Science.gov

Sample records for 3d high-resolution seismic

  1. High Resolution Near Surface 3D Seismic Experiments: A Carbonate Platform vs. a Siliciclastic Sequence

    NASA Astrophysics Data System (ADS)

    Filippidou, N.; Drijkoningen, G.; Braaksma, H.; Verwer, K.; Kenter, J.

    2005-05-01

    Interest in high-resolution 3D seismic experiments for imaging shallow targets has increased over the past years. Many case studies presented, show that producing clear seismic images with this non-evasive method, is still a challenge. We use two test-sites where nearby outcrops are present so that an accurate geological model can be built and the seismic result validated. The first so-called natural field laboratory is located in Boulonnais (N. France). It is an upper Jurassic siliciclastic sequence; age equivalent of the source rock of N. Sea. The second one is located in Cap Blanc,to the southwest of the Mallorca island(Spain); depicting an excellent example of Miocene prograding reef platform (Llucmajor Platform); it is a textbook analog for carbonate reservoirs. In both cases, the multidisciplinary experiment included the use of multicomponent and quasi- or 3D seismic recordings. The target depth does not exceed 120m. Vertical and shear portable vibrators were used as source. In the center of the setups, boreholes were drilled and Vertical Seismic Profiles were shot, along with core and borehole measurements both in situ and in the laboratory. These two geologically different sites, with different seismic stratigraphy have provided us with exceptionally high resolution seismic images. In general seismic data was processed more or less following standard procedures, a few innovative techniques on the Mallorca data, as rotation of horizontal components, 3D F-K filter and addition of parallel profiles, have improved the seismic image. In this paper we discuss the basic differences as seen on the seismic sections. The Boulonnais data present highly continuous reflection patterns of extremenly high resolution. This facilitated a high resolution stratigraphic description. Results from the VSP showed substantial wave energy attenuation. However, the high-fold (330 traces ) Mallorca seismic experiment returned a rather discontinuous pattern of possible reflectors

  2. P-Cable: New High-Resolution 3D Seismic Acquisition Technology

    NASA Astrophysics Data System (ADS)

    Planke, Sverre; Berndt, Christian; Mienert, Jürgen; Bünz, Stefan; Eriksen, Frode N.; Eriksen, Ola K.

    2010-05-01

    We have developed a new cost-efficient technology for acquisition of high-resolution 3D seismic data: the P-Cable system. This technology is very well suited for deep water exploration, site surveys, and studies of shallow gas and fluid migration associated with gas hydrates or leaking reservoirs. It delivers unparalleled 3D seismic images of subsurface sediment architectures. The P-Cable system consists of a seismic cable towed perpendicular to a vessel's steaming direction. This configuration allows us to image an up to 150 m wide swath of the sub-surface for each sail line. Conventional 3D seismic technology relies on several very long streamers (up to 10 km long streamers are common), large sources, and costly operations. In contrast, the P-Cable system is light-weight and fast to deploy from small vessels. Only a small source is required as the system is made for relatively shallow imaging, typically above the first water-bottom multiple. The P-Cable system is particularly useful for acquisition of small 3D cubes, 10-50 km2, in focus areas, rather than extensive mapping of large regions. The rapid deployment and recovery of the system makes it possible to acquire several small cubes (10 to 30 km2) with high-resolution (50-250 Hz) seismic data in during one cruise. The first development of the P-Cable system was a cooperative project achieved by Volcanic Basin Petroleum Research (VBPR), University of Tromsø, National Oceanography Centre, Southampton, and industry partners. Field trials using a 12-streamer system were conducted on sites with active fluid-leakage systems on the Norwegian-Barents-Svalbard margin, the Gulf of Cadiz, and the Mediterranean. The second phase of the development introduced digital streamers. The new P-Cable2 system also includes integrated tow and cross cables for power and data transmission and improved doors to spread the larger cross cable. This digital system has been successfully used during six cruises by the University of Troms

  3. High-resolution imaging of crustal melts using 3D full-waveform seismic inversion

    NASA Astrophysics Data System (ADS)

    Warner, M.; Morgan, J. V.

    2013-12-01

    A newly practical seismic imaging technique, 3D full-waveform inversion (FWI), now has the ability to image zones of melt and melt pathways throughout the crust with a better resolution than any other geophysical method. 3D FWI has recently changed practice within the petroleum industry where it is used to obtain high-resolution high-fidelity models of physical properties in the sub-surface that are both interpreted directly and used to improve the migration of deeper reflections. This technology has been spectacularly successful in improving the imaging of reservoirs beneath shallow heterogeneities produced by, for example, gas clouds, buried fluvial channels, carbonate reefs and salt bodies. During FWI, the sub-surface model is recovered principally by using the low-frequency transmitted, refracted portion of the wavefield which is most sensitive to the macro-velocity structure. In the petroleum industry, these inversions are now routinely performed using long-offset surface-streamer and ocean-bottom data to maximum source-receiver offsets of about 15 km, leading to a maximum penetration depth of around 5 km. Using longer offsets, it is possible to extend this technology to image deeper crustal targets. Localised zones of partial melt produce large changes in p-wave and s-wave properties that are restricted in their spatial extent, and that therefore form ideal targets for 3D FWI. We have performed a suite of tests to explore the use of 3D FWI in imaging melt distribution beneath the active volcano of Montserrat. We built a model of the subsurface using a 3D travel-time tomographic model obtained from the SEA CALIPSO experiment. We added two magma chambers in accordance with a model obtained using surface-elevation changes and geochemical data. We used a wide-angle, wide-azimuth acquisition geometry to generate a fully-elastic synthetic seismic dataset, added noise, and inverted the windowed transmitted arrivals only. We used an elastic code for the forward

  4. High-resolution 3D seismic model of the crustal and uppermost mantle structure in Poland

    NASA Astrophysics Data System (ADS)

    Grad, Marek; Polkowski, Marcin; Ostaficzuk, Stanisław R.

    2016-01-01

    In the area of Poland a contact between the Precambrian and Phanerozoic Europe and the Carpathians has a complicated structure and a complex P-wave velocity of the sedimentary cover, crystalline crust, Moho depth and the uppermost mantle. The geometry of the uppermost several kilometers of sediments is relatively well recognized from over 100,000 boreholes. The vertical seismic profiling (VSP) from 1188 boreholes provided detailed velocity data for regional tectonic units and for stratigraphic successions from Permian to the Tertiary and Quaternary deposits. These data, however, do not provide information about the velocity and basement depth in the central part of the Trans-European suture zone (TESZ) and in the Carpathians. So, the data set is supplemented by 2D velocity models from 32 deep seismic sounding refraction profiles which also provide information about the crust and uppermost mantle. Together with the results of other methods: vertical seismic profiling, magnetotelluric, allow for the creation of a detailed, high-resolution 3D model for the entire Earth's crust and the uppermost mantle down to a depth of 60 km. The thinnest sedimentary cover in the Mazury-Belarus anteclise is only 0.3 to 1 km thick, which increases to 7 to 8 km along the East European Craton (EEC) margin, and 9 to 12 km in the TESZ. The Variscan domain is characterized by a 1-4 km thick sedimentary cover, while the Carpathians are characterized by very thick sedimentary layers, up to about 20 km. The crystalline crust is differentiated and has a layered structure. The crust beneath the West European Platform (WEP; Variscan domain) is characterized by P-wave velocities of 5.8-6.6 km/s. The upper and middle crusts beneath the EEC are characterized by velocities of 6.1-6.6 km/s, and are underlain by a high velocity lower crust with a velocity of about 7 km/s. A general decrease in velocity is observed from the older to the younger tectonic domains. The TESZ is associated with a steep dip

  5. High-resolution 3D seismic investigation of giant seafloor craters in the Barents Sea

    NASA Astrophysics Data System (ADS)

    Waage, Malin; Bünz, Stefan; Andreassen, Karin

    2016-04-01

    Multiple giant craters exist on the seafloor in an area of ~ 100 km2 east of Bear Island Trough in the west-central Barents Sea. It has been hypothesized that these craters might have been caused by gas eruptions following the last deglaciation. Gas seepage from the seafloor occurs abundantly in this area. The crater area is still likely to represent one of the largest hot-spots for shallow marine methane release in the arctic. In summer 2015, we acquired high-resolution P-Cable 3D seismic data in this area covering several of the craters and their associated pingo structures. Due to the shallow and hard Triassic bedrock, penetration of the seismic signals is limited to approximately 450 ms bsf. The crater structures are up to 1 km wide and 40 m deep. Pingo structures occur on the rim of some of the craters and are up to 700 m wide and up to 15 m high above the surrounding seafloor. The 3D seismic data reveals faults, fracture networks and weakness zone that resemble pipes or similar vertical, focused fluid-flow structures in the Triassic sedimentary rocks below the craters. The principal orientation of the faults is in a ~ NW-SE direction that coincides with regional faulting from Permo-Triassic extension. The seismic data also show high-amplitude anomalies beneath some of representing shallow gas accumulations that might be the intermediate source of the gas seepage. This might suggest that craters are caused by high pressured gas that migrated from deeper petroleum systems and accumulated in the shallow Triassic rocks during the last glaciation. Previous work indicate that craters of similar size are likely a cause of enormous blow-outs of gas. Our study discusses the formation mechanisms and timing of these potential blow-out craters and whether they formed during the last deglaciation, when this area was likely quite unstable as severe glacial erosion caused localized high isostatic rebound rates here. We also investigate the role of gas hydrates that might

  6. Using 3D Glyph Visualization to Explore Real-time Seismic Data on Immersive and High-resolution Display Systems

    NASA Astrophysics Data System (ADS)

    Nayak, A. M.; Lindquist, K.; Kilb, D.; Newman, R.; Vernon, F.; Leigh, J.; Johnson, A.; Renambot, L.

    2003-12-01

    The study of time-dependent, three-dimensional natural phenomena like earthquakes can be enhanced with innovative and pertinent 3D computer graphics. Here we display seismic data as 3D glyphs (graphics primitives or symbols with various geometric and color attributes), allowing us to visualize the measured, time-dependent, 3D wave field from an earthquake recorded by a certain seismic network. In addition to providing a powerful state-of-health diagnostic of the seismic network, the graphical result presents an intuitive understanding of the real-time wave field that is hard to achieve with traditional 2D visualization methods. We have named these 3D icons `seismoglyphs' to suggest visual objects built from three components of ground motion data (north-south, east-west, vertical) recorded by a seismic sensor. A seismoglyph changes color with time, spanning the spectrum, to indicate when the seismic amplitude is largest. The spatial extent of the glyph indicates the polarization of the wave field as it arrives at the recording station. We compose seismoglyphs using the real time ANZA broadband data (http://www.eqinfo.ucsd.edu) to understand the 3D behavior of a seismic wave field in Southern California. Fifteen seismoglyphs are drawn simultaneously with a 3D topography map of Southern California, as real time data is piped into the graphics software using the Antelope system. At each station location, the seismoglyph evolves with time and this graphical display allows a scientist to observe patterns and anomalies in the data. The display also provides visual clues to indicate wave arrivals and ~real-time earthquake detection. Future work will involve adding phase detections, network triggers and near real-time 2D surface shaking estimates. The visuals can be displayed in an immersive environment using the passive stereoscopic Geowall (http://www.geowall.org). The stereographic projection allows for a better understanding of attenuation due to distance and earth

  7. High-resolution 3-D P wave attenuation structure of the New Madrid Seismic Zone using local earthquake tomography

    NASA Astrophysics Data System (ADS)

    Bisrat, Shishay T.; DeShon, Heather R.; Pesicek, Jeremy; Thurber, Clifford

    2014-01-01

    A three-dimensional (3-D), high-resolution P wave seismic attenuation model for the New Madrid Seismic Zone (NMSZ) is determined using P wave path attenuation (t*) values of small-magnitude earthquakes (MD < 3.9). Events were recorded at 89 broadband and short-period seismometers of the Cooperative New Madrid Seismic Zone Network and 40 short-period seismometers of the Portable Array for Numerical Data Acquisition experiment. The amplitude spectra of all the earthquakes are simultaneously inverted for source, path (t*), and site parameters. The t* values are inverted for QP using local earthquake tomography methods and a known 3-D P wave velocity model for the region. The four major seismicity arms of the NMSZ exhibit reduced QP (higher attenuation) than the surrounding crust. The highest attenuation anomalies coincide with areas of previously reported high swarm activity attributed to fluid-rich fractures along the southeast extension of the Reelfoot fault. The QP results are consistent with previous attenuation studies in the region, which showed that active fault zones and fractured crust in the NMSZ are highly attenuating.

  8. High-resolution 3D seismic imaging of a pull-apart basin in the Gulf of Cadiz

    NASA Astrophysics Data System (ADS)

    Crutchley, G.; Berndt, C.; Klaeschen, D.; Gutscher, M.

    2009-12-01

    In 2006, high-resolution 3D seismic data were acquired in the Gulf of Cadiz and the Mediterranean Sea aboard the RRS Charles Darwin as part of the HERMES (Hotspot Ecosystem Research on the Margins of European Seas) project. The P-Cable system, a cost-efficient set-up for fast acquisition of 3D seismic data on 12 single-channel streamers, was utilized to acquire seismic cubes at four different targets. Here, we present results from the second target - a WNW-ESE-oriented pull-apart basin in the southeastern Gulf of Cadiz. Initial processing has included: 1) spatial positioning of each recording channel from GPS data acquired on the outer two channels, 2) improved positioning of shot points and channels from the inversion of first arrival times, 3) application of a swell filter to improve reflection coherency, 4) CDP binning and stacking and 5) migration. The new data confirm that the southeastern Gulf of Cadiz north of the Rharb submarine valley is structurally controlled by numerous strike slip faults that were active until quite recently (within the resolution of the data). Given the location of this basin, between the extensional domain on the upper slope and the compressional toe of the accretionary wedge, we interpret the origin to be gravitational sliding on a detachment layer, possibly containing salt, but at this stage not imaged by our profiles.

  9. 3D insight into fault geometries, deformation, and fluid-migration within the Hosgri Fault Zone offshore central California: Results from high-resolution 3D seismic data

    NASA Astrophysics Data System (ADS)

    Kluesner, J.; Brothers, D. S.; Johnson, S. Y.; Watt, J. T.

    2015-12-01

    High-resolution 3D seismic P-Cable data and advanced seismic attribute analyses were used to detect and interpret complex strike-slip fault geometries, deformation patterns, and fluid-pathways across a portion of the Hosgri Fault Zone (HFZ) offshore central California. Combination of the fault attribute results with structural analysis provides 3D insight into the geometry and internal structure of restraining and releasing bends, step-over zones, fault convergence zones, and apparent paired fault bends. The 3D seismic volume covers a 13.7 km2 region along the HFZ offshore of Point Sal and was collected in 2012 as part of the PG&E Central California Seismic Imaging Project (PG&E, 2014). Application of the fault attribute workflow isolated and delineated fault strands within the 3D volume. These results revealed that the northern and southern edges of the survey region are characterized by single fault strands that exhibit an approximate 6° change in strike across the 3D volume. Between these single faults strands is a complex network of fault splays, bends, stepovers, and convergence zones. Structural analysis reveals that the southern portion of the HFZ in the region is characterized by transtensional deformation, whereas transpressional-related folding dominates the central and northern portions of the HFZ. In the central region, convergence of the Lions Head Fault from the southeast results in an apparent impinging block, leading to development of a "paired fault bend" to the west. Combination of the fault and "chimney" attribute results indicates a strong connection between faults and fluid-migration pathways. Fluid-pathways are concentrated along discrete faults in the transtensional zones, but appear to be more broadly distributed amongst fault bounded anticlines and structurally controlled traps in the transpressional zones.

  10. High-resolution 3-D S-wave Tomography of upper crust structures in Yilan Plain from Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Chen, Kai-Xun; Chen, Po-Fei; Liang, Wen-Tzong; Chen, Li-Wei; Gung, YuanCheng

    2015-04-01

    The Yilan Plain (YP) in NE Taiwan locates on the western YP of the Okinawa Trough and displays high geothermal gradients with abundant hot springs, likely resulting from magmatism associated with the back-arc spreading as attested by the offshore volcanic island (Kueishantao). YP features NS distinctive characteristics that the South YP exhibits thin top sedimentary layer, high on-land seismicity and significant SE movements, relative those of the northern counterpart. A dense network (~2.5 km station interval) of 89 Texan instruments was deployed in Aug. 2014, covering most of the YP and its vicinity. The ray path coverage density of each 0.015 degree cells are greater than 150 km that could provide the robustness assessment of tomographic results. We analyze ambient noise signals to invert a high-resolution 3D S-wave model for shallow velocity structures in and around YP. The aim is to investigate the velocity anomalies corresponding to geothermal resources and the NS geological distinctions aforementioned. We apply the Welch's method to generate empirical Rayleigh wave Green's functions between two stations records of continuous vertical components. The group velocities of thus derived functions are then obtained by the multiple-filter analysis technique measured at the frequency range between 0.25 and 1 Hz. Finally, we implement a wavelet-based multi-scale parameterization technique to construct 3D model of S-wave velocity. Our first month results exhibit low velocity in the plain, corresponding existing sediments, those of whole YP show low velocity offshore YP and those of high-resolution south YP reveal stark velocity contrast across the Sanshin fault. Key words: ambient seismic noises, Welch's method, S-wave, Yilan Plain

  11. High-resolution 3D seismic reflection imaging across active faults and its impact on seismic hazard estimation in the Tokyo metropolitan area

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Sato, Hiroshi; Abe, Susumu; Kawasaki, Shinji; Kato, Naoko

    2016-10-01

    We collected and interpreted high-resolution 3D seismic reflection data across a hypothesized fault scarp, along the largest active fault that could generate hazardous earthquakes in the Tokyo metropolitan area. The processed and interpreted 3D seismic cube, linked with nearby borehole stratigraphy, suggests that a monocline that deforms lower Pleistocene units is unconformably overlain by middle Pleistocene conglomerates. Judging from structural patterns and vertical separation on the lower-middle Pleistocene units and the ground surface, the hypothesized scarp was interpreted as a terrace riser rather than as a manifestation of late Pleistocene structural growth resulting from repeated fault activity. Devastating earthquake scenarios had been predicted along the fault in question based on its proximity to the metropolitan area, however our new results lead to a significant decrease in estimated fault length and consequently in the estimated magnitude of future earthquakes associated with reactivation. This suggests a greatly reduced seismic hazard in the Tokyo metropolitan area from earthquakes generated by active intraplate crustal faults.

  12. High-resolution 3D seismic imaging of the Longmenshan fault zone structure using double-difference seismic tomography

    NASA Astrophysics Data System (ADS)

    Wang, X.; Yu, X.; Zhang, W.

    2011-12-01

    The Longmenshan fault zone where the 2008 M8.0 Wenchuan, China, earthquake occurred is located in the boundary area between the Songpan-Garze block to the west and the Sichuan basin to the east. This area is characterized by complex structures and active seismotectonics. We collected both direct P wave absolute arrival times and differential arrival times from 2551 events in the period of 1992 to 1999 recorded by China National Seismic Network. The double-difference seismic tomography (tomoDD) method is used to determine event relocations and the P wave crustal and upper mantle velocity structure. Our results show that obvious velocity variations exist in the crust and upper mantle beneath the Longmenshan fault zone. The inferred velocity structure of the upper crust correlates well with the surface geological and topographic features in this area: the east of Tibet plateau is imaged as a prominent high-velocity zone, while the Longmenshan fault and Sichuan basin are imaged as a low-velocity feature. Compared with upper crust, the Longmenshan fault zone lies in the transition zone between high velocity anomalies to the west and low velocity anomalies to the east in the middle crust, where most earthquakes occurred. While in the lower crust, the fault zone lies in the transition zone between low velocity anomalies to the west and high velocity anomalies to the east. In upper mantle, a prominent low velocity anomaly exists under the Wenchuan main shock region. This suggests that lower crustal flow has affect on the occurrence of the Wenchuan earthquake. There is also a obvious velocity structure difference between the south and north segment of the Longmenshan fault zone in the whole crust and upper mantle, low velocity anomalies in the south segment and prominent lateral heterogeneous in the north segment, respectively. The velocity difference maybe resulted in the northeastwards of the Wenchuan aftershocks.

  13. Joint Stochastic Inversion of Pre-Stack 3D Seismic Data and Well Logs for High Resolution Hydrocarbon Reservoir Characterization

    NASA Astrophysics Data System (ADS)

    Torres-Verdin, C.

    2007-05-01

    This paper describes the successful implementation of a new 3D AVA stochastic inversion algorithm to quantitatively integrate pre-stack seismic amplitude data and well logs. The stochastic inversion algorithm is used to characterize flow units of a deepwater reservoir located in the central Gulf of Mexico. Conventional fluid/lithology sensitivity analysis indicates that the shale/sand interface represented by the top of the hydrocarbon-bearing turbidite deposits generates typical Class III AVA responses. On the other hand, layer- dependent Biot-Gassmann analysis shows significant sensitivity of the P-wave velocity and density to fluid substitution. Accordingly, AVA stochastic inversion, which combines the advantages of AVA analysis with those of geostatistical inversion, provided quantitative information about the lateral continuity of the turbidite reservoirs based on the interpretation of inverted acoustic properties (P-velocity, S-velocity, density), and lithotype (sand- shale) distributions. The quantitative use of rock/fluid information through AVA seismic amplitude data, coupled with the implementation of co-simulation via lithotype-dependent multidimensional joint probability distributions of acoustic/petrophysical properties, yields accurate 3D models of petrophysical properties such as porosity and permeability. Finally, by fully integrating pre-stack seismic amplitude data and well logs, the vertical resolution of inverted products is higher than that of deterministic inversions methods.

  14. Multicomponent, 3-D, and High-Resolution 2-D Seismic Characterization of Gas Hydrate Study Sites in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Haines, S. S.; Hart, P. E.; Ruppel, C. D.; Collett, T. S.; Shedd, W.; Lee, M. W.; Miller, J.

    2012-12-01

    High saturations of gas hydrates have been identified within coarse-grained sediments in the Green Canyon 955 and Walker Ridge 313 lease blocks of the deepwater northern Gulf of Mexico. The thickness, lateral extent, and hydrate saturations in these deposits are constrained by geological and geophysical data and state-of-the-art logging-while-drilling information obtained in multiple boreholes at each site during a 2009 expedition. Presently lacking are multicomponent seismic data that can provide a thorough understanding of the in-situ compressional and shear seismic properties of the hydrate-bearing sediments. Such data may represent an important tool for future characterization of gas hydrate resources. To address this data gap, the U.S. Geological Survey, the U.S. Department of Energy, and the Bureau of Ocean Energy Management will collaborate on a 20-day research expedition to acquire wide-angle ocean bottom seismometer and high-resolution vertical incidence 2-D seismic data at the study sites. In preparation for this mid-2013 expedition, we have analyzed existing industry 3-D seismic data, along with numerically modeled multicomponent data. The 3-D seismic data allow us to identify and rank specific survey targets and can be combined with the numerical modeling results to determine optimal survey line orientation and acquisition parameters. Together, these data also provide a more thorough understanding of the gas hydrate systems at these two sites.

  15. Advanced Reservoir Characterization and Development through High-Resolution 3C3D Seismic and Horizontal Drilling: Eva South Marrow Sand Unit, Texas County, Oklahoma

    SciTech Connect

    Wheeler,David M.; Miller, William A.; Wilson, Travis C.

    2002-03-11

    The Eva South Morrow Sand Unit is located in western Texas County, Oklahoma. The field produces from an upper Morrow sandstone, termed the Eva sandstone, deposited in a transgressive valley-fill sequence. The field is defined as a combination structural stratigraphic trap; the reservoir lies in a convex up -dip bend in the valley and is truncated on the west side by the Teepee Creek fault. Although the field has been a successful waterflood since 1993, reservoir heterogeneity and compartmentalization has impeded overall sweep efficiency. A 4.25 square mile high-resolution, three component three-dimensional (3C3D) seismic survey was acquired in order to improve reservoir characterization and pinpoint the optimal location of a new horizontal producing well, the ESU 13-H.

  16. Neoarchaean tectonic history of the Witwatersrand Basin and Ventersdorp Supergroup: New constraints from high-resolution 3D seismic reflection data

    NASA Astrophysics Data System (ADS)

    Manzi, Musa S. D.; Hein, Kim A. A.; King, Nick; Durrheim, Raymond J.

    2013-04-01

    First-order scale structures in the West Wits Line and West Rand goldfields of the Witwatersrand Basin (South Africa) were mapped using the high-resolution 3D reflection seismic method. Structural models constrain the magnitude of displacement of thrusts and faults, the gross structural architecture and Neoarchaean tectonic evolution of the West Rand and Bank fault zones, which offset the gold-bearing reefs of the basin. The merging of several 3D seismic surveys made clear the gross strato-structural architecture of the goldfields; a macroscopic fold-thrust belt is crosscut by a macroscopic extensional fault array. These are dissected, eroded and overlain by the Transvaal Supergroup above an angular unconformity. The seismic sections confirm that the West Rand Group (ca. 2985-2902 Ma) is unconformably overlain by the Central Rand Group (ca. 2902-2849 Ma), with tilting of the West Rand Group syn- to post-erosion at ca. 2.9 Ga. The seismic sections also confirm that an unconformable relationship exists between the Central Rand Group and the auriferous Ventersdorp Contact Reef (VCR), with an easterly-verging fold-thrust belt being initiated concomitant to deposition of the VCR at approximately 2.72 Ga. Fold-thrust formation included development of the (1) newly identified first-order scale Libanon Anticline, (2) Tandeka and Jabulani thrusts which displace the West Rand Group, and (3) parasite folds. The fold-thrust belt is crosscut by a macroscopic extensional fault array (or rift-like system of faults) which incepted towards the end of extrusion of the Ventersdorp lavas, and certainly during deposition of the Platberg Group (2709-2643 Ma) when a mantle plume may have heated the lithosphere. The West Rand and Bank fault zones formed at this time and include (1) the West Rand and Bank faults which are scissors faults; (2) second and third-order scale normal faults in the immediate footwall and hanging wall of the faults; (3) drag synclines, and (4) rollover anticlines.

  17. High-Resolution Seismic Images and 3-D Seismic Velocities of the San Andreas Fault Zone at Burro Flats, Southern California

    NASA Astrophysics Data System (ADS)

    Tsai, C.; Catchings, R. D.; Rymer, M. J.; Goldman, M. R.

    2003-12-01

    The southern San Andreas fault (SAF) has produced large earthquakes in the past 1500 yrs. Burro Flats, a basin within the San Bernardino Mountains, is bounded on the southwest by the southern San Andreas fault. Burro Flats has been the site of paleoseismological investigations to determine the slip history of the fault. Additional paleoseismic studies at this location are needed to further resolve the structure and slip history of the SAF. In addition to the main trace of the SAF at Burro Flats, there are splay faults, suggesting a complex geometry for the fault. To better understand the structure of the SAF, we acquired a 3-D, combined seismic reflection/refraction profile centered on the main trace at Burro Flats. The seismic investigation included a 60 m by 70 m rectangular array. Sensors were spaced every 5 m; seismic sources, likewise with a spacing of 5 m, consisted of a combination of down-hole explosives and shallow (approximately 0.3 m) Betsy Seisgun shots. Data were recorded without acquisition filters for 5 s at a 0.5-ms sampling rate. To analyze the data for velocity structure, we used a tomographic inversion procedure to invert first-arrival refractions. Preliminary measurements from shot gathers show that near-surface velocities range between 700 m/s and 1500 m/s. We observe apparent travel-time delays of approximately 7 ms near the main surface trace of the SAF, suggesting that seismic imaging methods may be useful in identifying this and other fault traces. These results will be useful for paleoseismic investigations.

  18. Delineating Potential Quick-clay Areas Using High-resolution Seismic Methods: Towards a 3D Model of an Area Prone to Slide in SW Sweden

    NASA Astrophysics Data System (ADS)

    Salas Romero, S.; Malehmir, A.; Snowball, I.

    2015-12-01

    Quick clay can liquefy under increased stress and is responsible for major landslides in Sweden, Norway and Canada, but despite extensive investigations delineating quick clay remains a challenge. As part of a large multidisciplinary project, this study focuses on an area prone to quick-clay landslides in SW Sweden. P- and S-wave seismic, electrical resistivity tomography, and RMT (radio-magnetotelluric) data obtained in 2011 (Malehmir et al. 2013) suggested the presence of a coarse-grained layer of variable thickness sandwiched between clays, with quick clay above. The coarse-grained layer was assumed to accelerate the formation of quick clay, influencing its thickness. Additional geophysical data (reflection and refraction seismic, and RMT) and studies of three boreholes drilled in 2013, with the aim to intersect the coarse-grained layer, extended the area covered in 2011. Here we report on four seismic profiles (total length 3.5 km) acquired in 2013, combined with side-scan and single channel reflection seismic data along a river, which was believed to be important in the context of quick-clay landslides. Wireless (50-1C-10 Hz and 24-3C-broadband) and cabled sensors (323-28 Hz), 4-10 m apart, were used for the data acquisition of the longest profile (nearly 2 km long). Dynamite, accelerated weight-drop and sledgehammer were used as seismic sources. Simultaneous data acquisition for two parallel profiles, about 300 m apart, provides additional information. Preliminary results delineate the bedrock and its undulation near and in the river. We believe that overlying reflections are caused by the coarse-grained materials, whose lateral extension is considerably larger than previously thought. This may imply a wider area containing quick clay and hence at risk of slope failure. The new data and previous results are combined to construct a high-resolution 3D subsurface model that focuses on the coarse-grained layer and potential quick-clay areas. Malehmir A, Bastani M

  19. New High-Resolution 3D Seismic Imagery of Deformation and Fault Architecture Along Newport-Inglewood/Rose Canyon Fault in the Inner California Borderlands

    NASA Astrophysics Data System (ADS)

    Holmes, J. J.; Bormann, J. M.; Driscoll, N. W.; Kent, G.; Harding, A. J.; Wesnousky, S. G.

    2014-12-01

    The tectonic deformation and geomorphology of the Inner California Borderlands (ICB) records the transition from a convergent plate margin to a predominantly dextral strike-slip system. Geodetic measurements of plate boundary deformation onshore indicate that approximately 15%, or 6-8 mm/yr, of the total Pacific-North American relative plate motion is accommodated by faults offshore. The largest near-shore fault system, the Newport-Inglewood/Rose Canyon (NI/RC) fault complex, has a Holocene slip rate estimate of 1.5-2.0 mm/yr, according to onshore trenching, and current models suggest the potential to produce an Mw 7.0+ earthquake. The fault zone extends approximately 120 km, initiating from the south near downtown San Diego and striking northwards with a constraining bend north of Mt. Soledad in La Jolla and continuing northwestward along the continental shelf, eventually stepping onshore at Newport Beach, California. In late 2013, we completed the first high-resolution 3D seismic survey (3.125 m bins) of the NI/RC fault offshore of San Onofre as part of the Southern California Regional Fault Mapping project. We present new constraints on fault geometry and segmentation of the fault system that may play a role in limiting the extent of future earthquake ruptures. In addition, slip rate estimates using piercing points such as offset channels will be explored. These new observations will allow us to investigate recent deformation and strain transfer along the NI/RC fault system.

  20. Sub-glacial processes interpreted from 3D and high-resolution 2D seismic data from the Central North Sea

    NASA Astrophysics Data System (ADS)

    Buckley, Francis

    2013-04-01

    A near complete record of Quaternary deposition, comprising more than 1000m of sediments, is preserved within the Central North Sea (CNS). This study presents evidence interpreted from seismic data of sub-glacial processes at a variety of scales for several Pleistocene glacial events. The study area has been the subject of hydrocarbon exploration since the mid 1960s and is covered by 3D seismic datasets up to 1000km2 as well as high-resolution 2D (HR2D) seismic datasets covering areas of 1-25km2. These data have been examined using a variety of techniques and attributes, including time-slicing, horizon slicing, topographic mapping and attribute analysis, to map erosion surfaces, depositional bodies, sedimentary textures and deformation events. An Early Pleistocene seismic event has been identified on 3D data, at 800-1000m MSL, within the southern part of the CNS, which marks the first appearance of iceberg ploughmarks. This event has been traced into the northern part of the study area, where iceberg ploughmarks are absent, but a set of mega-scale lineations at 700-800ms TWT are interpreted as ice-stream scour marks. A series of complex seismic events overlying the ice-scoured surface are interpreted as glacial deposits, at the top of which a network of channels, interpreted to be the result of glacial meltwaters, is associated with features interpreted as over-bank sand bodies. Higher in the sequence, timeslice images of Early to Middle Pleistocene deposits show trains of sub-parallel, curvi-linear, events, several km in length and 50-300m in width. Analysis of these events on HR2D data reveals them to consist of series of short, imbricated, dipping reflectors, terminated by complex, mounded structures. Individual sheets display up to 60ms TWT (55m) vertical displacement over horizontal distances of 200-250m. Two deformed packages are evident on HR2D data. A lower sequence, consisting of discrete thrust sheets lies above an erosion or dislocation surface (MP1

  1. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  2. Development patterns and controlling factors of Tertiary carbonate buildups: Insights from high-resolution 3D seismic and well data in the Malampaya gas field (Offshore Palawan, Philippines)

    NASA Astrophysics Data System (ADS)

    Fournier, F.; Borgomano, J.; Montaggioni, L. F.

