Science.gov

Sample records for 3d heat conduction

  1. Assessing the RELAPS-3D Heat Conduction Enclosure Model

    SciTech Connect

    McCann, Larry D.

    2008-09-30

    Three heat conduction problems that have exact solutions are modeled with RELAP5-3D using the conduction enclosure model. These comparisons are designed to be used in the RELAP5-3D development assessment scheduled to be completed in 2009. It is shown that with proper input choices and adequate model detail the exact solutions can be matched. In addition, this analysis identified an error and the required correction in the cylindrical and spherical heat conductor models in RELAP5-3D which will be corrected in a future version of RELAP5-3D.

  2. Exact variational principle for 3-D unsteady heat conduction with second sound

    NASA Astrophysics Data System (ADS)

    Liu, Gaolian

    2006-12-01

    The exact variational formulation of the extended unsteady heat conduction equation with finite propagation speed (the 2nd sound speed) of hyperbolic type is derived herein via a systematic and natural way. Moreover, the boundary-and the physically acceptable initial-value conditions are accommodated in the variational principle by a novel method suggested just recently. In this way a perfect justification of the variational theory of transient heat conduction and a rigorous theoretical basis for the finite element analysis of heat conduction are provided.

  3. 3-D parallel program for numerical calculation of gas dynamics problems with heat conductivity on distributed memory computational systems (CS)

    SciTech Connect

    Sofronov, I.D.; Voronin, B.L.; Butnev, O.I.

    1997-12-31

    The aim of the work performed is to develop a 3D parallel program for numerical calculation of gas dynamics problem with heat conductivity on distributed memory computational systems (CS), satisfying the condition of numerical result independence from the number of processors involved. Two basically different approaches to the structure of massive parallel computations have been developed. The first approach uses the 3D data matrix decomposition reconstructed at temporal cycle and is a development of parallelization algorithms for multiprocessor CS with shareable memory. The second approach is based on using a 3D data matrix decomposition not reconstructed during a temporal cycle. The program was developed on 8-processor CS MP-3 made in VNIIEF and was adapted to a massive parallel CS Meiko-2 in LLNL by joint efforts of VNIIEF and LLNL staffs. A large number of numerical experiments has been carried out with different number of processors up to 256 and the efficiency of parallelization has been evaluated in dependence on processor number and their parameters.

  4. Study of non-axisymmetric divertor footprints using 2-D IR and visible cameras and a 3-D heat conduction solver in NSTX

    SciTech Connect

    Ahn, J-W.; Gan, K. F.; Scotti, F.; Lore, J. D.; Maingi, R.; Canik, J. M.; Gray, T. K.; McLean, A. G.; Roquemore, A. L.; Soukhanovskii, V. A.

    2013-01-12

    Toroidally non-axisymmetric divertor profiles during the 3-D field application and for ELMs are studied with simultaneous observation by a new wide angle visible camera and a high speed IR camera. A newly implemented 3-D heat conduction code, TACO, is used to obtain divertor heat flux. The wide angle camera data confirmed the previously reported result on the validity of vacuum field line tracing on the prediction of split strike point pattern by 3-D fields as well as the phase locking of ELM heat flux to the 3-D fields. TACO calculates the 2- D heat flux distribution allowing assessment of toroidal asymmetry of peak heat flux and heat flux width. Lastly, the degree of asymmetry (εDA) is defined to quantify the asymmetric heat deposition on the divertor surface and is found to have a strong positive dependence on peak heat flux.

  5. Conducting Polymer 3D Microelectrodes

    PubMed Central

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi; Castillo-León, Jaime; Emnéus, Jenny; Svendsen, Winnie E.

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements. PMID:22163508

  6. 3-D Finite Element Heat Transfer

    1992-02-01

    TOPAZ3D is a three-dimensional implicit finite element computer code for heat transfer analysis. TOPAZ3D can be used to solve for the steady-state or transient temperature field on three-dimensional geometries. Material properties may be temperature-dependent and either isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functionalmore » representation of boundary conditions and internal heat generation. TOPAZ3D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less

  7. TACO3D. 3-D Finite Element Heat Transfer Code

    SciTech Connect

    Mason, W.E.

    1992-03-04

    TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.

  8. Local heat transfer estimation in microchannels during convective boiling under microgravity conditions: 3D inverse heat conduction problem using BEM techniques

    NASA Astrophysics Data System (ADS)

    Luciani, S.; LeNiliot, C.

    2008-11-01

    Two-phase and boiling flow instabilities are complex, due to phase change and the existence of several interfaces. To fully understand the high heat transfer potential of boiling flows in microscale's geometry, it is vital to quantify these transfers. To perform this task, an experimental device has been designed to observe flow patterns. Analysis is made up by using an inverse method which allows us to estimate the local heat transfers while boiling occurs inside a microchannel. In our configuration, the direct measurement would impair the accuracy of the searched heat transfer coefficient because thermocouples implanted on the surface minichannels would disturb the established flow. In this communication, we are solving a 3D IHCP which consists in estimating using experimental data measurements the surface temperature and the surface heat flux in a minichannel during convective boiling under several gravity levels (g, 1g, 1.8g). The considered IHCP is formulated as a mathematical optimization problem and solved using the boundary element method (BEM).

  9. Exact Analytical Solution for 3D Time-Dependent Heat Conduction in a Multilayer Sphere with Heat Sources Using Eigenfunction Expansion Method

    PubMed Central

    Dalir, Nemat

    2014-01-01

    An exact analytical solution is obtained for the problem of three-dimensional transient heat conduction in the multilayered sphere. The sphere has multiple layers in the radial direction and, in each layer, time-dependent and spatially nonuniform volumetric internal heat sources are considered. To obtain the temperature distribution, the eigenfunction expansion method is used. An arbitrary combination of homogenous boundary condition of the first or second kind can be applied in the angular and azimuthal directions. Nevertheless, solution is valid for nonhomogeneous boundary conditions of the third kind (convection) in the radial direction. A case study problem for the three-layer quarter-spherical region is solved and the results are discussed. PMID:27433511

  10. 3D Regression Heat Map Analysis of Population Study Data.

    PubMed

    Klemm, Paul; Lawonn, Kai; Glaßer, Sylvia; Niemann, Uli; Hegenscheid, Katrin; Völzke, Henry; Preim, Bernhard

    2016-01-01

    Epidemiological studies comprise heterogeneous data about a subject group to define disease-specific risk factors. These data contain information (features) about a subject's lifestyle, medical status as well as medical image data. Statistical regression analysis is used to evaluate these features and to identify feature combinations indicating a disease (the target feature). We propose an analysis approach of epidemiological data sets by incorporating all features in an exhaustive regression-based analysis. This approach combines all independent features w.r.t. a target feature. It provides a visualization that reveals insights into the data by highlighting relationships. The 3D Regression Heat Map, a novel 3D visual encoding, acts as an overview of the whole data set. It shows all combinations of two to three independent features with a specific target disease. Slicing through the 3D Regression Heat Map allows for the detailed analysis of the underlying relationships. Expert knowledge about disease-specific hypotheses can be included into the analysis by adjusting the regression model formulas. Furthermore, the influences of features can be assessed using a difference view comparing different calculation results. We applied our 3D Regression Heat Map method to a hepatic steatosis data set to reproduce results from a data mining-driven analysis. A qualitative analysis was conducted on a breast density data set. We were able to derive new hypotheses about relations between breast density and breast lesions with breast cancer. With the 3D Regression Heat Map, we present a visual overview of epidemiological data that allows for the first time an interactive regression-based analysis of large feature sets with respect to a disease. PMID:26529689

  11. 3D Regression Heat Map Analysis of Population Study Data.

    PubMed

    Klemm, Paul; Lawonn, Kai; Glaßer, Sylvia; Niemann, Uli; Hegenscheid, Katrin; Völzke, Henry; Preim, Bernhard

    2016-01-01

    Epidemiological studies comprise heterogeneous data about a subject group to define disease-specific risk factors. These data contain information (features) about a subject's lifestyle, medical status as well as medical image data. Statistical regression analysis is used to evaluate these features and to identify feature combinations indicating a disease (the target feature). We propose an analysis approach of epidemiological data sets by incorporating all features in an exhaustive regression-based analysis. This approach combines all independent features w.r.t. a target feature. It provides a visualization that reveals insights into the data by highlighting relationships. The 3D Regression Heat Map, a novel 3D visual encoding, acts as an overview of the whole data set. It shows all combinations of two to three independent features with a specific target disease. Slicing through the 3D Regression Heat Map allows for the detailed analysis of the underlying relationships. Expert knowledge about disease-specific hypotheses can be included into the analysis by adjusting the regression model formulas. Furthermore, the influences of features can be assessed using a difference view comparing different calculation results. We applied our 3D Regression Heat Map method to a hepatic steatosis data set to reproduce results from a data mining-driven analysis. A qualitative analysis was conducted on a breast density data set. We were able to derive new hypotheses about relations between breast density and breast lesions with breast cancer. With the 3D Regression Heat Map, we present a visual overview of epidemiological data that allows for the first time an interactive regression-based analysis of large feature sets with respect to a disease.

  12. Reduction of thermal conductivity by nanoscale 3D phononic crystal.

    PubMed

    Yang, Lina; Yang, Nuo; Li, Baowen

    2013-01-01

    We studied how the period length and the mass ratio affect the thermal conductivity of isotopic nanoscale three-dimensional (3D) phononic crystal of Si. Simulation results by equilibrium molecular dynamics show isotopic nanoscale 3D phononic crystals can significantly reduce the thermal conductivity of bulk Si at high temperature (1000 K), which leads to a larger ZT than unity. The thermal conductivity decreases as the period length and mass ratio increases. The phonon dispersion curves show an obvious decrease of group velocities in 3D phononic crystals. The phonon's localization and band gap is also clearly observed in spectra of normalized inverse participation ratio in nanoscale 3D phononic crystal.

  13. Reduction of Thermal Conductivity by Nanoscale 3D Phononic Crystal

    PubMed Central

    Yang, Lina; Yang, Nuo; Li, Baowen

    2013-01-01

    We studied how the period length and the mass ratio affect the thermal conductivity of isotopic nanoscale three-dimensional (3D) phononic crystal of Si. Simulation results by equilibrium molecular dynamics show isotopic nanoscale 3D phononic crystals can significantly reduce the thermal conductivity of bulk Si at high temperature (1000 K), which leads to a larger ZT than unity. The thermal conductivity decreases as the period length and mass ratio increases. The phonon dispersion curves show an obvious decrease of group velocities in 3D phononic crystals. The phonon's localization and band gap is also clearly observed in spectra of normalized inverse participation ratio in nanoscale 3D phononic crystal. PMID:23378898

  14. 3D conductive nanocomposite scaffold for bone tissue engineering

    PubMed Central

    Shahini, Aref; Yazdimamaghani, Mostafa; Walker, Kenneth J; Eastman, Margaret A; Hatami-Marbini, Hamed; Smith, Brenda J; Ricci, John L; Madihally, Sundar V; Vashaee, Daryoosh; Tayebi, Lobat

    2014-01-01

    Bone healing can be significantly expedited by applying electrical stimuli in the injured region. Therefore, a three-dimensional (3D) ceramic conductive tissue engineering scaffold for large bone defects that can locally deliver the electrical stimuli is highly desired. In the present study, 3D conductive scaffolds were prepared by employing a biocompatible conductive polymer, ie, poly(3,4-ethylenedioxythiophene) poly(4-styrene sulfonate) (PEDOT:PSS), in the optimized nanocomposite of gelatin and bioactive glass. For in vitro analysis, adult human mesenchymal stem cells were seeded in the scaffolds. Material characterizations using hydrogen-1 nuclear magnetic resonance, in vitro degradation, as well as thermal and mechanical analysis showed that incorporation of PEDOT:PSS increased the physiochemical stability of the composite, resulting in improved mechanical properties and biodegradation resistance. The outcomes indicate that PEDOT:PSS and polypeptide chains have close interaction, most likely by forming salt bridges between arginine side chains and sulfonate groups. The morphology of the scaffolds and cultured human mesenchymal stem cells were observed and analyzed via scanning electron microscope, micro-computed tomography, and confocal fluorescent microscope. Increasing the concentration of the conductive polymer in the scaffold enhanced the cell viability, indicating the improved microstructure of the scaffolds or boosted electrical signaling among cells. These results show that these conductive scaffolds are not only structurally more favorable for bone tissue engineering, but also can be a step forward in combining the tissue engineering techniques with the method of enhancing the bone healing by electrical stimuli. PMID:24399874

  15. Intermittent Dissipation and Heating in 3D Kinetic Plasma Turbulence.

    PubMed

    Wan, M; Matthaeus, W H; Roytershteyn, V; Karimabadi, H; Parashar, T; Wu, P; Shay, M

    2015-05-01

    High resolution, fully kinetic, three dimensional (3D) simulation of collisionless plasma turbulence shows the development of turbulence characterized by sheetlike current density structures spanning a range of scales. The nonlinear evolution is initialized with a long wavelength isotropic spectrum of fluctuations having polarizations transverse to an imposed mean magnetic field. We present evidence that these current sheet structures are sites for heating and dissipation, and that stronger currents signify higher dissipation rates. The analyses focus on quantities such as J·E, electron, and proton temperatures, and conditional averages of these quantities based on local electric current density. Evidently, kinetic scale plasma, like magnetohydrodynamics, becomes intermittent due to current sheet formation, leading to the expectation that heating and dissipation in astrophysical and space plasmas may be highly nonuniform. Comparison with previous results from 2D kinetic simulations, as well as high frequency solar wind observational data, are discussed. PMID:25978241

  16. 3D structure and conductive thermal field of the Upper Rhine Graben

    NASA Astrophysics Data System (ADS)

    Freymark, Jessica; Sippel, Judith; Scheck-Wenderoth, Magdalena; Bär, Kristian; Stiller, Manfred; Fritsche, Johann-Gerhard; Kracht, Matthias

    2016-04-01

    The Upper Rhine Graben (URG) was formed as part of the European Cenozoic Rift System in a complex extensional setting. At present-day, it has a large socioeconomic relevance as it provides a great potential for geothermal energy production in Germany and France. For the utilisation of this energy resource it is crucial to understand the structure and the observed temperature anomalies in the rift basin. In the framework of the EU-funded "IMAGE" project (Integrated Methods for Advanced Geothermal Exploration), we apply a data-driven numerical modelling approach to quantify the processes and properties controlling the spatial distribution of subsurface temperatures. Typically, reservoir-scale numerical models are developed for predictions on the subsurface hydrothermal conditions and for reducing the risk of drilling non-productive geothermal wells. One major problem related to such models is setting appropriate boundary conditions that define, for instance, how much heat enters the reservoir from greater depths. Therefore, we first build a regional lithospheric-scale 3D structural model, which covers not only the entire URG but also adjacent geological features like the Black Forest and the Vosges Mountains. In particular, we use a multidisciplinary dataset (e.g. well data, seismic reflection data, existing structural models, gravity) to construct the geometries of the sediments, the crust and the lithospheric mantle that control the spatial distribution of thermal conductivity and radiogenic heat production and hence temperatures. By applying a data-based and lithology-dependent parameterisation of this lithospheric-scale 3D structural model and a 3D finite element method, we calculate the steady-state conductive thermal field for the entire region. Available measured temperatures (down to depths of up to 5 km) are considered to validate the 3D thermal model. We present major characteristics of the lithospheric-scale 3D structural model and results of the 3D

  17. 3D Printing of Conductive Complex Structures with In Situ Generation of Silver Nanoparticles.

    PubMed

    Fantino, Erika; Chiappone, Annalisa; Roppolo, Ignazio; Manfredi, Diego; Bongiovanni, Roberta; Pirri, Candido Fabrizio; Calignano, Flaviana

    2016-05-01

    Coupling the photoreduction of a metal precursor with 3D-printing technology is shown to allow the fabrication of conductive 3D hybrid structures consisting of metal nanoparticles and organic polymers shaped in complex multilayered architectures. 3D conductive structures are fabricated incorporating silver nitrate into a photocurable oligomer in the presence of suitable photoinitiators and exposing them to a digital light system.

  18. Coolant side heat transfer with rotation: User manual for 3D-TEACH with rotation

    NASA Technical Reports Server (NTRS)

    Syed, S. A.; James, R. H.

    1989-01-01

    This program solves the governing transport equations in Reynolds average form for the flow of a 3-D, steady state, viscous, heat conducting, multiple species, single phase, Newtonian fluid with combustion. The governing partial differential equations are solved in physical variables in either a Cartesian or cylindrical coordinate system. The effects of rotation on the momentum and enthalpy calculations modeled in Cartesian coordinates are examined. The flow of the fluid should be confined and subsonic with a maximum Mach number no larger than 0.5. This manual describes the operating procedures and input details for executing a 3D-TEACH computation.

  19. Temperature distributions in the laser-heated diamond anvil cell from 3-D numerical modeling

    SciTech Connect

    Rainey, E. S. G.; Kavner, A.; Hernlund, J. W.

    2013-11-28

    We present TempDAC, a 3-D numerical model for calculating the steady-state temperature distribution for continuous wave laser-heated experiments in the diamond anvil cell. TempDAC solves the steady heat conduction equation in three dimensions over the sample chamber, gasket, and diamond anvils and includes material-, temperature-, and direction-dependent thermal conductivity, while allowing for flexible sample geometries, laser beam intensity profile, and laser absorption properties. The model has been validated against an axisymmetric analytic solution for the temperature distribution within a laser-heated sample. Example calculations illustrate the importance of considering heat flow in three dimensions for the laser-heated diamond anvil cell. In particular, we show that a “flat top” input laser beam profile does not lead to a more uniform temperature distribution or flatter temperature gradients than a wide Gaussian laser beam.

  20. 3D conductivity image of a young continental rift: Taupo Volcanic Zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Heise, W.; Caldwell, T. G.; Bibby, H. M.; Bennie, S. L.

    2009-04-01

    The Taupo Volcanic Zone (TVZ), in the North Island, New Zealand is a continental back arc rift associated with the subduction of the Pacific Plate under the Australian Plate and is characterised by the eruption of large volumes of rhyolitic magma during the last 1.6 Ma and an exceptionally high present-day heat flow. Data from 220 magnetotelluric soundings covering the central (rhyolitic) part of the TVZ were analysed using 3D inverse resistivity modelling and phase tensor visualisation techniques. Modelling results compare well with the thickness of conductive volcaniclastic material in filling the rift basin and calderas and expected from observed gravity anomalies. Phase tensor ellipticity correlates well with the resistivity gradient in the 3D inversion model showing how the phase data control the inversion and allowing identification of which structures are, or are not, resolved by the data. The inverse modelling results show a zone of high conductivity in the lower crust and upper-mantle along the central rift-axis that correlates with a zone of high phase observed at long periods. An unusual feature of the MT data at periods of 3-30s is the large phase tensor skew angle values that coincide with the margins of a localized gravity high in the centre of the survey area. This feature appears to be caused by the interaction of a thick near surface layer of high conductive volcaniclastic material with conductive structures at greater depth.

  1. 3D Printing of Conductive Complex Structures with In Situ Generation of Silver Nanoparticles.

    PubMed

    Fantino, Erika; Chiappone, Annalisa; Roppolo, Ignazio; Manfredi, Diego; Bongiovanni, Roberta; Pirri, Candido Fabrizio; Calignano, Flaviana

    2016-05-01

    Coupling the photoreduction of a metal precursor with 3D-printing technology is shown to allow the fabrication of conductive 3D hybrid structures consisting of metal nanoparticles and organic polymers shaped in complex multilayered architectures. 3D conductive structures are fabricated incorporating silver nitrate into a photocurable oligomer in the presence of suitable photoinitiators and exposing them to a digital light system. PMID:26992060

  2. 3D coupled heat and mass transfer processes at the scale of sedimentary basisn

    NASA Astrophysics Data System (ADS)

    Cacace, M.; Scheck-Wenderoth, M.; Kaiser, B. O.

    2014-12-01

    We use coupled 3D simulations of fluid, heat, and transport based on a 3D structural model of a complex geological setting, the Northeast German Basin (NEGB). The geological structure of the NEGB is characterized by a relatively thick layer of Permian Zechstein salt, structured in differnet diapirs (up to 5000 m thick) and pillows locally reaching nearly the surface. Salt is thermally more conductive than other sediments, hydraulically impervious but highly solvable. Thus salt structures have first order influence on the temperature distribution, the deep flow regime and the salinity of groundawater bearing aquifers. In addition, the post-Permian sedimentary sequence is vertically subdivided into several aquifers and aquitards. The shallow Quaternary to late Tertiary freshwater aquifer is separated from the underlying Mesozoic saline aquifers by an embedded Tertiary clay enriched aquitard (Rupelian Aquitard). An important feature of this aquitard is that hydraulic connections between the upper and lower aquifers exist in areas where the Rupelian Aquitard is missing (hydrogeological windows). By means of 3D numerical simulations we explore the role of heat conduction, pressure, and density driven groundwater flow as well as fluid viscosity-related and salinity-dependent effects on the resulting flow and temperature fields. Our results suggest that the regional temperature distribution within the basin results from interactions between regional pressure forces and thermal diffusion locally enhanced by thermal conductivity contrasts between the different sedimentary rocks with the highly conductive salt. Buoyancy forces triggered by temperature-dependent fluid density variations affect only locally the internal thermal configuration. Locations, geometry, and wavelengths of convective thermal anomalies are mainly controlled by the permeability field and thickness values of the respective geological layers. Numerical results from 3D thermo-haline numerical simulations

  3. Conducting the Heat

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Heat conduction plays an important role in the efficiency and life span of electronic components. To keep electronic components running efficiently and at a proper temperature, thermal management systems transfer heat generated from the components to thermal surfaces such as heat sinks, heat pipes, radiators, or heat spreaders. Thermal surfaces absorb the heat from the electrical components and dissipate it into the environment, preventing overheating. To ensure the best contact between electrical components and thermal surfaces, thermal interface materials are applied. In addition to having high conductivity, ideal thermal interface materials should be compliant to conform to the components, increasing the surface contact. While many different types of interface materials exist for varying purposes, Energy Science Laboratories, Inc. (ESLI), of San Diego, California, proposed using carbon velvets as thermal interface materials for general aerospace and electronics applications. NASA s Johnson Space Center granted ESLI a Small Business Innovation Research (SBIR) contract to develop thermal interface materials that are lightweight and compliant, and demonstrate high thermal conductance even for nonflat surfaces. Through Phase II SBIR work, ESLI created Vel-Therm for the commercial market. Vel-Therm is a soft, carbon fiber velvet consisting of numerous high thermal conductivity carbon fibers anchored in a thin layer of adhesive. The velvets are fabricated by precision cutting continuous carbon fiber tows and electrostatically flocking the fibers into uncured adhesive, using proprietary techniques.

  4. Fabrication of Conductive 3D Gold-Containing Microstructures via Direct Laser Writing.

    PubMed

    Blasco, Eva; Müller, Jonathan; Müller, Patrick; Trouillet, Vanessa; Schön, Markus; Scherer, Torsten; Barner-Kowollik, Christopher; Wegener, Martin

    2016-05-01

    3D conductive microstructures containing gold are fabricated by simultaneous photopolymerization and photoreduction via direct laser writing. The photoresist employed consists of water-soluble polymers and a gold precursor. The fabricated microstructures show good conductivity and are successfully employed for 3D connections between gold pads. PMID:26953811

  5. Thermally induced apoptosis, necrosis, and heat shock protein expression in 3D culture.

    PubMed

    Song, Alfred S; Najjar, Amer M; Diller, Kenneth R

    2014-07-01

    This study was conducted to compare the heat shock responses of cells grown in 2D and 3D culture environments as indicated by the level of heat shock protein 70 expression and the incidence of apoptosis and necrosis of prostate cancer cell lines in response to graded hyperthermia. PC3 cells were stably transduced with a dual reporter system composed of two tandem expression cassettes-a conditional heat shock protein promoter driving the expression of green fluorescent protein (HSPp-GFP) and a cytomegalovirus (CMV) promoter controlling the constitutive expression of a "beacon" red fluorescent protein (CMVp-RFP). Two-dimensional and three-dimensional cultures of PC3 prostate cancer cells were grown in 96-well plates for evaluation of their time-dependent response to supraphysiological temperature. To induce controlled hyperthermia, culture plates were placed on a flat copper surface of a circulating water manifold that maintained the specimens within ±0.1°C of a target temperature. Hyperthermia protocols included various combinations of temperature, ranging from 37°C to 57°C, and exposure times of up to 2 h. The majority of protocols were focused on temperature and time permutations, where the response gradient was greatest. Post-treatment analysis by flow cytometry analysis was used to measure the incidences of apoptosis (annexin V-FITC stain), necrosis (propidium iodide (PI) stain), and HSP70 transcription (GFP expression). Cells grown in 3D compared with 2D culture showed reduced incidence of apoptosis and necrosis and a higher level of HSP70 expression in response to heat shock at the temperatures tested. Cells responded differently to hyperthermia when grown in 2D and 3D cultures. Three-dimensional culture appears to enhance survival plausibly by activating protective processes related to enhanced-HSP70 expression. These differences highlight the importance of selecting physiologically relevant 3D models in assessing cellular responses to hyperthermia in

  6. 3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials.

    PubMed

    Liu, Zhiguang; Liu, Zhe; Li, Jiafang; Li, Wuxia; Li, Junjie; Gu, Changzhi; Li, Zhi-Yuan

    2016-01-01

    We demonstrate a 3D conductive coupling mechanism for the efficient generation of prominent and robust Fano resonances in 3D metamaterials (MMs) formed by integrating vertical U-shape split-ring resonators (SRRs) or vertical rectangular plates along a planar metallic hole array with extraordinary optical transmission (EOT). In such a configuration, intensified vertical E-field is induced along the metallic holes and naturally excites the electric resonances of the vertical structures, which form non-radiative "dark" modes. These 3D conductive "dark" modes strongly interfere with the "bright" resonance mode of the EOT structure, generating significant Fano resonances with both prominent destructive and constructive interferences. The demonstrated 3D conductive coupling mechanism is highly universal in that both 3D MMs with vertical SRRs and vertical plates exhibit the same prominent Fano resonances despite their dramatic structural difference, which is conceptually different from conventional capacitive and inductive coupling mechanisms that degraded drastically upon small structural deviations. PMID:27296109

  7. A 3D reconstruction solution to ultrasound Joule heat density tomography based on acousto-electric effect: a simulation study

    NASA Astrophysics Data System (ADS)

    Yang, R.; Song, A.; Li, X. D.; Lu, Y.; Yan, R.; Xu, B.; Li, X.

    2014-10-01

    A 3D reconstruction solution to ultrasound Joule heat density tomography based on acousto-electric effect by deconvolution is proposed for noninvasive imaging of biological tissue. Compared with ultrasound current source density imaging, ultrasound Joule heat density tomography doesn't require any priori knowledge of conductivity distribution and lead fields, so it can gain better imaging result, more adaptive to environment and with wider application scope. For a general 3D volume conductor with broadly distributed current density field, in the AE equation the ultrasound pressure can't simply be separated from the 3D integration, so it is not a common modulation and basebanding (heterodyning) method is no longer suitable to separate Joule heat density from the AE signals. In the proposed method the measurement signal is viewed as the output of Joule heat density convolving with ultrasound wave. As a result, the internal 3D Joule heat density can be reconstructed by means of Wiener deconvolution. A series of computer simulations set for breast cancer imaging applications, with consideration of ultrasound beam diameter, noise level, conductivity contrast, position dependency and size of simulated tumors, have been conducted to evaluate the feasibility and performance of the proposed reconstruction method. The computer simulation results demonstrate that high spatial resolution 3D ultrasound Joule heat density imaging is feasible using the proposed method, and it has potential applications to breast cancer detection and imaging of other organs.

  8. Conduction heat transfer solutions

    SciTech Connect

    VanSant, J.H.

    1983-08-01

    This text is a collection of solutions to a variety of heat conduction problems found in numerous publications, such as textbooks, handbooks, journals, reports, etc. Its purpose is to assemble these solutions into one source that can facilitate the search for a particular problem solution. Generally, it is intended to be a handbook on the subject of heat conduction. There are twelve sections of solutions which correspond with the class of problems found in each. Geometry, state, boundary conditions, and other categories are used to classify the problems. Each problem is concisely described by geometry and condition statements, and many times a descriptive sketch is also included. The introduction presents a synopsis on the theory, differential equations, and boundary conditions for conduction heat transfer. Some discussion is given on the use and interpretation of solutions. Supplementary data such as mathematical functions, convection correlations, and thermal properties are included for aiding the user in computing numerical values from the solutions. 155 figs., 92 refs., 9 tabs.

  9. 3D Printing: 3D Printing of Conductive Complex Structures with In Situ Generation of Silver Nanoparticles (Adv. Mater. 19/2016).

    PubMed

    Fantino, Erika; Chiappone, Annalisa; Roppolo, Ignazio; Manfredi, Diego; Bongiovanni, Roberta; Pirri, Candido Fabrizio; Calignano, Flaviana

    2016-05-01

    On page 3712, E. Fantino, A. Chiappone, and co-workers fabricate conductive 3D hybrid structures by coupling the photo-reduction of metal precursors with 3D printing technology. The generated structures consist of metal nanoparticles embedded in a polymer matrix shaped into complex multilayered architectures. 3D conductive structures are fabricated with a digital light-processing printer incorporating silver salt into photocurable formulations. PMID:27167030

  10. 3D Printing: 3D Printing of Conductive Complex Structures with In Situ Generation of Silver Nanoparticles (Adv. Mater. 19/2016).

    PubMed

    Fantino, Erika; Chiappone, Annalisa; Roppolo, Ignazio; Manfredi, Diego; Bongiovanni, Roberta; Pirri, Candido Fabrizio; Calignano, Flaviana

    2016-05-01

    On page 3712, E. Fantino, A. Chiappone, and co-workers fabricate conductive 3D hybrid structures by coupling the photo-reduction of metal precursors with 3D printing technology. The generated structures consist of metal nanoparticles embedded in a polymer matrix shaped into complex multilayered architectures. 3D conductive structures are fabricated with a digital light-processing printer incorporating silver salt into photocurable formulations.

  11. Conduction heat transfer solutions

    SciTech Connect

    VanSant, J.H.

    1980-03-01

    This text is a collection of solutions to a variety of heat conduction problems found in numerous publications, such as textbooks, handbooks, journals, reports, etc. Its purpose is to assemble these solutions into one source that can facilitate the search for a particular problem solution. Generally, it is intended to be a handbook on the subject of heat conduction. This material is useful for engineers, scientists, technologists, and designers of all disciplines, particularly those who design thermal systems or estimate temperatures and heat transfer rates in structures. More than 500 problem solutions and relevant data are tabulated for easy retrieval. There are twelve sections of solutions which correspond with the class of problems found in each. Geometry, state, boundary conditions, and other categories are used to classify the problems. A case number is assigned to each problem for cross-referencing, and also for future reference. Each problem is concisely described by geometry and condition statements, and many times a descriptive sketch is also included. At least one source reference is given so that the user can review the methods used to derive the solutions. Problem solutions are given in the form of equations, graphs, and tables of data, all of which are also identified by problem case numbers and source references.

  12. Inverse heat conduction problems

    NASA Astrophysics Data System (ADS)

    Orlande, Helcio Rangel Barreto

    We present the solution of the following inverse problems: (1) Inverse Problem of Estimating Interface Conductance Between Periodically Contacting Surfaces; (2) Inverse Problem of Estimating Interface Conductance During Solidification via Conjugate Gradient Method; (3) Determination of the Reaction Function in a Reaction-Diffusion Parabolic Problem; and (4) Simultaneous Estimation of Thermal Diffusivity and Relaxation Time with Hyperbolic Heat Conduction Model. Also, we present the solution of a direct problem entitled: Transient Thermal Constriction Resistance in a Finite Heat Flux Tube. The Conjugate Gradient Method with Adjoint Equation was used in chapters 1-3. The more general function estimation approach was treated in these chapters. In chapter 1, we solve the inverse problem of estimating the timewise variation of the interface conductance between periodically contacting solids, under quasi-steady-state conditions. The present method is found to be more accurate than the B-Spline approach for situations involving small periods, which are the most difficult on which to perform the inverse analysis. In chapter 2, we estimate the timewise variation of the interface conductance between casting and mold during the solidification of aluminum. The experimental apparatus used in this study is described. In chapter 3, we present the estimation of the reaction function in a one dimensional parabolic problem. A comparison of the present function estimation approach with the parameter estimation technique, wing B-Splines to approximate the reaction function, revealed that the use of function estimation reduces the computer time requirements. In chapter 4 we present a finite difference solution for the transient constriction resistance in a cylinder of finite length with a circular contact surface. A numerical grid generation scheme was used to concentrate grid points in the regions of high temperature gradients in order to reduce discretization errors. In chapter 6, we

  13. GEO3D - Three-Dimensional Computer Model of a Ground Source Heat Pump System

    SciTech Connect

    James Menart

    2013-06-07

    This file is the setup file for the computer program GEO3D. GEO3D is a computer program written by Jim Menart to simulate vertical wells in conjunction with a heat pump for ground source heat pump (GSHP) systems. This is a very detailed three-dimensional computer model. This program produces detailed heat transfer and temperature field information for a vertical GSHP system.

  14. Gas flow environmental and heat transfer nonrotating 3D program

    NASA Technical Reports Server (NTRS)

    Geil, T.; Steinhoff, J.

    1983-01-01

    A complete set of benchmark quality data for the flow and heat transfer within a large rectangular turning duct is being compiled. These data will be used to evaluate and verify three dimensional internal viscous flow models and computational codes. The analytical objective is to select such a computational code and define the capabilities of this code to predict the experimental results. Details of the proper code operation will be defined and improvements to the code modeling capabilities will be formulated.

  15. Compilation of 3D global conductivity model of the Earth for space weather applications

    NASA Astrophysics Data System (ADS)

    Alekseev, Dmitry; Kuvshinov, Alexey; Palshin, Nikolay

    2015-07-01

    We have compiled a global three-dimensional (3D) conductivity model of the Earth with an ultimate goal to be used for realistic simulation of geomagnetically induced currents (GIC), posing a potential threat to man-made electric systems. Bearing in mind the intrinsic frequency range of the most intense disturbances (magnetospheric substorms) with typical periods ranging from a few minutes to a few hours, the compiled 3D model represents the structure in depth range of 0-100 km, including seawater, sediments, earth crust, and partly the lithosphere/asthenosphere. More explicitly, the model consists of a series of spherical layers, whose vertical and lateral boundaries are established based on available data. To compile a model, global maps of bathymetry, sediment thickness, and upper and lower crust thicknesses as well as lithosphere thickness are utilized. All maps are re-interpolated on a common grid of 0.25×0.25 degree lateral spacing. Once the geometry of different structures is specified, each element of the structure is assigned either a certain conductivity value or conductivity versus depth distribution, according to available laboratory data and conversion laws. A numerical formalism developed for compilation of the model, allows for its further refinement by incorporation of regional 3D conductivity distributions inferred from the real electromagnetic data. So far we included into our model four regional conductivity models, available from recent publications, namely, surface conductance model of Russia, and 3D conductivity models of Fennoscandia, Australia, and northwest of the United States.

  16. Coronal heating above active regions - 3D MHD model versus multi-spacecraft observations

    NASA Astrophysics Data System (ADS)

    Bourdin, Philippe-A.; Bingert, Sven; Peter, Hardi

    2014-05-01

    The plasma heating mechanism in the Solar corona is a puzzle since decades. Today high-performance computing together with multi-spacecraft observations offer new insights. We conducted a high-resolution simulation of the corona above an active region and compare synthetic emission deduced from the model with co-temporal observations. Photospheric observations act as a boundary condition for our model that drives magnetic-field braiding by advection and generates a net upwards Poynting flux. In particular, we do not only get a sufficient energy input to the base of the corona, but we also reproduce the observed coronal loops: the 3D structure of the hot AR loops system in the model compares well to joint STEREO-A/-B and Hinode observations. The plasma flows along these loops are similar to observed Doppler maps. Draining and siphon flows along magnetic structures at different temperatures offer a new alternative explanation for the average Doppler red-shifts in the transition region and coronal blue-shifts. This match between model and observations indicates a realistic distribution of the coronal heating in time and space and shows that our 3D MHD model of the corona captures the relevant processes involved.

  17. 3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials

    NASA Astrophysics Data System (ADS)

    Liu, Zhiguang; Liu, Zhe; Li, Jiafang; Li, Wuxia; Li, Junjie; Gu, Changzhi; Li, Zhi-Yuan

    2016-06-01

    We demonstrate a 3D conductive coupling mechanism for the efficient generation of prominent and robust Fano resonances in 3D metamaterials (MMs) formed by integrating vertical U-shape split-ring resonators (SRRs) or vertical rectangular plates along a planar metallic hole array with extraordinary optical transmission (EOT). In such a configuration, intensified vertical E-field is induced along the metallic holes and naturally excites the electric resonances of the vertical structures, which form non-radiative “dark” modes. These 3D conductive “dark” modes strongly interfere with the “bright” resonance mode of the EOT structure, generating significant Fano resonances with both prominent destructive and constructive interferences. The demonstrated 3D conductive coupling mechanism is highly universal in that both 3D MMs with vertical SRRs and vertical plates exhibit the same prominent Fano resonances despite their dramatic structural difference, which is conceptually different from conventional capacitive and inductive coupling mechanisms that degraded drastically upon small structural deviations.

  18. 3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials

    PubMed Central

    Liu, Zhiguang; Liu, Zhe; Li, Jiafang; Li, Wuxia; Li, Junjie; Gu, Changzhi; Li, Zhi-Yuan

    2016-01-01

    We demonstrate a 3D conductive coupling mechanism for the efficient generation of prominent and robust Fano resonances in 3D metamaterials (MMs) formed by integrating vertical U-shape split-ring resonators (SRRs) or vertical rectangular plates along a planar metallic hole array with extraordinary optical transmission (EOT). In such a configuration, intensified vertical E-field is induced along the metallic holes and naturally excites the electric resonances of the vertical structures, which form non-radiative “dark” modes. These 3D conductive “dark” modes strongly interfere with the “bright” resonance mode of the EOT structure, generating significant Fano resonances with both prominent destructive and constructive interferences. The demonstrated 3D conductive coupling mechanism is highly universal in that both 3D MMs with vertical SRRs and vertical plates exhibit the same prominent Fano resonances despite their dramatic structural difference, which is conceptually different from conventional capacitive and inductive coupling mechanisms that degraded drastically upon small structural deviations. PMID:27296109

  19. A simple, low-cost conductive composite material for 3D printing of electronic sensors.

    PubMed

    Leigh, Simon J; Bradley, Robert J; Purssell, Christopher P; Billson, Duncan R; Hutchins, David A

    2012-01-01

    3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes ('rapid prototyping') before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term 'carbomorph' and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes. PMID:23185319

  20. Electrochemical fields within 3D reconstructed microstructures of mixed ionic and electronic conducting devices

    NASA Astrophysics Data System (ADS)

    Zhang, Yanxiang; Chen, Yu; Lin, Ye; Yan, Mufu; Harris, William M.; Chiu, Wilson K. S.; Ni, Meng; Chen, Fanglin

    2016-11-01

    The performance and stability of the mixed ionic and electronic conducting (MIEC) membrane devices, such as solid oxide cells (SOCs) and oxygen separation membranes (OSMs) interplay tightly with the transport properties and the three-dimensional (3D) microstructure of the membrane. However, development of the MIEC devices is hindered by the limited knowledge about the distribution of electrochemical fields within the 3D local microstructures, especially at surface and interface. In this work, a generic model conforming to local thermodynamic equilibrium is developed to calculate the electrochemical fields, such as electric potential and oxygen chemical potential, within the 3D microstructure of the MIEC membrane. Stability of the MIEC membrane is evaluated by the distribution of oxygen partial pressure. The cell-level performance such as polarization resistance and voltage vs. current curve can be further calculated. Case studies are performed to demonstrate the capability of the framework by using X-ray computed tomography reconstructed 3D microstructures of a SOC and an OSM. The calculation method demonstrates high computational efficiency for large size 3D tomographic microstructures, and permits parallel calculation. The framework can serve as a powerful tool for correlating the transport properties and the 3D microstructure to the performance and the stability of MIEC devices.

  1. A simple, low-cost conductive composite material for 3D printing of electronic sensors.

    PubMed

    Leigh, Simon J; Bradley, Robert J; Purssell, Christopher P; Billson, Duncan R; Hutchins, David A

    2012-01-01

    3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes ('rapid prototyping') before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term 'carbomorph' and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes.

  2. A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors

    PubMed Central

    Leigh, Simon J.; Bradley, Robert J.; Purssell, Christopher P.; Billson, Duncan R.; Hutchins, David A.

    2012-01-01

    3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes (‘rapid prototyping’) before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term ‘carbomorph’ and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes. PMID:23185319

  3. Heat Flow Partitioning Between Continents and Oceans - from 2D to 3D

    NASA Astrophysics Data System (ADS)

    Moresi, L. N.; Cooper, C. M.; Lenardic, A.

    2010-12-01

    Scalings derived from thermal network theory explain how the presence of continents can influence the Earth’s overall heat loss. Intuitively, it may seem that increasing the proportion of a planet’s surface area covered by continents would decrease the efficiency of heat transfer given that continents do not participate in convective overturn. However, this ignores the potential feedback between the insulating effect of continents and the temperature-dependent viscosity of the mantle (Lenardic et al, 2005, Cooper et al, 2007). When this feedback is considered, a clear regime exists in which the partial stagnation and insulation of the surface by buoyant continental crust can lead to an increase in heat flow compared to the uninsulated case. The numerical results used to verify the scalings have mostly been conducted in two dimensions in order to cover a very wide range of Rayleigh number, fraction of continental coverage, and continental thickness. However as more recent results show that the configuration of the crust also plays a role in determining the heat flow partitioning and global heat flow (See Lenardic et al, “Continents, Super-Continents, Mantle Thermal Mixing, and Mantle Thermal Isolation” in this session), we have begun to repeat this exhaustive and exhausting 2D study in 3D. Cooper, C.M., A. Lenardic, and L.-N. Moresi "Effects of continental insulation and the partioning of heat producing elements on the Earth's heat loss." Geophys. Res. Lett., 33 ,10.1029, 2006. Lenardic, A., L.-N. Moresi, A.M. Jellinek, and M. Manga "Continental insulation, mantle cooling, and the surface area of oceans and continents." Earth Planet. Sci. Lett., 234 ,317-333, 2005.

  4. Estimation of the thermal conductivity of hemp based insulation material from 3D tomographic images

    NASA Astrophysics Data System (ADS)

    El-Sawalhi, R.; Lux, J.; Salagnac, P.

    2016-08-01

    In this work, we are interested in the structural and thermal characterization of natural fiber insulation materials. The thermal performance of these materials depends on the arrangement of fibers, which is the consequence of the manufacturing process. In order to optimize these materials, thermal conductivity models can be used to correlate some relevant structural parameters with the effective thermal conductivity. However, only a few models are able to take into account the anisotropy of such material related to the fibers orientation, and these models still need realistic input data (fiber orientation distribution, porosity, etc.). The structural characteristics are here directly measured on a 3D tomographic image using advanced image analysis techniques. Critical structural parameters like porosity, pore and fiber size distribution as well as local fiber orientation distribution are measured. The results of the tested conductivity models are then compared with the conductivity tensor obtained by numerical simulation on the discretized 3D microstructure, as well as available experimental measurements. We show that 1D analytical models are generally not suitable for assessing the thermal conductivity of such anisotropic media. Yet, a few anisotropic models can still be of interest to relate some structural parameters, like the fiber orientation distribution, to the thermal properties. Finally, our results emphasize that numerical simulations on 3D realistic microstructure is a very interesting alternative to experimental measurements.

  5. Validation of Heat Transfer and Film Cooling Capabilities of the 3-D RANS Code TURBO

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram; Ameri, Ali; Chen, Jen-Ping

    2010-01-01

    The capabilities of the 3-D unsteady RANS code TURBO have been extended to include heat transfer and film cooling applications. The results of simulations performed with the modified code are compared to experiment and to theory, where applicable. Wilcox s k-turbulence model has been implemented to close the RANS equations. Two simulations are conducted: (1) flow over a flat plate and (2) flow over an adiabatic flat plate cooled by one hole inclined at 35 to the free stream. For (1) agreement with theory is found to be excellent for heat transfer, represented by local Nusselt number, and quite good for momentum, as represented by the local skin friction coefficient. This report compares the local skin friction coefficients and Nusselt numbers on a flat plate obtained using Wilcox's k-model with the theory of Blasius. The study looks at laminar and turbulent flows over an adiabatic flat plate and over an isothermal flat plate for two different wall temperatures. It is shown that TURBO is able to accurately predict heat transfer on a flat plate. For (2) TURBO shows good qualitative agreement with film cooling experiments performed on a flat plate with one cooling hole. Quantitatively, film effectiveness is under predicted downstream of the hole.

  6. Modeling induction heating and 3-D heat transfer for growth of rectangular crystals using FIDAP

    NASA Astrophysics Data System (ADS)

    Atherton, L. J.; Martin, R. W.

    1988-09-01

    We are developing a process to grow large rectangular crystals for use as solid state lasers by a Bridgman-like method. The process is based on induction heating of two graphite susceptors which transfer energy to an ampoule containing the melt and crystal. The induction heating version of FIDAP developed by Gresho and Derby is applied to this system to determine the power deposition profile in electrically conducting regions. The calculated power is subsequently used as a source term in the heat equation to calculate the temperature profile. Results are presented which examine the sensitivity of the system to electrical and thermal conductivities, and design modifications are illustrated which could improve the temperature field for crystal growth applications.

  7. 3D fabrication of all-polymer conductive microstructures by two photon polymerization.

    PubMed

    Kurselis, Kestutis; Kiyan, Roman; Bagratashvili, Victor N; Popov, Vladimir K; Chichkov, Boris N

    2013-12-16

    A technique to fabricate electrically conductive all-polymer 3D microstructures is reported. Superior conductivity, high spatial resolution and three-dimensionality are achieved by successive application of two-photon polymerization and in situ oxidative polymerization to a bi-component formulation, containing a photosensitive host matrix and an intrinsically conductive polymer precursor. By using polyethylene glycol diacrylate (PEG-DA) and 3,4-ethylenedioxythiophene (EDOT), the conductivity of 0.04 S/cm is reached, which is the highest value for the two-photon polymerized all-polymer microstructures to date. The measured electrical conductivity dependency on the EDOT concentration indicates percolation phenomenon and a three-dimensional nature of the conductive pathways. Tunable conductivity, biocompatibility, and environmental stability are the characteristics offered by PEG-DA/EDOT blends which can be employed in biomedicine, MEMS, microfluidics, and sensorics.

  8. Electromagnetic Response Inversion for a 3D Distribution of Conductivity/Dielect

    2001-10-24

    NLCGCS inverts electromagnetic responses for a 3D distribution of electrical conductivity and dielectric permittivity within the earth for geophysical applications using single processor computers. The software comes bundled with a graphical user interface to aid in model construction and analysis and viewing of earth images. The solution employs both dipole and finite size source configurations for harmonic oscillatory sources. A new nonlinear preconditioner is included in the solution to speed up solution convergence.

  9. Extreme low thermal conductivity in nanoscale 3D Si phononic crystal with spherical pores.

    PubMed

    Yang, Lina; Yang, Nuo; Li, Baowen

    2014-01-01

    In this work, we propose a nanoscale three-dimensional (3D) Si phononic crystal (PnC) with spherical pores, which can reduce the thermal conductivity of bulk Si by a factor up to 10,000 times at room temperature. Thermal conductivity of Si PnCs depends on the porosity, for example, the thermal conductivity of Si PnCs with porosity 50% is 300 times smaller than that of bulk Si. The phonon participation ratio spectra demonstrate that more phonons are localized as the porosity increases. The thermal conductivity is insensitive to the temperature changes from room temperature to 1100 K. The extreme-low thermal conductivity could lead to a larger value of ZT than unity as the periodic structure affects very little the electric conductivity.

  10. FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces

    SciTech Connect

    Ahluwalia, R.K.; Im, K.H.

    1992-08-01

    A computer code FURN3D has been developed for assessing the impact of burning different coals on heat absorption pattern in pulverized coal furnaces. The code is unique in its ability to conduct detailed spectral calculations of radiation transport in furnaces fully accounting for the size distributions of char, soot and ash particles, ash content, and ash composition. The code uses a hybrid technique of solving the three-dimensional radiation transport equation for absorbing, emitting and anisotropically scattering media. The technique achieves an optimal mix of computational speed and accuracy by combining the discrete ordinate method (S[sub 4]), modified differential approximation (MDA) and P, approximation in different range of optical thicknesses. The code uses spectroscopic data for estimating the absorption coefficients of participating gases C0[sub 2], H[sub 2]0 and CO. It invokes Mie theory for determining the extinction and scattering coefficients of combustion particulates. The optical constants of char, soot and ash are obtained from dispersion relations derived from reflectivity, transmissivity and extinction measurements. A control-volume formulation is adopted for determining the temperature field inside the furnace. A simple char burnout model is employed for estimating heat release and evolution of particle size distribution. The code is written in Fortran 77, has modular form, and is machine-independent. The computer memory required by the code depends upon the number of grid points specified and whether the transport calculations are performed on spectral or gray basis.

  11. FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces

    SciTech Connect

    Ahluwalia, R.K.; Im, K.H.

    1992-08-01

    A computer code FURN3D has been developed for assessing the impact of burning different coals on heat absorption pattern in pulverized coal furnaces. The code is unique in its ability to conduct detailed spectral calculations of radiation transport in furnaces fully accounting for the size distributions of char, soot and ash particles, ash content, and ash composition. The code uses a hybrid technique of solving the three-dimensional radiation transport equation for absorbing, emitting and anisotropically scattering media. The technique achieves an optimal mix of computational speed and accuracy by combining the discrete ordinate method (S{sub 4}), modified differential approximation (MDA) and P, approximation in different range of optical thicknesses. The code uses spectroscopic data for estimating the absorption coefficients of participating gases C0{sub 2}, H{sub 2}0 and CO. It invokes Mie theory for determining the extinction and scattering coefficients of combustion particulates. The optical constants of char, soot and ash are obtained from dispersion relations derived from reflectivity, transmissivity and extinction measurements. A control-volume formulation is adopted for determining the temperature field inside the furnace. A simple char burnout model is employed for estimating heat release and evolution of particle size distribution. The code is written in Fortran 77, has modular form, and is machine-independent. The computer memory required by the code depends upon the number of grid points specified and whether the transport calculations are performed on spectral or gray basis.

  12. Ice-Templated Assembly Strategy to Construct 3D Boron Nitride Nanosheet Networks in Polymer Composites for Thermal Conductivity Improvement.

    PubMed

    Zeng, Xiaoliang; Yao, Yimin; Gong, Zhengyu; Wang, Fangfang; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2015-12-01

    Owing to the growing heat removal issue of modern electronic devices, polymer composites with high thermal conductivity have drawn much attention in the past few years. However, a traditional method to enhance the thermal conductivity of the polymers by addition of inorganic fillers usually creates composite with not only limited thermal conductivity but also other detrimental effects due to large amount of fillers required. Here, novel polymer composites are reported by first constructing 3D boron nitride nanosheets (3D-BNNS) network using ice-templated approach and then infiltrating them with epoxy matrix. The obtained polymer composites exhibit a high thermal conductivity (2.85 W m(-1) K(-1)), a low thermal expansion coefficient (24-32 ppm K(-1)), and an increased glass transition temperature (T(g)) at relatively low BNNSs loading (9.29 vol%). These results demonstrate that this approach opens a new avenue for design and preparation of polymer composites with high thermal conductivity. The polymer composites are potentially useful in advanced electronic packaging techniques, namely, thermal interface materials, underfill materials, molding compounds, and organic substrates. PMID:26479262

  13. Ice-Templated Assembly Strategy to Construct 3D Boron Nitride Nanosheet Networks in Polymer Composites for Thermal Conductivity Improvement.

    PubMed

    Zeng, Xiaoliang; Yao, Yimin; Gong, Zhengyu; Wang, Fangfang; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2015-12-01

    Owing to the growing heat removal issue of modern electronic devices, polymer composites with high thermal conductivity have drawn much attention in the past few years. However, a traditional method to enhance the thermal conductivity of the polymers by addition of inorganic fillers usually creates composite with not only limited thermal conductivity but also other detrimental effects due to large amount of fillers required. Here, novel polymer composites are reported by first constructing 3D boron nitride nanosheets (3D-BNNS) network using ice-templated approach and then infiltrating them with epoxy matrix. The obtained polymer composites exhibit a high thermal conductivity (2.85 W m(-1) K(-1)), a low thermal expansion coefficient (24-32 ppm K(-1)), and an increased glass transition temperature (T(g)) at relatively low BNNSs loading (9.29 vol%). These results demonstrate that this approach opens a new avenue for design and preparation of polymer composites with high thermal conductivity. The polymer composites are potentially useful in advanced electronic packaging techniques, namely, thermal interface materials, underfill materials, molding compounds, and organic substrates.

  14. Heating properties of non-invasive hyperthermia treatment for abdominal deep tumors by 3-D FEM.

    PubMed

    Morita, E; Kato, K; Ono, S; Shindo, Y; Tsuchiya, K; Kubo, M

    2009-01-01

    This paper discusses the heating properties of a new type of hyperthermia system composed of a re-entrant type resonant cavity applicator for deep tumors of the abdominal region. In this method, a human body is placed in the gap of two inner electrodes and is non-invasively heated with electromagnetic fields stimulated in the cavity. Here, we calculated temperature distributions of a simple human abdominal phantom model that we constructed to examine the heating properties of the developed hyperthermia system. First, the proposed heating method and a simple abdominal model to calculate the temperature distribution are presented. Second, the computer simulation results of temperature distribution by 3-D FEM are presented. From these results, it was found that the proposed simple human abdominal phantom model composed of muscle, fat and lung was useful to test the heating properties of our heating method. Our heating method was also effective to non-invasively heat abdominal deep tumors.

  15. Direct synthesis of graphene 3D-coated Cu nanosilks network for antioxidant transparent conducting electrode

    NASA Astrophysics Data System (ADS)

    Xu, Hongmei; Wang, Huachun; Wu, Chenping; Lin, Na; Soomro, Abdul Majid; Guo, Huizhang; Liu, Chuan; Yang, Xiaodong; Wu, Yaping; Cai, Duanjun; Kang, Junyong

    2015-06-01

    Transparent conducting film occupies an important position in various optoelectronic devices. To replace the costly tin-doped indium oxide (ITO), promising materials, such as metal nanowires and graphene, have been widely studied. Moreover, a long-pursued goal is to consolidate these two materials together and express their outstanding properties simultaneously. We successfully achieved a direct 3D coating of a graphene layer on an interlacing Cu nanosilks network by the low pressure chemical vapor deposition method. High aspect ratio Cu nanosilks (13 nm diameter with 40 μm length) were synthesized through the nickel ion catalytic process. Large-size, transparent conducting film was successfully fabricated with Cu nanosilks ink by the imprint method. A magnetic manipulator equipped with a copper capsule was used to produce high Cu vapor pressure on Cu nanosilks and realize the graphene 3D-coating. The coated Cu@graphene nanosilks network achieved high transparency, low sheet resistance (41 Ohm sq-1 at 95% transmittance) and robust antioxidant ability. With this technique, the transfer process of graphene is no longer needed, and a flexible, uniform and high-performance transparent conducting film could be fabricated in unlimited size.Transparent conducting film occupies an important position in various optoelectronic devices. To replace the costly tin-doped indium oxide (ITO), promising materials, such as metal nanowires and graphene, have been widely studied. Moreover, a long-pursued goal is to consolidate these two materials together and express their outstanding properties simultaneously. We successfully achieved a direct 3D coating of a graphene layer on an interlacing Cu nanosilks network by the low pressure chemical vapor deposition method. High aspect ratio Cu nanosilks (13 nm diameter with 40 μm length) were synthesized through the nickel ion catalytic process. Large-size, transparent conducting film was successfully fabricated with Cu nanosilks ink by

  16. Methodology for the Assessment of 3D Conduction Effects in an Aerothermal Wind Tunnel Test

    NASA Technical Reports Server (NTRS)

    Oliver, Anthony Brandon

    2010-01-01

    This slide presentation reviews a method for the assessment of three-dimensional conduction effects during test in a Aerothermal Wind Tunnel. The test objectives were to duplicate and extend tests that were performed during the 1960's on thermal conduction on proturberance on a flat plate. Slides review the 1D versus 3D conduction data reduction error, the analysis process, CFD-based analysis, loose coupling method that simulates a wind tunnel test run, verification of the CFD solution, Grid convergence, Mach number trend, size trends, and a Sumary of the CFD conduction analysis. Other slides show comparisons to pretest CFD at Mach 1.5 and 2.16 and the geometries of the models and grids.

  17. Turbomachinery Heat Transfer and Loss Modeling for 3D Navier-Stokes Codes

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth; Ameri, Ali

    2005-01-01

    This report's contents focus on making use of NASA Glenn on-site computational facilities,to develop, validate, and apply models for use in advanced 3D Navier-Stokes Computational Fluid Dynamics (CFD) codes to enhance the capability to compute heat transfer and losses in turbomachiney.

  18. Photopolymerization of 3D conductive polypyrrole structures via digital light processing

    NASA Astrophysics Data System (ADS)

    Price, Aaron D.

    2016-04-01

    The intrinsically conductive polymer polypyrrole is conventionally synthesized as monolithic films that exhibit significant actuation strains when subjected to an applied electric potential. Though numerous linear and bending actuators based on polypyrrole films have been investigated, the limitations inherent to planar film geometries inhibit the realization of more complex behaviours. Hence, three-dimensional polypyrrole structures are sought to greatly expand the potential applications for conductive polymer actuators. This research aims to develop a novel additive manufacturing method for the fabrication of three-dimensional structures of conductive polypyrrole. In this investigation, radiation-curing techniques are employed by means of digital light processing (DLP) technology. DLP is an additive manufacturing technique where programmed light patterns emitted from a dedicated source are used to selectively cure a specially formulated polymer resin. Successive curing operations lead to a layered 3D structure into which fine features may be incorporated. Energy dispersive spectroscopy (EDS) is subsequently employed to examine the unique microstructural features of the resultant 3D printed polymer morphology in order to elucidate the nature of the conductivity. These polymer microstructures are highly desirable since actuation response times are highly dependent on ion transport distances, and hence the ability to fabricate fine features offers a potential mechanism to improve actuator performance.

  19. 3D simulation and analytical model of chemical heating during silicon wet etching in microchannels

    NASA Astrophysics Data System (ADS)

    Konakov, S. A.; Krzhizhanovskaya, V. V.

    2016-02-01

    We investigate chemical heating of a Silicon-on-Glass (SOG) chip during a highly exothermic reaction of silicon etching in potassium hydroxide (KOH) solution in a microchannel of 100-micron width inside a 1x1 cm SOG chip. Two modeling approaches have been developed, implemented and compared. (1) A detailed 3D model is based on unsteady Navier-Stokes equations, heat and mass transfer equations of a laminar flow of viscous incompressible fluid in microchannel, coupled to the heat transfer equation in the solid chip. 3D simulation results predicted temperature distributions for different KOH flow rates and silicon etching areas. Microchannels of a small diameter do not heat the chip due to the insufficient chemical heating of the cold fluid, whereas large-area etching (large channel diameter and/or length) leads to local overheating that may have negative effects on the device performance and durability. (2) A simplified analytical model solves a thermal balance equation describing the heating by chemical reactions inside the microchannel and energy loss by free convection of air around the chip. Analytical results compare well with the 3D simulations of a single straight microchannel, therefore the analytical model is suitable for quick estimation of process parameters. For complex microstructures, this simplified approach may be used as the first approximation.

  20. Pattern Transformation of Heat-Shrinkable Polymer by Three-Dimensional (3D) Printing Technique

    PubMed Central

    Zhang, Quan; Yan, Dong; Zhang, Kai; Hu, Gengkai

    2015-01-01

    A significant challenge in conventional heat-shrinkable polymers is to produce controllable microstructures. Here we report that the polymer material fabricated by three-dimensional (3D) printing technique has a heat-shrinkable property, whose initial microstructure can undergo a spontaneous pattern transformation under heating. The underlying mechanism is revealed by evaluating internal strain of the printed polymer from its fabricating process. It is shown that a uniform internal strain is stored in the polymer during the printing process and can be released when heated above its glass transition temperature. Furthermore, the internal strain can be used to trigger the pattern transformation of the heat-shrinkable polymer in a controllable way. Our work provides insightful ideas to understand a novel mechanism on the heat-shrinkable effect of printed material, but also to present a simple approach to fabricate heat-shrinkable polymer with a controllable thermo-structural response. PMID:25757881

  1. Variable conductance heat pipe technology

    NASA Technical Reports Server (NTRS)

    Marcus, B. D.; Edwards, D. K.; Anderson, W. T.

    1973-01-01

    Research and development programs in variable conductance heat pipe technology were conducted. The treatment has been comprehensive, involving theoretical and/or experimental studies in hydrostatics, hydrodynamics, heat transfer into and out of the pipe, fluid selection, and materials compatibility, in addition to the principal subject of variable conductance control techniques. Efforts were not limited to analytical work and laboratory experimentation, but extended to the development, fabrication and test of spacecraft hardware, culminating in the successful flight of the Ames Heat Pipe Experiment on the OAO-C spacecraft.

  2. A miniature microbial fuel cell with conducting nanofibers-based 3D porous biofilm

    NASA Astrophysics Data System (ADS)

    Jiang, Huawei; Halverson, Larry J.; Dong, Liang

    2015-12-01

    Miniature microbial fuel cell (MFC) technology has received growing interest due to its potential applications in high-throughput screening of bacteria and mutants to elucidate mechanisms of electricity generation. This paper reports a novel miniature MFC with an improved output power density and short startup time, utilizing electrospun conducting poly(3,4-ethylenedioxythiophene) (PEDOT) nanofibers as a 3D porous anode within a 12 μl anolyte chamber. This device results in 423 μW cm-3 power density based on the volume of the anolyte chamber, using Shewanella oneidensis MR-1 as a model biocatalyst without any optimization of bacterial culture. The device also excels in a startup time of only 1hr. The high conductivity of the electrospun nanofibers makes them suitable for efficient electron transfer. The mean pore size of the conducting nanofibers is several micrometers, which is favorable for bacterial penetration and colonization of surfaces of the nanofibers. We demonstrate that S. oneidensis can fully colonize the interior region of this nanofibers-based porous anode. This work represents a new attempt to explore the use of electrospun PEDOT nanofibers as a 3D anode material for MFCs. The presented miniature MFC potentially will provide a high-sensitivity, high-throughput tool to screen suitable bacterial species and mutant strains for use in large-size MFCs.

