Science.gov

Sample records for 3d ground penetrating

  1. 3D Monitoring under the Keciova Mosque (Casbah-Algier, Algeria) with Ground Penetrating Radar Method

    NASA Astrophysics Data System (ADS)

    Kadioglu, Selma; Kagan Kadioglu, Yusuf; Deniz, Kiymet; Akin Akyol, Ali

    2014-05-01

    Keciova (Ketchaoua) Mosque, in Casbah-Algiers, the capital of Algeria, is a UNESCO World Heritage Site. Keciova Mosque was originally built in 1612 by the Ottoman Empire. A RAMAC CU II GPR system and a 250 MHz shielded antenna have been employed inside of the Mosque including the Cathedral and inside of the burial chambers under the Cathedral Site on parallel profiles spaced approximately 0.30 m apart to measure data. After applying standard two-dimensional (2D) and three dimensional (3D) imaging techniques, transparent 3D imaging techniques have been used to photograph the foundational infrastructures, buried remains and safety problems of the Mosque. The results showed that we obtained 3D GPR visualization until 12.0 m in depth. Firstly we imaged the base floor including corridors. Then we monitored buried remains under the first ground level between 5.0-7.0 m in depths. Finally we indicated 3D GPR photographs a spectacular protected buried old mosque structures under the second ground level between 9.0-12.0 m in depths. This project has been supported by Republic of Turkey Prime Ministry Turkish Cooperation and Coordination Agency (TIKA). This study is a contribution to the EU funded COST action TU1208, "Civil Engineering Applications of Ground penetrating Radar".

  2. Time-lapse 3D ground-penetrating radar during plot-scale infiltration experiments

    NASA Astrophysics Data System (ADS)

    Allroggen, Niklas; Jackisch, Conrad; Tronicke, Jens

    2016-04-01

    In electrical resistive soils, surface-based ground-penetrating radar (GPR) is known as the geophysical tool providing the highest spatial resolution. Thus, 2D and 3D GPR surveys are commonly used for imaging subsurface structures or estimating soil moisture content. Due to its sensitivity to soil moisture and its non-invasive character, GPR provides a large potential to monitor soil moisture variation at high temporal and spatial resolution. As shown in previous experiments, the acquisition of time-lapse GPR data under field conditions requires a high data quality in terms of repeatability as well as spatial and temporal resolution. We present hydrogeophysical field experiments at the plot scale (1m x 1m), during which we record time-lapse 3D GPR. For GPR data acquisition, we use a pulseEKKO PRO GPR system equipped with a pair of 500 MHz antennas in combination with a specially designed metal-free measuring platform. Additionally, we collect tracer and soil moisture data, which are used to improve the interpretation of the GPR data with special focus on preferential flow paths and their structured advective flow field. After an accurate time-lapse GPR data processing, we compare 3D reflection events before and after infiltration and quantitatively interpret their relative time-shift in terms of soil moisture variations. Thereby, we are able to account for basically all of the infiltrated water. The first experiments demonstrate the general applicability of our experimental approach but are limited by the number of acquired time steps and measurement during the sprinkling period (the time of the highest temporal dynamics) are not possible at all. Based on this experience we redesign our experimental setup to continuously collect GPR data during irrigation and infiltration. Thereby, we strongly increase the temporal resolution of our measurements, improve the interpretability of the GPR data, and monitor the temporal and spatial dynamics of shallow subsurface

  3. Photographing Internal Fractures of the Archaeological Statues with 3D Visualization of Ground Penetrating Radar Data

    NASA Astrophysics Data System (ADS)

    Kadioglu, S.; Kadioglu, Y. K.

    2009-04-01

    PHOTOGRAPHING INTERNAL FRACTURES OF THE ARCHAEOLOGICAL STATUES WITH 3D VISUALIZATION OF GROUND PENETRATING RADAR DATA Selma KADIOGLU1 and Yusuf K. KADIOGLU2 1Ankara University, Faculty of Engineering, Department of Geophysical Engineering, 06100 Tandogan/ANKARA-TURKEY kadioglu@eng.ankara.edu.tr 2Ankara University, Faculty of Engineering, Department of Geological Engineering, 06100 Tandogan/ANKARA-TURKEY kadi@eng.ankara.edu.tr The aim of the study is to illustrate a new approach to image the discontinuities in the archaeological statues before restoration studies using ground penetrating radar (GPR) method. The method was successfully applied to detect and map the fractures and cavities of the two monument groups and lion statues in Mustafa Kemal ATATURK's tumb (ANITKABIR) in Ankara-Turkey. The tumb, which has been started to build in 1944 and completed in 1953, represents Turkish people and Ataturk, who is founder of the Republic of Turkey. Therefore this monument is very important for Turkish people. The monument groups and lion statues have been built from travertine rocks. These travertine have vesicular textures with the percent of 12. They have been mainly composed of calcite, aragonite with rare amount of plant relict and clay minerals. The concentrations of Fe, Mg, Cl and Mn may lead to verify their colours changing from white through pale green to beige. The atmospheric contamination of Ankara has been caused to cover some parts of the surface of these travertine with a thin film of Pb as blackish in colour. The micro fractures have been observed specially at the rim of the vesicular of the rocks by the polarizing microscope. Parallel two dimensional (2D) GPR profile data with 10cm profile space were acquired by RAMAC CU II system with 1600 MHz shielded antenna on the monument groups (three women, three men and 24 lion statues) and then a three dimensional (3D) data volume were built using parallel 2D GPR data. Air-filled fractures and cavities in the

  4. Detection of 3D tree root systems using high resolution ground penetration radar

    NASA Astrophysics Data System (ADS)

    Altdorff, D.; Honds, M.; Botschek, J.; Van Der Kruk, J.

    2014-12-01

    Knowledge of root systems and its distribution are important for biomass estimation as well as for the prevention of subsurface distribution network damages. Ground penetration radar (GPR) is a promising technique that enables a non-invasive imaging of tree roots. Due to the polarisation-dependent reflection coefficients and complicated three-dimensional root structure, accurate measurements with perpendicularly polarized antennas are needed. In this study, we show GPR data from two planes and one chestnut at two locations with different soil conditions. Perpendicular 10 x 10 cm grid measurements were made with a shielded 250 MHz antenna in combination with a high precision self-tracking laser theodolite that provides geo-referenced traces with a spatial resolution of ~ 2 cm. After selecting potential root hyperbolas within the perpendicular GPR profiles, the corresponding three-dimensional coordinates were extracted and visualized in planar view to reveal any linear structure that indicates a possible tree root. The coordinates of the selected linear structures were projected back to the surface by means of the laser-theodolite to indicate the locations for groundtruthing. Additionally, we interpolated the measured data into a 3D cube where time slices confirmed the locations of linear reflection events. We validated the indicated predictions by excavation of the soil with a suction dredge. Subsequent georeferencing of the true root distribution and comparison with the selected linear events showed that the approach was able to identify the precise position of roots with a diameter between 3 and 10 cm and a depth of up to 70 cm. However, not all linear events were roots; also mouse channels were found in these depths, since they also generate GPR hyperbolas aligned in linear structures. Roots at a second location at depths of 1 to 1.20 m did not generate identifiable hyperboles, which was probably due to an increased electrical conductivity below 86 cm depth. The

  5. Estimating 3D variation in active-layer thickness beneath arctic streams using ground-penetrating radar

    USGS Publications Warehouse

    Brosten, T.R.; Bradford, J.H.; McNamara, J.P.; Gooseff, M.N.; Zarnetske, J.P.; Bowden, W.B.; Johnston, M.E.

    2009-01-01

    We acquired three-dimensional (3D) ground-penetrating radar (GPR) data across three stream sites on the North Slope, AK, in August 2005, to investigate the dependence of thaw depth on channel morphology. Data were migrated with mean velocities derived from multi-offset GPR profiles collected across a stream section within each of the 3D survey areas. GPR data interpretations from the alluvial-lined stream site illustrate greater thaw depths beneath riffle and gravel bar features relative to neighboring pool features. The peat-lined stream sites indicate the opposite; greater thaw depths beneath pools and shallower thaw beneath the connecting runs. Results provide detailed 3D geometry of active-layer thaw depths that can support hydrological studies seeking to quantify transport and biogeochemical processes that occur within the hyporheic zone.

  6. Transparent 3D Visualization of Archaeological Remains in Roman Site in Ankara-Turkey with Ground Penetrating Radar Method

    NASA Astrophysics Data System (ADS)

    Kadioglu, S.

    2009-04-01

    Transparent 3D Visualization of Archaeological Remains in Roman Site in Ankara-Turkey with Ground Penetrating Radar Method Selma KADIOGLU Ankara University, Faculty of Engineering, Department of Geophysical Engineering, 06100 Tandogan/ANKARA-TURKEY kadioglu@eng.ankara.edu.tr Anatolia has always been more the point of transit, a bridge between West and East. Anatolia has been a home for ideas moving from all directions. So it is that in the Roman and post-Roman periods the role of Anatolia in general and of Ancyra (the Roman name of Ankara) in particular was of the greatest importance. Now, the visible archaeological remains of Roman period in Ankara are Roman Bath, Gymnasium, the Temple of Augustus of Rome, Street, Theatre, City Defence-Wall. The Caesar Augustus, the first Roman Emperor, conquered Asia Minor in 25 BC. Then a marble temple was built in Ancyra, the administrative capital of province, today the capital of Turkish Republic, Ankara. This monument was consecrated to the Empreror and to the Goddess Rome. This temple is supposed to have built over an earlier temple dedicated to Kybele and Men between 25 -20 BC. After the death of the Augustus in 14AD, a copy of the text of "Res Gestae Divi Augusti" was inscribed on the interior of the pronaos in Latin, whereas a Greek translation is also present on an exterior wall of the cella. In the 5th century, it was converted in to a church by the Byzantines. The aim of this study is to determine old buried archaeological remains in the Augustus temple, Roman Bath and in the governorship agora in Ulus district. These remains were imaged with transparent three dimensional (3D) visualization of the ground penetrating radar (GPR) data. Parallel two dimensional (2D) GPR profile data were acquired in the study areas, and then a 3D data volume were built using parallel 2D GPR data. A simplified amplitude-colour range and appropriate opacity function were constructed and transparent 3D image were obtained to activate buried

  7. Quantitative, nondestructive estimates of coarse root biomass in a temperate pine forest using 3-D ground-penetrating radar (GPR)

    NASA Astrophysics Data System (ADS)

    Molon, Michelle; Boyce, Joseph I.; Arain, M. Altaf

    2017-01-01

    Coarse root biomass was estimated in a temperate pine forest using high-resolution (1 GHz) 3-D ground-penetrating radar (GPR). GPR survey grids were acquired across a 400 m2 area with varying line spacing (12.5 and 25 cm). Root volume and biomass were estimated directly from the 3-D radar volume by using isometric surfaces calculated with the marching cubes algorithm. Empirical relations between GPR reflection amplitude and root diameter were determined for 14 root segments (0.1-10 cm diameter) reburied in a 6 m2 experimental test plot and surveyed at 5-25 cm line spacing under dry and wet soil conditions. Reburied roots >1.4 cm diameter were detectable as continuous root structures with 5 cm line separation. Reflection amplitudes were strongly controlled by soil moisture and decreased by 40% with a twofold increase in soil moisture. GPR line intervals of 12.5 and 25 cm produced discontinuous mapping of roots, and GPR coarse root biomass estimates (0.92 kgC m-2) were lower than those obtained previously with a site-specific allometric equation due to nondetection of vertical roots and roots <1.5 cm diameter. The results show that coarse root volume and biomass can be estimated directly from interpolated 3-D GPR volumes by using a marching cubes approach, but mapping of roots as continuous structures requires high inline sampling and line density (<5 cm). The results demonstrate that 3-D GPR is viable approach for estimating belowground carbon and for mapping tree root architecture. This methodology can be applied more broadly in other disciplines (e.g., archaeology and civil engineering) for imaging buried structures.

  8. Ground penetrating radar and microwave tomography 3D applications for the deck evaluation of the Musmeci bridge in Potenza, Italy

    NASA Astrophysics Data System (ADS)

    Bavusi, Massimo; Soldovieri, Francesco; Di Napoli, Rosario; Loperte, Antonio; Di Cesare, Antonio; Carlo Ponzo, Felice; Lapenna, Vincenzo

    2011-09-01

    An extensive experimental and numerical investigation has been carried out to assess the status of the 'Ponte sul Basento' (1967-1976), in the town of Potenza (Basilicata region, southern Italy), better known as the Musmeci bridge. Architecturally, the bridge is a considerable reinforced 20th century concrete structure that was designed and built by the Italian architect Sergio Musmeci (1926-1981). Moreover, the bridge represents an important element of the infrastructural network, linking the city centre to the Potenza-Sicignano highway, crossing the Basento river and the railway close to the main train station of the city. Recently, due to ageing and continuous and significant traffic, the bridge started to be affected by several problems such as water infiltration. Within the presented study, a widespread ground penetrating radar (GPR) survey has been designed to investigate the geometrical characteristics of the bridge deck (Gerber saddles, internal stiffening walls, pillar supports) and detect the presence of defects or damage due to water infiltration and traffic fatigue. Concerning this, a 900 MHz 3D GPR survey has been performed along a zone of one of the lanes on the road surface. Moreover, a second 1500 MHz 3D survey has been carried out at the bottom of the bridge deck in order to gain detailed information about an important structural element of the bridge, the Gerber saddle. Both results have been processed following two approaches: the first a classical time-domain processing session based on commercial software and the use of migration; the second in microwave tomography, an advanced frequency domain automatic PC-based inversion algorithm. In this paper, we present a comparative interpretation of both kinds of processed results, and provide considerations about the investigated structures.

  9. 2D and 3D Ground Penetrating Radar monitoring of a reinforced concrete asphalt plate affected by mechanical deformation.

    NASA Astrophysics Data System (ADS)

    Bavusi, M.; Dumoulin, J.; Loperte, A.; Rizzo, E.; Soldovieri, F.

    2012-04-01

    , a zero setting acquisition was carried out before perturbing the plate. Described experience demonstrates the GPR is a reliable technique for the: • foundation soil characterization and monitoring • Reinforced structural elements monitoring • asphalt/reinforced concrete characterization and monitoring • detection of water infiltration, structural elements, defects • evaluation of restoration intervention. In fact, the GPR technique was able to investigate the layers beyond the asphalt and provides a spatial resolution complying with the needs of the technical problem at hand by use of different antennas. Moreover noticeable performances of this technique can be further improved by implementing 3D processing and MT inversion procedures in order to increase the amount of information by the survey [2]. Acknowledgements. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n. 225663 Joint Call FP7-ICT-SEC-2007-1 [1] Lapenna, V.; Cuomo, V.; Rizzo, E.; Fiore, S.; Troisi, S.; Straface, S. (2006). A new Large Lab-scale Facility for Hydro-Geophysical Experiments: Hydrogeosite. American Geophysical Union, Fall Meeting 2006, abstract #H31B-1422 [2] Bavusi M., Soldovieri F., Di Napoli R., Loperte A., Di Cesare A., Ponzo F.C and Lapenna V. (2011). Ground penetrating radar and microwave tomography 3D applications for the deck evaluation of the Musmeci bridge in Potenza, Italy. J. Geophys. Eng. 8 S33 doi:10.1088/1742-2132/8/3/S04

  10. Advances in 3D soil mapping and water content estimation using multi-channel ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Moysey, S. M.

    2011-12-01

    Multi-channel ground-penetrating radar systems have recently become widely available, thereby opening new possibilities for shallow imaging of the subsurface. One advantage of these systems is that they can significantly reduce survey times by simultaneously collecting multiple lines of GPR reflection data. As a result, it is becoming more practical to complete 3D surveys - particularly in situations where the subsurface undergoes rapid changes, e.g., when monitoring infiltration and redistribution of water in soils. While 3D and 4D surveys can provide a degree of clarity that significantly improves interpretation of the subsurface, an even more powerful feature of the new multi-channel systems for hydrologists is their ability to collect data using multiple antenna offsets. Central mid-point (CMP) surveys have been widely used to estimate radar wave velocities, which can be related to water contents, by sequentially increasing the distance, i.e., offset, between the source and receiver antennas. This process is highly labor intensive using single-channel systems and therefore such surveys are often only performed at a few locations at any given site. In contrast, with multi-channel GPR systems it is possible to physically arrange an array of antennas at different offsets, such that a CMP-style survey is performed at every point along a radar transect. It is then possible to process this data to obtain detailed maps of wave velocity with a horizontal resolution on the order of centimeters. In this talk I review concepts underlying multi-channel GPR imaging with an emphasis on multi-offset profiling for water content estimation. Numerical simulations are used to provide examples that illustrate situations where multi-offset GPR profiling is likely to be successful, with an emphasis on considering how issues like noise, soil heterogeneity, vertical variations in water content and weak reflection returns affect algorithms for automated analysis of the data. Overall

  11. 3D imaging of the internal structure of a rock-cored drumlin using ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    King, Edward; Spagnolo, Matteo; Rea, Brice; Ely, Jeremy; Lee, Joshua

    2016-04-01

    One key question linking subglacial bedform analyses to ice dynamics relates to the flux of sediment at the bed. It is relatively easy to measure the upper surface of subglacial sediments either in active contemporary systems (using ice-penetrating radar surveys) or in relict subglacial terrain (using high-resolution digital elevation models). However, constraining the lower surface of subglacial sediments, i.e. the contact between the bedform sediment and a lower sediment unit or bedrock, is much more difficult, yet it is crucial to any determination of sediment volume and hence flux. Without observations, we are reliant on assumptions about the nature of the lower sediment surface. For example, we might assume that all the drumlins in a particular drumlin field are deposited on a planar surface, or that all comprise a carapace of till over a rock core. A calculation of sediment volume will give very different results leading to very different interpretations of sediment flux. We have been conducting experiments in the use of ground-penetrating radar to find the lower sedimentary surface beneath drumlins near Kirkby Stephen (Northern England), part of the extensive Eden Valley drumlin field. The drumlins comprise diamict overlying a bedrock surface of Carboniferous limestone which outcrops frequently between the drumlins. Here we present the results of a grid survey over one of the drumlins that clearly demonstrate this drumlin comprises a thin carapace of till overlying a stepped limestone bedrock surface. We provide details on the field data acquisition parameters and discuss the implications for further geophysical studies of drumlin fields.

  12. 3D mapping of reinforcement and tendon ducts on pre-stressed concrete bridges by means of Ground Penetrating Radar (GPR)

    NASA Astrophysics Data System (ADS)

    Cheilakou, E.; Theodorakeas, P.; Koui, M.; Zeris, C.

    2014-03-01

    The present study evaluates the potential of GPR for the inspection of pre-stressed concrete bridges and its usefulness to provide non visible information of the interior structural geometry and condition, required for strengthening and rehabilitation purposes. For that purpose, different concrete blocks of varying dimensions with embedded steel reinforcement bars, tendon ducts and fabricated voids, were prepared and tested by means of GPR in a controlled laboratory environment. 2D data acquisition was carried out in reflection mode along single profile lines of the samples in order to locate the internal structural elements. 3D surveys were also performed in a grid format both along horizontal and vertical lines, and the individual profiles collected were interpolated and further processed using a 3D reconstruction software, in order to provide a detailed insight into the concrete structure. The obtained 2D profiles provided the accurate depth and position of the embedded rebars and tendon ducts, verifying the original drawings. 3D data cubes were created enabling the presentation of depth slices and providing additional information such as shape and localization of the internal elements. The results obtained from this work showed the effectiveness and reliability of the GPR technique for pre-stressed concrete bridge investigations.

  13. Monitoring buried remains with a transparent 3D half bird's eye view of ground penetrating radar data in the Zeynel Bey tomb in the ancient city of Hasankeyf, Turkey

    NASA Astrophysics Data System (ADS)

    Kadioglu, Selma; Kagan Kadioglu, Yusuf; Akin Akyol, Ali

    2011-09-01

    The aim of this paper is to show a new monitoring approximation for ground penetrating radar (GPR) data. The method was used to define buried archaeological remains inside and outside the Zeynel Bey tomb in Hasankeyf, an ancient city in south-eastern Turkey. The study examined whether the proposed GPR method could yield useful results at this highly restricted site, which has a maximum diameter inside the tomb of 4 m. A transparent three-dimensional (3D) half bird's eye view was constructed from a processed parallel-aligned two-dimensional GPR profile data set by using an opaque approximation instead of linear opacity. Interactive visualizations of transparent 3D sub-data volumes were conducted. The amplitude-colour scale was balanced by the amplitude range of the buried remains in a depth range, and appointed a different opaque value for this range, in order to distinguish the buried remains from one another. Therefore, the maximum amplitude values of the amplitude-colour scale were rearranged with the same colour range. This process clearly revealed buried remains in depth slices and transparent 3D data volumes. However, the transparent 3D half bird's eye views of the GPR data better revealed the remains than the depth slices of the same data. In addition, the results showed that the half bird's eye perspective was important in order to image the buried remains. Two rectangular walls were defined, one within and the other perpendicularly, in the basement structure of the Zeynel Bey tomb, and a cemetery was identified aligned in the east-west direction at the north side of the tomb. The transparent 3D half bird's eye view of the GPR data set also determined the buried walls outside the tomb. The findings of the excavation works at the Zeynel Bey tomb successfully overlapped with the new visualization results.

  14. Ground Penetrating Radar, Barrow, Alaska

    DOE Data Explorer

    John Peterson

    2015-03-06

    This is 500 MHz Ground Penetrating Radar collected along the AB Line in Intensive Site 1 beginning in October 2012 and collected along L2 in Intensive Site 0 beginning in September 2011. Both continue to the present.

  15. 'Berries' on the Ground 2 (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is the 3-D anaglyph showing a microscopic image taken of soil featuring round, blueberry-shaped rock formations on the crater floor at Meridiani Planum, Mars. This image was taken on the 13th day of the Mars Exploration Rover Opportunity's journey, before the Moessbauer spectrometer, an instrument located on the rover's instrument deployment device, or 'arm,' was pressed down to take measurements. The area in this image is approximately 3 centimeters (1.2 inches) across.

  16. 'Berries' on the Ground 2 (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is the 3-D anaglyph showing a microscopic image taken of soil featuring round, blueberry-shaped rock formations on the crater floor at Meridiani Planum, Mars. This image was taken on the 13th day of the Mars Exploration Rover Opportunity's journey, after the Moessbauer spectrometer, an instrument located on the rover's instrument deployment device, or 'arm,' was pressed down to measure the soil's iron mineralogy. Note the donut-shaped imprint of the instrument in the lower part of the image. The area in this image is approximately 3 centimeters (1.2 inches) across.

  17. A lightweight ground penetrating radar

    SciTech Connect

    Koppenjan, S.K.; Allen, C.M.; Gardner, D.; Wong, H.R.

    1998-12-31

    The detection of buried objects, particularly unexploded ordnance (UXO), has gained significant interest in the US in the late 1990s. The desire to remediate the thousands of sites worldwide has become an increasing humanitarian concern. The application of radar to this problem has received renewed attention. Bechtel Nevada, Special Technologies Laboratory (STL) has developed several frequency modulated, continuous wave (FM-CW) ground penetrating radar (GPR) units for the US Department of Energy since 1984. To meet these new technical requirements for high resolution data and UXO detection, STL is moving forward with advances to GPR technology, signal processing, and imaging with the development of an innovative system. The goal is to design and fabricate a lightweight, battery operated unit that does not require surface contact and can be operated by a novice user.

  18. MESA: A 3-D Eulerian hydrocode for penetration mechanics studies

    SciTech Connect

    Mandell, D.A.; Holian, K.S.; Henninger, R.

    1991-01-01

    We describe an explicit, finite-difference hydrocode, called MESA, and compare calculations to metal and ceramic plate impacts with spall and to Taylor cylinder tests. The MESA code was developed with support from DARPA, the Army and the Marine Corps for use in armor/anti-armor problems primarily, but the code has been used for a number of other applications. MESA includes 2-D and 3-D Eulerian hydrodynamics, a number of material strength and fracture models, and a programmed burn high explosives model. 15 refs., 4 figs.

  19. Stepped frequency ground penetrating radar

    DOEpatents

    Vadnais, Kenneth G.; Bashforth, Michael B.; Lewallen, Tricia S.; Nammath, Sharyn R.

    1994-01-01

    A stepped frequency ground penetrating radar system is described comprising an RF signal generating section capable of producing stepped frequency signals in spaced and equal increments of time and frequency over a preselected bandwidth which serves as a common RF signal source for both a transmit portion and a receive portion of the system. In the transmit portion of the system the signal is processed into in-phase and quadrature signals which are then amplified and then transmitted toward a target. The reflected signals from the target are then received by a receive antenna and mixed with a reference signal from the common RF signal source in a mixer whose output is then fed through a low pass filter. The DC output, after amplification and demodulation, is digitized and converted into a frequency domain signal by a Fast Fourier Transform. A plot of the frequency domain signals from all of the stepped frequencies broadcast toward and received from the target yields information concerning the range (distance) and cross section (size) of the target.

  20. Localizing Ground-Penetrating Radar

    DTIC Science & Technology

    2014-11-01

    determine the vehicles location when adverse conditions, such as heavy rain or fog , snow-covered roads, or lost GPS signals, hamper the...penetrate rain, fog , dust, and snow. LGPR Methodology For subsurface sensing, GPR is one of the most versatile and prolific sensing modal- ities today

  1. 3D Kinetic Simulation of Plasma Jet Penetration in Magnetic Field

    NASA Astrophysics Data System (ADS)

    Galkin, Sergei A.; Bogatu, I. N.; Kim, J. S.

    2009-11-01

    A high velocity plasmoid penetration through a magnetic barrier is a problem of a great experimental and theoretical interest. Our LSP PIC code 3D fully kinetic numerical simulations of high density (10^16 cm-3) high velocity (30-140 km/sec) plasma jet/bullet, penetrating through the transversal magnetic field, demonstrate three different regimes: reflection by field, penetration by magnetic field expulsion and penetration by magnetic self-polarization. The behavior depends on plasma jet parameters and its composition: hydrogen, carbon (A=12) and C60-fullerene (A=720) plasmas were investigated. The 3D simulation of two plasmoid head-on injections along uniform magnetic field lines is analyzed. Mini rail plasma gun (accelerator) modeling is also presented and discussed.

  2. Ground Motion and Variability from 3-D Deterministic Broadband Simulations

    NASA Astrophysics Data System (ADS)

    Withers, Kyle Brett

    The accuracy of earthquake source descriptions is a major limitation in high-frequency (> 1 Hz) deterministic ground motion prediction, which is critical for performance-based design by building engineers. With the recent addition of realistic fault topography in 3D simulations of earthquake source models, ground motion can be deterministically calculated more realistically up to higher frequencies. We first introduce a technique to model frequency-dependent attenuation and compare its impact on strong ground motions recorded for the 2008 Chino Hills earthquake. Then, we model dynamic rupture propagation for both a generic strike-slip event and blind thrust scenario earthquakes matching the fault geometry of the 1994 Mw 6.7 Northridge earthquake along rough faults up to 8 Hz. We incorporate frequency-dependent attenuation via a power law above a reference frequency in the form Q0fn, with high accuracy down to Q values of 15, and include nonlinear effects via Drucker-Prager plasticity. We model the region surrounding the fault with and without small-scale medium complexity in both a 1D layered model characteristic of southern California rock and a 3D medium extracted from the SCEC CVMSi.426 including a near-surface geotechnical layer. We find that the spectral acceleration from our models are within 1-2 interevent standard deviations from recent ground motion prediction equations (GMPEs) and compare well with that of recordings from strong ground motion stations at both short and long periods. At periods shorter than 1 second, Q(f) is needed to match the decay of spectral acceleration seen in the GMPEs as a function of distance from the fault. We find that the similarity between the intraevent variability of our simulations and observations increases when small-scale heterogeneity and plasticity are included, extremely important as uncertainty in ground motion estimates dominates the overall uncertainty in seismic risk. In addition to GMPEs, we compare with simple

  3. Spherical cavity-expansion forcing function in PRONTO 3D for application to penetration problems

    SciTech Connect

    Warren, T.L.; Tabbara, M.R.

    1997-05-01

    In certain penetration events the primary mode of deformation of the target can be approximated by known analytical expressions. In the context of an analysis code, this approximation eliminates the need for modeling the target as well as the need for a contact algorithm. This technique substantially reduces execution time. In this spirit, a forcing function which is derived from a spherical-cavity expansion analysis has been implemented in PRONTO 3D. This implementation is capable of computing the structural and component responses of a projectile due to three dimensional penetration events. Sample problems demonstrate good agreement with experimental and analytical results.

  4. Complex Resistivity 3D Imaging for Ground Reinforcement Site

    NASA Astrophysics Data System (ADS)

    Son, J.; Kim, J.; Park, S.

    2012-12-01

    Induced polarization (IP) method is used for mineral exploration and generally classified into two categories, time and frequency domain method. IP method in frequency domain measures amplitude and absolute phase to the transmitted currents, and is often called spectral induced polarization (SIP) when measurement is made for the wide-band frequencies. Our research group has been studying the modeling and inversion algorithms of complex resistivity method since several years ago and recently started to apply this method for various field applications. We already completed the development of 2/3D modeling and inversion program and developing another algorithm to use wide-band data altogether. Until now complex resistivity (CR) method was mainly used for the surface or tomographic survey of mineral exploration. Through the experience, we can find that the resistivity section from CR method is very similar with that of conventional resistivity method. Interpretation of the phase section is generally well matched with the geological information of survey area. But because most of survey area has very touch and complex terrain, 2D survey and interpretation are used generally. In this study, the case study of 3D CR survey conducted for the site where ground reinforcement was done to prevent the subsidence will be introduced. Data was acquired with the Zeta system, the complex resistivity measurement system produced by Zonge Co. using 8 frequencies from 0.125 to 16 Hz. 2D survey was conducted for total 6 lines with 5 m dipole spacing and 20 electrodes. Line length is 95 meter for every line. Among these 8 frequency data, data below 1 Hz was used considering its quality. With the 6 line data, 3D inversion was conducted. Firstly 2D interpretation was made with acquired data and its results were compared with those of resistivity survey. Resulting resistivity image sections of CR and resistivity method were very similar. Anomalies in phase image section showed good agreement

  5. Subsurface investigation with ground penetrating radar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ground penetrating radar (GPR) data was collected on a small test plot at the OTF/OSU Turfgrass Research & Education Facility in Columbus, Ohio. This test plot was built to USGA standards for a golf course green, with a constructed sand layer just beneath the surface overlying a gravel layer, that i...

  6. Object Segmentation and Ground Truth in 3D Embryonic Imaging

    PubMed Central

    Rajasekaran, Bhavna; Uriu, Koichiro; Valentin, Guillaume; Tinevez, Jean-Yves; Oates, Andrew C.

    2016-01-01

    Many questions in developmental biology depend on measuring the position and movement of individual cells within developing embryos. Yet, tools that provide this data are often challenged by high cell density and their accuracy is difficult to measure. Here, we present a three-step procedure to address this problem. Step one is a novel segmentation algorithm based on image derivatives that, in combination with selective post-processing, reliably and automatically segments cell nuclei from images of densely packed tissue. Step two is a quantitative validation using synthetic images to ascertain the efficiency of the algorithm with respect to signal-to-noise ratio and object density. Finally, we propose an original method to generate reliable and experimentally faithful ground truth datasets: Sparse-dense dual-labeled embryo chimeras are used to unambiguously measure segmentation errors within experimental data. Together, the three steps outlined here establish a robust, iterative procedure to fine-tune image analysis algorithms and microscopy settings associated with embryonic 3D image data sets. PMID:27332860

  7. Object Segmentation and Ground Truth in 3D Embryonic Imaging.

    PubMed

    Rajasekaran, Bhavna; Uriu, Koichiro; Valentin, Guillaume; Tinevez, Jean-Yves; Oates, Andrew C

    2016-01-01

    Many questions in developmental biology depend on measuring the position and movement of individual cells within developing embryos. Yet, tools that provide this data are often challenged by high cell density and their accuracy is difficult to measure. Here, we present a three-step procedure to address this problem. Step one is a novel segmentation algorithm based on image derivatives that, in combination with selective post-processing, reliably and automatically segments cell nuclei from images of densely packed tissue. Step two is a quantitative validation using synthetic images to ascertain the efficiency of the algorithm with respect to signal-to-noise ratio and object density. Finally, we propose an original method to generate reliable and experimentally faithful ground truth datasets: Sparse-dense dual-labeled embryo chimeras are used to unambiguously measure segmentation errors within experimental data. Together, the three steps outlined here establish a robust, iterative procedure to fine-tune image analysis algorithms and microscopy settings associated with embryonic 3D image data sets.

  8. Improved ground-penetrating radar, bridge decks

    SciTech Connect

    Warhus, J.P.; Mast, J.E.; Johansson, E.M.; Nelson, S.D.

    1993-11-29

    Inspection of high-value structures, like bridges and buildings, using Ground Penetrating Radar (GPR) is an application of a technology that is growing in importance. In a typical inspection application, inspectors use GPR to locate structural components, like embedded reinforcing bars, to avoid weakening the structure while collecting core samples for detailed inspection. Advanced GPR, integrated with imaging technologies for use as an NDE tool, can provide the capability to quickly locate and characterize construction flaws and wear- or age-induced damage in these structures without resorting to destructive methods. In this paper, we discuss an important inspection application, namely, concrete bridge deck inspection. We describe an advanced bridge deck inspection system concept (Ground Penetrating Imaging Radar, GPIR) and present results from experiments designed to simulate the concept.

  9. D Modelling the Invisible Using Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Agrafiotis, P.; Lampropoulos, K.; Georgopoulos, A.; Moropoulou, A.

    2017-02-01

    An interdisciplinary team from the National Technical University of Athens is performing the restoration of the Holy Aedicule, which covers the Tomb of Christ within the Church of the Holy Sepulchre in Jerusalem. The first important task was to geometrically document the monument for the production of the necessary base material on which the structural and material prospection studies would be based. One task of this action was to assess the structural behavior of this edifice in order to support subsequent works. It was imperative that the internal composition of the construction be documented as reliably as possible. To this end several data acquisition techniques were employed, among them ground penetrating radar. Interpretation of these measurements revealed the position of the rock, remnants of the initial cave of the burial of Christ. This paper reports on the methodology employed to construct the 3D model of the rock and introduce it into the 3D model of the whole building, thus enhancing the information about the structure. The conversion of the radargrams to horizontal sections of the rock is explained and the construction of the 3D model and its insertion into the 3D model of the Holy Aedicule is described.

  10. Ground penetrating radar for asparagus detection

    NASA Astrophysics Data System (ADS)

    Seyfried, Daniel; Schoebel, Joerg

    2016-03-01

    Ground penetrating radar is a promising technique for detection of buried objects. Recently, radar has more and more been identified to provide benefits for a plurality of applications, where it can increase efficiency of operation. One of these fields is the industrial automatic harvesting process of asparagus, which is performed so far by cutting the soil ridge at a certain height including all the asparagus spears and subsequently sieving the latter out of the soil. However, the height where the soil is cut is a critical parameter, since a wrong value leads to either damage of the roots of the asparagus plants or to a reduced crop yield as a consequence of too much biomass remaining in the soil. In this paper we present a new approach which utilizes ground penetrating radar for non-invasive sensing in order to obtain information on the optimal height for cutting the soil. Hence, asparagus spears of maximal length can be obtained, while keeping the roots at the same time undamaged. We describe our radar system as well as the subsequent digital signal processing steps utilized for extracting the information required from the recorded radar data, which then can be fed into some harvesting unit for setting up the optimal cutting height.

  11. Ground-penetrating radar: use and misuse

    NASA Astrophysics Data System (ADS)

    Olhoeft, Gary R.

    1999-10-01

    Ground penetrating radar (GPR) has been used to explore the subsurface of the earth since 1929. Over the past 70 years, it has been widely used, misused and abused. Use includes agriculture, archaeology, environmental and geotechnical site characterization, minerals, groundwater and permafrost exploration, tunnel, utility, and unexploded ordnance location, dam inspection, and much more. Misuse includes mistaking above ground reflections for subsurface events or mapping things from off to the side as if they were directly below, synthetic aperture processing of dispersive data, minimum phase deconvolution, locating objects smaller than resolution limits of the wavelength in the ground, ignoring Fresnel zone limitations in mapping subsurface structure, processing radar data through seismic software packages without allowing for the differences, mapping the bottom of metal pipes from the top, claiming to see through thousands of feet of sediments, and more. GPR is also being abused as the regulatory environment changes and the radiofrequency spectrum is becoming more crowded by cellular phones, pagers, garage door openers, wireless computer networks, and the like. It is often thought to be a source of interference (though it never is) and it is increasingly interfered with by other radiofrequency transmitters.

  12. Modeling 3-D Slope Stability of Coastal Bluffs Using 3-D Ground-Water Flow, Southwestern Seattle, Washington

    USGS Publications Warehouse

    Brien, Dianne L.; Reid, Mark E.

    2007-01-01

    Landslides are a common problem on coastal bluffs throughout the world. Along the coastal bluffs of the Puget Sound in Seattle, Washington, landslides range from small, shallow failures to large, deep-seated landslides. Landslides of all types can pose hazards to human lives and property, but deep-seated landslides are of significant concern because their large areal extent can cause extensive property damage. Although many geomorphic processes shape the coastal bluffs of Seattle, we focus on large (greater than 3,000 m3), deepseated, rotational landslides that occur on the steep bluffs along Puget Sound. Many of these larger failures occur in advance outwash deposits of the Vashon Drift (Qva); some failures extend into the underlying Lawton Clay Member of the Vashon Drift (Qvlc). The slope stability of coastal bluffs is controlled by the interplay of three-dimensional (3-D) variations in gravitational stress, strength, and pore-water pressure. We assess 3-D slope-stability using SCOOPS (Reid and others, 2000), a computer program that allows us to search a high-resolution digital-elevation model (DEM) to quantify the relative stability of all parts of the landscape by computing the stability and volume of thousands of potential spherical failures. SCOOPS incorporates topography, 3-D strength variations, and 3-D pore pressures. Initially, we use our 3-D analysis methods to examine the effects of topography and geology by using heterogeneous material properties, as defined by stratigraphy, without pore pressures. In this scenario, the least-stable areas are located on the steepest slopes, commonly in Qva or Qvlc. However, these locations do not agree well with observations of deep-seated landslides. Historically, both shallow colluvial landslides and deep-seated landslides have been observed near the contact between Qva and Qvlc, and commonly occur in Qva. The low hydraulic conductivity of Qvlc impedes ground-water flow, resulting in elevated pore pressures at the

  13. Wide band stepped frequency ground penetrating radar

    DOEpatents

    Bashforth, Michael B.; Gardner, Duane; Patrick, Douglas; Lewallen, Tricia A.; Nammath, Sharyn R.; Painter, Kelly D.; Vadnais, Kenneth G.

    1996-01-01

    A wide band ground penetrating radar system (10) embodying a method wherein a series of radio frequency signals (60) is produced by a single radio frequency source (16) and provided to a transmit antenna (26) for transmission to a target (54) and reflection therefrom to a receive antenna (28). A phase modulator (18) modulates those portion of the radio frequency signals (62) to be transmitted and the reflected modulated signal (62) is combined in a mixer (34) with the original radio frequency signal (60) to produce a resultant signal (53) which is demodulated to produce a series of direct current voltage signals (66) the envelope of which forms a cosine wave shaped plot (68) which is processed by a Fast Fourier Transform unit 44 into frequency domain data (70) wherein the position of a preponderant frequency is indicative of distance to the target (54) and magnitude is indicative of the signature of the target (54).

  14. Wide band stepped frequency ground penetrating radar

    DOEpatents

    Bashforth, M.B.; Gardner, D.; Patrick, D.; Lewallen, T.A.; Nammath, S.R.; Painter, K.D.; Vadnais, K.G.

    1996-03-12

    A wide band ground penetrating radar system is described embodying a method wherein a series of radio frequency signals is produced by a single radio frequency source and provided to a transmit antenna for transmission to a target and reflection therefrom to a receive antenna. A phase modulator modulates those portions of the radio frequency signals to be transmitted and the reflected modulated signal is combined in a mixer with the original radio frequency signal to produce a resultant signal which is demodulated to produce a series of direct current voltage signals, the envelope of which forms a cosine wave shaped plot which is processed by a Fast Fourier Transform Unit 44 into frequency domain data wherein the position of a preponderant frequency is indicative of distance to the target and magnitude is indicative of the signature of the target. 6 figs.

  15. Ground Penetrating Radar Technologies in Ukraine

    NASA Astrophysics Data System (ADS)

    Pochanin, Gennadiy P.; Masalov, Sergey A.

    2014-05-01

    Transient electromagnetic fields are of great interest in Ukraine. The following topics are studied by research teams, with high-level achievements all over the world: (i) Ultra-Wide Band/Short-pulse radar techniques (IRE and LLC "Transient Technologies", for more information please visit http://applied.ire.kharkov.ua/radar%20systems_their%20components%20and%20relevant%20technologies_e.html and http://viy.ua); (ii) Ground Penetrating Radar (GPR) with stepped frequency sounding signals (IRE); (iii) Continuous-Wave (CW) radar with phase-shift keying signals (IRE); and (iv) Radio-wave interference investigation (Scientific and Technical Centre of The Subsurface Investigation, http://geophysics.ua). GPR applications are mainly in search works, for example GPR is often used to search for treasures. It is also used to identify leaks and diffusion of petroleum in soil, in storage areas, as well as for fault location of pipelines. Furthermore, GPR is used for the localization of underground utilities and for diagnostics of the technical state of hydro dams. Deeper GPR probing was performed to identify landslides in Crimea. Rescue radar with CW signal was designed in IRE to search for living people trapped under the rubble of collapsed buildings. The fourth version of this radar has been recently created, showing higher stability and noise immunity. Radio-wave interference investigation allows studying the soil down to tens of meters. It is possible to identify areas with increased conductivity (moisture) of the soil. LLC "Transient Technologies" is currently working with Shevchenko Kyiv University on a cooperation program in which the construction of a test site is one of the planned tasks. In the framework of this program, a GPR with a 300 MHz antenna was handed to the geological Faculty of the University. Employees of "Transient Technologies" held introductory lectures with a practical demonstration for students majoring in geophysics. The authors participated to GPR

  16. Synthetic range profiling in ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Pawel; Lapiński, Marian; Silko, Dariusz

    2009-06-01

    The paper describes stepped frequency continuous wave (SFCW) ground penetrating radar (GPR), where signal's frequency is discretely increased in N linear steps, each separated by a fixed ▵f increment from the previous one. SFCW radar determines distance from phase shift in a reflected signal, by constructing synthetic range profile in spatial time domain using the IFFT. Each quadrature sample is termed a range bin, as it represents the signal from a range window of length cτ/2, where τ is duration of single frequency segment. IFFT of those data samples resolves the range bin in into fine range bins of c/2N▵f width, thus creating the synthetic range profile in a GPR - a time domain approximation of the frequency response of a combination of the medium through which electromagnetic waves propagates (soil) and any targets or dielectric interfaces (water, air, other types of soil) present in the beam width of the radar. In the paper, certain practical measurements done by a monostatic SFCW GPR were presented. Due to complex nature of signal source, E5062A VNA made by Agilent was used as a signal generator, allowing number of frequency steps N to go as high as 1601, with generated frequency ranging from 300kHz to 3 GHz.

  17. Pavement thickness evaluation using ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Harris, Dwayne Arthur

    Accurate knowledge of pavement thickness is important information to have both at a network and project level. This information aids in pavement management and design. Much of the time this information is missing, out of date, or unknown for highway sections. Current technologies for determining pavement thickness are core drilling, falling weight deflectometer (FWD), and ground penetrating radar (GPR). Core drilling provides very accurate pin point pavement thickness information; however, it is also time consuming, labor intensive, intrusive to traffic, destructive, and limited in coverage. FWD provides nondestructive estimates of both a surface thickness and total pavement structure thickness, including pavement, base and sub-base. On the other hand, FWD is intrusive to traffic and affected by the limitations and assumptions the method used to estimate thickness. GPR provides pavement surface course thickness estimates with excellent data coverage at highway speed. Yet, disadvantages include the pavement thickness estimation being affected by the electrical properties of the pavement, limitations of the system utilized, and heavy post processing of the data. Nevertheless, GPR has been successfully utilized by a number of departments of transportation (DOTs) for pavement thickness evaluation. This research presents the GPR thickness evaluation methods, develops GPRPAVZ the software used to implement the methodologies, and addresses the quality of GPR pavement thickness evaluation.

  18. Ground penetrating radar for underground sensing in agriculture: a review

    NASA Astrophysics Data System (ADS)

    Liu, Xiuwei; Dong, Xuejun; Leskovar, Daniel I.

    2016-10-01

    Belowground properties strongly affect agricultural productivity. Traditional methods for quantifying belowground properties are destructive, labor-intensive and pointbased. Ground penetrating radar can provide non-invasive, areal, and repeatable underground measurements. This article reviews the application of ground penetrating radar for soil and root measurements and discusses potential approaches to overcome challenges facing ground penetrating radar-based sensing in agriculture, especially for soil physical characteristics and crop root measurements. Though advanced data-analysis has been developed for ground penetrating radar-based sensing of soil moisture and soil clay content in civil engineering and geosciences, it has not been used widely in agricultural research. Also, past studies using ground penetrating radar in root research have been focused mainly on coarse root measurement. Currently, it is difficult to measure individual crop roots directly using ground penetrating radar, but it is possible to sense root cohorts within a soil volume grid as a functional constituent modifying bulk soil dielectric permittivity. Alternatively, ground penetrating radarbased sensing of soil water content, soil nutrition and texture can be utilized to inversely estimate root development by coupling soil water flow modeling with the seasonality of plant root growth patterns. Further benefits of ground penetrating radar applications in agriculture rely on the knowledge, discovery, and integration among differing disciplines adapted to research in agricultural management.

  19. Non-Ideal ELM Stability and Non-Axisymmetric Field Penetration Calculations with M3D-C1

    NASA Astrophysics Data System (ADS)

    Ferraro, N. M.; Chu, M. S.; Snyder, P. B.; Jardin, S. C.; Luo, X.

    2009-11-01

    Numerical studies of ELM stability and non-axisymmetric field penetration in diverted DIII-D and NSTX equilibria are presented, with resistive and finite Larmor radius effects included. These results are obtained with the nonlinear two-fluid code M3D-C1, which has recently been extended to allow linear non-axisymmetric calculations. Benchmarks of M3D-C1 with ideal codes ELITE and GATO show good agreement for the linear stability of peeling-ballooning modes in the ideal limit. New calculations of the resistive stability of ideally stable DIII-D equilibria are presented. M3D-C1 has also been used to calculate the linear response to non-axisymmetric external fields; these calculations are benchmarked with Surfmn and MARS-F. New numerical methods implemented in M3D-C1 are presented, including the treatment of boundary conditions with C^1 elements in a non-rectangular mesh.

  20. A novel 3D-layered electrochemical-thermal coupled model strategy for the nail-penetration process simulation

    NASA Astrophysics Data System (ADS)

    Liang, Guozhou; Zhang, Yiming; Han, Qi; Liu, Zhaoping; Jiang, Zhen; Tian, Shuang

    2017-02-01

    The safety is one of the persisting concerns related with Lithium-ion (Li-ion) batteries, among which the internal short-circuit is the most dangerous abusive situation and has always been the root cause for several catastrophic accidents in recent years. In this work, a 3D-layered electrochemical-thermal coupled model is employed to investigate the nail-penetration process in a Li-ion cell. The model is based on multilayer construction of a cell, and an effective strategy to evaluate the short-circuit area equivalent resistance (i.e. the equivalent resistance of short-circuit area that is caused by nail-penetration) during the penetration process is proposed. The developed model is proved to have capability of estimating the thermal runaway time, as well as the temperature distribution during nail-penetration process. It is also found that the active material loss during the nail-penetration process can be reconstructed by utilizing the developed model, which could provide understandings about the side reactions inside the cell during the nail-penetration process. The present study provides some insights about the nail-penetration process, and can be treated as a useful tool that helps the design of Li-ion cells for improving safety.

  1. GEO3D - Three-Dimensional Computer Model of a Ground Source Heat Pump System

    SciTech Connect

    James Menart

    2013-06-07

    This file is the setup file for the computer program GEO3D. GEO3D is a computer program written by Jim Menart to simulate vertical wells in conjunction with a heat pump for ground source heat pump (GSHP) systems. This is a very detailed three-dimensional computer model. This program produces detailed heat transfer and temperature field information for a vertical GSHP system.

  2. Ground Shock from Penetrating Conventional Weapons

    DTIC Science & Technology

    1983-05-01

    Soil conditions ranged from loose dry sand to Significant enhancement of the stresses and saturated clay. Empirical equations are pre- ground motions...expected stresses and ground before it denotates. Often, protective layers of motions as a function of burst position, soil concrete or rock rubble are ...loading are : a) weapon size and distance to been pertormed oveL the past 35 years in snil to the structure, b) the mechanical properties of the

  3. Intuitive terrain reconstruction using height observation-based ground segmentation and 3D object boundary estimation.

    PubMed

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-12-12

    Mobile robot operators must make rapid decisions based on information about the robot's surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot's array of sensors, but some upper parts of objects are beyond the sensors' measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances.

  4. Intuitive Terrain Reconstruction Using Height Observation-Based Ground Segmentation and 3D Object Boundary Estimation

    PubMed Central

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-01-01

    Mobile robot operators must make rapid decisions based on information about the robot’s surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot’s array of sensors, but some upper parts of objects are beyond the sensors’ measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances. PMID:23235454

  5. 3-D Deep Penetration Photoacoustic Imaging with a 2-D CMUT Array.

    PubMed

    Ma, Te-Jen; Kothapalli, Sri Rajasekhar; Vaithilingam, Srikant; Oralkan, Omer; Kamaya, Aya; Wygant, Ira O; Zhuang, Xuefeng; Gambhir, Sanjiv S; Jeffrey, R Brooke; Khuri-Yakub, Butrus T

    2010-10-11

    In this work, we demonstrate 3-D photoacoustic imaging of optically absorbing targets embedded as deep as 5 cm inside a highly scattering background medium using a 2-D capacitive micromachined ultrasonic transducer (CMUT) array with a center frequency of 5.5 MHz. 3-D volumetric images and 2-D maximum intensity projection images are presented to show the objects imaged at different depths. Due to the close proximity of the CMUT to the integrated frontend circuits, the CMUT array imaging system has a low noise floor. This makes the CMUT a promising technology for deep tissue photoacoustic imaging.

  6. Effects of 3D random correlated velocity perturbations on predicted ground motions

    USGS Publications Warehouse

    Hartzell, S.; Harmsen, S.; Frankel, A.

    2010-01-01

    Three-dimensional, finite-difference simulations of a realistic finite-fault rupture on the southern Hayward fault are used to evaluate the effects of random, correlated velocity perturbations on predicted ground motions. Velocity perturbations are added to a three-dimensional (3D) regional seismic velocity model of the San Francisco Bay Area using a 3D von Karman random medium. Velocity correlation lengths of 5 and 10 km and standard deviations in the velocity of 5% and 10% are considered. The results show that significant deviations in predicted ground velocities are seen in the calculated frequency range (≤1 Hz) for standard deviations in velocity of 5% to 10%. These results have implications for the practical limits on the accuracy of scenario ground-motion calculations and on retrieval of source parameters using higher-frequency, strong-motion data.

  7. Robust Locally Weighted Regression For Ground Surface Extraction In Mobile Laser Scanning 3D Data

    NASA Astrophysics Data System (ADS)

    Nurunnabi, A.; West, G.; Belton, D.

    2013-10-01

    A new robust way for ground surface extraction from mobile laser scanning 3D point cloud data is proposed in this paper. Fitting polynomials along 2D/3D points is one of the well-known methods for filtering ground points, but it is evident that unorganized point clouds consist of multiple complex structures by nature so it is not suitable for fitting a parametric global model. The aim of this research is to develop and implement an algorithm to classify ground and non-ground points based on statistically robust locally weighted regression which fits a regression surface (line in 2D) by fitting without any predefined global functional relation among the variables of interest. Afterwards, the z (elevation)-values are robustly down weighted based on the residuals for the fitted points. The new set of down weighted z-values along with x (or y) values are used to get a new fit of the (lower) surface (line). The process of fitting and down-weighting continues until the difference between two consecutive fits is insignificant. Then the final fit represents the ground level of the given point cloud and the ground surface points can be extracted. The performance of the new method has been demonstrated through vehicle based mobile laser scanning 3D point cloud data from urban areas which include different problematic objects such as short walls, large buildings, electric poles, sign posts and cars. The method has potential in areas like building/construction footprint determination, 3D city modelling, corridor mapping and asset management.

  8. Use of ground-penetrating radar techniques in archaeological investigations

    NASA Technical Reports Server (NTRS)

    Doolittle, James A.; Miller, W. Frank

    1991-01-01

    Ground-penetrating radar (GPR) techniques are increasingly being used to aid reconnaissance and pre-excavation surveys at many archaeological sites. As a 'remote sensing' tool, GPR provides a high resolution graphic profile of the subsurface. Radar profiles are used to detect, identify, and locate buried artifacts. Ground-penetrating radar provides a rapid, cost effective, and nondestructive method for identification and location analyses. The GPR can be used to facilitate excavation strategies, provide greater areal coverage per unit time and cost, minimize the number of unsuccessful exploratory excavations, and reduce unnecessary or unproductive expenditures of time and effort.

  9. Ground motion simulations in Marmara (Turkey) region from 3D finite difference method

    NASA Astrophysics Data System (ADS)

    Aochi, Hideo; Ulrich, Thomas; Douglas, John

    2016-04-01

    In the framework of the European project MARSite (2012-2016), one of the main contributions from our research team was to provide ground-motion simulations for the Marmara region from various earthquake source scenarios. We adopted a 3D finite difference code, taking into account the 3D structure around the Sea of Marmara (including the bathymetry) and the sea layer. We simulated two moderate earthquakes (about Mw4.5) and found that the 3D structure improves significantly the waveforms compared to the 1D layer model. Simulations were carried out for different earthquakes (moderate point sources and large finite sources) in order to provide shake maps (Aochi and Ulrich, BSSA, 2015), to study the variability of ground-motion parameters (Douglas & Aochi, BSSA, 2016) as well as to provide synthetic seismograms for the blind inversion tests (Diao et al., GJI, 2016). The results are also planned to be integrated in broadband ground-motion simulations, tsunamis generation and simulations of triggered landslides (in progress by different partners). The simulations are freely shared among the partners via the internet and the visualization of the results is diffused on the project's homepage. All these simulations should be seen as a reference for this region, as they are based on the latest knowledge that obtained during the MARSite project, although their refinement and validation of the model parameters and the simulations are a continuing research task relying on continuing observations. The numerical code used, the models and the simulations are available on demand.

  10. Buried mine detection using ground-penetrating impulse radar

    SciTech Connect

    Sargis, P.D.

    1995-03-01

    LLNL is developing a side-looking, ground-penetrating impulse radar system that can eventually be mounted on a robotic vehicle or an airborne platform to locate buried land mines. The system is described and results from field experiments are presented.

  11. 3D hybrid simulations of the plasma penetration across a magnetic field

    NASA Astrophysics Data System (ADS)

    Omelchenko, Yuri

    2016-10-01

    The expansion of hot dense plasmas across ambient magnetic fields in physical systems with spatial scales comparable to the ion gyro and inertial lengths is of great interest to space physics and fusion. This work presents results from recent three-dimensional hybrid simulations (kinetic ions, fluid electrons) of experiments at the LAPD and Nevada Terawatt Facility where short-pulse lasers are used to ablate solid targets to produce plasmas that expand across external magnetic fields. The first simulation recreates flutelike density striations observed at the leading edge of the carbon plasma and predicts an early destruction of the magnetic cavity in agreement with experimental evidence. In the second simulation the plasma contains protons and carbon ions produced during the ablation of a polyethylene target. A mechanism is demonstrated that allows protons to penetrate the magnetic field in the form of a collimated flow while the carbon ion component forms a supporting magnetic structure. The role of ion kinetic and Hall effects in creating an electric field responsible for plasma transport is discussed and results are compared to experimental data. The hybrid simulations are performed with a massively parallel hybrid code, HYPERS that advances fields and particles asynchronously on time scales determined by local physical and geometric properties. Supported by US DOE Award DE-SC0012345.

  12. A Little Knowledge of Ground Motion: Explaining 3-D Physics-Based Modeling to Engineers

    NASA Astrophysics Data System (ADS)

    Porter, K.

    2014-12-01

    Users of earthquake planning scenarios require the ground-motion map to be credible enough to justify costly planning efforts, but not all ground-motion maps are right for all uses. There are two common ways to create a map of ground motion for a hypothetical earthquake. One approach is to map the median shaking estimated by empirical attenuation relationships. The other uses 3-D physics-based modeling, in which one analyzes a mathematical model of the earth's crust near the fault rupture and calculates the generation and propagation of seismic waves from source to ground surface by first principles. The two approaches produce different-looking maps. The more-familiar median maps smooth out variability and correlation. Using them in a planning scenario can lead to a systematic underestimation of damage and loss, and could leave a community underprepared for realistic shaking. The 3-D maps show variability, including some very high values that can disconcert non-scientists. So when the USGS Science Application for Risk Reduction's (SAFRR) Haywired scenario project selected 3-D maps, it was necessary to explain to scenario users—especially engineers who often use median maps—the differences, advantages, and disadvantages of the two approaches. We used authority, empirical evidence, and theory to support our choice. We prefaced our explanation with SAFRR's policy of using the best available earth science, and cited the credentials of the maps' developers and the reputation of the journal in which they published the maps. We cited recorded examples from past earthquakes of extreme ground motions that are like those in the scenario map. We explained the maps on theoretical grounds as well, explaining well established causes of variability: directivity, basin effects, and source parameters. The largest mapped motions relate to potentially unfamiliar extreme-value theory, so we used analogies to human longevity and the average age of the oldest person in samples of

  13. Laboratory rotational ground state transitions of NH3D+ and CF+

    NASA Astrophysics Data System (ADS)

    Stoffels, A.; Kluge, L.; Schlemmer, S.; Brünken, S.

    2016-09-01

    Aims: This paper reports accurate laboratory frequencies of the rotational ground state transitions of two astronomically relevant molecular ions, NH3D+ and CF+. Methods: Spectra in the millimetre-wave band were recorded by the method of rotational state-selective attachment of He atoms to the molecular ions stored and cooled in a cryogenic ion trap held at 4 K. The lowest rotational transition in the A state (ortho state) of NH3D+ (JK = 10-00), and the two hyperfine components of the ground state transition of CF+ (J = 1-0) were measured with a relative precision better than 10-7. Results: For both target ions, the experimental transition frequencies agree with recent observations of the same lines in different astronomical environments. In the case of NH3D+ the high-accuracy laboratory measurements lend support to its tentative identification in the interstellar medium. For CF+ the experimentally determined hyperfine splitting confirms previous quantum-chemical calculations and the intrinsic spectroscopic nature of a double-peaked line profile observed in the J = 1-0 transition towards the Horsehead photon-dominated region (PDR).

  14. Soil hydrodynamic parameter determination using Ground-Penetrating Radar monitoring

    NASA Astrophysics Data System (ADS)

    Leger, E.

    2015-12-01

    Soil hydraulic properties, represented by the soil water retention andhydraulic conductivity functions, dictate water flow in the vadosezone, from surface to aquifers. Understanding the water flow dynamichas important implications for estimating available water resourcesand flood forecasting. It is also crucial in evaluating the dynamicsof chemical pollutants in soil and in assessing the risks ofgroundwater pollution. Ground Penetrating Radar is a geophysicalmethod particularly suited to measure contrasts of electromagneticparameters such as those created by water content variations in soils.We developed coupled hydrodynamic and electromagnetic numericalmodeling to invert the two way travel times associated withreflections corresponding to strong dielectric permittivity contrastssuch as wetting front and wetting bulb.We will present three different techniques using Ground PenetratingRadar monitoring: one using a single ring infiltrometer, an other oneusing shallow boreholes and the last one being a laboratory largecylindrical tank in which we applied different water table levels.We used the parametrical Mualem-van Genuchten model to fit soil-waterretention and hydraulic conductivity functions. Using GroundPenetrating Radar data inversion, we optimized the Mualem-vanGenuchten parameters using Shuffled Complex Evolution algorithm.Results are compared with classical laboratory and field methods.

  15. Ground shock from multiple earth penetrator bursts: Effects for hexagonal weapon arrays

    SciTech Connect

    Kmetyk, L.N.; Yarrington, P.

    1990-08-01

    Calculations have been performed with the HULL hydrocode to study ground shock effects for multiple earth penetrator weapon (EPW) bursts in hexagonal-close-packed (HCP) arrays. Several different calculational approaches were used to treat this problem. The first simulations involved two-dimensional (2D) calculations, where the hexagonal cross-section of a unit-cell in an effectively-infinite HCP array was approximated by an inscribed cylinder. Those calculations showed substantial ground shock enhancement below the center of the array. To refine the analysis, 3D unit-cell calculations were done where the actual hexagonal cross-section of the HCP array was modelled. Results of those calculations also suggested that the multiburst array would enhance ground shock effects over those for a single burst of comparable yield. Finally, 3D calculations were run in which an HCP array of seven bursts was modelled explicitly. In addition, the effects of non-simultaneity were investigated. Results of the seven-burst HCP array calculations were consistent with the unit-cell results and, in addition, provided information on the 3D lethal contour produced by such an array.

  16. Ground-penetrating radar for buried mine detection

    SciTech Connect

    Sargis, P.D.; Lee, F.D.; Fulkerson, E.S.; McKinley, B.J.; Aimonetti, W.D.

    1994-04-01

    Lawrence Livermore National Laboratory (LLNL) is developing an ultra-wideband, side-looking, ground-penetrating impulse radar system that can be mounted on an airborne platform for the purpose of locating buried mines. The radar system is presently mounted on an 18-meter boom. The authors have successfully imaged a minefield located at the Nevada Test Site. The minefield consists of real and surrogate mines of various materials and sizes placed in natural vegetation. Some areas have been cleared for non-cluttered studies. A technical description of the system is presented, describing the wideband antennas, the video pulser, the receiver hardware, and the data acquisition system. The receiver and data acquisition hardware are off-the-shelf components. The data was processed using LLNL-developed image reconstruction software, and has been registered against the ground truth data. Images showing clearly visible mines, surface reference markers, and ground clutter are presented.

  17. Application of ground-penetrating-radar methods in hydrogeologic studies

    USGS Publications Warehouse

    Beres, Milan; Haeni, F.P.

    1991-01-01

    A ground-penetrating-radar system was used to study selected stratified-drift deposits in Connecticut. Ground-penetrating radar is a surface-geophysical method that depends on the emission, transmission, reflection, and reception of an electromagnetic pulse and can produce continuous high-resolution profiles of the subsurface rapidly and efficiently. Traverse locations on land included a well field in the town of Mansfield, a sand and gravel pit and a farm overlying a potential aquifer in the town of Coventry, and Haddam Meadows State Park in the town of Haddam. Traverse locations on water included the Willimantic River in Coventry and Mansfield Hollow Lake in Mansfield. The penetration depth of the radar signal ranged from about 20 feet in fine-grained glaciolacustrine sediments to about 70 feet in coarse sand and gravel. Some land records in coarse-grained sediments show a distinct, continuous reflection from the water table about 5 to 11 feet below land surface. Parallel reflectors on the records are interpreted as fine-grained sediments. Hummocky or chaotic reflectors are interpreted as cross-bedded or coarse-grained sediments. Other features observed on some of the radar records include the till and bedrock surface. Records collected on water had distinct water-bottom multiples (more than one reflection) and diffraction patterns from boulders. The interpretation of the radar records, which required little or no processing, was verified by using lithologic logs from test holes located along some of the land traverses and near the water traverses.

  18. Velocity and Density Models Incorporating the Cascadia Subduction Zone for 3D Earthquake Ground Motion Simulations

    USGS Publications Warehouse

    Stephenson, William J.

    2007-01-01

    INTRODUCTION In support of earthquake hazards and ground motion studies in the Pacific Northwest, three-dimensional P- and S-wave velocity (3D Vp and Vs) and density (3D rho) models incorporating the Cascadia subduction zone have been developed for the region encompassed from about 40.2?N to 50?N latitude, and from about -122?W to -129?W longitude. The model volume includes elevations from 0 km to 60 km (elevation is opposite of depth in model coordinates). Stephenson and Frankel (2003) presented preliminary ground motion simulations valid up to 0.1 Hz using an earlier version of these models. The version of the model volume described here includes more structural and geophysical detail, particularly in the Puget Lowland as required for scenario earthquake simulations in the development of the Seattle Urban Hazards Maps (Frankel and others, 2007). Olsen and others (in press) used the model volume discussed here to perform a Cascadia simulation up to 0.5 Hz using a Sumatra-Andaman Islands rupture history. As research from the EarthScope Program (http://www.earthscope.org) is published, a wealth of important detail can be added to these model volumes, particularly to depths of the upper-mantle. However, at the time of development for this model version, no EarthScope-specific results were incorporated. This report is intended to be a reference for colleagues and associates who have used or are planning to use this preliminary model in their research. To this end, it is intended that these models will be considered a beginning template for a community velocity model of the Cascadia region as more data and results become available.

  19. Inverse modeling of InSAR and ground leveling data for 3D volumetric strain distribution

    NASA Astrophysics Data System (ADS)

    Gallardo, L. A.; Glowacka, E.; Sarychikhina, O.

    2015-12-01

    Wide availability of modern Interferometric Synthetic aperture Radar (InSAR) data have made possible the extensive observation of differential surface displacements and are becoming an efficient tool for the detailed monitoring of terrain subsidence associated to reservoir dynamics, volcanic deformation and active tectonism. Unfortunately, this increasing popularity has not been matched by the availability of automated codes to estimate underground deformation, since many of them still rely on trial-error subsurface model building strategies. We posit that an efficient algorithm for the volumetric modeling of differential surface displacements should match the availability of current leveling and InSAR data and have developed an algorithm for the joint inversion of ground leveling and dInSAR data in 3D. We assume the ground displacements are originated by a stress free-volume strain distribution in a homogeneous elastic media and determined the displacement field associated to an ensemble of rectangular prisms. This formulation is then used to develop a 3D conjugate gradient inversion code that searches for the three-dimensional distribution of the volumetric strains that predict InSAR and leveling surface displacements simultaneously. The algorithm is regularized applying discontinuos first and zero order Thikonov constraints. For efficiency, the resulting computational code takes advantage of the resulting convolution integral associated to the deformation field and some basic tools for multithreading parallelization. We extensively test our algorithm on leveling and InSAR test and field data of the Northwest of Mexico and compare to some feasible geological scenarios of underground deformation.

  20. 3-D Ground Displacement Monitoring of very fast-moving Landslides in Emergency Scenario

    NASA Astrophysics Data System (ADS)

    Casu, Francesco; Manconi, Andrea; Bonano, Manuela; De Luca, Claudio; Elefante, Stefano

    2014-05-01

    On December 3rd, 2013, a large and fast-moving landslide phenomena, which occurred in South-West of Montescaglioso town (southern Italy) after some days of intense raining, caused ground displacements on the order of several meters. The mass wasting involved an important freeway connection disrupting more than 500 meters of the route and some isolated buildings. In this work we present a case study of application of SAR remote sensing techniques for retrieving ground displacement field in a landslide emergency scenario. To this aim, thanks to the availability of ascending and descending COSMO-SkyMed (CSK) satellite acquisitions, we first applied the DInSAR technique (Massonnet et al., 1993) to both datasets, for generating differential interferograms across the investigated event. In particular, two data pairs (one ascending and one descending) involving pre- and post-event epochs and approximately spanning the same time interval were identified. Unfortunately, the DInSAR analysis produced unsatisfactory results, because of the excessive phase noise within the area of interest, mainly related to the fast-moving deformation pattern (several meters) and also to the presence of vegetation. To overcome the above mentioned limitations, the amplitude-based Pixel Offset (PO) technique (Fialko and Simons, 2001) was applied to the previous identified CSK data pairs. In this case, the PO technique allowed us to retrieve the projection of the surface displacements across and along the satellite's track (range and azimuth, respectively) for both the ascending and descending orbits. Then, by properly combining these 2-D maps of the measured surface movements, we also retrieved the 3-D ground deformation pattern, i.e. the North, East and Vertical displacement components. The ground displacements have a main SSE component, with values exceeding 10 meters. Moreover, large subsidence values were identified in those areas experiencing the largest damages, as well as a clear uplift

  1. Advanced Signal Analysis for Forensic Applications of Ground Penetrating Radar

    SciTech Connect

    Steven Koppenjan; Matthew Streeton; Hua Lee; Michael Lee; Sashi Ono

    2004-06-01

    Ground penetrating radar (GPR) systems have traditionally been used to image subsurface objects. The main focus of this paper is to evaluate an advanced signal analysis technique. Instead of compiling spatial data for the analysis, this technique conducts object recognition procedures based on spectral statistics. The identification feature of an object type is formed from the training vectors by a singular-value decomposition procedure. To illustrate its capability, this procedure is applied to experimental data and compared to the performance of the neural-network approach.

  2. Picturing internal fractures of historical statues using ground penetrating radar method

    NASA Astrophysics Data System (ADS)

    Kadioglu, S.; Kadioglu, Y. K.

    2010-03-01

    The aim of the study is to formulate an approach to the monitoring of internal micro discontiniuties in a hybrid 2-D/3-D image of ground penetrating radar (GPR) data gathered on historical monument groups, and to indicate methodologically rearranging amplitude-color scale and its opacity functions to activate micro fractures in monument groups including three colossal women, three men, and 24 lion statues in Mustafa Kemal ATATÜRK's mausoleum (ANITKABIR) in Ankara, Turkey. Additionally, this paper illustrates the use of petrographic research to describe the monument and its groups. To achieve the aim, data measurements were carried out on the monument groups with spaced 10 cm profiles and 1.6 GHz antenna. The 3-D image was transparent 3-D volumes of the GPR data set that highlighted internal micro fractures and cavities in the statues. Rearranging appropriate amplitude-color scale and formulating the opaque of the data sets were the keys to the transparent 3-D data visualizations. As a result, the internal fractures and cavities were successfully visualized in the three women, three men and twenty-four lion statues. Micro fractures were observed particularly at the rim of the vesicular of the rocks under a polarizing microscope.

  3. Accurate nonrelativistic ground-state energies of 3d transition metal atoms

    SciTech Connect

    Scemama, A.; Applencourt, T.; Giner, E.; Caffarel, M.

    2014-12-28

    We present accurate nonrelativistic ground-state energies of the transition metal atoms of the 3d series calculated with Fixed-Node Diffusion Monte Carlo (FN-DMC). Selected multi-determinantal expansions obtained with the CIPSI (Configuration Interaction using a Perturbative Selection made Iteratively) method and including the most prominent determinants of the full configuration interaction expansion are used as trial wavefunctions. Using a maximum of a few tens of thousands determinants, fixed-node errors on total DMC energies are found to be greatly reduced for some atoms with respect to those obtained with Hartree-Fock nodes. To the best of our knowledge, the FN-DMC/(CIPSI nodes) ground-state energies presented here are the lowest variational total energies reported so far. They differ from the recently recommended non-variational values of McCarthy and Thakkar [J. Chem. Phys. 136, 054107 (2012)] only by a few percents of the correlation energy. Thanks to the variational property of FN-DMC total energies, our results provide exact lower bounds for the absolute value of all-electron correlation energies, |E{sub c}|.

  4. Integrated, Dual Orthogonal Antennas for Polarimetric Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Pauli, Mario; Wiesbeck, Werner

    2015-04-01

    Ground penetrating radar systems are mostly equipped with single polarized antennas, for example with single linear polarization or with circular polarization. The radiated waves are partly reflected at the ground surface and very often the penetrating waves are distorted in their polarization. The distortion depends on the ground homogeneity and the orientation of the antennas relative to the ground structure. The received signals from the reflecting objects may most times only be classified according to their coverage and intensity. This makes the recognition of the objects difficult or impossible. In airborne and spaceborne Remote Sensing the systems are meanwhile mostly equipped with front ends with dual orthogonal polarized antennas for a full polarimetric operation. The received signals, registered in 2x2 scattering matrices according to co- and cross polarization, are processed for the evaluation of all features of the targets. Ground penetrating radars could also profit from the scientific results of Remote Sensing. The classification of detected objects for their structure and orientation requires more information in the reflected signal than can be measured with a single polarization [1, 2]. In this paper dual linear, orthogonal polarized antennas with a common single, frequency independent phase center, are presented [3]. The relative bandwidth of these antennas can be 1:3, up to 1:4. The antenna is designed to work in the frequency range between 3 GHz and 11 GHz, but can be easily adapted to the GPR frequency range by scaling. The size of the antenna scaled for operation in typical GPR frequencies would approximately be 20 by 20 cm2. By the implementation in a dielectric carrier it could be reduced in size if required. The major problem for ultra wide band, dual polarized antennas is the frequency independent feed network, realizing the required phase shifts. For these antennas a network, which is frequency independent over a wide range, has been

  5. Quantification of Ground Motion Reductions by Fault Zone Plasticity with 3D Spontaneous Rupture Simulations

    NASA Astrophysics Data System (ADS)

    Roten, D.; Olsen, K. B.; Cui, Y.; Day, S. M.