    2005-04-01

    The comprehensive subsurface database of the Malampaya buildup (Late Eocene to Early Miocene, offshore NW Palawan) provides a rare insight into the development of South-East Asian Cenozoic carbonate systems and their controlling factors. The newly acquired high-resolution three-dimensional seismic survey, combined with facies and well-log analysis, allowed a better understanding of the internal architecture of a carbonate platform whose development was largely controlled by tectonic deformation. The Malampaya carbonate system was initiated in the Late Eocene, as an attached shelf influenced by significant clastic input. The Late Eocene-Early Oligocene shelf was subject to syn-depositional extensional tectonics (eastward tilting and block faulting) that favoured the development of small size buildups on structural highs. After a stage of eastward reef progradation, an aggrading carbonate shelf, frequently affected by subaerial exposure, developed from the earliest Late Oligocene to the Early Miocene. During this period, recurrent reactivation of highs along the western and northeastern buildup margins determined the asymmetric morphology and internal architecture of the carbonate system. The final demise of the carbonate buildup occurred in the late Early Miocene. It resulted from an increase in subsidence rate and/or a sharp increase in nutrient input. Additional parameters like eustacy, oceanographic conditions and the type of carbonate producers played a subordinate role in the buildup development and ultimate demise.

  3. High Resolution 3d Modeling of the Behaim Globe

    NASA Astrophysics Data System (ADS)

    Menna, F.; Rizzi, A.; Nocerino, E.; Remondino, F.; Gruen, A.

    2012-07-01

    The article describes the 3D surveying and modeling of the Behaim globe, the oldest still existing and intact globe of the earth, preserved at the German National Museum of Nuremberg, Germany. The work is primarily performed using high-resolution digital images and automatic photogrammetric techniques. Triangulation-based laser scanning is also employed to fill some gaps in the derived image-based 3D geometry and perform geometric comparisons. Major problems are encountered in texture mapping. The 3D modeling project and the creation of high-resolution map-projections is performed for scientific, conservation, visualization and education purposes.

  4. High-resolution 3D digital models of artworks

    NASA Astrophysics Data System (ADS)

    Fontana, Raffaella; Gambino, Maria Chiara; Greco, Marinella; Pampaloni, Enrico; Pezzati, Luca; Scopigno, Roberto

    2003-10-01

    The measurement of the shape of an artwork usually requires a high-resolution instrumentation, in order to catch small details such as chisel marks, sculptural relieves, surface cracks, etc. 3D scanning techniques, together with new modeling software tools, allow a high fidelity reproduction of an artwork: these can be applied either to support and document its repair or for the realization of 3D archives and virtual museums. Starting from a high-resolution digital model of an object, a further step could be its reproduction by means of fast-prototyping techniques like stereo-lithography or electro-erosion. This work is aimed at showing the performance of a high-resolution laser scanner devoted to Cultural Heritage applications. The device is portable and very versatile, in order to allow in situ applications, accurate and reliable, so to capture intricate details. This laser profilometer has been used in a few surveys, the most significant of which are the monitoring the various phases of the restoration process of an ellenistic bronze (the Minerva of Arezzo, Florence), the cataloguing of some archaeological findings (from the Grotta della Poesia, Lecce) and the documenting of wooden panels surface conditions (the "Madonna del Cardellino" by Raffaello and "La Tebaide" by Beato Angelico).

  5. High Resolution Coherent 3d Spectroscopy of Bromine

    NASA Astrophysics Data System (ADS)

    Strangfeld, Benjamin R.; Wells, Thresa A.; House, Zuri R.; Chen, Peter C.

    2013-06-01

    The high resolution gas phase electronic spectrum of bromine is rather congested due to many overlapping vibrational and rotational transitions with similar transition frequencies, and also due to isotopomeric effects. Expansion into the second dimension will remove some of this congestion; however through the implementation of High Resolution Coherent 3D Spectroscopy, the density of peaks is further reduced by at least two orders of magnitude. This allows for the selective examination of a small number of spatially resolved multidimensional bands, separated by vibrational quantum number and by isotopomer, which facilitates the fitting of many rovibrational peaks in bromine. The ability to derive information about the molecular constants for the electronic states involved will be discussed.

  6. Ensemble 3D PTV for high resolution turbulent statistics

    NASA Astrophysics Data System (ADS)

    Agüera, Nereida; Cafiero, Gioacchino; Astarita, Tommaso; Discetti, Stefano

    2016-12-01

    A method to extract turbulent statistics from three-dimensional (3D) PIV measurements via ensemble averaging is presented. The proposed technique is a 3D extension of the ensemble particle tracking velocimetry methods, which consist in summing distributions of velocity vectors calculated on low image density samples and then extract the statistical moments from the velocity vectors within sub-volumes, with the size of the sub-volume depending on the desired number of particles and on the available number of snapshots. The extension to 3D measurements poses the additional difficulty of sparse velocity vectors distributions, thus requiring a large number of snapshots to achieve high resolution measurements with a sufficient degree of accuracy. At the current state, this hinders the achievement of single-voxel measurements, unless millions of samples are available. Consequently, one has to give up spatial resolution and live with still relatively large (if compared to the voxel) sub-volumes. This leads to the further problem of the possible occurrence of a residual mean velocity gradient within the sub-volumes, which significantly contaminates the computation of second order moments. In this work, we propose a method to reduce the residual gradient effect, allowing to reach high resolution even with relatively large interrogation spots, therefore still retrieving a large number of particles on which it is possible to calculate turbulent statistics. The method consists in applying a polynomial fit to the velocity distributions within each sub-volume trying to mimic the residual mean velocity gradient.

  7. 3-D seismic data for geohazards assessment

    SciTech Connect

    Gafford, W.T.

    1996-10-01

    Three-dimensional (3-D) seismic data, acquired for oil and gas exploration purposes, is now being used to supplement, or in some cases, even replace conventional high resolution geohazard surveys in the Gulf of Mexico. The use of 3-D seismic data has improved the identification and understanding of some types of geohazards and has resulted in a more thorough interpretation of the shallow geologic section. The use of seismic interpretation workstations has allowed the geohazard interpreter to apply new tools in geohazard analysis. Some of the newer geohazard analysis. Some of the newer geophysical technologies used for exploration purposes are now being adapted for use in the identification and assessment of drilling hazards in the near-seafloor sedimentary section.

  8. High resolution 3D fluorescence tomography using ballistic photons

    NASA Astrophysics Data System (ADS)

    Zheng, Jie; Nouizi, Farouk; Cho, Jaedu; Kwong, Jessica; Gulsen, Gultekin

    2015-03-01

    We are developing a ballistic-photon based approach for improving the spatial resolution of fluorescence tomography using time-domain measurements. This approach uses early photon information contained in measured time-of-fight distributions originating from fluorescence emission. The time point spread functions (TPSF) from both excitation light and emission light are acquired with gated single photon Avalanche detector (SPAD) and time-correlated single photon counting after a short laser pulse. To determine the ballistic photons for reconstruction, the lifetime of the fluorophore and the time gate from the excitation profiles will be used for calibration, and then the time gate of the fluorescence profile can be defined by a simple time convolution. By mimicking first generation CT data acquisition, the sourcedetector pair will translate across and also rotate around the subject. The measurement from each source-detector position will be reshaped into a histogram that can be used by a simple back-projection algorithm in order to reconstruct high resolution fluorescence images. Finally, from these 2D sectioning slides, a 3D inclusion can be reconstructed accurately. To validate the approach, simulation of light transport is performed for biological tissue-like media with embedded fluorescent inclusion by solving the diffusion equation with Finite Element Method using COMSOL Multiphysics simulation. The reconstruction results from simulation studies have confirmed that this approach drastically improves the spatial resolution of fluorescence tomography. Moreover, all the results have shown the feasibility of this technique for high resolution small animal imaging up to several centimeters.

  9. High resolution micro ultrasonic machining for trimming 3D microstructures

    NASA Astrophysics Data System (ADS)

    Viswanath, Anupam; Li, Tao; Gianchandani, Yogesh

    2014-06-01

    This paper reports on the evaluation of a high resolution micro ultrasonic machining (HR-µUSM) process suitable for post fabrication trimming of complex 3D microstructures made from fused silica. Unlike conventional USM, the HR-µUSM process aims for low machining rates, providing high resolution and high surface quality. The machining rate is reduced by keeping the micro-tool tip at a fixed distance from the workpiece and vibrating it at a small amplitude. The surface roughness is improved by an appropriate selection of abrasive particles. Fluidic modeling is performed to study interaction among the vibrating micro-tool tip, workpiece, and the slurry. Using 304 stainless steel (SS304) tool tips of 50 µm diameter, the machining performance of the HR-µUSM process is characterized on flat fused silica substrates. The depths and surface finish of machined features are evaluated as functions of slurry concentrations, separation between the micro-tool and workpiece, and machining time. Under the selected conditions, the HR-µUSM process achieves machining rates as low as 10 nm s-1 averaged over the first minute of machining of a flat virgin sample. This corresponds to a mass removal rate of ≈20 ng min-1. The average surface roughness, Sa, achieved is as low as 30 nm. Analytical and numerical modeling are used to explain the typical profile of the machined features as well as machining rates. The process is used to demonstrate trimming of hemispherical 3D shells made of fused silica.

  10. High resolution 3D imaging of synchrotron generated microbeams

    SciTech Connect

    Gagliardi, Frank M.; Cornelius, Iwan; Blencowe, Anton; Franich, Rick D.; Geso, Moshi

    2015-12-15

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery.

  11. High Resolution 3D Radar Imaging of Comet Interiors

    NASA Astrophysics Data System (ADS)

    Asphaug, E. I.; Gim, Y.; Belton, M.; Brophy, J.; Weissman, P. R.; Heggy, E.

    2012-12-01

    Knowing the interiors of comets and other primitive bodies is fundamental to our understanding of how planets formed. We have developed a Discovery-class mission formulation, Comet Radar Explorer (CORE), based on the use of previously flown planetary radar sounding techniques, with the goal of obtaining high resolution 3D images of the interior of a small primitive body. We focus on the Jupiter-Family Comets (JFCs) as these are among the most primitive bodies reachable by spacecraft. Scattered in from far beyond Neptune, they are ultimate targets of a cryogenic sample return mission according to the Decadal Survey. Other suitable targets include primitive NEOs, Main Belt Comets, and Jupiter Trojans. The approach is optimal for small icy bodies ~3-20 km diameter with spin periods faster than about 12 hours, since (a) navigation is relatively easy, (b) radar penetration is global for decameter wavelengths, and (c) repeated overlapping ground tracks are obtained. The science mission can be as short as ~1 month for a fast-rotating JFC. Bodies smaller than ~1 km can be globally imaged, but the navigation solutions are less accurate and the relative resolution is coarse. Larger comets are more interesting, but radar signal is unlikely to be reflected from depths greater than ~10 km. So, JFCs are excellent targets for a variety of reasons. We furthermore focus on the use of Solar Electric Propulsion (SEP) to rendezvous shortly after the comet's perihelion. This approach leaves us with ample power for science operations under dormant conditions beyond ~2-3 AU. This leads to a natural mission approach of distant observation, followed by closer inspection, terminated by a dedicated radar mapping orbit. Radar reflections are obtained from a polar orbit about the icy nucleus, which spins underneath. Echoes are obtained from a sounder operating at dual frequencies 5 and 15 MHz, with 1 and 10 MHz bandwidths respectively. The dense network of echoes is used to obtain global 3D

  12. 3D high resolution pure optical photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Xie, Zhixing; Chen, Sung-Liang; Ling, Tao; Guo, L. Jay; Carson, Paul L.; Wang, Xueding

    2012-02-01

    The concept of pure optical photoacoustic microscopy(POPAM) was proposed based on optical rastering of a focused excitation beam and optically sensing the photoacoustic signal using a microring resonator fabricated by a nanoimprinting technique. After some refinedment of in the resonator structure and mold fabrication, an ultrahigh Q factor of 3.0×105 was achieved which provided high sensitivity with a noise equivalent detectable pressure(NEDP) value of 29Pa. This NEDP is much lower than the hundreds of Pascals achieved with existing optical resonant structures such as etalons, fiber gratings and dielectric multilayer interference filters available for acoustic measurement. The featured high sensitivity allowed the microring resonator to detect the weak photoacoustic signals from micro- or submicroscale objects. The inherent superbroad bandwidth of the optical microring resonator combined with an optically focused scanning beam provided POPAM of high resolution in the axial as well as both lateral directions while the axial resolution of conventional photoacoustic microscopy (PAM) suffers from the limited bandwidth of PZT detectors. Furthermore, the broadband microring resonator showed similar sensitivity to that of our most sensitive PZT detector. The current POPAM system provides a lateral resolution of 5μm and an axial resolution of 8μm, comparable to that achieved by optical microscopy while presenting the unique contrast of optical absorption and functional information complementing other optical modalities. The 3D structure of microvasculature, including capillary networks, and even individual red blood cells have been discerned successfully in the proof-of-concept experiments on mouse bladders ex vivo and mouse ears in vivo. The potential of approximately GHz bandwidth of the microring resonator also might allow much higher resolution than shown here in microscopy of optical absorption and acoustic propagation properties at depths in unfrozen tissue

  13. Advanced Multivariate Inversion Techniques for High Resolution 3D Geophysical Modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Maceira, M.; Zhang, H.; Rowe, C. A.

    2009-12-01

    We focus on the development and application of advanced multivariate inversion techniques to generate a realistic, comprehensive, and high-resolution 3D model of the seismic structure of the crust and upper mantle that satisfies several independent geophysical datasets. Building on previous efforts of joint invesion using surface wave dispersion measurements, gravity data, and receiver functions, we have added a fourth dataset, seismic body wave P and S travel times, to the simultaneous joint inversion method. We present a 3D seismic velocity model of the crust and upper mantle of northwest China resulting from the simultaneous, joint inversion of these four data types. Surface wave dispersion measurements are primarily sensitive to seismic shear-wave velocities, but at shallow depths it is difficult to obtain high-resolution velocities and to constrain the structure due to the depth-averaging of the more easily-modeled, longer-period surface waves. Gravity inversions have the greatest resolving power at shallow depths, and they provide constraints on rock density variations. Moreover, while surface wave dispersion measurements are primarily sensitive to vertical shear-wave velocity averages, body wave receiver functions are sensitive to shear-wave velocity contrasts and vertical travel-times. Addition of the fourth dataset, consisting of seismic travel-time data, helps to constrain the shear wave velocities both vertically and horizontally in the model cells crossed by the ray paths. Incorporation of both P and S body wave travel times allows us to invert for both P and S velocity structure, capitalizing on empirical relationships between both wave types’ seismic velocities with rock densities, thus eliminating the need for ad hoc assumptions regarding the Poisson ratios. Our new tomography algorithm is a modification of the Maceira and Ammon joint inversion code, in combination with the Zhang and Thurber TomoDD (double-difference tomography) program.

  14. True 3D High Resolution imagery of a Buried Shipwreck: the Invincible (1758)

    NASA Astrophysics Data System (ADS)

    Dix, J. K.; Bull, J. M.; Henstock, T.; Gutowski, M.; Hogarth, P.; Leighton, T. G.; White, P. R.

    2005-12-01

    This paper will present the first true 3D high resolution acoustic imagery of a wreck site buried in the marine environment. Using a 3D Chirp system developed at the University of Southampton, a marine seismic survey of the mid-eighteenth century wreck site has been undertaken. The Invincible was a 74 gun warship built by the French in 1744, captured by the British in 1747 and subsequently lost off Portsmouth, UK in February 1758. The wreck was re-discovered by divers in 1979, partially buried on the margins of a mobile sandbank in approximately 8 metres of water. In 2004 the system was surveyed using a 60 channel, rigid framed 3D Chirp (1.5-13 kHz source sweep) system with integral RTK GPS and attitude systems. An area of 160 m x 160 m, centered over the wreck site, was surveyed with a total of 150 Gb data being acquired. The data was processed, using 3D Promax, to produce 25 cm bins with typical 3-6 fold coverage. The stacked traces have been visualized and interpreted using Kingdom Suite software. The final imagery shows at unprecedented resolution the full three-dimensional buried form of the wreck and it's relationship to the surrounding sedimentary sequences, enabling the full evolution of the site to be discussed. Further, the data is compared to previously acquired swath bathymetry and 2D seismic data in order to illustrate the impact of such a device for underwater cultural heritage management.

  15. High-resolution reconstruction for 3D SPECT

    NASA Astrophysics Data System (ADS)

    Li, Tianfang; Wen, Junhai; Lu, Hongbing; Li, Xiang; Liang, Zhengrong

    2003-05-01

    In this work, we have developed a new method for SPECT (single photon emission computed tomography) image reconstruction, which has shown the potential to provide higher resolution results than any other conventional methods using the same projection data. Unlike the conventional FBP- (filtered backprojection) and EM- (expectation maximization) type algorithms, we utilize as much system response information as we can during the reconstruction process. This information can be pre-measured during the calibration process and stored in the computer. By selecting different sampling schemes for the point response measurement, different system kernel matrices are obtained. Reconstruction utilizing these kernels generates a set of reconstructed images of the same source. Based on these reconstructed images and their corresponding sampling schemes, we are able to achieve a high resolution final image that best represents the object. Because a uniform attenuation, resolution variation and some other effects are included during the formation of the system kernel matrices, the reconstruction from the acquired projection data also compensates for all these effects correctly.

  16. Structure of the ophiolite-hosted Outokumpu Cu-Co-Zn-Ni-Ag-Au sulfide ore district revealed by combined 3D modelling and 2D high-resolution seismic reflection data

    NASA Astrophysics Data System (ADS)

    Saalmann, Kerstin; Laine, Eevaliisa

    2015-04-01

    The Outokumpu district within the North Karelia Schist Belt in eastern Finland hosts Cu-Co-Zn-Ni-Ag-Au sulfide deposits which are associated with Palaeoproterozoic ophiolitic metaperidotites that were tectonically interleaved with allochthonous metaturbidites. Extensive metasomatism of the peridotites produced a rim of quartz-carbonate-calc-silicate rocks, grouped as the Outokumpu assemblage (OKA). A tectonic history comprising various phases of folding and shearing followed by several faulting events dismembered the metaperidotites so that ore bodies cannot be easily followed along strike. Future exploration has to expand the search into deeper areas and consequently requires better knowledge of the subsurface geology. In order to unravel the complex structure 3D geologic models of different scales have been built using a variety of information: geological maps, aeromagnetic and gravity maps, digital terrain models, mine cross sections, drill core logs combined with observations from underground mine galleries, structural measurements, and data from seismic survey lines. The latter have been used to detect upper crustal-scale structures and have been reprocessed for our purpose. The models reveal that the ore body has formed during remobilisation of a proto-ore and is closely related to thrust zones that truncate the OKA. Later faults dismembered the ore explaining the variable depth of the different ore bodies along the Outokumpu ore zone. On a larger scale, at least four km-scale thrust sheets separated by major listric shear zones (curved dislocations in the seismic lines) can be recognized, each internally further imbricated by subordinate shear zones containing a number of lens-shape bodies of probably OKA rocks. Thrust stacking was followed by at least 3 stages of faulting that divided the ore belt into fault-bounded blocks with heterogeneous displacements: (i) NW-dipping faults with unresolved kinematics, (ii) reverse faulting along c.50°-60° SE

  17. Crustal deformation dynamics and stress evolution during seamount subduction: High-resolution 3-D numerical modeling

    NASA Astrophysics Data System (ADS)

    Ruh, Jonas B.; Sallarès, Valentí; Ranero, César R.; Gerya, Taras

    2016-09-01

    Seamounts or submarine volcanoes frequently collide with the overriding crust along presently active subduction zones locally modifying stress and permanent deformation patterns. Dynamics of this process is not fully understood, and several end-member scenarios of seamount-crust interaction are proposed. Here we use high-resolution 3-D numerical models to investigate evolution of crustal deformation and stress distribution within the upper plate induced by the underthrusting of subducting seamounts. The dynamical effects of the upper plate strength, subduction interface strength, and strain weakening of the crust are investigated. Experiment results demonstrate that characteristic crustal fracturing patterns formed in response to different seamount-crust interaction scenarios. Indenting seamounts strongly deform the overriding plate along a corridor as wide as the underthrusting seamount by constantly shifting subvertical shear zones rooted at the seamount extensions. A reentrant develops during initial seamount collision. A topographic bulge atop the seamount and lateral ridges emerge from further seamount subduction. Obtained stress pattern shows areas of large overpressure above the rearward and large underpressure above the trenchward flank of the seamount. Results of numerical experiments are consistent with seismic reflection images and seismic velocity models of the upper plate in areas of seamount subduction along the Middle America Trench and give important insights into the long-lasting question, whether subducting seamounts and rough seafloor act as barriers or asperities for megathrust earthquakes.

  18. High Resolution Seismic Imaging of the Brawley Seismic Fault Zone

    NASA Astrophysics Data System (ADS)

    Goldman, M.; Catchings, R. D.; Rymer, M. J.; Lohman, R. B.; McGuire, J. J.; Sickler, R. R.; Criley, C.; Rosa, C.

    2011-12-01

    In March 2010, we acquired a series of high-resolution P-wave seismic reflection and refraction data sets across faults in the Brawley seismic zone (BSZ) within the Salton Sea Geothermal Field (SSGF). Our objectives were to determine the dip, possible structural complexities, and seismic velocities within the BSZ. One dataset was 3.4 km long trending east-west, and consisted of 334 shots recorded by a 2.4 km spread of 40 hz geophones placed every 10 meters. The spread was initially laid out from the first station at the eastern end of the profile to roughly 2/3 into the profile. After about half the shots, the spread was shifted from roughly 1/3 into the profile to the last station at the western end of the profile. P-waves were generated by Betsy-Seisgun 'shots' spaced every 10 meters. Initial analysis of first breaks indicate near-surface velocities of ~500-600 meters/sec, and deeper velocities of around 2000 meters/sec. Preliminary investigation of shot gathers indicate a prominent fault that extends to the ground surface. This fault is on a projection of the Kalin fault from about 40 m to the south, and broke the surface down to the west with an approximately north-south strike during a local swarm of earthquakes in 2005 and also slipped at the surface in association with the 2010 El Mayor-Cucapah earthquake in Baja California. The dataset is part of the combined Obsidian Creep data set, and provides the most detailed, publicly available subsurface images of fault structures in the BSZ and SSGF.

  19. High-resolution seismic studies applied to injected geothermal fluids

    SciTech Connect

    Smith, A.T.; Kasameyer, P.

    1985-01-01

    The application of high-resolution microseismicity studies to the problem of monitoring injected fluids is one component of the Geothermal Injection Monitoring Project at LLNL. The evaluation of microseismicity includes the development of field techniques, and the acquisition and processing of events during the initial development of a geothermal field. To achieve a specific detection threshold and location precision, design criteria are presented for seismic networks. An analysis of a small swarm near Mammoth Lakes, California, demonstrates these relationships and the usefulness of high-resolution seismic studies. A small network is currently monitoring the Mammoth-Pacific geothermal power plant at Casa Diablo as it begins production.

  20. Analyzing 3D xylem networks in Vitis vinifera using High Resolution Computed Tomography (HRCT)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent developments in High Resolution Computed Tomography (HRCT) have made it possible to visualize three dimensional (3D) xylem networks without time consuming, labor intensive physical sectioning. Here we describe a new method to visualize complex vessel networks in plants and produce a quantitat...

  1. High Resolution Seismic Reflection Survey for Coal Mine: fault detection

    NASA Astrophysics Data System (ADS)

    Khukhuudei, M.; Khukhuudei, U.

    2014-12-01

    High Resolution Seismic Reflection (HRSR) methods will become a more important tool to help unravel structures hosting mineral deposits at great depth for mine planning and exploration. Modern coal mining requires certainly about geological faults and structural features. This paper focuses on 2D Seismic section mapping results from an "Zeegt" lignite coal mine in the "Mongol Altai" coal basin, which required the establishment of major structure for faults and basement. HRSR method was able to detect subsurface faults associated with the major fault system. We have used numerical modeling in an ideal, noise free environment with homogenous layering to detect of faults. In a coal mining setting where the seismic velocity of the high ranges from 3000m/s to 3600m/s and the dominant seismic frequency is 100Hz, available to locate faults with a throw of 4-5m. Faults with displacements as seam thickness detected down to several hundred meter beneath the surface.

  2. High resolution seismic reflection test at the DOE Hanford Site

    SciTech Connect

    Narbutovskih, S.M.; Michelsen, F.B.; Clark, J.C.; Christensen, E.W.

    1995-04-01

    A recent test was conducted to ascertain the benefits of swept source technology for use at the DOE Hanford Site. Previous high resolution seismic surveys suffered from coherent noise interference, poor signal transmission and lack of borehole velocity control. P-wave data were collected with the T-2500 Minivib produced by IVI, Inc. and Oyo Geospace`s DAS-1 acquisition system. Results showed a significant increase m signal-to-noise ratio, increased resolving power and better depth penetration of the signal. It is concluded that swept source technology as part of a total systems approach, significantly expands the capabilities of the shallow high resolution seismic reflection method for use at the DOE Hanford Site.

  3. A novel 3D integrated platform for the high-resolution study of cell migration plasticity.

    PubMed

    Schneider, Julian; Bachmann, Tobias; Franco, Davide; Richner, Patrizia; Galliker, Patrick; Tiwari, Manish K; Ferrari, Aldo; Poulikakos, Dimos

    2013-08-01

    Understanding the mechanisms of interstitial cancer migration is of great scientific and medical interest. Creating 3D platforms, conducive to optical microscopy and mimicking the physical parameters (in plane and out of plane) involved in interstitial migration, is a major step forward in this direction. Here, a novel approach is used to directly print free-form, 3D micropores on basal scaffolds containing microgratings optimized for contact guidance. The platforms so formed are validated by monitoring cancer cell migration and micropore penetration with high-resolution optical microscopy. The shapes, sizes and deformability of the micropores are controllable, paving the way to decipher their role in interstitial migration.

  4. Micro-well arrays for 3D shape control and high resolution analysis of single cells.

    PubMed

    Ochsner, Mirjam; Dusseiller, Marc R; Grandin, H Michelle; Luna-Morris, Sheila; Textor, Marcus; Vogel, Viola; Smith, Michael L

    2007-08-01

    In addition to rigidity, matrix composition, and cell shape, dimensionality is now considered an important property of the cell microenvironment which directs cell behavior. However, available tools for cell culture in two-dimensional (2D) versus three-dimensional (3D) environments are difficult to compare, and no tools exist which provide 3D shape control of single cells. We developed polydimethylsiloxane (PDMS) substrates for the culture of single cells in 3D arrays which are compatible with high-resolution microscopy. Cell adhesion was limited to within microwells by passivation of the flat upper surface through 'wet-printing' of a non-fouling polymer and backfilling of the wells with specific adhesive proteins or lipid bilayers. Endothelial cells constrained within microwells were viable, and intracellular features could be imaged with high resolution objectives. Finally, phalloidin staining of actin stress fibers showed that the cytoskeleton of cells in microwells was 3D and not limited to the cell-substrate interface. Thus, microwells can be used to produce microenvironments for large numbers of single cells with 3D shape control and can be added to a repertoire of tools which are ever more sought after for both fundamental biological studies as well as high throughput cell screening assays.

  5. High-resolution real-time 3D shape measurement on a portable device

    NASA Astrophysics Data System (ADS)

    Karpinsky, Nikolaus; Hoke, Morgan; Chen, Vincent; Zhang, Song

    2013-09-01

    Recent advances in technology have enabled the acquisition of high-resolution 3D models in real-time though the use of structured light scanning techniques. While these advances are impressive, they require large amounts of computing power, thus being limited to using large desktop computers with high end CPUs and sometimes GPUs. This is undesirable in making high-resolution real-time 3D scanners ubiquitous in our mobile lives. To address this issue, this work describes and demonstrates a real-time 3D scanning system that is realized on a mobile device, namely a laptop computer, which can achieve speeds of 20fps 3D at a resolution of 640x480 per frame. By utilizing a graphics processing unit (GPU) as a multipurpose parallel processor, along with a parallel phase shifting technique, we are able to realize the entire 3D processing pipeline in parallel. To mitigate high speed camera transfer problems, which typically require a dedicated frame grabber, we make use of USB 3.0 along with direct memory access (DMA) to transfer camera images to the GPU. To demonstrate the effectiveness of the technique, we experiment with the scanner on both static geometry of a statue and dynamic geometry of a deforming material sample in front of the system.

  6. High resolution 3D dosimetry for microbeam radiation therapy using optical CT

    NASA Astrophysics Data System (ADS)

    McErlean, C.; Bräuer-Krisch, E.; Adamovics, J.; Leach, M. O.; Doran, S. J.

    2015-01-01

    Optical Computed Tomography (CT) is a promising technique for dosimetry of Microbeam Radiation Therapy (MRT), providing high resolution 3D dose maps. Here different MRT irradiation geometries are visualised showing the potential of Optical CT as a tool for future MRT trials. The Peak-to-Valley dose ratio (PVDR) is calculated to be 7 at a depth of 3mm in the radiochromic dosimeter PRESAGE®. This is significantly lower than predicted values and possible reasons for this are discussed.

  7. A Novel Image Compression Algorithm for High Resolution 3D Reconstruction

    NASA Astrophysics Data System (ADS)

    Siddeq, M. M.; Rodrigues, M. A.

    2014-06-01

    This research presents a novel algorithm to compress high-resolution images for accurate structured light 3D reconstruction. Structured light images contain a pattern of light and shadows projected on the surface of the object, which are captured by the sensor at very high resolutions. Our algorithm is concerned with compressing such images to a high degree with minimum loss without adversely affecting 3D reconstruction. The Compression Algorithm starts with a single level discrete wavelet transform (DWT) for decomposing an image into four sub-bands. The sub-band LL is transformed by DCT yielding a DC-matrix and an AC-matrix. The Minimize-Matrix-Size Algorithm is used to compress the AC-matrix while a DWT is applied again to the DC-matrix resulting in LL2, HL2, LH2 and HH2 sub-bands. The LL2 sub-band is transformed by DCT, while the Minimize-Matrix-Size Algorithm is applied to the other sub-bands. The proposed algorithm has been tested with images of different sizes within a 3D reconstruction scenario. The algorithm is demonstrated to be more effective than JPEG2000 and JPEG concerning higher compression rates with equivalent perceived quality and the ability to more accurately reconstruct the 3D models.

  8. 3D seismic image processing for interpretation

    NASA Astrophysics Data System (ADS)

    Wu, Xinming

    Extracting fault, unconformity, and horizon surfaces from a seismic image is useful for interpretation of geologic structures and stratigraphic features. Although interpretation of these surfaces has been automated to some extent by others, significant manual effort is still required for extracting each type of these geologic surfaces. I propose methods to automatically extract all the fault, unconformity, and horizon surfaces from a 3D seismic image. To a large degree, these methods just involve image processing or array processing which is achieved by efficiently solving partial differential equations. For fault interpretation, I propose a linked data structure, which is simpler than triangle or quad meshes, to represent a fault surface. In this simple data structure, each sample of a fault corresponds to exactly one image sample. Using this linked data structure, I extract complete and intersecting fault surfaces without holes from 3D seismic images. I use the same structure in subsequent processing to estimate fault slip vectors. I further propose two methods, using precomputed fault surfaces and slips, to undo faulting in seismic images by simultaneously moving fault blocks and faults themselves. For unconformity interpretation, I first propose a new method to compute a unconformity likelihood image that highlights both the termination areas and the corresponding parallel unconformities and correlative conformities. I then extract unconformity surfaces from the likelihood image and use these surfaces as constraints to more accurately estimate seismic normal vectors that are discontinuous near the unconformities. Finally, I use the estimated normal vectors and use the unconformities as constraints to compute a flattened image, in which seismic reflectors are all flat and vertical gaps correspond to the unconformities. Horizon extraction is straightforward after computing a map of image flattening; we can first extract horizontal slices in the flattened space

  9. Shallow subsurface applications of high-resolution seismic reflection

    NASA Astrophysics Data System (ADS)

    Steeples, Don

    2002-11-01

    Shallow seismic reflection surveys have been applied to a wide variety of problems. For example, in many geologic settings, variations and discontinuities on the surface of bedrock can influence the transport and eventual fate of contaminants introduced at or near the ground surface. Using seismic methods to determine the nature and location of anomalous bedrock can be an essential component of hydrologic characterization. Shallow seismic surveys can also be used to detect earthquake faults and to image underground voids. During the early 1980s, the advent of digital engineering seismographs designed for shallow, high-resolution surveying spurred significant improvements in engineering and environmental reflection seismology. Commonly, shallow seismic reflection methods are used in conjunction with other geophysical and geological methods, supported by a well-planned drilling-verification effort. To the extent that seismic reflection, refraction, and surface-wave methods can constrain shallow stratigraphy, geologic structure, engineering properties, and relative permeability, these methods are useful in civil-engineering applications and in characterizing environmental sites. Case histories from Kansas, California, and Texas illustrate how seismic reflection can be used to map bedrock beneath alluvium at hazardous waste sites, detect abandoned coal mines, follow the top of the saturated zone during an alluvial aquifer pumping test, and map shallow faults that serve as contaminant flowpaths.

  10. 3D high-resolution two-photon crosslinked hydrogel structures for biological studies.