  3. Robotic extrusion processes for direct ink writing of 3D conductive polyaniline structures

    NASA Astrophysics Data System (ADS)

    Holness, F. Benjamin; Price, Aaron D.

    2016-04-01

    The intractable nature of intrinsically conductive polymers (ICP) leads to practical limitations in the fabrication of ICP-based transducers having complex three-dimensional geometries. Conventional ICP device fabrication processes have focused primarily on thin-film deposition techniques; therefore this study explores novel additive manufacturing processes specifically developed for ICP with the ultimate goal of increasing the functionality of ICP sensors and actuators. Herein we employ automated polymer paste extrusion processes for the direct ink writing of 3D conductive polyaniline (PANI) structures. Realization of these structures is enabled through a modified fused filament fabrication delta robot equipped with an integrated polymer paste extruder. This unique robot-controlled additive manufacturing platform is capable of fabricating high-resolution 3D conductive PANI and has been utilized to produce structures with a minimum feature size of 1.5 mm. The required processability of PANI is achieved by means of a counter-ion induced thermal doping method. Using this method, a viscous paste is formulated as the extrudate and a thermo-chemical treatment is applied post extrusion to finalize the complexation.

  4. A Numerical Study on the Thermal Conductivity of 3D Woven C/C Composites at High Temperature

    NASA Astrophysics Data System (ADS)

    Shigang, Ai; Rujie, He; Yongmao, Pei

    2015-12-01

    Experimental data for Carbon/Carbon (C/C) constituent materials are combined with a three dimensional steady state heat transfer finite element analysis to demonstrate the average in-plane and out-of-plane thermal conductivities (TCs) of C/C composites. The finite element analysis is carried out at two distinct length scales: (a) a micro scale comparable with the diameter of carbon fibres and (b) a meso scale comparable with the carbon fibre yarns. Micro-scale model calculate the TCs at the fibre yarn scale in the three orthogonal directions ( x, y and z). The output results from the micro-scale model are then incorporated in the meso-scale model to obtain the global TCs of the 3D C/C composite. The simulation results are quite consistent with the theoretical and experimental counterparts reported in references. Based on the numerical approach, TCs of the 3D C/C composite are calculated from 300 to 2500 K. Particular attention is given in elucidating the variations of the TCs with temperature. The multi-scale models provide an efficient approach to predict the TCs of 3D textile materials, which is helpful for the thermodynamic property analysis and structure design of the C/C composites.

  5. Characterization of 3D interconnected microstructural network in mixed ionic and electronic conducting ceramic composites

    NASA Astrophysics Data System (ADS)

    Harris, William M.; Brinkman, Kyle S.; Lin, Ye; Su, Dong; Cocco, Alex P.; Nakajo, Arata; Degostin, Matthew B.; Chen-Wiegart, Yu-Chen Karen; Wang, Jun; Chen, Fanglin; Chu, Yong S.; Chiu, Wilson K. S.

    2014-04-01

    The microstructure and connectivity of the ionic and electronic conductive phases in composite ceramic membranes are directly related to device performance. Transmission electron microscopy (TEM) including chemical mapping combined with X-ray nanotomography (XNT) have been used to characterize the composition and 3-D microstructure of a MIEC composite model system consisting of a Ce0.8Gd0.2O2 (GDC) oxygen ion conductive phase and a CoFe2O4 (CFO) electronic conductive phase. The microstructural data is discussed, including the composition and distribution of an emergent phase which takes the form of isolated and distinct regions. Performance implications are considered with regards to the design of new material systems which evolve under non-equilibrium operating conditions.The microstructure and connectivity of the ionic and electronic conductive phases in composite ceramic membranes are directly related to device performance. Transmission electron microscopy (TEM) including chemical mapping combined with X-ray nanotomography (XNT) have been used to characterize the composition and 3-D microstructure of a MIEC composite model system consisting of a Ce0.8Gd0.2O2 (GDC) oxygen ion conductive phase and a CoFe2O4 (CFO) electronic conductive phase. The microstructural data is discussed, including the composition and distribution of an emergent phase which takes the form of isolated and distinct regions. Performance implications are considered with regards to the design of new material systems which evolve under non-equilibrium operating conditions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06684c

  6. Mass Spectrometry of 3D-printed plastic parts under plasma and radiative heat environments

    NASA Astrophysics Data System (ADS)

    Rivera, W. F.; Romero-Talamas, C. A.; Bates, E. M.; Birmingham, W.; Takeno, J.; Knop, S.

    2015-11-01

    We present the design and preliminary results of a mass spectrometry system used to assess vacuum compatibility of 3D-printed parts, developed at the Dusty Plasma Laboratory of the University of Maryland Baltimore County (UMBC). A decrease in outgassing was observed when electroplated parts were inserted in the test chamber vs. non electroplated ones. Outgassing will also be tested under different environments such as plasma and radiative heat. Heat will be generated by a titanium getter pump placed inside a 90 degree elbow, such that titanium does not coat the part. A mirror inside the elbow will be used to throttle the heat arriving at the part. Plasma exposure of 3D printed parts will be achieved by placing the parts in a separate chamber connected to the spectrometer by a vacuum line that is differentially pumped. The signals from the mass spectrometer will be analyzed to see how the vacuum conditions fluctuate under different plasma discharges.

  7. 3D topographic correction of the BSR heat flow and detection of focused fluid flow

    NASA Astrophysics Data System (ADS)

    He, Tao; Li, Hong-Lin; Zou, Chang-Chun

    2014-06-01

    The bottom-simulating reflector (BSR) is a seismic indicator of the bottom of a gas hydrate stability zone. Its depth can be used to calculate the seafloor surface heat flow. The calculated BSR heat flow variations include disturbances from two important factors: (1) seafloor topography, which focuses the heat flow over regions of concave topography and defocuses it over regions of convex topography, and (2) the focused warm fluid flow within the accretionary prism coming from depths deeper than BSR. The focused fluid flow can be detected if the contribution of the topography to the BSR heat flow is removed. However, the analytical equation cannot solve the topographic effect at complex seafloor regions. We prove that 3D finite element method can model the topographic effect on the regional background heat flow with high accuracy, which can then be used to correct the topographic effect and obtain the BSR heat flow under the condition of perfectly flat topography. By comparing the corrected BSR heat flow with the regional background heat flow, focused fluid flow regions can be detected that are originally too small and cannot be detected using present-day equipment. This method was successfully applied to the midslope region of northern Cascadia subducting margin. The results suggest that the Cucumber Ridge and its neighboring area are positive heat flow anomalies, about 10%-20% higher than the background heat flow after 3D topographic correction. Moreover, the seismic imaging associated the positive heat flow anomaly areas with seabed fracture-cavity systems. This suggests flow of warm gas-carrying fluids along these high-permeability pathways, which could result in higher gas hydrate concentrations.

  8. Braiding, Turbulent 3D Reconnection and Impulsive Heating of the Magnetically Closed Corona

    NASA Astrophysics Data System (ADS)

    Russell, A. J. B.; Hornig, G.; Yeates, A.

    2015-12-01

    Magnetic braiding is one of the leading theories for heating the magnetically closed corona, however, understanding of the central processes has changed dramatically in recent years. In particular, it is now recognized that braided fields allow impulsive heating via the formation of large numbers of turbulently forming and evolving reconnection regions, which are volume filling and inherently 3D, and it is no longer necessary to invoke topological discontinuities to dissipate stored energy. It has also become clear that turbulent reconnection produces structures that are inconsistent with a Taylor relaxation model, raising questions about how much stored energy is available for heating and particle acceleration. Here, we look at recent progress that has been made in dealing with this complex heating mechanism and present a new advance that greatly improves estimates of the magnetic energy available for heating and particle acceleration.

  9. Toward A 3-D Picture of Hydraulic Conductivity With Multilevel Slug Tests

    NASA Astrophysics Data System (ADS)

    McElwee, C. D.; McElwee, C. D.; Ross, H. C.

    2001-12-01

    The GEMS (Geohydrologic Experiment and Monitoring Site) field area has been established (in the Kansas River valley near Lawrence, Kansas) for a variety of reasons relating to research and teaching in hydrogeology at the University of Kansas. Over 70 wells have been installed for various purposes. The site overlies an alluvial aquifer with a total thickness of about 70 feet. The water table is typically about 20 feet below the surface, giving a total saturated thickness of about 50 feet. The upper part of the aquifer is finer material consisting of silt and clay. Typically, the lower 35 feet of the aquifer is sand and gravel. A number of wells through out the site are fully screened through the sand and gravel aquifer. Some of these fully screened wells are larger diameters; however, most wells are constructed of 2 inch PVC casing. Slug tests are widely used in hydrogeology to measure hydraulic conductivity. Over the last several years we have been conducting research to improve the slug test method. We have previously reported the detailed structure of hydraulic conductivity that can be seen in a 5 inch well (McElwee and Zemansky, EOS, v. 80, no. 46, p. F397, 1999) at this site, using multilevel slug tests. The existing 2 inch, fully screened wells are spread out over the site and offer the opportunity for developing a 3-D picture of the hydraulic conductivity distribution. However, it is difficult to develop a system that allows multilevel slug tests to be done accurately and efficiently in a 2 inch well. This is especially true in regions of very high hydraulic conductivity, where the water velocity in the casing will be relatively high. The resistance caused by frictional forces in the equipment must be minimized and a model taking account of these forces must be used. We have developed a system (equipment, software, and technique) for performing multilevel slug tests in 2 inch wells. Some equipment configurations work better than others. The data that we have

  10. One-Dimensional Heat Conduction

    SciTech Connect

    Sutton, Steven B.

    1992-03-09

    ICARUS-LLNL was developed to solve one-dimensional planar, cylindrical, or spherical conduction heat transfer problems. The IBM PC version is a family of programs including ICARUSB, an interactive BASIC heat conduction program; ICARUSF, a FORTRAN heat conduction program; PREICAR, a BASIC preprocessor for ICARUSF; and PLOTIC and CPLOTIC, interpretive BASIC and compiler BASIC plot postprocessor programs. Both ICARUSB and ICARUSF account for multiple material regions and complex boundary conditions, such as convection or radiation. In addition, ICARUSF accounts for temperature-dependent material properties and time or temperature-dependent boundary conditions. PREICAR is a user-friendly preprocessor used to generate or modify ICARUSF input data. PLOTIC and CPLOTIC generate plots of the temperature or heat flux profile at specified times, plots of the variation of temperature or heat flux with time at selected nodes, or plots of the solution grid. First developed in 1974 to allow easy modeling of complex one-dimensional systems, its original application was in the nuclear explosive testing program. Since then it has undergone extensive revision and been applied to problems dealing with laser fusion target fabrication, heat loads on underground tests, magnetic fusion switching tube anodes, and nuclear waste isolation canisters.

  11. One-Dimensional Heat Conduction

    1992-03-09

    ICARUS-LLNL was developed to solve one-dimensional planar, cylindrical, or spherical conduction heat transfer problems. The IBM PC version is a family of programs including ICARUSB, an interactive BASIC heat conduction program; ICARUSF, a FORTRAN heat conduction program; PREICAR, a BASIC preprocessor for ICARUSF; and PLOTIC and CPLOTIC, interpretive BASIC and compiler BASIC plot postprocessor programs. Both ICARUSB and ICARUSF account for multiple material regions and complex boundary conditions, such as convection or radiation. In addition,more » ICARUSF accounts for temperature-dependent material properties and time or temperature-dependent boundary conditions. PREICAR is a user-friendly preprocessor used to generate or modify ICARUSF input data. PLOTIC and CPLOTIC generate plots of the temperature or heat flux profile at specified times, plots of the variation of temperature or heat flux with time at selected nodes, or plots of the solution grid. First developed in 1974 to allow easy modeling of complex one-dimensional systems, its original application was in the nuclear explosive testing program. Since then it has undergone extensive revision and been applied to problems dealing with laser fusion target fabrication, heat loads on underground tests, magnetic fusion switching tube anodes, and nuclear waste isolation canisters.« less

  12. Finite-Difference Algorithm for Simulating 3D Electromagnetic Wavefields in Conductive Media

    NASA Astrophysics Data System (ADS)

    Aldridge, D. F.; Bartel, L. C.; Knox, H. A.

    2013-12-01

    Electromagnetic (EM) wavefields are routinely used in geophysical exploration for detection and characterization of subsurface geological formations of economic interest. Recorded EM signals depend strongly on the current conductivity of geologic media. Hence, they are particularly useful for inferring fluid content of saturated porous bodies. In order to enhance understanding of field-recorded data, we are developing a numerical algorithm for simulating three-dimensional (3D) EM wave propagation and diffusion in heterogeneous conductive materials. Maxwell's equations are combined with isotropic constitutive relations to obtain a set of six, coupled, first-order partial differential equations governing the electric and magnetic vectors. An advantage of this system is that it does not contain spatial derivatives of the three medium parameters electric permittivity, magnetic permeability, and current conductivity. Numerical solution methodology consists of explicit, time-domain finite-differencing on a 3D staggered rectangular grid. Temporal and spatial FD operators have order 2 and N, where N is user-selectable. We use an artificially-large electric permittivity to maximize the FD timestep, and thus reduce execution time. For the low frequencies typically used in geophysical exploration, accuracy is not unduly compromised. Grid boundary reflections are mitigated via convolutional perfectly matched layers (C-PMLs) imposed at the six grid flanks. A shared-memory-parallel code implementation via OpenMP directives enables rapid algorithm execution on a multi-thread computational platform. Good agreement is obtained in comparisons of numerically-generated data with reference solutions. EM wavefields are sourced via point current density and magnetic dipole vectors. Spatially-extended inductive sources (current carrying wire loops) are under development. We are particularly interested in accurate representation of high-conductivity sub-grid-scale features that are common

  13. 3D volume MR temperature mapping for HIFU heating trajectory comparisons

    NASA Astrophysics Data System (ADS)

    Todd, Nick; Vyas, Urvi; de Bever, Josh; Payne, Allison; Parker, Dennis L.

    2012-10-01

    Many areas of MR-guided thermal therapy research would benefit from temperature maps with high spatial and temporal resolution that cover a large 3-D volume. This paper describes an approach to achieve these goals that is suitable for research applications where retrospective reconstruction of the temperature maps is acceptable. The method acquires undersampled data from a modified 3-D segmented EPI sequence and creates images using a temporally constrained reconstruction algorithm. The 3-D images can be zero-filled to arbitrarily small voxel spacing in all directions and then converted into temperature maps using the standard proton resonance frequency (PRF) shift technique. During HIFU heating experiments, the proposed method was used to obtain temperature maps with 1.5×1.5×3.0 mm resolution, 288×162×78 mm field of view, and 1.7 second temporal resolution. The approach is validated to demonstrate that it can accurately capture the spatial characteristics and time dynamics of rapidly changing HIFU-induced temperature distributions. An example application is presented where the method is used to analyze and compare different HIFU volumetric heating trajectories.

  14. Parallel computing simulation of electrical excitation and conduction in the 3D human heart.

    PubMed

    Di Yu; Dongping Du; Hui Yang; Yicheng Tu

    2014-01-01

    A correctly beating heart is important to ensure adequate circulation of blood throughout the body. Normal heart rhythm is produced by the orchestrated conduction of electrical signals throughout the heart. Cardiac electrical activity is the resulted function of a series of complex biochemical-mechanical reactions, which involves transportation and bio-distribution of ionic flows through a variety of biological ion channels. Cardiac arrhythmias are caused by the direct alteration of ion channel activity that results in changes in the AP waveform. In this work, we developed a whole-heart simulation model with the use of massive parallel computing with GPGPU and OpenGL. The simulation algorithm was implemented under several different versions for the purpose of comparisons, including one conventional CPU version and two GPU versions based on Nvidia CUDA platform. OpenGL was utilized for the visualization / interaction platform because it is open source, light weight and universally supported by various operating systems. The experimental results show that the GPU-based simulation outperforms the conventional CPU-based approach and significantly improves the speed of simulation. By adopting modern computer architecture, this present investigation enables real-time simulation and visualization of electrical excitation and conduction in the large and complicated 3D geometry of a real-world human heart.

  15. Heat conduction in three dimensions

    NASA Technical Reports Server (NTRS)

    Danza, T. M.; Fesler, L. W.; Mongan, R. D.

    1980-01-01

    Multidimensional heat conduction program computes transient temperature history and steady state temperatures of complex body geometries in three dimensions. Emphasis is placed on type of problems associated with Space Shuttle thermal protection system, but program could be used in thermal analysis of most three dimensional systems.

  16. 3D modelling of coupled mass and heat transfer of a convection-oven roasting process.

    PubMed

    Feyissa, Aberham Hailu; Gernaey, Krist V; Adler-Nissen, Jens

    2013-04-01

    A 3D mathematical model of coupled heat and mass transfer describing oven roasting of meat has been developed from first principles. The proposed mechanism for the mass transfer of water is modified and based on a critical literature review of the effect of heat on meat. The model equations are based on a conservation of mass and energy, coupled through Darcy's equations of porous media - the water flow is mainly pressure-driven. The developed model together with theoretical and experimental assessments were used to explain the heat and water transport and the effect of the change in microstructure (permeability, water binding capacity and elastic modulus) that occur during the meat roasting process. The developed coupled partial differential equations were solved by using COMSOL Multiphysics®3.5 and state variables are predicted as functions of both position and time. The proposed mechanism was partially validated by experiments in a convection oven where temperatures were measured online.

  17. Role of 3d-dispersive Alfven waves in coronal heating

    NASA Astrophysics Data System (ADS)

    Sharma, R. P.; Yadav, N.; Pathak, N.

    2014-05-01

    Coronal heating is one of the unresolved puzzles in solar physics from decades. In the present paper we have investigated the dynamics of vortices to apprehend coronal heating problem. A three dimensional (3d) model has been developed to study propagation of dispersive Alfvén waves (DAWs) in presence of ion acoustic waves which results in excitation of DAW and evolution of vortices. Taking ponderomotive nonlinearity into account, development of these vortices has been studied. There are observations of such vortices in the chromosphere, transition region and also in the lower solar corona. These structures may play an important role in transferring energy from lower solar atmosphere to corona and result in coronal heating. Nonlinear interaction of these waves is studied in view of recent simulation work and observations of giant magnetic tornadoes in solar corona and lower atmosphere of sun by solar dynamical observatory (SDO).

  18. ALE3D Simulation of Heating and Violence in a Fast Cookoff Experiment with LX-10

    SciTech Connect

    McClelland, M A; Maienschein, J L; Howard, W M; Nichols, A L; deHaven, M R; Strand, O T

    2006-06-26

    We performed a computational and experimental analysis of fast cookoff of LX-10 (94.7% HMX, 5.3% Viton A) confined in a 2 kbar steel tube with reinforced end caps. A Scaled-Thermal-Explosion-eXperiment (STEX) was completed in which three radiant heaters were used to heat the vessel until ignition, resulting in a moderately violent explosion after 20.4 minutes. Thermocouple measurements showed tube temperatures as high as 340 C at ignition and LX-10 surface temperatures as high as 279 C, which is near the melting point of HMX. Three micro-power radar systems were used to measure mean fragment velocities of 840 m/s. Photonics Doppler Velocimeters (PDVs) showed a rapid acceleration of fragments over 80 {micro}s. A one-dimensional ALE3D cookoff model at the vessel midplane was used to simulate the heating, thermal expansion, LX-10 decomposition composition, and closing of the gap between the HE (High Explosive) and vessel wall. Although the ALE3D simulation terminated before ignition, the model provided a good representation of heat transfer through the case and across the dynamic gap to the explosive.

  19. 3D finite element model of RF heating: novel nonablative cutaneous therapy

    NASA Astrophysics Data System (ADS)

    Pham, Linda; Pope, Karl A.

    2003-06-01

    This study presents a finite element model of a non-ablative RF tissue heating system for dermatological applications. The Thermage ThermaCool TC System consists of a capacitively coupled treatment tip, handpiece, RF generator, and cryogen delivery system. Various electrode geometries were created to generate uniform thermal profiles at specific depths in the tissue. The optimal thermal treatment depth for a clinical indication is influenced by factors such as tissue thickness for a given anatomical location, the desired target for heating in that tissue, and anesthesia factors. Electrodes of ¼, 1, and 1½cm2 area were evaluated for depth of treatment. A 3D multi-physics finite element model was developed to simulate RF heating in tissue. The program coupled electrical and thermal models to predict the electric field produced and the consequent heating. The electrical portion of the model was verified using an electric field mapping system. The thermal section of the model was confirmed via thermocouple measurements for cooling and infrared imaging measurements for RF heating. The FEM model produced electrical and thermal predictions that were verified with experimental measurements. The finite element model shows significant potential as a predictive R&D tool to assist in RF electrode design and reduce product development time.

  20. Modeling 3D conjugate heat and mass transfer for turbulent air drying of Chilean papaya in a direct contact dryer

    NASA Astrophysics Data System (ADS)

    Lemus-Mondaca, Roberto A.; Vega-Gálvez, Antonio; Zambra, Carlos E.; Moraga, Nelson O.

    2016-03-01

    A 3D model considering heat and mass transfer for food dehydration inside a direct contact dryer is studied. The k- ɛ model is used to describe turbulent air flow. The samples thermophysical properties as density, specific heat, and thermal conductivity are assumed to vary non-linearly with temperature. FVM, SIMPLE algorithm based on a FORTRAN code are used. Results unsteady velocity, temperature, moisture, kinetic energy and dissipation rate for the air flow are presented, whilst temperature and moisture values for the food also are presented. The validation procedure includes a comparison with experimental and numerical temperature and moisture content results obtained from experimental data, reaching a deviation 7-10 %. In addition, this turbulent k- ɛ model provided a better understanding of the transport phenomenon inside the dryer and sample.

  1. Estimating Hydraulic Conductivities in a Fractured Shale Formation from Pressure Pulse Testing and 3d Modeling

    NASA Astrophysics Data System (ADS)

    Courbet, C.; DICK, P.; Lefevre, M.; Wittebroodt, C.; Matray, J.; Barnichon, J.

    2013-12-01

    logging, porosity varies by a factor of 2.5 whilst hydraulic conductivity varies by 2 to 3 orders of magnitude. In addition, a 3D numerical reconstruction of the internal structure of the fault zone inferred from borehole imagery has been built to estimate the permeability tensor variations. First results indicate that hydraulic conductivity values calculated for this structure are 2 to 3 orders of magnitude above those measured in situ. Such high values are due to the imaging method that only takes in to account open fractures of simple geometry (sine waves). Even though improvements are needed to handle more complex geometry, outcomes are promising as the fault damaged zone clearly appears as the highest permeability zone, where stress analysis show that the actual stress state may favor tensile reopening of fractures. Using shale samples cored from the different internal structures of the fault zone, we aim now to characterize the advection and diffusion using laboratory petrophysical tests combined with radial and through-diffusion experiments.

  2. Conductive-bridging random access memory: challenges and opportunity for 3D architecture.

    PubMed

    Jana, Debanjan; Roy, Sourav; Panja, Rajeswar; Dutta, Mrinmoy; Rahaman, Sheikh Ziaur; Mahapatra, Rajat; Maikap, Siddheswar

    2015-01-01

    The performances of conductive-bridging random access memory (CBRAM) have been reviewed for different switching materials such as chalcogenides, oxides, and bilayers in different structures. The structure consists of an inert electrode and one oxidized electrode of copper (Cu) or silver (Ag). The switching mechanism is the formation/dissolution of a metallic filament in the switching materials under external bias. However, the growth dynamics of the metallic filament in different switching materials are still debated. All CBRAM devices are switching under an operation current of 0.1 μA to 1 mA, and an operation voltage of ±2 V is also needed. The device can reach a low current of 5 pA; however, current compliance-dependent reliability is a challenging issue. Although a chalcogenide-based material has opportunity to have better endurance as compared to an oxide-based material, data retention and integration with the complementary metal-oxide-semiconductor (CMOS) process are also issues. Devices with bilayer switching materials show better resistive switching characteristics as compared to those with a single switching layer, especially a program/erase endurance of >10(5) cycles with a high speed of few nanoseconds. Multi-level cell operation is possible, but the stability of the high resistance state is also an important reliability concern. These devices show a good data retention of >10(5) s at >85°C. However, more study is needed to achieve a 10-year guarantee of data retention for non-volatile memory application. The crossbar memory is benefited for high density with low power operation. Some CBRAM devices as a chip have been reported for proto-typical production. This review shows that operation current should be optimized for few microamperes with a maintaining speed of few nanoseconds, which will have challenges and also opportunities for three-dimensional (3D) architecture. PMID:25977660

  3. North Cascadia heat flux and fluid flow from gas hydrates: Modeling 3-D topographic effects

    NASA Astrophysics Data System (ADS)

    Li, Hong-lin; He, Tao; Spence, George D.

    2014-01-01

    The bottom-simulating reflector (BSR) of gas hydrate is well imaged from two perpendicular seismic grids in the region of a large carbonate mound, informally called Cucumber Ridge off Vancouver Island. We use a new method to calculate 3-D heat flow map from the BSR depths, in which we incorporate 3-D topographic corrections after calibrated by the drilling results from nearby (Integrated) Ocean Drilling Program Site 889 and Site U1327. We then estimate the associated fluid flow by relating it to the topographically corrected heat flux anomalies. In the midslope region, a heat flux anomaly of 1 mW/m2 can be associated with an approximate focused fluid flow rate of 0.09 mm/yr. Around Cucumber Ridge, high rates of focused fluid flow were observed at steep slopes with values more than double the average regional diffusive fluid discharge rate of 0.56 mm/yr. As well, in some areas of relatively flat seafloor, the focused fluid flow rates still exceeded 0.5 mm/yr. On the seismic lines the regions of focused fluid flow were commonly associated with seismic blanking zones above the BSR and sometimes with strong reflectors below the BSR, indicating that the faults/fractures provide high-permeability pathways for fluids to carry methane from BSR depths to the seafloor. These high fluid flow regions cover mostly the western portion of our area with gas hydrate concentration estimations of ~6% based on empirical correlations from Hydrate Ridge in south off Oregon, significantly higher than previously recognized values of ~2.5% in the eastern portion determined from Site U1327.

  4. Precise 3D printing of micro/nanostructures using highly conductive carbon nanotube-thiol-acrylate composites

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Xiong, W.; Jiang, L. J.; Zhou, Y. S.; Lu, Y. F.

    2016-04-01

    Two-photon polymerization (TPP) is of increasing interest due to its unique combination of truly three-dimensional (3D) fabrication capability and ultrahigh spatial resolution of ~40 nm. However, the stringent requirements of non-linear resins seriously limit the material functionality of 3D printing via TPP. Precise fabrication of 3D micro/nanostructures with multi-functionalities such as high electrical conductivity and mechanical strength is still a long-standing challenge. In this work, TPP fabrication of arbitrary 3D micro/nanostructures using multi-walled carbon nanotube (MWNT)-thiolacrylate (MTA) composite resins has been developed. Up to 0.2 wt% MWNTs have been incorporated into thiol-acrylate resins to form highly stable and uniform composite photoresists without obvious degradation for one week at room temperature. Various functional 3D micro/nanostructures including woodpiles, micro-coils, spiral-like photonic crystals, suspended micro-bridges, micro-gears and complex micro-cars have been successfully fabricated. The MTA composite resin offers significant enhancements in electrical conductivity and mechanical strength, and on the same time, preserving high optical transmittance and flexibility. Tightly controlled alignment of MWNTs and the strong anisotropy effect were confirmed. Microelectronic devices including capacitors and resistors made of the MTA composite polymer were demonstrated. The 3D micro/nanofabrication using the MTA composite resins enables the precise 3D printing of micro/nanostructures of high electrical conductivity and mechanical strength, which is expected to lead a wide range of device applications, including micro/nano-electromechanical systems (MEMS/NEMS), integrated photonics and 3D electronics.

  5. The 3D heat flux density distribution on a novel parabolic trough wavy absorber

    NASA Astrophysics Data System (ADS)

    Demagh, Yassine; Kabar, Yassine; Bordja, Lyes; Noui, Samira

    2016-05-01

    The non-uniform concentrated solar flux distribution on the outer surface of the absorber pipe can lead to large circumferential gradient temperature and high concentrated temperature of the absorber pipe wall, which is one of the primary causes of parabolic trough solar receiver breakdown. In this study, a novel shape of the parabolic trough absorber pipe is proposed as a solution to well homogenize the solar flux distribution, as well as, the temperature in the absorber wall. The conventional straight absorber located along the focal line of the parabola is replaced by wavy one (invention patent by Y. Demagh [1]) for which the heat flux density distribution on the outer surface varies in both axial and azimuthal directions (3D) while it varies only in the azimuthal direction on the former (2D). As far as we know, there is not previous study which has used a longitudinally wavy pipe as an absorber into the parabolic trough collector unit.

  6. Improved time-space method for 3-D heat transfer problems including global warming

    SciTech Connect

    Saitoh, T.S.; Wakashima, Shinichiro

    1999-07-01

    In this paper, the Time-Space Method (TSM) which has been proposed for solving general heat transfer and fluid flow problems was improved in order to cover global and urban warming. The TSM is effective in almost all-transient heat transfer and fluid flow problems, and has been already applied to the 2-D melting problems (or moving boundary problems). The computer running time will be reduced to only 1/100th--1/1000th of the existing schemes for 2-D and 3-D problems. However, in order to apply to much larger-scale problems, for example, global warming, urban warming and general ocean circulation, the SOR method (or other iterative methods) in four dimensions is somewhat tedious and provokingly slow. Motivated by the above situation, the authors improved the speed of iteration of the previous TSM by introducing the following ideas: (1) Timewise chopping: Time domain is chopped into small peaches to save memory requirement; (2) Adaptive iteration: Converged region is eliminated for further iteration; (3) Internal selective iteration: Equation with slow iteration speed in iterative procedure is selectively iterated to accelerate entire convergence; and (4) False transient integration: False transient term is added to the Poisson-type equation and the relevant solution is regarded as a parabolic equation. By adopting the above improvements, the higher-order finite different schemes and the hybrid mesh, the computer running time for the TSM is reduced to some 1/4600th of the conventional explicit method for a typical 3-D natural convection problem in a closed cavity. The proposed TSM will be more efficacious for large-scale environmental problems, such as global warming, urban warming and general ocean circulation, in which a tremendous computing time would be required.

  7. The effect of anisotropic heat transport on magnetic islands in 3-D configurations

    SciTech Connect

    Schlutt, M. G.; Hegna, C. C.

    2012-08-15

    An analytic theory of nonlinear pressure-induced magnetic island formation using a boundary layer analysis is presented. This theory extends previous work by including the effects of finite parallel heat transport and is applicable to general three dimensional magnetic configurations. In this work, particular attention is paid to the role of finite parallel heat conduction in the context of pressure-induced island physics. It is found that localized currents that require self-consistent deformation of the pressure profile, such as resistive interchange and bootstrap currents, are attenuated by finite parallel heat conduction when the magnetic islands are sufficiently small. However, these anisotropic effects do not change saturated island widths caused by Pfirsch-Schlueter current effects. Implications for finite pressure-induced island healing are discussed.

  8. 3D analytical investigation of melting at lower mantle conditions in the laser-heated diamond anvil cel

    NASA Astrophysics Data System (ADS)

    Nabiei, F.; Cantoni, M.; Badro, J.; Dorfman, S. M.; Gaal, R.; Piet, H.; Gillet, P.

    2015-12-01

    The diamond anvil cell is a unique tool to study materials under static pressures up to several hundreds of GPa. It is possible to generate temperatures as high as several thousand degrees in the diamond anvil cell by laser heating. This allows us to achieve deep mantle conditions in the laser-heated diamond anvil cell (LHDAC). The small heated volume is surrounded by thermally conductive diamond anvils results in high temperature gradients which affect phase transformation and chemical distribution in the LH-DAC. Analytical characterization of samples in three dimensions is essential to fully understand phase assemblages and equilibrium in LHDAC. In this study we used San Carlos olivine as a starting material as a simple proxy to deep mantle composition. Three samples were melted at ~3000 K and at ~45 GPa for three different durations ranging from 1 to 6 minutes; two other samples were melted at 30 GPa and 70 GPa. All samples were then sliced by focused ion beam (FIB). From each slice, an electron image and energy dispersive X-ray (EDX) map were acquired by scanning electron microscope (SEM) in the dual beam FIB instrument. These slices were collected on one half of the heated area in each sample, from which we obtained 3D elemental and phase distribution. The other half of the heated area was used to extract a 100 nm thick section for subsequent analysis by analytical transmission electron microscopy (TEM) to obtain diffraction patterns and high resolution EDX maps. 3D reconstruction of SEM EDX results shows at least four differentiated regions in the heated area for all samples. The exact Fe and Mg compositions mentioned below are an example of the sample melted at 45 GPa for 6 minutes. The bulk of the heated are is surrounded by ferropericlase (Mg0.92, Fe0.08)O shell (Fp). Inside this shell we find a thick region of (Mg,Fe)SiO3 perovskite-structured bridgmanite (Brg) coexisting with Fp. In the center lies a Fe-rich core which is surrounded by magnesiow

  9. 3D Conducting Polymer Platforms for Electrical Control of Protein Conformation and Cellular Functions

    PubMed Central

    Wan, Alwin Ming-Doug; Inal, Sahika; Williams, Tiffany; Wang, Karin; Leleux, Pierre; Estevez, Luis; Giannelis, Emmanuel P.; Fischbach, Claudia; Malliaras, George G.; Gourdon, Delphine

    2015-01-01

    We report the fabrication of three dimensional (3D) macroporous scaffolds made from poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) via an ice-templating method. The scaffolds offer tunable pore size and morphology, and are electrochemically active. When a potential is applied to the scaffolds, reversible changes take place in their electrical doping state, which in turn enables precise control over the conformation of adsorbed proteins (e.g., fibronectin). Additionally, the scaffolds support the growth of mouse fibroblasts (3T3-L1) for 7 days, and are able to electrically control cell adhesion and pro-angiogenic capability. These 3D matrix-mimicking platforms offer precise control of protein conformation and major cell functions, over large volumes and long cell culture times. As such, they represent a new tool for biological research with many potential applications in bioelectronics, tissue engineering, and regenerative medicine. PMID:26413300

  10. 3D networked graphene-ferromagnetic hybrids for fast shape memory polymers with enhanced mechanical stiffness and thermal conductivity.

    PubMed

    Lee, Sang-Heon; Jung, Jung-Hwan; Oh, Il-Kwon

    2014-10-15

    A novel 3D networked graphene-ferromagnetic hybrid can be easily fabricated using one-step microwave irradiation. By incorporating this hybrid material into shape memory polymers, the synergistic effects of fast speed and the enhancement of thermal conductivity and mechanical stiffness can be achieved. This can be broadly applicable to designing magneto-responsive shape memory polymers for multifunction applications.

  11. Electrical conduction mechanisms in PbSe and PbS nano crystals 3D matrix layer

    NASA Astrophysics Data System (ADS)

    Arbell, Matan; Hechster, Elad; Sarusi, Gabby

    2016-02-01

    A simulation study and measurements of the electrical conductance in a PbSe and PbS spherical Nano-crystal 3D matrix layer was carried out focusing on its dependences of Nano-crystal size distribution and size gradient along the layer thickness (z-direction). The study suggests a new concept of conductance enhancement by utilizing a size gradient along the layer thickness from mono-layer to the next mono-layer of the Nano-crystals, in order to create a gradient of the energy levels and thus improve directional conductance in this direction. A Monte Carlo simulation of the charge carriers path along the layer thickness of the Nano-crystals 3D matrix using the Miller-Abrahams hopping model was performed. We then compared the conductance characteristics of the gradual size 3D matrix layer to a constant-sized 3D matrix layer that was used as a reference in the simulation. The numerical calculations provided us with insights into the actual conductance mechanism of the PbSe and PbS Nano-crystals 3D matrix and explained the discrepancies in actual conductance and the variability in measured mobilities published in the literature. It is found that the mobility and thus conductance are dependent on a critical electrical field generated between two adjacent nano-crystals. Our model explains the conductance dependents on the: Cathode-Anode distance, the distance between the adjacent nano-crystals in the 3D matrix layer and the size distribution along the current direction. Part of the model (current-voltage dependence) was validated using a current-voltage measurements taken on a constant size normal distribution nano-crystals PbS layer (330nm thick) compared with the predicted I-V curves. It is shown that under a threshold bias, the current is very low, while after above a threshold bias the conductance is significantly increased due to increase of hopping probability. Once reaching the maximum probability the current tend to level-off reaching the maximal conductance

  12. Heat conduction in unconventional superconductors

    NASA Astrophysics Data System (ADS)

    Lussier, Benoit

    Thermal conductivity is an excellent probe of quasiparticle excitations in superconductors both in the normal and superconducting state. We have applied this technique to the study of two unconventional superconductors, namely the heavy fermion superconductor UPtsb3 and the high-Tsb{c} cuprate YBasb2Cusb3Osb{7-delta}. In the case of UPtsb3, after reviewing previous low temperature thermal conductivity measurements, we show that, for our high quality single crystals, the thermal conductivity is totally dominated by electrons and therefore provides a direct probe of the superconducting gap structure. We demonstrate that our measurements of the anisotropy of heat conduction between b-axis and c-axis in this hexagonal crystal provide strong constraints with respect to the possible gap structures inferred by group theoretical arguments. By comparing our results with recent theoretical calculations, we show that a hybrid II gap structure provides good agreement between theory and experiments favoring an order parameter of Esb{2u} (strong spin-orbit coupling) or Asb{2u} (weak spin-orbit coupling) symmetry. For YBasb2Cusb3Osb{7-delta}, the thermal conductivity typically consists of both a phononic and an electronic contribution. After reviewing low temperature thermal conductivity measurements that address this question, we demonstrate the presence of electronic quasiparticles even at temperatures of {˜}Tsb{c}/1000, a clear indication of an unconventional gap structure. We then proceed to discuss zinc doping studies in YBasb2Cusb3Osb{7-delta} and show that we find a universal residual linear term at T=0 of a magnitude very close in value to that predicted by recent theories. These results validate the approach of resonant impurity scattering in the high-Tsb{c}, and our excellent agreement with theory reinforces the view that the gap structure in YBasb2Cusb3Osb{7-delta} is of dsb{xsp2-ysp2} symmetry. Finally, we present neutron scattering results in UPtsb3. In this chapter

  13. Conducting a 3D Converted Shear Wave Project to Reduce Exploration Risk at Wister, CA

    SciTech Connect

    Matlick, Skip; Walsh, Patrick; Rhodes, Greg; Fercho, Steven

    2015-06-30

    Ormat sited 2 full-size exploration wells based on 3D seismic interpretation of fractures, prior drilling results, and temperature anomaly. The wells indicated commercial temperatures (>300 F), but almost no permeability, despite one of the wells being drilled within 820 ft of an older exploration well with reported indications of permeability. Following completion of the second well in 2012, Ormat undertook a lengthy program to 1) evaluate the lack of observed permeability, 2) estimate the likelihood of finding permeability with additional drilling, and 3) estimate resource size based on an anticipated extent of permeability.

  14. 3D Bridged Carbon Nanoring/Graphene Hybrid Paper as a High-Performance Lateral Heat Spreader.

    PubMed

    Zhang, Jianwei; Shi, Gang; Jiang, Cai; Ju, Su; Jiang, Dazhi

    2015-12-01

    Graphene paper (GP) has attracted great attention as a heat dissipation material due to its unique thermal transfer property exceeding the limit of graphite. However, the relatively poor thermal transfer properties in the normal direction of GP restricts its wider applications in thermal management. In this work, a 3D bridged carbon nanoring (CNR)/graphene hybrid paper is constructed by the intercalation of polymer carbon source and metal catalyst particles, and the subsequent in situ growth of CNRs in the confined intergallery spaces between graphene sheets through thermal annealing. Further investigation demonstrates that the CNRs are covalently bonded to the graphene sheets and highly improve the thermal transport in the normal direction of the CNR/graphene hybrid paper. This full-carbon architecture shows excellent heat dissipation ability and is much more efficient in removing hot spots than the reduced GP without CNR bridges. This highly thermally conductive CNR/graphene hybrid paper can be easily integrated into next generation commercial high-power electronics and stretchable/foldable devices as high-performance lateral heat spreader materials. This full-carbon architecture also has a great potential in acting as electrodes in supercapacitors or hydrogen storage devices due to the high surface area. PMID:26476622

  15. Heating properties of the needle type applicator made of shape memory alloy by 3-D anatomical human head model.

    PubMed

    Mimoto, N; Kato, K; Kanazawa, Y; Shindo, Y; Tsuchiya, K; Kubo, M; Uzuka, T; Takahashi, H; Fujii, Y

    2009-01-01

    Since the human brain is protected by the skull, it is not easy to non-invasively heat deep brain tumors with electromagnetic energy for hyperthermia treatments. Generally, needle type applicators were used in clinical practice to heat brain tumors. To expand the heating area of needle type applicators, we have developed a new type of needle made of a shape memory alloy (SMA). In this paper, heating properties of the proposed SMA needle type applicator were discussed. Here, in order to apply the SMA needle type applicator clinically. First, we constructed an anatomical 3-D FEM model from MRI and X-ray CT images using 3D-CAD software. Second, we estimated electric and temperature distributions to confirm the SMA needle type applicator using the FEM soft were JMAG-Studio. From these results, it was confirmed that the proposed method can expand the heating area and control the heating of various sizes of brain tumors.

  16. Numerical simulation of 3D viscoelastic developing flow and heat transfer in a rectangular duct with a nonlinear constitutive equation

    NASA Astrophysics Data System (ADS)

    Jalali, A.; Hulsen, M. A.; Norouzi, M.; Kayhani, M. H.

    2013-05-01

    This paper presents a numerical simulation of the developing flow and heat transfer of a viscoelastic fluid in a rectangular duct. In fully developed flow of a viscoelastic fluid in a non-circular duct, secondary flows normal to the flow direction are expected to enhance the rate of heat and mass transfer. On the other hand, properties such as viscosity, thermal conductivity, specific heat and relaxation time of the fluid are a function of temperature. Therefore, we developed a numerical model which solves the flow and energy equation simultaneously in three dimensional form. We included several equations of state to model the temperature dependency of the fluid parameters. The current paper is one of the first studies which present a 3D numerical simulation for developing viscoelastic duct flow that takes the dependency of flow parameters to the temperature into account. The rheological constitutive equation of the fluid is a common form of the Phan-Thien Tanner (PTT) model, which embodies both influences of elasticity and shear thinning in viscosity. The governing equations are discretized using the FTCS finite difference method on a staggered mesh. The marker-and-cell method is also employed to allocate the parameters on the staggered mesh, and static pressure is calculated using the artificial compressibility approach during the numerical simulation. In addition to report the results of flow and heat transfer in the developing region, the effect of some dimensionless parameters on the flow and heat transfer has also been investigated. The results are in a good agreement with the results reported by others in this field.

  17. Magma Mixing Chronometry: Quantitative 3D Tomographic Analysis of Biotite Breakdown in Heating Experiments

    NASA Astrophysics Data System (ADS)

    Grocke, S. B.; Andrews, B. J.; Manga, M.; Quinn, E. T.

    2015-12-01

    Dacite lavas from Chaos Crags, Lassen Volcanic Center, CA contain inclusions of more mafic magmas, suggesting that mixing or mingling of magmas occurred just prior to lava dome extrusion, and perhaps triggered the eruption. The timescales between the mixing event and eruption are unknown, but reaction rims on biotite grains hosted in the Chaos Crags dacite may provide a record of the timescale (i.e., chronometer) between mixing and eruption. To quantify the effect of pre-eruptive heating on the formation of reaction rims on biotite, we conducted isobaric (150 MPa), H2O-saturated, heating experiments on the dacite end-member. In heating experiments, we held the natural dacite at 800°C and 150MPa for 96 hours and then isobarically heated the experiments to 825 and 850°C (temperatures above the biotite liquidus, <815°C at 150MPa) for durations ≤96 hours. We analyzed run products using high-resolution SEM imaging and synchrotron-based X-ray tomography, which provides a 3-dimensional rendering of biotite breakdown reaction products and textures. X-ray tomography images of experimental run products reveal that in all heating experiments, biotite breakdown occurs and reaction products include orthopyroxenes, Fe-Ti oxides, and vapor (inferred from presence of bubbles). Experiments heated to 850°C for 96 h show extensive breakdown, consisting of large orthopyroxene crystals, Fe-Ti oxide laths (<100μm), and bubbles. When the process of biotite breakdown goes to completion, the resulting H2O bubble comprises roughly the equivalent volume of the original biotite crystal. This observation suggests that biotite breakdown can add significant water to the melt and lead to extensive bubble formation. Although bubble expansion and magma flow may disrupt the reaction products in some magmas, our experiments suggest that biotite breakdown textures in natural samples can be used as a chronometer for pre-eruptive magma mixing.

  18. Measurement of 3-D hydraulic conductivity in aquifer cores at in situ effective stresses.

    PubMed

    Wright, Martin; Dillon, Peter; Pavelic, Paul; Peter, Paul; Nefiodovas, Andrew

    2002-01-01

    An innovative and nondestructive method to measure the hydraulic conductivity of drill core samples in horizontal and vertical directions within a triaxial cell has been developed. This has been applied to characterizing anisotropy and heterogeneity of a confined consolidated limestone aquifer. Most of the cores tested were isotropic, but hydraulic conductivity varied considerably and the core samples with lowest values were also the most anisotropic. Hydraulic conductivity decreased with increasing effective stress due to closure of microfractures caused by sampling for all core samples. This demonstrates the importance of replicating in situ effective stresses when measuring hydraulic conductivity of cores of deep aquifers in the laboratory. PMID:12236264

  19. Versatile Method for Producing 2D and 3D Conductive Biomaterial Composites Using Sequential Chemical and Electrochemical Polymerization.

    PubMed

    Severt, Sean Y; Ostrovsky-Snider, Nicholas A; Leger, Janelle M; Murphy, Amanda R

    2015-11-18

    Flexible and conductive biocompatible materials are attractive candidates for a wide range of biomedical applications including implantable electrodes, tissue engineering, and controlled drug delivery. Here, we demonstrate that chemical and electrochemical polymerization techniques can be combined to create highly versatile silk-conducting polymer (silk-CP) composites with enhanced conductivity and electrochemical stability. Interpenetrating silk-CP composites were first generated via in situ deposition of polypyrrole during chemical polymerization of pyrrole. These composites were sufficiently conductive to serve as working electrodes for electropolymerization, which allowed an additional layer of CP to be deposited on the surface. This sequential method was applied to both 2D films and 3D sponge-like silk scaffolds, producing conductive materials with biomimetic architectures. Overall, this two-step technique expanded the range of available polymers and dopants suitable for the synthesis of mechanically robust, biocompatible, and highly conductive silk-based materials.

  20. Variable boundary II heat conduction

    NASA Technical Reports Server (NTRS)

    Gramer, J.; Oneill, R. F.

    1972-01-01

    Computer program for solving both transient and steady-state heat transfer problems is presented. Specific applications of computer program are described. Formulation for individual nodes of solid medium for heat balance is presented. Diffusion equation is solved for all nodes simultaneously at finite increments of time.

  1. Development of Scientific Simulation 3D Full Wave ICRF Code for Stellarators and Heating/CD Scenarios Development

    SciTech Connect

    Vdovin V.L.

    2005-08-15

    In this report we describe theory and 3D full wave code description for the wave excitation, propagation and absorption in 3-dimensional (3D) stellarator equilibrium high beta plasma in ion cyclotron frequency range (ICRF). This theory forms a basis for a 3D code creation, urgently needed for the ICRF heating scenarios development for the operated LHD, constructed W7-X, NCSX and projected CSX3 stellarators, as well for re evaluation of ICRF scenarios in operated tokamaks and in the ITER . The theory solves the 3D Maxwell-Vlasov antenna-plasma-conducting shell boundary value problem in the non-orthogonal flux coordinates ({Psi}, {theta}, {var_phi}), {Psi} being magnetic flux function, {theta} and {var_phi} being the poloidal and toroidal angles, respectively. All basic physics, like wave refraction, reflection and diffraction are self consistently included, along with the fundamental ion and ion minority cyclotron resonances, two ion hybrid resonance, electron Landau and TTMP absorption. Antenna reactive impedance and loading resistance are also calculated and urgently needed for an antenna -generator matching. This is accomplished in a real confining magnetic field being varying in a plasma major radius direction, in toroidal and poloidal directions, through making use of the hot dense plasma wave induced currents with account to the finite Larmor radius effects. We expand the solution in Fourier series over the toroidal ({var_phi}) and poloidal ({theta}) angles and solve resulting ordinary differential equations in a radial like {Psi}-coordinate by finite difference method. The constructed discretization scheme is divergent-free one, thus retaining the basic properties of original equations. The Fourier expansion over the angle coordinates has given to us the possibility to correctly construct the ''parallel'' wave number k{sub //}, and thereby to correctly describe the ICRF waves absorption by a hot plasma. The toroidal harmonics are tightly coupled with each

  2. A full 3D model of fluid flow and heat transfer in an E.B. heated liquid metal bath

    NASA Astrophysics Data System (ADS)

    Matveichev, A.; Jardy, A.; Bellot, J. P.

    2016-07-01

    In order to study the dissolution of exogeneous inclusions in the liquid metal during processing of titanium alloys, a series of dipping experiments has been performed in an Electron Beam Melting laboratory furnace. Precise determination of the dissolution kinetics requires knowing and mastering the exact thermohydrodynamic behavior of the melt pool, which implies full 3D modeling of the process. To achieve this goal, one needs to describe momentum and heat transfer, phase change, as well as the development of flow turbulence in the liquid. EB power input, thermal radiation, heat loss through the cooling circuit, surface tension effects (i.e. Marangoni-induced flow) must also be addressed in the model. Therefore a new solver dealing with all these phenomena was implemented within OpenFOAM platform. Numerical results were compared with experimental data from actual Ti melting, showing a pretty good agreement. In the second stage, the immersion of a refractory sample rod in the liquid pool was simulated. Results of the simulations showed that the introduction of the sample slightly disturbs the flow field inside the bath. The amount of such disturbance depends on the exact location of the dipping.

  3. Effect of Weaving Direction of Conductive Yarns on Electromagnetic Performance of 3D Integrated Microstrip Antenna

    NASA Astrophysics Data System (ADS)

    Xu, Fujun; Yao, Lan; Zhao, Da; Jiang, Muwen; Qiu, Yipping

    2013-10-01

    A three-dimensionally integrated microstrip antenna (3DIMA) is a microstrip antenna woven into the three-dimensional woven composite for load bearing while functioning as an antenna. In this study, the effect of weaving direction of conductive yarns on electromagnetic performance of 3DIMAs are investigated by designing, simulating and experimental testing of two microstrip antennas with different weaving directions of conductive yarns: one has the conductive yarns along the antenna feeding direction (3DIMA-Exp1) and the other has the conductive yarns perpendicular the antenna feeding direction (3DIMA-Exp2). The measured voltage standing wave ratio (VSWR) of 3DIMA-Exp1 was 1.4 at the resonant frequencies of 1.39 GHz; while that of 3DIMA-Exp2 was 1.2 at the resonant frequencies of 1.35 GHz. In addition, the measured radiation pattern of the 3DIMA-Exp1 has smaller back lobe and higher gain value than those of the 3DIMA-Exp2. This result indicates that the waving direction of conductive yarns may have a significant impact on electromagnetic performance of textile structural antennas.

  4. A Non-Linear Inversion for the Global 3-D Electrical Conductivity Distribution in the Upper to Mid-Mantle

    NASA Astrophysics Data System (ADS)

    Kelbert, A.; Schultz, A.

    2004-12-01

    The case for substantial heterogeneity in mantle conductivity has stimulated the development of methods for solving Maxwell's equations in a heterogeneous conducting sphere. A global 3-D frequency domain forward solver has been devised (Uyeshima & Schultz, 2000), accurate and efficient enough to be an attractive kernel of a practical inverse method. The solver employs a staggered-grid finite difference formulation in spherical coordinates. The induced fields are found as a solution to the integral form of Maxwell's equations, while the system is solved using stabilised biconjugate gradient methods. A single, accurate forward solution takes approx. 4 minutes on 5 GFLOP (peak) processor. The aim of our present research is to produce an inverse solver, to be applied to the Fujii & Schultz (2002) data set of globally-distributed EM response functions, which would reconstruct the 3-D electrical conductivity distribution in the upper to mid-mantle. Geophysical inversion is an ill-posed problem, therefore the aim is to apply suitable parameter constraints and a nonlinear search algorithm to identify candidate minima, then to apply local gradient methods around those minima. Our specific target involves designing a fast enough global optimisation routine that would allow us to produce at least one fully 3-D starting model, optimal with respect to the RMS misfit between the data and the forward solutions. A new and very flexible inverse solver has been developed utilizing parallel optimisation routines to obtain a starting model that satisfies the data. 3-D simulations have been run, the parametrization based on a spherical harmonic representation of a chess board model of varying degree and order. The inversion has demonstrated accurate fidelity in reproducing resolvable features of the test model. A study has been made of the reduction in fidelity as the number and distribution of observatory sites on the Earth's surface is degraded. An inversion of the Fujii & Schultz

  5. Inversion of multi-frequency electromagnetic induction data for 3D characterization of hydraulic conductivity

    USGS Publications Warehouse

    Brosten, T.R.; Day-Lewis, F. D.; Schultz, G.M.; Curtis, G.P.; Lane, J.W.

    2011-01-01

    Electromagnetic induction (EMI) instruments provide rapid, noninvasive, and spatially dense data for characterization of soil and groundwater properties. Data from multi-frequency EMI tools can be inverted to provide quantitative electrical conductivity estimates as a function of depth. In this study, multi-frequency EMI data collected across an abandoned uranium mill site near Naturita, Colorado, USA, are inverted to produce vertical distribution of electrical conductivity (EC) across the site. The relation between measured apparent electrical conductivity (ECa) and hydraulic conductivity (K) is weak (correlation coefficient of 0.20), whereas the correlation between the depth dependent EC obtained from the inversions, and K is sufficiently strong to be used for hydrologic estimation (correlation coefficient of -0.62). Depth-specific EC values were correlated with co-located K measurements to develop a site-specific ln(EC)-ln(K) relation. This petrophysical relation was applied to produce a spatially detailed map of K across the study area. A synthetic example based on ECa values at the site was used to assess model resolution and correlation loss given variations in depth and/or measurement error. Results from synthetic modeling indicate that optimum correlation with K occurs at ~0.5m followed by a gradual correlation loss of 90% at 2.3m. These results are consistent with an analysis of depth of investigation (DOI) given the range of frequencies, transmitter-receiver separation, and measurement errors for the field data. DOIs were estimated at 2.0??0.5m depending on the soil conductivities. A 4-layer model, with varying thicknesses, was used to invert the ECa to maximize available information within the aquifer region for improved correlations with K. Results show improved correlation between K and the corresponding inverted EC at similar depths, underscoring the importance of inversion in using multi-frequency EMI data for hydrologic estimation. ?? 2011.

  6. Self-Sensing, Ultralight, and Conductive 3D Graphene/Iron Oxide Aerogel Elastomer Deformable in a Magnetic Field.

    PubMed

    Xu, Xiang; Li, Hui; Zhang, Qiangqiang; Hu, Han; Zhao, Zongbin; Li, Jihao; Li, Jingye; Qiao, Yu; Gogotsi, Yury

    2015-04-28

    Three-dimensional (3D) graphene aerogels (GA) show promise for applications in supercapacitors, electrode materials, gas sensors, and oil absorption due to their high porosity, mechanical strength, and electrical conductivity. However, the control, actuation, and response properties of graphene aerogels have not been well studied. In this paper, we synthesized 3D graphene aerogels decorated with Fe3O4 nanoparticles (Fe3O4/GA) by self-assembly of graphene with simultaneous decoration by Fe3O4 nanoparticles using a modified hydrothermal reduction process. The aerogels exhibit up to 52% reversible magnetic field-induced strain and strain-dependent electrical resistance that can be used to monitor the degree of compression/stretching of the material. The density of Fe3O4/GA is only about 5.8 mg cm(-3), making it an ultralight magnetic elastomer with potential applications in self-sensing soft actuators, microsensors, microswitches, and environmental remediation. PMID:25792130

  7. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating

    PubMed Central

    Liang, Zheng; Lin, Dingchang; Zhao, Jie; Lu, Zhenda; Liu, Yayuan; Liu, Chong; Lu, Yingying; Wang, Haotian; Yan, Kai; Tao, Xinyong; Cui, Yi

    2016-01-01

    Lithium metal-based battery is considered one of the best energy storage systems due to its high theoretical capacity and lowest anode potential of all. However, dendritic growth and virtually relative infinity volume change during long-term cycling often lead to severe safety hazards and catastrophic failure. Here, a stable lithium–scaffold composite electrode is developed by lithium melt infusion into a 3D porous carbon matrix with “lithiophilic” coating. Lithium is uniformly entrapped on the matrix surface and in the 3D structure. The resulting composite electrode possesses a high conductive surface area and excellent structural stability upon galvanostatic cycling. We showed stable cycling of this composite electrode with small Li plating/stripping overpotential (<90 mV) at a high current density of 3 mA/cm2 over 80 cycles. PMID:26929378

  8. A fast technique applied to the analysis of Resistive Wall Modes with 3D conducting structures

    SciTech Connect

    Rubinacci, Guglielmo Liu, Yueqiang

    2009-03-20

    This paper illustrates the development of a 'fast' technique for the analysis of Resistive Wall Modes (RWMs) in fusion devices with three-dimensional conducting structures, by means of the recently developed CarMa code. Thanks to its peculiar features, the computational cost scales almost linearly with the number of discrete unknowns. Some large scale problems are solved in configurations of interest for the International Thermonuclear Experimental Reactor (ITER)

  9. Electrical conductivity of nanocomposites based on carbon nanotubes: a 3D multiscale modeling approach

    NASA Astrophysics Data System (ADS)

    Grabowski, Krzysztof; Zbyrad, Paulina; Staszewski, Wieslaw J.; Uhl, Tadeusz; Wiatr, Kazimierz; Packo, Pawel

    2016-04-01

    Remarkable electrical properties of carbon nanotubes (CNT) have lead to increased interest in studying CNT- based devices. Many of current researches are devoted to using all kinds of carbon nanomaterials in the con- struction of sensory elements. One of the most common applications is the development of high performance, large scale sensors. Due to the remarkable conductivity of CNT's such devices represent very high sensitivity. However, there are no sufficient tools for studying and designing such sensors. The main objective of this paper is to develop and validate a multiscale numerical model for a carbon nanotubes based sensor. The device utilises the change of electrical conductivity of a nanocomposite material under applied deformation. The nanocomposite consists of a number of CNTs dispersed in polymer matrix. The paper is devoted to the analysis of the impact of spatial distribution of carbon nanotubes in polymer matrix on electrical conductivity of the sensor. One of key elements is also to examine the impact of strain on electric charge ow in such anisotropic composite structures. In the following work a multiscale electro-mechanical model for CNT - based nanocomposites is proposed. The model comprises of two length scales, namely the meso- and the macro-scale for mechanical and electrical domains. The approach allows for evaluation of macro-scale mechanical response of a strain sensor. Electrical properties of polymeric material with certain CNT fractions were derived considering electrical properties of CNTs, their contact and the tunnelling effect.

  10. Electromagnetic Scattering From a Rectangular Cavity Recessed in a 3-D Conducting Surface

    NASA Technical Reports Server (NTRS)

    Deshpande, M. D.; Reddy, C. J.

    1995-01-01

    The problem of electromagnetic (EM) scattering from an aperture backed by a rectangular cavity recessed in a three-dimensional conducting body is analyzed using the coupled field integral equation approach. Using the free-space Green's function, EM fields scattered outside the cavity are determined in terms of (1) an equivalent electric surface current density flowing on the three-dimensional conducting surface of the object including the cavity aperture and (2) an equivalent magnetic surface current density flowing over the aperture only. The EM fields inside the cavity are determined using the waveguide modal expansion functions. Making the total tangential electric and magnetic fields across the aperture continuous and subjecting the total tangential electric field on the outer conducting three-dimensional surface of the object to zero, a set of coupled integral equations is obtained. The equivalent electric and magnetic surface currents are then obtained by solving the coupled integral equation using the Method of Moments. The numerical results on scattering from rectangular cavities embedded in various three-dimensional objects are compared with the results obtained by other numerical techniques.

  11. Geostatistical modelling with 3D+T data: soil moisture, temperature, and electrical conductivity at the field scale

    NASA Astrophysics Data System (ADS)

    Gasch, Caley K.; Hengl, Tomislav; Gräler, Benedikt; Meyer, Hanna; Magney, Troy; Brown, David J.

    2015-04-01

    Dynamic soil data collected using automated sensor networks can facilitate our understanding of soil processes, but highly dimensional data may be difficult to analyze in a manner that incorporates correlation in properties through 3-dimensions and time (3D+T). We demonstrate two approaches to making continuous predictions of dynamic soil properties from fixed point observations. For this analysis, we used the Cook Farm data set, which includes hourly measurements of soil volumetric water content, temperature, and electrical conductivity at 42 points and five depths, collected over five years. We compare performance of two modeling frameworks. In the first framework we used random forest algorithms to fit a 3D+T regression model to make predictions of all three soil variables from 2- and 3-dimensional, temporal, and spatio-temporal covariates. In the second framework we developed a 3D+T kriging model after detrending the observations for depth-dependent seasonal effects. The results show that both models accurately predicted soil temperature, but the kriging model outperformed the regression model according to cross-validation; it explained 37%, 96%, and 16% of the variability in water content, temperature, and electrical conductivity respectively versus 34%, 93%, and 4% explained by the random forest model. The full random forest regression model had high goodness-of-fit for all variables, which was reduced in cross-validation. Temporal model components (i.e. day of the year) explained most of the variability in observations. The seamless predictions of 3D+T data produced from this analysis can assist in understanding soil processes and how they change through a season, under different land management scenarios, and how they relate to other environmental processes.