    2015-12-01

    We explore the effects of fault zone nonlinearity on peak ground velocities (PGVs) by simulating a suite of surface rupturing earthquakes in a visco-plastic medium. Our simulations, performed with the AWP-ODC 3D finite difference code, cover magnitudes from 6.5 to 8.0, with several realizations of the stochastic stress drop for a given magnitude. We test three different models of rock strength, with friction angles and cohesions based on criteria which are frequently applied to fractured rock masses in civil engineering and mining. We use a minimum shear-wave velocity of 500 m/s and a maximum frequency of 1 Hz. In rupture scenarios with average stress drop (~3.5 MPa), plastic yielding reduces near-fault PGVs by 15 to 30% in pre-fractured, low-strength rock, but less than 1% in massive, high quality rock. These reductions are almost insensitive to the scenario earthquake magnitude. In the case of high stress drop (~7 MPa), however, plasticity reduces near-fault PGVs by 38 to 45% in rocks of low strength and by 5 to 15% in rocks of high strength. Because plasticity reduces slip rates and static slip near the surface, these effects can partially be captured by defining a shallow velocity-strengthening layer. We also perform a dynamic nonlinear simulation of a high stress drop M 7.8 earthquake rupturing the southern San Andreas fault along 250 km from Indio to Lake Hughes. With respect to the viscoelastic solution (a), nonlinearity in the fault damage zone and in near-surface deposits would reduce long-period (> 1 s) peak ground velocities in the Los Angeles basin by 15-50% (b), depending on the strength of crustal rocks and shallow sediments. These simulation results suggest that nonlinear effects may be relevant even at long periods, especially for earthquakes with high stress drop.

  6. Developments in ground-penetrating radar at LLNL

    SciTech Connect

    Sargis, P.D.

    1994-05-01

    Lawrence Livermore National Laboratory (LLNL) is developing a side-looking, ground-penetrating impulse radar system that will eventually be mounted on an airborne platform to locate buried minefields. Presently, the radar system is mounted on top of a 60-foot adjustable boom. Several unique as well as commercial antennas having bandwidths in the 200 to 2000 MHz range are being experimented with. Also, LLNL-developed monocycle pulse generators are tailored to be most efficient over this frequency range. A technical description of the system will be presented with details about the video pulser, the wideband antennas, the receiver hardware, and the data acquisition system. The receiver and data acquisition hardware consist of off-the-shelf components. Testing of this system is conducted on a minefield located at the Nevada Test Site (NTS). The minefield contains real and surrogate mines of various sizes placed in natural vegetation. Some areas of the minefield have been cleared for non-cluttered studies. In addition, both metal and plastic mines are buried in the minefield. There is room in the NTS minefield for burying additional objects, such as unexploded ordnance, and this is expected to be done in the future. Recent results indicate success in imaging the NTS minefield using the GPR system. The data has been processed using in-house image reconstruction software, and has been registered with the ground truth data. Images showing clearly visible mines, surface reference markers, and ground clutter will be presented.

  7. Vegetation Structure and 3-D Reconstruction of Forests Using Ground-Based Echidna® Lidar

    NASA Astrophysics Data System (ADS)

    Strahler, A. H.; Yao, T.; Zhao, F.; Yang, X.

    2009-12-01

    A ground-based, scanning, near-infrared lidar, the Echidna® validation instrument (EVI), built by CSIRO Australia, retrieves structural parameters of forest stands rapidly and accurately, and by merging multiple scans into a single point cloud provides 3-D stand reconstructions. Echidna lidar technology scans with pulses of light at 1064 nm wavelength and digitizes the light returns sufficiently finely to recover and distinguish the differing shapes of return pulses as they are scattered by leaves and trunks or larger branches. Instrument deployments in the New England region in 2007 and 2009 and in the southern Sierra Nevada of California in 2008 provided the opportunity to test the ability of the instrument to retrieve tree diameters, stem count density (stems/ha), basal area, and above-ground woody biomass from single scans at points beneath the forest canopy. In New England in 2007, mean parameters retrieved from five scans located within six 1-ha stand sites match manually-measured parameters with values of R2 = 0.94-0.99. Processing the scans to retrieve leaf area index (LAI) provided values within the range of those retrieved with other optical instruments and hemispherical photography. Foliage profiles, which measure leaf area with canopy height, showed distinctly different shapes for the stands, depending on species composition and age structure. Stand heights, obtained from foliage profiles, were not significantly different from RH100 values observed by the Laser Vegetation Imaging Sensor in 2003. Data from the California 2008 and New England 2009 deployments were still being processed at the time of abstract submission. With further hardware and software development, Echidna® technology will provide rapid and accurate measurements of forest canopy structure that can replace manual field measurements, leading to more rapid and more accurate calibration and validation of structure mapping techniques using airborne and spaceborne remote sensors. Three

  8. Defect Detection in Wooden Logs Using Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Halabe, Udaya B.; Agrawal, Sachin; Gopalakrishnan, Bhaskaran; Grushecky, Shawn

    2007-03-01

    Presently there are no suitable non-invasive methods for precisely detecting the subsurface defects in logs in real time. Internal defects such as knots, decays, and embedded metals are of greatest concern for lumber production. Nondestructive scanning of logs using Ground Penetrating Radar (GPR) to detect defects in logs prior to sawing can greatly increase the productivity and yield of high value lumber, and prevent damage to saw blade from embedded metals. In this research, the GPR scanned data has been analyzed to detect subsurface defects such as metals, decays, and knots. Also, GPR offers high speed scanning capability which is needed for future on-line implementation in saw mills. This paper explains the advantages of the GPR technique, experimental setup and parameters used, and data processing for detection of subsurface defects in logs. The results show that GPR can be a very promising technique for future on-line implementation in saw mills.

  9. Advanced ground-penetrating, imaging radar for bridge inspection

    SciTech Connect

    Warhus, J.P.; Mast, J.E.; Johansson, E.M.; Nelson, S.E.; Lee, Hua

    1993-08-01

    Inspecting high-value structures, like bridges and buildings using Ground Penetrating Radar (GPR) is an application of the technology that is growing in importance. In a typical inspection application, inspectors use GPR to locate structural components, like reinforcing bars embedded in concrete, to avoid weakening the structure while collecting core samples for detailed inspection. Advanced GPR, integrated with imaging technologies for use as an NDE tool, can provide the capability to locate and characterize construction flaws and wear- or age-induced damage in these structures without the need for destructive techniques like coring. In the following sections, we discuss an important inspection application, namely, concrete bridge deck inspection. We describe an advanced bridge deck inspection system concept and provide an overview of a program aimed at developing such a system. Examples of modeling, image reconstruction, and experimental results are presented.

  10. Kinematic ground motion simulations on rough faults including effects of 3D stochastic velocity perturbations

    USGS Publications Warehouse

    Graves, Robert; Pitarka, Arben

    2016-01-01

    We describe a methodology for generating kinematic earthquake ruptures for use in 3D ground‐motion simulations over the 0–5 Hz frequency band. Our approach begins by specifying a spatially random slip distribution that has a roughly wavenumber‐squared fall‐off. Given a hypocenter, the rupture speed is specified to average about 75%–80% of the local shear wavespeed and the prescribed slip‐rate function has a Kostrov‐like shape with a fault‐averaged rise time that scales self‐similarly with the seismic moment. Both the rupture time and rise time include significant local perturbations across the fault surface specified by spatially random fields that are partially correlated with the underlying slip distribution. We represent velocity‐strengthening fault zones in the shallow (<5  km) and deep (>15  km) crust by decreasing rupture speed and increasing rise time in these regions. Additional refinements to this approach include the incorporation of geometric perturbations to the fault surface, 3D stochastic correlated perturbations to the P‐ and S‐wave velocity structure, and a damage zone surrounding the shallow fault surface characterized by a 30% reduction in seismic velocity. We demonstrate the approach using a suite of simulations for a hypothetical Mw 6.45 strike‐slip earthquake embedded in a generalized hard‐rock velocity structure. The simulation results are compared with the median predictions from the 2014 Next Generation Attenuation‐West2 Project ground‐motion prediction equations and show very good agreement over the frequency band 0.1–5 Hz for distances out to 25 km from the fault. Additionally, the newly added features act to reduce the coherency of the radiated higher frequency (f>1  Hz) ground motions, and homogenize radiation‐pattern effects in this same bandwidth, which move the simulations closer to the statistical characteristics of observed motions as illustrated by comparison with recordings from

  11. Reflection and Ground Penetrating Radar for Environmental Site Characterization

    SciTech Connect

    Steeples, Don W.

    2000-06-01

    (1) To examine the complementary site-characterization capabilities of modern, three-component shallow seismic reflection (SSR) techniques and ground-penetrating radar (GPR) methods at depths ranging from 2 to 8 m at an existing test site; (2) To demonstrate the usefulness of the two methods when used in concert to characterize, in three dimensions, the cone of depression of a pumping well that will serve as a proxy site for fluid-flow at an actual, polluted site; (3) To use the site as an outdoor mesoscale laboratory to validate existing three-dimensional ground-penetrating radar and seismic-reflection computer models developed at the University of Kansas. To do this, seismic and GPR data are being collected along the same line(s) and within the same depth range. The principal investigators selected a site in central Kansas as a primary location. Although the site itself is not environmentally sensitive, the area offers attributes that are particularly useful for this research and allow the site to serve as a proxy for areas that are contaminated. As part of an effort to evaluate the strengths of each method, the seismic and GPR surveys have been repeated on a seasonal basis to establish how the complementary information obtained varies over time. Because the water table fluctuates seasonally at this site, variations in the two types of data over time also can be observed. Such noninvasive, in-situ methods of identifying and characterizing the hydrologic flow regimes at contaminated sites support the prospect of developing effective, cost-conscious cleanup strategies in the future.

  12. Field Testing the STRATA Ground Penetrating Radar for Mars

    NASA Astrophysics Data System (ADS)

    Williams, K. K.; Grant, J. A.; Leuschen, C. J.; Schutz, A. E.

    2005-12-01

    With the MARSIS and SHARAD orbital radar sounders now in operation at and in transit to Mars, respectively, radar investigation of the deep structure of Mars down to several kilometers is underway. By contrast, optical and thermal instruments both in orbit and on the surface have provided information about the top several millimeters and the Mars Exploration Rovers have dug to several cm with their wheels. Nevertheless, little is known about the shallow subsurface of Mars to depths of meters except at locations where continuation of outcrop into the subsurface can be extrapolated. As the methods for exploring Mars evolve, the utility of ground penetrating radar (GPR) for investigating the shallow subsurface of that planet is being considered. GPR has been used for several decades on Earth as a non-invasive tool for studying subsurface structures and stratigraphy for applications in geology, engineering, and archaeology. The STRATA GPR for Mars has been developed as an adaptable, low power, compact, rover-mounted instrument capable of penetrating 10-20 m to reveal subsurface information. Field-testing of this instrument has taken place in volcanic, cratered, permafrost, and deltaic settings, and data collected at 400 MHz possess vertical resolutions of a few cm, sufficient to interpret the subsurface geologic setting. Results from the permafrost environment showed detection of buried massive ground ice as well as the base of the active layer. GPR analysis of this ice distribution was confirmed by resistivity measurements. The fine vertical resolution and good penetration in a variety of geologic settings show that the STRATA instrument provides data quality indistinguishable from commercial systems used on Earth. Most recently, the STRATA instrument has been tested in aeolian and filled crater environments. Data were collected over a sand dune overlying a basalt lava flow near St. Anthony, ID, and at the Campo del Cielo impact crater field in Chaco Province

  13. Modeling Airport Ground Operations using Discrete Event Simulation (DES) and X3D Visualization

    DTIC Science & Technology

    2008-03-01

    studies, because it offers a number of features as for example: 12 1. Open source 2. Character animation support (CAL3D) 3. Game engine with...Simulation, DES, Simkit, Diskit, Viskit, Savage, XML, Distributed Interactive Simulation, DIS, Blender , X3D Edit 16. PRICE CODE 17. SECURITY...10 5. Blender Authoring Tool

  14. Water Level Detection in Silty Materials Using Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Halabe, Udaya B.; Siriwardane, Hema J.; Pyakurel, Sandeep; Kiriakidis, Ricardo; Ingram, Ronald

    2007-03-01

    Detection of water level in silty soils can be complicated because of capillary action. In this study, the water level in a silty soil sample was detected using Ground Penetrating Radar (GPR) technique in the laboratory. The soil sample has dimensions of 62 cm × 48 cm × 46 cm and was kept in a clear Plexiglas container which facilitated water level measurements. Two ground-coupled antennas with frequencies of 900 MHz and 1,500 MHz were used in this study. The soil sample was dry at the beginning of the experiment. The water level in the soil sample was raised to a pre-determined level and radar readings were taken at different times over 24 hours. The moisture content in the soil sample above the water level increased with time due to capillary action. At the end of the experiment, the variation of moisture content with depth of the sample was experimentally determined. The GPR observations were compared with measured water depth in the soil sample. The paper presents the comparison of water level as determined by GPR with the variation of experimentally determined moisture content in the silty soil sample. This study includes an investigation on the effects of capillary action on GPR measurements.

  15. Stakeholder needs for ground penetrating radar utility location

    NASA Astrophysics Data System (ADS)

    Thomas, A. M.; Rogers, C. D. F.; Chapman, D. N.; Metje, N.; Castle, J.

    2009-04-01

    In the UK alone there are millions of miles of underground utilities with often inaccurate, incomplete, or non-existent location records that cause significant health and safety problems for maintenance personnel, together with the potential for large, unnecessary, social and financial costs for their upkeep and repair. This has led to increasing use of Ground Penetrating Radar (GPR) for utility location, but without detailed consideration of the degree of location accuracy required by stakeholders — i.e. all those directly involved in streetworks ranging from utility owners to contractors and surveyors and government departments. In order to ensure that stakeholder requirements are incorporated into a major new UK study, entitled Mapping the Underworld, a questionnaire has been used to determine the current and future utility location accuracy requirements. The resulting data indicate that stakeholders generally require location tolerances better than 100 mm at depths usually extending down to 3 m, and more occasionally to 5 m, below surface level, providing significant challenges to GPR if their needs are to be met in all ground conditions. As well as providing much useful data on stakeholder needs, these data are also providing a methodology for assessment of GPR utility location in terms of the factor most important to them — the degree to which the equipment provides location within their own accuracy requirements.

  16. Ground-Penetrating Radar and Dielectric Characterization of Shallow Reservoir Analogs in Central Texas Carbonates

    NASA Astrophysics Data System (ADS)

    Mukherjee, Damayanti; Heggy, Essam; Khan, Shuhab D.; Sullivan, Charlotte E.

    2007-10-01

    Lake Georgetown Spillway near Georgetown (Williamson County) in Central Texas exposes Albian rudist communities and associated depositional facies of the Edwards Formation, Fredericksburg Group. Capped by younger dolostones of the same group, they form important analogs for highly productive fresh-water aquifers and hydrocarbon reservoirs in carbonate environments. A 2D ground-penetrating radar (GPR) survey was conducted using a 400 MHz antenna with the Subsurface Interface Radar (SIR-3000) System by GSSI and tied to GPS data. Data constituting a grid were processed and numerical simulation performed for 3D visualization using the software REFLEX. Dielectric measurements of field-collected rock samples were carried out initially under vacuum dried condition and then under controlled amounts of moisture content (considering 100% saturation of pores of each sample after 2 hours of water treatment). For each sample, penetration depths were calculated for antenna frequencies of 100 and 400 MHz assuming GPR signal penetration in a homogeneous layer. This was followed by porosity-permeability measurements along with petrographic and X-ray diffraction studies. Real (ɛ1) and imaginary parts (ɛ2) of the dielectric permittivity (ɛ), when plotted against moisture content, demonstrated a greater range of ɛ-values for more permeable samples. The depths of penetration varied inversely with the permeability of the samples. The processed 2D GPR data and 3D simulation revealed mound structures below the spillway floor, each with a diameter of ~15-20m and a thickness of ~5m. Petrographic studies showed the dominance of mouldic porosity in these carbonates while X-ray diffraction results confirmed calcite and dolomite as the dominant mineralogy, although present in varying proportions. Silica peaks were encountered that possibly represented chert replacements seen in the thin-sections. We thus conclude that different carbonate units can be differentiated in the field by the GPR

  17. O' Connell bridge inspection by means of Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Santos Assuncao, Sonia, ,, Dr

    2016-04-01

    Ground Penetrating Radar (GPR) is a well-known technique successfully applied in different areas. In structural inspection the methodology may expose information about structural arrangement and pathologies. GPR emits high frequency electromagnetic impulses allowing to detect changes on the electromagnetic properties: electrical conductivity, dielectric constant and magnetic permeability. The central frequency of the each antenna is characterized by a specific resolution and penetration depth. Therefore, different scales of structures can be analysed. High frequency antennas output high resolution images/signals about the shallowest elements such as rebar and the thickness of the first layer. On the other hand, intermediate or lower frequency antennas locate deeper structures, such as the thickness of the arch. The compilation of distinct frequencies gives a better understanding and a more accurate detection of elements in the inner structure. O'Connell Bridge (1877) is one of 24 bridges along River Liffey and one the most famous historical structures in Dublin. It is composed by sandstones and granite and covered by asphalt which represents a suitable structure to evaluate by means of GPR. The lack of inner structural information, especially the thickness of the layer, presence of reinforcement or other metallic elements of support required, at least, a dual frequency analysis of the bridge. In this case, it was applied the (200 MHz and 600 MHz) Multi-Channel Stream EM combined with 1.6 GHz GSSI high frequency antenna. The inspection of bridges by means of GPR may provide not exclusively interesting structural data but historical information and the state of conservation.

  18. Civil Engineering Applications of Ground Penetrating Radar in Finland

    NASA Astrophysics Data System (ADS)

    Pellinen, Terhi; Huuskonen-Snicker, Eeva; Olkkonen, Martta-Kaisa; Eskelinen, Pekka

    2014-05-01

    Ground penetrating radar (GPR) has been used in Finland since 1980's for civil engineering applications. First applications in this field were road surveys and dam inspections. Common GPR applications in road surveys include the thickness evaluation of the pavement, subgrade soil evaluation and evaluation of the soil moisture and frost susceptibility. Since the 1990's, GPR has been used in combination with other non-destructive testing (NDT) methods in road surveys. Recently, more GPR applications have been adopted, such as evaluating bridges, tunnels, railways and concrete elements. Nowadays, compared with other countries GPR is relatively widely used in Finland for road surveys. Quite many companies, universities and research centers in Finland have their own GPR equipment and are involved in the teaching and research of the GPR method. However, further research and promotion of the GPR techniques are still needed since GPR could be used more routinely. GPR has been used to evaluate the air void content of asphalt pavements for years. Air void content is an important quality measure of pavement condition for both the new and old asphalt pavements. The first Finnish guideline was released in 1999 for the method. Air void content is obtained from the GPR data by measuring the dielectric value as continuous record. To obtain air void content data, few pavement cores must be taken for calibration. Accuracy of the method is however questioned because there are other factors that affect the dielectric value of the asphalt layer, in addition to the air void content. Therefore, a research project is currently carried out at Aalto University in Finland. The overall objective is to investigate if the existing GPR technique used in Finland is accurate enough to be used as QC/QA tool in assessing the compaction of asphalt pavements. The project is funded by the Finnish Transport Agency. Further research interests at Aalto University include developing new microwave asphalt

  19. Detecting buried remains in Florida using ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Schultz, John Joseph

    This research tested the applicability of using ground-penetrating radar (GPR) in Florida to detect buried bodies; and assessed the effect of body size, depth, antenna type, time, and soil type on grave detection. Furthermore, because of the emphasis on decomposition, it was possible to address the role of depth, body size, time, and soil type on decomposition. The site was located in an open pasture, where 20 pig (Sus scrofa) cadavers of two average weights (29.7 and 63.8 kg) were buried at two depths (50 to 60 or 100 to 110 cm). The cadavers were monitored monthly for durations up to 21 months with GPR using 900- and 500-MHz antennae. Two different soil types were used: one composed solely of sand horizons and one composed of sand with clay horizons at approximately 1.00 m. The graves were excavated at the termination of each monitoring period to collect soil samples and score decomposition. Overall, depth was the most significant factor controlling decomposition, followed by time. Body size and soil type were not major factors. Ground-penetrating radar can be a very effective tool for grave detection in Florida. Salient anomalies were produced for the duration of this study due to a strong enough contrast between the skeleton, or decomposing body, and the surrounding soil with that of the undisturbed soil. While cadaver size and time were not major factors in grave detection, soil type and antenna choice were. Although it was possible to detect a decomposing body and a skeleton in both shallow and deep sand graves, it was difficult to image large pig cadavers retaining extensive soft tissue buried in proximity to the clay horizon in as little as six months. The clay masked the contrast of the cadavers by reducing their relative dielectric permittivity. Pig cadaver size was not a major factor in grave detection. The imagery of the 500-MHz antenna was preferred over the higher resolution of the 900-MHz, because the increased detail may result in difficulty

  20. Quantifying reinforced concrete bridge deck deterioration using ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Martino, Nicole Marie

    Bridge decks are deteriorating at an alarming rate due to corrosion of the reinforcing steel, requiring billions of dollars to repair and replace them. Furthermore, the techniques used to assess the decks don't provide enough quantitative information. In recent years, ground penetrating radar (GPR) has been used to quantify deterioration by comparing the rebar reflection amplitudes to technologies serving as ground truth, because there is not an available amplitude threshold to distinguish healthy from corroded areas using only GPR. The goal of this research is to understand the relationship between GPR and deck deterioration, and develop a model to determine deterioration quantities with GPR alone. The beginning of this research determines that not only is the relationship between GPR and rebar corrosion stronger than the relationship between GPR and delaminations, but that the two are exceptionally correlated (90.2% and 86.6%). Next, multiple bridge decks were assessed with GPR and half-cell potential (HCP). Statistical parameters like the mean and skewness were computed for the GPR amplitudes of each deck, and coupled with actual corrosion quantities based on the HCP measurements to form a future bridge deck model that can be used to assess any deck with GPR alone. Finally, in order to understand exactly which component of rebar corrosion (rust, cracking or chloride) attenuates the GPR data, computational modeling was carried out to isolate each variable. The results indicate that chloride is the major contributor to the rebar reflection attenuation, and that computational modeling can be used to accurately simulate GPR attenuation due to chloride.

  1. Pedestrian and car detection and classification for unmanned ground vehicle using 3D lidar and monocular camera

    NASA Astrophysics Data System (ADS)

    Cho, Kuk; Baeg, Seung-Ho; Lee, Kimin; Lee, Hae Seok; Park, SangDeok

    2011-05-01

    This paper describes an object detection and classification method for an Unmanned Ground Vehicle (UGV) using a range sensor and an image sensor. The range sensor and the image sensor are a 3D Light Detection And Ranging (LIDAR) sensor and a monocular camera, respectively. For safe driving of the UGV, pedestrians and cars should be detected on their moving routes of the vehicle. An object detection and classification techniques based on only a camera has an inherent problem. On the view point of detection with a camera, a certain algorithm should extract features and compare them with full input image data. The input image has a lot of information as object and environment. It is hard to make a decision of the classification. The image should have only one reliable object information to solve the problem. In this paper, we introduce a developed 3D LIDAR sensor and apply a fusion method both 3D LIDAR data and camera data. We describe a 3D LIDAR sensor which is developed by LG Innotek Consortium in Korea, named KIDAR-B25. The 3D LIDAR sensor detects objects, determines the object's Region of Interest (ROI) based on 3D information and sends it into a camera region for classification. In the 3D LIDAR domain, we recognize breakpoints using Kalman filter and then make a cluster using a line segment method to determine an object's ROI. In the image domain, we extract the object's feature data from the ROI region using a Haar-like feature method. Finally it is classified as a pedestrian or car using a trained database with an Adaboost algorithm. To verify our system, we make an experiment on the performance of our system which is mounted on a ground vehicle, through field tests in an urban area.

  2. Visual Inspection of Water Leakage from Ground Penetrating Radar Radargram

    NASA Astrophysics Data System (ADS)

    Halimshah, N. N.; Yusup, A.; Mat Amin, Z.; Ghazalli, M. D.

    2015-10-01

    Water loss in town and suburban is currently a significant issue which reflect the performance of water supply management in Malaysia. Consequently, water supply distribution system has to be maintained in order to prevent shortage of water supply in an area. Various techniques for detecting a mains water leaks are available but mostly are time-consuming, disruptive and expensive. In this paper, the potential of Ground Penetrating Radar (GPR) as a non-destructive method to correctly and efficiently detect mains water leaks has been examined. Several experiments were designed and conducted to prove that GPR can be used as tool for water leakage detection. These include instrument validation test and soil compaction test to clarify the maximum dry density (MDD) of soil and simulation studies on water leakage at a test bed consisting of PVC pipe burying in sand to a depth of 40 cm. Data from GPR detection are processed using the Reflex 2D software. Identification of water leakage was visually inspected from the anomalies in the radargram based on GPR reflection coefficients. The results have ascertained the capability and effectiveness of the GPR in detecting water leakage which could help avoiding difficulties with other leak detection methods.

  3. Urban Underground Pipelines Mapping Using Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Jaw, S. W.; M, Hashim

    2014-02-01

    Underground spaces are now being given attention to exploit for transportation, utilities, and public usage. The underground has become a spider's web of utility networks. Mapping of underground utility pipelines has become a challenging and difficult task. As such, mapping of underground utility pipelines is a "hit-and-miss" affair, and results in many catastrophic damages, particularly in urban areas. Therefore, this study was conducted to extract locational information of the urban underground utility pipeline using trenchless measuring tool, namely ground penetrating radar (GPR). The focus of this study was to conduct underground utility pipeline mapping for retrieval of geometry properties of the pipelines, using GPR. In doing this, a series of tests were first conducted at the preferred test site and real-life experiment, followed by modeling of field-based model using Finite-Difference Time-Domain (FDTD). Results provide the locational information of underground utility pipelines associated with its mapping accuracy. Eventually, this locational information of the underground utility pipelines is beneficial to civil infrastructure management and maintenance which in the long term is time-saving and critically important for the development of metropolitan areas.

  4. Ground-penetrating radar: A tool for monitoring bridge scour

    USGS Publications Warehouse

    Anderson, N.L.; Ismael, A.M.; Thitimakorn, T.

    2007-01-01

    Ground-penetrating radar (GPR) data were acquired across shallow streams and/or drainage ditches at 10 bridge sites in Missouri by maneuvering the antennae across the surface of the water and riverbank from the bridge deck, manually or by boat. The acquired two-dimensional and three-dimensional data sets accurately image the channel bottom, demonstrating that the GPR tool can be used to estimate and/or monitor water depths in shallow fluvial environments. The study results demonstrate that the GPR tool is a safe and effective tool for measuring and/or monitoring scour in proximity to bridges. The technique can be used to safely monitor scour at assigned time intervals during peak flood stages, thereby enabling owners to take preventative action prior to potential failure. The GPR tool can also be used to investigate depositional and erosional patterns over time, thereby elucidating these processes on a local scale. In certain instances, in-filled scour features can also be imaged and mapped. This information may be critically important to those engaged in bridge design. GPR has advantages over other tools commonly employed for monitoring bridge scour (reflection seismic profiling, echo sounding, and electrical conductivity probing). The tool doesn't need to be coupled to the water, can be moved rapidly across (or above) the surface of a stream, and provides an accurate depth-structure model of the channel bottom and subchannel bottom sediments. The GPR profiles can be extended across emerged sand bars or onto the shore.

  5. Electromagnetic modelling of Ground Penetrating Radar responses to complex targets

    NASA Astrophysics Data System (ADS)

    Pajewski, Lara; Giannopoulos, Antonis

    2014-05-01

    This work deals with the electromagnetic modelling of composite structures for Ground Penetrating Radar (GPR) applications. It was developed within the Short-Term Scientific Mission ECOST-STSM-TU1208-211013-035660, funded by COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar". The Authors define a set of test concrete structures, hereinafter called cells. The size of each cell is 60 x 100 x 18 cm and the content varies with growing complexity, from a simple cell with few rebars of different diameters embedded in concrete at increasing depths, to a final cell with a quite complicated pattern, including a layer of tendons between two overlying meshes of rebars. Other cells, of intermediate complexity, contain pvc ducts (air filled or hosting rebars), steel objects commonly used in civil engineering (as a pipe, an angle bar, a box section and an u-channel), as well as void and honeycombing defects. One of the cells has a steel mesh embedded in it, overlying two rebars placed diagonally across the comers of the structure. Two cells include a couple of rebars bent into a right angle and placed on top of each other, with a square/round circle lying at the base of the concrete slab. Inspiration for some of these cells is taken from the very interesting experimental work presented in Ref. [1]. For each cell, a subset of models with growing complexity is defined, starting from a simple representation of the cell and ending with a more realistic one. In particular, the model's complexity increases from the geometrical point of view, as well as in terms of how the constitutive parameters of involved media and GPR antennas are described. Some cells can be simulated in both two and three dimensions; the concrete slab can be approximated as a finite-thickness layer having infinite extension on the transverse plane, thus neglecting how edges affect radargrams, or else its finite size can be fully taken into account. The permittivity of concrete can be

  6. Using ground-penetrating radar for assessing highway pavement thickness

    NASA Astrophysics Data System (ADS)

    Lenngren, Carl A.; Bergstrom, Joergen; Ersson, Benny M.

    2000-07-01

    Surface distress is a fairly good indicator of rehabilitation needs but it does not directly relate to remaining life estimates. Mechanistic pavement design requires that strains be calculated utilizing more or less complex modeling. Over the years many devices measuring surface deflections under a given load have been developed. The device by choice for assessing strains due to load is the falling weight deflectometer (FWD). It creates an impulse load on the pavement surface. The data are commonly used in models for backcalculation of elastic moduli and strains. More complex modeling would involve finite element or dynamic element methods. The FWD method has proven to be an excellent tool for overlay design. For this purpose its simplicity and straightforwardness are well documented. However, to successfully backcalculate layer stiffness adequate layer thickness is needed. Thus there is a strong need for assessing layer data at testing points. Using Ground Penetrating Radar (GPR) it is possible to achieve data without coring. The present paper is a part of an ongoing bearing capacity study carried out by a regional road administration in central Sweden. Its objective is to optimize testing for equipment and methods used and presently available. In addition to evaluate the results from the study, the present paper discusses some other applications for GPR that may evolve from it.

  7. The RIMFAX Ground Penetrating Radar on the Mars 2020 Rover.

    NASA Astrophysics Data System (ADS)

    Hamran, S. E.; Amundsen, H. E. F.; Carter, L. M.; Ghent, R. R.; Kohler, J.; Mellon, M. T.; Paige, D. A.

    2014-12-01

    The Radar Imager for Mars' Subsurface Exploration - RIMFAX is a Ground Penetrating Radar selected for NASA's Mars 2020 rover mission. RIMFAX will add a new dimension to the rover's toolset by providing the capability to image the shallow subsurface beneath the rover. The principal goals of the RIMFAX investigation are to image subsurface layering and structure, and to provide information regarding subsurface composition. Depending on materials, RIMFAX will image the subsurface stratigraphy to maximum depths of 10 to 500 meters, with vertical resolutions of 5 to 20 cm, with a horizontal sampling distance of 2 to 20 cm along the rover track. The resulting radar cross sections will provide important information on the geological context of surface outcrops as well as the geological and environmental history of the field area. The radar uses a Gated FMCW waveform and a single ultra wideband antenna that is used both for transmitting and receiving. The presentation will give an overview of the RIMFAX investigation, the radar system and show experimental results from a prototype radar.

  8. Audit of a road bridge superstructure using ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Yelf, Richard; Carse, Alan

    2000-04-01

    This paper describes a new application of Ground Penetrating Radar (GPR) in non-destructively assessing the delivered quality of bridge superstructure beams. A case history is described where GPR was used to assess the quality of 180 prestressed concrete beams in relation to the requirements specified in the engineering design. The beams analyzed in this project represent a standard design used in Queensland where several large polystyrene blocks (called 'voids') are cast internally within the deck beams to reduce the mass of the beams. GPR was used effectively to determine the finished location of these voids within the beams and identify any defects associated with the movement of the voids during manufacture of the beams. It was concluded that at least 90% of the beams were out of tolerance due to significant void movement in a vertical direction and there were significant associated defects of air cavities within the concrete, thin top and bottom flanges and longitudinal soffit cracking. Predominantly the voids had moved downwards during the concrete placement process. The accuracy of the GPR survey was determined to be +/- 5 mm where good calibration was obtained and +/- 10 mm for the global set of results of 4860 measurement points.

  9. Investigation of Underground Hydrocarbon Leakage using Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Srigutomo, Wahyu; Trimadona; Agustine, Eleonora

    2016-08-01

    Ground Penetrating Radar (GPR) survey was carried out in several petroleum plants to investigate hydrocarbon contamination beneath the surface. The hydrocarbon spills are generally recognized as Light Non-Aqueous Phase Liquids (LNAPL) if the plume of leakage is distributed in the capillary fringe above the water table and as Dense Non-Aqueous Phase Liquids (DNAPL) if it is below the water table. GPR antennas of 200 MHz and 400 MHz were deployed to obtain clear radargrams until 4 m deep. In general, the interpreted radargram sections indicate the presence of surface concrete layer, the compacted silty soill followed by sand layer and the original clayey soil as well as the water table. The presence of hydrocarbon plumes are identified as shadow zones (radar velocity and intensity contrasts) in the radargram that blur the layering pattern with different intensity of reflected signal. Based on our results, the characteristic of the shadow zones in the radargram is controlled by several factors: types of hydrocarbon (fresh or bio-degraded), water moisture in the soil, and clay content which contribute variation in electrical conductivity and dielectric constants of the soil.

  10. Ground penetrating radar (GPR) measurements at Mittivakkat Gletscher, Southeast Greenland

    NASA Astrophysics Data System (ADS)

    Clement Yde, Jacob; Løland, Ronny; Ruud, Henry; Mernild, Sebastian H.; Riger-Kusk, Mette; de Villiers, Simon; Tvis Knudsen, N.; Malmros, Jeppe K.

    2014-05-01

    Here, we present ground penetrating radar (GPR) measurements conducted on the surface of Mittivakkat Gletscher in Southeast Greenland (the only long-term mass balance observed glacier in Greenland) and estimate the change in ice volume over an 18 year period. Between a previous direct volume survey in 1994 and the new GPR survey in 2012, the glacier has changed its volume from 2.02 ± 0.10 to 1.50 ± 0.08 km3 while the study area has decreased from 17.6 to 15.8 km2. These results are in accordance with the cumulative mass loss observed by long-term mass balance measurements (1995/1996 - 2011/2012) at Mittivakkat Gletscher and confirms that the glacier is in severe climatic disequilibrium (AAR = 0.17). The observed volume-area scaling exponent γ and coefficient c are outside the range of global scaling parameters, but are sensitive to small uncertainties. As Mittivakkat Gletscher is generally considered as representative of glaciers in Southeast Greenland, these findings could indicate that a regional volume-area scaling approach would provide a more accurate total glacier volume estimate for Greenland than using parameters given by global scaling relationships.

  11. Ground penetrating radar mini-CRADA final report

    SciTech Connect

    Swanson, R.; Stump, G.; Weil, G.

    1996-09-01

    The purpose of this project was to determine the feasibility of using ground penetrating radar (GPR) to assess the ease of excavability prior to and during trenching operations. The project partners were EnTech Engineering Inc., Vermeer Manufacturing Co., and AlliedSignal Federal Manufacturing & Technology (FM&T)/Kansas City Plant (KCP). Commercial GPRs were field tested as well as a system developed at AlliedSignal FM&T. The AlliedSignal GPR was centered around a HP8753 Network Analyzer instrument. Commercial GPR antennas were connected to the analyzer and data was collected under control of software written for a notebook PC. Images of sub-surface features were generated for varied system parameters including: frequency, bandwidth, FFT windowing, gain, antenna orientation, and surface roughness conditions. Depths to 10 feet were of primary interest in this project. Although further development is required, this project has demonstrated that GPR can be used to identify transitions between different sub-surface conditions, as in going from one rock type to another. Additionally, the average relative dielectric constant of the material can be estimated which can be used to help identify the material. This information can be used to characterize an excavation site for use in budgeting a job. A real-time GPR would provide the operator with sub-surface images that could help with setting the optimum feed and speed rates of the trenching machine.

  12. Extracting Information on Tephra Fallout Deposits With Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Kruse, S.; Connor, C.; Martin, K.; Mora, R.; Ramirez, C.; Alvarado, G.

    2005-12-01

    Numerical simulation and inversion of high resolution data on tephra fallout deposits offers an opportunity to fundamentally improve our ability to estimate eruption parameters from deposits. Traditional trenching data is insufficient to adequately constrain eruption parameters. Ground penetrating radar can change this by providing high resolution data along continuous transects, particularly where deposit thickness is too great to trench. Differences between observations and numerical simulations provide details about the physics of volcanic eruptions not captured by current models and provide clues about the limits of current models. Studies on Cerro Negro, Nicaragua and Irazú, Costa Rica demonstrate that GPR is beautifully suited to imaging tephra blankets in both dry and wet environments. Surveys with 100 and 200 MHz antennas show clear reflectors within the tephra fallout sequence are imaged to 20 meters depth. In accord with trench data, we interpret the bright reflectors as weathered horizons (paleosols in some cases) and abrupt changes in grain size that mark intervals between eruptive events. Simulations of radar wave propagation through volcanic deposits are used to examine the conditions under which useful information on weathered horizons and on ballistic dimensions can be extracted.

  13. Damage assessment in roadways with ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Huston, Dryver R.; Pelczarski, Noel V.; Esser, Brian; Maser, Kenneth R.; Weedon, William H.

    2000-06-01

    Ground Penetrating Radar (GPR) can be an effective technique for assessing internal damage levels in concrete roadways. Damage to concrete roadways, particularly those on bridges, can have large economic consequences. Damage often takes the form of corrosion of reinforcing bars, the promotion of internal cracking, eventually large-scale spalling, and the formation of deep potholes. This damage usually initiates internally and does not appear on the surface until it is at an advanced state. The use of asphalt overlays further exacerbates this problem. One of the most important, yet difficult to identify, defects is a delamination, which can be due to expansion associated with reinforcing bar corrosion. The GPR reflections from a delamination can be relatively weak, whereas the reflection from a reinforcing bar can be fairly strong. Identifying the damage levels at an early stage can be used as a guide for efficiently planning maintenance activities. This paper presents the results of a laboratory and field study that focused on GPR methods of detecting delaminations in concrete roadways. The measurement technique used 0.5 to 6.0 GHz air-coupled waves to probe the roadways. Delaminations as small as 0.5 mm were simulated and detected in the laboratory. Field measurements are suggestive that this technique can be effective for field use.

  14. Comparative studies on gravisensitive protists on ground (2D and 3D clinostats) and in microgravity

    NASA Astrophysics Data System (ADS)

    Hemmersbach, Ruth; Strauch, Sebastian M.; Seibt, Dieter; Schuber, Marianne

    2006-09-01

    In order to prepare and support space experiments, 2D and 3D clinostats are widely applied to study the influence of simulated weightlessness on biological systems. In order to evaluate the results a comparison between the data obtained in simulation experiments and in real microgravity is necessary. We are currently analyzing the gravity-dependent behavior of the protists Paramecium biaurelia (ciliate) and Euglena gracilis (photosynthetic flagellate) on these different experimental platforms. So far, first results are presented concerning the behaviour of Euglena on a 2D fast rotating clinostat and a 3D clinostat as well as under real microgravity conditions (TEXUS sounding rocket flight), of Paramecium on a 2D clinostat and in microgravity. Our data show similar results during 2D and 3D clinorotation compared to real microgravity with respect to loss of orientation (gravitaxis) of Paramecium and Euglena and a decrease of linearity of the cell tracks of Euglena. However, the increase of the mean swimming velocities, especially during 3D clinorotation (Euglena) and 2D clinorotation of Paramecium might indicate a persisting mechanostimulation of the cells. Further studies including long-term 2D and 3D clinostat exposition will enable us to demonstrate the qualification of the applied simulation methods.

  15. 47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Technical requirements for ground penetrating radars and wall imaging systems. 15.509 Section 15.509 Telecommunication FEDERAL COMMUNICATIONS... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system...

  16. 47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Technical requirements for ground penetrating radars and wall imaging systems. 15.509 Section 15.509 Telecommunication FEDERAL COMMUNICATIONS... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system...

  17. 47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Technical requirements for ground penetrating radars and wall imaging systems. 15.509 Section 15.509 Telecommunication FEDERAL COMMUNICATIONS... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system...

  18. 47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Technical requirements for ground penetrating radars and wall imaging systems. 15.509 Section 15.509 Telecommunication FEDERAL COMMUNICATIONS... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system...

  19. Forward-Looking IED Detector Ground Penetrating Radar

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Carnes, Steven R.; Ulmer, Christopher T.

    2013-01-01

    There have been many developments of mine or metal detectors based on ground penetrating radar techniques, usually in hand-held or rover-mounted devices. In most mine or metal detector applications, conditions are in a stationary mode and detection speed is not an important factor. A novel, forward-looking, stepped-frequency ground penetrating radar (GPR) has been developed with a capability to detect improvised explosive devices (IEDs) at vehicular speeds of 15 to 20 mph (24 to 32 km/h), 10 to 20 m ahead of the vehicle, to ensure adequate time for response. The GPR system employs two horn antennas (1.7 to 2.6 GHz, 20 dBi) as transmit and receive. The detector system features a user-friendly instantaneous display on a laptop PC and is a low-power-consumption (3 W) compact system with minimal impact on vehicle operations. In practice, the whole GPR system and a laptop PC can be powered by plugging into a cigarette lighter of a vehicle. The stepped-frequency continuous-wave (CW) radar scans frequency from 1.7 to 2.6 GHz in 1,000 steps of 0.9 MHz, with the full frequency scan in 60 ms. The GPR uses a bi-static configuration with one horn antenna used as a transmitter and the other used as a receiver so that isolation between transmitter and receiver is improved. Since the horn antennas (20 dBi) are mounted on the roof of a vehicle at a shallow inclination angle (15 to 25 with respect to horizontal), there is a first-order reduction in ground reflection so that a significant amount of the total reflected power received by the GPR comes from the scattering of RF energy off of buried objects. The stepped-frequency technique works by transmitting a tone at a particular frequency, while the received signal is mixed with the transmitted tone. As a result, the output of the mixer produces a signal that indicates the strength of the received signal and the extent to which it is in phase or out of phase with the transmitted tone. By taking measurements of the phase

  20. Automated Ground Penetrating Radar hyperbola detection in complex environment

    NASA Astrophysics Data System (ADS)

    Mertens, Laurence; Lambot, Sébastien

    2015-04-01

    Ground Penetrating Radar (GPR) systems are commonly used in many applications to detect, amongst others, buried targets (various types of pipes, landmines, tree roots ...), which, in a cross-section, present theoretically a particular hyperbolic-shaped signature resulting from the antenna radiation pattern. Considering the large quantity of information we can acquire during a field campaign, a manual detection of these hyperbolas is barely possible, therefore we have a real need to have at our disposal a quick and automated detection of these hyperbolas. However, this task may reveal itself laborious in real field data because these hyperbolas are often ill-shaped due to the heterogeneity of the medium and to instrumentation clutter. We propose a new detection algorithm for well- and ill-shaped GPR reflection hyperbolas especially developed for complex field data. This algorithm is based on human recognition pattern to emulate human expertise to identify the hyperbolas apexes. The main principle relies in a fitting process of the GPR image edge dots detected with Canny filter to analytical hyperbolas, considering the object as a punctual disturbance with a physical constraint of the parameters. A long phase of observation of a large number of ill-shaped hyperbolas in various complex media led to the definition of smart criteria characterizing the hyperbolic shape and to the choice of accepted value ranges acceptable for an edge dot to correspond to the apex of a specific hyperbola. These values were defined to fit the ambiguity zone for the human brain and present the particularity of being functional in most heterogeneous media. Furthermore, the irregularity is particularly taken into account by defining a buffer zone around the theoretical hyperbola in which the edge dots need to be encountered to belong to this specific hyperbola. First, the method was tested in laboratory conditions over tree roots and over PVC pipes with both time- and frequency-domain radars

  1. Development of drug loaded nanoparticles for tumor targeting. Part 2: Enhancement of tumor penetration through receptor mediated transcytosis in 3D tumor models

    NASA Astrophysics Data System (ADS)

    El-Dakdouki, Mohammad H.; Puré, Ellen; Huang, Xuefei

    2013-04-01

    We report that receptor mediated transcytosis can be utilized to facilitate tumor penetration by drug loaded nanoparticles (NPs). We synthesized hyaluronan (HA) coated silica nanoparticles (SNPs) containing a highly fluorescent core to target CD44 expressed on the cancer cell surface. Although prior studies have primarily focused on CD44 mediated endocytosis to facilitate cellular uptake of HA-NPs by cancer cells, we discovered that, once internalized, the HA-SNPs could be transported out of the cells with their cargo. The exported NPs could be taken up by neighboring cells. This enabled the HA-SNPs to penetrate deeper inside tumors and reach a much greater number of tumor cells in 3D tumor models, presumably through tandem cycles of CD44 mediated endocytosis and exocytosis. When doxorubicin (DOX) was loaded onto the NPs, better penetration of multilayered tumor cells was observed with much improved cytotoxicities against both drug sensitive and drug resistant cancer spheroids compared to the free drug. Thus, targeting receptors such as CD44 that can readily undergo recycling between the cell surface and interior of the cells can become a useful strategy to enhance the tumor penetration potential of NPs and the efficiency of drug delivery through receptor mediated transcytosis.We report that receptor mediated transcytosis can be utilized to facilitate tumor penetration by drug loaded nanoparticles (NPs). We synthesized hyaluronan (HA) coated silica nanoparticles (SNPs) containing a highly fluorescent core to target CD44 expressed on the cancer cell surface. Although prior studies have primarily focused on CD44 mediated endocytosis to facilitate cellular uptake of HA-NPs by cancer cells, we discovered that, once internalized, the HA-SNPs could be transported out of the cells with their cargo. The exported NPs could be taken up by neighboring cells. This enabled the HA-SNPs to penetrate deeper inside tumors and reach a much greater number of tumor cells in 3D tumor

  2. Multiple instance learning for landmine detection using ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Manandhar, Achut; Morton, Kenneth D., Jr.; Collins, Leslie M.; Torrione, Peter A.

    2012-06-01

    Ground Penetrating Radar (GPR) has been extensively employed as a technology for the detection of subsurface buried threats. Although vehicular mounted GPRs generate data in three dimensions, alarm declarations are usually only available in the form of 2-D spatial coordinates. The uncertainty in the depth of the target in the three dimensional volume of data, and the difficulties associated with automatically localizing objects in depth, can adversely impact feature extraction and training in some detection algorithms. In order to mitigate the negative impact of uncertainty in target depth, several algorithms have been developed that extract features from multiple depth regions and utilize these feature vectors in classification algorithms to perform final mine/nonmine decisions. However, the uncertainty in object depth significantly complicates learning since features at the correct target depth are often significantly different from features at other depths but in the same volume. Multiple Instance Learning (MIL) is a type of supervised learning approach in which labels are available for a collection of feature vectors but not for individual samples, or in this application, depths. The goal of MIL is to classify new collections of vectors as they become available. This set-based learning method is applicable in the landmine detection problem because features that are extracted independently from several depth bins can be viewed as a set of unlabeled feature vectors, where the entire set either corresponds to a buried threat or a false alarm. In this work, a novel generative Dirichlet Process Gaussian mixture model for MIL is developed that automatically infers the number of mixture components required to model the underlying distributions of mine/non-mine signatures and performs classification using a likelihood ratio test. In this work, we show that the performance of the proposed approach for discriminating targets from non-targets in GPR data is promising.

  3. 3D reconstruction from a monocular vision system for unmanned ground vehicles

    NASA Astrophysics Data System (ADS)

    Tompkins, R. Cortland; Diskin, Yakov; Youssef, Menatoallah M.; Asari, Vijayan K.

    2011-11-01

    In this paper we present a 3D reconstruction technique designed to support an autonomously navigated unmanned system. The algorithm and methods presented focus on the 3D reconstruction of a scene, with color and distance information, using only a single moving camera. In this way, the system may provide positional self-awareness for navigation within a known, GPS-denied area. It can also be used to construct a new model of unknown areas. Existing 3D reconstruction methods for GPS-denied areas often rely on expensive inertial measurement units to establish camera location and orientation. The algorithm proposed---after the preprocessing tasks of stabilization and video enhancement---performs Speeded-Up Robust Feature extraction, in which we locate unique stable points within every frame. Additional features are extracted using an optical flow method, with the resultant points fused and pruned based on several quality metrics. Each unique point is then tracked through the video sequence and assigned a disparity value used to compute the depth for each feature within the scene. The algorithm also assigns each feature point a horizontal and vertical coordinate using the camera's field of views specifications. From this, a resultant point cloud consists of thousands of feature points plotted from a particular camera position and direction, generated from pairs of sequential frames. The proposed method can use the yaw, pitch and roll information calculated from visual cues within the image data to accurately compute location and orientation. This positioning information enables the reconstruction of a robust 3D model particularly suitable for autonomous navigation and mapping tasks.

  4. Detectability of underground electrical cables junction with a ground penetrating radar: electromagnetic simulation and experimental measurements

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; serhir, mohammed; kameni, abelin; lambert, marc; pichon, lionel

    2016-04-01

    For a company like Electricity De France (EDF), being able to detect accurately using non-destructive methods the position of the buried junction between two underground cables is a crucial issue. The junction is the linking part where most maintenance operations are carried out. The challenge of this work is to conduct a feasibility study to confirm or deny the relevance of Ground Penetrating Radar (GPR) to detect these buried junctions in their actual environment against clutter. Indeed, the cables are buried in inhomogeneous medium at around 80cm deep. To do this, the study is conducted in a numerical environment. We use the 3D simulation software CST MWS to model a GPR scenario. In this simulation, we place the already optimized bowtie antennas operating in the frequency band [0.5 GHz - 3 GHz] in front of wet soil (dispersive) and dry soil where the underground cable is placed at 80cm deep. We collect the amplitude and phase of the reflected waves in order to detect the contrast provoked by the geometric dimensions variation of the cable [1] (diameter of the cable is 48mm and the diameter of the junction 74mm). The use of an ultra-wideband antenna is necessary to reconcile resolution and penetration of electromagnetic waves in the medium to be characterized. We focus on the performance of the GPR method according to the characteristics of the surrounding medium in which the electric cables are buried, the polarization of the Tx and Rx antennas. The experimental measurement collected in the EDF site will be presented. The measured data are processed using the clutter reduction method based on digital filtering [2]. We aim at showing that using the developed bowtie antennas that the GPR technique is well adapted for the cable junction localization even in cluttered environment. References [1] D. J. Daniels, "Surface-Penetrating Radar", London, IEE 1996. [2] Potin, D.; Duflos, E.; Vanheeghe, P., "Landmines Ground-Penetrating Radar Signal Enhancement by Digital

  5. Sedimentary basin effects in Seattle, Washington: Ground-motion observations and 3D simulations

    USGS Publications Warehouse

    Frankel, Arthur; Stephenson, William; Carver, David

    2009-01-01

    Seismograms of local earthquakes recorded in Seattle exhibit surface waves in the Seattle basin and basin-edge focusing of S waves. Spectral ratios of Swaves and later arrivals at 1 Hz for stiff-soil sites in the Seattle basin show a dependence on the direction to the earthquake, with earthquakes to the south and southwest producing higher average amplification. Earthquakes to the southwest typically produce larger basin surface waves relative to S waves than earthquakes to the north and northwest, probably because of the velocity contrast across the Seattle fault along the southern margin of the Seattle basin. S to P conversions are observed for some events and are likely converted at the bottom of the Seattle basin. We model five earthquakes, including the M 6.8 Nisqually earthquake, using 3D finite-difference simulations accurate up to 1 Hz. The simulations reproduce the observed dependence of amplification on the direction to the earthquake. The simulations generally match the timing and character of basin surface waves observed for many events. The 3D simulation for the Nisqually earth-quake produces focusing of S waves along the southern margin of the Seattle basin near the area in west Seattle that experienced increased chimney damage from the earthquake, similar to the results of the higher-frequency 2D simulation reported by Stephenson et al. (2006). Waveforms from the 3D simulations show reasonable agreement with the data at low frequencies (0.2-0.4 Hz) for the Nisqually earthquake and an M 4.8 deep earthquake west of Seattle.

  6. Analysis of landslide mitigation effects using Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Ristic, Aleksandar; Govedarica, Miro; Vrtunski, Milan; Petrovacki, Dusan

    2013-04-01

    Area of Ground Penetrating Radar (GPR) technology applications becomes wider nowadays. It includes utility mapping as important part of civil engineering applications, geological structure and soil analyses, applications in agriculture, etc. Characteristics of the technology make it suitable for structure analysis of shallow landslides, whose number and impact on environment is dominant in the region. Especially when shallow landslide endangers some man-made structures such as buildings, roads or bridges, analysis of GPR data can yield very useful results. The results of GPR data analysis of the shallow landslide are represented here. It is situated on the mountain Fruska Gora in Serbia. Despite its dimensions (50x20m) this landslide was interesting for analysis for two reasons: - The landslide occurred at the part of the single road between the cement factory and the marl mine. The cement factory "Lafarge" in Beocin (Fruska Gora) is the largest cement manufacturer in the country. One of major priorities of the factory management is to keep the function of this road. The road is heavily exploited and over the years it led to landslide movements and damaging of the road itself. - The landslide dates back to earlier period and the mitigation measures were performed twice. Laying the foundation of the retaining wall was not performed during the first mitigation measures. The second mitigation measures were performed in 2010 and included detailed geotechnical analysis of the location with the appropriate foundation laying. Since the GPR technology can produce high resolution images of subsurface it provides clear insight into the current state of surveyed location. That kind of analysis is necessary to maintain permanent functionality of the road and to check the status of mitigation measures. Furthermore, the location characteristics do not allow easy access so the possibilities of other analysis technologies application are limited. In order to assess the effects of

  7. Ground Penetrating Radar technique for railway track characterization in Portugal

    NASA Astrophysics Data System (ADS)

    De Chiara, Francesca; Fontul, Simona; Fortunato, Eduardo; D'Andrea, Antonio

    2013-04-01

    Maintenance actions are significant for transport infrastructures but, today, costs have to be necessary limited. A proper quality control since the construction phase is a key factor for a long life cycle and for a good economy policy. For this reason, suitable techniques have to be chosen and non-destructive tests represent an efficient solution, as they allow to evaluate infrastructure characteristics in a continuous or quasi-continuous way, saving time and costs, enabling to make changes if tests results do not comply with the project requirements. Ground Penetrating Radar (GPR) is a quick and effective technique to evaluate infrastructure condition in a continuous manner, replacing or reducing the use of traditional drilling method. GPR application to railways infrastructures, during construction and monitoring phase, is relatively recent. It is based on the measuring of layers thicknesses and detection of structural changes. It also enables the assessment of materials properties that constitute the infrastructure and the evaluation of the different types of defects such as ballast pockets, fouled ballast, poor drainage, subgrade settlement and transitions problems. These deteriorations are generally the causes of vertical deviations in track geometry and they cannot be detected by the common monitoring procedures, namely the measurements of track geometry. Moreover, the development of new GPR systems with higher antenna frequencies, better data acquisition systems, more user friendly software and new algorithms for calculation of materials properties can lead to a regular use of GPR. Therefore, it represents a reliable technique to assess track geometry problems and consequently to improve maintenance planning. In Portugal, rail inspection is performed with Plasser & Theurer EM120 equipment and recently 400 MHz IDS antennas were installed on it. GPR tests were performed on the Portuguese rail network and, as case study in this paper, a renewed track was

  8. 3D time dependent thermo-fluid dynamic model of ground deformation at Campi Flegrei caldera

    NASA Astrophysics Data System (ADS)

    Castaldo, R.; Tizzani, P.; Manconi, A.; Manzo, M.; Pepe, S.; Pepe, A.; Lanari, R.

    2012-04-01

    In active volcanic areas deformation signals are generally characterized by non-linear spatial and temporal variations [Tizzani P. et al., 2007]. This behaviour has been revealed in the last two decades by the so-called advanced DInSAR processing algorithms, developed to analyze surface deformation phenomena [Berardino P. et al., 2002; Ferretti C. et al., 2001]. Notwithstanding, most of the inverse modelling attempts to characterize the evolution of the volcanic sources are based on the assumption that the Earth's crust behaves as a homogeneous linear elastic material. However, the behaviour of the upper lithosphere in thermally anomalous regions (as active volcanoes are) might be well described as a non-Newtonian fluid, where some of the material proprieties of the rocks (i.e., apparent viscosities) can change over time [Pinkerton H. et al., 1995]. In this context, we considered the thermal proprieties and mechanical heterogeneities of the upper crust in order to develop a new 3D time dependent thermo-fluid dynamic model of Campi Flegrei (CF) caldera, Southern Italy. More specifically, according to Tizzani P. et al. (2010), we integrated in a FEM environment geophysical information (gravimetric, seismic, and borehole data) available for the considered area and performed two FEM optimization procedures to constrain the 3D distribution of unknown physical parameters (temperature and viscosity distributions) that might help explaining the data observed at surface (geothermal wells and DInSAR measurements). First, we searched for the heat production, the volume source distribution and surface emissivity parameters providing the best-fit of the geothermal profiles data measured at six boreholes [Agip ESGE, 1986], by solving the Fourier heat equation over time (about 40 kys). The 3D thermal field resulting from this optimization was used to calculate the 3D brittle-ductile transition. This analysis revealed the presence of a ductile region, located beneath the centre of

  9. Comparison of INSAT-3D AOD over Indian region with satellite- and ground-based measurements: a data assimilation perspective

    NASA Astrophysics Data System (ADS)

    Kumar, Sumit; George, John P.; Sreevathsa, M. N. Raghavendra; Indira Rani, S.

    2016-05-01

    This paper aims at comparing the INSAT-3D AOD with other space based observations over the continental regions. INSAT-3D launched in 2013 is an advanced geostationary weather satellite of India at 82° East longitude provides Aerosol Optical Depth (AOD) observations at 650 nm over both land and ocean. The level-3 daily AOD measurements from MODIS (both Aqua and Terra) and MISR are used for comparison with that from INSAT-3D. This work is applied during premonsoon season of 2015. Overall statistical scores and systematic errors are compared to characterize various error sources. Our study indicates that significant differences exist between different aerosol observations which may be partly due to retrieval algorithm, sensor configurations and temporal sampling. Comparison of INSAT observed AOD shows less bias towards MISR and MODIS-Terra observed AOD than with MODIS-Aqua. The INSAT observations over oceanic region have better correlation, minimum bias and rmse than land region. Overall, the mean bias of the dataset is ±0.05, with a root mean square error of 0.22, but these errors are also found highly dependent on geographical region. Additionally, we compared INSAT 660 nm AOD with two AERONET ground stations. The comparison of INSAT with different observations shows that the retrieved AOD is closer to the ground-based data than the MISR and MODIS AOD.

  10. Examination about Influence for Precision of 3d Image Measurement from the Ground Control Point Measurement and Surface Matching

    NASA Astrophysics Data System (ADS)

    Anai, T.; Kochi, N.; Yamada, M.; Sasaki, T.; Otani, H.; Sasaki, D.; Nishimura, S.; Kimoto, K.; Yasui, N.

    2015-05-01

    As the 3D image measurement software is now widely used with the recent development of computer-vision technology, the 3D measurement from the image is now has acquired the application field from desktop objects as wide as the topography survey in large geographical areas. Especially, the orientation, which used to be a complicated process in the heretofore image measurement, can be now performed automatically by simply taking many pictures around the object. And in the case of fully textured object, the 3D measurement of surface features is now done all automatically from the orientated images, and greatly facilitated the acquisition of the dense 3D point cloud from images with high precision. With all this development in the background, in the case of small and the middle size objects, we are now furnishing the all-around 3D measurement by a single digital camera sold on the market. And we have also developed the technology of the topographical measurement with the air-borne images taken by a small UAV [1~5]. In this present study, in the case of the small size objects, we examine the accuracy of surface measurement (Matching) by the data of the experiments. And as to the topographic measurement, we examine the influence of GCP distribution on the accuracy by the data of the experiments. Besides, we examined the difference of the analytical results in each of the 3D image measurement software. This document reviews the processing flow of orientation and the 3D measurement of each software and explains the feature of the each software. And as to the verification of the precision of stereo-matching, we measured the test plane and the test sphere of the known form and assessed the result. As to the topography measurement, we used the air-borne image data photographed at the test field in Yadorigi of Matsuda City, Kanagawa Prefecture JAPAN. We have constructed Ground Control Point which measured by RTK-GPS and Total Station. And we show the results of analysis made

  11. Use of Ground Penetrating Radar at the FAA's National Airport Pavement Test Facility

    NASA Astrophysics Data System (ADS)

    Injun, Song

    2015-04-01

    The Federal Aviation Administration (FAA) in the United States has used a ground-coupled Ground Penetrating Radar (GPR) at the National Airport Pavement Test Facility (NAPTF) since 2005. One of the primary objectives of the testing at the facility is to provide full-scale pavement response and failure information for use in airplane landing gear design and configuration studies. During the traffic testing at the facility, a GSSI GPR system was used to develop new procedures for monitoring Hot Mix Asphalt (HMA) pavement density changes that is directly related to pavement failure. After reviewing current setups for data acquisition software and procedures for identifying different pavement layers, dielectric constant and pavement thickness were selected as dominant parameters controlling HMA properties provided by GPR. A new methodology showing HMA density changes in terms of dielectric constant variations, called dielectric sweep test, was developed and applied in full-scale pavement test. The dielectric constant changes were successfully monitored with increasing airplane traffic numbers. The changes were compared to pavement performance data (permanent deformation). The measured dielectric constants based on the known HMA thicknesses were also compared with computed dielectric constants using an equation from ASTM D4748-98 Standard Test Method for Determining the Thickness of Bound Pavement Layers Using Short-Pulse Radar. Six inches diameter cylindrical cores were taken after construction and traffic testing for the HMA layer bulk specific gravity. The measured bulk specific gravity was also compared to monitor HMA density changes caused by aircraft traffic conditions. Additionally this presentation will review the applications of the FAA's ground-coupled GPR on embedded rebar identification in concrete pavement, sewer pipes in soil, and gage identifications in 3D plots.

  12. Pore-scale modeling of Capillary Penetration of Wetting Liquid into 3D Fibrous Media: A Critical Examination of Equivalent Capillary Concept

    NASA Astrophysics Data System (ADS)

    Palakurthi, Nikhil Kumar; Ghia, Urmila; Comer, Ken

    2013-11-01

    Capillary penetration of liquid through fibrous porous media is important in many applications such as printing, drug delivery patches, sanitary wipes, and performance fabrics. Historically, capillary transport (with a distinct liquid propagating front) in porous media is modeled using capillary-bundle theory. However, it is not clear if the capillary model (Washburn equation) describes the fluid transport in porous media accurately, as it assumes uniformity of pore sizes in the porous medium. The present work investigates the limitations of the applicability of the capillary model by studying liquid penetration through virtual fibrous media with uniform and non-uniform pore-sizes. For the non-uniform-pore fibrous medium, the effective capillary radius of the fibrous medium was estimated from the pore-size distribution curve. Liquid penetration into the 3D virtual fibrous medium at micro-scale was simulated using OpenFOAM, and the numerical results were compared with the Washburn-equation capillary-model predictions. Preliminary results show that the Washburn equation over-predicts the height rise in the early stages (purely inertial and visco-inertial stages) of capillary transport.

  13. A 3D finite element simulation model for TBM tunnelling in soft ground

    NASA Astrophysics Data System (ADS)

    Kasper, Thomas; Meschke, Günther

    2004-12-01

    A three-dimensional finite element simulation model for shield-driven tunnel excavation is presented. The model takes into account all relevant components of the construction process (the soil and the ground water, the tunnel boring machine with frictional contact to the soil, the hydraulic jacks, the tunnel lining and the tail void grouting). The paper gives a detailed description of the model components and the stepwise procedure to simulate the construction process. The soil and the grout material are modelled as saturated porous media using a two-field finite element formulation. This allows to take into account the groundwater, the grouting pressure and the fluid interaction between the soil and slurry at the cutting face and between the soil and grout around the tail void. A Cam-Clay plasticity model is used to describe the material behaviour of cohesive soils. The cementitious grouting material in the tail void is modelled as an ageing elastic material with time-dependent stiffness and permeability. To allow for an automated computation of arbitrarily long and also curvilinear driving paths with suitable finite element meshes, the simulation procedure has been fully automated. The simulation of a tunnel advance in soft cohesive soil below the ground water table is presented and the results are compared with measurements taken from the literature. Copyright

  14. 4D ground-penetrating radar during a plot scale dye tracer experiment

    NASA Astrophysics Data System (ADS)

    Allroggen, Niklas; van Schaik, N. Loes M. B.; Tronicke, Jens

    2015-07-01

    Flow phenomena in the unsaturated zone are highly variable in time and space. Thus, it is challenging to measure and monitor such processes under field conditions. Here, we present a new setup and interpretation approach for combining a dye tracer experiment with a 4D ground-penetrating radar (GPR) survey. Therefore, we designed a rainfall experiment during which we measured three surface-based 3D GPR surveys using a pair of 500 MHz antennas. Such a survey setup requires accurate acquisition and processing techniques to extract time-lapse information supporting the interpretation of selected cross-sections photographed after excavating the site. Our results reveal patterns of traveltime changes in the measured GPR data, which are associated with soil moisture changes. As distinct horizons are present at our site, such changes can be quantified and transferred into changes in total soil moisture content. Our soil moisture estimates are similar to the amount of infiltrated water, which confirms our experimental approach and makes us confident for further developing this strategy, especially, with respect to improving the temporal and spatial resolution.

  15. Recursive impedance inversion of ground-penetrating radar data in stochastic media

    NASA Astrophysics Data System (ADS)

    Zeng, Zhao-Fa; Chen, Xiong; Li, Jing; Chen, Ling-Na; Lu, Qi; Liu, Feng-Shan

    2015-12-01

    The travel time and amplitude of ground-penetrating radar (GPR) waves are closely related to medium parameters such as water content, porosity, and dielectric permittivity. However, conventional estimation methods, which are mostly based on wave velocity, are not suitable for real complex media because of limited resolution. Impedance inversion uses the reflection coefficient of radar waves to directly calculate GPR impedance and other parameters of subsurface media. We construct a 3D multiscale stochastic medium model and use the mixed Gaussian and exponential autocorrelation function to describe the distribution of parameters in real subsurface media. We introduce an elliptical Gaussian function to describe local random anomalies. The tapering function is also introduced to reduce calculation errors caused by the numerical simulation of discrete grids. We derive the impedance inversion workflow and test the calculation precision in complex media. Finally, we use impedance inversion to process GPR field data in a polluted site in Mongolia. The inversion results were constrained using borehole data and validated by resistivity data.

  16. Full three-dimensional imaging via ground penetrating radar: assessment in controlled conditions and on field for archaeological prospecting

    NASA Astrophysics Data System (ADS)

    Catapano, Ilaria; Affinito, Antonio; Gennarelli, Gianluca; di Maio, Francesco; Loperte, Antonio; Soldovieri, Francesco

    2014-06-01

    This paper deals with an advanced microwave tomographic approach capable of providing full 3D images of buried targets from scattered field data gathered by means of Ground Penetrating Radar (GPR) systems. The approach is based on an approximated model of the scattering phenomenon and it is capable of accounting for the vectorial nature of the interactions occurring between electromagnetic waves and probed materials. Moreover, the Truncated Singular Value Decomposition inversion scheme is exploited to solve the involved linear inverse scattering problem in a stable and accurate way. The advantages offered by the full 3D inversion algorithm with respect to a commonly adopted strategy, which produces 3D images by interpolating 2D reconstructions, are assessed against GPR data gathered in laboratory controlled conditions. Moreover, to provide an example of the full 3D imaging capabilities in on field conditions, we report on a GPR measurement campaign carried out at Grotte dell'Angelo, Pertosa, (SA), Southern Italy, one of the most famous sites of the Cilento and Vallo di Diano geopark.

  17. Age, double porosity, and simple reaction modifications for the MOC3D ground-water transport model

    USGS Publications Warehouse

    Goode, Daniel J.

    1999-01-01

    This report documents modifications for the MOC3D ground-water transport model to simulate (a) ground-water age transport; (b) double-porosity exchange; and (c) simple but flexible retardation, decay, and zero-order growth reactions. These modifications are incorporated in MOC3D version 3.0. MOC3D simulates the transport of a single solute using the method-ofcharacteristics numerical procedure. The age of ground water, that is the time since recharge to the saturated zone, can be simulated using the transport model with an additional source term of unit strength, corresponding to the rate of aging. The output concentrations of the model are in this case the ages at all locations in the model. Double porosity generally refers to a separate immobilewater phase within the aquifer that does not contribute to ground-water flow but can affect solute transport through diffusive exchange. The solute mass exchange rate between the flowing water in the aquifer and the immobile-water phase is the product of the concentration difference between the two phases and a linear exchange coefficient. Conceptually, double porosity can approximate the effects of dead-end pores in a granular porous media, or matrix diffusion in a fractured-rock aquifer. Options are provided for decay and zero-order growth reactions within the immobilewater phase. The simple reaction terms here extend the original model, which included decay and retardation. With these extensions, (a) the retardation factor can vary spatially within each model layer, (b) the decay rate coefficient can vary spatially within each model layer and can be different for the dissolved and sorbed phases, and (c) a zero-order growth reaction is added that can vary spatially and can be different in the dissolved and sorbed phases. The decay and growth reaction terms also can change in time to account for changing geochemical conditions during transport. The report includes a description of the theoretical basis of the model, a

  18. Long Period Ground Motion Prediction Of Linked Tonankai And Nankai Subduction Earthquakes Using 3D Finite Difference Method

    NASA Astrophysics Data System (ADS)

    Kawabe, H.; Kamae, K.

    2005-12-01

    There is high possibility of the occurrence of the Tonankai and Nankai earthquakes which are capable of causing immense damage. During these huge earthquakes, long period ground motions may strike mega-cities Osaka and Nagoya located inside the Osaka and Nobi basins in which there are many long period and low damping structures (such as tall buildings and oil tanks). It is very important for the earthquake disaster mitigation to predict long period strong ground motions of the future Tonankai and Nankai earthquakes that are capable of exciting long-period strong ground motions over a wide area. In this study, we tried to predict long-period ground motions of the future Tonankai and Nankai earthquakes using 3D finite difference method. We construct a three-dimensional underground structure model including not only the basins but also propagation field from the source to the basins. Resultantly, we can point out that the predominant periods of pseudo-velocity response spectra change basin by basin. Long period ground motions with periods of 5 to 8 second are predominant in the Osaka basin, 3 to 6 second in the Nobi basin and 2 to 5 second in the Kyoto basin. These characteristics of the long-period ground motions are related with the thicknesses of the sediments of the basins. The duration of long period ground motions inside the basin are more than 5 minutes. These results are very useful for the earthquake disaster mitigation of long period structures such as tall buildings and oil tanks.

  19. Ground-based Transit Observation of the Habitable-zone Super-Earth K2-3d

    NASA Astrophysics Data System (ADS)

    Fukui, Akihiko; Livingston, John; Narita, Norio; Hirano, Teruyuki; Onitsuka, Masahiro; Ryu, Tsuguru; Kusakabe, Nobuhiko

    2016-12-01

    We report the first ground-based transit observation of K2-3d, a 1.5 R ⊕ planet supposedly within the habitable zone around a bright M-dwarf host star, using the Okayama 188 cm telescope and the multi(grz)-band imager MuSCAT. Although the depth of the transit (0.7 mmag) is smaller than the photometric precisions (1.2, 0.9, and 1.2 mmag per 60 s for the g, r, and z bands, respectively), we marginally but consistently identify the transit signal in all three bands, by taking advantage of the transit parameters from K2, and by introducing a novel technique that leverages multi-band information to reduce the systematics caused by second-order extinction. We also revisit previously analyzed Spitzer transit observations of K2-3d to investigate the possibility of systematic offsets in transit timing, and find that all the timing data can be explained well by a linear ephemeris. We revise the orbital period of K2-3d to be 44.55612 ± 0.00021 days, which corrects the predicted transit times for 2019, i.e., the era of the James Webb Space Telescope, by ∼80 minutes. Our observation demonstrates that (1) even ground-based, 2 m class telescopes can play an important role in refining the transit ephemeris of small-sized, long-period planets, and (2) a multi-band imager is useful to reduce the systematics of atmospheric origin, in particular for bluer bands and for observations conducted at low-altitude observatories.