    PubMed

    Brigo, Laura; Urciuolo, Anna; Giulitti, Stefano; Giustina, Gioia Della; Tromayer, Maximilian; Liska, Robert; Elvassore, Nicola; Brusatin, Giovanna

    2017-03-25

    Hydrogels are widely used as matrices for cell growth due to the their tuneable chemical and physical properties, which mimic the extracellular matrix of natural tissue. The microfabrication of hydrogels into arbitrarily complex 3D structures is becoming essential for numerous biological applications, and in particular for investigating the correlation between cell shape and cell function in a 3D environment. Micrometric and sub-micrometric resolution hydrogel scaffolds are required to deeply investigate molecular mechanisms behind cell-matrix interaction and downstream cellular processes. We report the design and development of high resolution 3D gelatin hydrogel woodpile structures by two-photon crosslinking. Hydrated structures of lateral linewidth down to 0.5 µm, lateral and axial resolution down to a few µm are demonstrated. According to the processing parameters, different degrees of polymerization are obtained, resulting in hydrated scaffolds of variable swelling and deformation. The 3D hydrogels are biocompatible and promote cell adhesion and migration. Interestingly, according to the polymerization degree, 3D hydrogel woodpile structures show variable extent of cell adhesion and invasion. Human BJ cell lines show capability of deforming 3D micrometric resolved hydrogel structures.

  11. A Microscopic Optically Tracking Navigation System That Uses High-resolution 3D Computer Graphics.

    PubMed

    Yoshino, Masanori; Saito, Toki; Kin, Taichi; Nakagawa, Daichi; Nakatomi, Hirofumi; Oyama, Hiroshi; Saito, Nobuhito

    2015-01-01

    Three-dimensional (3D) computer graphics (CG) are useful for preoperative planning of neurosurgical operations. However, application of 3D CG to intraoperative navigation is not widespread because existing commercial operative navigation systems do not show 3D CG in sufficient detail. We have developed a microscopic optically tracking navigation system that uses high-resolution 3D CG. This article presents the technical details of our microscopic optically tracking navigation system. Our navigation system consists of three components: the operative microscope, registration, and the image display system. An optical tracker was attached to the microscope to monitor the position and attitude of the microscope in real time; point-pair registration was used to register the operation room coordinate system, and the image coordinate system; and the image display system showed the 3D CG image in the field-of-view of the microscope. Ten neurosurgeons (seven males, two females; mean age 32.9 years) participated in an experiment to assess the accuracy of this system using a phantom model. Accuracy of our system was compared with the commercial system. The 3D CG provided by the navigation system coincided well with the operative scene under the microscope. Target registration error for our system was 2.9 ± 1.9 mm. Our navigation system provides a clear image of the operation position and the surrounding structures. Systems like this may reduce intraoperative complications.

  12. Crust Uppermost Mantle Structure beneath Eastern Asia: Progress towards a Uniform, Tightly Constrained, High Resolution 3-D Model

    NASA Astrophysics Data System (ADS)

    Shen, W.; Ritzwoller, M. H.; Zheng, Y.; Lin, F. C.; Kim, Y.; Ning, J.; Kang, D.; Feng, L.; Wiens, D. A.

    2015-12-01

    In the past decade, large and dense seismic arrays have been deployed across much of eastern Asia (e.g., the "CEArray" and the "China Array" deployed by the China Earthquake Administration (CEA), the NECESS Array deployed collaboratively by China, Japan and the US, Korean Seismic Network, KNET and other networks in Japan, and historical PASSCAL installations), which have been used to produce increasingly well resolved models of the crust and uppermost mantle at different length scales. These models, however, do not cover eastern Asia uniformly. In this presentation, we report on an effort to generate a uniform high resolution 3-D model of the crust and uppermost mantle beneath eastern Asia using state-of-art surface wave and body wave inversion techniques. Highlights of this effort include: 1) We collect ambient noise cross-correlations using more than 1,800 seismic stations from multiple seismic arrays in this area and perform uniform surface wave tomography for the study area. 2) We collect P-wave receiver functions for over 1,000 stations and Rayleigh wave H/V ratio measurements for over 200 stations in this area. 3) We adopt a Bayesian Monte Carlo inversion to the Rayleigh wave dispersion maps and produce a uniform 3-D model with uncertainties of the crust and uppermost mantle. 4) In the areas where receiver functions and/or Rayleigh wave H/V ratios are collected, we replace the surface wave inversion by a joint inversion of surface waves and these seismic observables. The resulting model displays a great variety and considerable richness of geological and tectonic features in the crust and in the uppermost mantle which we summarize and discuss with focus on the relationship between the observed crustal variations and tectonic/geological boundaries and lithospheric modifications associated with volcanism in Northeast China.

  13. Seismic investigations for high resolution exploration ahead and around boreholes

    NASA Astrophysics Data System (ADS)

    Jaksch, Katrin; Giese, Ruediger; Kopf, Matthias

    2013-04-01

    Deep reservoirs usually will be explored with a surface seismic survey often in combination with borehole seismic measurements like VSP or SWD which can improve the velocity model of the underground. Reservoirs especially in geothermal fields are often characterized by small-scale structures. Additionally, with depth the need for exploration methods with a high resolution increases because standard methods like borehole seismic measurements cannot improve their resolution with depth. To localize structures with more accuracy methods with higher resolution in the range of meters are necessary. Within the project SPWD - Seismic Prediction While Drilling a new exploration method will be developed. With an implementation of seismic sources and receivers in one device an exploration method ahead and around the borehole will be enabled. Also, a high resolution independent from the depth will be achieved. Therefore active and powerful seismic sources are necessary to reach an acceptable penetration depth. Step by step seismic borehole devices were developed, which can be used under different conditions. Every borehole device contains four seismic sources and several three-component geophones. A small distance between actuators and geophones allows detecting also the high frequency content of the wave field reflected at geological structures. Also, exploration with a high resolution is possible. A first borehole device was developed for basic conditions in horizontal boreholes without special terms to temperature or pressure. In a mine first methodical measurements for the initiated wave field were performed. Therefor an existing seismic test area at the research and education mine of the TU Bergakademie Freiberg was extended with boreholes. In the seismic test area, consisting of a dense geophone array with three-component geophone anchors, two horizontal and one vertical borehole was drilled. To achieve a radiation pattern in predefined directions by constructive

  14. High-Resolution Variable-Density 3D Cones Coronary MRA

    PubMed Central

    Addy, Nii Okai; Ingle, R. Reeve; Wu, Holden H.; Hu, Bob S.; Nishimura, Dwight G.

    2015-01-01

    Purpose To improve the spatial/temporal resolution of whole-heart coronary MR angiography (CMRA) by developing a variable-density (VD) 3D cones acquisition suitable for image reconstruction with parallel imaging and compressed sensing techniques. Methods A VD 3D cones trajectory design incorporates both radial and spiral trajectory undersampling techniques to achieve higher resolution. This design is used to generate a VD cones trajectory with 0.8 mm/66 ms isotropic spatial/temporal resolution, using a similar number of readouts as our previous fully sampled cones trajectory (1.2 mm/100 ms). Scans of volunteers and patients are performed to evaluate the performance of the VD trajectory, using non-Cartesian L1-ESPIRiT for high-resolution image reconstruction. Results With gridding reconstruction, the high-resolution scans experience an expected drop in signal-to-noise and contrast-to-noise ratios, but with L1-ESPIRiT, the apparent noise is substantially reduced. Compared to 1.2 mm images, in each volunteer, the L1-ESPIRiT 0.8 mm images exhibit higher vessel sharpness values in the right and left anterior descending arteries. Conclusion CMRA with isotropic sub-millimeter spatial resolution and high temporal resolution can be performed with VD 3D cones to improve the depiction of coronary arteries. PMID:26172829

  15. High Resolution 3-D Waveform Tomography of the Lithospheric Structure of the Hellenic Subduction Zone

    NASA Astrophysics Data System (ADS)

    Lamara, Samir; Friederich, Wolfgang; Schumacher, Florian; Meier, Thomas; Egelados Working Group

    2015-04-01

    We present a high-resolution lithospheric shear-wave velocity model of the Hellenic subduction zone obtained by full waveform tomography of the EGELADOS project data. This high quality data was collected with the broadband amphibian seismic network EGELADOS that was deployed all over the southern Aegean from October 2005 to April 2007 providing a sampling of the south Aegean lithosphere with a resolution never reached before. Because of the strong deformations in the Hellenic subduction zone and the linear approximation in solving the full waveform inverse problem, a special care was taken to guarantee the best possible accuracy of earthquakes parameters and initial reference models. The accurate locations of the selected earthquakes were hence re-estimated and the best moment tensors were selected by computing the misfits between the observed seismograms for one event and a set of synthetics calculated for every value of the fault angles (strike, dip and rake) and hypocenter depths. On the other hand, instead of using an average 1D reference model for the complete region, a 1D path-specific approach permitted to obtain the 1D initial model for each source-receiver pair by waveform fitting using a grid search varying the Moho depth and the average S-wave velocity in the crust. These models were then refined by a 1D inversion and used to calculate the sensitivity kernels for each source-receiver pair. For the inversion, we adopted a special formulation including a correction term which permits to use the path-specific sensitivity kernels in an inversion for 3D velocity perturbations relative to a single 1D reference model constructed from all these 1D initial models. The inversion was done in frequency domain with a frequency window ranging from 0.03 Hz to 0.1 Hz. For the selected 2695 paths the total number of data values reached 140140. The model was discretized in volume cells with a varying vertical width and a fixed lateral one of approximately 15 km, resulting

  16. Walker Ranch 3D seismic images

    SciTech Connect

    Robert J. Mellors

    2016-03-01

    Amplitude images (both vertical and depth slices) extracted from 3D seismic reflection survey over area of Walker Ranch area (adjacent to Raft River). Crossline spacing of 660 feet and inline of 165 feet using a Vibroseis source. Processing included depth migration. Micro-earthquake hypocenters on images. Stratigraphic information and nearby well tracks added to images. Images are embedded in a Microsoft Word document with additional information. Exact location and depth restricted for proprietary reasons. Data collection and processing funded by Agua Caliente. Original data remains property of Agua Caliente.

  17. 3D Rendering of High Resolution PolInSAR Urban Area

    NASA Astrophysics Data System (ADS)

    Trouve, Nicolas; Colin-Koeniguer, Elise; Cantalloube, Hubert

    2011-03-01

    In the field of urban SAR imaging and mapping, the PolInSAR information potential has not been fully exploited. Until recently available resolution of PolInSAR images were not sufficient to render 3D city landscape using the polarimetric and interferometric information. This paper presents the results of urban reconstruction using single pass full polarimetric and interferometric data using ONERA's Airborne system: RAMSES. It focus on the statistical process designed for the PolInSAR matrices estimation in high resolution urban areas. A region growing algorithm is proposed to design statistically homogeneous region while preserving spatial features of the scene through shape constraints. A companion paper [CKT11] will present the interferometry tools developed to exploit the region growth results. Validation on real data using RAMSES images at X band over Toulouse are presented through 3D colored render results.

  18. High-resolution seismic reflection surveying with a land streamer

    NASA Astrophysics Data System (ADS)

    Cengiz Tapırdamaz, Mustafa; Cankurtaranlar, Ali; Ergintav, Semih; Kurt, Levent

    2013-04-01

    In this study, newly designed seismic reflection data acquisition array (land streamer) is utilized to image the shallow subsurface. Our acquisition system consist of 24 geophones screwed on iron plates with 2 m spacing, moving on the surface of the earth which are connected with fire hose. Completely original, 4.5 Kg weight iron plates provides satisfactory coupling. This land-streamer system enables rapid and cost effective acquisition of seismic reflection data due to its operational facilities. First test studies were performed using various seismic sources such as a mini-vibro truck, buffalo-gun and hammer. The final fieldwork was performed on a landslide area which was studied before. Data acquisition was carried out on the line that was previously measured by the seismic survey using 5 m geophone and shot spacing. This line was chosen in order to re-image known reflection patterns obtained from the previous field study. Taking penetration depth into consideration, a six-cartridge buffalo-gun was selected as a seismic source to achieve high vertical resolution. Each shot-point drilled 50 cm for gunshots to obtain high resolution source signature. In order to avoid surface waves, the offset distance between the source and the first channel was chosen to be 50 m and the shot spacing was 2 m. These acquisition parameters provided 12 folds at each CDP points. Spatial sampling interval was 1 m at the surface. The processing steps included standard stages such as gain recovery, editing, frequency filtering, CDP sorting, NMO correction, static correction and stacking. Furthermore, surface consistent residual static corrections were applied recursively to improve image quality. 2D F-K filter application was performed to suppress air and surface waves at relatively deep part of the seismic section. Results show that, this newly designed, high-resolution land seismic data acquisition equipment (land-streamer) can be successfully used to image subsurface. Likewise

  19. High resolution 3D confocal microscope imaging of volcanic ash particles.

    PubMed

    Wertheim, David; Gillmore, Gavin; Gill, Ian; Petford, Nick

    2017-07-15

    We present initial results from a novel high resolution confocal microscopy study of the 3D surface structure of volcanic ash particles from two recent explosive basaltic eruptions, Eyjafjallajökull (2010) and Grimsvötn (2011), in Iceland. The majority of particles imaged are less than 100μm in size and include PM10s, known to be harmful to humans if inhaled. Previous studies have mainly used 2D microscopy to examine volcanic particles. The aim of this study was to test the potential of 3D laser scanning confocal microscopy as a reliable analysis tool for these materials and if so to what degree high resolution surface and volume data could be obtained that would further aid in their classification. First results obtained using an Olympus LEXT scanning confocal microscope with a ×50 and ×100 objective lens are highly encouraging. They reveal a range of discrete particle types characterised by sharp or concave edges consistent with explosive formation and sudden rupture of magma. Initial surface area/volume ratios are given that may prove useful in subsequent modelling of damage to aircraft engines and human tissue where inhalation has occurred.

  20. Ultra-Wideband Time-Difference-of-Arrival High Resolution 3D Proximity Tracking System

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Phan, Chau; Dekome, Kent; Dusl, John

    2010-01-01

    This paper describes a research and development effort for a prototype ultra-wideband (UWB) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being studied for use in tracking of lunar./Mars rovers and astronauts during early exploration missions when satellite navigation systems are not available. U IATB impulse radio (UWB-IR) technology is exploited in the design and implementation of the prototype location and tracking system. A three-dimensional (3D) proximity tracking prototype design using commercially available UWB products is proposed to implement the Time-Difference- Of-Arrival (TDOA) tracking methodology in this research effort. The TDOA tracking algorithm is utilized for location estimation in the prototype system, not only to exploit the precise time resolution possible with UWB signals, but also to eliminate the need for synchronization between the transmitter and the receiver. Simulations show that the TDOA algorithm can achieve the fine tracking resolution with low noise TDOA estimates for close-in tracking. Field tests demonstrated that this prototype UWB TDOA High Resolution 3D Proximity Tracking System is feasible for providing positioning-awareness information in a 3D space to a robotic control system. This 3D tracking system is developed for a robotic control system in a facility called "Moonyard" at Honeywell Defense & System in Arizona under a Space Act Agreement.

  1. High-resolution laser radar for 3D imaging in artwork cataloging, reproduction, and restoration

    NASA Astrophysics Data System (ADS)

    Ricci, Roberto; Fantoni, Roberta; Ferri de Collibus, Mario; Fornetti, Giorgio G.; Guarneri, Massimiliano; Poggi, Claudio

    2003-10-01

    A high resolution Amplitude Modulated Laser Radar (AM-LR) sensor has recently been developed, aimed at accurately reconstructing 3D digital models of real targets, either single objects or complex scenes. The sensor sounding beam can be swept linearly across the object or circularly around it, by placing the object on a controlled rotating platform, enabling to obtain respectively linear and cylindrical range maps. Both amplitude and phase shift of the modulating wave of back-scattered light are collected and processed, providing respectively a shade-free, high resolution, photographic-like picture and accurate range data in the form of a range image. The resolution of range measurements depends mainly on the laser modulation frequency, provided that the power of the backscattered light reaching the detector is at least a few nW (current best performances are ~100 μm). The complete object surface can be reconstructed from the sampled points by using specifically developed software tools. The system has been successfully applied to scan different types of real surfaces (stone, wood, alloys, bones), with relevant applications in different fields, ranging from industrial machining to medical diagnostics, to vision in hostile environments. Examples of artwork reconstructed models (pottery, marble statues) are presented and the relevance of this technology for reverse engineering applied to cultural heritage conservation and restoration are discussed. Final 3D models can be passed to numeric control machines for rapid-prototyping, exported in standard formats for CAD/CAM purposes and made available on the Internet by adopting a virtual museum paradigm, thus possibly enabling specialists to perform remote inspections on high resolution digital reproductions of hardly accessible masterpieces.

  2. User-Appropriate Viewer for High Resolution Interactive Engagement with 3d Digital Cultural Artefacts

    NASA Astrophysics Data System (ADS)

    Gillespie, D.; La Pensée, A.; Cooper, M.

    2013-07-01

    Three dimensional (3D) laser scanning is an important documentation technique for cultural heritage. This technology has been adopted from the engineering and aeronautical industry and is an invaluable tool for the documentation of objects within museum collections (La Pensée, 2008). The datasets created via close range laser scanning are extremely accurate and the created 3D dataset allows for a more detailed analysis in comparison to other documentation technologies such as photography. The dataset can be used for a range of different applications including: documentation; archiving; surface monitoring; replication; gallery interactives; educational sessions; conservation and visualization. However, the novel nature of a 3D dataset is presenting a rather unique challenge with respect to its sharing and dissemination. This is in part due to the need for specialised 3D software and a supported graphics card to display high resolution 3D models. This can be detrimental to one of the main goals of cultural institutions, which is to share knowledge and enable activities such as research, education and entertainment. This has limited the presentation of 3D models of cultural heritage objects to mainly either images or videos. Yet with recent developments in computer graphics, increased internet speed and emerging technologies such as Adobe's Stage 3D (Adobe, 2013) and WebGL (Khronos, 2013), it is now possible to share a dataset directly within a webpage. This allows website visitors to interact with the 3D dataset allowing them to explore every angle of the object, gaining an insight into its shape and nature. This can be very important considering that it is difficult to offer the same level of understanding of the object through the use of traditional mediums such as photographs and videos. Yet this presents a range of problems: this is a very novel experience and very few people have engaged with 3D objects outside of 3D software packages or games. This paper

  3. A high-resolution ambient seismic noise model for Europe

    NASA Astrophysics Data System (ADS)

    Kraft, Toni

    2014-05-01

    measurement precision (i.e. earthquake location), while considering this extremely complex boundary condition. To solve this problem I have developed a high-resolution ambient seismic noise model for Europe. The model is based on land-use data derived from satellite imagery by the EU-project CORINE in a resolution of 100x100m. The the CORINE data consists of several land-use classes, which, besides others, contain: industrial areas, mines, urban fabric, agricultural areas, permanent corps, forests and open spaces. Additionally, open GIS data for highways, and major and minor roads and railway lines were included from the OpenStreetMap project (www.openstreetmap.org). This data was divided into three classes that represent good, intermediate and bad ambient conditions of the corresponding land-use class based on expert judgment. To account for noise propagation away from its source a smoothing operator was applied to individual land-use noise-fields. Finally, the noise-fields were stacked to obtain an European map of ambient noise conditions. A calibration of this map with data of existing seismic stations Europe allowed me to estimate the expected noise level in actual ground motion units for the three ambient noise condition classes of the map. The result is a high-resolution ambient seismic noise map, that allows the network designer to make educated predictions on the expected noise level for arbitrary location in Europe. The ambient noise model was successfully tested in several network optimization projects in Switzerland and surrounding countries and will hopefully be a valuable contribution to improving the data quality of microseismic monitoring networks in Europe.

  4. High Resolution 3D Simulations of the Impacts of Asteroids into the Venusian Atmosphere

    NASA Astrophysics Data System (ADS)

    Korycansky, D. G.; Zahnle, K. J.; Mac Low, M.-M.

    2000-10-01

    We compare high-resolution 2D and 3D numerical hydrocode simulations of asteroids striking the atmosphere of Venus. Our focus is on aerobraking and its effect on the size of impact craters. We consider impacts both by spheres and by the real asteroid 4769 Castalia, a severely nonspherical body in a Venus-crossing orbit. We compute mass and momentum fluxes as functions of altitude as global measures of the asteroid's progress. We find that, on average, the 2D and 3D simulations are in broad agreement over how quickly an asteroid slows down, but that the scatter about the average is much larger for the 2D models than for the 3D models. The 2D models appear to be strongly susceptible to the ``butterfly effect'', in which tiny changes in initial conditions (e.g., 0.05% change in the impact velocity) produce quite different chaotic evolutions. By contrast the global properties of the 3D models appear more reproducible despite seemingly large differences in initial conditions. We argue that this difference between 2D and 3D models has its root in the greater geometrical constraints present in any 2D model, and in particular in the conservation of enstrophy in 2D that forces energy to pool in large-scale structures. It is the interaction of these artificial large-scale structures that causes slightly different 2D models to diverge so greatly. These constraints do not apply in 3D and large scale structures are not observed to form. A one-parameter modified pancake model reproduces the crater-forming potential of the 3D Castalias quite well. This work was supported by NASA's Exobiology and Planetary Atmospheres Programs. Image rendering was done using the resources of UCSC Vizualizaton Lab. M-MML is partially supported by a CAREER fellowship from the US NSF. This work was partially supported by the National Computational Science Alliance, utilizing the NCSA SGI/CRAY Power Challenge array at the University of Illinois, Urbana-Champaign.

  5. Application of high resolution 2D/3D spectral induced polarization (SIP) in metalliferous ore exploration

    NASA Astrophysics Data System (ADS)

    Chen, R.; Zhao, X.; Yao, H.; He, X.; Zeng, P.; Chang, F.; Yang, Y.; Zhang, X.; Xi, X.; He, L.

    2015-12-01

    Induced polarization (IP) is a powerful tool in metalliferous ore exploration. However, there are many sources, such as clay and graphite, which can generate IP anomaly. Spectral induced polarization (SIP) measures IP response on a wide frequency range. This method provides a way to discriminate IP response generated by metalliferous ore or other objects. The best way to explore metalliferous ore is 3D SIP exploration. However, if we consider the exploration cost and efficiency, we can use SIP profiling to find an anomaly, and then use 2D/3D SIP sounding to characterize the anomaly. Based on above idea, we used a large-scale distributed SIP measurement system which can realize 800 sounding sites in one direction at the same time. This system can be used for SIP profiling, 2D/3D SIP sounding with high efficiency, high resolution, and large depth of investigation (> 1000 m). Qiushuwan copper - molybdenum deposit is located in Nanyang city, Henan province, China. It is only a middle-size deposit although over 100 holes were drilled and over 40 years of exploration were spent because of very complex geological setting. We made SIP measurement over 100 rock and ore samples to discriminate IP responses of ore and rock containing graphite. Then we carried out 7 lines of 2D SIP exploration with the depth of investigation great than 1000 m. The minimum electode spacing for potential difference is only 20 m. And we increase the spacing of current electodes at linear scale. This acquisition setting ensures high density data acquired and high quality data acquisition. Modeling and inversion result proves that we can get underground information with high resolution by our method. Our result shows that there exists a strong SIP response related to ore body in depth > 300 m. Pseudo-3D inversion of five 2D SIP sounding lines shows the location and size of IP anomaly. The new drillings based our result found a big copper-molybdenum ore body in new position with depth > 300 m and

  6. View planetary differentiation process through high-resolution 3D imaging

    NASA Astrophysics Data System (ADS)

    Fei, Y.

    2011-12-01

    Core-mantle separation is one of the most important processes in planetary evolution, defining the structure and chemical distribution in the planets. Iron-dominated core materials could migrate through silicate mantle to the core by efficient liquid-liquid separation and/or by percolation of liquid metal through solid silicate matrix. We can experimentally simulate these processes to examine the efficiency and time of core formation and its geochemical signatures. The quantitative measure of the efficiency of percolation is usually the dihedral angle, related to the interfacial energies of the liquid and solid phases. To determine the true dihedral angle at high pressure and temperatures, it is necessary to measure the relative frequency distributions of apparent dihedral angles between the quenched liquid metal and silicate grains for each experiment. Here I present a new imaging technique to visualize the distribution of liquid metal in silicate matrix in 3D by combination of focus ion beam (FIB) milling and high-resolution SEM image. The 3D volume rendering provides precise determination of the dihedral angle and quantitative measure of volume fraction and connectivity. I have conducted a series of experiments using mixtures of San Carlos olivine and Fe-S (10wt%S) metal with different metal-silicate ratios, up to 25 GPa and at temperatures above 1800C. High-quality 3D volume renderings were reconstructed from FIB serial sectioning and imaging with 10-nm slice thickness and 14-nm image resolution for each quenched sample. The unprecedented spatial resolution at nano scale allows detailed examination of textural features and precise determination of the dihedral angle as a function of pressure, temperature and composition. The 3D reconstruction also allows direct assessment of connectivity in multi-phase matrix, providing a new way to investigate the efficiency of metal percolation in a real silicate mantle.

  7. High-resolution 3D simulations of NIF ignition targets performed on Sequoia with HYDRA

    NASA Astrophysics Data System (ADS)

    Marinak, M. M.; Clark, D. S.; Jones, O. S.; Kerbel, G. D.; Sepke, S.; Patel, M. V.; Koning, J. M.; Schroeder, C. R.

    2015-11-01

    Developments in the multiphysics ICF code HYDRA enable it to perform large-scale simulations on the Sequoia machine at LLNL. With an aggregate computing power of 20 Petaflops, Sequoia offers an unprecedented capability to resolve the physical processes in NIF ignition targets for a more complete, consistent treatment of the sources of asymmetry. We describe modifications to HYDRA that enable it to scale to over one million processes on Sequoia. These include new options for replicating parts of the mesh over a subset of the processes, to avoid strong scaling limits. We consider results from a 3D full ignition capsule-only simulation performed using over one billion zones run on 262,000 processors which resolves surface perturbations through modes l = 200. We also report progress towards a high-resolution 3D integrated hohlraum simulation performed using 262,000 processors which resolves surface perturbations on the ignition capsule through modes l = 70. These aim for the most complete calculations yet of the interactions and overall impact of the various sources of asymmetry for NIF ignition targets. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  8. Development of a high-resolution laser radar for 3D imaging in artwork cataloging

    NASA Astrophysics Data System (ADS)

    Bordone, Andrea; Ferri De Collibus, Mario; Fantoni, Roberta; Fornetti, Giorgio G.; Guarneri, Marianna; Poggi, Claudio; Ricci, Roberto

    2003-04-01

    A high resolution Amplitude Modulation Laser Radar (AM-LR) sensor has recently been developed, aimed at accurately reconstructing 3D digital models of real targets -- either single objects or complex scenes. The sensor sounding beam can be swept linearly across the object or circularly around it, by placing the object on a controlled rotation platform. Both intensity and phase shift of the back-scattered light are then collected and processed, providing respectively a shade-free photographic-like picture and accurate range data in the form of a range or depth image, with resolution depending mainly on the laser modulation frequency. Starting from the sample points, with an uncertainty that can be made as small as 100 μm, the complete object surface can be reconstructed by using specifically developed software tools. The system has been successfully applied to scan different types of real surfaces (stone, wood, bones) and is expected to have significant applications in industrial machining, artwork cataloguing and medical diagnostics. Examples of 3D reconstructions are presented and the relevance of this technology for reverse engineering applied to artwork restoration and conservation is briefly discussed.

  9. Early Earth plume-lid tectonics: A high-resolution 3D numerical modelling approach

    NASA Astrophysics Data System (ADS)

    Fischer, R.; Gerya, T.

    2016-10-01

    Geological-geochemical evidence point towards higher mantle potential temperature and a different type of tectonics (global plume-lid tectonics) in the early Earth (>3.2 Ga) compared to the present day (global plate tectonics). In order to investigate tectono-magmatic processes associated with plume-lid tectonics and crustal growth under hotter mantle temperature conditions, we conduct a series of 3D high-resolution magmatic-thermomechanical models with the finite-difference code I3ELVIS. No external plate tectonic forces are applied to isolate 3D effects of various plume-lithosphere and crust-mantle interactions. Results of the numerical experiments show two distinct phases in coupled crust-mantle evolution: (1) a longer (80-100 Myr) and relatively quiet 'growth phase' which is marked by growth of crust and lithosphere, followed by (2) a short (∼20 Myr) and catastrophic 'removal phase', where unstable parts of the crust and mantle lithosphere are removed by eclogitic dripping and later delamination. This modelling suggests that the early Earth plume-lid tectonic regime followed a pattern of episodic growth and removal also called episodic overturn with a periodicity of ∼100 Myr.

  10. Multiscale seismic attributes: source-corrected wavelet response and application to high-resolution seismic data

    NASA Astrophysics Data System (ADS)

    Ker, Stephan; Le Gonidec, Yves; Gibert, Dominique

    2012-09-01

    A wavelet-based method was presented in a previous work to introduce multiscale seismic attributes for high-resolution seismic data. Because of the limited frequency bandwidth of the seismic source, we observed distortions in the seismic attributes based on the wavelet response of the subsurface discontinuities (Le Gonidec et al.). In this paper, we go further in the seismic source-correction by considering Lévy alpha-stable distributions introduced in the formalism of the continuous wavelet transform (CWT). The wavelets are Gaussian derivative functions (GDF), characterized by a derivative order. We show that a high-resolution seismic source, after a classical signature processing, can be taken into account with a GDF. We demonstrate that in the framework of the Born approximation, the CWT of a seismic trace involving such a finite frequency bandwidth can be made equivalent to the CWT of the impulse response of the subsurface and is defined for a reduced range of dilations. We apply the method for the SYSIF seismic device (Marsset et al.; Ker et al.) and show that the source-corrections allow to define seismic attributes for layer thicknesses in the range [24; 115 cm]. We present the analysis for two seismic reflectors identified on a SYSIF profile, and we show that the source-corrected multiscale analysis quantifies their complex geometries.

  11. Electroacoustic pulse source for high-resolution seismic explorations

    NASA Astrophysics Data System (ADS)

    Cannelli, G. B.; D'Ottavi, E.; Santoboni, S.

    1987-07-01

    We suggest an electroacoustic pulse source with frequency characteristics, directivity pattern, and energy suitable for high-resolution prospecting on land and underwater. The seismic wave is produced by a high-energy discharge, set in the focus of a parabolic aluminum reflector filled with insulating liquids. The acoustic pulse is transmitted to the soil via a neoprene diaphragm that couples the transducer to the earth. The discharge is primed by a low-energy preliminary spark, via a third electrode between the principal electrodes, which produces the liquid ionization. An important feature of the electroacoustic source is the variation of frequency spectrum of the impulse, by changing electrical parameters such as capacitance and inductance. The directivity pattern can be changed by inching the electrodes up or down with reference to the focus. First field measurements showed better penetration capacity of the seismic wave of the paraboloid in comparison with a traditional mechanical source. This electroacoustic source can be utilized on land, and even more successfully in underwater acoustic prospecting, by providing suitable electric insulation. In this latter application the frequency range is higher than that used for land prospecting.

  12. High resolution seismic stratigraphy of Tampa Bay, Florida

    SciTech Connect

    Tihansky, A.B.; Hine, A.C.; Locker, S.D.; Doyle, L.D. . Dept. of Marine Science)

    1993-03-01

    Tampa Bay is one of two large embayments that interrupt the broad, regional nature of the carbonate ramp of the west coast of the Florida carbonate platform. It is believed to have formed as a result of preferential dissolution of the Cenozoic limestones beneath it. Highly reactive freshwater systems became hydrologically focused in the bay region as the surface and groundwater systems established themselves during sea-level lowstands. This weakening of the underlying limestone resulted in extensive karstification, including warping, subsidence, sinkhole and spring formation. Over 120 miles of high resolution seismic reflection data were collected within Tampa Bay. This record has been tied into 170 core borings taken from within the bay. This investigation has found three major seismic stratigraphic sequences beneath the bay. The lowermost sequence is probably of Miocene age. Its surface is highly irregular due to erosion and dissolution and exhibits a great deal of vertical relief as well as gentler undulations or warping. Much of the middle sequence consists of low angle clinoforms that gently downlap and fill in the underlying karst features. The uppermost sequence is a discontinuous unit comprised of horizontal to low angle clinoforms that are local in their extent. The recent drainage and sedimentation patterns within the bay area are related to the underlying structure controlled by the Miocene karst activity.

  13. Laminar optical tomography: high-resolution 3D functional imaging of superficial tissues

    NASA Astrophysics Data System (ADS)

    Hillman, Elizabeth M. C.; Devor, Anna; Dunn, Andrew K.; Boas, David A.

    2006-03-01

    Laminar Optical Tomography (LOT) is a new medical imaging modality for high-resolution, depth-resolved, functional imaging of superficial tissue such as rodent cortex, skin and the retina. LOT uses visible laser light to image to depths of >2mm (far deeper than microscopy) and is highly sensitive to absorption and fluorescence contrast, enabling spectroscopic functional information such as hemoglobin oxygenation to be imaged with 100-200 micron resolution. LOT has been used to image the hemodynamic response to stimulus in the somatosensory cortex of rats. The resulting three-dimensional (3D) images through the depth of the cortex can be used to delineate the arterial, capillary and venous responses, revealing new information about the intricacies of the oxygenation and blood flow dynamics related to neuronal activation. Additional applications of LOT are being explored, including the integration of 3D Voltage Sensitive Dye fluorescence imaging. LOT imaging uses a system similar to a confocal microscope, quickly scanning a focused beam of light over the surface of the tissue (~8Hz frame rate). Light is detected from both the focus of the scanning beam, and also at increasing distances from the beam's focus. This scattered light has penetrated more deeply into the tissue, and allows features at different depths to be distinguished. An algorithm that includes photon migration modeling of light scattering converts the raw data into 3D images. The motivation for functional optical imaging will be outlined, the basic principles of LOT imaging will be described, and the latest in-vivo results will be presented.