  12. On nonlocal electron heat conduction

    SciTech Connect

    Krasheninnikov, S.I. )

    1993-01-01

    An improvement of the Albritton nonlocal electron heat transport model is proposed for high-[ital Z] plasmas. The thermal decay of the temperature perturbation in a uniform plasma as calculated by this model is compared with that obtained by Fokker--Planck simulations. Complete agreement is found up to values [ital k][lambda][sub [ital e

  13. Heat as a tracer for improving a transient 3D groundwater model at a bank filtration site with changing riverbed

    NASA Astrophysics Data System (ADS)

    Wang, Weishi; Munz, Matthias; Oswald, Sascha; Strasser, Daniel; Lensing, Hermann

    2016-04-01

    Bank filtration, by its effective improvement of water quality is widely used in many countries for water supply, and its major characteristics, the interaction between groundwater and surface water has been a hot topic for decades. As a key parameter, the travel time of the infiltrating river water to the wells is considered to be highly correlated with its water quality and has always been used as a main reference for estimating the filtering performance. As a periodic environmental tracer, heat has been used for estimating travel times by comparing the attenuation and the phase shift for temperature patterns in both the river and groundwater observation points. In most cases, the methods applied are analytical time series analysis, or 2D and 3D groundwater models with homogeneous attributes, in which many details of geological discontinuity and heterogeneity might be missed and further decrease the reliability of model result. However in our study, the transient heat transport model was set up based on a calibrated transient groundwater model with complex and discontinuous geological structures referenced by available geological information. At the study area, a water work is placed hundreds of meters from a river. By the pumping induced hydraulic gradient, river water flows into pumping wells through the river bank and shallow aquifers. The unconsolidated impermeable glacial deposits of different glacial periods showed discontinuities in forms of geological windows and lenses. Referenced by 145 drillings and 7 geological cross-sections, a geological model was set up and further translated into a groundwater model in FEFLOW. The model was first calibrated by FEPEST in steady state referenced by 104 observation wells and then it was adapted into a transient model. Influenced by an excavation at the channel bottom, a substantial water head rise happened. And in the model this could be simulated well by introducing an increasing hydraulic conductivity at the

  14. Electromagnetic mini arrays (EMMA project). 3D modeling/inversion for mantle conductivity in the Archaean of the Fennoscandian Shield

    NASA Astrophysics Data System (ADS)

    Smirnov, M. Yu.; Korja, T.; Pedersen, L. B.

    2009-04-01

    Two electromagnetic arrays are used in the EMMA project to study conductivity structure of the Archaean lithosphere in the Fennoscandian Shield. The first array was operated during almost one year, while the second one was running only during the summer time. Twelve 5-components magnetotelluric instruments with fluxgate magnetometers recorded simultaneously time variations of Earth's natural electromagnetic field at the sites separated by c. 30 km. To better control the source field and to obtain galvanic distortion free responses we have applied horizontal spatial gradient (HSG) technique to the data. The study area is highly inhomogeneous, thus classical HSG might give erroneous results. The method was extended to include anomalous field effects by implementing multivariate analysis. The HSG transfer functions were then used to control static shift distortions of apparent resistivities. During the BEAR experiment 1997-2002, the conductance map of entire Fennoscandia was assembled and finally converted into 3D volume resistivity model. We have used the model, refined it to get denser grid around measurement area and calculated MT transfer functions after 3D modeling. We have used trial-and-error method in order to further improve the model. The data set was also inverted using 3D code of Siripunvaraporn (2005). In the first stage we have used homogeneous halfspace as starting model for the inversion. In the next step we have used final 3D forward model as apriori model. The usage of apriori information significantly stabilizes the inverse solution, especially in case of a limited amount of data available. The results show that in the Archaean Domain a conductive layer is found in the upper/middle crust on contrary to previous results from other regions of the Archaean crust in the Fennoscandian Shield. Data also suggest enhanced conductivity at the depth of c. 100 km. Conductivity below the depth of 200-250 km is lower than that of the laboratory based estimates

  15. Modeling Classical Heat Conduction in FLAG

    SciTech Connect

    Ramsey, Scott D.; Hendon, Raymond Cori

    2015-01-12

    The Los Alamos National Laboratory FLAG code contains both electron and ion heat conduction modules; these have been constructed to be directly relevant to user application problems. However, formal code verification of these modules requires quantitative comparison to exact solutions of the underlying mathematical models. A wide variety of exact solutions to the classical heat conduction equation are available for this purpose. This report summarizes efforts involving the representation of the classical heat conduction equation as following from the large electron-ion coupling limit of the electron and ion 3T temperature equations, subject to electron and ion conduction processes. In FLAG, this limiting behavior is quantitatively verified using a simple exact solution of the classical heat conduction equation. For this test problem, both heat conduction modules produce nearly identical spatial electron and ion temperature profiles that converge at slightly less than 2nd order to the corresponding exact solution.

  16. Hierarchical self-assembly of hexagonal single-crystal nanosheets into 3D layered superlattices with high conductivity.

    PubMed

    Tao, Yulun; Shen, Yuhua; Yang, Liangbao; Han, Bin; Huang, Fangzhi; Li, Shikuo; Chu, Zhuwang; Xie, Anjian

    2012-06-21

    While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and self-assemble, in a suitable single solution environment. In cyclohexane, 1D amorphous nanofibers transformed to 1D nanorods as building blocks, and then to 2D single-crystal nanosheets with a hexagonal phase, and lastly to 3D ordered layered superlattices with the narrowest polydispersity value (M(w)/M(n) = 1.47). Remarkably, all the instructions for the hierarchical self-assembly are encoded in the layered shape in other non-polar solvents (hexane, octane) and their conductivity in the π-π stacking direction is improved to about 50 S cm(-1), which is even higher than that of the highest previously reported value (16 S cm(-1)). The method used in this study is greatly expected to be readily scalable to produce superlattices of conductive polymers with high quality and low cost. PMID:22609947

  17. Hierarchical self-assembly of hexagonal single-crystal nanosheets into 3D layered superlattices with high conductivity.

    PubMed

    Tao, Yulun; Shen, Yuhua; Yang, Liangbao; Han, Bin; Huang, Fangzhi; Li, Shikuo; Chu, Zhuwang; Xie, Anjian

    2012-06-21

    While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and self-assemble, in a suitable single solution environment. In cyclohexane, 1D amorphous nanofibers transformed to 1D nanorods as building blocks, and then to 2D single-crystal nanosheets with a hexagonal phase, and lastly to 3D ordered layered superlattices with the narrowest polydispersity value (M(w)/M(n) = 1.47). Remarkably, all the instructions for the hierarchical self-assembly are encoded in the layered shape in other non-polar solvents (hexane, octane) and their conductivity in the π-π stacking direction is improved to about 50 S cm(-1), which is even higher than that of the highest previously reported value (16 S cm(-1)). The method used in this study is greatly expected to be readily scalable to produce superlattices of conductive polymers with high quality and low cost.

  18. 3D imaging of soil apparent electrical conductivity from VERIS data using a 1D spatially constrained inversion algorithm

    NASA Astrophysics Data System (ADS)

    Jesús Moral García, Francisco; Rebollo Castillo, Francisco Javier; Monteiro Santos, Fernando

    2016-04-01

    Maps of apparent electrical conductivity of the soil are commonly used in precision agriculture to indirectly characterize some important properties like salinity, water, and clay content. Traditionally, these studies are made through an empirical relationship between apparent electrical conductivity and properties measured in soil samples collected at a few locations in the experimental area and at a few selected depths. Recently, some authors have used not the apparent conductivity values but the soil bulk conductivity (in 2D or 3D) calculated from measured apparent electrical conductivity through the application of an inversion method. All the published works used data collected with electromagnetic (EM) instruments. We present a new software to invert the apparent electrical conductivity data collected with VERIS 3100 and 3150 (or the more recent version with three pairs of electrodes) using the 1D spatially constrained inversion method (1D SCI). The software allows the calculation of the distribution of the bulk electrical conductivity in the survey area till a depth of 1 m. The algorithm is applied to experimental data and correlations with clay and water content have been established using soil samples collected at some boreholes. Keywords: Digital soil mapping; inversion modelling; VERIS; soil apparent electrical conductivity.

  19. 3D slicing of radiogenic heat production in Bahariya Formation, Tut oil field, North-Western Desert, Egypt.

    PubMed

    Al-Alfy, I M; Nabih, M A

    2013-03-01

    A 3D block of radiogenic heat production was constructed from the subsurface total gamma ray logs of Bahariya Formation, Western Desert, Egypt. The studied rocks possess a range of radiogenic heat production varying from 0.21 μWm(-3) to 2.2 μWm(-3). Sandstone rocks of Bahariya Formation have higher radiogenic heat production than the average for crustal sedimentary rocks. The high values of density log of Bahariya Formation indicate the presence of iron oxides which contribute the uranium radioactive ores that increase the radiogenic heat production of these rocks. The average radiogenic heat production produced from the study area is calculated as 6.3 kW. The histogram and cumulative frequency analyses illustrate that the range from 0.8 to 1.2 μWm(-3) is about 45.3% of radiogenic heat production values. The 3D slicing of the reservoir shows that the southeastern and northeastern parts of the study area have higher radiogenic heat production than other parts. PMID:23291561

  20. 3D slicing of radiogenic heat production in Bahariya Formation, Tut oil field, North-Western Desert, Egypt.

    PubMed

    Al-Alfy, I M; Nabih, M A

    2013-03-01

    A 3D block of radiogenic heat production was constructed from the subsurface total gamma ray logs of Bahariya Formation, Western Desert, Egypt. The studied rocks possess a range of radiogenic heat production varying from 0.21 μWm(-3) to 2.2 μWm(-3). Sandstone rocks of Bahariya Formation have higher radiogenic heat production than the average for crustal sedimentary rocks. The high values of density log of Bahariya Formation indicate the presence of iron oxides which contribute the uranium radioactive ores that increase the radiogenic heat production of these rocks. The average radiogenic heat production produced from the study area is calculated as 6.3 kW. The histogram and cumulative frequency analyses illustrate that the range from 0.8 to 1.2 μWm(-3) is about 45.3% of radiogenic heat production values. The 3D slicing of the reservoir shows that the southeastern and northeastern parts of the study area have higher radiogenic heat production than other parts.

  1. Heat conduction fronts in planetary nebulae

    NASA Technical Reports Server (NTRS)

    Soker, Noam

    1994-01-01

    We present arguments which suggest that many of the x-ray, some optical, and some UV observations of planetary nebulae, can be explained by the presence of heat conduction fronts. The heat flows from the hot bubble formed by the shocked fast wind to the cool shell and halo. Heat conduction fronts are likely to account for emission of x rays from plasma at lower temperature than the expected temperature of the hot bubble. In the presence of magnetic fields, only a small fraction of the fast wind luminosity emerges as radiation. Heat conduction fronts can naturally produce some unusual line flux ratios, which are observed in some planetary nebulae. Heat conduction fronts may heat the halo and cause some material at the inner surface of the shell to expand slower than the rest of the shell. In the presence of an asymmetrical magnetic field, this flow, the x-ray intensity, and the emission lines, may acquire asymmetrical structure as well.

  2. Examination of Buoyancy-Reduction Effect in Induction-Heating Cookers by Using 3D Finite Element Method

    NASA Astrophysics Data System (ADS)

    Yonetsu, Daigo; Tanaka, Kazufumi; Hara, Takehisa

    In recent years, induction-heating (IH) cookers that can be used to heat nonmagnetic metals such as aluminum have been produced. Occasionally, a light pan moves on a glass plate due to buoyancy when heated by an IH cooker. In some IH cookers, an aluminum plate is mounted between the glass plate and the coil in order to reduce the buoyancy effect. The objective of this research is to evaluate the buoyancy-reduction effect and the heating effect of buoyancy-reduction plates. Eddy current analysis is carried out by 3D finite element method, and the electromagnetic force and the heat distribution on the heating plate are calculated. After this calculation is performed, the temperature distribution of the heating plate is calculated by heat transfer analysis. It is found that the shape, area, and the position of the buoyancy reduction plate strongly affect the buoyancy and the heat distribution. The impact of the shape, area, and position of the buoyancy reduction plate was quantified. The phenomena in the heating were elucidated qualitatively.

  3. 3D polyaniline porous layer anchored pillared graphene sheets: enhanced interface joined with high conductivity for better charge storage applications.

    PubMed

    Sekar, Pandiaraj; Anothumakkool, Bihag; Kurungot, Sreekumar

    2015-04-15

    Here, we report synthesis of a 3-dimensional (3D) porous polyaniline (PANI) anchored on pillared graphene (G-PANI-PA) as an efficient charge storage material for supercapacitor applications. Benzoic acid (BA) anchored graphene, having spatially separated graphene layers (G-Bz-COOH), was used as a structure controlling support whereas 3D PANI growth has been achieved by a simple chemical oxidation of aniline in the presence of phytic acid (PA). The BA groups on G-Bz-COOH play a critical role in preventing the restacking of graphene to achieve a high surface area of 472 m(2)/g compared to reduced graphene oxide (RGO, 290 m(2)/g). The carboxylic acid (-COOH) group controls the rate of polymerization to achieve a compact polymer structure with micropores whereas the chelating nature of PA plays a crucial role to achieve the 3D growth pattern of PANI. This type of controlled interplay helps G-PANI-PA to achieve a high conductivity of 3.74 S/cm all the while maintaining a high surface area of 330 m(2)/g compared to PANI-PA (0.4 S/cm and 60 m(2)/g). G-PANI-PA thus conceives the characteristics required for facile charge mobility during fast charge-discharge cycles, which results in a high specific capacitance of 652 F/g for the composite. Owing to the high surface area along with high conductivity, G-PANI-PA displays a stable specific capacitance of 547 F/g even with a high mass loading of 3 mg/cm(2), an enhanced areal capacitance of 1.52 F/cm(2), and a volumetric capacitance of 122 F/cm(3). The reduced charge-transfer resistance (RCT) of 0.67 Ω displayed by G-PANI-PA compared to pure PANI (0.79 Ω) stands out as valid evidence of the improved charge mobility achieved by the system by growing the 3D PANI layer along the spatially separated layers of the graphene sheets. The low RCT helps the system to display capacitance retention as high as 65% even under a high current dragging condition of 10 A/g. High charge/discharge rates and good cycling stability are the other

  4. 3D polyaniline porous layer anchored pillared graphene sheets: enhanced interface joined with high conductivity for better charge storage applications.

    PubMed

    Sekar, Pandiaraj; Anothumakkool, Bihag; Kurungot, Sreekumar

    2015-04-15

    Here, we report synthesis of a 3-dimensional (3D) porous polyaniline (PANI) anchored on pillared graphene (G-PANI-PA) as an efficient charge storage material for supercapacitor applications. Benzoic acid (BA) anchored graphene, having spatially separated graphene layers (G-Bz-COOH), was used as a structure controlling support whereas 3D PANI growth has been achieved by a simple chemical oxidation of aniline in the presence of phytic acid (PA). The BA groups on G-Bz-COOH play a critical role in preventing the restacking of graphene to achieve a high surface area of 472 m(2)/g compared to reduced graphene oxide (RGO, 290 m(2)/g). The carboxylic acid (-COOH) group controls the rate of polymerization to achieve a compact polymer structure with micropores whereas the chelating nature of PA plays a crucial role to achieve the 3D growth pattern of PANI. This type of controlled interplay helps G-PANI-PA to achieve a high conductivity of 3.74 S/cm all the while maintaining a high surface area of 330 m(2)/g compared to PANI-PA (0.4 S/cm and 60 m(2)/g). G-PANI-PA thus conceives the characteristics required for facile charge mobility during fast charge-discharge cycles, which results in a high specific capacitance of 652 F/g for the composite. Owing to the high surface area along with high conductivity, G-PANI-PA displays a stable specific capacitance of 547 F/g even with a high mass loading of 3 mg/cm(2), an enhanced areal capacitance of 1.52 F/cm(2), and a volumetric capacitance of 122 F/cm(3). The reduced charge-transfer resistance (RCT) of 0.67 Ω displayed by G-PANI-PA compared to pure PANI (0.79 Ω) stands out as valid evidence of the improved charge mobility achieved by the system by growing the 3D PANI layer along the spatially separated layers of the graphene sheets. The low RCT helps the system to display capacitance retention as high as 65% even under a high current dragging condition of 10 A/g. High charge/discharge rates and good cycling stability are the other

  5. The 3D numerical simulation of waste heat inside the end-pumped DPAL

    NASA Astrophysics Data System (ADS)

    Hua, Weihong; Yang, Zining; Wang, Hongyan

    2012-01-01

    The thermal effect produced by quantum defect is an important factor that affects the performance of DPAL. We report on 3D simulation results of temperature distribution inside the alkali gain medium. The results show a high and non-uniform temperature rise under CW pumped condition, and the current models that assume uniform alkali density distribution needs to be modified. A convective cooling scheme should be applied for high power DPALs.

  6. Constructing a model of 3D radiogenic heat production in Ireland

    NASA Astrophysics Data System (ADS)

    Willmot Noller, N. M.; Daly, J. S.

    2012-04-01

    Heat production values in the crust and mantle rock inform heat flow density data to provide crucial information about the structure of the Earth's lithosphere. In addition, accurate models of horizontal and vertical distribution of heat production can help to define geothermal exploration targets. Low-enthalpy district scale space heating and Enhanced Geothermal Systems (EGS) using hot, dry rock may provide sustainable energy resources in regions currently perceived as having low geothermal energy potential. Ireland is located within stable lithosphere, unaffected by recent tectonism and volcanism, and has an estimated heat flow range below the measured global continental average. Nevertheless, borehole data indicate that heat production is variable across the island, with anomalously high rates observed, for example, in Cavan, Meath and Antrim. Data coverage is, however, poor. Radioactive isotopic decay generates heat in rock. By using established heat production constants and known concentrations of unstable isotopes of uranium, thorium and potassium, along with rock density values, a heat production rate in μW m -3 is obtained. With the objective of compiling the first comprehensive database of information about the Irish lithosphere, in three dimensions, the authors present here initial results obtained from published and unpublished whole-rock major and trace element analyses. The presence of systematic trends correlating heat production to properties such as age and lithology are also investigated. Offering insight into the vertical component of heat production distribution, Irish xenoliths emplaced in Lower Carboniferous volcanics are regarded as a reliable proxy for the present-day lower crust. Their geochemical composition gives heat production values that are higher than expected for the depths indicated by their thermobarometric data, suggesting that heat production rates do not simply reduce with depth.

  7. Hierarchical self-assembly of hexagonal single-crystal nanosheets into 3D layered superlattices with high conductivity

    NASA Astrophysics Data System (ADS)

    Tao, Yulun; Shen, Yuhua; Yang, Liangbao; Han, Bin; Huang, Fangzhi; Li, Shikuo; Chu, Zhuwang; Xie, Anjian

    2012-05-01

    While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and self-assemble, in a suitable single solution environment. In cyclohexane, 1D amorphous nanofibers transformed to 1D nanorods as building blocks, and then to 2D single-crystal nanosheets with a hexagonal phase, and lastly to 3D ordered layered superlattices with the narrowest polydispersity value (Mw/Mn = 1.47). Remarkably, all the instructions for the hierarchical self-assembly are encoded in the layered shape in other non-polar solvents (hexane, octane) and their conductivity in the π-π stacking direction is improved to about 50 S cm-1, which is even higher than that of the highest previously reported value (16 S cm-1). The method used in this study is greatly expected to be readily scalable to produce superlattices of conductive polymers with high quality and low cost.While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and

  8. Cryogenic regenerator including sarancarbon heat conduction matrix

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Petrick, S. Walter (Inventor); Britcliffe, Michael J. (Inventor)

    1989-01-01

    A saran carbon matrix is employed to conduct heat through the heat storing volume of a cryogenic regenerator. When helium is adsorbed into the saran carbon matrix, the combination exhibits a volumetric specific heat much higher than previously used lead balls. A helium adsorbed saran regenerator should allow much lower refrigerator temperatures than those practically obtainable with lead based regenerators for regenerator type refrigeration systems.

  9. Information filtering via biased heat conduction.

    PubMed

    Liu, Jian-Guo; Zhou, Tao; Guo, Qiang

    2011-09-01

    The process of heat conduction has recently found application in personalized recommendation [Zhou et al., Proc. Natl. Acad. Sci. USA 107, 4511 (2010)], which is of high diversity but low accuracy. By decreasing the temperatures of small-degree objects, we present an improved algorithm, called biased heat conduction, which could simultaneously enhance the accuracy and diversity. Extensive experimental analyses demonstrate that the accuracy on MovieLens, Netflix, and Delicious datasets could be improved by 43.5%, 55.4% and 19.2%, respectively, compared with the standard heat conduction algorithm and also the diversity is increased or approximately unchanged. Further statistical analyses suggest that the present algorithm could simultaneously identify users' mainstream and special tastes, resulting in better performance than the standard heat conduction algorithm. This work provides a creditable way for highly efficient information filtering.

  10. Information filtering via biased heat conduction

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Guo; Zhou, Tao; Guo, Qiang

    2011-09-01

    The process of heat conduction has recently found application in personalized recommendation [Zhou , Proc. Natl. Acad. Sci. USA PNASA60027-842410.1073/pnas.1000488107107, 4511 (2010)], which is of high diversity but low accuracy. By decreasing the temperatures of small-degree objects, we present an improved algorithm, called biased heat conduction, which could simultaneously enhance the accuracy and diversity. Extensive experimental analyses demonstrate that the accuracy on MovieLens, Netflix, and Delicious datasets could be improved by 43.5%, 55.4% and 19.2%, respectively, compared with the standard heat conduction algorithm and also the diversity is increased or approximately unchanged. Further statistical analyses suggest that the present algorithm could simultaneously identify users' mainstream and special tastes, resulting in better performance than the standard heat conduction algorithm. This work provides a creditable way for highly efficient information filtering.

  11. Heat conduction controlled combustion for scramjet applications

    NASA Technical Reports Server (NTRS)

    Ferri, A.; Agnone, A. M.

    1974-01-01

    The use of heat conduction flame generated in a premixed supersonic stream is discussed. It is shown that the flame is controlled initially by heat conduction and then by chemical reaction. Such a flame is shorter than the diffusion type of flame and therefore it requires a much shorter burner. The mixing is obtained by injecting the hydrogen in the inlet. Then the inlet can be cooled by film cooling.

  12. Heat transfer in 3-D serpentine channels with right-angle turns

    SciTech Connect

    Chintada, S.; Ko, K.H.; Anand, N.K.

    1999-12-01

    Laminar flow and heat transfer in square serpentine channels with right-angle turns, which have applications in heat exchangers, were numerically studied. A finite volume code in FORTRAN was developed to solve this problem. For solving the flow field, a colocated-grid formulation was used, as opposed to the staggered-grid formulation, and the SIMPLE algorithm was used to link the velocity and pressure. The line-by-line method was used to solve the algebraic equations. The temperature field was solved for the uniform-wall-heat-flux boundary condition. The developed numerical code was validated by solving for fully developed flow and heat transfer in a square straight channel. The grid-independent solution was established for a reference case of serpentine channel with the highest Reynolds number. Periodically fully developed flow and heat transfer fields in serpentine channels were solved for different geometry parameters, for different Reynolds numbers, and for two different Prandtl numbers (for air and water, respectively). The enhancement of the heat transfer mechanism was explained by studying the plotted flow-field velocity vectors in different planes. The heat transfer performance of serpentine channels is better than that for straight channels for Pr = 7.0 and is worse than that for straight channels for Pr = 0.7.

  13. A numerical investigation of the 3-D flow in shell and tube heat exchangers

    SciTech Connect

    Prithiviraj, M.; Andrews, M.J.

    1996-12-31

    A three-dimensional computer program for simulation of the flow and heat transfer inside Shell and Tube Heat Exchangers has been developed. The simulation of shell and tube heat exchangers is based on a distributed resistance method that uses a modified two equation {kappa}-{epsilon} turbulence model along with non-equilibrium wall functions. Volume porosities and non-homogeneous surface permeabilities account for the obstructions due to the tubes and arbitrary arrangement of baffles. Sub-models are described for baffle-shell and baffle-tube leakage, shellside and tubeside heat transfer, with geometry generators for tubes, baffles, and nozzle inlets and outlets. The sub-models in HEATX use parameters that have not been altered from their published values. Computed heat transfer and pressure drop are compared with experimental data from the Delaware project (Bell, 1963). Numerically computed pressure drops are also compared for different baffle cuts, and different number of baffles with the experiments of Halle et al. (1984) which were performed in an industrial sized heat exchanger at Argonne National Labs. Discussion of the results is given with particular reference to global and local properties such as pressure drop, temperature variation, and heat transfer coefficients. Good agreement is obtained between the experiments and HEATX computations for the shellside pressure drop and outlet temperatures for the shellside and tubeside streams.

  14. Thermal effusivity measurement based on analysis of 3D heat flow by modulated spot heating using a phase lag matrix with a combination of thermal effusivity and volumetric heat capacity

    NASA Astrophysics Data System (ADS)

    Ohta, Hiromichi; Hatori, Kimihito; Matsui, Genzou; Yagi, Takashi; Miyake, Shugo; Okamura, Takeo; Endoh, Ryo; Okada, Ryo; Morishita, Keisuke; Yokoyama, Shinichiro; Taguchi, Kohei; Kato, Hideyuki

    2016-11-01

    The study goal was to establish a standard industrial procedure for the measurement of thermal effusivity by a thermal microscope (TM), using a periodic heating method with a thermoreflectance (TR) technique. To accomplish this goal, a working group was organized that included four research institutes. Each institute followed the same procedure: a molybdenum (Mo) film was sputtered on the surface of Pyrex, yttria-stabilized zirconia (YSZ), alumina (Al2O3), Germanium (Ge), and silicon (Si) samples, and then the phase lag of the laser intensity modulation was measured by the resultant surface temperature. A procedure was proposed to calibrate the effect of 3D heat flow, based on the analytical solution of the heat conduction equation, and thermal effusivity was measured. The derived values show good agreement with literature values. As a result, the TM calibration procedure can be recommended for practical use in measuring the thermal effusivity in a small region of the materials.

  15. Aerodynamic heating on 3-D bodies including the effects of entropy-layer swallowing

    NASA Technical Reports Server (NTRS)

    Dejarnette, F. R.; Hamilton, H. H.

    1974-01-01

    A relatively simple method was developed previously (authors, 1973) for calculating laminar, transitional, and turbulent heating rates on three-dimensional bodies in hypersonic flows. This method was shown to yield reasonably accurate results for laminar heating on blunted circular and elliptical cones and an earlier version of the space shuttle vehicle. As the boundary layer along the surface grows, more and more of the inviscid-flow mass is entrained into the boundary layer, and the streamlines which passed through the nearly normal portion of the bow shock wave are 'swallowed' by the boundary layer. This phenomenon is often referred to as entropy-layer or streamline swallowing, and it can have a significant effect on the calculated heating rates. An approximate, yet simple, method for including the effects of entropy-layer swallowing in the heating-rate calculations is given.

  16. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries.

    PubMed

    Fu, Kun Kelvin; Gong, Yunhui; Dai, Jiaqi; Gong, Amy; Han, Xiaogang; Yao, Yonggang; Wang, Chengwei; Wang, Yibo; Chen, Yanan; Yan, Chaoyi; Li, Yiju; Wachsman, Eric D; Hu, Liangbing

    2016-06-28

    Beyond state-of-the-art lithium-ion battery (LIB) technology with metallic lithium anodes to replace conventional ion intercalation anode materials is highly desirable because of lithium's highest specific capacity (3,860 mA/g) and lowest negative electrochemical potential (∼3.040 V vs. the standard hydrogen electrode). In this work, we report for the first time, to our knowledge, a 3D lithium-ion-conducting ceramic network based on garnet-type Li6.4La3Zr2Al0.2O12 (LLZO) lithium-ion conductor to provide continuous Li(+) transfer channels in a polyethylene oxide (PEO)-based composite. This composite structure further provides structural reinforcement to enhance the mechanical properties of the polymer matrix. The flexible solid-state electrolyte composite membrane exhibited an ionic conductivity of 2.5 × 10(-4) S/cm at room temperature. The membrane can effectively block dendrites in a symmetric Li | electrolyte | Li cell during repeated lithium stripping/plating at room temperature, with a current density of 0.2 mA/cm(2) for around 500 h and a current density of 0.5 mA/cm(2) for over 300 h. These results provide an all solid ion-conducting membrane that can be applied to flexible LIBs and other electrochemical energy storage systems, such as lithium-sulfur batteries. PMID:27307440

  17. Unravelling the Proton Conduction Mechanism from Room Temperature to 553 K in a 3D Inorganic Coordination Framework.

    PubMed

    Wang, Yaxing; Tao, Zetian; Yin, Xuemiao; Shu, Jie; Chen, Lanhua; Sheng, Daopeng; Chai, Zhifang; Albrecht-Schmitt, Thomas E; Wang, Shuao

    2015-10-19

    The preparation of proton-conducting materials that are functional and stable at intermediate temperatures (393-573 K) is a focal point of fuel cell development. The purely inorganic material, HNd(IO3)4, which possesses a dense 3D framework structure, can reach a maximum of 4.6 × 10(-4) S·cm(-1) at 353 K and 95% relative humidity and exhibit a high conductivity of 8.0 × 10(-5) S·cm(-1) from 373 to 553 K under the flow of wet N2. HNd(IO3)4 exhibits a variety of improvements including high thermal stability, low solubility in water, and resistance to reducing atmosphere. The proton conductivity in such a wide temperature range originates from the intrinsic liberated protons in the structure and the resulting 1D hydrogen-bonding network confirmed by bond valence sum calculation and solid-state NMR analysis. Moreover, two different activation energies are observed in different temperature regions (0.23 eV below 373 K and 0.026 eV from 373 to 553 K), indicating that two types of proton motion are responsible for proton diffusion, as further domenstrated by temperature-dependent open-circuit voltage hysteresis in a tested fuel cell assembly as well as variable-temperature and double quantum filtered solid-state NMR measurements. PMID:26444097

  18. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries

    NASA Astrophysics Data System (ADS)

    Kun, Kelvin; Gong, Yunhui; Dai, Jiaqi; Gong, Amy; Han, Xiaogang; Yao, Yonggang; Wang, Chengwei; Wang, Yibo; Chen, Yanan; Yan, Chaoyi; Li, Yiju; Wachsman, Eric D.; Hu, Liangbing

    2016-06-01

    Beyond state-of-the-art lithium-ion battery (LIB) technology with metallic lithium anodes to replace conventional ion intercalation anode materials is highly desirable because of lithium's highest specific capacity (3,860 mA/g) and lowest negative electrochemical potential (˜3.040 V vs. the standard hydrogen electrode). In this work, we report for the first time, to our knowledge, a 3D lithium-ion-conducting ceramic network based on garnet-type Li6.4La3Zr2Al0.2O12 (LLZO) lithium-ion conductor to provide continuous Li+ transfer channels in a polyethylene oxide (PEO)-based composite. This composite structure further provides structural reinforcement to enhance the mechanical properties of the polymer matrix. The flexible solid-state electrolyte composite membrane exhibited an ionic conductivity of 2.5 × 10-4 S/cm at room temperature. The membrane can effectively block dendrites in a symmetric Li | electrolyte | Li cell during repeated lithium stripping/plating at room temperature, with a current density of 0.2 mA/cm2 for around 500 h and a current density of 0.5 mA/cm2 for over 300 h. These results provide an all solid ion-conducting membrane that can be applied to flexible LIBs and other electrochemical energy storage systems, such as lithium-sulfur batteries.

  19. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries

    NASA Astrophysics Data System (ADS)

    Kun, Kelvin; Gong, Yunhui; Dai, Jiaqi; Gong, Amy; Han, Xiaogang; Yao, Yonggang; Wang, Chengwei; Wang, Yibo; Chen, Yanan; Yan, Chaoyi; Li, Yiju; Wachsman, Eric D.; Hu, Liangbing

    2016-06-01

    Beyond state-of-the-art lithium-ion battery (LIB) technology with metallic lithium anodes to replace conventional ion intercalation anode materials is highly desirable because of lithium's highest specific capacity (3,860 mA/g) and lowest negative electrochemical potential (˜3.040 V vs. the standard hydrogen electrode). In this work, we report for the first time, to our knowledge, a 3D lithium-ion–conducting ceramic network based on garnet-type Li6.4La3Zr2Al0.2O12 (LLZO) lithium-ion conductor to provide continuous Li+ transfer channels in a polyethylene oxide (PEO)-based composite. This composite structure further provides structural reinforcement to enhance the mechanical properties of the polymer matrix. The flexible solid-state electrolyte composite membrane exhibited an ionic conductivity of 2.5 × 10‑4 S/cm at room temperature. The membrane can effectively block dendrites in a symmetric Li | electrolyte | Li cell during repeated lithium stripping/plating at room temperature, with a current density of 0.2 mA/cm2 for around 500 h and a current density of 0.5 mA/cm2 for over 300 h. These results provide an all solid ion-conducting membrane that can be applied to flexible LIBs and other electrochemical energy storage systems, such as lithium–sulfur batteries.

  20. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries.

    PubMed

    Fu, Kun Kelvin; Gong, Yunhui; Dai, Jiaqi; Gong, Amy; Han, Xiaogang; Yao, Yonggang; Wang, Chengwei; Wang, Yibo; Chen, Yanan; Yan, Chaoyi; Li, Yiju; Wachsman, Eric D; Hu, Liangbing

    2016-06-28

    Beyond state-of-the-art lithium-ion battery (LIB) technology with metallic lithium anodes to replace conventional ion intercalation anode materials is highly desirable because of lithium's highest specific capacity (3,860 mA/g) and lowest negative electrochemical potential (∼3.040 V vs. the standard hydrogen electrode). In this work, we report for the first time, to our knowledge, a 3D lithium-ion-conducting ceramic network based on garnet-type Li6.4La3Zr2Al0.2O12 (LLZO) lithium-ion conductor to provide continuous Li(+) transfer channels in a polyethylene oxide (PEO)-based composite. This composite structure further provides structural reinforcement to enhance the mechanical properties of the polymer matrix. The flexible solid-state electrolyte composite membrane exhibited an ionic conductivity of 2.5 × 10(-4) S/cm at room temperature. The membrane can effectively block dendrites in a symmetric Li | electrolyte | Li cell during repeated lithium stripping/plating at room temperature, with a current density of 0.2 mA/cm(2) for around 500 h and a current density of 0.5 mA/cm(2) for over 300 h. These results provide an all solid ion-conducting membrane that can be applied to flexible LIBs and other electrochemical energy storage systems, such as lithium-sulfur batteries.

  1. Modeling a Printed Circuit Heat Exchanger with RELAP5-3D for the Next Generation Nuclear Plant

    SciTech Connect

    Not Available

    2010-12-01

    The main purpose of this report is to design a printed circuit heat exchanger (PCHE) for the Next Generation Nuclear Plant and carry out Loss of Coolant Accident (LOCA) simulation using RELAP5-3D. Helium was chosen as the coolant in the primary and secondary sides of the heat exchanger. The design of PCHE is critical for the LOCA simulations. For purposes of simplicity, a straight channel configuration was assumed. A parallel intermediate heat exchanger configuration was assumed for the RELAP5 model design. The RELAP5 modeling also required the semicircular channels in the heat exchanger to be mapped to rectangular channels. The initial RELAP5 run outputs steady state conditions which were then compared to the heat exchanger performance theory to ensure accurate design is being simulated. An exponential loss of pressure transient was simulated. This LOCA describes a loss of coolant pressure in the primary side over a 20 second time period. The results for the simulation indicate that heat is initially transferred from the primary loop to the secondary loop, but after the loss of pressure occurs, heat transfers from the secondary loop to the primary loop.

  2. Experimental Investigation and 3D Finite Element Prediction of Temperature Distribution during Travelling Heat Sourced from Oxyacetylene Flame

    NASA Astrophysics Data System (ADS)

    Umar Alkali, Adam; Lenggo Ginta, Turnad; Majdi Abdul-Rani, Ahmad

    2015-04-01

    This paper presents a 3D transient finite element modelling of the workpiece temperature field produced during the travelling heat sourced from oxyacetylene flame. The proposed model was given in terms of preheat-only test applicable during thermally enhanced machining using the oxyacetylene flame as a heat source. The FEA model as well as the experimental test investigated the surface temperature distribution on 316L stainless steel at scanning speed of 100mm/min, 125mm/min 160mm/min, 200mm/min and 250mm/min. The parametric properties of the heat source maintained constant are; lead distance Ld =10mm, focus height Fh=7.5mm, oxygen gas pressure Poxy=15psi and acetylene gas pressure Pacty=25psi. An experimental validation of the temperature field induced on type 316L stainless steel reveal that temperature distribution increases when the travelling speed decreases.

  3. Scale dependent parameterization of soil hydraulic conductivity in 3D simulation of hydrological processes in a forested headwater catchment

    NASA Astrophysics Data System (ADS)

    Fang, Zhufeng; Bogena, Heye; Kollet, Stefan; Vereecken, Harry

    2016-05-01

    In distributed hydrological modelling one often faces the problem that input data need to be aggregated to match the model resolution. However, aggregated data may be too coarse for the parametrization of the processes represented. This dilemma can be circumvented by the adjustment of certain model parameters. For instance, the reduction of local hydraulic gradients due to spatial aggregation can be partially compensated by increasing soil hydraulic conductivity. In this study, we employed the information entropy concept for the scale dependent parameterization of soil hydraulic conductivity. The loss of information content of terrain curvature as consequence of spatial aggregation was used to determine an amplification factor for soil hydraulic conductivity to compensate the resulting retardation of water flow. To test the usefulness of this approach, continuous 3D hydrological simulations were conducted with different spatial resolutions in the highly instrumented Wüstebach catchment, Germany. Our results indicated that the introduction of an amplification factor can effectively improve model performances both in terms of soil moisture and runoff simulation. However, comparing simulated soil moisture pattern with observation indicated that uniform application of an amplification factor can lead to local overcorrection of soil hydraulic conductivity. This problem could be circumvented by applying the amplification factor only to model grid cells that suffer from high information loss. To this end, we tested two schemes to define appropriate location-specific correction factors. Both schemes led to improved model performance both in terms of soil water content and runoff simulation. Thus, we anticipate that our proposed scaling approach is useful for the application of next-generation hyper-resolution global land surface models.

  4. The Conduction of Heat through Cryogenic Regenerative Heat Exchangers

    NASA Astrophysics Data System (ADS)

    Superczynski, W. F.; Green, G. F.

    2006-04-01

    The need for improved regenerative cryocooler efficiency may require the replacement of conventional matrices with ducts. The ducts can not be continuous in the direction of temperature gradient when using conventional materials to prevent unacceptable conduction losses. However, this discontinuity creates a complex geometry to model and determine conduction losses. Chesapeake Cryogenics, Inc. has designed, fabricated and tested an apparatus for measuring the heat conduction through regenerative heat exchangers implementing different matrices. Data is presented for stainless steel photo etched disk, phophorus-bronze embossed ribbon coils and screens made of both stainless steel and phosphorus-bronze. The heat conduction was measured with the regenerators evacuated and pressurized with helium gas. In this test apparatus, helium gas presence increased the heat leak significantly. A description of the test apparatus, instrumentation, experimental methods and data analysis are presented.

  5. 3D Numerical Simulation of Turbulent Buoyant Flow and Heat Transport in a Curved Open Channel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A three-dimensional buoyancy-extended version of kappa-epsilon turbulence model was developed for simulating the turbulent flow and heat transport in a curved open channel. The density- induced buoyant force was included in the model, and the influence of temperature stratification on flow field was...

  6. Scalable 3D bicontinuous fluid networks: polymer heat exchangers toward artificial organs.

    PubMed

    Roper, Christopher S; Schubert, Randall C; Maloney, Kevin J; Page, David; Ro, Christopher J; Yang, Sophia S; Jacobsen, Alan J

    2015-04-17

    A scalable method for fabricating architected materials well-suited for heat and mass exchange is presented. These materials exhibit unprecedented combinations of small hydraulic diameters (13.0-0.09 mm) and large hydraulic-diameter-to-thickness ratios (5.0-30,100). This process expands the range of material architectures achievable starting from photopolymer waveguide lattices or additive manufacturing.

  7. RELAP5-3D Modeling of Heat Transfer Components (Intermediate Heat Exchanger and Helical-Coil Steam Generator) for NGNP Application

    SciTech Connect

    N. A. Anderson; P. Sabharwall

    2014-01-01

    The Next Generation Nuclear Plant project is aimed at the research and development of a helium-cooled high-temperature gas reactor that could generate both electricity and process heat for the production of hydrogen. The heat from the high-temperature primary loop must be transferred via an intermediate heat exchanger to a secondary loop. Using RELAP5-3D, a model was developed for two of the heat exchanger options a printed-circuit heat exchanger and a helical-coil steam generator. The RELAP5-3D models were used to simulate an exponential decrease in pressure over a 20 second period. The results of this loss of coolant analysis indicate that heat is initially transferred from the primary loop to the secondary loop, but after the decrease in pressure in the primary loop the heat is transferred from the secondary loop to the primary loop. A high-temperature gas reactor model should be developed and connected to the heat transfer component to simulate other transients.

  8. Full 3-D TLM simulations of the Earth-ionosphere cavity: Effect of conductivity on the Schumann resonances

    NASA Astrophysics Data System (ADS)

    Toledo-Redondo, S.; Salinas, A.; Fornieles, J.; Portí, J.; Lichtenegger, H. I. M.

    2016-06-01

    Schumann resonances can be found in planetary atmospheres, inside the cavity formed by the conducting surface of the planet and the lower ionosphere. They are a powerful tool to investigate both the electric processes that occur in the atmosphere and the characteristics of the surface and the lower ionosphere. Results from a full 3-D model of the Earth-ionosphere electromagnetic cavity based on the Transmission-Line Modeling (TLM) method are presented. A Cartesian scheme with homogeneous cell size of 10 km is used to minimize numerical dispersion present in spherical schemes. Time and frequency domain results have been obtained to study the resonance phenomenon. The effect of conductivity on the Schumann resonances in the cavity is investigated by means of numerical simulations, studying the transition from resonant to nonresonant response and setting the conductivity limit for the resonances to develop inside the cavity. It is found that the transition from resonant to nonresonant behavior occurs for conductivity values above roughly 10-9 S/m. For large losses in the cavity, the resonances are damped, but, in addition, the peak frequencies change according to the local distance to the source and with the particular electromagnetic field component. These spatial variations present steep variations around each mode's nodal position, covering distances around 1/4 of the mode wavelength, the higher modes being more sensitive to this effect than the lower ones. The dependence of the measured frequency on the distance to the source and particular component of the electric field offers information on the source generating these resonances.

  9. Fabrication of Highly Stretchable Conductors Based on 3D Printed Porous Poly(dimethylsiloxane) and Conductive Carbon Nanotubes/Graphene Network.

    PubMed

    Duan, Shasha; Yang, Ke; Wang, Zhihui; Chen, Mengting; Zhang, Ling; Zhang, Hongbo; Li, Chunzhong

    2016-01-27

    The combination of carbon nanomaterial with three-dimensional (3D) porous polymer substrates has been demonstrated to be an effective approach to manufacture high-performance stretchable conductive materials (SCMs). However, it remains a challenge to fabricate 3D-structured SCMs with outstanding electrical conductivity capability under large strain in a facile way. In this work, the 3D printing technique was employed to prepare 3D porous poly(dimethylsiloxane) (O-PDMS) which was then integrated with carbon nanotubes and graphene conductive network and resulted in highly stretchable conductors (OPCG). Two types of OPCG were prepared, and it has been demonstrated that the OPCG with split-level structure exhibited both higher electrical conductivity and superior retention capability under deformations, which was illustrated by using a finite element method. The specially designed split-level OPCG is capable of sustaining both large strain and repeated deformations showing huge potential in the application of next-generation stretchable electronics.

  10. Efficient software-hardware 3D heat equation solver with applications on the non-destructive evaluation of minefields

    NASA Astrophysics Data System (ADS)

    Pardo, F.; López, P.; Cabello, D.; Balsi, M.

    2009-11-01

    This paper targets the efficient computational solution of the heat transfer processes that take place in the soil and at the soil-air interface and its use in non-destructive evaluation (NDE) techniques. In particular, the problem of the detection of plastic antipersonnel mines is considered. To this aim we projected a 3D finite-difference (FD) thermal model of the soil on a FPGA platform using Handel-C and VHDL. A speedup factor of 34 over a purely software solution is achieved, obtaining processing times that permit the use of the system on the field.

  11. Conductive polymer-mediated 2D and 3D arrays of Mn3O4 nanoblocks and mesoporous conductive polymers as their replicas

    NASA Astrophysics Data System (ADS)

    Nakagawa, Yoshitaka; Kageyama, Hiroyuki; Matsumoto, Riho; Oaki, Yuya; Imai, Hiroaki

    2015-11-01

    Orientation-controlled 2D and 3D microarrays of Mn3O4 nanocuboids that were mediated by a conductive polymer were fabricated by evaporation-induced self-assembly of the oxide nanoblocks and subsequent polymerization of pyrrole in the interparticle spaces. Free-standing mesoporous polypyrroles (PPy) having chain- and square-grid-like nanovoid arrays were obtained as replicas of the composite assemblies by dissolving the oxide nanoblocks. The PPy-mediated manganese oxide arrays exhibited stable electrochemical performance as an ultrathin anode of a lithium-ion secondary battery.Orientation-controlled 2D and 3D microarrays of Mn3O4 nanocuboids that were mediated by a conductive polymer were fabricated by evaporation-induced self-assembly of the oxide nanoblocks and subsequent polymerization of pyrrole in the interparticle spaces. Free-standing mesoporous polypyrroles (PPy) having chain- and square-grid-like nanovoid arrays were obtained as replicas of the composite assemblies by dissolving the oxide nanoblocks. The PPy-mediated manganese oxide arrays exhibited stable electrochemical performance as an ultrathin anode of a lithium-ion secondary battery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05912g

  12. Chaotic advection and heat transfer in two similar 2-D periodic flows and in their corresponding 3-D periodic flows

    NASA Astrophysics Data System (ADS)

    Vinsard, G.; Dufour, S.; Saatdjian, E.; Mota, J. P. B.

    2016-03-01

    Chaotic advection can effectively enhance the heat transfer rate between a boundary and fluids with high Prandtl number. These fluids are usually highly viscous and thus turbulent agitation is not a viable solution since the energy required to mix the fluid would be prohibitive. Here, we analyze previously obtained results on chaotic advection and heat transfer in two similar 2-D periodic flows and on their corresponding 3-D periodic flows when an axial velocity component is superposed. The two flows studied are the flow between eccentric rotating cylinders and the flow between confocal ellipses. For both of these flows the analysis is simplified because the Stokes equations can be solved analytically to obtain a closed form solution. For both 2-D periodic flows, we show that chaotic heat transfer is enhanced by the displacement of the saddle point location during one period. Furthermore, the enhancement by chaotic advection in the elliptical geometry is approximately double that obtained in the cylindrical geometry because there are two saddle points instead of one. We also explain why, for high eccentricity ratios, there is no heat transfer enhancement in the cylindrical geometry. When an axial velocity component is added to both of these flows so that they become 3-D, previous work has shown that there is an optimum modulation frequency for which chaotic advection and heat transfer enhancement is a maximum. Here we show that the optimum modulation frequency can be derived from results without an axial flow. We also explain by physical arguments other previously unanswered questions in the published data.

  13. Characterisation of small-scale heating events in the solar atmosphere from 3D MHD simulations and their potential role in coronal heating

    NASA Astrophysics Data System (ADS)

    Haberreiter, M.; Guerreiro, N.; Hansteen, V. H.; Schmutz, W. K.

    2015-12-01

    The physical mechanism that heats the solar corona is one of the still open science questions in solar physics. One of the proposed mechanism for coronal heating are nanoflares. To investigate their role in coronal heating we study the properties of the small-scale heating events in the solar atmosphere using 3D MHD simulations. We present a method to identify and track these heating events in time which allows us to study their life time, energy, and spectral signatures. These spectal signatures will be compared with available spectrosopic observations obtained with IRIS and SUMER. Ultimately, these results will be important for the coordinated scientific exploitation of SPICE and EUI along with other instruments onboard Solar Orbiter to address the coronal heating problem.

  14. Determination of the heat transfer coefficients in transient heat conduction

    NASA Astrophysics Data System (ADS)

    Nho Hào, Dinh; Thanh, Phan Xuan; Lesnic, D.

    2013-09-01

    The determination of the space- or time-dependent heat transfer coefficient which links the boundary temperature to the heat flux through a third-kind Robin boundary condition in transient heat conduction is investigated. The reconstruction uses average surface temperature measurements. In both cases of the space- or time-dependent unknown heat transfer coefficient the inverse problems are nonlinear and ill posed. Least-squares penalized variational formulations are proposed and new formulae for the gradients are derived. Numerical results obtained using the nonlinear conjugate gradient method combined with a boundary element direct solver are presented and discussed.

  15. Heat Transfer and Friction-Factor Methods Turbulent Flow Inside Pipes 3d Rough

    1994-01-21

    Three-dimensional roughened internally enhanced tubes have been shown to be one of the most energy efficient for turbulent, forced convection applications. However, there is only one prediction method presented in the open literature and that is restricted to three-dimensional sand-grain roughness. Other roughness types are being proposed: hemispherical sectors, truncated cones, and full and truncated pyramids. There are no validated heat-transfer and friction-factor prediction methods for these different roughness shapes that can be used inmore » the transition and fully rough region. This program calculates the Nusselt number and friction factor values, for a broad range of three-dimensional roughness types such as hemispherical sectors, truncated cones, and full and truncated pyramids. Users of this program are heat-exchangers designers, enhanced tubing suppliers, and research organizations or academia who are developing or validating prediction methods.« less

  16. ORMDIN. 2-D Nonlinear Inverse Heat Conduction

    SciTech Connect

    Bass, B.R.

    1990-05-01

    ORMDIN is a finite-element program developed for two-dimensional nonlinear inverse heat conduction analysis as part of the Oak Ridge National Laboratory Pressurized Water Reactor Blowdown Heat Transfer (BDHT) program. One of the primary objectives of the program was to determine the transient surface temperature and surface heat flux of fuel pin simulators from internal thermocouple signals obtained during a loss-of-coolant accident experiment in the Thermal-Hydraulic Test Facility (THTF). ORMDIN was designed primarily to perform a transient two-dimensional nonlinear inverse heat conduction analysis of the THTF bundle 3 heater rod; however, it can be applied to other cylindrical geometries for which the thermophysical properties are prescribed functions of temperature. The program assumes that discretized temperature histories are provided at three thermocouple locations in the interior of the cylinder. Concurrent with the two-dimensional analysis, ORMDIN also generates one-dimensional solutions for each of the three thermocouple radial planes.

  17. Compact pulsed laser having improved heat conductance

    NASA Technical Reports Server (NTRS)

    Yang, L. C. (Inventor)

    1977-01-01

    A highly efficient, compact pulsed laser having high energy to weight and volume ratios is provided. The laser utilizes a cavity reflector that operates as a heat sink and is essentially characterized by having a high heat conductivity, by being a good electrical insulator and by being substantially immune to the deleterious effects of ultra-violet radiation. Manual portability is accomplished by eliminating entirely any need for a conventional circulating fluid cooling system.

  18. Measurement of heat conduction through stacked screens

    NASA Technical Reports Server (NTRS)

    Lewis, M. A.; Kuriyama, T.; Kuriyama, F.; Radebaugh, R.

    1998-01-01

    This paper describes the experimental apparatus for the measurement of heat conduction through stacked screens as well as some experimental results taken with the apparatus. Screens are stacked in a fiberglass-epoxy cylinder, which is 24.4 mm in diameter and 55 mm in length. The cold end of the stacked screens is cooled by a Gifford-McMahon (GM) cryocooler at cryogenic temperature, and the hot end is maintained at room temperature. Heat conduction through the screens is determined from the temperature gradient in a calibrated heat flow sensor mounted between the cold end of the stacked screens and the GM cryocooler. The samples used for these experiments consisted of 400-mesh stainless steel screens, 400-mesh phosphor bronze screens, and two different porosities of 325-mesh stainless steel screens. The wire diameter of the 400-mesh stainless steel and phosphor bronze screens was 25.4 micrometers and the 325-mesh stainless steel screen wire diameters were 22.9 micrometers and 27.9 micrometers. Standard porosity values were used for the experimental data with additional porosity values used on selected experiments. The experimental results showed that the helium gas between each screen enhanced the heat conduction through the stacked screens by several orders of magnitude compared to that in vacuum. The conduction degradation factor is the ratio of actual heat conduction to the heat conduction where the regenerator material is assumed to be a solid rod of the same cross sectional area as the metal fraction of the screen. This factor was about 0.1 for the stainless steel and 0.022 for the phosphor bronze, and almost constant for the temperature range of 40 to 80 K at the cold end.

  19. Measurement of heat conduction through stacked screens.

    PubMed

    Lewis, M A; Kuriyama, T; Kuriyama, F; Radebaugh, R

    1998-01-01

    This paper describes the experimental apparatus for the measurement of heat conduction through stacked screens as well as some experimental results taken with the apparatus. Screens are stacked in a fiberglass-epoxy cylinder, which is 24.4 mm in diameter and 55 mm in length. The cold end of the stacked screens is cooled by a Gifford-McMahon (GM) cryocooler at cryogenic temperature, and the hot end is maintained at room temperature. Heat conduction through the screens is determined from the temperature gradient in a calibrated heat flow sensor mounted between the cold end of the stacked screens and the GM cryocooler. The samples used for these experiments consisted of 400-mesh stainless steel screens, 400-mesh phosphor bronze screens, and two different porosities of 325-mesh stainless steel screens. The wire diameter of the 400-mesh stainless steel and phosphor bronze screens was 25.4 micrometers and the 325-mesh stainless steel screen wire diameters were 22.9 micrometers and 27.9 micrometers. Standard porosity values were used for the experimental data with additional porosity values used on selected experiments. The experimental results showed that the helium gas between each screen enhanced the heat conduction through the stacked screens by several orders of magnitude compared to that in vacuum. The conduction degradation factor is the ratio of actual heat conduction to the heat conduction where the regenerator material is assumed to be a solid rod of the same cross sectional area as the metal fraction of the screen. This factor was about 0.1 for the stainless steel and 0.022 for the phosphor bronze, and almost constant for the temperature range of 40 to 80 K at the cold end.

  20. 3D CFD ELECTROCHEMICAL AND HEAT TRANSFER MODEL OF AN INTERNALLY MANIFOLDED SOLID OXIDE ELECTROLYSIS CELL

    SciTech Connect

    Grant L. Hawkes; James E. O'Brien; Greg Tao

    2011-11-01

    A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in an internally manifolded planar solid oxide electrolysis cell (SOEC) stack. This design is being evaluated at the Idaho National Laboratory for hydrogen production from nuclear power and process heat. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, operating potential, steam-electrode gas composition, oxygen-electrode gas composition, current density and hydrogen production over a range of stack operating conditions. Single-cell and five-cell results will be presented. Flow distribution through both models is discussed. Flow enters from the bottom, distributes through the inlet plenum, flows across the cells, gathers in the outlet plenum and flows downward making an upside-down ''U'' shaped flow pattern. Flow and concentration variations exist downstream of the inlet holes. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, oxygen-electrode and steam-electrode current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal

  1. Single-mode heat conduction by photons.

    PubMed

    Meschke, Matthias; Guichard, Wiebke; Pekola, Jukka P

    2006-11-01

    The thermal conductance of a single channel is limited by its unique quantum value G(Q), as was shown theoretically in 1983. This result closely resembles the well-known quantization of electrical conductance in ballistic one-dimensional conductors. Interestingly, all particles-irrespective of whether they are bosons or fermions-have the same quantized thermal conductance when they are confined within dimensions that are small compared to their characteristic wavelength. The single-mode heat conductance is particularly relevant in nanostructures. Quantized heat transport through submicrometre dielectric wires by phonons has been observed, and it has been predicted to influence cooling of electrons in metals at very low temperatures due to electromagnetic radiation. Here we report experimental results showing that at low temperatures heat is transferred by photon radiation, when electron-phonon as well as normal electronic heat conduction is frozen out. We study heat exchange between two small pieces of normal metal, connected to each other only via superconducting leads, which are ideal insulators against conventional thermal conduction. Each superconducting lead is interrupted by a switch of electromagnetic (photon) radiation in the form of a DC-SQUID (a superconducting loop with two Josephson tunnel junctions). We find that the thermal conductance between the two metal islands mediated by photons indeed approaches the expected quantum limit of G(Q) at low temperatures. Our observation has practical implications-for example, for the performance and design of ultra-sensitive bolometers (detectors of far-infrared light) and electronic micro-refrigerators, whose operation is largely dependent on weak thermal coupling between the device and its environment. PMID:17093446

  2. 3D crustal-scale heat-flow regimes at a developing active margin (Taranaki Basin, New Zealand)

    NASA Astrophysics Data System (ADS)

    Kroeger, K. F.; Funnell, R. H.; Nicol, A.; Fohrmann, M.; Bland, K. J.; King, P. R.

    2013-04-01

    The Taranaki Basin in the west of New Zealand's North Island has evolved from a rifted Mesozoic Gondwana margin to a basin straddling the Neogene convergent Australian-Pacific plate margin. However, given its proximity to the modern subduction front, Taranaki Basin is surprisingly cold when compared to other convergent margins. To investigate the effects of active margin evolution on the thermal regime of the Taranaki Basin we developed a 3D crustal-scale forward model using the petroleum industry-standard basin-modelling software Petromod™. The crustal structure inherited from Mesozoic Gondwana margin breakup and processes related to modern Hikurangi convergent margin initiation are identified to be the main controls on the thermal regime of the Taranaki Basin. Present-day surface heat flow across Taranaki on average is 59 mW/m2, but varies by as much as 30 mW/m2 due to the difference in crustal heat generation between mafic and felsic basement terranes alone. In addition, changes in mantle heat advection, tectonic subsidence, crustal thickening and basin inversion, together with related sedimentary processes result in variability of up to 10 mW/m2. Modelling suggests that increased heating of the upper crust due to additional mantle heat advection following the onset of subduction is an ongoing process and heating has only recently begun to reach the surface, explaining the relatively low surface heat flow. We propose that the depth of the subducted slab and related mantle convection processes control the thermal and structural regimes in the Taranaki Basin. The thermal effects of the subduction initiation process are modified and overprinted by the thickness, structure and composition of the lithosphere.

  3. Heat Rejection from a Variable Conductance Heat Pipe Radiator Panel

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Gibson, M. A.; Hervol, D. S.

    2012-01-01

    A titanium-water heat pipe radiator having an innovative proprietary evaporator configuration was evaluated in a large vacuum chamber equipped with liquid nitrogen cooled cold walls. The radiator was manufactured by Advanced Cooling Technologies, Inc. (ACT), Lancaster, PA, and delivered as part of a Small Business Innovative Research effort. The radiator panel consisted of five titanium-water heat pipes operating as thermosyphons, sandwiched between two polymer matrix composite face sheets. The five variable conductance heat pipes were purposely charged with a small amount of non-condensable gas to control heat flow through the condenser. Heat rejection was evaluated over a wide range of inlet water temperature and flow conditions, and heat rejection was calculated in real-time utilizing a data acquisition system programmed with the Stefan-Boltzmann equation. Thermography through an infra-red transparent window identified heat flow across the panel. Under nominal operation, a maximum heat rejection value of over 2200 Watts was identified. The thermal vacuum evaluation of heat rejection provided critical information on understanding the radiator s performance, and in steady state and transient scenarios provided useful information for validating current thermal models in support of the Fission Power Systems Project.

  4. Large variable conductance heat pipe. Transverse header

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1975-01-01

    The characteristics of gas-loaded, variable conductance heat pipes (VCHP) are discussed. The difficulties involved in developing a large VCHP header are analyzed. The construction of the large capacity VCHP is described. A research project to eliminate some of the problems involved in large capacity VCHP operation is explained.

  5. Effects of anisotropic heat conduction on solidification

    NASA Technical Reports Server (NTRS)

    Weaver, J. A.; Viskanta, R.

    1989-01-01

    Two-dimensional solidification influenced by anisotropic heat conduction has been considered. The interfacial energy balance was derived to account for the heat transfer in one direction (x or y) depending on the temperature gradient in both the x and y directions. A parametric study was made to determine the effects of the Stefan number, aspect ratio, initial superheat, and thermal conductivity ratios on the solidification rate. Because of the imposed boundary conditions, the interface became skewed and sometimes was not a straight line between the interface position at the upper and lower adiabatic walls (spatially nonlinear along the height). This skewness depends on the thermal conductivity ratio k(yy)/k(yx). The nonlinearity of the interface is influenced by the solidification rate, aspect ratio, and k(yy/k(yx).

  6. Effects of anisotropic heat conduction on solidification

    SciTech Connect

    Weaver, J.A.; Viskanta, R.

    1989-01-01

    Two-dimensional solidfication influenced by anisotropic heat conductions has been considered. The interfacial energy balance was derived to account for the heat transfer in one direction (x or y) depending on the temperature gradient in both the x and y directions. A parametric study was made to determine the effect of Stefan number, aspect ratio, initial superheat, and thermal conductivity ratios on the solidification rate. Because of the imposed boundary conditions, the interface became skewed and sometimes was not a straight line between the interface position at the upper and lower adiabatic walls (spatially nonlinear along the height). This skewness depends on the thermal conductivity ratio k/sub yy//k/sub yx/. The nonlinearity of the interface is influenced by the solidificaton rate, aspect ratio, and k/sub yy//k/sub yx/.

