entertainment (3D painting, character animation, morphing, and sculpting), mechanical design (path planning and assembly sequencing), and scientific visualization (geophysical data analysis and molecular manipulation).

  9. Recent Advances in Visualizing 3D Flow with LIC

    NASA Technical Reports Server (NTRS)

    Interrante, Victoria; Grosch, Chester

    1998-01-01

    Line Integral Convolution (LIC), introduced by Cabral and Leedom in 1993, is an elegant and versatile technique for representing directional information via patterns of correlation in a texture. Although most commonly used to depict 2D flow, or flow over a surface in 3D, LIC methods can equivalently be used to portray 3D flow through a volume. However, the popularity of LIC as a device for illustrating 3D flow has historically been limited both by the computational expense of generating and rendering such a 3D texture and by the difficulties inherent in clearly and effectively conveying the directional information embodied in the volumetric output textures that are produced. In an earlier paper, we briefly discussed some of the factors that may underlie the perceptual difficulties that we can encounter with dense 3D displays and outlined several strategies for more effectively visualizing 3D flow with volume LIC. In this article, we review in more detail techniques for selectively emphasizing critical regions of interest in a flow and for facilitating the accurate perception of the 3D depth and orientation of overlapping streamlines, and we demonstrate new methods for efficiently incorporating an indication of orientation into a flow representation and for conveying additional information about related scalar quantities such as temperature or vorticity over a flow via subtle, continuous line width and color variations.

  10. Post-processing methods of rendering and visualizing 3-D reconstructed tomographic images

    SciTech Connect

    Wong, S.T.C.

    1997-02-01

    The purpose of this presentation is to discuss the computer processing techniques of tomographic images, after they have been generated by imaging scanners, for volume visualization. Volume visualization is concerned with the representation, manipulation, and rendering of volumetric data. Since the first digital images were produced from computed tomography (CT) scanners in the mid 1970s, applications of visualization in medicine have expanded dramatically. Today, three-dimensional (3D) medical visualization has expanded from using CT data, the first inherently digital source of 3D medical data, to using data from various medical imaging modalities, including magnetic resonance scanners, positron emission scanners, digital ultrasound, electronic and confocal microscopy, and other medical imaging modalities. We have advanced from rendering anatomy to aid diagnosis and visualize complex anatomic structures to planning and assisting surgery and radiation treatment. New, more accurate and cost-effective procedures for clinical services and biomedical research have become possible by integrating computer graphics technology with medical images. This trend is particularly noticeable in current market-driven health care environment. For example, interventional imaging, image-guided surgery, and stereotactic and visualization techniques are now stemming into surgical practice. In this presentation, we discuss only computer-display-based approaches of volumetric medical visualization. That is, we assume that the display device available is two-dimensional (2D) in nature and all analysis of multidimensional image data is to be carried out via the 2D screen of the device. There are technologies such as holography and virtual reality that do provide a {open_quotes}true 3D screen{close_quotes}. To confine the scope, this presentation will not discuss such approaches.

  11. GPU-Accelerated Denoising in 3D (GD3D)

    SciTech Connect

    2013-10-01

    The raw computational power GPU Accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. This software addresses two facets of this promising application: what tuning is necessary to achieve optimal performance on a modern GPU? And what parameters yield the best denoising results in practice? To answer the first question, the software performs an autotuning step to empirically determine optimal memory blocking on the GPU. To answer the second, it performs a sweep of algorithm parameters to determine the combination that best reduces the mean squared error relative to a noiseless reference image.

  12. Magmatic Systems in 3-D

    NASA Astrophysics Data System (ADS)

    Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.

    2002-12-01

    Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated

  13. Design Graphics

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A mathematician, David R. Hedgley, Jr. developed a computer program that considers whether a line in a graphic model of a three-dimensional object should or should not be visible. Known as the Hidden Line Computer Code, the program automatically removes superfluous lines and displays an object from a specific viewpoint, just as the human eye would see it. An example of how one company uses the program is the experience of Birdair which specializes in production of fabric skylights and stadium covers. The fabric called SHEERFILL is a Teflon coated fiberglass material developed in cooperation with DuPont Company. SHEERFILL glazed structures are either tension structures or air-supported tension structures. Both are formed by patterned fabric sheets supported by a steel or aluminum frame or cable network. Birdair uses the Hidden Line Computer Code, to illustrate a prospective structure to an architect or owner. The program generates a three- dimensional perspective with the hidden lines removed. This program is still used by Birdair and continues to be commercially available to the public.

  14. Designing stereoscopic information visualization for 3D-TV: What can we can learn from S3D gaming?

    NASA Astrophysics Data System (ADS)

    Schild, Jonas; Masuch, Maic

    2012-03-01

    This paper explores graphical design and spatial alignment of visual information and graphical elements into stereoscopically filmed content, e.g. captions, subtitles, and especially more complex elements in 3D-TV productions. The method used is a descriptive analysis of existing computer- and video games that have been adapted for stereoscopic display using semi-automatic rendering techniques (e.g. Nvidia 3D Vision) or games which have been specifically designed for stereoscopic vision. Digital games often feature compelling visual interfaces that combine high usability with creative visual design. We explore selected examples of game interfaces in stereoscopic vision regarding their stereoscopic characteristics, how they draw attention, how we judge effect and comfort and where the interfaces fail. As a result, we propose a list of five aspects which should be considered when designing stereoscopic visual information: explicit information, implicit information, spatial reference, drawing attention, and vertical alignment. We discuss possible consequences, opportunities and challenges for integrating visual information elements into 3D-TV content. This work shall further help to improve current editing systems and identifies a need for future editing systems for 3DTV, e.g., live editing and real-time alignment of visual information into 3D footage.

  15. 3D mapping and simulation of Geneva Lake environmental data

    NASA Astrophysics Data System (ADS)

    Villard, Roch; Maignan, Michel; Kanevski, Mikhail; Rapin, Francois; Klein, Audrey

    2010-05-01

    The Geneva Lake is the biggest alpine and subalpine lake in central Europe. The depth of this lake is 309 meters and its total volume of water is 89 billions m3. It takes, on average, around twelve years so that waters of the lake are completely brewed. Furthermore the Geneva lake waters are rich in dissolved substances as carbonate, sulfate. The quantity of particles in suspension in the lake, which mainly arrived from the Rhône, is nowadays around height million of tones. The International Commission for the Leman Lake (CIPEL) works about the improvement of the quality of this lake since 1962. In the present study three dimensional environmental data (temperature, oxygen and nitrate) which cover the period from 1954 to 2008, for a total of 27'500 cases are investigated. We are interested to study the evolution of the temperature of the lake because there is an impact on the reproduction of fishes and also because the winter brewing of the water makes the re-oxygenation of deep-water. In order that biological balance is maintained in a lake, there must be enough oxygen in the water. Moreover, we work on nitrate distribution and evolution because contributions in fertilizers cause eutrophication of lake. The data are very numerous when we consider the time series, some of them with more than 300 occurrences, but there are between 2 and 15 data available for spatial cartography. The basic methodology used for the analysis, mapping and simulations of 3D patterns of environmental data is based on geostatistical predictions (family of kriging models) and conditional stochastic simulations. Spatial and temporal variability, 3D monitoring networks changing over time, make this study challenging. An important problem is also to make interpolation/simulations over a long period of time, like ten years. One way used to overcome this problem, consists in using a weighted average of ten variograms during this period. 3D mapping was carried out using environment data for

  16. Objective and subjective quality assessment of geometry compression of reconstructed 3D humans in a 3D virtual room

    NASA Astrophysics Data System (ADS)

    Mekuria, Rufael; Cesar, Pablo; Doumanis, Ioannis; Frisiello, Antonella

    2015-09-01

    Compression of 3D object based video is relevant for 3D Immersive applications. Nevertheless, the perceptual aspects of the degradation introduced by codecs for meshes and point clouds are not well understood. In this paper we evaluate the subjective and objective degradations introduced by such codecs in a state of art 3D immersive virtual room. In the 3D immersive virtual room, users are captured with multiple cameras, and their surfaces are reconstructed as photorealistic colored/textured 3D meshes or point clouds. To test the perceptual effect of compression and transmission, we render degraded versions with different frame rates in different contexts (near/far) in the scene. A quantitative subjective study with 16 users shows that negligible distortion of decoded surfaces compared to the original reconstructions can be achieved in the 3D virtual room. In addition, a qualitative task based analysis in a full prototype field trial shows increased presence, emotion, user and state recognition of the reconstructed 3D Human representation compared to animated computer avatars.