  14. 3D-information fusion from very high resolution satellite sensors

    NASA Astrophysics Data System (ADS)

    Krauss, T.; d'Angelo, P.; Kuschk, G.; Tian, J.; Partovi, T.

    2015-04-01

    In this paper we show the pre-processing and potential for environmental applications of very high resolution (VHR) satellite stereo imagery like these from WorldView-2 or Pl'eiades with ground sampling distances (GSD) of half a metre to a metre. To process such data first a dense digital surface model (DSM) has to be generated. Afterwards from this a digital terrain model (DTM) representing the ground and a so called normalized digital elevation model (nDEM) representing off-ground objects are derived. Combining these elevation based data with a spectral classification allows detection and extraction of objects from the satellite scenes. Beside the object extraction also the DSM and DTM can directly be used for simulation and monitoring of environmental issues. Examples are the simulation of floodings, building-volume and people estimation, simulation of noise from roads, wave-propagation for cellphones, wind and light for estimating renewable energy sources, 3D change detection, earthquake preparedness and crisis relief, urban development and sprawl of informal settlements and much more. Also outside of urban areas volume information brings literally a new dimension to earth oberservation tasks like the volume estimations of forests and illegal logging, volume of (illegal) open pit mining activities, estimation of flooding or tsunami risks, dike planning, etc. In this paper we present the preprocessing from the original level-1 satellite data to digital surface models (DSMs), corresponding VHR ortho images and derived digital terrain models (DTMs). From these components we present how a monitoring and decision fusion based 3D change detection can be realized by using different acquisitions. The results are analyzed and assessed to derive quality parameters for the presented method. Finally the usability of 3D information fusion from VHR satellite imagery is discussed and evaluated.

  15. Poor boy 3D seismic effort yields South Central Kentucky discovery

    SciTech Connect

    Hanratty, M.

    1996-11-04

    Clinton County, Ky., is on the eastern flank of the Cincinnati arch and the western edge of the Appalachian basin and the Pine Mountain overthrust. Clinton County has long been known for high volume fractured carbonate wells. The discovery of these fractured reservoir, unfortunately, has historically been serendipitous. The author currently uses 2D seismic and satellite imagery to design 3D high resolution seismic shoots. This method has proven to be the most efficient and is the core of his program. The paper describes exploration methods, seismic acquisition, well data base, and seismic interpretation.

  16. Computation of a high-resolution MRI 3D stereotaxic atlas of the sheep brain.

    PubMed

    Ella, Arsène; Delgadillo, José A; Chemineau, Philippe; Keller, Matthieu

    2017-02-15

    The sheep model was first used in the fields of animal reproduction and veterinary sciences and then was utilized in fundamental and preclinical studies. For more than a decade, magnetic resonance (MR) studies performed on this model have been increasingly reported, especially in the field of neuroscience. To contribute to MR translational neuroscience research, a brain template and an atlas are necessary. We have recently generated the first complete T1-weighted (T1W) and T2W MR population average images (or templates) of in vivo sheep brains. In this study, we 1) defined a 3D stereotaxic coordinate system for previously established in vivo population average templates; 2) used deformation fields obtained during optimized nonlinear registrations to compute nonlinear tissues or prior probability maps (nlTPMs) of cerebrospinal fluid (CSF), gray matter (GM), and white matter (WM) tissues; 3) delineated 25 external and 28 internal sheep brain structures by segmenting both templates and nlTPMs; and 4) annotated and labeled these structures using an existing histological atlas. We built a quality high-resolution 3D atlas of average in vivo sheep brains linked to a reference stereotaxic space. The atlas and nlTPMs, associated with previously computed T1W and T2W in vivo sheep brain templates and nlTPMs, provide a complete set of imaging space that are able to be imported into other imaging software programs and could be used as standardized tools for neuroimaging studies or other neuroscience methods, such as image registration, image segmentation, identification of brain structures, implementation of recording devices, or neuronavigation. J. Comp. Neurol. 525:676-692, 2017. © 2016 Wiley Periodicals, Inc.

  17. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy

    NASA Astrophysics Data System (ADS)

    Zhang, E. Z.; Laufer, J. G.; Pedley, R. B.; Beard, P. C.

    2009-02-01

    The application of a photoacoustic imaging instrument based upon a Fabry-Perot polymer film ultrasound sensor to imaging the superficial vasculature is described. This approach provides a backward mode-sensing configuration that has the potential to overcome the limitations of current piezoelectric based detection systems used in superficial photoacoustic imaging. The system has been evaluated by obtaining non-invasive images of the vasculature in human and mouse skin as well as mouse models of human colorectal tumours. These studies showed that the system can provide high-resolution 3D images of vascular structures to depths of up to 5 mm. It is considered that this type of instrument may find a role in the clinical assessment of conditions characterized by changes in the vasculature such as skin tumours and superficial soft tissue damage due to burns, wounds or ulceration. It may also find application in the characterization of small animal cancer models where it is important to follow the tumour vasculature over time in order to study its development and/or response to therapy.

  18. High-resolution 3D dust radiative transfer in galaxies with DART-Ray

    NASA Astrophysics Data System (ADS)

    Natale, Giovanni; Popescu, Cristina C.; Tuffs, Richard. J.; Debattista, Victor P.; Grootes, Meiert W.

    2015-02-01

    DART-Ray is a 3D ray-tracing dust radiative transfer (RT) code that can be used to derive stellar and dust emission maps of galaxy models and simulations with arbitrary geometries. In addition to the previously published RT algorithm, we have now included in DART-Ray the possibility of calculating the stocastically heated dust emission from each volume element within a galaxy. To show the capabilities of the code, we performed a high-resolution (26 pc) RT calculation for a galaxy N-body+SPH simulation. The simulated galaxy we considered is characterized by a nuclear disc and a flocculent spiral structure. We analysed the derived galaxy maps for the global and local effects of dust on the galaxy attenuation as well as the contribution of scattered radiation to the predicted observed emission. In addition, by performing an additional RT calculation including only the stellar volume emissivity due to young stellar populations (SPs), we derived the contribution to the total dust emission powered by young and old SPs. Full details of this work will be presented in a forthcoming publication.

  19. Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET

    NASA Astrophysics Data System (ADS)

    Gu, Y.; Matteson, J. L.; Skelton, R. T.; Deal, A. C.; Stephan, E. A.; Duttweiler, F.; Gasaway, T. M.; Levin, C. S.

    2011-03-01

    This paper investigates the performance of 1 mm resolution cadmium zinc telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06 ± 0.39% at 511 keV throughout most of the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44 ± 0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78 ± 0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes—as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system.

  20. Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET.

    PubMed

    Gu, Y; Matteson, J L; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M; Levin, C S

    2011-03-21

    This paper investigates the performance of 1 mm resolution cadmium zinc telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06 ± 0.39% at 511 keV throughout most of the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44 ± 0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78 ± 0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes-as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system.

  1. Study of a high-resolution, 3-D positioning cadmium zinc telluride detector for PET

    PubMed Central

    Gu, Y; Matteson, J L; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M; Levin, C S

    2011-01-01

    This paper investigates the performance of 1 mm resolution Cadmium Zinc Telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3-D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06±0.39% at 511 keV throughout most the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44±0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78±0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes – as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system. PMID:21335649

  2. On the feasibility of comprehensive high-resolution 3D remote dosimetry

    PubMed Central

    Juang, Titania; Grant, Ryan; Adamovics, John; Ibbott, Geoffrey; Oldham, Mark

    2014-01-01

    Purpose: This study investigates the feasibility of remote high-resolution 3D dosimetry with the PRESAGE®/Optical-CT system. In remote dosimetry, dosimeters are shipped out from a central base institution to a remote institution for irradiation, then shipped back to the base institution for subsequent readout and analysis. Methods: Two nominally identical optical-CT scanners for 3D dosimetry were constructed and placed at the base (Duke University) and remote (Radiological Physics Center) institutions. Two formulations of PRESAGE® (SS1, SS2) radiochromic dosimeters were investigated. Higher sensitivity was expected in SS1, which had higher initiator content (0.25% bromotrichloromethane), while greater temporal stability was expected in SS2. Four unirradiated PRESAGE® dosimeters (two per formulation, cylindrical dimensions 11 cm diameter, 8.5–9.5 cm length) were imaged at the base institution, then shipped to the remote institution for planning and irradiation. Each dosimeter was irradiated with the same simple treatment plan: an isocentric 3-field “cross” arrangement of 4 × 4 cm open 6 MV beams configured as parallel opposed laterals with an anterior beam. This simple plan was amenable to accurate and repeatable setup, as well as accurate dose modeling by a commissioned treatment planning system (Pinnacle). After irradiation and subsequent (within 1 h) optical-CT readout at the remote institution, the dosimeters were shipped back to the base institution for remote dosimetry readout 3 days postirradiation. Measured on-site and remote relative 3D dose distributions were registered to the Pinnacle dose calculation, which served as the reference distribution for 3D gamma calculations with passing criteria of 5%/2 mm, 3%/3 mm, and 3%/2 mm with a 10% dose threshold. Gamma passing rates, dose profiles, and color-maps were all used to assess and compare the performance of both PRESAGE® formulations for remote dosimetry. Results: The best agreements between the

  3. On the feasibility of comprehensive high-resolution 3D remote dosimetry

    SciTech Connect

    Juang, Titania; Grant, Ryan; Adamovics, John; Ibbott, Geoffrey; Oldham, Mark

    2014-07-15

    Purpose: This study investigates the feasibility of remote high-resolution 3D dosimetry with the PRESAGE®/Optical-CT system. In remote dosimetry, dosimeters are shipped out from a central base institution to a remote institution for irradiation, then shipped back to the base institution for subsequent readout and analysis. Methods: Two nominally identical optical-CT scanners for 3D dosimetry were constructed and placed at the base (Duke University) and remote (Radiological Physics Center) institutions. Two formulations of PRESAGE® (SS1, SS2) radiochromic dosimeters were investigated. Higher sensitivity was expected in SS1, which had higher initiator content (0.25% bromotrichloromethane), while greater temporal stability was expected in SS2. Four unirradiated PRESAGE® dosimeters (two per formulation, cylindrical dimensions 11 cm diameter, 8.5–9.5 cm length) were imaged at the base institution, then shipped to the remote institution for planning and irradiation. Each dosimeter was irradiated with the same simple treatment plan: an isocentric 3-field “cross” arrangement of 4 × 4 cm open 6 MV beams configured as parallel opposed laterals with an anterior beam. This simple plan was amenable to accurate and repeatable setup, as well as accurate dose modeling by a commissioned treatment planning system (Pinnacle). After irradiation and subsequent (within 1 h) optical-CT readout at the remote institution, the dosimeters were shipped back to the base institution for remote dosimetry readout 3 days postirradiation. Measured on-site and remote relative 3D dose distributions were registered to the Pinnacle dose calculation, which served as the reference distribution for 3D gamma calculations with passing criteria of 5%/2 mm, 3%/3 mm, and 3%/2 mm with a 10% dose threshold. Gamma passing rates, dose profiles, and color-maps were all used to assess and compare the performance of both PRESAGE® formulations for remote dosimetry. Results: The best agreements between the

  4. Southeast Georgia embayment high-resolution seismic-reflection survey

    USGS Publications Warehouse

    Edsall, Douglas W.

    1979-01-01

    A high-resolution seismic survey of the offshore part of the Southeast Georgia Embayment on about a 20 km spacing was completed in 1976. A stratigraphic analyses of the data shows that the largest controlling factor in the depositional history of the shelf has been the Gulf Stream. These currents have shifted back and forth across the shelf, at times incising into shelf sediments, and at all times blocking much of the accumulation of Cenozoic sediments seaward of the Florida-Hatteras Slope. In the southern region the Gulf Stream maintained its present position since Miocene time, blocking the accumulation of Pliocene and younger rocks on the Plateau. Northward, in the middle, region the currents turned slightly to the northeast. The inner portion of the Blake Plateau has been scoured of sediments since the Paleocene in this area, and scouring has also occurred on the shelf from time to time. In the northern part of the survey area a more easterly flow of the Gulf Stream has allowed Eocene and younger rocks to be deposited on the Plateau. Line drawings and a geologic map show the distribution of the various Cretaceous and Cenozoic units. A number of potential environmental hazards or constraints to petroleum development seen in the reflection data are identified. Besides current scour and erosion features, these include gravity faults on the slope, a slump, faulting on the inner Blake Plateau, the shelf edge reef, and deep water reefs on the Blake Plateau.

  5. Airborne LIDAR and high resolution satellite data for rapid 3D feature extraction

    NASA Astrophysics Data System (ADS)

    Jawak, S. D.; Panditrao, S. N.; Luis, A. J.

    2014-11-01

    This work uses the canopy height model (CHM) based workflow for individual tree crown delineation and 3D feature extraction approach (Overwatch Geospatial's proprietary algorithm) for building feature delineation from high-density light detection and ranging (LiDAR) point cloud data in an urban environment and evaluates its accuracy by using very high-resolution panchromatic (PAN) (spatial) and 8-band (multispectral) WorldView-2 (WV-2) imagery. LiDAR point cloud data over San Francisco, California, USA, recorded in June 2010, was used to detect tree and building features by classifying point elevation values. The workflow employed includes resampling of LiDAR point cloud to generate a raster surface or digital terrain model (DTM), generation of a hill-shade image and an intensity image, extraction of digital surface model, generation of bare earth digital elevation model (DEM) and extraction of tree and building features. First, the optical WV-2 data and the LiDAR intensity image were co-registered using ground control points (GCPs). The WV-2 rational polynomial coefficients model (RPC) was executed in ERDAS Leica Photogrammetry Suite (LPS) using supplementary *.RPB file. In the second stage, ortho-rectification was carried out using ERDAS LPS by incorporating well-distributed GCPs. The root mean square error (RMSE) for the WV-2 was estimated to be 0.25 m by using more than 10 well-distributed GCPs. In the second stage, we generated the bare earth DEM from LiDAR point cloud data. In most of the cases, bare earth DEM does not represent true ground elevation. Hence, the model was edited to get the most accurate DEM/ DTM possible and normalized the LiDAR point cloud data based on DTM in order to reduce the effect of undulating terrain. We normalized the vegetation point cloud values by subtracting the ground points (DEM) from the LiDAR point cloud. A normalized digital surface model (nDSM) or CHM was calculated from the LiDAR data by subtracting the DEM from the DSM

  6. 3D Reconstruction of a Shallow Archaeological Site From High Resolution Acoustic Imagery: A Case Study

    NASA Astrophysics Data System (ADS)

    Plets, R. M.; Dix, J. K.; Adams, J. R.; Best, A. I.

    2005-12-01

    High resolution acoustic surveying for buried objects in the shallow waters of the inter-tidal to sub-tidal zone is a major challenge to many sectors of the marine surveying community. This is a consequence of a number of issues such as the relationship between water depth and acoustic acquisition geometry; problems of vessel induced bubble clouds reducing the signal-to-noise (SNR) ratio; and the necessity of high spatial survey accuracy in three-dimensions. These challenges are particularly acute for the marine archaeological community, who are frequently required to non-destructively investigate shallow-water (< 5 m) sites. This paper addresses these challenges and demonstrates the potential of imaging buried objects in extremely shallow environments by describing a seamless marine archaeological and geophysical investigation of a buried shipwreck: Henry V's `great flagship', the Grace Dieu (1418). The site, located in the Hamble River (UK), is typically covered by 2-5 m of water, and is partially buried within muddy inter-tidal sediments. At exceptionally low tides, during the spring equinox, a few of the marginal timbers are exposed. The marine survey utilised three different deployment methods of a Chirp system: two 2D Chirp systems, each emitting different frequencies and accompanied by different navigational systems (DGPS versus RTK), and a 3D Chirp system with RTK positioning capability. In all cases, the source was towed over the site using diver power. Close survey line spacing, accurate navigation and decimetre scale vertical and horizontal resolution acoustic data enabled the construction of a pseudo and full 3D image of this buried wreck site. This has been calibrated against known archaeological site investigation data and an RTK-GPS terrestrial survey. This data has identified the true plan form and dimensions of the remaining segments of the vessel, supporting the assertion that it was the most significant naval design for over two centuries. It has

  7. High-resolution modelling of 3D hydrodynamics in coastal archipelagos

    NASA Astrophysics Data System (ADS)

    Miettunen, Elina; Tuomi, Laura; Ropponen, Janne; Lignell, Risto

    2016-04-01

    Dynamics of the coastal seas are affected by eutrophication, over-fishing, coastal construction and climate change. To enable the sustainable development of these areas, monitoring and modelling of the state of the sea are needed. The Archipelago Sea, located in the northern part of the semi-enclosed and brackish water Baltic Sea, is one of the most complex coastal areas with over 40 000 small islands and islets. It is also very vulnerable area already heavily stressed with eutrophication. Applicable modelling tools are needed to support the decision making and to provide sufficiently reliable information on the effects of the planned actions on the state of the coastal waters. We used 3D hydrodynamic model COHERENS to model the Archipelago Sea area with high spatial resolution of 0.25 nmi. Boundary conditions for this limited area were provided from coarser resolution, 2 nmi, Baltic Sea grid. In order to evaluate the performance of the high-resolution coastal model implementation a comprehensive measurement dataset was gathered, including hydrographic data from three intensive monitoring stations and several more rarely visited monitoring or research stations. The hydrodynamic model was able to simulate the surface temperature and salinity fields and their seasonal variation with good accuracy in this complex area. The sharp depth gradients typical for this area provided some challenges to the modelling. There was some over mixing and related to too strong vertical currents in the steep slopes of the deeper fault lines. Also the water exchange between the more open sea and coastal areas through narrow channels between the islands is not sufficiently well reproduced with the current resolution, leading to too high bottom temperatures.

  8. A High-resolution 3D Geodynamical Model of the Present-day India-Asia Collision System

    NASA Astrophysics Data System (ADS)

    Kaus, B.; Baumann, T.

    2015-12-01

    We present a high-resolution, 3D geodynamic model of the present-day India-Asia collision system. The model is separated into multiple tectonic blocks, for which we estimate the first order rheological properties and the impact on the dynamics of the collision system. This is done by performing systematic simulations with different rheologies to minimize the misfit to observational constraints such as the GPS-velocity field. The simulations are performed with the parallel staggered grid FD code LaMEM using a numerical resolution of at least 512x512x256 cells to resolve dynamically important shear zones reasonably well. A fundamental part of this study is the reconstruction of the 3D present-day geometry of Tibet and the adjacent regions. Our interpretations of crust and mantle lithosphere geometry are jointly based on a globally available shear wave tomography (Schaeffer and Lebedev, 2013) and the Crust 1.0 model (Laske et al. http://igppweb.ucsd.edu/~gabi/crust1.html). We regionally refined and modified our interpretations based on seismicity distributions and focal mechanisms and incorporated regional receiver function studies to improve the accuracy of the Moho in particular. Results suggest that we can identify at least one "best-fit" solution in terms of rheological model properties that reproduces the observed velocity field reasonably well, including the strong rotation of the GPS velocity around the eastern syntax of the Himalaya. We also present model co-variances to illustrate the trade-offs between the rheological model parameters, their respective uncertainties, and the model fit. Schaeffer, A.J., Lebedev, S., 2013. Global shear speed structure of the upper mantle and transition zone. Geophysical Journal International 194, 417-449. doi:10.1093/gji/ggt095

  9. 3D Seismic Imaging over a Potential Collapse Structure

    NASA Astrophysics Data System (ADS)

    Gritto, Roland; O'Connell, Daniel; Elobaid Elnaiem, Ali; Mohamed, Fathelrahman; Sadooni, Fadhil

    2016-04-01

    The Middle-East has seen a recent boom in construction including the planning and development of complete new sub-sections of metropolitan areas. Before planning and construction can commence, however, the development areas need to be investigated to determine their suitability for the planned project. Subsurface parameters such as the type of material (soil/rock), thickness of top soil or rock layers, depth and elastic parameters of basement, for example, comprise important information needed before a decision concerning the suitability of the site for construction can be made. A similar problem arises in environmental impact studies, when subsurface parameters are needed to assess the geological heterogeneity of the subsurface. Environmental impact studies are typically required for each construction project, particularly for the scale of the aforementioned building boom in the Middle East. The current study was conducted in Qatar at the location of a future highway interchange to evaluate a suite of 3D seismic techniques in their effectiveness to interrogate the subsurface for the presence of karst-like collapse structures. The survey comprised an area of approximately 10,000 m2 and consisted of 550 source- and 192 receiver locations. The seismic source was an accelerated weight drop while the geophones consisted of 3-component 10 Hz velocity sensors. At present, we analyzed over 100,000 P-wave phase arrivals and performed high-resolution 3-D tomographic imaging of the shallow subsurface. Furthermore, dispersion analysis of recorded surface waves will be performed to obtain S-wave velocity profiles of the subsurface. Both results, in conjunction with density estimates, will be utilized to determine the elastic moduli of the subsurface rock layers.

  10. 3-D seismic imaging of complex geologies

    SciTech Connect

    Womble, D.E.; Dosanjh, S.S.; VanDyke, J.P.; Oldfield, R.A.; Greenberg, D.S.

    1995-02-01

    We present three codes for the Intel Paragon that address the problem of three-dimensional seismic imaging of complex geologies. The first code models acoustic wave propagation and can be used to generate data sets to calibrate and validate seismic imaging codes. This code reported the fastest timings for acoustic wave propagation codes at a recent SEG (Society of Exploration Geophysicists) meeting. The second code implements a Kirchhoff method for pre-stack depth migration. Development of this code is almost complete, and preliminary results are presented. The third code implements a wave equation approach to seismic migration and is a Paragon implementation of a code from the ARCO Seismic Benchmark Suite.

  11. 3D Seismic Experimentation and Advanced Processing/Inversion Development for Investigations of the Shallow Subsurface

    SciTech Connect

    Levander, Alan Richard; Zelt, Colin A.

    2015-03-17

    The work plan for this project was to develop and apply advanced seismic reflection and wide-angle processing and inversion techniques to high resolution seismic data for the shallow subsurface to seismically characterize the shallow subsurface at hazardous waste sites as an aid to containment and cleanup activities. We proposed to continue work on seismic data that we had already acquired under a previous DoE grant, as well as to acquire additional new datasets for analysis. The project successfully developed and/or implemented the use of 3D reflection seismology algorithms, waveform tomography and finite-frequency tomography using compressional and shear waves for high resolution characterization of the shallow subsurface at two waste sites. These two sites have markedly different near-surface structures, groundwater flow patterns, and hazardous waste problems. This is documented in the list of refereed documents, conference proceedings, and Rice graduate theses, listed below.

  12. Comparison of 3D-OP-OSEM and 3D-FBP reconstruction algorithms for High-Resolution Research Tomograph studies: effects of randoms estimation methods

    NASA Astrophysics Data System (ADS)

    van Velden, Floris H. P.; Kloet, Reina W.; van Berckel, Bart N. M.; Wolfensberger, Saskia P. A.; Lammertsma, Adriaan A.; Boellaard, Ronald

    2008-06-01

    The High-Resolution Research Tomograph (HRRT) is a dedicated human brain positron emission tomography (PET) scanner. Recently, a 3D filtered backprojection (3D-FBP) reconstruction method has been implemented to reduce bias in short duration frames, currently observed in 3D ordinary Poisson OSEM (3D-OP-OSEM) reconstructions. Further improvements might be expected using a new method of variance reduction on randoms (VRR) based on coincidence histograms instead of using the delayed window technique (DW) to estimate randoms. The goal of this study was to evaluate VRR in combination with 3D-OP-OSEM and 3D-FBP reconstruction techniques. To this end, several phantom studies and a human brain study were performed. For most phantom studies, 3D-OP-OSEM showed higher accuracy of observed activity concentrations with VRR than with DW. However, both positive and negative deviations in reconstructed activity concentrations and large biases of grey to white matter contrast ratio (up to 88%) were still observed as a function of scan statistics. Moreover 3D-OP-OSEM+VRR also showed bias up to 64% in clinical data, i.e. in some pharmacokinetic parameters as compared with those obtained with 3D-FBP+VRR. In the case of 3D-FBP, VRR showed similar results as DW for both phantom and clinical data, except that VRR showed a better standard deviation of 6-10%. Therefore, VRR should be used to correct for randoms in HRRT PET studies.

  13. High-resolution DTI of a localized volume using 3D single-shot diffusion-weighted STimulated echo-planar imaging (3D ss-DWSTEPI).

    PubMed

    Jeong, Eun-Kee; Kim, Seong-Eun; Kholmovski, Eugene G; Parker, Dennis L

    2006-12-01

    Diffusion tensor MRI (DTI) using conventional single-shot (SS) 2D diffusion-weighted (DW)-EPI is subject to severe susceptibility artifacts. Multishot DW imaging (DWI) techniques can reduce these distortions, but they generally suffer from artifacts caused by motion-induced phase errors. Parallel imaging can also reduce the distortions if the sensitivity profiles of the receiver coils allow a sufficiently high reduction factor for the desired field of view (FOV). A novel 3D DTI technique, termed 3D single-shot STimulated EPI (3D ss-STEPI), was developed to acquire high-resolution DW images of a localized region. The new technique completes k-space acquisition of a limited 3D volume after a single diffusion preparation. Because the DW magnetization is stored in the longitudinal direction until readout, it undergoes T(1) rather than T(2) decay. Inner volume imaging (IVI) is used to limit the imaging volume. This reduces the time required for EPI readout of each complete k(x)-k(y) plane, and hence reduces T(2)(*) decay during the readout and T(1) decay between the readout of each k(z). 3D ss-STEPI images appear to be free of severe susceptibility and motion artifacts. 3D ss-STEPI allows high-resolution DTI of limited volumes of interest, such as localized brain regions, cervical spinal cord, optic nerve, and other extracranial organs.

  14. Seismic stratigraphy in high resolution shallow marine seismic data of the Gemlik Gulf

    SciTech Connect

    Kurtulus, C. . Dept. of Geophysical Engineering)

    1993-10-01

    Seismic stratigraphy and sedimentological studies of the Gemlik Gulf in the Sea of Marmara, Turkey, have been carried out. For this purpose, 19 lines totaling 189 km of excellent quality, high-resolution seismic data were recorded. Four major acoustic units were identified in the seismic profiles. Three were sedimentary units: irregular layered, cross-layered and well-layered; and the fourth was an acoustic basement which is probably composed of crystalline volcanic rocks. Some local areas in the Neogene formation contain gas accumulations. The formation of faults in E--W and N--S directions can be explained by the existence of shear stresses in the Gulf. The bathymetric map shows good accommodation with the shore line as does the tectonic map.

  15. Application of 3D reflection seismic methods to mineral exploration

    NASA Astrophysics Data System (ADS)

    Urosevic, Milovan

    2013-04-01

    Seismic exploration for mineral deposits is often tested by excessively complex structures, regolith heterogeneity, intrinsically low signal to noise ratio, ground relief and accessibility. In brown fields, where the majority of the seismic surveys have been conducted, existing infrastructure, old pits and tailings, heavy machinery in operation, mine drainage and other mine related activities are further challenging the application of seismic methods and furthermore increasing its cost. It is therefore not surprising that the mining industry has been reluctant to use seismic methods, particularly 3D for mineral exploration, primarily due to the high cost, but also because of variable performance, and in some cases ambiguous interpretation results. However, shallow mineral reserves are becoming depleted and exploration is moving towards deeper targets. Seismic methods will be more important for deeper investigations and may become the primary exploration tool in the near future. The big issue is if we have an appropriate seismic "strategy" for exploration of deep, complex mineral reserves. From the existing case histories worldwide we know that massive ore deposits (VMS, VHMS) constitute the best case scenario for the application of 3D seismic. Direct targeting of massive ore bodies from seismic has been documented in several case histories. Sediment hosted deposits could, in some cases, can also produce a detectable seismic signature. Other deposit types such as IOCG and skarn are much more challenging for the application of seismic methods. The complexity of these deposits requires new thinking. Several 3D surveys acquired over different deposit types will be presented and discussed.

  16. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    SciTech Connect

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes; William E. Harrison

    2007-06-30

    The objective of this research project was to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data in the hopes of observing changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE No.DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 30 months of seismic monitoring, one baseline and eight monitor surveys clearly detected changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators and observed in production data. Attribute analysis was a very useful tool in enhancing changes in seismic character present, but difficult to interpret on time amplitude slices. Lessons learned from and tools/techniques developed during this project will allow high-resolution seismic imaging to be routinely applied to many CO{sub 2} injection programs in a large percentage of shallow carbonate oil fields in the midcontinent.

  17. A compact high-resolution 3-D imaging spectrometer for discovering Oases on Mars

    USGS Publications Warehouse

    Ge, J.; Ren, D.; Lunine, J.I.; Brown, R.H.; Yelle, R.V.; Soderblom, L.A.; ,

    2002-01-01

    A new design for a very lightweight, very high throughput reflectance sectrometer enabled by two new technologies being developed is presented. These new technologies include integral field unit optics to enable simultaneous imaging and spectroscopy at high spatial resolution with an infrared (IR) array, and silicon grisms to enable compact and high-resolution spectroscopy.

  18. Label free cell tracking in 3D tissue engineering constructs with high resolution imaging

    NASA Astrophysics Data System (ADS)

    Smith, W. A.; Lam, K.-P.; Dempsey, K. P.; Mazzocchi-Jones, D.; Richardson, J. B.; Yang, Y.

    2014-02-01

    Within the field of tissue engineering there is an emphasis on studying 3-D live tissue structures. Consequently, to investigate and identify cellular activities and phenotypes in a 3-D environment for all in vitro experiments, including shape, migration/proliferation and axon projection, it is necessary to adopt an optical imaging system that enables monitoring 3-D cellular activities and morphology through the thickness of the construct for an extended culture period without cell labeling. This paper describes a new 3-D tracking algorithm developed for Cell-IQ®, an automated cell imaging platform, which has been equipped with an environmental chamber optimized to enable capturing time-lapse sequences of live cell images over a long-term period without cell labeling. As an integral part of the algorithm, a novel auto-focusing procedure was developed for phase contrast microscopy equipped with 20x and 40x objectives, to provide a more accurate estimation of cell growth/trajectories by allowing 3-D voxels to be computed at high spatiotemporal resolution and cell density. A pilot study was carried out in a phantom system consisting of horizontally aligned nanofiber layers (with precise spacing between them), to mimic features well exemplified in cellular activities of neuronal growth in a 3-D environment. This was followed by detailed investigations concerning axonal projections and dendritic circuitry formation in a 3-D tissue engineering construct. Preliminary work on primary animal neuronal cells in response to chemoattractant and topographic cue within the scaffolds has produced encouraging results.

  19. Recovering physical property information from subduction plate boundaries using 3D full-waveform seismic inversion

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Morgan, J. V.; Warner, M.

    2013-12-01

    Our understanding of subduction margin seismogenesis has been revolutionised in the last couple of decades with the discovery that the size of the seismogenic zone may not be controlled simply by temperature and a broad spectrum of seismic behaviour exists from stick-slip to stable sliding. Laboratory and numerical experiments suggest that physical properties, particularly fluid pressure may play an important role in controlling the seismic behaviour of subduction margins. Although drilling can provide information on physical properties along subduction thrust faults at point locations at relatively shallow depths, correlations between physical properties and seismic velocity using rock physics relationships are required to resolve physical properties along the margin and down-dip. Therefore, high resolution seismic velocity models are key to recovering physical property information at subduction plate boundaries away from drill sites. 3D Full waveform inversion (FWI) is a technique pioneered by the oil industry to obtain high-resolution high-fidelity models of physical properties in the sub-surface. 3D FWI involves the inversion of low-frequency (>2 to <7 Hz), early arriving (principally transmitted) seismic data, to recover the macro (intermediate to long-wavelength) velocity structure. Although 2D FWI has been used to improve velocity models of subduction plate boundaries before, 3D FWI has not yet been attempted. 3D inversions have superior convergence and accuracy, as they sample the subsurface with multi-azimuth multiply-crossing wavefields. In this contribution we perform a suite of synthetic tests to investigate if 3D FWI could be used to better resolve physical property information along subduction margin plate boundaries using conventionally collected 3D seismic data. We base our analysis on the Muroto Basin area of the Nankai margin and investigate if the acquisition parameters and geometry of the subduction margin render 3D seismic data collected across

  20. Automated detection, 3D segmentation and analysis of high resolution spine MR images using statistical shape models

    NASA Astrophysics Data System (ADS)

    Neubert, A.; Fripp, J.; Engstrom, C.; Schwarz, R.; Lauer, L.; Salvado, O.; Crozier, S.

    2012-12-01

    Recent advances in high resolution magnetic resonance (MR) imaging of the spine provide a basis for the automated assessment of intervertebral disc (IVD) and vertebral body (VB) anatomy. High resolution three-dimensional (3D) morphological information contained in these images may be useful for early detection and monitoring of common spine disorders, such as disc degeneration. This work proposes an automated approach to extract the 3D segmentations of lumbar and thoracic IVDs and VBs from MR images using statistical shape analysis and registration of grey level intensity profiles. The algorithm was validated on a dataset of volumetric scans of the thoracolumbar spine of asymptomatic volunteers obtained on a 3T scanner using the relatively new 3D T2-weighted SPACE pulse sequence. Manual segmentations and expert radiological findings of early signs of disc degeneration were used in the validation. There was good agreement between manual and automated segmentation of the IVD and VB volumes with the mean Dice scores of 0.89 ± 0.04 and 0.91 ± 0.02 and mean absolute surface distances of 0.55 ± 0.18 mm and 0.67 ± 0.17 mm respectively. The method compares favourably to existing 3D MR segmentation techniques for VBs. This is the first time IVDs have been automatically segmented from 3D volumetric scans and shape parameters obtained were used in preliminary analyses to accurately classify (100% sensitivity, 98.3% specificity) disc abnormalities associated with early degenerative changes.