  7. Confirmatory analysis of the AP1000 passive residual heat removal heat exchanger with 3-D computational fluid dynamic analysis

    SciTech Connect

    Schwall, James R.; Karim, Naeem U.; Thakkar, Jivan G.; Taylor, Creed; Schulz, Terry; Wright, Richard F.

    2006-07-01

    The AP1000 is an 1100 MWe advanced nuclear power plant that uses passive safety features to enhance plant safety and to provide significant and measurable improvements in plant simplification, reliability, investment protection and plant costs. The AP1000 received final design approval from the US-NRC in 2004. The AP1000 design is based on the AP600 design that received final design approval in 1999. Wherever possible, the AP1000 plant configuration and layout was kept the same as AP600 to take advantage of the maturity of the design and to minimize new design efforts. As a result, the two-loop configuration was maintained for AP1000, and the containment vessel diameter was kept the same. It was determined that this significant power up-rate was well within the capability of the passive safety features, and that the safety margins for AP1000 were greater than those of operating PWRs. A key feature of the passive core cooling system is the passive residual heat removal heat exchanger (PRHR HX) that provides decay heat removal for postulated LOCA and non-LOCA events. The PRHR HX is a C-tube heat exchanger located in the in-containment refueling water storage tank (IRWST) above the core promoting natural circulation heat removal between the reactor cooling system and the tank. Component testing was performed for the AP600 PRHR HX to determine the heat transfer characteristics and to develop correlations to be used for the AP1000 safety analysis codes. The data from these tests were confirmed by subsequent integral tests at three separate facilities including the ROSA facility in Japan. Owing to the importance of this component, an independent analysis has been performed using the ATHOS-based computational fluid dynamics computer code PRHRCFD. Two separate models of the PRHR HX and IRWST have been developed representing the ROSA test geometry and the AP1000 plant geometry. Confirmation of the ROSA test results were used to validate PRHRCFD, and the AP1000 plant model

  8. 3-D Transient Heat Transfer Analysis of Slab Heating Characteristics in a Reheating Furnace in Hot Strip Mills

    NASA Astrophysics Data System (ADS)

    Jang, J. Y.; Lee, Y. W.; Lin, C. N.; Wang, C. H.

    2016-05-01

    A three-dimensional mathematical transient heat transfer model for the prediction of temperature distribution within the slab has been developed by considering the thermal radiation in the walking-beam-type reheating furnace chamber. The steel slabs are heated up through the non-firing, preheating, 1st-heating, 2nd-heating, and soaking zones in the furnace, respectively, where the furnace wall temperature is function of time. Comparison with the in-situ experimental data from Steel Company in Taiwan shows that the present heat transfer model works well for the prediction of thermal behavior of the slab in the reheating furnace. The effects of different skid button height (H=60mm, 90mm, and 120mm) and different gap distance between two slabs (S=50mm, 75mm, and 100mm) on the slab skid mark formation and temperature profiles are investigated. It is found that the skid mark severity decreases with an increase in the skid button height. The effect of gap distance is important only for the slab edge planes, while it is insignificant for the slab central planes.

  9. 3D Numerical heat transfer and fluid flow analysis in plate-fin and tube heat exchangers with electrohydrodynamic enhancement

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Wen; Jang, Jiin-Yuh

    2005-05-01

    Three-dimensional laminar fluid flow and heat transfer over a four-row plate-fin and tube heat exchanger with electrohydrodynamic (EHD) wire electrodes are studied numerically. The effects of different electrode arrangements (square and diagonal), tube pitch arrangements (in-line and staggered) and applied voltage (VE=0-16 kV) are investigated in detail for the Reynolds number range (based on the fin spacing and frontal velocity) ranging from 100 to 1,000. It is found that the EHD enhancement is more effective for lower Re and higher applied voltage. The case of staggered tube pitch with square wire electrode arrangement gives the best heat transfer augmentation. For VE=16 kV and Re = 100, this study identifies a maximum improvement of 218% in the average Nusselt number and a reduction in fin area of 56% as compared that without EHD enhancement.

  10. Guidelines in the experimental validation of a 3D heat and fluid flow model of keyhole laser welding

    NASA Astrophysics Data System (ADS)

    Courtois, Mickael; Carin, Muriel; Le Masson, Philippe; Gaied, Sadok; Balabane, Mikhaël

    2016-04-01

    During the past few years, numerous sophisticated models have been proposed to predict in a self-consistent way the dynamics of the keyhole, together with the melt pool and vapor jet. However, these models are only partially compared to experimental data, so the reliability of these models is questionable. The present paper aims to propose a more complete experimental set-up in order to validate the most relevant results calculated by these models. A complete heat transfer and fluid flow three-dimensional (3D) model is first proposed in order to describe laser welding in keyhole regimes. The interface is tracked with a level set method and fluid flows are calculated in liquid and gas. The mechanisms of recoil pressure and keyhole creation are highlighted in a fusion line configuration chosen as a reference. Moreover, a complete validation of the model is proposed with guidelines on the variables to observe. Numerous comparisons with dedicated experiments (thermocouples, pyrometry, high-speed camera) are proposed to estimate the validity of the model. In addition to traditional geometric measurements, the main variables calculated, temperatures, and velocities in the melt pool are at the center of this work. The goal is to propose a reference validation for complex 3D models proposed over the last few years.

  11. Application of the Finite Orbit Width Version of the CQL3D Code to NBI +RF Heating of NSTX Plasma

    NASA Astrophysics Data System (ADS)

    Petrov, Yu. V.; Harvey, R. W.

    2015-11-01

    The CQL3D bounce-averaged Fokker-Planck (FP) code has been upgraded to include Finite-Orbit-Width (FOW) effects. The calculations can be done either with a fast Hybrid-FOW option or with a slower but neoclassically complete full-FOW option. The banana regime neoclassical radial transport appears naturally in the full-FOW version by averaging the local collision coefficients along guiding center orbits, with a proper transformation matrix from local (R, Z) coordinates to the midplane computational coordinates, where the FP equation is solved. In a similar way, the local quasilinear rf diffusion terms give rise to additional radial transport of orbits. The full-FOW version is applied to simulation of ion heating in NSTX plasma. It is demonstrated that it can describe the physics of transport phenomena in plasma with auxiliary heating, in particular, the enhancement of the radial transport of ions by RF heating and the occurrence of the bootstrap current. Because of the bounce-averaging on the FPE, the results are obtained in a relatively short computational time. A typical full-FOW run time is 30 min using 140 MPI cores. Due to an implicit solver, calculations with a large time step (tested up to dt = 0.5 sec) remain stable. Supported by USDOE grants SC0006614, ER54744, and ER44649.

  12. 3D near-to-surface conductivity reconstruction by inversion of VETEM data using the distorted Born iterative method

    USGS Publications Warehouse

    Wang, G.L.; Chew, W.C.; Cui, T.J.; Aydiner, A.A.; Wright, D.L.; Smith, D.V.

    2004-01-01

    Three-dimensional (3D) subsurface imaging by using inversion of data obtained from the very early time electromagnetic system (VETEM) was discussed. The study was carried out by using the distorted Born iterative method to match the internal nonlinear property of the 3D inversion problem. The forward solver was based on the total-current formulation bi-conjugate gradient-fast Fourier transform (BCCG-FFT). It was found that the selection of regularization parameter follow a heuristic rule as used in the Levenberg-Marquardt algorithm so that the iteration is stable.

  13. 2-D Finite Element Heat Conduction

    1989-10-30

    AYER is a finite element program which implicitly solves the general two-dimensional equation of thermal conduction for plane or axisymmetric bodies. AYER takes into account the effects of time (transient problems), in-plane anisotropic thermal conductivity, a three-dimensional velocity distribution, and interface thermal contact resistance. Geometry and material distributions are arbitrary, and input is via subroutines provided by the user. As a result, boundary conditions, material properties, velocity distributions, and internal power generation may be mademore » functions of, e.g., time, temperature, location, and heat flux.« less

  14. Structure, Properties, and In Vitro Behavior of Heat-Treated Calcium Sulfate Scaffolds Fabricated by 3D Printing.

    PubMed

    Asadi-Eydivand, Mitra; Solati-Hashjin, Mehran; Shafiei, Seyedeh Sara; Mohammadi, Sepideh; Hafezi, Masoud; Abu Osman, Noor Azuan

    2016-01-01

    The ability of inkjet-based 3D printing (3DP) to fabricate biocompatible ceramics has made it one of the most favorable techniques to generate bone tissue engineering (BTE) scaffolds. Calcium sulfates exhibit various beneficial characteristics, and they can be used as a promising biomaterial in BTE. However, low mechanical performance caused by the brittle character of ceramic materials is the main weakness of 3DP calcium sulfate scaffolds. Moreover, the presence of certain organic matters in the starting powder and binder solution causes products to have high toxicity levels. A post-processing treatment is usually employed to improve the physical, chemical, and biological behaviors of the printed scaffolds. In this study, the effects of heat treatment on the structural, mechanical, and physical characteristics of 3DP calcium sulfate prototypes were investigated. Different microscopy and spectroscopy methods were employed to characterize the printed prototypes. The in vitro cytotoxicity of the specimens was also evaluated before and after heat treatment. Results showed that the as-printed scaffolds and specimens heat treated at 300°C exhibited severe toxicity in vitro but had almost adequate strength. By contrast, the specimens heat treated in the 500°C-1000°C temperature range, although non-toxic, had insufficient mechanical strength, which was mainly attributed to the exit of the organic binder before 500°C and the absence of sufficient densification below 1000°C. The sintering process was accelerated at temperatures higher than 1000°C, resulting in higher compressive strength and less cytotoxicity. An anhydrous form of calcium sulfate was the only crystalline phase existing in the samples heated at 500°C-1150°C. The formation of calcium oxide caused by partial decomposition of calcium sulfate was observed in the specimens heat treated at temperatures higher than 1200°C. Although considerable improvements in cell viability of heat-treated scaffolds were

  15. Structure, Properties, and In Vitro Behavior of Heat-Treated Calcium Sulfate Scaffolds Fabricated by 3D Printing.

    PubMed

    Asadi-Eydivand, Mitra; Solati-Hashjin, Mehran; Shafiei, Seyedeh Sara; Mohammadi, Sepideh; Hafezi, Masoud; Abu Osman, Noor Azuan

    2016-01-01

    The ability of inkjet-based 3D printing (3DP) to fabricate biocompatible ceramics has made it one of the most favorable techniques to generate bone tissue engineering (BTE) scaffolds. Calcium sulfates exhibit various beneficial characteristics, and they can be used as a promising biomaterial in BTE. However, low mechanical performance caused by the brittle character of ceramic materials is the main weakness of 3DP calcium sulfate scaffolds. Moreover, the presence of certain organic matters in the starting powder and binder solution causes products to have high toxicity levels. A post-processing treatment is usually employed to improve the physical, chemical, and biological behaviors of the printed scaffolds. In this study, the effects of heat treatment on the structural, mechanical, and physical characteristics of 3DP calcium sulfate prototypes were investigated. Different microscopy and spectroscopy methods were employed to characterize the printed prototypes. The in vitro cytotoxicity of the specimens was also evaluated before and after heat treatment. Results showed that the as-printed scaffolds and specimens heat treated at 300°C exhibited severe toxicity in vitro but had almost adequate strength. By contrast, the specimens heat treated in the 500°C-1000°C temperature range, although non-toxic, had insufficient mechanical strength, which was mainly attributed to the exit of the organic binder before 500°C and the absence of sufficient densification below 1000°C. The sintering process was accelerated at temperatures higher than 1000°C, resulting in higher compressive strength and less cytotoxicity. An anhydrous form of calcium sulfate was the only crystalline phase existing in the samples heated at 500°C-1150°C. The formation of calcium oxide caused by partial decomposition of calcium sulfate was observed in the specimens heat treated at temperatures higher than 1200°C. Although considerable improvements in cell viability of heat-treated scaffolds were

  16. Structure, Properties, and In Vitro Behavior of Heat-Treated Calcium Sulfate Scaffolds Fabricated by 3D Printing

    PubMed Central

    Asadi-Eydivand, Mitra; Solati-Hashjin, Mehran; Shafiei, Seyedeh Sara; Mohammadi, Sepideh; Hafezi, Masoud; Abu Osman, Noor Azuan

    2016-01-01

    The ability of inkjet-based 3D printing (3DP) to fabricate biocompatible ceramics has made it one of the most favorable techniques to generate bone tissue engineering (BTE) scaffolds. Calcium sulfates exhibit various beneficial characteristics, and they can be used as a promising biomaterial in BTE. However, low mechanical performance caused by the brittle character of ceramic materials is the main weakness of 3DP calcium sulfate scaffolds. Moreover, the presence of certain organic matters in the starting powder and binder solution causes products to have high toxicity levels. A post-processing treatment is usually employed to improve the physical, chemical, and biological behaviors of the printed scaffolds. In this study, the effects of heat treatment on the structural, mechanical, and physical characteristics of 3DP calcium sulfate prototypes were investigated. Different microscopy and spectroscopy methods were employed to characterize the printed prototypes. The in vitro cytotoxicity of the specimens was also evaluated before and after heat treatment. Results showed that the as-printed scaffolds and specimens heat treated at 300°C exhibited severe toxicity in vitro but had almost adequate strength. By contrast, the specimens heat treated in the 500°C–1000°C temperature range, although non-toxic, had insufficient mechanical strength, which was mainly attributed to the exit of the organic binder before 500°C and the absence of sufficient densification below 1000°C. The sintering process was accelerated at temperatures higher than 1000°C, resulting in higher compressive strength and less cytotoxicity. An anhydrous form of calcium sulfate was the only crystalline phase existing in the samples heated at 500°C–1150°C. The formation of calcium oxide caused by partial decomposition of calcium sulfate was observed in the specimens heat treated at temperatures higher than 1200°C. Although considerable improvements in cell viability of heat-treated scaffolds

  17. Detection and characterization of small-scale heating events in the solar atmosphere from 3D-MHD simulations and their potential role in coronal heating

    NASA Astrophysics Data System (ADS)

    Guerreiro, Nuno; Haberreiter, Margit; Schmutz, Werner; Hansteen, Viggo

    2016-07-01

    Aiming at better understanding the mechanism(s) responsible for the coronal heating we focus on analyzing the properties of the magnetically generated small-scale heating events (SSHEs) in the solar atmosphere. We present a comprehensive method to detect and follow SSHEs over time in 3D-MHD simulations of the solar atmosphere. Applying the method we are able to better understand the properties of the SSHEs and how the plasma in their vicinity respond to them. We study the lifetime, energy and spectral signatures and show that the energy flux dissipated by them is enough to heat the corona. Ultimately, these results will be important for the coordinated scientific exploration of SPICE and EUI along with other instruments on board solar orbiter.

  18. Finite-element technique applied to heat conduction in solids with temperature dependent thermal conductivity

    NASA Technical Reports Server (NTRS)

    Aguirre-Ramirez, G.; Oden, J. T.

    1969-01-01

    Finite element method applied to heat conduction in solids with temperature dependent thermal conductivity, using nonlinear constitutive equation for heat ABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGH

  19. Microscale Heat Conduction Models and Doppler Feedback

    SciTech Connect

    Hawari, Ayman I.; Ougouag, Abderrafi

    2015-01-22

    The objective of this project is to establish an approach for providing the fundamental input that is needed to estimate the magnitude and time-dependence of the Doppler feedback mechanism in Very High Temperature reactors. This mechanism is the foremost contributor to the passive safety of gas-cooled, graphite-moderated high temperature reactors that use fuel based on Tristructural-Isotropic (TRISO) coated particles. Therefore, its correct prediction is essential to the conduct of safety analyses for these reactors. Since the effect is directly dependent on the actual temperature reached by the fuel during transients, the underlying phenomena of heat deposition, heat transfer and temperature rise must be correctly predicted. To achieve the above objective, this project will explore an approach that accounts for lattice effects as well as local temperature variations and the correct definition of temperature and related local effects.

  20. Analytic solutions of inverse heat conduction problems

    NASA Astrophysics Data System (ADS)

    Al-Najem, N. M.

    A direct analytic approach is systematically developed for solving inverse heat conduction problems in multi-dimensional finite regions. The inverse problems involve the determination of the surface conditions from the knowledge of the time variation of the temperature at an interior point in the region. In the present approach, the unknown surface temperature is represented by a polynominal in time and a splitting-up procedure is employed to develop a rapidly converging inverse solution. The least square technique is then utilized to estimate the unknown parameters associated with the solution. The method is developed first for the analysis of one-dimensional cases, and then it is generalized to handle two- and three-dimensional situations. It provides an efficient, stable and systematic approach for inverse heat condition problems. The stability and accuracy of the current method of analysis are demonstrated by several numerical examples chosen to provide a very strict test.

  1. Parallelized solvers for heat conduction formulations

    NASA Technical Reports Server (NTRS)

    Padovan, Joe; Kwang, Abel

    1991-01-01

    Based on multilevel partitioning, this paper develops a structural parallelizable solution methodology that enables a significant reduction in computational effort and memory requirements for very large scale linear and nonlinear steady and transient thermal (heat conduction) models. Due to the generality of the formulation of the scheme, both finite element and finite difference simulations can be treated. Diverse model topologies can thus be handled, including both simply and multiply connected (branched/perforated) geometries. To verify the methodology, analytical and numerical benchmark trends are verified in both sequential and parallel computer environments.

  2. Characterization of small-scale heating events in the solar atmosphere from 3D-MHD simulations and their potential role in coronal heating

    NASA Astrophysics Data System (ADS)

    Guerreiro, Nuno; Haberreiter, Margit; Hansteen, Viggo; Schmutz, Werner

    2016-04-01

    Aiming at better understanding the mechanism(s) responsible for the coronal heating and the ubiquitous redshifts observed in the lower transition region we focus on analyzing the properties of small-scale heating events (SSHEs) in the solar atmosphere. We present a comprehensive method to follow SSHEs over time in 3D-MHD simulations of the solar atmosphere. Applying the method we are able to better understand the properties of the SSHEs and how the plasma in their vicinity respond to them. We present results for the lifetime, energy and spectral signatures of the SSHEs. Ultimately, these results will be important for the coordinated scientific exploration of SPICE and EUI along with other interments on board solar orbiter. ​

  3. Information filtering via weighted heat conduction algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Guo; Guo, Qiang; Zhang, Yi-Cheng

    2011-06-01

    In this paper, by taking into account effects of the user and object correlations on a heat conduction (HC) algorithm, a weighted heat conduction (WHC) algorithm is presented. We argue that the edge weight of the user-object bipartite network should be embedded into the HC algorithm to measure the object similarity. The numerical results indicate that both the accuracy and diversity could be improved greatly compared with the standard HC algorithm and the optimal values reached simultaneously. On the Movielens and Netflix datasets, the algorithmic accuracy, measured by the average ranking score, can be improved by 39.7% and 56.1% in the optimal case, respectively, and the diversity could reach 0.9587 and 0.9317 when the recommendation list equals to 5. Further statistical analysis indicates that, in the optimal case, the distributions of the edge weight are changed to the Poisson form, which may be the reason why HC algorithm performance could be improved. This work highlights the effect of edge weight on a personalized recommendation study, which maybe an important factor affecting personalized recommendation performance.

  4. Constraints on the Lost City Hydrothermal System from borehole thermal data; 3-D models of heat flow and hydrothermal circulation in an oceanic core complex.

    NASA Astrophysics Data System (ADS)

    Titarenko, S.; McCaig, A. M.

    2014-12-01

    A perennial problem in near-ridge hydrothermal circulation is that the only directly measurable data to test models is often vent fluid temperature. Surface heat flow measurements may be available but without the underlying thermal structure it is not known if they are transient and affected by local hydrothermal flow, or conductive. The Atlantis Massif oceanic core complex at 30 °N on the mid-Atlantic Ridge, offers a unique opportunity to better constrain hydrothermal circulation models. The temperature profile in gabbroic rocks of IODP Hole 1309D was measured in IODPExpedition 340T, and found to be near-conductive, but with a slight inflexion at ~750 mbsf indicating downward advection of fluid above that level. The lack of deep convection is especially remarkable given that the long-lived Lost City Hydrothermal Field (LCHF) is located only 5km to the south. We have modelled hydrothermal circulation in the Massif using Comsol Multiphysics, comparing 2-D and 3-D topographic models and using temperature-dependent conductivity to give the best estimate of heatflow into the Massif. We can constrain maximum permeability in gabbro below 750 mbsf to 5e-17 m2. The thermal gradient in the upper part of the borehole can be matched with a permeability of 3e-14 m2 in a 750 m thick layer parallel to the surface of the massif, with upflow occurring in areas of high topography and downflow at the location of the borehole. However in 3-D the precise flow pattern is quite model dependent, and the thermal structure can be matched either by downflow centred on the borehole at lower permeability or centred a few hundred metres from the borehole at higher permeability. The borehole gradient is compatible with the longevity (>120 kyr) and outflow temperature (40-90 °C) of the LCHF either with a deep more permeable (1e-14 m2 to 1e-15 m2) domain beneath the vent site in 2-D or a permeable fault slot 500 to 1000m wide and parallel to the transform fault in 3-D. In both cases topography

  5. HST3D; a computer code for simulation of heat and solute transport in three-dimensional ground-water flow systems

    USGS Publications Warehouse

    Kipp, K.L.

    1987-01-01

    The Heat- and Soil-Transport Program (HST3D) simulates groundwater flow and associated heat and solute transport in three dimensions. The three governing equations are coupled through the interstitial pore velocity, the dependence of the fluid density on pressure, temperature, the solute-mass fraction , and the dependence of the fluid viscosity on temperature and solute-mass fraction. The solute transport equation is for only a single, solute species with possible linear equilibrium sorption and linear decay. Finite difference techniques are used to discretize the governing equations using a point-distributed grid. The flow-, heat- and solute-transport equations are solved , in turn, after a particle Gauss-reduction scheme is used to modify them. The modified equations are more tightly coupled and have better stability for the numerical solutions. The basic source-sink term represents wells. A complex well flow model may be used to simulate specified flow rate and pressure conditions at the land surface or within the aquifer, with or without pressure and flow rate constraints. Boundary condition types offered include specified value, specified flux, leakage, heat conduction, and approximate free surface, and two types of aquifer influence functions. All boundary conditions can be functions of time. Two techniques are available for solution of the finite difference matrix equations. One technique is a direct-elimination solver, using equations reordered by alternating diagonal planes. The other technique is an iterative solver, using two-line successive over-relaxation. A restart option is available for storing intermediate results and restarting the simulation at an intermediate time with modified boundary conditions. This feature also can be used as protection against computer system failure. Data input and output may be in metric (SI) units or inch-pound units. Output may include tables of dependent variables and parameters, zoned-contour maps, and plots of the

  6. Impact of nonlinear 3D equilibrium response on edge topology and divertor heat load in Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.; Geiger, J.

    2016-06-01

    The impact of the 3D equilibrium response on the plasma edge topology is studied. In Wendelstein 7-X, the island divertor concept is used to assess scenarios for quasi-steady-state operation. However, the boundary islands necessary for the island divertor are strongly susceptible to plasma beta and toroidal current density effects because of the low magnetic shear. The edge magnetic topology for quasi-steady-state operation scenarios is calculated with the HINT-code to study the accompanying changes of the magnetic field structures. Two magnetic configurations have been selected, which had been investigated in self consistent neoclassical transport simulations for low bootstrap current but which use the alternative natural island chains to the standard iota value of 1 (ι b   =  5/5, periodicity), namely, at high-iota (ι b   =  5/4) and at low-iota (ι b   =  5/6). For the high-iota configuration, the boundary islands are robust but the stochasticity around them is enhanced with beta. The addition of toroidal current densities enhances the stochasticity further. The increased stochasticity changes the footprints on in-vessel components with a direct impact on the corresponding heat loads. In the low-iota configuration the boundary islands used for the island divertor are dislocated radially due to the low shear and even show healing effects, i.e. the island width vanishes. In the latter case the plasma changes from divertor to limiter operation. To realize the predicted high-performance quasi-steady-state operation of the transport simulations, further adjustments of the magnetic configuration may be necessary to achieve a proper divertor compatibility of the scenarios.

  7. Electron heat conductivity of epitaxial graphene on silicon carbide

    NASA Astrophysics Data System (ADS)

    Alisultanov, Z. Z.; Meilanov, R. P.

    2016-08-01

    The diagonal component of the electron heat conductivity tensor of epitaxial graphene formed in a semiconductor has been investigated within a simple analytical model. It is shown that the heat conductivity sharply changes at a chemical potential close to the substrate band gap edge. Low-temperature expressions for the heat conductivity are derived.

  8. Critical factors affecting the 3D microstructural formation in hybrid conductive adhesive materials studied by X-ray nano-tomography

    NASA Astrophysics Data System (ADS)

    Chen-Wiegart, Yu-Chen Karen; Figueroa-Santos, Miriam Aileen; Petrash, Stanislas; Garcia-Miralles, Jose; Wang, Jun

    2014-12-01

    Conductive adhesives are found favorable in a wide range of applications including a lead-free solder in micro-chips, flexible and printable electronics and enhancing the performance of energy storage devices. Composite materials comprised of metallic fillers and a polymer matrix are of great interest to be implemented as hybrid conductive adhesives. Here we investigated a cost-effective conductive adhesive material consisting of silver-coated copper as micro-fillers using synchrotron-based three-dimensional (3D) X-ray nano-tomography. The key factors affecting the quality and performance of the material were quantitatively studied in 3D on the nanometer scale for the first time. A critical characteristic parameter, defined as a shape-factor, was determined to yield a high-quality silver coating, leading to satisfactory performance. A `stack-and-screen' mechanism was proposed to elaborate such a phenomenon. The findings and the technique developed in this work will facilitate the future advancement of conductive adhesives to have a great impact in micro-electronics and other applications.Conductive adhesives are found favorable in a wide range of applications including a lead-free solder in micro-chips, flexible and printable electronics and enhancing the performance of energy storage devices. Composite materials comprised of metallic fillers and a polymer matrix are of great interest to be implemented as hybrid conductive adhesives. Here we investigated a cost-effective conductive adhesive material consisting of silver-coated copper as micro-fillers using synchrotron-based three-dimensional (3D) X-ray nano-tomography. The key factors affecting the quality and performance of the material were quantitatively studied in 3D on the nanometer scale for the first time. A critical characteristic parameter, defined as a shape-factor, was determined to yield a high-quality silver coating, leading to satisfactory performance. A `stack-and-screen' mechanism was proposed to

  9. Global 3-D imaging of mantle electrical conductivity based on inversion of observatory C-responses - I. An approach and its verification

    NASA Astrophysics Data System (ADS)

    Kuvshinov, Alexey; Semenov, Alexey

    2012-06-01

    We present a novel frequency-domain inverse solution to recover the 3-D electrical conductivity distribution in the mantle. The solution is based on analysis of local C-responses. It exploits an iterative gradient-type method - limited-memory quasi-Newton method - for minimizing the penalty function consisting of data misfit and regularization terms. The integral equation code is used as a forward engine to calculate responses and data misfit gradients during inversion. An adjoint approach is implemented to compute misfit gradients efficiently. Further improvements in computational load come from parallelizing the scheme with respect to frequencies, and from setting the most time-consuming part of the forward calculations - calculation of Green's tensors - apart from the inversion loop. Convergence, performance, and accuracy of our 3-D inverse solution are demonstrated with a synthetic numerical example. A companion paper applies the strategy set forth here to real data.

  10. Extended Development of Variable Conductance Heat Pipes

    NASA Technical Reports Server (NTRS)

    Antoniuk, D.; Edwards, D. K.; Luedke, E. E.

    1978-01-01

    A high-capacity vapor-modulated heat pipe was designed and tested. In 1977, a program was undertaken to use the aforementioned heat pipe to study protection from freezing-point failure, increase control sensitivity, and transient behavior under a wide range of operating conditions in order to determine the full performance potential of the heat pipe. A new concept, based on the vapor-induced-dry-out principle, was developed for passive feedback temperature control as a heat pipe diode. This report documents this work and describes: (1) the experimental and theoretical investigation of the performance of the vapor-modulated heat pipe; and (2) the design, fabrication and test of the heat pipe diode.

  11. Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools

    SciTech Connect

    Gustavsen, Arild; Arasteh, Dariush; Jelle, Bjorn Petter; Curcija, Charlie; Kohler, Christian

    2008-09-11

    While window frames typically represent 20-30% of the overall window area, their impact on the total window heat transfer rates may be much larger. This effect is even greater in low-conductance (highly insulating) windows that incorporate very low-conductance glazing. Developing low-conductance window frames requires accurate simulation tools for product research and development. Based on a literature review and an evaluation of current methods of modeling heat transfer through window frames, we conclude that current procedures specified in ISO standards are not sufficiently adequate for accurately evaluating heat transfer through the low-conductance frames. We conclude that the near-term priorities for improving the modeling of heat transfer through low-conductance frames are: (1) Add 2D view-factor radiation to standard modeling and examine the current practice of averaging surface emissivity based on area weighting and the process of making an equivalent rectangular frame cavity. (2) Asses 3D radiation effects in frame cavities and develop recommendation for inclusion into the design fenestration tools. (3) Assess existing correlations for convection in vertical cavities using CFD. (4) Study 2D and 3D natural convection heat transfer in frame cavities for cavities that are proven to be deficient from item 3 above. Recommend improved correlations or full CFD modeling into ISO standards and design fenestration tools, if appropriate. (5) Study 3D hardware short-circuits and propose methods to ensure that these effects are incorporated into ratings. (6) Study the heat transfer effects of ventilated frame cavities and propose updated correlations.

  12. Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors

    PubMed Central

    Zhang, Long; Zhang, Fan; Yang, Xi; Long, Guankui; Wu, Yingpeng; Zhang, Tengfei; Leng, Kai; Huang, Yi; Ma, Yanfeng; Yu, Ao; Chen, Yongsheng

    2013-01-01

    Until now, few sp2 carbon materials simultaneously exhibit superior performance for specific surface area (SSA) and electrical conductivity at bulk state. Thus, it is extremely important to make such materials at bulk scale with those two outstanding properties combined together. Here, we present a simple and green but very efficient approach using two standard and simple industry steps to make such three-dimensional graphene-based porous materials at the bulk scale, with ultrahigh SSA (3523 m2/g) and excellent bulk conductivity. We conclude that these materials consist of mainly defected/wrinkled single layer graphene sheets in the dimensional size of a few nanometers, with at least some covalent bond between each other. The outstanding properties of these materials are demonstrated by their superior supercapacitor performance in ionic liquid with specific capacitance and energy density of 231 F/g and 98 Wh/kg, respectively, so far the best reported capacitance performance for all bulk carbon materials. PMID:23474952

  13. Biotemplate synthesis of polyaniline@cellulose nanowhiskers/natural rubber nanocomposites with 3D hierarchical multiscale structure and improved electrical conductivity.

    PubMed

    Wu, Xiaodong; Lu, Canhui; Xu, Haoyu; Zhang, Xinxing; Zhou, Zehang

    2014-12-10

    Development of novel and versatile strategies to construct conductive polymer composites with low percolation thresholds and high mechanical properties is of great importance. In this work, we report a facile and effective strategy to prepare polyaniline@cellulose nanowhiskers (PANI@CNs)/natural rubber (NR) nanocomposites with 3D hierarchical multiscale structure. Specifically, PANI was synthesized in situ on the surface of CNs biotemplate to form PANI@CNs nanohybrids with high aspect ratio and good dispersity. Then NR latex was introduced into PANI@CNs nanohybrids suspension to enable the self-assembly of PANI@CNs nanohybrids onto NR latex microspheres. During cocoagulation process, PANI@CNs nanohybrids selectively located in the interstitial space between NR microspheres and organized into a 3D hierarchical multiscale conductive network structure in NR matrix. The combination of the biotemplate synthesis of PANI and latex cocoagulation method significantly enhanced the electrical conductivity and mechanical properties of the NR-based nanocomposites simultaneously. The electrical conductivity of PANI@CNs/NR nanocomposites containing 5 phr PANI showed 11 orders of magnitude higher than that of the PANI/NR composites at the same loading fraction,; meanwhile, the percolation threshold was drastically decreased from 8.0 to 3.6 vol %.

  14. Biotemplate synthesis of polyaniline@cellulose nanowhiskers/natural rubber nanocomposites with 3D hierarchical multiscale structure and improved electrical conductivity.

    PubMed

    Wu, Xiaodong; Lu, Canhui; Xu, Haoyu; Zhang, Xinxing; Zhou, Zehang

    2014-12-10

    Development of novel and versatile strategies to construct conductive polymer composites with low percolation thresholds and high mechanical properties is of great importance. In this work, we report a facile and effective strategy to prepare polyaniline@cellulose nanowhiskers (PANI@CNs)/natural rubber (NR) nanocomposites with 3D hierarchical multiscale structure. Specifically, PANI was synthesized in situ on the surface of CNs biotemplate to form PANI@CNs nanohybrids with high aspect ratio and good dispersity. Then NR latex was introduced into PANI@CNs nanohybrids suspension to enable the self-assembly of PANI@CNs nanohybrids onto NR latex microspheres. During cocoagulation process, PANI@CNs nanohybrids selectively located in the interstitial space between NR microspheres and organized into a 3D hierarchical multiscale conductive network structure in NR matrix. The combination of the biotemplate synthesis of PANI and latex cocoagulation method significantly enhanced the electrical conductivity and mechanical properties of the NR-based nanocomposites simultaneously. The electrical conductivity of PANI@CNs/NR nanocomposites containing 5 phr PANI showed 11 orders of magnitude higher than that of the PANI/NR composites at the same loading fraction,; meanwhile, the percolation threshold was drastically decreased from 8.0 to 3.6 vol %. PMID:25384188

  15. Critical factors affecting the 3D microstructural formation in hybrid conductive adhesive materials studied by X-ray nano-tomography.

    PubMed

    Chen-Wiegart, Yu-chen Karen; Figueroa-Santos, Miriam Aileen; Petrash, Stanislas; Garcia-Miralles, Jose; Wang, Jun

    2015-01-21

    Conductive adhesives are found favorable in a wide range of applications including a lead-free solder in micro-chips, flexible and printable electronics and enhancing the performance of energy storage devices. Composite materials comprised of metallic fillers and a polymer matrix are of great interest to be implemented as hybrid conductive adhesives. Here we investigated a cost-effective conductive adhesive material consisting of silver-coated copper as micro-fillers using synchrotron-based three-dimensional (3D) X-ray nano-tomography. The key factors affecting the quality and performance of the material were quantitatively studied in 3D on the nanometer scale for the first time. A critical characteristic parameter, defined as a shape-factor, was determined to yield a high-quality silver coating, leading to satisfactory performance. A 'stack-and-screen' mechanism was proposed to elaborate such a phenomenon. The findings and the technique developed in this work will facilitate the future advancement of conductive adhesives to have a great impact in micro-electronics and other applications. PMID:25474162

  16. Regional conductivity structures of the northwestern segment of the North American Plate derived from 3-D inversion of USArray magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Meqbel, N. M.; Egbert, G. D.; Kelbert, A.

    2010-12-01

    Long period (10-20,000 s) magnetotelluric (MT) data are being acquired in a series of temporary arrays deployed across the continental United States through EMScope, a component of EarthScope, a multidisciplinary decade-long project to study the structure and evolution of the North American Continent. MT deployments in 2006-2010 have so far acquired data at 237 sites on an approximately regular grid, with the same nominal spacing as the USArray broadband seismic transportable array (~70 km), covering the Northwestern US, from the Oregon-Washington coast across the Rocky Mountains, into Montana and Wyoming. Preliminary 3-D inversion results (Patro and Egbert; 2008), based on data from the 110 westernmost “Cascadia” sites collected in the first two years, revealed extensive areas of high conductivity in the lower crust beneath the Northwest Basin and Range (NBR), inferred to result from fluids (including possibly partial melt at depth) associated with magmatic underplating, and beneath the Cascade Mountains, probably due to fluids released by the subducting Juan de Fuca slab. Here we extend this study, refining and further testing the preliminary results from Cascadia, and extending the inversion domain to the East, to include all of the EarthScope data. Although site spacing is very broad, distinct regional structures are clearly evident even in simple maps of apparent resistivity, phase and induction vectors. For the 3-D inversion we are using the parallelized version of our recently developed Modular Code (ModEM), which supports Non-Linear Conjugate Gradient and several Gauss-Newton type schemes. Our initial 3-D inversion results using 212 MT sites, fitting impedances and vertical field transfer functions (together and separately) suggest several conductive and resistive structures which appear to be stable and required by the measured data. These include: - A conductive structure elongated in the N-S direction underneath the volcanic arc of the Cascadia

  17. Characterization of a contaminated wellfield using 3D electrical resistivity tomography implemented with geostatistical, discontinuous boundary, and known conductivity constraints

    SciTech Connect

    Johnson, Timothy C.; Versteeg, Roelof J.; Rockhold, Mark L.; Slater, Lee D.; Ntarlagiannis, Dimitrios; Greenwood, William J.; Zachara, John M.

    2012-09-17

    Continuing advancements in subsurface electrical resistivity tomography (ERT) are giving the method increasing capability for understanding shallow subsurface properties and processes. The inability of ERT imaging data to uniquely resolve subsurface structure and the corresponding need include constraining information remains one of the greatest limitations, and provides one of the greatest opportunities, for further advancing the utility of the method. In this work we describe and demonstrate a method of incorporating constraining information into an ERT imaging algorithm in the form on discontinuous boundaries, known values, and spatial covariance information. We demonstrate the approach by imaging a uranium-contaminated wellfield at the Hanford Site in southwestern Washington State, USA. We incorporate into the algorithm known boundary information and spatial covariance structure derived from the highly resolved near-borehole regions of a regularized ERT inversion. The resulting inversion provides a solution which fits the ERT data (given the estimated noise level), honors the spatial covariance structure throughout the model, and is consistent with known bulk-conductivity discontinuities. The results are validated with core-scale measurements, and display a significant improvement in accuracy over the standard regularized inversion, revealing important subsurface structure known influence flow and transport at the site.

  18. An aerial 3D printing test mission

    NASA Astrophysics Data System (ADS)

    Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy

    2016-05-01

    This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.

  19. Theory and design of variable conductance heat pipes

    NASA Technical Reports Server (NTRS)

    Marcus, B. D.

    1972-01-01

    A comprehensive review and analysis of all aspects of heat pipe technology pertinent to the design of self-controlled, variable conductance devices for spacecraft thermal control is presented. Subjects considered include hydrostatics, hydrodynamics, heat transfer into and out of the pipe, fluid selection, materials compatibility and variable conductance control techniques. The report includes a selected bibliography of pertinent literature, analytical formulations of various models and theories describing variable conductance heat pipe behavior, and the results of numerous experiments on the steady state and transient performance of gas controlled variable conductance heat pipes. Also included is a discussion of VCHP design techniques.

  20. Loop heating by D.C. electric current and electromagnetic wave emissions simulated by 3-D EM particle zone

    NASA Technical Reports Server (NTRS)

    Sakai, J. I.; Zhao, J.; Nishikawa, K.-I.

    1994-01-01

    We have shown that a current-carrying plasma loop can be heated by magnetic pinch driven by the pressure imbalance between inside and outside the loop, using a 3-dimensional electromagnetic (EM) particle code. Both electrons and ions in the loop can be heated in the direction perpendicular to the ambient magnetic field, therefore the perpendicular temperature can be increased about 10 times compared with the parallel temperature. This temperature anisotropy produced by the magnetic pinch heating can induce a plasma instability, by which high-frequency electromagnetic waves can be excited. The plasma current which is enhanced by the magnetic pinch can also excite a kinetic kink instability, which can heat ions perpendicular to the magnetic field. The heating mechanism of ions as well as the electromagnetic emission could be important for an understanding of the coronal loop heating and the electromagnetic wave emissions from active coronal regions.

  1. Efficient Reformulation of HOTFGM: Heat Conduction with Variable Thermal Conductivity

    NASA Technical Reports Server (NTRS)

    Zhong, Yi; Pindera, Marek-Jerzy; Arnold, Steven M. (Technical Monitor)

    2002-01-01

    Functionally graded materials (FGMs) have become one of the major research topics in the mechanics of materials community during the past fifteen years. FGMs are heterogeneous materials, characterized by spatially variable microstructure, and thus spatially variable macroscopic properties, introduced to enhance material or structural performance. The spatially variable material properties make FGMs challenging to analyze. The review of the various techniques employed to analyze the thermodynamical response of FGMs reveals two distinct and fundamentally different computational strategies, called uncoupled macromechanical and coupled micromechanical approaches by some investigators. The uncoupled macromechanical approaches ignore the effect of microstructural gradation by employing specific spatial variations of material properties, which are either assumed or obtained by local homogenization, thereby resulting in erroneous results under certain circumstances. In contrast, the coupled approaches explicitly account for the micro-macrostructural interaction, albeit at a significantly higher computational cost. The higher-order theory for functionally graded materials (HOTFGM) developed by Aboudi et al. is representative of the coupled approach. However, despite its demonstrated utility in applications where micro-macrostructural coupling effects are important, the theory's full potential is yet to be realized because the original formulation of HOTFGM is computationally intensive. This, in turn, limits the size of problems that can be solved due to the large number of equations required to mimic realistic material microstructures. Therefore, a basis for an efficient reformulation of HOTFGM, referred to as user-friendly formulation, is developed herein, and subsequently employed in the construction of the efficient reformulation using the local/global conductivity matrix approach. In order to extend HOTFGM's range of applicability, spatially variable thermal

  2. Anisotropy of heat conduction in Mo/Si multilayers

    SciTech Connect

    Medvedev, V. V.; Yakshin, A. E.; Kruijs, R. W. E. van de; Bijkerk, F.; Yang, J.; Schmidt, A. J.; Zoethout, E.

    2015-08-28

    This paper reports on the studies of anisotropic heat conduction phenomena in Mo/Si multilayers with individual layer thicknesses selected to be smaller than the mean free path of heat carriers. We applied the frequency-domain thermoreflectance technique to characterize the thermal conductivity tensor. While the mechanisms of the cross-plane heat conduction were studied in detail previously, here we focus on the in-plane heat conduction. To analyze the relative contribution of electron transport to the in-plane heat conduction, we applied sheet-resistance measurements. Results of Mo/Si multilayers with variable thickness of the Mo layers indicate that the net in-plane thermal conductivity depends on the microstructure of the Mo layers.

  3. Anisotropy of heat conduction in Mo/Si multilayers

    NASA Astrophysics Data System (ADS)

    Medvedev, V. V.; Yang, J.; Schmidt, A. J.; Yakshin, A. E.; van de Kruijs, R. W. E.; Zoethout, E.; Bijkerk, F.

    2015-08-01

    This paper reports on the studies of anisotropic heat conduction phenomena in Mo/Si multilayers with individual layer thicknesses selected to be smaller than the mean free path of heat carriers. We applied the frequency-domain thermoreflectance technique to characterize the thermal conductivity tensor. While the mechanisms of the cross-plane heat conduction were studied in detail previously, here we focus on the in-plane heat conduction. To analyze the relative contribution of electron transport to the in-plane heat conduction, we applied sheet-resistance measurements. Results of Mo/Si multilayers with variable thickness of the Mo layers indicate that the net in-plane thermal conductivity depends on the microstructure of the Mo layers.

  4. An electrically conductive 3D scaffold based on a nonwoven web of poly(L-lactic acid) and conductive poly(3,4-ethylenedioxythiophene).

    PubMed

    Niu, Xufeng; Rouabhia, Mahmoud; Chiffot, Nicolas; King, Martin W; Zhang, Ze

    2015-08-01

    This study was to demonstrate that an extremely thin coating of poly(3,4-ethylenedioxythiophene) (PEDOT) on nonwoven microfibrous poly(l-lactic acid) (PLLA) web is of sufficient electrical conductivity and stability in aqueous environment to sustain electrical stimulation (ES) to cultured human skin fibroblasts. The PEDOT imparted the web a surface resistivity of approximately 0.1 KΩ/square without altering the web morphology. X-ray photoelectron spectroscopy demonstrated that the surface chemistry of the PLLA/PEDOT is characteristic of both PLLA and PEDOT. The PEDOT-coated web also showed higher hydrophilicity, lower glass transition temperature and unchanged fiber crystallinity and thermal stability compared with the PLLA web. The addition of PEDOT to the web marginally increased the web's tensile strength and lowered the elongation. An electrical stability test showed that the PLLA/PEDOT structure was more stable than a polypyrrole treated PLLA fabric, showing only a slow deterioration in conductivity when exposed to culture medium. The cytotoxicity test showed that the PLLA/PEDOT scaffold was not cytotoxic and supported human dermal fibroblast adhesion, migration, and proliferation. Preliminary ES experiments have demonstrated that this conductive web mediated effective ES to fibroblasts. Therefore, this new conductive biodegradable scaffold may be used to electrically modulate cellular activity and tissue regeneration. PMID:25630631

  5. An electrically conductive 3D scaffold based on a nonwoven web of poly(L-lactic acid) and conductive poly(3,4-ethylenedioxythiophene).

    PubMed

    Niu, Xufeng; Rouabhia, Mahmoud; Chiffot, Nicolas; King, Martin W; Zhang, Ze

    2015-08-01

    This study was to demonstrate that an extremely thin coating of poly(3,4-ethylenedioxythiophene) (PEDOT) on nonwoven microfibrous poly(l-lactic acid) (PLLA) web is of sufficient electrical conductivity and stability in aqueous environment to sustain electrical stimulation (ES) to cultured human skin fibroblasts. The PEDOT imparted the web a surface resistivity of approximately 0.1 KΩ/square without altering the web morphology. X-ray photoelectron spectroscopy demonstrated that the surface chemistry of the PLLA/PEDOT is characteristic of both PLLA and PEDOT. The PEDOT-coated web also showed higher hydrophilicity, lower glass transition temperature and unchanged fiber crystallinity and thermal stability compared with the PLLA web. The addition of PEDOT to the web marginally increased the web's tensile strength and lowered the elongation. An electrical stability test showed that the PLLA/PEDOT structure was more stable than a polypyrrole treated PLLA fabric, showing only a slow deterioration in conductivity when exposed to culture medium. The cytotoxicity test showed that the PLLA/PEDOT scaffold was not cytotoxic and supported human dermal fibroblast adhesion, migration, and proliferation. Preliminary ES experiments have demonstrated that this conductive web mediated effective ES to fibroblasts. Therefore, this new conductive biodegradable scaffold may be used to electrically modulate cellular activity and tissue regeneration.

  6. Heat conduction errors and time lag in cryogenic thermometer installations

    NASA Technical Reports Server (NTRS)

    Warshawsky, I.

    1973-01-01

    Installation practices are recommended that will increase rate of heat exchange between the thermometric sensing element and the cryogenic fluid and that will reduce the rate of undesired heat transfer to higher-temperature objects. Formulas and numerical data are given that help to estimate the magnitude of heat-conduction errors and of time lag in response.

  7. Approximate analytical models for phonon specific heat and ballistic thermal conductance of nanowires.

    PubMed

    Prasher, Ravi; Tong, Tao; Majumdar, Arun

    2008-01-01

    We introduce simple approximate analytical models for phonon specific heat and ballistic thermal conductance of nanowires. The analytical model is in excellent agreement with the detailed numerical calculations based on the solution of the elastic wave equation and is also in good agreement with the ballistic thermal conductance data by Schwab et al. (Nature 2000, 404, 974). Finally, we propose a demarcating criterion in terms of temperature, dimension, and material properties to capture the dimensional crossover from a three-dimensional (3D) bulk system to a one-dimensional (1D) system.

  8. Heat- and pH-induced BSA conformational changes, hydrogel formation and application as 3D cell scaffold.

    PubMed

    Navarra, Giovanna; Peres, Chiara; Contardi, Marco; Picone, Pasquale; San Biagio, Pier Luigi; Di Carlo, Marta; Giacomazza, Daniela; Militello, Valeria

    2016-09-15

    Aggregation and gelation of globular proteins can be an advantage to generate new forms of nanoscale biomaterials based on the fibrillar architecture. Here, we report results obtained by exploiting the proteins' natural tendency to self-organize in 3D network, for the production of new material based on BSA for medical application. In particular, at five different pH values the conformational and structural changes of the BSA during all the steps of the thermal aggregation and gelation have been analyzed by FTIR spectroscopy. The macroscopic mechanical properties of these hydrogels have been obtained by rheological measurements. The microscopic structure of the gels have been studied by AFM and SEM images to have a picture of their different spatial arrangement. Finally, the use of the BSA hydrogels as scaffold has been tested in two different cell cultures. PMID:27480606

  9. Heat- and pH-induced BSA conformational changes, hydrogel formation and application as 3D cell scaffold.

    PubMed

    Navarra, Giovanna; Peres, Chiara; Contardi, Marco; Picone, Pasquale; San Biagio, Pier Luigi; Di Carlo, Marta; Giacomazza, Daniela; Militello, Valeria

    2016-09-15

    Aggregation and gelation of globular proteins can be an advantage to generate new forms of nanoscale biomaterials based on the fibrillar architecture. Here, we report results obtained by exploiting the proteins' natural tendency to self-organize in 3D network, for the production of new material based on BSA for medical application. In particular, at five different pH values the conformational and structural changes of the BSA during all the steps of the thermal aggregation and gelation have been analyzed by FTIR spectroscopy. The macroscopic mechanical properties of these hydrogels have been obtained by rheological measurements. The microscopic structure of the gels have been studied by AFM and SEM images to have a picture of their different spatial arrangement. Finally, the use of the BSA hydrogels as scaffold has been tested in two different cell cultures.

  10. A Correction Scheme for Thermal Conductivity Measurement Using the Comparative Cut-bar Technique Based on a 3D Numerical Simulation

    SciTech Connect

    Douglas W. Marshall; Changhu Xing; Charles Folsom; Colby Jensen; Heng Ban

    2014-05-01

    As an important factor affecting the accuracy of the thermal conductivity measurement, systematic (bias) error in the guarded comparative axial heat flow (cut-bar) method was mostly neglected by previous researches. This bias is due primarily to the thermal conductivity mismatch between sample and meter bars (reference), which is common for a sample of unknown thermal conductivity. A correction scheme, based on a finite element simulation of the measurement system, was proposed to reduce the magnitude of the overall measurement uncertainty. This scheme was experimentally validated by applying corrections on four types of sample measurements in which the specimen thermal conductivity is much smaller, slightly smaller, equal and much larger than that of the meter bar. As an alternative to the optimum guarding technique proposed before, the correction scheme can be used to minimize uncertainty contribution from the measurement system with non-optimal guarding conditions. It is especially necessary for large thermal conductivity mismatches between sample and meter bars.

  11. Transient 3D heat flow analysis for integrated circuit devices using the transmission line matrix method on a quad tree mesh

    NASA Astrophysics Data System (ADS)

    Smy, T.; Walkey, D.; Dew, S. K.

    2001-07-01

    This paper presents a 3D transmission line matrix (TLM) implementation for the solution of transient heat flow in integrated semiconductor devices. The implementation uses a rectangular discontinuous mesh to allow for local mesh refinement. This approach is based on a quad tree meshing technique which can have a complex geometry using blocks of varying sizes. Each such block can have a maximum of two adjacent blocks on any vertical side and a maximum of four blocks on the top or bottom. The TLM implementation is based on a physical extraction of a resistance and capacitance network and then the creation of the appropriate TLM matrix. The formulation allows for temperature-dependent material parameters and a non-uniform time stepping. The simulator is first tested using a 2D example of a heat source in a rectangular region. Using this example the numerical error is determined and found to be less than 0.4%. Next, non-linearities are included, and a number of non-uniform time stepping algorithms are tested. Then, a 3D problem is also compared to an analytical solution and again the error is very small. Finally, an example of a full solution of heat flow in a realistic Si trench device is presented.

  12. Numerical simulation of heat transfer and flow structure in 3-D turbulent boundary layer with imbedded longitudinal vortex

    SciTech Connect

    Jeong, J.Y.; Ryou, H.S.

    1997-03-01

    Heat transfer characteristics and flow structure in turbulent flows through a flat plate three-dimensional turbulent boundary layer containing built-in vortex generators have been analyzed by means of the space marching Crank-Nicolson finite difference method. The method solves the slender flow approximation of the steady three-dimensional Navier-Stokes and energy equations. This study used the eddy diffusivity model and standard {kappa}-{epsilon} model to predict heat transfer and flow field in the turbulent flow with imbedded longitudinal vortex. The results show boundary layer distortion due to vortices, such as strong spanwise flow divergence and boundary layer thinning. The heat transfer and skin friction show relatively good results in comparison with experimental data. The vortex core moves slightly away from the wall and grows slowly; consequently, the vortex influences the flow over a very long distance downstream. The enhancement of the heat transfer in the vicinity of the wall is due to the increasing spanwise separation of the vortices as they develop in the streamwise direction.

  13. Analytical Solution for Three-Dimensional, Unsteady Heat Conduction in a Multilayer Sphere

    DOE PAGES

    Singh, Suneet; Jain, Prashant K.; Uddin, Rizwan

    2016-06-07

    An analytical solution has been obtained for the transient problem of three-dimensional multilayer heat conduction in a sphere with layers in the radial direction. The solution procedure can be applied to a hollow sphere or a solid sphere composed of several layers of various materials. In general, the separation of variables applied to 3D spherical coordinates has unique characteristics due to the presence of associated Legendre functions as the eigenfunctions. Moreover, an eigenvalue problem in the azimuthal direction also requires solution; again, its properties are unique owing to periodicity in the azimuthal direction. Therefore, extending existing solutions in 2D sphericalmore » coordinates to 3D spherical coordinates is not straightforward. In a spherical coordinate system, one can solve a 3D transient multilayer heat conduction problem without the presence of imaginary eigenvalues. A 2D cylindrical polar coordinate system is the only other case in which such multidimensional problems can be solved without the use of imaginary eigenvalues. The absence of imaginary eigenvalues renders the solution methodology significantly more useful for practical applications. The methodology described can be used for all three types of boundary conditions in the outer and inner surface of the sphere. Lastly, the solution procedure is demonstrated on an illustrative problem for which results are obtained.« less

  14. The Neighboring Column Approximation (NCA) - A fast approach for the calculation of 3D thermal heating rates in cloud resolving models

    NASA Astrophysics Data System (ADS)

    Klinger, Carolin; Mayer, Bernhard

    2016-01-01

    Due to computational costs, radiation is usually neglected or solved in plane parallel 1D approximation in today's numerical weather forecast and cloud resolving models. We present a fast and accurate method to calculate 3D heating and cooling rates in the thermal spectral range that can be used in cloud resolving models. The parameterization considers net fluxes across horizontal box boundaries in addition to the top and bottom boundaries. Since the largest heating and cooling rates occur inside the cloud, close to the cloud edge, the method needs in first approximation only the information if a grid box is at the edge of a cloud or not. Therefore, in order to calculate the heating or cooling rates of a specific grid box, only the directly neighboring columns are used. Our so-called Neighboring Column Approximation (NCA) is an analytical consideration of cloud side effects which can be considered a convolution of a 1D radiative transfer result with a kernel or radius of 1 grid-box (5 pt stencil) and which does usually not break the parallelization of a cloud resolving model. The NCA can be easily applied to any cloud resolving model that includes a 1D radiation scheme. Due to the neglect of horizontal transport of radiation further away than one model column, the NCA works best for model resolutions of about 100 m or lager. In this paper we describe the method and show a set of applications of LES cloud field snap shots. Correction terms, gains and restrictions of the NCA are described. Comprehensive comparisons to the 3D Monte Carlo Model MYSTIC and a 1D solution are shown. In realistic cloud fields, the full 3D simulation with MYSTIC shows cooling rates up to -150 K/d (100 m resolution) while the 1D solution shows maximum coolings of only -100 K/d. The NCA is capable of reproducing the larger 3D cooling rates. The spatial distribution of the heating and cooling is improved considerably. Computational costs are only a factor of 1.5-2 higher compared to a 1D

  15. 3D discrete angiogenesis dynamic model and stochastic simulation for the assessment of blood perfusion coefficient and impact on heat transfer between nanoparticles and malignant tumors.

    PubMed

    Yifat, Jonathan; Gannot, Israel

    2015-03-01

    Early detection of malignant tumors plays a crucial role in the survivability chances of the patient. Therefore, new and innovative tumor detection methods are constantly searched for. Tumor-specific magnetic-core nano-particles can be used with an alternating magnetic field to detect and treat tumors by hyperthermia. For the analysis of the method effectiveness, the bio-heat transfer between the nanoparticles and the tissue must be carefully studied. Heat diffusion in biological tissue is usually analyzed using the Pennes Bio-Heat Equation, where blood perfusion plays an important role. Malignant tumors are known to initiate an angiogenesis process, where endothelial cell migration from neighboring vasculature eventually leads to the formation of a thick blood capillary network around them. This process allows the tumor to receive its extensive nutrition demands and evolve into a more progressive and potentially fatal tumor. In order to assess the effect of angiogenesis on the bio-heat transfer problem, we have developed a discrete stochastic 3D model & simulation of tumor-induced angiogenesis. The model elaborates other angiogenesis models by providing high resolution 3D stochastic simulation, capturing of fine angiogenesis morphological features, effects of dynamic sprout thickness functions, and stochastic parent vessel generator. We show that the angiogenesis realizations produced are well suited for numerical bio-heat transfer analysis. Statistical study on the angiogenesis characteristics was derived using Monte Carlo simulations. According to the statistical analysis, we provide analytical expression for the blood perfusion coefficient in the Pennes equation, as a function of several parameters. This updated form of the Pennes equation could be used for numerical and analytical analyses of the proposed detection and treatment method.

  16. 3D discrete angiogenesis dynamic model and stochastic simulation for the assessment of blood perfusion coefficient and impact on heat transfer between nanoparticles and malignant tumors.

    PubMed

    Yifat, Jonathan; Gannot, Israel

    2015-03-01

    Early detection of malignant tumors plays a crucial role in the survivability chances of the patient. Therefore, new and innovative tumor detection methods are constantly searched for. Tumor-specific magnetic-core nano-particles can be used with an alternating magnetic field to detect and treat tumors by hyperthermia. For the analysis of the method effectiveness, the bio-heat transfer between the nanoparticles and the tissue must be carefully studied. Heat diffusion in biological tissue is usually analyzed using the Pennes Bio-Heat Equation, where blood perfusion plays an important role. Malignant tumors are known to initiate an angiogenesis process, where endothelial cell migration from neighboring vasculature eventually leads to the formation of a thick blood capillary network around them. This process allows the tumor to receive its extensive nutrition demands and evolve into a more progressive and potentially fatal tumor. In order to assess the effect of angiogenesis on the bio-heat transfer problem, we have developed a discrete stochastic 3D model & simulation of tumor-induced angiogenesis. The model elaborates other angiogenesis models by providing high resolution 3D stochastic simulation, capturing of fine angiogenesis morphological features, effects of dynamic sprout thickness functions, and stochastic parent vessel generator. We show that the angiogenesis realizations produced are well suited for numerical bio-heat transfer analysis. Statistical study on the angiogenesis characteristics was derived using Monte Carlo simulations. According to the statistical analysis, we provide analytical expression for the blood perfusion coefficient in the Pennes equation, as a function of several parameters. This updated form of the Pennes equation could be used for numerical and analytical analyses of the proposed detection and treatment method. PMID:24462603

  17. Quantum-limited heat conduction over macroscopic distances

    NASA Astrophysics Data System (ADS)

    Partanen, Matti; Tan, Kuan Yen; Govenius, Joonas; Lake, Russell E.; Mäkelä, Miika K.; Tanttu, Tuomo; Möttönen, Mikko

    2016-05-01

    The emerging quantum technological apparatuses, such as the quantum computer, call for extreme performance in thermal engineering. Cold distant heat sinks are needed for the quantized electric degrees of freedom owing to the increasing packaging density and heat dissipation. Importantly, quantum mechanics sets a fundamental upper limit for the flow of information and heat, which is quantified by the quantum of thermal conductance. However, the short distance between the heat-exchanging bodies in the previous experiments hinders their applicability in quantum technology. Here, we present experimental observations of quantum-limited heat conduction over macroscopic distances extending to a metre. We achieved this improvement of four orders of magnitude in the distance by utilizing microwave photons travelling in superconducting transmission lines. Thus, it seems that quantum-limited heat conduction has no fundamental distance cutoff. This work establishes the integration of normal-metal components into the framework of circuit quantum electrodynamics, which provides a basis for the superconducting quantum computer. Especially, our results facilitate remote cooling of nanoelectronic devices using faraway in situ-tunable heat sinks. Furthermore, quantum-limited heat conduction is important in contemporary thermodynamics. Here, the long distance may lead to ultimately efficient mesoscopic heat engines with promising practical applications.

  18. Quantum-limited heat conduction over macroscopic distances

    PubMed Central

    Partanen, Matti; Tan, Kuan Yen; Govenius, Joonas; Lake, Russell E.; Mäkelä, Miika K.; Tanttu, Tuomo; Möttönen, Mikko

    2016-01-01

    The emerging quantum technological apparatuses1, 2, such as the quantum computer3–6, call for extreme performance in thermal engineering7. Cold distant heat sinks are needed for the quantized electric degrees of freedom due to the increasing packaging density and heat dissipation. Importantly, quantum mechanics sets a fundamental upper limit for the flow of information and heat, which is quantified by the quantum of thermal conductance8–10. However, the short distance between the heat-exchanging bodies in the previous experiments11–14 hinders their applicability in quantum technology. Here, we present experimental observations of quantum-limited heat conduction over macroscopic distances extending to a metre. We achieved this improvement of four orders of magnitude in the distance by utilizing microwave photons travelling in superconducting transmission lines. Thus, it seems that quantum-limited heat conduction has no fundamental distance cutoff. This work establishes the integration of normal-metal components into the framework of circuit quantum electrodynamics15–17 which provides a basis for the superconducting quantum computer18–21. Especially, our results facilitate remote cooling of nanoelectronic devices using far-away in-situ-tunable heat sinks22, 23. Furthermore, quantum-limited heat conduction is important in contemporary thermodynamics24, 25. Here, the long distance may lead to ultimately efficient mesoscopic heat engines with promising practical applications26. PMID:27239219

  19. Scrape-off layer modeling of radiative divertor and high heat flux experiments on D3-D

    NASA Astrophysics Data System (ADS)

    Campbell, R. B.; Petrie, T. W.; Hill, D. N.