  17. Graphical Language for Data Processing

    NASA Technical Reports Server (NTRS)

    Alphonso, Keith

    2011-01-01

    A graphical language for processing data allows processing elements to be connected with virtual wires that represent data flows between processing modules. The processing of complex data, such as lidar data, requires many different algorithms to be applied. The purpose of this innovation is to automate the processing of complex data, such as LIDAR, without the need for complex scripting and programming languages. The system consists of a set of user-interface components that allow the user to drag and drop various algorithmic and processing components onto a process graph. By working graphically, the user can completely visualize the process flow and create complex diagrams. This innovation supports the nesting of graphs, such that a graph can be included in another graph as a single step for processing. In addition to the user interface components, the system includes a set of .NET classes that represent the graph internally. These classes provide the internal system representation of the graphical user interface. The system includes a graph execution component that reads the internal representation of the graph (as described above) and executes that graph. The execution of the graph follows the interpreted model of execution in that each node is traversed and executed from the original internal representation. In addition, there are components that allow external code elements, such as algorithms, to be easily integrated into the system, thus making the system infinitely expandable.

  18. Open-GL-based stereo system for 3D measurements

    NASA Astrophysics Data System (ADS)

    Boochs, Frank; Gehrhoff, Anja; Neifer, Markus

    2000-05-01

    A stereo system designed and used for the measurement of 3D- coordinates within metric stereo image pairs will be presented. First, the motivation for the development is shown, allowing to evaluate stereo images. As the use and availability of metric images of digital type rapidly increases corresponding equipment for the measuring process is needed. Systems which have been developed up to now are either very special ones, founded on high end graphics workstations with an according pricing or simple ones with restricted measuring functionality. A new conception will be shown, avoiding special high end graphics hardware but providing the measuring functionality required. The presented stereo system is based on PC-hardware equipped with a graphic board and uses an object oriented programming technique. The specific needs of a measuring system are shown and the corresponding requirements which have to be met by the system. The key role of OpenGL is described, which supplies some elementary graphic functions, being directly supported by graphic boards and thus provides the performance needed. Further important aspects as modularity and hardware independence and their value for the solution are shown. Finally some sample functions concerned with image display and handling are presented in more detail.

  19. Interactive 3D Mars Visualization

    NASA Technical Reports Server (NTRS)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  20. 3D Nanostructuring of Semiconductors

    NASA Astrophysics Data System (ADS)

    Blick, Robert

    2000-03-01

    Modern semiconductor technology allows to machine devices on the nanometer scale. I will discuss the current limits of the fabrication processes, which enable the definition of single electron transistors with dimensions down to 8 nm. In addition to the conventional 2D patterning and structuring of semiconductors, I will demonstrate how to apply 3D nanostructuring techniques to build freely suspended single-crystal beams with lateral dimension down to 20 nm. In transport measurements in the temperature range from 30 mK up to 100 K these nano-crystals are characterized regarding their electronic as well as their mechanical properties. Moreover, I will present possible applications of these devices.

  1. What Lies Ahead (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D cylindrical-perspective mosaic taken by the navigation camera on the Mars Exploration Rover Spirit on sol 82 shows the view south of the large crater dubbed 'Bonneville.' The rover will travel toward the Columbia Hills, seen here at the upper left. The rock dubbed 'Mazatzal' and the hole the rover drilled in to it can be seen at the lower left. The rover's position is referred to as 'Site 22, Position 32.' This image was geometrically corrected to make the horizon appear flat.

  2. Making Inexpensive 3-D Models

    NASA Astrophysics Data System (ADS)

    Manos, Harry

    2016-03-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.

  3. A Clean Adirondack (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is a 3-D anaglyph showing a microscopic image taken of an area measuring 3 centimeters (1.2 inches) across on the rock called Adirondack. The image was taken at Gusev Crater on the 33rd day of the Mars Exploration Rover Spirit's journey (Feb. 5, 2004), after the rover used its rock abrasion tool brush to clean the surface of the rock. Dust, which was pushed off to the side during cleaning, can still be seen to the left and in low areas of the rock.

  4. 3D Printed Shelby Cobra

    SciTech Connect

    Love, Lonnie

    2015-01-09

    ORNL's newly printed 3D Shelby Cobra was showcased at the 2015 NAIAS in Detroit. This "laboratory on wheels" uses the Shelby Cobra design, celebrating the 50th anniversary of this model and honoring the first vehicle to be voted a national monument. The Shelby was printed at the Department of Energy’s Manufacturing Demonstration Facility at ORNL using the BAAM (Big Area Additive Manufacturing) machine and is intended as a “plug-n-play” laboratory on wheels. The Shelby will allow research and development of integrated components to be tested and enhanced in real time, improving the use of sustainable, digital manufacturing solutions in the automotive industry.

  5. The OpenEarth Framework (OEF) for the 3D Visualization of Integrated Earth Science Data

    NASA Astrophysics Data System (ADS)

    Nadeau, David; Moreland, John; Baru, Chaitan; Crosby, Chris

    2010-05-01

    seismic tomography may be sliced by multiple oriented cutting planes and isosurfaced to create 3D skins that trace feature boundaries within the data. Topography may be overlaid with satellite imagery, maps, and data such as gravity and magnetics measurements. Multiple data sets may be visualized simultaneously using overlapping layers within a common 3D coordinate space. Data management within the OEF handles and hides the inevitable quirks of differing file formats, web protocols, storage structures, coordinate spaces, and metadata representations. Heuristics are used to extract necessary metadata used to guide data and visual operations. Derived data representations are computed to better support fluid interaction and visualization while the original data is left unchanged in its original form. Data is cached for better memory and network efficiency, and all visualization makes use of 3D graphics hardware support found on today's computers. The OpenEarth Framework project is currently prototyping the software for use in the visualization, and integration of continental scale geophysical data being produced by EarthScope-related research in the Western US. The OEF is providing researchers with new ways to display and interrogate their data and is anticipated to be a valuable tool for future EarthScope-related research.

  6. Towards Contactless, Low-Cost and Accurate 3D Fingerprint Identification.

    PubMed

    Kumar, Ajay; Kwong, Cyril

    2015-03-01

    Human identification using fingerprint impressions has been widely studied and employed for more than 2000 years. Despite new advancements in the 3D imaging technologies, widely accepted representation of 3D fingerprint features and matching methodology is yet to emerge. This paper investigates 3D representation of widely employed 2D minutiae features by recovering and incorporating (i) minutiae height z and (ii) its 3D orientation φ information and illustrates an effective matching strategy for matching popular minutiae features extended in 3D space. One of the obstacles of the emerging 3D fingerprint identification systems to replace the conventional 2D fingerprint system lies in their bulk and high cost, which is mainly contributed from the usage of structured lighting system or multiple cameras. This paper attempts to addresses such key limitations of the current 3D fingerprint technologies bydeveloping the single camera-based 3D fingerprint identification system. We develop a generalized 3D minutiae matching model and recover extended 3D fingerprint features from the reconstructed 3D fingerprints. 2D fingerprint images acquired for the 3D fingerprint reconstruction can themselves be employed for the performance improvement and have been illustrated in the work detailed in this paper. This paper also attempts to answer one of the most fundamental questions on the availability of inherent discriminable information from 3D fingerprints. The experimental results are presented on a database of 240 clients 3D fingerprints, which is made publicly available to further research efforts in this area, and illustrate the discriminant power of 3D minutiae representation and matching to achieve performance improvement.