  1. Lossless compression of 3D seismic data using a horizon displacement compensated 3D lifting scheme

    NASA Astrophysics Data System (ADS)

    Meftah, Anis; Antonini, Marc; Ben Amar, Chokri

    2010-01-01

    In this paper we present a method to optimize the computation of the wavelet transform for the 3D seismic data while reducing the energy of coefficients to the minimum. This allow us to reduce the entropy of the signal and so increase the compression ratios. The proposed method exploits the geometrical information contained in the seismic 3D data to optimize the computation of the wavelet transform. Indeed, the classic filtering is replaced by a filtering following the horizons contained in the 3D seismic images. Applying this approach in two dimensions permits us to obtain wavelets coefficients with lowest energy. The experiments show that our method permits to save extra 8% of the size of the object compared to the classic wavelet transform.

  2. Laser jetting of femto-liter metal droplets for high resolution 3D printed structures

    PubMed Central

    Zenou, M.; Sa’ar, A.; Kotler, Z.

    2015-01-01

    Laser induced forward transfer (LIFT) is employed in a special, high accuracy jetting regime, by adequately matching the sub-nanosecond pulse duration to the metal donor layer thickness. Under such conditions, an effective solid nozzle is formed, providing stability and directionality to the femto-liter droplets which are printed from a large gap in excess of 400 μm. We illustrate the wide applicability of this method by printing several 3D metal objects. First, very high aspect ratio (A/R > 20), micron scale, copper pillars in various configuration, upright and arbitrarily bent, then a micron scale 3D object composed of gold and copper. Such a digital printing method could serve the generation of complex, multi-material, micron-scale, 3D materials and novel structures. PMID:26602432

  3. High-Resolution 3D Bathymetric Mapping for Small Streams Using Low-Altitude Aerial Photography

    NASA Astrophysics Data System (ADS)

    Dietrich, J. T.; Duffin, J.

    2015-12-01

    Geomorphic monitoring of river restoration projects is a critical component of measuring their success. In smaller streams, with depths less than 2 meters, one of the more difficult variables to map at high-resolution is bathymetry. In larger rivers, bathymetry can be measured with instruments like multi-beam sonar, bathymetric airborne LiDAR, or acoustic doppler current profilers (ADCP). However, these systems are often limited by their minimum operating depths, which makes them ineffective in shallow water. Remote sensing offers several potential solutions for collecting bathymetry, spectral depth mapping and photogrammetric measurement (e.g. Structure-from-Motion (SfM) multi-view photogrammetry). In this case study, we use SfM to produce both high-resolution above water topography and below water bathymetry for two reaches of a stream restoration project on the Middle Fork of the John Day River in eastern Oregon and one reach on the White River in Vermont. We collected low-allitude multispectral (RGB+NIR) aerial photography at all of the sites at altitudes of 30 to 50 meters. The SfM survey was georeferenced with RTK-GPS ground control points and the bathymetry was refraction-corrected using additional RTK-GPS sample points. The resulting raster data products have horizontal resolutions of ~4-8 centimeters for the topography and ~8-15 cm for the bathymetry. This methodology, like many fluvial remote sensing methods, will only work under ideal conditions (e.g. clear water), but it provides an additional tool for collecting high-resolution bathymetric datasets for geomorphic monitoring efforts.

  4. High resolution spin- and angle-resolved photoelectron spectroscopy for 3D spin vectorial analysis

    NASA Astrophysics Data System (ADS)

    Okuda, Taichi; Miyamoto, Koji; Kimura, Akio; Namatame, Hirofumi; Taniguchi, Masaki

    2013-03-01

    Spin- and angle-resolved photoelectron spectroscopy (SARPES) is the excellent tool which can directly observe the band structure of crystals with separating spin-up and -down states. Recent findings of new class of materials possessing strong spin orbit interaction such as Rashba spin splitting systems or topological insulators stimulate to develop new SARPES apparatuses and many sophisticated techniques have been reported recently. Here we report our newly developed a SARPES apparatus for spin vectorial analysis with high precision at Hiroshima Synchrotron Radiation Center. Highly efficient spin polarimeter utilizing very low energy electron diffraction (VLEED) makes high resolution (ΔE < 10 meV, Δθ ~ +/- 0.2 °) compatible with the SARPES measurement. By placing two VLEED spin detectors orthogonally we have realized the polarization measurement of all spin components (x, y and z) with the high resolution. Some examples of the three-dimensional spin observation will be presented. This work is supported by KAKENHI (23244066), Grant-in-Aid for Scientific Research (A) of Japan Society for the Promotion of Science.

  5. 3D printing of high-resolution PLA-based structures by hybrid electrohydrodynamic and fused deposition modeling techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Seong, Baekhoon; Nguyen, VuDat; Byun, Doyoung

    2016-02-01

    Recently, the three-dimensional (3D) printing technique has received much attention for shape forming and manufacturing. The fused deposition modeling (FDM) printer is one of the various 3D printers available and has become widely used due to its simplicity, low-cost, and easy operation. However, the FDM technique has a limitation whereby its patterning resolution is too low at around 200 μm. In this paper, we first present a hybrid mechanism of electrohydrodynamic jet printing with the FDM technique, which we name E-FDM. We then develop a novel high-resolution 3D printer based on the E-FDM process. To determine the optimal condition for structuring, we also investigated the effect of several printing parameters, such as temperature, applied voltage, working height, printing speed, flow-rate, and acceleration on the patterning results. This method was capable of fabricating both high resolution 2D and 3D structures with the use of polylactic acid (PLA). PLA has been used to fabricate scaffold structures for tissue engineering, which has different hierarchical structure sizes. The fabrication speed was up to 40 mm/s and the pattern resolution could be improved to 10 μm.

  6. Final report: high resolution lensless 3D imaging of nanostructures with coherent x-rays

    SciTech Connect

    Jacobsen, Chris

    2011-04-14

    This project helped pioneer the core capabilities of coherent diffraction imaging (CDI) using X rays at synchrotron light source facilities. We developed an apparatus that was used for CDI at the Advanced Light Source, and applied it to 2D and 3D imaging of nanostructures. We also explored a number of conceptual and computational issues on the reconstruction of CDI data.

  7. Use of High Resolution 3D Diffusion Tensor Imaging to Study Brain White Matter Development in Live Neonatal Rats

    PubMed Central

    Cai, Yu; McMurray, Matthew S.; Oguz, Ipek; Yuan, Hong; Styner, Martin A.; Lin, Weili; Johns, Josephine M.; An, Hongyu

    2011-01-01

    High resolution diffusion tensor imaging (DTI) can provide important information on brain development, yet it is challenging in live neonatal rats due to the small size of neonatal brain and motion-sensitive nature of DTI. Imaging in live neonatal rats has clear advantages over fixed brain scans, as longitudinal and functional studies would be feasible to understand neuro-developmental abnormalities. In this study, we developed imaging strategies that can be used to obtain high resolution 3D DTI images in live neonatal rats at postnatal day 5 (PND5) and PND14, using only 3 h of imaging acquisition time. An optimized 3D DTI pulse sequence and appropriate animal setup to minimize physiological motion artifacts are the keys to successful high resolution 3D DTI imaging. Thus, a 3D rapid acquisition relaxation enhancement DTI sequence with twin navigator echoes was implemented to accelerate imaging acquisition time and minimize motion artifacts. It has been suggested that neonatal mammals possess a unique ability to tolerate mild-to-moderate hypothermia and hypoxia without long term impact. Thus, we additionally utilized this ability to minimize motion artifacts in magnetic resonance images by carefully suppressing the respiratory rate to around 15/min for PND5 and 30/min for PND14 using mild-to-moderate hypothermia. These imaging strategies have been successfully implemented to study how the effect of cocaine exposure in dams might affect brain development in their rat pups. Image quality resulting from this in vivo DTI study was comparable to ex vivo scans. fractional anisotropy values were also similar between the live and fixed brain scans. The capability of acquiring high quality in vivo DTI imaging offers a valuable opportunity to study many neurological disorders in brain development in an authentic living environment. PMID:22013426

  8. Parameter Estimation of Fossil Oysters from High Resolution 3D Point Cloud and Image Data

    NASA Astrophysics Data System (ADS)

    Djuricic, Ana; Harzhauser, Mathias; Dorninger, Peter; Nothegger, Clemens; Mandic, Oleg; Székely, Balázs; Molnár, Gábor; Pfeifer, Norbert

    2014-05-01

    A unique fossil oyster reef was excavated at Stetten in Lower Austria, which is also the highlight of the geo-edutainment park 'Fossilienwelt Weinviertel'. It provides the rare opportunity to study the Early Miocene flora and fauna of the Central Paratethys Sea. The site presents the world's largest fossil oyster biostrome formed about 16.5 million years ago in a tropical estuary of the Korneuburg Basin. About 15,000 up to 80-cm-long shells of Crassostrea gryphoides cover a 400 m2 large area. Our project 'Smart-Geology for the World's largest fossil oyster reef' combines methods of photogrammetry, geology and paleontology to document, evaluate and quantify the shell bed. This interdisciplinary approach will be applied to test hypotheses on the genesis of the taphocenosis (e.g.: tsunami versus major storm) and to reconstruct pre- and post-event processes. Hence, we are focusing on using visualization technologies from photogrammetry in geology and paleontology in order to develop new methods for automatic and objective evaluation of 3D point clouds. These will be studied on the basis of a very dense surface reconstruction of the oyster reef. 'Smart Geology', as extension of the classic discipline, exploits massive data, automatic interpretation, and visualization. Photogrammetry provides the tools for surface acquisition and objective, automated interpretation. We also want to stress the economic aspect of using automatic shape detection in paleontology, which saves manpower and increases efficiency during the monitoring and evaluation process. Currently, there are many well known algorithms for 3D shape detection of certain objects. We are using dense 3D laser scanning data from an instrument utilizing the phase shift measuring principle, which provides accurate geometrical basis < 3 mm. However, the situation is difficult in this multiple object scenario where more than 15,000 complete or fragmentary parts of an object with random orientation are found. The goal

  9. High-resolution acoustic imaging at low frequencies using 3D-printed metamaterials

    NASA Astrophysics Data System (ADS)

    Laureti, S.; Hutchins, D. A.; Davis, L. A. J.; Leigh, S. J.; Ricci, M.

    2016-12-01

    An acoustic metamaterial has been constructed using 3D printing. It contained an array of air-filled channels, whose size and shape could be varied within the design and manufacture process. In this paper we analyze both numerically and experimentally the properties of this polymer metamaterial structure, and demonstrate its use for the imaging of a sample with sub-wavelength dimensions in the audible frequency range.

  10. High Resolution 3-D Tomographic Imaging by Wavelength and Polarization Diversity.

    DTIC Science & Technology

    1983-07-05

    case of lensless Fourier transform hologram discussed in [42]). This is so because not all projections of a shallow cap are extended in area and...unprecedented resolutions. The TDR technique results in a recording arrangement that yields what can be regarded as a 3-D lensless Fourier transform hologram...Electron Microscopy by Reduction to Two Dimensional Holographic Implementation", Trans. Amer. Crystal. Assoc., Vol. 12, pp. 27-41, 1976. 17. H.H

  11. High-Resolution Multibeam Sonar Survey and Interactive 3-D Exploration of the D-Day Wrecks off Normandy

    NASA Astrophysics Data System (ADS)

    Mayer, L. A.; Calder, B.; Schmidt, J. S.

    2003-12-01

    Historically, archaeological investigations use sidescan sonar and marine magnetometers as initial search tools. Targets are then examined through direct observation by divers, video, or photographs. Magnetometers can demonstrate the presence, absence, and relative susceptibility of ferrous objects but provide little indication of the nature of the target. Sidescan sonar can present a clear image of the overall nature of a target and its surrounding environment, but the sidescan image is often distorted and contains little information about the true 3-D shape of the object. Optical techniques allow precise identification of objects but suffer from very limited range, even in the best of situations. Modern high-resolution multibeam sonar offers an opportunity to cover a relatively large area from a safe distance above the target, while resolving the true three-dimensional (3-D) shape of the object with centimeter-level resolution. The combination of 3-D mapping and interactive 3-D visualization techniques provides a powerful new means to explore underwater artifacts. A clear demonstration of the applicability of high-resolution multibeam sonar to wreck and artifact investigations occurred when the Naval Historical Center (NHC), the Center for Coastal and Ocean Mapping (CCOM) at the University of New Hampshire, and Reson Inc., collaborated to explore the state of preservation and impact on the surrounding environment of a series of wrecks located off the coast of Normandy, France, adjacent to the American landing sectors The survey augmented previously collected magnetometer and high-resolution sidescan sonar data using a Reson 8125 high-resolution focused multibeam sonar with 240, 0.5° (at nadir) beams distributed over a 120° swath. The team investigated 21 areas in water depths ranging from about three -to 30 meters (m); some areas contained individual targets such as landing craft, barges, a destroyer, troop carrier, etc., while others contained multiple smaller

  12. Test of high-resolution 3D P-wave velocity model of Poland by back-azimuthal sections of teleseismic receiver function

    NASA Astrophysics Data System (ADS)

    Wilde-Piorko, Monika; Polkowski, Marcin; Grad, Marek

    2015-04-01

    Geological and seismic structure under area of Poland is well studied by over one hundred thousand boreholes, over thirty deep seismic refraction and wide angle reflection profiles and by vertical seismic profiling, magnetic, gravity, magnetotelluric and thermal methods. Compilation of these studies allowed to create a high-resolution 3D P-wave velocity model down to 60 km depth in the area of Poland (Polkowski et al. 2014). Model also provides details about the geometry of main layers of sediments (Tertiary and Quaternary, Cretaceous, Jurassic, Triassic, Permian, old Paleozoic), consolidated/crystalline crust (upper, middle and lower) and uppermost mantle. This model gives an unique opportunity for calculation synthetic receiver function and compering it with observed receiver function calculated for permanent and temporary seismic stations. Modified ray-tracing method (Langston, 1977) can be used directly to calculate the response of the structure with dipping interfaces to the incoming plane wave with fixed slowness and back-azimuth. So, 3D P-wave velocity model has been interpolated to 2.5D P-wave velocity model beneath each seismic station and back-azimuthal sections of components of receiver function have been calculated. Vp/Vs ratio is assumed to be 1.8, 1.67, 1.73, 1.77 and 1.8 in the sediments, upper/middle/lower consolidated/crystalline crust and uppermost mantle, respectively. Densities were calculated with combined formulas of Berteussen (1977) and Gardner et al. (1974). Additionally, to test a visibility of the lithosphere-asthenosphere boundary phases at receiver function sections models have been extended to 250 km depth based on P4-mantle model (Wilde-Piórko et al., 2010). National Science Centre Poland provided financial support for this work by NCN grant DEC-2011/02/A/ST10/00284 and by NCN grant UMO-2011/01/B/ST10/06653.

  13. A comparative study between a rectilinear 3-D seismic survey and a concentric-circle 3-D seismic survey

    SciTech Connect

    Maldonado, B.; Hussein, H.S.

    1994-12-31

    Due to the rectilinear nature of the previous 3D seismic survey, the details necessary for proper interpretation were absent. Theoretically, concentric 3D seismic technology may provide an avenue for gaining more and higher quality data coverage. Problems associated with recording a rectilinear 3D seismic grid over the salt dome in this area have created the need to investigate the use of such procedures as the concentric-circle 3D seismic acquisition technique. The difficulty of imaging salt dome flanks with conventional rectilinear 3D seismic may be a result of the inability to precisely predict the lateral velocity-field variation adjacent to both salt and sediments. The dramatic difference in the interval velocities of salt and sediments causes the returning ray to severely deviate from being a hyperbolic path. This hampers the ability to predict imaging points near the salt/sediment interface. Perhaps the most difficult areas to image with rectilinear seismic surveys are underneath salt overhangs. Modeling suggests that a significant increase in the number of rays captured from beneath a salt overhang can be achieved with the concentric-circle method. This paper demonstrates the use of the ``circle shoot`` on a survey conducted over a salt dome in the Gulf of Mexico. A total of 80 concentric circles cover an area which is equivalent to 31,000 acres. The final post-stack data were sorted into bins with dimensions of 25 meters by 25 meters. A comparison of 3D rectilinear shooting vs. 3D concentric circle shooting over the same area will show an improvement in data quality and signal-to-noise characteristics.

  14. A High-Resolution 3D Weather Radar, MSG, and Lightning Sensor Observation Composite

    NASA Astrophysics Data System (ADS)

    Diederich, Malte; Senf, Fabian; Wapler, Kathrin; Simmer, Clemens

    2013-04-01

    Within the research group 'Object-based Analysis and SEamless prediction' (OASE) of the Hans Ertel Centre for Weather Research programme (HerZ), a data composite containing weather radar, lightning sensor, and Meteosat Second Generation observations is being developed for the use in object-based weather analysis and nowcasting. At present, a 3D merging scheme combines measurements of the Bonn and Jülich dual polarimetric weather radar systems (data provided by the TR32 and TERENO projects) into a 3-dimensional polar-stereographic volume grid, with 500 meters horizontal, and 250 meters vertical resolution. The merging takes into account and compensates for various observational error sources, such as attenuation through hydrometeors, beam blockage through topography and buildings, minimum detectable signal as a function of noise threshold, non-hydrometeor echos like insects, and interference from other radar systems. In addition to this, the effect of convection during the radar 5-minute volume scan pattern is mitigated through calculation of advection vectors from subsequent scans and their use for advection correction when projecting the measurements into space for any desired timestamp. The Meteosat Second Generation rapid scan service provides a scan in 12 spectral visual and infrared wavelengths every 5 minutes over Germany and Europe. These scans, together with the derived microphysical cloud parameters, are projected into the same polar stereographic grid used for the radar data. Lightning counts from the LINET lightning sensor network are also provided for every 2D grid pixel. The combined 3D radar and 2D MSG/LINET data is stored in a fully documented netCDF file for every 5 minute interval, and is made ready for tracking and object based weather analysis. At the moment, the 3D data only covers the Bonn and Jülich area, but the algorithms are planed to be adapted to the newly conceived DWD polarimetric C-Band 5 minute interval volume scan strategy. An

  15. Ultra-Compact, High-Resolution LADAR System for 3D Imaging

    NASA Technical Reports Server (NTRS)

    Xu, Jing; Gutierrez, Roman

    2009-01-01

    An eye-safe LADAR system weighs under 500 grams and has range resolution of 1 mm at 10 m. This laser uses an adjustable, tiny microelectromechanical system (MEMS) mirror that was made in SiWave to sweep laser frequency. The size of the laser device is small (70x50x13 mm). The LADAR uses all the mature fiber-optic telecommunication technologies in the system, making this innovation an efficient performer. The tiny size and light weight makes the system useful for commercial and industrial applications including surface damage inspections, range measurements, and 3D imaging.

  16. A Compact 3D Omnidirectional Range Sensor of High Resolution for Robust Reconstruction of Environments

    PubMed Central

    Marani, Roberto; Renò, Vito; Nitti, Massimiliano; D'Orazio, Tiziana; Stella, Ettore

    2015-01-01

    In this paper, an accurate range sensor for the three-dimensional reconstruction of environments is designed and developed. Following the principles of laser profilometry, the device exploits a set of optical transmitters able to project a laser line on the environment. A high-resolution and high-frame-rate camera assisted by a telecentric lens collects the laser light reflected by a parabolic mirror, whose shape is designed ad hoc to achieve a maximum measurement error of 10 mm when the target is placed 3 m away from the laser source. Measurements are derived by means of an analytical model, whose parameters are estimated during a preliminary calibration phase. Geometrical parameters, analytical modeling and image processing steps are validated through several experiments, which indicate the capability of the proposed device to recover the shape of a target with high accuracy. Experimental measurements show Gaussian statistics, having standard deviation of 1.74 mm within the measurable range. Results prove that the presented range sensor is a good candidate for environmental inspections and measurements. PMID:25621605

  17. Design, modeling and testing of integrated ring extractor for high resolution electrohydrodynamic (EHD) 3D printing

    NASA Astrophysics Data System (ADS)

    Han, Yiwei; Dong, Jingyan

    2017-03-01

    This paper presents an integrated ring extractor design in electrohydrodynamic (EHD) printing, which can overcome the standoff height limitation in the EHD printing process, and improve printing capability for 3D structures. Standoff height in the EHD printing will affect printing processes and limit the height of the printed structure when the ground electrode is placed under the substrate. In this work, we designed and integrated a ring electrode with the printing nozzle to achieve a self-working printer head, which can start and maintain the printing process without the involvement of the substrate. We applied a FEA method to model the electric field potential distribution and strength to direct the ring extractor design, which provides a similar printing capability with the system using substrate as the ground electrode. We verified the ring electrode design by experiments, and those results from the experiments demonstrated a good match with results from the FEA simulation. We have characterized the printing processes using the integrated ring extractor, and successfully applied this newly designed ring extractor to print polycaprolactone (PCL) 3D structures.

  18. Mapping cardiac fiber orientations from high-resolution DTI to high-frequency 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Wagner, Mary B.; Fei, Baowei

    2014-03-01

    The orientation of cardiac fibers affects the anatomical, mechanical, and electrophysiological properties of the heart. Although echocardiography is the most common imaging modality in clinical cardiac examination, it can only provide the cardiac geometry or motion information without cardiac fiber orientations. If the patient's cardiac fiber orientations can be mapped to his/her echocardiography images in clinical examinations, it may provide quantitative measures for diagnosis, personalized modeling, and image-guided cardiac therapies. Therefore, this project addresses the feasibility of mapping personalized cardiac fiber orientations to three-dimensional (3D) ultrasound image volumes. First, the geometry of the heart extracted from the MRI is translated to 3D ultrasound by rigid and deformable registration. Deformation fields between both geometries from MRI and ultrasound are obtained after registration. Three different deformable registration methods were utilized for the MRI-ultrasound registration. Finally, the cardiac fiber orientations imaged by DTI are mapped to ultrasound volumes based on the extracted deformation fields. Moreover, this study also demonstrated the ability to simulate electricity activations during the cardiac resynchronization therapy (CRT) process. The proposed method has been validated in two rat hearts and three canine hearts. After MRI/ultrasound image registration, the Dice similarity scores were more than 90% and the corresponding target errors were less than 0.25 mm. This proposed approach can provide cardiac fiber orientations to ultrasound images and can have a variety of potential applications in cardiac imaging.

  19. Ultra-high-resolution 3D digitalized imaging of the cerebral angioarchitecture in rats using synchrotron radiation

    PubMed Central

    Zhang, Meng-Qi; Zhou, Luo; Deng, Qian-Fang; Xie, Yuan-Yuan; Xiao, Ti-Qiao; Cao, Yu-Ze; Zhang, Ji-Wen; Chen, Xu-Meng; Yin, Xian-Zhen; Xiao, Bo

    2015-01-01

    The angioarchitecture is a fundamental aspect of brain development and physiology. However, available imaging tools are unsuited for non-destructive cerebral mapping of the functionally important three-dimensional (3D) vascular microstructures. To address this issue, we developed an ultra-high resolution 3D digitalized angioarchitectural map for rat brain, based on synchrotron radiation phase contrast imaging (SR-PCI) with pixel size of 5.92 μm. This approach provides a systematic and detailed view of the cerebrovascular anatomy at the micrometer level without any need for contrast agents. From qualitative and quantitative perspectives, the present 3D data provide a considerable insight into the spatial vascular network for whole rodent brain, particularly for functionally important regions of interest, such as the hippocampus, pre-frontal cerebral cortex and the corpus striatum. We extended these results to synchrotron-based virtual micro-endoscopy, thus revealing the trajectory of targeted vessels in 3D. The SR-PCI method for systematic visualization of cerebral microvasculature holds considerable promise for wider application in life sciences, including 3D micro-imaging in experimental models of neurodevelopmental and vascular disorders. PMID:26443231

  20. A 3D Seismic Case: Shooting around a CCS Drill Site

    NASA Astrophysics Data System (ADS)

    Wang, C.

    2013-12-01

    The reduction of carbon dioxide emission to lessen the global warming has become an important international issue in recent years. The CCS technique (Carbon-dioxide Capture and Storage) is among the most recommended methods. The capture of CO2 during its manufacturing process in the electric power plant and storing in the adjacent area is considered to be an economical and feasible choice. This research uses the 2D and 3D high-resolution seismic reflection method to investigate possible CCS sites along the coast in Taiwan. The site is near an electric power plant and is planned to be a CCS experiment laboratory. The main objective is to detect the proper geologic structure and to prepare the baseline data for the future CO2 monitoring. The size of the high-resolution method applied in this study is much smaller than that used in the oil exploration. The obtained high quality and high resolution data can resolve very detailed structures. The survey parameters in 2D are 4m interval, 240 channels. The bin size in 3D seismic is 8m x 4m, 288 channels. Both 2D and 3D used the Minivibe as a source with 40Hz geophones, and having an average of 30 folds. The 3D seismic survey was conducted around the planned drill site. A surrounding type of 3D data acquisition was taken with sources at outside and receivers at the center. Such a deployment design is quite suitable for the drill site investigation. The structural layer as thin as 4m is able to be detected even under a depth of 3000m. Such a high resolution allows us not only to estimate the structure, but also able to monitor the migration of CO 2 after storage. The results of seismic survey after comparing with a nearby borehole data show that : 1) the caprock is Chinshui shale which is at a depth of 880m to 1000m with a thickness about 120m, 2) the Nanchuang formation and Kueichulin formation with high porosity can be proper reservoir layers which are located at the depth between 1000m to 1700m. In conclusion, this site

  1. Assessment of engineered surfaces roughness by high-resolution 3D SEM photogrammetry.

    PubMed

    Gontard, L C; López-Castro, J D; González-Rovira, L; Vázquez-Martínez, J M; Varela-Feria, F M; Marcos, M; Calvino, J J

    2017-03-07

    We describe a methodology to obtain three-dimensional models of engineered surfaces using scanning electron microscopy and multi-view photogrammetry (3DSEM). For the reconstruction of the 3D models of the surfaces we used freeware available in the cloud. The method was applied to study the surface roughness of metallic samples patterned with parallel grooves by means of laser. The results are compared with measurements obtained using stylus profilometry (PR) and SEM stereo-photogrammetry (SP). The application of 3DSEM is more time demanding than PR or SP, but it provides a more accurate representation of the surfaces. The results obtained with the three techniques are compared by investigating the influence of sampling step on roughness parameters.

  2. High-resolution direct 3D printed PLGA scaffolds: print and shrink.

    PubMed

    Chia, Helena N; Wu, Benjamin M

    2014-12-17

    Direct three-dimensional printing (3DP) produces the final part composed of the powder and binder used in fabrication. An advantage of direct 3DP is control over both the microarchitecture and macroarchitecture. Prints which use porogen incorporated in the powder result in high pore interconnectivity, uniform porosity, and defined pore size after leaching. The main limitations of direct 3DP for synthetic polymers are the use of organic solvents which can dissolve polymers used in most printheads and limited resolution due to unavoidable spreading of the binder droplet after contact with the powder. This study describes a materials processing strategy to eliminate the use of organic solvent during the printing process and to improve 3DP resolution by shrinking with a non-solvent plasticizer. Briefly, poly(lactic-co-glycolic acid) (PLGA) powder was prepared by emulsion solvent evaporation to form polymer microparticles. The printing powder was composed of polymer microparticles dry mixed with sucrose particles. After printing with a water-based liquid binder, the polymer microparticles were fused together to form a network by solvent vapor in an enclosed vessel. The sucrose is removed by leaching and the resulting scaffold is placed in a solution of methanol. The methanol acts as a non-solvent plasticizer and allows for polymer chain rearrangement and efficient packing of polymer chains. The resulting volumetric shrinkage is ∼80% at 90% methanol. A complex shape (honey-comb) was designed, printed, and shrunken to demonstrate isotropic shrinking with the ability to reach a final resolution of ∼400 μm. The effect of type of alcohol (i.e. methanol or ethanol), concentration of alcohol, and temperature on volumetric shrinking was studied. This study presents a novel materials processing strategy to overcome the main limitations of direct 3DP to produce high resolution PLGA scaffolds.

  3. Zooming in: high resolution 3D reconstruction of differently stained histological whole slide images

    NASA Astrophysics Data System (ADS)

    Lotz, Johannes; Berger, Judith; Müller, Benedikt; Breuhahn, Kai; Grabe, Niels; Heldmann, Stefan; Homeyer, André; Lahrmann, Bernd; Laue, Hendrik; Olesch, Janine; Schwier, Michael; Sedlaczek, Oliver; Warth, Arne

    2014-03-01

    Much insight into metabolic interactions, tissue growth, and tissue organization can be gained by analyzing differently stained histological serial sections. One opportunity unavailable to classic histology is three-dimensional (3D) examination and computer aided analysis of tissue samples. In this case, registration is needed to reestablish spatial correspondence between adjacent slides that is lost during the sectioning process. Furthermore, the sectioning introduces various distortions like cuts, folding, tearing, and local deformations to the tissue, which need to be corrected in order to exploit the additional information arising from the analysis of neighboring slide images. In this paper we present a novel image registration based method for reconstructing a 3D tissue block implementing a zooming strategy around a user-defined point of interest. We efficiently align consecutive slides at increasingly fine resolution up to cell level. We use a two-step approach, where after a macroscopic, coarse alignment of the slides as preprocessing, a nonlinear, elastic registration is performed to correct local, non-uniform deformations. Being driven by the optimization of the normalized gradient field (NGF) distance measure, our method is suitable for differently stained and thus multi-modal slides. We applied our method to ultra thin serial sections (2 μm) of a human lung tumor. In total 170 slides, stained alternately with four different stains, have been registered. Thorough visual inspection of virtual cuts through the reconstructed block perpendicular to the cutting plane shows accurate alignment of vessels and other tissue structures. This observation is confirmed by a quantitative analysis. Using nonlinear image registration, our method is able to correct locally varying deformations in tissue structures and exceeds the limitations of globally linear transformations.

  4. First steps toward 3D high resolution imaging using adaptive optics and full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Blanco, Leonardo; Blavier, Marie; Glanc, Marie; Pouplard, Florence; Tick, Sarah; Maksimovic, Ivan; Chenegros, Guillaume; Mugnier, Laurent; Lacombe, Francois; Rousset, Gérard; Paques, Michel; Le Gargasson, Jean-François; Sahel, Jose-Alain

    2008-09-01

    We describe here two parts of our future 3D fundus camera coupling Adaptive Optics and full-field Optical Coherence Tomography. The first part is an Adaptive Optics flood imager installed at the Quinze-Vingts Hospital, regularly used on healthy and pathological eyes. A posteriori image reconstruction is performed, increasing the final image quality and field of view. The instrument lateral resolution is better than 2 microns. The second part is a full-field Optical Coherence Tomograph, which has demonstrated capability of performing a simple kind of "4 phases" image reconstruction of non biological samples and ex situ retinas. Final aim is to couple both parts in order to achieve 3D high resolution mapping of in vivo retinas.

  5. Detection of 3D tree root systems using high resolution ground penetration radar

    NASA Astrophysics Data System (ADS)

    Altdorff, D.; Honds, M.; Botschek, J.; Van Der Kruk, J.

    2014-12-01

    Knowledge of root systems and its distribution are important for biomass estimation as well as for the prevention of subsurface distribution network damages. Ground penetration radar (GPR) is a promising technique that enables a non-invasive imaging of tree roots. Due to the polarisation-dependent reflection coefficients and complicated three-dimensional root structure, accurate measurements with perpendicularly polarized antennas are needed. In this study, we show GPR data from two planes and one chestnut at two locations with different soil conditions. Perpendicular 10 x 10 cm grid measurements were made with a shielded 250 MHz antenna in combination with a high precision self-tracking laser theodolite that provides geo-referenced traces with a spatial resolution of ~ 2 cm. After selecting potential root hyperbolas within the perpendicular GPR profiles, the corresponding three-dimensional coordinates were extracted and visualized in planar view to reveal any linear structure that indicates a possible tree root. The coordinates of the selected linear structures were projected back to the surface by means of the laser-theodolite to indicate the locations for groundtruthing. Additionally, we interpolated the measured data into a 3D cube where time slices confirmed the locations of linear reflection events. We validated the indicated predictions by excavation of the soil with a suction dredge. Subsequent georeferencing of the true root distribution and comparison with the selected linear events showed that the approach was able to identify the precise position of roots with a diameter between 3 and 10 cm and a depth of up to 70 cm. However, not all linear events were roots; also mouse channels were found in these depths, since they also generate GPR hyperbolas aligned in linear structures. Roots at a second location at depths of 1 to 1.20 m did not generate identifiable hyperboles, which was probably due to an increased electrical conductivity below 86 cm depth. The

  6. Frozen Gaussian approximation for 3-D seismic wave propagation

    NASA Astrophysics Data System (ADS)

    Chai, Lihui; Tong, Ping; Yang, Xu

    2017-01-01

    We present a systematic introduction on applying frozen Gaussian approximation (FGA) to compute synthetic seismograms in 3-D earth models. In this method, seismic wavefield is decomposed into frozen (fixed-width) Gaussian functions, which propagate along ray paths. Rather than the coherent state solution to the wave equation, this method is rigorously derived by asymptotic expansion on phase plane, with analysis of its accuracy determined by the ratio of short wavelength over large domain size. Similar to other ray-based beam methods (e.g. Gaussian beam methods), one can use relatively small number of Gaussians to get accurate approximations of high-frequency wavefield. The algorithm is embarrassingly parallel, which can drastically speed up the computation with a multicore-processor computer station. We illustrate the accuracy and efficiency of the method by comparing it to the spectral element method for a 3-D seismic wave propagation in homogeneous media, where one has the analytical solution as a benchmark. As another proof of methodology, simulations of high-frequency seismic wave propagation in heterogeneous media are performed for 3-D waveguide model and smoothed Marmousi model, respectively. The second contribution of this paper is that, we incorporate the Snell's law into the FGA formulation, and asymptotically derive reflection, transmission and free surface conditions for FGA to compute high-frequency seismic wave propagation in high contrast media. We numerically test these conditions by computing traveltime kernels of different phases in the 3-D crust-over-mantle model.