    1992-03-01

    We use a new multispecies 1-D fluid code, NEWT-1D, to model DIII-D scrape-off layer (SOL) behavior during radiative divertor and high heat flux experiments. The separatrix location and the width of the SOL are uncertain, and affect the comparison of the data in important ways. The model agrees with many of the experimental measurements for a particular prescription for the separatrix location. The model cannot explain the recent data on the separatrix T(sub i) with a conventional picture of ion and electron power flows across the separatrix. Radial transport of particles and heat in some form is required to explain the peak heat flux data before and after gas puffing. For argon puffing in the private flux region, entrainment is poor in the steady state. The calculations suggest that strike point argon puffing in a slot divertor geometry results in substantially better entrainment. Self-consistent, steady-state solutions with radiated powers up to 80 percent of the SOL power input are obtained in 1-D. We discuss significant radial effects which warrant the development of a code which can treat strongly radiating impurities in 2-D geometries.

  20. Radiative heat conduction and the magnetorotational instability

    NASA Astrophysics Data System (ADS)

    Araya-Góchez, Rafael A.; Vishniac, Ethan T.

    2004-12-01

    A photon or a neutrino gas, semicontained by a non-diffusive particle species through scattering, comprises a rather peculiar magnetohydrodynamic fluid where the magnetic field is truly frozen only to the comoving volume associated with the mass density. Although radiative diffusion precludes a formal adiabatic treatment of compressive perturbations, we cast the energy equation in quasi-adiabatic form by assuming a negligible rate of energy exchange among species on the time-scale of the perturbation. This leads to a simplified dispersion relation for toroidal, non-axisymmetric magnetorotational modes when the accretion disc has comparable stress contributions from diffusive and non-diffusive components. The properties of the modes of fastest growth are shown to depend strongly on the compressibility of the mode, with a reduction in growth rate consistent with the results of Blaes & Socrates for axisymmetric modes. A clumpy disc structure is anticipated on the basis of the polarization properties of the fastest-growing modes. This analysis is accurate in the near-hole region of locally cooled, hyper-accreting flows if the electron gas becomes moderately degenerate such that non-conductive, thermalizing processes with associated electron-positron release (i.e. neutrino annihilation and neutrino absorption on to nuclei) are effectively blocked by high occupation of the Fermi levels.

  1. Numerical 3D modeling of heat transfer in human tissues for microwave radiometry monitoring of brown fat metabolism

    PubMed Central

    Rodrigues, Dario B.; Maccarini, Paolo F.; Salahi, Sara; Colebeck, Erin; Topsakal, Erdem; Pereira, Pedro J. S.; Limão-Vieira, Paulo; Stauffer, Paul R.

    2013-01-01

    Background Brown adipose tissue (BAT) plays an important role in whole body metabolism and could potentially mediate weight gain and insulin sensitivity. Although some imaging techniques allow BAT detection, there are currently no viable methods for continuous acquisition of BAT energy expenditure. We present a non-invasive technique for long term monitoring of BAT metabolism using microwave radiometry. Methods A multilayer 3D computational model was created in HFSS™ with 1.5 mm skin, 3–10 mm subcutaneous fat, 200 mm muscle and a BAT region (2–6 cm3) located between fat and muscle. Based on this model, a log-spiral antenna was designed and optimized to maximize reception of thermal emissions from the target (BAT). The power absorption patterns calculated in HFSS™ were combined with simulated thermal distributions computed in COMSOL® to predict radiometric signal measured from an ultra-low-noise microwave radiometer. The power received by the antenna was characterized as a function of different levels of BAT metabolism under cold and noradrenergic stimulation. Results The optimized frequency band was 1.5–2.2 GHz, with averaged antenna efficiency of 19%. The simulated power received by the radiometric antenna increased 2–9 mdBm (noradrenergic stimulus) and 4–15 mdBm (cold stimulus) corresponding to increased 15-fold BAT metabolism. Conclusions Results demonstrated the ability to detect thermal radiation from small volumes (2–6 cm3) of BAT located up to 12 mm deep and to monitor small changes (0.5 °C) in BAT metabolism. As such, the developed miniature radiometric antenna sensor appears suitable for non-invasive long term monitoring of BAT metabolism. PMID:24244831

  2. Numerical 3D modeling of heat transfer in human tissues for microwave radiometry monitoring of brown fat metabolism

    NASA Astrophysics Data System (ADS)

    Rodrigues, Dario B.; Maccarini, Paolo F.; Salahi, Sara; Colebeck, Erin; Topsakal, Erdem; Pereira, Pedro J. S.; Limão-Vieira, Paulo; Stauffer, Paul R.

    2013-02-01

    Background: Brown adipose tissue (BAT) plays an important role in whole body metabolism and could potentially mediate weight gain and insulin sensitivity. Although some imaging techniques allow BAT detection, there are currently no viable methods for continuous acquisition of BAT energy expenditure. We present a non-invasive technique for long term monitoring of BAT metabolism using microwave radiometry. Methods: A multilayer 3D computational model was created in HFSSTM with 1.5 mm skin, 3-10 mm subcutaneous fat, 200 mm muscle and a BAT region (2-6 cm3) located between fat and muscle. Based on this model, a log-spiral antenna was designed and optimized to maximize reception of thermal emissions from the target (BAT). The power absorption patterns calculated in HFSSTM were combined with simulated thermal distributions computed in COMSOL® to predict radiometric signal measured from an ultra-low-noise microwave radiometer. The power received by the antenna was characterized as a function of different levels of BAT metabolism under cold and noradrenergic stimulation. Results: The optimized frequency band was 1.5-2.2 GHz, with averaged antenna efficiency of 19%. The simulated power received by the radiometric antenna increased 2-9 mdBm (noradrenergic stimulus) and 4-15 mdBm (cold stimulus) corresponding to increased 15-fold BAT metabolism. Conclusions: Results demonstrated the ability to detect thermal radiation from small volumes (2-6 cm3) of BAT located up to 12 mm deep and to monitor small changes (0.5 °C) in BAT metabolism. As such, the developed miniature radiometric antenna sensor appears suitable for non-invasive long term monitoring of BAT metabolism.

  3. From 1D-Multi-Layer-Conductivity-Inversion to Pseudo-3D-Imaging of Quantified Electromagnetic Induction Data Acquired at a Heterogeneous Test Site

    NASA Astrophysics Data System (ADS)

    von Hebel, Christian; Rudolph, Sebastian; Huisman, Johan A.; van der Kruk, Jan; Vereecken, Harry

    2013-04-01

    three different coil offsets in HCP and VCP measurement modes. This resulted in six high spatial resolution data sets of approximately 60000 measurements with different sensing depths. A 5 m block-kriging was applied to all six data sets to re-grid the sampling points on the same regular grid. For each grid node, the six measured apparent conductivities were used in a three-layer inversion. The three-layer inversion results of electrical conductivity thus obtained were used to derive a three-dimensional (3D) model of subsurface heterogeneity, which clearly indicated lateral and vertical conductivity changes of the subsurface that are related to changes in soil texture and soil water content.

  4. Hybrid modeling of direct and inverse problems of heat conduction

    NASA Astrophysics Data System (ADS)

    Matsevityi, Yu. M.

    1981-02-01

    The article explains the method of solving nonlinear problems of heat conduction with the aid of hybrid computer systems. It examines the possibility of using hybrid systems for realizing the method of optimum dynamic filtration.

  5. Heat conduction boundary layers of condensed clumps in cooling flows

    NASA Astrophysics Data System (ADS)

    Boehringer, H.; Fabian, A. C.

    1989-04-01

    The structure of heat conduction boundary layers of gaseous condensations embedded in the hot intergalactic gas in clusters of galaxies is investigated by means of steady, one-dimensional, hydrodynamic models. It is assumed that heat conduction is effective only on scales much smaller than the total region of the cooling flow. Models are calculated for an arbitrary scaling factor, accounting for the reduction in heat conduction efficiency compared to the classical Spitzer case. The results imply a lower limit to the size spectrum of the condensations. The enhancement of cooling in the ambient medium due to heat conduction losses is calculated for a range of clump parameters. The luminosity of several observable emission lines, the extreme ultraviolet (EUV) and soft X-ray emission spectrum, and the column density of some important ions are determined for the model boundary layers and compared with observations.

  6. Kohlrausch Heat Conductivity Apparatus for Intermediate or Advanced Laboratory

    ERIC Educational Resources Information Center

    Jensen, H. G.

    1970-01-01

    Describes student experiment in measuring heat conductivity according to Kohlrausch's method. Theory, apparatus design, and experimental procedure is outlined. Results for copper are consistent to within 2 percent. (LC)

  7. Experimental evidence of hyperbolic heat conduction in processed meat

    SciTech Connect

    Mitra, K.; Kumar, S.; Vedavarz, A.; Moallemi, M.K.

    1995-08-01

    The objective of this paper is to present experimental evidence of the wave nature of heat propagation in processed meat and to demonstrate that the hyperbolic heat conduction model is an accurate representation, on a macroscopic level, of the heat conduction process in such biological material. The value of the characteristic thermal time of a specific material, processed bologna meat, is determined experimentally. As a part of the work different thermophysical properties are also measured. The measured temperature distributions in the samples are compared with the Fourier results and significant deviation between the two is observed, especially during the initial stages of the transient conduction process. The measured values are found to match the theoretical non-Fourier hyperbolic predictions very well. The superposition of waves occurring inside the meat sample due to the hyperbolic nature of heat conduction is also proved experimentally. 14 refs., 7 figs., 2 tabs.

  8. Ballistic heat conduction and mass disorder in one dimension.

    PubMed

    Ong, Zhun-Yong; Zhang, Gang

    2014-08-20

    It is well-known that in the disordered harmonic chain, heat conduction is subballistic and the thermal conductivity (κ) scales asymptotically as lim(L--> ∞) κ ∝ L(0.5) where L is the chain length. However, using the nonequilibrium Green's function (NEGF) method and analytical modelling, we show that there exists a critical crossover length scale (LC) below which ballistic heat conduction (κ ∝ L) can coexist with mass disorder. This ballistic-to-subballistic heat conduction crossover is connected to the exponential attenuation of the phonon transmittance function Ξ i.e. Ξ(ω, L) = exp[-L/λ(ω)], where λ is the frequency-dependent attenuation length. The crossover length can be determined from the minimum attenuation length, which depends on the maximum transmitted frequency. We numerically determine the dependence of the transmittance on frequency and mass composition as well as derive a closed form estimate, which agrees closely with the numerical results. For the length-dependent thermal conductance, we also derive a closed form expression which agrees closely with numerical results and reproduces the ballistic to subballistic thermal conduction crossover. This allows us to characterize the crossover in terms of changes in the length, mass composition and temperature dependence, and also to determine the conditions under which heat conduction enters the ballistic regime. We describe how the mass composition can be modified to increase ballistic heat conduction.

  9. Heat capacity, electrical and thermal conductivity of silicene

    NASA Astrophysics Data System (ADS)

    Feyzi, Azra; Chegel, Raad

    2016-09-01

    We investigate the electronic heat capacity, electrical and thermal conductivity of monolayer planar and buckled silicon sheets (silicene) through tight binding approximation and Kubo-Greenwood formula. Applying and increasing dopant atoms to the system leads to opening a gap in the band structures and density of states that causes to decrease (increase) the heat capacity before (after) the Schottky anomaly. The electrical and electronic thermal conductivity of doped silicene reduces with increasing impurity strength.

  10. 3D CFD Electrochemical and Heat Transfer Model of an Integrated-Planar Solid Oxide Electrolysis Cells

    SciTech Connect

    Grant Hawkes; James E. O'Brien

    2008-10-01

    A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in a new novel integrated planar porous-tube supported solid oxide electrolysis cell (SOEC). The model is of several integrated planar cells attached to a ceramic support tube. This design is being evaluated with modeling at the Idaho National Laboratory. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, activation over-potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Mean per-cell area-specific-resistance (ASR) values decrease with increasing current density. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, cathode and anode exchange current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicated the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal efficiency, cell electrical efficiency, and Gibbs free energy are discussed and reported herein.

  11. Numerical study of flow and heat-transfer characteristics of cryogenic slush fluid in a horizontal circular pipe (SLUSH-3D)

    NASA Astrophysics Data System (ADS)

    Ohira, Katsuhide; Ota, Atsuhito; Mukai, Yasuaki; Hosono, Takumi

    2012-07-01

    Cryogenic slush fluids, such as slush hydrogen and slush nitrogen, are two-phase, single-component fluids containing solid particles in a liquid. Since their density and refrigerant capacity are greater than those of liquid-state fluids alone, there are high expectations for use of slush fluids as functionally thermal fluids in various applications, such as fuels for spacecraft engines, clean energy fuels to improve the efficiency of transportation and storage, and as refrigerants for high-temperature superconducting equipment. In this research, a three-dimensional numerical simulation code (SLUSH-3D), including the gravity effect based on the thermal non-equilibrium, two-fluid model, was constructed to clarify the flow and heat-transfer characteristics of cryogenic slush fluids in a horizontal circular pipe. The calculated results of slush nitrogen flow performed using the numerical code were compared with the authors' experimental results obtained using the PIV method. As a result of these comparisons, the numerical code was verified, making it possible to analyze the flow and heat-transfer characteristics of slush nitrogen with sufficient accuracy. The numerical results obtained for the flow and heat-transfer characteristics of slush nitrogen and slush hydrogen clarified the effects of the pipe inlet velocity, solid fraction, solid particle size, and heat flux on the flow pattern, solid-fraction distribution, turbulence energy, pressure drop, and heat-transfer coefficient. Furthermore, it became clear that the difference of the flow and heat-transfer characteristics between slush nitrogen and slush hydrogen were caused to a large extent by their thermo-physical properties, such as the solid-liquid density ratio, liquid viscosity, and latent heat of fusion.

  12. Conduction phase change beneath insulated heated or cooled structures

    NASA Astrophysics Data System (ADS)

    Lunardini, V. J.

    1982-08-01

    The problem of thawing beneath heated structures on permafrost (or cooled structures in non-permafrost zones) must be addressed if safe engineering designs are to be conceived. In general, there are no exact solutions to the problem of conduction heat transfer with phase change for practical geometries. The quasi-steady approximation is used here to solve the conductive heat transfer problem with phase change for insulated geometries including infinite strips, rectangular buildings, circular storage tanks, and buried pipes. Analytical solutions are presented and graphed for a range of parameters of practical importance.

  13. Optical sensor for heat conduction measurement in biological tissue

    NASA Astrophysics Data System (ADS)

    Gutierrez-Arroyo, A.; Sanchez-Perez, C.; Aleman-Garcia, N.

    2013-06-01

    This paper presents the design of a heat flux sensor using an optical fiber system to measure heat conduction in biological tissues. This optoelectronic device is based on the photothermal beam deflection of a laser beam travelling in an acrylic slab this deflection is measured with a fiber optic angle sensor. We measure heat conduction in biological samples with high repeatability and sensitivity enough to detect differences in tissues from three chicken organs. This technique could provide important information of vital organ function as well as the detect modifications due to degenerative diseases or physical damage caused by medications or therapies.

  14. A variable conductance heat pipe flight experiment - Performance in space

    NASA Technical Reports Server (NTRS)

    Wanous, D. J.; Marcus, B. D.; Kirkpatrick, J. P.

    1975-01-01

    The Ames Heat Pipe Experiment (AHPE) is a variable conductance heat pipe/radiator system which was launched aboard the OAO-C spacecraft in August, 1972. All available flight data was reviewed and those from a few orbits were selected for correlation with predictions from an analytical model of the system. The principal conclusion of this study is that gas controlled variable conductance heat pipes can perform reliably for long time periods in the space environment and can effectively provide temperature stabilization for spacecraft electronics. Furthermore, the performance of such systems can be adequately predicted using existing analysis tools.

  15. Fourier analysis of conductive heat transfer for glazed roofing materials

    SciTech Connect

    Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah; Zakaria, Nor Zaini

    2014-07-10

    For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.

  16. Mixed Boundary Value Problems for Stationary Magnetohydrodynamic Equations of a Viscous Heat-Conducting Fluid

    NASA Astrophysics Data System (ADS)

    Alekseev, Gennady

    2016-09-01

    We consider the boundary value problem for stationary magnetohydrodynamic equations of electrically and heat conducting fluid under inhomogeneous mixed boundary conditions for electromagnetic field and temperature and Dirichlet condition for the velocity. The problem describes the thermoelectromagnetic flow of a viscous fluid in 3D bounded domain with the boundary consisting of several parts with different thermo- and electrophysical properties. The global solvability of the boundary value problem is proved and the apriori estimates of the solution are derived. The sufficient conditions on the data are established which provide a local uniqueness of the solution.

  17. Mixed Boundary Value Problems for Stationary Magnetohydrodynamic Equations of a Viscous Heat-Conducting Fluid

    NASA Astrophysics Data System (ADS)

    Alekseev, Gennady

    2016-04-01

    We consider the boundary value problem for stationary magnetohydrodynamic equations of electrically and heat conducting fluid under inhomogeneous mixed boundary conditions for electromagnetic field and temperature and Dirichlet condition for the velocity. The problem describes the thermoelectromagnetic flow of a viscous fluid in 3D bounded domain with the boundary consisting of several parts with different thermo- and electrophysical properties. The global solvability of the boundary value problem is proved and the apriori estimates of the solution are derived. The sufficient conditions on the data are established which provide a local uniqueness of the solution.

  18. Quantal Heating of Conducting Electrons with Discrete Spectrum

    SciTech Connect

    Vitkalov, S. A.; Bykov, A. A.

    2011-12-23

    Usually heating of conducting electrons by dc electric field results in an increase of electron temperature. In this paper we show that the dc heating of 2D electrons, placed in quantized magnetic fields, results in a peculiar electron distribution, which has the same broadening or an effective 'temperature' as the unbiased electron system. The quantal heating, however, violates strongly the Ohm's Law. In the conducting system with discrete electron spectrum the quantal heating results in spectacular decrease of electron resistance and transition of the electrons into a state with zero differential resistance (ZDR). Finally the heating leads to apparent dc driven metal-insulator transition, which correlates with the transition into the ZDR state. The correlation is very unexpected and is not understood.

  19. Heat Pipe Embedded AlSiC Plates for High Conductivity - Low CTE Heat Spreaders

    SciTech Connect

    Johnson, Matthew ); Weyant, J.; Garner, S. ); Occhionero, M. )

    2010-01-07

    Heat pipe embedded aluminum silicon carbide (AlSiC) plates are innovative heat spreaders that provide high thermal conductivity and low coefficient of thermal expansion (CTE). Since heat pipes are two phase devices, they demonstrate effective thermal conductivities ranging between 50,000 and 200,000 W/m-K, depending on the heat pipe length. Installing heat pipes into an AlSiC plate dramatically increases the plate’s effective thermal conductivity. AlSiC plates alone have a thermal conductivity of roughly 200 W/m-K and a CTE ranging from 7-12 ppm/ deg C, similar to that of silicon. An equivalent sized heat pipe embedded AlSiC plate has effective thermal conductivity ranging from 400 to 500 W/m-K and retains the CTE of AlSiC.

  20. An Experiment in Heat Conduction Using Hollow Cylinders

    ERIC Educational Resources Information Center

    Ortuno, M.; Marquez, A.; Gallego, S.; Neipp, C.; Belendez, A.

    2011-01-01

    An experimental apparatus was designed and built to allow students to carry out heat conduction experiments in hollow cylinders made of different materials, as well as to determine the thermal conductivity of these materials. The evolution of the temperature difference between the inner and outer walls of the cylinder as a function of time is…

  1. Variable Conductance Heat Pipe Performance after Extended Periods of Freezing

    NASA Astrophysics Data System (ADS)

    Ellis, Michael C.; Anderson, William G.

    2009-03-01

    Radiators operating in lunar or Martian environments must be designed to reject the maximum heat load at the maximum sink temperature, while maintaining acceptable temperatures at lower powers or sink temperatures. Variable Conductance Heat Pipe (VCHP) radiators can passively adjust to these changing conditions. Due to the presence of non-condensable gas (NCG) within each VCHP, the active condensing section adjusts with changes in either thermal load or sink temperature. In a Constant Conductance Heat Pipe (CCHP) without NCG, it is possible for all of the water to freeze in the condenser, by either sublimation or vaporization. With a dry evaporator, startup is difficult or impossible. Several previous studies have shown that adding NCG suppresses evaporator dryout when the condenser is frozen. These tests have been for relatively short durations, with relatively short condensers. This paper describes freeze/thaw experiments involving a VCHP with similar dimensions to the current reactor and cavity cooling radiator heat pipe designs.

  2. Implications of 3D electrical conductivity beneath the Payun Matru basalt province in western Argentina (36.5S, 69.5W)

    NASA Astrophysics Data System (ADS)

    Booker, J. R.; Burd, A.; Mackie, R.; Favetto, A.; Pomposiello, C.

    2009-12-01

    To understand geologic processes that shaped western North America in the early Cenozoic, it is useful to look at southern South America, where similar processes such as flat-slab subduction and intraplate basaltic volcanism are active today. Payún Matrú is a very large shield volcano east of the Andes at 36.5 S 69.5 W. It is the largest feature of the “Payunia” basalt province that covers about 15,000 sq km. The most recent activity may have been about 1,000 years ago. Lava chemistry has evolved with time. Despite being only 150 km east of the axis of the Andean Southern Volcanic Zone, the younger lavas are essentially OIB. We have collected 38 long period magnetolluric (MT) sites in an array that extends beyond the Payunia basalts to investigate the source of magma. MT impedance tensor data (including vertical to horizontal magnetic field transfer functions) have been inverted for smoothest log resistivity using a 3D non-linear conjugate gradient (NLCG) algorithm. The model includes the Atlantic and Pacific oceans, which both significantly affect the data. The image shows the isosurface at 30 Ohm-m together with the locations of sites (inverted triangles), earthquakes deeper than 50 km (filled circles) and volcanoes with geological recent activity (normal triangles). The result is that Payún Matrú (the large triangle) lies at the northern end of a conductive finger at the top of the mantle. This finger has a pimple that rises into the upper crust just west of the caldera. The finger appears to originate in anomalously conductive mantle deeper than 150 km that extends south and to the east (away from the Andes). If this conductor is due to fully interconnected basalt partial melt, the region inside this isosurface has more than 3% partial melt. This structure appears to rule out such processes as crustal delamination or a vertical plume for this volcanic province. It also suggests that the lithosphere east of the asthenospheric wedge under the Andes is

  3. Nodal integral method for transient heat conduction in a cylinder

    SciTech Connect

    Esser, P.D. )

    1993-01-01

    The accuracy and efficiency of nodal solution methods are well established for neutron diffusion in a variety of geometries, as well as for heat transfer and fluid flow in rectangular coordinates. This paper describes the development of a nodal integral method to solve the transient heat conduction equation in cylindrical geometry. Results for a test problem with an analytical solution indicate that the nodal solution provides higher accuracy than a conventional implicit finite difference scheme, while maintaining similar stability characteristics.

  4. Thermally conductive cementitious grout for geothermal heat pump systems

    DOEpatents

    Allan, Marita

    2001-01-01

    A thermally conductive cement-sand grout for use with a geothermal heat pump system. The cement sand grout contains cement, silica sand, a superplasticizer, water and optionally bentonite. The present invention also includes a method of filling boreholes used for geothermal heat pump systems with the thermally conductive cement-sand grout. The cement-sand grout has improved thermal conductivity over neat cement and bentonite grouts, which allows shallower bore holes to be used to provide an equivalent heat transfer capacity. In addition, the cement-sand grouts of the present invention also provide improved bond strengths and decreased permeabilities. The cement-sand grouts can also contain blast furnace slag, fly ash, a thermoplastic air entraining agent, latex, a shrinkage reducing admixture, calcium oxide and combinations thereof.

  5. Electron Heat Conduction in the Phaedrus Tandem Mirror.

    NASA Astrophysics Data System (ADS)

    Smatlak, Donna Lynn

    Experiments to investigate electron heat conduction have been performed on the University of Wisconsin tandem mirror Phaedrus. Electron temperature differences along the magnetic field were generated using a mircowave heat pulse. Probe techniques were developed for the continuous measurement of local electron temperatures with a time resolution of less than one microsecond. Parameter studies indicated that the temperature differences were due to collisionless electron heat transport between the trapped and untrapped electron populations in the plugs and the central cell of a tandem mirror. The detailed time-dependent measurements of the electron temperatures in each plug and in the central cell verified that electron heat conduction is reduced across a thermal barrier. The electron temperature decays in the presence of strong gradients were stable and describable by classical processes. The measured electron temperature evolutions in each region were compared to the predictions of a power balance model which incorporated the theoretical expression for the power lost by collisionless heat transfer and an empirical collisional thermal conduction loss term. Good agreement between the results of the model and the experiment was obtained. Examination of the power balance also indicated tht the microwave power absorbed by the electrons was greater than predicted by single pass absorption. The observation of a density threshold for the heating is suggestive of a nonlinear absorption mechanism such as the two plasmon decay instability.

  6. Application of Genetic Algorithms in Nonlinear Heat Conduction Problems

    PubMed Central

    Khan, Waqar A.

    2014-01-01

    Genetic algorithms are employed to optimize dimensionless temperature in nonlinear heat conduction problems. Three common geometries are selected for the analysis and the concept of minimum entropy generation is used to determine the optimum temperatures under the same constraints. The thermal conductivity is assumed to vary linearly with temperature while internal heat generation is assumed to be uniform. The dimensionless governing equations are obtained for each selected geometry and the dimensionless temperature distributions are obtained using MATLAB. It is observed that GA gives the minimum dimensionless temperature in each selected geometry. PMID:24695517

  7. Neutrino Heat Conduction and Inhomogeneities in the Early Universe

    NASA Technical Reports Server (NTRS)

    Heckler, A.; Hogan, C. J.

    1993-01-01

    Constraints on parameters of inhomogeneous nucteosynthesis, namely, the overdensity and size of baryon lumps, are found by calculatig the blackbody neutrino heat conduction into the lumps, which tends to inflate them away. The scale size for efficient heat conduction is determined by the mean free path lambda of the neutrino, and so we compute lambda in our case of a high-temperature plasma with low chemical potential, and find a general result that many-body effects are unimportant, simplifying the calculation. We find that in the region of interest for nucleosynthesis, neutrino inflation is important for overdensities greater than 10(exp 4).

  8. Numerical heat conductivity in smooth particle applied mechanics

    SciTech Connect

    Hoover, W.G. |; Posch, H.A.

    1996-11-01

    Smooth particle applied mechanics provides a method for solving the basic equations of continuum mechanics, interpolating these equations onto a grid made up of moving particles. The moving particle grid gives rise to a thoroughly artificial numerical heat conductivity, analogous to the numerical viscosities associated with finite-difference schemes. We exploit an isomorphism linking the smooth-particle method to conventional molecular dynamics, and evaluate this numerical heat conductivity. We find that the corresponding thermal diffusivity is comparable in value to the numerical kinematic viscosity, and that neither is described very well by the Enskog theory. {copyright} {ital 1996 The American Physical Society.}

  9. Tunable heat conduction through coupled Fermi-Pasta-Ulam chains

    NASA Astrophysics Data System (ADS)

    Su, Ruixia; Yuan, Zongqiang; Wang, Jun; Zheng, Zhigang

    2015-01-01

    We conduct a study on heat conduction through coupled Fermi-Pasta-Ulam (FPU) chains by using classical molecular dynamics simulations. Our attention is dedicated to showing how the phonon transport is affected by the interchain coupling. It has been well accepted that the heat conduction could be impeded by the interchain interaction due to the interface phonon scattering. However, recent theoretical and experimental studies suggest that the thermal conductivity of nanoscale materials can be counterintuitively enhanced by the interaction with the substrate. In the present paper, by consecutively varying the interchain coupling intensity, we observed both enhancement and suppression of thermal transport through the coupled FPU chains. For weak interchain couplings, it is found that the heat flux increases with the coupling intensity, whereas in the case of strong interchain couplings, the energy transport is found to be suppressed by the interchain interaction. Based on the phonon spectral energy density method, we attribute the enhancement of the energy transport to the excited phonon modes (in addition to the intrinsic phonon modes), while the upward shift of the high-frequency phonon branch and the interface phonon-phonon scattering account for the suppressed heat conduction.

  10. Self assembled structures for 3D integration

    NASA Astrophysics Data System (ADS)

    Rao, Madhav

    Three dimensional (3D) micro-scale structures attached to a silicon substrate have various applications in microelectronics. However, formation of 3D structures using conventional micro-fabrication techniques are not efficient and require precise control of processing parameters. Self assembly is a method for creating 3D structures that takes advantage of surface area minimization phenomena. Solder based self assembly (SBSA), the subject of this dissertation, uses solder as a facilitator in the formation of 3D structures from 2D patterns. Etching a sacrificial layer underneath a portion of the 2D pattern allows the solder reflow step to pull those areas out of the substrate plane resulting in a folded 3D structure. Initial studies using the SBSA method demonstrated low yields in the formation of five different polyhedra. The failures in folding were primarily attributed to nonuniform solder deposition on the underlying metal pads. The dip soldering method was analyzed and subsequently refined. A modified dip soldering process provided improved yield among the polyhedra. Solder bridging referred as joining of solder deposited on different metal patterns in an entity influenced the folding mechanism. In general, design parameters such as small gap-spacings and thick metal pads were found to favor solder bridging for all patterns studied. Two types of soldering: face and edge soldering were analyzed. Face soldering refers to the application of solder on the entire metal face. Edge soldering indicates application of solder only on the edges of the metal face. Mechanical grinding showed that face soldered SBSA structures were void free and robust in nature. In addition, the face soldered 3D structures provide a consistent heat resistant solder standoff height that serve as attachments in the integration of dissimilar electronic technologies. Face soldered 3D structures were developed on the underlying conducting channel to determine the thermo-electric reliability of

  11. Heat conduction in partial vacuum. Final technical progress report

    SciTech Connect

    Thomas, J R

    1980-09-01

    Methods developed for computing conduction heat losses from evacuated solar collectors are reported. Results of such calculations are given, including the minimum vacuum necessary to effectively eliminate conduction. Experiments performed at Owens-Illinois, Inc. to assess helium penetration rates into evacuated collectors are analyzed, and estimates are given as to the likely penetration rate of atmospheric helium. Conclusions are drawn as to the probable effect of helium penetration on the lifetimes of evacuated solar collectors.

  12. High Conductance Loop Heat Pipes for Space Application

    NASA Astrophysics Data System (ADS)

    Semenov, Sergey Y.; Cho, Wei-Lin; Jensen, Scott M.

    2006-01-01

    Three high conductance Loop Heat Pipes (LHPs) for the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) were designed, fabricated and thermal vacuum tested. One LHP with ammonia working fluid was designed for heat removal from a cryocooler cold head. Two ethane LHPs were designed to reject heat from the aft and fore optics to space. Thermal performance tests were performed in a vacuum chamber with attached masses simulating actual components. Thermal tests were also conducted on the bench and in an environmental chamber. The following features of the GIFTS LHPs were observed: (a) reliable startup and steady state operation with conductance as high as 83W/°C at various temperatures; (b) precision temperature control using compensation chamber heater during thermal cycling. Heat input power and condenser temperatures were varied periodically, while evaporator was maintained at a constant temperature. Temperature of the evaporator heat input surface fluctuated only by a fraction of a degree; (c) in addition there was no thermal performance degradation after 16 month of storage. The LHPs are installed on the instrument and waiting for a launch platform.

  13. Identification of interfacial heat transfer between molten metal and green sand by inverse heat conduction method

    NASA Astrophysics Data System (ADS)

    Ke, Quanpeng

    Heat flux and heat transfer coefficients at the interfaces of castings and molds are important parameters in the mold design and computer simulations of the solidification process in foundry operations. A better understanding of the heat flux and heat transfer coefficient between the solidifying casting and its mold can promote model design and improve the accuracy of computer simulation. The main purpose of the present dissertation involves the estimation of the heat flux and heat transfer coefficient at the interface of the molten metal and green sand. Since the inverse heat conduction method requires temperature measurement data to deduce the missing surface information, it is suitable for the present research. However, heat transfer inside green sand is complicated by the migration of water vapor and zonal temperature distribution results. This makes the solution of the inverse heat conduction problem more challenging. In this dissertation, Galerkin's method of Weighted Residual together with the front tracking technique is used in the development of a forward solver. Beck's future time step method incorporated with the Gaussian iterative minimization method is used as the inverse solver. The mathematical descriptions of the sensitivity coefficient for both the direct heat flux and direct heat transfer coefficient estimation are derived. The variations of the sensitivity coefficients with time are revealed. From the analysis of sensitivity coefficients, the concept of blank time period is proposed. This blank time period makes the inverse problem much more difficult. A total energy balance criterion is used to combat this. Numerical experiments confirmed the accuracy and robustness of both the direct heat flux estimation algorithm and the direct heat transfer coefficient estimation algorithm. Finally, some pouring experiments are carried out. The inverse algorithms are applied to the estimation of the heat flux and heat transfer coefficient at the interface of

  14. Nonconventional thermodynamics, indeterminate couple stress elasticity and heat conduction

    NASA Astrophysics Data System (ADS)

    Alber, H.-D.; Hutter, K.; Tsakmakis, Ch.

    2016-05-01

    We present a phenomenological thermodynamic framework for continuum systems exhibiting responses which may be nonlocal in space and for which short time scales may be important. Nonlocality in space is engendered by state variables of gradient type, while nonlocalities over time can be modelled, e.g. by assuming the rate of the heat flux vector to enter into the heat conduction law. The central idea is to restate the energy budget of the system by postulating further balance laws of energy, besides the classical one. This allows for the proposed theory to deal with nonequilibrium state variables, which are excluded by the second law in conventional thermodynamics. The main features of our approach are explained by discussing micropolar indeterminate couple stress elasticity and heat conduction theories.

  15. Simultaneous specific heat and thermal conductivity measurement of individual nanostructures

    NASA Astrophysics Data System (ADS)

    Zheng, Jianlin; Wingert, Matthew C.; Moon, Jaeyun; Chen, Renkun

    2016-08-01

    Fundamental phonon transport properties in semiconductor nanostructures are important for their applications in energy conversion and storage, such as thermoelectrics and photovoltaics. Thermal conductivity measurements of semiconductor nanostructures have been extensively pursued and have enhanced our understanding of phonon transport physics. Specific heat of individual nanostructures, despite being an important thermophysical parameter that reflects the thermodynamics of solids, has remained difficult to characterize. Prior measurements were limited to ensembles of nanostructures in which coupling and sample inhomogeneity could play a role. Herein we report the first simultaneous specific heat and thermal conductivity measurements of individual rod-like nanostructures such as nanowires and nanofibers. This technique is demonstrated by measuring the specific heat and thermal conductivity of single ˜600-700 nm diameter Nylon-11 nanofibers (NFs). The results show that the thermal conductivity of the NF is increased by 50% over the bulk value, while the specific heat of the NFs exhibits bulk-like behavior. We find that the thermal diffusivity obtained from the measurement, which is related to the phonon mean free path (MFP), decreases with temperature, indicating that the intrinsic phonon Umklapp scattering plays a role in the NFs. This platform can also be applied to one- and two- dimensional semiconductor nanostructures to probe size effects on the phonon spectra and other transport physics.

  16. Heat transfer in nuclear fuels: Measurements of gap conductance

    NASA Astrophysics Data System (ADS)

    Cho, Chun Hyung

    Heat transfer in the fuel-clad gap in a nuclear reactor impacts the overall temperature distribution, stored energy and the mechanical properties of a nuclear fuel rod. Therefore, an accurate estimation of the gap conductance between the fuel and the clad is critically important for reactor design and operations. To obtain the requisite accuracy in the gap conductance estimation, it is important to understand the effects of the convective heat transfer coefficient, the gas composition, pressure and temperature, and so forth. The objectives of this study are to build a bench-scale experimental apparatus for the measurement of thermal gap conductances and to develop a better understanding of the differences that have been previously observed between such measured values and those predicted theoretically. This is accomplished by employing improved analyses of the experiments and improved theoretical models. Using laser heating of slightly separated stainless-steel plates, the gap conductance was measured using a technique that compares the theoretical and experimental time dependent temperatures at the back surface of the second plate. To consider the effects of surface temperature and gas pressure, the theoretical temperatures were calculated using a convective heat transfer coefficient that was dependent upon both the temperature and the gas pressure.

  17. Element-by-element factorization algorithms for heat conduction

    NASA Technical Reports Server (NTRS)

    Hughes, T. J. R.; Winget, J. M.; Park, K. C.

    1983-01-01

    Element-by-element solution strategies are developed for transient heat conduction problems. Results of numerical tests indicate the effectiveness of the procedures proposed. The small database requirements and attractive architectural features of the algorithms suggest considerable potential for solving large scale problems.

  18. Simultaneous specific heat and thermal conductivity measurement of individual nanostructures

    NASA Astrophysics Data System (ADS)

    Zheng, Jianlin; Wingert, Matthew C.; Moon, Jaeyun; Chen, Renkun

    2016-08-01

    Fundamental phonon transport properties in semiconductor nanostructures are important for their applications in energy conversion and storage, such as thermoelectrics and photovoltaics. Thermal conductivity measurements of semiconductor nanostructures have been extensively pursued and have enhanced our understanding of phonon transport physics. Specific heat of individual nanostructures, despite being an important thermophysical parameter that reflects the thermodynamics of solids, has remained difficult to characterize. Prior measurements were limited to ensembles of nanostructures in which coupling and sample inhomogeneity could play a role. Herein we report the first simultaneous specific heat and thermal conductivity measurements of individual rod-like nanostructures such as nanowires and nanofibers. This technique is demonstrated by measuring the specific heat and thermal conductivity of single ∼600–700 nm diameter Nylon-11 nanofibers (NFs). The results show that the thermal conductivity of the NF is increased by 50% over the bulk value, while the specific heat of the NFs exhibits bulk-like behavior. We find that the thermal diffusivity obtained from the measurement, which is related to the phonon mean free path (MFP), decreases with temperature, indicating that the intrinsic phonon Umklapp scattering plays a role in the NFs. This platform can also be applied to one- and two- dimensional semiconductor nanostructures to probe size effects on the phonon spectra and other transport physics.

  19. Modelling heat conduction in polycrystalline hexagonal boron-nitride films.

    PubMed

    Mortazavi, Bohayra; Pereira, Luiz Felipe C; Jiang, Jin-Wu; Rabczuk, Timon

    2015-01-01

    We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets. PMID:26286820

  20. Modelling heat conduction in polycrystalline hexagonal boron-nitride films

    PubMed Central

    Mortazavi, Bohayra; Pereira, Luiz Felipe C.; Jiang, Jin-Wu; Rabczuk, Timon

    2015-01-01

    We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets. PMID:26286820

  1. Acoustic properties of pistonphones at low frequencies in the presence of pressure leakage and heat conduction

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; He, Wen; He, Longbiao; Rong, Zuochao

    2015-12-01

    The wide concern on absolute pressure calibration of acoustic transducers at low frequencies prompts the development of the pistonphone method. At low frequencies, the acoustic properties of pistonphones are governed by the pressure leakage and the heat conduction effects. However, the traditional theory for these two effects applies a linear superposition of two independent correction models, which differs somewhat from their coupled effect at low frequencies. In this paper, acoustic properties of pistonphones at low frequencies in full consideration of the pressure leakage and heat conduction effects have been quantitatively studied, and the explicit expression for the generated sound pressure has been derived. With more practical significance, a coupled correction expression for these two effects of pistonphones has been derived. In allusion to two typical pistonphones, the NPL pistonphone and our developed infrasonic pistonphone, comparisons were done for the coupled correction expression and the traditional one, whose results reveal that the traditional one produces maximum insufficient errors of about 0.1 dB above the lower limiting frequencies of two pistonphones, while at lower frequencies, excessive correction errors with an explicit limit of about 3 dB are produced by the traditional expression. The coupled correction expression should be adopted in the absolute pressure calibration of acoustic transducers at low frequencies. Furthermore, it is found that the heat conduction effect takes a limiting deviation of about 3 dB for the pressure amplitude and a small phase difference as frequency decreases, while the pressure leakage effect remarkably drives the pressure amplitude to attenuate and the phase difference tends to be 90° as the frequency decreases. The pressure leakage effect plays a more important role on the low frequency property of pistonphones.

  2. Validation of a heat conduction model for finite domain, non-uniformly heated, laminate bodies

    NASA Astrophysics Data System (ADS)

    Desgrosseilliers, Louis; Kabbara, Moe; Groulx, Dominic; White, Mary Anne

    2016-07-01

    Infrared thermographic validation is shown for a closed-form analytical heat conduction model for non-uniformly heated, laminate bodies with an insulated domain boundary. Experiments were conducted by applying power to rectangular electric heaters and cooled by natural convection in air, but also apply to constant-temperature heat sources and forced convection. The model accurately represents two-dimensional laminate heat conduction behaviour giving rise to heat spreading using one-dimensional equations for the temperature distributions and heat transfer rates under steady-state and pseudo-steady-state conditions. Validation of the model with an insulated boundary (complementing previous studies with an infinite boundary) provides useful predictions of heat spreading performance and simplified temperature uniformity calculations (useful in log-mean temperature difference style heat exchanger calculations) for real laminate systems such as found in electronics heat sinks, multi-ply stovetop cookware and interface materials for supercooled salt hydrates. Computational determinations of implicit insulated boundary condition locations in measured data, required to assess model equation validation, were also demonstrated. Excellent goodness of fit was observed (both root-mean-square error and R 2 values), in all cases except when the uncertainty of low temperatures measured via infrared thermography hindered the statistical significance of the model fit. The experimental validation in all other cases supports use of the model equations in design calculations and heat exchange simulations.

  3. 3D Printing of Graphene Aerogels.

    PubMed

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction.

  4. 3D Printing of Graphene Aerogels.

    PubMed

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction. PMID:26861680

  5. High temperature electrically conducting ceramic heating element and control system

    NASA Technical Reports Server (NTRS)

    Halbach, C. R.; Page, R. J.

    1975-01-01

    Improvements were made in both electrode technology and ceramic conductor quality to increase significantly the lifetime and thermal cycling capability of electrically conducting ceramic heater elements. These elements were operated in vacuum, inert and reducing environments as well as oxidizing atmospheres adding to the versatility of the conducting ceramic as an ohmic heater. Using stabilized zirconia conducting ceramic heater elements, a furnace was fabricated and demonstrated to have excellent thermal response and cycling capability. The furnace was used to melt platinum-20% rhodium alloy (melting point 1904 C) with an isothermal ceramic heating element having a nominal working cavity size of 2.5 cm diameter by 10.0 cm long. The furnace was operated to 1940 C with the isothermal ceramic heating element. The same furnace structure was fitted with a pair of main heater elements to provide axial gradient temperature control over a working cavity length of 17.8 cm.

  6. Conjugate conductive, convective, and radiative heat transfer in rocket engines

    SciTech Connect

    Naraghi, M.H.N.; DeLise, J.C.

    1995-12-31

    A comprehensive conductive, convective and radiative model for thermal analysis of rocket thrust chambers and nozzles is presented. In this model, the rocket thrust chamber and nozzle are subdivided into a number of stations along the longitudinal direction. At each station a finite element scheme is used to evaluate wall temperature distribution. The hot-gas-side convective heat transport is evaluated by numerically solving the compressible boundary layer equations and the radiative fluxes are evaluated by implementing an exchange factor scheme. The convective heat flux in the cooling channel is modeled based on the existing closed form correlations for rocket cooling channels. The conductive, convective and radiative processes are conjugated through an iterative procedure. The hot-gas-side heat transfer coefficients evaluated based on this model are compared to the experimental results reported in the literature. The computed convective heat transfer coefficients agree very well with experimental data for most of the engine except the throat where a discrepancy of approximately 20% exists. The model is applied to a typical regeneratively cooled rocket engine and the resulting wall temperature and heat flux distribution are presented.

  7. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  8. Analysis of gas heat conduction in evacuated tube solar collectors

    SciTech Connect

    Beikircher, T.; Spirkl, W.

    1996-12-31

    The authors investigated the gas heat conduction in two types of evacuated tubular solar collectors for a wide range of Knudsen numbers. For tube-in-tube collectors, they generalized a solution of the gas kinetic Boltzmann equation, which has been obtained by the 4-momentum method, to polyatomic gases. The resulting equation coincides with Sherman`s interpolation formula. For a plate-in-tube collector, they measured the stationary heat loss for gas pressures varying between 10{sup {minus}2} and 10{sup 4} Pa. The accuracy of an earlier experiment was improved. For analysis the authors applied the temperature jump method: a heat conduction equation with boundary conditions of the third kind involving the temperature gradient and the pressure was numerically solved. The results with the temperature jump method agree with the experimental values nearly within the error bands. They also applied Sherman`s interpolation formula and found, as expected, that the heat conduction as function of the pressure is too steep. For both types of collectors, the influence of geometric parameters was theoretically studied.

  9. Analysis of gas heat conduction in evacuated tube solar collectors

    SciTech Connect

    Beikircher, T.; Spirkl, W.

    1996-08-01

    The authors investigated the gas heat conduction in two types of evacuated tubular solar collectors for a wide range of Knudsen numbers. For tube-in-tube collectors, they generalized a solution of the gas kinetic Boltzmann equation, which has been obtained by the four-momentum method, to polyatomic gases. The resulting equation coincides with Sherman`s interpolation formula. For a plate-in-tube collector, they measured the stationary heat loss for gas pressures varying between 10{sup {minus}2} and 10{sup 4} Pa. The accuracy of an earlier experiment was improved. For analysis they applied the temperature jump method: a heat conduction equation with boundary conditions of the third kind involving the temperature gradient and the pressure was numerically solved. The results with the temperature jump method agree with the experimental values nearly within the error bands. They also applied Sherman`s interpolation formula and found, as expected, that the heat conduction as function of the pressure is too steep. For both types of collectors, the influence of geometric parameters was theoretically studied.

  10. Observation of quantum-limited heat conduction over macroscopic distances

    NASA Astrophysics Data System (ADS)

    Mottonen, Mikko; Partanen, Matti; Tan, Kuan Yen; Govenius, Joonas; Lake, Russell; Makela, Miika; Tanttu, Tuomo

    The emerging quantum technological devices, such as the quantum computer, call for extreme performance in thermal engineering at the nanoscale. Importantly, quantum mechanics sets a fundamental upper limit for the flow of information and heat, which is quantified by the quantum of thermal conductance. We present experimental observations of quantum-limited heat conduction over macroscopic distances extending to a meter. We achieved this striking improvement of four orders of magnitude in the distance by utilizing microwave photons travelling in superconducting transmission lines. Thus it seems that quantum-limited heat conduction has no fundamental restriction in its distance. This work lays the foundation for the integration of normal-metal components into superconducting transmission lines, and hence provides an important tool for circuit quantum electrodynamics, the basis of the emerging superconducting quantum computer. In particular, our results may lead to remote cooling of nanoelectronic devices with the help of a far-away in-situ-tunable heat sink. European Research Council (ERC) is acknowledged for funding under the Grant No. 278117 (SINGLEOUT).

  11. The impact of fault zones on the 3D coupled fluid and heat transport for the area of Brandenburg (NE German Basin)

    NASA Astrophysics Data System (ADS)

    Yvonne, Cherubini; Mauro, Cacace; Scheck-Wenderoth, Magdalena

    2013-04-01

    Faults can provide permeable pathways for fluids at a variety of scales, from great depth in the crust to flow through fractured aquifers, geothermal fields, and hydrocarbon reservoirs (Barton et al. 1995). In terms of geothermal energy exploration, it is essential to understand the role of faults and their impact on the thermal field and fluid system. 3D numerical simulations provide a useful tool for investigating the active physical processes in the subsurface. To assess the influence of major fault zones on the thermal field and fluid system, 3D coupled fluid and heat transport simulations are carried out. The study is based on a recently published structural model of the Brandenburg area, which is located in the south-eastern part of the Northeast German Basin (NEGB) (Noack et al. 2010). Two major fault zones of the Elbe Fault System (Gardelegen and Lausitz Escarpments) vertically offset the pre-Permian basement against the Permian to Cenozoic basin fill at the southern margin by several km (Scheck et al. 2002). Within the numerical models, these two major fault zones are represented as equivalent porous media and vertical discrete elements. The coupled system of equations describing fluid flow and heat transport in saturated porous media are numerically solved by the Finite Element software FEFLOW® (Diersch, 2002). Different possible geological scenarios are modelled and compared to a simulation in which no faults are considered. In one scenario the fault zones are set as impermeable. In this case, the thermal field is similar to the no fault model. Fluid flow is redirected because the fault zones act as hydraulic barriers that prevent a lateral fluid advection into the fault zones. By contrast, modelled permeable fault zones induce a pronounced thermal signature with distinctly cooler temperatures than in the no fault model. Fluid motion within the fault is initially triggered by advection due to hydraulic head gradients, but may be even enhanced by

  12. Heat, Light, and Videotapes: Experiments in Heat Conduction Using Liquid Crystal Film.

    ERIC Educational Resources Information Center

    Bacon, Michael E.; And Others

    1995-01-01

    Presents a range of experiments in heat conduction suitable for upper-level undergraduate laboratories that make use of heat sensitive liquid crystal film to measure temperature contours. Includes experiments mathematically described by Laplace's equation, experiments theoretically described by Poisson's equation, and experiments that involve…

  13. Thermal conductivity, electrical conductivity and specific heat of copper-carbon fiber composite

    NASA Technical Reports Server (NTRS)

    Kuniya, Keiichi; Arakawa, Hideo; Kanai, Tsuneyuki; Chiba, Akio

    1988-01-01

    A new material of copper/carbon fiber composite is developed which retains the properties of copper, i.e., its excellent electrical and thermal conductivity, and the property of carbon, i.e., a small thermal expansion coefficient. These properties of the composite are adjustable within a certain range by changing the volume and/or the orientation of the carbon fibers. The effects of carbon fiber volume and arrangement changes on the thermal and electrical conductivity, and specific heat of the composite are studied. Results obtained are as follows: the thermal and electrical conductivity of the composite decrease as the volume of the carbon fiber increases, and were influenced by the fiber orientation. The results are predictable from a careful application of the rule of mixtures for composites. The specific heat of the composite was dependent, not on fiber orientation, but on fiber volume. In the thermal fatigue tests, no degradation in the electrical conductivity of this composite was observed.

  14. Heating rate controller for thermally stimulated conductivity and thermoluminescence measurements.

    NASA Technical Reports Server (NTRS)

    Manning, E. G.; Littlejohn, M. A.; Oakley, E. M.; Hutchby , J. A.

    1972-01-01

    A temperature controller is described which enables the temperature of a sample mounted on a cold finger to be varied linearly with time. Heating rates between 0.5 and 10 K/min can be achieved for temperatures between 90 and 300 K. Provision for terminating the sample heating at any temperature between these extremes is available. The temperature can be held at the terminating temperature or be reduced to the starting temperature in a matter of minutes. The controller has been used for thermally stimulated conductivity measurements and should be useful for thermoluminescence measurements as well.

  15. Estimating interfacial thermal conductivity in metamaterials through heat flux mapping

    SciTech Connect

    Canbazoglu, Fatih M.; Vemuri, Krishna P.; Bandaru, Prabhakar R.

    2015-04-06

    The variability of the thickness as well as the thermal conductivity of interfaces in composites may significantly influence thermal transport characteristics and the notion of a metamaterial as an effective medium. The consequent modulations of the heat flux passage are analytically and experimentally examined through a non-contact methodology using radiative imaging, on a model anisotropic thermal metamaterial. It was indicated that a lower Al layer/silver interfacial epoxy ratio of ∼25 compared to that of a Al layer/alumina interfacial epoxy (of ∼39) contributes to a smaller deviation of the heat flux bending angle.

  16. Development of a high capacity variable conductance heat pipe.

    NASA Technical Reports Server (NTRS)

    Kosson, R.; Hembach, R.; Edelstein, F.; Loose, J.

    1973-01-01

    The high-capacity, pressure-primed, tunnel-artery wick concept was used in a gas-controlled variable conductance heat pipe. A variety of techniques were employed to control the size of gas/vapor bubbles trapped within the artery. Successful operation was attained with a nominal 6-foot long, 1-inch diameter cold reservoir VCHP using ammonia working fluid and nitrogen control gas. The pipe contained a heat exchanger to subcool the liquid in the artery. Maximum transport capacity with a 46-inch effective length was 1200 watts level (more than 50,000 watt-inches) and 800 watts at 0.5-inch adverse tilt.

  17. A multilevel method for conductive-radiative heat transfer

    SciTech Connect

    Banoczi, J.M.; Kelley, C.T.

    1996-12-31

    We present a fast multilevel algorithm for the solution of a system of nonlinear integro-differential equations that model steady-state combined radiative-conductive heat transfer. The equations can be formulated as a compact fixed point problem with a fixed point map that requires both a solution of the linear transport equation and the linear heat equation for its evaluation. We use fast transport solvers developed by the second author, to construct an efficient evaluation of the fixed point map and then apply the Atkinson-Brakhage, method, with Newton-GMRES as the coarse mesh solver, to the full nonlinear system.

  18. Revealing the complex conduction heat transfer mechanism of nanofluids.

    PubMed

    Sergis, A; Hardalupas, Y

    2015-12-01

    Nanofluids are two-phase mixtures consisting of small percentages of nanoparticles (sub 1-10 %vol) inside a carrier fluid. The typical size of nanoparticles is less than 100 nm. These fluids have been exhibiting experimentally a significant increase of thermal performance compared to the corresponding carrier fluids, which cannot be explained using the classical thermodynamic theory. This study deciphers the thermal heat transfer mechanism for the conductive heat transfer mode via a molecular dynamics simulation code. The current findings are the first of their kind and conflict with the proposed theories for heat transfer propagation through micron-sized slurries and pure matter. The authors provide evidence of a complex new type of heat transfer mechanism, which explains the observed abnormal heat transfer augmentation. The new mechanism appears to unite a number of popular speculations for the thermal heat transfer mechanism employed by nanofluids as predicted by the majority of the researchers of the field into a single one. The constituents of the increased diffusivity of the nanoparticle can be attributed to mismatching of the local temperature profiles between parts of the surface of the solid and the fluid resulting in increased local thermophoretic effects. These effects affect the region surrounding the solid manifesting interfacial layer phenomena (Kapitza resistance). In this region, the activity of the fluid and the interactions between the fluid and the nanoparticle are elevated. Isotropic increased nanoparticle mobility is manifested as enhanced Brownian motion and diffusion effects.

  19. Large deviations in stochastic heat-conduction processes provide a gradient-flow structure for heat conduction

    SciTech Connect

    Peletier, Mark A.; Redig, Frank; Vafayi, Kiamars

    2014-09-01

    We consider three one-dimensional continuous-time Markov processes on a lattice, each of which models the conduction of heat: the family of Brownian Energy Processes with parameter m (BEP(m)), a Generalized Brownian Energy Process, and the Kipnis-Marchioro-Presutti (KMP) process. The hydrodynamic limit of each of these three processes is a parabolic equation, the linear heat equation in the case of the BEP(m) and the KMP, and a nonlinear heat equation for the Generalized Brownian Energy Process with parameter a (GBEP(a)). We prove the hydrodynamic limit rigorously for the BEP(m), and give a formal derivation for the GBEP(a). We then formally derive the pathwise large-deviation rate functional for the empirical measure of the three processes. These rate functionals imply gradient-flow structures for the limiting linear and nonlinear heat equations. We contrast these gradient-flow structures with those for processes describing the diffusion of mass, most importantly the class of Wasserstein gradient-flow systems. The linear and nonlinear heat-equation gradient-flow structures are each driven by entropy terms of the form -log ρ; they involve dissipation or mobility terms of order ρ² for the linear heat equation, and a nonlinear function of ρ for the nonlinear heat equation.

  20. Heating of foods in space-vehicle environments. [by conductive heat transfer

    NASA Technical Reports Server (NTRS)

    Bannerot, R. B.; Cox, J. E.; Chen, C. K.; Heidelbaugh, N. D.

    1973-01-01

    In extended space missions, foods will be heated to enhance the psychological as well as the physiological well-being of the crew. In the low-gravity space environment natural convection is essentially absent so that the heat transfer within the food is by conduction alone. To prevent boiling in reduced pressure environments the maximum temperature of the heating system is severely limited. The Skylab food-heating system utilizes a tray with receptables for the food containers. The walls of the receptacles are lined with thermally controlled, electrical-resistance, blanket-type heating elements. A finite difference model is employed to perform parametric studies on the food-heating system. The effects on heating time of the (1) thermophysical properties of the food, (2) heater power level, (3) initial food temperatures, (4) container geometry, and (5) heater control temperature are presented graphically. The optimal heater power level and container geometry are determined.

  1. Increasing Boiling Heat Transfer using Low Conductivity Materials

    PubMed Central

    Mahamudur Rahman, Md; Pollack, Jordan; McCarthy, Matthew

    2015-01-01

    We report the counterintuitive mechanism of increasing boiling heat transfer by incorporating low-conductivity materials at the interface between the surface and fluid. By embedding an array of non-conductive lines into a high-conductivity substrate, in-plane variations in the local surface temperature are created. During boiling the surface temperature varies spatially across the substrate, alternating between high and low values, and promotes the organization of distinct liquid and vapor flows. By systematically tuning the peak-to-peak wavelength of this spatial temperature variation, a resonance-like effect is seen at a value equal to the capillary length of the fluid. Replacing ~18% of the surface with a non-conductive epoxy results in a greater than 5x increase in heat transfer rate at a given superheat temperature. This drastic and counterintuitive increase is shown to be due to optimized bubble dynamics, where ordered pathways allow for efficient removal of vapor and the return of replenishing liquid. The use of engineered thermal gradients represents a potentially disruptive approach to create high-efficiency and high-heat-flux boiling surfaces which are naturally insensitive to fouling and degradation as compared to other approaches. PMID:26281890

  2. Increasing Boiling Heat Transfer using Low Conductivity Materials

    NASA Astrophysics Data System (ADS)

    Mahamudur Rahman, Md; Pollack, Jordan; McCarthy, Matthew

    2015-08-01

    We report the counterintuitive mechanism of increasing boiling heat transfer by incorporating low-conductivity materials at the interface between the surface and fluid. By embedding an array of non-conductive lines into a high-conductivity substrate, in-plane variations in the local surface temperature are created. During boiling the surface temperature varies spatially across the substrate, alternating between high and low values, and promotes the organization of distinct liquid and vapor flows. By systematically tuning the peak-to-peak wavelength of this spatial temperature variation, a resonance-like effect is seen at a value equal to the capillary length of the fluid. Replacing ~18% of the surface with a non-conductive epoxy results in a greater than 5x increase in heat transfer rate at a given superheat temperature. This drastic and counterintuitive increase is shown to be due to optimized bubble dynamics, where ordered pathways allow for efficient removal of vapor and the return of replenishing liquid. The use of engineered thermal gradients represents a potentially disruptive approach to create high-efficiency and high-heat-flux boiling surfaces which are naturally insensitive to fouling and degradation as compared to other approaches.

  3. Increasing Boiling Heat Transfer using Low Conductivity Materials.

    PubMed

    Rahman, Md Mahamudur; Pollack, Jordan; McCarthy, Matthew

    2015-08-18

    We report the counterintuitive mechanism of increasing boiling heat transfer by incorporating low-conductivity materials at the interface between the surface and fluid. By embedding an array of non-conductive lines into a high-conductivity substrate, in-plane variations in the local surface temperature are created. During boiling the surface temperature varies spatially across the substrate, alternating between high and low values, and promotes the organization of distinct liquid and vapor flows. By systematically tuning the peak-to-peak wavelength of this spatial temperature variation, a resonance-like effect is seen at a value equal to the capillary length of the fluid. Replacing ~18% of the surface with a non-conductive epoxy results in a greater than 5x increase in heat transfer rate at a given superheat temperature. This drastic and counterintuitive increase is shown to be due to optimized bubble dynamics, where ordered pathways allow for efficient removal of vapor and the return of replenishing liquid. The use of engineered thermal gradients represents a potentially disruptive approach to create high-efficiency and high-heat-flux boiling surfaces which are naturally insensitive to fouling and degradation as compared to other approaches.

  4. Non-steady-state heat conduction in composite walls

    PubMed Central

    Deconinck, Bernard; Pelloni, Beatrice; Sheils, Natalie E.

    2014-01-01

    The problem of heat conduction in one-dimensional piecewise homogeneous composite materials is examined by providing an explicit solution of the one-dimensional heat equation in each domain. The location of the interfaces is known, but neither temperature nor heat flux is prescribed there. Instead, the physical assumptions of their continuity at the interfaces are the only conditions imposed. The problem of two semi-infinite domains and that of two finite-sized domains are examined in detail. We indicate also how to extend the solution method to the setting of one finite-sized domain surrounded on both sides by semi-infinite domains, and on that of three finite-sized domains. PMID:24808751

  5. Heat conduction nanocalorimeter for pl-scale single cell measurements

    NASA Astrophysics Data System (ADS)

    Johannessen, E. A.; Weaver, J. M. R.; Cobbold, P. H.; Cooper, J. M.

    2002-03-01

    An ultrasensitive nanocalorimeter for use with pl-scale biological samples using silicon microfabrication technology has been developed in which a 720 pl reaction vessel, a calibration heater, and a thermoelectric transducer of 125 μK sensitivity were integrated into a single multilayer thin-film configuration. The resolution of the system ranged from 10 to 25 nW depending on the heat capacity, conductance and power density of the samples studied. The device has been used in heat conduction measurements of the energy released from the enzyme catalyzed hydrolysis of hydrogen peroxide using purified catalase, and for the determination of the catalase activity within a single mouse hepatocyte. The nanocalorimeter has the potential for integration in a high-density array format, where the change in temperature from ultralow volume cellular assays could be used as a generic analytical tool for high throughput screening of bioactive compounds.

  6. An eigenvalue method for solving transient heat conduction problems

    NASA Technical Reports Server (NTRS)

    Shih, T. M.; Skladany, J. T.