  7. LiveView3D: Real Time Data Visualization for the Aerospace Testing Environment

    NASA Technical Reports Server (NTRS)

    Schwartz, Richard J.; Fleming, Gary A.

    2006-01-01

    This paper addresses LiveView3D, a software package and associated data visualization system for use in the aerospace testing environment. The LiveView3D system allows researchers to graphically view data from numerous wind tunnel instruments in real time in an interactive virtual environment. The graphical nature of the LiveView3D display provides researchers with an intuitive view of the measurement data, making it easier to interpret the aerodynamic phenomenon under investigation. LiveView3D has been developed at the NASA Langley Research Center and has been applied in the Langley Unitary Plan Wind Tunnel (UPWT). This paper discusses the capabilities of the LiveView3D system, provides example results from its application in the UPWT, and outlines features planned for future implementation.

  8. Positional Awareness Map 3D (PAM3D)

    NASA Technical Reports Server (NTRS)

    Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise

    2012-01-01

    The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.

  9. Reconstruction and 3D visualisation based on objective real 3D based documentation.

    PubMed

    Bolliger, Michael J; Buck, Ursula; Thali, Michael J; Bolliger, Stephan A

    2012-09-01

    Reconstructions based directly upon forensic evidence alone are called primary information. Historically this consists of documentation of findings by verbal protocols, photographs and other visual means. Currently modern imaging techniques such as 3D surface scanning and radiological methods (computer tomography, magnetic resonance imaging) are also applied. Secondary interpretation is based on facts and the examiner's experience. Usually such reconstructive expertises are given in written form, and are often enhanced by sketches. However, narrative interpretations can, especially in complex courses of action, be difficult to present and can be misunderstood. In this report we demonstrate the use of graphic reconstruction of secondary interpretation with supporting pictorial evidence, applying digital visualisation (using 'Poser') or scientific animation (using '3D Studio Max', 'Maya') and present methods of clearly distinguishing between factual documentation and examiners' interpretation based on three cases. The first case involved a pedestrian who was initially struck by a car on a motorway and was then run over by a second car. The second case involved a suicidal gunshot to the head with a rifle, in which the trigger was pushed with a rod. The third case dealt with a collision between two motorcycles. Pictorial reconstruction of the secondary interpretation of these cases has several advantages. The images enable an immediate overview, give rise to enhanced clarity, and compel the examiner to look at all details if he or she is to create a complete image.

  10. 3D printed bionic ears.

    PubMed

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.

  11. 3D Printable Graphene Composite

    PubMed Central

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-01-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C−1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673

  12. 3D Printed Bionic Ears

    PubMed Central

    Mannoor, Manu S.; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A.; Soboyejo, Winston O.; Verma, Naveen; Gracias, David H.; McAlpine, Michael C.

    2013-01-01

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the precise anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  13. Martian terrain & airbags - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Portions of the lander's deflated airbags and a petal are at lower left in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  14. Martian terrain & airbags - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Portions of the lander's deflated airbags and a petal are at the lower area of this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  15. 3D structured illumination microscopy

    NASA Astrophysics Data System (ADS)

    Dougherty, William M.; Goodwin, Paul C.

    2011-03-01

    Three-dimensional structured illumination microscopy achieves double the lateral and axial resolution of wide-field microscopy, using conventional fluorescent dyes, proteins and sample preparation techniques. A three-dimensional interference-fringe pattern excites the fluorescence, filling in the "missing cone" of the wide field optical transfer function, thereby enabling axial (z) discrimination. The pattern acts as a spatial carrier frequency that mixes with the higher spatial frequency components of the image, which usually succumb to the diffraction limit. The fluorescence image encodes the high frequency content as a down-mixed, moiré-like pattern. A series of images is required, wherein the 3D pattern is shifted and rotated, providing down-mixed data for a system of linear equations. Super-resolution is obtained by solving these equations. The speed with which the image series can be obtained can be a problem for the microscopy of living cells. Challenges include pattern-switching speeds, optical efficiency, wavefront quality and fringe contrast, fringe pitch optimization, and polarization issues. We will review some recent developments in 3D-SIM hardware with the goal of super-resolved z-stacks of motile cells.

  16. Image based 3D city modeling : Comparative study

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-06-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing rapidly for various engineering and non-engineering applications. Generally four main image based approaches were used for virtual 3D city models generation. In first approach, researchers were used Sketch based modeling, second method is Procedural grammar based modeling, third approach is Close range photogrammetry based modeling and fourth approach is mainly based on Computer Vision techniques. SketchUp, CityEngine, Photomodeler and Agisoft Photoscan are the main softwares to represent these approaches respectively. These softwares have different approaches & methods suitable for image based 3D city modeling. Literature study shows that till date, there is no complete such type of comparative study available to create complete 3D city model by using images. This paper gives a comparative assessment of these four image based 3D modeling approaches. This comparative study is mainly based on data acquisition methods, data processing techniques and output 3D model products. For this research work, study area is the campus of civil engineering department, Indian Institute of Technology, Roorkee (India). This 3D campus acts as a prototype for city. This study also explains various governing parameters, factors and work experiences. This research work also gives a brief introduction, strengths and weakness of these four image based techniques. Some personal comment is also given as what can do or what can't do from these softwares. At the last, this study shows; it concluded that, each and every software has some advantages and limitations. Choice of software depends on user requirements of 3D project. For normal visualization project, SketchUp software is a good option. For 3D documentation record, Photomodeler gives good result. For Large city

  17. Improving automated 3D reconstruction methods via vision metrology

    NASA Astrophysics Data System (ADS)

    Toschi, Isabella; Nocerino, Erica; Hess, Mona; Menna, Fabio; Sargeant, Ben; MacDonald, Lindsay; Remondino, Fabio; Robson, Stuart

    2015-05-01

    This paper aims to provide a procedure for improving automated 3D reconstruction methods via vision metrology. The 3D reconstruction problem is generally addressed using two different approaches. On the one hand, vision metrology (VM) systems try to accurately derive 3D coordinates of few sparse object points for industrial measurement and inspection applications; on the other, recent dense image matching (DIM) algorithms are designed to produce dense point clouds for surface representations and analyses. This paper strives to demonstrate a step towards narrowing the gap between traditional VM and DIM approaches. Efforts are therefore intended to (i) test the metric performance of the automated photogrammetric 3D reconstruction procedure, (ii) enhance the accuracy of the final results and (iii) obtain statistical indicators of the quality achieved in the orientation step. VM tools are exploited to integrate their main functionalities (centroid measurement, photogrammetric network adjustment, precision assessment, etc.) into the pipeline of 3D dense reconstruction. Finally, geometric analyses and accuracy evaluations are performed on the raw output of the matching (i.e. the point clouds) by adopting a metrological approach. The latter is based on the use of known geometric shapes and quality parameters derived from VDI/VDE guidelines. Tests are carried out by imaging the calibrated Portable Metric Test Object, designed and built at University College London (UCL), UK. It allows assessment of the performance of the image orientation and matching procedures within a typical industrial scenario, characterised by poor texture and known 3D/2D shapes.

  18. 3D head model classification using optimized EGI

    NASA Astrophysics Data System (ADS)

    Tong, Xin; Wong, Hau-san; Ma, Bo

    2006-02-01

    With the general availability of 3D digitizers and scanners, 3D graphical models have been used widely in a variety of applications. This has led to the development of search engines for 3D models. Especially, 3D head model classification and retrieval have received more and more attention in view of their many potential applications in criminal identifications, computer animation, movie industry and medical industry. This paper addresses the 3D head model classification problem using 2D subspace analysis methods such as 2D principal component analysis (2D PCA[3]) and 2D fisher discriminant analysis (2DLDA[5]). It takes advantage of the fact that the histogram is a 2D image, and we can extract the most useful information from these 2D images to get a good result accordingingly. As a result, there are two main advantages: First, we can perform less calculation to obtain the same rate of classification; second, we can reduce the dimensionality more than PCA to obtain a higher efficiency.