  7. Possible use of small UAV to create high resolution 3D model of vertical rock faces

    NASA Astrophysics Data System (ADS)

    Mészáros, János; Kerkovits, Krisztian

    2014-05-01

    One of the newest and mostly emerging acquisition technologies is the use of small unmanned aerial vehicles (UAVs) to photogrammetry and remote sensing. Several successful research project or industrial use can be found worldwide (mine investigation, precision agriculture, mapping etc.) but those surveys are focusing mainly on the survey of horizontal areas. In our research a mixed acquisition method was developed and tested to create a dense, 3D model about a columnar outcrop close to Kő-hegy (Pest County). Our primary goal was to create a model whereat the pattern of different layers is clearly visible and measurable, as well as to test the robustness of our idea. Our method uses a consumer grade camera to take digital photographs about the outcrop. A small, custom made tricopter was built to carry the camera above middle and top parts of the rock, the bottom part can be photographed only from several ground positions. During the field survey ground control points were installed and measured using a kinematic correction GPS. These latter data were used during the georeferencing of generated point cloud. Free online services built on Structure from Motion (SfM) algorithms and desktop software also were tested to generate the relative point cloud and for further processing and analysis.

  8. Recording High Resolution 3D Lagrangian Motions In Marine Dinoflagellates using Digital Holographic Microscopic Cinematography

    NASA Astrophysics Data System (ADS)

    Sheng, J.; Malkiel, E.; Katz, J.; Place, A. R.; Belas, R.

    2006-11-01

    Detailed data on swimming behavior and locomotion for dense population of dinoflagellates constitutes a key component to understanding cell migration, cell-cell interactions and predator-prey dynamics, all of which affect algae bloom dynamics. Due to the multi-dimensional nature of flagellated cell motions, spatial-temporal Lagrangian measurements of multiple cells in high concentration are very limited. Here we present detailed data on 3D Lagrangian motions for three marine dinoflagellates: Oxyrrhis marina, Karlodinium veneficum, and Pfiesteria piscicida, using digital holographic microscopic cinematography. The measurements are performed in a 5x5x25mm cuvette with cell densities varying from 50,000 ˜ 90,000 cells/ml. Approximately 200-500 cells are tracked simultaneously for 12s at 60fps in a sample volume of 1x1x5 mm at a spatial resolution of 0.4x0.4x2 μm. We fully resolve the longitudinal flagella (˜200nm) along with the Lagrangian trajectory of each organism. Species dependent swimming behavior are identified and categorized quantitatively by velocities, radii of curvature, and rotations of pitch. Statistics on locomotion, temporal & spatial scales, and diffusion rate show substantial differences between species. The scaling between turning radius and cell dimension can be explained by a distributed stokeslet model for a self-propelled body.

  9. High sensitivity and high resolution element 3D analysis by a combined SIMS–SPM instrument

    PubMed Central

    Wirtz, Tom

    2015-01-01

    Summary Using the recently developed SIMS–SPM prototype, secondary ion mass spectrometry (SIMS) data was combined with topographical data from the scanning probe microscopy (SPM) module for five test structures in order to obtain accurate chemical 3D maps: a polystyrene/polyvinylpyrrolidone (PS/PVP) polymer blend, a nickel-based super-alloy, a titanium carbonitride-based cermet, a reticle test structure and Mg(OH)2 nanoclusters incorporated inside a polymer matrix. The examples illustrate the potential of this combined approach to track and eliminate artefacts related to inhomogeneities of the sputter rates (caused by samples containing various materials, different phases or having a non-flat surface) and inhomogeneities of the secondary ion extraction efficiencies due to local field distortions (caused by topography with high aspect ratios). In this respect, this paper presents the measured relative sputter rates between PVP and PS as well as in between the different phases of the TiCN cermet. PMID:26171285

  10. Acquisition of high-resolution 3D data and processing using Artificial Intelligence

    NASA Astrophysics Data System (ADS)

    Meng, Hui; Sheng, J.; Yang, W.; Pu, Y.

    1996-11-01

    Holographic PIV (HPIV) is a promising 3D velocity field measurement technique providing high spatial-temporal resolution needed for understanding complex and turbulent flows. An HPIV system, combining in-line recording and off-axis viewing (IROV) holography and Heuristic Morphology Particle Pairing (HMPP) method, is being developed in this work. Unlike 2D PIV, HPIV instantaneously records a volume of particle images through holographic imaging. Its data processing involves special difficulties such as speckle noise, sparse pairs and large data sets. The HMPP algorithm is an adaptive parallel processing scheme applying artificial intelligence searching theory. Based on similar morphology of a particle group at successive instants separated by a small interval, HMPP matches a group of particle images between double exposures and provides velocity vectors for individual particle pairs, providing much higher spatial resolution than conventional correlation algorithm and lower measurement error caused by large velocity gradients. Taking advantages of IROV and HMPP, the system being developed appears highly promising as a practical HPIV configuration.

  11. Euro-Maps 3D- A Transnational, High-Resolution Digital Surface Model For Europe

    NASA Astrophysics Data System (ADS)

    Uttenthaler, A.; Barner, F.; Hass, T.; Makiola, J.; d'Angelo, P.; Reinartz, P.; Carl, S.; Steiner, K.

    2013-12-01

    Euro-Maps 3D is a homogeneous 5 m spaced digital surface model (DSM) semi-automatically derived by Euromap from 2.5 m in-flight stereo data provided by the Indian IRS-P5 Cartosat-1 satellite. This new and innovative product has been developed in close co- operation with the Remote Sensing Technology Institute (IMF) of the German Aerospace Center (DLR) and is being jointly exploited. The very detailed and accurate representation of the surface is achieved by using a sophisticated and well adapted algorithm implemented on the basis of the Semi-Global Matching approach. In addition, the final product includes detailed flanking information consisting of several pixel-based quality and traceability layers also including an ortho layer. The product is believed to provide maximum accuracy and transparency. The DSM product meets and exceeds HRE80 qualification standards. The DSM product will be made available transnational in a homogeneous quality for most parts of Europe, North Africa and Turkey by Euromap step-by-step. Other areas around the world are processed on demand.

  12. High Resolution Ultrasonic Method for 3D Fingerprint Representation in Biometrics

    NASA Astrophysics Data System (ADS)

    Maev, R. Gr.; Bakulin, E. Y.; Maeva, E. Y.; Severin, F. M.

    Biometrics is an important field which studies different possible ways of personal identification. Among a number of existing biometric techniques fingerprint recognition stands alone - because very large database of fingerprints has already been acquired. Also, fingerprints are an important evidence that can be collected at a crime scene. Therefore, of all automated biometric techniques, especially in the field of law enforcement, fingerprint identification seems to be the most promising. Ultrasonic method of fingerprint imaging was originally introduced over a decade as the mapping of the reflection coefficient at the interface between the finger and a covering plate and has shown very good reliability and free from imperfections of previous two methods. This work introduces a newer development of the ultrasonic fingerprint imaging, focusing on the imaging of the internal structures of fingerprints (including sweat pores) with raw acoustic resolution of about 500 dpi (0.05 mm) using a scanning acoustic microscope to obtain images and acoustic data in the form of 3D data array. C-scans from different depths inside the fingerprint area of fingers of several volunteers were obtained and showed good contrast of ridges-and-valleys patterns and practically exact correspondence to the standard ink-and-paper prints of the same areas. Important feature reveled on the acoustic images was the clear appearance of the sweat pores, which could provide additional means of identification.

  13. 3-D seismic exploration in the Ames hole

    SciTech Connect

    Ainsworth, K.R.

    1995-09-01

    The Ames Crater of Major County, Oklahoma has been one of the more controversial drilling projects to emerge in the Mid-Continent province in this decade. Within the crater, dolomitic and granodiorite breccias produce substantial quantities of oil and gas within structurally controlled accumulations. To understand the structural complexities of the crater, Continental Resources, in partnership with other Ames operators, acquired 3-D seismic data in four separate acquisition projects across various exploratory and development projects across the crater. Integrated seismic and subsurface control revealed four separate features within the principal crater floor oil and gas accumulation. Using the 3-D data as a lead tool, these companies identified and developed a significant number of commercial tests within the limits of the seismic surveys. Although the tool generally proved to be successful, reservoir variability, velocity variations, and interpretational errors resulted in some non-commercial and dry tests.

  14. Imaging fault zones using 3D seismic image processing techniques

    NASA Astrophysics Data System (ADS)

    Iacopini, David; Butler, Rob; Purves, Steve

    2013-04-01

    Significant advances in structural analysis of deep water structure, salt tectonic and extensional rift basin come from the descriptions of fault system geometries imaged in 3D seismic data. However, even where seismic data are excellent, in most cases the trajectory of thrust faults is highly conjectural and still significant uncertainty exists as to the patterns of deformation that develop between the main faults segments, and even of the fault architectures themselves. Moreover structural interpretations that conventionally define faults by breaks and apparent offsets of seismic reflectors are commonly conditioned by a narrow range of theoretical models of fault behavior. For example, almost all interpretations of thrust geometries on seismic data rely on theoretical "end-member" behaviors where concepts as strain localization or multilayer mechanics are simply avoided. Yet analogue outcrop studies confirm that such descriptions are commonly unsatisfactory and incomplete. In order to fill these gaps and improve the 3D visualization of deformation in the subsurface, seismic attribute methods are developed here in conjunction with conventional mapping of reflector amplitudes (Marfurt & Chopra, 2007)). These signal processing techniques recently developed and applied especially by the oil industry use variations in the amplitude and phase of the seismic wavelet. These seismic attributes improve the signal interpretation and are calculated and applied to the entire 3D seismic dataset. In this contribution we will show 3D seismic examples of fault structures from gravity-driven deep-water thrust structures and extensional basin systems to indicate how 3D seismic image processing methods can not only build better the geometrical interpretations of the faults but also begin to map both strain and damage through amplitude/phase properties of the seismic signal. This is done by quantifying and delineating the short-range anomalies on the intensity of reflector amplitudes

  15. Early Earth tectonics: A high-resolution 3D numerical modelling approach

    NASA Astrophysics Data System (ADS)

    Fischer, R.; Gerya, T.

    2014-12-01

    Early Earth had a higher amount of remaining radiogenic elements as well as a higher amount of leftover primordial heat. Both contributed to the increased temperature in the Earth's interior and it is mainly this increased mantle potential temperature ΔTp that controls the dynamics of the crust and upper mantle and the style of Early Earth tectonics. For a minor increase in temperature ΔTp < 175 K a subduction-collision style ensues which is largely similar to present day plate tectonics. For a moderate increase in ΔTp = 175-250 K subduction can still occur, however plates are strongly weakened and buckling, delamination and Rayleigh-Taylor style dripping of the plate is observed in addition. For higher temperatures ΔTp > 250 K no subduction can be observed anymore and tectonics is dominated by delamination and Rayleigh-Taylor instabilities. We conduct 3D petrological-thermomechanical numerical modelling experiments of the crust and upper mantle under Early Earth conditions and a plume tectonics model setup. For varying crustal structures and an increased mantle potential temperature ΔTp, a thermal anomaly in the bottom temperature boundary introduces a plume. The model is able to self-sufficiently form depleted mantle lithosphere after repeated melt removal. New crust can be produced in the form of volcanics or plutonics. To simulate differentiation the newly formed crust can have a range in composition from basaltic over dacitic to granitic depending on its source rock. Models show large amounts of subcrustal decompression melting and consequently large amounts of new formed crust which in turn influences the dynamics. Mantle and crust are convecting separately. Dome-shaped plutons of mafic or felsic composition can be observed in the crust. Between these domes elongated belts of upper crust, volcanics and sediments are formed. These structures look similar to, for example, the Kaapvaal craton in South Africa where the elongated shape of the Barberton

  16. High resolution seismic attenuation tomography at Medicine Lake Volcano, California

    SciTech Connect

    Zucca, J.J.; Kasameyer, P.W.

    1987-07-10

    Medicine Lake Volcano, a broad shield volcano about 50km east of Mount Shasta in northern California, produced rhylotic eruptions as recently as 400 years ago. Because of this recent activity it is of considerable interest to producers of geothermal energy. In a joint project sponsored by the Geothermal Research Program of the USGS and the Division of Geothermal and Hydropower Division of the US-DOE, the USGS and LLNL conducted an active seismic experiment designed to explore the area beneath and around the caldera. The experiment of eight explosions detonated in a 50 km radius circle around the volcano recorded on a 11 x 15 km grid of 140 seismographs. The travel time data from the experiment have been inverted for structure and are presented elsewhere in this volume. In this paper we present the results of an inversion for 1/Q structure using t* data in a modified Aki inversion scheme. Although the data are noisy, we find that in general attenuative zones correlate with low velocity zones. In particular, we observe a high 1/Q zone roughly in the center of the caldera at 4 km depth in between two large recent dacite flows. This zone could represent the still molten or partially molten source of the flows.

  17. Automatic Building Damage Detection Method Using High-Resolution Remote Sensing Images and 3d GIS Model

    NASA Astrophysics Data System (ADS)

    Tu, Jihui; Sui, Haigang; Feng, Wenqing; Song, Zhina

    2016-06-01

    In this paper, a novel approach of building damaged detection is proposed using high resolution remote sensing images and 3D GIS-Model data. Traditional building damage detection method considers to detect damaged building due to earthquake, but little attention has been paid to analyze various building damaged types(e.g., trivial damaged, severely damaged and totally collapsed.) Therefore, we want to detect the different building damaged type using 2D and 3D feature of scenes because the real world we live in is a 3D space. The proposed method generalizes that the image geometric correction method firstly corrects the post-disasters remote sensing image using the 3D GIS model or RPC parameters, then detects the different building damaged types using the change of the height and area between the pre- and post-disasters and the texture feature of post-disasters. The results, evaluated on a selected study site of the Beichuan earthquake ruins, Sichuan, show that this method is feasible and effective in building damage detection. It has also shown that the proposed method is easily applicable and well suited for rapid damage assessment after natural disasters.

  18. Mini-Sosie high-resolution seismic method aids hazards studies

    USGS Publications Warehouse

    Stephenson, W.J.; Odum, J.; Shedlock, K.M.; Pratt, T.L.; Williams, R.A.

    1992-01-01

    The Mini-Sosie high-resolution seismic method has been effective in imaging shallow-structure and stratigraphic features that aid in seismic-hazard and neotectonic studies. The method is not an alternative to Vibroseis acquisition for large-scale studies. However, it has two major advantages over Vibroseis as it is being used by the USGS in its seismic-hazards program. First, the sources are extremely portable and can be used in both rural and urban environments. Second, the shifting-and-summation process during acquisition improves the signal-to-noise ratio and cancels out seismic noise sources such as cars and pedestrians. -from Authors

  19. High-resolution imaging and inversion of 3D GPR data for layered media

    NASA Astrophysics Data System (ADS)

    Slob, Evert

    2013-04-01

    Ground penetrating radar is increasingly being used to provide quantitative information of layered structures. For application in civil engineering these can be roads, highway pavements, airport runways, bridges, tunnels, or buildings. Monitoring is important for the management and safety of these structures. Standard imaging uses a modeled wavefield extrapolator to image the data and the quality of the image depends heavily on the quality of the modeled extrapolator. Usually, data inversion is implemented by minimizing a cost function involving the measured data and the modeled data. The model is modified such that data computed from the model fits to the measured data. The data itself is not used, except as a measure of the model data fit. A recently developed alternative method is to use results from inverse scattering theory to first construct an image while all multiple reflections are simultaneously eliminated from the data. This image can be constructed from surface reflection data if the data allows separating the subsurface reflection response from the down going emitted field. For 3D waves in a layered medium this requires knowledge of all horizontal electric and magnetic field components. If the data is properly sampled the solution is unique. In layered media the plane wave decomposition allows computing the image for each angle of incidence separately as a function of image time that is equal to the one-way intercept time. Once the image is constructed for all available angles of incidence a simple matrix inversion leads to the desired electric permittivity and magnetic permeability values in each layer. Finally these values provide interval velocities that can be used to convert image time to depth and the inverse problem is solved. The theory requires infinite bandwidth frequency domain data, which is equivalent to measuring the true impulse response. This is not possible in practice and numerical results show that data with finite bandwidths can be

  20. High resolution reverse VSP and interwell seismic experiments at the Buckhorn test site in Illinois

    SciTech Connect

    Parra, J.O.; Bangs, J.H.

    1992-07-01

    Reverse Vertical Seismic Profiling VSP and interwell seismic experiments were conducted at the Western Kentucky Petroleum Buckhorn test site near Quincy, Illinois. The RVSP data were acquired using a 3-component pneumatic probe and the interwell seismic data were acquired using a 24-element hydrophone array. The experiments were conducted to analyze high resolution seismic waveforms and to perform travel time velocity inversion for mapping the Silurian Kankakee formation which is the more prolific oil producer in the Mt. Sterling area. Reverse VSP and interwell seismic measurements together with log data have yielded information on the anisotropic characteristic of the shale formation and in the compressional wave velocity distribution of the limestone formation. These results inferred that reverse VSP (using several 3-component detectors in shallow boreholes) and interwell seismic measurements integrated with log data and seismic modeling can delineate the hydrocarbon reservoir and geological structures at the Buckhorn test site.

  1. High resolution reverse VSP and interwell seismic experiments at the Buckhorn test site in Illinois

    SciTech Connect

    Parra, J.O.; Bangs, J.H.

    1992-01-01

    Reverse Vertical Seismic Profiling VSP and interwell seismic experiments were conducted at the Western Kentucky Petroleum Buckhorn test site near Quincy, Illinois. The RVSP data were acquired using a 3-component pneumatic probe and the interwell seismic data were acquired using a 24-element hydrophone array. The experiments were conducted to analyze high resolution seismic waveforms and to perform travel time velocity inversion for mapping the Silurian Kankakee formation which is the more prolific oil producer in the Mt. Sterling area. Reverse VSP and interwell seismic measurements together with log data have yielded information on the anisotropic characteristic of the shale formation and in the compressional wave velocity distribution of the limestone formation. These results inferred that reverse VSP (using several 3-component detectors in shallow boreholes) and interwell seismic measurements integrated with log data and seismic modeling can delineate the hydrocarbon reservoir and geological structures at the Buckhorn test site.

  2. How 3-D, 3-C seismic characterized a carbonate reservoir

    SciTech Connect

    Arestad, J.F.; Mattocks, B.W.; Davis, T.L.; Benson, R.D.

    1995-04-01

    The Reservoir Characterization Project (RCP) at the Colorado School of Mines has pioneered research into 3-D, 3-C (multicomponent) reflection seismology for nearly a decade utilizing both P-wave and S-wave sources. Multicomponent-seismic surveys provide significantly more information about petroleum reservoirs than compressional-wave surveys. Initial 3-D, 3-C surveys acquired by RCP were targeted at characterizing naturally fractured reservoirs. The current phase of the project is oriented towards utilizing shear waves to discriminate lithologic and diagenetic changes within stratigraphic reservoirs where compressional-seismic data has not be effective. The Joffre field, Nisku reservoir, is the site of RCP`s ongoing multidisciplinary research effort in Western Canada. The research team is directed by Colorado School of Mines faculty with graduate team members from geology, geophysics and petroleum engineering departments. While this study is still in progress, some key findings and directions of this research are reported here. The following topics will be discussed: Joffre field 3-D, 3-C survey; compressional wave 3-D technique; shear-wave 3-D technique; converted-wave 3-D technique; reservoir characterization, and future directions.

  3. HIGH-RESOLUTION SEISMIC VELOCITY AND ATTENUATION MODELS OF THE CAUCASUS-CASPIAN REGION

    SciTech Connect

    Mellors, R; Gok, R; Sandvol, E

    2007-07-10

    The southwest edge of Eurasia is a tectonically and structurally complex region that includes the Caspian and Black Sea basins, the Caucasus Mountains, and the high plateaus south of the Caucasus. Crustal and upper mantle velocities show great heterogeneity in this region and regional phases display variations in both amplitudes and travel time. Furthermore, due to a lack of quality data, the region has largely been unexplored in terms of the detailed lithospheric seismic structure. A unified high-resolution 3D velocity and attenuation model of the crust and upper mantle will be developed and calibrated. This model will use new data from 23 new broadband stations in the region analyzed with a comprehensive set of techniques. Velocity models of the crust and upper mantle will be developed using a joint inversion of receiver functions and surface waves. The surface wave modeling will use both event-based methods and ambient noise tomography. Regional phase (Pg, Pn, Sn, and Lg) Q model(s) will be constructed using the new data in combination with existing data sets. The results of the analysis (both attenuation and velocity modeling) will be validated using modeling of regional phases, calibration with selected events, and comparison with previous work. Preliminary analyses of receiver functions show considerable variability across the region. All results will be integrated into the KnowledgeBase.

  4. Fast, high-resolution 3D dosimetry utilizing a novel optical-CT scanner incorporating tertiary telecentric collimation

    PubMed Central

    Sakhalkar, H. S.; Oldham, M.

    2008-01-01

    This study introduces a charge coupled device (CCD) area detector based optical-computed tomography (optical-CT) scanner for comprehensive verification of radiation dose distributions recorded in nonscattering radiochromic dosimeters. Defining characteristics include: (i) a very fast scanning time of ~5 min to acquire a complete three-dimensional (3D) dataset, (ii) improved image formation through the use of custom telecentric optics, which ensures accurate projection images and minimizes artifacts from scattered and stray-light sources, and (iii) high resolution (potentially 50 μm) isotropic 3D dose readout. The performance of the CCD scanner for 3D dose readout was evaluated by comparison with independent 3D readout from the single laser beam OCTOPUS™-scanner for the same PRESAGE™ dosimeters. The OCTOPUS™ scanner was considered the “gold standard” technique in light of prior studies demonstrating its accuracy. Additional comparisons were made against calculated dose distributions from the ECLIPSE treatment-planning system. Dose readout for the following treatments were investigated: (i) a single rectangular beam irradiation to investigate small field and very steep dose gradient dosimetry away from edge effects, (ii) a 2-field open beam parallel-opposed irradiation to investigate dosimetry along steep dose gradients, and (iii) a 7-field intensity modulated radiation therapy (IMRT) irradiation to investigate dosimetry for complex treatment delivery involving modulation of fluence and for dosimetry along moderate dose gradients. Dose profiles, dose-difference plots, and gamma maps were employed to evaluate quantitative estimates of agreement between independently measured and calculated dose distributions. Results indicated that dose readout from the CCD scanner was in agreement with independent gold-standard readout from the OCTOPUS™-scanner as well as the calculated ECLIPSE dose distribution for all treatments, except in regions within a few

  5. Fast, high-resolution 3D dosimetry utilizing a novel optical-CT scanner incorporating tertiary telecentric collimation

    SciTech Connect

    Sakhalkar, H. S.; Oldham, M.

    2008-01-15

    This study introduces a charge coupled device (CCD) area detector based optical-computed tomography (optical-CT) scanner for comprehensive verification of radiation dose distributions recorded in nonscattering radiochromic dosimeters. Defining characteristics include: (i) a very fast scanning time of {approx}5 min to acquire a complete three-dimensional (3D) dataset, (ii) improved image formation through the use of custom telecentric optics, which ensures accurate projection images and minimizes artifacts from scattered and stray-light sources, and (iii) high resolution (potentially 50 {mu}m) isotropic 3D dose readout. The performance of the CCD scanner for 3D dose readout was evaluated by comparison with independent 3D readout from the single laser beam OCTOPUS-scanner for the same PRESAGE dosimeters. The OCTOPUS scanner was considered the 'gold standard' technique in light of prior studies demonstrating its accuracy. Additional comparisons were made against calculated dose distributions from the ECLIPSE treatment-planning system. Dose readout for the following treatments were investigated: (i) a single rectangular beam irradiation to investigate small field and very steep dose gradient dosimetry away from edge effects, (ii) a 2-field open beam parallel-opposed irradiation to investigate dosimetry along steep dose gradients, and (iii) a 7-field intensity modulated radiation therapy (IMRT) irradiation to investigate dosimetry for complex treatment delivery involving modulation of fluence and for dosimetry along moderate dose gradients. Dose profiles, dose-difference plots, and gamma maps were employed to evaluate quantitative estimates of agreement between independently measured and calculated dose distributions. Results indicated that dose readout from the CCD scanner was in agreement with independent gold-standard readout from the OCTOPUS-scanner as well as the calculated ECLIPSE dose distribution for all treatments, except in regions within a few millimeters of

  6. Fast, high-resolution 3D dosimetry utilizing a novel optical-CT scanner incorporating tertiary telecentric collimation.

    PubMed

    Sakhalkar, H S; Oldham, M

    2008-01-01

    This study introduces a charge coupled device (CCD) area detector based optical-computed tomography (optical-CT) scanner for comprehensive verification of radiation dose distributions recorded in nonscattering radiochromic dosimeters. Defining characteristics include: (i) a very fast scanning time of approximately 5 min to acquire a complete three-dimensional (3D) dataset, (ii) improved image formation through the use of custom telecentric optics, which ensures accurate projection images and minimizes artifacts from scattered and stray-light sources, and (iii) high resolution (potentially 50 microm) isotropic 3D dose readout. The performance of the CCD scanner for 3D dose readout was evaluated by comparison with independent 3D readout from the single laser beam OCTOPUS-scanner for the same PRESAGE dosimeters. The OCTOPUS scanner was considered the "gold standard" technique in light of prior studies demonstrating its accuracy. Additional comparisons were made against calculated dose distributions from the ECLIPSE treatment-planning system. Dose readout for the following treatments were investigated: (i) a single rectangular beam irradiation to investigate small field and very steep dose gradient dosimetry away from edge effects, (ii) a 2-field open beam parallel-opposed irradiation to investigate dosimetry along steep dose gradients, and (iii) a 7-field intensity modulated radiation therapy (IMRT) irradiation to investigate dosimetry for complex treatment delivery involving modulation of fluence and for dosimetry along moderate dose gradients. Dose profiles, dose-difference plots, and gamma maps were employed to evaluate quantitative estimates of agreement between independently measured and calculated dose distributions. Results indicated that dose readout from the CCD scanner was in agreement with independent gold-standard readout from the OCTOPUS-scanner as well as the calculated ECLIPSE dose distribution for all treatments, except in regions within a few

  7. High resolution finite volume parallel simulations of mould filling and binary alloy solidification on unstructured 3-D meshes

    SciTech Connect

    Reddy, A.V.; Kothe, D.B.; Lam, K.L.

    1997-06-01

    The Los Alamos National Laboratory (LANL) is currently developing a new casting simulation tool (known as Telluride) that employs robust, high-resolution finite volume algorithms for incompressible fluid flow, volume tracking of interfaces, and solidification physics on three-dimensional (3-D) unstructured meshes. Their finite volume algorithms are based on colocated cell-centered schemes that are formally second order in time and space. The flow algorithm is a 3-D extension of recent work on projection method solutions of the Navier-Stokes (NS) equations. Their volume tracking algorithm can accurately track topologically complex interfaces by approximating the interface geometry as piecewise planar. Coupled to their fluid flow algorithm is a comprehensive binary alloy solidification model that incorporates macroscopic descriptions of heat transfer, solute redistribution, and melt convection as well as a microscopic description of segregation. The finite volume algorithms, which are efficient, parallel, and robust, can yield high-fidelity solutions on a variety of meshes, ranging from those that are structured orthogonal to fully unstructured (finite element). The authors discuss key computer science issues that have enabled them to efficiently parallelize their unstructured mesh algorithms on both distributed and shared memory computing platforms. These include their functionally object-oriented use of Fortran 90 and new parallel libraries for gather/scatter functions (PGSLib) and solutions of linear systems of equations (JTpack90). Examples of their current capabilities are illustrated with simulations of mold filling and solidification of complex 3-D components currently being poured in LANL foundries.

  8. Advanced computational tools for 3-D seismic analysis

    SciTech Connect

    Barhen, J.; Glover, C.W.; Protopopescu, V.A.

    1996-06-01

    The global objective of this effort is to develop advanced computational tools for 3-D seismic analysis, and test the products using a model dataset developed under the joint aegis of the United States` Society of Exploration Geophysicists (SEG) and the European Association of Exploration Geophysicists (EAEG). The goal is to enhance the value to the oil industry of the SEG/EAEG modeling project, carried out with US Department of Energy (DOE) funding in FY` 93-95. The primary objective of the ORNL Center for Engineering Systems Advanced Research (CESAR) is to spearhead the computational innovations techniques that would enable a revolutionary advance in 3-D seismic analysis. The CESAR effort is carried out in collaboration with world-class domain experts from leading universities, and in close coordination with other national laboratories and oil industry partners.

  9. Feasibility of High Resolution P- and S-Wave Seismic Reflection to Detect Methane Hydrate

    SciTech Connect

    Hunter, J.A.

    2000-08-02

    In March, 1999, a combined geophysical field team from the Kansas Geological Survey, Oak Ridge National Laboratory, and the Geological Survey of Canada, performed some experimental high resolution seismic testing at the Mallik drill site in the Mackenzie Delta, Northwest Territories, where drilling and sampling had previously identified gas hydrates at depth beneath a thick permafrost zone. In this information document, we show data from this seismic test, along with comparisons and observations significant to the effective use of high resolution imaging and important considerations about high resolution operations in this environment. Included are discussions and examples based on previous studies at this site, data acquisition, processing, correlation of results with other data sets and some recommendations for future surveying.

  10. NORTH HILL CREEK 3-D SEISMIC EXPLORATION PROJECT

    SciTech Connect

    Marc T. Eckels; David H. Suek; Denise H. Harrison; Paul J. Harrison

    2004-05-06

    Wind River Resources Corporation (WRRC) received a DOE grant in support of its proposal to acquire, process and interpret fifteen square miles of high-quality 3-D seismic data on non-allotted trust lands of the Uintah and Ouray (Ute) Indian Reservation, northeastern Utah, in 2000. Subsequent to receiving notice that its proposal would be funded, WRRC was able to add ten square miles of adjacent state and federal mineral acreage underlying tribal surface lands by arrangement with the operator of the Flat Rock Field. The twenty-five square mile 3-D seismic survey was conducted during the fall of 2000. The data were processed through the winter of 2000-2001, and initial interpretation took place during the spring of 2001. The initial interpretation identified multiple attractive drilling prospects, two of which were staked and permitted during the summer of 2001. The two initial wells were drilled in September and October of 2001. A deeper test was drilled in June of 2002. Subsequently a ten-well deep drilling evaluation program was conducted from October of 2002 through March 2004. The present report discusses the background of the project; design and execution of the 3-D seismic survey; processing and interpretation of the data; and drilling, completion and production results of a sample of the wells drilled on the basis of the interpreted survey. Fifteen wells have been drilled to test targets identified on the North Hill Creek 3-D Seismic Survey. None of these wildcat exploratory wells has been a dry hole, and several are among the best gas producers in Utah. The quality of the data produced by this first significant exploratory 3-D survey in the Uinta Basin has encouraged other operators to employ this technology. At least two additional 3-D seismic surveys have been completed in the vicinity of the North Hill Creek Survey, and five additional surveys are being planned for the 2004 field season. This project was successful in finding commercial oil, natural gas

  11. 3D Seismic Reflection Experiment over the Galicia Deep Basin

    NASA Astrophysics Data System (ADS)

    Sawyer, D. S.; Jordan, B.; Reston, T. J.; Minshull, T. A.; Klaeschen, D.; Ranero, C.; Shillington, D. J.; Morgan, J. K.