    1983-01-01

    The eigenvalue method, which has been used by researchers in structure mechanics, is applied to problems in heat conduction. Its formulation is decribed in terms of an examination of transient heat conduction in a square slab. Taking advantage of the availability of the exact solution, we compare the accuracy and other numerical properties of the eigenvalue method with those of existing numerical schemes. The comparsion shows that, overall, the eigenvalue method appears to be fairly attractive. Furthermore, only a few dominant eigenvalues and their corresponding eigenvectors need to be computed and retained to yield reasonably high accuracy. Greater savings are attained in the computation time for a transient problem with long time duration and a large computational domain.

  7. Numerical simulation of hyperbolic heat conduction with convection boundary conditions and pulse heating effects

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Tamma, Kumar K.; Railkar, Sudhir B.

    1989-01-01

    The paper describes the numerical simulation of hyperbolic heat conduction with convection boundary conditions. The effects of a step heat loading, a sudden pulse heat loading, and an internal heat source are considered in conjunction with convection boundary conditions. Two methods of solution are presened for predicting the transient behavior of the propagating thermal disturbances. In the first method, MacCormack's predictor-corrector method is employed for integrating the hyperbolic system of equations. Next, the transfinite element method, which employs specially tailored elements, is used for accurately representing the transient response of the propagating thermal wave fronts. The agreement between the results of various numerical test cases validate the representative behavior of the thermal wave fronts. Both methods represent hyperbolic heat conduction behavior by effectively modeling the sharp discontinuities of the propagating thermal disturbances.

  8. Superdiffusive heat conduction in semiconductor alloys. I. Theoretical foundations

    NASA Astrophysics Data System (ADS)

    Vermeersch, Bjorn; Carrete, Jesús; Mingo, Natalio; Shakouri, Ali

    2015-02-01

    Semiconductor alloys exhibit a strong dependence of effective thermal conductivity on measurement frequency. So far this quasiballistic behavior has only been interpreted phenomenologically, providing limited insight into the underlying thermal transport dynamics. Here, we show that quasiballistic heat conduction in semiconductor alloys is governed by Lévy superdiffusion. By solving the Boltzmann transport equation (BTE) with ab initio phonon dispersions and scattering rates, we reveal a transport regime with fractal space dimension 1 <α <2 and superlinear time evolution of mean-square energy displacement σ2(t ) ˜tβ(1 <β <2 ) . The characteristic exponents are directly interconnected with the order n of the dominant phonon scattering mechanism τ ˜ω-n(n >3 ) and cumulative conductivity spectra κΣ(τ ;Λ ) ˜(τ;Λ ) γ resolved for relaxation times or mean free paths through the simple relations α =3 -β =1 +3 /n =2 -γ . The quasiballistic transport inside alloys is no longer governed by Brownian motion, but instead is dominated by Lévy dynamics. This has important implications for the interpretation of thermoreflectance (TR) measurements with modified Fourier theory. Experimental α values for InGaAs and SiGe, determined through TR analysis with a novel Lévy heat formalism, match ab initio BTE predictions within a few percent. Our findings lead to a deeper and more accurate quantitative understanding of the physics of nanoscale heat-flow experiments.

  9. Fourier's heat conduction equation: History, influence, and connections

    NASA Astrophysics Data System (ADS)

    Narasimhan, T. N.

    1999-02-01

    The equation describing the conduction of heat in solids has, over the past two centuries, proved to be a powerful tool for analyzing the dynamic motion of heat as well as for solving an enormous array of diffusion-type problems in physical sciences, biological sciences, earth sciences, and social sciences. This equation was formulated at the beginning of the nineteenth century by one of the most gifted scholars of modern science, Joseph Fourier of France. A study of the historical context in which Fourier made his remarkable contribution and the subsequent impact his work has had on the development of modern science is as fascinating as it is educational. This paper is an attempt to present a picture of how certain ideas initially led to Fourier's development of the heat equation and how, subsequently, Fourier's work directly influenced and inspired others to use the heat diffusion model to describe other dynamic physical systems. Conversely, others concerned with the study of random processes found that the equations governing such random processes reduced, in the limit, to Fourier's equation of heat diffusion. In the process of developing the flow of ideas, the paper also presents, to the extent possible, an account of the history and personalities involved.

  10. Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance.

    PubMed

    Schmidt, Aaron J; Chen, Xiaoyuan; Chen, Gang

    2008-11-01

    The relationship between pulse accumulation and radial heat conduction in pump-probe transient thermoreflectance (TTR) is explored. The results illustrate how pulse accumulation allows TTR to probe two thermal length scales simultaneously. In addition, the conditions under which radial transport effects are important are described. An analytical solution for anisotropic heat flow in layered structures is given, and a method for measuring both cross-plane and in-plane thermal conductivities of thermally anisotropic thin films is described. As verification, the technique is used to extract the cross-plane and in-plane thermal conductivities of highly ordered pyrolytic graphite. Results are found to be in good agreement with literature values.

  11. 3d-3d correspondence revisited

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  12. 3d-3d correspondence revisited

    DOE PAGES

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  13. Multiscale Modeling of Heat Conduction in Carbon Nanotube Aerogels

    NASA Astrophysics Data System (ADS)

    Gong, Feng; Papavassiliou, Dimitrios; Duong, Hai

    Carbon nanotube (CNT) aerogels have attracted a lot of interest due to their ultrahigh strength/weight and surface area/weight ratios. They are promising advanced materials used in energy storage systems, hydrogen storage media and weight-conscious devices such as satellites, because of their ultralight and highly porous quality. CNT aerogels can have excellent electrical conductivity and mechanical strength. However, the thermal conductivity of CNT aerogels are as low as 0.01-0.1 W/mK, which is five orders of magnitude lower than that of CNT (2000-5000 W/mK). To investigate the mechanisms for the low thermal conductivity of CNT aerogels, multiscale models are built in this study. Molecular dynamic (MD) simulations are first carried out to investigate the heat transfer between CNT and different gases (e.g. nitrogen and hydrogen), and the thermal conductance at CNT-CNT interface. The interfacial thermal resistances of CNT-gas and CNT-CNT are estimated from the MD simulations. Mesoscopic modeling of CNT aerogels are then built using an off-lattice Monte Carlo (MC) simulations to replicate the realistic CNT aerogels. The interfacial thermal resistances estimated from MD simulations are used as inputs in the MC models to predict the thermal conductivity of CNT aerogels. The volume fractions and the complex morphologies of CNTs are also quantified to study their effects on the thermal conductivity of CNT aerogels. The quantitative findings may help researchers to obtain the CNT aerogels with expected thermal conductivity.

  14. Thermal conductivity measurements of proton-heated warm dense matter

    NASA Astrophysics Data System (ADS)

    McKelvey, A.; Fernandez-Panella, A.; Hua, R.; Kim, J.; King, J.; Sio, H.; McGuffey, C.; Kemp, G. E.; Freeman, R. R.; Beg, F. N.; Shepherd, R.; Ping, Y.

    2015-06-01

    Accurate knowledge of conductivity characteristics in the strongly coupled plasma regime is extremely important for ICF processes such as the onset of hydrodynamic instabilities, thermonuclear burn propagation waves, shell mixing, and efficient x-ray conversion of indirect drive schemes. Recently, an experiment was performed on the Titan laser platform at the Jupiter Laser Facility to measure the thermal conductivity of proton-heated warm dense matter. In the experiment, proton beams generated via target normal sheath acceleration were used to heat bi-layer targets with high-Z front layers and lower-Z back layers. The stopping power of a material is approximately proportional to Z2 so a sharp temperature gradient is established between the two materials. The subsequent thermal conduction from the higher-Z material to the lower-Z was measured with time resolved streaked optical pyrometry (SOP) and Fourier domain interferometry (FDI) of the rear surface. Results will be used to compare predictions from the thermal conduction equation and the Wiedemann-Franz Law in the warm dense matter regime. Data from the time resolved diagnostics for Au/Al and Au/C Targets of 20-200 nm thickness will be presented.

  15. Increased Thermal Conductivity in Metal-Organic Heat Carrier Nanofluids.

    PubMed

    Nandasiri, Manjula I; Liu, Jian; McGrail, B Peter; Jenks, Jeromy; Schaef, Herbert T; Shutthanandan, Vaithiyalingam; Nie, Zimin; Martin, Paul F; Nune, Satish K

    2016-01-01

    Metal-organic heat carriers (MOHCs) are recently developed nanofluids containing metal-organic framework (MOF) nanoparticles dispersed in various base fluids including refrigerants (R245Fa) and methanol. Here, we report the synthesis and characterization of MOHCs containing nanoMIL-101(Cr) and graphene oxide (GO) in an effort to improve the thermo-physical properties of various base fluids. MOHC/GO nanocomposites showed enhanced surface area, porosity, and nitrogen adsorption compared with the intrinsic nanoMIL-101(Cr) and the properties depended on the amount of GO added. MIL-101(Cr)/GO in methanol exhibited a significant increase in the thermal conductivity (by approximately 50%) relative to that of the intrinsic nanoMIL-101(Cr) in methanol. The thermal conductivity of the base fluid (methanol) was increased by about 20%. The increase in the thermal conductivity of nanoMIL-101(Cr) MOHCs due to GO functionalization is explained using a classical Maxwell model. PMID:27302196

  16. Increased Thermal Conductivity in Metal-Organic Heat Carrier Nanofluids

    NASA Astrophysics Data System (ADS)

    Nandasiri, Manjula I.; Liu, Jian; McGrail, B. Peter; Jenks, Jeromy; Schaef, Herbert T.; Shutthanandan, Vaithiyalingam; Nie, Zimin; Martin, Paul F.; Nune, Satish K.

    2016-06-01

    Metal-organic heat carriers (MOHCs) are recently developed nanofluids containing metal-organic framework (MOF) nanoparticles dispersed in various base fluids including refrigerants (R245Fa) and methanol. Here, we report the synthesis and characterization of MOHCs containing nanoMIL-101(Cr) and graphene oxide (GO) in an effort to improve the thermo-physical properties of various base fluids. MOHC/GO nanocomposites showed enhanced surface area, porosity, and nitrogen adsorption compared with the intrinsic nanoMIL-101(Cr) and the properties depended on the amount of GO added. MIL-101(Cr)/GO in methanol exhibited a significant increase in the thermal conductivity (by approximately 50%) relative to that of the intrinsic nanoMIL-101(Cr) in methanol. The thermal conductivity of the base fluid (methanol) was increased by about 20%. The increase in the thermal conductivity of nanoMIL-101(Cr) MOHCs due to GO functionalization is explained using a classical Maxwell model.

  17. Increased Thermal Conductivity in Metal-Organic Heat Carrier Nanofluids

    PubMed Central

    Nandasiri, Manjula I.; Liu, Jian; McGrail, B. Peter; Jenks, Jeromy; Schaef, Herbert T.; Shutthanandan, Vaithiyalingam; Nie, Zimin; Martin, Paul F.; Nune, Satish K.

    2016-01-01

    Metal-organic heat carriers (MOHCs) are recently developed nanofluids containing metal-organic framework (MOF) nanoparticles dispersed in various base fluids including refrigerants (R245Fa) and methanol. Here, we report the synthesis and characterization of MOHCs containing nanoMIL-101(Cr) and graphene oxide (GO) in an effort to improve the thermo-physical properties of various base fluids. MOHC/GO nanocomposites showed enhanced surface area, porosity, and nitrogen adsorption compared with the intrinsic nanoMIL-101(Cr) and the properties depended on the amount of GO added. MIL-101(Cr)/GO in methanol exhibited a significant increase in the thermal conductivity (by approximately 50%) relative to that of the intrinsic nanoMIL-101(Cr) in methanol. The thermal conductivity of the base fluid (methanol) was increased by about 20%. The increase in the thermal conductivity of nanoMIL-101(Cr) MOHCs due to GO functionalization is explained using a classical Maxwell model. PMID:27302196

  18. A Monte Carlo solution of heat conduction and Poisson equations

    SciTech Connect

    Grigoriu, M.

    2000-02-01

    A Monte Carlo method is developed for solving the heat conduction, Poisson, and Laplace equations. The method is based on properties of Brownian motion and Ito processes, the Ito formula for differentiable functions of these processes, and the similarities between the generator of Ito processes and the differential operators of these equations. The proposed method is similar to current Monte Carlo solutions, such as the fixed random walk, exodus, and floating walk methods, in the sense that it is local, that is, it determines the solution at a single point or a small set of points of the domain of definition of the heat conduction equation directly. However, the proposed and the current Monte Carlo solutions are based on different theoretical considerations. The proposed Monte Carlo method has some attractive features. The method does not require to discretize the domain of definition of the differential equation, can be applied to domains of any dimension and geometry, works for both Dirichlet and Neumann boundary conditions, and provides simple solutions for the steady-state and transient heat equations. Several examples are presented to illustrate the application of the proposed method and demonstrate its accuracy.

  19. Fabrication and test of a variable conductance heat pipe

    NASA Technical Reports Server (NTRS)

    Lehtinen, A. M.

    1978-01-01

    A variable conductance heat pipe (VCHP) with feedback control was fabricated with a reservoir-condenser volume ratio of 10 and an axially grooved action section. Tests of the heat transport capability were greater than or equal to the analytical predictions for the no gas case. When gas was added, the pipe performance degraded by 18% at zero tilt as was expected. The placement of the reservoir heater and the test fixture cooling fins are believed to have caused a superheated vapor condition in the reservoir. Erroneously high reservoir temperature indications resulted from this condition. The observed temperature gradients in the reservoir lend support to this theory. The net result was higher than predicted reservoir temperatures. Also, significant increases in minimum heat load resulted for controller set point temperatures higher than 0 C. At 30 C, control within the tolerance band was maintained, but high reservoir heater power was required. Analyses showed that control is not possible for reasonably low reservoir heater power. This is supported by the observation of a significant reservoir heat leak through the condenser.

  20. Sodium Variable Conductance Heat Pipe for Radioisotope Stirling Systems

    NASA Technical Reports Server (NTRS)

    Tarau, Calin; Anderson, William G.; Walker, Kara

    2009-01-01

    In a Stirling radioisotope system, heat must continually be removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the converter stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, and also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) has been designed to allow multiple stops and restarts of the Stirling convertor in an Advanced Stirling Radioisotope Generator (ASRG). When the Stirling convertor is turned off, the VCHP will activate when the temperatures rises 30 C above the setpoint temperature. A prototype VCHP with sodium as the working fluid was fabricated and tested in both gravity aided and against gravity conditions for a nominal heater head temperature of 790 C. The results show very good agreement with the predictions and validate the model. The gas front was located at the exit of the reservoir when heater head temperature was 790 C while cooling was ON, simulating an operating Advanced Stirling Converter (ASC). When cooling stopped, the temperature increased by 30 C, allowing the gas front to move past the radiator, which transferred the heat to the case. After resuming the cooling flow, the front returned at the initial location turning OFF the VCHP. The against gravity working conditions showed a colder reservoir and faster transients.

  1. Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    NASA Technical Reports Server (NTRS)

    Anderson, William G.; Tarau, Calin

    2008-01-01

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) was designed to allow multiple stops and restarts of the Stirling engine. A VCHP turns on with a delta T of 30 C, which is high enough to not risk standard ASRG operation but low enough to save most heater head life. This VCHP has a low mass, and low thermal losses for normal operation. In addition to the design, a proof-of-concept NaK VCHP was fabricated and tested. While NaK is normally not used in heat pipes, it has an advantage in that it is liquid at the reservoir operating temperature, while Na or K alone would freeze. The VCHP had two condensers, one simulating the heater head, and the other simulating the radiator. The experiments successfully demonstrated operation with the simulated heater head condenser off and on, while allowing the reservoir temperature to vary over 40 to 120 C, the maximum range expected. In agreement with previous NaK heat pipe tests, the evaporator delta T was roughly 70 C, due to distillation of the NaK in the evaporator.

  2. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  3. Heat Conduction in Ceramic Coatings: Relationship Between Microstructure and Effective Thermal Conductivity

    NASA Technical Reports Server (NTRS)

    Kachanov, Mark

    1998-01-01

    Analysis of the effective thermal conductivity of ceramic coatings and its relation to the microstructure continued. Results (obtained in Task 1) for the three-dimensional problem of heat conduction in a solid containing an inclusion (or, in particular, cavity - thermal insulator) of the ellipsoidal shape, were further advanced in the following two directions: (1) closed form expressions of H tensor have been derived for special cases of ellipsoidal cavity geometry: spheroid, crack-like spheroidal cavity and needle shaped spheroidal cavity; (2) these results for one cavity have been incorporated to construct heat energy potential for a solid with many spheroidal cavities (in the approximation of non-interacting defects). This problem constitutes a basic building block for further analyses.

  4. Non-Fourier heat conduction in an exponentially graded slab

    NASA Astrophysics Data System (ADS)

    Raveshi, M. R.

    2016-03-01

    The present article investigates one-dimensional non-Fourier heat conduction in a functionally graded material by using the differential transformation method. The studied geometry is a finite functionally graded slab, which is initially at a uniform temperature and suddenly experiences a temperature rise at one side, while the other side is kept insulated. A general non-Fourier heat transfer equation related to the functionally graded slab is derived. The problem is solved in the Laplace domain analytically, and the final results in the time domain are obtained by using numerical inversion of the Laplace transform. The obtained results are compared with the exact solution to verify the accuracy of the proposed method, which shows excellent agreement.

  5. Application of the hybrid method to inverse heat conduction problems

    NASA Astrophysics Data System (ADS)

    Chen, Han-Taw; Chang, Shiuh-Ming

    1990-04-01

    The hybrid method involving the combined use of Laplace transform method and the FEM method is considerably powerful for solving one-dimensional linear heat conduction problems. In the present method, the time-dependent terms are removed from the problem using the Laplace transform method, and then the FEM is applied to the space domain. The transformed temperature is inverted numerically to obtain the result in the physical quantity. The estimation of the surface heat flux or temperature from transient measured temperatures inside the solid agrees well with the analytical solution of the direct problem without Beck's sensitivity analysis and a least-square criterion. Due to no time step, the present method can directly calculate the surface conditions of an inverse problem without step by step computation in the time domain until the specific time is reached.

  6. Numerical modeling of thermal conductive heating in fractured bedrock.

    PubMed

    Baston, Daniel P; Falta, Ronald W; Kueper, Bernard H

    2010-01-01

    Numerical modeling was employed to study the performance of thermal conductive heating (TCH) in fractured shale under a variety of hydrogeological conditions. Model results show that groundwater flow in fractures does not significantly affect the minimum treatment zone temperature, except near the beginning of heating or when groundwater influx is high. However, fracture and rock matrix properties can significantly influence the time necessary to remove all liquid water (i.e., reach superheated steam conditions) in the treatment area. Low matrix permeability, high matrix porosity, and wide fracture spacing can contribute to boiling point elevation in the rock matrix. Consequently, knowledge of these properties is important for the estimation of treatment times. Because of the variability in boiling point throughout a fractured rock treatment zone and the absence of a well-defined constant temperature boiling plateau in the rock matrix, it may be difficult to monitor the progress of thermal treatment using temperature measurements alone.

  7. Scanning thermal microscopy with heat conductive nanowire probes.

    PubMed

    Timofeeva, Maria; Bolshakov, Alexey; Tovee, Peter D; Zeze, Dagou A; Dubrovskii, Vladimir G; Kolosov, Oleg V

    2016-03-01

    Scanning thermal microscopy (SThM), which enables measurement of thermal transport and temperature distribution in devices and materials with nanoscale resolution is rapidly becoming a key approach in resolving heat dissipation problems in modern processors and assisting development of new thermoelectric materials. In SThM, the self-heating thermal sensor contacts the sample allowing studying of the temperature distribution and heat transport in nanoscaled materials and devices. The main factors that limit the resolution and sensitivities of SThM measurements are the low efficiency of thermal coupling and the lateral dimensions of the probed area of the surface studied. The thermal conductivity of the sample plays a key role in the sensitivity of SThM measurements. During the SThM measurements of the areas with higher thermal conductivity the heat flux via SThM probe is increased compared to the areas with lower thermal conductivity. For optimal SThM measurements of interfaces between low and high thermal conductivity materials, well defined nanoscale probes with high thermal conductivity at the probe apex are required to achieve a higher quality of the probe-sample thermal contact while preserving the lateral resolution of the system. In this paper, we consider a SThM approach that can help address these complex problems by using high thermal conductivity nanowires (NW) attached to a tip apex. We propose analytical models of such NW-SThM probes and analyse the influence of the contact resistance between the SThM probe and the sample studied. The latter becomes particularly important when both tip and sample surface have high thermal conductivities. These models were complemented by finite element analysis simulations and experimental tests using prototype probe where a multiwall carbon nanotube (MWCNT) is exploited as an excellent example of a high thermal conductivity NW. These results elucidate critical relationships between the performance of the SThM probe on

  8. DSMC Convergence for Microscale Gas-Phase Heat Conduction

    NASA Astrophysics Data System (ADS)

    Rader, D. J.; Gallis, M. A.; Torczynski, J. R.

    2004-11-01

    The convergence of Bird's Direct Simulation Monte Carlo (DSMC) method is investigated for gas-phase heat conduction at typical microscale conditions. A hard-sphere gas is confined between two fully accommodating walls of unequal temperature. Simulations are performed for small system and local Knudsen numbers, so continuum flow exists outside the Knudsen layers. The ratio of the DSMC thermal conductivity to the Chapman-Enskog value in the central region is determined for over 200 combinations of time step, cell size, and number of computational molecules per cell. In the limit of vanishing error, this ratio approaches 1.000 to within the correlation uncertainty. In the limit of infinite computational molecules per cell, the difference from unity depends quadratically on time step and cell size as these quantities become small. The coefficients of these quadratic terms are in good agreement with Green-Kubo values found by Hadjiconstantinou, Garcia, and co-workers. These results demonstrate that DSMC can accurately simulate microscale gas-phase heat conduction. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Numerical Model for Conduction-Cooled Current Lead Heat Loads

    SciTech Connect

    White, M.J.; Wang, X.L.; Brueck, H.D.; /DESY

    2011-06-10

    Current leads are utilized to deliver electrical power from a room temperature junction mounted on the vacuum vessel to a superconducting magnet located within the vacuum space of a cryostat. There are many types of current leads used at laboratories throughout the world; however, conduction-cooled current leads are often chosen for their simplicity and reliability. Conduction-cooled leads have the advantage of using common materials, have no superconducting/normal state transition, and have no boil-off vapor to collect. This paper presents a numerical model for conduction-cooled current lead heat loads. This model takes into account varying material and fluid thermal properties, varying thicknesses along the length of the lead, heat transfer in the circumferential and longitudinal directions, electrical power dissipation, and the effect of thermal intercepts. The model is validated by comparing the numerical model results to ideal cases where analytical equations are valid. In addition, the XFEL (X-Ray Free Electron Laser) prototype current leads are modeled and compared to the experimental results from testing at DESY's XFEL Magnet Test Stand (XMTS) and Cryomodule Test Bench (CMTB).

  10. Variable conductance heat pipe technology. [research project resulting in heat pipe experiment on OAO-3 satellite

    NASA Technical Reports Server (NTRS)

    Anderson, W. T.; Edwards, D. K.; Eninger, J. E.; Marcus, B. D.

    1974-01-01

    A research and development program in variable conductance heat pipe technology is reported. The project involved: (1) theoretical and/or experimental studies in hydrostatics, (2) hydrodynamics, (3) heat transfer into and out of the pipe, (4) fluid selection, and (5) materials compatibility. The development, fabrication, and test of the space hardware resulted in a successful flight of the heat pipe experiment on the OAO-3 satellite. A summary of the program is provided and a guide to the location of publications on the project is included.

  11. Combined conduction and radiation heat transfer in concentric cylindrical media

    NASA Technical Reports Server (NTRS)

    Pandey, D. K.

    1987-01-01

    The exact radiative transfer expressions for gray and nongray gases which are absorbing, emitting and nonscattering, contained between infinitely long concentric cylinders with black surfaces, are given in local thermodynamic equilibrium. Resulting energy equations due to the combination of conduction and radiation modes of heat transfer, under steady state conditions for gray and nongray media, are solved numerically using the undetermined parameters method. A single 4.3-micron band of CO2 is considered for the nongray problems. The present solutions for gray and nongray gases obtained in the plane-parallel limit (radius ratio approaches to one) are compared with the plane-parallel results reported in the literature.

  12. Hierarchical Parallelism in Finite Difference Analysis of Heat Conduction

    NASA Technical Reports Server (NTRS)

    Padovan, Joseph; Krishna, Lala; Gute, Douglas

    1997-01-01

    Based on the concept of hierarchical parallelism, this research effort resulted in highly efficient parallel solution strategies for very large scale heat conduction problems. Overall, the method of hierarchical parallelism involves the partitioning of thermal models into several substructured levels wherein an optimal balance into various associated bandwidths is achieved. The details are described in this report. Overall, the report is organized into two parts. Part 1 describes the parallel modelling methodology and associated multilevel direct, iterative and mixed solution schemes. Part 2 establishes both the formal and computational properties of the scheme.

  13. Pseudo-updated constrained solution algorithm for nonlinear heat conduction

    NASA Technical Reports Server (NTRS)

    Tovichakchaikul, S.; Padovan, J.

    1983-01-01

    This paper develops efficiency and stability improvements in the incremental successive substitution (ISS) procedure commonly used to generate the solution to nonlinear heat conduction problems. This is achieved by employing the pseudo-update scheme of Broyden, Fletcher, Goldfarb and Shanno in conjunction with the constrained version of the ISS. The resulting algorithm retains the formulational simplicity associated with ISS schemes while incorporating the enhanced convergence properties of slope driven procedures as well as the stability of constrained approaches. To illustrate the enhanced operating characteristics of the new scheme, the results of several benchmark comparisons are presented.

  14. Hybrid fluid/kinetic model for parallel heat conduction

    SciTech Connect

    Callen, J.D.; Hegna, C.C.; Held, E.D.

    1998-12-31

    It is argued that in order to use fluid-like equations to model low frequency ({omega} < {nu}) phenomena such as neoclassical tearing modes in low collisionality ({nu} < {omega}{sub b}) tokamak plasmas, a Chapman-Enskog-like approach is most appropriate for developing an equation for the kinetic distortion (F) of the distribution function whose velocity-space moments lead to the needed fluid moment closure relations. Further, parallel heat conduction in a long collision mean free path regime can be described through a combination of a reduced phase space Chapman-Enskog-like approach for the kinetics and a multiple-time-scale analysis for the fluid and kinetic equations.

  15. Time fractional dual-phase-lag heat conduction equation

    NASA Astrophysics Data System (ADS)

    Xu, Huan-Ying; Jiang, Xiao-Yun

    2015-03-01

    We build a fractional dual-phase-lag model and the corresponding bioheat transfer equation, which we use to interpret the experiment results for processed meat that have been explained by applying the hyperbolic conduction. Analytical solutions expressed by H-functions are obtained by using the Laplace and Fourier transforms method. The inverse fractional dual-phase-lag heat conduction problem for the simultaneous estimation of two relaxation times and orders of fractionality is solved by applying the nonlinear least-square method. The estimated model parameters are given. Finally, the measured and the calculated temperatures versus time are compared and discussed. Some numerical examples are also given and discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11102102, 11472161, and 91130017), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2014AQ015), and the Independent Innovation Foundation of Shandong University, China (Grant No. 2013ZRYQ002).

  16. Homogeneous thermal cloak with constant conductivity and tunable heat localization.

    PubMed

    Han, Tiancheng; Yuan, Tao; Li, Baowen; Qiu, Cheng-Wei

    2013-01-01

    Invisible cloak has long captivated the popular conjecture and attracted intensive research in various communities of wave dynamics, e.g., optics, electromagnetics, acoustics, etc. However, their inhomogeneous and extreme parameters imposed by transformation-optic method will usually require challenging realization with metamaterials, resulting in narrow bandwidth, loss, polarization-dependence, etc. In this paper, we demonstrate that thermodynamic cloak can be achieved with homogeneous and finite conductivity only employing naturally available materials. It is demonstrated that the thermal localization inside the coating layer can be tuned and controlled robustly by anisotropy, which enables an incomplete cloak to function perfectly. Practical realization of such homogeneous thermal cloak has been suggested by using two naturally occurring conductive materials, which provides an unprecedentedly plausible way to flexibly realize thermal cloak and manipulate heat flow with phonons. PMID:23549139

  17. Homogeneous Thermal Cloak with Constant Conductivity and Tunable Heat Localization

    NASA Astrophysics Data System (ADS)

    Han, Tiancheng; Yuan, Tao; Li, Baowen; Qiu, Cheng-Wei

    2013-04-01

    Invisible cloak has long captivated the popular conjecture and attracted intensive research in various communities of wave dynamics, e.g., optics, electromagnetics, acoustics, etc. However, their inhomogeneous and extreme parameters imposed by transformation-optic method will usually require challenging realization with metamaterials, resulting in narrow bandwidth, loss, polarization-dependence, etc. In this paper, we demonstrate that thermodynamic cloak can be achieved with homogeneous and finite conductivity only employing naturally available materials. It is demonstrated that the thermal localization inside the coating layer can be tuned and controlled robustly by anisotropy, which enables an incomplete cloak to function perfectly. Practical realization of such homogeneous thermal cloak has been suggested by using two naturally occurring conductive materials, which provides an unprecedentedly plausible way to flexibly realize thermal cloak and manipulate heat flow with phonons.

  18. Homogeneous Thermal Cloak with Constant Conductivity and Tunable Heat Localization

    PubMed Central

    Han, Tiancheng; Yuan, Tao; Li, Baowen; Qiu, Cheng-Wei

    2013-01-01

    Invisible cloak has long captivated the popular conjecture and attracted intensive research in various communities of wave dynamics, e.g., optics, electromagnetics, acoustics, etc. However, their inhomogeneous and extreme parameters imposed by transformation-optic method will usually require challenging realization with metamaterials, resulting in narrow bandwidth, loss, polarization-dependence, etc. In this paper, we demonstrate that thermodynamic cloak can be achieved with homogeneous and finite conductivity only employing naturally available materials. It is demonstrated that the thermal localization inside the coating layer can be tuned and controlled robustly by anisotropy, which enables an incomplete cloak to function perfectly. Practical realization of such homogeneous thermal cloak has been suggested by using two naturally occurring conductive materials, which provides an unprecedentedly plausible way to flexibly realize thermal cloak and manipulate heat flow with phonons. PMID:23549139

  19. High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    NASA Technical Reports Server (NTRS)

    Tarau, Calin; Walker, Kara L.; Anderson, William G.

    2009-01-01

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling convertor. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 C while the heat losses caused by the addition of the VCHP are 1.8 W.

  20. Application of inverse heat conduction problem on temperature measurement

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zhou, G.; Dong, B.; Li, Q.; Liu, L. Q.

    2013-09-01

    For regenerative cooling devices, such as G-M refrigerator, pulse tube cooler or thermoacoustic cooler, the gas oscillating bring about temperature fluctuations inevitably, which is harmful in many applications requiring high stable temperatures. To find out the oscillating mechanism of the cooling temperature and improve the temperature stability of cooler, the inner temperature of the cold head has to be measured. However, it is difficult to measure the inner oscillating temperature of the cold head directly because the invasive temperature detectors may disturb the oscillating flow. Fortunately, the outer surface temperature of the cold head can be measured accurately by invasive temperature measurement techniques. In this paper, a mathematical model of inverse heat conduction problem is presented to identify the inner surface oscillating temperature of cold head according to the measured temperature of the outer surface in a GM cryocooler. Inverse heat conduction problem will be solved using control volume approach. Outer surface oscillating temperature could be used as input conditions of inverse problem and the inner surface oscillating temperature of cold head can be inversely obtained. A simple uncertainty analysis of the oscillating temperature measurement also will be provided.

  1. Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    NASA Astrophysics Data System (ADS)

    Anderson, William G.; Tarau, Calin

    2008-01-01

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) was designed to allow multiple stops and restarts of the Stirling engine. A VCHP was designed for the Advanced Stirling Radioisotope Generator, with a 850 °C heater head temperature. The VCHP turns on with a ΔT of 30 °C, which is high enough to not risk standard ASRG operation but low enough to save most heater head life. This VCHP has a low mass, and low thermal losses for normal operation. In addition to the design, a proof-of-concept NaK VCHP was fabricated and tested. While NaK is normally not used in heat pipes, it has an advantage in that it is liquid at the reservoir operating temperature, while Na or K alone would freeze. The VCHP had two condensers, one simulating the heater head, and the other simulating the radiator. The experiments successfully demonstrated operation with the simulated heater head condenser off and on, while allowing the reservoir temperature to vary over 40 to 120 °C, the maximum range expected. In agreement with previous NaK heat pipe tests, the evaporator ΔT was roughly 70 °C, due to distillation of the NaK in the evaporator.

  2. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  3. Identification of the Thermal Conductivity and Heat Capacity in Unsteady Nonlinear Heat Conduction Problems Using the Boundary Element Method

    NASA Astrophysics Data System (ADS)

    Lesnic, D.; Elliott, L.; Ingham, D. B.

    1996-07-01

    In this study the inverse problem of the identification of temperature dependent thermal properties of a heat conducting body is investigated. The solution of the corresponding direct problem is obtained using a time marching boundary element method (BEM), which allows, without any need of interpolation and solution domain discretisation, efficient and accurate evaluation of the temperature everywhere inside the space-time dependent domain. Since the inverse problem, which requires the determination of the thermal conductivity and heat capacity from a finite set of temperature measurements taken inside the body, possesses poor uniqueness features, additional information is achieved by assuming that the thermal properties belong to a set of polynomials. Thus the inverse problem reduces to a parameter system estimation problem which is solved using the nonlinear least-squares method. Convergent and stable numerical results are obtained for the finite set of parameters which characterise the thermal properties for various test examples. Once the thermal properties are accurately obtained then the BEM determines automatically the temperature inside the solution domain and the remaining unspecified boundary values and the numerically obtained results show good agreement with the corresponding analytical solutions.

  4. High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    SciTech Connect

    Tarau, Calin; Walker, Kara L.; Anderson, William G.

    2009-03-16

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling converter provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling engine. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 deg. C while the heat losses caused by the addition of the VCHP are 1.8 W.

  5. Heat conduction in nanoscale materials: a statistical-mechanics derivation of the local heat flux.

    PubMed

    Li, Xiantao

    2014-09-01

    We derive a coarse-grained model for heat conduction in nanoscale mechanical systems. Starting with an all-atom description, this approach yields a reduced model, in the form of conservation laws of momentum and energy. The model closure is accomplished by introducing a quasilocal thermodynamic equilibrium, followed by a linear response approximation. Of particular interest is the constitutive relation for the heat flux, which is expressed nonlocally in terms of the spatial and temporal variation of the temperature. Nanowires made of copper and silicon are presented as examples. PMID:25314400

  6. A multiple step random walk Monte Carlo method for heat conduction involving distributed heat sources

    NASA Astrophysics Data System (ADS)

    Naraghi, M. H. N.; Chung, B. T. F.

    1982-06-01

    A multiple step fixed random walk Monte Carlo method for solving heat conduction in solids with distributed internal heat sources is developed. In this method, the probability that a walker reaches a point a few steps away is calculated analytically and is stored in the computer. Instead of moving to the immediate neighboring point the walker is allowed to jump several steps further. The present multiple step random walk technique can be applied to both conventional Monte Carlo and the Exodus methods. Numerical results indicate that the present method compares well with finite difference solutions while the computation speed is much faster than that of single step Exodus and conventional Monte Carlo methods.

  7. Efficient linear and nonlinear heat conduction with a quadrilateral element

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Belytschko, T.

    1983-01-01

    A method is presented for performing efficient and stable finite element calculations of heat conduction with quadrilaterals using one-point quadrature. The stability in space is obtained by using a stabilization matrix which is orthogonal to all linear fields and its magnitude is determined by a stabilization parameter. It is shown that the accuracy is almost independent of the value of the stabilization parameter over a wide range of values; in fact, the values 3, 2, and 1 for the normalized stabilization parameter lead to the 5-point, 9-point finite difference, and fully integrated finite element operators, respectively, for rectangular meshes and have identical rates of convergence in the L2 norm. Eigenvalues of the element matrices, which are needed for stability limits, are also given. Numerical applications are used to show that the method yields accurate solutions with large increases in efficiency, particularly in nonlinear problems.

  8. THERM: A three-dimensional transient heat conduction computer program

    SciTech Connect

    Cook, W.A.

    1991-10-01

    THERM is a three-dimensional finite-element computer program for solving transient heat conduction problems. This report presents the techniques used to develop THERM. The theory described consists of a governing equation, boundary conditions, and an equivalent variational principle. The matrix equations used in THERM are derived using both vector and tensor analysis. These equations used finite-element approximations for the geometry and a finite-difference approximation for the time. THERM has finite-element formulations using both Cartesian or cylindrical coordinates. Several example problems are included to demonstrate that the THERM formulations are correct and that THERM can be used to solve meaningful problems. 7 refs., 4 figs., 6 tabs.

  9. Application of the boundary element method to transient heat conduction

    NASA Technical Reports Server (NTRS)

    Dargush, G. F.; Banerjee, P. K.

    1991-01-01

    An advanced boundary element method (BEM) is presented for the transient heat conduction analysis of engineering components. The numerical implementation necessarily includes higher-order conforming elements, self-adaptive integration and a multiregion capability. Planar, three-dimensional and axisymmetric analyses are all addressed with a consistent time-domain convolution approach, which completely eliminates the need for volume discretization for most practical analyses. The resulting general purpose algorithm establishes BEM as an attractive alternative to the more familiar finite difference and finite element methods for this class of problems. Several detailed numerical examples are included to emphasize the accuracy, stability and generality of the present BEM. Furthermore, a new efficient treatment is introduced for bodies with embedded holes. This development provides a powerful analytical tool for transient solutions of components, such as casting moulds and turbine blades, which are cumbersome to model when employing the conventional domain-based methods.

  10. Efficient linear and nonlinear heat conduction with a quadrilateral element

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Belytschko, T.

    1984-01-01

    A method is presented for performing efficient and stable finite element calculations of heat conduction with quadrilaterals using one-point quadrature. The stability in space is obtained by using a stabilization matrix which is orthogonal to all linear fields and its magnitude is determined by a stabilization parameter. It is shown that the accuracy is almost independent of the value of the stabilization parameter over a wide range of values; in fact, the values 3, 2 and 1 for the normalized stabilization parameter lead to the 5-point finite difference, 9-point finite difference and fully integrated finite element operators, respectively, for rectangular meshes; numerical experiments reported here show that the three have identical rates of convergence in the L2 norm. Eigenvalues of the element matrices, which are needed for stability limits, are also given. Numerical applications are used to show that the method yields accurate solutions with large increases in efficiency, particularly in nonlinear problems.

  11. Manipulating Steady Heat Conduction by Sensu-shaped Thermal Metamaterials

    NASA Astrophysics Data System (ADS)

    Han, Tiancheng; Bai, Xue; Liu, Dan; Gao, Dongliang; Li, Baowen; Thong, John T. L.; Qiu, Cheng-Wei

    2015-05-01

    The ability to design the control of heat flow has innumerable benefits in the design of electronic systems such as thermoelectric energy harvesters, solid-state lighting, and thermal imagers, where the thermal design plays a key role in performance and device reliability. In this work, we employ one identical sensu-unit with facile natural composition to experimentally realize a new class of thermal metamaterials for controlling thermal conduction (e.g., thermal concentrator, focusing/resolving, uniform heating), only resorting to positioning and locating the same unit element of sensu-shape structure. The thermal metamaterial unit and the proper arrangement of multiple identical units are capable of transferring, redistributing and managing thermal energy in a versatile fashion. It is also shown that our sensu-shape unit elements can be used in manipulating dc currents without any change in the layout for the thermal counterpart. These could markedly enhance the capabilities in thermal sensing, thermal imaging, thermal-energy storage, thermal packaging, thermal therapy, and more domains beyond.

  12. Manipulating Steady Heat Conduction by Sensu-shaped Thermal Metamaterials

    PubMed Central

    Han, Tiancheng; Bai, Xue; Liu, Dan; Gao, Dongliang; Li, Baowen; Thong, John T. L.; Qiu, Cheng-Wei

    2015-01-01

    The ability to design the control of heat flow has innumerable benefits in the design of electronic systems such as thermoelectric energy harvesters, solid-state lighting, and thermal imagers, where the thermal design plays a key role in performance and device reliability. In this work, we employ one identical sensu-unit with facile natural composition to experimentally realize a new class of thermal metamaterials for controlling thermal conduction (e.g., thermal concentrator, focusing/resolving, uniform heating), only resorting to positioning and locating the same unit element of sensu-shape structure. The thermal metamaterial unit and the proper arrangement of multiple identical units are capable of transferring, redistributing and managing thermal energy in a versatile fashion. It is also shown that our sensu-shape unit elements can be used in manipulating dc currents without any change in the layout for the thermal counterpart. These could markedly enhance the capabilities in thermal sensing, thermal imaging, thermal-energy storage, thermal packaging, thermal therapy, and more domains beyond. PMID:25974383

  13. Manipulating Steady Heat Conduction by Sensu-shaped Thermal Metamaterials.

    PubMed

    Han, Tiancheng; Bai, Xue; Liu, Dan; Gao, Dongliang; Li, Baowen; Thong, John T L; Qiu, Cheng-Wei

    2015-05-14

    The ability to design the control of heat flow has innumerable benefits in the design of electronic systems such as thermoelectric energy harvesters, solid-state lighting, and thermal imagers, where the thermal design plays a key role in performance and device reliability. In this work, we employ one identical sensu-unit with facile natural composition to experimentally realize a new class of thermal metamaterials for controlling thermal conduction (e.g., thermal concentrator, focusing/resolving, uniform heating), only resorting to positioning and locating the same unit element of sensu-shape structure. The thermal metamaterial unit and the proper arrangement of multiple identical units are capable of transferring, redistributing and managing thermal energy in a versatile fashion. It is also shown that our sensu-shape unit elements can be used in manipulating dc currents without any change in the layout for the thermal counterpart. These could markedly enhance the capabilities in thermal sensing, thermal imaging, thermal-energy storage, thermal packaging, thermal therapy, and more domains beyond.

  14. 3D stability analysis of Rayleigh-Bénard convection of a liquid metal layer in the presence of a magnetic field—effect of wall electrical conductivity

    NASA Astrophysics Data System (ADS)

    Dimopoulos, Dimitrios; Pelekasis, Nikos A.

    2014-10-01

    Rayleigh-Bénard stability of a liquid metal layer of rectangular cross section is examined in the presence of a strong magnetic field that is aligned with the horizontal direction of the cross section. The latter is much longer than the vertical direction and the cross section assumes a large aspect ratio. The side walls are treated as highly conducting. Linear stability analysis is performed allowing for three-dimensional instabilities that develop along the longitudinal direction. The finite element methodology is employed for the discretization of the stability analysis formulation while accounting for the electrical conductivity of the cavity walls. The Arnoldi method provides the dominant eigenvalues and eigenvectors of the problem. In order to facilitate parallel implementation of the numerical solution at large Hartmann numbers, Ha, domain decomposition is employed along the horizontal direction of the cross section. As the Hartmann number increases a real eigenvalue emerges as the dominant unstable eigenmode, signifying the onset of thermal convection, whose major vorticity component in the core of the layer is aligned with the direction of the magnetic field. Its wavelength along the longitudinal direction of the layer is on the order of twice its height and increases as Ha increases. The critical Grashof was obtained for large Ha and it was seen to scale like Ha 2 signifying the balance between buoyancy and Lorentz forces. For well conducting side walls, the nature of the emerging flow pattern is determined by the combined conductivity of Hartmann walls and Hartmann layers, cH + Ha -1. When poor conducting Hartmann walls are considered, cH ≪ 1, the critical eigensolution is characterized by well defined Hartmann and side layers. The side layers are characterized by fast fluid motion in the magnetic field direction as a result of the electromagnetic pumping in the vicinity of the Hartmann walls. Increasing the electrical conductivity of the Hartmann

  15. Fast Li-Ion-Conducting Garnet-Related Li7–3xFexLa3Zr2O12 with Uncommon I4̅3d Structure

    PubMed Central

    2016-01-01

    Fast Li-ion-conducting Li oxide garnets receive a great deal of attention as they are suitable candidates for solid-state Li electrolytes. It was recently shown that Ga-stabilized Li7La3Zr2O12 crystallizes in the acentric cubic space group I4̅3d. This structure can be derived by a symmetry reduction of the garnet-type Ia3̅d structure, which is the most commonly found space group of Li oxide garnets and garnets in general. In this study, single-crystal X-ray diffraction confirms the presence of space group I4̅3d also for Li7–3xFexLa3Zr2O12. The crystal structure was characterized by X-ray powder diffraction, single-crystal X-ray diffraction, neutron powder diffraction, and Mößbauer spectroscopy. The crystal–chemical behavior of Fe3+ in Li7La3Zr2O12 is very similar to that of Ga3+. The symmetry reduction seems to be initiated by the ordering of Fe3+ onto the tetrahedral Li1 (12a) site of space group I4̅3d. Electrochemical impedance spectroscopy measurements showed a Li-ion bulk conductivity of up to 1.38 × 10–3 S cm–1 at room temperature, which is among the highest values reported for this group of materials. PMID:27570369

  16. Benchmark of 3D halo neutral simulation in TRANSP and FIDASIM and application to projected neutral-beam-heated NSTX-U plasmas

    NASA Astrophysics Data System (ADS)

    Liu, D.; Medley, S. S.; Gorelenkova, M. V.; Heidbrink, W. W.; Stagner, L.

    2014-10-01

    A cloud of halo neutrals is created in the vicinity of beam footprint during the neutral beam injection and the halo neutral density can be comparable with beam neutral density. Proper modeling of halo neutrals is critical to correctly interpret neutral particle analyzers (NPA) and fast ion D-alpha (FIDA) signals since these signals strongly depend on local beam and halo neutral density. A 3D halo neutral model has been recently developed and implemented inside TRANSP code. The 3D halo neutral code uses a ``beam-in-a-box'' model that encompasses both injected beam neutrals and resulting halo neutrals. Upon deposition by charge exchange, a subset of the full, one-half and one-third beam energy components produce thermal halo neutrals that are tracked through successive halo neutral generations until an ionization event occurs or a descendant halo exits the box. A benchmark between 3D halo neural model in TRANSP and in FIDA/NPA synthetic diagnostic code FIDASIM is carried out. Detailed comparison of halo neutral density profiles from two codes will be shown. The NPA and FIDA simulations with and without 3D halos are applied to projections of plasma performance for the National Spherical Tours eXperiment-Upgrade (NSTX-U) and the effects of halo neutral density on NPA and FIDA signal amplitude and profile will be presented. Work supported by US DOE.

  17. Computational fluid dynamics analyses of lateral heat conduction, coolant azimuthal mixing and heat transfer predictions in a BR2 fuel assembly geometry.

    SciTech Connect

    Tzanos, C. P.; Dionne, B.

    2011-05-23

    To support the analyses related to the conversion of the BR2 core from highly-enriched (HEU) to low-enriched (LEU) fuel, the thermal-hydraulics codes PLTEMP and RELAP-3D are used to evaluate the safety margins during steady-state operation (PLTEMP), as well as after a loss-of-flow, loss-of-pressure, or a loss of coolant event (RELAP). In the 1-D PLTEMP and RELAP simulations, conduction in the azimuthal and axial directions is not accounted. The very good thermal conductivity of the cladding and the fuel meat and significant temperature gradients in the lateral directions (axial and azimuthal directions) could lead to a heat flux distribution that is significantly different than the power distribution. To evaluate the significance of the lateral heat conduction, 3-D computational fluid dynamics (CFD) simulations, using the CFD code STAR-CD, were performed. Safety margin calculations are typically performed for a hot stripe, i.e., an azimuthal region of the fuel plates/coolant channel containing the power peak. In a RELAP model, for example, a channel between two plates could be divided into a number of RELAP channels (stripes) in the azimuthal direction. In a PLTEMP model, the effect of azimuthal power peaking could be taken into account by using engineering factors. However, if the thermal mixing in the azimuthal direction of a coolant channel is significant, a stripping approach could be overly conservative by not taking into account this mixing. STAR-CD simulations were also performed to study the thermal mixing in the coolant. Section II of this document presents the results of the analyses of the lateral heat conduction and azimuthal thermal mixing in a coolant channel. Finally, PLTEMP and RELAP simulations rely on the use of correlations to determine heat transfer coefficients. Previous analyses showed that the Dittus-Boelter correlation gives significantly more conservative (lower) predictions than the correlations of Sieder-Tate and Petukhov. STAR-CD 3-D

  18. Continuous On-Chip Cell Separation Based on Conductivity-Induced Dielectrophoresis with 3D Self-Assembled Ionic Liquid Electrodes.

    PubMed

    Sun, Mingrui; Agarwal, Pranay; Zhao, Shuting; Zhao, Yi; Lu, Xiongbin; He, Xiaoming

    2016-08-16

    Dielectrophoresis (DEP) has been widely explored to separate cells for various applications. However, existing DEP devices are limited by the high cost associated with the use of noble metal electrodes, the need of high-voltage electric field, and/or discontinuous separation (particularly for devices without metal electrodes). We developed a DEP device with liquid electrodes, which can be used to continuously separate different types of cells or particles based on positive DEP. The device is made of polydimethylsiloxane (PDMS), and ionic liquid is used to form the liquid electrodes, which has the advantages of low cost and easy fabrication. Moreover, the conductivity gradient is utilized to achieve the DEP-based on-chip cell separation. The device was used to separate polystyrene microbeads and PC-3 human prostate cancer cells with 94.7 and 1.2% of the cells and microbeads being deflected, respectively. This device is also capable of separating live and dead PC-3 cancer cells with 89.8 and 13.2% of the live and dead cells being deflected, respectively. Moreover, MDA-MB-231 human breast cancer cells could be separated from human adipose-derived stem cells (ADSCs) using this device with high purity (81.8 and 82.5% for the ADSCs and MDA-MB-231 cells, respectively). Our data suggest the great potential of cell separation based on conductivity-induced DEP using affordable microfluidic devices with easy operation.

  19. 77 FR 33486 - Certain Integrated Circuit Packages Provided With Multiple Heat-Conducting Paths and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... COMMISSION Certain Integrated Circuit Packages Provided With Multiple Heat- Conducting Paths and Products... With Multiple Heat-Conducting Paths and Products Containing Same, DN 2899; the Commission is soliciting... multiple heat-conducting paths and products containing same. The complaint names as respondents...

  20. BEAMS3D Neutral Beam Injection Model

    SciTech Connect

    Lazerson, Samuel

    2014-04-14

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  1. Mixed convection heat transfer inside a differentially heated square enclosure in presence of a rotating heat conducting cylinder

    NASA Astrophysics Data System (ADS)

    Alam, Muntasir; Kamruzzaman, Ahsan, Faraz; Hasan, Mohammad Nasim

    2016-07-01

    A numerical study of mixed convection heat transfer phenomena in a square cavity containing a heat conducting rotating cylinder has been investigated. A discrete isoflux heater is placed at the bottom wall of the enclosure while the top wall is kept adiabatic. Left and right sidewalls of the enclosure are assumed to be maintained at constant low temperature. A two-dimensional solution for steady laminar mixed convection flow is obtained by using the finite element scheme based on the Galerkin method of weighted residuals for different rotating speeds of the cylinder varying over the range of 0-1000 keeping the Rayleigh number fixed at 5×104 and the Prandtl number at 0.7. The effects of rotating speeds of the cylinder, its radius and conductivity ratio of the rotating cylinder and working fluid on the streamlines, isotherms, local Nusselt number, average Nusselt number and other heat transfer and fluid flow phenomena are investigated. The results indicate that the flow field, temperature distribution and heat transfer rate are dependent on rotating speeds and cylinder size. However, it has been observed that the effect of conductivity ratio is not so prominent.

  2. SEP BIMOD variable conductance heat pipes acceptance and characterization tests

    NASA Technical Reports Server (NTRS)

    Hemminger, J. A.

    1981-01-01

    A series of six heat pipes, similar in design to those flown on the Comunications Technology Satellite Hermes, for use in a prototype Solar Electric Propulsion BIMOD thrust module are evaluated. The results of acceptance and characterization tests performed on the heat pipe subassemble are reported. The performance of all the heat pipes met, or exceeded, design specifications.

  3. Radiation and gas conduction heat transport across a helium dewer multilayer insulation system

    SciTech Connect

    Green, M.A.

    1995-02-01

    This report describes a method for calculating mixed heat transfer through the multilayer insulation used to insulated a 4K liquid helium cryostat. The method described permits one to estimate the insulation potential for a multilayer insulation system from first principles. The heat transfer regimes included are: radiation, conduction by free molecule gas conduction, and conduction through continuum gas conduction. Heat transfer in the transition region between the two gas conduction regimes is also included.

  4. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  5. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  6. Bootstrapping 3D fermions

    DOE PAGES

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  7. Theory and design of variable conductance heat pipes: Steady state and transient performance

    NASA Technical Reports Server (NTRS)

    Edwards, D. K.; Fleischman, G. L.; Marcus, B. D.

    1972-01-01

    Heat pipe technology pertinent to the design and application of self-controlled, variable conductance heat pipes for spacecraft thermal control is discussed. Investigations were conducted to: (1) provide additional confidence in existing design tools, (2) to generate new design tools, and (3) to develop superior variable conductance heat pipe designs. A computer program for designing and predicting the performance of the heat pipe systems was developed.

  8. Venus in 3D

    NASA Astrophysics Data System (ADS)

    Plaut, J. J.

    1993-08-01

    Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.

  9. 3D reservoir visualization

    SciTech Connect

    Van, B.T.; Pajon, J.L.; Joseph, P. )

    1991-11-01

    This paper shows how some simple 3D computer graphics tools can be combined to provide efficient software for visualizing and analyzing data obtained from reservoir simulators and geological simulations. The animation and interactive capabilities of the software quickly provide a deep understanding of the fluid-flow behavior and an accurate idea of the internal architecture of a reservoir.

  10. Analysis of heat conduction in a disk brake system

    NASA Astrophysics Data System (ADS)

    Talati, Faramarz; Jalalifar, Salman

    2009-06-01

    In this paper, the governing heat equations for the disk and the pad are extracted in the form of transient heat equations with heat generation that is dependant to time and space. In the derivation of the heat equations, parameters such as the duration of braking, vehicle velocity, geometries and the dimensions of the brake components, materials of the disk brake rotor and the pad and contact pressure distribution have been taken into account. The problem is solved analytically using Green’s function approach. It is concluded that the heat generated due to friction between the disk and the pad should be ideally dissipated to the environment to avoid decreasing the friction coefficient between the disk and the pad and to avoid the temperature rise of various brake components and brake fluid vaporization due to excessive heating.

  11. Conservation laws and associated Lie point symmetries admitted by the transient heat conduction problem for heat transfer in straight fins

    NASA Astrophysics Data System (ADS)

    Ndlovu, Partner; Moitsheki, Rasselo

    2013-08-01

    Some new conservation laws for the transient heat conduction problem for heat transfer in a straight fin are constructed. The thermal conductivity is given by a power law in one case and by a linear function of temperature in the other. Conservation laws are derived using the direct method when thermal conductivity is given by the power law and the multiplier method when thermal conductivity is given as a linear function of temperature. The heat transfer coefficient is assumed to be given by the power law function of temperature. Furthermore, we determine the Lie point symmetries associated with the conserved vectors for the model with power law thermal conductivity.

  12. Differential heating: A versatile method for thermal conductivity measurements in high-energy-density matter

    SciTech Connect

    Ping, Y.; Fernandez-Panella, A.; Correa, A.; Shepherd, R.; Landen, O.; London, R. A.; Sterne, P. A.; Whitley, H. D.; Fratanduono, D.; Collins, G. W.; Sio, H.; Boehly, T. R.

    2015-09-15

    We propose a method for thermal conductivity measurements of high energy density matter based on differential heating. A temperature gradient is created either by surface heating of one material or at an interface between two materials by different energy deposition. The subsequent heat conduction across the temperature gradient is observed by various time-resolved probing techniques. Conceptual designs of such measurements using laser heating, proton heating, and x-ray heating are presented. The sensitivity of the measurements to thermal conductivity is confirmed by simulations.

  13. Differential heating: A versatile method for thermal conductivity measurements in high-energy-density matter

    SciTech Connect

    Ping, Y.; Fernandez-Panella, A.; Sio, H.; Correa, A.; Shepherd, R.; Landen, O.; London, R. A.; Sterne, P. A.; Whitley, H. D.; Fratanduono, D.; Boehly, T. R.; Collins, G. W.

    2015-09-04

    We propose a method for thermal conductivity measurements of high energy density matter based on differential heating. A temperature gradient is created either by surface heating of one material or at an interface between two materials by different energy deposition. The subsequent heat conduction across the temperature gradient is observed by various time-resolved probing techniques. Conceptual designs of such measurements using laser heating, proton heating, and x-ray heating are presented. As a result, the sensitivity of the measurements to thermal conductivity is confirmed by simulations.

  14. A 3D analysis of flight behavior of Anopheles gambiae sensu stricto malaria mosquitoes in response to human odor and heat.

    PubMed

    Spitzen, Jeroen; Spoor, Cornelis W; Grieco, Fabrizio; ter Braak, Cajo; Beeuwkes, Jacob; van Brugge, Sjaak P; Kranenbarg, Sander; Noldus, Lucas P J J; van Leeuwen, Johan L; Takken, Willem

    2013-01-01

    Female mosquitoes use odor and heat as cues to navigate to a suitable landing site on their blood host. The way these cues affect flight behavior and modulate anemotactic responses, however, is poorly understood. We studied in-flight behavioral responses of females of the nocturnal malaria mosquito Anopheles gambiae sensu stricto to human odor and heat. Flight-path characteristics in a wind tunnel (flow 20 cm/s) were quantified in three dimensions. With wind as the only stimulus (control), short and close to straight upwind flights were recorded. With heat alone, flights were similarly short and direct. The presence of human odor, in contrast, caused prolonged and highly convoluted flight patterns. The combination of odor+heat resulted in longer flights with more landings on the source than to either cue alone. Flight speed was greatest (mean groundspeed 27.2 cm/s) for odor+heat. Odor alone resulted in decreased flight speed when mosquitoes arrived within 30 cm of the source whereas mosquitoes exposed to odor+heat maintained a high flight speed while flying in the odor plume, until they arrived within 15 cm of the source. Human odor evoked an increase in crosswind flights with an additive effect of heat at close range (<15 cm) to the source. This was found for both horizontal and vertical flight components. However, mosquitoes nevertheless made upwind progress when flying in the odor+heat generated plume, suggesting that mosquitoes scan their environment intensively while they progress upwind towards their host. These observations may help to improve the efficacy of trapping systems for malaria mosquitoes by (1) optimizing the site of odor release relative to trap entry and (2) adding a heat source which enhances a landing response.

  15. A 3D Analysis of Flight Behavior of Anopheles gambiae sensu stricto Malaria Mosquitoes in Response to Human Odor and Heat

    PubMed Central

    Spitzen, Jeroen; Spoor, Cornelis W.; Grieco, Fabrizio; ter Braak, Cajo; Beeuwkes, Jacob; van Brugge, Sjaak P.; Kranenbarg, Sander; Noldus, Lucas P. J. J.; van Leeuwen, Johan L.; Takken, Willem

    2013-01-01

    Female mosquitoes use odor and heat as cues to navigate to a suitable landing site on their blood host. The way these cues affect flight behavior and modulate anemotactic responses, however, is poorly understood. We studied in-flight behavioral responses of females of the nocturnal malaria mosquito Anopheles gambiae sensu stricto to human odor and heat. Flight-path characteristics in a wind tunnel (flow 20 cm/s) were quantified in three dimensions. With wind as the only stimulus (control), short and close to straight upwind flights were recorded. With heat alone, flights were similarly short and direct. The presence of human odor, in contrast, caused prolonged and highly convoluted flight patterns. The combination of odor+heat resulted in longer flights with more landings on the source than to either cue alone. Flight speed was greatest (mean groundspeed 27.2 cm/s) for odor+heat. Odor alone resulted in decreased flight speed when mosquitoes arrived within 30 cm of the source whereas mosquitoes exposed to odor+heat maintained a high flight speed while flying in the odor plume, until they arrived within 15 cm of the source. Human odor evoked an increase in crosswind flights with an additive effect of heat at close range (<15 cm) to the source. This was found for both horizontal and vertical flight components. However, mosquitoes nevertheless made upwind progress when flying in the odor+heat generated plume, suggesting that mosquitoes scan their environment intensively while they progress upwind towards their host. These observations may help to improve the efficacy of trapping systems for malaria mosquitoes by (1) optimizing the site of odor release relative to trap entry and (2) adding a heat source which enhances a landing response. PMID:23658792

  16. Conjugate conduction-convection heat transfer model for four-stroke heat-barrier-piston engines

    SciTech Connect

    Blank, D.A.; Shih, T.M.

    1989-01-01

    A numerical model for conjugate conduction-convection heat transfer in a four-stroke heat-barrier-piston engine has been developed. The system boundaries were extended beyond the flow to fixed distances within the piston and cylinder linings. The model was used to simulate the compression stroke and fuel injection portion of the power stroke of a four-stroke engine cycle. Final runs involved a 20 X 26 mesh to solve the conjugate heat transfer problem in the large region made up of the flow field and a thin portion of the adjacent cylinder linings. A smaller mesh was used for other flow field calculations inside the interior boundary of the cylinder linings and piston. The engine was modeled with the fuel injector co-located with a single valve, making possible an axisymmetric solution. The effects of swirl were not considered. It was found to be convenient to divide the flow field into three regions: one fixed in space with time, one utilizing a stretching and compressing computational mesh, and one moving with time without stretching and compressing.

  17. 3D rapid mapping

    NASA Astrophysics Data System (ADS)

    Isaksson, Folke; Borg, Johan; Haglund, Leif

    2008-04-01

    In this paper the performance of passive range measurement imaging using stereo technique in real time applications is described. Stereo vision uses multiple images to get depth resolution in a similar way as Synthetic Aperture Radar (SAR) uses multiple measurements to obtain better spatial resolution. This technique has been used in photogrammetry for a long time but it will be shown that it is now possible to do the calculations, with carefully designed image processing algorithms, in e.g. a PC in real time. In order to get high resolution and quantitative data in the stereo estimation a mathematical camera model is used. The parameters to the camera model are settled in a calibration rig or in the case of a moving camera the scene itself can be used for calibration of most of the parameters. After calibration an ordinary TV camera has an angular resolution like a theodolite, but to a much lower price. The paper will present results from high resolution 3D imagery from air to ground. The 3D-results from stereo calculation of image pairs are stitched together into a large database to form a 3D-model of the area covered.