  19. 3D Medical Collaboration Technology to Enhance Emergency Healthcare

    PubMed Central

    Welch, Greg; Sonnenwald, Diane H; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Söderholm, Hanna M.; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Ampalam, Manoj; Krishnan, Srinivas; Noel, Vincent; Noland, Michael; Manning, James E.

    2009-01-01

    Two-dimensional (2D) videoconferencing has been explored widely in the past 15–20 years to support collaboration in healthcare. Two issues that arise in most evaluations of 2D videoconferencing in telemedicine are the difficulty obtaining optimal camera views and poor depth perception. To address these problems, we are exploring the use of a small array of cameras to reconstruct dynamic three-dimensional (3D) views of a remote environment and of events taking place within. The 3D views could be sent across wired or wireless networks to remote healthcare professionals equipped with fixed displays or with mobile devices such as personal digital assistants (PDAs). The remote professionals’ viewpoints could be specified manually or automatically (continuously) via user head or PDA tracking, giving the remote viewers head-slaved or hand-slaved virtual cameras for monoscopic or stereoscopic viewing of the dynamic reconstructions. We call this idea remote 3D medical collaboration. In this article we motivate and explain the vision for 3D medical collaboration technology; we describe the relevant computer vision, computer graphics, display, and networking research; we present a proof-of-concept prototype system; and we present evaluation results supporting the general hypothesis that 3D remote medical collaboration technology could offer benefits over conventional 2D videoconferencing in emergency healthcare. PMID:19521951

  20. 3D Left Ventricular Strain from Unwrapped Harmonic Phase Measurements

    PubMed Central

    Venkatesh, Bharath Ambale; Gupta, Himanshu; Lloyd, Steven G.; ‘Italia, Louis Dell; Denney, Thomas S.

    2010-01-01

    Purpose To validate a method for measuring 3D left ventricular (LV) strain from phase-unwrapped harmonic phase (HARP) images derived from tagged cardiac magnetic resonance imaging (MRI). Materials and Methods A set of 40 human subjects were imaged with tagged MRI. In each study HARP phase was computed and unwrapped in each short-axis and long-axis image. Inconsistencies in unwrapped phase were resolved using branch cuts manually placed with a graphical user interface. 3D strain maps were computed for all imaged timeframes in each study. The strain from unwrapped phase (SUP) and displacements were compared to those estimated by a feature-based (FB) technique and a HARP technique. Results 3D strain was computed in each timeframe through systole and mid diastole in approximately 30 minutes per study. The standard deviation of the difference between strains measured by the FB and the SUP methods was less than 5% of the average of the strains from the two methods. The correlation between peak circumferential strain measured using the SUP and HARP techniques was over 83%. Conclusion The SUP technique can reconstruct full 3-D strain maps from tagged MR images through the cardiac cycle in a reasonable amount of time and user interaction compared to other 3D analysis methods. PMID:20373429

  1. 3D thermography imaging standardization technique for inflammation diagnosis

    NASA Astrophysics Data System (ADS)

    Ju, Xiangyang; Nebel, Jean-Christophe; Siebert, J. Paul

    2005-01-01

    We develop a 3D thermography imaging standardization technique to allow quantitative data analysis. Medical Digital Infrared Thermal Imaging is very sensitive and reliable mean of graphically mapping and display skin surface temperature. It allows doctors to visualise in colour and quantify temperature changes in skin surface. The spectrum of colours indicates both hot and cold responses which may co-exist if the pain associate with an inflammatory focus excites an increase in sympathetic activity. However, due to thermograph provides only qualitative diagnosis information, it has not gained acceptance in the medical and veterinary communities as a necessary or effective tool in inflammation and tumor detection. Here, our technique is based on the combination of visual 3D imaging technique and thermal imaging technique, which maps the 2D thermography images on to 3D anatomical model. Then we rectify the 3D thermogram into a view independent thermogram and conform it a standard shape template. The combination of these imaging facilities allows the generation of combined 3D and thermal data from which thermal signatures can be quantified.

  2. Planning 3-D collision-free paths using spheres

    NASA Technical Reports Server (NTRS)

    Bonner, Susan; Kelley, Robert B.

    1989-01-01

    A scheme for the representation of objects, the Successive Spherical Approximation (SSA), facilitates the rapid planning of collision-free paths in a 3-D, dynamic environment. The hierarchical nature of the SSA allows collision-free paths to be determined efficiently while still providing for the exact representation of dynamic objects. The concept of a freespace cell is introduced to allow human 3-D conceptual knowledge to be used in facilitating satisfying choices for paths. Collisions can be detected at a rate better than 1 second per environment object per path. This speed enables the path planning process to apply a hierarchy of rules to create a heuristically satisfying collision-free path.

  3. Interactive 3D visualisation of ECMWF ensemble weather forecasts

    NASA Astrophysics Data System (ADS)

    Rautenhaus, Marc; Grams, Christian M.; Schäfler, Andreas; Westermann, Rüdiger

    2013-04-01

    We investigate the feasibility of interactive 3D visualisation of ensemble weather predictions in a way suited for weather forecasting during aircraft-based atmospheric field campaigns. The study builds upon our previous work on web-based, 2D visualisation of numerical weather prediction data for the purpose of research flight planning (Rautenhaus et al., Geosci. Model Dev., 5, 55-71, 2012). Now we explore how interactive 3D visualisation of ensemble forecasts can be used to quickly identify atmospheric features relevant to a flight and to assess their uncertainty. We use data from the European Centre for Medium Range Weather Forecasts (ECMWF) Ensemble Prediction System (EPS) and present techniques to interactively visualise the forecasts on a commodity desktop PC with a state-of-the-art graphics card. Major objectives of this study are: (1) help the user transition from the ``familiar'' 2D views (horizontal maps and vertical cross-sections) to 3D visualisation by putting interactive 2D views into a 3D context and enriching them with 3D elements, at the same time (2) maintain a high degree of quantitativeness in the visualisation to facilitate easy interpretation; (3) exploitation of the Graphics Processing Unit (GPU) for maximum interactivity; (4) investigation of how visualisation can be performed directly from datasets on ECMWF hybrid model levels; (5) development of a basic forecasting tool that provides synchronized navigation through forecast base and lead times, as well as through the ensemble dimension and (6) interactive computation and visualisation of ensemble-based quantities. A prototype of our tool was used for weather forecasting during the aircraft-based T-NAWDEX-Falcon field campaign, which took place in October 2012 at the German Aerospace Centre's (DLR) Oberpfaffenhofen base. We reconstruct the forecast of a warm conveyor belt situation that occurred during the campaign and discuss challenges and opportunities posed by employing three

  4. 3D Printing of Graphene Aerogels.

    PubMed

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-06

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction.

  5. Shuttle Systems 3-D Applications: Application of 3-D Graphics in Engineering Training for Shuttle Ground Processing

    NASA Technical Reports Server (NTRS)

    Godfrey, Gary S.

    2003-01-01

    This project illustrates an animation of the orbiter mate to the external tank, an animation of the OMS POD installation to the orbiter, and a simulation of the landing gear mechanism at the Kennedy Space Center. A detailed storyboard was created to reflect each animation or simulation. Solid models were collected and translated into Pro/Engineer's prt and asm formats. These solid models included computer files of the: orbiter, external tank, solid rocket booster, mobile launch platform, transporter, vehicle assembly building, OMS POD fixture, and landing gear. A depository of the above solid models was established. These solid models were translated into several formats. This depository contained the following files: stl for sterolithography, stp for neutral file work, shrinkwrap for compression, tiff for photoshop work, jpeg for Internet use, and prt and asm for Pro/Engineer use. Solid models were created of the material handling sling, bay 3 platforms, and orbiter contact points. Animations were developed using mechanisms to reflect each storyboard. Every effort was made to build all models technically correct for engineering use. The result was an animated routine that could be used by NASA for training material handlers and uncovering engineering safety issues.