  20. 3D Modeling of Landslide in Open-pit Mining on Basis of Ground-based LIDAR Data

    NASA Astrophysics Data System (ADS)

    Hu, H.; Fernandez-Steeger, T. M.; Azzam, R.; Arnhardt, C.

    2009-04-01

    Slope stability is not only an important problem which is related to production and safety in open-pit mining, but also very complex task. There are three main reasons which affect the slope stability as follows: geotechnical factors: Geological structure, lithologic characteristics, water, cohesion, friction, etc.; climate factors: Rainfall and temperature; and external factors: Open-pit mining process, explosion vibration, dynamic load, etc.. The 3rd reason, as a specially one in open-pit mining, not only causes some dynamic problems but also induces the fast geometry changing which must be considered in the following research using numerical simulation and stability analysis. Recently, LIDAR technology has been applied in many fields and places in the world wide. Ground-based LIDAR technology with high accuracy up to 3mm increasingly accommodates to monitoring landslides and detecting changing. LIDAR data collection and preprocessing research have been carried out by Department of Engineering Geology and Hydrogeology at RWTH Aachen University. LIDAR data, so-called a point-cloud of mass data in high density can be obtained in short time for the sensitive open-pit mining area by using ground-based LIDAR. To obtain a consistent surface model, it is necessary to set up multiple scans with the ground-based LIDAR. The framework of data preprocessing which can be implemented by Poly-Works is introduced as follows: gross error detection and elimination, integration of reference frame, model fusion of different scans (re-sampled in overlap region), data reduction without removing the useful information which is a challenge and research front in LIDAR data processing. After data preprocessing, 3D surface model can be directly generated in Poly-Works or generated in other software by building the triangular meshes. The 3D surface landslide model can be applied to further researches such as: real time landslide geometry monitoring due to the fast data collection and

  1. Effects of Doxorubicin Delivery Systems and Mild Hyperthermia on Tissue Penetration in 3D Cell Culture Models of Ovarian Cancer Residual Disease.

    PubMed

    Eetezadi, Sina; De Souza, Raquel; Vythilingam, Mirugashini; Lessa Cataldi, Rodrigo; Allen, Christine

    2015-11-02

    Current chemotherapy strategies for second-line treatment of relapsed ovarian cancer are unable to effectively treat residual disease post-cytoreduction. The findings presented herein suggest that tissue penetration of drug is not only an issue for large, unresectable tumors, but also for invisible, microscopic lesions. The present study sought to investigate the potential of a block copolymer micelle (BCM) formulation, which may reduce toxicities of doxorubicin (DOX) in a similar way to pegylated liposomal doxorubicin (PLD, Doxil/Caelyx), while enhancing penetration into tumor tissue and improving intratumoral availability of drug. To achieve this goal, 50 nm-sized BCMs capable of high DOX encapsulation (BCM-DOX) at drug levels ranging from 2 to 7.6 mg/mL were formulated using an ultrafiltration technique. BCM-DOX was evaluated in 2D and 3D cell culture of the human ovarian cancer cell lines HEYA8, OV-90, and SKOV3. Additionally, the current study examines the impact of mild hyperthermia (MHT) on the cytotoxicity of DOX. The BCM-DOX formulation fulfilled the goal of controlling drug release while providing up to 9-fold greater cell monolayer cytotoxicity in comparison to PLD. In 3D cell culture, using multicellular tumor spheroids (MCTS) as a model of residual disease postsurgery, BCM-DOX achieved the benefits of an extended release formulation of DOX and resulted in improvements in drug accumulation over PLD, while yielding drug levels approaching that achievable by exposure to DOX alone. In comparison to PLD, this translated into superior MCTS growth inhibition in the short term and comparable inhibition in the long term. Overall, although MHT appeared to enhance drug accumulation in HEYA8 MCTS treated with BCM-DOX and DOX alone in the short term, improved growth inhibition of MCTS by MHT was not observed after 48 h of drug treatment. Evaluation of BCM-DOX in comparison to PLD as well as the effects of MHT is warranted in vivo.

  2. Peat analyses in the Hudson Bay Lowlands using ground penetrating radar

    NASA Technical Reports Server (NTRS)

    Pelletier, R. E.; Davis, J. L.; Rossiter, J. R.

    1991-01-01

    The use of ground penetrating radar (GPR) as a means to determine peak thickness and estimate peat volume in the Hudson Bay Lowlands of Canada is examined. Ground-based and airborne GPR data were acquired so as to extrapolate measurements to larger scales. While the ground-based measurements did an excellent job in determining peat depth, the airborne techniques did a fair job a low altitudes and demonstrated great promise with additional system engineering changes.

  3. 3D Dynamic Rupture process ans Near Source Ground Motion Simulation Using the Discrete Element Method: Application to the 1999 Chi-chi and 2000 Tottori Earthquakes

    NASA Astrophysics Data System (ADS)

    Dalguer Gudiel, L. A.; Irikura, K.

    2001-12-01

    We performed a 3D model to simulate the dynamic rupture of a pre-existing fault and near-source ground motion of actual earthquakes solving the elastodynamic equation of motion using the 3D Discrete Element Method (DEM). The DEM is widely employed in engineering to designate lumped mass models in a truss arrangement, as opposed to FEM (Finite Element) models that may also consist of lumped masses, but normally require to mount a full stiffness matrix for response determination. The term has also been used for models of solids consisting of assemblies of discrete elements, such as spheres in elastic contact, employed in the analysis of perforation or penetration of concrete or rock. It should be noted that the designation Lattice Models, common in Physics, may be more adequate, although it omits reference to a fundamental property of the approach, which is the lumped-mass representation. In the present DEM formulation, the method models any orthotropic elastic solid. It is constructed by a three dimensional periodic truss-like structures using cubic elements that consists of lumping masses in nodal points, which are interconnected by unidimensional elements. The method was previously used in 2D to simulate in a simplified way the 1999 Chi-chi (Taiwan) earthquake (Dalguer et. al., 2000). Now the method was extended to resolve 3D problems. We apply the model to simulate the dynamic rupture process and near source ground motion of the 1999 Chi-chi (Taiwan) and the 2000 Tottori (Japan) earthquakes. The attractive feature in the problem under consideration is the possibility of introducing internal cracks or fractures with little computational effort and without increasing the number of degrees of freedom. For the 3D dynamic spontaneous rupture simulation of these eartquakes we need to know: the geometry of the fault, the initial stress distribution along the fault, the stress drop distribution, the strength of the fault to break and the critical slip (because slip

  4. A large dataset of synthetic SEM images of powder materials and their ground truth 3D structures.

    PubMed

    DeCost, Brian L; Holm, Elizabeth A

    2016-12-01

    This data article presents a data set comprised of 2048 synthetic scanning electron microscope (SEM) images of powder materials and descriptions of the corresponding 3D structures that they represent. These images were created using open source rendering software, and the generating scripts are included with the data set. Eight particle size distributions are represented with 256 independent images from each. The particle size distributions are relatively similar to each other, so that the dataset offers a useful benchmark to assess the fidelity of image analysis techniques. The characteristics of the PSDs and the resulting images are described and analyzed in more detail in the research article "Characterizing powder materials using keypoint-based computer vision methods" (B.L. DeCost, E.A. Holm, 2016) [1]. These data are freely available in a Mendeley Data archive "A large dataset of synthetic SEM images of powder materials and their ground truth 3D structures" (B.L. DeCost, E.A. Holm, 2016) located at http://dx.doi.org/10.17632/tj4syyj9mr.1[2] for any academic, educational, or research purposes.

  5. 3-D or median map? Earthquake scenario ground-motion maps from physics-based models versus maps from ground-motion prediction equations

    NASA Astrophysics Data System (ADS)

    Porter, K.

    2015-12-01

    There are two common ways to create a ground-motion map for a hypothetical earthquake: using ground motion prediction equations (by far the more common of the two) and using 3-D physics-based modeling. The former is very familiar to engineers, the latter much less so, and the difference can present a problem because engineers tend to trust the familiar and distrust novelty. Maps for essentially the same hypothetical earthquake using the two different methods can look very different, while appearing to present the same information. Using one or the other can lead an engineer or disaster planner to very different estimates of damage and risk. The reasons have to do with depiction of variability, spatial correlation of shaking, the skewed distribution of real-world shaking, and the upward-curving relationship between shaking and damage. The scientists who develop the two kinds of map tend to specialize in one or the other and seem to defend their turf, which can aggravate the problem of clearly communicating with engineers.The USGS Science Application for Risk Reduction's (SAFRR) HayWired scenario has addressed the challenge of explaining to engineers the differences between the two maps, and why, in a disaster planning scenario, one might want to use the less-familiar 3-D map.

  6. Finite difference time domain modeling of dispersion from heterogeneous ground properties in ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Holt, Jennifer Jane

    Ground Penetrating Radar (GPR) is a common technique for locating buried objects in the near surface. The near surface is never perfectly homogeneous due to different moisture levels, grain packing, and types of material that influence the properties in the subsurface. This dissertation examines the influence of heterogeneity on GPR measurements, its influence on spatial dispersion, and defining the GPR response from a range of standard deviations of different numerical models. Most modeling in GPR concentrates on antenna patterns or dispersion caused by complex permittivity in homogeneous blocks of material. The forward model developed in this dissertation incorporates heterogeneity by replacing the traditional homogenous spatial regions with a distribution of physical properties. The models in this dissertation maintain the major spatial model boundaries, but the physical model values within each boundary are determined by a statistical distribution. Statistical approximations of heterogeneity of the physical property distributions can provide an approximation of the geologic noise that influences GPR measurements. This dissertation presents a numerical modeling analysis of random property variation, where the variations occur in one, two, and three directions. The models are developed for a half space and a two layered earth model where the input is a Ricker wavelet. Most of the visible spatial dispersion of the electrical field in both the half space and the layered earth models studied in this dissertation, occurred in the near region of the electromagnetic field. However, the largest average dispersion occurred in the far field at 1.0 m distance from a dipole source. The presence of horizontal layers increased the dispersive effects of the random distribution of electrical property values. There was also a measurable change in the dispersed field when the layers were vertical. There was more change with thin horizontal layers than with tubes or three

  7. Fast Numerically Based Modeling for Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Sassen, D. S.; Everett, M. E.

    2007-05-01

    There is a need for computationally fast GPR numerical modeling. This includes circumstances where real time performance is needed, for example discrimination of landmines or UXO's, and in circumstances that require a high number of successive forward problems, for example inversion or imaging. Traditional numerical techniques such as finite difference or finite element are too slow for these applications, but they provide results from general scenarios such as scattering from very complicated shapes with high contrast. Neural networks may fit in the niche between analytical techniques and traditional numerical techniques. Our concept is training a neural network to associate the model inputs of electromagnetic properties of the background and targets, and the size and shape of the targets, with the output generated by a 3-D finite difference model. Successive examples from various electromagnetic properties and targets are displayed to the neural network, until the neural network has adapted itself though optimization. The trained neural network is now used as the forward model by displaying new input parameters and the neural network then generates the appropriate output. The results from the neural network are then compared to results from finite difference models to see how well the neural networks is performing and at what point it breaks down. Areas of poor fit can be addressed through further training. The neural network GPR model can be adapted by displaying additional finite difference results to the neural network, and can also be adapted to a specific field area by actual field data examples. Because of this adaptation ability the neural network GPR model can be optimized for specific environments and applications.

  8. Ground Penetrating Radar at Alcatraz Island: Imaging Civil-War Era Fortifications Beneath the Recreation Yard

    NASA Astrophysics Data System (ADS)

    Everett, M. E.; de Smet, T. S.; Warden, R.; Komas, T.; Hagin, J.

    2013-12-01

    As part of a cultural resources assessment and historical preservation project supported by the U.S. National Park Service, GPR surveys using 200 MHz antennas, with ~3.0 m depth of penetration and ~0.1 m lateral and vertical resolution, were conducted by our team in June 2012 over the recreation yard and parade ground at historic Alcatraz Island in order to image the underlying buried Civil War-era fortifications. The recreation yard at the Alcatraz high-security federal penitentiary served as a secure outdoor facility where the prisoners could take exercise. The facility, enclosed by a high perimeter wall and sentry walk, included basketball courts, a baseball diamond, and bleacher-style seating. The site previously consisted of coastal batteries built by the U.S. Army in the early to mid 1850's. As the need for harbor defense diminished, the island was converted into a military prison during the 1860's. In 1933, the military prison was transferred to federal control leading to the establishment of the high-security penitentiary. The rec yard was constructed in 1908-1913 directly over existing earthen fortifications, namely a trio of embankments known as 'traverses I, J, and K.' These mounds of earth, connected by tunnels, were in turn built over concrete and brick magazines. The processed GPR sections show good correlations between radar reflection events and the locations of the buried fortification structures derived from historical map analysis. A 3-D data cube was constructed and two of the cut-away perspective views show that traverse K, in particular, has a strong radar signature.

  9. Design of spectrally versatile forward-looking ground-penetrating radar for detection of concealed targets

    NASA Astrophysics Data System (ADS)

    Phelan, Brian R.; Ressler, Marc A.; Mazzaro, Gregory J.; Sherbondy, Kelly D.; Narayanan, Ram M.

    2013-05-01

    The design of high-resolution radars which can operate in theater involves a careful consideration of the radar's radiated spectrum. While a wide bandwidth yields better target detectability and classification, it can also interfere with other devices and/or violate federal and international communication laws. Under the Army Research Laboratory (ARL) Partnerships in Research Transition (PIRT) program, we are developing a Stepped-Frequency Radar (SFR) which allows for manipulation of the radiated spectrum, while still maintaining an effective ultra-wide bandwidth for achieving good range resolution. The SFR is a forward-looking, ultra-wideband (UWB) imaging radar capable of detecting concealed targets. This paper presents the research and analysis undertaken during the design of the SFR which will eventually complement an existing ARL system, the Synchronous Impulse REconstruction (SIRE) radar. The SFR is capable of excising prohibited frequency bands, while maintaining the down-range resolution capability of the original SIRE radar. The SFR has two transmit antennas and a 16-element receive antenna array, and this configuration achieves suitable cross-range resolution for target detection. The SFR, like the SIRE radar, is a vehicle mounted, forward-looking, ground penetrating radar (GPR) capable of using synthetic aperture radar (SAR) technology for the detection of subsurface targets via 3D imaging. Many contradicting design considerations are analyzed in this paper. The selection of system bandwidth, antenna types, number of antennas, frequency synthesizers, digitizers, receive amplifiers, wideband splitters, and many other components are critical to the design of the SFR. Leveraging commercial components and SIRE sub-systems were design factors offering an expedited time to the initial implementation of the radar while reducing overall costs. This SFR design will result in an ARL asset to support obscured target detection such as improvised explosive devices

  10. Ground Penetrating Radar Imaging of Tephra Fallout and Surge Deposits

    NASA Astrophysics Data System (ADS)

    Kruse, S.; Martin, K.; Connor, C.; Mora, R.; Ramirez, C.; Alvarado, G.

    2005-05-01

    GPR profiles on Cerro Negro volcano, Nicaragua, and Poás, Irazú, and Arenal volcanoes, Costa Rica, show this method has utility for mapping tephra blanket and surge deposit thicknesses, as well as ballistics distributions. These data are useful for estimating eruption volumes, particularly close to vents where deposits may be thicker than trenching depths. In the dry, highly resistive tephra of the Cerro Negro basaltic cinder cone, distinct deposits are clearly imaged between 2 and 20 m depth. The lowermost coherent reflection is presumed to be the contact with underlying pre-Cerro Negro lavas and weathered tephra deposits. Within the 2-20 m package, individual reflecting horizons are clearly resolved, and reflection attributes, particularly phase, may contain useful information on the nature of contacts, such as abrupt changes in granulometry. Because of the very high velocities at Cerro Negro (0.14 m/ns), even with 200 MHz antennas strata shallower than 2 m are difficult to resolve. In contrast, wetter ash, pumice, paleosol, and surge deposits on Irazú and Poás volcanoes show velocities as low as 0.045 m/ns. The corresponding shorter wavelengths permit strata as shallow as 40-70 cm to be imaged with 200 MHz antennas, with depth penetration typically 5 to 8 m. Comparison of trench observations and radar profiles indicates that strong radar reflections are produced by iron-rich zones at the water table and soil-ash contacts. Other features visible in the profiles are small (tens of cm) sub-vertical offsets of nearly horizontal units, and diffractions or disruptions in horizontal units presumed to reflect >30 cm blocks.

  11. Mapping Fractures in KAERI Underground Research Tunnel using Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Baek, Seung-Ho; Kim, Seung-Sep; Kwon, Jang-Soon

    2016-04-01

    The proportion of nuclear power in the Republic of Korea occupies about 40 percent of the entire electricity production. Processing or disposing nuclear wastes, however, remains one of biggest social issues. Although low- and intermediate-level nuclear wastes are stored temporarily inside nuclear power plants, these temporary storages can last only up to 2020. Among various proposed methods for nuclear waste disposal, a long-term storage using geologic disposal facilities appears to be most highly feasible. Geological disposal of nuclear wastes requires a nuclear waste repository situated deep within a stable geologic environment. However, the presence of small-scale fractures in bedrocks can cause serious damage to durability of such disposal facilities because fractures can become efficient pathways for underground waters and radioactive wastes. Thus, it is important to find and characterize multi-scale fractures in bedrocks hosting geologic disposal facilities. In this study, we aim to map small-scale fractures inside the KAERI Underground Research Tunnel (KURT) using ground penetrating radar (GPR). The KURT is situated in the Korea Atomic Energy Research Institute (KAERI). The survey target is a section of wall cut by a diamond grinder, which preserves diverse geologic features such as dykes. We conducted grid surveys on the wall using 500 MHz and 1000 MHz pulseEKKO PRO sensors. The observed GPR signals in both frequencies show strong reflections, which are consistent to form sloping planes. We interpret such planar features as fractures present in the wall. Such fractures were also mapped visually during the development of the KURT. We confirmed their continuity into the wall from the 3D GPR images. In addition, the spatial distribution and connectivity of these fractures are identified from 3D subsurface images. Thus, we can utilize GPR to detect multi-scale fractures in bedrocks, during and after developing underground disposal facilities. This study was

  12. Application of the LMC algorithm to anomaly detection using the Wichmann/NIITEK ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Torrione, Peter A.; Collins, Leslie M.; Clodfelter, Fred; Frasier, Shane; Starnes, Ian

    2003-09-01

    This paper describes the application of a 2-dimensional (2-D) lattice LMS algorithm for anomaly detection using the Wichmann/Niitek ground penetrating radar (GPR) system. Sets of 3-dimensional (3-D) data are collected from the GPR system and these are processed in separate 2-D slices. Those 2-D slices that are spatially correlated in depth are combined into separate "depth segments" and these are processed independently. When target/no target declarations need to be made, the individual depth segments are combined to yield a 2-D confidence map. The 2-D confidence map is then thresholded and alarms are placed at the centroids of the remaining 8-connected data points. Calibration lane results are presented for data collected over several soil types under several weather conditions. Results show a false alarm rate improvement of at least an order of magnitude over other GPR systems, as well as significant improvement over other adaptive algorithms operating on the same data.

  13. Imaging Buried Culverts Using Ground Penetrating Radar: Comparing 100 MHZ Through 1 GHZ Antennae

    NASA Astrophysics Data System (ADS)

    Abdul Aziz, A.; Stewart, R. R.; Green, S. L.

    2013-12-01

    *Aziz, A A aabdulaziz@uh.edu Allied Geophysical Lab, Department of Earth and Atmospheric Sciences, University of Houston, TX, USA Stewart, R R rrstewart@uh.edu Allied Geophysical Lab, Department of Earth and Atmospheric Sciences, University of Houston, TX, USA *Green, S L slgreen@yahoo.com Allied Geophysical Lab, Department of Earth and Atmospheric Sciences, University of Houston, TX, USA A 3D ground penetrating radar (GPR) survey, using three different frequency antennae, was undertaken to image buried steel culverts at the University of Houston's La Marque Geophysical Observatory 30 miles south of Houston, Texas. The four culverts, under study, support a road crossing one of the area's bayous. A 32 m by 4.5 m survey grid was designed on the road above the culverts and data were collected with 100 MHz, 250 MHz, and 1 GHz antennae. We used an orthogonal acquisition geometry for the three surveys. Inline sampling was from 1.0 cm to 10 cm (from 1 GHz to 100 MHz antenna) with inline and crossline spacings ranging from 0.2 m to 0.5 m. We used an initial velocity of 0.1 m/ns (from previous CMP work at the site) for the display purposes. The main objective of the study was to analyze the effect of different frequency antennae on the resultant GPR images. We are also interested in the accuracy and resolution of the various images, in addition to developing an optimal processing flow.The data were initially processed with standard steps that included gain enhancement, dewow and temporal-filtering, background suppression, and 2D migration. Various radar velocities were used in the 2D migration and ultimately 0.12 m/ns was used. The data are complicated by multipathing from the surface and between culverts (from modeling). Some of this is ameliorated via deconvolution. The top of each of the four culverts was evident in the GPR images acquired with the 250 MHz and 100 MHz antennas. For 1 GHz, the top of the culvert was not clear due to the signal's attenuation. The 250 MHz

  14. Deriving the Properties of Coronal Pressure Fronts in 3D: Application to the 2012 May 17 Ground Level Enhancement

    NASA Astrophysics Data System (ADS)

    Rouillard, A. P.; Plotnikov, I.; Pinto, R. F.; Tirole, M.; Lavarra, M.; Zucca, P.; Vainio, R.; Tylka, A. J.; Vourlidas, A.; De Rosa, M. L.; Linker, J.; Warmuth, A.; Mann, G.; Cohen, C. M. S.; Mewaldt, R. A.

    2016-12-01

    We study the link between an expanding coronal shock and the energetic particles measured near Earth during the ground level enhancement of 2012 May 17. We developed a new technique based on multipoint imaging to triangulate the three-dimensional (3D) expansion of the shock forming in the corona. It uses images from three vantage points by mapping the outermost extent of the coronal region perturbed by the pressure front. We derive for the first time the 3D velocity vector and the distribution of Mach numbers, M FM, of the entire front as a function of time. Our approach uses magnetic field reconstructions of the coronal field, full magnetohydrodynamic simulations and imaging inversion techniques. We find that the highest M FM values appear near the coronal neutral line within a few minutes of the coronal mass ejection onset; this neutral line is usually associated with the source of the heliospheric current and plasma sheet. We illustrate the variability of the shock speed, shock geometry, and Mach number along different modeled magnetic field lines. Despite the level of uncertainty in deriving the shock Mach numbers, all employed reconstruction techniques show that the release time of GeV particles occurs when the coronal shock becomes super-critical (M FM > 3). Combining in situ measurements with heliospheric imagery, we also demonstrate that magnetic connectivity between the accelerator (the coronal shock of 2012 May 17) and the near-Earth environment is established via a magnetic cloud that erupted from the same active region roughly five days earlier.

  15. 47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system operating... section is limited to GPRs and wall imaging systems operated for purposes associated with law enforcement...) A GPR that is designed to be operated while being hand held and a wall imaging system shall...

  16. Location of Agricultural Drainage Pipes and Assessment of Agricultural Drainage Pipe Conditions Using Ground Penetrating Radar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods are needed to not only locate buried agricultural drainage pipe, but to also determine if the pipes are functioning properly with respect to water delivery. The primary focus of this research project was to confirm the ability of ground penetrating radar (GPR) to locate buried drainage pipe ...

  17. A 3-D view of field-scale fault-zone cementation from geologically ground-truthed electrical resistivity

    NASA Astrophysics Data System (ADS)

    Barnes, H.; Spinelli, G. A.; Mozley, P.

    2015-12-01

    Fault-zones are an important control on fluid flow, affecting groundwater supply, hydrocarbon/contaminant migration, and waste/carbon storage. However, current models of fault seal are inadequate, primarily focusing on juxtaposition and entrainment effects, despite the recognition that fault-zone cementation is common and can dramatically reduce permeability. We map the 3D cementation patterns of the variably cemented Loma Blanca fault from the land surface to ~40 m depth, using electrical resistivity and induced polarization (IP). The carbonate-cemented fault zone is a region of anomalously low normalized chargeability, relative to the surrounding host material. Zones of low-normalized chargeability immediately under the exposed cement provide the first ground-truth that a cemented fault yields an observable IP anomaly. Low-normalized chargeability extends down from the surface exposure, surrounded by zones of high-normalized chargeability, at an orientation consistent with normal faults in the region; this likely indicates cementation of the fault zone at depth, which could be confirmed by drilling and coring. Our observations are consistent with: 1) the expectation that carbonate cement in a sandstone should lower normalized chargeability by reducing pore-surface area and bridging gaps in the pore space, and 2) laboratory experiments confirming that calcite precipitation within a column of glass beads decreases polarization magnitude. The ability to characterize spatial variations in the degree of fault-zone cementation with resistivity and IP has exciting implications for improving predictive models of the hydrogeologic impacts of cementation within faults.

  18. Calculating the Probability of Strong Ground Motions Using 3D Seismic Waveform Modeling - SCEC CyberShake

    NASA Astrophysics Data System (ADS)

    Gupta, N.; Callaghan, S.; Graves, R.; Mehta, G.; Zhao, L.; Deelman, E.; Jordan, T. H.; Kesselman, C.; Okaya, D.; Cui, Y.; Field, E.; Gupta, V.; Vahi, K.; Maechling, P. J.

    2006-12-01

    Researchers from the SCEC Community Modeling Environment (SCEC/CME) project are utilizing the CyberShake computational platform and a distributed high performance computing environment that includes USC High Performance Computer Center and the NSF TeraGrid facilities to calculate physics-based probabilistic seismic hazard curves for several sites in the Southern California area. Traditionally, probabilistic seismic hazard analysis (PSHA) is conducted using intensity measure relationships based on empirical attenuation relationships. However, a more physics-based approach using waveform modeling could lead to significant improvements in seismic hazard analysis. Members of the SCEC/CME Project have integrated leading-edge PSHA software tools, SCEC-developed geophysical models, validated anelastic wave modeling software, and state-of-the-art computational technologies on the TeraGrid to calculate probabilistic seismic hazard curves using 3D waveform-based modeling. The CyberShake calculations for a single probablistic seismic hazard curve require tens of thousands of CPU hours and multiple terabytes of disk storage. The CyberShake workflows are run on high performance computing systems including multiple TeraGrid sites (currently SDSC and NCSA), and the USC Center for High Performance Computing and Communications. To manage the extensive job scheduling and data requirements, CyberShake utilizes a grid-based scientific workflow system based on the Virtual Data System (VDS), the Pegasus meta-scheduler system, and the Globus toolkit. Probabilistic seismic hazard curves for spectral acceleration at 3.0 seconds have been produced for eleven sites in the Southern California region, including rock and basin sites. At low ground motion levels, there is little difference between the CyberShake and attenuation relationship curves. At higher ground motion (lower probability) levels, the curves are similar for some sites (downtown LA, I-5/SR-14 interchange) but different for

  19. Retrieval of Vegetation Structural Parameters and 3-D Reconstruction of Forest Canopies Using Ground-Based Echidna® Lidar

    NASA Astrophysics Data System (ADS)

    Strahler, A. H.; Yao, T.; Zhao, F.; Yang, X.; Schaaf, C.; Woodcock, C. E.; Jupp, D. L.; Culvenor, D.; Newnham, G.; Lovell, J.

    2010-12-01

    A ground-based, scanning, near-infrared lidar, the Echidna® validation instrument (EVI), built by CSIRO Australia, retrieves structural parameters of forest stands rapidly and accurately, and by merging multiple scans into a single point cloud, the lidar also provides 3-D stand reconstructions. Echidna lidar technology scans with pulses of light at 1064 nm wavelength and digitizes the full return waveform sufficiently finely to recover and distinguish the differing shapes of return pulses as they are scattered by leaves, trunks, and branches. Deployments in New England in 2007 and the southern Sierra Nevada of California in 2008 tested the ability of the instrument to retrieve mean tree diameter, stem count density (stems/ha), basal area, and above-ground woody biomass from single scans at points beneath the forest canopy. Parameters retrieved from five scans located within six 1-ha stand sites matched manually-measured parameters with values of R2 = 0.94-0.99 in New England and 0.92-0.95 in the Sierra Nevada. Retrieved leaf area index (LAI) values were similar to those of LAI-2000 and hemispherical photography. In New England, an analysis of variance showed that EVI-retrieved values were not significantly different from other methods (power = 0.84 or higher). In the Sierra, R2 = 0.96 and 0.81 for hemispherical photos and LAI-2000, respectively. Foliage profiles, which measure leaf area with canopy height, showed distinctly different shapes for the stands, depending on species composition and age structure. New England stand heights, obtained from foliage profiles, were not significantly different (power = 0.91) from RH100 values observed by LVIS in 2003. Three-dimensional stand reconstruction identifies one or more “hits” along the pulse path coupled with the peak return of each hit expressed as apparent reflectance. Returns are classified as trunk, leaf, or ground returns based on the shape of the return pulse and its location. These data provide a point

  20. Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements

    NASA Astrophysics Data System (ADS)

    Handayani, Gunawan

    2015-04-01

    The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. This paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented.

  1. Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements

    SciTech Connect

    Handayani, Gunawan

    2015-04-16

    The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. This paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented.

  2. Combining ground penetrating radar and electromagnetic induction for industrial site characterization

    NASA Astrophysics Data System (ADS)

    Van De Vijver, Ellen; Van Meirvenne, Marc; Saey, Timothy; De Smedt, Philippe; Delefortrie, Samuël; Seuntjens, Piet

    2014-05-01

    soil electrical conductivity (ECa) and magnetic susceptibility (MSa). For both methods one of the latest-generation instruments was used. GPR data were collected using a 3d-Radar stepped-frequency system with multi-channel antenna design. For EMI, this was the multi-receiver DUALEM-21S sensor. This sensor contains four different transmitter-receiver coil pair configurations, which allows to record the ECa and MSa for four different soil volumes at the same time, thereby providing information about the vertical variation of these soil properties. Both the EMI and GPR survey were performed in a mobile set-up with real-time georeferencing to obtain a high-resolution coverage of the area. The results of both surveys were validated with conventional site characterization that was conducted for a soil contamination investigation, and ancillary information such as aerial photographs and utility maps. Both methods were compared on their performance in detecting different types of anomalies. We report on the successes and failures with this multi-sensor approach. The authors acknowledge funding by COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar"

  3. Ground-penetrating radar and electromagnetic surveys at the Monroe Crossroads battlefield site, Fort Bragg, North Carolina

    USGS Publications Warehouse

    Kessler, Richard; Strain, R.E.; Marlowe, J. I.; Currin, K.B.

    1996-01-01

    A ground-penetrating radar survey was conducted at the Monroe Crossroads Battlefield site at Fort Bragg, North Carolina, to determine possible locations of subsurface archaeological features. An electromagnetic survey also was conducted at the site to verify and augment the ground-penetrating radar data. The surveys were conducted over a 67,200-square-foot grid with a grid point spacing of 20 feet. During the ground-penetrating radar survey, 87 subsurface anomalies were detected based on visual inspection of the field records. These anomalies were flagged in the field as they appeared on the ground-penetrating radar records and were located by a land survey. The electromagnetic survey produced two significant readings at ground-penetrating radar anomaly locations. The National Park Service excavated 44 of the 87 anomaly locations at the Civil War battlefield site. Four of these excavations produced significant archaeological features, including one at an abandoned well.

  4. Discovery and optimization of a novel series of highly CNS penetrant M4 PAMs based on a 5,6-dimethyl-4-(piperidin-1-yl)thieno[2,3-d]pyrimidine core.

    PubMed

    Wood, Michael R; Noetzel, Meredith J; Engers, Julie L; Bollinger, Katrina A; Melancon, Bruce J; Tarr, James C; Han, Changho; West, Mary; Gregro, Alison R; Lamsal, Atin; Chang, Sichen; Ajmera, Sonia; Smith, Emery; Chase, Peter; Hodder, Peter S; Bubser, Michael; Jones, Carrie K; Hopkins, Corey R; Emmitte, Kyle A; Niswender, Colleen M; Wood, Michael W; Duggan, Mark E; Conn, P Jeffrey; Bridges, Thomas M; Lindsley, Craig W

    2016-07-01

    This Letter describes the chemical optimization of a novel series of M4 positive allosteric modulators (PAMs) based on a 5,6-dimethyl-4-(piperidin-1-yl)thieno[2,3-d]pyrimidine core, identified from an MLPCN functional high-throughput screen. The HTS hit was potent and selective, but not CNS penetrant. Potency was maintained, while CNS penetration was improved (rat brain:plasma Kp=0.74), within the original core after several rounds of optimization; however, the thieno[2,3-d]pyrimidine core was subject to extensive oxidative metabolism. Ultimately, we identified a 6-fluoroquinazoline core replacement that afforded good M4 PAM potency, muscarinic receptor subtype selectivity and CNS penetration (rat brain:plasma Kp>10). Moreover, this campaign provided fundamentally distinct M4 PAM chemotypes, greatly expanding the available structural diversity for this exciting CNS target.

  5. Hydrogeologic characterization of fractured carbonate aquifers employing ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Tsoflias, Georgios Padelis

    Ground-penetrating radar (GPR) surveying is proposed as a remote sensing method for high-resolution characterization of fractured carbonate aquifer hydrogeologic properties in three dimensions. Understanding a geologic formation's fluid flow properties is important to hydrogeologic and environmental studies and the petroleum industry. Fractured anisotropic carbonate aquifers are major sources of water supply. To predict flow in these aquifers, fracture network and rock matrix hydraulic properties must be characterized accurately in three dimensions. GPR is employed to investigate rock matrix and fracture hydraulic properties by direct imaging (reflection surveying), signal attribute analysis (velocity, amplitude and phase) and waveform analysis. Overlapping GPR surveys were collected over the fractured Byron Dolomite aquiferin Door County, Wisconsin. A high-resolution, single-offset 3-D volume and 2-D lines successfully imaged varying carbonate lithofacies, lithologic discontinuities, dissolution zones, bedforms and horizontal fractures (also referred to as bedding plane discontinuities). Prominent flow conduits were clearly identifiable in the GPR data volumes and delineated in three dimensions by distinct continuous reflections. Velocity analysis of common mid-point surveys identified cyclic velocity variations that correlate to cyclic alternating middle and inner shelf carbonate facies. Within each facies, velocity trends controlled by the volumetric water content of the rock matrix were resolved to 0.5 m vertically. Radar reflector amplitude variation up to one order of magnitude along known flow conduits suggested centimeter-scale conduit aperture variation, with considerable effects on flow properties. New data acquisition techniques exploiting the polarization properties of electromagnetic waves demonstrated that the location and orientation of areas of anisotropy (i.e. vertical fractures) can be determined by acquiring multi-azimuth data of varying

  6. Monitoring of landfill leachate dispersion using reflectance spectroscopy and ground-penetrating radar.

    PubMed

    Splajt, T; Ferrier, G; Frostick, L E

    2003-09-15

    The utility of ground-penetrating radar and reflectance spectroscopy in the monitoring of landfill sites has been investigated. Strong correlations between red edge inflection position and chlorophyll and heavy metal concentrations have been demonstrated from grassland species affected by leachate contamination of the soil adjacent to the landfill test site. This study demonstrated that reflectance spectroscopy can identify vegetation affected by leachate-contaminated soil at a range of spatial resolutions. To identify the vegetation affected by leachate contamination, the spectroradiometer must have contiguous bands at sufficient spectral resolution over the critical wave range that measures chlorophyll absorption and the red edge (between 650 and 750 nm). The utility of ground-penetrating radar data to identify leachate escaping from breakout points in the contaminant wall has also been demonstrated. An integrated approach using these techniques, combined with field and borehole sampling and contaminant migration modeling, offers a possible cost-effective monitoring approach for landfill sites.

  7. Analysis of Jaycor's forward-looking ground-penetrating radar data

    NASA Astrophysics Data System (ADS)

    Rosen, Erik M.; Ayers, Elizabeth; Bonn, Darrell; Sherbondy, Kelly D.; Amazeen, Charles A.

    2000-08-01

    To date, most of the vehicular-mounted mine detection systems employing ground-penetrating radar are down looking in the sense that the array of radar antennas is approximately 1-m forward of the vehicle and pointed straight down. Advantages of systems that are able to look forward of the vehicle by more than 10 m include the ability to make detections at greater stand-off distances and to use mulitpe looks at targets to discriminate mines from clutter. Data collected by Jaycor's forward-looking ground- penetrating radar (FLGPR) system provides a means by which these advantages can be assessed. In February 1999, Jaycor took, its FLGPR to the antitank (AT) mine lanes at Socorro, New Mexico. Jaycor made several excursions over simulated roads that contained a mix of metal- and plastic-cased AT mines on the surface and buried up to 4 in.

  8. Detection of Rockfall on a Tunnel Concrete Lining with Ground-Penetrating Radar (GPR)

    NASA Astrophysics Data System (ADS)

    Lalagüe, Anne; Lebens, Matthew A.; Hoff, Inge; Grøv, Eivind

    2016-07-01

    Experiments were conducted using Ground-Penetrating Radar (GPR). The performance of six GPR systems was assessed in terms of: (1) remotely mapping cavities behind concrete linings, (2) detecting rockfall from the tunnel roof onto an inner lining comprising, for example, precast concrete segments. Studies conducted in Norway and the United States demonstrate that the GPR technique is a simple and reliable method that can assist stability inspection in existing Norwegian tunnels. The ground-coupled GPR systems represent a step forward in the remote detection of rockfall on tunnel concrete linings, and are particularly suited to self-standing inner linings. The analysis of the data is relatively straightforward and reasonably accurate.

  9. Application of ground-penetrating radar imagery for three-dimensional visualisation of near-surface structures in ice-rich permafrost, Barrow, Alaska

    USGS Publications Warehouse

    Munroe, Jeffrey S.; Doolittle, James A.; Kanevskiy, Mikhail; Hinkel, Kenneth M.; Nelson, Frederick E.; Jones, Benjamin M.; Shur, Yuri; Kimble, John M.

    2007-01-01

    Three-dimensional ground-penetrating radar (3D GPR) was used to investigate the subsurface structure of ice-wedge polygons and other features of the frozen active layer and near-surface permafrost near Barrow, Alaska. Surveys were conducted at three sites located on landscapes of different geomorphic age. At each site, sediment cores were collected and characterised to aid interpretation of GPR data. At two sites, 3D GPR was able to delineate subsurface ice-wedge networks with high fidelity. Three-dimensional GPR data also revealed a fundamental difference in ice-wedge morphology between these two sites that is consistent with differences in landscape age. At a third site, the combination of two-dimensional and 3D GPR revealed the location of an active frost boil with ataxitic cryostructure. When supplemented by analysis of soil cores, 3D GPR offers considerable potential for imaging, interpreting and 3D mapping of near-surface soil and ice structures in permafrost environments.

  10. Improving Ground Penetrating Radar Imaging in High Loss Environments by Coordinated System Development, Data Processing, Numerical Modeling, & Visualization

    SciTech Connect

    Wright, David L.

    2004-12-01

    Improving Ground Penetrating Radar Imaging in High Loss Environments by Coordinated System Development, Data Processing, Numerical Modeling, and Visualization Methods with Applications to Site Characterization EMSP Project 86992 Progress Report as of 9/2004.

  11. Ground penetrating radar antenna system analysis for prediction of earth material properties

    USGS Publications Warehouse

    Oden, C.P.; Wright, D.L.; Powers, M.H.; Olhoeft, G.

    2005-01-01

    The electrical properties of the ground directly beneath a ground penetrating radar (GPR) antenna very close to the earth's surface (ground-coupled) must be known in order to predict the antenna response. In order to investigate changing antenna response with varying ground properties, a series of finite difference time domain (FDTD) simulations were made for a bi-static (fixed horizontal offset between transmitting and receiving antennas) antenna array over a homogeneous ground. We examine the viability of using an inversion algorithm based on the simulated received waveforms to estimate the material properties of the earth near the antennas. Our analysis shows that, for a constant antenna height above the earth, the amplitude of certain frequencies in the received signal can be used to invert for the permittivity and conductivity of the ground. Once the antenna response is known, then the wave field near the antenna can be determined and sharper images of the subsurface near the antenna can be made. ?? 2005 IEEE.

  12. Acquisition, Visualization and Analysis of Photo Real 3D Virtual Geology at High Accuracy: Oblique, Close Range Data Acquisition From the Ground With Digital Cameras, Terrestrial Laser Scanners and GPS

    NASA Astrophysics Data System (ADS)

    Xu, X.; Aiken, C. L.

    2005-12-01

    For almost seven years we have been mapping geology digitally using a combination of laser rangefinding and GPS. We have extended that concept to add unique real photo texture mapping. This is a unique method combining computer visualization and photogrammetry and has been used to build 3D photo real models at millimeter to centimeter accuracy and resolution of a variety of 3D features especially extensive geologic outcrops in the US, Spain, Ireland, United Kingdom, and Mexico. Although the method is independent of the type of laser rangefinder being used we presently are using fast laser scanners for faster and more detailed models although these data sets are then extremely large resulting in hardware and software problems for users. These models are globally oriented so they can be integrated with other globally positioned data sets such as drill holes, geophysical surveys (seismic and ground penetrating radar), and conventional geologic mapping (stratigraphic sections, outcrop mapping of contacts and orientations.) etc. Three dimensional measurements such as strikes, dips and thicknesses are extracted by fitting surfaces to digitized lines in 3D space defining the intersection of a boundary or fracture/fault with the surface, allowing quantitative measurements with associated statistics. The models have incorporated data from as many as one hundred close range oblique photos (taken from the ground or helicopters etc.) and 60 terrestrial scans over a single site, and laterally over several kilometers. We have also applied the method to processing air photos, using the terrestrial scanners for the terrain model ( at a few centimeters), control from GPS and the commercially acquired air photos for the real photo texture mapping for a fully realized 3D orthophoto. We use the term "real photos" rather than "photorealistic" because the latter has been used for models with texture surfaces that are "like the real" but not the "real" photo surface whereas our approach

  13. Application of Technical Measures and Software in Constructing Photorealistic 3D Models of Historical Building Using Ground-Based and Aerial (UAV) Digital Images

    NASA Astrophysics Data System (ADS)

    Zarnowski, Aleksander; Banaszek, Anna; Banaszek, Sebastian

    2015-12-01

    Preparing digital documentation of historical buildings is a form of protecting cultural heritage. Recently there have been several intensive studies using non-metric digital images to construct realistic 3D models of historical buildings. Increasingly often, non-metric digital images are obtained with unmanned aerial vehicles (UAV). Technologies and methods of UAV flights are quite different from traditional photogrammetric approaches. The lack of technical guidelines for using drones inhibits the process of implementing new methods of data acquisition. This paper presents the results of experiments in the use of digital images in the construction of photo-realistic 3D model of a historical building (Raphaelsohns' Sawmill in Olsztyn). The aim of the study at the first stage was to determine the meteorological and technical conditions for the acquisition of aerial and ground-based photographs. At the next stage, the technology of 3D modelling was developed using only ground-based or only aerial non-metric digital images. At the last stage of the study, an experiment was conducted to assess the possibility of 3D modelling with the comprehensive use of aerial (UAV) and ground-based digital photographs in terms of their labour intensity and precision of development. Data integration and automatic photo-realistic 3D construction of the models was done with Pix4Dmapper and Agisoft PhotoScan software Analyses have shown that when certain parameters established in an experiment are kept, the process of developing the stock-taking documentation for a historical building moves from the standards of analogue to digital technology with considerably reduced cost.

  14. Ground penetrating radar imaging of cap rock, caliche and carbonate strata

    USGS Publications Warehouse

    Kruse, S.E.; Schneider, J.C.; Campagna, D.J.; Inman, J.A.; Hickey, T.D.

    2000-01-01

    Field experiments show ground penetrating radar (GPR) can be used to image shallow carbonate stratigraphy effectively in a variety of settings. In south Florida, the position and structure of cap rock cover on limestone can be an important control on surface water flow and vegetation, but larger scale outcrops (tens of meters) of cap rock are sparse. GPR mapping through south Florida prairie, cypress swamp and hardwood hammock resolves variations in thickness and structure of cap rock to ~3 m and holds the potential to test theories for cap rock-vegetation relationships. In other settings, carbonate strata are mapped to test models for the formation of local structural anomalies. A test of GPR imaging capabilities on an arid caliche (calcrete) horizon in southeastern Nevada shows depth penetration to ~2 m with resolution of the base of caliche. GPR profiling also succeeds in resolving more deeply buried (~5 m) limestone discontinuity surfaces that record subaerial exposure in south Florida. (C) 2000 Elsevier Science B.V. All rights reserved.Field experiments show ground penetrating radar (GPR) can be used to image shallow carbonate stratigraphy effectively in a variety of settings. In south Florida, the position and structure of cap rock cover on limestone can be an important control on surface water flow and vegetation, but larger scale outcrops (tens of meters) of cap rock are sparse. GPR mapping through south Florida prairie, cypress swamp and hardwood hammock resolves variations in thickness and structure of cap rock to approx. 3 m and holds the potential to test theories for cap rock-vegetation relationships. In other settings, carbonate strata are mapped to test models for the formation of local structural anomalies. A test of GPR imaging capabilities on an arid caliche (calcrete) horizon in southeastern Nevada shows depth penetration to approx. 2 m with resolution of the base of caliche. GPR profiling also succeeds in resolving more deeply buried (approx. 5

  15. Imaging of Archaeological Remains at Barcombe Roman Villa using Microwave Tomographic Depictions of Ground Penetrating Radar Data

    NASA Astrophysics Data System (ADS)

    Soldovieri, F.; Utsi, E.; Alani, A.; Persico, R.

    2012-04-01

    to 600MHz (the frequency range of the antennas used). The 2-dimensional plots were formed into a 3-dimensional cube and time slices extracted, on the basis of maximum signal return, at 16ns, 25ns and 29ns. In this work, we show the reprocessing of the GPR data via a microwave tomographic approach based on a linear approximation of the inverse scattering problem [4]. In particular, the effectiveness of this approach ensures a reliable and high resolution representation/visualization of the scene very large in terms of probing wavelength. This has been made possible thanks to the adoption of the approach presented in [5] where the 3D representation was achieved by performing 2D reconstruction and after obtaining the 3D Cube from these 2D reconstructed profiles. In particular, the re-examination of GPR data using microwave tomography has allowed to improve definition of the villa outline and to detect earlier prehistoric remains. [1] Rudling, D., & Butler, C. "Roundhouse to Villa" in Sussex Past & Present 95, pp 6 - 7, 2001. [2] Utsi, E., Wortley Villa paper currently in preparation of EAGE special issue. [3] Utsi, E., & Alani, A. "Barcombe Roman Villa: An Exercise in GPR Time Slicingand Comparative Geophysics", in Koppenjan, S., & Hua, L. (eds) Proceedings of the Ninth International Conference on Ground Penetrating Radar, 2002. [4] F. Soldovieri, R. Persico, E. Utsi, V. Utsi, "The application of inverse scattering techniques with ground penetrating radar to the problem of rebar location in concrete", NDT & E International, Vol. 39, Issue 7, October 2006, Pages 602-607. [5] R. Persico, F. Soldovieri, E. Utsi, "Microwave tomography for processing of GPR data at Ballachulish", Journal of Geophysics and Engineering, vol.7, no. 2, pp. 164-173, June 2010

  16. A ground penetrating radar survey to assist the sedimentologic and geomorphologic interpretation of washover fans in NW Australia.

    NASA Astrophysics Data System (ADS)

    Leopold, Matthias; Callow, Nik; May, Simon Matthias

    2015-04-01

    The NW Australian coast is prone to both tropical cyclones and tsunamis which can generate extreme wave events in this region. Along the W coast of the Exmouth Gulf, distinct lobate washover fans consist of shell debris and sand layers and exhibit delta-type sedimentation patterns. Using ground penetrating radar (GPR) and unmanned aerial vehicle survey (UAV) techniques helps in a first step to locate important geomorphic points of interest for later sedimentologic, pedologic and chronologic studies. UAV surveys developed a detailed 3D surface model (cm resolution) which helps to better understand the extent and the general pattern of the geomorphic forms. A subsequent GPR survey using a bi-static 250 MHz antenna with a Mala CU-II in a continuous mode generated multiple transects which could be further interpreted. Coarse sandy-gravelly washover fan-matrix sits on top of clayey pan sediments which provide an excellent sedimentologic contrast for GPR surveys. Multiple delta like structures representing single wave activities, erosion channels and their backfill structures as well as several palaeosols could be identified in the GPR images. This information is now used in a subsequent chrono-stratigraphic approach for a final geomorphic interpretation.

  17. Estimating Carbon Stocks Along Depressional Wetlands Using Ground Penetrating Radar (GPR) in the Disney Wilderness Preserve (Orlando, Florida)

    NASA Astrophysics Data System (ADS)

    McClellan, M. D.; Comas, X.; Wright, W. J.; Mount, G. J.

    2014-12-01

    Peat soils store a large fraction of the global carbon (C) in soil. It is estimated that 95% of carbon in peatlands is stored in the peat soil, while less than 5% occurs in the vegetation. The majority of studies related to C stocks in peatlands have taken place in northern latitudes leaving the tropical and subtropical latitudes clearly understudied. In this study we use a combination of indirect non-invasive geophysical methods (mainly ground penetrating radar, GPR) as well as direct measurements (direct coring) to calculate total C stocks within subtropical depressional wetlands in the Disney Wilderness Preserve (DWP, Orlando, FL). A set of three-dimensional (3D) GPR surveys were used to detect variability of the peat layer thickness and the underlying peat-sand mix layer across several depressional wetlands. Direct samples collected at selected locations were used to confirm depth of each interface and to estimate C content in the laboratory. Layer thickness estimated from GPR and direct C content were used to estimate total peat volume and C content for the entire depressional wetland. Through the use of aerial photos a relationship between surface area along the depressional wetlands and total peat thickness (and thus C content) was established for the depressions surveyed and applied throughout the entire preserve. This work shows the importance of depressional wetlands as critical contributors of the C budget at the DWP.

  18. Ground and Aerial Digital Documentation of Cultural Heritage: Providing Tools for 3d Exploitation of Archaeological Data

    NASA Astrophysics Data System (ADS)

    Cantoro, G.

    2017-02-01

    Archaeology is by its nature strictly connected with the physical landscape and as such it explores the inter-relations of individuals with places in which they leave and the nature that surrounds them. Since its earliest stages, archaeology demonstrated its permeability to scientific methods and innovative techniques or technologies. Archaeologists were indeed between the first to adopt GIS platforms (since already almost three decades) on large scale and are now between the most demanding customers for emerging technologies such as digital photogrammetry and drone-aided aerial photography. This paper aims at presenting case studies where the "3D approach" can be critically analysed and compared with more traditional means of documentation. Spot-light is directed towards the benefits of a specifically designed platform for user to access the 3D point-clouds and explore their characteristics. Beside simple measuring and editing tools, models are presented in their actual context and location, with historical and archaeological information provided on the side. As final step of a parallel project on geo-referencing and making available a large archive of aerial photographs, 3D models derived from photogrammetric processing of images have been uploaded and linked to photo-footprints polygons. Of great importance in such context is the possibility to interchange the point-cloud colours with satellite imagery from OpenLayers. This approach makes it possible to explore different landscape configurations due to time-changes with simple clicks. In these cases, photogrammetry or 3D laser scanning replaced, sided or integrated legacy documentation, creating at once a new set of information for forthcoming research and ideally new discoveries.

  19. Application of ground-penetrating radar technique to evaluate the waterfront location in hardened concrete

    NASA Astrophysics Data System (ADS)

    Rodríguez-Abad, Isabel; Klysz, Gilles; Martínez-Sala, Rosa; Balayssac, Jean Paul; Mené-Aparicio, Jesús

    2016-12-01

    The long-term performance of concrete structures is directly tied to two factors: concrete durability and strength. When assessing the durability of concrete structures, the study of the water penetration is paramount, because almost all reactions like corrosion, alkali-silica, sulfate, etc., which produce their deterioration, require the presence of water. Ground-penetrating radar (GPR) has shown to be very sensitive to water variations. On this basis, the objective of this experimental study is, firstly, to analyze the correlation between the water penetration depth in concrete samples and the GPR wave parameters. To do this, the samples were immersed into water for different time intervals and the wave parameters were obtained from signals registered when the antenna was placed on the immersed surface of the samples. Secondly, a procedure has been developed to be able to determine, from those signals, the reliability in the detection and location of waterfront depths. The results have revealed that GPR may have an enormous potential in this field, because excellent agreements were found between the correlated variables. In addition, when comparing the waterfront depths calculated from GPR measurements and those visually registered after breaking the samples, we observed that they totally agreed when the waterfront was more than 4 cm depth.

  20. Use of Ground Penetrating Radar for Site Investigation of Low-Volume Roadways and Design Recommendations

    NASA Astrophysics Data System (ADS)

    Scullion, T.; Saarenketo, T.

    2002-07-01

    This report will present several case studies describing the use of ground penetrating radar (GPR) technology for site investigations. Two types of GPR will be described-the air-launched and ground-coupled systems. The use of air-launched radar is well established within the Texas Department of Transportation (TxDOT). The limitation of this technology is its depth of penetration. While providing very useful information on the surface and base layers, it provides little information on the sub-grade soils. The use of low-frequency ground-coupled radar systems will provide little useful near-surface information but it can provide data on sub-grade properties and how they vary along a project. Combining both radar types can potentially provide a comprehensive subsurface investigative tool for both new pavement construction and for major pavement rehabilitation projects. In this report a brief description will be provided of the different systems together with the software used to process the GPR signals. Air-launched data are processed with the COLORMAP system developed by the Texas Transportation Institute. The ground-coupled data are processed using the Road Doctor system developed by Roadscanners, Inc. of Finland. The case studies presented were collected on actual TxDOT evaluation projects mainly in the Bryan District. They range from near-surface applications where the goal was to identify changes in pavement structure which were not available in construction records to identifying the areas beneath the pavement subsidence associated with strip mining activities.

  1. The Use of Ground Penetrating Radar to Exploring Sedimentary Ore In North-Central Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Almutairi, Yasir; Almutair, Muteb

    2015-04-01

    Ground Penetrating Radar (GPR) is a non-destructive geophysical method that provides a continuous subsurface profile, without drilling. This geophysical technique has great potential in delineating the extension of bauxites ore in north-central Saudi Arabia. Bauxite is from types sedimentary ores. This study aim to evaluate the effectiveness of Ground Penetrating Radar (GPR) to illustrate the subsurface feature of the Bauxite deposits at some selected mining areas north-central Saudi Arabia. Bauxite is a heterogeneous material that consists of complex metals such as alumina and aluminum. An efficient and cost-effect exploration method for bauxite mine in Saudi Arabia is required. Ground penetrating radar (GPR) measurements have been carrying out along outcrop in order to assess the potential of GPR data for imaging and characterising different lithological facies. To do so, we have tested different antenna frequencies to acquire the electromagnetic signals along a 90 m profile using the IDS system. This system equipped with a 25 MHz antenna that allows investigating the Bauxite layer at shallow depths where the clay layers may existed. Therefore, the 25 MHz frequency antenna has been used in this study insure better resolution of the subsurface and to get more penetration to image the Bauxite layer. After the GPR data acquisition, this data must be processed in order to be more easily visualized and interpreted. Data processing was done using Reflex 6.0 software. A series of tests were carried out in frequency filtering on a sample of radar sections, which was considered to better represent the entire set of data. Our results indicated that the GPR profiling has a very good agreement for mapping the bauxite layer depth at range of 7 m to 11 m. This study has emphasized that the high-resolution GPR method is the robust and cost-effect technique to map the Bauxite layer. The exploration of Bauxite resource using the GPR technique could reduce the number of holes to

  2. Magnetic and ground penetrating radar surveys for the research of Medieval settlements in the inland of the Marche Region (Italy)

    NASA Astrophysics Data System (ADS)

    Bavusi, M.; Giocoli, A.; Balasco, M.; Favulli, G.; Moscatelli, U.; Minguzzi, S.; Gnesi, D.; Virgili, S.

    2009-04-01

    This work was carried out in the framework of the R.I.M.E.M. project (Research on Medieval settlements in the inland of the Marche Region, Italy.) leaded by the Universities of Macerata and Udine and having the aim to produce a significant contribution for the comprehension of the settlement process in the Central and Southern Italy during the Late Roman Period and Early Middle Ages. Then, an extensive gradiometric survey were carried out, by using a vapour caesium magnetometer, in the area included amongst the municipal districts of Caldarola, Cessapalombo and San Ginesio, sited in the area closed to Macerata between the valleys of Chienti and Fiastra rivers. Moreover, in the most interesting areas, a 400 MHz 3D ground penetrating radar (GPR)survey was carried out in order to get the precise overlapping with the magnetic method. The Magnetic method is now a standard practice in the archaeological research taken into great consideration for its non-destructivity and quickness and its capability of mapping wide areas in quite a short lapse of time (Bavusi et al., 2008). Moreover the method provides an information well correlable with remote sensing data (Gallo et al, 2008). The GPR method is extremely useful for archaeologists thanks to its non-destructivity and capability of giving real-time and high-resolution data (Basile et al., 2000). Today the effectiveness of this method was improved by powerful 3D visualisation methods as well as 3D space, time or depth slices and iso-amplitude surfaces, too (Nuzzo et al., 2002). The integrations of several geophysical methods are usual (Sambuelli et al.1999, De Domenico et al., 2001; Chianese et al., 2004) particularly when a simple comparison in cross section along the same profiles can be performed. In this work the overlapping between two kinds of data was complicated by different outputs coming from two methods: maps for the magnetic method and cross sections for the GPR one. The 3D survey design for the GPR survey and

  3. Ground penetrating radar survey on the cross-stratified overbank deposits from the 2006 eruption of Tungurahua volcano, Ecuador.

    NASA Astrophysics Data System (ADS)

    Amin Douillet, Guilhem; Abolghasem, Amir; Rémi Dujardin, Jean; Kueppers, Ulrich; Hall, Jonathan; Mothes, Patricia; Dingwell, Donald

    2013-04-01

    The deposits of the 2006 pyroclastic density currents (PDCs) at Tungurahua are organized as 1) massive, coarse-grained deposits confined to valleys of the drainage network and 2) cross-stratified, ash-dominated overbank deposits from dilute PDCs. These overbank deposits are exceptionally well preserved and show dune bedforms shaping the surface of the outcrops. In order to gain insights into the depositional mechanisms of the latter, we combined a terrestrial laser scanner (TLS) survey with a ground penetrating radar (GPR) dense network of profiles. The GPR survey permits to look at the internal cross stratification patterns in a non-destructive way. Three antennas with frequencies at 250, 500 and 800 MHz, respectively, permitted to image down to 10, 7 and 3 m depth. While the 800 MHz antenna was found to be very efficient to image cross-lamination, the 250 MHz antenna permitted to recognize major flow units. The GPR dataset profits from the TLS topography data, which are integrated in the processing of the data. From a dense array (profiles at 10 cm spacing) over different types of dune bedforms with the 800 MHz antenna, we manage to reconstruct the 3D internal patterns. Using the 250 MHz antenna, >50 profiles (20-80 m length) over a zone ca. 300*300 m permit to reconstruct and follow the major flow units on the overbanks and their 3D evolution as well as the pre-eruptive paleosoil. Notable results are: (1) the revelation of several units of dense pyroclastic flow deposits below the dilute PDC deposits on the overbanks. This may indicate that the valleys were filled by the time of deposition of the dune bedforms, a result not inferred in previous studies. Moreover, the number of units is greater than previously accessed. (2) For dune bedforms, the root of a structure is found to be located deeper than expected with striking spatial stability during the whole deposition stage, indicating that these bedforms are triggered by basal topographic disturbance. (3

  4. Airborne Ground Penetrating Radar (GPR) for peat analyses in the Canadian Northern wetlands study

    NASA Technical Reports Server (NTRS)

    Pelletier-Travis, Ramona E.

    1991-01-01

    The study was conducted as part of the NASA Biospherics Research on Emissions from Wetlands (BREW) program. An important aspect of the program is to investigate the terrestrial production and atmospheric distribution of methane and other gases contributing to global warming. Multi-kilometer transects of airborne (helicopter) Ground Penetrating Radar (GPR) data were collected periodically along the 100 km distance from the coast inland so as to obtain a regional trend in peat depth and related parameters. Global Positioning System (GPS) data were simultaneously collected from the helicopter to properly georeference the GPR data. Additional 50 m ground-based transects of GPR data were also collected as a source of ground truthing, as a calibration aid for the airborne data sets, and as a source of higher resolution data for characterizing the strata within the peat. In situ peat depth probing and soil characterizations from excavated soil pits were used to verify GPR findings. Results from the ground-based data are presented.

  5. Through the looking glass: Applications of ground-penetrating radar in archaeology

    NASA Astrophysics Data System (ADS)

    Stamos, Antonia

    The focus of this dissertation is to present the results of four years' worth of geophysical surveying at four major archaeological sites in Greece and the benefits to the archaeological community. The ground penetrating radar offers an inexpensive, non-destructive solution to the problem of deciding how much of a site is worth excavating and which areas would yield the most promising results. An introduction to the ground penetrating radar, or GPR, the equipment necessary to conduct a geophysical survey in the field, and the methods of data collection and subsequent data processing are all addressed. The benefits to the archeological community are many, and future excavations will incorporate such an important tool for a greater understanding of the site. The history of GPR work in the archaeological field has grown at an astounding rate from its beginnings as a simple tool for petroleum and mining services in the beginning of the twentieth century. By mid-century, the GPR was first applied to archaeological sites rather than its common use by utility companies in locating pipes, cables, tunnels, and shafts. Although the preliminary surveys were little more than a search to locate buried walls, the success of these initial surveys paved the ground for future surveys at other archaeological sites, many testing the radar's efficacy with a myriad of soil conditions and properties. The four sites in which geophysical surveys with a ground penetrating radar were conducted are Azorias on the island of Crete, Kolonna on the island of Aegina, Mochlos Island and Coastal Mochlos on the island of Crete, and Mycenae in the Peloponnese on mainland Greece. These case studies are first presented in terms of their geographical location, their mythology and etymology, where applicable, along with a brief history of excavation and occupation of the site. Additional survey methods were used at Mycenae, including aerial photography and ERDAS Imagine, a silo locating program now

  6. Coupling Between Microstrip Lines with Finite Width Ground Plane Embedded in Polyimide Layers for 3D-MMICs on Si

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Dalton, Edan; Tentzeris, Emmanouil M.; Papapolymerou, John; Williams, W. Dan (Technical Monitor)

    2001-01-01

    Three-dimensional circuits built upon multiple layers of polyimide are required for constructing Si/SiGe monolithic microwave/millimeter-wave integrated circuits on complementary metal oxide semiconductor (CMOS) (low resistivity) Si wafers. Thin film microstrip lines (TFMS) with finite width ground planes embedded in the polyimide are often used. However, the closely spaced TFMS lines are susceptible to high levels of coupling, which degrades circuit performance. In this paper, Finite Difference Time Domain (FDTD) analysis and experimental measurements are used to show that the ground planes must be connected by via holes to reduce coupling in both the forward and backward directions.

  7. Research perspectives in the field of ground penetrating radars in Armenia

    NASA Astrophysics Data System (ADS)

    Baghdasaryan, Hovik; Knyazyan, Tamara; Hovhannisyan, Tamara

    2014-05-01

    Armenia is a country located in a very complicated region from geophysical point of view. It is situated on a cross of several tectonic plates and a lot of dormant volcanoes. The main danger is earthquakes and the last big disaster was in 1988 in the northwest part of contemporary Armenia. As a consequence, the main direction of geophysical research is directed towards monitoring and data analysis of seismic activity. National Academy of Sciences of Armenia is conducting these activities in the Institute of Geological Sciences and in the Institute of Geophysics and Engineering Seismology. Research in the field of ground penetrating radars is considered in Armenia as an advanced and perspective complement to the already exploiting research tools. The previous achievements of Armenia in the fields of radiophysics, antenna measurements, laser physics and existing relevant research would permit to initiate new promising area of research in the direction of theory and experiments of ground penetrating radars. One of the key problems in the operation of ground penetrating radars is correct analysis of peculiarities of electromagnetic wave interaction with different layers of the earth. For this, the well-known methods of electromagnetic boundary problem solutions are applied. In addition to the existing methods our research group of Fiber Optics Communication Laboratory at the State Engineering University of Armenia declares its interest in exploring the possibilities of new non-traditional method of boundary problems solution for electromagnetic wave interaction with the ground. This new method for solving boundary problems of electrodynamics is called the method of single expression (MSE) [1-3]. The distinctive feature of this method is denial from the presentation of wave equation's solution in the form of counter-propagating waves, i.e. denial from the superposition principal application. This permits to solve linear and nonlinear (field intensity-dependent) problems

  8. Dipole antenna properties and their effects of ground penetrating radar data

    NASA Astrophysics Data System (ADS)

    Radzevicius, Stanley Jude

    2001-12-01

    Ground penetrating radar uses antennas to transmit electromagnetic energy into the subsurface and record energy scattered from subsurface objects. Antenna patterns describe the amplitude and vibration directions of the electromagnetic fields radiated by antennas. Radiation patterns are a function of many variables such as frequency, observation distance, soil electrical properties, antenna design, and antenna height above the interface. Knowledge of how these properties affect GPR antenna patterns are important for the proper design of ground penetrating radar surveys and data interpretation. Antenna pattern information can be combined with the scattering characteristics of subsurface objects to constrain the size, shape, orientation, and physical properties of buried objects. Numerical modeling of antenna patterns provides physical insight into radiation mechanisms and the effects of physical properties on antenna patterns. Wave type, polarization, and amplitudes of radiated fields are investigated for a variety of soil properties and antenna heights relative to the air-soil interface. Antenna patterns are not commonly utilized in GPR because near-field patterns are poorly understood and because they are a function of frequency, soil properties, and depth of investigation. Traditional asymptotic, geometrical optics antenna pattern solutions neglect the lateral wave term and are insufficient for many ground penetrating radar (GPR) applications. Space and lateral wave mechanisms are clearly observed in numerical simulations using finite difference time domain (FDTD) models. Numerical models of antenna patterns are verified using physical experiments over a water filled tank. The polarization dependent scattering characteristics of planes and cylinders, that represent such commonly encountered objects as stratigraphy and buried utilities, are used to illustrate the significance of polarization for imaging subsurface objects. Analytical solutions are plotted for a

  9. 3D Dynamic Rupture with Slip Reactivation and Ground Motion Simulations of the 2011 Mw 9.0 Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Dalguer, Luis; Galvez, Percy

    2013-04-01

    Seismological, geodetic and tsunami observations, including kinematic source inversion and back-projection models of the giant megathrust 2011 Mw 9.0 Tohoku earthquake indicate that the earthquake featured complex rupture patterns, with multiple rupture fronts and rupture styles. The compilation of these studies reveals fundamentally three main feature: 1) spectacular large slip over 50m, 2) the existence of slip reactivation and 3) distinct regions of low and high frequency radiation. In this paper we investigate the possible mechanisms causing the slip reactivation. For this purpose we perform earthquakes dynamic rupture and strong ground motion simulations. We investigate two mechanisms as potential sources of slip reactivation: 1) The additional push to the earthquake rupture (slip reactivation) comes from the rupture front back propagating from the free-surface after rupturing the trench of the fault, a phenomena usually observed in dynamic rupture simulations of dipping faults (e.g. Dalguer et al. 2001). This mechanism produces smooth slip velocity reactivation with low frequency content. 2) Slip reactivation governed by the friction constitutive low (in the form given by Kanamori and Heaton, 2000) in which frictional strength drops initially to certain value, but then at large slips there is a second drop in frictional strength. The slip velocity caused by this mechanism is a sharp pulse capable to radiate stronger ground motion. Our simulations show that the second mechanism produces synthetic ground motion pattern along the Japanese cost of the Tohoku event consistent with the observed ground motion. In addition, the rupture pattern with slip reactivation is also consistent with kinematic source inversion models in which slip reactivation is observed. Therefore we propose that the slip reactivation observed in this earthquake is results of strong frictional strength drop, maybe caused by fault melting, pressurization, lubrication or other thermal weakening

  10. Disturbances in the soil: finding buried bodies and other evidence using ground penetrating radar.

    PubMed

    Miller, P S

    1996-07-01

    Ground penetrating radar (GPR) is an efficient and effective means to search for buried evidence, whether it be a clandestine grave, formal burial, or certain missing articles from a crime scene. The procedures for GPR used by the U.S. Army Central Identification Laboratory, Hawaii (CILHI), are the result of several years of experimentation on a variety of ground surfaces in Hawaii, Southeast Asia and the mainland U.S. This remote sensing method does not usually provide direct information that there is a body or other specific object beneath the ground. Most of the time the GPR has been used to determine where a target object is not located. The key feature of GPR is that it can detect recent changes in shallow soil conditions caused by the disturbance of soil and the intrusion of different material. Using the methods described here, the investigator should be able to determine the precise metric grid coordinates for a subsurface disturbance, as well as the approximate size, the general shape, and the depth of the buried material. Success will vary with soil conditions. The conditions suitable or not practical for using GPR are summarized. This remote sensing technology can have wider use in crime scene investigations due to the recent introduction of more user-friendly software and more portable hardware.

  11. Investigation of the Roosevelt Road Transmitter Site, Fort Richardson, Alaska, using ground penetrating radar

    SciTech Connect

    Hunter, L.E.; Delaney, A.J.; Lawson, D.E.

    1999-03-01

    The Roosevelt Road Transmitter Site is the location of a decommissioned bunker on Fort Richardson, near Anchorage, Alaska. The site was used from World War II to the Korean War as part of an Alaskan communications network. The bunker and support buildings were vandalized following its decommissioning in the mid-1960s, resulting in PCB contamination of the bunker and soils around the above-ground transmitter annex. CRREL conducted a ground-penetrating radar (GPR) investigation of the site in June 1996, at the request of the Directorate of Public Works on Fort Richardson. Nine transect lines were established, each being profiled with 100- and 400-MHz antennas. Both antennas systems defined the extent of the bunker and identified the presence of buried utilities. The 100-MHz antenna provided large-scale resolution of the bunker, limits of site excavation, and large stratigraphic horizons in the undisturbed sediments. The 400-MHz antenna provided finer resolution that allowed identification of steel reinforcement in the bunker ceiling, utility walls and floor, and the walls of the inner and outer bunker. High amplitude resonance and hyperbolas in the record characterize the response from the Transmitter Annex foundation, buried pipes, and utilities. The GPR survey shows its utility for detecting the extent of abandoned underground structures and identifying the extent of original ground excavations.

  12. Scoria Cone and Tuff Ring Stratigraphy Interpreted from Ground Penetrating Radar, Rattlesnake Crater, Arizona

    NASA Astrophysics Data System (ADS)

    Kruse, S. E.; McNiff, C. M.; Marshall, A. M.; Courtland, L. M.; Connor, C.; Charbonnier, S. J.; Abdollahzadeh, M.; Connor, L.; Farrell, A. K.; Harburger, A.; Kiflu, H. G.; Malservisi, R.; Njoroge, M.; Nushart, N.; Richardson, J. A.; Rookey, K.

    2013-12-01

    Numerous recent studies have demonstrated that detailed investigation of scoria cone and maar morphology can reveal rich details the eruptive and erosion histories of these volcanoes. A suite of geophysical surveys were conducted to images Rattlesnake Crater in the San Francisco Volcanic Field, AZ, US. We report here the results of ~3.4 km of ground penetrating radar (GPR) surveys that target the processes of deposition and erosion on the pair of cinder cones that overprint the southeast edge of Rattlesnake crater and on the tuff ring that forms the crater rim. Data were collected with 500, 250, 100, and 50 MHz antennas. The profiles were run in a radial direction down the northeast flanks of the cones (~1 km diameter, ~120 meters height) , and on the inner and outer margins of the oblong maar rim (~20-80 meters height). A maximum depth of penetration of GPR signal of ~15m was achieved high on the flanks of scoria cones. A minimum depth of essentially zero penetration occurred in the central crater. We speculate that maximum penetration occurs near the peaks of the cones and crater rim because ongoing erosion limits new soil formation. Soil formation would tend to increase surface conductivity and hence decrease GPR penetration. Soil is probably better developed within the crater, precluding significant radar penetration there. On the northeast side of the gently flattened rim of the easternmost scoria cone, the GPR profile shows internal layering that dips ~20 degrees northeast relative to the current ground surface. This clearly indicates that the current gently dipping surface is not a stratigraphic horizon, but reflects instead an erosive surface into cone strata that formed close to the angle of repose. Along much of the cone flanks GPR profiles show strata dipping ~4-5 degrees more steeply than the current surface, suggesting erosion has occurred over most of the height of the cone. An abrupt change in strata attitude is observed at the gradual slope

  13. Improving the resolution of a stepped frequency cw ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Langman, Alan; Inggs, Michael R.; Flores, Benjamin C.