  18. DOS-HEATING6: A general conduction code with nuclear heat generation derived from DOT-IV transport calculations

    SciTech Connect

    Williams, M.L.; Yuecel, A.; Nadkarny, S.

    1988-05-01

    The HEATING6 heat conduction code is modified to (a) read the multigroup particle fluxes from a two-dimensional DOT-IV neutron- photon transport calculation, (b) interpolate the fluxes from the DOT-IV variable (optional) mesh to the HEATING6 control volume mesh, and (c) fold the interpolated fluxes with kerma factors to obtain a nuclear heating source for the heat conduction equation. The modified HEATING6 is placed as a module in the ORNL discrete ordinates system (DOS), and has been renamed DOS-HEATING6. DOS-HEATING6 provides the capability for determining temperature distributions due to nuclear heating in complex, multi-dimensional systems. All of the original capabilities of HEATING6 are retained for the nuclear heating calculation; e.g., generalized boundary conditions (convective, radiative, finned, fixed temperature or heat flux), temperature and space dependent thermal properties, steady-state or transient analysis, general geometry description, etc. The numerical techniques used in the code are reviewed and the user input instructions and JCL to perform DOS-HEATING6 calculations are presented. Finally a sample problem involving coupled DOT-IV and DOS-HEATING6 calculations of a complex space-reactor configurations described, and the input and output of the calculations are listed. 10 refs., 11 figs., 6 tabs.

  19. Numerical investigation of thermal regimes in twin-tube-channel heat pipelines using conductive-convective model of heat transfer

    NASA Astrophysics Data System (ADS)

    Kuznetzov, G. V.; Polovnikov, V. Yu.

    2012-04-01

    The results of numerical investigation are reported on thermal regimes in the systems of heat transport based on the solution of the conjugative problem of conductive-convective heat transfer in the system •twin-tube-channel underground heat pipeline„ environmental medium. It is shown that the use of the proposed approach allows one to perform the comprehensive analysis of the heating regimes in such systems.

  20. Experimental investigation of plastic finned-tube heat exchangers, with emphasis on material thermal conductivity

    SciTech Connect

    Chen, Lin; Li, Zhen; Guo, Zeng-Yuan

    2009-07-15

    In this paper, two modified types of polypropylene (PP) with high thermal conductivity up to 2.3 W/m K and 16.5 W/m K are used to manufacture the finned-tube heat exchangers, which are prospected to be used in liquid desiccant air conditioning, heat recovery, water source heat pump, sea water desalination, etc. A third plastic heat exchanger is also manufactured with ordinary PP for validation and comparison. Experiments are carried out to determine the thermal performance of the plastic heat exchangers. It is found that the plastic finned-tube heat exchanger with thermal conductivity of 16.5 W/m K can achieve overall heat transfer coefficient of 34 W/m{sup 2} K. The experimental results are compared with calculation and they agree well with each other. Finally, the effect of material thermal conductivity on heat exchanger thermal performance is studied in detail. The results show that there is a threshold value of material thermal conductivity. Below this value improving thermal conductivity can considerably improve the heat exchanger performance while over this value improving thermal conductivity contributes very little to performance enhancement. For the finned-tube heat exchanger designed in this paper, when the plastic thermal conductivity can reach over 15 W/m K, it can achieve more than 95% of the titanium heat exchanger performance and 84% of the aluminum or copper heat exchanger performance with the same dimension. (author)

  1. Heat flow in the laser-heated diamond anvil cell and the thermal conductivity of iron-bearing oxides and silicates at lower mantle pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Rainey, E. S.; Kavner, A.; Hernlund, J. W.; Pilon, L.; Veitch, M.

    2012-12-01

    The thermal conductivity of minerals in the lowermost mantle controls the total heat flow across the core-mantle boundary and is critical for the thermal evolution of the Earth. However, lower mantle thermal conductivity values and their pressure, temperature, and compositional dependencies are not well known. Here we present our recent progress combining 3D models of heat flow in the laser-heated diamond cell (LHDAC) with laboratory measurements of hotspot temperature distributions to assess the thermal conductivity of lower mantle minerals as a function of pressure and temperature. Using our numerical model of heat flow in the LHDAC, central hotspot temperature and radial and axial temperature gradients are calculated as a function of laser power, sample thermal conductivity, and sample geometry. For a given geometry, the relationship between peak sample temperature and laser power depends on the sample thermal conductivity. However, quantifying the experimental parameters sufficiently to precisely determine an absolute value of sample thermal conductivity is difficult. But relative differences in thermal conductivity are easily inferred by comparing the slopes of differing temperature vs. laser power curves measured on the same system. This technique can be used to measure the pressure dependence of thermal conductivity for minerals at lower mantle conditions. We confirm the effectiveness of this approach by measuring the pressure slope of thermal conductivity for MgO between 10 and 30 GPa. MgO retains the B1 phase throughout the experimental pressure range, and existing experimental measurements and theoretical calculations are in good agreement on the pressure- and temperature- dependence of the thermal conductivity of MgO. We also use this technique to measure the relative thermal conductivity of high pressure assemblages created from San Carlos olivine starting material. Both MgO and (Mg,Fe)2SiO4 materials show a shallower temperature vs. laser power slope

  2. In vitro burn model illustrating heat conduction patterns using compressed thermal papers.

    PubMed

    Lee, Jun Yong; Jung, Sung-No; Kwon, Ho

    2015-01-01

    To date, heat conduction from heat sources to tissue has been estimated by complex mathematical modeling. In the present study, we developed an intuitive in vitro skin burn model that illustrates heat conduction patterns inside the skin. This was composed of tightly compressed thermal papers with compression frames. Heat flow through the model left a trace by changing the color of thermal papers. These were digitized and three-dimensionally reconstituted to reproduce the heat conduction patterns in the skin. For standardization, we validated K91HG-CE thermal paper using a printout test and bivariate correlation analysis. We measured the papers' physical properties and calculated the estimated depth of heat conduction using Fourier's equation. Through contact burns of 5, 10, 15, 20, and 30 seconds on porcine skin and our burn model using a heated brass comb, and comparing the burn wound and heat conduction trace, we validated our model. The heat conduction pattern correlation analysis (intraclass correlation coefficient: 0.846, p < 0.001) and the heat conduction depth correlation analysis (intraclass correlation coefficient: 0.93, p < 0.001) showed statistically significant high correlations between the porcine burn wound and our model. Our model showed good correlation with porcine skin burn injury and replicated its heat conduction patterns.

  3. Taming supersymmetric defects in 3d-3d correspondence

    NASA Astrophysics Data System (ADS)

    Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; Yamazaki, Masahito

    2016-07-01

    We study knots in 3d Chern-Simons theory with complex gauge group {SL}(N,{{C}}), in the context of its relation with 3d { N }=2 theory (the so-called 3d-3d correspondence). The defect has either co-dimension 2 or co-dimension 4 inside the 6d (2,0) theory, which is compactified on a 3-manifold \\hat{M}. We identify such defects in various corners of the 3d-3d correspondence, namely in 3d {SL}(N,{{C}}) CS theory, in 3d { N }=2 theory, in 5d { N }=2 super Yang-Mills theory, and in the M-theory holographic dual. We can make quantitative checks of the 3d-3d correspondence by computing partition functions at each of these theories. This Letter is a companion to a longer paper [1], which contains more details and more results.

  4. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  5. Signature of Carrier-Induced Ferromagnetism in Ti1-xCoxO2-δ: Exchange Interaction between High-Spin Co2+ and the Ti 3d Conduction Band

    NASA Astrophysics Data System (ADS)

    Quilty, J. W.; Shibata, A.; Son, J.-Y.; Takubo, K.; Mizokawa, T.; Toyosaki, H.; Fukumura, T.; Kawasaki, M.

    2006-01-01

    X-ray photoemission spectroscopy measurements were performed on thin-film samples of rutile Ti1-xCoxO2-δ to reveal the electronic structure. The Co 2p core-level spectra indicate that the Co ions take the high-spin Co2+ configuration, consistent with substitution on the Ti site. The high-spin state and the shift due to the exchange splitting of the conduction band suggest strong hybridization between carriers in the Ti 3d t2g band and the t2g states of the high-spin Co+2. These observations support the argument that room temperature ferromagnetism in Ti1-xCoxO2-δ is intrinsic.

  6. Ultrafine particle emissions from desktop 3D printers

    NASA Astrophysics Data System (ADS)

    Stephens, Brent; Azimi, Parham; El Orch, Zeineb; Ramos, Tiffanie

    2013-11-01

    The development of low-cost desktop versions of three-dimensional (3D) printers has made these devices widely accessible for rapid prototyping and small-scale manufacturing in home and office settings. Many desktop 3D printers rely on heated thermoplastic extrusion and deposition, which is a process that has been shown to have significant aerosol emissions in industrial environments. However, we are not aware of any data on particle emissions from commercially available desktop 3D printers. Therefore, we report on measurements of size-resolved and total ultrafine particle (UFP) concentrations resulting from the operation of two types of commercially available desktop 3D printers inside a commercial office space. We also estimate size-resolved (11.5 nm-116 nm) and total UFP (<100 nm) emission rates and compare them to emission rates from other desktop devices and indoor activities known to emit fine and ultrafine particles. Estimates of emission rates of total UFPs were large, ranging from ˜2.0 × 1010 # min-1 for a 3D printer utilizing a polylactic acid (PLA) feedstock to ˜1.9 × 1011 # min-1 for the same type of 3D printer utilizing a higher temperature acrylonitrile butadiene styrene (ABS) thermoplastic feedstock. Because most of these devices are currently sold as standalone devices without any exhaust ventilation or filtration accessories, results herein suggest caution should be used when operating in inadequately ventilated or unfiltered indoor environments. Additionally, these results suggest that more controlled experiments should be conducted to more fundamentally evaluate particle emissions from a wider arrange of desktop 3D printers.

  7. A two-fluid model for relativistic heat conduction

    SciTech Connect

    López-Monsalvo, César S.

    2014-01-14

    Three years ago it was presented in these proceedings the relativistic dynamics of a multi-fluid system together with various applications to a set of topical problems [1]. In this talk, I will start from such dynamics and present a covariant formulation of relativistic thermodynamics which provides us with a causal constitutive equation for the propagation of heat in a relativistic setting.

  8. Seebeck effect influence on joule heat evolution in electrically conductive silicate materials

    NASA Astrophysics Data System (ADS)

    Fiala, Lukáš; Medved, Igor; Maděra, Jiří; Černý, Robert

    2016-07-01

    In general, silicate building materials are non-conductive matters that are not able to evolve heat when they are subjected to an external voltage. However, the electrical conductivity can be increased by addition of electrically conductive admixtures in appropriate amount which leads to generation of conductive paths in materials matrix. Such enhanced materials can evolve Joule heat and are utilizable as a core of self-heating or snow-melting systems. In this paper, Joule heat evolution together with Seebeck effect in electrically conductive silicate materials was taken into consideration and the model based on heat equation with included influence of DC electric field was proposed. Besides, a modeling example of heating element was carried out on FEM basis and time development of temperature in chosen surface points was expressed in order to declare ability of such system to be applicable.

  9. The program FANS-3D (finite analytic numerical simulation 3-dimensional) and its applications

    NASA Technical Reports Server (NTRS)

    Bravo, Ramiro H.; Chen, Ching-Jen

    1992-01-01

    In this study, the program named FANS-3D (Finite Analytic Numerical Simulation-3 Dimensional) is presented. FANS-3D was designed to solve problems of incompressible fluid flow and combined modes of heat transfer. It solves problems with conduction and convection modes of heat transfer in laminar flow, with provisions for radiation and turbulent flows. It can solve singular or conjugate modes of heat transfer. It also solves problems in natural convection, using the Boussinesq approximation. FANS-3D was designed to solve heat transfer problems inside one, two and three dimensional geometries that can be represented by orthogonal planes in a Cartesian coordinate system. It can solve internal and external flows using appropriate boundary conditions such as symmetric, periodic and user specified.

  10. Variable Conductance Heat Pipe Cooling of Stirling Convertor and General Purpose Heat Source

    NASA Technical Reports Server (NTRS)

    Tarau, Calin; Schwendeman, Carl; Anderson, William G.; Cornell, Peggy A.; Schifer, Nicholas A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental

  11. Constant of thermal heat conduction and stabilization of the bus bar conductor for superconducting accelerators

    SciTech Connect

    Lopez, G.

    1993-07-01

    Using the one-dimensional, time-independent conduction state, a constant of thermal heating conduction is given that brings about the known stabilization theorem and a closed expression for the bus bar to be cryogenically stable in superconducting accelerators.

  12. Steady heat conduction-based thermal conductivity measurement of single walled carbon nanotubes thin film using a micropipette thermal sensor

    PubMed Central

    Shrestha, R.; Lee, K. M.; Chang, W. S.; Kim, D. S.; Rhee, G. H.; Choi, T. Y.

    2013-01-01

    In this paper, we describe the thermal conductivity measurement of single-walled carbon nanotubes thin film using a laser point source-based steady state heat conduction method. A high precision micropipette thermal sensor fabricated with a sensing tip size varying from 2 μm to 5 μm and capable of measuring thermal fluctuation with resolution of ±0.01 K was used to measure the temperature gradient across the suspended carbon nanotubes (CNT) film with a thickness of 100 nm. We used a steady heat conduction model to correlate the temperature gradient to the thermal conductivity of the film. We measured the average thermal conductivity of CNT film as 74.3 ± 7.9 W m−1 K−1 at room temperature. PMID:23556837

  13. Existence and Uniqueness of Solutions to Heat Equations with Hysteresis Coupled with Navier-Stokes Equations in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Tsuzuki, Yutaka

    2015-09-01

    This paper is concerned with a system of heat equations with hysteresis and Navier-Stokes equations. In Tsuzuki (J Math Anal Appl 423:877-897, 2015) an existence result is obtained for the problem in a 2-dimensional domain with the Navier-Stokes equation in a weak sense. However the result does not include uniqueness for the problem due to the low regularity for solutions. This paper establishes existence and uniqueness in 2- and 3-dimensional domains with the Navier-Stokes equation in a stronger sense. Moreover this work decides required height of regularity for the initial data by introducing the fractional power of the Stokes operator.

  14. The combined effects of wall longitudinal heat conduction and inlet fluid flow maldistribution in crossflow plate-fin heat exchangers

    NASA Astrophysics Data System (ADS)

    Ranganayakulu, Ch.; Seetharamu, K. N.

    An analysis of a crossflow plate-fin compact heat exchanger, accounting for the combined effect of two-dimensional longitudinal heat conduction through the exchanger wall and nonuniform inlet fluid flow distribution on both hot and cold fluid sides is carried out using a finite element method. Using the fluid flow maldistribution models, the exchanger effectiveness and its deterioration due to the combined effects of longitudinal heat conduction and flow nonuniformity are calculated for various design and operating conditions of the exchanger. It was found that the performance deteriorations are quite significant in some typical applications due to the combined effects of wall longitudinal heat conduction and inlet fluid flow nonuniformity on crossflow plate-fin heat exchanger.

  15. Uniqueness theorems for some inverse heat-conduction problems

    NASA Astrophysics Data System (ADS)

    Muzylev, N. V.

    1980-04-01

    Heat treatment of metals, involving rapid thermal processes, is an example of situations where the mathematical determination of thermal characteristics makes it necessary to solve a certain inverse problem, i.e., from some information on the temperature field, obtained from direct measurements. The present paper deals with the uniqueness of inverse problems of this type. Uniqueness theorems are proven for the determination of the coefficients of a nonlinear parabolic equation from the boundary conditions.

  16. A Simple Rate Law Experiment Using a Custom-Built Isothermal Heat Conduction Calorimeter

    ERIC Educational Resources Information Center

    Wadso, Lars; Li, Xi.

    2008-01-01

    Most processes (whether physical, chemical, or biological) produce or consume heat: measuring thermal power (the heat production rate) is therefore a typical method of studying processes. Here we describe the design of a simple isothermal heat conduction calorimeter built for use in teaching; we also provide an example of its use in simultaneously…

  17. Calculations of non-gray gas radiative heat transfer by coupling the discrete ordinates method with the Leckner model in 3D rectangular enclosures

    NASA Astrophysics Data System (ADS)

    Fathi Azarkhavarani, M. E.; Hosseini Abardeh, R.; Rahmani, M.

    2016-11-01

    In this study a new approach for radiation heat flux calculations by coupling the discrete ordinates method with the Leckner global model is introduced. The aim is to analyze the radiative heat transfer problem within a three-dimensional enclosure filled with non-gray gas mixture of {H}2{O} and {C}{O}2. A computer code developed by this approach is applied to radiative calculations in three groups of well-known test cases published previously; considering homogeneous and inhomogeneous isothermal and non-isothermal participating media. All results are compared with well-known calculations based on statistical narrow band model. Also a new series of predictions for a medium with non-black walls and various mixture of {H}2{O} and {C}{O}2 is performed to demonstrate the applicability of the Leckner model. The effect of different compositions of {H}2{O} and {C}{O}2 on the radiative transfer within modern combustors is also examined. Based on the results obtained, it is believed that the discrete ordinates method coupled with the Leckner global model despite of its inherent simplicity and low computational cost is sufficiently accurate. For its convenient use, this method is suitable for a wide range of engineering calculations of participating media as well as for its link to previously written computational fluid dynamics codes.

  18. Calculations of non-gray gas radiative heat transfer by coupling the discrete ordinates method with the Leckner model in 3D rectangular enclosures

    NASA Astrophysics Data System (ADS)

    Fathi Azarkhavarani, M. E.; Hosseini Abardeh, R.; Rahmani, M.

    2015-12-01

    In this study a new approach for radiation heat flux calculations by coupling the discrete ordinates method with the Leckner global model is introduced. The aim is to analyze the radiative heat transfer problem within a three-dimensional enclosure filled with non-gray gas mixture of H2O and CO2 . A computer code developed by this approach is applied to radiative calculations in three groups of well-known test cases published previously; considering homogeneous and inhomogeneous isothermal and non-isothermal participating media. All results are compared with well-known calculations based on statistical narrow band model. Also a new series of predictions for a medium with non-black walls and various mixture of H2O and CO2 is performed to demonstrate the applicability of the Leckner model. The effect of different compositions of H2O and CO2 on the radiative transfer within modern combustors is also examined. Based on the results obtained, it is believed that the discrete ordinates method coupled with the Leckner global model despite of its inherent simplicity and low computational cost is sufficiently accurate. For its convenient use, this method is suitable for a wide range of engineering calculations of participating media as well as for its link to previously written computational fluid dynamics codes.

  19. Elongating axial conduction path design to enhance performance of cryogeinc compact pche (printed circuit heat exchanger)

    NASA Astrophysics Data System (ADS)

    Baek, Seungwhan; Kim, Jinhyuck; Hwang, Gyuwan; Jeong, Sangkwon

    2012-06-01

    PCHE (Printed Circuit Heat Exchanger) is one of the promising cryogenic compact heat exchangers due to its compactness, high NTU and robustness. The essential procedure for fabricating PCHE is chemical etching and diffusion bonding. These technologies can create sufficiently large heat transfer area for a heat exchanger with numerous micro channels (Dh<1 mm). However, PCHE shows disadvantages of high pressure drop and large axial conduction loss. Axial conduction is a critical design issue of a cryogenic heat exchanger when it is operated with a large temperature difference. Elongating the heat conduction path is implemented to reduce axial conduction in PCHE in this study. Two PCHEs with identical channel configuration are fabricated, for comparison, one of which is modified to have longer heat conduction path. Both heat exchangers are tested in cryogenic environment (300~70 K), and the modified PCHE shows better performance with significantly reduced axial conduction. The experimental results indicate that the modification of the heat conduction path is effective to increase the performance of PCHE. This paper discusses and analyses the thermal characteristics of the modified PCHE obtained experimentally.

  20. Numerical model for combined conductive and radiative heat transfer in annular packed beds

    SciTech Connect

    Kamiuto, K.; Saito, S.; Ito, K. . Dept. of Production Systems Engineering)

    1993-06-01

    A numerical model is developed for quantitatively analyzing combined conductive and radiative heat transfer in concentric annular packed beds. A packed bed is considered to be a continuous medium for heat transfer, but the porosity distribution within a packed bed is taken into account. To examine the validity of the proposed model, combined conductive and radiative heat transfer through annular packed beds of cordierite or porcelain beads is analyzed numerically using finite differences under conditions corresponding to heat transfer experiments of these packed beds. The resultant temperature profiles and heat transfer characteristics are compared with the experimental results.

  1. Global Well-Posedness for the Heat-conductive Incompressible Viscous Fluids

    NASA Astrophysics Data System (ADS)

    Ye, Xia; Zhu, Mingxuan

    2016-09-01

    This paper is concerned with the Cauchy problem derived from the non-stationary motion of heat-conducting incompressible viscous fluids in three-dimensional whole space, where the viscosity and heat-conductivity coefficient vary with the temperature. We establish blow-up criteria and existence of global strong solution provided that the initial data is small enough.

  2. Methods for solving of inverse heat conduction problems

    NASA Astrophysics Data System (ADS)

    Kobilskaya, E.; Lyashenko, V.

    2016-10-01

    A general mathematical model of the high-temperature thermodiffusion that occurs in a limited environment is considered. Based on this model a formulation of inverse problems for homogeneous and inhomogeneous parabolic equations is proposed. The inverse problem aims at identifying one or several unknown parameters of the mathematical model. These parameters allow maintaining the required temperature distribution and concentration of distribution of substance in the whole area or in part. For each case (internal, external heat source or a combination) the appropriate method for solving the inverse problem is proposed.

  3. Heat conduction in cooling flows. [in clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Bregman, Joel N.; David, L. P.

    1988-01-01

    It has been suggested that electron conduction may significantly reduce the accretion rate (and star foramtion rate) for cooling flows in clusters of galaxies. A numerical hydrodynamics code was used to investigate the time behavior of cooling flows with conduction. The usual conduction coefficient is modified by an efficiency factor, mu, to realize the effects of tangled magnetic field lines. Two classes of models are considered, one where mu is independent of position and time, and one where inflow stretches the field lines and changes mu. In both cases, there is only a narrow range of initial conditions for mu in which the cluster accretion rate is reduced while a significant temperature gradient occurs. In the first case, no steady solution exists in which both conditions are met. In the second case, steady state solutions occur in which both conditions are met, but only for a narrow range of initial values where mu = 0.001.

  4. Influence of raw materials composition on firing shrinkage, porosity, heat conductivity and microstructure of ceramic tiles

    NASA Astrophysics Data System (ADS)

    Kurovics, E.; Buzimov, A. Y.; Gömze, L. A.

    2016-04-01

    In this work some new raw material compositions from alumina, conventional brick-clays and sawdust were mixed, compacted and heat treated by the authors. Depending on raw material compositions and firing temperatures the specimens were examined on shrinkage, water absorption, heat conductivity and microstructures. The real raised experiments have shown the important role of firing temperature and raw material composition on color, heat conductivity and microstructure of the final product.

  5. Cu/Diamond composite heat-conducting shims

    NASA Astrophysics Data System (ADS)

    Galashov, E. N.; Yusuf, A. A.; Mandrik, E. M.

    2015-11-01

    Composite material with high thermal conductivity was obtained by the method of thermal sintering of a diamond (50 - 75%) with a size of 20 to 250 μm in a matrix of copper.Coefficient of thermal conductivity of copper diamond composite materials was measured and is 450 - 650 W·m-1·K-1. The coefficient of thermal expansion CTE was measured and is 5.5 - 7.5 · 10-6/°C. The obtained copper diamond composite materials are promising objects for use in THz and microwave devices.

  6. The dilemma of hyperbolic heat conduction and its settlement by incorporating spatially nonlocal effect at nanoscale

    NASA Astrophysics Data System (ADS)

    Yu, Y. Jun; Li, Chen-Lin; Xue, Zhang-Na; Tian, Xiao-Geng

    2016-01-01

    To model transiently thermal responses of numerous thermal shock issues at nano-scale, Fourier heat conduction law is commonly extended by introducing time rate of heat flux, and comes to hyperbolic heat conduction (HHC). However, solution to HHC under Dirichlet boundary condition depicts abnormal phenomena, e.g. heat conducts from the cold to the hot, and there are two temperatures at one location. In this paper, HHC model is further perfected with the aids of spatially nonlocal effect, and the exceeding temperature as well as the discontinuity at the wave front are avoided. The effect of nonlocal parameter on temperature response is discussed. From the analysis, the importance of size effect for nano-scale heat conduction is emphasized, indicating that spatial and temporal extensions should be simultaneously made to nano-scale heat conduction. Beyond that, it is found that heat flux boundary conditions should be directly given, instead of Neumann boundary condition, which does not make sense any longer for non-classical heat conductive models. And finally, it is observed that accurate solution to such problems may be obtained using Laplace transform method, especially for the time-dependent boundary conditions, e.g. heat flux boundary condition.

  7. How We 3D-Print Aerogel

    SciTech Connect

    2015-04-23

    A new type of graphene aerogel will make for better energy storage, sensors, nanoelectronics, catalysis and separations. Lawrence Livermore National Laboratory researchers have made graphene aerogel microlattices with an engineered architecture via a 3D printing technique known as direct ink writing. The research appears in the April 22 edition of the journal, Nature Communications. The 3D printed graphene aerogels have high surface area, excellent electrical conductivity, are lightweight, have mechanical stiffness and exhibit supercompressibility (up to 90 percent compressive strain). In addition, the 3D printed graphene aerogel microlattices show an order of magnitude improvement over bulk graphene materials and much better mass transport.

  8. Heat transfer in vertical Bridgman growth of oxides - Effects of conduction, convection, and internal radiation

    NASA Technical Reports Server (NTRS)

    Brandon, S.; Derby, J. J.

    1992-01-01

    In the present investigation of crystalline phase internal radiation and heat conduction during the vertical Bridgman growth of a YAG-like oxide crystal, where transport through the melt is dominated by convection and conduction, heat is also noted to be conducted through ampoule walls via natural convection and enclosure radiation. The results of a quasi-steady-state axisymmetric Galerkin FEM indicate that heat transfer through the system is powerfully affected by the optical absorption coefficient of the crystal. The coupling of internal radiation through the crystal with conduction through the ampoule walls promotes melt/crystal interface shapes that are highly reflected near the ampoule wall.

  9. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  10. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  11. Martian terrain - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This area of terrain near the Sagan Memorial Station was taken on Sol 3 by the Imager for Mars Pathfinder (IMP). 3D glasses are necessary to identify surface detail.

    The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  12. 3D printed bionic ears.

    PubMed

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.

  13. 3D printed bionic ears.

    PubMed

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  14. The evolution of interstellar clouds in a streaming hot plasma including heat conduction

    NASA Astrophysics Data System (ADS)

    Vieser, W.; Hensler, G.

    2007-09-01

    Context: The interstellar medium contains warm clouds that are embedded in a hot dilute gas produced by supernovae. Because both gas phases are in contact, an interface forms where mass and energy are exchanged. Whether heat conduction leads to evaporation of these clouds or whether condensation dominates has been analytically derived. Both phases behave differently dynamically so that their relative motion has to be taken into account. Aims: Real clouds in static conditions that experience saturated heat conduction are stabilized against evaporation if self-gravity and cooling play a role. Here, we investigte to what extent heat conduction can hamper the dynamical disruption of clouds embedded in a streaming hot plasma. Methods: To examine the evolution of giant molecular clouds in the stream of a hot plasma we performed two-dimensional hydrodynamical simulations that take full account of self-gravity, heating and cooling effects and heat conduction by electrons. We use the thermal conductivity of a fully ionized hydrogen plasma proposed by Spitzer and a saturated heat flux according to Cowie & McKee in regions where the mean free path of the electrons is large compared to the temperature scaleheight. Results: Significant structural and evolutionary differences occur between simulations with and without heat conduction. Dense clouds in pure dynamical models experience dynamical destruction by Kelvin-Helmholtz (KH) instability. In static models heat conduction leads to evaporation of such clouds. Heat conduction acting on clouds in a gas stream smooths out steep temperature and density gradients at the edge of the cloud because the conduction timescale is shorter than the cooling timescale. This diminishes the velocity gradient between the streaming plasma and the cloud, so that the timescale for the onset of KH instabilities increases, and the surface of the cloud becomes less susceptible to KH instabilities. The stabilisation effect of heat conduction against KH

  15. The psychology of the 3D experience

    NASA Astrophysics Data System (ADS)

    Janicke, Sophie H.; Ellis, Andrew

    2013-03-01

    With 3D televisions expected to reach 50% home saturation as early as 2016, understanding the psychological mechanisms underlying the user response to 3D technology is critical for content providers, educators and academics. Unfortunately, research examining the effects of 3D technology has not kept pace with the technology's rapid adoption, resulting in large-scale use of a technology about which very little is actually known. Recognizing this need for new research, we conducted a series of studies measuring and comparing many of the variables and processes underlying both 2D and 3D media experiences. In our first study, we found narratives within primetime dramas had the power to shift viewer attitudes in both 2D and 3D settings. However, we found no difference in persuasive power between 2D and 3D content. We contend this lack of effect was the result of poor conversion quality and the unique demands of 3D production. In our second study, we found 3D technology significantly increased enjoyment when viewing sports content, yet offered no added enjoyment when viewing a movie trailer. The enhanced enjoyment of the sports content was shown to be the result of heightened emotional arousal and attention in the 3D condition. We believe the lack of effect found for the movie trailer may be genre-related. In our final study, we found 3D technology significantly enhanced enjoyment of two video games from different genres. The added enjoyment was found to be the result of an increased sense of presence.

  16. Determination of temperature-dependent heat conductivity and thermal diffusivity of waste glass melter feed

    SciTech Connect

    Pokorny, Richard; Rice, Jarrett A.; Schweiger, Michael J.; Hrma, Pavel R.

    2013-06-01

    The cold cap is a layer of reacting glass batch floating on the surface of melt in an all-electric continuous glass melter. The heat needed for the conversion of the melter feed to molten glass must be transferred to and through the cold cap. Since the heat flux into the cold cap determines the rate of melting, the heat conductivity is a key property of the reacting feed. We designed an experimental setup consisting of a large cylindrical crucible with an assembly of thermocouples that monitors the evolution of the temperature field while the crucible is heated at a constant rate. Then we used two methods to calculate the heat conductivity and thermal diffusivity of the reacting feed: the approximation of the temperature field by polynomial functions and the finite-volume method coupled with least-squares analysis. Up to 680°C, the heat conductivity of the reacting melter feed was represented by a linear function of temperature.

  17. Real-time monitoring of 3D cell culture using a 3D capacitance biosensor.

    PubMed

    Lee, Sun-Mi; Han, Nalae; Lee, Rimi; Choi, In-Hong; Park, Yong-Beom; Shin, Jeon-Soo; Yoo, Kyung-Hwa

    2016-03-15

    Three-dimensional (3D) cell cultures have recently received attention because they represent a more physiologically relevant environment compared to conventional two-dimensional (2D) cell cultures. However, 2D-based imaging techniques or cell sensors are insufficient for real-time monitoring of cellular behavior in 3D cell culture. Here, we report investigations conducted with a 3D capacitance cell sensor consisting of vertically aligned pairs of electrodes. When GFP-expressing human breast cancer cells (GFP-MCF-7) encapsulated in alginate hydrogel were cultured in a 3D cell culture system, cellular activities, such as cell proliferation and apoptosis at different heights, could be monitored non-invasively and in real-time by measuring the change in capacitance with the 3D capacitance sensor. Moreover, we were able to monitor cell migration of human mesenchymal stem cells (hMSCs) with our 3D capacitance sensor.

  18. Real-time monitoring of 3D cell culture using a 3D capacitance biosensor.

    PubMed

    Lee, Sun-Mi; Han, Nalae; Lee, Rimi; Choi, In-Hong; Park, Yong-Beom; Shin, Jeon-Soo; Yoo, Kyung-Hwa

    2016-03-15

    Three-dimensional (3D) cell cultures have recently received attention because they represent a more physiologically relevant environment compared to conventional two-dimensional (2D) cell cultures. However, 2D-based imaging techniques or cell sensors are insufficient for real-time monitoring of cellular behavior in 3D cell culture. Here, we report investigations conducted with a 3D capacitance cell sensor consisting of vertically aligned pairs of electrodes. When GFP-expressing human breast cancer cells (GFP-MCF-7) encapsulated in alginate hydrogel were cultured in a 3D cell culture system, cellular activities, such as cell proliferation and apoptosis at different heights, could be monitored non-invasively and in real-time by measuring the change in capacitance with the 3D capacitance sensor. Moreover, we were able to monitor cell migration of human mesenchymal stem cells (hMSCs) with our 3D capacitance sensor. PMID:26386332

  19. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.

    The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.

    This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these

  20. Heat conduction in carbon nanotube materials: Strong effect of intrinsic thermal conductivity of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Volkov, Alexey N.; Zhigilei, Leonid V.

    2012-07-01

    Computational study of thermal conductivity of interconnected networks of bundles in carbon nanotube (CNT) films reveals a strong effect of the finite thermal conductivity kT of individual nanotubes on the conductivity k of the CNT materials. The physical origin of this effect is explained in a theoretical analysis of systems composed of straight randomly dispersed CNTs. An analytical equation for quantitative description of the effect of finite kT on the value of k is obtained and adopted for continuous networks of bundles characteristic of CNT films and buckypaper. Contrary to the common assumption of the dominant effect of the contact conductance, the contribution of the finite kT is found to control the value of k at material densities and CNT lengths typical for real materials.

  1. Specially tailored transfinite-element formulations for hyperbolic heat conduction involving non-Fourier effects

    NASA Technical Reports Server (NTRS)

    Tamma, Kumar K.; Railkar, Sudhir B.

    1989-01-01

    The phenomenon of hyperbolic heat conduction in contrast to the classical (parabolic) form of Fourier heat conduction involves thermal energy transport that propagates only at finite speeds, as opposed to an infinite speed of thermal energy transport. To accommodate the finite speed of thermal wave propagation, a more precise form of heat flux law is involved, thereby modifying the heat flux originally postulated in the classical theory of heat conduction. As a consequence, for hyperbolic heat conduction problems, the thermal energy propagates with very sharp discontinuities at the wave front. Accurate solutions are found for a class of one-dimensional hyperbolic heat conduction problems involving non-Fourier effects that can be used effectively for representative benchmark tests and for validating alternate schemes. Modeling/analysis formulations via specially tailored hybrid computations are provided for accurately modeling the sharp discontinuities of the propagating thermal wave front. Comparative numerical test models are presented for various hyperbolic heat conduction models involving non-Fourier effects to demonstrate the present formulations.

  2. 3D printing technology using high viscous materials - Synthesis of functional materials and fabrication of 3D metal structure

    NASA Astrophysics Data System (ADS)

    Hong, Seongik

    In the 3D printing technology, the research for using various materials has been performing. In this research work, 3D printable high viscous materials are suggested as one of the solutions for problems in the traditional 3D printing technology. First, Cu-Ag coreshell was synthesized as a functional material. In terms of the reaction rate, reaction rate limiting step was defined as a fundamental research, and then prepared Cu-Ag coreshell was printed and analyzed. Second, the high viscous Cu paste was prepared and then metal 3D printed structure was fabricated by using new printing method. In the synthesis of Cu-Ag coreshell, different sizes of Cu particle, 2μm and 100nm were used, and when 2μm Cu was applied, the reaction rate was limited by film diffusion control. However, when 100nm Cu was applied, reaction rate was controlled by CuO film and the rate of the reaction, which includes removing CuO film in the solution, is limited by chemical reaction control. The shape of Cu-Ag particle is spherical in the 2μm Cu condition and dendrite shape in the 100nm Cu condition respectively. The conductivity of Cu-Ag coreshell paste increased as increasing content of coreshell particle in the paste and sintering temperature. In order to print high viscous metal paste, the high viscous Cu paste was printed by using screw extruder, and the viscosity of Cu paste was measured as a fundamental research. As increasing wt.% of Cu in the paste, the viscosity also increased. In addition, the shrinkage factor was reduced by increasing wt.% of Cu in the paste. An optimized printing condition for the high viscous material was obtained, and by using this condition, 3D metal structure was fabricated. The final product was heat treated and polished. Through these processes, a fine quality of metal 3D structure was printed.

  3. Design of the 1.5 MW, 30-96 MHz ultra-wideband 3 dB high power hybrid coupler for Ion Cyclotron Resonance Frequency (ICRF) heating in fusion grade reactor

    NASA Astrophysics Data System (ADS)

    Yadav, Rana Pratap; Kumar, Sunil; Kulkarni, S. V.

    2016-01-01

    Design and developmental procedure of strip-line based 1.5 MW, 30-96 MHz, ultra-wideband high power 3 dB hybrid coupler has been presented and its applicability in ion cyclotron resonance heating (ICRH) in tokamak is discussed. For the high power handling capability, spacing between conductors and ground need to very high. Hence other structural parameters like strip-width, strip thickness coupling gap, and junction also become large which can be gone upto optimum limit where various constrains like fabrication tolerance, discontinuities, and excitation of higher TE and TM modes become prominent and significantly deteriorates the desired parameters of the coupled lines system. In designed hybrid coupler, two 8.34 dB coupled lines are connected in tandem to get desired coupling of 3 dB and air is used as dielectric. The spacing between ground and conductors are taken as 0.164 m for 1.5 MW power handling capability. To have the desired spacing, each of 8.34 dB segments are designed with inner dimension of 3.6 × 1.0 × 40 cm where constraints have been significantly realized, compensated, and applied in designing of 1.5 MW hybrid coupler and presented in paper.

  4. Design of the 1.5 MW, 30-96 MHz ultra-wideband 3 dB high power hybrid coupler for Ion Cyclotron Resonance Frequency (ICRF) heating in fusion grade reactor.

    PubMed

    Yadav, Rana Pratap; Kumar, Sunil; Kulkarni, S V

    2016-01-01

    Design and developmental procedure of strip-line based 1.5 MW, 30-96 MHz, ultra-wideband high power 3 dB hybrid coupler has been presented and its applicability in ion cyclotron resonance heating (ICRH) in tokamak is discussed. For the high power handling capability, spacing between conductors and ground need to very high. Hence other structural parameters like strip-width, strip thickness coupling gap, and junction also become large which can be gone upto optimum limit where various constrains like fabrication tolerance, discontinuities, and excitation of higher TE and TM modes become prominent and significantly deteriorates the desired parameters of the coupled lines system. In designed hybrid coupler, two 8.34 dB coupled lines are connected in tandem to get desired coupling of 3 dB and air is used as dielectric. The spacing between ground and conductors are taken as 0.164 m for 1.5 MW power handling capability. To have the desired spacing, each of 8.34 dB segments are designed with inner dimension of 3.6 × 1.0 × 40 cm where constraints have been significantly realized, compensated, and applied in designing of 1.5 MW hybrid coupler and presented in paper.

  5. A 3D POM–MOF composite based on Ni(ΙΙ) ion and 2,2´-bipyridyl-3,3´-dicarboxylic acid: Crystal structure and proton conductivity

    SciTech Connect

    Wei, Meilin; Wang, Xiaoxiang; Sun, Jingjing; Duan, Xianying

    2013-06-01

    We have succeeded in constructing a 3D POM–MOF, (H[Ni(Hbpdc)(H₂O)₂]₂[PW₁₂O₄₀]·8H₂O)n (H₂bpdc=2,2´-bipyridyl-3,3´-dicarboxylic acid), by the controllable self-assembly of H₂bpdc, Keggin-anions and Ni²⁺ ions based on the electrostatic and coordination interactions. Interestingly, Hbpdc⁻ as polydentate organic ligands and Keggin-anion as polydentate inorganic ligands are covalently linked transition-metal nickel at the same time. The title complex represents a new example of introducing the metal N-heterocyclic multi-carboxylic acid frameworks into POMs chemistry. Based on Keggin-anions being immobilized as part of the metal N-heterocyclic multi-carboxylic acid framework, the title complex realizes four approaches in the 1D hydrophilic channel used to engender proton conductivity in MOFs. Its water adsorption isotherm at room temperature and pressure shows that the water content in it was 31 cm³ g⁻¹ at the maximum allowable humidity, corresponding to 3.7 water molecules per unit formula. It exhibits good proton conductivities (10⁻⁴–10⁻³ S cm⁻¹) at 100 °C in the relative humidity range 35–98%. The corresponding activation energy (E{sub a}) of conductivity was estimated to be 1.01 eV. - Graphical abstract: A POM–MOF composite constructed by Keggin-type polyanion, Ni²⁺ and H₂bpdc shows good proton conductivities of 10⁻⁴–10⁻³ S cm⁻¹ at 100 °C under 35–98% RH. - Highlights: • A POM–MOF was constructed by combining metal N-heterocyclic multi-carboxylic acid framework and Keggin anion. • It opens a pathway for design and synthesis of multifunctional hybrid materials based on two building units. • Three types of potential proton-carriers have been assembled in the 1D hydrophilic channels of the POM–MOF. • It achieved such proton conductivities as 10⁻⁴–10⁻³ S cm⁻¹ at 100 °C in the RH range 35–98%.

  6. BEAMS3D Neutral Beam Injection Model

    NASA Astrophysics Data System (ADS)

    McMillan, Matthew; Lazerson, Samuel A.

    2014-09-01

    With the advent of applied 3D fields in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous slowing down, and pitch angle scattering are modeled with the ADAS atomic physics database. Elementary benchmark calculations are presented to verify the collisionless particle orbits, NBI model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields. Notice: this manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  7. Advective and Conductive Heat Flow Budget Across the Wagner Basin, Northern Gulf of California

    NASA Astrophysics Data System (ADS)

    Neumann, F.; Negrete-Aranda, R.; Contreras, J.; Müller, C.; Hutnak, M.; Gonzalez-Fernandez, A.; Harris, R. N.; Sclater, J. G.

    2015-12-01

    In May 2015, we conducted a cruise across the northern Gulf of California, an area of continental rift basin formation and rapid deposition of sediments. The cruise was undertaken aboard the R/V Alpha Helix; our goal was to study variation in superficial conductive heat flow, lateral changes in the shallow thermal conductivity structure, and advective transport of heat across the Wagner basin. We used a Fielax heat flow probe with 22 thermistors that can penetrate up to 6 m into the sediment cover. The resulting data set includes 53 new heat flow measurements collected along three profiles. The longest profile (42 km) contains 30 measurements spaced 1-2 km apart. The western part of the Wagner basin (hanging wall block) exhibit low to normal conductive heat flow whereas the eastern part of the basin (foot wall block) heat flow is high to very high (up to 2500 mWm-2). Two other short profiles (12 km long each) focused on resolving an extremely high heat flow anomaly up to 15 Wm-2 located near the intersection between the Wagner bounding fault system and the Cerro Prieto fault. We hypothesize that the contrasting heat flow values observed across the Wagner basin are due to horizontal water circulation through sand layers and fault pathways of high permeability. Circulation appears to be from west (recharge zone) to east (discharge zone). Additionally, our results reveal strong vertical advection of heat due to dehydration reactions and compaction of fine grained sediments.

  8. Heat conduction in a chain of dissociating particles: Effect of dimensionality

    NASA Astrophysics Data System (ADS)

    Zolotarevskiy, V.; Savin, A. V.; Gendelman, O. V.

    2015-03-01

    The paper considers heat conduction in a model chain of composite particles with hard core and elastic external shell. Such model mimics three main features of realistic interatomic potentials—hard repulsive core, quasilinear behavior in a ground state, and possibility of dissociation. It has become clear recently that this latter feature has crucial effect on convergence of the heat conduction coefficient in thermodynamic limit. We demonstrate that in one-dimensional chain of elastic particles with hard core the heat conduction coefficient also converges, as one could expect. Then we explore effect of dimensionality on the heat transport in this model. For this sake, longitudinal and transversal motions of the particles are allowed in a long narrow channel. With varying width of the channel, we observe sharp transition from "one-dimensional" to "two-dimensional" behavior. Namely, the heat conduction coefficient drops by about order of magnitude for relatively small widening of the channel. This transition is not unique for the considered system. Similar phenomenon of transition to quasi-1D behavior with growth of aspect ratio of the channel is observed also in a gas of densely packed hard (billiard) particles, both for two- and three-dimensional cases. It is the case despite the fact that the character of transition in these two systems is not similar, due to different convergence properties of the heat conductivity. In the billiard model, the divergence pattern of the heat conduction coefficient smoothly changes from logarithmic to power-like law with increase of the length.

  9. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.

    The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.

    This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these

  10. Thermal evolution and sintering of chondritic planetesimals. III. Modelling the heat conductivity of porous chondrite material

    NASA Astrophysics Data System (ADS)

    Henke, Stephan; Gail, Hans-Peter; Trieloff, Mario

    2016-05-01

    Context. The construction of models for the internal constitution and temporal evolution of large planetesimals, which are the parent bodies of chondrites, requires as accurate as possible information on the heat conductivity of the complex mixture of minerals and iron metal found in chondrites. The few empirical data points on the heat conductivity of chondritic material are severely disturbed by impact-induced microcracks modifying the thermal conductivity. Aims: We attempt to evaluate the heat conductivity of chondritic material with theoretical methods. Methods: We derived the average heat conductivity of a multi-component mineral mixture and granular medium from the heat conductivities of its mixture components. We numerically generated random mixtures of solids with chondritic composition and packings of spheres. We solved the heat conduction equation in high spatial resolution for a test cube filled with such matter. We derived the heat conductivity of the mixture from the calculated heat flux through the cube. Results: For H and L chondrites, our results are in accord with empirical thermal conductivity at zero porosity. However, the porosity dependence of heat conductivity of granular material built from chondrules and matrix is at odds with measurements for chondrites, while our calculations are consistent with data for compacted sandstone. The discrepancy is traced back to subsequent shock modification of the currently available meteoritic material resulting from impacts on the parent body over the last 4.5 Ga. This causes a structure of void space made of fractures/cracks, which lowers the thermal conductivity of the medium and acts as a barrier to heat transfer. This structure is different from the structure that probably exists in the pristine material where voids are represented by pores rather than fractures. The results obtained for the heat conductivity of the pristine material are used for calculating models for the evolution of the H chondrite

  11. Conductive heat flows in research drill holes in thermal areas of Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    White, Donald E.

    1978-01-01

    In convection systems with boiling springs, geysers, fumaroles, and other thermal features, the modes of heat flow become increasingly complex as a single liquid phase at depth rises into the near-surface environment where heat flows by convection of liquid and vapor and by conduction in high thermal gradients. This paper is mainly concerned with the changing patterns of conductive heat flow as related to channels of subsurface convective flow and to horizontal distance from spring vents. The primary data consist of temperatures measured in 13 cored drill holes as drilling progressed. Some temperatures plot convincingly on straight-line segments that suggest conductive gradients in rocks of nearly constant thermal conductivity. Temperature gradients and the conductive component of total heat flow nearly always decrease drastically downward; the gradient and heat flow of the lowest depth interval recognized in each hole is commonly only about 10 percent of the highest interval; the changes in gradient at interval boundaries are commonly interpreted as channels of near-boiling water or of cooler meteoric water. Temperature reversals are probably related to inflowing cooler water rather than to transient effects from recent changes. Some temperatures plot on curved segments that probably indicate dispersed convective upflow and boiling of water in ground penetrated by the drill hole. Other similar curved segments are too low in temperature for local boiling and are probably on the margins of hot upflow zones, reflecting conductive cooling of flowing water. The conifers of Yellowstone National Park (mainly lodgepole pine) seem to have normal growth characteristics where near-surface conductive heat flow is below about 200 heat-flow units (1 HFU = 10-6 cal/cm2 = 41.8 mW/m2). Most areas of abnormal "stunted" trees (low ratio of height to base diameter, and low density of spacing) are characterized by conductive heat flows of about 250 to 350 HFU. The critical factor

  12. Estimation of surface heat flux and temperature distributions in a multilayer tissue based on the hyperbolic model of heat conduction.

    PubMed

    Lee, Haw-Long; Chen, Wen-Lih; Chang, Win-Jin; Yang, Yu-Ching

    2015-01-01

    In this study, an inverse algorithm based on the conjugate gradient method and the discrepancy principle is applied to solve the inverse hyperbolic heat conduction problem in estimating the unknown time-dependent surface heat flux in a skin tissue, which is stratified into epidermis, dermis, and subcutaneous layers, from the temperature measurements taken within the medium. Subsequently, the temperature distributions in the tissue can be calculated as well. The concept of finite heat propagation velocity is applied to the modeling of the bioheat transfer problem. The inverse solutions will be justified based on the numerical experiments in which two different heat flux distributions are to be determined. The temperature data obtained from the direct problem are used to simulate the temperature measurements. The influence of measurement errors on the precision of the estimated results is also investigated. Results show that an excellent estimation on the time-dependent surface heat flux can be obtained for the test cases considered in this study.

  13. Effect of viscosity and wall heat conduction on shock attenuation in narrow channels

    NASA Astrophysics Data System (ADS)

    Deshpande, A.; Puranik, B.

    2016-07-01

    In the present work, the effects due to viscosity and wall heat conduction on shock propagation and attenuation in narrow channels are numerically investigated. A two-dimensional viscous shock tube configuration is simulated, and heat conduction in the channel walls is explicitly included. The simulation results indicate that the shock attenuation is significantly less in the case of an adiabatic wall, and the use of an isothermal wall model is adequate to take into account the wall heat conduction. A parametric study is performed to characterize the effects of viscous forces and wall heat conduction on shock attenuation, and the behaviour is explained on the basis of boundary layer formation in the post-shock region. A dimensionless parameter that describes the shock attenuation is correlated with the diaphragm pressure ratio and a dimensionless parameter which is expressed using the characteristic Reynolds number and the dimensionless shock travel.

  14. Transition from near-field thermal radiation to phonon heat conduction at sub-nanometre gaps.

    PubMed

    Chiloyan, Vazrik; Garg, Jivtesh; Esfarjani, Keivan; Chen, Gang

    2015-01-01

    When the separation of two surfaces approaches sub-nanometre scale, the boundary between the two most fundamental heat transfer modes, heat conduction by phonons and radiation by photons, is blurred. Here we develop an atomistic framework based on microscopic Maxwell's equations and lattice dynamics to describe the convergence of these heat transfer modes and the transition from one to the other. For gaps >1 nm, the predicted conductance values are in excellent agreement with the continuum theory of fluctuating electrodynamics. However, for sub-nanometre gaps we find the conductance is enhanced up to four times compared with the continuum approach, while avoiding its prediction of divergent conductance at contact. Furthermore, low-frequency acoustic phonons tunnel through the vacuum gap by coupling to evanescent electric fields, providing additional channels for energy transfer and leading to the observed enhancement. When the two surfaces are in or near contact, acoustic phonons become dominant heat carriers. PMID:25849305

  15. Apollo lunar heat flow experiment revisited: A critical reassessment of the in situ thermal conductivity determination

    NASA Astrophysics Data System (ADS)

    Grott, M.; Knollenberg, J.; Krause, C.

    2010-11-01

    Lunar heat flow was determined in situ during the Apollo 15 and 17 missions, but some uncertainty is connected to the value of the regolith's thermal conductivity, which enters as a linear factor into the heat flow calculation. Different approaches to determine the conductivity yielded discordant results, which led to a downward correction of the obtained heat flow values by 30%-50% subsequent to the publication of the first results. We have reinvestigated likely causes for the observed discrepancies and find that neither poor coupling between the probe and regolith nor axial heat loss can explain the obtained results. Rather, regolith compaction and compression likely caused a local increase of the regolith's thermal conductivity by a factor of 2-3 in a region which extends at least 2-5 cm from the borehole wall. We conclude that the corrected lunar heat flow values, which are based on thermal diffusivity estimates sampling a large portion of undisturbed regolith, represent robust results. Future in situ measurements of regolith thermal conductivity using active heating methods should take care to both minimize regolith disturbance during probe emplacement and maximize heating time to obtain reliable results. We find that for the Apollo measurements, heating times should have exceeded at least 100 h, and ideally 200 h.

  16. Integro-differential method of solving the inverse coefficient heat conduction problem

    NASA Astrophysics Data System (ADS)

    Baranov, V. L.; Zasyad'Ko, A. A.; Frolov, G. A.

    2010-03-01

    On the basis of differential transformations, a stable integro-differential method of solving the inverse heat conduction problem is suggested. The method has been tested on the example of determining the thermal diffusivity on quasi-stationary fusion and heating of a quartz glazed ceramics specimen.

  17. Evaluation of three different radiative transfer equation solvers for combined conduction and radiation heat transfer

    NASA Astrophysics Data System (ADS)

    Sun, Yujia; Zhang, Xiaobing; Howell, John R.

    2016-11-01

    This work investigates the performance of P1 method, FVM and SP3 method for 2D combined conduction and radiation heat transfer problem. Results based on the Monte Carlo method coupled with the energy equation are used as the benchmark solutions. Effects of the conduction-radiation parameter and optical thickness are considered. Performance analyses in term of the accuracy of heat flux and temperature predictions and of computing time are presented and analyzed.

  18. Finite difference solutions of heat conduction problems in multi-layered bodies with complex geometries

    NASA Technical Reports Server (NTRS)

    Masiulaniec, K. C.; Keith, T. G., Jr.; Dewitt, K. J.

    1984-01-01

    A numerical procedure is presented for analyzing a wide variety of heat conduction problems in multilayered bodies having complex geometry. The method is based on a finite difference solution of the heat conduction equation using a body fitted coordinate system transformation. Solution techniques are described for steady and transient problems with and without internal energy generation. Results are found to compare favorably with several well known solutions.

  19. The importance of electron heat conduction in the energy balance of the F-region

    NASA Technical Reports Server (NTRS)

    Hoegy, W. R.; Brace, L. H.

    1978-01-01

    Taking into account heat conduction in the analysis of electron temperature data acquired by the AE-C satellite during the daytime at middle latitudes is shown to bring theoretical electron temperature profiles in good agreement with experimental ones. Middle latitude passes were chosen because in this region the horizontal electron temperature gradient is negligible and the height variation can be approximated by the satellite data. Inclusion of heat conduction is shown to have little effect on low-latitude data.

  20. Analysis of heat conductivity in a 2D hard disk system

    NASA Astrophysics Data System (ADS)

    Del Pozo, J.; Garrido, P. L.

    2009-01-01

    Using numerical simulations, we study the heat conductivity in a 2d Hard Disk system. We find nonlinear temperature profiles for diferent gradients, and use this profiles to obtain the empirical expresion of heat conductivity κ(T,ρ). We compare our results with predictions based on the Enskog theory, finding good agreement even for large gradients. Also we find that Henderson state equation for Hard Disk stands for our system.

  1. Effects of friction and heat conduction on sound propagation in ducts. [analyzing complex aerodynamic noise problems

    NASA Technical Reports Server (NTRS)

    Huerre, P.; Karamcheti, K.

    1976-01-01

    The theory of sound propagation is examined in a viscous, heat-conducting fluid, initially at rest and in a uniform state, and contained in a rigid, impermeable duct with isothermal walls. Topics covered include: (1) theoretical formulation of the small amplitude fluctuating motions of a viscous, heat-conducting and compressible fluid; (2) sound propagation in a two dimensional duct; and (3) perturbation study of the inplane modes.

  2. MRI thermometry: Fast mapping of RF-induced heating along conductive wires.

    PubMed

    Ehses, Philipp; Fidler, Florian; Nordbeck, Peter; Pracht, Eberhard D; Warmuth, Marcus; Jakob, Peter M; Bauer, Wolfgang R

    2008-08-01

    Conductive implants are in most cases a strict contraindication for MRI examinations, as RF pulses applied during the MRI measurement can lead to severe heating of the surrounding tissue. Understanding and mapping of these heating effects is therefore crucial for determining the circumstances under which patient examinations are safe. The use of fluoroptic probes is the standard procedure for monitoring these heating effects. However, the observed temperature increase is highly dependent on the positioning of such a probe, as it can only determine the temperature locally. Temperature mapping with MRI after RF heating can be used, but cooling effects during imaging lead to a significant underestimation of the heating effect. In this work, an MRI thermometry method was combined with an MRI heating sequence, allowing for temperature mapping during RF heating. This technique may provide new opportunities for implant safety investigations.

  3. Effects of anisotropic conduction and heat pipe interaction on minimum mass space radiators

    NASA Technical Reports Server (NTRS)

    Baker, Karl W.; Lund, Kurt O.

    1991-01-01

    Equations are formulated for the two dimensional, anisotropic conduction of heat in space radiator fins. The transverse temperature field was obtained by the integral method, and the axial field by numerical integration. A shape factor, defined for the axial boundary condition, simplifies the analysis and renders the results applicable to general heat pipe/conduction fin interface designs. The thermal results are summarized in terms of the fin efficiency, a radiation/axial conductance number, and a transverse conductance surface Biot number. These relations, together with those for mass distribution between fins and heat pipes, were used in predicting the minimum radiator mass for fixed thermal properties and fin efficiency. This mass is found to decrease monotonically with increasing fin conductivity. Sensitivities of the minimum mass designs to the problem parameters are determined.

  4. Microwave absorption in powders of small conducting particles for heating applications.

    PubMed

    Porch, Adrian; Slocombe, Daniel; Edwards, Peter P

    2013-02-28

    In microwave chemistry there is a common misconception that small, highly conducting particles heat profusely when placed in a large microwave electric field. However, this is not the case; with the simple physical explanation that the electric field (which drives the heating) within a highly conducting particle is highly screened. Instead, it is the magnetic absorption associated with induction that accounts for the large experimental heating rates observed for small metal particles. We present simple principles for the effective heating of particles in microwave fields from calculations of electric and magnetic dipole absorptions for a range of practical values of particle size and conductivity. For highly conducting particles, magnetic absorption dominates electric absorption over a wide range of particle radii, with an optimum absorption set by the ratio of mean particle radius a to the skin depth δ (specifically, by the condition a = 2.41δ). This means that for particles of any conductivity, optimized magnetic absorption (and hence microwave heating by magnetic induction) can be achieved by simple selection of the mean particle size. For weakly conducting samples, electric dipole absorption dominates, and is maximized when the conductivity is approximately σ ≈ 3ωε(0) ≈ 0.4 S m(-1), independent of particle radius. Therefore, although electric dipole heating can be as effective as magnetic dipole heating for a powder sample of the same volume, it is harder to obtain optimized conditions at a fixed frequency of microwave field. The absorption of sub-micron particles is ineffective in both magnetic and electric fields. However, if the particles are magnetic, with a lossy part to their complex permeability, then magnetic dipole losses are dramatically enhanced compared to their values for non-magnetic particles. An interesting application of this is the use of very small magnetic particles for the selective microwave heating of biological samples.

  5. About Influence of Gravity on Heat Conductivity Process of the Planets

    NASA Astrophysics Data System (ADS)

    Gladkov, S. O.; Yadav, A.; Ray, Saibal; Rahaman, F.

    2016-03-01

    In the present study it is shown that the interaction of a quasi-static gravitational wave through density fluctuations give rise to a heat conductivity coefficient and hence rise in temperature. This fact is a very important characteristics needed to establish a heat equilibrium process of such massive body as the Earth and other Planets. To carry out this exercise, general mechanism has been provided, which makes a bridge between classical physics and quantum theory. The specific dependence of heat conductivity coefficient in wide region has also been calculated.

  6. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  7. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  8. SB3D User Manual, Santa Barbara 3D Radiative Transfer Model

    SciTech Connect

    O'Hirok, William

    1999-01-01

    SB3D is a three-dimensional atmospheric and oceanic radiative transfer model for the Solar spectrum. The microphysics employed in the model are the same as used in the model SBDART. It is assumed that the user of SB3D is familiar with SBDART and IDL. SB3D differs from SBDART in that computations are conducted on media in three-dimensions rather than a single column (i.e. plane-parallel), and a stochastic method (Monte Carlo) is employed instead of a numerical approach (Discrete Ordinates) for estimating a solution to the radiative transfer equation. Because of these two differences between SB3D and SBDART, the input and running of SB3D is more unwieldy and requires compromises between model performance and computational expense. Hence, there is no one correct method for running the model and the user must develop a sense to the proper input and configuration of the model.

  9. Two-phase numerical model for thermal conductivity and convective heat transfer in nanofluids.

    PubMed

    Kondaraju, Sasidhar; Lee, Joon Sang

    2011-03-21

    Due to the numerous applications of nanofluids, investigating and understanding of thermophysical properties of nanofluids has currently become one of the core issues. Although numerous theoretical and numerical models have been developed by previous researchers to understand the mechanism of enhanced heat transfer in nanofluids; to the best of our knowledge these models were limited to the study of either thermal conductivity or convective heat transfer of nanofluids. We have developed a numerical model which can estimate the enhancement in both the thermal conductivity and convective heat transfer in nanofluids. It also aids in understanding the mechanism of heat transfer enhancement. The study reveals that the nanoparticle dispersion in fluid medium and nanoparticle heat transport phenomenon are equally important in enhancement of thermal conductivity. However, the enhancement in convective heat transfer was caused mainly due to the nanoparticle heat transport mechanism. Ability of this model to be able to understand the mechanism of convective heat transfer enhancement distinguishes the model from rest of the available numerical models.

  10. Variable thermal properties and thermal relaxation time in hyperbolic heat conduction

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Mcrae, D. Scott

    1989-01-01

    Numerical solutions were obtained for a finite slab with an applied surface heat flux at one boundary using both the hyperbolic (MacCormack's method) and parabolic (Crank-Nicolson method) heat conduction equations. The effects on the temperature distributions of varying density, specific heat, and thermal relaxation time were calculated. Each of these properties had an effect on the thermal front velocity (in the hyperbolic solution) as well as the temperatures in the medium. In the hyperbolic solutions, as the density or specific heat decreased with temperature, both the temperatures within the medium and the thermal front velocity increased. The value taken for the thermal relaxation time was found to determine the 'hyperbolicity' of the heat conduction model. The use of a time dependent relaxation time allowed for solutions where the thermal energy propagated as a high temperature wave initially, but approached a diffusion process more rapidly than was possible with a constant large relaxation time.