  6. Quasi 3D dispersion experiment

    NASA Astrophysics Data System (ADS)

    Bakucz, P.

    2003-04-01

    This paper studies the problem of tracer dispersion in a coloured fluid flowing through a two-phase 3D rough channel-system in a 40 cm*40 cm plexi-container filled by homogen glass fractions and colourless fluid. The unstable interface between the driving coloured fluid and the colourless fluid develops viscous fingers with a fractal structure at high capillary number. Five two-dimensional fractal fronts have been observed at the same time using four cameras along the vertical side-walls and using one camera located above the plexi-container. In possession of five fronts the spatial concentration contours are determined using statistical models. The concentration contours are self-affine fractal curves with a fractal dimension D=2.19. This result is valid for disperison at high Péclet numbers.

  7. 3D Printed Shelby Cobra

    ScienceCinema

    Love, Lonnie

    2016-11-02

    ORNL's newly printed 3D Shelby Cobra was showcased at the 2015 NAIAS in Detroit. This "laboratory on wheels" uses the Shelby Cobra design, celebrating the 50th anniversary of this model and honoring the first vehicle to be voted a national monument. The Shelby was printed at the Department of Energy’s Manufacturing Demonstration Facility at ORNL using the BAAM (Big Area Additive Manufacturing) machine and is intended as a “plug-n-play” laboratory on wheels. The Shelby will allow research and development of integrated components to be tested and enhanced in real time, improving the use of sustainable, digital manufacturing solutions in the automotive industry.

  8. The 3D Elevation Program: summary for Alaska

    USGS Publications Warehouse

    Carswell, William J.

    2013-01-01

    Coordination by SDMI and AMEC avoids duplication of effort and ensures a unified approach to consistent, statewide data acquisition; the enhancement of existing data; and support for emerging applications. The 3D Elevation Program (3DEP) initiative, managed by the U.S. Geological Survey (USGS), responds to the growing need for high-quality topographic data and a wide range of other three-dimensional representations of the Nation’s natural and constructed features.

  9. 3D imaging: how to achieve highest accuracy

    NASA Astrophysics Data System (ADS)

    Luhmann, Thomas

    2011-07-01

    The generation of 3D information from images is a key technology in many different areas, e.g. in 3D modeling and representation of architectural or heritage objects, in human body motion tracking and scanning, in 3D scene analysis of traffic scenes, in industrial applications and many more. The basic concepts rely on mathematical representations of central perspective viewing as they are widely known from photogrammetry or computer vision approaches. The objectives of these methods differ, more or less, from high precision and well-structured measurements in (industrial) photogrammetry to fully-automated non-structured applications in computer vision. Accuracy and precision is a critical issue for the 3D measurement of industrial, engineering or medical objects. As state of the art, photogrammetric multi-view measurements achieve relative precisions in the order of 1:100000 to 1:200000, and relative accuracies with respect to retraceable lengths in the order of 1:50000 to 1:100000 of the largest object diameter. In order to obtain these figures a number of influencing parameters have to be optimized. These are, besides others: physical representation of object surface (targets, texture), illumination and light sources, imaging sensors, cameras and lenses, calibration strategies (camera model), orientation strategies (bundle adjustment), image processing of homologue features (target measurement, stereo and multi-image matching), representation of object or workpiece coordinate systems and object scale. The paper discusses the above mentioned parameters and offers strategies for obtaining highest accuracy in object space. Practical examples of high-quality stereo camera measurements and multi-image applications are used to prove the relevance of high accuracy in different applications, ranging from medical navigation to static and dynamic industrial measurements. In addition, standards for accuracy verifications are presented and demonstrated by practical examples

  10. Integrating Rapid Prototyping into Graphic Communications

    ERIC Educational Resources Information Center

    Xu, Renmei; Flowers, Jim

    2015-01-01

    Integrating different science, technology, engineering, and mathematics (STEM) areas can help students learn and leverage both the equipment and expertise at a single school. In comparing graphic communications classes with classes that involve rapid prototyping (RP) technologies like 3D printing, there are sufficient similarities between goals,…

  11. Discrete Method of Images for 3D Radio Propagation Modeling

    NASA Astrophysics Data System (ADS)

    Novak, Roman

    2016-09-01

    Discretization by rasterization is introduced into the method of images (MI) in the context of 3D deterministic radio propagation modeling as a way to exploit spatial coherence of electromagnetic propagation for fine-grained parallelism. Traditional algebraic treatment of bounding regions and surfaces is replaced by computer graphics rendering of 3D reflections and double refractions while building the image tree. The visibility of reception points and surfaces is also resolved by shader programs. The proposed rasterization is shown to be of comparable run time to that of the fundamentally parallel shooting and bouncing rays. The rasterization does not affect the signal evaluation backtracking step, thus preserving its advantage over the brute force ray-tracing methods in terms of accuracy. Moreover, the rendering resolution may be scaled back for a given level of scenario detail with only marginal impact on the image tree size. This allows selection of scene optimized execution parameters for faster execution, giving the method a competitive edge. The proposed variant of MI can be run on any GPU that supports real-time 3D graphics.

  12. Effective 3-D surface modeling for geographic information systems

    NASA Astrophysics Data System (ADS)

    Yüksek, K.; Alparslan, M.; Mendi, E.

    2016-01-01

    In this work, we propose a dynamic, flexible and interactive urban digital terrain platform with spatial data and query processing capabilities of geographic information systems, multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized directional replacement policy (DRP) based buffer management scheme. Polyhedron structures are used in digital surface modeling and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g., X3-D and VRML) and services which integrate multi-dimensional spatial information and satellite/aerial imagery.

  13. 3D Printing and Digital Rock Physics for Geomaterials

    NASA Astrophysics Data System (ADS)

    Martinez, M. J.; Yoon, H.; Dewers, T. A.

    2015-12-01

    Imaging techniques for the analysis of porous structures have revolutionized our ability to quantitatively characterize geomaterials. Digital representations of rock from CT images and physics modeling based on these pore structures provide the opportunity to further advance our quantitative understanding of fluid flow, geomechanics, and geochemistry, and the emergence of coupled behaviors. Additive manufacturing, commonly known as 3D printing, has revolutionized production of custom parts with complex internal geometries. For the geosciences, recent advances in 3D printing technology may be co-opted to print reproducible porous structures derived from CT-imaging of actual rocks for experimental testing. The use of 3D printed microstructure allows us to surmount typical problems associated with sample-to-sample heterogeneity that plague rock physics testing and to test material response independent from pore-structure variability. Together, imaging, digital rocks and 3D printing potentially enables a new workflow for understanding coupled geophysical processes in a real, but well-defined setting circumventing typical issues associated with reproducibility, enabling full characterization and thus connection of physical phenomena to structure. In this talk we will discuss the possibilities that these technologies can bring to geosciences and present early experiences with coupled multiscale experimental and numerical analysis using 3D printed fractured rock specimens. In particular, we discuss the processes of selection and printing of transparent fractured specimens based on 3D reconstruction of micro-fractured rock to study fluid flow characterization and manipulation. Micro-particle image velocimetry is used to directly visualize 3D single and multiphase flow velocity in 3D fracture networks. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U

  14. Reading Students' Representations

    ERIC Educational Resources Information Center

    Diezmann, Carmel M.; McCosker, Natalie T.