    1994-09-01

    One of the major problems in sub-surface radar is the compromise between resolution and penetration depth. Stepped frequency continuous wave radars (SFCW) have improved the penetration depth of sub-surface radars by achieving greater sensitivity, instantaneous dynamic range, and better spectral control than conventional pulsed systems. However, the resolution in SFCW radar systems is limited by the fast Fourier transform (FFT) processing required to extract depth (i.e., range) information from the vector frequency data. This paper investigates the potential use of the extended prony method for range extraction in a SFCW ground penetrating radar (GPR). This method fits data to a complex exponential model, without placing the restriction on the data that the targets are constrained to definite range bins. This allows for the resolution of the system to go beyond the limitations set by the bandwidth of the waveform. Simulations are presented to examine the effects of the signal-to-noise ratio (SNR) on performance, when applying the extended prony method to a simple GPR model. At all times the results are compared with the standard FFT processing. A prototype radar system has been constructed at the University of Cape Town using standard laboratory equipment, a computer and additional digital and rf circuitry. The antennas used are two ridged wideband horns. Targets were buried in a sandpit and measurements were taken over a 2 GHz bandwidth with a center frequency of 3 GHz. Comparisons ware made between the FFT and the extended prony method for different portions of the system bandwidth, showing the extended prony method can achieve high resolution using a reduced bandwidth.

  14. Applicability of ground penetrating radar to subsurface studies of karst terrain in Florida

    SciTech Connect

    Kuo, S.S.; Beck, B.F.; Jenkins, D.T.; Tannous, B.S.; Sweeney, M.

    1985-01-01

    Karstic subsidence (sinkhole, or doline, collapse) is a serious problem in Florida; subsurface detection is important in foundation studies. It is critical to delineate subsoil karren and solution pipes in the buried limestone surface, which may cause subsidence sinkholes, as well as cavities which may cause collapse. To test the capabilities of ground penetrating radar (GPR) to detect underground cavities three air-filled model cavities, 0.3 to 0.9 m in diameter, were buried above the water table and one water-filled model cavity, 1.2 m in diameter, was emplaced below the water table, at various depths. The characteristic radar response to these voids is a function of the composition of the strata penetrated, the depth of the groundwater table, and the radar antenna frequency. In field investigations in Central and North Florida, where the karstified limestone is mantled by a variable thickness of sand and clay, GPR can profile the limestone surface and detect cavernous voids in the limestone to a depth of 12 m, if the overburden is primarily sand. In many cases, ongoing karst processes have deformed the overburden strata by gradual subsidence and the radar profile of shallow clay layers may reveal karstic foundation problems even when the signal cannot detect the limestone.

  15. Electrical Resistivity and Ground Penetrating Radar Investigation of Presence and Extent of Hardpan Soil Layers

    NASA Astrophysics Data System (ADS)

    Thao, S. J.; Plattner, A.

    2015-12-01

    Farming in the San Joaquin Valley in central California is often impeded by a shallow rock-hard layer of consolidated soil commonly referred to as hardpan. To be able to successfully farm, this layer, if too shallow, needs to be removed either with explosives or heavy equipment. It is therefore of great value to obtain information about depth and presence of such a layer prior to agricultural operations. We tested the applicability of electrical resistivity tomography and ground penetrating radar in hardpan detection. On our test site of known hardpan depth (from trenching) and local absence (prior dynamiting to plant trees), we successfully recovered the known edge of a hardpan layer with both methods, ERT and GPR. The clay-rich soil significantly reduced the GPR penetration depth but we still managed to map the edges at a known gap where prior dynamiting had removed the hardpan. Electrical resistivity tomography with a dipole-dipole electrode configuration showed a clear conductive layer at expected depths with a clearly visible gap at the correct location. In our data analysis and representation we only used either freely available or in-house written software.

  16. Magnetometry and Ground-Penetrating Radar Studies in the Sihuas Valley, Peru

    NASA Astrophysics Data System (ADS)

    Wisnicki, E.; Papadimitrios, K.; Bank, C.

    2013-12-01

    The Quillcapampa la Antigua site in Peru's Sihuas Valley is a settlement from Peru's Middle Horizon (600-100 A.D.). Archaeological interest in the area stems from the question of whether ancient civilizations were able to have extensive state control of distant groups, or whether state influence occurred through less direct ties (e.g., marriage, religion, or trade). Our geophysical surveys are preliminary to archaeological digging in the area. Ground-penetrating radar and magnetometry attempt to locate areas of interest for focused archaeological excavation, characterize the design of architectural remains and burial mounds in the area, and allow archaeologists to interpret the amount of influence the Wari civilization had on the local residents.

  17. Uncertainties in peat volume and soil carbon estimated using ground penetrating radar and probing

    SciTech Connect

    Parsekian, Andrew D.; Slater, Lee; Ntarlagiannis, Dimitrios; Nolan, James; Sebestyen, Stephen D; Kolka, Randall K; Hanson, Paul J

    2012-01-01

    We evaluate the uncertainty in calculations of peat basin volume using high-resolution data . to resolve the three-dimensional structure of a peat basin using both direct (push probes) and indirect geophysical (ground penetrating radar) measurements. We compared volumetric estimates from both approaches with values from literature. We identified subsurface features that can introduce uncertainties into direct peat thickness measurements including the presence of woody peat and soft clay or gyttja. We demonstrate that a simple geophysical technique that is easily scalable to larger peatlands can be used to rapidly and cost effectively obtain more accurate and less uncertain estimates of peat basin volumes critical to improving understanding of the total terrestrial carbon pool in peatlands.

  18. Application of ground-penetrating radar at McMurdo Station, Antarctica

    SciTech Connect

    Stefano, J.E.

    1992-01-01

    Argonne National Laboratory initiated a site investigation program at McMurdo Station, Antarctica, to characterize environmental contamination. The performance and usefulness of ground-penetrating radar (GPR) was evaluated under antarctic conditions during the initial site investigation in January 1991. Preliminary surveys were successful in defining the contact between reworked pyroclastic material and in the prefill, undisturbed pyroclastics and basalts at some sites. Interference from radio traffic at McMurdo Station was not observed, but interference was a problem in work with unshielded antennas near buildings. In general, the results of this field test suggest that high-quality, high-resolution, continuous subsurface profiles can be produced with GPR over most of McMurdo Station.

  19. Application of ground-penetrating radar at McMurdo Station, Antarctica

    SciTech Connect

    Stefano, J.E.

    1992-05-01

    Argonne National Laboratory initiated a site investigation program at McMurdo Station, Antarctica, to characterize environmental contamination. The performance and usefulness of ground-penetrating radar (GPR) was evaluated under antarctic conditions during the initial site investigation in January 1991. Preliminary surveys were successful in defining the contact between reworked pyroclastic material and in the prefill, undisturbed pyroclastics and basalts at some sites. Interference from radio traffic at McMurdo Station was not observed, but interference was a problem in work with unshielded antennas near buildings. In general, the results of this field test suggest that high-quality, high-resolution, continuous subsurface profiles can be produced with GPR over most of McMurdo Station.

  20. Explosive hazard detection using MIMO forward-looking ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Shaw, Darren; Ho, K. C.; Stone, Kevin; Keller, James M.; Popescu, Mihail; Anderson, Derek T.; Luke, Robert H.; Burns, Brian

    2015-05-01

    This paper proposes a machine learning algorithm for subsurface object detection on multiple-input-multiple-output (MIMO) forward-looking ground-penetrating radar (FLGPR). By detecting hazards using FLGPR, standoff distances of up to tens of meters can be acquired, but this is at the degradation of performance due to high false alarm rates. The proposed system utilizes an anomaly detection prescreener to identify potential object locations. Alarm locations have multiple one-dimensional (ML) spectral features, two-dimensional (2D) spectral features, and log-Gabor statistic features extracted. The ability of these features to reduce the number of false alarms and increase the probability of detection is evaluated for both co-polarizations present in the Akela MIMO array. Classification is performed by a Support Vector Machine (SVM) with lane-based cross-validation for training and testing. Class imbalance and optimized SVM kernel parameters are considered during classifier training.

  1. Non-destructive evaluation of moisture content in wood using ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Reci, Hamza; Chinh Maï, Tien; Sbartaï, Zoubir Mehdi; Pajewski, Lara; Kiri, Emanuela

    2016-12-01

    This paper presents the results of a series of laboratory measurements, carried out to study how the ground-penetrating radar (GPR) signal is affected by moisture variation in wood material. The effects of the wood fibre direction, with respect to the polarisation of the electromagnetic field, are investigated. The relative permittivity of wood and the amplitude of the electric field received by the radar are measured for different humidity levels using the direct-wave method in wide angle radar reflection configuration, in which one GPR antenna is moved while the other is kept in a fixed position. The received signal is recorded for different separations between the transmitting and receiving antennas. Dielectric constants estimated from direct waves are compared to those estimated from reflected waves: direct and reflected waves show different behaviour when the moisture content varies, due to their different propagation paths.

  2. Estimating pipeline location using ground-penetrating radar data in the presence of model uncertainties

    NASA Astrophysics Data System (ADS)

    Lähivaara, Timo; Ward, Nicholas F. Dudley; Huttunen, Tomi; Kaipio, Jari P.; Niinimäki, Kati

    2014-11-01

    We study the inverse problem of estimating the pipeline location from ground-penetrating radar data in the context of Bayesian inversion. Maxwell's equations are used to model the electromagnetic wave propagation, and are solved using a high-order discontinuous Galerkin method. The uncertainties related to the wave propagation in inhomogeneous background are taken into account by the Bayesian approximation error (BAE) approach. The inverse problem is solved using the full waveform data. Numerical simulations suggest that by using the BAE the model uncertainties can be taken satisfactorily into account, while at the same time making a significant reduction in the computational burden. Furthermore, the estimates for the location of the pipeline are feasible in the sense that the posterior model supports the actual location.

  3. Urban soil exploration through multi-receiver electromagnetic induction and stepped-frequency ground penetrating radar.

    PubMed

    Van De Vijver, Ellen; Van Meirvenne, Marc; Vandenhaute, Laura; Delefortrie, Samuël; De Smedt, Philippe; Saey, Timothy; Seuntjens, Piet

    2015-07-01

    In environmental assessments, the characterization of urban soils relies heavily on invasive investigation, which is often insufficient to capture their full spatial heterogeneity. Non-invasive geophysical techniques enable rapid collection of high-resolution data and provide a cost-effective alternative to investigate soil in a spatially comprehensive way. This paper presents the results of combining multi-receiver electromagnetic induction and stepped-frequency ground penetrating radar to characterize a former garage site contaminated with petroleum hydrocarbons. The sensor combination showed the ability to identify and accurately locate building remains and a high-density soil layer, thus demonstrating the high potential to investigate anthropogenic disturbances of physical nature. In addition, a correspondence was found between an area of lower electrical conductivity and elevated concentrations of petroleum hydrocarbons, suggesting the potential to detect specific chemical disturbances. We conclude that the sensor combination provides valuable information for preliminary assessment of urban soils.

  4. Application of the Empirical Mode Decomposition to Seismic Reflection and Ground Penetrating Radar Data

    NASA Astrophysics Data System (ADS)

    Battista, B. M.; Addison, A.; Knapp, C.; McGee, T.

    2006-12-01

    Advancements in signal processing may allow for improved imaging and analysis of complex geologic targets found in seismic reflection and ground penetrating radar data (GPR). A recent contribution to signal processing is the Empirical Mode Decomposition (EMD). The EMD empirically reduces a time series to several sub- signals whose sum yield the original time series. The benefit of such a process is to empirically develop signal-dependent, time-variant filters in the time domain. The objective of this work is to determine whether the EMD allows for empirically derived characteristics to be used in filter design and application, resulting in better filter performance and enhanced signal-to-noise ratio. Two data sets are used to show successful application of the EMD to geophysical data. Nonlinear cable strum is removed from one data set while the other is used to remove WOW noise from GPR data. Comparison to traditional techniques demonstrates the effectiveness of the technique.

  5. Conventional and synthetic aperture processing for airborne ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Cameron, Robert M.; Simkins, William L.; Brown, Russell D.

    1994-07-01

    For the past four years Airborne Environmental Surveys, a division of Era Aviation, Inc., has used unique and patented airborne frequency modulated, continuous wave radars and processes for detection and mapping subsurface phenomena. Primary application has focused on the detection of manmade objects in landfills, hazardous waste sites (some of which contain unexploded ordnance), and subsurface plumes of refined free- floating hydrocarbons. Recently, MSB Technologies, Inc. has developed a form of synthetic aperture radar processing, called GPSAR, that is tailored especially for the AES radars. Used as an adjunct to more conventional airborne ground-penetrating radar data processing techniques, GPSAR takes advantage of the radars' coherent transmission and produces imagery that is better focused and more accurate in determining an object's range and true depth. This paper describes the iterative stages of data processing and analysis used with the radars and shows the added advantages that GPSAR processing offers.

  6. Characterization of concrete properties from dielectric properties using ground penetrating radar

    SciTech Connect

    Lai, W.L.; Kou, S.C.; Tsang, W.F.; Poon, C.S.

    2009-08-15

    This paper presents the experimental results of a study of the relationships between light-weight (LWAC) and normal aggregate concrete (NAC) properties, as well as radar wave properties that are derived by using ground penetrating radar (GPR). The former (LWAC) refers to compressive strength, apparent porosity and saturated density, while the latter (NAC) refers to real part of dielectric permittivity ({epsilon}' or real permittivity) and wave energy level (E). Throughout the test period of the newly cast concrete cured for 90 days, the above mentioned material properties gradually changed which can be attributed to the effects of cement hydration, different types of aggregates and initial water to binder ratios. A number of plots describing various properties of concrete such as dielectric, strength and porosity perspectives were established. From these plots, we compare the characteristics of how much and how fast free water was turned to absorbed water in LWAC and NAC. The underlying mechanisms and a mechanistic model are then developed.

  7. Use of high-resolution ground-penetrating radar in kimberlite delineation

    USGS Publications Warehouse

    Kruger, J.M.; Martinez, A.; Berendsen, P.

    1997-01-01

    High-resolution ground-penetrating radar (GPR) was used to image the near-surface extent of two exposed Late Cretaceous kimberlites intruded into lower Permian limestone and dolomite host rocks in northeast Kansas. Six parallel GPR profiles identify the margin of the Randolph 1 kimberlite by the up-bending and termination of limestone reflectors. Five radially-intersecting GPR profiles identify the elliptical margin of the Randolph 2 kimberlite by the termination of dolomite reflectors near or below the kimberlite's mushroom-shaped cap. These results suggest GPR may augment magnetic methods for the delineation of kimberlites or other forceful intrusions in a layered host rock where thick, conductive soil or shale is not present at the surface.

  8. Ground penetrating detection using miniaturized radar system based on solid state microwave sensor.

    PubMed

    Yao, B M; Fu, L; Chen, X S; Lu, W; Guo, H; Gui, Y S; Hu, C-M

    2013-12-01

    We propose a solid-state-sensor-based miniaturized microwave radar technique, which allows a rapid microwave phase detection for continuous wave operation using a lock-in amplifier rather than using expensive and complicated instruments such as vector network analyzers. To demonstrate the capability of this sensor-based imaging technique, the miniaturized system has been used to detect embedded targets in sand by measuring the reflection for broadband microwaves. Using the reconstruction algorithm, the imaging of the embedded target with a diameter less than 5 cm buried in the sands with a depth of 5 cm or greater is clearly detected. Therefore, the sensor-based approach emerges as an innovative and cost-effective way for ground penetrating detection.

  9. Exchanging knowledge and working together in COST Action TU1208: Short-Term Scientific Missions on Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Santos Assuncao, Sonia; De Smedt, Philippe; Giannakis, Iraklis; Matera, Loredana; Pinel, Nicolas; Dimitriadis, Klisthenis; Giannopoulos, Antonios; Sala, Jacopo; Lambot, Sébastien; Trinks, Immo; Marciniak, Marian; Pajewski, Lara

    2015-04-01

    creating a robust methodological foundation for the combined analysis of electromagnetic-induction and GPR data. The fifth STSM was carried out by Loredana Matera, who visited Jacopo Sala at 3d-radar (Norway). They tested an innovative reconfigurable stepped-frequency GPR, designed and realised in Italy. The prototype was compared with commercial equipment produced in Norway. Through laboratory experiments as well as outdoor campaigns in urban scenarios with archaeological remarks, a deeper knowledge of the Italian prototype was achieved and plans were made to improve it. Finally, Nicolas Pinel visited Sébastien Lambot at the Université catholique de Louvain (UCL); the last STSM presented in this abstract, was devoted to investigating how to model the effect of soil roughness in the inversion of ultra wide-band off-ground monostatic GPR signals. The aim of this research is the noninvasive quantification of soil properties through the use of GPR. The work focused on incorporating the improved asymptotic forward electromagnetic model developed by Pinel et al. in the multilayer Green function code developed at UCL. Acknowledgement The Authors thank COST, for funding the Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar,' supporting these STSMs.

  10. Preliminary design of a space system operating a ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    D'Errico, Marco; Ponte, Salvatore; Grassi, Michele; Moccia, Antonio

    2005-12-01

    Ground-penetrating radars (GPR) are currently used only in ground campaigns or in few airborne installations. A feasibility analysis of a space mission operating a GPR for archaeological applications is presented in this work with emphasis on spacecraft critical aspects: antenna dimension and power required for achieving adequate depth and accuracy. Sensor parametric design is performed considering two operating altitudes (250 and 500 km) and user requirements, such as minimum skin depth, vertical and horizontal resolution. A 500-km altitude, 6 a.m.-6 p.m. sun-synchronous orbit is an adequate compromise between atmospheric drag and payload transmitted average power (12 kW) to achieve a 3-m penetration depth. The satellite bus preliminary design is then performed, with focus on critical subsystems and technologies. The payload average power requirement can be kept within feasible limits (1 kW) by using NiH2 batteries to supply the radar transmitter, and with a strong reduction of the mission duty cycle ( 40km×1100km are observed per orbit). As for the electric power subsystem, a dual-voltage strategy is adopted, with the battery charge regulator supplied at 126 V and the bus loads at 50 V. The overall average power (1.9 kW), accounting for both payload and bus needs, can be supplied by a 20m2 GaAs solar panel for a three-year lifetime. Finally, the satellite mass is kept within reasonable limits (1.6 tons) using inflatable-rigidisable structure for both the payload antenna and the solar panels.

  11. Evaluation of a highway pavement using non destructive tests: Falling Weight Deflectometer and Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Marecos, Vania; Fontul, Simona; de Lurdes Antunes, Maria

    2015-04-01

    This paper presents the results of the application of Falling Weight Deflectometer (FWD) and Ground Penetrating Radar (GPR) to assess the bearing capacity of a rehabilitated flexible highway pavement that began to show the occurrence of cracks in the surface layer, about one year after the improvement works. A visual inspection of the surface of the pavement was performed to identify and characterize the cracks. Several core drills were done to analyse the cracks propagation in depth, these cores were also used for GPR data calibration. From the visual inspection it was concluded that the development of the cracks were top-down and that the cracks were located predominantly in the wheel paths. To determine the thickness of the bituminous and granular layers GPR tests were carried out using two horn antennas of 1,0 GHz and 1,8 GHz and a radar control unit SIR-20, both from GSSI. FWD load tests were performed on the wheel paths and structural models were established, based on the deflections measured, through back calculation. The deformation modulus of the layers was calculated and the bearing capacity of the pavement was determined. Summing up, within this study the GPR was used to continuously detect the layer thickness and the GPR survey data was calibrated with core drills. The results showed variations in the bituminous layer thickness in comparison to project data. From the load tests it was concluded that the deformation modulus of the bituminous layers were also vary variable. Limitations on the pavement bearing capacity were detected in the areas with the lower deformation modulus. This abstract is of interest for COST Action TU1208 Civil Engineering Applications of Ground Penetrating Radar.

  12. Seismic-Reflection and Ground Penetrating Radar for Environmental Site Characterization

    SciTech Connect

    Steeples, Don W.; Plumb, Richard

    1999-06-01

    The goals of the project are: (1) To examine the complementary site-characterization capabilities of modern, three component shallow seismic reflection (SSR) techniques and ground-penetrating radar (GPR) methods at depths ranging from 2 to 8 m at an existing test site; (2) To demonstrate the usefulness of the two methods when used in concert to characterize, in three dimensions, the cone of depression of a pumping well that will serve as a proxy site for fluid-flow at an actual, polluted site; (3) To use the site as an outdoor mesoscale laboratory to validate existing three dimensional ground-penetrating radar and seismic-reflection computer models developed at the University of Kansas. To do this, seismic and GPR data are being collected along the same line(s) and within the same depth range. The principal investigators selected a site in central Kansas as a primary location, and although the site itself is not environmentally sensitive, the area offers attributes that are particularly useful for this research and allow the site to serve as a proxy for areas that are contaminated. As part of an effort to evaluate the strengths of each method, the seismic and GPR surveys are repeated on a seasonal basis to establish how the complementary information obtained varies over time. Because the water table fluctuates seasonally at this site, variations in the two types of data over time also can be observed. Such noninvasive, in-situ methods of identifying and characterizing the hydrologic flow regimes at contaminated sites support the prospect of developing effective, cost conscious cleanup strategies in the near future.

  13. 3D crustal structure and long-period ground motions from a M9.0 megathrust earthquake in the Pacific Northwest region

    USGS Publications Warehouse

    Olsen, K.B.; Stephenson, W.J.; Geisselmeyer, A.

    2008-01-01

    We have developed a community velocity model for the Pacific Northwest region from northern California to southern Canada and carried out the first 3D simulation of a Mw 9.0 megathrust earthquake rupturing along the Cascadia subduction zone using a parallel supercomputer. A long-period (<0.5 Hz) source model was designed by mapping the inversion results for the December 26, 2004 Sumatra–Andaman earthquake (Han et al., Science 313(5787):658–662, 2006) onto the Cascadia subduction zone. Representative peak ground velocities for the metropolitan centers of the region include 42 cm/s in the Seattle area and 8–20 cm/s in the Tacoma, Olympia, Vancouver, and Portland areas. Combined with an extended duration of the shaking up to 5 min, these long-period ground motions may inflict significant damage on the built environment, in particular on the highrises in downtown Seattle.

  14. Coupling Between Microstrip Lines and Finite Ground Coplanar Lines Embedded in Polyimide Layers for 3D-MMICs on Silicon

    NASA Technical Reports Server (NTRS)

    Ponchak, G. E.; Bushyager, N.; Papapolymerou, J.; Tentzeris, E. M.; Laskar, J.

    2002-01-01

    Three-dimensional circuits built upon multiple layers of polyimide are required for constructing Si/SiGe monolithic microwave/mm-wave integrated circuits on CMOS (low resistivity) Si wafers. It is expected that these circuits will replace the ones fabricated on GaAs and reduce the overall system cost. However, the closely spaced transmission lines that are required for a high-density circuit environment are susceptible to high levels of cross-coupling, which degrades the overall circuit performance. In this paper, theoretical and experimental results on coupling and ways to reduce it are presented for two types of transmission lines: a) the microstrip line and b) the Finite Ground Coplanar (FGC) line. For microstrip lines it is shown that a fence of metalized via-holes can significantly reduce coupling, especially in the case when both lines are on the same polyimide layer or when the shielding structure extends through several polyimide layers. For closely spaced microstrip lines, coupling is lower for a metal filled trench shield than a via-hole fence. Coupling amongst microstrip lines is dependent on the ratio of line separation to polyimide thickness and is primarily due to magnetic fields. For FGC lines it is shown that they have in general low coupling that can be reduced significantly when there is even a small gap between the ground planes of each line. FGC lines have approximately 8 dB lower coupling than coupled coplanar waveguides (CPW). In addition, forward and backward characteristics of the FGC lines do not resemble those of other transmission lines such as microstrip. Therefore, the coupling mechanism of the FGC lines is different compared to thin film microstrip lines.

  15. Comparison of ground-based UV irradiance measurements with satellite-derived values and 1-D- and 3-D-radiative transfer model calculations in mountainous terrain

    NASA Astrophysics Data System (ADS)

    Wagner, J. E.; Arola, A.; Blumthaler, M.; Fitzka, M.; Kift, R.; Kreuter, A.; Rieder, H. E.; Simic, S.; Webb, A.; Weihs, P.

    2009-04-01

    Since the discovery of anthropogenic ozone depletion more than 30 year ago, the scientific community has shown an increasing interest in UV-B radiation. Nowadays, ground-based high quality measurements of spectrally resolved UV-radiation are available. On the other hand, 1-D- and 3-D models have been developed, that describe the radiative transfer through the atmosphere physically very accurately. Another approach for determining the UV-irradiance at the surface of the earth is the use of satellite-based reflectance measurements as input for retrieval algorithms. At the moment, the research focuses on the impact of clouds on UV-radiation, but the impact of mountains on UV-radiation, especially in combination with high surface albedo due to snowcover, is also very strong and detailed comparisons between measurements and modelling are lacking. Therefore, three measurement campaigns had been conducted in alpine areas of Austria (Innsbruck and Hoher Sonnblick). The goal was to investigate the impact of alpine terrain in combination with snowcover on spectral UV-irradiance and actinic flux. This contribution uses the ground-based UV-irradiance measurements to evaluate three different UV-irradiance calculation methods. Results from three different calculation methods (satellite retrieval, 1-D- and 3-D radiative transfer model) for UV radiation in terms of UV-Index, erythemally weighted daily doses and spectrally resolved UV-Irradiance at 305, 310, 324 and 380nm are presented and compared with ground-based high quality measurements. The real case study is performed in very inhomogenous terrain under clear sky conditions. The values of the different methods are not only compared for the measurements sites, but additionally the impact of altitude is investigated. So far it seems, that 1-D simulations show the best agreement (±10%) with the measurements whereas the 3-D model simulations and satellite retrieved values differ much more. Satellite retrieved values

  16. Ground-penetrating radar exploration for ancient monuments at the Valley of Mummies -Kilo 6, Bahariya Oasis, Egypt

    NASA Astrophysics Data System (ADS)

    Shaaban, Fathy A.; Abbas, Abbas M.; Atya, Magdy A.; Hafez, Mahfouz A.

    2009-06-01

    A Valley of Mummies was discovered recently by an Egyptian team at Bahariya Oasis, located about 380 km west of the pyramids. Four tombs were excavated, and inside them were found one hundred and five mummies (105), many of them beautifully gilded. These mummies, many sumptuously decorated with religious scenes, are the very best Roman-Period mummies ever found in Egypt. These remains are around 2000 years old, but they are in remarkable condition. A Ground-Penetrating Radar (GPR) had proved successful in detecting the cavities in resistive soil in which the mummies were found. The GPR survey conducted near the earlier-discovered tombs at Kilo-6 El-Bahariya to Farafra Oasis road is the focus of this paper. The GPR survey was conducted using the SIR-2000 attached to a 200 MHz monostatic antenna. The two areas to be surveyed were selected by the archaeologists in situ. Area one was 40 m × 40 m and Area two was 30 m × 15 m. A grid pattern survey in one direction; with one-meter profile spacing was done to both areas. In addition, a focusing survey was undertaken over the entire Area one. In addition, twenty long GPR profiles were conducted in an attempt to determine the outer, expected limits of the burial area. After the data acquisition, Reflex software was used for data processing and presentation. The final results of the radar survey: in the form of 2D radar records, time slices and 3D block diagrams; were used to guide the archaeologists during the excavation process. The excavation processes have been completed by the archaeologists, and many tombs and mummies were discovered. It is worthy to mention that, the excavations and location of tombs and cavities matched strongly with the GPR results.

  17. Application of Ground Penetrating Radar Surveys and GPS Surveys for Monitoring the Condition of Levees and Dykes

    NASA Astrophysics Data System (ADS)

    Tanajewski, Dariusz; Bakuła, Mieczysław

    2016-08-01

    This paper analyses the possibility of using integrated GPS (Global Positioning System) surveys and ground penetrating radar surveys to precisely locate damages to levees, particularly due to the activity of small fossorial mammals. The technology of intercommunication between ground penetrating radar (GPR) and an RTK (Real-Time Kinematic) survey unit, and the method of data combination, are presented. The errors which may appear during the survey work are also characterized. The procedure for processing the data so that the final results have a spatial character and are ready to be implemented in digital maps and geographic information systems (GIS) is also described.

  18. Ground penetrating radar and direct current resistivity evaluation of the desiccation test cap, Savannah River Site

    SciTech Connect

    Wyatt, D.E.; Cumbest, R.J.

    1996-04-01

    The Savannah River Site (SRS) has a variety of waste units that may be temporarily or permanently stabilized by closure using an impermeable cover to prevent groundwater infiltration. The placement of an engineered kaolin clay layer over a waste unit is an accepted and economical technique for providing an impermeable cover but the long term stability and integrity of the clay in non-arid conditions is unknown. A simulated kaolin cap has been constructed at the SRA adjacent to the Burial Ground Complex. The cap is designed to evaluate the effects of desiccation on clay integrity, therefore half of the cap is covered with native soil to prevent drying, while the remainder of the cap is exposed. Measurements of the continuing impermeability of a clay cap are difficult because intrusive techniques may locally compromise the structure. Point measurements made to evaluate clay integrity, such as those from grid sampling or coring and made through a soil cover, may miss cracks, joints or fissures, and may not allow for mapping of the lateral extent of elongate features. Because of these problems, a non-invasive technique is needed to map clay integrity, below a soil or vegetation cover, which is capable of moderate to rapid investigation speeds. Two non-intrusive geophysical techniques, direct current resistivity and ground penetrating radar (GPR), have been successful at the SRS in geologically mapping shallow subsurface clay layers. The applicability of each technique in detecting the clay layer in the desiccation test cap and associated anomalies was investigated.

  19. Using ground penetrating radar in levee assessment to detect small scale animal burrows

    NASA Astrophysics Data System (ADS)

    Chlaib, Hussein K.; Mahdi, Hanan; Al-Shukri, Haydar; Su, Mehmet M.; Catakli, Aycan; Abd, Najah

    2014-04-01

    Levees are civil engineering structures built to protect human lives, property, and agricultural lands during flood events. To keep these important structures in a safe condition, continuous monitoring must be performed regularly and thoroughly. Small rodent burrows are one of the major defects within levees; however, their early detection and repair helps in protecting levees during flooding events. A set of laboratory experiments was conducted to analyze the polarity change in GPR signals in the presence of subsurface voids and water-filled cavities. Ground Penetrating Radar (GPR) surveys using multi frequency antennas (400 MHz and 900 MHz) were conducted along an 875 meter section of the Lollie Levee near Conway, Arkansas, USA, to assess the levee's structural integrity. Many subsurface animal burrows, water-filled cavities, clay clasts, and metallic objects were investigated and identified. These anomalies were located at different depths and have different sizes. To ground truth the observations, hand dug trenches were excavated to confirm several anomalies. Results show an excellent match between GPR interpreted anomalies and the observed features. In-situ dielectric constant measurements were used to calculate the feature depths. The results of this research show that the 900 MHz antenna has more advantages over the 400 MHz antenna.

  20. Background adaptive division filtering for hand-held ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Lee, Matthew A.; Anderson, Derek T.; Ball, John E.; White, Julie L.

    2016-05-01

    The challenge in detecting explosive hazards is that there are multiple types of targets buried at different depths in a highlycluttered environment. A wide array of target and clutter signatures exist, which makes detection algorithm design difficult. Such explosive hazards are typically deployed in past and present war zones and they pose a grave threat to the safety of civilians and soldiers alike. This paper focuses on a new image enhancement technique for hand-held ground penetrating radar (GPR). Advantages of the proposed technique is it runs in real-time and it does not require the radar to remain at a constant distance from the ground. Herein, we evaluate the performance of the proposed technique using data collected from a U.S. Army test site, which includes targets with varying amounts of metal content, placement depths, clutter and times of day. Receiver operating characteristic (ROC) curve-based results are presented for the detection of shallow, medium and deeply buried targets. Preliminary results are very encouraging and they demonstrate the usefulness of the proposed filtering technique.

  1. A passive seismic experiment and ground penetration radar to characterize subsurface cavities in Eastern Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Asmaidi Chan, Septriandi; Ismail Kaka, SanLinn

    2014-05-01

    We have carried out a small-scale passive seismic experiment over a known shallow cavity at King Fahd University of Petroleum & Minerals in an attempt to characterize the near surface cavities. This experiment was conducted as part of a larger study to develop an integrated geophysical approach (i.e. seismic, gravity, resistivity and ground penetration radar) in detecting and characterizing shallow subsurface cavities. Characterizing shallow cavities is of particular interest in the eastern province of Saudi Arabia where many cavities were discovered during a number of construction projects. We used a Geospace passive seismic recording system to collect continuous data over a partly dolomitized limestone bed with several fractures and cavities. Systematically selected time series data at different times of the day were processed using Geopsy software developed by the SESAME (Site Effects Assessment using Ambient Excitations) project. Data from the 10 Hz geophone was used in this experiment and we extracted part of the data recorded during the night as this has been found to exclude most of the anthropologic noise that usually masks signals on data recorded during the day time. We analyzed time series data and performed spectral analysis. Horizontal-to-vertical ratio (H/V) and power spectral density (PSD) were performed as an enhancement tool to determine the resonance frequencies possibly associated with the shallow cavity. Various processing windows with 5% cosine tapers were applied to reduce spectral leakage. To retain the analysis at frequency range of interest between 0.1 to 20 Hz, a band-pass-filter with smoothing procedure described by Kamo and Omachi (1998) was applied. Moreover, the same frequency peaks were picked at each measuring point to check the stability of the H/V curve. The preliminary results (frequency peaks in the spectral H/V ambient ground motions as well as PSD plots) do not uniquely define the near surface cavity. However, further

  2. Evaluation of landslide hazards with ground-penetrating radar, Lake Michigan coast

    USGS Publications Warehouse

    Barnhardt, Walter A.; Jaffe, Bruce E.; Kayen, Robert

    1999-01-01

    Ground-penetrating radar (GPR) and boreholes were used to investigate a landslide-prone bluff at Sleeping Bear Dunes National Lakeshore on the northeastern coast of Lake Michigan. Based on borehole observations, sediment underlying the area is homogeneous, consisting of well-sorted, medium to coarse sand. GPR penetrated up to 20 m deep in these sediments, revealing the late Quaternary stratigraphy in great detail. We define four units, or radar facies, based on criteria similar to those used in seismic stratigraphy. Directly beneath a landslide at Sleeping Bear Point (and nowhere else in this survey) is a deeply incised, channel-fill deposit that intersects the shoreline at a high angle. The buried channel is at least 10 m deep and 400 m wide, and it might be a subglacially carved feature of Pleistocene age. A prominent, planar unconformity marks the upper surface of the channel deposit, which is overlain by stratified beach and dune material. Several crosshole GPR surveys were performed in the vicinity of the landslide: 1) a constant offset profile (COP), 2) a multiple offset gather (MOG), and 3) a vertical radar profile (VRP). Tomographic analysis of these data determined the velocity structure of sandy sediment that underlie the failed bluff. Because GPR velocity is dependent on electrical properties, we use it as a proxy for geotechnical properties of the soils. Our working hypothesis is that the hidden channel may act as a conduit for pore water flow between upland regions and Lake Michigan, and thereby locally reduce soil strength and promote slope failure.

  3. Volumetric analysis of a New England barrier system using ground-penetrating-radar and coring techniques

    USGS Publications Warehouse

    Van Heteren, S.; FitzGerald, D.M.; Barber, D.C.; Kelley, J.T.; Belknap, D.F.

    1996-01-01

    Ground-penetrating-radar (GPR) profiles calibrated with core data allow accurate assessments of coastal barrier volumes. We applied this procedure successfully to the barrier system along Saco Bay, Maine (USA), as part of a sediment-budget study that focused on present-day sand volumes in various coastal, shoreface, and inner-shelf lith-osomes, and on sand fluxes that have affected the volume or distribution of sand in these sediment bodies through time. On GPR profiles, the components of the barrier lithosome are readily differentiated from other facies, except where the radar signal is attenuated by brackish or salty groundwater. Significant differences between dielectric properties of the barrier lithosome and other units commonly result in strong boundary reflectors. The mostly sandy barrier sediments allow deep penetration of GPR waves, in contrast to finer-grained strata and till-covered bedrock. Within the Saco Bay barrier system, 22 ??3 x 106 m3 of sediment are unevenly distributed. Two-thirds of the total barrier volume is contained within the northern and southern ends of the study area, in the Pine Point spit and the Ferry Beach/Goosefare complex, respectively. The central area around Old Orchard Beach is locally covered by only a thin veneer of barrier sand, averaging <3 m, that unconformably overlies shallow pre-Holocene facies. The prominence of barrier-spit facies and the distribution pattern of back-barrier sediments indicate that a high degree of segmentation, governed by antecedent topography, has affected the development of the Saco Bay barrier system. The present-day configuration of the barrier and back-barrier region along Saco Bay, however, conceals much of its early compartmentalized character.

  4. Predicting Strong Ground-Motion Seismograms for Magnitude 9 Cascadia Earthquakes Using 3D Simulations with High Stress Drop Sub-Events

    NASA Astrophysics Data System (ADS)

    Frankel, A. D.; Wirth, E. A.; Stephenson, W. J.; Moschetti, M. P.; Ramirez-Guzman, L.

    2015-12-01

    We have produced broadband (0-10 Hz) synthetic seismograms for magnitude 9.0 earthquakes on the Cascadia subduction zone by combining synthetics from simulations with a 3D velocity model at low frequencies (≤ 1 Hz) with stochastic synthetics at high frequencies (≥ 1 Hz). We use a compound rupture model consisting of a set of M8 high stress drop sub-events superimposed on a background slip distribution of up to 20m that builds relatively slowly. The 3D simulations were conducted using a finite difference program and the finite element program Hercules. The high-frequency (≥ 1 Hz) energy in this rupture model is primarily generated in the portion of the rupture with the M8 sub-events. In our initial runs, we included four M7.9-8.2 sub-events similar to those that we used to successfully model the strong ground motions recorded from the 2010 M8.8 Maule, Chile earthquake. At periods of 2-10 s, the 3D synthetics exhibit substantial amplification (about a factor of 2) for sites in the Puget Lowland and even more amplification (up to a factor of 5) for sites in the Seattle and Tacoma sedimentary basins, compared to rock sites outside of the Puget Lowland. This regional and more localized basin amplification found from the simulations is supported by observations from local earthquakes. There are substantial variations in the simulated M9 time histories and response spectra caused by differences in the hypocenter location, slip distribution, down-dip extent of rupture, coherence of the rupture front, and location of sub-events. We examined the sensitivity of the 3D synthetics to the velocity model of the Seattle basin. We found significant differences in S-wave focusing and surface wave conversions between a 3D model of the basin from a spatially-smoothed tomographic inversion of Rayleigh-wave phase velocities and a model that has an abrupt southern edge of the Seattle basin, as observed in seismic reflection profiles.

  5. Civil Engineering Applications of Ground Penetrating Radar Recent Advances @ the ELEDIA Research Center

    NASA Astrophysics Data System (ADS)

    Salucci, Marco; Tenuti, Lorenza; Nardin, Cristina; Oliveri, Giacomo; Viani, Federico; Rocca, Paolo; Massa, Andrea

    2014-05-01

    The application of non-destructive testing and evaluation (NDT/NDE) methodologies in civil engineering has raised a growing interest during the last years because of its potential impact in several different scenarios. As a consequence, Ground Penetrating Radar (GPR) technologies have been widely adopted as an instrument for the inspection of the structural stability of buildings and for the detection of cracks and voids. In this framework, the development and validation of GPR algorithms and methodologies represents one of the most active research areas within the ELEDIA Research Center of the University of Trento. More in detail, great efforts have been devoted towards the development of inversion techniques based on the integration of deterministic and stochastic search algorithms with multi-focusing strategies. These approaches proved to be effective in mitigating the effects of both nonlinearity and ill-posedness of microwave imaging problems, which represent the well-known issues arising in GPR inverse scattering formulations. More in detail, a regularized multi-resolution approach based on the Inexact Newton Method (INM) has been recently applied to subsurface prospecting, showing a remarkable advantage over a single-resolution implementation [1]. Moreover, the use of multi-frequency or frequency-hopping strategies to exploit the information coming from GPR data collected in time domain and transformed into its frequency components has been proposed as well. In this framework, the effectiveness of the multi-resolution multi-frequency techniques has been proven on synthetic data generated with numerical models such as GprMax [2]. The application of inversion algorithms based on Bayesian Compressive Sampling (BCS) [3][4] to GPR is currently under investigation, as well, in order to exploit their capability to provide satisfactory reconstructions in presence of single and multiple sparse scatterers [3][4]. Furthermore, multi-scaling approaches exploiting level

  6. Ground penetrating radar data analyzed in frequency and time domain for engineering issues

    NASA Astrophysics Data System (ADS)

    Capozzoli, Luigi; Giampaolo, Valeria; Votta, Mario; Rizzo, Enzo

    2014-05-01

    Non-destructive testing (NDT) allows to analyze reinforced concrete and masonry structures, in order to identify gaps, defects, delaminations, and fracture. In the field of engineering, non-invasive diagnostic is used to test the processes of construction and maintenance of buildings and artifacts of the individual components, to reduce analysis time and costs of intervention (Proto et al., 2010). Ground penetrating radar (GPR) allows to evaluate with a good effectiveness the state of conservation of engineering construction (Mellet 1995)). But there are some uncertainties in GPR data due to the complexity of artificial objects. In this work we try to evaluate the capability of GPR for the characterization of building structures in the laboratory and in-situ. In particular the focus of this research consists in integrate spectral analysis to time domain data to enhance information obtained in a classical GPR processing approach. For this reason we have applied spectral analysis to localize and characterize the presence of extraneous bodies located in a test site rebuilt in laboratory to simulate a part of a typical concrete road. The test site is a segment of a road superimposed on two different layers of sand and gravel of varying thickness inside which were introduced steel rebar, PVC and aluminium pipes. This structure has also been cracked in a predetermined area and hidden internal fractures were investigated. The GPR has allowed to characterize the panel in a non-invasive mode and radargrams were acquired using two-dimensional and three-dimensional models from data obtained with the use of 400, 900, 1500 and 2000 Mhz antennas. We have also studied with 2 GHz antenna a beam of 'to years precast bridge characterized by a high state of decay. The last case study consisted in the characterization of a radiant floor analyzed with an integrated use of GPR and infrared thermography. In the frequency domain analysis has been possible to determine variations in the

  7. Seismic-reflection and ground penetrating radar for environmental site characterization. 1998 annual progress report

    SciTech Connect

    Steeples, D.W.; Plumb, R.

    1998-06-01

    'The project''s goals are threefold: (1) to examine the complementary site-characterization capabilities of modern, three-component shallow-seismic techniques and ground-penetrating radar (GPR) methods at depths ranging from 2 to 8 m at an existing test site; (2) to demonstrate the usefulness of the two methods when used in concert to characterize, in three-dimensions, the cone of depression of a pumping well, which will serve as a proxy site for fluid-flow at an actual, polluted site; and (3) to use the site as an outdoor mesoscale laboratory to validate existing three-dimensional ground-penetrating radar and seismic-reflection computer models developed at the Univ. of Kansas. To do this, useful seismic and GPR data are being collected along the same line(s) and within the same depth range. The principal investigators selected a site in central Kansas as a primary location and, although the site itself is not environmentally sensitive, the location chosen offers particularly useful attributes for this research and will serve as a proxy site for areas that are contaminated. As part of an effort to evaluate the strengths of each method, the authors will repeat the seismic and GPR surveys on a seasonal basis to establish how the complementary information obtained varies over time. Because the water table fluctuates at this site on a seasonal basis, variations in the two types of data over time also can be observed. Such noninvasive in-situ methods of identifying and characterizing the hydrologic flow regimes at contaminated sites support the prospect of developing effective, cost-conscious cleanup strategies in the near future. As of the end of May 1998, the project is on schedule. The first field work was conducted using both of the geophysical survey methods in October of 1997, and the second field survey employed both methods in March of 1998. One of the stated tasks is to reoccupy the same survey line on a quarterly basis for two years to examine change in both

  8. SUTRA: A model for 2D or 3D saturated-unsaturated, variable-density ground-water flow with solute or energy transport

    USGS Publications Warehouse

    Voss, Clifford I.; Provost, A.M.

    2002-01-01

    SUTRA (Saturated-Unsaturated Transport) is a computer program that simulates fluid movement and the transport of either energy or dissolved substances in a subsurface environment. This upgraded version of SUTRA adds the capability for three-dimensional simulation to the former code (Voss, 1984), which allowed only two-dimensional simulation. The code employs a two- or three-dimensional finite-element and finite-difference method to approximate the governing equations that describe the two interdependent processes that are simulated: 1) fluid density-dependent saturated or unsaturated ground-water flow; and 2) either (a) transport of a solute in the ground water, in which the solute may be subject to: equilibrium adsorption on the porous matrix, and both first-order and zero-order production or decay; or (b) transport of thermal energy in the ground water and solid matrix of the aquifer. SUTRA may also be used to simulate simpler subsets of the above processes. A flow-direction-dependent dispersion process for anisotropic media is also provided by the code and is introduced in this report. As the primary calculated result, SUTRA provides fluid pressures and either solute concentrations or temperatures, as they vary with time, everywhere in the simulated subsurface system. SUTRA flow simulation may be employed for two-dimensional (2D) areal, cross sectional and three-dimensional (3D) modeling of saturated ground-water flow systems, and for cross sectional and 3D modeling of unsaturated zone flow. Solute-transport simulation using SUTRA may be employed to model natural or man-induced chemical-species transport including processes of solute sorption, production, and decay. For example, it may be applied to analyze ground-water contaminant transport problems and aquifer restoration designs. In addition, solute-transport simulation with SUTRA may be used for modeling of variable-density leachate movement, and for cross sectional modeling of saltwater intrusion in

  9. Civil Engineering Applications of Ground Penetrating Radar: Research Perspectives in COST Action TU1208

    NASA Astrophysics Data System (ADS)

    Pajewski, Lara; Benedetto, Andrea; Loizos, Andreas; Slob, Evert; Tosti, Fabio

    2013-04-01

    Ground Penetrating Radar (GPR) is a safe, non-destructive and non-invasive imaging technique that can be effectively used for advanced inspection of composite structures and for diagnostics affecting the whole life-cycle of civil engineering works. GPR provides high resolution images of structures and subsurface through wide-band electromagnetic waves. It can be employed for the surveying of roads, pavements, bridges, tunnels, for detecting underground cavities and voids, for utility sensing, for the inspection of buildings, reinforced concrete and pre-cast concrete structures, for geotechnical investigation, in foundation design, as well as for several other purposes. Penetration and resolution of GPR depend primarily on the transmitting frequency of the equipment, the antenna characteristics, the electrical properties of the ground or of the surveyed material, and the contrasting electrical properties of the targets with respect to the surrounding medium. Generally there is a direct relationship between the transmitter frequency and the resolution that can be obtained; conversely there is an inverse relationship between frequency and penetration depth. GPR works best in dry ground environments, but can also give good results in wet, saturated materials; it does not work well in saline conditions, in high-conductivity media and through dense clays which limit signal penetration. Different approaches can be employed in the processing of collected GPR data. Once data have been processed, they still have to be analysed. This is a challenging problem, since interpretation of GPR radargrams is typically non-intuitive and considerable expertise is needed. In the presence of a complex scenario, an accurate electromagnetic forward solver is a fundamental tool for the validation of data interpretation. It can be employed for the characterization of scenarios, as a preliminary step that precedes a survey, or to gain a posteriori a better understanding of measured data. It

  10. Electrical Conductivity of the Bishop Tuff, Bishop, CA: Implications for Ground-Penetrating Radar Performance

    NASA Astrophysics Data System (ADS)

    Gonzalez, S. H.; Dinwiddie, C. L.; Grimm, R. E.; Heggy, E.; Wyrick, D. Y.; Ferrill, D. A.; Clifford, S. M.

    2004-12-01

    Ideal terrestrial analogues to Mars combine known features such as an arid environment, cold climate, deep water table, saline pore waters, and bedrock dominated by igneous or clastic sedimentary units. Terrestrial analogues best suited for calibrating a suite of planetary geophysical instruments, especially radar sounders, need to be sufficiently characterized to provide an accurate understanding of the local geologic context. The Bishop Tuff, Bishop, California is one of a number of recommended Mars analogue sites (National Research Council Decadal Study report on Terrestrial Analogues to Mars, 2001). While not cold, the Volcanic Tableland is situated in an arid environment, and is underlain by a relatively deep water table (100 to 180 m). These factors, combined with availability of detailed characterization data, made this a potentially appealing location in east-central California for testing the performance of existing and planned radar sounders for future Mars exploration. To take advantage of potential synergies that support improved subsurface resolution when applying multiple geophysical techniques, we developed a collaboration to mutually benefit from coordination of field and laboratory activities. Transient electromagnetic (TEM) soundings at several locations on the Volcanic Tableland were performed in preparation for potential ground-penetrating radar (GPR) investigations, and are documented in this paper. Laboratory data from Bishop Tuff samples, determined using capacitive cells in the frequency range of 1 to 1000 MHz, are also presented to assess the dielectric behavior of the local geologic units. Interpretation of geophysical data resulting from this field study is aided significantly by the wide range of geological, structural, and hydrogeological data collected by our team over the last 8 years. Knowledge about the subsurface electrical conductivity structure, determined through application of TEM, is used to quantify the expected magnitude of

  11. The Use of Ground Penetrating Radar to extend the Results of Archaeological Excavation

    NASA Astrophysics Data System (ADS)

    Utsi, E.

    2009-04-01

    The condition of the Romano-British archaeological site in Wortley, Gloucestershire, UK is typical of sites of the period in that it has been heavily robbed out since it first fell into disuse. Building materials taken from the site have been re-used over the centuries to construct other local buildings. This makes both preservation of the extant remains and interpretation of the excavation problematic. Following the accidental discovery of the site in the 1980s, a programme of excavation was set in place. This excavation was run as a practical archaeological training school and, as a result, a wide range of archaeological and geophysical techniques were applied to the site. This included the introduction of Ground Penetrating Radar (GPR). The preliminary results of the first GPR used on site were not entirely satisfactory which led to the development of a new radar in the early 1990s, specifically developed for use on archaeological sites. The excavation and GPR results were published in a series of excavation reports [1] [2]. It was not possible to excavate fully for two reasons. Firstly the site crossed present day ownership boundaries and secondly the ownership of the excavation area changed. At this point the excavation was summarily terminated. In 2007, permission was given by the owner of an adjacent property to carry out a GPR survey over their land in order to derive additional information, if possible. An area survey was carried out in May 2007 with reduced transect spacing [3]. The radar data showed similar patterning to that of the original investigation i.e. substantial remains which had been subject to a high degree of post-occupational attrition. Time slices from the radar survey were matched to the principal excavation plans. It proved possible to deduce the full extent of certain partially excavated features, notably the courtyard and bath house. It was also possible to demonstrate that one part of the adjacent property did not contain similar

  12. Ground Penetrating Radar (GPR) Signatures of Lacustrine Soils in Volcanic Basins of Mexico

    NASA Astrophysics Data System (ADS)

    Carreon-Freyre, D.; Oleschko, K.; Cerca, M.

    2002-12-01

    Ground Penetrating Radar (GPR) profiles have been collected in volcanic and lacustrine basins of Mexico in order to obtain radar signatures and correlate electromagnetic wave propagation with their near-surface stratigraphy. Study sites included Pleistocene to Recent lacustrine sequences in Chalco and Texcoco, near Mexico City, and a Pliocene to Quaternary fluvio-lacustrine sequence in the Queretaro Valley, 250 Km to the northwest. All the sequences present alterning layers of soils, fluvio-lacustrine sediments, pyroclastic and volcanic rocks. GPR method is used because of the sensitivity of the propagation of electromagnetic waves to the granulometric variations and water content of sediments (water molecules polarization). Profiles were carried out with a Zond 12c GPR (Radar Systems Inc.), using four main prospecting frequencies: 2000, 900, 300 and 100 MHz. The purpose of using these frequencies is to evaluate different ranges of depths of investigation and resolution for each site and to relate attenuation and variations in amplitude with impedances and reflection coefficients for stratigraphic associations such as clay-sand, silt-clay and pyroclastics-silt. The analysis of multiple sets of profiles in the studied areas and their correlation with the observed near-surface stratigraphy permits the identification of radar signatures for each depositional condition. GPR characterization also allowed to associate radar signatures with the evolution of fracturing within the sequence. In particular, the Chalco and Queretaro sites are affected by fracturing, an increasing problem in several urbanized areas of Mexico and the world. This phenomenon is generally associated to ground-water withdrawal but its geometry is related closely to the regional structural pattern. Another factor that influences the propagation and morphology of near-surface fracturing in volcanic valleys is their highly heterogeneous stratigraphy. Therefore, the propagation of electromagnetic waves

  13. Compact programmable ground-penetrating radar system for roadway and bridge deck characterization

    NASA Astrophysics Data System (ADS)

    Busuioc, Dan; Xia, Tian; Venkatachalam, Anbu; Huston, Dryver; Birken, Ralf; Wang, Ming

    2011-04-01

    A compact, high-performance, programmable Ground Penetrating Radar (GPR) system is described based on an impulse generator transmitter, a full waveform sampling single shot receiver, and high directivity antennas. The digital programmable pulse generator is developed for the transmitter circuit and both the pulse width and pulse shape are tunable to adjust for different modes of operation. It utilizes a step-recovery diode (SRD) and short-circuited microstrip lines to produce sub-nanosecond wide ultra-wideband (UWB) pulses. Sharp step signals are generated by periodic clock signals that are connected to the SRD's input node. Up to four variable width pulses (0.8, 1.0, 1.5, and 2.1 ns) are generated through a number of PIN switches controlling the selection of different microstrip lengths. A schottky diode is used as a rectifier at the output of the SRD in order to pass only the positive part of the Gaussian pulses while another group of short-circuit microstrips are used to generate amplitude-reversed Gaussian pulses. The addition of the two pulses results in a Gaussian monocycle pulse which is more energy efficient for emission. The pulse generator is connected to a number of UWB antennas. Primarily, a UWB Vivaldi antenna (500 MHz to 5 GHz) is used, but a number of other high-performance GPR-oriented antennas are investigated as well. All have linear phase characteristic, constant phase center, constant polarization and flat gain. A number of methods including resistive loading are used to decrease any resonances due to the antenna structure and unwanted reflections from the ground. The antennas exhibit good gain characteristics in the design bandwidth.

  14. A feature learning approach for classifying buried threats in forward looking ground penetrating radar data

    NASA Astrophysics Data System (ADS)

    Camilo, Joseph A.; Malof, Jordan M.; Collins, Leslie M.

    2016-05-01

    The forward-looking ground penetrating radar (FLGPR) is a remote sensing modality that has recently been investigated for buried threat detection. The FLGPR considered in this work uses stepped frequency sensing followed by filtered backprojection to create images of the ground, where each image pixel corresponds to the radar energy reflected from the subsurface at that location. Typical target detection processing begins with a prescreening operation where a small subset of spatial locations are chosen to consider for further processing. Image statistics, or features, are then extracted around each selected location and used for training a machine learning classification algorithm. A variety of features have been proposed in the literature for use in classification. Thus far, however, predominantly hand-crafted or manually designed features from the computer vision literature have been employed (e.g., HOG, Gabor filtering, etc.). Recently, it has been shown that image features learned directly from data can obtain state-of-the-art performance on a variety of problems. In this work we employ a feature learning scheme using k-means and a bag-of-visual-words model to learn effective features for target and non-target discrimination in FLGPR data. Experiments are conducted using several lanes of FLGPR data and learned features are compared with several previously proposed static features. The results suggest that learned features perform comparably, or better, than existing static features. Similar to other feature learning results, the features consist of edges or texture primitives, revealing which structures in the data are most useful for discrimination.

  15. Snow Mass Quantification and Avalanche Victim Search by Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Jaedicke, Christian

    2003-11-01

    Ground penetrating radar (GPR) systems can be used in many applications of snow and ice research. The information from the GPR is used to identify and interpret layers, objects and different structures in the snow. A commercially available GPR system was further developed to work in the rough environment of snow and ice. The applied GPR is a 900 MHz system that easily reaches snow depths of up to 10 meters. The system was calibrated in the course of several manual snow depth measurements during each survey. The depth resolution depends on the snow type and is around +/-0.1 m. The GPR system is carried alongside a line of interest and is triggered by an odometer wheel at regular adjustable steps. All equipment is mounted in a sledge and is pulled by a snowmobile over the snow surface. This setup allows for an efficient coverage of several kilometers of terrain profiles. The radar profiles give a real time two-dimensional impression of structures and objects and the interface between snow and the underlying ground. The actual radar profile is shown on a screen on the sledge allowing the immediate marking of objects and structures. During the past three years the instrument was successfully used for the study of snow distributions, for the detection of glacier crevasses under the snow cover, and for the search of avalanche victims in avalanche debris. The results show the capability of the instrument to detect persons and objects in the snow cover. In the future, this device may be a new tool for avalanche rescue operations. Today, the size and weight of the system prevents the accessing of very steep slopes and areas not accessible to snowmobiles. Further developments will decrease the size of the system and make it a valuable tool to quantify snow masses in avalanche release zones and run-out areas.

  16. Snow Mass Quantification and Avalanche Victim Search By Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Jaedicke, C.

    Ground penetrating radar (GPR) systems can be used in many applications of snow and ice research. The information from the GPR is interpreted to identify layers, ob- ject and different structures in the snow. A commercially available GPR system was further developed to work in the rough environment of snow and ice. The applied GPR is a 900 MHz system that easily reaches snow depths of ten meters. The system is cal- ibrated by several manual snow depth measurements during each survey. The depth resolution is depending on the snow type and ranges around +/- 0.1 m. The GPR sys- tem carried along a line of interest and is triggered by an odometer wheel at regular adjustable steps. All equipment is mounted in a sledge and is moved by a snow mo- bile over the surface. This setup allows the efficient coverage of several kilometers of profiles. The radar profiles give a real time two-dimensional impression of structures and objects and the interface between snow and underlying ground. The actual radar profile is shown on a screen on the sledge allowing the immediate marking of objects and structures. During the past three years the instrument was successfully used for the study of snow distributions, for the detection of glacier crevasses under the snow cover and for the search of avalanche victims in avalanche debris. The results show the capability of the instrument to detect persons and objects in the snow cover. In the future this could be new tool for avalanche rescue operations. Today the size and weight of the system prevents the access to very steep slopes and areas not accessible for snowmobile. Further development will decrease the size of the system and make it a valuable tool to quantify the snow mass in avalanche release zones and run out areas.

  17. Template-matching based detection of hyperbolas in ground-penetrating radargrams for buried utilities

    NASA Astrophysics Data System (ADS)

    Sagnard, Florence; Tarel, Jean-Philippe

    2016-08-01

    Ground-penetrating radar (GPR) is a mature geophysical technique that is used to map utility pipelines buried within 1.5 m of the ground surface in the urban landscape. In this work, the template-matching algorithm has been originally applied to the detection and localization of pipe signatures in two perpendicular antenna polarizations. The processing of a GPR radargram is based on four main steps. The first step consists in defining a template, usually from finite-difference time-domain simulations, made of the nearby area of the hyperbola apex associated with the mean size object to be detected in the soil, whose mean permittivity has been previously experimentally estimated. In the second step, the raw radargram is pre-processed to correct variations due to antenna coupling, then the template matching algorithm is used to detect and localize individual hyperbola signatures in an environment containing unwanted reflections, noise and overlapping signatures. The distance between the shifted template and a local zone in the radargram, based on the L1 norm, allows us to obtain a map of distances. A user-defined threshold allows us to select a reduced number of zones having a high similarity measure. In the third step, minimum or maximum discrete amplitudes belonging to a selected hyperbola curve are semi-automatically extracted in each zone. In the fourth step, the discrete hyperbola data (i, j) are fitted by a parametric hyperbola model using a non-linear least squares criterion. The algorithm was implemented and evaluated on numerical radargrams, and afterwards on experimental radargrams.

  18. In situ characterization of forest litter using ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    André, Frédéric; Jonard, François; Jonard, Mathieu; Lambot, Sébastien

    2016-03-01

    Decomposing litter accumulated on the soil surface in forests plays a major role in several ecosystem processes; its detailed characterization is therefore essential for thorough understanding of ecosystem functioning. In addition, litter is known to affect remote sensing radar data over forested areas and their proper processing requires accurate quantification of litter scattering properties. In the present study, ultrawideband (0.8-2.2 GHz) ground-penetrating radar (GPR) data were collected in situ for a wide range of litter types to investigate the potential of the technique to reconstruct litter horizons in undisturbed natural conditions. Radar data were processed resorting to full-wave inversion. Good agreement was generally found between estimated and measured litter layer thicknesses, with root-mean-square error values around 1 cm for recently fallen litter (OL layer) and around 2 cm for fragmented litter in partial decomposition (OF layer) and total litter (OL + OF). Nevertheless, significant correlations between estimated and measured thicknesses were found for total litter only. Inaccuracies in the reconstruction of the individual litter horizons were mainly attributed to weak dielectric contrasts amongst litter layers, with absolute differences in relative dielectric permittivity values often lower than 2 between humus horizons, and to uncertainties in the ground truth values. Radar signal inversions also provided reliable estimates of litter electromagnetic properties, with average relative dielectric permittivity values around 2.9 and 6.3 for OL and OF litters, respectively. These results are encouraging for the use of GPR for noninvasive characterization and mapping of forest litter. Perspectives for the application of the technique in biogeosciences are discussed.

  19. Monitoring controlled graves representing common burial scenarios with ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Schultz, John J.; Martin, Michael M.

    2012-08-01

    Implementing controlled geophysical research is imperative to understand the variables affecting detection of clandestine graves during real-life forensic searches. This study focused on monitoring two empty control graves (shallow and deep) and six burials containing a small pig carcass (Sus scrofa) representing different burial forensic scenarios: a shallow buried naked carcass, a deep buried naked carcass, a deep buried carcass covered by a layer of rocks, a deep buried carcass covered by a layer of lime, a deep buried carcass wrapped in an impermeable tarpaulin and a deep buried carcass wrapped in a cotton blanket. Multi-frequency, ground penetrating radar (GPR) data were collected monthly over a 12-month monitoring period. The research site was a cleared field within a wooded area in a humid subtropical environment, and the soil consisted of a Spodosol, a common soil type in Florida. This study compared 2D GPR reflection profiles and horizontal time slices obtained with both 250 and 500 MHz dominant frequency antennae to determine the utility of both antennae for grave detection in this environment over time. Overall, a combination of both antennae frequencies provided optimal detection of the targets. Better images were noted for deep graves, compared to shallow graves. The 250 MHz antenna provided better images for detecting deep graves, as less non-target anomalies were produced with lower radar frequencies. The 250 MHz antenna also provided better images detecting the disturbed ground. Conversely, the 500 MHz antenna provided better images when detecting the shallow pig grave. The graves that contained a pig carcass with associated grave items provided the best results, particularly the carcass covered with rocks and the carcass wrapped in a tarpaulin. Finally, during periods of increased soil moisture levels, there was increased detection of graves that was most likely related to conductive decompositional fluid from the carcasses.

  20. Ground-penetrating radar reveals ice thickness and undisturbed englacial layers at Kilimanjaro's Northern Ice Field

    NASA Astrophysics Data System (ADS)

    Bohleber, Pascal; Sold, Leo; Hardy, Douglas R.; Schwikowski, Margit; Klenk, Patrick; Fischer, Andrea; Sirguey, Pascal; Cullen, Nicolas J.; Potocki, Mariusz; Hoffmann, Helene; Mayewski, Paul

    2017-02-01

    Although its Holocene glacier history is still subject to debate, the ongoing iconic decline of Kilimanjaro's largest remaining ice body, the Northern Ice Field (NIF), has been documented extensively based on surface and photogrammetric measurements. The study presented here adds, for the first time, ground-penetrating radar (GPR) data at centre frequencies of 100 and 200 MHz to investigate bed topography, ice thickness and internal stratigraphy at NIF. The direct comparison of the GPR signal to the visible glacier stratigraphy at NIF's vertical walls is used to validate ice thickness and reveals that the major internal reflections seen by GPR can be associated with dust layers. Internal reflections can be traced consistently within our 200 MHz profiles, indicating an uninterrupted, spatially coherent internal layering within NIF's central flat area. We show that, at least for the upper 30 m, it is possible to follow isochrone layers between two former NIF ice core drilling sites and a sampling site on NIF's vertical wall. As a result, these isochrone layers provide constraints for future attempts at linking age-depth information obtained from multiple locations at NIF. The GPR profiles reveal an ice thickness ranging between (6.1 ± 0.5) and (53.5 ± 1.0) m. Combining these data with a very high resolution digital elevation model we spatially extrapolate ice thickness and give an estimate of the total ice volume remaining at NIF's southern portion as (12.0 ± 0.3) × 106 m3.

  1. Improving Indonesian peatland C stock estimates using ground penetrating radar (GPR) and electrical resistivity imaging (ERI)

    NASA Astrophysics Data System (ADS)

    Terry, N.; Comas, X.; Slater, L. D.; Warren, M.; Kolka, R. K.; Kristijono, A.; Sudiana, N.; Nurjaman, D.; Darusman, T.

    2014-12-01

    Tropical peatlands sequester an estimated 15% of the carbon pool from peatlands worldwide. Indonesian peatlands account for approximately 65% of all tropical peat, and are believed to be the largest global source of carbon dioxide emissions to the atmosphere from degrading peat. However, there is great uncertainty in these estimates due to insufficient data regarding the thickness of organic peat soils and their carbon content. Meanwhile, Indonesian peatlands are threatened by heightening pressure to drain and develop. Indirect geophysical methods have garnered interest for their potential to non-invasively estimate peat depth and gas content in boreal peatlands. Drawing from these techniques, we employed ground penetrating radar (GPR) and electrical resistivity imaging (ERI) in tandem with direct methods (core sampling) to evaluate the potential of these methods for tropical peatland mapping at 2 distinct study sites on West Kalimantan (Indonesia). We find that: [1] West Kalimantan peatland thicknesses estimated from GPR and ERI in intermediate/shallow peat can vary substantially over short distances (for example, > 2% over less than 0.02° surface topography gradient), [2] despite having less vertical resolution, ERI is able to better resolve peatland thickness in deep peat, and [3] GPR provides useful data regarding peat matrix attributes (such as the presence of wood layers). These results indicate GPR and ERI could help reduce uncertainty in carbon stocks and aid in responsible land management decisions in Indonesia.

  2. Application of deterministic deconvolution of ground-penetrating radar data in a study of carbonate strata

    USGS Publications Warehouse

    Xia, J.; Franseen, E.K.; Miller, R.D.; Weis, T.V.

    2004-01-01

    We successfully applied deterministic deconvolution to real ground-penetrating radar (GPR) data by using the source wavelet that was generated in and transmitted through air as the operator. The GPR data were collected with 400-MHz antennas on a bench adjacent to a cleanly exposed quarry face. The quarry site is characterized by horizontally bedded carbonate strata with shale partings. In order to provide groundtruth for this deconvolution approach, 23 conductive rods were drilled into the quarry face at key locations. The steel rods provided critical information for: (1) correlation between reflections on GPR data and geologic features exposed in the quarry face, (2) GPR resolution limits, (3) accuracy of velocities calculated from common midpoint data and (4) identifying any multiples. Comparing the results of deconvolved data with non-deconvolved data demonstrates the effectiveness of deterministic deconvolution in low dielectric-loss media for increased accuracy of velocity models (improved at least 10-15% in our study after deterministic deconvolution), increased vertical and horizontal resolution of specific geologic features and more accurate representation of geologic features as confirmed from detailed study of the adjacent quarry wall. ?? 2004 Elsevier B.V. All rights reserved.

  3. Orbital SAR and Ground-Penetrating Radar for Mars: Complementary Tools in the Search for Water

    NASA Technical Reports Server (NTRS)

    Campbell, B. A.; Grant, J. A.

    2000-01-01

    The physical structure and compositional variability of the upper martian crust is poorly understood. Optical and infrared measurements probe at most the top few cm of the surface layer and indicate the presence of layered volcanics and sediments, but it is likely that permafrost, hydrothermal deposits, and transient liquid water pockets occur at depths of meters to kilometers within the crust. An orbital synthetic aperture radar (SAR) can provide constraints on surface roughness, the depth of fine-grained aeolian or volcanic deposits, and the presence of strongly absorbing near-surface deposits such as carbonates. This information is crucial to the successful landing and operation of any rover designed to search for subsurface water. A rover-based ground-penetrating radar (GPR) can reveal layering in the upper crust, the presence of erosional or other subsurface horizons, depth to a permafrost layer, and direct detection of near-surface transient liquid water. We detail here the radar design parameters likely to provide the best information for Mars, based on experience with SAR and GPR in analogous terrestrial or planetary environments.

  4. Design and validation of inert homemade explosive simulants for ground penetrating radar

    NASA Astrophysics Data System (ADS)

    VanderGaast, Brian W.; McFee, John E.; Russell, Kevin L.; Faust, Anthony A.

    2015-05-01

    The Canadian Armed Forces (CAF) identified a requirement for inert simulants to act as improvised, or homemade, explosives (IEs) when training on, or evaluating, ground penetrating radar (GPR) systems commonly used in the detection of buried landmines and improvised explosive devices (IEDs). In response, Defence R and D Canada (DRDC) initiated a project to develop IE simulant formulations using commonly available inert materials. These simulants are intended to approximate the expected GPR response of common ammonium nitrate-based IEs, in particular ammonium nitrate/fuel oil (ANFO) and ammonium nitrate/aluminum (ANAl). The complex permittivity over the range of electromagnetic frequencies relevant to standard GPR systems was measured for bulk quantities of these three IEs that had been fabricated at DRDC Suffield Research Centre. Following these measurements, published literature was examined to find benign materials with both a similar complex permittivity, as well as other physical properties deemed desirable - such as low-toxicity, thermal stability, and commercial availability - in order to select candidates for subsequent simulant formulation. Suitable simulant formulations were identified for ANFO, with resulting complex permittivities measured to be within acceptable limits of target values. These IE formulations will now undergo end-user trials with CAF operators in order to confirm their utility. Investigations into ANAl simulants continues. This progress report outlines the development program, simulant design, and current validation results.

  5. Subsurface Feature Mapping of Mars using a High Resolution Ground Penetrating Radar System

    NASA Astrophysics Data System (ADS)

    Wu, T. S.; Persaud, D. M.; Preudhomme, M. A.; Jurg, M.; Smith, M. K.; Buckley, H.; Tarnas, J.; Chalumeau, C.; Lombard-Poirot, N.; Mann, B.

    2015-12-01

    As the closest Earth-like, potentially life-sustaining planet in the solar system, Mars' future of human exploration is more a question of timing than possibility. The Martian surface remains hostile, but its subsurface geology holds promise for present or ancient astrobiology and future habitation, specifically lava tube (pyroduct) systems, whose presence has been confirmed by HiRISE imagery.The location and characterization of these systems could provide a basis for understanding the evolution of the red planet and long-term shelters for future manned missions on Mars. To detect and analyze the subsurface geology of terrestrial bodies from orbit, a novel compact (smallsat-scale) and cost-effective approach called the High-resolution Orbiter for Mapping gEology by Radar (HOMER) has been proposed. Adapting interferometry techniques with synthetic aperture radar (SAR) to a ground penetrating radar system, a small satellite constellation is able to achieve a theoretical resolution of 50m from low-Mars orbit (LMO). Alongside this initial prototype design of HOMER, proposed data processing methodology and software and a Mars mission design are presented. This project was developed as part of the 2015 NASA Ames Academy for Space Exploration.

  6. Photogrammetry for Mapping Underground Utility Lines with Ground Penetrating Radar in Urban Areas

    NASA Astrophysics Data System (ADS)

    Cazzaniga, N. E.; Pagliari, D.; Pinto, L.