    2014-12-01

    In June thru September, 2013, a 3D reflection and a long offset seismic experiment were conducted at the Galicia rifted margin by investigators from the US, UK, Germany, and Spain. The 3D multichannel experiment covered 64 km by 20 km (1280 km2), using the RV Marcus Langseth. Four streamers 6 km long were deployed at 12.5 m hydrophone channel spacing. The streamers were 200 m apart. Two airgun arrays, each 3300 cu in, were fired alternately every 37.5 m, to collectively yield a 400 m wide sail line consisting of 8 CMP lines at 50 m spacing. The long offset seismic experiment included 72 short period OBS's deployed below the 3D reflection survey box. Most of the instruments recorded all the shots from the airgun array shots. The 3D seismic box covered a variety of geologic features. The Peridotite Ridge (PR), is associated with the exhumation of upper mantle rocks to the seafloor during the final stage of the continental separation between the Galicia Bank and the Grand Banks of Newfoundland. The S reflector is present below most of the continental blocks under the deep Galicia basin. S is interpreted to be a low-angle detachment fault formed late in the rifting process, and a number of rotated fault block basins and ranges containing pre and syn-rift sediments. Initial observations from stacked 3D seismic data, and samples of 2D pre-stack time migrated (PSTM) 3D seismic data show that the PR is elevated above the present seafloor in the South and not exposed through the seafloor in the North. The relative smoothness of the PR surface for the entire 20 km N-S contrasts with the more complex, shorter wavelength, faulting of the continental crustal blocks to the east. The PR does not seem to show offsets or any apparent internal structure. The PSTM dip lines show substantial improvement for the structures in the deep sedimentary basin East of the PR. These seem to extend the S reflector somewhat farther to the West. The migrated data show a substantial network of

  12. High resolution 3D MRI of mouse mammary glands with intra-ductal injection of contrast media.

    PubMed

    Markiewicz, Erica; Fan, Xiaobing; Mustafi, Devkumar; Zamora, Marta; Roman, Brian B; Jansen, Sanaz A; Macleod, Kay; Conzen, Suzanne D; Karczmar, Gregory S

    2015-01-01

    The purpose of this study was to use high resolution three-dimensional (3D) magnetic resonance imaging (MRI) to study mouse mammary gland ductal architecture based on intra-ductal injection of contrast agents. Female FVB/N mice age 12-20 weeks (n=12), were used in this study. A 34G, 45° tip Hamilton needle with a 25μL Hamilton syringe was inserted into the tip of the nipple. Approximately 20-25μL of a Gadodiamide/Trypan blue/saline solution was injected slowly over one minute into the nipple and duct. To prevent washout of contrast media from ducts due to perfusion, and maximize the conspicuity of ducts on MRI, mice were sacrificed one minute after injection. High resolution 3D T1-weighted images were acquired on a 9.4T Bruker scanner after sacrifice to eliminate motion artifacts and reduce contrast media leakage from ducts. Trypan blue staining was well distributed throughout the ductal tree. MRI showed the mammary gland ductal structure clearly. In spoiled gradient echo T1-weighted images, the signal-to-noise ratio of regions identified as enhancing mammary ducts following contrast injection was significantly higher than that of muscle (p<0.02) and significantly higher than that of contralateral mammary ducts that were not injected with contrast media (p<0.0001). The methods described here could be adapted for injection of specialized contrast agents to measure metabolism or target receptors in normal ducts and ducts with in situ cancers.

  13. Seismic random noise attenuation via 3D block matching

    NASA Astrophysics Data System (ADS)

    Amani, Sajjad; Gholami, Ali; Javaheri Niestanak, Alireza

    2017-01-01

    The lack of signal to noise ratio increases the final errors of seismic interpretation. In the present study, we apply a new non-local transform domain method called "3 Dimensional Block Matching (3DBM)" for seismic random noise attenuation. Basically, 3DBM uses the similarities through the data for retrieving the amplitude of signal in a specific point in the f-x domain, and because of this, it is able to preserve discontinuities in the data such as fractures and faults. 3DBM considers each seismic profile as an image and thus it can be applied to both pre-stack and post-stack seismic data. It uses the block matching clustering method to gather similar blocks contained in 2D data into 3D groups in order to enhance the level of correlation in each 3D array. By applying a 2D transform and 1D transform (instead of a 3D transform) on each array, we can effectively attenuate the noise by shrinkage of the transform coefficients. The subsequent inverse 2D transform and inverse 1D transform yield estimates of all matched blocks. Finally, the random noise attenuated data is computed using the weighted average of all block estimates. We applied 3DBM on both synthetic and real pre-stack and post-stack seismic data and compared it with a Curvelet transform based denoising method which is one of the most powerful methods in this area. The results show that 3DBM method eventuates in higher signal to noise ratio, lower execution time and higher visual quality.

  14. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    SciTech Connect

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes; William E. Harrison

    2005-09-01

    The objective of this research project is to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data to observe changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 18 months of seismic monitoring, one baseline and six monitor surveys clearly imaged changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators.

  15. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    SciTech Connect

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes; William E. Harrison

    2006-08-31

    The objective of this research project is to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data in an attempt to observe changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 30 months of seismic monitoring, one baseline and eight monitor surveys clearly detected changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators and observed in production data.

  16. 3D seismic imaging on massively parallel computers

    SciTech Connect

    Womble, D.E.; Ober, C.C.; Oldfield, R.

    1997-02-01

    The ability to image complex geologies such as salt domes in the Gulf of Mexico and thrusts in mountainous regions is a key to reducing the risk and cost associated with oil and gas exploration. Imaging these structures, however, is computationally expensive. Datasets can be terabytes in size, and the processing time required for the multiple iterations needed to produce a velocity model can take months, even with the massively parallel computers available today. Some algorithms, such as 3D, finite-difference, prestack, depth migration remain beyond the capacity of production seismic processing. Massively parallel processors (MPPs) and algorithms research are the tools that will enable this project to provide new seismic processing capabilities to the oil and gas industry. The goals of this work are to (1) develop finite-difference algorithms for 3D, prestack, depth migration; (2) develop efficient computational approaches for seismic imaging and for processing terabyte datasets on massively parallel computers; and (3) develop a modular, portable, seismic imaging code.

  17. Reconstruction of high resolution MLC leaf positions using a low resolution detector for accurate 3D dose reconstruction in IMRT

    NASA Astrophysics Data System (ADS)

    Visser, R.; Godart, J.; Wauben, D. J. L.; Langendijk, J. A.; van't Veld, A. A.; Korevaar, E. W.

    2016-12-01

    In pre-treatment dose verification, low resolution detector systems are unable to identify shifts of individual leafs of high resolution multi leaf collimator (MLC) systems from detected changes in the dose deposition. The goal of this study was to introduce an alternative approach (the shutter technique) combined with a previous described iterative reconstruction method to accurately reconstruct high resolution MLC leaf positions based on low resolution measurements. For the shutter technique, two additional radiotherapy treatment plans (RT-plans) were generated in addition to the original RT-plan; one with even MLC leafs closed for reconstructing uneven leaf positions and one with uneven MLC leafs closed for reconstructing even leaf positions. Reconstructed leaf positions were then implemented in the original RT-plan for 3D dose reconstruction. The shutter technique was evaluated for a 6 MV Elekta SLi linac with 5 mm MLC leafs (Agility™) in combination with the MatriXX Evolution detector with detector spacing of 7.62 mm. Dose reconstruction was performed with the COMPASS system (v2.0). The measurement setup allowed one row of ionization chambers to be affected by two adjacent leaf pairs. Measurements were obtained for various field sizes with MLC leaf position errors ranging from 1.0 mm to 10.0 mm. Furthermore, one clinical head and neck IMRT treatment beam with MLC introduced leaf position errors of 5.0 mm was evaluated to illustrate the impact of the shutter technique on 3D dose reconstruction. Without the shutter technique, MLC leaf position reconstruction showed reconstruction errors up to 6.0 mm. Introduction of the shutter technique allowed MLC leaf position reconstruction for the majority of leafs with sub-millimeter accuracy resulting in a reduction of dose reconstruction errors. The shutter technique in combination with the iterative reconstruction method allows high resolution MLC leaf position reconstruction using low resolution

  18. High resolution seismic survey (of the) Rawlins, Wyoming underground coal gasification area. Final report

    SciTech Connect

    Youngberg, A.D.; Berkman, E.; Orange, A.S.

    1983-01-01

    In October 1982, a high resolution seismic survey was conducted at the Gulf Research and Development Company's underground coal gasification test site near Rawlins, Wyoming. The objectives of the survey were to utilize high resolution seismic technology to locate and characterize two underground coal burn zones. Seismic data acquisition and processing parameters were specifically designed to emphasize reflections at the shallow depths of interest. A three-dimensional grid of data was obtained over the Rawlins burn zones. Processing included time varying filters, trace composition, and two-dimensional areal stacking of the data in order to identify burn zone anomalies. An anomaly was discernable resulting from the rubble-collapse cavity associated with the burn zone which was studied in detail at the Rawlins 1 and 2 test sites. 21 refs., 20 figs.

  19. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    SciTech Connect

    Bjorn N.P. Paulsson

    2005-08-21

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of

  20. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    SciTech Connect

    Bjorn N. P. Paulsson

    2005-09-30

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of

  1. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    SciTech Connect

    Bjorn N.P Paulsson

    2006-05-05

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of

  2. DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS

    SciTech Connect

    Bjorn N.P. Paulsson

    2004-05-01

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the

  3. Crustal structure and relocated earthquakes in the Puget Lowland, Washington, from high-resolution seismic tomography

    USGS Publications Warehouse

    Van Wagoner, T. M.; Crosson, R.S.; Creager, K.C.; Medema, G.; Preston, L.; Symons, N.P.; Brocher, T.M.

    2002-01-01

    The availability of regional earthquake data from the Pacific Northwest Seismograph Network (PNSN), together with active source data from the Seismic Hazards Investigation in Puget Sound (SHIPS) seismic experiments, has allowed us to construct a new high-resolution 3-D, P wave velocity model of the crust to a depth of about 30 km in the central Puget Lowland. In our method, earthquake hypocenters and velocity model are jointly coupled in a fully nonlinear tomographic inversion. Active source data constrain the upper 10-15 km of the model, and earthquakes constrain the deepest portion of the model. A number of sedimentary basins are imaged, including the previously unrecognized Muckleshoot basin, and the previously incompletely defined Possession and Sequim basins. Various features of the shallow crust are imaged in detail and their structural transitions to the mid and lower crust are revealed. These include the Tacoma basin and fault zone, the Seattle basin and fault zone, the Seattle and Port Ludlow velocity highs, the Port Townsend basin, the Kingston Arch, and the Crescent basement, which is arched beneath the Lowland from its surface exposure in the eastern Olympics. Strong lateral velocity gradients, consistent with the existence of previously inferred faults, are observed, bounding the southern Port Townsend basin, the western edge of the Seattle basin beneath Dabob Bay, and portions of the Port Ludlow velocity high and the Tacoma basin. Significant velocity gradients are not observed across the southern Whidbey Island fault, the Lofall fault, or along most of the inferred location of the Hood Canal fault. Using improved earthquake locations resulting from our inversion, we determined focal mechanisms for a number of the best recorded earthquakes in the data set, revealing a complex pattern of deformation dominated by general arc-parallel regional tectonic compression. Most earthquakes occur in the basement rocks inferred to be the lower Tertiary Crescent

  4. Demonstration of a Novel, Integrated, Multi-Scale Procedure for High-Resolution 3D Reservoir Characterization and Improved CO2-EOR/Sequestration Management, SACROC Unit

    SciTech Connect

    Scott R. Reeves

    2007-09-30

    The primary goal of this project was to demonstrate a new and novel approach for high resolution, 3D reservoir characterization that can enable better management of CO{sub 2} enhanced oil recovery (EOR) projects and, looking to the future, carbon sequestration projects. The approach adopted has been the subject of previous research by the DOE and others, and relies primarily upon data-mining and advanced pattern recognition approaches. This approach honors all reservoir characterization data collected, but accepts that our understanding of how these measurements relate to the information of most interest, such as how porosity and permeability vary over a reservoir volume, is imperfect. Ideally the data needed for such an approach includes surface seismic to provide the greatest amount of data over the entire reservoir volume of interest, crosswell seismic to fill the resolution gap between surface seismic and wellbore-scale measurements, geophysical well logs to provide the vertical resolution sought, and core data to provide the tie to the information of most interest. These data are combined via a series of one or more relational models to enable, in its most successful application, the prediction of porosity and permeability on a vertical resolution similar to logs at each surface seismic trace location. In this project, the procedure was applied to the giant (and highly complex) SACROC unit of the Permian basin in West Texas, one of the world's largest CO{sub 2}-EOR projects and a potentially world-class geologic sequestration site. Due to operational scheduling considerations on the part of the operator of the field, the crosswell data was not obtained during the period of project performance (it is currently being collected however as part of another DOE project). This compromised the utility of the surface seismic data for the project due to the resolution gap between it and the geophysical well logs. An alternative approach was adopted that utilized a

  5. Understanding North Texas Seismicity: A Joint Analysis of Seismic Data and 3D Pore Pressure Modeling

    NASA Astrophysics Data System (ADS)

    DeShon, H. R.; Hornbach, M. J.; Ellsworth, W. L.; Oldham, H. R.; Hayward, C.; Stump, B. W.; Frohlich, C.; Olson, J. E.; Luetgert, J. H.

    2014-12-01

    In November 2013, a series of earthquakes began along a mapped ancient fault system near Azle, Texas. The Azle events are the third felt earthquake sequence in the Fort Worth (Barnett Shale) Basin since 2008, and several production and injection wells in the area are drilled to depths near the recent seismic activity. Understanding if and/or how injection and removal of fluids in the crystalline crust reactivates faults have important implications for seismology, the energy industry, and society. We assessed whether the Azle earthquakes were induced using a joint analysis of the earthquake data, subsurface geology and fault structure, and 3D pore pressure modeling. Using a 12-station temporary seismic deployment, we have recorded and located >300 events large enough to be recorded on multiple stations and 1000s of events during periods of swarm activity. High-resolution locations and focal mechanisms indicate that events occurred on NE-SW trending, steeply dipping normal faults associated with the southern end of the Newark East Fault Zone with hypocenters between 2-8 km depth. We considered multiple causes that might have changed stress along this system. Earthquakes resulting from natural processes, though perhaps unlikely in this historically inactive region, can be neither ruled out nor confirmed due to lack of information on the natural stress state of these faults. Analysis of lake and groundwater variations near Azle showed that no significant stress changes occurred prior to or during the earthquake sequence. In contrast, analysis of pore-pressure models shows that the combination of formation water production and wastewater injection near the fault could have caused pressure increases that induced earthquakes on near-critically stressed faults.

  6. High Resolution 3d Imaging during the Construction of National Radioactive Waste Repository from BÁTAAPÁTI, Hungary

    NASA Astrophysics Data System (ADS)

    Gaich, A.; Deák, F.; Pötsch, M.

    2012-12-01

    investigation of the photorealistic 3D models reproducibility in the both cases JMX and SMX. Regularly geotechnical rock mass classifications (Q, RMR and GSI) were used on the basis of the 3D models without field experience of the given tunnel faces. All documentations were analysed with statistical methods considering the circumstances of scanning and picturing. The orientation of main characteristic discontinuities were defined by each geologist, but also some differences occured. These discrepancies had not occurred in the results of geotechnical evaluation. Due to several cases the information provided by the 3D modelling systems could be very useful in different phases of excavation works. These information were applied in geoscience researches for example in surface roughness determination, fracture system modelling of the host rock and geological or technical objects findings behind the shotcrete layer. Beside the above mentioned advanteges we have to emphasize that JMX and SMX systems provide contact free acqusition and assessment of rock and terrain surfaces by metric high resolution 3D images in very short time period.

  7. Digitized crime scene forensics: automated trace separation of toolmarks on high-resolution 2D/3D CLSM surface data

    NASA Astrophysics Data System (ADS)

    Clausing, Eric; Vielhauer, Claus

    2015-03-01

    Locksmith forensics is an important and very challenging part of classic crime scene forensics. In prior work, we propose a partial transfer to the digital domain, to effectively support forensic experts and present approaches for a full process chain consisting of five steps: Trace positioning, 2D/3D acquisition with a confocal 3D laser scanning microscope, detection by segmentation, trace type determination, and determination of the opening method. In particular the step of trace segmentation on high-resolution 3D surfaces thereby turned out to be the part most difficult to implement. The reason for that is the highly structured and complex surfaces to be analyzed. These surfaces are cluttered with a high number of toolmarks, which overlap and distort each other. In Clausing et al., we present an improved approach for a reliable segmentation of relevant trace regions but without the possibility of separating single traces out of segmented trace regions. However, in our past research, especially features based on shape and dimension turned out to be highly relevant for a fully automated analysis and interpretation. In this paper, we consequently propose an approach for this separation. To achieve this goal, we use our segmentation approach and expand it with a combination of the watershed algorithm with a graph-based analysis. Found sub-regions are compared based on their surface character and are connected or divided depending on their similarity. We evaluate our approach with a test set of about 1,300 single traces on the exemplary locking cylinder component 'key pin' and thereby are able of showing the high suitability of our approach.

  8. High-resolution 3-D P-wave tomographic imaging of the shallow magmatic system of Erebus volcano, Antarctica

    NASA Astrophysics Data System (ADS)

    Zandomeneghi, D.; Aster, R. C.; Barclay, A. H.; Chaput, J. A.; Kyle, P. R.

    2011-12-01

    Erebus volcano (Ross Island), the most active volcano in Antarctica, is characterized by a persistent phonolitic lava lake at its summit and a wide range of seismic signals associated with its underlying long-lived magmatic system. The magmatic structure in a 3 by 3 km area around the summit has been imaged using high-quality data from a seismic tomographic experiment carried out during the 2008-2009 austral field season (Zandomeneghi et al., 2010). An array of 78 short period, 14 broadband, and 4 permanent Mount Erebus Volcano Observatory seismic stations and a program of 12 shots were used to model the velocity structure in the uppermost kilometer over the volcano conduit. P-wave travel times were inverted for the 3-D velocity structure using the shortest-time ray tracing (50-m grid spacing) and LSQR inversion (100-m node spacing) of a tomography code (Toomey et al., 1994) that allows for the inclusion of topography. Regularization is controlled by damping and smoothing weights and smoothing lengths, and addresses complications that are inherent in a strongly heterogeneous medium featuring rough topography and a dense parameterization and distribution of receivers/sources. The tomography reveals a composite distribution of very high and low P-wave velocity anomalies (i.e., exceeding 20% in some regions), indicating a complex sub-lava-lake magmatic geometry immediately beneath the summit region and in surrounding areas, as well as the presence of significant high velocity shallow regions. The strongest and broadest low velocity zone is located W-NW of the crater rim, indicating the presence of an off-axis shallow magma body. This feature spatially corresponds to the inferred centroid source of VLP signals associated with Strombolian eruptions and lava lake refill (Aster et al., 2008). Other resolved structures correlate with the Side Crater and with lineaments of ice cave thermal anomalies extending NE and SW of the rim. High velocities in the summit area possibly

  9. 3D Seismic Reflection Experiment Over the Galicia Deep Basin

    NASA Astrophysics Data System (ADS)

    Sawyer, Dale; Jordan, Brian; Tesi Sanjurjo, Mari; Alexanian, Ara; Morgan, Julia; Shillington, Donna; Reston, Timothy; Minshull, Timothy; Klaeschen, Dirk; Ranero, César

    2014-05-01

    In June thru September, 2013, a 3D reflection and a long offset seismic experiment were conducted at the Galicia rifted margin by investigators from the US, UK, Germany, and Spain. The 3D multichannel experiment covered 64 km by 20 km (1280 km2), using the RV Marcus Langseth. Four streamers 6 km long were deployed at 12.5 m hydrophone channel spacing. The streamers were 200 m apart. Two airgun arrays, each 3300 cu in, were fired alternately every 37.5 m, to collectively yield a 400 m wide sail line consisting of 8 CMP lines at 50 m spacing. The long offset seismic experiment included 72 short period OBS's deployed below the 3D reflection survey box. Most of the instruments recorded all the shots from the airgun array shots. The 3D seismic box covered a variety of geologic features. The Peridotite Ridge (PR), is associated with the exhumation of upper mantle rocks to the seafloor during the final stage of the continental separation between the Galicia Bank and the Grand Banks of Newfoundland. The S reflector is present below most of the continental blocks under the deep Galicia basin. S is interpreted to be a low-angle detachment fault formed late in the rifting process, and a number of rotated fault block basins and ranges containing pre and syn-rift sediments. Initial observations from stacked, but not yet migrated, 3D seismic data show that the PR is elevated above the present seafloor in the South and not exposed through the seafloor in the North. The relative smoothness of the PR surface for the entire 20 km N-S contrasts with the more complex, shorter wavelength, faulting of the continental crustal blocks to the east. The PR does not seem to show offsets or any apparent internal structure. However, migration will be required to see internal structure of the PR. Between the PR and the western most rifted continental crustal blocks, is a sedimentary basin about as wide as the PR and very different from the sedimentary basins bounded by the continental crustal

  10. Detection of latent fingerprints using high-resolution 3D confocal microscopy in non-planar acquisition scenarios

    NASA Astrophysics Data System (ADS)

    Kirst, Stefan; Vielhauer, Claus

    2015-03-01

    In digitized forensics the support of investigators in any manner is one of the main goals. Using conservative lifting methods, the detection of traces is done manually. For non-destructive contactless methods, the necessity for detecting traces is obvious for further biometric analysis. High resolutional 3D confocal laser scanning microscopy (CLSM) grants the possibility for a detection by segmentation approach with improved detection results. Optimal scan results with CLSM are achieved on surfaces orthogonal to the sensor, which is not always possible due to environmental circumstances or the surface's shape. This introduces additional noise, outliers and a lack of contrast, making a detection of traces even harder. Prior work showed the possibility of determining angle-independent classification models for the detection of latent fingerprints (LFP). Enhancing this approach, we introduce a larger feature space containing a variety of statistical-, roughness-, color-, edge-directivity-, histogram-, Gabor-, gradient- and Tamura features based on raw data and gray-level co-occurrence matrices (GLCM) using high resolutional data. Our test set consists of eight different surfaces for the detection of LFP in four different acquisition angles with a total of 1920 single scans. For each surface and angles in steps of 10, we capture samples from five donors to introduce variance by a variety of sweat compositions and application influences such as pressure or differences in ridge thickness. By analyzing the present test set with our approach, we intend to determine angle- and substrate-dependent classification models to determine optimal surface specific acquisition setups and also classification models for a general detection purpose for both, angles and substrates. The results on overall models with classification rates up to 75.15% (kappa 0.50) already show a positive tendency regarding the usability of the proposed methods for LFP detection on varying surfaces in non

  11. The potential of 3D gully monitoring with GIS using high-resolution aerial photography and a digital photogrammetry system

    NASA Astrophysics Data System (ADS)

    Marzolff, I.; Poesen, J.

    2009-10-01

    Although gully erosion is generally considered a major process of land degradation, its contribution to total soil loss by erosion has recently been a subject of much discussion. The lack of adequate methods for the documentation and monitoring of gullies resulted in the shortage of quantitative data. Therefore, a high-resolution remote sensing system for aerial surveys by blimp or kite has been developed which meets spatial and temporal image resolutions required for short-term gully monitoring. The objective of this paper is to examine the potential of a method using non-metric digital photogrammetry and GIS for gully surface modelling and monitoring. Two bank gullies representing different morphological types of gullies (V-shaped and U-shaped) were chosen from a dataset of gully systems in semi-arid Spain. The considerable relief energy and complex topography of the gullies in a natural, vegetated landscape were found to be a challenge to digital photogrammetric techniques, introducing errors which inhibit fully automated DEM generation. Using a hybrid method combining stereomatching for mass-point extraction with manual 3D editing and digitizing, high-resolution DEMs (5 and 7.5 cm pixel size) were created for the study sites. GIS analysis of the DEMs for different monitoring periods (2 to 4 years) allowed the computation of gully area and volume, as well as their changes with an accuracy and detail sufficient to represent the geomorphological forms and processes involved. Furthermore, the spatially continuous survey of the entire form offered the possibility of distinguishing different zones of activity both at the gully rim and within the gully interior, identifying patterns of erosion and deposition which indicate the limited use of headcut retreat rates for the assessment of sediment production on a short-term basis.

  12. Multi-hole seismic modeling in 3-D space and cross-hole seismic tomography analysis for boulder detection

    NASA Astrophysics Data System (ADS)

    Cheng, Fei; Liu, Jiangping; Wang, Jing; Zong, Yuquan; Yu, Mingyu

    2016-11-01

    A boulder stone, a common geological feature in south China, is referred to the remnant of a granite body which has been unevenly weathered. Undetected boulders could adversely impact the schedule and safety of subway construction when using tunnel boring machine (TBM) method. Therefore, boulder detection has always been a key issue demanded to be solved before the construction. Nowadays, cross-hole seismic tomography is a high resolution technique capable of boulder detection, however, the method can only solve for velocity in a 2-D slice between two wells, and the size and central position of the boulder are generally difficult to be accurately obtained. In this paper, the authors conduct a multi-hole wave field simulation and characteristic analysis of a boulder model based on the 3-D elastic wave staggered-grid finite difference theory, and also a 2-D imaging analysis based on first arrival travel time. The results indicate that (1) full wave field records could be obtained from multi-hole seismic wave simulations. Simulation results describe that the seismic wave propagation pattern in cross-hole high-velocity spherical geological bodies is more detailed and can serve as a basis for the wave field analysis. (2) When a cross-hole seismic section cuts through the boulder, the proposed method provides satisfactory cross-hole tomography results; however, when the section is closely positioned to the boulder, such high-velocity object in the 3-D space would impact on the surrounding wave field. The received diffracted wave interferes with the primary wave and in consequence the picked first arrival travel time is not derived from the profile, which results in a false appearance of high-velocity geology features. Finally, the results of 2-D analysis in 3-D modeling space are comparatively analyzed with the physical model test vis-a-vis the effect of high velocity body on the seismic tomographic measurements.

  13. 3D Seismic and Magnetic characterization of the Borax Lake Hydrothermal System in the Alvord Desert, southeastern Oregon.

    NASA Astrophysics Data System (ADS)

    Hess, S.; Bradford, J.; Lyle, M.; Routh, P.; Liberty, L.; Donaldson, P.

    2004-05-01

    As part of an interdisciplinary project aiming to study the link between the physical characteristics of hydrothermal systems and biota that occupy those systems, we are conducting a detailed geophysical characterization of an active hydrothermal system. The Borax Lake Hydrothermal System (BLHS), consisting of Borax Lake and the surrounding hot springs. BLHS is located near the center of the Alvord Basin in southeastern Oregon. The Alvord Basin is a north-south trending graben in the Northern Great Basin bounded by the Steens Mountains to the west and the Trout Creek Mountains to the east. We conducted a 2D seismic survey to characterize the geologic structure of the basin, a high-resolution 3D seismic survey to characterize the geologic structure of the BLHS, and a high-resolution 3D magnetic survey to characterize any lineaments in the bedrock that might control fluid flow in the BLHS. Previous results from the 2D seismic survey show a mid-basin basement high aligned approximately with the hot springs. In this study we present the results from the high-resolution 3D seismic and magnetic survey of the BLHS. We acquired the 3D seismic data using an SKS rifle and 240 channel recording system. The seismic survey covers approximately 90,000 sq. m with a maximum inline offset aperture of 225 m, crossline aperture of 75 m, and 360 degree azimuthal coverage. The coincidental magnetic survey was collected using a Geometrics 858G cesium vapor magnetometer. We designed both surveys to span nearly 100 active hydrothermal springs, including an approximately 50 m stepover in the trend of the surface expression of the hot springs. After preliminary processing, the 3D seismic data show continuous reflections up to 300 ms (~ 480 m). The initial interpretation of features seen in the 3D data cube include: normal faults dipping to the east and west, near-surface disturbances that are consistent with the trend of the hot springs, and significant near surface velocity anomalies

  14. Investigating Cardiac Motion Patterns Using Synthetic High-Resolution 3D Cardiovascular Magnetic Resonance Images and Statistical Shape Analysis

    PubMed Central

    Biffi, Benedetta; Bruse, Jan L.; Zuluaga, Maria A.; Ntsinjana, Hopewell N.; Taylor, Andrew M.; Schievano, Silvia

    2017-01-01

    Diagnosis of ventricular dysfunction in congenital heart disease is more and more based on medical imaging, which allows investigation of abnormal cardiac morphology and correlated abnormal function. Although analysis of 2D images represents the clinical standard, novel tools performing automatic processing of 3D images are becoming available, providing more detailed and comprehensive information than simple 2D morphometry. Among these, statistical shape analysis (SSA) allows a consistent and quantitative description of a population of complex shapes, as a way to detect novel biomarkers, ultimately improving diagnosis and pathology understanding. The aim of this study is to describe the implementation of a SSA method for the investigation of 3D left ventricular shape and motion patterns and to test it on a small sample of 4 congenital repaired aortic stenosis patients and 4 age-matched healthy volunteers to demonstrate its potential. The advantage of this method is the capability of analyzing subject-specific motion patterns separately from the individual morphology, visually and quantitatively, as a way to identify functional abnormalities related to both dynamics and shape. Specifically, we combined 3D, high-resolution whole heart data with 2D, temporal information provided by cine cardiovascular magnetic resonance images, and we used an SSA approach to analyze 3D motion per se. Preliminary results of this pilot study showed that using this method, some differences in end-diastolic and end-systolic ventricular shapes could be captured, but it was not possible to clearly separate the two cohorts based on shape information alone. However, further analyses on ventricular motion allowed to qualitatively identify differences between the two populations. Moreover, by describing shape and motion with a small number of principal components, this method offers a fully automated process to obtain visually intuitive and numerical information on cardiac shape and motion

  15. Exploration 3-D Seismic Field Test/Native Tribes Initiative

    SciTech Connect

    Carroll, Herbert B.; Chen, K.C.; Guo, Genliang; Johnson, W.I.; Reeves,T.K.; Sharma,Bijon

    1999-04-27

    To determine current acquisition procedures and costs and to further the goals of the President's Initiative for Native Tribes, a seismic-survey project is to be conducted on Osage tribal lands. The goals of the program are to demonstrate the capabilities, costs, and effectiveness of 3-D seismic work in a small-operator setting and to determine the economics of such a survey. For these purposes, typical small-scale independent-operator practices are being followed and a shallow target chose in an area with a high concentration of independent operators. The results will be analyzed in detail to determine if there are improvements and/or innovations which can be easily introduced in field-acquisition procedures, in processing, or in data manipulation and interpretation to further reduce operating costs and to make the system still more active to the small-scale operator.

  16. Sea Level History in 3D: Early results of an ultra-high resolution MCS survey across IODP Expedition 313 drillsites

    NASA Astrophysics Data System (ADS)

    Mountain, G. S.; Kucuk, H. M.; Nedimovic, M. R.; Austin, J. A., Jr.; Fulthorpe, C.; Newton, A.; Baldwin, K.; Johnson, C.; Stanley, J. N.; Bhatnagar, T.

    2015-12-01

    Although globally averaged sea level is rising at roughly 3 mm/yr (and is accelerating), rates of local sea-level change measured at coastlines may differ from this number by a factor of two or more; at some locations, sea level may even be falling. This is due to local processes that can match or even reverse the global trend, making it clear that reliable predictions of future impacts of sea-level rise require a firm understanding of processes at the local level. The history of local sea-level change and shoreline response is contained in the geologic record of shallow-water sediments. We report on a continuing study of sea-level history in sediments at the New Jersey continental margin, where compaction and glacial isostatic adjustment are currently adding 2 mm/yr to the globally averaged rise. We collected 570 sq km of ultra-high resolution 3D MCS data aboard the R/V Langseth in June-July 2015; innovative recording and preliminary results are described by Nedimovic et al. in this same session. The goal was to provide regional context to coring and logging at IODP Exp 313 sites 27-29 that were drilled 750 m into the New Jersey shelf in 2009. These sites recovered a nearly continuous record of post-Eocene sediments from non-marine soils, estuaries, shoreface, delta front, pro-delta and open marine settings. Existing seismic data are good but are 2D high-resolution profiles at line spacings too wide to enable mapping of key nearshore features. The Langseth 3D survey used shallow towing of a tuned air gun array to preserve high frequencies, and twenty-four 50-m PCables each 12.5 apart provided 6.25 x 3.125 m common-midpoint bins along seventy-seven 50-km sail lines. With this especially dense spatial resolution of a pre-stack time migrated volume we expect to map rivers, incised valleys, barrier islands, inlets and bays, pro-delta clinoforms, tidal deltas, sequence boundaries, debris flow aprons, and more. Seismic attributes linked to sedimentary facies and

  17. Exploring the seismic expression of fault zones in 3D seismic volumes

    NASA Astrophysics Data System (ADS)

    Iacopini, D.; Butler, R. W. H.; Purves, S.; McArdle, N.; De Freslon, N.

    2016-08-01

    Mapping and understanding distributed deformation is a major challenge for the structural interpretation of seismic data. However, volumes of seismic signal disturbance with low signal/noise ratio are systematically observed within 3D seismic datasets around fault systems. These seismic disturbance zones (SDZ) are commonly characterized by complex perturbations of the signal and occur at the sub-seismic (10 s m) to seismic scale (100 s m). They may store important information on deformation distributed around those larger scale structures that may be readily interpreted in conventional amplitude displays of seismic data. We introduce a method to detect fault-related disturbance zones and to discriminate between this and other noise sources such as those associated with the seismic acquisition (footprint noise). Two case studies from the Taranaki basin and deep-water Niger delta are presented. These resolve SDZs using tensor and semblance attributes along with conventional seismic mapping. The tensor attribute is more efficient in tracking volumes containing structural displacements while structurally-oriented semblance coherency is commonly disturbed by small waveform variations around the fault throw. We propose a workflow to map and cross-plot seismic waveform signal properties extracted from the seismic disturbance zone as a tool to investigate the seismic signature and explore seismic facies of a SDZ.