    2011-01-01

    Representations play a key role in mathematical thinking: They offer "a medium" to express mathematical knowledge or organize mathematical information and to discern mathematical relationships (e.g., relative household expenditures on a pie chart) using text, symbols, or graphics. They also furnish "tools" for mathematical processes (e.g., use of…

  15. A 3D Contact Smoothing Method

    SciTech Connect

    Puso, M A; Laursen, T A

    2002-05-02

    Smoothing of contact surfaces can be used to eliminate the chatter typically seen with node on facet contact and give a better representation of the actual contact surface. The latter affect is well demonstrated for problems with interference fits. In this work we present two methods for the smoothing of contact surfaces for 3D finite element contact. In the first method, we employ Gregory patches to smooth the faceted surface in a node on facet implementation. In the second method, we employ a Bezier interpolation of the faceted surface in a mortar method implementation of contact. As is well known, node on facet approaches can exhibit locking due to the failure of the Babuska-Brezzi condition and in some instances fail the patch test. The mortar method implementation is stable and provides optimal convergence in the energy of error. In the this work we demonstrate the superiority of the smoothed versus the non-smoothed node on facet implementations. We also show where the node on facet method fails and some results from the smoothed mortar method implementation.

  16. 3D View of Mars Particle

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is a 3D representation of the pits seen in the first Atomic Force Microscope, or AFM, images sent back from NASA's Phoenix Mars Lander. Red represents the highest point and purple represents the lowest point.

    The particle in the upper left corner shown at the highest magnification ever seen from another world is a rounded particle about one micrometer, or one millionth of a meter, across. It is a particle of the dust that cloaks Mars. Such dust particles color the Martian sky pink, feed storms that regularly envelop the planet and produce Mars' distinctive red soil.

    The particle was part of a sample informally called 'Sorceress' delivered to the AFM on the 38th Martian day, or sol, of the mission (July 2, 2008). The AFM is part of Phoenix's microscopic station called MECA, or the Microscopy, Electrochemistry, and Conductivity Analyzer.

    The AFM was developed by a Swiss-led consortium, with Imperial College London producing the silicon substrate that holds sampled particles.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  17. FreeCAD visualization of realistic 3D physical optics beams within a CAD system-model

    NASA Astrophysics Data System (ADS)

    Gayer, D.; O'Sullivan, C.; Scully, S.; Burke, D.; Brossard, J.; Chapron, C.

    2016-07-01

    The facility to realise the shape and extent of optical beams within a telescope or beamcombiner can aid greatly in the design and layout of optical elements within the system. It can also greatly facilitate communication between the optical design team and other teams working on the mechanical design of an instrument. Beyond the realm where raytracing is applicable however, it becomes much more difficult to realise accurate 3D beams which incorporate diffraction effects. It then is another issue to incorporate this into a CAD model of the system. A novel method is proposed which has been used to aid with the design of an optical beam combiner for the QUBIC (Q and U Bolometric Interferometer for Cosmology) 1 experiment operating at 150 GHz and 220 GHz. The method combines calculation work in GRASP 2, a commercial physical optics modelling tool from TICRA, geometrical work in Mathematica, and post processing in MATLAB. Finally, the Python console of the open source package FreeCAD3 is exploited to realise the 3D beams in a complete CAD system-model of the QUBIC optical beam combiner. This paper details and explains the work carried out to reach the goal and presents some graphics of the outcome. 3D representations of beams from some back-to-back input horns of the QUBIC instrument are shown within the CAD model. Beams of the -3dB and -13dB contour envelope are shown as well as envelopes enclosing 80% and 95% of the power of the beam. The ability to see these beams in situ with all the other elements of the combiner such as mirrors, cold stop, beam splitter and cryostat widows etc. greatly simplified the design for these elements and facilitated communication of element dimension and location between different subgroups within the QUBIC group.

  18. A Linux Workstation for High Performance Graphics

    NASA Technical Reports Server (NTRS)

    Geist, Robert; Westall, James

    2000-01-01

    The primary goal of this effort was to provide a low-cost method of obtaining high-performance 3-D graphics using an industry standard library (OpenGL) on PC class computers. Previously, users interested in doing substantial visualization or graphical manipulation were constrained to using specialized, custom hardware most often found in computers from Silicon Graphics (SGI). We provided an alternative to expensive SGI hardware by taking advantage of third-party, 3-D graphics accelerators that have now become available at very affordable prices. To make use of this hardware our goal was to provide a free, redistributable, and fully-compatible OpenGL work-alike library so that existing bodies of code could simply be recompiled. for PC class machines running a free version of Unix. This should allow substantial cost savings while greatly expanding the population of people with access to a serious graphics development and viewing environment. This should offer a means for NASA to provide a spectrum of graphics performance to its scientists, supplying high-end specialized SGI hardware for high-performance visualization while fulfilling the requirements of medium and lower performance applications with generic, off-the-shelf components and still maintaining compatibility between the two.

  19. Colossal Tooling Design: 3D Simulation for Ergonomic Analysis

    NASA Technical Reports Server (NTRS)

    Hunter, Steve L.; Dischinger, Charles; Thomas, Robert E.; Babai, Majid

    2003-01-01

    The application of high-level 3D simulation software to the design phase of colossal mandrel tooling for composite aerospace fuel tanks was accomplished to discover and resolve safety and human engineering problems. The analyses were conducted to determine safety, ergonomic and human engineering aspects of the disassembly process of the fuel tank composite shell mandrel. Three-dimensional graphics high-level software, incorporating various ergonomic analysis algorithms, was utilized to determine if the process was within safety and health boundaries for the workers carrying out these tasks. In addition, the graphical software was extremely helpful in the identification of material handling equipment and devices for the mandrel tooling assembly/disassembly process.

  20. Interactive 3D visualization speeds well, reservoir planning

    SciTech Connect

    Petzet, G.A.

    1997-11-24

    Texaco Exploration and Production has begun making expeditious analyses and drilling decisions that result from interactive, large screen visualization of seismic and other three dimensional data. A pumpkin shaped room or pod inside a 3,500 sq ft, state-of-the-art facility in Southwest Houston houses a supercomputer and projection equipment Texaco said will help its people sharply reduce 3D seismic project cycle time, boost production from existing fields, and find more reserves. Oil and gas related applications of the visualization center include reservoir engineering, plant walkthrough simulation for facilities/piping design, and new field exploration. The center houses a Silicon Graphics Onyx2 infinite reality supercomputer configured with 8 processors, 3 graphics pipelines, and 6 gigabytes of main memory.

  1. The Diagnostic Radiological Utilization Of 3-D Display Images

    NASA Astrophysics Data System (ADS)

    Cook, Larry T.; Dwyer, Samuel J.; Preston, David F.; Batnitzky, Solomon; Lee, Kyo R.

    1984-10-01

    In the practice of radiology, computer graphics systems have become an integral part of the use of computed tomography (CT), nuclear medicine (NM), magnetic resonance imaging (MRI), digital subtraction angiography (DSA) and ultrasound. Gray scale computerized display systems are used to display, manipulate, and record scans in all of these modalities. As the use of these imaging systems has spread, various applications involving digital image manipulation have also been widely accepted in the radiological community. We discuss one of the more esoteric of such applications, namely, the reconstruction of 3-D structures from plane section data, such as CT scans. Our technique is based on the acquisition of contour data from successive sections, the definition of the implicit surface defined by such contours, and the application of the appropriate computer graphics hardware and software to present reasonably pleasing pictures.