    2012-07-01

    Ground Penetrating Radar (GPR) is an active instrument often used to detect underground utility locations up to a few meters. To perform a three-dimensional reconstruction of position and geometry of the surveyed features, the accuracy of GPR position data has to be in the order of 20-30 cm. This requirement is easily attainable using a GNSS system in open sky conditions, while in urban areas signal leakage is frequent, leading to inadequate position accuracy or even positioning failure. Usually, in those cases, GPS/INS navigation systems are used, but they are quite an expensive solution. To determine the position of the GPR, another strategy could be utilizing a photogrammetric method that uses information extracted from a large scale map, often available for towns. In this paper, the characteristics of this procedure and some possible configurations of cameras are described. Results obtained from preliminary tests are hereby presented and discussed to demonstrate that the proposed methodology could achieve the required precision.

  7. Interpretation of Ground Penetrating Radar data at the Hanford Site, Richland, Washington

    NASA Astrophysics Data System (ADS)

    Bergstrom, K. A.; Mitchell, T. H.; Kunk, J. R.

    1993-07-01

    Ground Penetrating Radar (GPR) is being used extensively during characterization and remediation of chemical and radioactive waste sites at the Hanford Site in Washington State. Time and money for GPR investigations are often not included during the planning and budgeting phase. Therefore GPR investigations must be inexpensive and quick to minimize impact on already established budgets and schedules. An approach to survey design, data collection, and interpretation has been developed which emphasizes speed and budget with minimal impact on the integrity of the interpretation or quality of the data. The following simple rules of thumb can be applied: (1) Assemble as much pre-survey information as possible, (2) Clearly define survey objectives prior to designing the survey and determine which combination of geophysical methods will best meet the objectives, (3) Continuously communicate with the client, before, during and after the investigation, (4) Only experienced GPR interpreters should acquire the field data, (5) Use real-time monitoring of the data to determine where and how much data to collect and assist in the interpretation, (6) Always 'error' in favor of collecting too much data, (7) Surveys should have closely spaced (preferably 5 feet, no more than 10 feet), orthogonal profiles, and (8) When possible, pull the antenna by hand.

  8. Advanced signal processing method for ground penetrating radar feature detection and enhancement

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Venkatachalam, Anbu Selvam; Huston, Dryver; Xia, Tian

    2014-03-01

    This paper focuses on new signal processing algorithms customized for an air coupled Ultra-Wideband (UWB) Ground Penetrating Radar (GPR) system targeting highway pavements and bridge deck inspections. The GPR hardware consists of a high-voltage pulse generator, a high speed 8 GSps real time data acquisition unit, and a customized field-programmable gate array (FPGA) control element. In comparison to most existing GPR system with low survey speeds, this system can survey at normal highway speed (60 mph) with a high horizontal resolution of up to 10 scans per centimeter. Due to the complexity and uncertainty of subsurface media, the GPR signal processing is important but challenging. In this GPR system, an adaptive GPR signal processing algorithm using Curvelet Transform, 2D high pass filtering and exponential scaling is proposed to alleviate noise and clutter while the subsurface features are preserved and enhanced. First, Curvelet Transform is used to remove the environmental and systematic noises while maintain the range resolution of the B-Scan image. Then, mathematical models for cylinder-shaped object and clutter are built. A two-dimension (2D) filter based on these models removes clutter and enhances the hyperbola feature in a B-Scan image. Finally, an exponential scaling method is applied to compensate the signal attenuation in subsurface materials and to improve the desired signal feature. For performance test and validation, rebar detection experiments and subsurface feature inspection in laboratory and field configurations are performed.

  9. Deep belief networks for false alarm rejection in forward-looking ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Becker, John; Havens, Timothy C.; Pinar, Anthony; Schulz, Timothy J.

    2015-05-01

    Explosive hazards are one of the most deadly threats in modern conflicts. The U.S. Army is interested in a reliable way to detect these hazards at range. A promising way of accomplishing this task is using a forward-looking ground-penetrating radar (FLGPR) system. Recently, the Army has been testing a system that utilizes both L-band and X-band radar arrays on a vehicle mounted platform. Using data from this system, we sought to improve the performance of a constant false-alarm-rate (CFAR) prescreener through the use of a deep belief network (DBN). DBNs have also been shown to perform exceptionally well at generalized anomaly detection. They combine unsupervised pre-training with supervised fine-tuning to generate low-dimensional representations of high-dimensional input data. We seek to take advantage of these two properties by training a DBN on the features of the CFAR prescreener's false alarms (FAs) and then use that DBN to separate FAs from true positives. Our analysis shows that this method improves the detection statistics significantly. By training the DBN on a combination of image features, we were able to significantly increase the probability of detection while maintaining a nominal number of false alarms per square meter. Our research shows that DBNs are a good candidate for improving detection rates in FLGPR systems.

  10. gprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Warren, Craig; Giannopoulos, Antonios; Giannakis, Iraklis

    2016-12-01

    gprMax is open source software that simulates electromagnetic wave propagation, using the Finite-Difference Time-Domain (FDTD) method, for the numerical modelling of Ground Penetrating Radar (GPR). gprMax was originally developed in 1996 when numerical modelling using the FDTD method and, in general, the numerical modelling of GPR were in their infancy. Current computing resources offer the opportunity to build detailed and complex FDTD models of GPR to an extent that was not previously possible. To enable these types of simulations to be more easily realised, and also to facilitate the addition of more advanced features, gprMax has been redeveloped and significantly modernised. The original C-based code has been completely rewritten using a combination of Python and Cython programming languages. Standard and robust file formats have been chosen for geometry and field output files. New advanced modelling features have been added including: an unsplit implementation of higher order Perfectly Matched Layers (PMLs) using a recursive integration approach; diagonally anisotropic materials; dispersive media using multi-pole Debye, Drude or Lorenz expressions; soil modelling using a semi-empirical formulation for dielectric properties and fractals for geometric characteristics; rough surface generation; and the ability to embed complex transducers and targets.

  11. Using ground-penetrating radar for assessing the structural needs of asphalt pavements

    NASA Astrophysics Data System (ADS)

    Plati, C.; Loizos, A.

    2012-09-01

    Ground-penetrating radar (GPR) is a nondestructive testing (NDT) approach for pavement investigation that has been developed and improved upon over the past 30 years. This paper aimed to document how the GPR technique could be incorporated successfully into the process of assessing the structural needs of asphalt pavements. Background information is provided regarding the usage of GPR for the evaluation of asphalt road pavements. After outlining the GPR usage, a framework is developed, which is associated primarily with the efficient use of GPR for pavement inspection along a highway and secondarily with the supply of computational tools for GPR data to execute the complex processes to define the structural needs of the pavement. The effectiveness of the suggested framework for pavement preservation is demonstrated through a case study to estimate the required overlay thickness along a highway, which is part of a public private partnership project. The related results produce evidence in support of the statement that through GPR implementation, the intervention works can be optimised to benefit both the road users and the road operators.

  12. Integration of Induced Polarization Imaging, Ground Penetrating Radar and geochemical analysis to characterize hydrocarbon spills

    NASA Astrophysics Data System (ADS)

    Flores Orozco, Adrian; Kreutzer, Ingrid; Bücker, Matthias; Nguyen, Frederic; Hofmann, Thilo; Döberl, Gernot

    2015-04-01

    Because of their capability to provide spatially continuous data, Induced Polarization (IP) Imaging and Ground Penetrating Radar (GPR) have recently emerged as alternative non-invasive methods for the characterization of contaminated sites. In particular, the IP method has demonstrated to be sensitive to both, changes in the chemical composition of groundwater as a result of dissolved pollutants, and to the geometry of the pore space due to the occurrence of contaminants in non-aqueous phase liquids (NAPL). Although promising, an adequate interpretation of the IP imaging results requires geochemical information obtained from the analysis of soil and water samples. However, to date just rare studies have investigated the IP response at the field scale due to different contaminant concentrations. To demonstrate the advantages of an integrated geophysical and geochemical site investigation, we present studies from different hydrocarbon-contaminated sites. We observed a linear correlation between the polarization effect and the contaminant concentration for dissolved contaminants in the saturated zone. A negligible polarization effect was observed, however, in areas associated with the occurrence of contaminants in NAPL. Compared to the contaminant distribution obtained from the geochemical analysis only, the images obtained from time-domain IP measurements significantly improved the delineation of the contaminant plume. As a first step, GPR data collected along the same profiles provided complementary structural information and improved the interpretation of the IP images. The resolution of the electrical images was further improved using regularization constraints, based on the GPR and geochemical data, in the inversion of IP data.

  13. Interpretation of Ground Penetrating Radar data at the Hanford Site, Richland, Washington

    SciTech Connect

    Bergstrom, K.A.; Mitchell, T.H.; Kunk, J.R.

    1993-07-01

    Ground Penetrating Radar (GPR) is being used extensively during characterization and remediation of chemical and radioactive waste sites at the Hanford Site in Washington State. Time and money for GPR investigations are often not included during the planning and budgeting phase. Therefore GPR investigations must be inexpensive and quick to minimize impact on already established budgets and schedules. An approach to survey design, data collection, and interpretation has been developed which emphasizes speed and budget with minimal impact on the integrity of the interpretation or quality of the data. The following simple rules of thumb can be applied: (1) Assemble as much pre-survey information as possible, (2) Clearly define survey objectives prior to designing the survey and determine which combination of geophysical methods will best meet the objectives, (3) Continuously communicate with the client, before, during and after the investigation, (4) Only experienced GPR interpreters should acquire the field data, (5) Use real-time monitoring of the data to determine where and how much data to collect and assist in the interpretation, (6) Always ``error`` in favor of collecting too much data, (7) Surveys should have closely spaced (preferably 5 feet, no more than 10 feet), orthogonal profiles, (8) When possible, pull the antenna by hand.

  14. Ground penetrating radar detection of subsnow slush on ice-covered lakes in interior Alaska

    NASA Astrophysics Data System (ADS)

    Gusmeroli, A.; Grosse, G.

    2012-12-01

    Lakes are abundant throughout the pan-Arctic region. For many of these lakes ice cover lasts for up to two thirds of the year. The frozen cover allows human access to these lakes, which are therefore used for many subsistence and recreational activities, including water harvesting, fishing, and skiing. Safe traveling condition onto lakes may be compromised, however, when, after significant snowfall, the weight of the snow acts on the ice and causes liquid water to spill through weak spots and overflow at the snow-ice interface. Since visual detection of subsnow slush is almost impossible our understanding on overflow processes is still very limited and geophysical methods that allow water and slush detection are desirable. In this study we demonstrate that a commercially available, lightweight 1 GHz, ground penetrating radar system can detect and map extent and intensity of overflow. The strength of radar reflections from wet snow-ice interfaces are at least twice as much in strength than returns from dry snow-ice interface. The presence of overflow also affects the quality of radar returns from the base of the lake ice. During dry conditions we were able to profile ice thickness of up to 1 m, conversely, we did not retrieve any ice-water returns in areas affected by overflow.

  15. Fault Detection Using Polarimetric Single-Input-Multi-Output Ground Penetrating Radar Technique in Mason, Texas

    NASA Astrophysics Data System (ADS)

    Amara, A.; Everett, M. E.

    2014-12-01

    At the Mason Mountain Wildlife Management Area (MMWMA) near Mason, Texas, we conducted a 2D ground penetrating radar (GPR) survey using single-input-multi-output (SIMO) acquisition technique to image a Pennsylvanian high-angle normal fault. At the MMWMA, the surface geology is mapped extensively but the subsurface remains largely unknown. The main objective of our study is to develop a detailed subsurface structural image of the fault and evaluate existing hypotheses on fault development. Also, to develop and apply a new methodology based on Polarimetric SIMO acquisition geometry. This new methodology allows the subsurface structures to be viewed simultaneously from different angles and can help reduce noise caused by the heterogeneities that affect the electromagnetic waves. We used a pulseEKKO pro 200 GPR with 200 MHz antennae to acquire 8 north-south lines across the fault. Each line is 30 meters long with the transmitter starting on the Town Mountain Granite, footwall, with the receiver stepping 40 cm until the end of the line crossing the fault on to the Hickory Sandstone, hanging wall. Each pass consisted of a stationary transmitter antenna and the moving receiver antenna. The data were initially processed with standard steps including low-cut dewow filter, background subtraction filter and gain control. Advanced processing techniques include migration, phased array processing, velocity analysis, and normal moveout. We will compare the GPR results with existing geophysical datasets at the same site, including electromagnetic (EM), seismic, and seismoelectric.

  16. Measuring flood discharge in unstable stream channels using ground-penetrating radar

    USGS Publications Warehouse

    Spicer, K.R.; Costa, J.E.; Placzek, G.

    1997-01-01

    Field experiments were conducted to test the ability of ground-penetrating radar (GPR) to measure stream-channel cross sections at high flows without the necessity of placing instruments in the water. Experiments were conducted at four U.S. Geological Survey gaging stations in southwest Washington State. With the GPR antenna suspended above the water surface from a bridge or cableway, traverses were made across stream channels to collect radar profile plots of the streambed. Subsequent measurements of water depth were made using conventional depth-measuring equipment (weight and tape) and were used to calculate radar signal velocities. Other streamflow-parameter data were collected to examine their relation to radar signal velocity and to claritv of streambed definition. These initial tests indicate that GPR is capable of producing a reasonably accurate (??20%) stream-channel profile and discharge far more quickly than conventional stream-gaging procedures, while avoiding the problems and hazards associated with placing instruments in the water.

  17. Performance of ground-penetrating radar on granitic regoliths with different mineral composition

    USGS Publications Warehouse

    Breiner, J.M.; Doolittle, James A.; Horton, Radley M.; Graham, R.C.

    2011-01-01

    Although ground-penetrating radar (GPR) is extensively used to characterize the regolith, few studies have addressed the effects of chemical and mineralogical compositions of soils and bedrock on its performance. This investigation evaluated the performance of GPR on two different granitic regoliths of somewhat different mineralogical composition in the San Jacinto Mountains of southern California. Radar records collected at a site where soils are Alfisols were more depth restricted than the radar record obtained at a site where soils are Entisols. Although the Alfisols contain an argillic horizon, and the Entisols have no such horizon of clay accumulation, the main impact on GPR effectiveness is related to mineralogy. The bedrock at the Alfisol site, which contains more mafic minerals (5% hornblende and 20% biotite), is more attenuating to GPR than the bedrock at the Entisol site, where mafic mineral content is less (<1% hornblende and 10% biotite). Thus, a relatively minor variation in bedrock mineralogy, specifically the increased biotite content, severely restricts the performance of GPR. Copyright ?? 2011 by Lippincott Williams & Wilkins.

  18. Inspection of a large concrete block containing embedded defects using ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Eisenmann, David; Margetan, Frank J.; Koester, Lucas; Clayton, Dwight

    2016-02-01

    Ground penetrating radar (GPR), also known as impulse response radar, was used to examine a thick concrete block containing reinforcing steel bars (rebar) and embedded defects. The block was located at the University of Minnesota, measured approximately 7 feet tall by 7 feet wide by 40 inches deep, and was intended to simulate certain aspects of a concrete containment wall at a nuclear power plant. This paper describes the measurements that were made and various analyses of the data. We begin with a description of the block itself and the GPR equipment and methods used in our inspections. The methods include the application of synthetic aperture focusing techniques (SAFT). We then present and discuss GPR images of the block's interior made using 1600-MHz, 900-MHz, and 400-MHz antennas operating in pulse/echo mode. A number of the embedded defects can be seen, and we discuss how their relative detectability can be quantified by comparison to the response from nearby rebar. We next discuss through-transmission measurements made using pairs of 1600-MHz and 900-MHz antennas, and the analysis of that data to deduce the average electromagnetic (EM) wave speed and attenuation of the concrete. Through the 40-inch thickness, attenuation rises approximately linearly with frequency at a rate near 0.7 dB/inch/GHz. However, there is evidence that EM properties vary with depth in the block. We conclude with a brief summary and a discussion of possible future work.

  19. Ground penetrating radar study of a strand shoreline in northeastern South Carolina.

    NASA Astrophysics Data System (ADS)

    Wright, E.; Harris, M.; Correia, K.

    2008-12-01

    The 75 km long Grand Strand is the primary shoreline type of northeastern South Carolina and is forming by landward retreat of the shoreline intersecting the paleo Myrtle Beach barrier system. Previous ground penetrating radar studies have examined the geologic architecture of different stages of the regional shoreline transgression: (1) current barrier island systems to the north and south of the central Grand Strand that have transgressed across irregular Pleistocene paleo landscape but have not yet intersected the emergent Quaternary terraces, (2) shorelines with shore-parallel coastal lakes and vegetated wetlands formed at the intersection of the transgressive shoreline and the emergent terraces, and (3) coastal shorelines that are fully welded to the Pleistocene headlands. This study uses GPR to examine the pre- transgressive architecture of shorelines along the emergent paleo barrier system, in particular sections of the coastline with linear paralic wetlands that occupy lows within the paleo barrier system. Study of this pre- transgressive architecture will help to better understand the geologic development of the compound paleo Myrtle Beach barriers as well as refine geologic interpretation of the transgressing shorelines to the north and south that are currently and will be intersecting this paleo barrier system.

  20. Apparent apertures from ground penetrating radar data and their relation to heterogeneous aperture fields

    NASA Astrophysics Data System (ADS)

    Shakas, A.; Linde, N.

    2017-03-01

    Considering fractures with heterogeneous aperture distributions, we explore the reliability of constant-aperture estimates derived from ground penetrating radar (GPR) reflection data. We generate geostatistical fracture aperture realizations that are characterized by the same mean-aperture and variance, but different Hurst exponents and cutoff lengths. For each of the 16 classes of heterogeneity considered, we generate 1000 fracture realizations from which we compute GPR reflection data using our recent effective-dipole forward model. We then use each (noise-contaminated) dataset individually to invert for a single 'apparent' aperture, i.e., we assume that the fracture aperture is homogeneous. We find that the inferred 'apparent' apertures are only reliable when fracture heterogeneity is non-fractal (the Hurst exponent is close to 1) and the scale of the dominant aperture heterogeneities is larger than the first Fresnel zone. These results are a direct consequence of the non-linear character of the thin-bed reflection coefficients. As fracture heterogeneity is ubiquitous and often fractal, our results suggest that robust field-based inference of fracture aperture can only be achieved by accounting for the non-linear response of fracture heterogeneity on GPR data.

  1. Into the Cone: A Ground Penetrating Radar Investigation of Near Vent Processes at Cerro Negro Volcano

    NASA Astrophysics Data System (ADS)

    Courtland, L. M.; Kruse, S. E.; Connor, C.

    2009-12-01

    Cinder cones are often assumed to grow via Strombolian activity as described by McGetchin et al (1974). Data with which to evaluate this and other models has historically been collected via eyewitness accounts, photography of eruptions, and mapping of exposed deposits. However, the dangerous nature of eruptions often prohibits near vent observations and accessible deposits are rare. Therefore, in order to gain a better understanding of near vent processes which may be used in volcanic modeling and hazard assessment, new data collection techniques must be implemented. Ground penetrating radar (GPR) imaging of tephra can reveal details of deposits at depths of approximately 2-20+ meters. Data collected in the fall of 2007 is here used to investigate the near vent processes of Cerro Negro, an active basaltic cinder cone in Nicaragua. Each of three GPR profiles begins at the crater rim and continues down the cone to the tephra blanket. One transect follows the prevailing wind direction (SW) while the other two head off at angles to the first: one to the NW and one to the SSW. The data display evidence of cone steepening over time, patterns of ballistic and tephra dispersal, and faulting within the cone, among other features.

  2. Subsurface object position and image correction for standoff ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Kane, R. J.

    1994-05-01

    Present applications of standoff (airborne) Ground Penetrating Synthetic Aperture Radar (SAR) allows objects near the surface to be detected but only provides an approximation for the actual location and image. When single media models are employed the lack of correction for the phase velocity and refractive changes at the air/soil interface result in object distortions. Positional errors and image distortions comparable to the size of the object are possible. Correction is possible, if the media properties are known, by modeling the scene as a two-layer medium and accounting for the propagation effects. The propagation parameters for the lower media are estimated in the migration of observable responses for surface and subsurface objects. This approach allows for corrected images to subsurface objects to be produced after data collection. Surface objects will be distorted as a result of this process. The modeling process, simulations, and results with field data will be discussed. An improvement by a factor of two would enable standoff radar to detect objects at depths of one meter or more benefitting Unexploded Ordnance (UXO) and hazardous waste site survey activities.

  3. Singular value decomposition and wavy reflections in ground-penetrating radar images of base surge deposits

    NASA Astrophysics Data System (ADS)

    Cagnoli, B.; Ulrych, T. J.

    2001-10-01

    High-pass eigenimages of ground-penetrating radar (GPR) profiles were computed in order to quantify the amount of wavy reflections. These wavy reflections are caused by the presence of subsurface trains of climbing dune-forms in the base surge deposits of the Ubehebe hydrovolcanic field (Death Valley National Park, California). The profiles were collected along a flow direction radial to the Ubehebe Crater to study the lateral facies variation of the pyroclastic deposits. The reflections become increasingly less wavy moving away from the crater because the number and size of the climbing dune-forms decrease downflow. The high-pass eigenimages act as a filter discarding the highly correlated parts of the traces (i.e. those forming the flat reflections) and leaving the portions of the profiles with the wavy reflections. For this reason, the energy of the eigenimages appears to be an index of the waviness of the reflections. This index is relatively fast to compute and quantifies the decrease of the number and size of the climbing dune-forms in the deposits.

  4. Imaging the subsurface stratigraphy in the Ubehebe hydrovolcanic field (Death Valley, California) using ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Cagnoli, B.; Russell, J. K.

    2000-02-01

    Ground penetrating radar (GPR) surveys were carried out to collect subsurface images of the basaltic base surge deposits in the Ubehebe hydrovolcanic field, Death Valley National Park, California. Antennae with frequencies of 50, 100 and 200 MHz were used. This technique allowed the collection of useful geologic data, for example, the lower stratigraphic boundary of the pyroclastic deposits can be imaged and their thickness can be estimated. Different radar responses were also obtained from base surge deposits and underlying sedimentary rocks, which enable their recognition where no outcrops are available. Furthermore, GPR data confirmed the presence of small, eroded craters, which are partially filled by alluvium. In this case, an unconformity between the overlying, horizontally bedded alluvium and the underlying bowl-shaped base surge deposits can be recognized within the crater and the thickness of the alluvium estimated. Common mid-point (CMP) surveys suggested subsurface velocities of the electromagnetic waves in the upper part of these deposits between 0.095-0.1 m/ns.

  5. Electromagnetic Simulations of Ground-Penetrating Radar Propagation near Lunar Pits and Lava Tubes

    NASA Technical Reports Server (NTRS)

    Zimmerman, M. I.; Carter, L. M.; Farrell, W. M.; Bleacher, J. E.; Petro, N. E.

    2013-01-01

    Placing an Orion capsule at the Earth-Moon L2 point (EML2) would potentially enable telerobotic operation of a rover on the lunar surface. The Human Exploration Virtual Institute (HEVI) is proposing that rover operations be carried out near one of the recently discovered lunar pits, which may provide radiation shielding for long duration human stays as well as a cross-disciplinary, science-rich target for nearer-term telerobotic exploration. Ground penetrating radar (GPR) instrumentation included onboard a rover has the potential to reveal many details of underground geologic structures near a pit, as well as characteristics of the pit itself. In the present work we employ the full-wave electromagnetic code MEEP to simulate such GPR reflections from a lunar pit and other subsurface features including lava tubes. These simulations will feed forward to mission concepts requiring knowledge of where to hide from harmful radiation and other environmental hazards such as plama charging and extreme diurnal temperatures.

  6. Matched filtering algorithm based on phase-shifting pursuit for ground-penetrating radar signal enhancement

    NASA Astrophysics Data System (ADS)

    Zhang, Hairu; Ouyang, Shan; Wang, Guofu; Wu, Suolu; Zhang, Faquan

    2014-01-01

    The received signals from ground-penetrating radar (GPR) contain round-trip echoes, clutters, and complex noise signals. These jamming signals seriously affect the interpretation precision of shallow geological subsurface information. In order to dissolve some useless signals in GPR signals, it is necessary to take appropriate measures to repress interference. Based on the electromagnetic field theory, the propagation characteristics of the transmitted GPR signal are analyzed. On this basis, a matched filtering algorithm based on phase-shifting pursuit is proposed to enhance the received GPR signals. At first, the intrinsic component libraries (ICL) can be generated by changing the phase of the transmitted GPR signal. Then, the correlation analysis between the local information of the received GPR signals extracted by sliding window method and each sample in ICL is studied to extract target echo signals. Experiments based on the GPR imaging demonstrate that the proposed algorithm could enhance the target echo signals to a certain extent. The integrated side lobe ratio of the imaging result of the enhanced GPR signals is 6.33 dB lower than the original ones. The resolution of target imaging can be improved.

  7. Digital Terrestrial Video Broadcast Interference Suppression in Forward-Looking Ground Penetrating Radar Systems

    NASA Astrophysics Data System (ADS)

    Rial, F. I.; Mendez-Rial, Roi; Lawadka, Lukasz; Gonzalez-Huici, Maria A.

    2014-11-01

    In this paper we show how radio frequency interference (RFI) generated by digital video broadcasting terrestrial and digital audio broadcasting transmitters can be an important noise source for forward-looking ground penetrating radar (FLGPR) systems. Even in remote locations the average interference power sometimes exceeds ultra-wideband signals by many dB, becoming the limiting factor in the system sensitivity. The overall problem of RFI and its impact in GPR systems is briefly described and several signal processing approaches to removal of RFI are discussed. These include spectral estimation and coherent subtraction algorithms and various filter approaches which have been developed and applied by the research community in similar contexts. We evaluate the performance of these methods by simulating two different scenarios submitted to real RFI acquired with a FLGPR system developed at the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR), (GER). The effectiveness of these algorithms in removing RFI is presented using some performance indices after suppression.

  8. Ground Penetrating Radar as a Contextual Sensor for Multi-Sensor Radiological Characterisation.

    PubMed

    Ukaegbu, Ikechukwu K; Gamage, Kelum A A

    2017-04-07

    Radioactive sources exist in environments or contexts that influence how they are detected and localised. For instance, the context of a moving source is different from a stationary source because of the effects of motion. The need to incorporate this contextual information in the radiation detection and localisation process has necessitated the integration of radiological and contextual sensors. The benefits of the successful integration of both types of sensors is well known and widely reported in fields such as medical imaging. However, the integration of both types of sensors has also led to innovative solutions to challenges in characterising radioactive sources in non-medical applications. This paper presents a review of such recent applications. It also identifies that these applications mostly use visual sensors as contextual sensors for characterising radiation sources. However, visual sensors cannot retrieve contextual information about radioactive wastes located in opaque environments encountered at nuclear sites, e.g., underground contamination. Consequently, this paper also examines ground-penetrating radar (GPR) as a contextual sensor for characterising this category of wastes and proposes several ways of integrating data from GPR and radiological sensors. Finally, it demonstrates combined GPR and radiation imaging for three-dimensional localisation of contamination in underground pipes using radiation transport and GPR simulations.

  9. Use of Ground Penetrating Radar for detection of trapped and buried people

    NASA Astrophysics Data System (ADS)

    Reindl, L.; Schilling, F.; Ostertag, T.; Chen, L.; Wilde, M.

    2012-04-01

    In this contribution we discuss the first results of the project I-LOV, within the German national research program for civil security funded by the German Federal Ministry of Education and Research (BMBF) concerning improved time efficiency and reliable novel detection systems for search and rescue. Ground penetrating RADAR is well known for the detection of all kinds of obstacles buried in the ground. But for use in search and rescue activities it is necessary to distinguish between living people and other unknown burried objekts. In our presentation we show how the movement of the chest from respiration can be used to distinguish between living people and static objects. The breath width of the thorax is typically between 2 to 5 cm and typical respirations are 12 to 50 times per minute. The working principle of the sensor is interferometric. The change in phase of the scattered portion of a CW signal in the ultra-high-frequency (UHF) band is detected. The detection is challenging because the dynamic portion of the signal response is close to the transmitted carrier frequency. A typical signal is 120 dB weaker than the transmitted carrier signal strength with an offset of only 0.2 to 0.3 Hz from the carrier which correspond to the respiration frequency. Field trials with the first prototype showed, that artifacts from trees swaying in the wind and helpers in the field cause false positive results. The range at which an artifact can be detected is more than 10 times longer than the operating range into the ground. This is due to the attenuation that is significantly less in free air than in gravel covering the victim. Furthermore, the radar cross section of the moving obstacle can be significantly larger than the victims thorax moving. A distinction of the artifacts and the desired signals is required and can be achieved through a distance resolution. This is solved using a frequency modulation (FM) of the CW signal, resulting in a FMCW radar. By switching the

  10. Characterization of forest litter horizons through full-wave inversion of ground-penetrating radar data

    NASA Astrophysics Data System (ADS)

    André, Frédéric; Jonard, Mathieu; Jonard, François; Lambot, Sébastien

    2015-04-01

    Decomposing litter accumulated at the soil surface in forest ecosystems play a major role in a series of ecosystem processes (soil carbon sequestration, nutrient release through decomposition, water retention, buffering of soil temperature variations, tree regeneration, population dynamics of ground vegetation and soil fauna, ...). Besides, the presence of litter is acknowledged to influence remote sensing radar data over forested areas and accurate quantification of litter radiative properties is essential for proper processing of these data. In these respects, ground-penetrating radar (GPR) presents particular interests, potentially allowing for fast and non-invasive characterization of organic layers with fine spatial and/or temporal resolutions as well as for providing detailed information on litter electrical properties which are required for modeling either active or passive microwave remote sensing data. We designed an experiment in order to analyze the backscattering from forest litter horizons and to investigate the potentialities of GPR for retrieving the physical properties of these horizons. For that purpose, we used an ultrawide band radar system connected to a transmitting and receiving horn antenna. The GPR data were processed resorting to full-wave inversion of the signal, through which antenna effects are accounted for. In a first step, GPR data were acquired over artificially reconstructed layers of three different beech litter types (i.e., (i) recently fallen litter with easily discernible plant organs (OL layer), (ii) fragmented litter in partial decomposition without entire plant organs (OF layer) and (iii) combination of OL and OF litter layers) and considering in each case a range of layer thicknesses. In a second step, so as to validate the adopted methodology in real natural conditions, GPR measurements were performed in situ along a transect crossing a wide range of litter properties in terms of thickness and composition through stands of

  11. Broadband Ground Penetrating Radar with conformal antennas for subsurface imaging from a rover

    NASA Astrophysics Data System (ADS)

    Stillman, D. E.; Oden, C. P.; Grimm, R. E.; Ragusa, M.

    2015-12-01

    Ground-Penetrating Radar (GPR) allows subsurface imaging to provide geologic context and will be flown on the next two martian rovers (WISDOM on ExoMars and RIMFAX on Mars 2020). The motivation of our research is to minimize the engineering challenges of mounting a GPR antenna to a spacecraft, while maximizing the scientific capabilities of the GPR. The scientific capabilities increase with the bandwidth as it controls the resolution. Furthermore, ultra-wide bandwidth surveys allow certain mineralogies and rock units to be discriminated based on their frequency-dependent EM or scattering properties. We have designed and field-tested a prototype GPR that utilizes bi-static circularly polarized spiral antennas. Each antenna has a physical size of 61 x 61 x 4 cm, therefore two antennas could be mounted to the underbelly of a MSL-class rover. Spiral antennas were chosen because they have an inherent broadband response and provide a better low frequency response compared with similarly sized linearly polarized antennas. A horizontal spiral radiator emits energy both upward and downward directions. After the radiator is mounted to a metal surface (i.e. the underside of a rover), a cavity is formed that causes the upward traveling energy to reverberate and cause unwanted interference. This interference is minimized by 1) using a high metallization ratio on the spiral to reduce cavity emissions, and 2) placing absorbing material inside the cavity. The resulting antennas provide high gain (0 to 8 dBi) from 200 to 1000 MHz. The low frequency response can be improved by increasing the antenna thickness (i.e., cavity depth). In an initial field test, the antennas were combined with impulse GPR electronics that had ~140 dB of dynamic range (not including antennas) and a sand/clay interface 7 feet deep was detected. To utilize the full bandwidth the antennas, a gated Frequency Modulated Continuous Waveform system will be developed - similar to RIMFAX. The goal is to reach a

  12. Imaging a 3D geological structure from HEM, airborne magnetic and ground ERT data in Kalat-e-Reshm area, Iran

    NASA Astrophysics Data System (ADS)

    Shirzaditabar, Farzad; Bastani, Mehrdad; Oskooi, Behrooz

    2011-11-01

    A set of geophysical data collected in an area in Iran are analyzed to check the validity of a geological map that was prepared in connection to a mineral prospecting project and also to image the spatial electrical resistivity distribution. The data set includes helicopter electromagnetic (HEM), airborne magnetic and ground electrical resistivity measurement. Occam approach was used to invert the HEM data to model the resistivity using a layered earth model with fixed thicknesses. The algorithm is based on a nonlinear inverse problem in a least-squares sense. The algorithm was tested on a part of an HEM dataset acquired with a DIGHEM helicopter EM system at Kalat-e-Reshm, Semnan in Iran. The area contains a resistive porphyry andesite that is covered by Eocene sedimentary units. The results are shown as resistivity sections and maps confirming the existence of an arc like resistive structure in the survey area. The resistive andesite seems to be thicker than it is indicated in the geological maps. The results are compared with the reduced to the pole (RTP) airborne magnetic anomaly field data as well as with two ground resistivity profiles. We found reasonable correlations between the HEM 1D resistivity models and 2D models from electrical resistivity tomography (ERT) inversions. A 3D visualization of the 1D models along all flight lines provided a useful tool for the study of spatial variations of the resistivity structure in the investigation area.

  13. Identifying the origin of differences between 3D numerical simulations of ground motion in sedimentary basins: lessons from stringent canonical test models in the E2VP framework

    NASA Astrophysics Data System (ADS)

    Chaljub, Emmanuel; Maufroy, Emeline; Moczo, Peter; Kristek, Jozef; Priolo, Enrico; Klin, Peter; De Martin, Florent; Zhang, Zenghuo; Hollender, Fabrice; Bard, Pierre-Yves

    2013-04-01

    Numerical simulation is playing a role of increasing importance in the field of seismic hazard by providing quantitative estimates of earthquake ground motion, its variability, and its sensitivity to geometrical and mechanical properties of the medium. Continuous efforts to develop accurate and computationally efficient numerical methods, combined with increasing computational power have made it technically feasible to calculate seismograms in 3D realistic configurations and for frequencies of interest in seismic design applications. Now, in order to foster the use of numerical simulations in practical prediction of earthquake ground motion, it is important to evaluate the accuracy of current numerical methods when applied to realistic 3D sites. This process of verification is a necessary prerequisite to confrontation of numerical predictions and observations. Through the ongoing Euroseistest Verification and Validation Project (E2VP), which focuses on the Mygdonian basin (northern Greece), we investigated the capability of numerical methods to predict earthquake ground motion for frequencies up to 4 Hz. Numerical predictions obtained by several teams using a wide variety of methods were compared using quantitative goodness-of-fit criteria. In order to better understand the cause of misfits between different simulations, initially performed for the realistic geometry of the Mygdonian basin, we defined five stringent canonical configurations. The canonical models allow for identifying sources of misfits and quantify their importance. Detailed quantitative comparison of simulations in relation to dominant features of the models shows that even relatively simple heterogeneous models must be treated with maximum care in order to achieve sufficient level of accuracy. One important conclusion is that the numerical representation of models with strong variations (e.g. discontinuities) may considerably vary from one method to the other, and may become a dominant source of

  14. Coarse root distribution of a semi-arid oak savanna estimated with ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Raz-Yaseef, N.; Koteen, L. E.; Baldocchi, D. D.

    2013-05-01

    Coarse root distribution of a semi-arid oak savanna estimated with ground penetrating radar North California enjoys wet and mild winters, but experiences extreme hot, dry summer conditions, with occasional drought years. Despite the severity of summer conditions, blue oaks in this ecosystem are winter-deciduous. Water uptake from groundwater helps explain the incongruity of tree growth with soil water availability in this ecosystem. We hypothesized that the binary nature of water availability, in which water is either abundantly available or scarce, would be reflected in blue oak root architecture. The objective of this research was to understand how the form of the root system facilitates ecosystem functioning. To do this, we sought to characterize the structure of the root system, and survey coarse root distribution with ground penetrating radar (GPR), due to its advantages in covering large areas rapidly and non-destructively. Because GPR remains a relatively new technology for examining root distribution, an ancillary objective was to test this methodology, and help facilitate its application more broadly. We used a GPR Noggin1000 SmartTow (Sensors and Software Inc., Ontario, Canada) 1 GHz configuration. In order to best represent the diversity of tree size and age found at the field site, we surveyed six 8x8 m locations with trees varying in size, age and clumping (i.e. isolated trees vs. tree clusters). GPR raw data was processed with designated software in order to construct three-dimensional values of radar reflection intensity for each surveyed grid. Radar signals were transformed to root biomass by calibrating them against excavated roots in twelve 60x100 cm pits. Our results indicate that coarse roots occupy the full soil profile, and that root biomass of old large trees peaks just above the bedrock. As opposed to other semi-arid regions, where trees often develop extensive shallow coarse lateral roots, in order to exploit the entire wet-soil medium, we

  15. Semi-automatic template matching based extraction of hyperbolic signatures in ground-penetrating radar images

    NASA Astrophysics Data System (ADS)

    Sagnard, Florence; Tarel, Jean-Philippe

    2015-04-01

    In civil engineering applications, ground-penetrating radar (GPR) is one of the main non destructive technique based on the refraction and reflection of electromagnetic waves to probe the underground and particularly detect damages (cracks, delaminations, texture changes…) and buried objects (utilities, rebars…). An UWB ground-coupled radar operating in the frequency band [0.46;4] GHz and made of bowtie slot antennas has been used because, comparing to a air-launched radar, it increases energy transfer of electromagnetic radiation in the sub-surface and penetration depth. This paper proposes an original adaptation of the generic template matching algorithm to GPR images to recognize, localize and characterize with parameters a specific pattern associated with a hyperbola signature in the two main polarizations. The processing of a radargram (Bscan) is based on four main steps. The first step consists in pre-processing and scaling. The second step uses template matching to isolate and localize individual hyperbola signatures in an environment containing unwanted reflections, noise and overlapping signatures. The algorithm supposes to generate and collect a set of reference hyperbola templates made of a small reflection pattern in the vicinity of the apex in order to further analyze multiple time signals of embedded targets in an image. The standard Euclidian distance between the template shifted and a local zone in the radargram allows to obtain a map of distances. A user-defined threshold allows to select a reduced number of zones having a high similarity measure. In a third step, each zone is analyzed to detect minimum or maximum discrete amplitudes belonging to the first arrival times of a hyperbola signature. In the fourth step, the extracted discrete data (i,j) are fitted by a parametric hyperbola modeling based on the straight ray path hypothesis and using a constraint least square criterion associated with parameter ranges, that are the position, the

  16. Ground Penetrating Radar Field Studies of Planetary Analog Geologic Settings: Impact Ejecta, Volcanics, and Fluvial Terrains

    NASA Astrophysics Data System (ADS)

    Russell, P. S.; Grant, J. A.; Carter, L. M.; Garry, W.; Williams, K. K.; Morgan, G. A.; Daubar, I.; Bussey, B.

    2012-12-01

    Ground-Penetrating Radar (GPR) data from terrestrial analog environments can help constrain models for evolution of the lunar and martian surfaces, aid in interpretation of orbital SAR data, and help predict what might be encountered in the subsurface during future landed scientific or engineering operations. Results and interpretations presented here from impact ejecta (Barringer Meteorite Crater), volcanic deposits (Northern Arizona cinders overlying lavas, columnar-jointed Columbia River flood basalts, Hawaii lava flows), and terrains influenced by fluvial-related activity (channeled scablands megaflood bar, Mauna Kea glacio-fluvial deposits) focus on defining the radar "fingerprint" of geologic materials and settings that may be analogous to those found on the Moon and Mars. The challenge in using GPR in geologic investigations is the degree to which different geologic features and processes can be uniquely identified and distinguished in the data. Our approach to constraining this is to qualitatively and quantitatively characterize GPR signatures of different geological environments and to compare them with "ground-truth" observations of subsurface exposures immediately adjacent or subjacent to our GPR transects. Several sites were chosen in each field area based on accessibility, visual access to the subsurface, and presence of particular geologic features of interest. The interpreted distribution of blocks in impact ejecta at Meteor Crater, using a 400 MHz antenna (wavelength of 75 cm) is 1.5-3 blocks per m^3 in the upper 1 m (and 0.5-1 blocks per m^3 in the upper two meters), which is close to the in situ measured block distribution of 2-3 blocks larger than 0.25-0.30 m per m^3. This is roughly the detection limit to be expected from the λ/3 resolution approximation of radar wavelength and indicates that the 400 MHz GPR is characterizing the block population in ejecta. While megaflood bar deposits are also reflector-rich, individual reflectors are in

  17. Condition assessment of concrete pavements using both ground penetrating radar and stress-wave based techniques

    NASA Astrophysics Data System (ADS)

    Li, Mengxing; Anderson, Neil; Sneed, Lesley; Torgashov, Evgeniy

    2016-12-01

    Two stress-wave based techniques, ultrasonic surface wave (USW) and impact echo (IE), as well as ground penetrating radar (GPR) were used to assess the condition of a segment of concrete pavement that includes a layer of concrete, a granular base and their interface. Core specimens retrieved at multiple locations were used to confirm the accuracy and reliability of each non-destructive testing (NDT) result. Results from this study demonstrate that the GPR method is accurate for estimating the pavement thickness and locating separations (air voids) between the concrete and granular base layers. The USW method is a rapid way to estimate the in-situ elastic modulus (dynamic elastic modulus) of the concrete, however, the existence of air voids at the interface could potentially affect the accuracy and reliability of the USW test results. The estimation of the dynamic modulus and the P-wave velocity of concrete was improved when a shorter wavelength range (3 in. to 8.5 in.) corresponding to the concrete layer thickness was applied instead of the full wavelength rage (3 in. to 11 in.) based on the standard spacing of the receiver transducers. The IE method is proved to be fairly accurate in estimating the thickness of concrete pavements. However, the flexural mode vibration could affect the accuracy and reliability of the test results. Furthermore, the existence of air voids between the concrete and granular base layers could affect the estimation of the compression wave velocity of concrete when the full wavelength range was applied (3 in. to 11 in.). Future work is needed in order to improve the accuracy and reliability of both USW and IE test results.

  18. Using pattern recognition to automatically localize reflection hyperbolas in data from ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Maas, Christian; Schmalzl, Jörg

    2013-08-01

    Ground Penetrating Radar (GPR) is used for the localization of supply lines, land mines, pipes and many other buried objects. These objects can be recognized in the recorded data as reflection hyperbolas with a typical shape depending on depth and material of the object and the surrounding material. To obtain the parameters, the shape of the hyperbola has to be fitted. In the last years several methods were developed to automate this task during post-processing. In this paper we show another approach for the automated localization of reflection hyperbolas in GPR data by solving a pattern recognition problem in grayscale images. In contrast to other methods our detection program is also able to immediately mark potential objects in real-time. For this task we use a version of the Viola-Jones learning algorithm, which is part of the open source library "OpenCV". This algorithm was initially developed for face recognition, but can be adapted to any other simple shape. In our program it is used to narrow down the location of reflection hyperbolas to certain areas in the GPR data. In order to extract the exact location and the velocity of the hyperbolas we apply a simple Hough Transform for hyperbolas. Because the Viola-Jones Algorithm reduces the input for the computational expensive Hough Transform dramatically the detection system can also be implemented on normal field computers, so on-site application is possible. The developed detection system shows promising results and detection rates in unprocessed radargrams. In order to improve the detection results and apply the program to noisy radar images more data of different GPR systems as input for the learning algorithm is necessary.

  19. Ground penetrating radar methods used in surface-water discharge measurements

    NASA Astrophysics Data System (ADS)

    Haeni, F. P.; Buursink, Marc L.; Costa, John E.; Melcher, Nick B.; Cheng, Ralph T.; Plant, William J.

    2000-04-01

    The U.S. Geological Survey (USGS) operates a network of about 7,000 streamflow-gaging stations that monitor open-channel water discharge at locations throughout the United States. The expense, technical difficulties, and concern for the safety of operational personnel under some field conditions have led to the search for alternate measurement methods. Ground- penetrating radar (GPR) has been used by the USGS in hydrologic, geologic, environmental, and bridge-scour studies by floating antennas on water or mounting antennas in boats. GPR methods were developed to measure and monitor remotely the cross-sectional area of rivers by suspending a 100-megahertz (MHz) radar antenna from a cableway car or bridge at four unstable streams that drained the slopes of Mount St. Helens in Washington. Based on the success of these initial efforts, an experiment was conducted in 1999 to see if a combination of complementary radar methods could be used to calculate the discharge of a river without having any of the measuring equipment in the water. The cross-sectional area of the 183- meter (m) wide Skagit River in Washington State was measured using a GPR system with a single 100-MHz antenna suspended 0.5 to 3 m above the water surface from a cableway car. A van- mounted, side-looking pulsed-Doppler (10 gigahertz) radar system was used to collect water-surface velocity data across the same section of the river. The combined radar data sets were used to calculate the river discharge and the results compared closely to the discharge measurement made by using the standard in-water measurement techniques. The depth to the river bottom, which was determined from the GPR data by using a radar velocity of 0.04 meters per nanosecond in water, was about 3 m, which was within 0.25 m of the manually measured values.

  20. Improving ground-penetrating radar data in sedimentary rocks using deterministic deconvolution

    USGS Publications Warehouse

    Xia, J.; Franseen, E.K.; Miller, R.D.; Weis, T.V.; Byrnes, A.P.

    2003-01-01

    Resolution is key to confidently identifying unique geologic features using ground-penetrating radar (GPR) data. Source wavelet "ringing" (related to bandwidth) in a GPR section limits resolution because of wavelet interference, and can smear reflections in time and/or space. The resultant potential for misinterpretation limits the usefulness of GPR. Deconvolution offers the ability to compress the source wavelet and improve temporal resolution. Unlike statistical deconvolution, deterministic deconvolution is mathematically simple and stable while providing the highest possible resolution because it uses the source wavelet unique to the specific radar equipment. Source wavelets generated in, transmitted through and acquired from air allow successful application of deterministic approaches to wavelet suppression. We demonstrate the validity of using a source wavelet acquired in air as the operator for deterministic deconvolution in a field application using "400-MHz" antennas at a quarry site characterized by interbedded carbonates with shale partings. We collected GPR data on a bench adjacent to cleanly exposed quarry faces in which we placed conductive rods to provide conclusive groundtruth for this approach to deconvolution. The best deconvolution results, which are confirmed by the conductive rods for the 400-MHz antenna tests, were observed for wavelets acquired when the transmitter and receiver were separated by 0.3 m. Applying deterministic deconvolution to GPR data collected in sedimentary strata at our study site resulted in an improvement in resolution (50%) and improved spatial location (0.10-0.15 m) of geologic features compared to the same data processed without deterministic deconvolution. The effectiveness of deterministic deconvolution for increased resolution and spatial accuracy of specific geologic features is further demonstrated by comparing results of deconvolved data with nondeconvolved data acquired along a 30-m transect immediately adjacent

  1. Groundwater Surface Trends at Van Norden Meadow, California, from Ground Penetrating Radar Profiles

    NASA Astrophysics Data System (ADS)

    Tadrick, N. I.; Blacic, T. M.; Yarnell, S. M.

    2014-12-01

    Van Norden meadow in the Donner Summit area west of Lake Tahoe is one of the largest sub-alpine meadows in the Sierra Nevada mountain range. As natural water retention basins, meadows attenuate floods, improve water quality and support vegetation that stabilizes stream banks and promotes high biodiversity. Like most meadows in the Sierras however, over-grazing, road-building, and development has resulted in localized stream incision, degradation, and partial conversion from wet to dry conditions in Van Norden. Additionally, a small dam at the base of the meadow has partially flooded the lower meadow creating reservoir conditions. Privately owned since the late 1800s, Van Norden was recently purchased by a local land trust to prevent further development and return the area to public ownership. Restoration of the natural meadow conditions will involve notching the dam in 2016 to reduce currently impounded water volumes from 250 to less than 50 acre-feet. To monitor the effects of notching the dam on the upstream meadow conditions, better understanding of the surface and groundwater hydrology both pre- and post-restoration is required. We surveyed the meadow in summer 2014 with ground penetrating radar (GPR) to map the groundwater surface prior to restoration activities using a 270MHz antenna to obtain a suite of longitudinal and transverse transects. Groundwater level within the meadow was assessed using both piezometer readings and sweeps of the GPR antenna. Seventeen piezometers were added this year to the 13 already in place to monitor temporal changes in the groundwater surface, while the GPR profiles provided information about lateral variations. Our results provide an estimate of the groundwater depth variations across the upper portion of the meadow before notching. We plan to return in 2015 to collect GPR profiles during wetter conditions, which will provide a more complete assessment of the pre-notching groundwater hydrology.

  2. Oil Detection In and Under Sea Ice Using Ground-Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Steinbronn, L.; Bradford, J.; Liberty, L.; Dickins, D.; Brandvik, P. J.

    2007-12-01

    Marine oil spills can occur in the Arctic due to pipeline breaks or leaks and spills from storage or production facilities. Depending on the time of year and scenario, a portion or all of the spill may become trapped under and/or encapsulated within the sea ice sheet. The current methods for locating spilled oil include visually inspecting drilled ice cores or sending divers under the ice. Speed is a key issue in oil clean-up. A non-invasive method of detecting oil quickly and reliably would greatly facilitate the clean-up and lessen the impact on the environment. First-year ice thicknesses of 0.5-2.0 m, typical of the Arctic region, can be well-resolved using radar. Oil film thicknesses can range from a few mm to 20 cm depending on the ice-water interface topography. For typical conditions a frequency of 500 MHz gives a 1/4 wavelength limit of 7 cm; therefore a typical spill scenario is a thin-bed problem for ground-penetrating radar (GPR). Interference due to thin-beds may cause amplitude, phase and frequency anomalies in the reflected wavelet. In April 2006, SINTEF conducted a contained oil-spill under natural Arctic sea ice conditions in a fjord on Svalbard. Using data collected during that experiment from a 500 MHz antenna and complex trace analysis we computed the instantaneous frequency, instantaneous phase and the envelope function and found significant differences in the data before and after the oil was inserted. These results demonstrated the potential of GPR to be a practical system for oil in ice detection under certain conditions. As a follow-on to the 2006 project, we have undertaken a detailed modeling effort to estimate GPR response to specific variables, such as ice and oil thicknesses, ice salinity and temperature.

  3. Evaluating some factors that affect feasility of using ground penetrating radar for landmine detection

    NASA Astrophysics Data System (ADS)

    Metwaly, Mohamed; Ismail, Ahmed; Matsushima, Jun

    2007-09-01

    Ground penetrating radar (GPR) is one of the promising technologies that can be used to detect landmines. Many factors may affect the ability of GPR to detect landmines. Among those factors are: 1) the type of landmine material (metallic or plastic), 2) conditions of the host soil (soil texture and soil moisture), and 3) the radar frequency utilized. The impact of these factors on the ability of GPR to detect landmines is investigated by studying their effect on the dielectric permittivity contrast between the landmine and the host soil, as well as on the attenuation of the radar waves. The impact of each factor was theoretically reviewed and modeled using the Matlab and Mathcad software packages. Results of the computer modeling were correlated with GPR data acquired for metallic and plastic landmine types. It was found that the ability of GPR to detect landmines depends to a great extent on the landmine type, water content of the host soil, utilized radar frequency, and soil texture. The landmines are much easier to detect than plastic landmines for any soil conditions and any radar frequency. Increasing the soil’s moisture content, regardless of soil texture, eases the detection of the plastic landmine and worsens the detection of the metallic mines. Increasing the percentage of clay in the soil causes the same effect as the moisture content. However, higher radar frequency delivers better results for landmine detection as long as the percentage of clay and the moisture content in the soil remains low. The results of this study are expected to help in selecting optimum radar antennae and data acquisition parameters depending on the landmine type and environmental conditions.

  4. Ground penetrating radar examination of thin tsunami beds - A case study from Phra Thong Island, Thailand

    NASA Astrophysics Data System (ADS)

    Gouramanis, Chris; Switzer, Adam D.; Polivka, Peter M.; Bristow, Charles S.; Jankaew, Kruawun; Dat, Pham T.; Pile, Jeremy; Rubin, Charles M.; Yingsin, Lee; Ildefonso, Sorvigenaleon R.; Jol, Harry M.

    2015-11-01

    Coastal overwash deposits from tsunamis and storms have been identified and characterised from many coastal environments. To date, these investigations have utilised ad-hoc time, energy and cost intensive invasive techniques, such as, pits and trenches or taking core samples. Here, we present the application of high-frequency ground penetrating radar (GPR) to identify and characterise the 2004 Indian Ocean Tsunami (IOT) and palaeotsunami deposits from Phra Thong Island, Thailand. This site is one of the most intensively studied palaeotsunami sites globally and preserves a series of late-Holocene stacked sandy tsunami deposits within an organic, muddy low-energy backbeach environment. Using 100, 500 and 1000 MHz GPR antennas, 29 reflection profiles were collected from two swales (X and Y) inland of the modern beach, and two common mid-point (CMP) profiles using the 200 MHz antennas were collected from Swale Y. Detailed examination of the CMPs allowed accurate velocity estimates to be applied to each profile. The reflection profiles included across-swale profiles and a high-resolution grid in Swale X, and were collected to investigate the feasibility of GPR to image the palaeotsunami deposits, and two profiles from Swale Y where the tsunami deposits are poorly known. The 500 MHz antennas provided the best stratigraphic resolution which was independently validated from the stratigraphy and sedimentology recovered from 17 auger cores collected along the profiles. It is clear from the augers and GPR data, that the different dielectric properties of the individual layers allow the identification of the IOT and earlier tsunami deposits on Phra Thong Island. Although applied in a coastal setting here, this technique can be applied to other environments where thin sand beds are preserved, in order to prioritise sites for detailed examination.

  5. Algorithm for detecting defects in wooden logs using ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Devaru, Dayakar; Halabe, Udaya B.; Gopalakrishnan, B.; Agrawal, Sachin; Grushecky, Shawn

    2005-11-01

    Presently there are no suitable non-invasive methods for precisely detecting the subsurface defects in logs in real time. Internal defects such as knots, decays, and embedded metals are of greatest concern for lumber production. While defects such as knots and decays (rots) are of major concern related to productivity and yield of high value wood products, embedded metals can damage the saw blade and significantly increase the down time and maintenance costs of saw mills. Currently, a large number of logs end up being discarded by saw mills, or result in low value wood products since they include defects. Nondestructive scanning of logs using techniques such as Ground Penetrating Radar (GPR) prior to sawing can greatly increase the productivity and yield of high value lumber. In this research, the GPR scanned data has been analyzed to differentiate the defective part of the wooden log from the good part. The location and size of the defect has been found in the GPR scanned data using the MATLAB algorithm. The output of this algorithm can be used as an input for generating operating instructions for a CNC sawing machine. This paper explains the advantages of the GPR technique, experimental setup and parameters used, data processing using RADAN software for detection of subsurface defects in logs, GPR data processing and analysis using MATLAB algorithm for automated defect detection, and comparison of results between the two processing methods. The results show that GPR in conjunction with the proposed algorithm provides a very promising technique for future on-line implementation in saw mills.

  6. Ground penetrating radar and active seismic investigation of stratigraphically verified pyroclastic deposits

    NASA Astrophysics Data System (ADS)

    Gase, A.; Bradford, J. H.; Brand, B. D.

    2015-12-01

    We conducted ground-penetrating radar (GPR) and active seismic surveys in July and August, 2015 parallel to outcrops of the pyroclastic density current deposits of the May 18th, 1980 eruption of Mount St. Helens (MSH), Washington. The primary objective of this study is to compare geophysical properties that influence electromagnetic and elastic wave velocities with stratigraphic parameters in the un-saturated zone. The deposits of interest are composed of pumice, volcanic ash, and lava blocks comprising a wide range of intrinsic porosities and grain sizes from sand to boulders. Single-offset GPR surveys for reflection data were performed with a Sensors and Software pulseEKKO Pro 100 GPR using 50 MHz, 100 MHz, and 200 MHz antennae. GPR data processing includes time-zero correction, dewow filter, migration, elevation correction. Multi-offset acquisition with 100 MHz antennae and offsets ranging from 1 m to 16 m are used for reflection tomography to create 2 D electromagnetic wave velocity models. Seismic surveys are performed with 72 geophones spaced at two meters using a sledge hammer source with shot points at each receiver point. We couple p- wave refraction tomography with Rayleigh wave inversion to compute Vp/Vs ratios. The two geophysical datasets are then compared with stratigraphic information to illustrate the influence of lithological parameters (e.g. stratification, grain-size distribution, porosity, and sorting) on geophysical properties of unsaturated pyroclastic deposits. Future work will include joint petrophysical inversion of the multiple datasets to estimate porosity and water content in the unsaturated zone.

  7. Mapping Spatial Moisture Content of Unsaturated Agricultural Soils with Ground-Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Shamir, O.; Goldshleger, N.; Basson, U.; Reshef, M.

    2016-06-01

    Soil subsurface moisture content, especially in the root zone, is important for evaluation the influence of soil moisture to agricultural crops. Conservative monitoring by point-measurement methods is time-consuming and expensive. In this paper we represent an active remote-sensing tool for subsurface spatial imaging and analysis of electromagnetic physical properties, mostly water content, by ground-penetrating radar (GPR) reflection. Combined with laboratory methods, this technique enables real-time and highly accurate evaluations of soils' physical qualities in the field. To calculate subsurface moisture content, a model based on the soil texture, porosity, saturation, organic matter and effective electrical conductivity is required. We developed an innovative method that make it possible measures spatial subsurface moisture content up to a depth of 1.5 m in agricultural soils and applied it to two different unsaturated soil types from agricultural fields in Israel: loess soil type (Calcic haploxeralf), common in rural areas of southern Israel with about 30% clay, 30% silt and 40% sand, and hamra soil type (Typic rhodoxeralf), common in rural areas of central Israel with about 10% clay, 5% silt and 85% sand. Combined field and laboratory measurements and model development gave efficient determinations of spatial moisture content in these fields. The environmentally friendly GPR system enabled non-destructive testing. The developed method for measuring moisture content in the laboratory enabled highly accurate interpretation and physical computing. Spatial soil moisture content to 1.5 m depth was determined with 1-5% accuracy, making our method useful for the design of irrigation plans for different interfaces.

  8. Attribute-driven transfer learning for detecting novel buried threats with ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Colwell, Kenneth A.; Collins, Leslie M.

    2016-05-01

    Ground-penetrating radar (GPR) technology is an effective method of detecting buried explosive threats. The system uses a binary classifier to distinguish "targets", or buried threats, from "nontargets" arising from system prescreener false alarms; this classifier is trained on a dataset of previously-observed buried threat types. However, the threat environment is not static, and new threat types that appear must be effectively detected even if they are not highly similar to every previously-observed type. Gathering a new dataset that includes a new threat type is expensive and time-consuming; minimizing the amount of new data required to effectively detect the new type is therefore valuable. This research aims to reduce the number of training examples needed to effectively detect new types using transfer learning, which leverages previous learning tasks to accelerate and improve new ones. Further, new types have attribute data, such as composition, components, construction, and size, which can be observed without GPR and typically are not explicitly included in the learning process. Since attribute tags for buried threats determine many aspects of their GPR representation, a new threat type's attributes can be highly relevant to the transfer-learning process. In this work, attribute data is used to drive transfer learning, both by using attributes to select relevant dataset examples for classifier fusion, and by extending a relevance vector machine (RVM) model to perform intelligent attribute clustering and selection. Classification performance results for both the attribute-only case and the low-data case are presented, using a dataset containing a variety of threat types.

  9. Ground-penetrating radar insight into a coastal aquifer: the freshwater lens of Borkum Island

    NASA Astrophysics Data System (ADS)

    Igel, J.; Günther, T.; Kuntzer, M.

    2013-02-01

    Freshwater lenses, as important resource for drinking water, are sensitive to climate changes and sea level rise. To simulate this impact on the groundwater systems, hydraulic subsurface models have to be designed. Geophysical techniques can provide information for generating realistic models. The aim of our work is to show how ground-penetrating radar (GPR) investigations can contribute to such hydrological simulations. In the pilot area, Borkum island, GPR was used to map the shape of the groundwater table (GWT) and to characterise the aquifer. In total, 20 km of constant offset (CO) profiles were measured with centre frequencies of 80 and 200 MHz. Wave velocities were determined by common midpoint (CMP) measurements and vertical radar profiling (VRP) in a monitoring well. The 80 MHz CO data show a clear reflection at the groundwater table, whereas the reflection is weaker for the 200 MHz data. After correcting the GPR water tables for the capillary rise, they are in good accordance with the pressure heads of the observation wells in the area. In the centre of the island, the groundwater table is found up to 3.5 m above sea level, however it is lower towards the coastline and marshland. Some local depressions are observed in the region of dune valleys and around pumping stations of the local water supplier. GPR also reveals details within the sediments and highly-permeable aeolian sands can be distinguished from less-permeable marine sediments. Further, a silt loam layer below the water table could be mapped on a large area. The reflection characteristics indicates scattered erosion channels in this layer that cause it to be an aquitard with some leakage. GPR provides a high resolution map of the groundwater table and insight into the stratigraphy of the sediments and their hydraulic properties. This is valuable complementary information to the observation of sparsely distributed monitoring wells as input to hydraulic simulation.

  10. Vehicle-mounted ground penetrating radar (Mine Stalker III) field evaluation in Angola

    NASA Astrophysics Data System (ADS)

    Laudato, Stephen; Hart, Kerry; Nevard, Michael; Lauziere, Steven; Grant, Shaun

    2014-05-01

    The U.S. Department of Defense Humanitarian Demining Research and Development (HD R&D) Program, Non-Intrusive Inspection Technology (NIITEK), Inc. and The HALO Trust have over the last decade funded, developed and tested various prototype vehicle mounted ground penetrating radar (GPR) systems named the Mine Stalker. The HD R&D Program and NIITEK developed the Mine Stalker to detect low metal anti-tank (LM-AT) mines in roads. The country of Angola is severely affected by LM-AT mines in and off road, some of which are buried beyond the effective range of detection sensors current used in country. The threat from LM-AT mines such as the South African Number 8 (No. 8) and the Chinese Type 72 (72AT) still persist from Angola's 30 years of civil war. These LM-AT threats are undetectable at depths greater than 5 to 10 centimeters using metal detection technology. Clearing commerce routes are a critical requirement before Angola can rebuild its infrastructure and improve safety conditions for the local populace. The Halo Trust, a non-governmental demining organization (NGO) focused on demining and clearance of unexploded ordnance (UXO), has partnered with the HD R&D Program to conduct an operational field evaluation (OFE) of the Mine Stalker III (MS3) in Angola. Preliminary testing and training efforts yielded encouraging results. This paper presents a review of the data collected, testing results, system limitations and deficiencies while operating in a real world environment. Our goal is to demonstrate and validate this technology in live minefield environments, and to collect data to prompt future developments to the system.

  11. Estimating Trapped Gas Concentrations as Bubbles Within Lake Ice Using Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Fantello, N.; Parsekian, A.; Walter Anthony, K. M.

    2015-12-01

    Climate warming is currently one of the most important issues that we are facing. The degradation of permafrost beneath thermokarst lakes has been associated with enhanced methane emissions and it presents a positive feedback to climate warming. Thermokarst lakes release methane to the atmosphere mainly by ebullition (bubbling) but there are a large number of uncertainties regarding the magnitude and variability of these emissions. Here we present a methodology to estimate the amount of gas released from thermokarst lakes through ebullition using ground-penetrating radar (GPR). This geophysical technique is well suited for this type of problem because it is non-invasive, continuous, and requires less effort and time than the direct visual inspection. We are studying GPR data collected using 1.2 GHz frequency antennas in Brooklyn Lake, Laramie, WY, in order to quantify the uncertainties in the method. Although this is not a thermokarst lake, gas bubbles are trapped in the ice and spatial variability in bubble concentration within the ice is evident. To assess the variability in bulk physical properties of the ice due to bubbles, we gathered GPR data from different types of ice. We compared the velocity of the groundwave and reflection obtained from radargrams, and found on each case a larger value for the groundwave velocity suggesting a non-homogeneous medium and that the concentration of bubbles is prone to be near the surface instead of at greater depths. We use a multi-phase dielectric-mixing model to estimate the amount of gas present in a sample of volume of ice and found an uncertainty in relative permittivity (estimated using reflection velocity) of 0.0294, which translates to an uncertainty of 1.1% in gas content; and employing groundwave velocity we found 0.0712 and 2.9%, respectively. If locations of gas seeps in lakes could be detected and quantified using GPR along with field measurements, this could help to constrain future lake-source carbon gas

  12. The Strata Ground Penetrating Radar for Rover Based Exploration of the Martian Subsurface

    NASA Astrophysics Data System (ADS)

    Leuschen, C. J.; Grant, J. A.; Schutz, A. E.; Williams, K. K.

    2005-12-01

    Ground-penetrating radar (GPR) provides a mature and efficient means of identifying the near-surface stratigraphy by mapping the electromagnetic reflectivity of subsurface layering and structure. Typical investigation depths range from less than a meter to tens of meters at spatial resolutions of tens of centimeters to meters, respectively, depending on the system configuration and electrical characteristics of the local geophysical setting. On Mars, a rover-based GPR will define geologically interesting areas for surface in-situ point measurements and can help extrapolate local ground truth to better define the extent and form of a specific deposit, structure, or layer. GPR can also help locate shallow deposits of water or ice, define geological setting based on signatures from analog environments, and help to target and orient rover-based or follow-on drilling operations. Terrestrial GPR systems have been commercially developed to provide optimal performance regarding dynamic range, clutter and sidelobe suppression, and timing stability; while also retaining a high level usability for non-experts in a wide variety of environments. Strata is a similar high-performance GPR that has been tailored for the specific application of Mars exploration from a rover-based platform. It is a 400 MHz impulsive system that can easily be to be mounted on a range of rover platforms. With its high dynamic range of 110 dB, Strata will be capable of probing tens of meters into the subsurface of Mars with a nominal resolution of less than 20 cm. The Strata instrument consists of a low mass and low power digital processor unit and a set of loaded dipole antennas whose specific design and frequency is adaptable to almost any rover configuration. The Strata design is optimized for geologic applications that include definition of geologic setting and detection of water and draws from the maturity of commercial systems developed by Geophysical Survey Systems Inc., which are being adapted

  13. Coarse root distribution of a semi-arid oak savanna estimated with ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Raz-Yaseef, N.; Koteen, L. E.; Baldocchi, D. D.

    2012-12-01

    North California enjoys wet and mild winters, but experiences extreme hot, dry summer conditions, with occasional drought years. Despite the severity of summer conditions, blue oaks are winter-deciduous. We hypothesized that the binary nature of water availability would be reflected in blue oak root architecture. Our objective was to understand how the form of the root system facilitates ecosystem functioning. To do this, we sought to characterize the structure of the root system, and survey coarse root distribution with ground penetrating radar (GPR), due to its advantages in covering large areas rapidly and non-destructively. Because GPR remains a relatively new technology for examining root distribution, an ancillary objective was to test this methodology, and help facilitate its application more broadly. A third objective was to test the potential for upscaling coarse root biomass by developing allometric relations based on LIDAR measurements of above ground canopy structure. We surveyed six 8x8 m locations with trees varying in size, age and clumping (i.e. isolated trees vs. tree clusters). GPR signals were transformed to root biomass by calibrating them against excavated roots. Toward this goal, we positioned two rectangles of size 60x100 cm in each of the grids, excavated and sieved soil to harvest roots. Our results indicate that coarse roots occupy the full soil profile, and that root biomass of old large trees peaks just above the bedrock. As opposed to other semi-arid regions, where trees often develop extensive shallow coarse lateral roots, in order to exploit the entire wet-soil medium, we found that coarse root density decreased with distance from the bole, and dropped sharply at a distance of 2 m. We upscaled root biomass to stand-scale (2.8±0.4 kg m-2) based on LiDAR analysis of the relative abundance of each tree configuration. We argue that the deep and narrow root structure we observed reflects the ecohydrology of oaks in this ecosystem, because

  14. Comparing ground-penetrating radar (GPR) techniques in 18th-century yard spaces

    NASA Astrophysics Data System (ADS)

    Carducci, Christiane M.

    Yards surrounding historical homesteads are the liminal space between private houses and public space, and contain artifactural and structural remains that help us understand how the residents interfaced with the world. Comparing different yards means collecting reliable evidence, and what is missing is just as important as what is found. Excavations can rely on randomly placed 50-cm shovel test pits to locate features, but this can miss important features. Shallow geophysics, in particular ground-penetrating radar (GPR), can be used to identify features and reliably and efficiently collect evidence. GPR is becoming more integrated into archaeological investigations due to the potential to quickly and nondestructively identify archaeological features and to recent advancements in processing software that make these methods more user-friendly. The most efficacious GPR surveys must take into consideration what is expected to be below the surface, what features look like in GPR outputs, the best methods for detecting features, and the limitations of GPR surveys. Man-made landscape features are expected to have existed within yard spaces, and the alteration of these features shows how the domestic economy of the residence changed through time. This study creates an inventory of these features. By producing a standardized sampling method for GPR in yard spaces, archaeologists can quickly map subsurface features and carry out broad comparisons between yards. To determine the most effective sampling method, several GPR surveys were conducted at the 18th-century Durant-Kenrick House in Newton, Massachusetts, using varied line spacing, line direction, and bin size. Examples of the GPR signatures of features, obtained using GPR-Slice software, from the Durant-Kenrick House and similar sites were analyzed. The efficacy of each method was determined based on the number of features distinguished, clarity of the results, and the time involved. The survey at Newton showed that

  15. Getting saturated hydraulic conductivity from surface Ground-Penetrating Radar measurements inside a ring infiltrometer

    NASA Astrophysics Data System (ADS)

    Leger, E.; Saintenoy, A.; Coquet, Y.

    2013-12-01

    Hydraulic properties of soils, described by the soil water retention and hydraulic conductivity functions, strongly influence water flow in the vadoze zone, as well as the partitioning of precipitation between infiltration into the soil and runoff along the ground surface. Their evaluation has important applications for modelling available water resources and for flood forecasting. It is also crucial to evaluate soil's capacity to retain chemical pollutants and to assess the potential of groundwater pollution. The determination of the parameters involved in soil water retention functions, 5 parameters when using the van Genuchten function, is usually done by laboratory experiments, such as the water hanging column. Hydraulic conductivity, on the other hand can be estimated either in laboratory, or in situ using infiltrometry tests. Among the large panel of existing tests, the single or double ring infiltrometers give the field saturated hydraulic conductivity by applying a positive charge on soils, whereas the disk infiltrometer allows to reconstruct the whole hydraulic conductivity curve, by applying different charges smaller than or equal to zero. In their classical use, volume of infiltrated water versus time are fitted to infer soil's hydraulic conductivity close to water saturation. Those tests are time-consuming and difficult to apply to landscape-scale forecasting of infiltration. Furthermore they involve many assumptions concerning the form of the infiltration bulb and its evolution. Ground-Penetrating Radar (GPR) is a geophysical method based on electromagnetic wave propagation. It is highly sensitive to water content variations directly related to the dielectric permittivity. In this study GPR was used to monitor water infiltration inside a ring infiltrometer and retrieve the saturated hydraulic conductivity. We carried out experiments in a quarry of Fontainebleau sand, using a Mala RAMAC system with antennae centered on 1600 MHz. We recorded traces at

  16. Mapping preferential flow pathways in a riparian wetland using ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Gormally, Kevin Hill

    Preferential flow of water through channels in the soil has been implicated as a vehicle for groundwater and surface water contamination in forested riparian wetland buffers. Water conducted through these by-pass channels can circumvent interaction with wetland biota, biomass, and soils, thereby reducing the buffering capacity of the riparian strips for adsorption and uptake of excess nutrient loads from neighboring agricultural fields and urbanized lands. Models of riparian function need to account for preferential flow to accurately estimate nutrient flux to stream channels, but there are currently no methods for determining the form and prevalence of these pathways outside of extensive destructive sampling. This research developed, tested, and validated a new application of non-invasive ground-penetrating radar technology (GPR) for mapping the three-dimensional structure of near-surface (0-1 m) lateral preferential flow channels. Manual and automated detection methodologies were created for analyzing GPR scan data to locate the channels in the subsurface. The accuracy of the methodologies was assessed in two field test plots with buried PVC pipes simulating the riparian channels. The manual methodology had a 0% Type I error rate and 8% Type II error rate; the automated version had a <1% Type I error rate and 29% Type II error rate. An automated mapping algorithm was also created to reconstruct channel geometries from the scan data detections. The algorithm was shown to robustly track the connectivity of PVC pipe segments arranged in a branching structure hypothesized to exist in the riparian soils. These methods and algorithms were then applied at a riparian wetland study site at USDA Beltsville Agricultural Research Center in Beltsville, MD. The predicted structure of preferential flow channels in the wetland was validated by transmission of tracer dye through the study site and ground truth generated from soil core samples (92% accurate). These GPR tools will

  17. Data processing of ground-penetrating radar signals for the detection of discontinuities using polarization diversity

    NASA Astrophysics Data System (ADS)

    Tebchrany, Elias; Sagnard, Florence; Baltazart, Vincent; Tarel, Jean-Phillippe

    2014-05-01

    In civil engineering, ground penetrating radar (GPR) is used to survey pavement thickness at traffic speed, detect and localize buried objects (pipes, cables, voids, cavities), zones of cracks and discontinuities in concrete or soils. In this work, a ground-coupled radar made of a pair of transmitting and receiving bowtie-slot antennas is moved linearly on the soil surface to detect the reflected waves induced by discontinuities in the subsurface. The GPR system operates in the frequency domain using a step-frequency continuous wave (SFCW) using a Vector Network Analyzer (VNA) in an ultra-wide band [0.3 ; 4] GHz. The detection of targets is usually focused on time imaging. Thus, the targets (limited in size) are usually shown by diffraction hyperbolas on a Bscan image that is an unfocused depiction of the scatterers. The contrast in permittivity and the ratio between the size of the object and the wavelength are important parameters in the detection process. Thus, we have made a first study on the use of polarization diversity to obtain additional information relative to the contrast between the soil and the target and the dielectric characteristics of a target. The two main polarizations configurations of the radar have been considered in the presence of objects having a pipe geometry: the TM (Transverse Magnetic) and TE (Transverse Electric. To interpret the diffraction hyperbolas on a Bscan image, we have used pre-processing techniques are necessary to reduce the clutter signal which can overlap and obscure the target responses, particularly shallow objects. The clutter, which can be composed of the direct coupling between the antennas and the reflected wave from the soil surface, the scattering on the heterogeneities due to the granular nature of the subsurface material, and some additive noise, varies with soil dielectric characteristics and/or surface roughness and leads to uncertainty in the measurements (additive noise). Because of the statistical nature of

  18. Large-scale, high-definition Ground Penetrating Radar prospection in archaeology

    NASA Astrophysics Data System (ADS)

    Trinks, I.; Kucera, M.; Hinterleitner, A.; Löcker, K.; Nau, E.; Neubauer, W.; Zitz, T.