  11. Thermal conductivity of cementitious grouts for geothermal heat pumps. Progress report FY 1997

    SciTech Connect

    Allan, M.L.

    1997-11-01

    Grout is used to seal the annulus between the borehole and heat exchanger loops in vertical geothermal (ground coupled, ground source, GeoExchange) heat pump systems. The grout provides a heat transfer medium between the heat exchanger and surrounding formation, controls groundwater movement and prevents contamination of water supply. Enhanced heat pump coefficient of performance (COP) and reduced up-front loop installation costs can be achieved through optimization of the grout thermal conductivity. The objective of the work reported was to characterize thermal conductivity and other pertinent properties of conventional and filled cementitious grouts. Cost analysis and calculations of the reduction in heat exchanger length that could be achieved with such grouts were performed by the University of Alabama. Two strategies to enhance the thermal conductivity of cementitious grouts were used simultaneously. The first of these was to incorporate high thermal conductivity filler in the grout formulations. Based on previous tests (Allan and Kavanaugh, in preparation), silica sand was selected as a suitable filler. The second strategy was to reduce the water content of the grout mix. By lowering the water/cement ratio, the porosity of the hardened grout is decreased. This results in higher thermal conductivity. Lowering the water/cement ratio also improves such properties as permeability, strength, and durability. The addition of a liquid superplasticizer (high range water reducer) to the grout mixes enabled reduction of water/cement ratio while retaining pumpability. Superplasticizers are commonly used in the concrete and grouting industry to improve rheological properties.

  12. Conductivity heating a subterranean oil shale to create permeability and subsequently produce oil

    SciTech Connect

    Van Meurs, P.; DeRouffignac, E.P.; Vinegar, H.J.; Lucid, M.F.

    1989-12-12

    This patent describes an improvement in a process in which oil is produced from a subterranean oil shale deposit by extending at least one each of heat-injecting and fluid-producing wells into the deposit, establishing a heat-conductive fluid-impermeable barrier between the interior of each heat-injecting well and the adjacent deposit, and then heating the interior of each heat-injecting well at a temperature sufficient to conductively heat oil shale kerogen and cause pyrolysis products to form fractures within the oil shale deposit through which the pyrolysis products are displaced into at least one production well. The improvement is for enhancing the uniformity of the heat fronts moving through the oil shale deposit. Also described is a process for exploiting a target oil shale interval, by progressively expanding a heated treatment zone band from about a geometric center of the target oil shale interval outward, such that the formation or extension of vertical fractures from the heated treatment zone band to the periphery of the target oil shale interval is minimized.

  13. Plate Fin Heat Exchanger Model with Axial Conduction and Variable Properties

    SciTech Connect

    Hansen, B.J.; White, M.J.; Klebaner, A.; /Fermilab

    2011-06-10

    Future superconducting radio frequency (SRF) cavities, as part of Project X at Fermilab, will be cooled to superfluid helium temperatures by a cryogenic distribution system supplying cold supercritical helium. To reduce vapor fraction during the final Joule-Thomson (J-T) expansion into the superfluid helium cooling bath, counter-flow, plate-fin heat exchangers will be utilized. Due to their compact size and ease of fabrication, plate-fin heat exchangers are an effective option. However, the design of compact and high-effectiveness cryogenic heat exchangers operating at liquid helium temperatures requires consideration of axial heat conduction along the direction of flow, in addition to variable fluid properties. Here we present a numerical model that includes the effects of axial conduction and variable properties for a plate fin heat exchanger. The model is used to guide design decisions on heat exchanger material choice and geometry. In addition, the J-T expansion process is modeled with the heat exchanger to analyze the effect of heat load and cryogenic supply parameters. A numerical model that includes the effects of axial conduction and variable properties for a plate fin heat exchanger was developed and the effect of various design parameters on overall heat exchanger size was investigated. It was found that highly conductive metals should be avoided in the design of compact JT heat exchangers. For the geometry considered, the optimal conductivity is around 3.5 W/m-K and can range from 0.3-10 W/m-K without a large loss in performance. The model was implemented with an isenthalpic expansion process. Increasing the cold side inlet temperature from 2K to 2.2 K decreased the liquid fraction from 0.856 to 0.839 which corresponds to a 0.12 g/s increase in supercritical helium supply needed to maintain liquid level in the cooling bath. Lastly, it was found that the effectiveness increased when the heat load was below the design value. Therefore, the heat exchanger

  14. Radiative heat exchange of a meteor body in the approximation of radiant heat conduction

    SciTech Connect

    Pilyugin, N.N.; Chernova, T.A.

    1986-07-01

    The problem of the thermal and dynamic destruction of large meteor bodies moving in planetary atmospheres is fundamental for the clarification of optical observations and anomalous phenomena in the atmosphere, the determination of the physicochemical properties of meteoroids, and the explanation of the fall of remnants of large meteorites. Therefore, it is important to calculate the coefficient of radiant heat exchange (which is the determining factor under these conditions) for large meteor bodies as they move with hypersonic velocities in an atmosphere. The solution of this problem enables one to find the ablation of a meteorite during its aerodynamic heating and to determine the initial conditions for the solution of problems of the breakup of large bodies and their subsequent motion and ablation. Hypersonic flow of an inviscid gas stream over an axisymmetric blunt body is analyzed with allowance for radiative transfer in a thick-thin approximation. The gas-dynamic problem of the flow of an optically thick gas over a large body is solved by the method of asymptotic joined expansions, using a hypersonic approximation and local self-similarity. An equation is obtained for the coefficient of radiant heat exchange and the peculiarities of such heat exchange for meteor bodies of large size are noted.

  15. An analysis of the vapor flow and the heat conduction through the liquid-wick and pipe wall in a heat pipe with single or multiple heat sources

    NASA Technical Reports Server (NTRS)

    Chen, Ming-Ming; Faghri, Amir

    1990-01-01

    A numerical analysis is presented for the overall performance of heat pipes with single or multiple heat sources. The analysis includes the heat conduction in the wall and liquid-wick regions as well as the compressibility effect of the vapor inside the heat pipe. The two-dimensional elliptic governing equations in conjunction with the thermodynamic equilibrium relation and appropriate boundary conditions are solved numerically. The solutions are in agreement with existing experimental data for the vapor and wall temperatures at both low and high operating temperatures.

  16. Local temperature redistribution and structural transition during joule-heating-driven conductance switching in VO2.

    PubMed

    Kumar, Suhas; Pickett, Matthew D; Strachan, John Paul; Gibson, Gary; Nishi, Yoshio; Williams, R Stanley

    2013-11-13

    Joule-heating induced conductance-switching is studied in VO2 , a Mott insulator. Complementary in situ techniques including optical characterization, blackbody microscopy, scanning transmission X-ray microscopy (STXM) and numerical simulations are used. Abrupt redistribution in local temperature is shown to occur upon conductance-switching along with a structural phase transition, at the same current.

  17. A Multi-Dimensional Cognitive Analysis of Undergraduate Physics Students' Understanding of Heat Conduction

    ERIC Educational Resources Information Center

    Chiou, Guo-Li; Anderson, O. Roger

    2010-01-01

    This study proposes a multi-dimensional approach to investigate, represent, and categorize students' in-depth understanding of complex physics concepts. Clinical interviews were conducted with 30 undergraduate physics students to probe their understanding of heat conduction. Based on the data analysis, six aspects of the participants' responses…

  18. Preliminary study on improvement of cementitious grout thermal conductivity for geothermal heat pump applications

    SciTech Connect

    Allan, M.L.

    1996-06-01

    Preliminary studies were preformed to determine whether thermal conductivity of cementitious grouts used to backfill heat exchanger loops for geothermal heat pumps could be improved, thus improving efficiency. Grouts containing selected additives were compares with conventional bentonite and cement grouts. Significant enhancement of grout alumina grit, steel fibers, and silicon carbide increased the thermal conductivity when compared to unfilled, high solids bentonite grouts and conventional cement grouts. Furthermore, the developed grouts retained high thermal conductivity in the dry state, where as conventional bentonite and cement grouts tend to act as insulators if moisture is lost. The cementitious grouts studied can be mixed and placed using conventional grouting equipment.

  19. Scoops3D: software to analyze 3D slope stability throughout a digital landscape

    USGS Publications Warehouse

    Reid, Mark E.; Christian, Sarah B.; Brien, Dianne L.; Henderson, Scott T.

    2015-01-01

    The computer program, Scoops3D, evaluates slope stability throughout a digital landscape represented by a digital elevation model (DEM). The program uses a three-dimensional (3D) method of columns approach to assess the stability of many (typically millions) potential landslides within a user-defined size range. For each potential landslide (or failure), Scoops3D assesses the stability of a rotational, spherical slip surface encompassing many DEM cells using a 3D version of either Bishop’s simplified method or the Ordinary (Fellenius) method of limit-equilibrium analysis. Scoops3D has several options for the user to systematically and efficiently search throughout an entire DEM, thereby incorporating the effects of complex surface topography. In a thorough search, each DEM cell is included in multiple potential failures, and Scoops3D records the lowest stability (factor of safety) for each DEM cell, as well as the size (volume or area) associated with each of these potential landslides. It also determines the least-stable potential failure for the entire DEM. The user has a variety of options for building a 3D domain, including layers or full 3D distributions of strength and pore-water pressures, simplistic earthquake loading, and unsaturated suction conditions. Results from Scoops3D can be readily incorporated into a geographic information system (GIS) or other visualization software. This manual includes information on the theoretical basis for the slope-stability analysis, requirements for constructing and searching a 3D domain, a detailed operational guide (including step-by-step instructions for using the graphical user interface [GUI] software, Scoops3D-i) and input/output file specifications, practical considerations for conducting an analysis, results of verification tests, and multiple examples illustrating the capabilities of Scoops3D. Easy-to-use software installation packages are available for the Windows or Macintosh operating systems; these packages

  20. Numerical simulation on the thermal response of heat-conducting asphalt pavements

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Wu, Shaopeng; Chen, Mingyu; Zhang, Yuan

    2010-05-01

    Using asphalt pavements as a solar collector is a subject of current interest all over the world because the sun provides a cheap and abundant source of clean and renewable energy, which can be captured by black asphalt pavements. A heat-conducting device is designed to absorb energy from the sun. In order to validate what parameters are critical in the asphalt collector, a finite element model is developed to predict the thermal response of the heat-conducting device compared to the conventional asphalt mixture. Some factors that may affect the asphalt pavement collector are considered, including the coefficient of heat conductivity of the asphalt pavement, the distance between pipes with the medium, water, and the pipe's diameter. Ultimately, the finite element model can provide pavement engineers with an efficient computational tool that can be a guide to the conductive asphalt solar collector's experiment in the laboratory.

  1. Market study: 3-D eyetracker

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  2. 3D World Building System

    ScienceCinema

    None

    2016-07-12

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  3. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  4. LLNL-Earth3D

    SciTech Connect

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  5. [3-D ultrasound in gastroenterology].

    PubMed

    Zoller, W G; Liess, H

    1994-06-01

    Three-dimensional (3D) sonography represents a development of noninvasive diagnostic imaging by real-time two-dimensional (2D) sonography. The use of transparent rotating scans, comparable to a block of glass, generates a 3D effect. The objective of the present study was to optimate 3D presentation of abdominal findings. Additional investigations were made with a new volumetric program to determine the volume of selected findings of the liver. The results were compared with the estimated volumes of 2D sonography and 2D computer tomography (CT). For the processing of 3D images, typical parameter constellations were found for the different findings, which facilitated processing of 3D images. In more than 75% of the cases examined we found an optimal 3D presentation of sonographic findings with respect to the evaluation criteria developed by us for the 3D imaging of processed data. Great differences were found for the estimated volumes of the findings of the liver concerning the three different techniques applied. 3D ultrasound represents a valuable method to judge morphological appearance in abdominal findings. The possibility of volumetric measurements enlarges its potential diagnostic significance. Further clinical investigations are necessary to find out if definite differentiation between benign and malign findings is possible.

  6. Documentation and verification of STRES3D, Version 4.0; Yucca Mountain Site Characterization Project

    SciTech Connect

    Asgian, M.I.; St. John, C.M.; Hardy, M.P.; Goodrich, R.R.

    1991-12-01

    STRES3D is a thermomechanical analysis code for predicting transient temperatures, stresses and displacements in an infinite and semi-infinite, conducting, homogeneous, elastic medium. The heat generated at the sources can be constant or decay exponentially with time. Superposition is used to integrate the effect of heat sources distributed in space and time to simulate the thermomechanical effect of placement of heat generating nuclear waste canisters in an underground repository. Heat sources can be defined by point, lines or plates with numerical integration of the kernal point source solution used to develop the line and plate sources. STRES3D is programmed using FORTRAN77 and is suitable for use on micro or larger computer systems.

  7. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  8. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery. PMID:26657435

  9. PLOT3D user's manual

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  10. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  11. Experimental study of heat conductivity of n-heptane-n-octane-isooctane liquid ternary mixtures at high pressure

    SciTech Connect

    Naziev, D.Ya.

    1994-03-20

    Heat conductivity of liquid ternary mixtures of various compositions at various pressures and temperatures was experimentally studied. Dependence of heat conductivities of ternary mixtures on concentration of components was established. An equation linking the heat conductivities of ternary mixtures through those of pure components and appropriate binary mixtures was proposed.

  12. Innovations for reducing conduction heat losses from salt-gradient solar ponds

    SciTech Connect

    Lowrey, D.P. III

    1985-01-01

    A recent publication suggested using a storage zone (SZ) full of opaque water instead of a conventional lower convecting zone. This opaque SZ would be warmer on its top than bottom, and therefore thermally stratified and nonconvecting. Since the conductivity of water is less than that of many types of ground, this opaque zone would act like an added layer of insulation and reduce heat losses to the ground. This strategy can be improved by inducing a slow, upward flow through the opaque SZ. This flow can be produced by decanting warmed water near the top of this opaque SZ, and returning the same water to the bottom of the SZ after extracting heat. The flow will convect heat upward, and therefore reduce downward heat losses. A numerical analysis of this system under typical circumstances predicts 20-60% higher heat extraction rates for a given extraction temperature. Downward heat losses could be virtually eliminated in some cases. Similarly, heat losses up through the pond's surface could be reduced by inducing downward convection through the nonconvecting (NCZ) zone. However, the downward velocities needed to reduce these heat losses would soon sweep the essential salinity gradient to the pond's floor. Fortunately, the desired convection can be produced indirectly. This involves moving the NCZ horizontally across a heat exchanger in which a second fluid absorbs heat and then convects downward.

  13. Electrical conductivity of microwave heated polyaniline nanotubes and possible mechanism of microwave absorption by materials.

    PubMed

    Murai, Takahiro; Fukasawa, Ryo; Muraoka, Tohru; Takauchi, Hiroyuki; Gotoh, Yasuo; Takizawa, Tokihiro; Matsuse, Takehiro

    2009-01-01

    In the course of experiments to perform deprotonation and carbonization of doped polyaniline (PANI) nanotubes (NTs) by irradiating directly 2.45 GHz microwave (MW) in our microwave heating system (MWHS), we have discovered that the PANI-NTs self heat by absorbing the MW but the temperature of the PANI-NTs stops rising around 300 degrees C in spite of the heightened MW power Furthermore, we have found that the MW irradiated PANI-NTs have transferred from electrical conductor to insulator depending on the temperature of the PANI-NTs. By measuring electron spin resonance (ESR) spectra of the MW heated PANI-NTs, the existence of the unpaired electrons is shown to have a strong correlation between the degree of MW absorption and the transition in the electrical conductivities. In order to deprotonate and carbonize further the PANI-NTs, we have performed heat treatment for the PANI-NTs up to a temperature (T(HT)) of about 1200 degrees C in the same MWHS using carbon fiber which self heats by absorbing MW. The chemical transformations in the PANI-NTs induced by the heat treatments are discussed by measuring the X-ray photoelectron spectroscopy (XPS) spectra. Finally, the temperature dependence of electrical conductivities of the PANI-NTs are measured in order to investigate the mechanism of electrical conduction of the heat treated PANI-NTs. PMID:21384721

  14. Parameter estimation in heat conduction using a two-dimensional inverse analysis

    NASA Astrophysics Data System (ADS)

    Mohebbi, Farzad; Sellier, Mathieu

    2016-07-01

    This article is concerned with a two-dimensional inverse steady-state heat conduction problem. The aim of this study is to estimate the thermal conductivity, the heat transfer coefficient, and the heat flux in irregular bodies (both separately and simultaneously) using a two-dimensional inverse analysis. The numerical procedure consists of an elliptic grid generation technique to generate a mesh over the irregular body and solve for the heat conduction equation. This article describes a novel sensitivity analysis scheme to compute the sensitivity of the temperatures to variation of the thermal conductivity, the heat transfer coefficient, and the heat flux. This sensitivity analysis scheme allows for the solution of inverse problem without requiring solution of adjoint equation even for a large number of unknown variables. The conjugate gradient method (CGM) is used to minimize the difference between the computed temperature on part of the boundary and the simulated measured temperature distribution. The obtained results reveal that the proposed algorithm is very accurate and efficient.

  15. The empirical evaluation of thermal conduction coefficient of some liquid composite heat insulating materials

    NASA Astrophysics Data System (ADS)

    Anisimov, M. V.; Rekunov, V. S.; Babuta, M. N.; Bach Lien, Nguyen Thi Hong

    2016-02-01

    We experimentally determined the coefficients of thermal conductivity of some ultra thin liquid composite heat insulating coatings, for sample #1 λ = 0.086 W/(m·°C), for sample #2 λ = 0.091 W/(m·°C). We performed the measurement error calculation. The actual thermal conduction coefficient of the studied samples was higher than the declared one. The manufactures of liquid coatings might have used some "ideal" conditions when defining heat conductivity in the laboratory or the coefficient was obtained by means of theoretical solution of heat conduction problem in liquid composite insulating media. However, liquid insulating coatings are of great interest to builders, because they allow to warm objects of complex geometric shapes (valve chambers, complex assemblies, etc.), which makes them virtually irreplaceable. The proper accounting of heating qualities of paints will allow to avoid heat loss increase above the specified limits in insulated pipes with heat transfer materials or building structures, as well as protect them from possible thawing in the period of subzero weather.

  16. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  17. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  18. Evaluation of vision training using 3D play game

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Ho; Kwon, Soon-Chul; Son, Kwang-Chul; Lee, Seung-Hyun

    2015-03-01

    The present study aimed to examine the effect of the vision training, which is a benefit of watching 3D video images (3D video shooting game in this study), focusing on its accommodative facility and vergence facility. Both facilities, which are the scales used to measure human visual performance, are very important factors for man in leading comfortable and easy life. This study was conducted on 30 participants in their 20s through 30s (19 males and 11 females at 24.53 ± 2.94 years), who can watch 3D video images and play 3D game. Their accommodative and vergence facility were measured before and after they watched 2D and 3D game. It turned out that their accommodative facility improved after they played both 2D and 3D games and more improved right after they played 3D game than 2D game. Likewise, their vergence facility was proved to improve after they played both 2D and 3D games and more improved soon after they played 3D game than 2D game. In addition, it was demonstrated that their accommodative facility improved to greater extent than their vergence facility. While studies have been so far conducted on the adverse effects of 3D contents, from the perspective of human factor, on the imbalance of visual accommodation and convergence, the present study is expected to broaden the applicable scope of 3D contents by utilizing the visual benefit of 3D contents for vision training.

  19. Stretch diffusion and heat conduction in one-dimensional nonlinear lattices.

    PubMed

    Gao, Zhibin; Li, Nianbei; Li, Baowen

    2016-03-01

    For heat conduction in one-dimensional (1D) nonlinear Hamiltonian lattices, it has been known that conserved quantities play an important role in determining the actual heat conduction behavior. In closed or microcanonical Hamiltonian systems, the total energy and stretch are always conserved. Depending on the existence of external on-site potential, the total momentum can be conserved or not. All the momentum-conserving lattices have anomalous heat conduction except the 1D coupled rotator lattice. It was recently claimed that "whenever stretch (momentum) is not conserved in a 1D model, the momentum (stretch) and energy fields exhibit normal diffusion." The stretch in a coupled rotator lattice was also argued to be nonconserved due to the requirement of a finite partition function, which enables the coupled rotator lattice to fulfill this claim. In this work, we will systematically investigate stretch diffusion and heat conduction in terms of energy diffusion for typical 1D nonlinear lattices. Contrary to what was claimed, no clear connection between conserved quantities and heat conduction can be established. The actual situation might be more complicated than what was proposed. PMID:27078315

  20. Thermal conductivity from hierarchical heat sinks using carbon nanotubes and graphene nanosheets

    NASA Astrophysics Data System (ADS)

    Hsieh, Chien-Te; Lee, Cheng-En; Chen, Yu-Fu; Chang, Jeng-Kuei; Teng, Hsi-Sheng

    2015-11-01

    The in-plane (kip) and through-plane (ktp) thermal conductivities of heat sinks using carbon nanotubes (CNTs), graphene nanosheets (GNs), and CNT/GN composites are extracted from two experimental setups within the 323-373 K temperature range. Hierarchical three-dimensional CNT/GN frameworks display higher kip and ktp values, as compared to the CNT- and GN-based heat sinks. The kip and ktp values of the CNT/GN-based heat sink reach as high as 1991 and 76 W m-1 K-1 at 323 K, respectively. This improved thermal conductivity is attributed to the fact that the hierarchical heat sink offers a stereo thermal conductive network that combines point, line, and plane contact, leading to better heat transport. Furthermore, the compression treatment provided an efficient route to increase both kip and ktp values. This result reveals that the hierarchical carbon structures become denser, inducing more thermal conductive area and less thermal resistivity, i.e., a reduced possibility of phonon-boundary scattering. The correlation between thermal and electrical conductivity (ε) can be well described by two empirical equations: kip = 567 ln(ε) + 1120 and ktp = 20.6 ln(ε) + 36.1. The experimental results are obtained within the temperature range of 323-373 K, suitably complementing the thermal management of chips for consumer electronics.

  1. Thermal conductivity from hierarchical heat sinks using carbon nanotubes and graphene nanosheets.

    PubMed

    Hsieh, Chien-Te; Lee, Cheng-En; Chen, Yu-Fu; Chang, Jeng-Kuei; Teng, Hsi-sheng

    2015-11-28

    The in-plane (kip) and through-plane (ktp) thermal conductivities of heat sinks using carbon nanotubes (CNTs), graphene nanosheets (GNs), and CNT/GN composites are extracted from two experimental setups within the 323-373 K temperature range. Hierarchical three-dimensional CNT/GN frameworks display higher kip and ktp values, as compared to the CNT- and GN-based heat sinks. The kip and ktp values of the CNT/GN-based heat sink reach as high as 1991 and 76 W m(-1) K(-1) at 323 K, respectively. This improved thermal conductivity is attributed to the fact that the hierarchical heat sink offers a stereo thermal conductive network that combines point, line, and plane contact, leading to better heat transport. Furthermore, the compression treatment provided an efficient route to increase both kip and ktp values. This result reveals that the hierarchical carbon structures become denser, inducing more thermal conductive area and less thermal resistivity, i.e., a reduced possibility of phonon-boundary scattering. The correlation between thermal and electrical conductivity (ε) can be well described by two empirical equations: kip = 567 ln(ε) + 1120 and ktp = 20.6 ln(ε) + 36.1. The experimental results are obtained within the temperature range of 323-373 K, suitably complementing the thermal management of chips for consumer electronics. PMID:26498343

  2. Empirical evaluation of diving wet suit material heat transfer and thermal conductivity

    SciTech Connect

    West, P.B.

    1993-10-01

    This wet suit material testing program provides a quantitative thermal conductivity and heat transfer analysis, and comparison of various materials used in skin diving and SCUBA diving. Thermal resistance represents the primary subject examined, but due to compressibility of the baseline materials and its effect on heat transfer, this program also examines compression at simulated depth. This article reports the empirical heat transfer coefficients for both thermal conductivity and convection. Due to the limitations of the test apparatus, this analysis must restrict the convection evaluation to an approximately 20-cm-height, free-convection model. As a consequence, this model best simulates the overall heat transfer coefficient of a diver hovering in a horizontal position. This program also includes evaluations of some nonstandard materials in an effort to identify alternative wet suit materials.

  3. Heat diode effect and negative differential thermal conductance across nanoscale metal-dielectric interfaces

    NASA Astrophysics Data System (ADS)

    Ren, Jie; Zhu, Jian-Xin

    2013-06-01

    Controlling heat flow by phononic nanodevices has received significant attention recently because of its fundamental and practical implications. Elementary phononic devices such as thermal rectifiers, transistors, and logic gates are essentially based on two intriguing properties: heat diode effect and negative differential thermal conductance. However, little is known about these heat transfer properties across metal-dielectric interfaces, especially at nanoscale. Here we analytically resolve the microscopic mechanism of the nonequilibrium nanoscale energy transfer across metal-dielectric interfaces, where the inelastic electron-phonon scattering directly assists the energy exchange. We demonstrate the emergence of heat diode effect and negative differential thermal conductance in nanoscale interfaces and explain why these novel thermal properties are usually absent in bulk metal-dielectric interfaces. These results will generate exciting prospects for the nanoscale interfacial energy transfer, which should have important implications in designing hybrid circuits for efficient thermal control and open up potential applications in thermal energy harvesting with low-dimensional nanodevices.

  4. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  5. Electrical conductivity and physical properties of surimi-potato starch under ohmic heating.

    PubMed

    Pongviratchai, P; Park, J W

    2007-11-01

    Electrical conductivities of Alaska pollock surimi mixed with native and pregelled potato starch at different concentrations (0%, 3%, and 9%) were measured at different moisture contents (75% and 81%) using a multifrequency ohmic heating system. Surimi-starch paste was tested up to 80 degrees C at frequencies from 55 Hz to 20 KHz and at alternating currents of 4.3 and 15.5 V/cm voltage gradient. Electrical conductivity increased when moisture content, applied frequency, and applied voltage increased, but decreased when starch concentration increased. Electrical conductivity was correlated linearly with temperature (R(2) approximately 0.99). Electrical conductivity pattern (magnitude) changed when temperature increased, which was clearly seen after 55 degrees C in the native potato starch system, especially at high concentration. This confirms that starch gelatinization that occurred during heating affects the electrical conductivity. Whiteness and texture properties decreased with an increase of starch concentration and a decrease of moisture content.

  6. Phonon Heat Conduction In Nanostructures: Ballistic, Coherent, Localized, Hydrodynamic, and Divergent Modes

    NASA Astrophysics Data System (ADS)

    Chen, Gang

    In this talk, we will discuss different modes of heat conduction in nanostructures. Ballistic transport happens when phonon mean free path is longer than the characteristic size of the structure. We will discuss how we compute phonon mean free path distributions based on first-principles and measure the distributions with optical pump-probe techniques by exploring ballistic phonon transport processes. In superlattice structures, ballistic phonon transport across the whole thickness of the superlattices implies phase coherence. We observed this coherent transport in GaAs/AlAs superlattices with fixed periodic thickness and varying number of periods. Simulations show that although high frequency phonons are scattering by roughness, remaining long wavelength phonons maintain their phase and traverse the superlattices ballistically. Accessing the coherent heat conduction regime opens a new venue for phonon engineering. We show further that phonon heat conduction localization happens in GaAs/AlAs superlattice by placing ErAs nanodots at interfaces. This heat-conduction localization phenomenon is confirmed by nonequilibrium atomic Green's function simulation. These ballistic and localization effects can be exploited to improve thermoelectric energy conversion materials via reducing their thermal conductivity. In another opposite, we will discuss phonon hydrodynamic transport mode in graphene via first-principle simulations. In this mode, phonons drift with an average velocity under a temperature gradient, similar to fluid flow in a pipe. Conditions for observing such phonon hydrodynamic modes will be discussed. Finally, we will talk about the one-dimensional nature of heat conduction in polymer chains. Such 1D nature can lead to divergent thermal conductivity. Inspired by simulation, we have experimentally demonstrated high thermal conductivity in ultra-drawn polyethylene nanofibers and sheets. Work supported by DOE Office of Basic Energy Sciences under Award Number: DE

  7. Transient modeling/analysis of hyperbolic heat conduction problems employing mixed implicit-explicit alpha method

    NASA Technical Reports Server (NTRS)

    Tamma, Kumar K.; D'Costa, Joseph F.

    1991-01-01

    This paper describes the evaluation of mixed implicit-explicit finite element formulations for hyperbolic heat conduction problems involving non-Fourier effects. In particular, mixed implicit-explicit formulations employing the alpha method proposed by Hughes et al. (1987, 1990) are described for the numerical simulation of hyperbolic heat conduction models, which involves time-dependent relaxation effects. Existing analytical approaches for modeling/analysis of such models involve complex mathematical formulations for obtaining closed-form solutions, while in certain numerical formulations the difficulties include severe oscillatory solution behavior (which often disguises the true response) in the vicinity of the thermal disturbances, which propagate with finite velocities. In view of these factors, the alpha method is evaluated to assess the control of the amount of numerical dissipation for predicting the transient propagating thermal disturbances. Numerical test models are presented, and pertinent conclusions are drawn for the mixed-time integration simulation of hyperbolic heat conduction models involving non-Fourier effects.

  8. Flight data analysis and further development of variable-conductance heat pipes. [for aircraft control

    NASA Technical Reports Server (NTRS)

    Enginer, J. E.; Luedke, E. E.; Wanous, D. J.

    1976-01-01

    Continuing efforts in large gains in heat-pipe performance are reported. It was found that gas-controlled variable-conductance heat pipes can perform reliably for long periods in space and effectively provide temperature stabilization for spacecraft electronics. A solution was formulated that allows the control gas to vent through arterial heat-pipe walls, thus eliminating the problem of arterial failure under load, due to trace impurities of noncondensable gas trapped in an arterial bubble during priming. This solution functions well in zero gravity. Another solution was found that allows priming at a much lower fluid charge. A heat pipe with high capacity, with close temperature control of the heat source and independent of large variations in sink temperature was fabricated.

  9. Evaluation of liquid behavior in a Variable Conductance Heat Pipe by neutron radiography

    NASA Astrophysics Data System (ADS)

    Sugimoto, K.; Asano, H.; Murakawa, H.; Takenaka, N.; Nagayasu, T.; Ipposhi, S.

    2011-09-01

    A Variable Conductance Heat Pipe (VCHP) is used as a cooling device for electrical equipments. The condensation area is passively controlled by the non-condensable gas volume in the VCHP depending on the heat load. The VCHP has often a bent pipe between the evaporation and condensation area. The heat pipe performance depends much on the bent pipe shape and configuration because a liquid plug is formed in the bent pipe and disturbs the refrigerant circulation. However, the mechanism has not been clarified well. The neutron radiography system at the JRR-3 in Japan Atomic Energy Agency (JAEA) was used to visualize the refrigerant behavior in the VCHP. Effects of the thin plate inserted in the pipe, refrigerant filling ratios and heat pipe configuration were examined on the heat pipe performance. The liquid plug was formed at the bend and caused to decrease the performance. It was confirmed that the thin plate insert was effective to disturb the liquid plug formation.

  10. Borehole Heat Exchanger Systems: Hydraulic Conductivity and Frost-Resistance of Backfill Materials

    NASA Astrophysics Data System (ADS)

    Anbergen, Hauke; Sass, Ingo

    2016-04-01

    Ground source heat pump (GSHP) systems are economic solutions for both, domestic heating energy supply, as well as underground thermal energy storage (UTES). Over the past decades the technology developed to complex, advanced and highly efficient systems. For an efficient operation of the most common type of UTES, borehole heat exchanger (BHE) systems, it is necessary to design the system for a wide range of carrier fluid temperatures. During heat extraction, a cooled carrier fluid is heated up by geothermal energy. This collected thermal energy is energetically used by the heat pump. Thereby the carrier fluid temperature must have a lower temperature than the surrounding underground in order to collect heat energy. The steeper the thermal gradient, the more energy is transferred to the carrier fluid. The heat injection case works vice versa. For fast and sufficient heat extraction, even over long periods of heating (winter), it might become necessary to run the BHE with fluid temperatures below 0°C. As the heat pump runs periodically, a cyclic freezing of the pore water and corresponding ice-lens growth in the nearfield of the BHE pipes becomes possible. These so called freeze-thaw-cycles (FTC) are a critical state for the backfill material, as the sealing effect eventually decreases. From a hydrogeological point of view the vertical sealing of the BHE needs to be secured at any time (e.g. VDI 4640-2, Draft 2015). The vertical hydraulic conductivity of the BHE is influenced not only by the permeability of the grouting material itself, but by the contact area between BHE pipes and grout. In order to assess the sealing capacity of grouting materials a laboratory testing procedure was developed that measures the vertical hydraulic conductivity of the system BHE pipe and grout. The key features of the procedure are: • assessment of the systeḿs hydraulic conductivity • assessment of the systeḿs hydraulic conductivity after simulation of freeze-thaw-cycle

  11. Highly Stable and Conductive Microcapsules for Enhancement of Joule Heating Performance

    PubMed Central

    2016-01-01

    Nanocarbons show great promise for establishing the next generation of Joule heating systems, but suffer from the limited maximum temperature due to precociously convective heat dissipation from electrothermal system to surrounding environment. Here we introduce a strategy to eliminate such convective heat transfer by inserting highly stable and conductive microcapsules into the electrothermal structures. The microcapsule is composed of encapsulated long-chain alkanes and graphene oxide/carbon nanotube hybrids as core and shell material, respectively. Multiform carbon nanotubes in the microspheres stabilize the capsule shell to resist volume-change-induced rupture during repeated heating/cooling process, and meanwhile enhance the thermal conductance of encapsulated alkanes which facilitates an expeditious heat exchange. The resulting microcapsules can be homogeneously incorporated in the nanocarbon-based electrothermal structures. At a dopant of 5%, the working temperature can be enhanced by 30% even at a low voltage and moderate temperature, which indicates a great value in daily household applications. Therefore, the stable and conductive microcapsule may serve as a versatile and valuable dopant for varieties of heat generation systems. PMID:27002594

  12. Heat transfer enhancement by the Goertler vortices developed on a wall with a finite thermal conductivity

    NASA Astrophysics Data System (ADS)

    Mutabazi, Innocent; Yoshikawa, Harunori; Peixinho, Jorge; Kahouadji, Lyes

    2013-11-01

    Görtler vortices appear in a flow over a concave wall as a result of centrifugal instability [Saric, Annu. Rev. Fluid Mech. 26, 379 (1994)]. They may have a strong influence on heat transfer [Momayez et al., Int. J. heat Mass transfer 47, 3783 (2004)]. The purpose of this work is to model heat transfer by Görtler vortices using a weakly nonlinear analysis of Smith &-Haj- Hariri [Phys. Fluids A 5, 2815 (1993)]. We have investigated the coupling of the convective heat transfer by the stationary vortices with the heat conduction inside the solid wall. The finite thickness and thermal conductivity of the wall enter into the boundary conditions of the problem through the ratio δ of the wall thickness to the boundary layer thickness and through the ratio K of the thermal conductivities of the fluid and the wall. The parametric dependence Nu (δ , K) of the Nusselt number is performed and it is shown that found the heat transfer is quite well modified by these two parameters. The local thermal stress can be estimated in order to analyze the effects on ageing of the wall material. The authors acknowledge the financial support of the french Agence Nationale de la Recherche (ANR), through the program ``Investissements d'Avenir'' (ANR-10-LABX-09-01), LabEx EMC3.

  13. Electrical conductivity of carbonaceous chondrites and electric heating of meteorite parent bodies

    NASA Technical Reports Server (NTRS)

    Duba, AL

    1987-01-01

    Electromagnetic heating of rock-forming materials most probably was an important process in the early history of the solar system. Electrical conductivity experiments of representative materials such as carbonaceous chondrites are necessary to obtain data for use in electromagnetic heating models. With the assumption that carbon was present at grain boundaries in the material that comprised the meteorite parent bodies, the electrical heating of such bodies was calculated as a function of body size and solar distance using the T-Tauri model of Sonett and Herbert (1977). The results are discussed.

  14. Laser-assisted direct ink writing of planar and 3D metal architectures.

    PubMed

    Skylar-Scott, Mark A; Gunasekaran, Suman; Lewis, Jennifer A

    2016-05-31

    The ability to pattern planar and freestanding 3D metallic architectures at the microscale would enable myriad applications, including flexible electronics, displays, sensors, and electrically small antennas. A 3D printing method is introduced that combines direct ink writing with a focused laser that locally anneals printed metallic features "on-the-fly." To optimize the nozzle-to-laser separation distance, the heat transfer along the printed silver wire is modeled as a function of printing speed, laser intensity, and pulse duration. Laser-assisted direct ink writing is used to pattern highly conductive, ductile metallic interconnects, springs, and freestanding spiral architectures on flexible and rigid substrates. PMID:27185932

  15. Laser-assisted direct ink writing of planar and 3D metal architectures.

    PubMed

    Skylar-Scott, Mark A; Gunasekaran, Suman; Lewis, Jennifer A

    2016-05-31

    The ability to pattern planar and freestanding 3D metallic architectures at the microscale would enable myriad applications, including flexible electronics, displays, sensors, and electrically small antennas. A 3D printing method is introduced that combines direct ink writing with a focused laser that locally anneals printed metallic features "on-the-fly." To optimize the nozzle-to-laser separation distance, the heat transfer along the printed silver wire is modeled as a function of printing speed, laser intensity, and pulse duration. Laser-assisted direct ink writing is used to pattern highly conductive, ductile metallic interconnects, springs, and freestanding spiral architectures on flexible and rigid substrates.

  16. Laser-assisted direct ink writing of planar and 3D metal architectures

    NASA Astrophysics Data System (ADS)

    Skylar-Scott, Mark A.; Gunasekaran, Suman; Lewis, Jennifer A.

    2016-05-01

    The ability to pattern planar and freestanding 3D metallic architectures at the microscale would enable myriad applications, including flexible electronics, displays, sensors, and electrically small antennas. A 3D printing method is introduced that combines direct ink writing with a focused laser that locally anneals printed metallic features “on-the-fly.” To optimize the nozzle-to-laser separation distance, the heat transfer along the printed silver wire is modeled as a function of printing speed, laser intensity, and pulse duration. Laser-assisted direct ink writing is used to pattern highly conductive, ductile metallic interconnects, springs, and freestanding spiral architectures on flexible and rigid substrates.

  17. Laser-assisted direct ink writing of planar and 3D metal architectures

    PubMed Central

    Skylar-Scott, Mark A.; Gunasekaran, Suman; Lewis, Jennifer A.

    2016-01-01

    The ability to pattern planar and freestanding 3D metallic architectures at the microscale would enable myriad applications, including flexible electronics, displays, sensors, and electrically small antennas. A 3D printing method is introduced that combines direct ink writing with a focused laser that locally anneals printed metallic features “on-the-fly.” To optimize the nozzle-to-laser separation distance, the heat transfer along the printed silver wire is modeled as a function of printing speed, laser intensity, and pulse duration. Laser-assisted direct ink writing is used to pattern highly conductive, ductile metallic interconnects, springs, and freestanding spiral architectures on flexible and rigid substrates. PMID:27185932

  18. Effects of microwave radiation and conductive heating on Tribolium castaneum microstructure.

    PubMed

    Lu, H H; Zhou, J C; Yan, D; Zhao, S M; Xiong, S B

    2011-01-01

    Microwave radiation and conductive heating were used to completely kill adult Tribolium castaneum (Coleoptera: Tenebrionidae) in wheat flour to protect the flour during storage without significantly effecting its quality. The microstructure of T. castaneum was analyzed to reveal the mechanisms leading to death under microwave and heat treatments. Microwave radiation and conductive heating had different effects on the microstructure of the cuticle of adult T. castaneum and on the ultrastructure of the cells of the epidermis, fat body, and midgut. Both treatments caused a large cavity to appear in the nucleus and the disappearance of mitochondria and the Golgi apparatus. After microwave treatment, there was little change in the surface microstructure but the epidermis was of uneven thickness and the four outer layers of the cuticle were thinner. Nuclear size was essentially unchanged, but fat body cells were fewer and coalesced together. In contrast, conductive heating led to a disordered arrangement of cells on the surface of T. castaneum and indistinct boundaries between layers of the cuticle. The nuclei were enlarged and the fat body cells noticeably fewer and indistinct with a scattered distribution. Thus, microwave treatment produced less severe effects on the surface microstructure and cellular ultrastructure of T. castaneum than did conductive heating. It is concluded that these cellular and surface changes were responsible for the death of T. castaneum.

  19. Conductive heating and microwave hydrolysis under identical heating profiles for advanced anaerobic digestion of municipal sludge.

    PubMed

    Mehdizadeh, Seyedeh Neda; Eskicioglu, Cigdem; Bobowski, Jake; Johnson, Thomas

    2013-09-15

    Microwave (2.45 GHz, 1200 W) and conventional heating (custom pressure vessel) pretreatments were applied to dewatered municipal waste sludge (18% total solids) using identical heating profiles that span a wide range of temperatures (80-160 °C). Fourteen lab-scale semi-continuous digesters were set up to optimize the energy (methane) output and sludge retention time (SRT) requirements of untreated (control) and thermally pretreated anaerobic digesters operated under mesophilic and thermophilic temperatures. Both pretreatment methods indicated that in the pretreatment range of 80-160 °C, temperature was a statistically significant factor (p-value < 0.05) for increasing solubilization of chemical oxygen demand and biopolymers (proteins, sugars, humic acids) of the waste sludge. However, the type of pretreatment method, i.e. microwave versus conventional heating, had no statistically significant effect (p-value >0.05) on sludge solubilization. With the exception of the control digesters at a 5-d SRT, all control and pretreated digesters achieved steady state at all three SRTs, corresponding to volumetric organic loading rates of 1.74-6.96 g chemical oxygen demand/L/d. At an SRT of 5 d, both mesophilic and thermophilic controls stopped producing biogas after 20 d of operation with total volatile fatty acids concentrations exceeding 1818 mg/L at pH <5.64 for mesophilic and 2853 mg/L at pH <7.02 for thermophilic controls, while the pretreated digesters continued producing biogas. Furthermore, relative (to control) organic removal efficiencies dramatically increased as SRT was shortened from 20 to 10 and then 5 d, indicating that the control digesters were challenged as the organic loading rate was increased. Energy analysis showed that, at an elevated temperature of 160 °C, the amount of methane recovered was not enough to compensate for the energy input. Among the digesters with positive net energy productions, control and pretreated digesters at 80 °C were more

  20. Photonic heat conduction in Josephson-coupled Bardeen-Cooper-Schrieffer superconductors

    NASA Astrophysics Data System (ADS)

    Bosisio, R.; Solinas, P.; Braggio, A.; Giazotto, F.

    2016-04-01

    We investigate the photon-mediated heat flow between two Josephson-coupled Bardeen-Cooper-Schrieffer (BCS) superconductors. We demonstrate that in standard low temperature experiments involving temperature-biased superconducting quantum interference devices (SQUIDs), this radiative contribution is negligible if compared to the direct galvanic one, but it largely exceeds the heat exchanged between electrons and the lattice phonons. The corresponding thermal conductance is found to be several orders of magnitude smaller, for real experiments setup parameters, than the universal quantum of thermal conductance, κ0(T ) =π kB2T /6 ℏ .

  1. The effect of axial conduction on a thermosyphon with prescribed heat flux

    NASA Astrophysics Data System (ADS)

    Sen, M.; Ramos, E.; Trevino, C.; Salazar, O.

    A one-dimensional model of a natural convection loop of arbitrary shape with prescribed heat flux over its entire length is analyzed. The effect of inclusion of axial conduction is considered in detail. Steady state solutions are presented for the velocity and temperature fields. The transcendental equation for the fluid velocity is studied for the special case of a toroidal geometry with sinusoidal heating. The time-dependent toroidal problem is reduced to a set of three ordinary differential equations which have steady, periodic and chaotic solutions. The stability characteristics of the equilibrium solutions are discussed. The nonconducting model is found to exhibit supercritical instability while the conducting model is subcritical.

  2. Lunar temperature and global heat flux from laboratory electrical conductivity and lunar magnetometer data

    NASA Technical Reports Server (NTRS)

    Sonett, C. P.; Duba, A.

    1975-01-01

    Three-layer monotonic electrical conductivity models for the lunar interior to a depth of 600 km are used in conjunction with laboratory measurements of the electrical conductivity of olivine and pyroxene to estimate a temperature-depth profile. The temperatures calculated for depths of 400-600 km are consistent with attenuation of the seismic shear wave. The temperature calculated at a depth of 100-250 km yields a heat flow that is in good agreement with the directly measured lunar heat flow. The temperature, however, is sufficiently close to melting that mascon anisostasy would not be maintained. Thus a better conductor is required at this depth.

  3. Spatially resolved 3D noise

    NASA Astrophysics Data System (ADS)

    Haefner, David P.; Preece, Bradley L.; Doe, Joshua M.; Burks, Stephen D.

    2016-05-01

    When evaluated with a spatially uniform irradiance, an imaging sensor exhibits both spatial and temporal variations, which can be described as a three-dimensional (3D) random process considered as noise. In the 1990s, NVESD engineers developed an approximation to the 3D power spectral density (PSD) for noise in imaging systems known as 3D noise. In this correspondence, we describe how the confidence intervals for the 3D noise measurement allows for determination of the sampling necessary to reach a desired precision. We then apply that knowledge to create a smaller cube that can be evaluated spatially across the 2D image giving the noise as a function of position. The method presented here allows for both defective pixel identification and implements the finite sampling correction matrix. In support of the reproducible research effort, the Matlab functions associated with this work can be found on the Mathworks file exchange [1].

  4. Autofocus for 3D imaging

    NASA Astrophysics Data System (ADS)

    Lee-Elkin, Forest

    2008-04-01

    Three dimensional (3D) autofocus remains a significant challenge for the development of practical 3D multipass radar imaging. The current 2D radar autofocus methods are not readily extendable across sensor passes. We propose a general framework that allows a class of data adaptive solutions for 3D auto-focus across passes with minimal constraints on the scene contents. The key enabling assumption is that portions of the scene are sparse in elevation which reduces the number of free variables and results in a system that is simultaneously solved for scatterer heights and autofocus parameters. The proposed method extends 2-pass interferometric synthetic aperture radar (IFSAR) methods to an arbitrary number of passes allowing the consideration of scattering from multiple height locations. A specific case from the proposed autofocus framework is solved and demonstrates autofocus and coherent multipass 3D estimation across the 8 passes of the "Gotcha Volumetric SAR Data Set" X-Band radar data.

  5. Accepting the T3D

    SciTech Connect

    Rich, D.O.; Pope, S.C.; DeLapp, J.G.

    1994-10-01

    In April, a 128 PE Cray T3D was installed at Los Alamos National Laboratory`s Advanced Computing Laboratory as part of the DOE`s High-Performance Parallel Processor Program (H4P). In conjunction with CRI, the authors implemented a 30 day acceptance test. The test was constructed in part to help them understand the strengths and weaknesses of the T3D. In this paper, they briefly describe the H4P and its goals. They discuss the design and implementation of the T3D acceptance test and detail issues that arose during the test. They conclude with a set of system requirements that must be addressed as the T3D system evolves.

  6. Combinatorial 3D Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  7. Estimating thermal diffusivity and specific heat from needle probe thermal conductivity data

    USGS Publications Warehouse

    Waite, W.F.; Gilbert, L.Y.; Winters, W.J.; Mason, D.H.

    2006-01-01

    Thermal diffusivity and specific heat can be estimated from thermal conductivity measurements made using a standard needle probe and a suitably high data acquisition rate. Thermal properties are calculated from the measured temperature change in a sample subjected to heating by a needle probe. Accurate thermal conductivity measurements are obtained from a linear fit to many tens or hundreds of temperature change data points. In contrast, thermal diffusivity calculations require a nonlinear fit to the measured temperature change occurring in the first few tenths of a second of the measurement, resulting in a lower accuracy than that obtained for thermal conductivity. Specific heat is calculated from the ratio of thermal conductivity to diffusivity, and thus can have an uncertainty no better than that of the diffusivity estimate. Our thermal conductivity measurements of ice Ih and of tetrahydrofuran (THF) hydrate, made using a 1.6 mm outer diameter needle probe and a data acquisition rate of 18.2 pointss, agree with published results. Our thermal diffusivity and specific heat results reproduce published results within 25% for ice Ih and 3% for THF hydrate. ?? 2006 American Institute of Physics.

  8. Thermal Performance Mapping of Direct Liquid Cooled 3d Chip Stacks

    NASA Astrophysics Data System (ADS)

    Geisler, Karl J. L.; Bar-Cohen, Avram

    Chip stacks are a crucial building block in advanced 3D microsystem architectures and can accommodate shorter interconnect distances between devices, leading to reduced power dissipation and improved electrical performance. Although enhanced conduction can serve to transfer the dissipated heat to the top and sides of the package and/or down to the underlying PCB, effective thermal management of stacked chips remains a most difficult challenge. Immersion cooling techniques, which provide convective and/or ebullient heat transfer, along with buoyant fluid flow, in the narrow gaps separating adjacent chips, are a most promising alternative to conduction cooling of threedimensional chip stacks. Application of the available theories, correlations, and experimental data are shown to reveal that passive immersion cooling--relying on natural convection and/or pool boiling--could provide the requisite thermal management capability for 3D chip stacks anticipated for use in much of the portable equipment category. Alternatively, pumped flow of dielectric liquids through the microgaps in 3D stacks, providing single phase and/or flow boiling heat absorption, could meet many of the most extreme thermal management requirements for high-performance 3D microsystems.

  9. BEM solution to transient free convective heat transfer in a viscous, electrically conducting, and heat generating fluid

    SciTech Connect

    Vajravelu, K.; Kassab, A.; Hadjinicolaou, A.

    1996-11-08

    The nonlinear partial differential equations for the transient free convective heat transfer in a viscous, electrically conducting, and heat-generating fluid past a vertical porous plate in the presence of free stream oscillations are solved by the boundary element method (BEM). Time-dependent fundamental solutions are employed in a time marching scheme to resolve the field variables. Numerical results are compared with previously reported analytical solutions in order to validate the developed BEM algorithm. These previous studies reported results for simpler versions of the problem, in which the convective effects in the momentum and energy equations were neglected in order to obtain analytical numerical solutions. The BEM results are shown to be in close agreement with the reported data. The effects of convection currents, the temperature-dependent heat sources (or sinks), the magnetic currents, and the viscous dissipation on the flow and heat transfer characteristics are assessed in a parametric study, which considers a variety of the dimensionless parameters Gr, Ec, Pr, M, and {gamma}. It is observed that {gamma} plays an important role in delaying the fluid flow reversal, present in the case of air, and acts to enhance the effect of Gr in augmenting the rate of heat transfer at the wall. The skin friction is observed to be an increasing function of Gr, Ec, and {gamma} and a decreasing function of M and Pr. However, the rate of heat transfer (in an absolute sense) is an increasing function of M, {gamma}, Gr, and Ec and a decreasing function of Pr. Of all the parameters, the Prandtl number has the strongest effect on the flow and heat transfer characteristics.

  10. Determination of heat conductivity and thermal diffusivity of waste glass melter feed: Extension to high temperatures

    SciTech Connect

    Rice, Jarrett A.; Pokorny, Richard; Schweiger, Michael J.; Hrma, Pavel R.

    2014-06-01

    The heat conductivity ({lambda}) and the thermal diffusivity (a) of reacting glass batch, or melter feed, control the heat flux into and within the cold cap, a layer of reacting material floating on the pool of molten glass in an all-electric continuous waste glass melter. After previously estimating {lambda} of melter feed at temperatures up to 680 deg C, we focus in this work on the {lambda}(T) function at T > 680 deg C, at which the feed material becomes foamy. We used a customized experimental setup consisting of a large cylindrical crucible with an assembly of thermocouples, which monitored the evolution of the temperature field while the crucible with feed was heated at a constant rate from room temperature up to 1100°C. Approximating measured temperature profiles by polynomial functions, we used the heat transfer equation to estimate the {lambda}(T) approximation function, which we subsequently optimized using the finite-volume method combined with least-squares analysis. The heat conductivity increased as the temperature increased until the feed began to expand into foam, at which point the conductivity dropped. It began to increase again as the foam turned into a bubble-free glass melt. We discuss the implications of this behavior for the mathematical modeling of the cold cap.

  11. Heat Transfer Investigation of Air Flow in Microtubes-Part II: Scale and Axial Conduction Effects.

    PubMed

    Lin, Ting-Yu; Kandlikar, Satish G

    2013-03-01

    In this paper, the scale effects are specifically addressed by conducting experiments with air flow in different microtubes. Three stainless steel tubes of 962, 308, and 83 μm inner diameter (ID) are investigated for friction factor, and the first two are investigated for heat transfer. Viscous heating effects are studied in the laminar as well as turbulent flow regimes by varying the air flow rate. The axial conduction effects in microtubes are experimentally explored for the first time by comparing the heat transfer in SS304 tube with a 910 μm ID/2005 μm outer diameter nickel tube specifically fabricated using an electrodeposition technique. After carefully accounting for the variable heat losses along the tube length, it is seen that the viscous heating and the axial conduction effects become more important at microscale and the present models are able to predict these effects accurately. It is concluded that neglecting these effects is the main source of discrepancies in the data reported in the earlier literature.

  12. Conductive heat loss in recent eruptions at mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Johnson, Paul; Hutnak, Michael

    A new technique for measuring conductive heat flow from unsedimented volcanic rocks on the sea floor has been tested on two new eruption sites in the NE Pacific. This technique consists of isolating the surficial rocks from sea water using water-saturated urethane foam as an insulating thermal blanket. The thermal gradient transferred from the outcrop to the thermal blanket is a quantitative measurement of the conductive heat flow that takes place in unsedimented volcanic areas. We deployed two thermal blankets at 13 sites on the 1993 and 1996 Juan de Fuca/Gorda Ridge flows and found (1) a factor of 10 decrease in heat flow over a period of 12 months on the 1993 CoAxial flow, (2) a value of 6950 mW/m² on the 8 month old Gorda flow, and (3) measurements of heat flow versus age-since-eruption indicate that newly extruded volcanic units are quite permeable to fluid circulation and cool rapidly by convection in only a few years. These new heat flux data confirm that the extrusive volcanic layer is not the primary heat source for long-lived, high temperature hydrothermal systems, which must instead rely on a more isolated thermal reservoir within the lower crustal rocks.

  13. Reduction in thermal conductivity and tunable heat capacity of inorganic/organic hybrid superlattices

    NASA Astrophysics Data System (ADS)

    Giri, Ashutosh; Niemelä, Janne-Petteri; Szwejkowski, Chester J.; Karppinen, Maarit; Hopkins, Patrick E.

    2016-01-01

    We study the influence of molecular monolayers on the thermal conductivities and heat capacities of hybrid inorganic/organic superlattice thin films fabricated via atomic/molecular layer deposition. We measure the cross plane thermal conductivities and volumetric heat capacities of TiO2- and ZnO-based superlattices with periodic inclusion of hydroquinone layers via time domain thermoreflectance. In comparison to their homogeneous counterparts, the thermal conductivities in these superlattice films are considerably reduced. We attribute this reduction in the thermal conductivity mainly due to incoherent phonon boundary scattering at the inorganic/organic interface. Increasing the inorganic/organic interface density reduces the thermal conductivity and heat capacity of these films. High-temperature annealing treatment of the superlattices results in a change in the orientation of the hydroquinone molecules to a 2D graphitic layer along with a change in the overall density of the hybrid superlattice. The thermal conductivity of the hybrid superlattice increases after annealing, which we attribute to an increase in crystallinity.

  14. LASTRAC.3d: Transition Prediction in 3D Boundary Layers

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan

    2004-01-01

    Langley Stability and Transition Analysis Code (LASTRAC) is a general-purpose, physics-based transition prediction code released by NASA for laminar flow control studies and transition research. This paper describes the LASTRAC extension to general three-dimensional (3D) boundary layers such as finite swept wings, cones, or bodies at an angle of attack. The stability problem is formulated by using a body-fitted nonorthogonal curvilinear coordinate system constructed on the body surface. The nonorthogonal coordinate system offers a variety of marching paths and spanwise waveforms. In the extreme case of an infinite swept wing boundary layer, marching with a nonorthogonal coordinate produces identical solutions to those obtained with an orthogonal coordinate system using the earlier release of LASTRAC. Several methods to formulate the 3D parabolized stability equations (PSE) are discussed. A surface-marching procedure akin to that for 3D boundary layer equations may be used to solve the 3D parabolized disturbance equations. On the other hand, the local line-marching PSE method, formulated as an easy extension from its 2D counterpart and capable of handling the spanwise mean flow and disturbance variation, offers an alternative. A linear stability theory or parabolized stability equations based N-factor analysis carried out along the streamline direction with a fixed wavelength and downstream-varying spanwise direction constitutes an efficient engineering approach to study instability wave evolution in a 3D boundary layer. The surface-marching PSE method enables a consistent treatment of the disturbance evolution along both streamwise and spanwise directions but requires more stringent initial conditions. Both PSE methods and the traditional LST approach are implemented in the LASTRAC.3d code. Several test cases for tapered or finite swept wings and cones at an angle of attack are discussed.

  15. From 3D view to 3D print

    NASA Astrophysics Data System (ADS)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  16. Hybrid transfinite element modeling/analysis of nonlinear heat conduction problems involving phase change

    NASA Technical Reports Server (NTRS)

    Tamma, Kumar K.; Railkar, Sudhir B.

    1988-01-01

    The present paper describes the applicability of hybrid transfinite element modeling/analysis formulations for nonlinear heat conduction problems involving phase change. The methodology is based on application of transform approaches and classical Galerkin schemes with finite element formulations to maintain the modeling versatility and numerical features for computational analysis. In addition, in conjunction with the above, the effects due to latent heat are modeled using enthalpy formulations to enable a physically realistic approximation to be dealt computationally for materials exhibiting phase change within a narrow band of temperatures. Pertinent details of the approach and computational scheme adapted are described in technical detail. Numerical test cases of comparative nature are presented to demonstrate the applicability of the proposed formulations for numerical modeling/analysis of nonlinear heat conduction problems involving phase change.

  17. Thermal conductivity and diffusivity of biomaterials measured with self-heated thermistors

    NASA Astrophysics Data System (ADS)

    Valvano, J. W.; Cochran, J. R.; Diller, K. R.

    1985-05-01

    This paper presents an experimental method to measure the thermal conductivity and thermal diffusivity of biomaterials. Self-heated thermistor probes, inserted into the tissue of interest, are used to deliver heat as well as to monitor the rate of heat removal. An empirical calibration procedure allows accurate thermal-property measurements over a wide range of tissue temperatures. Operation of the instrument in three media with known thermal properties shows the uncertainty of measurements to be about 2%. The reproducibility is 0.5% for the thermal-conductivity measurements and 2% for the thermal-diffusivity measurements. Thermal properties were measured in dog, pig, rabbit, and human tissues. The tissues included kidney, spleen, liver, brain, heart, lung, pancreas, colon cancer, and breast cancer. Thermal properties were measured for 65 separate tissue samples at 3, 10, 17, 23, 30, 37, and 45°C. The results show that the temperature coefficient of biomaterials approximates that of water.

  18. Effect of heat treatment time on microstructure and electrical conductivity in LATP glass ceramics

    SciTech Connect

    Sonigra, Dhiren E-mail: ajit.kulkarni@iitb.ac.in; Soman, Swati E-mail: ajit.kulkarni@iitb.ac.in; Kulkarni, Ajit R. E-mail: ajit.kulkarni@iitb.ac.in

    2014-04-24

    Glass-ceramic is prepared by heat treatment of melt quenched 14Li{sub 2}O−9Al{sub 2}O{sub 3}−38TiO{sub 2}−39P{sub 2}O{sub 5} glass in the vicinity of crystallization temperature. Growth of ceramic phase is controlled by tuning heat treatment time at fixed temperature. Ceramic phase was identified to be LiTi{sub 2}(PO{sub 4}){sub 3} from X Ray Diffraction analysis. Microstructural evolution of this phase with hold time was observed under high resolution Scanning Electron Microscope. DC conductivity is observed to increase by 4-5 orders of magnitude in this glass-ceramic compared to parent glass. However, formation of pores and cracks with very large heat treatment time seem to hinder further increase of conductivity.

  19. Heat conduction in systems with Kolmogorov-Arnold-Moser phase space structure.

    PubMed

    Herrera-González, I F; Pérez-Aguilar, H I; Mendoza-Suárez, A; Tututi, E S

    2012-09-01

    We study heat conduction in a billiard channel formed by two sinusoidal walls and the diffusion of particles in the corresponding channel of infinite length; the latter system has an infinite horizon, i.e., a particle can travel an arbitrary distance without colliding with the rippled walls. For small ripple amplitudes, the dynamics of the heat carriers is regular and analytical results for the temperature profile and heat flux are obtained using an effective potential. The study also proposes a formula for the temperature profile that is valid for any ripple amplitude. When the dynamics is regular, ballistic conductance and ballistic diffusion are present. The Poincaré plots of the associated dynamical system (the infinitely long channel) exhibit the generic transition to chaos as ripple amplitude is increased. When no Kolmogorov-Arnold-Moser (KAM) curves are present to forbid the connection of all chaotic regions, the mean square displacement grows asymptotically with time t as tln(t).

  20. Heat conduction in a turbulent magnetic field, with application to solar-wind electrons.

    NASA Technical Reports Server (NTRS)

    Hollweg, J. V.; Jokipii, J. R.

    1972-01-01

    Consideration of random, long-wavelength fluctuations in a turbulent magnetic field, showing that they can appreciably decrease the heat conductivity of a plasma along the magnetic field. In simple cases of interest, the reduction along the average field is approximately by the factor (cos delta theta) squared, where delta theta is the angle of the local magnetic field relative to the average field. Application to solar-wind electrons indicates that this reduction in heat conductivity due to observed fluctuations in the interplanetary magnetic field may be of the order of a factor of 2. This may help to explain recent measurements which indicate a rather low electron heat flux in the solar wind.