  2. Using Computer-Assisted Multiple Representations in Learning Geometry Proofs

    ERIC Educational Resources Information Center

    Wong, Wing-Kwong; Yin, Sheng-Kai; Yang, Hsi-Hsun; Cheng, Ying-Hao

    2011-01-01

    Geometry theorem proving involves skills that are difficult to learn. Instead of working with abstract and complicated representations, students might start with concrete, graphical representations. A proof tree is a graphical representation of a formal proof, with each node representing a proposition or given conditions. A computer-assisted…

  3. 3D Kitaev spin liquids

    NASA Astrophysics Data System (ADS)

    Hermanns, Maria

    The Kitaev honeycomb model has become one of the archetypal spin models exhibiting topological phases of matter, where the magnetic moments fractionalize into Majorana fermions interacting with a Z2 gauge field. In this talk, we discuss generalizations of this model to three-dimensional lattice structures. Our main focus is the metallic state that the emergent Majorana fermions form. In particular, we discuss the relation of the nature of this Majorana metal to the details of the underlying lattice structure. Besides (almost) conventional metals with a Majorana Fermi surface, one also finds various realizations of Dirac semi-metals, where the gapless modes form Fermi lines or even Weyl nodes. We introduce a general classification of these gapless quantum spin liquids using projective symmetry analysis. Furthermore, we briefly outline why these Majorana metals in 3D Kitaev systems provide an even richer variety of Dirac and Weyl phases than possible for electronic matter and comment on possible experimental signatures. Work done in collaboration with Kevin O'Brien and Simon Trebst.

  4. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  5. Crowdsourcing Based 3d Modeling

    NASA Astrophysics Data System (ADS)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  6. Teaching Geometry through Dynamic Modeling in Introductory Engineering Graphics.

    ERIC Educational Resources Information Center

    Wiebe, Eric N.; Branoff, Ted J.; Hartman, Nathan W.

    2003-01-01

    Examines how constraint-based 3D modeling can be used as a vehicle for rethinking instructional approaches to engineering design graphics. Focuses on moving from a mode of instruction based on the crafting by students and assessment by instructors of static 2D drawings and 3D models. Suggests that the new approach is better aligned with…

  7. West Flank Coso, CA FORGE 3D geologic model

    SciTech Connect

    Doug Blankenship

    2016-03-01

    This is an x,y,z file of the West Flank FORGE 3D geologic model. Model created in Earthvision by Dynamic Graphic Inc. The model was constructed with a grid spacing of 100 m. Geologic surfaces were extrapolated from the input data using a minimum tension gridding algorithm. The data file is tabular data in a text file, with lithology data associated with X,Y,Z grid points. All the relevant information is in the file header (the spatial reference, the projection etc.) In addition all the fields in the data file are identified in the header.

  8. 3D simulation of coaxial carbon nanotube field effect transistor

    NASA Astrophysics Data System (ADS)

    Hien, Dinh Sy; Thi Luong, Nguyen; Tuan, Thi Tran Anh; Viet Nga, Dinh

    2009-09-01

    We provide a model of coaxial CNTFET geometry. Coaxial devices are of special interest because their geometry allows for better electrostatics. We explore the possibilities of using non-equilibrium Green's function method to get I-V characteristics for CNTFETs. This simulator also includes a graphic user interface (GUI) of Matlab. We review the capabilities of the simulator, and give examples of typical CNTFET's 3D simulations (current-voltage characteristics are a function of parameters such as the length of CNTFET, gate thickness and temperature). The obtained I-V characteristics of the CNTFET are also presented by analytical equations.

  9. Large Terrain Continuous Level of Detail 3D Visualization Tool

    NASA Technical Reports Server (NTRS)

    Myint, Steven; Jain, Abhinandan

    2012-01-01

    This software solved the problem of displaying terrains that are usually too large to be displayed on standard workstations in real time. The software can visualize terrain data sets composed of billions of vertices, and can display these data sets at greater than 30 frames per second. The Large Terrain Continuous Level of Detail 3D Visualization Tool allows large terrains, which can be composed of billions of vertices, to be visualized in real time. It utilizes a continuous level of detail technique called clipmapping to support this. It offloads much of the work involved in breaking up the terrain into levels of details onto the GPU (graphics processing unit) for faster processing.

  10. Beam Optics Analysis - An Advanced 3D Trajectory Code

    SciTech Connect

    Ives, R. Lawrence; Bui, Thuc; Vogler, William; Neilson, Jeff; Read, Mike; Shephard, Mark; Bauer, Andrew; Datta, Dibyendu; Beal, Mark

    2006-01-03

    Calabazas Creek Research, Inc. has completed initial development of an advanced, 3D program for modeling electron trajectories in electromagnetic fields. The code is being used to design complex guns and collectors. Beam Optics Analysis (BOA) is a fully relativistic, charged particle code using adaptive, finite element meshing. Geometrical input is imported from CAD programs generating ACIS-formatted files. Parametric data is inputted using an intuitive, graphical user interface (GUI), which also provides control of convergence, accuracy, and post processing. The program includes a magnetic field solver, and magnetic information can be imported from Maxwell 2D/3D and other programs. The program supports thermionic emission and injected beams. Secondary electron emission is also supported, including multiple generations. Work on field emission is in progress as well as implementation of computer optimization of both the geometry and operating parameters. The principle features of the program and its capabilities are presented.

  11. Architectural Advancements in RELAP5-3D

    SciTech Connect

    Dr. George L. Mesina

    2005-11-01

    As both the computer industry and field of nuclear science and engineering move forward, there is a need to improve the computing tools used in the nuclear industry to keep pace with these changes. By increasing the capability of the codes, the growing modeling needs of nuclear plant analysis will be met and advantage can be taken of more powerful computer languages and architecture. In the past eighteen months, improvements have been made to RELAP5-3D [1] for these reasons. These architectural advances include code restructuring, conversion to Fortran 90, high performance computing upgrades, and rewriting of the RELAP5 Graphical User Interface (RGUI) [2] and XMGR5 [3] in Java. These architectural changes will extend the lifetime of RELAP5-3D, reduce the costs for development and maintenance, and improve it speed and reliability.

  12. Virtual environment display for a 3D audio room simulation

    NASA Technical Reports Server (NTRS)

    Chapin, William L.; Foster, Scott H.

    1992-01-01

    The development of a virtual environment simulation system integrating a 3D acoustic audio model with an immersive 3D visual scene is discussed. The system complements the acoustic model and is specified to: allow the listener to freely move about the space, a room of manipulable size, shape, and audio character, while interactively relocating the sound sources; reinforce the listener's feeling of telepresence in the acoustical environment with visual and proprioceptive sensations; enhance the audio with the graphic and interactive components, rather than overwhelm or reduce it; and serve as a research testbed and technology transfer demonstration. The hardware/software design of two demonstration systems, one installed and one portable, are discussed through the development of four iterative configurations.

  13. Hough transform-based 3D mesh retrieval

    NASA Astrophysics Data System (ADS)

    Zaharia, Titus; Preteux, Francoise J.

    2001-11-01

    This papre addresses the issue of 3D mesh indexation by using shape descriptors (SDs) under constraints of geometric and topological invariance. A new shape descriptor, the Optimized 3D Hough Transform Descriptor (O3HTD) is here proposed. Intrinsically topologically stable, the O3DHTD is not invariant to geometric transformations. Nevertheless, we show mathematically how the O3DHTD can be optimally associated (in terms of compactness of representation and computational complexity) with a spatial alignment procedure which leads to a geometric invariant behavior. Experimental results have been carried out upon the MPEG-7 3D model database consisting of about 1300 meshes in VRML 2.0 format. Objective retrieval results, based upon the definition of a categorized ground truth subset, are reported in terms of Bull Eye Percentage (BEP) score and compared to those obtained by applying the MPEg-7 3D SD. It is shown that the O3DHTD outperforms the MPEg-7 3D SD of up to 28%.

  14. 3D Printing of Biomolecular Models for Research and Pedagogy.