    2012-04-01

    The future demands on professional archaeological prospection will be its ability to cover large areas in a time and cost efficient manner with very high spatial resolution and accuracy. The objective of the 2010 in Vienna established Ludwig Boltzmann Institute for Archaeological Prospection and Virtual Archaeology (LBI ArchPro) in collaboration with its eight European partner organisations is the advancement of state-of-the-art archaeological sciences. The application and specific further development of remote sensing, geophysical prospection and virtual reality applications, as well as of novel integrated interpretation approaches dedicated to non-invasive spatial archaeology combining near-surface prospection methods with advanced computer science is crucial for modern archaeology. Within the institute's research programme different areas for distinct case studies in Austria, Germany, Norway, Sweden and the UK have been selected as basis for the development and testing of new concepts for efficient and universally applicable tools for spatial, non-invasive archaeology. In terms of geophysical prospection the investigation of entire archaeological landscapes for the exploration and protection of Europe's buried cultural heritage requires new measurement devices, which are fast, accurate and precise. Therefore the further development of motorized, multichannel survey systems and advanced navigation solutions is required. The use of motorized measurement devices for archaeological prospection implicates several technological and methodological challenges. Latest multichannel Ground Penetrating Radar (GPR) arrays mounted in front off, or towed behind motorized survey vehicles permit large-scale GPR prospection surveys with unprecedented spatial resolution. In particular the motorized 16 channel 400 MHz MALÅ Imaging Radar Array (MIRA) used by the LBI ArchPro in combination with latest automatic data positioning and navigation solutions permits the reliable high

  19. Estimating 3D L5/S1 moments and ground reaction forces during trunk bending using a full-body ambulatory inertial motion capture system.

    PubMed

    Faber, G S; Chang, C C; Kingma, I; Dennerlein, J T; van Dieën, J H

    2016-04-11

    Inertial motion capture (IMC) systems have become increasingly popular for ambulatory movement analysis. However, few studies have attempted to use these measurement techniques to estimate kinetic variables, such as joint moments and ground reaction forces (GRFs). Therefore, we investigated the performance of a full-body ambulatory IMC system in estimating 3D L5/S1 moments and GRFs during symmetric, asymmetric and fast trunk bending, performed by nine male participants. Using an ambulatory IMC system (Xsens/MVN), L5/S1 moments were estimated based on the upper-body segment kinematics using a top-down inverse dynamics analysis, and GRFs were estimated based on full-body segment accelerations. As a reference, a laboratory measurement system was utilized: GRFs were measured with Kistler force plates (FPs), and L5/S1 moments were calculated using a bottom-up inverse dynamics model based on FP data and lower-body kinematics measured with an optical motion capture system (OMC). Correspondence between the OMC+FP and IMC systems was quantified by calculating root-mean-square errors (RMSerrors) of moment/force time series and the interclass correlation (ICC) of the absolute peak moments/forces. Averaged over subjects, L5/S1 moment RMSerrors remained below 10Nm (about 5% of the peak extension moment) and 3D GRF RMSerrors remained below 20N (about 2% of the peak vertical force). ICCs were high for the peak L5/S1 extension moment (0.971) and vertical GRF (0.998). Due to lower amplitudes, smaller ICCs were found for the peak asymmetric L5/S1 moments (0.690-0.781) and horizontal GRFs (0.559-0.948). In conclusion, close correspondence was found between the ambulatory IMC-based and laboratory-based estimates of back load.

  20. Regional 3-D ionospheric electron density specification on the basis of data assimilation of ground-based GNSS and radio occultation data

    NASA Astrophysics Data System (ADS)

    Aa, Ercha; Liu, Siqing; Huang, Wengeng; Shi, Liqin; Gong, Jiancun; Chen, Yanhong; Shen, Hua; Li, Jianyong

    2016-06-01

    In this paper, a regional 3-D ionospheric electron density specification over China and adjacent areas (70°E-140°E in longitude, 15°N-55°N in latitude, and 100-900 km in altitude) is developed on the basis of data assimilation technique. The International Reference Ionosphere (IRI) is used as a background model, and a three-dimensional variational technique is used to assimilate both the ground-based Global Navigation Satellite System (GNSS) observations from the Crustal Movement Observation Network of China (CMONOC) and International GNSS Service (IGS) and the ionospheric radio occultation (RO) data from FORMOSAT-3/COSMIC (F3/C) satellites. The regional 3-D gridded ionospheric electron densities can be generated with temporal resolution of 5 min in universal time, horizontal resolution of 2° × 2° in latitude and longitude, and vertical resolution of 20 km between 100 and 500 km and 50 km between 500 and 900 km. The data assimilation results are validated through extensive comparison with several sources of electron density information, including (1) ionospheric total electron content (TEC); (2) Abel-retrieved F3/C electron density profiles (EDPs); (3) ionosonde foF2 and bottomside EDPs; and (4) the Utah State University Global Assimilation of Ionospheric Measurements (USU-GAIM) under both geomagnetic quiet and disturbed conditions. The validation results show that the data assimilation procedure pushes the climatological IRI model toward the observation, and a general accuracy improvement of 15-30% can be expected. Thecomparisons also indicate that the data assimilation results are more close to the Center for Orbit Determination of Europe (CODE) TEC and Madrigal TEC products than USU-GAIM. These initial results might demonstrate the effectiveness of the data assimilation technique in improving specification of local ionospheric morphology.

  1. State-of-the-art and trends of Ground-Penetrating Radar antenna arrays

    NASA Astrophysics Data System (ADS)

    Vescovo, Roberto; Pajewski, Lara; Tosti, Fabio

    2016-04-01

    The aim of this contribution is to offer an overview on the antenna arrays for GPR systems, current trends and open issues. Antennas are a critical hardware component of a radar system, dictating its performance in terms of capability to detect targets. Nevertheless, most of the research efforts in the Ground-Penetrating Radar (GPR) area focus on the use of this imaging technique in a plethora of different applications and on the improvement of modelling/inversion/processing techniques, whereas a limited number of studies deal with technological issues related to the design of novel systems, including the synthesis, optimisation and characterisation of advanced antennas. Even fewer are the research activities carried out to develop innovative antenna arrays. GPR antennas operate in a strongly demanding environment and should satisfy a number of requirements, somehow unique and very different than those of conventional radar antennas. The same applies to GPR antenna arrays. The first requirement is an ultra-wide frequency band: the radar has to transmit and receive short-duration time-domain waveforms, in the order of a few nanoseconds, the time-duration of the emitted pulses being a trade-off between the desired radar resolution and penetration depth. Furthermore, GPR antennas should have a linear phase characteristic over the whole operational frequency range, predictable polarisation and gain. Due to the fact that a subsurface imaging system is essentially a short-range radar, the coupling between transmitting and receiving antennas has to be low and short in time. GPR antennas should have quick ring-down characteristics, in order to prevent masking of targets and guarantee a good resolution. The radiation patterns should ensure minimal interference with unwanted objects, usually present in the complex operational environment; to this aim, antennas should provide high directivity and concentrate the electromagnetic energy into a narrow solid angle. As GPR

  2. Design of a radar system based on compact cavity-backed ultra wide band slot antennas for ground penetrating applications

    NASA Astrophysics Data System (ADS)

    Sagnard, F.

    2012-04-01

    ground, and coated with an inner layered absorbing material has been added to eliminate undesirable reflections from the upper environment particularly at low frequencies; moreover, in a GPR system, the antenna shielding will allow to reduce the coupling between the transmitting and the receiving units. The proposed rectangular slot antenna has been designed and simulated using the 3D commercial software EMPIRE based on the finite difference time domain (FDTD) technique. A detailed parameter study has allowed to define the several geometrical parameters of the unshielded slot antenna which are the result of a compromise on the frequency bandwidth (S11<-10 dB) and compact dimensions. Afterwards, the antenna radiation characteristics have been studied in the presence of a shield (conductive box coated with a multi-layered lossy material) and a common soil (epsilon=5.5, sigma=0.01 S/m). A pair of antennas has then been considered to form a bistatic radar link positioned on the soil surface, where the soil can included buried objects (pipe or crack) met in civil engineering structures. First measurements made on a sandy box have allowed to validate the simulation results

  3. The application of ground-penetrating radar method for detecting buried human bodies on the Cikutra graveyard, Indonesia

    NASA Astrophysics Data System (ADS)

    Aditama, Iqbal Fauzi; Syaifullah, Khalid Istiqlal; Saputera, Durra Handri; Widodo

    2015-04-01

    Ground-penetrating radar (GPR) can be used to study shallow subsurface of the earth. GPR can be utilized to detect buried human bodies that suffered landslides or buried by other causes. A detailed ground-penetrating survey was conducted in the Cikutra graveyard, Bandung on a corpse buried two weeks from the time of the survey. Processing the data was carried out to filter out noise and to improve the resolution. The radar profiles from this survey produced hyperbolic reflections, emanated from the corpse. The hyperbolic reflection was strongest in the abdomen region compared to the head and the legs of the corpse. The result of data processing shows similarity between data from the survey and the actual location of the human body. We obtained the hyperbolic reflection at around 1.5 meters depth which is consistent with the depth of the buried corpse.

  4. Uses of ground-penetrating radar in the Georgia coastal plain. Rview of past and current studies. Research report

    SciTech Connect

    Truman, C.C.; Bosch, D.D.; Allison, H.D.; Fletcher, R.G.

    1994-10-01

    Ground-penetrating radar (GPR) has been used by researchers at ARS's Southeast Watershed Research Laboratory (SEWRL) to nondestructively investigate soil properties (and their spatial variability) and geologic materials in this region. Uses of GPR include mapping soils and performing nondestructive site investigations; detecting and determining spatial variability of argilic horizons, water tables in coarse-textured soils, geologic materials, and hard pans; and mapping lake bottoms and defining lake storage conditions.

  5. Detection of abandoned underground storage tanks in rights-of-way with ground-penetrating radar. Final report

    SciTech Connect

    Clemena, G.G.; French, A.W.

    1995-06-01

    Highway agencies need a simple, effective, nondestructive way to inspect certain properties in rights-of-way for the possible presence of abandoned underground storage tanks, without disturbing the ground, before actual construction begins. Overall, ground-penetrating radar (GPR) fills this need better than other nondestructive methods. The report explains why GPR was chosen over the other nondestructive methods available, discusses the principal of GPR, describes the basic radar equipment needed and the general procedures involved in conducting such inspections, and provides examples of the type of radar data such inspections produce.

  6. A novel discontinuous Galerkin time-domain method for ground-penetrating radar simulation with applications to the ASSESS-GPR test site

    NASA Astrophysics Data System (ADS)

    Fahlke, J.; Buchner, J.; Ippisch, O.; Roth, K.; Bastian, P.

    2012-04-01

    The simulation of ground-penetrating radar (GPR) measurements requires the solution of Maxwell's equations. While finite-differences time-domain (FDTD) solvers are faster on structured grids, finite-element time-domain (FETD) and discontinuous Galerkin time-domain (DGTD) allow to resolve complicated structures and avoid staircase approximations. Soil horizon boundaries can be resolved exactly by the finite element mesh. In this contribution 3D simulations are compared with measurements from the ASSESS-GPR test site which is an artificial GPR testbed with a well known geometry and ground-truth on volumetric water content provided by 32 TDR probes. For the simulations a DGTD method is used in a dual-field formulation and compared to a standard FETD method with conforming edge-based finite elements. The software for the simulation has been developed using the Distributed and Unified Numerics Environment (DUNE) and its PDELab discretization module. The programs have been parallelized using MPI to make computations on the size of 108 unknowns feasible.

  7. Thrust faulting and 3D ground deformation of the 3 July 2015 Mw 6.4 Pishan, China earthquake from Sentinel-1A radar interferometry

    NASA Astrophysics Data System (ADS)

    Sun, Jianbao; Shen, Zheng-Kang; Li, Tao; Chen, Jie

    2016-06-01

    Boosted by the launch of Sentinel-1A radar satellite from the European Space Agency (ESA), we now have the opportunity of fast, full and multiple coverage of the land based deformation field of earthquakes. Here we use the data to investigate a strong earthquake struck Pishan, western China on July 3, 2015. The earthquake fault is blind and no ground break features are found on-site, thus Synthetic Aperture Radar (SAR) data give full play to its technical advantage for the recovery of coseismic deformation field. By using the Sentinel-1A radar data in the Interferometric Wide Swath mode, we obtain 3 tracks of InSAR data over the struck region, and resolve the 3D ground deformation generated by the earthquake. Then the Line-of-Sight (LOS) InSAR data are inverted for the slip-distribution of the seismogenic fault. The final model shows that the earthquake is completely blind with pure-thrust motion. The maximum slip is 0.48 m at a depth of 7 km, consistent with the depth estimate from seismic reflection data. In particular, the inverted model is also compatible with a south-dipping fault ramp among a group of fault interfaces detected by the seismic reflection profile over the region. The seismic moment obtained equals to a Mw 6.4 earthquake. The Pishan earthquake ruptured the frontal part of the thrust ramps under the Slik anticline, and unloaded the coulomb stress of them. However, it may have loaded stress to the back-thrust above the thrust ramps by 1-4 bar, and promoted it for future failure. Moreover, the stress loading on the west side of the earthquake fault is much larger than that on the east side, indicating a higher risk for failure to the west of the Zepu fault.

  8. Integrating ground-penetrating radar and borehole data from a Wadden Sea barrier island

    NASA Astrophysics Data System (ADS)

    Nielsen, L.; Møller, I.; Nielsen, L. H.; Johannessen, P. N.; Pejrup, M.; Andersen, T. J.; Korshøj, J. S.

    2009-05-01

    Sea level rise may have large implications for low-gradient barrier coastal systems. This problem motivated an integrated ground-penetrating radar (GPR) and sedimentological study of the Rømø Wadden Sea barrier island. Crossing W-E and N-S-oriented 100 MHz GPR reflection profiles with a total length of about 30 km were acquired on the island. In this case study, we process and analyze GPR data and investigate the feasibility of using integrated GPR and sedimentological log data to constrain spatial variations in lithology, structures and changing depositional environments of the Rømø barrier island. We document different standard processing steps which lead to increased signal-to-noise ratio, improved resolution and trustworthy GPR-to-borehole correlation. The GPR signals image the subsurface layering with a vertical resolution of ~ 0.2-0.3 m. The penetration depth of the GPR reflection signals varies between 7 and 15 m in the interior of the island where the shallow subsurface is not influenced by saltwater intrusion or fine-grained salt marsh sediments. Analysis of common midpoint reflection data constrains the radar wave velocity distribution in the subsurface and facilitates depth conversion of the reflection profiles. The GPR reflections are correlated with sedimentological facies logs, and we test to which extent it is possible to map the architecture of different sedimentary units of the Rømø barrier island based on joint interpretation of the GPR and core data. Detailed investigation of signal waveform variations and amplitude decay analysis are used for assessing lateral variation in lithology and composition. The combined GPR and borehole investigations constrain the nature of different marine and aeolian sedimentary sequences that have formed the barrier island system. We observe two prominent reflections which, in general, exhibit good continuity. The upper prominent reflection (0-2 m above present mean sea level (pmsl)) outlines swales and beach

  9. Mars, accessing the third dimension: a software tool to exploit Mars ground penetrating radars data.

    NASA Astrophysics Data System (ADS)

    Cantini, Federico; Ivanov, Anton B.

    2016-04-01

    The Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS), on board the ESA's Mars Express and the SHAllow RADar (SHARAD), on board the NASA's Mars Reconnaissance Orbiter are two ground penetrating radars (GPRs) aimed to probe the crust of Mars to explore the subsurface structure of the planet. By now they are collecting data since about 10 years covering a large fraction of the Mars surface. On the Earth GPRs collect data by sending electromagnetic (EM) pulses toward the surface and listening to the return echoes occurring at the dielectric discontinuities on the planet's surface and subsurface. The wavelengths used allow MARSIS EM pulses to penetrate the crust for several kilometers. The data products (Radargrams) are matrices where the x-axis spans different sampling points on the planet surface and the y-axis is the power of the echoes over time in the listening window. No standard way to manage this kind of data is established in the planetary science community and data analysis and interpretation require very often some knowledge of radar signal processing. Our software tool is aimed to ease the access to this data in particular to scientists without a specific background in signal processing. MARSIS and SHARAD geometrical data such as probing point latitude and longitude and spacecraft altitude, are stored, together with relevant acquisition metadata, in a geo-enabled relational database implemented using PostgreSQL and PostGIS. Data are extracted from official ESA and NASA released data using self-developed python classes and scripts and inserted in the database using OGR utilities. This software is also aimed to be the core of a collection of classes and script to implement more complex GPR data analysis. Geometrical data and metadata are exposed as WFS layers using a QGIS server, which can be further integrated with other data, such as imaging, spectroscopy and topography. Radar geometry data will be available as a part of the iMars Web

  10. Properties of Frozen Peat Determined Using Waveguide Dispersion Analysis of Ground-Penetrating Radar (GPR) Data

    NASA Astrophysics Data System (ADS)

    Parsekian, A.; van der Kruk, J.; Slater, L. D.

    2010-12-01

    Dispersive signals have been observed in ground-penetrating radar data collected during the winter on a frozen peatland in northern Minnesota, USA. These dispersed signals contain information about the frozen upper layer of peat that is acting as a waveguide for the transmitted radar pulse. This frozen layer has a dielectric permittivity close to that of ice due to the high water content (~94%) of peat. Due to total internal reflection at the air-ice interface beyond the critical angle and an almost total reflection at the ice-unfrozen peat interface due to the large contrast, the wave energy is trapped within the waveguide and multiple reflections occur. The properties of the frozen layer were determined by calculating a phase-velocity spectrum then picking the dispersion curves from the maxima of each frequency. The picked dispersion curves were then inverted using single- and multi-layer routines. This process finds parameters that minimize the misfit between the picked data and the predicted dispersion curves. Field data consists of three common mid-point gathers from the mid-slope lawn of Red Lake II peatland (part of the Glacial Lake Agassiz peatland complex) at the end of the 2009 winter. Generally only the fundamental mode is observed in the phase-velocity spectrum generated from the field datasets. Forward modeling of multiple-offset datasets was used to interpret the field data inversion results. These simulations suggest that the natural system is more complex than a simple one or two layer model and a model with three or more layers is necessary to best fit the data. Nonetheless, analysis of the simulated data indicates that single-layer inversions of three-layer simulations result in a weighted average of the permittivity parameter and a sum of the layer thicknesses and we have determined that the peat freezes to between 0.32 m and 0.42 m thick. We have also determined that the permittivity is slightly higher than pure ice indicating that some liquid

  11. Ice thickness profile surveying with ground penetrating radar at Artesonraju Glacier, Peru

    NASA Astrophysics Data System (ADS)

    Chisolm, Rachel; Rabatel, Antoine; McKinney, Daene; Condom, Thomas; Cochacin, Alejo; Davila Roller, Luzmilla

    2014-05-01

    Tropical glaciers are an essential component of the water resource systems in the mountainous regions where they are located, and a warming climate has resulted in the accelerated retreat of Andean glaciers in recent decades. The shrinkage of Andean glaciers influences the flood risk for communities living downstream as new glacial lakes have begun to form at the termini of some glaciers. As these lakes continue to grow in area and volume, they pose an increasing risk of glacial lake outburst floods (GLOFs). Ice thickness measurements have been a key missing link in studying the tropical glaciers in Peru and how climate change is likely to impact glacial melt and the growth of glacial lakes. Ground penetrating radar (GPR) has rarely been applied to glaciers in Peru to measure ice thickness, and these measurements can tell us a lot about how a warming climate will affect glaciers in terms of thickness changes. In the upper Paron Valley (Cordillera Blanca, Peru), an emerging lake has begun to form at the terminus of the Artesonraju Glacier, and this lake has key features, including overhanging ice and loose rock likely to create slides, that could trigger a catastrophic GLOF if the lake continues to grow. Because the glacier mass balance and lake mass balance are closely linked, ice thickness measurements and measurements of the bed slope of the Artesonraju Glacier and underlying bedrock can give us an idea of how the lake is likely to evolve in the coming decades. This study presents GPR data taken in July 2013 at the Artesonraju Glacier as part of a collaboration between the Unidad de Glaciologia y Recursos Hidricos (UGRH) of Peru, the Institut de Recherche pour le Développement (IRD) of France and the University of Texas at Austin (UT) of the United States of America. Two different GPR units belonging to UGRH and UT were used for subsurface imaging to create ice thickness profiles and to characterize the total volume of ice in the glacier. A common midpoint

  12. Detection of tree roots and determination of root diameters by ground penetrating radar under optimal conditions.

    PubMed

    Barton, Craig V M; Montagu, Kelvin D

    2004-12-01

    A tree's root system accounts for between 10 and 65% of its total biomass, yet our understanding of the factors that cause this proportion to vary is limited because of the difficulty encountered when studying tree root systems. There is a need to develop new sampling and measuring techniques for tree root systems. Ground penetrating radar (GPR) offers the potential for direct nondestructive measurements of tree root biomass and root distributions to be made. We tested the ability of GPR, with 500 MHz, 800 MHz and 1 GHz antennas, to detect tree roots and determine root size by burying roots in a 32 m3 pit containing damp sand. Within this test bed, tree roots were buried in two configurations: (1) roots of various diameters (1-10 cm) were buried at a single depth (50 cm); and (2) roots of similar diameter (about 5 cm) were buried at various depths (15-155 cm). Radar antennas were drawn along transects perpendicular to the buried roots. Radar profile normalization, filtration and migration were undertaken based on standard algorithms. All antennas produced characteristic reflection hyperbolas on the radar profiles allowing visual identification of most root locations. The 800 MHz antenna resulted in the clearest radar profiles. An unsupervised, maximum-convexity migration algorithm was used to focus information contained in the hyperbolas back to a point. This resulted in a significant gain in clarity with roots appearing as discrete shapes, thereby reducing confusion due to overlapping of hyperbolas when many roots are detected. More importantly, parameters extracted from the resultant waveform through the center of a root correlated well with root diameter for the 500 MHz antenna, but not for the other two antennas. A multiple regression model based on the extracted parameters was calibrated on half of the data (R2 = 0.89) and produced good predictions when tested on the remaining data. Root diameters were predicted with a root mean squared error of 0.6 cm

  13. The detectability of archaeological structures beneath the soil using the ground penetrating radar technique

    NASA Astrophysics Data System (ADS)

    Ferrara, C.; Barone, P. M.; Pajewski, L.; Pettinelli, E.; Rossi, G.

    2012-04-01

    The traditional excavation tools applied to Archaeology (i.e. trowels, shovels, bulldozers, etc.) produce, generally, a fast and invasive reconstruction of the ancient past. The geophysical instruments, instead, seem to go in the opposite direction giving, rapidly and non-destructively, geo-archaeological information. Moreover, the economic aspect should not be underestimated: where the former invest a lot of money in order to carry out an excavation or restoration, the latter spend much less to manage a geophysical survey, locating precisely the targets. Survey information gathered using non-invasive methods contributes to the creation of site strategies, conservation, preservation and, if necessary, accurate location of excavation and restoration units, without destructive testing methods, also in well-known archaeological sites [1]-[3]. In particular, Ground Penetrating Radar (GPR) has, recently, become the most important physical technique in archaeological investigations, allowing the detection of targets with both very high vertical and horizontal resolution, and has been successfully applied both to archaeological and diagnostic purposes in historical and monumental sites [4]. GPR configuration, antenna frequency and survey modality can be different, depending on the scope of the measurements, the nature of the site or the type of targets. Two-dimensional (2D) time/depth slices and radargrams should be generated and integrated with information obtained from other buried or similar artifacts to provide age, structure and context of the surveyed sites. In the present work, we present three case-histories on well-known Roman archaeological sites in Rome, in which GPR technique has been successfully used. To obtain 2D maps of the explored area, a bistatic GPR (250MHz and 500MHz antennas) was applied, acquiring data along several parallel profiles. The GPR results reveal the presence of similar circular anomalies in all the investigated archaeological sites. In

  14. Thermal Regime Change of a Retreating Polythermal Glacier from Repeat Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Rippin, D. M.; Willis, I. C.; Sevestre, H.

    2014-12-01

    Polythermal glaciers (i.e. glaciers that consist of some combination of both warm and cold ice) are common in the Arctic (e.g. Aschwanden and Blatter, 2005). Recent work (e.g. Rippin et al. 2011; Gusmeroli et al., 2012; Wilson and Flowers, 2013; Wilson et al., 2013) has focussed on how their polythermal structure might change in response to a warming climate. These studies suggest that the nature of future thermal regime change is complex, such that the relative volume of temperate ice in a shrinking glacier may increase or decrease, depending on local geographical, meteorological and hydrological parameters. Here, we present a unique data-set from the well-studied glacier Midtre Lovénbreen in Svalbard, which has shown continued and sustained retreat in recent years. We have a network of ground penetrating radar (GPR) lines from this glacier, first surveyed in 2006 and then repeat-surveyed along exactly the same lines in 2012. Despite significant retreat and thinning, our data suggests that minimal changes in thermal regime have taken place over this period, reinforcing previous observations of a significant lag in the rate at which the thermal regime responds to mass balance changes (cf. Rippin et al., 2011). Such a 'thermal lag' has implications for evolving hydrological and dynamical behaviour of these glaciers, and also for the future mass balance response. In this paper, we comment on the observed changes and consider the implications for our understanding of future thermal regime evolution. ReferencesAschwanden, A., and H. Blatter. 2005. Meltwater production due to strain heating in Storglaciären, Sweden. JGR, 110, doi:10.1029/2005JF000,328. Rippin, D.M., J.L. Carrivick and C. Williams. 2011. Evidence towards a thermal lag in the response of Kårsaglaciären, northern Sweden, to climate change. J. Glac., 57(205), 895-903. Gusmeroli, A., P. Jansson, R. Pettersson and T. Murray. 2012. Twenty years of cold surface layer thinning at Storglaciaren, sub

  15. Improving tomographic estimates of subsurface electromagnetic wave velocity obtained from ground-penetrating radar data

    NASA Astrophysics Data System (ADS)

    Irving, James D.

    Crosshole ground-penetrating radar (GPR) travel-time tomography is a popular geophysical technique for characterization of the shallow subsurface in environmental applications. With this technique, a critical factor determining the resolution of the velocity images obtained is the angular ray coverage of the subsurface region between the boreholes; when travel-time data representing a narrow range of ray angles are used for the tomography reconstruction, the resulting images contain undesirable directional smearing. Here, I investigate the problem that, even when the crosshole GPR survey geometry offers the potential for high-resolution imaging due to wide angular ray coverage of the inter-borehole region, two significant issues are commonly encountered when attempting to take advantage of this coverage. First, travel times corresponding to high-angle ray paths are often extremely difficult to pick because of low signal-to-noise ratios in the data. Secondly, even when high-angle travel-time data can be reliably determined, they often appear to be incompatible with the lower-angle data available, and tend to cause strong numerical artifacts when included in inversions. To address the high-angle picking problem noted above, I develop a method for determining first-break times in crosshole GPR data using cross-correlations. High-quality reference waveforms for this technique are obtained from the data through the stacking of common-ray-angle gathers. To address the incompatibility issue with high-angle data, I first develop finite-difference time-domain (FDTD) numerical modeling codes that allow for the determination of realistic crosshole GPR antenna current distributions, and the modeling of transmitted and received waveforms in heterogeneous media. Using these codes, I then find that the high-angle incompatibility issue is likely the result of assuming that first-arriving energy always travels directly between the antenna centers; at high transmitter

  16. A quantitative investigation of the use of ground-penetrating radar in hydrogeology

    NASA Astrophysics Data System (ADS)

    Moysey, Stephen M. J.

    Ground-penetrating radar (GPR) has become a useful tool for non-invasive imaging of the subsurface. However, the qualitative nature of current methods for the interpretation of GPR makes it difficult to use in groundwater modeling applications, especially for problems where accounting for uncertainty is important. In this thesis, the need for quantitative interpretations is addressed using observational, theoretical, and computational approaches that explore how complex subsurface heterogeneities are expressed in GPR data. This understanding of how radar samples the earth is exploited to suggest quantitative methods that can be used for interpreting radar data. In the first part of this thesis, radar facies analysis is examined as an approach to determine the large-scale architecture of the subsurface using GPR surface reflection data; it is often assumed that radar facies can act as a valuable proxy for defining hydrologic facies, given that both types of facies are related to lithology. In the approach explored here, artificial neural networks are used to probabilistically segment the subsurface into radar facies based on characteristic signatures of the radar data. Specifically, radar texture---the pattern of reflections within a window of radar data---is used to discriminate between different radar facies. In the second part of this thesis, the nature of the relationship between dielectric constant, determined by GPR surveys, and water content, important in hydrologic investigations, is investigated. Using a stochastic averaging approach that accounts for the way radar averages over heterogeneity it is demonstrated that field-scale dielectric constant-water content relationships are not necessarily equivalent to those measured in the laboratory. As a result, a numerical analog method for building field-scale rock physics relationships that accounts for heterogeneity, the physics of sampling, and geophysical survey design is proposed. In synthetic studies, it

  17. Geophysical Investigation Using Ground Penetrating Radar (GPR) to Detect Unmarked Burial Sites

    NASA Astrophysics Data System (ADS)

    Ameen, T. H.; Mahdi, H. H.; Hussein, R. R.; Al-Shukri, H. J.

    2015-12-01

    Comprehensive Ground Penetrating Radar surveys were conducted at the Old Carlisle Cemetery, east of Little Rock, Arkansas, to investigate the locations of historic burial sites and to identify unmarked graves. The Old Carlisle Cemetery, Arkansas, since 1872 has been in use and a potential expansion will be planed if the geophysics data help to identify unused lands. GPR survey was conducted at the cemetery using GSSI SIR-3000 with 400 MHz antenna and 900 MHz antennas. A total of 234.5 m profiles of GPR data were acquired from three locations within the old and new parts of the cemetery. At the 1stlocation, GPR data collected along 6 parallel profiles. Data reveals, after the normal comprehensive processing; two unmarked graves at about a depth of 1m and one misplaced headstone or collapsed grave were detected. Other marked graves around 1m depth with headstones were also verified by their typical reflections hyperbola on the GPR profiles. At the 2ndlocation, the data collection was performed along 4 parallel profiles to locate potential areas that were not used for burial in the past. The GPR data showed that there were no graves in the area below at least two of the profiles. Three marked graves which were verified by their headstones might have metal caskets due to their strong reflection hyperbolas around a depth of about 1.2 m. Three other graves were either collapsed or decomposed due to their very weak reflections within a subsided surface area. Animal burrows and a rusted old key were found and verified by near surface digging. At the 3rd location, the data was collected along 3 parallel profiles. The GPR was able to detect one unmarked grave and two marked graves, each with two coffins, by showing strong reflection hyperbolas at about 0.75 m depth. A grave with a headstone to the north of the two graves did not show strong reflection hyperbola although the burial date (1987) is younger than the other two. This might reflect different type of burial practice

  18. Determining basin geometry, stability, and flow dynamics of valley glaciers with ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Campbell, Seth William

    Mountain glaciers and ice caps (GICs) currently contribute ~0% to annual sea level rise. Most are temperate, therefore having the potential for rapid retreat from rising atmospheric temperatures. This climate sensitivity makes GIC stability and their impact on sea level rise a scientific problem with societal implications. To accurately predict impacts from GIC changes, knowledge of glacier components (e.g., basin geometry, mass balance, and dynamics) is needed. The goal of my dissertation research is to determine information about glacier geometry, snow-fire, and englacial stratigraphy using ground-penetrating radar (GPR) to enhance our understanding of valley glacier mass balance, dynamics, and stability. I first examine glacier basin geometry and ice volume of two temperate glaciers (Jarvis Glacier, Alaska and Nisqually Glacier, Washington) and demonstrate that significant errors (≥30-50%) can arise when using empirically-based volume estimates without geophysical constraints. I next determine spatial variability of accumulation across the temperate Juneau Icefield in Alaska usina GPR to interpolate between snowpits. To accomplish this, the dependence of radar velocity on snow density (~.3-0.7 g cm -3) and water content (0-9% by volume) needs to be addressed. Results show that on average, 2.1+/-0.5 m (water equivalent) of winter snow accumulates across the icefield with accumulation patterns depending on elevation, aspect, and proximity to moisture source. The third component of my dissertation combines locally measured accumulation rates, ice flow velocities, and englacial structures imaged with GPR to calculate that a negative mass balance (-0.25 cm a -1) has existed in valley glaciers of the Pensacola Mountains, West Antarctica over the past 1200 years. Finally, 1 use a 3-dimensional finite element non-Newtonian model to characterize the stress fields and current dynamics of a small ice divide. GPR-derived basin geometry is used for model boundary

  19. Ground Penetrating Radar Successful In Imaging Hot Spring Deposits: A New Geothermal Exploration Tool

    NASA Astrophysics Data System (ADS)

    Lynne, B.; Dougherty, A.

    2010-12-01

    Discharging alkali chloride hot springs are surface expressions of a deeper geothermal reservoir. As the discharging hot spring fluid cools, silica carried in solution precipitates and entombs all components (e.g., microbes) within a hot spring channel. This silica accumulates to form rocks referred to as siliceous sinters. Geothermal reservoirs and sinter deposits remain long after hot spring discharge ceases. Therefore ancient sinters provide a direct link with a deeper potentially exploitable geothermal resource in areas where there are no present-day actively discharging hot springs. High, mid and low-temperature microbes create distinctive environmentally-significant textures resulting in a heterogeneous sinter. The recognition of preserved active sinter textures enables mapping of former high temperature vent to low temperature distal-apron flow pathways. Sinter dates enable tracking of fluid flow to the surface, providing a regional context of fluid movement. Sinters undergo diagenesis that involves a five step opal-A to quartz silica phase modification that is accompanied by a density increase and porosity decrease. However, even quartzose sinters retain porosity values of 5-20 %. Textural variation is preserved over time, with a range in density and porosity values, which in addition to the low conductive/highly resistive silica material make GPR a suitable tool for imaging buried sinters. Previously, geologists have been constrained to only examining sinters in locations where they are partially exposed. Our preliminary results from both New Zealand and the United States of America show Ground Penetrating Radar (GPR) was successful in extending this sinter research into the shallow subsurface by: (1) imaging through opal-A to quartzose sinter deposits; (2) mapping high to low temperature environments such as vents and distal-apron terracettes; (3) locating the true spatial extent of partially buried sinters; (4) imaging completely buried sinters. The

  20. EXTRACTING A RADAR REFLECTION FROM A CLUTTERED ENVIRONMENT USING 3-D INTERPRETATION

    EPA Science Inventory

    A 3-D Ground Penetrating Radar (GPR) survey at 50 MHz center frequency was conducted at Hill Air Force Base, Utah, to define the topography of the base of a shallow aquifer. The site for the survey was Chemical Disposal Pit #2 where there are many man-made features that generate ...

  1. Basal conditions at the grounding zone of Whillans Ice Stream, West Antarctica, from ice-penetrating radar

    NASA Astrophysics Data System (ADS)

    Christianson, Knut; Jacobel, Robert W.; Horgan, Huw J.; Alley, Richard B.; Anandakrishnan, Sridhar; Holland, David M.; DallaSanta, Kevin J.

    2016-11-01

    We present a comprehensive ice-penetrating radar survey of a subglacial embayment and adjacent peninsula along the grounding zone of Whillans Ice Stream, West Antarctica. Through basal waveform and reflectivity analysis, we identify four distinct basal interfaces: (1) an ice-water-saturated till interface inland of grounding; (2) a complex interface in the grounding zone with variations in reflectivity and waveforms caused by reflections from fluting, sediment deposits, and crevasses; (3) an interface of anomalously low-reflectivity downstream of grounding in unambiguously floating areas of the embayment due to basal roughness and entrained debris; and (4) a high-reflectivity ice-seawater interface that occurs immediately seaward of grounding at the subglacial peninsula and several kilometers seaward of grounding in the embayment, occurring after basal debris and grounding zone flutes have melted off the ice bottom. Sediment deposition via basal debris melt-out occurs in both locations. The higher basal melt rate at the peninsula contributes to greater grounding line stability by enabling faster construction of a stabilizing sediment wedge. In the embayment, the low slopes of the ice bottom and bed prevent development of a strong thermohaline circulation leading to a lower basal melt rate and less rapid sediment deposition. Thus, grounding lines in subglacial embayments are more likely to lack stabilizing sediment deposits and are more prone to external forcing, whether from the ocean, the subglacial water system, or large-scale ice dynamics. Our conclusions indicate that subglacial peninsulas and embayments should be treated differently in ice sheet-ocean models if these models are to accurately simulate grounding line response to external forcing.

  2. Ground-penetrating radar study of the thickness and extent of sediments beneath Silver Lake, Berlin and Meriden, Connecticut

    USGS Publications Warehouse

    Haeni, F.P.; McKeegan, D.K.; Capron, D.R.

    1987-01-01

    A short-pulse ground-penetrating radar system was used to determine the extent and thickness of organic-rich lake-bottom sediments in Silver Lake in south-central Connecticut. Four mi of ground-penetrating radar profiles were obtained along traverses of the frozen lake during March 1984. The radar waves penetrated 6 inches of snow, 1 ft of ice, an average of 4 to 5 ft of water, and 5 ft of soft organic and inorganic deposits. A large area of the lake bottom is underlain by soft sediment exceeding 5 ft in depth. No radar reflections were obtained from the hard subbottom in these areas because the overlying sediment probably contains large proportions of silt and clay that are relatively impervious to radar. Coring along two radar profile lines confirmed the depths of soft sediment calculated from the radar data. Boring logs around the perimeter of the lake indicate that the eastern side may be underlain by till or poorly-sorted sand and gravel, and that the rest of the lake is probably underlain by fine sands and silts with some discontinuous layers of sand and gravel. (USGS)

  3. Documentation of a computer program to simulate lake-aquifer interaction using the MODFLOW ground water flow model and the MOC3D solute-transport model

    USGS Publications Warehouse

    Merritt, Michael L.; Konikow, Leonard F.

    2000-01-01

    Heads and flow patterns in surficial aquifers can be strongly influenced by the presence of stationary surface-water bodies (lakes) that are in direct contact, vertically and laterally, with the aquifer. Conversely, lake stages can be significantly affected by the volume of water that seeps through the lakebed that separates the lake from the aquifer. For these reasons, a set of computer subroutines called the Lake Package (LAK3) was developed to represent lake/aquifer interaction in numerical simulations using the U.S. Geological Survey three-dimensional, finite-difference, modular ground-water flow model MODFLOW and the U.S. Geological Survey three-dimensional method-of-characteristics solute-transport model MOC3D. In the Lake Package described in this report, a lake is represented as a volume of space within the model grid which consists of inactive cells extending downward from the upper surface of the grid. Active model grid cells bordering this space, representing the adjacent aquifer, exchange water with the lake at a rate determined by the relative heads and by conductances that are based on grid cell dimensions, hydraulic conductivities of the aquifer material, and user-specified leakance distributions that represent the resistance to flow through the material of the lakebed. Parts of the lake may become ?dry? as upper layers of the model are dewatered, with a concomitant reduction in lake surface area, and may subsequently rewet when aquifer heads rise. An empirical approximation has been encoded to simulate the rewetting of a lake that becomes completely dry. The variations of lake stages are determined by independent water budgets computed for each lake in the model grid. This lake budget process makes the package a simulator of the response of lake stage to hydraulic stresses applied to the aquifer. Implementation of a lake water budget requires input of parameters including those representing the rate of lake atmospheric recharge and evaporation

  4. Detection capability of a pulsed Ground Penetrating Radar utilizing an oscilloscope and Radargram Fusion Approach for optimal signal quality

    NASA Astrophysics Data System (ADS)

    Seyfried, Daniel; Schoebel, Joerg

    2015-07-01

    In scientific research pulsed radars often employ a digital oscilloscope as sampling unit. The sensitivity of an oscilloscope is determined in general by means of the number of digits of its analog-to-digital converter and the selected full scale vertical setting, i.e., the maximal voltage range displayed. Furthermore oversampling or averaging of the input signal may increase the effective number of digits, hence the sensitivity. Especially for Ground Penetrating Radar applications high sensitivity of the radar system is demanded since reflection amplitudes of buried objects are strongly attenuated in ground. Hence, in order to achieve high detection capability this parameter is one of the most crucial ones. In this paper we analyze the detection capability of our pulsed radar system utilizing a Rohde & Schwarz RTO 1024 oscilloscope as sampling unit for Ground Penetrating Radar applications, such as detection of pipes and cables in the ground. Also effects of averaging and low-noise amplification of the received signal prior to sampling are investigated by means of an appropriate laboratory setup. To underline our findings we then present real-world radar measurements performed on our GPR test site, where we have buried pipes and cables of different types and materials in different depths. The results illustrate the requirement for proper choice of the settings of the oscilloscope for optimal data recording. However, as we show, displaying both strong signal contributions due to e.g., antenna cross-talk and direct ground bounce reflection as well as weak reflections from objects buried deeper in ground requires opposing trends for the oscilloscope's settings. We therefore present our Radargram Fusion Approach. By means of this approach multiple radargrams recorded in parallel, each with an individual optimized setting for a certain type of contribution, can be fused in an appropriate way in order to finally achieve a single radargram which displays all

  5. The potentialities of ground-penetrating radar in the engineering geology using the radars GROT-12 and GROT-12E

    NASA Astrophysics Data System (ADS)

    Volkomirskaya, Liudmila; Gulevich, Oxana; Musalev, Dmitri

    2013-04-01

    The potentialities of ground-penetrating radar in the engineering geology using the radars GROT-12 and GROT-12E L.B. Volkomirskaya(1,2), O.A. Gulevich(1,2), D.N. Musalev(3) 1. IZMIRAN, 142190, Russia, Moscow, Troitsk, Kalugskoe 4 2. ZAO Timer, 142190, Russia, Moscow, Troitsk, Lesnaya str. 4B 3. OAO Belgorchemprom, Republic of Belarus, Minsk, Masherov str. 17 The article presents the potentialities of ground-penetrating radar in the engineering geology on the basis of the latest modifications of the GPR "GROT": the low-frequency GPR GROT-12 and the high-frequency GPR GROT-12E. The article gives technical specifications of the GPRs GROT-12 and GROT-12E and their particular characteristics that define them from analogues. The solutions of direct problems of ground penetrating radar on the basis of Maxwell's equations in general formulation with given wide-band signal source are confronted to experimental data received from different fields of the engineering geology, for example: 1. To secure mining in salt mines the method was adapted to locate in the working layers the investigating boreholes, fault lines, borders of displacement and blowout of productive layers, as well as working pits without access. 2. To monitor the reinforced concrete structures of airport runways the technology was worked out to collect and process GPR data so as to locate communications under the runways and examine basement condition. 3. To carry out the reconstruction of buildings and pre-project engineering geological works the GPR shooting technology was improved to process the examinations of the bearing capacity of soils and to locate lost communications. 4. To perform ecological monitoring of abandoned mines the technology of the GPR data collecting and processing was developed to assess the conditions of stowage materials in mouths of destroyed vertical mine shafts, the location of inclined mine shafts, the determination of hollow spaces and thinning zones, the localization of ground

  6. Correlative 3D-imaging of Pipistrellus penis micromorphology: Validating quantitative microCT images with undecalcified serial ground section histomorphology.

    PubMed

    Herdina, Anna Nele; Plenk, Hanns; Benda, Petr; Lina, Peter H C; Herzig-Straschil, Barbara; Hilgers, Helge; Metscher, Brian D

    2015-06-01

    Detailed knowledge of histomorphology is a prerequisite for the understanding of function, variation, and development. In bats, as in other mammals, penis and baculum morphology are important in species discrimination and phylogenetic studies. In this study, nondestructive 3D-microtomographic (microCT, µCT) images of bacula and iodine-stained penes of Pipistrellus pipistrellus were correlated with light microscopic images from undecalcified surface-stained ground sections of three of these penes of P. pipistrellus (1 juvenile). The results were then compared with µCT-images of bacula of P. pygmaeus, P. hanaki, and P. nathusii. The Y-shaped baculum in all studied Pipistrellus species has a proximal base with two club-shaped branches, a long slender shaft, and a forked distal tip. The branches contain a medullary cavity of variable size, which tapers into a central canal of variable length in the proximal baculum shaft. Both are surrounded by a lamellar and a woven bone layer and contain fatty marrow and blood vessels. The distal shaft consists of woven bone only, without a vascular canal. The proximal ends of the branches are connected with the tunica albuginea of the corpora cavernosa via entheses. In the penis shaft, the corpus spongiosum-surrounded urethra lies in a ventral grove of the corpora cavernosa, and continues in the glans under the baculum. The glans penis predominantly comprises an enlarged corpus spongiosum, which surrounds urethra and baculum. In the 12 studied juvenile and subadult P. pipistrellus specimens the proximal branches of the baculum were shorter and without marrow cavity, while shaft and distal tip appeared already fully developed. The present combination with light microscopic images from one species enabled a more reliable interpretation of histomorphological structures in the µCT-images from all four Pipistrellus species.

  7. Assimilation of Ground-Penetrating Radar Data to Update Vertical Soil Moisture Profile

    NASA Astrophysics Data System (ADS)

    Tran, Phuong; Vanclooster, Marnik; Lambot, Sébastien

    2013-04-01

    The root zone soil moisture has been long recognized as important information for hydrological, meteorological and agricultural research. In this study, we propose a closed-loop data assimilation procedure to update the vertical soil moisture profile from time-lapse ground-penetrating radar (GPR) data. The hydrodynamic model, Hydrus-1D (Simunek et al., 2009), is used to propagate the system state in time and a radar electromagnetic model (Lambot et al., 2004) to link the state variable (soil moisture profile) with the observation data (GPR data), which enables us to update the soil moisture profile by directly assimilating the GPR data. The assimilation was performed within the maximum likelihood ensemble filter (MLEF) framework developed by Zupanski et al., (2005), for which the problem of nonlinear observation operator is solved much more effectively than the Ensemble Kalman filter (EnKF) techniques. The method estimates the optimal state as the maximum of the probability density function (PDF) instead of the minimum variance like in most of the other ensemble data assimilation methods. Direct assimilation of GPR data is a prominent advantage of our approach. It avoids solving the time-consuming inverse problem as well as the estimation errors of the soil moisture caused by inversion. In addition, instead of using only surface soil moisture, the approach allows to use the information of the whole soil moisture profile, which is reflected via the ultra wideband (UWB) GPR data, for the assimilation. The use of the UWB antenna in this study is also an advantage as it provides more information about soil moisture profile with a better depth resolution compared to other classical remote sensing techniques. Our approach was validated by a synthetic study. We constructed a synthetic soil column with a depth of 80 cm and analyzed the effects of the soil type on the data assimilation by considering 3 soil types, namely, loamy sand, silt and clay. The assimilation of GPR

  8. Predicting Short Term Runoff Efficiency Using Antecedent Soil Moisture Estimates From Ground Penetrating Radar Data

    NASA Astrophysics Data System (ADS)

    Hermance, J. F.; Bohidar, R. N.

    2002-05-01

    Hydrologists universally recognize the importance of antecedent soil moisture conditions for predicting the response of catchments to storm events. We describe a pilot study involving a series of repeat geophysical measurements over a 5 month period to determine the water content of the subsurface immediately before a sequence of precipitation events. We correlate the resultant streamflow "response" of the local catchment to each event with the antecedent soil moisture at our reference site using a metric commonly employed by hydrologists: the ratio Qef/W, referred to here as the "short term runoff efficiency", which is simply the time-integrated volume of event flow (Qef) at the catchment's outflow point normalized by the volume of total precipitation (W) over its area. To determine the volumetric water content (Cw) of soils, past studies suggest the effectiveness of pulsed radio frequency methods, such as time domain reflectometry (TDR), or ground-penetrating radar (GPR). To first order, for typical field conditions and procedures, the velocity of a radio pulse in the subsurface is inversely proportional to the square root of the bulk dielectric constant, which in turn is proportional to the soil's water content. For this study, the advantage of GPR over conventional TDR measurements is that the GPR procedure determines average velocities from two-way traveltimes to an interface at depth, resulting in estimates of average physical properties over much larger volumes of the subsurface than would TDR. Our hydrologic data are USGS daily averaged discharges from the Ten Mile River (watershed area = 138 km2; 53.2 mi2) in southern New England. Daily values of precipitation were provided by personnel from the Seekonk Water District Office (MA) adjacent to the field site. Our hydrograph separation was facilitated by the observation that the event flow seems to be adequately represented by a simple composite cascaded linear reservoir model. The GPR data involved a series

  9. Three Dimensional Migration and Forward Modelling of Ground Penetrating Radar Data.

    DTIC Science & Technology

    1991-06-01

    Unprocessed Data from the Tesi Pit ..................................................................................... 2 FIGURE 3 3D Migrated Data from...acquisition, and inter - pretation are human driven processes. The potential of GPR to generate accurate three dimensional subsurface maps has not...objects or inter - faces occurred. However, the migration operation causes negative reinforcement in the areas where there are no reflections due to

  10. Advancing Understanding of the Role of Belowground Processes in Terrestrial Carbon Sinks trhrough Ground-Penetrating Radar. Final Report

    SciTech Connect

    Day, Frank P.

    2015-02-06

    Coarse roots play a significant role in belowground carbon cycling and will likely play an increasingly crucial role in belowground carbon sequestration as atmospheric CO2 levels continue to rise, yet they are one of the most difficult ecosystem parameters to quantify. Despite promising results with ground-penetrating radar (GPR) as a nondestructive method of quantifying biomass of coarse roots, this application of GPR is in its infancy and neither the complete potential nor limitations of the technology have been fully evaluated. The primary goals and questions of this study fell into four groups: (1) GPR methods: Can GPR detect change in root biomass over time, differentiate live roots from dead roots, differentiate between coarse roots, fine roots bundled together, and a fine root mat, remain effective with varied soil moisture, and detect shadowed roots (roots hidden below larger roots); (2) CO2 enrichment study at Kennedy Space Center in Brevard County, Florida: Are there post-fire legacy effects of CO2 fertilization on plant carbon pools following the end of CO2application ? (3) Disney Wilderness Study: What is the overall coarse root biomass and potential for belowground carbon storage in a restored longleaf pine flatwoods system? Can GPR effectively quantify coarse roots in soils that are wetter than the previous sites and that have a high percentage of saw palmetto rhizomes present? (4) Can GPR accurately represent root architecture in a three-dimensional model? When the user is familiar with the equipment and software in a setting that minimizes unsuitable conditions, GPR is a relatively precise, non-destructive, useful tool for estimating coarse root biomass. However, there are a number of cautions and guidelines that should be followed to minimize inaccuracies or situations that are untenable for GPR use. GPR appears to be precise as it routinely predicts highly similar values for a given area across multiple

  11. Root distribution in a California semi-arid oak savanna ecosystem as determined by conventional sampling and ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Koteen, L. E.; Raz-Yaseef, N.; Baldocchi, D. D.

    2011-12-01

    Koteen, Laura E., Raz-Yaseef, Naama, and Dennis D. Baldocchi University of California, Berkeley California's blue oak, Quercus douglasii, is a unique tree in several ways. Despite the intense heat of California's central valley and Sierra foothills, and absence of precipitation during dry summer months, blue oaks are winter deciduous, and rely on a suite of drought adaptation measures for highly-efficient water use. To date, much more is known about aboveground dynamics in semi-arid oak savanna ecosystems than belowground. Yet, the root system is instrumental in ensuring oak survival and in determining the magnitude and timing of land-atmospheric fluxes via its control of water and nutrient supply to aboveground processes and soil moisture content. Tree root distribution is notoriously heterogeneous. Therefore a comprehensive sampling effort is needed in order to optimally represent it. To further understand the patterns of water use in oak savanna ecosystems in the Sierra foothills of California, we have sought to characterize the root system by depth. To accomplish this goal, we have sampled the root system using conventional sampling methods (i.e. pit and core sampling), in conjunction with ground penetrating radar (GPR). Using both methods together made it possible to compensate for the limitations of each: Fine roots can only be detected by conventional sampling, and involve time intensive work in the lab, limiting sample size. GPR, on the other hand, allows for much greater spatial coverage and therefore more comprehensive characterization of the coarse root component. An extensive field campaign was executed during May 2011. 7 tree areas where chosen, representing the range of tree sizes and composition at the research site: 2 small trees, 2 large trees and 2 tree clusters. One additional very large tree that has undergone extensive additional physiological measurements was also chosen in order to posit and test hypotheses about linkages among root, soil

  12. Material Property Estimation for Direct Detection of DNAPL using Integrated Ground-Penetrating Radar Velocity, Imaging and Attribute Analysis

    SciTech Connect

    John H. Bradford; Stephen Holbrook; Scott B. Smithson

    2004-12-09

    The focus of this project is direct detection of DNAPL's specifically chlorinated solvents, via material property estimation from multi-fold surface ground-penetrating radar (GPR) data. We combine state-of-the-art GPR processing methodology with quantitative attribute analysis and material property estimation to determine the location and extent of residual and/or pooled DNAPL in both the vadose and saturated zones. An important byproduct of our research is state-of-the-art imaging which allows us to pinpoint attribute anomalies, characterize stratigraphy, identify fracture zones, and locate buried objects.

  13. High resolution shallow geologic characterization of a late Pleistocene eolian environment using ground penetrating radar and optically stimulated luminescence techniques: North Carolina, USA

    USGS Publications Warehouse

    Mallinson, D.; Mahan, S.; Moore, Christine

    2008-01-01

    Geophysical surveys, sedimentology, and optically-stimulated luminescence age analyses were used to assess the geologic development of a coastal system near Swansboro, NC. This area is a significant Woodland Period Native American habitation and is designated the "Broad Reach" archaeological site. 2-d and 3-d subsurface geophysical surveys were performed using a ground penetrating radar system to define the stratigraphic framework and depositional facies. Sediment samples were collected and analyzed for grain-size to determine depositional environments. Samples were acquired and analyzed using optically stimulated luminescence techniques to derive the depositional age of the various features. The data support a low eolian to shallow subtidal coastal depositional setting for this area. Li-DAR data reveal ridge and swale topography, most likely related to beach ridges, and eolian features including low-relief, low-angle transverse and parabolic dunes, blowouts, and a low-relief eolian sand sheet. Geophysical data reveal dominantly seaward dipping units, and low-angle mounded features. Sedimentological data reveal mostly moderately-well to well-sorted fine-grained symmetrical to coarse skewed sands, suggesting initial aqueous transport and deposition, followed by eolian reworking and bioturbation. OSL data indicate initial coastal deposition prior to ca. 45,000 yBP, followed by eolian reworking and low dune stabilization at ca. 13,000 to 11,500 yBP, and again at ca. 10,000 yBP (during, and slightly after the Younger Dryas chronozone).

  14. Using ground-penetrating radar, topography and classification of vegetation to model the sediment and active layer thickness in a periglacial lake catchment, western Greenland

    NASA Astrophysics Data System (ADS)

    Petrone, Johannes; Sohlenius, Gustav; Johansson, Emma; Lindborg, Tobias; Näslund, Jens-Ove; Strömgren, Mårten; Brydsten, Lars

    2016-11-01

    The geometries of a catchment constitute the basis for distributed physically based numerical modeling of different geoscientific disciplines. In this paper results from ground-penetrating radar (GPR) measurements, in terms of a 3-D model of total sediment thickness and active layer thickness in a periglacial catchment in western Greenland, are presented. Using the topography, the thickness and distribution of sediments are calculated. Vegetation classification and GPR measurements are used to scale active layer thickness from local measurements to catchment-scale models. Annual maximum active layer thickness varies from 0.3 m in wetlands to 2.0 m in barren areas and areas of exposed bedrock. Maximum sediment thickness is estimated to be 12.3 m in the major valleys of the catchment. A method to correlate surface vegetation with active layer thickness is also presented. By using relatively simple methods, such as probing and vegetation classification, it is possible to upscale local point measurements to catchment-scale models, in areas where the upper subsurface is relatively homogeneous. The resulting spatial model of active layer thickness can be used in combination with the sediment model as a geometrical input to further studies of subsurface mass transport and hydrological flow paths in the periglacial catchment through numerical modeling. The data set is available for all users via the PANGAEA database, doi:10.1594/PANGAEA.845258.

  15. Accounting for Hydrologic State in Ground-Penetrating Radar Classification Systems

    DTIC Science & Technology

    2014-04-22

    3D imaging experiment of flow over a buried landmine. Drip irrigation at a point allowed water to flow around the mine. Page 16 of 32...a laboratory environment. Both tanks can be equipped with irrigation systems and in-situ sensors for simulating and independently monitoring the...to changes in multiple arrivals on the GPR data (Figure 2c). Upon irrigation of the tank (~10 min), there is a significant change in the arrivals

  16. Enhancement of inland penetration of monsoon depressions in the Bay of Bengal due to prestorm ground wetness

    NASA Astrophysics Data System (ADS)

    Kishtawal, C. M.; Niyogi, Dev; Rajagopalan, Balaji; Rajeevan, M.; Jaiswal, N.; Mohanty, U. C.

    2013-06-01

    Observations of 408 monsoon low-pressure systems (MLPSs) including 196 monsoon depressions (MDs) that formed in the Bay of Bengal during the 1951-2007 period, and the gridded analysis of daily rainfall fields for the same period, were used to identify the association of antecedent rainfall (1 week average rainfall prior to the genesis of MLPS) with the genesis of MLPS and length of inland penetration by MDs. Prestorm rainfall is treated as a surrogate to prestorm ground wetness conditions due to unavailability of historical soil-moisture data over the monsoon region. These observations were analyzed using self-organizing maps (SOMs) to group nine different prestorm monsoon rainfall patterns into different transition states like active, active-to-break, break-to-active, break, etc. The analysis indicates that MLPS are four times more likely to form on a day during active monsoon state compared to break state. Analysis of MLPSs linked to each monsoon state represented by SOM nodes shows that MDs with higher inland penetration were associated with higher antecedent rainfall. On the other hand, there was no significant difference in low-level atmospheric circulation for MDs with shortest and longest inland penetration.

  17. Using Averaging-Based Factorization to Compare Seismic Hazard Models Derived from 3D Earthquake Simulations with NGA Ground Motion Prediction Equations

    NASA Astrophysics Data System (ADS)

    Wang, F.; Jordan, T. H.

    2012-12-01

    Seismic hazard models based on empirical ground motion prediction equations (GMPEs) employ a model-based factorization to account for source, propagation, and path effects. An alternative is to simulate these effects directly using earthquake source models combined with three-dimensional (3D) models of Earth structure. We have developed an averaging-based factorization (ABF) scheme that facilitates the geographically explicit comparison of these two types of seismic hazard models. For any fault source k with epicentral position x, slip spatial and temporal distribution f, and moment magnitude m, we calculate the excitation functions G(s, k, x, m, f) for sites s in a geographical region R, such as 5% damped spectral acceleration at a particular period. Through a sequence of weighted-averaging and normalization operations following a certain hierarchy over f, m, x, k, and s, we uniquely factorize G(s, k, x, m, f) into six components: A, B(s), C(s, k), D(s, k, x), E(s, k, x, m), and F(s, k, x, m, f). Factors for a target model can be divided by those of a reference model to obtain six corresponding factor ratios, or residual factors: a, b(s), c(s, k), d(s, k, x), e(s, k, x, m), and f(s, k, x, m, f). We show that these residual factors characterize differences in basin effects primarily through b(s), distance scaling primarily through c(s, k), and source directivity primarily through d(s, k, x). We illustrate the ABF scheme by comparing CyberShake Hazard Model (CSHM) for the Los Angeles region (Graves et. al. 2010) with the Next Generation Attenuation (NGA) GMPEs modified according to the directivity relations of Spudich and Chiou (2008). Relative to CSHM, all NGA models underestimate the directivity and basin effects. In particular, the NGA models do not account for the coupling between source directivity and basin excitation that substantially enhance the low-frequency seismic hazards in the sedimentary basins of the Los Angeles region. Assuming Cyber

  18. Comparative Analysis of Electrical Resistivity and Ground Penetrating Radar For Subsurface Parameters in a Basaltic Terrain, Nagpur

    NASA Astrophysics Data System (ADS)

    Ansari, T. A.; Vasudeo, A., Sr.

    2014-12-01

    Hard rock crystalline terrains pose difficulty in groundwater modeling as they present anisotropic conditions for groundwater storage. It is most important to estimate accurate parameters for better visualization and analysis of subsurface conditions for groundwater. Western Nagpur in central India is on Basalt formation which has low storing capacity. There are several Basaltic Flows in Nagpur area which have varying hydrogeological characteristics. Unconfined aquifer system and deep seated confined systems, both are present in the Nagpur Urban area. The half of the water demand in these areas mainly depends on groundwater. Water supply for domestic use, apart from the irrigation and Gardening etc in majority cases are fulfilled by groundwater sources. Electrical Resistivity Meter and Ground Penetrating Radar has been used to detect the subsurface parameters qualitatively. Using Electrical Resistivity Meter, apparent resistivity (ρ) is calculated for various depths. GPR is used for the same area to determine the characteristics of subsurface parameters. Data collected by both the instrument is analyzed and compared its accuracy. The results obtained through comparison from two geophysical methods are further seen with respect to the Land Use / Land Cover and surface morphology of the study area, generated from the high resolution satellite data. Key Words: Ground Penetrating Radar (GPR), Electrical Resistivity Meter, Apparent resistivity, Land Use/ Land Cover etc.

  19. Mapping Stratigraphy and Anomalies in Iron-Rich Volcanoclastics Using Ground-Penetrating Radar: Potential for Subsurface Exploration on Mars

    NASA Astrophysics Data System (ADS)

    Heggy, E.; Clifford, S.; Khan, S.; Fernandez, J.; Wiggs, E.; Gonzalez, S. L.; Wyrick, D.; Grimm, R.; Dinwiddie, C.; Pommerol, A.

    2004-12-01

    Ground-penetrating radar (GPR) studies conducted in iron-rich volcanoclastics can yield valuable information for interpreting the subsurface stratigraphy resulting from lava flows and intervening unconsolidated volcanic and sedimentary deposits with different compositions and ages. GPR is also valuable for mapping subsurface anomalies and structures, such as rifts and lava tubes. We performed a geophysical field survey in Craters of the Moon National Park to evaluate the potential for using GPR to map local areas of the Martian subsurface for evidence of subsurface water. Craters of the Moon is located in the South Central portion of Idaho, and lies within the Eastern Snake River Plain; it is a composite of more than forty different lava flows, erupted from approximately twenty-five cinder cones and eruptive fissures over eight distinct eruptive periods ranging in age from Late Pleistocene to Holocene. We used a GPR operating at 16 and 100 MHz to perform structural mapping at several different locations. Radar studies were combined with transient electromagnetic soundings and infrared spectroscopy to assess the effect of soil conductivity and geochemistry on identification of subsurface structures. Our results show that, even with a relatively high amount of irons oxides (~14 %), GPR penetration depths of 50 m were achieved with the 100 MHz antenna and penetration depths of 150 m were achieved with the 16 MHz antenna. These depths of investigation may be attributable to the high porosity of the soil at the studied areas, which lowered the electrical losses, thus favoring a relatively deep penetration of the radar wave.

  20. COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar:" ongoing research activities and mid-term results

    NASA Astrophysics Data System (ADS)

    Pajewski, Lara; Benedetto, Andrea; Loizos, Andreas; Slob, Evert; Tosti, Fabio

    2015-04-01

    This work aims at presenting the ongoing activities and mid-term results of the COST (European COoperation in Science and Technology) Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar.' Almost three hundreds experts are participating to the Action, from 28 COST Countries (Austria, Belgium, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Ireland, Italy, Latvia, Malta, Macedonia, The Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey, United Kingdom), and from Albania, Armenia, Australia, Egypt, Hong Kong, Jordan, Israel, Philippines, Russia, Rwanda, Ukraine, and United States of America. In September 2014, TU1208 has been praised among the running Actions as 'COST Success Story' ('The Cities of Tomorrow: The Challenges of Horizon 2020,' September 17-19, 2014, Torino, IT - A COST strategic workshop on the development and needs of the European cities). The principal goal of the COST Action TU1208 is to exchange and increase scientific-technical knowledge and experience of GPR techniques in civil engineering, whilst simultaneously promoting throughout Europe the effective use of this safe and non-destructive technique in the monitoring of infrastructures and structures. Moreover, the Action is oriented to the following specific objectives and expected deliverables: (i) coordinating European scientists to highlight problems, merits and limits of current GPR systems; (ii) developing innovative protocols and guidelines, which will be published in a handbook and constitute a basis for European standards, for an effective GPR application in civil- engineering tasks; safety, economic and financial criteria will be integrated within the protocols; (iii) integrating competences for the improvement and merging of electromagnetic scattering techniques and of data- processing techniques; this will lead to a novel freeware tool for the localization of buried objects

  1. Multi-frequency ground-penetrating radar method for revealing complex sedimentary facies

    USGS Publications Warehouse

    Delaney, A.J.; Horsman, J.; Prentice, M.L.; Arcone, S.A.

    2007-01-01

    We attempted to resolve deltaic facies in Taylor Valley, Antarctica by using pulses centered near 120, 300 and 880 MHz, the latter of which has not yet been tried in this setting, The 120 MHz profiles clearly defined gross material changes, while the 300 MHz profiles added significant resolution to the top set, foreset and bottomset beds. The additional, higher frequency provided only about 2.5 m penetration however, the 10-15 cm pulse length revealed and defined multiple, fine-scale features that were not observed with the lower frequencies. The dip of these features is, in some instances, opposite to that of larger features profiled with the lower frequencies. Profiling with 880 MHz not only confirmed the greater complexity of the sedimentary architecture, but also allowed more robust interpretation of depositional processes. Generally, we recommend pulses centered near 300-400 MHz for detailed sedimentary profiling to about 6m depth. ?? 2007 IEEE.

  2. Cortical Dynamics of Figure-Ground Separation in Response to 2D Pictures and 3D Scenes: How V2 Combines Border Ownership, Stereoscopic Cues, and Gestalt Grouping Rules

    PubMed Central

    Grossberg, Stephen

    2016-01-01

    The FACADE model, and its laminar cortical realization and extension in the 3D LAMINART model, have explained, simulated, and predicted many perceptual and neurobiological data about how the visual cortex carries out 3D vision and figure-ground perception, and how these cortical mechanisms enable 2D pictures to generate 3D percepts of occluding and occluded objects. In particular, these models have proposed how border ownership occurs, but have not yet explicitly explained the correlation between multiple properties of border ownership neurons in cortical area V2 that were reported in a remarkable series of neurophysiological experiments by von der Heydt and his colleagues; namely, border ownership, contrast preference, binocular stereoscopic information, selectivity for side-of-figure, Gestalt rules, and strength of attentional modulation, as well as the time course during which such properties arise. This article shows how, by combining 3D LAMINART properties that were discovered in two parallel streams of research, a unified explanation of these properties emerges. This explanation proposes, moreover, how these properties contribute to the generation of consciously seen 3D surfaces. The first research stream models how processes like 3D boundary grouping and surface filling-in interact in multiple stages within and between the V1 interblob—V2 interstripe—V4 cortical stream and the V1 blob—V2 thin stripe—V4 cortical stream, respectively. Of particular importance for understanding figure-ground separation is how these cortical interactions convert computationally complementary boundary and surface mechanisms into a consistent conscious percept, including the critical use of surface contour feedback signals from surface representations in V2 thin stripes to boundary representations in V2 interstripes. Remarkably, key figure-ground properties emerge from these feedback interactions. The second research stream shows how cells that compute absolute disparity

  3. Cortical Dynamics of Figure-Ground Separation in Response to 2D Pictures and 3D Scenes: How V2 Combines Border Ownership, Stereoscopic Cues, and Gestalt Grouping Rules.

    PubMed

    Grossberg, Stephen

    2015-01-01

    The FACADE model, and its laminar cortical realization and extension in the 3D LAMINART model, have explained, simulated, and predicted many perceptual and neurobiological data about how the visual cortex carries out 3D vision and figure-ground perception, and how these cortical mechanisms enable 2D pictures to generate 3D percepts of occluding and occluded objects. In particular, these models have proposed how border ownership occurs, but have not yet explicitly explained the correlation between multiple properties of border ownership neurons in cortical area V2 that were reported in a remarkable series of neurophysiological experiments by von der Heydt and his colleagues; namely, border ownership, contrast preference, binocular stereoscopic information, selectivity for side-of-figure, Gestalt rules, and strength of attentional modulation, as well as the time course during which such properties arise. This article shows how, by combining 3D LAMINART properties that were discovered in two parallel streams of research, a unified explanation of these properties emerges. This explanation proposes, moreover, how these properties contribute to the generation of consciously seen 3D surfaces. The first research stream models how processes like 3D boundary grouping and surface filling-in interact in multiple stages within and between the V1 interblob-V2 interstripe-V4 cortical stream and the V1 blob-V2 thin stripe-V4 cortical stream, respectively. Of particular importance for understanding figure-ground separation is how these cortical interactions convert computationally complementary boundary and surface mechanisms into a consistent conscious percept, including the critical use of surface contour feedback signals from surface representations in V2 thin stripes to boundary representations in V2 interstripes. Remarkably, key figure-ground properties emerge from these feedback interactions. The second research stream shows how cells that compute absolute disparity in

  4. Using Ground Penetrating Radar to Image Paleotopography and Structural Controls at Coral Pink Sand Dunes, Kane County, Utah

    NASA Astrophysics Data System (ADS)

    Rozar, E. J.; Bradford, J. H.; Ford, R. L.; Wilkins, D. E.

    2014-12-01

    The Coral Pink Sand Dunes (CPSD) are one of the largest dune fields in the Great Basin-Colorado Plateau Transition Zone. The dune field rests on Navajo Sandstone, and is bisected by the Sevier Normal Fault, which also forms the bedrock escarpment along the eastern boundary of the lower dune field (LDF). Limited ground penetrating radar (GPR) collected previously, as well as recent ground-based LiDAR data and geomorphic observations, suggest that underlying bedrock is topographically lower in the center of the LDF than on its margins. In order to image the dune-bedrock interface and any structures contained within the bedrock, including buried faults, 50-MHz and 100-MHz GPR antennae with 400-V transmitters were used to conduct over 25 transects, totaling several kilometers, across the LDF. We recorded radar reflections at depths of up to 30 m within the bedrock beneath the modern dunes. Outcrops and/or shallow boreholes along some transects provide ground truth for dune-bedrock contacts. The resulting radar profiles suggest at least two antithetic fault zones within the LDF that, in places, appear to control the location of smaller dunes. Further examination of the relationship between these fault zones and dune forms, as imaged with LiDAR, will help inform whether or not these structural controls affect variation in dune type and patterning across the LDF, and may also explain why the CPSD exist in this location.

  5. A concept and plan for experiments to improve ground shock predictions for the EPW (Earth Penetrator Weapons) program

    SciTech Connect

    Thorpe, R.K.; Larson, D.B.; Stout, R.B.; Swift, R.P.; Glenn, H.D.

    1988-10-01

    This document summarizes a concept and plan for providing new experimental data to be used in validating ground shock calculations. The effort was supported by the Earth Penetrator Weapons (EPW) Program. Our main objective is to collect information on certain ground motion phenomena that may be observed in larger-scaled field experiments, but at the same time, exercise greater control over experimental conditions. It is recommended that this work be carried out in concert with other experimental programs, such as the Defense Nuclear Agency's high explosive (HE) test program, so that results are correlative or scalable according to explosive yield. Although we expect there to be some differences, the experimental technique we propose offers a cost-effective means of providing repeatable, reliable ground shock data for a wider variety of media and source configurations than can be obtained with field experiments. The cost of the program, however, would depend on the specific number and design of experiments, and is not included in this presentation. 9 refs., 23 figs.

  6. Comparison of Ground-Penetrating Radar and Low-Frequency Electromagnetic Sounding for Detection and Characterization of Groundwater on Mars

    NASA Technical Reports Server (NTRS)

    Grimm, R. E.

    2003-01-01

    Two orbital, ground-penetrating radars, MARSIS and SHARAD, are scheduled for Mars flight, with detection of groundwater a high priority. While these radars will doubtlessly provide significant new information on the subsurface of Mars, thin films of adsorbed water in the cryosphere will strongly attenuate radar signals and prevent characterization of any true aquifers, if present. Scattering from 10-m scale layering or wavelength-size regolith heterogeneities will also degrade radar performance. Dielectric contrasts are sufficiently small for low-porosity, deep aquifers that groundwater cannot be reliably identified. In contrast, low-frequency (mHz-kHz) soundings are ideally suited to groundwater detection due to their great depths of penetration and the high electrical conductivity (compared to cold, dry rock) of groundwater. A variety of low-frequency methods span likely ranges of mass, volume, and power resources, but all require acquisition at or near the planetary surface. Therefore the current generation of orbital radars will provide useful global reconnaissance for subsequent targeted exploration at low frequency. Introduction: Electromagnetic (EM) methods

  7. Fusion of KLMS and blob based pre-screener for buried landmine detection using ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Baydar, Bora; Akar, Gözde Bozdaǧi.; Yüksel, Seniha E.; Öztürk, Serhat

    2016-05-01

    In this paper, a decision level fusion using multiple pre-screener algorithms is proposed for the detection of buried landmines from Ground Penetrating Radar (GPR) data. The Kernel Least Mean Square (KLMS) and the Blob Filter pre-screeners are fused together to work in real time with less false alarms and higher true detection rates. The effect of the kernel variance is investigated for the KLMS algorithm. Also, the results of the KLMS and KLMS+Blob filter algorithms are compared to the LMS method in terms of processing time and false alarm rates. Proposed algorithm is tested on both simulated data and real data collected at the field of IPA Defence at METU, Ankara, Turkey.

  8. Ground-penetrating radar and differential global positioning system data collected from Long Beach Island, New Jersey, April 2015

    USGS Publications Warehouse

    Zaremba, Nicholas J.; Smith, Kathryn E.L.; Bishop, James M.; Smith, Christopher G.

    2016-08-04

    Scientists from the United States Geological Survey, St. Petersburg Coastal and Marine Science Center, U.S. Geological Survey Pacific Coastal and Marine Science Center, and students from the University of Hawaii at Manoa collected sediment cores, sediment surface grab samples, ground-penetrating radar (GPR) and Differential Global Positioning System (DGPS) data from within the Edwin B. Forsythe National Wildlife Refuge–Holgate Unit located on the southern end of Long Beach Island, New Jersey, in April 2015 (FAN 2015-611-FA). The study’s objective was to identify washover deposits in the stratigraphic record to aid in understanding barrier island evolution. This report is an archive of GPR and DGPS data collected from Long Beach Island in 2015. Data products, including raw GPR and processed DGPS data, elevation corrected GPR profiles, and accompanying Federal Geographic Data Committee metadata can be downloaded from the Data Downloads page.

  9. Detection of deeply buried non-metal objects by ground penetrating radar using non-negative matrix factorization

    NASA Astrophysics Data System (ADS)

    Nabelek, Daniel; Ho, K. C.

    2015-05-01

    The ground penetrating radar (GPR) signal for a deeply buried non-metal object is weak and often does not have a hyperbolic signature, making it difficult to detect with high confidence. This paper takes a blind source separation approach by using non-negative matrix factorization (NMF) to improve the detection of deeply buried non-metal objects. The proposed approach interprets the GPR signal return as the sum of two independent components from two different sources, the background and the object. NMF enables the separation of the object signal component from the composite and thereby improves the detection performance. Preliminary results from a test site in the United States indicate that the probability of detecting these objects is improved by more than 20% compared to the pre-screener, at a false alarm rate of 0.003/m2.

  10. The internal structure of sand bars on the Colorado River, Grand Canyon, as determined by ground-penetrating radar

    USGS Publications Warehouse

    Barnhardt, Walter A.; Kayen, Robert; Rubin, David; Minasian, Diane L.

    2001-01-01

    High-resolution, subsurface imagery from ground-penetrating radar (GPR) has revealed the internal structure of sand bars at seven sites on the Colorado River, Grand Canyon. Based on reconnaissance-level surveys, we recognized three stratigraphic units and several intervening unconformities. Unit A, which exhibits hyperbolic reflections and always occurs at the base of the section, is interpreted as bedrock and/or talus. Unit B is a commonly observed sand deposit that overlies unit A and is characterized by reflections that gently dip down toward the river axis. Unit C is a sand deposit up to 2 m thick that always occurs at the top of the section and may represent a flood deposit from 1983. This study demonstrates the utility of GPR for non-destructive investigation of sand-bar thickness and the stratigraphic record of flood events in the Grand Canyon.

  11. Discovery of a mass grave from the Spanish Civil War using Ground Penetrating Radar and forensic archaeology.

    PubMed

    Fernández-Álvarez, José-Paulino; Rubio-Melendi, David; Martínez-Velasco, Antxoka; Pringle, Jamie K; Aguilera, Hector-David

    2016-10-01

    An estimated 500,000 people died from all causes during the Spanish Civil War between 1936 and 1939, with a further 135,000 killed after the war ended. There are currently over 2000 known mass burial locations throughout Spain but many more are unknown. This study details the successful search for an unmarked mass grave in mountainous terrain in the Asturias region of Northern Spain. Two approximate locations were known due to eyewitness accounts. A phased site investigation approach was undertaken, which included Ground Penetrating Radar. Results showed a clear geophysical anomaly on 2D GPR profiles. The identified area was subsequently intrusively investigated by forensic archaeologists and human remains were successfully discovered. Careful and sensitive investigations are essential in these approaches where living relatives are involved.

  12. Nonuniform fast Fourier transform-based fast back-projection algorithm for stepped frequency continuous wave ground penetrating radar imaging

    NASA Astrophysics Data System (ADS)

    Qu, Lele; Yin, Yuqing

    2016-10-01

    Stepped frequency continuous wave ground penetrating radar (SFCW-GPR) systems are becoming increasingly popular in the GPR community due to the wider dynamic range and higher immunity to radio interference. The traditional back-projection (BP) algorithm is preferable for SFCW-GPR imaging in layered mediums scenarios for its convenience and robustness. However, the existing BP imaging algorithms are usually very computationally intensive, which limits their practical applications to SFCW-GPR imaging. To solve the above problem, a fast SFCW-GPR BP imaging algorithm based on nonuniform fast Fourier transform (NUFFT) technique is proposed in this paper. By reformulating the traditional BP imaging algorithm into the evaluations of NUFFT, the computational efficiency of NUFFT is exploited to reduce the computational complexity of the imaging reconstruction. Both simulation and experimental results have verified the effectiveness and improvement of computational efficiency of the proposed imaging method.

  13. Characteristics of ejecta and alluvial deposits at Meteor Crater, Arizona and Odessa Craters, Texas: Results from ground penetrating radar

    NASA Technical Reports Server (NTRS)

    Grant, J. A.; Schultz, P. H.

    1991-01-01

    Previous ground penetrating radar (GRP) studies around 50,000 year old Meteor Crater revealed the potential for rapid, inexpensive, and non-destructive sub-surface investigations for deep reflectors (generally greater than 10 m). New GRP results are summarized focusing the shallow sub-surfaces (1-2 m) around Meteor Crater and the main crater at Odessa. The following subject areas are covered: (1) the thickness, distribution, and nature of the contact between surrounding alluvial deposits and distal ejecta; and (2) stratigraphic relationships between both the ejecta and alluvium derived from both pre and post crater drainages. These results support previous conclusions indicating limited vertical lowering (less than 1 m) of the distal ejecta at Meteor Crater and allow initial assessment of the gradational state if the Odessa craters.

  14. QUANTIFYING UNCERTAINTIES IN GROUND MOTION SIMULATIONS FOR SCENARIO EARTHQUAKES ON THE HAYWARD-RODGERS CREEK FAULT SYSTEM USING THE USGS 3D VELOCITY MODEL AND REALISTIC PSEUDODYNAMIC RUPTURE MODELS

    SciTech Connect

    Rodgers, A; Xie, X

    2008-01-09

    This project seeks to compute ground motions for large (M>6.5) scenario earthquakes on the Hayward Fault using realistic pseudodynamic ruptures, the USGS three-dimensional (3D) velocity model and anelastic finite difference simulations on parallel computers. We will attempt to bound ground motions by performing simulations with suites of stochastic rupture models for a given scenario on a given fault segment. The outcome of this effort will provide the average, spread and range of ground motions that can be expected from likely large earthquake scenarios. The resulting ground motions will be based on first-principles calculations and include the effects of slip heterogeneity, fault geometry and directivity, however, they will be band-limited to relatively low-frequency (< 1 Hz).

  15. Searching for the IRA "disappeared": ground-penetrating radar investigation of a churchyard burial site, Northern Ireland.

    PubMed

    Ruffell, Alastair

    2005-11-01

    A search for the body of a victim of terrorist abduction and murder was made in a graveyard on the periphery of a major conurbation in Northern Ireland. The area is politically sensitive and the case of high profile. This required non-invasive, completely non-destructive and rapid assessment of the scene. A MALA RAMAC ground-penetrating radar system was used to achieve these objectives. Unprocessed and processed 400 MHz data show the presence of a collapse feature above and around a known 1970s burial with no similar collapse above the suspect location. In the saturated, clay-rich sediments of the site, 200 MHz data offered no advantage over 400 MHz data. Unprocessed 100 MHz data shows a series of multiples in the known burial with no similar features in the suspect location. Processed 100 MHz lines defined the shape of the collapse around the known burial to 2 m depth, together with the geometry of the platform (1 m depth) the gravedigger used in the 1970s to construct the site. In addition, processed 100 MHz data showed both the dielectric contrast in and internal reflection geometry of the soil imported above the known grave. Thus the sequence, geometry, difference in infill and infill direction of the grave was reconstructed 30 years after burial. The suspect site showed no evidence of shallow or deep inhumation. Subsequently, the missing person's body was found some distance from this site, vindicating the results and interpretation from ground-penetrating radar. The acquisition, processing, collapse feature and sequence stratigraphic interpretation of the known burial and empty (suspect) burial site may be useful proxies for other, similar investigations. GPR was used to evaluate this site within 3 h of the survey commencing, using unprocessed data. An additional day of processing established that the suspect body did not reside here, which was counter to police and community intelligence.

  16. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  17. Giving perspective to cliff exposures with ground penetrating radar: Devonian lacustrine shore zone architecture

    NASA Astrophysics Data System (ADS)

    Andrews, Steven; Moreau, Julien; Archer, Stuart

    2015-04-01

    The orbitally-controlled cyclic lacustrine successions of the Middle Devonian in Northern Scotland contains repeated developments of shore zone sandstones. However, due to the cliff-forming nature of the succession and the attitude of the sections through these sandstones, interpretation of this facies has been problematic. To better understand the shore zone systems, we carried out very high resolution sedimentary logging and constructed photo-panels which were combined with high resolution GPR profiling (250 MHz). To ensure close ties between the sedimentary logs and the GPR data, the cliffs were accessed using rope access techniques while GPR grids were shot directly above. The profiles were shot mainly in the strike direction of what was thought to be the shore elongation every 5-10 m and every 20-30 m in the dip direction. Shore zone systems of 3 different sequences have been imaged for a total of 1155 m of GPR profile collected. This configuration has allowed 3D visualisation of the architecture of the shore zone systems and, in combination with detailed sedimentology, provided insights into the generation of the dynamic shore zone environments. The coastal cliffs of northern Scotland expose sedimentary cycles on average 16-m-thick which record deep lake, perennial lake and playa environments. The shore zone deposits reach 2 to 3.5 m in thickness. Loading and discrete channel forms are recognised in both the GPR data and sedimentary logs through the lower portion of the lake shore zone successions. Up-section the sandstone beds appear to become amalgamated forming subtle low angle accretionary bar complexes which although visible in outcrop, after careful investigation, can be fully visualised and examined in the GPR data. The 3D visualisation allowed mapping the architecture and distribution of the bars . The orientation of these features, recognised from the survey, is consistent with extensive palaeocurrent measurements from oscillation ripples. Further

  18. Ground-Based Deep-Penetrating Radar Studies Along The US-ITASE Traverse

    NASA Astrophysics Data System (ADS)

    Jacobel, R. W.; Welch, B. C.; Bills, M. T.; Engle, T. J.

    2003-12-01

    In recent years airborne geophysical surveys have provided high-quality data over selected portions of the West Antarctic Ice Sheet (WAIS). Coupled with new information at visible and radar wavelengths from satellite sensors, these surveys have greatly enhanced our understanding of the dynamics of the WAIS. Until recently, ground-based radar studies have generally been limited to more localized areas and small-scale ice dynamics problems where they provide greater spatial resolution than airborne surveys, often with higher definition (S/N) of imaged features. During the past four years, the US-ITASE platform has provided an opportunity for ground-based deep radar profiling over several thousand kilometers of the WAIS and portions of the East Antarctic Ice Sheet, including more detailed studies of selected sites where ice cores have been drilled. These traverses have enabled us to produced high definition images of bedrock and internal stratigraphy on a continental scale, combining attributes of both airborne and ground-based surveys. We have developed a ruggedized impulse-based radar system to withstand the physical demands of a heavy vehicle traverse at speeds up to 15 Km/hr and also obtain data with high spatial resolution along-track and high definition of internal reflectors. Operating at a center frequency of 3 MHz this system utilizes a 14 bit A/D board at digitizing rates of 100 MHz and records stacked waveforms depicting bedrock and ice internal reflections approximately every 15 meters of surface travel. Surface coordinates are obtained from precision GPS measurements which together with the high data density enable us to migrate profile sections to correctly image steeply-dipping reflectors. We present here a sample of results from over 2000 km of profiles completed during the 2001-2003 field seasons, including routes from Byrd Station toward Siple Station and Byrd to South Pole. In addition to the bedrock record that identifies a number of new regions of

  19. True 3d Images and Their Applications

    NASA Astrophysics Data System (ADS)

    Wang, Z.; wang@hzgeospace., zheng.

    2012-07-01

    A true 3D image is a geo-referenced image. Besides having its radiometric information, it also has true 3Dground coordinates XYZ for every pixels of it. For a true 3D image, especially a true 3D oblique image, it has true 3D coordinates not only for building roofs and/or open grounds, but also for all other visible objects on the ground, such as visible building walls/windows and even trees. The true 3D image breaks the 2D barrier of the traditional orthophotos by introducing the third dimension (elevation) into the image. From a true 3D image, for example, people will not only be able to read a building's location (XY), but also its height (Z). true 3D images will fundamentally change, if not revolutionize, the way people display, look, extract, use, and represent the geospatial information from imagery. In many areas, true 3D images can make profound impacts on the ways of how geospatial information is represented, how true 3D ground modeling is performed, and how the real world scenes are presented. This paper first gives a definition and description of a true 3D image and followed by a brief review of what key advancements of geospatial technologies have made the creation of true 3D images possible. Next, the paper introduces what a true 3D image is made of. Then, the paper discusses some possible contributions and impacts the true 3D images can make to geospatial information fields. At the end, the paper presents a list of the benefits of having and using true 3D images and the applications of true 3D images in a couple of 3D city modeling projects.

  20. Polarization differences in airborne ground penetrating radar performance for landmine detection

    NASA Astrophysics Data System (ADS)

    Dogaru, Traian; Le, Calvin

    2016-05-01

    The U.S. Army Research Laboratory (ARL) has investigated the ultra-wideband (UWB) radar technology for detection of landmines, improvised explosive devices and unexploded ordnance, for over two decades. This paper presents a phenomenological study of the radar signature of buried landmines in realistic environments and the performance of airborne synthetic aperture radar (SAR) in detecting these targets as a function of multiple parameters: polarization, depression angle, soil type and burial depth. The investigation is based on advanced computer models developed at ARL. The analysis includes both the signature of the targets of interest and the clutter produced by rough surface ground. Based on our numerical simulations, we conclude that low depression angles and H-H polarization offer the highest target-to-clutter ratio in the SAR images and therefore the best radar performance of all the scenarios investigated.

  1. High gain GaAs photoconductive semiconductor switches for ground penetrating radar

    SciTech Connect

    Loubriel, G.M.; Aurand, J.F.; Buttram, M.T.; Zutavern, F.J.; Helgeson, W.D.; O`Malley, M.W.; Brown, D.J.

    1996-07-01

    The ability of high gain GaAs Photoconductive Semiconductor switches (PCSS) to deliver high peak power, fast risetime pulses when triggered with small laser diode arrays makes them suitable for their use in radars that rely on fast impulses. This type of direct time domain radar is uniquely suited for observation of large structures under ground because it can operate at low frequencies and at high average power. This paper will summarize the state-of-the-art in high gain GaAs switches and discuss their use in a radar transmitter. We will also present a summary of an analysis of the effectiveness of different pulser geometries that result in transmitted pulses with varying frequency content. To this end we developed a simple model that includes transmit and receive antenna response, attenuation and dispersion of the electromagnetic impulses by the soil, and target cross sections.

  2. A study of the geoelectrical properties of peatlands and their influence on ground-penetrating radar surveying

    SciTech Connect

    Theimer, B.D. ); Nobes, D.C. . Dept. of Geology); Warner, B.G. )

    1994-04-01

    A variety of geophysical methods have been used on peatlands, including ground penetrating radar (GPR), resistivity, and electromagnetic induction (EM) surveying. The full potential of these techniques remains largely unexplored, mainly because the understanding of the physical factors that control the instrument response in peatlands is incomplete. The water table is normally at, or slightly below, the ground surface; the peat thickness can range from 40 cm to 10 m. In bulk, peat is mostly water, with a supporting matrix made of purely organic materials. The organic materials are the partially decomposed remains of plants, which can take millennia to accumulate in the form of peat. Internal stratigraphic features and thicknesses of peatlands can vary dramatically with little predictability on the basis of surface vegetation. The authors discuss the use of geophysics, alone and as a supplement to conventional coring programs. They have investigated three peatland sites, and have carried out comparisons of the electrical property variations and of the heat physical properties that may be detected by geophysical methods, from site to site and within individual peatlands. They also suggest a systematic protocol for the geophysical investigation of peatlands, specifically, and for GPR surveys generally.

  3. Geophysical monitoring of simulated clandestine graves using electrical and ground-penetrating radar methods: 0-3 years after burial.

    PubMed

    Pringle, Jamie K; Jervis, John R; Hansen, James D; Jones, Glenda M; Cassidy, Nigel J; Cassella, John P

    2012-11-01

    This study provides forensic search teams with systematic geophysical monitoring data over simulated clandestine graves for comparison to active cases. Simulated "wrapped" and "naked" burials were created. Multigeophysical surveys were collected over a 3-year monitoring period. Bulk ground resistivity, electrical resistivity imaging, multifrequency ground-penetrating radar (GPR), and grave and background "soil-water" conductivity data were collected. Resistivity surveys revealed the naked burial had consistently low-resistivity anomalies, whereas the wrapped burial had small, varying high-resistivity anomalies. GPR 110- to 900-MHz frequency surveys showed the wrapped burial could be detected throughout, with the "naked" burial mostly resolved. Two hundred and twenty-five megahertz frequency GPR data were optimal. "Soil-water" analyses showed rapidly increasing (year 1), slowly increasing (year 2), and decreasing (year 3) conductivity values. Results suggest resistivity and GPR surveys should be collected if target "wrapping" is unknown, with winter to spring surveys optimal. Resistivity surveys should be collected in clay-rich soils.

  4. Application of ground-penetrating radar methods in determining hydrogeologic conditions in a karst area, west-central Florida

    USGS Publications Warehouse

    Barr, G.L.

    1993-01-01

    Ground-penetrating radar (GPR) is useful as a surface geophysical method for exploring geology and subsurface features in karst settings. Interpretation of GPR data was used to infer lithology and hydrogeologic conditions in west-central Florida. This study demonstrates how GPR methods can be used to investigate the hydrogeology of an area. GPR transmits radio- frequency electromagnetic waves into the ground and receives reflected energy waves from subsurface interfaces. Subsurface profiles showing sediment thickness, depth to water table and clay beds, karst development, buried objects, and lake-bottom structure were produced from GPR traverses obtained during December 1987 and March 1990 in Pinellas, Hillsborough, and Hardee Counties in west-central Florida. Performance of the GPR method is site specific, and data collected are principally affected by the sediment and pore fluids, conductances and dielectric constants. Effective exploration depths of the GPR surveys through predominately unsaturated and saturated sand and clay sediments at five study sites ranged from a few feet to greater than 50 feet below land surface. Exploration depths were limited when high conductivity clay was encountered, whereas greater exploration depths were possible in material composed of sand. Application of GPR is useful in profiling subsurface conditions, but proper interpretation depends upon the user's knowledge of the equipment and the local hydrogeological setting, as well as the ability to interpret the graphic profile.

  5. Application of ground-penetrating radar to investigation of near-surface fault properties in the San Francisco Bay region

    USGS Publications Warehouse

    Cai, J.; McMechan, G.A.; Fisher, M.A.

    1996-01-01

    In many geologic environments, ground-penetrating radar (GPR) provides high-resolution images of near-surface Earth structure. GPR data collection is nondestructive and very economical. The scale of features detected by GPR lies between those imaged by high-resolution seismic reflection surveys and those exposed in trenches and is therefore potentially complementary to traditional techniques for fault location and mapping. Sixty-two GPR profiles were collected at 12 sites in the San Francisco Bay region. Results show that GPR data correlate with large-scale features in existing trench observations, can be used to locate faults where they are buried or where their positions are not well known, and can identify previously unknown fault segments. The best data acquired were on a profile across the San Andreas fault, traversing Pleistocene terrace deposits south of Olema in Marin County; this profile shows a complicated multi-branched fault system from the ground surface down to about 40 m, the maximum depth for which data were recorded.

  6. Use of ground penetrating radar for determination of water table depth and subsurface soil characteristics at Kennedy Space Center

    NASA Astrophysics Data System (ADS)

    Hengari, Gideon M.; Hall, Carlton R.; Kozusko, Tim J.; Bostater, Charles R.

    2013-10-01

    Sustainable use and management of natural resources require strategic responses using non-destructive tools to provide spatial and temporal data for decision making. Experiments conducted at John F. Kennedy Space Center (KSC) demonstrate ground penetrating radar (GPR) can provide high-resolution images showing depth to water tables. GPR data at KSC were acquired using a MALÅ Rough Terrain 100 MHz Antenna. Data indicate strong correlation (R2=0.80) between measured water table depth (shallow monitoring wells and soil auger) and GPR estimated depth. The study demonstrated the use of GPR to detect Holocene and Pleistocene depositional environments such as Anastasia Formation that consists of admixtures of sand, shell and coquinoid limestone at a depth of 20-25 ft. This corresponds well with the relatively strong reflections from 7.5 to 13 m (125-215 ns) in GPR images. Interpretations derived from radar data coupled with other non-GPR data (wells data and soil auger data) will aid in the understanding of climate change impacts due to sea level rise on the scrub vegetation composition at KSC. Climate change is believed to have a potentially significant impact potential on near coastal ground water levels and associated water table depth. Understanding the impacts of ground water levels changes will, in turn, lead to improved conceptual conservation efforts and identifications of climate change adaptation concepts related to the recovery of the Florida scrub jay (Aphelocoma coerulescens) and other endangered or threatened species which are directly dependent on a healthy near coastal scrub habitat. Transfer of this inexpensive and non-destructive technology to other areas at KSC, Florida, and to other countries, may prove useful in the development of future conservation programs.

  7. COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar": first-year activities and results

    NASA Astrophysics Data System (ADS)

    Pajewski, Lara; Benedetto, Andrea; Loizos, Andreas; Slob, Evert; Tosti, Fabio

    2014-05-01

    This work aims at presenting the first-year activities and results of COST (European COoperation in Science and Technology) Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar". This Action was launched in April 2013 and will last four years. The principal aim of COST Action TU1208 is to exchange and increase scientific-technical knowledge and experience of GPR techniques in civil engineering, whilst simultaneously promoting throughout Europe the effective use of this safe and non-destructive technique in the monitoring of infrastructures and structures. Moreover, the Action is oriented to the following specific objectives and expected deliverables: (i) coordinating European scientists to highlight problems, merits and limits of current GPR systems; (ii) developing innovative protocols and guidelines, which will be published in a handbook and constitute a basis for European standards, for an effective GPR application in civil- engineering tasks; safety, economic and financial criteria will be integrated within the protocols; (iii) integrating competences for the improvement and merging of electromagnetic scattering techniques and of data- processing techniques; this will lead to a novel freeware tool for the localization of buried objects, shape-reconstruction and estimation of geophysical parameters useful for civil engineering needs; (iv) networking for the design, realization and optimization of innovative GPR equipment; (v) comparing GPR with different NDT techniques, such as ultrasonic, radiographic, liquid-penetrant, magnetic-particle, acoustic-emission and eddy-current testing; (vi) comparing GPR technology and methodology used in civil engineering with those used in other fields; (vii) promotion of a more widespread, advanced and efficient use of GPR in civil engineering; and (viii) organization of a high-level modular training program for GPR European users. Four Working Groups (WGs) carry out the research activities. The first WG

  8. 3d-3d correspondence revisited

    DOE PAGES

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; ...

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  9. Internal architecture of a raised beach ridge system (Anholt, Denmark) resolved by ground-penetrating radar investigations

    NASA Astrophysics Data System (ADS)

    Clemmensen, Lars B.; Nielsen, Lars

    2010-01-01

    The internal architecture of raised beach ridge and associated swale deposits on Anholt records an ancient sea level. The Holocene beach ridges form part of a progradational beach ridge plain, which has been interpreted to have formed during an isostatic uplift and a relative fall in the sea level over the past 7700 years. The ridges are covered by pebbles and cobbles and commonly show evidence of deflation. Material presumably removed from the beach ridges and adjacent swales form the present dune forms on Anholt. Ground-penetrating radar (GPR) reflection lines have been collected with 250 MHz shielded antennae across the fossil ridge and swale structures. The signals penetrate the subsurface to a maximum depth of ˜ 10 m below the fossil features. The GPR data resolve the internal architecture of the beach ridges and swales with a vertical resolution of about 0.1 m. GPR mapping indicates that the Holocene beach ridges are composed of seaward-dipping beachface deposits as well as minor amounts of inland dipping deposits of wash-over origin. The beachface deposits downlap on underlying shoreface deposits, and we use these surfaces as markers of a relative palaeo-sea level. The new data indicate that the highest relative sea level at about 8.5 m was reached 6500 years ago; 700 years later the relative sea level had dropped 0.7 m indicating a change in the relative sea level around 1 mm/year. This fall in the relative sea level most likely records the influence of an isostatic rebound causing younger beach ridge deposits to indicate lower sea levels.

  10. An investigation of recent storm histories using Ground Penetrating Radar at Bay-Bay Spit, Bicol, Central Philippines

    NASA Astrophysics Data System (ADS)

    Switzer, Adam D.; Pile, Jeremy; Soria, Janneli Lea A.; Siringan, Fernando; Daag, Arturo; Brill, Dominik

    2016-04-01

    The Philippine archipelago lies in the path of seasonal tropical cyclones, and much of the coast is prone to periodic inundation and overwash during storm surges. On example is typhoon Durian a category 3 storm that made landfall on the 30th November 2006, in Bicol province, on the east central Philippine coast. Satellite imagery from May 2007 reveal that Durian breached a sandy spit that runs southeast from the mouth of the Quinale River at Bay-Bay village towards Tabaco City. The imagery also showed that, although the breach site showed signs of partial recovery, geomorphological evidence of the inundation event associated with typhoon Durian still remains. In 2012 we mapped the geomorphological features of Durian. In June 2013 we returned to conduct Ground Penetrating Radar (GPR) surveys on the Bay-Bay spit to investigate potential subsurface evidence of previous storm events. The GPR surveys comprised five, 1.5 km, longshore profiles and 12 cross-shore profiles, of 50 m - 200 m in length. The GPR system used for this study was a Sensors and Software Noggin with 100 Mhz antennas. Near surface velocities were determine using Hyperbolae matching in order to estimate depth. Topographic and positional data were collected using a dGPS system. After minimal processing depth of penetration during the survey varied from 2 - 8 m. The cross-shore GPR profiles reveal at least two erosional events prior to 2006 typhoon Durian, with approximately 10 m of recovery and progradation between each erosion surface. The GPR profiles that captured the erosional features were revisited in September 2013 for trial pitting, stratigraphic description, and sediment sampling. Sediment cores were taken horizontally from the trench walls and vertically from the trench bases to date sediments using Optically Stimulated Luminescence (OSL), which eventually could constrain the timing of the erosional surfaces.

  11. A comment on the paper by Ciarletti, V., et al. (2015), bistatic sounding of the deep subsurface with a ground penetrating radar-Experimental validation

    NASA Astrophysics Data System (ADS)

    Nye, J. F.

    2016-12-01

    Ciarletti, V., et al., 2015 describe an experiment to prepare for a future landing on Mars that will use a bistatic ground-penetrating radar (GPR) with movable stations to detect subsurface layers. A simplified model of the proposed system based on ray optics is offered and a qualitative discussion is given of how its results might be softened by wave theory.

  12. Ground Penetrating Radar and thermal imager applied to San Joaquin kit fox (Vulpes velox macrotis) at Camp Roberts Army National Guard Training Site, California

    SciTech Connect

    Reese, E.A.; Kato, T.T.; Berry, W.H.; O'Farrell, T.P.

    1992-10-01

    Ground Penetrating Radar and thermal infrared imaging were used to evaluate the effects of military activities conducted at Camp Roberts Army National Guard Training Site. The Ground Penetrating Radar was used to identify underground burrows of San Joaquin kit fox (Vulpes velox macrotis) dens in an attempt to evaluate the impact of tracked vehicles on the integrity of kit fox dens. The thermal imaging was used to identify kit foxes within the live-fire impact area. The ground penetrating radar equipment was initially unsuccessfull in detecting burrows in the hard, compacted soils. Changes in antenna systems and sampling methods resulted in small improvements, but the data were inadequate to test for effects of military vehicles on dens. Further refinements would have required the intentional destruction of dens, or the redesign of the ground penetrating radar hardware and software. Thermal imaging was useful in observing kit foxes at close range but was not suitable for detecting foxes in the impact area because the images were not clear enough for conclusive species identification.

  13. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  14. Studies of Grounding Line Migration Over Rutofrd Ice Stream Using 3D Short Repeat-Time Series From Multi-Track InSAR Acquisitions.

    NASA Astrophysics Data System (ADS)

    Milillo, P.; Minchew, B. M.; Riel, B. V.; Simons, M.; Gardner, A. S.; Agram, P. S.

    2015-12-01

    It has long been known that basal mechanics of ice streams are sensitive to short- timescale hourly to seasonal forcings, such as water pressure fluctuations and tidal loading as well as long-timescale (yearly to decadal) thinning. Designing SAR short repeat time observations to cover nearly an entire test-site in Antarctica from ascending and descending orbital directions, using every available SAR satellite is fundamental for understanding a new class of phenomena, underlying the physics of glaciers and ice streams. Understanding grounding-line dynamics is necessary for predictions of long-term ice-sheet stability. However, despite growing observations of the tidal influence on grounding-line migration, this short-timescale migration is poorly understood, with most modeling attempts assuming beam theory to calculate displacements. Knowing the position of the grounding line with accuracy is important for the global mass balance of ice sheets or for quantitatively modeling the mechanical interaction between ice shelves and ice sheets. Here we present a general method for retrieving three dimensional displacement vector given a set of multiple tracks, multiple geometry SAR acquisitions. The algorithm extends the single line of sight mathematical framework to the four spatial and temporal dimensions including both range and azimuth measurements. We designed COSMO-SkyMed (CSK) observations of Rutford Ice Stream to cover nearly the grounding zone from ascending and descending orbital directions using every available CSK satellite This spatially comprehensive observational scheme allowed us to derive time series of the 3-dimensional surface displacement for the grounding zone, facilitating studies of ice stream mechanics and tidally induced grounding line migrations with unprecedented spatial extent and temporal resolution. Having a constellation with occasional 1- day repeat time and an average 4-days repeat time is beneficial when looking at displacements of more than

  15. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  16. Thin-bed Ground Penetrating Radar analysis of preserved modern and palaeotsunami deposits from Phra Thong Island, Thailand

    NASA Astrophysics Data System (ADS)

    Gouramanis, C.; Lee, Y.; Switzer, A. D.; Rubin, C. M.; Bristow, C. S.; Jankaew, K.; Pham, D. T.

    2012-12-01

    Sandy deposits within muddy swales between coastal beach ridges can be used to indicate potential large scale wash over events, generated by storms and tsunamis. Currently, the main technique for identifying washover sandy lenses has been through point source augering or pitting and/or trenching. These techniques are time and cost intensive. Ground Penetrating Radar (GPR) presents a rapid, non-invasive, spatially-continuous technique for identifying subsurface stratigraphy. Although GPR facies are not diagnostic of a particular sedimentary characteristic, they do provide an avenue for reconnaissance studies, or to help constrain the spatial extent of sand deposits. Here we present a method for examining thin (<15 cm) sandy coastal inundation deposits and their associated structures using high-frequency (500 and 1000 MHz) GPR antennae and present results from GPR profiles collected from Phra Thong Island, west coast of Thailand. This location provides one of the best constrained sites for the 2004 Indian Ocean Tsunami and three distinct palaeotsunamis recognised as discreet thin sand layers separated by muddy sediments. Two swales were examined and auger cores were taken to ground-truth the GPR profiles. The bases of the swales are clearly evident with strong, continuous reflectors in each of the profiles. The contacts between sandy and muddy layers are also evident but the reflectors are less consistent across the profile, most likely in response to subtle local variability. Preliminary analysis of the GPR profiles suggest that the contacts between thin sand and mud units can be accurately imaged provided the units are thicker than ca. 10cm. When surrounded by many thin units, it is often difficult to discern the reflective signal of beds thinner than ca. 10 cm due to the signals merging. Our investigations show that high frequency GPR profiles image sandy washover events in muddy swales. Additional work is required to document the spatial extent and depositional

  17. Using Ground-Penetrating Radar to Estimate Sediment Accumulation in a Reservoir: Ball Mountain Dam, West River, Vermont

    NASA Astrophysics Data System (ADS)

    Kasprak, A.; Arcone, S. A.; Dade, W. B.; Finnegan, D. C.; Magilligan, F. J.; Renshaw, C. E.

    2008-12-01

    Numerous dams exist throughout the Upper Connecticut River watershed, having profound effects on regional sediment budgets for the past 50+ years. We use ground-penetrating radar (GPR) to investigate sediment deposition by the West River into an impoundment reservoir located in southern Vermont, with the aim of determining the watershed-scale sediment budget and examining regional denudation rates. The reservoir has a storage capacity of ~104,000,000 cubic meters and was created in 1961 as a consequence of the construction of Ball Mountain Dam in Jamaica, Vermont. A total of 33 GPR reflection profiles were obtained with a 200-MHz radar antenna towed in a raft behind a boat, with 19 additional 100 MHz profiles obtained along exposed shorelines at minimal water level. Preliminary analyses indicate vertical sediment deposition varies greatly based on location; some areas of the impoundment show almost no overlying sediment, while others have received 5 meters of deposition or more. Minimal sediment accumulation is apparent on both the flat bed located along the centerline of the impoundment and on steeply-inclined submerged bedrock faces. Maximum deposition appears to be occurring along shallow-dipping subaqueous slopes near the edges of the reservoir. On-going work includes continued interpretation of GPR records, ground-truthing of those records through sediment coring, and calculation of sediment accumulation rates. In addition to defining the watershed-scale sediment budget over a decadal time scale, results may help guide policy-making regarding the upkeep and potential removal of dams in the region.

  18. Ground Penetrating Radar and Magnetic Investigations of Phreatomagmatic Tephra Rings in the San Francisco Volcanic Field, Northern Arizona

    NASA Astrophysics Data System (ADS)

    Marshall, A. M.; Kruse, S.; Macorps, E.; Charbonnier, S. J.

    2015-12-01

    Ground Penetrating Radar (GPR) can be a valuable geophysical tool for studying near-surface volcanic stratigraphy in areas where outcrops do not exist. Likewise, high resolution ground-based magnetic surveys have the potential to reveal significant features not exposed at the surface, especially in the case of small-volume basaltic volcanoes. Here we present the results of geophysical studies to investigate the eruptive history of deposits surrounding phreatomagmatic eruption sites, and why some may become magnetized. Magnetic surveys undertaken at basaltic phreatomagmatic sites suggest that some tuff rings carry no discernable magnetic signature, while others reveal slight to significant magnetic anomalies. Material deposited in the tephra ring could become magnetized through Thermal Remanent Magnetization - emplacement of magnetically susceptible material above 560° C. In this case tephra layers would need to be deposited in sufficient thickness to retain high temperatures long enough for the magnetic material to orient itself to the magnetic field. To test this hypothesis we examine GPR data collected at Rattlesnake Maar in the San Francisco Volcanic Field, Arizona, and we will collect GPR data at two other tephra rings in the same volcanic field. The first site, Sugarloaf Mountain, is an active quarry with excellent exposures of tephra ring stratigraphy. Although this site is rhyolitic in composition and not suitable for magnetic study, it is an excellent site to determine how well GPR reflectors correlate with actual stratigraphy. The second site, an un-named phreatomagmatic ring nearby, will then be studied by GPR and walking magnetic survey. GPR reflectors will be compared to depositional patterns defined in previous studies and correlated with magnetic survey results to determine if a correlation can be made - little to no magnetization where only thin units are recorded by GPR, and positive magnetization where thick units are recorded.

  19. Potential of Probing the Lunar Regolith using Rover-Mounted Ground Penetrating Radar: Moses Lake Dune Field Analog Study

    NASA Technical Reports Server (NTRS)

    Horz, F.; Heggy, E.; Fong, T.; Kring, D.; Deans, M.; Anglade, A.; Mahiouz, K.; Bualat, M.; Lee, P.; Bluethmann, W.

    2009-01-01

    Probing radars have been widely recognized by the science community to be an efficient tool to explore lunar subsurface providing a unique capability to address several scientific and operational issues. A wideband (200 to 1200 MHz) Ground Penetrating Radar (GPR) mounted on a surface rover can provide high vertical resolution and probing depth from few tens of centimeters to few tens of meters depending on the sounding frequency and the ground conductivity. This in term can provide a better understand regolith thickness, elemental iron concentration (including ilmenite), volatile presence, structural anomalies and fracturing. All those objectives are of important significance for understanding the local geology and potential sustainable resources for future landing sites in particular exploring the thickness, structural heterogeneity and potential volatiles presence in the lunar regolith. While the operation and data collection of GPR is a straightforward case for most terrestrial surveys, it is a challenging task for remote planetary study especially on robotic platforms due to the complexity of remote operation in rough terrains and the data collection constrains imposed by the mechanical motion of the rover and limitation in data transfer. Nevertheless, Rover mounted GPR can be of great support to perform systematic subsurface surveys for a given landing site as it can provide scientific and operational support in exploring subsurface resources and sample collections which can increase the efficiency of the EVA activities for potential human crews as part of the NASA Constellation Program. In this study we attempt to explore the operational challenges and their impact on the EVA scientific return for operating a rover mounted GPR in support of potential human activity on the moon. In this first field study, we mainly focused on the ability of GPR to support subsurface sample collection and explore shallow subsurface volatiles.

  20. Methane emission bursts from permafrost environments during autumn freeze-in: new insights from ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Pirk, Norbert; Santos, Telmo; Gustafson, Carl; Johansson, Anders J.; Tufvesson, Fredrik; Parmentier, Frans-Jan W.; Mastepanov, Mikhail; Christensen, Torben R.

    2016-04-01

    Large amounts of methane (CH4) are known to be emitted from permafrost environments during the autumn freeze-in, but the specific soil conditions leading up to these bursts are unclear. We therefore assessed the possibility to complement surface flux measurements with ground penetrating radar (GPR), which can estimate the amounts of ice, water and gas in the soil through their different dielectric properties. We developed an ultra-wide band (UWB) transmission GPR setup operating in the frequency range from 200 to 3200 MHz, which was tested in laboratory experiments on a soil sample during an induced freeze-thaw cycle, and applied in a field campaign in Northeast Greenland during autumn 2009. In the laboratory case, the GPR signals captured the same dynamics as the surface CH4 flux, featuring a series of large and sharp peaks during the thawing phase of the experiment. The CH4 emission peak during the freezing period, however, could not be reproduced in this laboratory experiment. The results of our field campaign suggest a compression of the gas reservoir during the freezing period in the autumn, which is accompanied by a peak in surface CH4 emissions. About one week thereafter, there seemed to be a decompression event, consistent with ground cracking which allows the gas reservoir to expand again. This coincided with the largest CH4 emission, exceeding the summer maximum by a factor of 4. We argue that subsurface GPR measurements open new possibilities to come to an understanding of tundra CH4 bursts connected to soil freezing.

  1. Investigation on Thawing and Freezing Processes Using High-frequency Ground Penetrating Radar in Amdo catchment, Central Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Ma, Yingzhao; Zubrzycki, Sebastian

    2014-05-01

    We have applied 250MHz ground penetrating radar (GPR) to investigate subsurface thawing and freezing processes in Amdo catchment, central Tibetan Plateau. Also, the topography and geography environments were surveyed to better understand the regional thaw/freeze cycles. Generally, the GPR images clearly illustrated the development of thawing and freezing events, which would be learned from the CMP soundings and reflection profiles. Our results showed that a strong lower EM velocity of upper layers was detected in the thawing conditions, while a rather higher velocity could be monitored in the frozen grounds, which was mainly based on the large contrast in dielectric permittivity between liquid water and ice. In addition, on the north-facing slopes, the EM velocity was smaller than that of sunny slopes in thawing and freezing periods on the whole, which illustrated that the average soil moisture in the upper subsurface was higher in north-facing slopes than the opposite side. Furthermore, during the thawing periods, both of the velocity and thawing depth decreased as the slope became deeper on the south-facing slope basically; on the shade side, the velocity increased slightly when the slope got sharper, but the thawed depth had no obvious trend. As for the freezing periods, both the velocity and frozen depth were not found clear tendency on both sides. Moreover, the subsurface thawing and freezing developments were significantly affected by local surface environments (e.g, stream, grassland or bare soil) though in similar topographic conditions. In all, the non-invasive GPR technique allowed the interpretation of spatial and temporal thaw/freeze processes, which played an important role on hydrothermal regimes in cold regions.

  2. Ground penetrating radar and terrestrial laser scanner surveys on deposits of dilute pyroclastic density current deposits: insights for dune bedform genesis

    NASA Astrophysics Data System (ADS)

    Rémi Dujardin, Jean; Amin Douillet, Guilhem; Abolghasem, Amir; Cordonnier, Benoit; Kueppers, Ulrich; Bano, Maksim; Dingwell, Donald B.

    2014-05-01

    Dune bedforms formed by dilute pyroclastic density currents (PDC) are often described or interpreted as antidunes and chute and pools. However, the interpretation remains essentially speculative and is not well understood. This is largely due to the seeming impossibility of in-situ measurements and experimental scaling, as well as the lack of recent, 3D exposures. Indeed, most dune bedform cross-stratifications from the dilute PDC record outcrop in 2D sections. The 2006 eruption of Tungurahua has produced well-developed bedforms that are well-exposed on the surface of the deposits with easy access. We performed a survey of these deposits combining ground penetrating radar (GPR) profiling with terrestrial laser scanning of the surface. The GPR survey was carried in dense arrays (from 10 to 25 cm spacing between profiles) over ca. 10 m long bedforms. GPR profiles were corrected for topography from photogrammetry data. An in-house software, RadLab (written in matlab), was used for common processing of individual profiles and 2D & 3D topographic migration. Each topography-corrected profile was then loaded into a seismic interpretation software, OpenDtect, for 3D visualization and interpretation. Most bedforms show high lateral stability that is independent of the cross-stratification pattern (that varies between stoss-aggrading bedsets, stoss-erosive bedsets and stoss-depositional lensoidal layers). Anecdotic bedforms have their profiles that evolve laterally (i.e. in a direction perpendicular to the flow direction). Cannibalization of two dune bedforms into a single one on one end of the profile can evolve into growth of a single bedform at the other lateral end. Also, lateral variation in the migration direction occurs, i.e. a single bedform can show upstream aggradation at one lateral end of the bedform, but show downstream migration at the other end. Some bedforms have great variations in their internal structure. Several episodes of growth and erosion can be

  3. Ground Penetrating Radar Profiles of Breached Anticlinal Ridges in the Northern Piedmont of the San Bernardino Mountains in Southern California

    NASA Astrophysics Data System (ADS)

    Bobyarchick, A. R.; Eppes, M. C.; Diemer, J. A.; Cathey, R. B.; Cottingham, M. A.; Eckardt, I. J.; Shiflet, J. E.; Waldron, A. J.

    2006-12-01

    The northern piedmont of the San Bernardino Mountains contains kinematic elements characteristic of the Mojave block dextral plate boundary zone between the North American and Pacific plates and the complex convergent Transverse Ranges partition of that motion here represented by the North Frontal thrust system. Predominantly lateral slip in the central Mojave block is carried by the Helendale fault through Lucerne Valley and southward to intersect the North Frontal thrust system in the San Bernardino Mountains. Active anticlinal flexures and partially emergent north-verging thrust faults have deformed Pleistocene alluvial fans and older rocks into east-trending ridges in the piedmont on both sides of the Helendale fault. The Cougar Buttes anticline underlies such a ridge east of the fault and is breached by contemporaneous orthogonal washes in several places along strike of the anticline. Greater relief occurs where the alluvial fans comprise carbonate- cemented soils and particularly resistant, prominent petrocalcic horizons. It is within these incised valleys that the sequence of Tertiary through Pleistocene deposits show that the asymmetric anticline is cored by a thrust fault. In order to examine more closely the fold-fault association in the Cougar Buttes anticline and suggest possible kinematic models, we conducted several ground penetrating radar (GPR) profiles at different levels across the ridge. Relatively superior relief in some washes allowed us to conduct profiles along the present topographic ridge crests (and thus along the crestal zone of the fold) and also along wash bottoms to provide profiles at the level of the fold's core. We used a GSSI SIR-3000 GPR system equipped with a monostatic 100 MHz antennae set to continuous recording mode; traverses over very irregular ground were done in point data mode. The system was set up with nominal high and low cutoff filters and automatic gain control, but we found that AGC overly amplified multiples or

  4. COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar": ongoing research activities and third-year results

    NASA Astrophysics Data System (ADS)

    Pajewski, Lara; Benedetto, Andrea; Loizos, Andreas; Tosti, Fabio

    2016-04-01

    This work aims at disseminating the ongoing research activities and third-year results of the COST (European COoperation in Science and Technology) Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar." About 350 experts are participating to the Action, from 28 COST Countries (Austria, Belgium, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Ireland, Italy, Latvia, Malta, Macedonia, The Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey, United Kingdom), and from Albania, Armenia, Australia, Colombia, Egypt, Hong Kong, Jordan, Israel, Philippines, Russia, Rwanda, Ukraine, and United States of America. In September 2014, TU1208 has been recognised among the running Actions as "COST Success Story" ("The Cities of Tomorrow: The Challenges of Horizon 2020," September 17-19, 2014, Torino, IT - A COST strategic workshop on the development and needs of the European cities). The principal goal of the COST Action TU1208 is to exchange and increase scientific-technical knowledge and experience of GPR techniques in civil engineering, whilst simultaneously promoting throughout Europe the effective use of this safe and non-destructive technique in the monitoring of infrastructures and structures. Moreover, the Action is oriented to the following specific objectives and expected deliverables: (i) coordinating European scientists to highlight problems, merits and limits of current GPR systems; (ii) developing innovative protocols and guidelines, which will be published in a handbook and constitute a basis for European standards, for an effective GPR application in civil- engineering tasks; safety, economic and financial criteria will be integrated within the protocols; (iii) integrating competences for the improvement and merging of electromagnetic scattering techniques and of data- processing techniques; this will lead to a novel freeware tool for the localization of

  5. Ground penetrating radar coal measurements demonstration at the U.S. Bureau of Mines Research Center, Pittsburgh, Pennsylvania. Final report

    SciTech Connect

    Gardner, D.; Guerrier, J.; Martinez, M.

    1994-01-04

    In situ and near real-time measurements of coal seam thickness have been identified by industry as a highly desirable component of robotic mining systems. With it, a continuous mining machine can be guided close to the varying boundary of the seam while the cutting operation is underway. This provides the mining operation the ability to leave behind the high-sulfur, high-particulate coal which is concentrated near the seam boundary. The result is near total recovery of high quality coal resources, an increase in mining efficiency, and opportunities for improved safety through reduction in personnel in the most hazardous coal cutting areas. In situ, real-time coal seam measurements using the Special Technologies Laboratory (STL) ground penetrating radar (GPR) technology were shown feasible by a demonstration in a Utah coal mine on April 21, 1994. This report describes the October 18, 1994 in situ GPR measurements of coal seam thickness at the US Bureau of Mines (USBM) robotic mining testing laboratory. In this report, an overview of the measurements at the USBM Laboratory is given. It is followed by a description of the technical aspects of the STL frequency modulated-continuous wave (FM-CW) GPR system. Section 4 provides a detailed description of the USBM Laboratory measurements and the conditions under which they were taken. Section 5 offers conclusions and possibilities for future communications.

  6. Rapid Detection Methods for Asphalt Pavement Thicknesses and Defects by a Vehicle-Mounted Ground Penetrating Radar (GPR) System.

    PubMed

    Dong, Zehua; Ye, Shengbo; Gao, Yunze; Fang, Guangyou; Zhang, Xiaojuan; Xue, Zhongjun; Zhang, Tao

    2016-12-06

    The thickness estimation of the top surface layer and surface layer, as well as the detection of road defects, are of great importance to the quality conditions of asphalt pavement. Although ground penetrating radar (GPR) methods have been widely used in non-destructive detection of pavements, the thickness estimation of the thin top surface layer is still a difficult problem due to the limitations of GPR resolution and the similar permittivity of asphalt sub-layers. Besides, the detection of some road defects, including inadequate compaction and delamination at interfaces, require further practical study. In this paper, a newly-developed vehicle-mounted GPR detection system is introduced. We used a horizontal high-pass filter and a modified layer localization method to extract the underground layers. Besides, according to lab experiments and simulation analysis, we proposed theoretical methods for detecting the degree of compaction and delamination at the interface, respectively. Moreover, a field test was carried out and the estimated results showed a satisfactory accuracy of the system and methods.

  7. Ground-penetrating radar study of beach-ridge deposits in Huangqihai Lake, North China: the imprint of washover processes

    NASA Astrophysics Data System (ADS)

    Shan, Xin; Yu, Xinghe; Clift, Peter D.; Tan, Chengpeng; Li, Shunli; Wang, Zhixing; Su, Dongxu

    2016-03-01

    Determining the origin of beach ridges in lacustrine basins can often be problematic. The sedimentary processes responsible for formation of beach ridges on the north shore of Huangqihai Lake were investigated by using ground penetrating radar (GPR). A 400 MHz GPR antenna was used to achieve a high vertical resolution of 0.04-0.08 m. The radar stratigraphy was then determined using principles of seismic stratigraphy. The radar facies (RF) were determined by analyzing internal configuration and continuity of reflections, as well as reflection termination patterns. The identified RF fall into three groups (inclined, horizontal and irregular). The inclined group consists of RF that display inclined reflections. The horizontal group consists of RF that exhibit predominantly horizontal reflections. In the irregular group, the reflections are typically weak. RF with reflections with gently landward dips in the shore-normal profile are interpreted as washover sheet deposits. RF with steeply landward-dipping and imbricated reflections are interpreted as washover lobes. Washover sheets develop when overwash fails to enter a significant body of water and sedimentation takes place entirely on the relatively flattened topography. Washover lobe development occurs when overwash enters a region in which topography dips steeply landward, and sedimentation takes place on the surface of washover sheets or previous washover lobes. The beach-ridge deposits are interpreted as being formed entirely from vertically and laterally stacked washover sheets and washover lobes. They were formed by wave-dominated processes and secondary overwash processes supplemented by longshore currents.

  8. Estimation of the lateral correlation structure of subsurface water content from surface-based ground-penetrating radar reflection images

    NASA Astrophysics Data System (ADS)

    Irving, James; Knight, Rosemary; Holliger, Klaus

    2009-12-01

    Over the past decade, significant interest has been expressed in relating the spatial statistics of surface-based reflection ground-penetrating radar (GPR) data to those of the imaged subsurface volume. A primary motivation for this work is that changes in the radar wave velocity, which largely control the character of the observed data, are expected to be related to corresponding changes in subsurface water content. Although previous work has indeed indicated that the spatial statistics of GPR images are linked to those of the water content distribution of the probed region, a viable method for quantitatively analyzing the GPR data and solving the corresponding inverse problem has not yet been presented. Here we address this issue by first deriving a relationship between the 2-D autocorrelation of a water content distribution and that of the corresponding GPR reflection image. We then show how a Bayesian inversion strategy based on Markov chain Monte Carlo sampling can be used to estimate the posterior distribution of subsurface correlation model parameters that are consistent with the GPR data. Our results indicate that if the underlying assumptions are valid and we possess adequate prior knowledge regarding the water content distribution, in particular its vertical variability, this methodology allows not only for the reliable recovery of lateral correlation model parameters but also for estimates of parameter uncertainties. In the case where prior knowledge regarding the vertical variability of water content is not available, the results show that the methodology still reliably recovers the aspect ratio of the heterogeneity.

  9. Integration of electrical resistivity imaging and ground penetrating radar to investigate solution features in the Biscayne Aquifer

    NASA Astrophysics Data System (ADS)

    Yeboah-Forson, Albert; Comas, Xavier; Whitman, Dean

    2014-07-01

    The limestone composing the Biscayne Aquifer in southeast Florida is characterized by cavities and solution features that are difficult to detect and quantify accurately because of their heterogeneous spatial distribution. Such heterogeneities have been shown by previous studies to exert a strong influence in the direction of groundwater flow. In this study we use an integrated array of geophysical methods to detect the lateral extent and distribution of solution features as indicative of anisotropy in the Biscayne Aquifer. Geophysical methods included azimuthal resistivity measurements, electrical resistivity imaging (ERI) and ground penetrating radar (GPR) and were constrained with direct borehole information from nearby wells. The geophysical measurements suggest the presence of a zone of low electrical resistivity (from ERI) and low electromagnetic wave velocity (from GPR) below the water table at depths of 4-9 m that corresponds to the depth of solution conduits seen in digital borehole images. Azimuthal electrical measurements at the site reported coefficients of electrical anisotropy as high as 1.36 suggesting the presence of an area of high porosity (most likely comprising different types of porosity) oriented in the E-W direction. This study shows how integrated geophysical methods can help detect the presence of areas of enhanced porosity which may influence the direction of groundwater flow in a complex anisotropic and heterogeneous karst system like the Biscayne Aquifer.

  10. Archaeological sites at Rio de Janeiro State, Brazil, with their contents enhanced by the use of ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Ferrucio da Rocha, Paul L.; da Silva Cezar, Glroia; Buarque, Angela; da Costa, Ariovaldo

    2000-04-01

    This presentation refers to the application of the Ground Penetrating Radar on two archaeological sites: Serrano and Morro Grande, situated at Araruama County, Rio de Janeiro, Brazil, with the purpose of contributing to the knowledge concerning a prehistoric indigenous culture, associated with the 'Tupinamba' that inhabited the region at prehistoric times. This research is being realized with the partnership of the Anthropology Department of the National Museum and the Geology Department, both departments pertaining to the Rio de Janeiro Federal University. The archaeological remains of the study area are mainly characterized by pottery appliance for several uses, including funeral urns, which were buried within layers of sand and clay. Several profiles were made, using a RAMAC device, with a 200 MHz frequency antenna, surrounding some partially exposed potters, in the sand quarry, at the Serrano site. The resultant radargrams conceived a response model for the archaeological and soil characteristics of the area. These radargrams are being used as correlative models for the interpretation of profiles performed at the Morro Grande site, which presents similar characteristics of the Serrano site. The generated models are intended to guide the future excavations in the archeological sites of Ri de Janeiro.

  11. Rapid Detection Methods for Asphalt Pavement Thicknesses and Defects by a Vehicle-Mounted Ground Penetrating Radar (GPR) System

    PubMed Central

    Dong, Zehua; Ye, Shengbo; Gao, Yunze; Fang, Guangyou; Zhang, Xiaojuan; Xue, Zhongjun; Zhang, Tao

    2016-01-01

    The thickness estimation of the top surface layer and surface layer, as well as the detection of road defects, are of great importance to the quality conditions of asphalt pavement. Although ground penetrating radar (GPR) methods have been widely used in non-destructive detection of pavements, the thickness estimation of the thin top surface layer is still a difficult problem due to the limitations of GPR resolution and the similar permittivity of asphalt sub-layers. Besides, the detection of some road defects, including inadequate compaction and delamination at interfaces, require further practical study. In this paper, a newly-developed vehicle-mounted GPR detection system is introduced. We used a horizontal high-pass filter and a modified layer localization method to extract the underground layers. Besides, according to lab experiments and simulation analysis, we proposed theoretical methods for detecting the degree of compaction and delamination at the interface, respectively. Moreover, a field test was carried out and the estimated results showed a satisfactory accuracy of the system and methods. PMID:27929409

  12. Integration of ground-penetrating radar, ultrasonic tests and infrared thermography for the analysis of a precious medieval rose window

    NASA Astrophysics Data System (ADS)

    Nuzzo, L.; Calia, A.; Liberatore, D.; Masini, N.; Rizzo, E.

    2010-04-01

    The integration of high-resolution, non-invasive geophysical techniques (such as ground-penetrating radar or GPR) with emerging sensing techniques (acoustics, thermography) can complement limited destructive tests to provide a suitable methodology for a multi-scale assessment of the state of preservation, material and construction components of monuments. This paper presents the results of the application of GPR, infrared thermography (IRT) and ultrasonic tests to the 13th century rose window of Troia Cathedral (Apulia, Italy), affected by widespread decay and instability problems caused by the 1731 earthquake and reactivated by recent seismic activity. This integrated approach provided a wide amount of complementary information at different scales, ranging from the sub-centimetre size of the metallic joints between the various architectural elements, narrow fractures and thin mortar fillings, up to the sub-metre scale of the internal masonry structure of the circular ashlar curb linking the rose window to the façade, which was essential to understand the original building technique and to design an effective restoration strategy.

  13. Signal Processing of Ground Penetrating Radar Using Spectral Estimation Techniques to Estimate the Position of Buried Targets

    NASA Astrophysics Data System (ADS)

    Shrestha, Shanker Man; Arai, Ikuo

    2003-12-01

    Super-resolution is very important for the signal processing of GPR (ground penetration radar) to resolve closely buried targets. However, it is not easy to get high resolution as GPR signals are very weak and enveloped by the noise. The MUSIC (multiple signal classification) algorithm, which is well known for its super-resolution capacity, has been implemented for signal and image processing of GPR. In addition, conventional spectral estimation technique, FFT (fast Fourier transform), has also been implemented for high-precision receiving signal level. In this paper, we propose CPM (combined processing method), which combines time domain response of MUSIC algorithm and conventional IFFT (inverse fast Fourier transform) to obtain a super-resolution and high-precision signal level. In order to support the proposal, detailed simulation was performed analyzing SNR (signal-to-noise ratio). Moreover, a field experiment at a research field and a laboratory experiment at the University of Electro-Communications, Tokyo, were also performed for thorough investigation and supported the proposed method. All the simulation and experimental results are presented.

  14. Ground-penetrating radar investigation of St. Leonard's Crypt under the Wawel Cathedral (Cracow, Poland) - COST Action TU1208

    NASA Astrophysics Data System (ADS)

    Benedetto, Andrea; Pajewski, Lara; Dimitriadis, Klisthenis; Avlonitou, Pepi; Konstantakis, Yannis; Musiela, Małgorzata; Mitka, Bartosz; Lambot, Sébastien; Żakowska, Lidia

    2016-04-01

    The Wawel ensemble, including the Royal Castle, the Wawel Cathedral and other monuments, is perched on top of the Wawel hill immediately south of the Cracow Old Town, and is by far the most important collection of buildings in Poland. St. Leonard's Crypt is located under the Wawel Cathedral of St Stanislaus BM and St Wenceslaus M. It was built in the years 1090-1117 and was the western crypt of the pre-existing Romanesque Wawel Cathedral, so-called Hermanowska. Pope John Paul II said his first Mass on the altar of St. Leonard's Crypt on November 2, 1946, one day after his priestly ordination. The interior of the crypt is divided by eight columns into three naves with vaulted ceiling and ended with one apse. The tomb of Bishop Maurus, who died in 1118, is in the middle of the crypt under the floor; an inscription "+ MAVRVS EPC MCXVIII +" indicates the burial place and was made in 1938 after the completion of archaeological works which resulted in the discovery of this tomb. Moreover, the crypt hosts the tombs of six Polish kings and heroes: Michał Korybut Wiśniowiecki (King of the Polish-Lithuanian Commonwealth), Jan III Sobieski (King of the Polish-Lithuanian Commonwealth and Commander at the Battle of Vienna), Maria Kazimiera (Queen of the Polish-Lithuanian Commonwealth and consort to Jan III Sobieski), Józef Poniatowski (Prince of Poland and Marshal of France), Tadeusz Kościuszko (Polish general, revolutionary and a Brigadier General in the American Revolutionary War) and Władysław Sikorski (Prime Minister of the Polish Government in Exile and Commander-in-Chief of the Polish Armed Forces). The adjacent six crypts and corridors host the tombs of the other Polish kings, from Sigismund the Old to Augustus II the Strong, their families and several Polish heroes. In May 2015, the COST (European COoperation in Science and Technology) Action TU1208 "Civil engineering applications of Ground Penetrating Radar" organised and offered a Training School (TS) on the

  15. The utility of ground-penetrating radar and its time-dependence in the discovery of clandestine burials.

    PubMed

    Salsarola, Dominic; Poppa, Pasquale; Amadasi, Alberto; Mazzarelli, Debora; Gibelli, Daniele; Zanotti, Emma; Porta, Davide; Cattaneo, Cristina

    2015-08-01

    In the field of forensic investigation burial is a relatively common method of hiding a corpse. The location of clandestine graves is, however, a particularly difficult task in which multiple forensic disciplines such as anthropology, botany or archaeology can provide valuable assistance. The use of GPR (ground-penetrating radar) has recently been introduced as a method in the detection of these graves, but what is the true potential of this tool in an operative search scenario? In this study a total of 11 pig carcasses were buried in two wooded areas, each presenting a similar soil composition. The animals were subsequently exhumed at regular intervals, ranging from 2 to 111 weeks, using systematic GPR analysis of the burial sites and archaeological recovery of the subjects that were then autopsied. GPR proved to be useful in recognizing anomalies at the chosen depths of burial and appeared to be dependent on the state of decay of the samples, producing only slight anomalous readings in the presence of skeletal remains: at 92 weeks from burial the difference in signal was weak and at 111 weeks GPR survey offered no helpful information as to burial location. The experiment, in this particular context, determined the technique as being successful in the presence of recent burials, highlighting the need for a multidisciplinary approach in the operative search for buried human remains.

  16. The effectiveness of ground-penetrating radar surveys in the location of unmarked burial sites in modern cemeteries

    NASA Astrophysics Data System (ADS)

    Fiedler, Sabine; Illich, Bernhard; Berger, Jochen; Graw, Matthias

    2009-07-01

    Ground-penetration radar (GPR) is a geophysical method that is commonly used in archaeological and forensic investigations, including the determination of the exact location of graves. Whilst the method is rapid and does not involve disturbance of the graves, the interpretation of GPR profiles is nevertheless difficult and often leads to incorrect results. Incorrect identifications could hinder criminal investigations and complicate burials in cemeteries that have no information on the location of previously existing graves. In order to increase the number of unmarked graves that are identified, the GPR results need to be verified by comparing them with the soil and vegetation properties of the sites examined. We used a modern cemetery to assess the results obtained with GPR which we then compared with previously obtained tachymetric data and with an excavation of the graves where doubt existed. Certain soil conditions tended to make the application of GPR difficult on occasions, but a rough estimation of the location of the graves was always possible. The two different methods, GPR survey and tachymetry, both proved suitable for correctly determining the exact location of the majority of graves. The present study thus shows that GPR is a reliable method for determining the exact location of unmarked graves in modern cemeteries. However, the method did not allow statements to be made on the stage of decay of the bodies. Such information would assist in deciding what should be done with graves where ineffective degradation creates a problem for reusing graves following the standard resting time of 25 years.

  17. Investigating fluvial features with electrical resistivity imaging and ground-penetrating radar: The Guadalquivir River terrace (Jaen, Southern Spain)

    NASA Astrophysics Data System (ADS)

    Rey, J.; Martínez, J.; Hidalgo, M. C.

    2013-09-01

    A geophysical survey has been conducted on the lowest terrace levels and the present day floodplain of the current course of the Guadalquivir River, passing through the province of Jaen (Spain), using two techniques: electrical resistivity imaging (ERI) and ground-penetrating radar (GPR). Three areas have been selected. In one of these sectors (Los Barrios) there is an old quarry where there are excellent outcrops that allow for the calibration of the survey techniques. Facies associations on these outcrops are typical of meandering rivers with sequences of channel fills, lateral accretion of point-bars and floodplain facies. The usefulness of the two methods is analysed and compared as a support for stratigraphic and sedimentological studies. The geometry and lithofacies of subsurface deposits were characterised using ERI and compared with field observations. A total of 5 electrical resistivity imaging profiles were obtained. The changes in electric resistivity highlight granulometric differences in terrace sediments. This technique can thus be used to identify the morphology of these bodies, the lithofacies (silt, sand or gravel) and buried channel pattern. In addition, 16 GPR profiles using 100 and 250 MHz antennas were acquired, indicating terrace morphology and the filling of the sedimentary bodies in a more detailed manner than in ERI. The study thus allows for inferring the existence of channel migration, the lateral accretion of point bars and the presence of vertical accretion deposits attributable to the floodplains.

  18. Preliminary results of sequential monitoring of simulated clandestine graves in Colombia, South America, using ground penetrating radar and botany.

    PubMed

    Molina, Carlos Martin; Pringle, Jamie K; Saumett, Miguel; Hernández, Orlando

    2015-03-01

    In most Latin American countries there are significant numbers of missing people and forced disappearances, 68,000 alone currently in Colombia. Successful detection of shallow buried human remains by forensic search teams is difficult in varying terrain and climates. This research has created three simulated clandestine burial styles at two different depths commonly encountered in Latin America to gain knowledge of optimum forensic geophysics detection techniques. Repeated monitoring of the graves post-burial was undertaken by ground penetrating radar. Radar survey 2D profile results show reasonable detection of ½ clothed pig cadavers up to 19 weeks of burial, with decreasing confidence after this time. Simulated burials using skeletonized human remains were not able to be imaged after 19 weeks of burial, with beheaded and burnt human remains not being able to be detected throughout the survey period. Horizontal radar time slices showed good early results up to 19 weeks of burial as more area was covered and bi-directional surveys were collected, but these decreased in amplitude over time. Deeper burials were all harder to image than shallower ones. Analysis of excavated soil found soil moisture content almost double compared to those reported from temperate climate studies. Vegetation variations over the simulated graves were also noted which would provide promising indicators for grave detection.

  19. Comparison of annual accumulation rates derived from in situ and ground penetrating radar methods across Alaskan glaciers

    NASA Astrophysics Data System (ADS)

    McGrath, D.; Gusmeroli, A.; Oneel, S.; Sass, L. C.; Arendt, A. A.; Wolken, G. J.; Kienholz, C.; McNeil, C.

    2013-12-01

    Constraining annual snowfall accumulation in mountain glacier environments is essential for determining the annual mass balance of individual glaciers and predicting seasonal meltwater runoff to river and marine ecosystems. However, large spatial and elevation gradients, coupled with sparse point measurements preclude accurate quantification of this variable using traditional methods. Here, we report on an extensive field campaign conducted in March-May 2013 on key benchmark glaciers in Alaska, including Taku Glacier near Juneau, Scott Glacier near Cordova, both Eklutna and Wolverine Glacier near Anchorage and Gulkana Glacier in the interior Alaska Range. Over 50 km of 500 MHz common-offset ground penetrating radar (GPR) surveys were collected on each glacier, with an emphasis on capturing spatial variability in the accumulation zone. Frequent in situ observations were collected for comparison with the GPR, including probe depths, snow pits and shallow firn cores (~8 m). We report on spatial and elevation gradients across this suite of glaciers and across numerous climatic zones and discuss differences between GPR and in situ derived annual accumulation estimates. This comparison is an essential first step in order to effectively evaluate regional atmospheric re-analysis products.

  20. Geological disaster survey based on Curvelet transform with borehole Ground Penetrating Radar in Tonglushan old mine site.

    PubMed

    Tang, Xinjian; Sun, Tao; Tang, Zhijie; Zhou, Zenghui; Wei, Baoming

    2011-06-01

    Tonglushan old mine site located in Huangshi City, China, is very famous in the world. However, some of the ruins had suffered from geological disasters such as local deformation, surface cracking, in recent years. Structural abnormalities of rock-mass in deep underground were surveyed with borehole ground penetrating radar (GPR) to find out whether there were any mined galleries or mined-out areas below the ruins. With both the multiresolution analysis and sub-band directional of Curvelet transform, the feature information of targets' GPR signals were studied on Curvelet transform domain. Heterogeneity of geotechnical media and clutter jamming of complicated background of GPR signals could be conquered well, and the singularity characteristic information of typical rock mass signals could be extracted. Random noise had be removed by thresholding combined with Curvelet and the statistical characteristics of wanted signals and the noise, then direct wave suppression and the spatial distribution feature extraction could obtain a better result by making use of Curvelet transform directional. GprMax numerical modeling and analyzing of the sample data have verified the feasibility and effectiveness of our method. It is important and applicable for the analyzing of the geological structure and the disaster development about the Tonglushan old mine site.

  1. HST3D; a computer code for simulation of heat and solute transport in three-dimensional ground-water flow systems

    USGS Publications Warehouse

    Kipp, K.L.

    1987-01-01

    The Heat- and Soil-Transport Program (HST3D) simulates groundwater flow and associated heat and solute transport in three dimensions. The three governing equations are coupled through the interstitial pore velocity, the dependence of the fluid density on pressure, temperature, the solute-mass fraction , and the dependence of the fluid viscosity on temperature and solute-mass fraction. The solute transport equation is for only a single, solute species with possible linear equilibrium sorption and linear decay. Finite difference techniques are used to discretize the governing equations using a point-distributed grid. The flow-, heat- and solute-transport equations are solved , in turn, after a particle Gauss-reduction scheme is used to modify them. The modified equations are more tightly coupled and have better stability for the numerical solutions. The basic source-sink term represents wells. A complex well flow model may be used to simulate specified flow rate and pressure conditions at the land surface or within the aquifer, with or without pressure and flow rate constraints. Boundary condition types offered include specified value, specified flux, leakage, heat conduction, and approximate free surface, and two types of aquifer influence functions. All boundary conditions can be functions of time. Two techniques are available for solution of the finite difference matrix equations. One technique is a direct-elimination solver, using equations reordered by alternating diagonal planes. The other technique is an iterative solver, using two-line successive over-relaxation. A restart option is available for storing intermediate results and restarting the simulation at an intermediate time with modified boundary conditions. This feature also can be used as protection against computer system failure. Data input and output may be in metric (SI) units or inch-pound units. Output may include tables of dependent variables and parameters, zoned-contour maps, and plots of the

  2. Mini 3D for shallow gas reconnaissance

    SciTech Connect

    Vallieres, T. des; Enns, D.; Kuehn, H.; Parron, D.; Lafet, Y.; Van Hulle, D.