    PubMed

    Da Veiga Beltrame, Eduardo; Tyrwhitt-Drake, James; Roy, Ian; Shalaby, Raed; Suckale, Jakob; Pomeranz Krummel, Daniel

    2017-03-13

    The construction of physical three-dimensional (3D) models of biomolecules can uniquely contribute to the study of the structure-function relationship. 3D structures are most often perceived using the two-dimensional and exclusively visual medium of the computer screen. Converting digital 3D molecular data into real objects enables information to be perceived through an expanded range of human senses, including direct stereoscopic vision, touch, and interaction. Such tangible models facilitate new insights, enable hypothesis testing, and serve as psychological or sensory anchors for conceptual information about the functions of biomolecules. Recent advances in consumer 3D printing technology enable, for the first time, the cost-effective fabrication of high-quality and scientifically accurate models of biomolecules in a variety of molecular representations. However, the optimization of the virtual model and its printing parameters is difficult and time consuming without detailed guidance. Here, we provide a guide on the digital design and physical fabrication of biomolecule models for research and pedagogy using open source or low-cost software and low-cost 3D printers that use fused filament fabrication technology.

  15. Building 3D scenes from 2D image sequences

    NASA Astrophysics Data System (ADS)

    Cristea, Paul D.

    2006-05-01

    Sequences of 2D images, taken by a single moving video receptor, can be fused to generate a 3D representation. This dynamic stereopsis exists in birds and reptiles, whereas the static binocular stereopsis is common in mammals, including humans. Most multimedia computer vision systems for stereo image capture, transmission, processing, storage and retrieval are based on the concept of binocularity. As a consequence, their main goal is to acquire, conserve and enhance pairs of 2D images able to generate a 3D visual perception in a human observer. Stereo vision in birds is based on the fusion of images captured by each eye, with previously acquired and memorized images from the same eye. The process goes on simultaneously and conjointly for both eyes and generates an almost complete all-around visual field. As a consequence, the baseline distance is no longer fixed, as in the case of binocular 3D view, but adjustable in accordance with the distance to the object of main interest, allowing a controllable depth effect. Moreover, the synthesized 3D scene can have a better resolution than each individual 2D image in the sequence. Compression of 3D scenes can be achieved, and stereo transmissions with lower bandwidth requirements can be developed.

  16. A 3D Hydrodynamic Model for Heterogeneous Biofilms with Antimicrobial Persistence

    DTIC Science & Technology

    2014-01-01

    EPS production [9], which leads to gradients in osmotic pressure and contributes to pattern formation of mushroom or tower shaped. Figure 5 depicts two...implemented on graphic processing units (GPUs) for high performance computing, in 3-D space and time. Antimicrobial treatment in an infinitely long quiescent...scheme is devised to solve the model consisting of partial differential equations, which is implemented on graphic processing units (GPUs) for high

  17. Dynamic 3D reconstructions of the heart wall from tomographic imaging

    NASA Astrophysics Data System (ADS)

    Lange, Joerg; von Smekal, Alexander

    1994-05-01

    We present a dynamic reconstruction of the left ventricle (LV) of the human heart. LV surface is represented by a set of points. The coordinates of these points are iterated by an artificial neural network while optimizing the match between the reconstruction based on these coordinates and the signal data. The input for the network are the segment's positions which represent the surface within the original data. The output is a set of real-valued coordinates quantifying the location of the LV surface points. The reconstruction is simultaneously developed in 3-D space and temporal domain. A topological constraint during training of the network gives corresponding vertices in space and time with global correctness. At any phase of the heart beat the network develops a map among the surface points which is highly ordered. This results in very regular wire-frames, that can be displayed rapidly on even small graphic workstations. Without time and third dimension this is very similar to Durbin's algorithm for solving the traveling salesman problem (TSP). To achieve a smooth representation we keep our network from developing the full TSP optimal solution.

  18. An Effective 3D Shape Descriptor for Object Recognition with RGB-D Sensors

    PubMed Central

    Liu, Zhong; Zhao, Changchen; Wu, Xingming; Chen, Weihai

    2017-01-01

    RGB-D sensors have been widely used in various areas of computer vision and graphics. A good descriptor will effectively improve the performance of operation. This article further analyzes the recognition performance of shape features extracted from multi-modality source data using RGB-D sensors. A hybrid shape descriptor is proposed as a representation of objects for recognition. We first extracted five 2D shape features from contour-based images and five 3D shape features over point cloud data to capture the global and local shape characteristics of an object. The recognition performance was tested for category recognition and instance recognition. Experimental results show that the proposed shape descriptor outperforms several common global-to-global shape descriptors and is comparable to some partial-to-global shape descriptors that achieved the best accuracies in category and instance recognition. Contribution of partial features and computational complexity were also analyzed. The results indicate that the proposed shape features are strong cues for object recognition and can be combined with other features to boost accuracy. PMID:28245553

  19. Enhanced visualization of angiograms using 3D models

    NASA Astrophysics Data System (ADS)

    Marovic, Branko S.; Duckwiler, Gary R.; Villablanca, Pablo; Valentino, Daniel J.

    1999-05-01

    The 3D visualization of intracranial vasculature can facilitate the planning of endovascular therapy and the evaluation of interventional result. To create 3D visualizations, volumetric datasets from x-ray computed tomography angiography (CTA) and magnetic resonance angiography (MRA) are commonly rendered using maximum intensity projection (MIP), volume rendering, or surface rendering techniques. However, small aneurysms and mild stenoses are very difficult to detect using these methods. Furthermore, the instruments used during endovascular embolization or surgical treatment produce artifacts that typically make post-intervention CTA inapplicable, and the presence of magnetic material prohibits the use of MRA. Therefore, standard digital angiography is typically used. In order to address these problems, we developed a visualization and modeling system that displays 2D and 3D angiographic images using a simple Web-based interface. Polygonal models of vasculature were generated from CT and MR data using 3D segmentation of bones and vessels and polygonal surface extraction and simplification. A web-based 3D environment was developed for interactive examination of reconstructed surface models, creation of oblique cross- sections and maximum intensity projections, and distance measurements and annotations. This environment uses a multi- tier client/server approach employing VRML and Java. The 3D surface model and angiographic images can be aligned and displayed simultaneously to permit better perception of complex vasculature and to determine optical viewing positions and angles before starting an angiographic sessions. Polygonal surface reconstruction allows interactive display of complex spatial structures on inexpensive platforms such as personal computers as well as graphic workstations. The aneurysm assessment procedure demonstrated the utility of web-based technology for clinical visualization. The resulting system facilitated the treatment of serious vascular

  20. Stereoscopic contents authoring system for 3D DMB data service

    NASA Astrophysics Data System (ADS)

    Lee, BongHo; Yun, Kugjin; Hur, Namho; Kim, Jinwoong; Lee, SooIn

    2009-02-01

    This paper presents a stereoscopic contents authoring system that covers the creation and editing of stereoscopic multimedia contents for the 3D DMB (Digital Multimedia Broadcasting) data services. The main concept of 3D DMB data service is that, instead of full 3D video, partial stereoscopic objects (stereoscopic JPEG, PNG and MNG) are stereoscopically displayed on the 2D background video plane. In order to provide stereoscopic objects, we design and implement a 3D DMB content authoring system which provides the convenient and straightforward contents creation and editing functionalities. For the creation of stereoscopic contents, we mainly focused on two methods: CG (Computer Graphics) based creation and real image based creation. In the CG based creation scenario where the generated CG data from the conventional MAYA or 3DS MAX tool is rendered to generate the stereoscopic images by applying the suitable disparity and camera parameters, we use X-file for the direct conversion to stereoscopic objects, so called 3D DMB objects. In the case of real image based creation, the chroma-key method is applied to real video sequences to acquire the alpha-mapped images which are in turn directly converted to stereoscopic objects. The stereoscopic content editing module includes the timeline editor for both the stereoscopic video and stereoscopic objects. For the verification of created stereoscopic contents, we implemented the content verification module to verify and modify the contents by adjusting the disparity. The proposed system will leverage the power of stereoscopic contents creation for mobile 3D data service especially targeted for T-DMB with the capabilities of CG and real image based contents creation, timeline editing and content verification.