    1996-12-31

    The Mini 3D project was undertaken by TOTAL and ELF with the support of CEPM (Comite d`Etudes Petrolieres et Marines) to define an economical method of obtaining 3D seismic HR data for shallow gas assessment. An experimental 3D survey was carried out with classical site survey techniques in the North Sea. From these data 19 simulations, were produced to compare different acquisition geometries ranging from dual, 600 m long cables to a single receiver. Results show that short offset, low fold and very simple streamer positioning are sufficient to give a reliable 3D image of gas charged bodies. The 3D data allow a much more accurate risk delineation than 2D HR data. Moreover on financial grounds Mini-3D is comparable in cost to a classical HR 2D survey. In view of these results, such HR 3D should now be the standard for shallow gas surveying.

  3. Ground penetrating radar study of a thickness of biogenic sediments in the vicinity of the Czechowskie Lake

    NASA Astrophysics Data System (ADS)

    Lamparski, Piotr

    2014-05-01

    The paper present results of investigations, which have made on a biogenic plain in the north-east part of the vicinity of the Czechowskie Lake. The basin of Lake Czechowskie occupies a deep depression located in the immediate hinterland of the maximum range of the Pomeranian Phase ice sheet in the northern part of Poland (Błaszkiewicz 2005). Drillings carried out within the peat plain in the western part of the lake basin indicate that there are relatively diversified lake sediments of up to 12 m in thickness. The ground penetrating radar profiling method (GPR) was used to determine a thickness of biogenic sediments. To tests was used GSS'I SIR SYSTEM-2000™ radar device with two antennae - the high resolution 400 MHz central frequency - for shallow prospecting of the subsurface layers and the low resolution 35 MHz - for determining the shape of the mineral bedrock. Overall, 33 GPR profiles was made all in all more than 3000 meters along and crosswise the longer axis of the biogenic plain. The range of radar penetration was set to 200 ns for 400 MHz antenna and 600 ns for the 35 MHz one, what is the equivalent respectively 4 m and 12,5 m in depth of biogenic sediments thickness. Horizontal scaling was made by GSSI survey wheel device. The thickness of biogenic sediments recognized by GPR reaches 10 meters only using 35 MHz antenna. In the case of the 400 MHz antenna, relatively high conductivity water-saturated peat and gyttia did not allow for the achievement of greater thickness than 3-4 meters testing. In a large part of the profiles was able to see the shape of the mineral bedrock in the form of a former lake basin. Also observed elevations and thresholds in the bedrock. Depth of the mineral deposits forming former lake bottom was confirmed by drillings. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis -ICLEA- of the Helmholtz Association. References: Błaszkiewicz M, 2005. Późnoglacjalna i

  4. Using Ground Penetration Radar for Imaging and Mapping of Thin, Shallow Tsunami Deposits in Washington, Pacific Northwest United States

    NASA Astrophysics Data System (ADS)

    Cakir, R.; Garrison-Laney, C.; Meng, X.; Butler, Q.; Walsh, T. J.

    2015-12-01

    A tidal marsh at Discovery Bay, on the Strait of Juan de Fuca, has the longest record of tsunami deposition in Washington, with nine described tsunami deposits. One of the youngest continuous deposits Bed 1is likely from the 1700 A.D. M9+ Cascadia Earthquake, based on its stratigraphic position and radiocarbon age. Bed 1 is typically found at a depth of ~ 0.45 m, has a maximum thickness of 8 cm, and is composed grains of silt to fine sand. Ground Penetration Radar (GPR) is useful to study such tsunami deposits, because it can "see" characteristics of the deposits that could be missed in cores or outcrops. Tsunami deposits typically extend over wide areas. GPR imaging can trace a layer over a wide area in the subsurface of a tidal marsh. Correlation of layers between coring or outcrops is often difficult across distances in a marsh. GPR technology allows in situ correlation of potential tsunami deposits in the subsurface. We used GPR to map subsurface images of previously described tsunami deposits in the top 2 m at Discovery Bay. We used MALA 450 MHz antenna and recording unit, and ran the survey during the low tide time range (3-4 hours). After adjusting the soil velocity (dielectric constants) and scan parameters we ran various transects correlated the shallow soil cores in 0-1.5m of the soil column. Tsunami sand layer is relatively distinct among other layers on radargrams. Maximum penetration depth reached was about 2 meters and saltwater effect is dominant at 2 meters and greater depths. In addition to this success, there is also the potential to use GPR to"see" characteristic tsunami deposit features such as draping and infilling of low spots. This imaging could help guide locations to sample with strategic cores or pits. We think that our preliminary results are promising,and plan to use the GPR technology to investigate potential tsunami deposits inPuget Sound and other coastal areas of Washington.

  5. Ground state cooling of a quantum electromechanical system with a silicon nitride membrane in a 3D loop-gap cavity

    NASA Astrophysics Data System (ADS)

    Noguchi, Atsushi; Yamazaki, Rekishu; Ataka, Manabu; Fujita, Hiroyuki; Tabuchi, Yutaka; Ishikawa, Toyofumi; Usami, Koji; Nakamura, Yasunobu

    2016-10-01

    Cavity electro-(opto-)mechanics gives us a quantum tool to access mechanical modes in a massive object. Here we develop a quantum electromechanical system in which a vibrational mode of a SiN x membrane are coupled to a three-dimensional loop-gap superconducting microwave cavity. The tight confinement of the electric field across a mechanically compliant narrow-gap capacitor realizes the quantum strong coupling regime under a red-sideband pump field and the quantum ground state cooling of the mechanical mode. We also demonstrate strong coupling between two mechanical modes, which is induced by two-tone parametric drives and mediated by a virtual photon in the cavity.

  6. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  7. Fabrication of 3D Silicon Sensors

    SciTech Connect

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; Kenney, C.; Hasi, J.; Da Via, C.; Parker, S.I.; /Hawaii U.

    2012-06-06

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  8. Advances in monitoring dynamic hydrologic conditions in the vadose zone through automated high-resolution ground-penetrating radar imaging and analysis

    NASA Astrophysics Data System (ADS)

    Mangel, Adam R.

    This body of research focuses on resolving physical and hydrological heterogeneities in the subsurface with ground-penetrating radar (GPR). Essentially, there are two facets of this research centered on the goal of improving the collective understanding of unsaturated flow processes: i) modifications to commercially available equipment to optimize hydrologic value of the data and ii) the development of novel methods for data interpretation and analysis in a hydrologic context given the increased hydrologic value of the data. Regarding modifications to equipment, automation of GPR data collection substantially enhances our ability to measure changes in the hydrologic state of the subsurface at high spatial and temporal resolution (Chapter 1). Additionally, automated collection shows promise for quick high-resolution mapping of dangerous subsurface targets, like unexploded ordinance, that may have alternate signals depending on the hydrologic environment (Chapter 5). Regarding novel methods for data inversion, dispersive GPR data collected during infiltration can constrain important information about the local 1D distribution of water in waveguide layers (Chapters 2 and 3), however, more data is required for reliably analyzing complicated patterns produced by the wetting of the soil. In this regard, data collected in 2D and 3D geometries can further illustrate evidence of heterogeneous flow, while maintaining the content for resolving wave velocities and therefore, water content. This enables the use of algorithms like reflection tomography, which show the ability of the GPR data to independently resolve water content distribution in homogeneous soils (Chapter 5). In conclusion, automation enables the non-invasive study of highly dynamic hydrologic processes by providing the high resolution data required to interpret and resolve spatial and temporal wetting patterns associated with heterogeneous flow. By automating the data collection, it also allows for the novel

  9. A Critical Evaluation of Ground-Penetrating Radar Methodology on the Kalavasos and Maroni Built Environments (KAMBE) Project, Cyprus (Invited)

    NASA Astrophysics Data System (ADS)

    Leon, J.; Urban, T.; Gerard-Little, P.; Kearns, C.; Manning, S. W.; Fisher, K.; Rogers, M.

    2013-12-01

    at these settlements. Having just completed this first phase of the project, we report on the results of large-scale geophysical survey, including the identification of at least two previously unknown building complexes (one at each site). Here we focus particularly on ground-penetrating radar (GPR) data and survey methodology, in an effort to critically examine the range of approaches applied throughout the project (e.g. various antennae frequencies, data-collection densities, soil moisture/seasonality of survey, and post-collection data processing [2]), and to identify the most effective parameters for archaeological geophysical survey in the region. This paper also advocates for the role of geophysical survey within a multi-component archaeological project, not simply as a prospection tool but as an archaeological data collection method in its own right. 1]Fisher, K. D., J. Leon, S. Manning, M. Rogers, and D. Sewell. In Press. 2011-2012. 'The Kalavasos and Maroni Built Environments Project: Introduction and preliminary report on the 2008 and 2010 seasons. Report of the Department of Antiquities, Cyprus. 2] e.g. Rogers, M., J. F. Leon, K. D. Fisher, S. W. Manning and D. Sewell. 2012. 'Comparing similar ground-penetrating radar surveys under different soil moisture conditions at Kalavasos-Ayios Dhimitrios, Cyprus.' Archaeological Prospection 19 (4): 297-305.

  10. Fusion of forward-looking infrared camera and down-looking ground penetrating radar for buried target detection

    NASA Astrophysics Data System (ADS)

    Yuksel, Seniha E.; Akar, Gozde Bozdagi; Ozturk, Serhat

    2015-05-01

    In this paper, we propose a system to detect buried disk-shaped landmines from ground penetrating radar (GPR) and forward-looking long wave infrared (FL-LWIR) data. The data is collected from a test area of 500m2, which was prepared at the IPA Defence, Ankara, Turkey. This test area was divided into four lanes, each of size 25m length by 4m width and 1m depth. Each lane was first carefully cleaned of stones and clutter and then filled with different soil types, namely fine-medium sand, course sand, sandy silt loam and loam mix. In all lanes, various clutter objects and landmines were buried at different depths and at 1meter intervals. In the proposed approach, IR data is used as a pre-screener. Then possible target regions are further analyzed using the GPR data. IR data processing is done in three steps such as preprocessing, target detection, and postprocessing. In the pre-processing stage, bilateral noise reduction filtering is performed. The target detection stage finds circular targets by a radial transformation algorithm. The proposed approach is compared with the RX algorithm used widely for anomaly detection. The suspicious regions are further analyzed using Histogram of Oriented Gradient (HOG) features that are extracted from GPR images and classified by SVM. The same approach can also be applied in a parallel way where the results are combined using decision level fusion. The results of the proposed approach are given on different scenarios including different weather temperature and depth of buried targets.

  11. Exploration of the Moon with Remote Sensing, Ground-Penetrating Radar, and the Regolith-Evolved Gas Analyzer (REGA)

    NASA Technical Reports Server (NTRS)

    Cooper, B. L.; Hoffman, J. H.; Allen, Carlton C.; McKay, David S.

    1998-01-01

    There are two important reasons to explore the Moon. First, we would like to know more about the Moon itself: its history, its geology, its chemistry, and its diversity. Second, we would like to apply this knowledge to a useful purpose. namely finding and using lunar resources. As a result of the recent Clementine and Lunar Prospector missions, we now have global data on the regional surface mineralogy of the Moon, and we have good reason to believe that water exists in the lunar polar regions. However, there is still very little information about the subsurface. If we wish to go to the lunar polar regions to extract water, or if we wish to go anywhere else on the Moon and extract (or learn) anything at all, we need information in three dimensions an understanding of what lies below the surface, both shallow and deep. The terrestrial mining industry provides an example of the logical steps that lead to an understanding of where resources are located and their economic significance. Surface maps are examined to determine likely locations for detailed study. Geochemical soil sample surveys, using broad or narrow grid patterns, are then used to gather additional data. Next, a detailed surface map is developed for a selected area, along with an interpretation of the subsurface structure that would give rise to the observed features. After that, further sampling and geophysical exploration are used to validate and refine the original interpretation, as well as to make further exploration/ mining decisions. Integrating remotely sensed, geophysical, and sample datasets gives the maximum likelihood of a correct interpretation of the subsurface geology and surface morphology. Apollo-era geophysical and automated sampling experiments sought to look beyond the upper few microns of the lunar surface. These experiments, including ground-penetrating radar and spectrometry, proved the usefulness of these methods for determining the best sites for lunar bases and lunar mining

  12. A ground penetrating radar investigation of a glacial-marine ice- contact delta, Pineo Ridge, eastern coastal Maine

    USGS Publications Warehouse

    Tary, A.K.; Duncan, M. FitzGerald; Weddle, T.K.

    2007-01-01

    In eastern coastal Maine, many flat-topped landforms, often identified as glacial-marine deltas, are cultivated for blueberry production. These agriculturally valuable features are not exploited for aggregate resources, severely limiting stratigraphic exposure. Coring is often forbidden; where permissible, coarse-grained surficial sediments make coring and sediment retrieval difficult. Ground penetrating radar (GPR) has become an invaluable tool in an ongoing study of the otherwise inaccessible subsurface morphology in this region and provides a means of detailing the large-scale sedimentary structures comprising these features. GPR studies allow us to reassess previous depositional interpretations and to develop alternative developmental models. The work presented here focuses on Pineo Ridge, a large, flat-topped ice-marginal glacial-marine delta complex with a strong linear trend and two distinct landform zones, informally termed East Pineo and West Pineo. Previous workers have described each zone separately due to local morphological variation. Our GPR work further substantiates this geomorphic differentiation. East Pineo developed as a series of deltaic lobes prograding southward from an ice-contact margin during the local marine highstand. GPR data do not suggest postdepositional modification by ice-margin re-advance. We suggest that West Pineo has a more complex, two-stage depositional history. The southern section of the feature consists of southward-prograding deltaic lobes deposited during retreat of the Laurentide ice margin, with later erosional modification during marine regression. The northern section of West Pineo formed as a series of northward-prograd- ing deltaic lobes as sediment-laden meltwater may have been diverted by the existing deposits of the southern section of West Pineo. ?? 2007 The Geological Society of America. All rights reserved.

  13. Improving soil moisture profile prediction from ground-penetrating radar data: a maximum likelihood ensemble filter approach

    NASA Astrophysics Data System (ADS)

    Tran, A. P.; Vanclooster, M.; Lambot, S.

    2013-02-01

    The vertical profile of root zone soil moisture plays a key role in many hydro-meteorological and agricultural applications. We propose a closed-loop data assimilation procedure based on the maximum likelihood ensemble filter algorithm to update the vertical soil moisture profile from time-lapse ground-penetrating radar (GPR) data. A hydrodynamic model is used to propagate the system state in time and a radar electromagnetic model to link the state variable with the observation data, which enables us to directly assimilate the GPR data. Instead of using the surface soil moisture only, the approach allows to use the information of the whole soil moisture profile for the assimilation. We validated our approach by a synthetic study. We constructed a synthetic soil column with a depth of 80 cm and analyzed the effects of the soil type on the data assimilation by considering 3 soil types, namely, loamy sand, silt and clay. The assimilation of GPR data was performed to solve the problem of unknown initial conditions. The numerical soil moisture profiles generated by the Hydrus-1D model were used by the GPR model to produce the "observed" GPR data. The results show that the soil moisture profile obtained by assimilating the GPR data is much better than that of an open-loop forecast. Compared to the loamy sand and silt, the updated soil moisture profile of the clay soil converges to the true state much more slowly. Increasing update interval from 5 to 50 h only slightly improves the effectiveness of the GPR data assimilation for the loamy sand but significantly for the clay soil. The proposed approach appears to be promising to improve real-time prediction of the soil moisture profiles as well as to provide effective estimates of the unsaturated hydraulic properties at the field scale from time-lapse GPR measurements.

  14. Improving soil moisture profile reconstruction from ground-penetrating radar data: a maximum likelihood ensemble filter approach

    NASA Astrophysics Data System (ADS)

    Tran, A. P.; Vanclooster, M.; Lambot, S.

    2013-07-01

    The vertical profile of shallow unsaturated zone soil moisture plays a key role in many hydro-meteorological and agricultural applications. We propose a closed-loop data assimilation procedure based on the maximum likelihood ensemble filter algorithm to update the vertical soil moisture profile from time-lapse ground-penetrating radar (GPR) data. A hydrodynamic model is used to propagate the system state in time and a radar electromagnetic model and petrophysical relationships to link the state variable with the observation data, which enables us to directly assimilate the GPR data. Instead of using the surface soil moisture only, the approach allows to use the information of the whole soil moisture profile for the assimilation. We validated our approach through a synthetic study. We constructed a synthetic soil column with a depth of 80 cm and analyzed the effects of the soil type on the data assimilation by considering 3 soil types, namely, loamy sand, silt and clay. The assimilation of GPR data was performed to solve the problem of unknown initial conditions. The numerical soil moisture profiles generated by the Hydrus-1D model were used by the GPR model to produce the "observed" GPR data. The results show that the soil moisture profile obtained by assimilating the GPR data is much better than that of an open-loop forecast. Compared to the loamy sand and silt, the updated soil moisture profile of the clay soil converges to the true state much more slowly. Decreasing the update interval from 60 down to 10 h only slightly improves the effectiveness of the GPR data assimilation for the loamy sand but significantly for the clay soil. The proposed approach appears to be promising to improve real-time prediction of the soil moisture profiles as well as to provide effective estimates of the unsaturated hydraulic properties at the field scale from time-lapse GPR measurements.

  15. Time-lapse Monitoring of Two-dimensional Non-uniform Unsaturated Flow Processes Using Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Lytle, B. A.; Mangel, A. R.; Moysey, S. M.

    2015-12-01

    Unsaturated flow in the vadose zone often manifests as preferential flow resulting in transport of water and solutes through the soil much faster than would occur for uniform matrix flow. Time-lapse ground-penetrating radar (GPR) monitoring shows significant potential for identifying the presence of non-uniform flow and quantitative monitoring of the hydrologic response of a soil system. We investigate non-uniform flow in the vadose zone for an infiltration experiment performed in a 60 cm deep sand-filled tank that is continuously monitored with 1000 MHz reflection GPR. During the experiment, 100 constant offset and 300 common mid-point (CMP) time-lapse radar profiles were collected using an automated gantry system to rapidly position the antennas, allowing for a set of 1 constant offset and 3 CMP profiles to be collected every 13 seconds. The constant offset profiles were interpreted to evaluate spatial and temporal changes of reflected arrivals over the course of the experiment, whereas the CMPs were used to estimate the initial EM wave velocity in the tanks using a normal moveout analysis. Changes in traveltime to a static reflector were used to estimate spatial changes in velocity and to create two-dimensional velocity models. The GPR data were then migrated using the estimated 2D velocity model to improve GPR reflection images, which could then be interpreted to identify evidence of non-uniform flow phenomena. To verify the approach, the methodology was also applied to GPR data simulated using transient water contents generated by the unsaturated flow simulator HYDRUS2D given lab-measured hydraulic properties for the soil. For both the empirical and simulated data, we found that the 2D velocity analysis was effective in monitoring changes in the wetting front and that migration of the reflection profiles was able to improve the interpretation of non-uniform flow.

  16. Spatial Variability in Biogenic Gas Dynamics in Relation to Vegetation Cover in a Northern Peatland from Ground Penetrating Radar (GPR)

    NASA Astrophysics Data System (ADS)

    Terry, N.; Slater, L. D.; Comas, X.; Mwakanyamale, K. E.; Wright, W. J.; Freeburg, Z.; Goldman, B.; Morocho, A.

    2015-12-01

    Ground penetrating radar (GPR) has been used for the last decade to investigate several aspects related to the distribution and release of biogenic gases (i.e. methane and carbon dioxide) in peat soils through well-established petrophysical relationships. We use this approach to investigate how differences in vegetation/land cover at three different field sites in Caribou Bog, Maine may alter such gas dynamics. The three study sites are characterized by: [1] a site amid standing pools of water with approximately 6 m of peat overlying an esker deposit, [2] a site dominated by low shrubs near the pools with peat down to 6.75 m, and [3] a site consisting of shrubs and trees with peat down to 6.4 m. A time-lapse series of GPR common offset (CO) and common midpoint (CMP) data were collected within hours of each other at all three sites using 100 MHz antennas during July 2013. In many cases, reciprocal data (transmitter and receiver positions switched) were also collected to gain insight on systematic errors. Water level variations and other environmental parameters were logged continuously at or near the sites, and limited gas sampling data were collected at sites [2] and [3]. Vertical 1D distributions of gas content with depth from each GPR dataset were estimated through CMP velocity analysis and application of a three component mixing model. These results were compared with CO data to observe changes in gas content along transects at each site. Preliminary results suggest site [1] (the pools site) has the highest overall gas content and exhibits the most variability in gas content through time. Despite several failed attempts to automate data acquisition in the field, manual acquisition still proves immensely valuable for quantitatively estimating spatiotemporal variability of gas content in a rapid and efficient manner in peatland ecosystems. In this case, the non-invasive monitoring of gas content variations demonstrates how free phase gas dynamics in peatlands

  17. Developing an Ice Volume Estimate of Jarvis Glacier, Alaska, using Ground-Penetrating Radar and High Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Wu, N. L.; Campbell, S. W.; Douglas, T. A.; Osterberg, E. C.

    2013-12-01

    Jarvis Glacier is an important water source for Fort Greely and Delta Junction, Alaska. Yet with warming summer temperatures caused by climate change, the glacier is melting rapidly. Growing concern of a dwindling water supply has caused significant research efforts towards determining future water resources from spring melt and glacier runoff which feeds the community on a yearly basis. The main objective of this project was to determine the total volume of the Jarvis Glacier. In April 2012, a centerline profile of the Jarvis Glacier and 15 km of 100 MHz ground-penetrating radar (GPR) profiles were collected in cross sections to provide ice depth measurements. These depth measurements were combined with an interpreted glacier boundary (depth = 0 m) from recently collected high resolution WorldView satellite imagery to estimate total ice volume. Ice volume was calculated at 0.62 km3 over a surface area of 8.82 km2. However, it is likely that more glacier-ice exists within Jarvis Glacier watershed considering the value calculated with GPR profiles accounts for only the glacier ice within the valley and not for the valley side wall ice. The GLIMS glacier area database suggests that the valley accounts for approximately 50% of the total ice covered watershed. Hence, we are currently working to improve total ice volume estimates which incorporate the surrounding valley walls. Results from this project will be used in conjunction with climate change estimates and hydrological properties downstream of the glacier to estimate future water resources available to Fort Greely and Delta Junction.

  18. Accounting for parameter correlation in the stochastic estimation of unsaturated zone hydrological properties from ground-penetrating radar data

    NASA Astrophysics Data System (ADS)

    Scholer, Marie; Irving, James; Holliger, Klaus

    2010-05-01

    Geophysical methods such as ground-penetrating radar (GPR), when collected in a time-lapse fashion during an infiltration experiment, can provide valuable information on the hydrological properties of the unsaturated zone. In particular, the stochastic inversion of such data has been shown in a number of studies to provide a significant reduction in uncertainty regarding the van Genuchten parameters describing soil water retention characteristics. In all previous work on this topic, the van Genuchten parameters were assumed a priori to be uncorrelated in the inversion procedure. However, a wide body of evidence indicates that (i) these parameters are in reality strongly correlated, and (ii) parameter covariances can be effectively estimated using pedotransfer function databases. Here, we investigate the effect of including realistic prior knowledge regarding parameter correlation on the stochastic inversion of time-lapse GPR travel time data collected during an infiltration test. We first conduct two sensitivity investigations using the Fourier amplitude sensitivity test (FAST) methodology, one assuming that the van Genuchten model parameters are uncorrelated and the other accounting for realistic correlations based on the USDA Rosetta soil database. Unsaturated flow is simulated using the Hydrus 1D software package, whereas GPR travel time data are modeled from the resulting water content distribution using a finite-difference solution of the eikonal equation. In both cases, we observe that the GPR travel time data are most sensitive to the van Genuchten shape parameter n. More importantly, the difference between the sensitivity indices for all parameters in the two cases clearly points to the importance of accounting for parameter correlation. Next, we perform a Bayesian Markov-chain-Monte-Carlo inversion for the van Genuchten parameters from the GPR travel time data using both uncorrelated and correlated priors. The corresponding results do indeed indicate that

  19. Application of ground penetrating radar for identification of washover deposits and other stratigraphic features: Assateague Island, MD

    USGS Publications Warehouse

    Zaremba, Nicholas; Smith, Christopher G.; Bernier, Julie C.; Forde, Arnell S.

    2016-01-01

    A combination of ground penetrating radar (GPR) data, core data, and aerial photographs were analyzed to better understand the evolution of two portions of Assateague Island, Maryland. The focus of the study was to investigate the applicability of using GPR data to image washover deposits in the stratigraphic record. High amplitude reflections observed in two shore-perpendicular GPR profiles were correlated to shallow ( < 1 m) lithologic contacts observed in sediment cores. At these contacts, deposits consisting primarily of quartz sand overlie sediments with organic matter that include degraded plant root or stem material. The underlying organic matter likely represents the vegetated portion of the barrier island that was buried by washover fans deposited during hurricanes Irene (2011) and Sandy (2012), as indicated in high-resolution aerial photographs. The GPR data were able to delineate the washover deposits from the underlying stratigraphic unit; however, the radar data did not resolve finer structures necessary to definitively differentiate washover facies from other sand-rich deposits (e.g., flood-tide deltas and dunes). Other GPR profiles contain reflections that likely correlate to geomorphic features like tidal channels and vegetated zones observed in historical aerial imagery. Burial of these features by overwash fluxes were observed in the aerial imagery and thus the resulting radar sequence is largely interpreted as washover deposits. Deeper, channel-like features that have been infilled were also observed in shore-parallel profiles and these features coincide with scour channels observed in the 1966 aerial photography. Additional sedimentological data are required to determine what role overwash played in the in-filling of these features.

  20. Geophysical Field Work for Educators: Teachers Use Ground-Penetrating Radar to Study San Jacinto Battlefield Park

    NASA Astrophysics Data System (ADS)

    Henning, A. T.; Sawyer, D. S.; Milliken, K.

    2008-12-01

    In July 2008, a group of Houston area K-12 teachers investigated San Jacinto Battlefield Park in La Porte, Texas, utilizing ground-penetrating radar (GPR) to image the subsurface and global positioning system (GPS) units to map surface features. Participants were in-service K-12 teachers from urban Houston school districts where the majority of students are members of historically underrepresented minority groups. Over a period of two weeks, participants acquired and interpreted GPR profiles in the park, mapped surface features using hand-held GPS units, and analyzed the data using ArcGIS software. This summer experience was followed by a content-intensive academic year course in Earth Science. The Battle of San Jacinto took place on April 21, 1836, and was the decisive battle in the Texas Revolution. The site is thought to contain numerous in-situ artifacts dropped by the Texan and Mexican armies, as well as unmarked burials from the early 1800's. Two stratigraphic units were identified from the GPR profiles and matched to strata exposed through archaeological excavations. The stratigraphic units are interpreted as recent flood/storm deposits with soil formation on Pleistocene deltaic deposits of a previous sea-level highstand. In addition to the stratigraphy, a number of isolated subsurface anomalies (possibly artifacts) were identified. Participants also interpreted past shoreline positions using vintage aerial photographs and acquired several transects of GPS positions along the shoreline. Participants confirmed that the area is in fact subsiding, rather than being eroded. Participants not only experienced the scientific process but also utilized geophysics for community service (i.e. contributing educational material to the park). Through background research, they derived a rich historical context for their investigation and learned to appreciate the multi-disciplinary aspect of solving real- world scientific problems.

  1. Imaging saline tracer infiltration into unsaturated sandy soil using full-waveform inversion of cross-borehole ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Looms, M. C.; Haarder, E. B.; Keskinen, J.; Nielsen, L.; Van Der Kruk, J.; Klotzsche, A.

    2015-12-01

    Cross-borehole ground penetrating radar (GPR) can provide high-resolution (tens of centimeter) information of the subsurface between boreholes located 5-10 m apart. The method is minimal invasive and therefore provides a unique opportunity to image subsurface variability not possible with standard point-scale equipment, such as TDR- and/or capacitance probes. Full-waveform inversion (FWI) of cross-borehole GPR uses the entire waveform of the transmitted electromagnetic signal. The recorded data contains information on the travel time of the pulse, as well as the attenuation, resulting in moisture content and electrical conductivity images of the subsurface using just one method. Few case studies of cross-borehole GPR FWI using real data have been published to date. The majority of these studies focus on estimating the variation in porosity in the saturated zone (e.g. in gravel aquifers, fractured metamorphic rock, and heterogeneous chalk sediments). In this study, we use cross-borehole GPR to monitor the infiltration of a saline tracer into an unsaturated sandy soil. In September 2011, saline water was added across a 142 m2 area at an agricultural field site in Denmark. A total of 3.3 mm saline water was applied mimicking a natural infiltration event. During the following year, the tracer infiltration into the subsurface was monitored using cross-borehole GPR at weekly to monthly intervals. Furthermore, five cores were extracted within the field site to obtain independent profiles of soil moisture and pore water conductivity for comparison. The cross-borehole GPR data were inverted using ray-based and FWI techniques. For the FWI an appropriate starting model and an effective wavelet must be estimated. Preliminary results indicate that the data modeled for the FWI results mimic better the measured data compared to the ray-based results. However, more research is needed to investigate the influence of the used starting model and the effective wavelet estimation.

  2. Long-term sequential monitoring of controlled graves representing common burial scenarios with ground penetrating radar: Years 2 and 3

    NASA Astrophysics Data System (ADS)

    Schultz, John J.; Walter, Brittany S.; Healy, Carrie

    2016-09-01

    Geophysical techniques such as ground-penetrating radar (GPR) have been successfully used for forensic searches to locate clandestine graves and physical evidence. However, additional controlled research is needed to fully understand the applicability of this technology when searching for clandestine graves in various environments, soil types, and for longer periods of time post-burial. The purpose of this study was to determine the applicability of GPR for detecting controlled graves in a Spodosol representing multiple burial scenarios for Years 2 and 3 of a three-year monitoring period. Objectives included determining how different burial scenarios are factors in producing a distinctive anomalous response; determining how different GPR imagery options (2D reflection profiles and horizontal time slices) can provide increased visibility of the burials; and comparing GPR imagery between 500 MHz and 250 MHz dominant frequency antennae. The research site contained a grid with eight graves representing common forensic burial scenarios in a Spodosol, a common soil type of Florida, with six graves containing a pig carcass (Sus scrofa). Burial scenarios with grave items (a deep grave with a layer of rocks over the carcass and a carcass wrapped in a tarpaulin) produced a more distinctive response with clearer target reflections over the duration of the monitoring period compared to naked carcasses. Months with increased precipitation were also found to produce clearer target reflections than drier months, particularly during Year 3 when many grave scenarios that were not previously visible became visible after increased seasonal rainfall. Overall, the 250 MHz dominant frequency antenna imagery was more favorable than the 500 MHz. While detection of a simulated grave may be difficult to detect over time, long term detection of a grave in a Spodosol may be possible if the disturbed spodic horizon is detected. Furthermore, while grave visibility increased with the 2D

  3. Ground-penetrating radar (GPR) responses for sub-surface salt contamination and solid waste: modeling and controlled lysimeter studies.

    PubMed

    Wijewardana, Y N S; Shilpadi, A T; Mowjood, M I M; Kawamoto, K; Galagedara, L W

    2017-02-01

    The assessment of polluted areas and municipal solid waste (MSW) sites using non-destructive geophysical methods is timely and much needed in the field of environmental monitoring and management. The objectives of this study are (i) to evaluate the ground-penetrating radar (GPR) wave responses as a result of different electrical conductivity (EC) in groundwater and (ii) to conduct MSW stratification using a controlled lysimeter and modeling approach. A GPR wave simulation was carried out using GprMax2D software, and the field test was done on two lysimeters that were filled with sand (Lysimeter-1) and MSW (Lysimeter-2). A Pulse EKKO-Pro GPR system with 200- and 500-MHz center frequency antennae was used to collect GPR field data. Amplitudes of GPR-reflected waves (sub-surface reflectors and water table) were studied under different EC levels injected to the water table. Modeling results revealed that the signal strength of the reflected wave decreases with increasing EC levels and the disappearance of the subsurface reflection and wave amplitude reaching zero at higher EC levels (when EC >0.28 S/m). Further, when the EC level was high, the plume thickness did not have a significant effect on the amplitude of the reflected wave. However, it was also found that reflected signal strength decreases with increasing plume thickness at a given EC level. 2D GPR profile images under wet conditions showed stratification of the waste layers and relative thickness, but it was difficult to resolve the waste layers under dry conditions. These results show that the GPR as a non-destructive method with a relatively larger sample volume can be used to identify highly polluted areas with inorganic contaminants in groundwater and waste stratification. The current methods of MSW dumpsite investigation are tedious, destructive, time consuming, costly, and provide only point-scale measurements. However, further research is needed to verify the results under heterogeneous aquifer

  4. Development of tongue-shaped and multilobate rock glaciers in alpine environments - Interpretations from ground penetrating radar surveys

    NASA Astrophysics Data System (ADS)

    Degenhardt, John J., Jr.

    2009-08-01

    Rock glaciers occur as lobate or tongue-shaped landforms composed of mixtures of poorly sorted, angular to blocky rock debris and ice. These landforms serve as primary sinks for ice and water storage in mountainous areas and represent transitional forms in the debris transport system, accounting for ~ 60% of all mass transport in some alpine regions. Observations of active (flowing) alpine rock glaciers indicate a common association between the debris that originates from cirque headwalls and the depositional lobes that comprise them. The delivery of this debris to the rock glacier is regulated primarily by the rate of headwall erosion and the point of origin of debris along the headwall. These factors control the relative movement of individual depositional lobes as well as the overall rate of propagation of a rock glacier. In recent geophysical studies, a number of alpine rock glaciers on Prins Karls Forland and Nordenskiöldland, Svalbard, Norway, and the San Juan Mountains of southwest Colorado, USA, have been imaged using ground penetrating radar (GPR) to determine if a relationship exists between the internal structure and surface morphology. Results indicate that the overall morphologic expression of alpine rock glaciers is related to lobate deposition during catastrophic episodes of rockfall that originated from associated cirque headwalls. Longitudinal GPR profiles from alpine rock glaciers examined in this study suggests that the difference in gross morphology between the lobate and tongue-shaped rock glaciers can be attributed primarily (but not exclusively) to cirque geometry, frequency and locations of debris discharge within the cirque, and the trend and magnitude of valley gradient in relation to cirque orientation. Collectively, these factors determine the manner in which high magnitude debris discharges, which seem to be the primary mechanism of formation, accumulate to form these rock glaciers.

  5. Initial Analysis of Internal Layers in the Snow Cover of the Ross Island Region using Ground Penetrating Radar Measurements

    NASA Astrophysics Data System (ADS)

    Kruetzmann, N. C.; George, S. E.; McDonald, A. J.; Rack, W.

    2009-04-01

    In snow and ice, internal layers are created by changes in the ambient conditions at the time of deposition, and represent contrasts in density, electrical conductivity, and ice crystal orientation. By identifying and tracing internal layers in ground penetrating radar (GPR) measurements of the Antarctic snow cover, these layers can be used to measure snow accumulation over time. This is particularly relevant for determining the Antarctic mass balance, as the areal coverage can be greatly expanded from the common, but potentially unrepresentative, point measurements from firn-cores, snow pits, or stake farms. This presentation discusses high-resolution GPR data acquired at three research sites in the vicinity of Scott Base (Antarctica), each site being characterised by different snow and surface properties. The first two sites examined, are located on the flat McMurdo Ice Shelf in zones with significantly different wind and accumulation patterns. The final site is located on the lower slopes of Mt. Erebus (Ross Island), in the dry snow zone, at approximately 350m above sea level. Using a pulseEKKO PRO GPR system, data was acquired at two frequencies simultaneously (500MHz and 1GHz; wavelength in dry snow: 40cm and 20cm, respectively). At the first two sites, transects were collected in an 800m x 800m grid at 100m intervals. Due to difficult terrain, the third site was restricted to a 400m x 400m domain. Radar shots were taken at 5cm intervals along each transect. This both provides a very high horizontal data resolution, and facilitates internal horizon tracking. The acquisition time-window of 135ns allows horizon detection down to a depth of approximately 12m. In order to convert layer depth to accumulation, information on snow density derived from snow pit- and CMP-measurements was also collected. The acquired data provides high-resolution ground-truth information required for the validation of CRYOSAT-2 satellite data (launch date in 2009). An additional reason

  6. Characterization of the spatial distribution of porosity in the eogenetic karst Miami Limestone using ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Mount, G. J.; Comas, X.; Wright, W. J.; McClellan, M. D.

    2014-12-01

    Hydrogeologic characterization of karst limestone aquifers is difficult due to the variability in the spatial distribution of porosity and dissolution features. Typical methods for aquifer investigation, such as drilling and pump testing, are limited by the scale or spatial extent of the measurement. Hydrogeophysical techniques such as ground penetrating radar (GPR) can provide indirect measurements of aquifer properties and be expanded spatially beyond typical point measures. This investigation used a multiscale approach to identify and quantify porosity distribution in the Miami Limestone, the lithostratigraphic unit that composes the uppermost portions of the Biscayne Aquifer in Miami Dade County, Florida. At the meter scale, laboratory measures of porosity and dielectric permittivity were made on blocks of Miami Limestone using zero offset GPR, laboratory and digital image techniques. Results show good correspondence between GPR and analytical porosity estimates and show variability between 22 and 66 %. GPR measurements at the field scale 10-1000 m investigated the bulk porosity of the limestone based on the assumption that a directly measured water table would remain at a consistent depth in the GPR reflection record. Porosity variability determined from the changes in the depth to water table resulted in porosity values that ranged from 33 to 61 %, with the greatest porosity variability being attributed to the presence of dissolution features. At the larger field scales, 100 - 1000 m, fitting of hyperbolic diffractions in GPR common offsets determined the vertical and horizontal variability of porosity in the saturated subsurface. Results indicate that porosity can vary between 23 and 41 %, and delineate potential areas of enhanced recharge or groundwater / surface water interactions. This study shows porosity variability in the Miami Limestone can range from 22 to 66 % within 1.5 m distances, with areas of high macroporosity or karst dissolution features

  7. Use of a ground-penetrating radar system to detect pre-and post-flood scour at selected bridge sites in New Hampshire, 1996-98

    USGS Publications Warehouse

    Olimpio, Joseph R.

    2000-01-01

    Ground-penetrating radar was used to measure the depth and extent of existing and infilled scour holes and previous scour surfaces at seven bridges in New Hampshire from April 1996 to November 1998. Ground-penetrating-radar survey techniques initially were used by the U.S. Geological Survey to study streambed scour at 30 bridges. Sixteen of the 30 bridges were re-surveyed where floods exceeded a 2-year recurrence interval. A 300-megahertz signal was used in the ground-penetrating radar system that penetrated through depths as great as 20 feet of water and as great as 32 feet of streambed materials. Existing scour-hole dimensions, infilled thickness, previous scour surfaces, and streambed materials were detected using ground-penetrating radar. Depths to riprap materials and pier footings were identified and verified with bridge plans. Post data-collection-processing techniques were applied to assist in the interpretation of the data, and the processed data were displayed and printed as line plots. Processing included distance normalization, migration, and filtering but processing was kept to a minimum and some interference from multiple reflections was left in the record. Of the 16 post-flood bridges, 22 ground-penetrating-radar cross sections at 7 bridges were compared and presented in this report. Existing scour holes were detected during 1996 (pre-flood) data collection in nine cross sections where scour depths ranged from 1 to 3 feet. New scour holes were detected during 1998 (post-flood) data collection in four cross sections where scour depths were as great as 4 feet deep. Infilled scour holes were detected in seven cross sections, where depths of infilling ranged from less than 1 to 4 feet. Depth of infilling by means of steel rod and hammer was difficult to verify in the field because of cobble and boulder streambeds or deep water. Previous scour surfaces in streambed materials were identified in 15 cross sections and the depths to these surfaces ranged from

  8. Ground-Penetrating-Radar Profiles of Interior Alaska Highways: Interpretation of Stratified Fill, Frost Depths, Water Table, and Thaw Settlement over Ice-Rich Permafrost

    DTIC Science & Technology

    2016-08-01

    Interpretation of Stratified Fill, Frost Depths, Water Table, and Thaw Settlement over Ice-Rich Permafrost Co ld R eg io ns R es ea rc h an d En...innovative solutions in civil and military engineering, geospatial sciences, water resources, and environmental sciences for the Army, the Department of...August 2016 Ground-Penetrating-Radar Profiles of Interior Alaska Highways Interpretation of Stratified Fill, Frost Depths, Water Table, and Thaw

  9. AE3D

    SciTech Connect

    Spong, Donald A

    2016-06-20

    AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.

  10. Wire-grid electromagnetic modelling of metallic cylindrical objects with arbitrary section, for Ground Penetrating Radar applications

    NASA Astrophysics Data System (ADS)

    Adabi, Saba; Pajewski, Lara

    2014-05-01

    Authors demonstrated that the well-known same-area criterion yields affordable results but is quite far from being the optimum: better results can be obtained with a wire radius shorter than what is suggested by the rule. In utility detection, quality controls of reinforced concrete, and other civil-engineering applications, many sought targets are long and thin: in these cases, two-dimensional scattering methods can be employed for the electromagnetic modelling of scenarios. In the present work, the freeware tool GPRMAX2D [6], implementing the Finite-Difference Time-Domain method, is used to implement the wire-grid modelling of buried two-dimensional objects. The source is a line of current, with Ricker waveform. Results obtained in [5] are confirmed in the time domain and for different geometries. The highest accuracy is obtained by shortening the radius of about 10%. It seems that fewer (and larger) wires need minor shortening; however, more detailed investigations are required. We suggest to use at least 8 - 10 wires per wavelength if the field scattered by the structure has to be evaluated. The internal field is much more sensitive to the modelling configuration than the external one, and more wires should be employed when shielding effects are concerned. We plan to conduct a more comprehensive analysis, in order to extract guidelines for wire sizing, to be validated on different shapes. We also look forward to verifying the possibility of using the wire-grid modelling method for the simulation of slotted objects. This work is a contribution to COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar". The Authors thanks COST for funding COST Action TU1208. References [1] J.H. Richmond, A wire grid model for scattering by conducting bodies, IEEE Trans. Antennas Propagation AP-14 (1966), pp. 782-786. [2] S.M. Rao, D.R. Wilton, A.W. Glisson, Electromagnetic scattering by surfaces of arbitrary shape, IEEE Trans. Antennas Propagation AP-30 (1982

  11. Ground-penetrating radar (GPR) stratigraphy of late-Pleistocene relict foredunes on a coastal barrier: Matakana Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Brook, M.; Shepherd, M.; Tinkler, R.; Williams, J.

    2012-04-01

    Matakana Island, North Island, New Zealand, forms a c. 24 km long barrier island between the Bay of Plenty and Tauranga Harbour, which it encloses. The island is of two distinct parts, with the larger seaward part comprising a Holocene sand barrier, extending parallel to the shoreline, and a harbourward (Pleistocene) part, adjoining the centre of the Holocene barrier. The Pleistocene section of the barrier consists of three terraces at 10, 40 and 70 m above sea level, although the precise process-origin and significance of the features are unknown. We focus on the relatively flat lowest (1.0-1.5 km wide) terrace, as oblique aerial photography indicates the presence of subdued ridges (amplitude 1 m) trending NW-SE, parallel to the current coastline. An investigation of this lower terrace using a 100 MHz pulseEKKO ground penetrating radar (GPR) along a 1 km SW-NE profile normal to the axis of the subdued ridges was undertaken. Following topographic correction, the profile revealed a continuous undulating reflector at 8-12 m depth, which corresponds with the low ridges visible on the surface. The ridge-and-swale nature of the reflector, coupled with the surface topography indicates it represents a relict foredune plain, mainly below present-day sea level. The age of the relict foredune plain is intriguing, with a maximum age of 780,000 due to the absence of Te Puna Ignimbrite, which is present on the higher terraces. Published maps indicate the lowest terrace is covered by lacustrine beds of the Matua Subgroup (minimum age c. 220,000 yr), yet it is difficult to reconcile the survival of ridge-and-swale foredune morphology under several metres of lacustrine deposits, suggesting that a tephra origin for the coverbeds is more likely. Nevertheless, the presence of a Pleistocene foredune plain slightly below present-day sea level indicates no significant long-term uplift, and possibly minor subsidence in this sector of the North Island.

  12. Material Property Estimation for Direct Detections of DNAPL using Integrated Ground-Penetrating Radar Velocity, Imaging and Attribute Analysis

    SciTech Connect

    Bradford, John; Smithson, Scott B.; Holbrook, W. Stephen

    2004-06-14

    The focus of our work is direct detection of DNAPLs, specifically chlorinated solvents, via material property estimation from surface ground-penetrating radar (GPR) data. We combine sophisticated GPR processing methodology with quantitative attribute analysis and material property estimation to determine the location and extent of residual and/or pooled DNAPL in both the vadose and saturated zones. An important byproduct of our research is state-of-the-art imaging which allows us to pinpoint attribute anomalies, characterize stratigraphy, identify fracture zones, and locate buried objects. Implementation and verification of these methodologies will be a significant advance in GPR research and in meeting DOE's need for reliable in-situ characterization of DNAPL contamination. Chlorinated solvents have much lower electric permittivity and conductivity than water. An electrical property contrast is induced when solvents displace water in the sediment column resulting in an anomalous GPR signature. To directly identify zones of DNAPL contamination, we focus on three aspects of reflected wave behavior--propagation velocity, frequency dependent attenuation, and amplitude variation with offset (AVO). Velocity analysis provides a direct estimate of electric permittivity, attenuation analysis provides a measure of conductivity, and AVO behavior is used to estimate the permittivity ratio at a reflecting boundary. Areas of anomalously low electric permittivity and conductivity are identified as potential DNAPL rich zones. Preliminary work illustrated significant potential for quantitative direct detection methodologies in identifying shallow DNAPL source zones. It is now necessary to verify these methodologies in a field setting. To this end, the project is field oriented and has three primary objectives: (1) Develop a suite of methodologies for direct detection of DNAPLs from surface GPR data (2) Controlled field verification at well characterized, contaminated sites (3

  13. Material Property Estimation for Direct Detection of DNAPL using Integrated Ground-Penetrating Radar Velocity, Imaging and Attribute Analysis

    SciTech Connect

    Bradford, John; Smithson, Scott B.; Holbrook, W. Stephen

    2003-06-01

    The focus of our work is direct detection of DNAPLs, specifically chlorinated solvents, via material property estimation from surface ground-penetrating radar (GPR) data. We combine sophisticated GPR processing methodology with quantitative attribute analysis and material property estimation to determine the location and extent of residual and/or pooled DNAPL in both the vadose and saturated zones. An important byproduct of our research is state-of-the-art imaging which allows us to pinpoint attribute anomalies, characterize stratigraphy, identify fracture zones, and locate buried objects. Implementation and verification of these methodologies will be a significant advance in GPR research and in meeting DOE's need for reliable in-situ characterization of DNAPL contamination. Chlorinated solvents have much lower electric permittivity and conductivity than water. An electrical property contrast is induced when solvents displace water in the sediment column resulting in an anomalous GPR signature. To directly identify zones of DNAPL contamination, we focus on three aspects of reflected wave behavior--propagation velocity, frequency dependent attenuation, and amplitude variation with offset (AVO). Velocity analysis provides a direct estimate of electric permittivity, attenuation analysis provides a measure of conductivity, and AVO behavior is used to estimate the permittivity ratio at a reflecting boundary. Areas of anomalously low electric permittivity and conductivity are identified as potential DNAPL rich zones. Preliminary work illustrated significant potential for quantitative direct detection methodologies in identifying shallow DNAPL source zones. It is now necessary to verify these methodologies in a field setting. To this end, the project is field oriented and has three primary objectives: (1) Develop a suite of methodologies for direct detection of DNAPLs from surface GPR data (2) Controlled field verification at well characterized, contaminated sites (3

  14. Identifying unsaturated soil hydraulic parameters using integrated hydrogeophysical inversion approach on time-lapse ground-penetrating radar data

    NASA Astrophysics Data System (ADS)

    Jadoon, K. Z.; Weihermüller, L.; Scharnagl, B.; Kowalsky, M. B.; Bechtold, M.; Hubbard, S. S.; Vereecken, H.; Lambot, S.

    2012-04-01

    Recently, ground-penetrating radar (GPR) has proven to have a great potential for high resolution, non-invasive mapping of the soil hydrogeophysical properties at the scale of interest. Common GPR techniques are usually based on ray-based travel time or reflection analyses to retrieve soil dielectric permittivity, which is strongly correlated to soil water content. These methods suffer, however, from two major limitations. First, only a part of the information in the GPR signal is considered (e.g., propagation time). Second, the forward model describing the radar data is subject to relatively strong simplifications with respect to electromagnetic wave propagation phenomena. These limitations typically results in errors in the reconstructed water content images and, moreover, this does not permit to exploit all information contained in the radar data. We explored an alternative method by using full-waveform hydrogeophysical inversion of time-lapse, proximal GPR data to remotely estimate the unsaturated soil hydraulic properties. The radar system is based on international standard vector network analyzer technology and a full-waveform model is used to describe wave propagation in the antenna-air-soil system, including antenna-soil interactions. A hydrodynamic model is used to constrain the inverse electromagnetic problem in reconstructing continuous vertical water content profiles. In that case the estimated parameters reduce to the soil hydraulic properties, thereby strongly reducing the dimensionality of the inverse problem. In this study, we present an application of the proposed method to a data set collected in a field experiment. The GPR model involves a full-waveform frequency-domain solution of Maxwell's equations for wave propagation in three-dimensional multilayered media. The hydrodynamic model used in this work is based on a one-dimensional solution of Richards equation and the hydrological simulator HYDRUS 1-D was used with a single- and dual

  15. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  16. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  17. Bootstrapping 3D fermions

    DOE PAGES

    Iliesiu, Luca; Kos, Filip; Poland, David; ...

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  18. Bootstrapping 3D fermions

    SciTech Connect

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  19. Venus in 3D

    NASA Technical Reports Server (NTRS)

    Plaut, Jeffrey J.

    1993-01-01

    Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.

  20. 3D photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.

    2010-06-01

    Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of

  1. Fast approximate migration of ground penetrating radar using Kalman estimators and determination of the lithospheric structure of Lake Baikal, Russia

    NASA Astrophysics Data System (ADS)

    Dena Ornelas, Oscar S.

    This dissertation is composed of two quite different studies. The first is related to the development of a migration algorithm for vertical incidence Ground Penetrating Radar (GPR) using the Kalman approach. The scope of any migration tool is to correct the position and to recover the true geometry of subsurface GPR targets. The advantage of using the Kalman approach is that the GPR records can be migrated at the same time when the data are being collected, avoiding further processing as is required by the available synthetic aperture algorithms for diffraction hyperbola collapse. The second part is a study of the lithosphere of the Lake Baikal, which is one of only a small number of Cenozoic continental rifts, the Baikal Rift Zone (BRZ) is a natural laboratory for understanding processes of rifting. Located in south-central Russia, the rift zone is known for Lake Baikal, a rift valley lake that contains 20% of the world's fresh water. Rifting in the region began about 25 Ma along the boundary between the Archean-Paleoproterozoic Siberian craton and the Early Paleozoic age Sayan-Baikal orogenic belt. Here we present a new velocity model for the structure of the crust along a 160-km transect in the north basin of Lake Baikal. The data, recorded in 1992, come from five 4-component ocean bottom seismometers (OBS) deployed at ca 40 km intervals. The source consisted of 2 air guns with a combined volume of 120 liters, that were fired at 240 m intervals along the transect. The data are of moderately good quality and are characterized by strong first arrivals to offsets of 40 km and a series of wide-angle reflections from interfaces in the crust, including the Moho. Travel times for both P- and S-wave arrivals from the crust were picked from the data. The velocity model, obtained through a combination of forward modeling and inversion, contains two shallow layers associated with basin sediments, a low velocity zone (LVZ) at 6 to 9 km depth, mid-crustal interfaces at ca

  2. Ground Penetrating Radar Field Studies of Lunar-Analog Geologic Settings and Processes: Barringer Meteor Crater and Northern Arizona Volcanics

    NASA Astrophysics Data System (ADS)

    Russell, P. S.; Grant, J. A.; Williams, K. K.; Bussey, B.

    2010-12-01

    Ground-Penetrating Radar (GPR) data from terrestrial analog environments can help constrain models for evolution of the lunar surface, aid in interpretation of orbital SAR data, and help predict what might be encountered in the subsurface during future, landed, scientific or engineering operations on the Moon. GPR can yield insight into the physical properties, clast-size distribution, and layering of the subsurface, granting a unique view of the processes affecting an area over geologic time. The purpose of our work is to demonstrate these capabilities at sites at which geologic processes, settings, and/or materials are similar to those that may be encountered on the moon, especially lava flows, impact-crater ejecta, and layered materials with varying properties. We present results from transects obtained at Barringer Meteor Crater, SP Volcano cinder cone, and Sunset Crater Volcano National Monument, all in northern Arizona. Transects were taken at several sites on the ejecta of Meteor Crater, all within a crater radius (~400 m) of the crater rim. Those taken across ejecta lobes or mounds reveal the subsurface contact of the ejecta upper surface and overlying, embaying sediments deposited by later alluvial, colluvial, and/or aeolian processes. Existing mine shafts and pits on the south side of the crater provide cross sections of the subsurface against which we compare adjacent GPR transects. The ‘actual’ number, size, and depth of clasts in the top 1-2 m of the subsurface are estimated from photos of the exposed cross sections. In GPR radargrams, reflections attributed to blocks in the top 2-5 m of the subsurface are counted, and their depth distribution noted. Taking GPR measurements along a transect at two frequencies (200 and 400 MHz) and to various depths, we obtain the ratio of the actual number of blocks in the subsurface to the number detectable with GPR, as well as an assessment of how GPR detections in ejecta decline with depth and depend on antenna

  3. Geophysical Investigation of Subsurface Characteristics of Icy Debris Fans with Ground Penetrating Radar in the Wrangell Mountains, Alaska

    NASA Astrophysics Data System (ADS)

    Smith, T. D.; Jacob, R. W.

    2013-12-01

    Authors Tracey Smith^1, Rob Jacob^1, Jeffrey Trop^1, Keith Williams^2 and Craig Kochel^1 Bucknell University, Geology and Environmental Geoscience Department, Lewisburg, PA UNAVCO, 6350 Nautilus Dr., Boulder, CO 80301 Icy debris fans have recently been described as deglaciation features on Earth and similar features have been observed on Mars, however, the subsurface characteristics remain unknown. We used ground penetrating radar (GPR) to non-invasively investigate the subsurface characteristics of icy debris fans near McCarthy, Alaska, USA. The three fans investigated in Alaska are the East, West, and Middle fans which are between the Nabesna ice cap and the McCarthy Glacier. Icy debris fans in general are a largely unexplored suite of paraglacial landforms and processes in alpine regions. Recent field studies focused on direct observations and depositional processes. The results showed that each fan's composition is primarily influenced by the type and frequency of mass wasting processes that supply the fan. Photographic studies show that the East fan receives far more ice and snow avalanches whereas the Middle and West fan receive fewer mass wasting events but more clastic debris is deposited on the Middle and West fan from rock falls and icy debris flows. GPR profiles and WARR surveys consisting of both, common mid-point (CMP), and common shot-point (CSP) surveys investigated the subsurface geometry of the fans and the McCarthy Glacier.All GPR surveys were collected in 2013 with 100MHz bi-static antennas. Four axial profiles and three cross-fan profiles were done on the West and Middle fans as well as the McCarthy Glacier in order to investigate the relationship between the three features. Terrestrial laser surveying of the surface and real-time kinematic GPS provided the surface elevation used to correct the GPR data for topographic changes. GPR profiles yielded reflectors that were continuous for 10+ m and hyperbolic reflections in the subsurface. The WARR

  4. Geophysical Investigation of Subsurface Characteristics of Icy Debris Fans with Ground Penetrating Radar in the Wrangell Mountains, Alaska

    NASA Astrophysics Data System (ADS)

    Sun, L. F.; Pun, W.; Milkereit, B.

    2011-12-01

    Authors Tracey Smith^1, Rob Jacob^1, Jeffrey Trop^1, Keith Williams^2 and Craig Kochel^1 Bucknell University, Geology and Environmental Geoscience Department, Lewisburg, PA UNAVCO, 6350 Nautilus Dr., Boulder, CO 80301 Icy debris fans have recently been described as deglaciation features on Earth and similar features have been observed on Mars, however, the subsurface characteristics remain unknown. We used ground penetrating radar (GPR) to non-invasively investigate the subsurface characteristics of icy debris fans near McCarthy, Alaska, USA. The three fans investigated in Alaska are the East, West, and Middle fans which are between the Nabesna ice cap and the McCarthy Glacier. Icy debris fans in general are a largely unexplored suite of paraglacial landforms and processes in alpine regions. Recent field studies focused on direct observations and depositional processes. The results showed that each fan's composition is primarily influenced by the type and frequency of mass wasting processes that supply the fan. Photographic studies show that the East fan receives far more ice and snow avalanches whereas the Middle and West fan receive fewer mass wasting events but more clastic debris is deposited on the Middle and West fan from rock falls and icy debris flows. GPR profiles and WARR surveys consisting of both, common mid-point (CMP), and common shot-point (CSP) surveys investigated the subsurface geometry of the fans and the McCarthy Glacier.All GPR surveys were collected in 2013 with 100MHz bi-static antennas. Four axial profiles and three cross-fan profiles were done on the West and Middle fans as well as the McCarthy Glacier in order to investigate the relationship between the three features. Terrestrial laser surveying of the surface and real-time kinematic GPS provided the surface elevation used to correct the GPR data for topographic changes. GPR profiles yielded reflectors that were continuous for 10+ m and hyperbolic reflections in the subsurface. The WARR

  5. Sedimentological and geophysical studies of clastic reservoir analogs: Methods, applications and developments of ground-penetrating radar for determination of reservoir geometries in near-surface settings. Final report

    SciTech Connect

    McMechan, G.A.; Soegaard, K.

    1998-05-25

    An integrated sedimentologic and GPR investigation has been carried out on a fluvial channel sandstone in the mid-Cretaceous Ferron Sandstone at Coyote Basin along the southwestern flank of the San Rafael Uplift in east-central Utah. This near-surface study, which covers a area of 40 {times} 16.5 meters to a depth of 15 meters, integrates detailed stratigraphic data from outcrop sections and facies maps with multi-frequency 3-D GPR surveys. The objectives of this investigation are two-fold: (1) to develop new ground-penetrating radar (GPR) technology for imaging shallow subsurface sandstone bodies, and (2) to construct an empirical three-dimensional sandstone reservoir model suitable for hydrocarbon flow-simulation by imaging near-surface sandstone reservoir analogs with the use of GPR. The sedimentological data base consists of a geologic map of the survey area and a detailed facies map of the cliff face immediately adjacent to the survey area. Five vertical sections were measured along the cliff face adjacent to the survey area. In addition, four wells were cored within the survey area from which logs were recorded. In the sections and well logs primary sedimentary structures were documented along with textural information and permeability data. Gamma-ray profiles were also obtained for all sections and core logs. The sedimentologic and stratigraphic information serves as the basis from which much of the processing and interpretation of the GPR data was made. Three 3-D GPR data sets were collected over the survey area at frequencies of 50 MHZ, 100 MHZ, and 200 MHZ.

  6. Effects of spatially variable snow cover on thermal regime and hydrology of an Arctic ice wedge polygon landscape identified using ground penetrating radar and LIDAR datasets

    NASA Astrophysics Data System (ADS)

    Gusmeroli, A.; Liljedahl, A. K.; Peterson, J. E.; Hubbard, S. S.; Hinzman, L. D.

    2012-12-01

    Ice wedge polygons are common in Arctic terrains underlain by permafrost. Permafrost degradation could transform low- into high centered polygons, causing profound changes in the hydrologic regime of Arctic lands, which in turn, could affect the energy balance and subsurface biodegradation of organic carbon responsible for greenhouse gas production. Understanding the linkages between microtopography, snow cover, thermal properties, and thaw depth is critical for developing a predictive understanding of terrestrial ecosystems and their feedbacks to climate. In this study, we use high frequency (500-1000 MHz) ground penetrating radar (GPR) data acquired in spring 2012 within the Next Generation Ecosystem Experiment (NGEE) study site in Barrow, AK to characterize the spatial variability of snow distribution. We compare it's distribution to microtopography, estimated using LIDAR data, and thaw depth, also estimated using ground penetrating radar collected at different times during the year and simulated over time using mechanistic thermal-hydrologic modeling. The high spatial resolution offered by LIDAR and ground penetrating radar permit detailed investigations of the control of microtopography on snow and thaw layer depth. Results suggest that microtopographical variations are responsible for substantial differences in snow accumulation. In low centered polygons, snow depth can be up to four times greater in the troughs than on the rims. Both modeling and observations suggest that the microtopography-governed snow thickness affects the thermal properties of the subsurface and thus the thaw layer thickness; regions with thicker snowpack generally correspond to regions of greater thaw depth. We conclude that a transition from low- to high centered polygons will not only impact watershed runoff but, since snow accumulation is sensitive to the microtopography, it will also impact snow distribution. In turn, snow distribution affects thaw depth thickness, and the

  7. SURFACE GEOPHYSICAL EXPLORATION OF TX-TY TANK FARMS AT THE HANFORD SITE RESULTS OF BACKGROUND CHARACTERIZATION WITH GROUND PENETRATING RADAR

    SciTech Connect

    MYERS DA; CUBBAGE R; BRAUCHLA R; O'BRIEN G

    2008-07-24

    Ground penetrating radar surveys of the TX and TY tank farms were performed to identify existing infrastructure in the near surface environment. These surveys were designed to provide background information supporting Surface-to-Surface and Well-to-Well resistivity surveys of Waste Management Area TX-TY. The objective of the preliminary investigation was to collect background characterization information with GPR to understand the spatial distribution of metallic objects that could potentially interfere with the results from high resolution resistivity{trademark} surveys. The results of the background characterization confirm the existence of documented infrastructure, as well as highlight locations of possible additional undocumented subsurface metallic objects.

  8. Location and assessment of an historic (150-160 years old) mass grave using geographic and ground penetrating radar investigation, NW Ireland.

    PubMed

    Ruffell, Alastair; McCabe, Alan; Donnelly, Colm; Sloan, Brian

    2009-03-01

    Reburial of human remains and concerns regarding pathogens and pollution prompted the search for, and assessment of, a 156-year-old graveyard. To locate this graveyard, historic and anecdotal information was compared to landscape interpretation from aerial photography. To assess and map the contents, surface collapses, metal detector indications, and ground-penetrating radar (GPR) were used. Some 170 anomalies compatible with burials were identified on 200 MHz GPR data, 84 of which coincided with surface collapses, suggesting both noncollapsed ground, subsequent infill, and multiple inhumations. The graveyard was possibly split into Roman Catholic plots with multiple inhumations; Protestant plots; and a kileen, or graveyard for the unbaptized (often children). The work serves as one approach to the location and mapping of recent and historic unmarked graves.

  9. Twin Peaks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The two hills in the distance, approximately one to two kilometers away, have been dubbed the 'Twin Peaks' and are of great interest to Pathfinder scientists as objects of future study. 3D glasses are necessary to identify surface detail. The white areas on the left hill, called the 'Ski Run' by scientists, may have been formed by hydrologic processes.

    The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  10. 3D and beyond

    NASA Astrophysics Data System (ADS)

    Fung, Y. C.

    1995-05-01

    This conference on physiology and function covers a wide range of subjects, including the vasculature and blood flow, the flow of gas, water, and blood in the lung, the neurological structure and function, the modeling, and the motion and mechanics of organs. Many technologies are discussed. I believe that the list would include a robotic photographer, to hold the optical equipment in a precisely controlled way to obtain the images for the user. Why are 3D images needed? They are to achieve certain objectives through measurements of some objects. For example, in order to improve performance in sports or beauty of a person, we measure the form, dimensions, appearance, and movements.

  11. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  12. 3D Surgical Simulation

    PubMed Central

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  13. Martian terrain - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An area of rocky terrain near the landing site of the Sagan Memorial Station can be seen in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  14. Violent Strombolian or not? Using ground-penetrating radar to distinguish deposits of low- and high-energy scoria cone eruptions

    NASA Astrophysics Data System (ADS)

    Courtland, Leah; Kruse, Sarah; Connor, Charles

    2013-12-01

    Scoria cones often grow by the accumulation of individual particles transported ballistically in Strombolian-type eruptions. Alternative models of cone formation suggest that cones are built primarily of fallout from the eruption column in more explosive eruptions, often termed violent Strombolian. Currently, the distinction between normal Strombolian and violent Strombolian is based on direct observations of eruptions or by inference of eruption characteristics from mapping of tephra fall deposits. Unfortunately, medial to distal tephra fall deposits erode rapidly, leaving behind only the near-vent facies of scoria cones which are thicker and less easily eroded. Therefore, a tool that is capable of delineating differences between low-energy Strombolian deposits and higher energy violent Strombolian deposits from investigation of the preserved scoria edifice is necessary. Ground-penetrating radar imaging of Cerro Negro, an active basaltic scoria cone in Nicaragua, has revealed details of cone deposits at depths of up to 12 m. The record of the 1992 eruption, which was observed to be violent Strombolian, shows quantifiable differences from normal Strombolian near-vent facies, including reflections in the downwind profile that are continuous for hundreds of meters and through the slope break. The ability to differentiate between tephra fallout and ballistically emplaced deposits at Cerro Negro suggests ground-penetrating radar imaging may be useful in distinguishing eruptive style in older scoria cones, where the medial to distal tephra deposits are eroded or buried.

  15. Regional-scale assessment of a sequence-bounding paleosol on fluvial fans using ground-penetrating radar, eastern San Joaquin Valley, California

    USGS Publications Warehouse

    Bennett, V.G.L.; Weissmann, G.S.; Baker, G.S.; Hyndman, D.W.

    2006-01-01

    Recently developed sequence stratigraphic models for fluvial fans suggest that sequence boundaries in these deposits are marked by laterally extensive paleosols; however, these models were based on paleosol correlations inferred between wells. To test this, we collected ???190 km of ground-penetrating radar (GPR) profiles on three fluvial fans from the eastern San Joaquin Valley, California, to determine the lateral extent and character of a buried near-surface sequence-bounding-paleosol. This paleosol, recognized on GPR by rapid shallow signal attenuation, extends across large areas on all three fluvial fans. Limited areas of significantly increased signal penetration were also identified, and these zones are interpreted to indicate the absence of the paleosol. The zones where the paleosol is missing likely correspond to paleooutwash channel activity on the fan surfaces that, when active, was able to partially or fully scour through the paleosol and deposit coarse-grained channel sediments in place of the sequence boundary. Erosional breaks are most common on the Kings River fan, while few breaks on the Tuolumne and Merced River fans may indicate less paleochannel activity on these fan surfaces during the last outwash event. Differences in channel activity between fans indicate that the Kings River migrated across its fan during the last outwash event, as evidenced by the large number of areas with increased GPR signal penetration and the presence of numerous channel deposits recorded on the soil surveys, while the Tuolumne and Merced Rivers only deposited floodplain fines, with the channels remaining inside a shallow incised valley, as evidenced by the relatively low number of areas with increased GPR signal penetration and the presence of primarily fine-grained material recorded on the soil surveys. Factors controlling these differences may include variable valley subsidence rates and differences in the San Joaquin Basin overall width at each fan location

  16. NUBEAM developments and 3d halo modeling

    NASA Astrophysics Data System (ADS)

    Gorelenkova, M. V.; Medley, S. S.; Kaye, S. M.

    2012-10-01

    Recent developments related to the 3D halo model in NUBEAM code are described. To have a reliable halo neutral source for diagnostic simulation, the TRANSP/NUBEAM code has been enhanced with full implementation of ADAS atomic physic ground state and excited state data for hydrogenic beams and mixed species plasma targets. The ADAS codes and database provide the density and temperature dependence of the atomic data, and the collective nature of the state excitation process. To be able to populate 3D halo output with sufficient statistical resolution, the capability to control the statistics of fast ion CX modeling and for thermal halo launch has been added to NUBEAM. The 3D halo neutral model is based on modification and extension of the ``beam in box'' aligned 3d Cartesian grid that includes the neutral beam itself, 3D fast neutral densities due to CX of partially slowed down fast ions in the beam halo region, 3D thermal neutral densities due to CX deposition and fast neutral recapture source. More details on the 3D halo simulation design will be presented.

  17. 3D field harmonics

    SciTech Connect

    Caspi, S.; Helm, M.; Laslett, L.J.

    1991-03-30

    We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.

  18. 2D and 3D Electrical Resistivity Tomography imaging of earthquake related ground deformations at the Ancient Roman Forum and Isis Temple of Baelo Claudia (Cádiz, South Spain).

    NASA Astrophysics Data System (ADS)

    Silva, Pablo G.

    2010-05-01

    The ancient roman city of Baelo Claudia has been subject of several papers on earthquake environmental effects (EEE) and well as earthquake archaeological effects (EAE). During the field training course on archaeoseismology and palaeoseismology conducted in September 2009 (INQUA-IGCP567 Workshop) held at Baelo Claudia, four Electric Resistivity Tomography (ERT) profiles were carried out, by the teams of the Salamanca University (Spain), RWTH Aachen University (Germany) and the Geological Survey of Spain (IGME). ERT surveys were developed in the eastern side of the ancient roman Forum across the unexcavated sector of the archaeological site heading on the 1st Century AD Isis Temple. Each ERT profile was constituted by a 48 multielectrode array with spacing of 2 m resulting in a total length of investigation of around 384 m. ERT lines were separated 10 m each other resulting in a total research area of 3840 m2 to a mean investigation depth of 16 m. The selected survey configurations were Pole-Dipole and Wenner in order to get detailed information about lateral resistivity contrasts, but with a reasonable depth of investigation. The resulting 2D resistivity pseudosections clearly display deformations of the buried roman pavements which propagated in depth within the pre-roman clayey substratum of the Bolonia Bay area.. 3D modelling of the 2D pseudosections indicates that the observed deformations are related to near-surface landsliding, being possible to calculate the minimum volume of mobilized material. ERT 3D imaging allow to refine previous GPR surveys conducted at this same area and to get a subsurface picture of ground deformations caused by repeated earthquakes during the 1st and 3rd Centuries AD. Preliminary calculated volume for the mobilized materials affecting the foundations of the Isis Temple and Forum clearly points to a minimum ESI-07 VIII Intensity validating previous research in the zone. This study has been supported by the Spanish Research Projects

  19. 3D ultrasound computer tomography: update from a clinical study

    NASA Astrophysics Data System (ADS)

    Hopp, T.; Zapf, M.; Kretzek, E.; Henrich, J.; Tukalo, A.; Gemmeke, H.; Kaiser, C.; Knaudt, J.; Ruiter, N. V.

    2016-04-01

    Ultrasound Computer Tomography (USCT) is a promising new imaging method for breast cancer diagnosis. We developed a 3D USCT system and tested it in a pilot study with encouraging results: 3D USCT was able to depict two carcinomas, which were present in contrast enhanced MRI volumes serving as ground truth. To overcome severe differences in the breast shape, an image registration was applied. We analyzed the correlation between average sound speed in the breast and the breast density estimated from segmented MRIs and found a positive correlation with R=0.70. Based on the results of the pilot study we now carry out a successive clinical study with 200 patients. For this we integrated our reconstruction methods and image post-processing into a comprehensive workflow. It includes a dedicated DICOM viewer for interactive assessment of fused USCT images. A new preview mode now allows intuitive and faster patient positioning. We updated the USCT system to decrease the data acquisition time by approximately factor two and to increase the penetration depth of the breast into the USCT aperture by 1 cm. Furthermore the compute-intensive reflectivity reconstruction was considerably accelerated, now allowing a sub-millimeter volume reconstruction in approximately 16 minutes. The updates made it possible to successfully image first patients in our ongoing clinical study.

  20. A STUDY TO DETERMINE THE FEASIBILITY OF USING A GROUND-PENETRATING RADAR FOR MORE EFFECTIVE REMEDIATION OF SUBSURFACE CONTAMINATION

    EPA Science Inventory

    A study was conducted (1) to assess the capability of groundpenetrating radar (GPR) to identify natural subsurface features, detect man-made objects burled in the soil, and both detect and define the extent of contaminated soil or ground water due to a toxic spill, and (2) to det...