  18. Exploring the seismic expression of fault zones in 3D seismic volumes

    NASA Astrophysics Data System (ADS)

    Iacopini, David; Butler, Rob; Purves, Steve

    2016-04-01

    Mapping and understanding distributed deformation is a major challenge for the structural interpretation of seismic data. However, volumes of seismic signal disturbance with low signal/noise ratio are systematically observed within 3D seismic datasets around fault systems. These seismic disturbance zones (SDZ) are commonly characterized by complex perturbations of the signal and occur at the sub-seismic to seismic scale. They may store important information on deformation distributed around those larger scale structures that may be readily interpreted in conventional amplitude displays of seismic data scale. We introduce a method to detect fault-related disturbance zones and to discriminate between this and other noise sources such as those associated with the seismic acquisition (footprint noise). Two case studies, from the Taranaki basin and deep-water Niger delta are presented. These resolve structure within SDZs using tensor and semblance attributes along with conventional seismic mapping. The tensor attribute is more efficient in tracking volumes containing structural displacements while structurally-oriented semblance coherency is commonly disturbed by small waveform variations around the fault throw. We propose a workflow to map and cross-plot seismic waveform signal properties extracted from the seismic disturbance zone as a tool to investigate the seismic signature and explore seismic facies of a SDZ.

  19. 3-D reconstruction of tissue components for atherosclerotic human arteries using ex vivo high-resolution MRI.

    PubMed

    Auer, Martin; Stollberger, Rudolf; Regitnig, Peter; Ebner, Franz; Holzapfel, Gerhard A

    2006-03-01

    Automatic computer-based methods are well suited for the image analysis of the different components in atherosclerotic plaques. Although several groups work on such analysis some of the methods used are oversimplified and require improvements when used within a computational framework for predicting meaningful stress and strain distributions in the heterogeneous arterial wall under various loading conditions. Based on high-resolution magnetic resonance imaging of excised atherosclerotic human arteries and a series of two-dimensional (2-D) contours we present a segmentation tool that permits a three-dimensional (3-D) reconstruction of the most important tissue components of atherosclerotic arteries. The underlying principle of the proposed approach is a model-based snake algorithm for identifying 2-D contours, which uses information about the plaque composition and geometric data of the tissue layers. Validation of the computer-generated tissue boundaries is performed with 100 MR images, which are compared with the results of a manual segmentation performed by four experts. Based on the Hausdorff distance and the average distance for computer-to-expert differences and the interexpert differences for the outer boundary of the adventitia, the adventitia-media, media-intima, intima-lumen and calcification boundaries are less than 1 pixel (0.234 mm). The percentage statistic shows similar results to the modified Williams index in terms of accuracy. Except for the identification of lipid-rich regions the proposed algorithm is automatic. The nonuniform rational B-spline-based computer-generated 3-D models of the individual tissue components provide a basis for clinical and computational analysis.

  20. Parallel 3-D viscoelastic finite difference seismic modelling

    NASA Astrophysics Data System (ADS)

    Bohlen, Thomas

    2002-10-01

    Computational power has advanced to a state where we can begin to perform wavefield simulations for realistic (complex) 3-D earth models at frequencies of interest to both seismologists and engineers. On serial platforms, however, 3-D calculations are still limited to small grid sizes and short seismic wave traveltimes. To make use of the efficiency of network computers a parallel 3-D viscoelastic finite difference (FD) code is implemented which allows to distribute the work on several PCs or workstations connected via standard ethernet in an in-house network. By using the portable message passing interface standard (MPI) for the communication between processors, running times can be reduced and grid sizes can be increased significantly. Furthermore, the code shows good performance on massive parallel supercomputers which makes the computation of very large grids feasible. This implementation greatly expands the applicability of the 3-D elastic/viscoelastic finite-difference modelling technique by providing an efficient, portable and practical C-program.

  1. Proposed criteria for recognizing intrastratal deformation features in marine high resolution seismic reflection profiles

    USGS Publications Warehouse

    O'Leary, D. W.; Laine, E.

    1996-01-01

    Intrastratal deformation of marine strata is ordinarily recorded in high-resolution seismic reflection profiles as acoustically transparent or "chaotic" intervals marked by hyperbolic echoes. Intrastratal deformation is easily confused with buried slump or slide deposits formed initially at the sea floor. Correct identification of intrastratal deformation depends on the presence of a warped continuously reflective layer overlying a chaotic/transparent layer. Decollement is the key criterion for identification in seismic reflection profiles. Other criteria include intrusive structures or faults rooted in a chaotic/transparent layer and thickening and thinning of a chaotic/transparent layer with transitions to reflective intervals.

  2. High-resolution 3D volumetry versus conventional measuring techniques for the assessment of experimental lymphedema in the mouse hindlimb

    PubMed Central

    Frueh, Florian S.; Körbel, Christina; Gassert, Laura; Müller, Andreas; Gousopoulos, Epameinondas; Lindenblatt, Nicole; Giovanoli, Pietro; Laschke, Matthias W.; Menger, Michael D.

    2016-01-01

    Secondary lymphedema is a common complication of cancer treatment characterized by chronic limb swelling with interstitial inflammation. The rodent hindlimb is a widely used model for the evaluation of novel lymphedema treatments. However, the assessment of limb volume in small animals is challenging. Recently, high-resolution three-dimensional (3D) imaging modalities have been introduced for rodent limb volumetry. In the present study we evaluated the validity of microcomputed tomography (μCT), magnetic resonance imaging (MRI) and ultrasound in comparison to conventional measuring techniques. For this purpose, acute lymphedema was induced in the mouse hindlimb by a modified popliteal lymphadenectomy. The 4-week course of this type of lymphedema was first assessed in 6 animals. In additional 12 animals, limb volumes were analyzed by μCT, 9.4 T MRI and 30 MHz ultrasound as well as by planimetry, circumferential length and paw thickness measurements. Interobserver correlation was high for all modalities, in particular for μCT analysis (r = 0.975, p < 0.001). Importantly, caliper-measured paw thickness correlated well with μCT (r = 0.861), MRI (r = 0.821) and ultrasound (r = 0.800). Because the assessment of paw thickness represents a time- and cost-effective approach, it may be ideally suited for the quantification of rodent hindlimb lymphedema. PMID:27698469

  3. High-resolution non-invasive 3D imaging of paint microstructure by synchrotron-based X-ray laminography

    NASA Astrophysics Data System (ADS)

    Reischig, Péter; Helfen, Lukas; Wallert, Arie; Baumbach, Tilo; Dik, Joris

    2013-06-01

    The characterisation of the microstructure and micromechanical behaviour of paint is key to a range of problems related to the conservation or technical art history of paintings. Synchrotron-based X-ray laminography is demonstrated in this paper to image the local sub-surface microstructure in paintings in a non-invasive and non-destructive way. Based on absorption and phase contrast, the method can provide high-resolution 3D maps of the paint stratigraphy, including the substrate, and visualise small features, such as pigment particles, voids, cracks, wood cells, canvas fibres etc. Reconstructions may be indicative of local density or chemical composition due to increased attenuation of X-rays by elements of higher atomic number. The paint layers and their interfaces can be distinguished via variations in morphology or composition. Results of feasibility tests on a painting mockup (oak panel, chalk ground, vermilion and lead white paint) are shown, where lateral and depth resolution of up to a few micrometres is demonstrated. The method is well adapted to study the temporal evolution of the stratigraphy in test specimens and offers an alternative to destructive sampling of original works of art.

  4. Preliminary study of statistical pattern recognition-based coin counterfeit detection by means of high resolution 3D scanners

    NASA Astrophysics Data System (ADS)

    Leich, Marcus; Kiltz, Stefan; Krätzer, Christian; Dittmann, Jana; Vielhauer, Claus

    2011-03-01

    According to the European Commission around 200,000 counterfeit Euro coins are removed from circulation every year. While approaches exist to automatically detect these coins, satisfying error rates are usually only reached for low quality forgeries, so-called "local classes". High-quality minted forgeries ("common classes") pose a problem for these methods as well as for trained humans. This paper presents a first approach for statistical analysis of coins based on high resolution 3D data acquired with a chromatic white light sensor. The goal of this analysis is to determine whether two coins are of common origin. The test set for these first and new investigations consists of 62 coins from not more than five different sources. The analysis is based on the assumption that, apart from markings caused by wear such as scratches and residue consisting of grease and dust, coins from equal origin have a more similar height field than coins from different mints. First results suggest that the selected approach is heavily affected by influences of wear like dents and scratches and the further research is required the eliminate this influence. A course for future work is outlined.

  5. Use of Very High-Resolution Airborne Images to Analyse 3d Canopy Architecture of a Vineyard

    NASA Astrophysics Data System (ADS)

    Burgos, S.; Mota, M.; Noll, D.; Cannelle, B.

    2015-08-01

    Differencing between green cover and grape canopy is a challenge for vigour status evaluation in viticulture. This paper presents the acquisition methodology of very high-resolution images (4 cm), using a Sensefly Swinglet CAM unmanned aerial vehicle (UAV) and their processing to construct a 3D digital surface model (DSM) for the creation of precise digital terrain models (DTM). The DTM was obtained using python processing libraries. The DTM was then subtracted to the DSM in order to obtain a differential digital model (DDM) of a vineyard. In the DDM, the vine pixels were then obtained by selecting all pixels with an elevation higher than 50 [cm] above the ground level. The results show that it was possible to separate pixels from the green cover and the vine rows. The DDM showed values between -0.1 and + 1.5 [m]. A manually delineation of polygons based on the RGB image belonging to the green cover and to the vine rows gave a highly significant differences with an average value of 1.23 [m] and 0.08 [m] for the vine and the ground respectively. The vine rows elevation is in good accordance with the topping height of the vines 1.35 [m] measured on the field. This mask could be used to analyse images of the same plot taken at different times. The extraction of only vine pixels will facilitate subsequent analyses, for example, a supervised classification of these pixels.

  6. Recent high-resolution seismic reflection studies of active faults in the Puget Lowland

    NASA Astrophysics Data System (ADS)

    Liberty, L. M.; Pratt, T. L.

    2005-12-01

    In the past four years, new high-resolution seismic surveys have filled in key gaps in our understanding of active structures beneath the Puget Lowland, western Washington State. Although extensive regional and high-resolution marine seismic surveys have been fundamental to understanding the tectonic framework of the area, these marine profiles lack coverage on land and in shallow or restricted waterways. The recent high-resolution seismic surveys have targeted key structures beneath water bodies that large ships cannot navigate, and beneath city streets underlain by late Pleistocene glacial deposits that are missing from the waterways. The surveys can therefore bridge the gap between paleoseismic and marine geophysical studies, and test key elements of models proposed by regional-scale geophysical studies. Results from these surveys have: 1) documented several meters of vertical displacement on at least two separate faults in the Olympia area; 2) clarified the relationship between the Catfish Lake scarp and the underlying kink band in the Tacoma fault zone; 3) provided a first look at the structures beneath the north portion of the western Tacoma fault zone, north of previous marine profiles; 4) documented that deformation along the Seattle fault extends well east of Lake Sammamish; 5) imaged the Seattle fault beneath the Vasa Park trench; and 6) documented multiple fault strands in and south of the Seattle fault zone south of Bellevue. The results better constrain interpretations of paleoseismic investigations of past earthquakes on these faults, and provide targets for future paleoseismic studies.

  7. High-resolution, 3D radiative transfer modeling. I. The grand-design spiral galaxy M 51

    NASA Astrophysics Data System (ADS)

    De Looze, Ilse; Fritz, Jacopo; Baes, Maarten; Bendo, George J.; Cortese, Luca; Boquien, Médéric; Boselli, Alessandro; Camps, Peter; Cooray, Asantha; Cormier, Diane; Davies, Jon I.; De Geyter, Gert; Hughes, Thomas M.; Jones, Anthony P.; Karczewski, Oskar Ł.; Lebouteiller, Vianney; Lu, Nanyao; Madden, Suzanne C.; Rémy-Ruyer, Aurélie; Spinoglio, Luigi; Smith, Matthew W. L.; Viaene, Sebastien; Wilson, Christine D.

    2014-11-01

    Context. Dust reprocesses about half of the stellar radiation in galaxies. The thermal re-emission by dust of absorbed energy is considered to be driven merely by young stars so is often applied to tracing the star formation rate in galaxies. Recent studies have argued that the old stellar population might be responsible for a non-negligible fraction of the radiative dust heating. Aims: In this work, we aim to analyze the contribution of young (≲100 Myr) and old (~10 Gyr) stellar populations to radiative dust heating processes in the nearby grand-design spiral galaxy M 51 using radiative transfer modeling. High-resolution 3D radiative transfer (RT) models are required to describe the complex morphologies of asymmetric spiral arms and clumpy star-forming regions and to model the propagation of light through a dusty medium. Methods: In this paper, we present a new technique developed to model the radiative transfer effects in nearby face-on galaxies. We construct a high-resolution 3D radiative transfer model with the Monte-Carlo code SKIRT to account for the absorption, scattering, and non-local thermal equilibrium (NLTE) emission of dust in M 51. The 3D distribution of stars is derived from the 2D morphology observed in the IRAC 3.6 μm, GALEX FUV, Hα, and MIPS 24 μm wavebands, assuming an exponential vertical distribution with an appropriate scale height. The dust geometry is constrained through the far-ultraviolet (FUV) attenuation, which is derived from the observed total-infrared-to-far-ultraviolet luminosity ratio. The stellar luminosity, star formation rate, and dust mass have been scaled to reproduce the observed stellar spectral energy distribution (SED), FUV attenuation, and infrared SED. Results: The dust emission derived from RT calculations is consistent with far-infrared and submillimeter observations of M 51, implying that the absorbed stellar energy is balanced by the thermal re-emission of dust. The young stars provide 63% of the energy for

  8. Rapid acquisition of high resolution full wave-field borehole seismic data

    SciTech Connect

    Sleefe, G.E.; Harding, R.S. Jr.; Fairborn, J.W.; Paulsson, B.N.P.

    1993-04-01

    An essential requirement for both Vertical Seismic Profiling (VSP) and Cross-Hole Seismic Profiling (CHSP) is the rapid acquisition of high resolution borehole seismic data. Additionally, full wave-field recording using three-component receivers enables the use of both transmitted and reflected elastic wave events in the resulting seismic images of the subsurface. To this end, an advanced three- component multi-station borehole seismic receiver system has been designed and developed by Sandia National Laboratory (SNL) and OYO Geospace. The system requires data from multiple three-component wall-locking accelerometer packages and telemeters digital data to the surface in real-time. Due to the multiplicity of measurement stations and the real-time data link, acquisition time for the borehole seismic survey is significantly reduced. The system was tested at the Chevron La Habra Test Site using Chevron`s clamped axial borehole vibrator as the seismic source. Several source and receiver fans were acquired using a four-station version of the advanced system. For comparison purposes, an equivalent data set was acquired using a standard analog wall-locking geophone receiver. The test data indicate several enhancements provided by the multi-station receiver relative to the standard, drastically improved signal-to-noise ratio, increased signal bandwidth, the detection of multiple reflectors, and a true 4:1 reduction in survey time.

  9. Surface amplitude data: 3D-seismic for interpretation of sea floor geology (Louisiana Slope)

    SciTech Connect

    Roberts, H.H.

    1996-09-01

    Proliferation of 3D-seismic in support of hydrocarbon exploration/production has created new data for improved interpretation of sea floor and shallow subsurface geology. Processing of digital seismic data to enhance amplitude anomalies produces information for improved assessment of geohazards and identification of sensitive benthic communities protected by environmental regulations. Coupled with high resolution acoustic data and direct observation/sampling using a manned research submersible, surface amplitude maps add critical interpretive information for identification of sea floor features. Non-reflective zones (acoustic wipeouts) are associated with many slope features. Mud diapirs, mud mounds, mud volcanoes, gas-changed sediments, gas hydrates, slump deposits, carbonate hardgrounds, and various types of carbonate mounds are all features that exhibit this common response on high resolution seismic profiles. Amplitude data help make specific identifications. Since 1988, submersible data from mid-to-upper slope features (Garden Banks, Green Canyon, and Mississippi Canyon lease block areas) have been analyzed with conventional high resolution acoustic data and 313-amplitude extraction maps. Areas of rapid venting of sediment and hydrocarbon-charged formation fluids are clearly distinguishable from mud diapirs and areas of carbonate mounds (slow seepage). Gas hydrates occur as mounds and mounded zones along faults; products of moderate flux rates below (approx.) 500 in water depths. Gas hydrates function as stored trophic resources that support sensitive chemosynthetic communities. Amplitude extraction maps clearly identify these features by a strong low impedance amplitude anomaly. Refinement and {open_quotes}field calibration{close_quotes} of the surface amplitude extraction method may eventually lead to a new standard for evaluating geohazards and sensitive benthic communities.

  10. New High-Resolution 3D Imagery of Fault Deformation and Segmentation of the San Onofre and San Mateo Trends in the Inner California Borderlands

    NASA Astrophysics Data System (ADS)

    Holmes, J. J.; Driscoll, N. W.; Kent, G. M.; Bormann, J. M.; Harding, A. J.

    2015-12-01

    The Inner California Borderlands (ICB) is situated off the coast of southern California and northern Baja. The structural and geomorphic characteristics of the area record a middle Oligocene transition from subduction to microplate capture along the California coast. Marine stratigraphic evidence shows large-scale extension and rotation overprinted by modern strike-slip deformation. Geodetic and geologic observations indicate that approximately 6-8 mm/yr of Pacific-North American relative plate motion is accommodated by offshore strike-slip faulting in the ICB. The farthest inshore fault system, the Newport-Inglewood Rose Canyon (NIRC) fault complex is a dextral strike-slip system that extends primarily offshore approximately 120 km from San Diego to the San Joaquin Hills near Newport Beach, California. Based on trenching and well data, the NIRC fault system Holocene slip rate is 1.5-2.0 mm/yr to the south and 0.5-1.0 mm/yr along its northern extent. An earthquake rupturing the entire length of the system could produce an Mw 7.0 earthquake or larger. West of the main segments of the NIRC fault complex are the San Mateo and San Onofre fault trends along the continental slope. Previous work concluded that these were part of a strike-slip system that eventually merged with the NIRC complex. Others have interpreted these trends as deformation associated with the Oceanside Blind Thrust fault purported to underlie most of the region. In late 2013, we acquired the first high-resolution 3D P-Cable seismic surveys (3.125 m bin resolution) of the San Mateo and San Onofre trends as part of the Southern California Regional Fault Mapping project aboard the R/V New Horizon. Analysis of these volumes provides important new insights and constraints on the fault segmentation and transfer of deformation. Based on the new 3D sparker seismic data, our preferred interpretation for the San Mateo and San Onofre fault trends is they are transpressional features associated with westward

  11. Northern California Seismic Attenuation: 3-D Qp and Qs models

    NASA Astrophysics Data System (ADS)

    Eberhart-Phillips, D. M.

    2015-12-01

    The northern California crust exhibits a wide range of rock types and deformation processes which produce pronounced heterogeneity in regional attenuation. Using local earthquakes, 3-D Qp and Qs crustal models have been obtained for this region which includes the San Andreas fault system, the Central Valley, the Sierra Nevada batholith, and the Mendocino subduction volcanic system. Path attenuation t* values were determined from P and S spectra of 959 spatially distributed earthquakes, magnitude 2.5-6.0 from 2005-2014, using 1254 stations from NCEDC networks and IRIS Mendocino and Sierra Nevada temporary arrays. The t* data were used in Q inversions, using existing hypocenters and 3-D velocity models, with basic 10-km node spacing. The uneven data coverage was accounted for with linking of nodes into larger areas in order to provide useful Q images across the 3-D volume. The results at shallow depth (< 2 km) show very low Q in the Sacramento Delta, the Eureka area, and parts of the Bay Area. In the brittle crust, fault zones that have high seismicity exhibit low Q. In the lower crust, low Q is observed along fault zones that have large cumulative displacement and have experienced grain size reduction. Underlying active volcanic areas, low Q features are apparent below 20-km depth. Moderately high Q is associated with igneous rocks of the Sierra Nevada and Salinian block, while the Franciscan subduction complex shows moderately low Q. The most prominent high Q feature is related to the Great Valley Ophiolite.

  12. The Project Serapis: High Resolution Seismic Imagingof The Campi Flegrei Caldera Structure

    NASA Astrophysics Data System (ADS)

    Zollo, A.; Virieux, J.; Capuano, P.; Chiarabba, C.; de Franco, R.; Makris, J.; Michelini, A.; Musacchio, G.; Serapis Group

    During September 2001, an extended active seismic survey has been performed in the gulfs of Naples and Pozzuoli in the framework of the so called SERAPIS (SEismic Re- flection Acquisition Project for Imaging Structures). The project SERAPIS is aimed at the acquisition in the bays of Naples and Pozzuoli, on land and at the sea bottom (using sea bottom seismographs), of seismic signals emitted by a very dense network of airgun sources. The energization is performed through the syncronized implosion of bubbles produced by a battery of three to twelve, 16 liters airguns, mounted on the oceanographic vessel NADIR, owned by the french company IFREMER, which supported the project at no cost. The experiment has been designed to have 2D-3D acquisition lay-outs and its objective is the high resolution imaging of the main shal- low crustal discontinuities underneath the major neapolitan volcanic complexes. In particular some desired targets are the location and spatial definition of the magmatic feeding system of Campi Flegrei and the morphologic reconstruction of the interface separating the shallow volcano-alluvium sediments and the Mesozoic carbonates, re- cently detected and accurately imaged underneath Mt.Vesuvius volcano. A secondary but not less important objective is the denser re-sampling of areas in the Bay of Naples prospicient to Mt.Vesuvius, which have been investigated during the last marine sur- vey using the same vessel in 1997 (MareVes 97). Sixty, three-component stations have been installed on-land in the areas of Campi Flegrei, Mt.Vesuvius and on the islands of Ischia and Procida. In particular, the Mt.Vesuvius stations have been deployed along a 40 km long, SE-NW profile crossing the Campanian Plain toward the limestone out- crops. 72 sea bottom seismographs (OBS) have been installed in the gulfs of Naples and Pozzuoli by the University of Hamburg, with the logistic support of Geopro smbh and Geolab Italia. The OBS network geometry follows the main

  13. Models for Holocene valley-fill sequences from high-resolution seismic facies of Galveston Bay

    SciTech Connect

    Smyth, W.; Thomas, M.A.; Anderson, J.B.

    1988-01-01

    Reconstructions of the northern Gulf of Mexico shelf for the Holocene have relied on the dating of isolated bathymetric banks. These banks, which are interpreted as former shorelines, provide snapshots of the shelf during periods of relative sea level stillstand. A more complete sedimentary record of the Holocene transgression is likely preserved in the incised valley-fill sequences. The first step in deciphering the record of Holocene valley-fill sequences is development of high-resolution seismic facies models based on modern environments. The modern incised valley-estuarine system of Galveston Bay has been seismically surveyed. Important environments include bayhead delta (Trinity River delta), tidal inlet, flood tidal delta (Bolivar Roads), and estuarine sediments (central bay). Additionally, fluvial sediments partially infill the entrenched Trinity River valley. Seismic facies interpretation was corroborated by information obtained from sediment cores.

  14. High-resolution seismic stratigraphy of an Holocene lacustrine delta in western Lake Geneva (Switzerland)

    USGS Publications Warehouse

    Baster, I.; Girardclos, S.; Pugin, A.; Wildi, W.

    2003-01-01

    A high-resolution seismic survey was conducted in western Lake Geneva on a small delta formed by the Promenthouse, the Asse and the Boiron rivers. This dataset provides information on changes in the geometry and sedimentation patterns of this delta from Late-glacial to Present. The geometry of the deposits of the lacustrine delta has been mapped using 300-m spaced grid lines acquired with a 12 kHz Echosounder subbottom profiler. A complete three dimensional image of the sediment architecture was reconstructed through seismic stratigraphic analysis. Six different delta lobes have been recognized in the prodelta area. Depositional centers and lateral extension of the delta have changed through time, indicating migration and fluctuation of river input as well as changes in lake currents and wind regime from the time of glacier retreat to the Present. The delta slope is characterized by a high instability causing stumps developing and by the accumulation of biogenic gas that prevents seismic penetration.

  15. High-Resolution Seismic Imaging of Quaternary Faults and Deformation in the Los Angeles Region

    NASA Astrophysics Data System (ADS)

    Stephenson, W. J.; Odum, J. K.; Williams, R. A.; Pratt, T. L.; Dolan, J.; Shaw, J. H.

    2001-12-01

    We present results from several P-wave high-resolution seismic imaging studies in the Los Angeles region that characterize Quaternary fault activity and associated deformation. From high-resolution seismic reflection data, we seek crucial information on shallow basin geometry as well as near-surface fault geometry, displacement, slip rates, and timing of Quaternary deformation. Data acquired along a profile in Sherman Oaks reveal a geologic structure in the upper 600 m that contributed to the increased earthquake ground shaking in the high-damage areas south of and along the Los Angeles River resulting from the 1994 Northridge earthquake. A shallow sub-basin imaged on the Sherman Oaks line correlates with an area that experienced greater earthquake damage from possible geometric focussing effects. Finite-difference modeling of the imaged structural geometry along the profile suggests that a peak horizontal-velocity amplification factor of two-and-greater, as well as spatial variability, can be explained in the high-damage area by the sub-basin. High-resolution seismic reflection data acquired across the Santa Monica fault confirm the location of the fault and link related shallow strike-slip faults seen in a nearby trench to deeper structures previously observed in regional studies. The high-resolution seismic data image deformation as shallow as 15 m depth and show the Santa Monica fault dips about 30 degrees north in the upper 300 m. These data, combined with soil age estimates from the trench, yield a reverse-slip rate for the fault of about 0.5 mm/yr. The Puente Hills thrust fault is one of the major faults underlying the urban Los Angeles Basin. Industry-scale and high-resolution seismic reflection images define the location and geometry of active folds above the Puente Hills thrust fault. Four seismic profiles acquired at two locations delineate fold geometry above the thrust. At one of these sites we image an active synclinal axial surface with strata

  16. Plant Tissues in 3D via X-Ray Tomography: Simple Contrasting Methods Allow High Resolution Imaging

    PubMed Central

    Staedler, Yannick M.; Masson, David; Schönenberger, Jürg

    2013-01-01

    Computed tomography remains strongly underused in plant sciences despite its high potential in delivering detailed 3D phenotypical information because of the low X-ray absorption of most plant tissues. Existing protocols to study soft tissues display poor performance, especially when compared to those used on animals. More efficient protocols to study plant material are therefore needed. Flowers of Arabidopsis thaliana and Marcgravia caudata were immersed in a selection of contrasting agents used to treat samples for transmission electron microscopy. Grayscale values for floral tissues and background were measured as a function of time. Contrast was quantified via a contrast index. The thick buds of Marcgravia were scanned to determine which contrasting agents best penetrate thick tissues. The highest contrast increase with cytoplasm-rich tissues was obtained with phosphotungstate, whereas osmium tetroxide and bismuth tatrate displayed the highest contrast increase with vacuolated tissues. Phosphotungstate also displayed the best sample penetration. Furthermore, infiltration with phosphotungstate allowed imaging of all plants parts at a high resolution of 3 µm, which approaches the maximum resolution of our equipment: 1.5 µm. The high affinity of phosphotungstate for vasculature, cytoplasm-rich tissue, and pollen causes these tissues to absorb more X-rays than the surrounding tissues, which, in turn, makes these tissues appear brighter on the scan data. Tissues with different brightness can then be virtually dissected from each other by selecting the bracket of grayscale to be visualized. Promising directions for the future include in silico phenotyping and developmental studies of plant inner parts (e.g., ovules, vasculature, pollen, and cell nuclei) via virtual dissection as well as correlations of quantitative phenotypes with omics datasets. Therefore, this work represents a crucial improvement of previous methods, allowing new directions of research to be

  17. Plant tissues in 3D via X-ray tomography: simple contrasting methods allow high resolution imaging.

    PubMed

    Staedler, Yannick M; Masson, David; Schönenberger, Jürg

    2013-01-01

    Computed tomography remains strongly underused in plant sciences despite its high potential in delivering detailed 3D phenotypical information because of the low X-ray absorption of most plant tissues. Existing protocols to study soft tissues display poor performance, especially when compared to those used on animals. More efficient protocols to study plant material are therefore needed. Flowers of Arabidopsis thaliana and Marcgravia caudata were immersed in a selection of contrasting agents used to treat samples for transmission electron microscopy. Grayscale values for floral tissues and background were measured as a function of time. Contrast was quantified via a contrast index. The thick buds of Marcgravia were scanned to determine which contrasting agents best penetrate thick tissues. The highest contrast increase with cytoplasm-rich tissues was obtained with phosphotungstate, whereas osmium tetroxide and bismuth tatrate displayed the highest contrast increase with vacuolated tissues. Phosphotungstate also displayed the best sample penetration. Furthermore, infiltration with phosphotungstate allowed imaging of all plants parts at a high resolution of 3 µm, which approaches the maximum resolution of our equipment: 1.5 µm. The high affinity of phosphotungstate for vasculature, cytoplasm-rich tissue, and pollen causes these tissues to absorb more X-rays than the surrounding tissues, which, in turn, makes these tissues appear brighter on the scan data. Tissues with different brightness can then be virtually dissected from each other by selecting the bracket of grayscale to be visualized. Promising directions for the future include in silico phenotyping and developmental studies of plant inner parts (e.g., ovules, vasculature, pollen, and cell nuclei) via virtual dissection as well as correlations of quantitative phenotypes with omics datasets. Therefore, this work represents a crucial improvement of previous methods, allowing new directions of research to be

  18. High-resolution 3-D T1*-mapping and quantitative image analysis of GRAY ZONE in chronic fibrosis.

    PubMed

    Pop, Mihaela; Ramanan, Venkat; Yang, Franklin; Zhang, Li; Newbigging, Susan; Ghugre, Nilesh R; Wright, Graham A

    2014-12-01

    The substrate of potentially lethal cardiac arrhythmias often resides in the gray zone (GZ), a mixture of viable myocytes and collagen strands found between healthy myocardium and infarct core (IC). The specific aims of this paper are to demonstrate correspondence between regions delineated in T1* (apparent T1) maps and tissue characteristics seen in histopathology and to determine the MR imaging resolution needed to adequately identify GZ-associated substrate in chronic infarct. For this, a novel 3-D multicontrast late enhancement (MCLE) MR method was used to image ex vivo swine hearts with chronic infarction, at high resolution ( 0.6×0.6×1.25 mm). Pixel-wise classified tissue maps were calculated using steady-state and T1* images as input to a fuzzy-clustering algorithm. Quantitative histology based on collagen stains was performed in n = 10 selected slabs and showed very good correlations between histologically-determined areas of heterogeneous and dense fibrosis, and the corresponding GZ ( R2 = 0.96) and IC ( R2 = 0.97 ) in tissue classified maps. Furthermore, in n = 24 slabs, we performed volumetric measurements of GZ and IC, at the original and decreased image resolutions. Our results demonstrated that the IC volume remained relatively unchanged across all resolutions, whereas the GZ volume progressively increased with diminished image resolution, with changes reaching significance at 1×1×5 mm resolution (p < 0.05 ) but not at 1×1×2.5 mm, suggesting that this resolution may be sufficient to adequately identify the GZ from MCLE images, enabling an effective MR probing of remodeled myocardium in late infarct. Future work will focus on translating these findings to optimizing the current in vivo MCLE imaging of the GZ.

  19. Single-view volumetric PIV via high-resolution scanning, isotropic voxel restructuring and 3D least-squares matching (3D-LSM)

    NASA Astrophysics Data System (ADS)

    Brücker, C.; Hess, D.; Kitzhofer, J.

    2013-02-01

    Scanning PIV as introduced by Brücker (1995 Exp. Fluids 19 255-63, 1996a Appl. Sci. Res. 56 157-79) has been successfully applied in the last 20 years to different flow problems where the frame rate was sufficient to ensure a ‘frozen’ field condition. The limited number of parallel planes however leads typically to an under-sampling in the scan direction in depth; therefore, the spatial resolution in depth is typically considerably lower than the spatial resolution in the plane of the laser sheet (depth resolution = scan shift Δz ≫ pixel unit in object space). In addition, a partial volume averaging effect due to the thickness of the light sheet must be taken into account. Herein, the method is further developed using a high-resolution scanning in combination with a Gaussian regression technique to achieve an isotropic representation of the tracer particles in a voxel-based volume reconstruction with cuboidal voxels. This eliminates the partial volume averaging effect due to light sheet thickness and leads to comparable spatial resolution of the particle field reconstructions in x-, y- and z-axes. In addition, advantage of voxel-based processing with estimations of translation, rotation and shear/strain is taken by using a 3D least-squares matching method, well suited for reconstruction of grey-level pattern fields. The method is discussed in this paper and used to investigate the ring vortex instability at Re = 2500 within a measurement volume of roughly 75 × 75 × 50 mm3 with a spatial resolution of 100 µm/voxel (750 × 750 × 500 voxel elements). The volume has been scanned with a number of 100 light sheets and scan rates of 10 kHz. The results show the growth of the Tsai-Widnall azimuthal instabilities accompanied with a precession of the axis of the vortex ring. Prior to breakdown, secondary instabilities evolve along the core with streamwise oriented striations. The front stagnation point's streamwise distance to the core starts to decrease while

  20. Applications of shallow high-resolution seismic reflection to various environmental problems

    USGS Publications Warehouse

    Miller, R.D.; Steeples, D.W.

    1994-01-01

    Shallow seismic reflection has been successfully applied to environmental problems in a variety of geologic settings. Increased dynamic range of recording equipment and decreased cost of processing hardware and software have made seismic reflection a cost-effective means of imaging shallow geologic targets. Seismic data possess sufficient resolution in many areas to detect faulting with displacement of less than 3 m and beds as thin as 1 m. We have detected reflections from depths as shallow as 2 m. Subsurface voids associated with abandoned coal mines at depths of less than 20 m can be detected and mapped. Seismic reflection has been successful in mapping disturbed subsurface associated with dissolution mining of salt. A graben detected and traced by seismic reflection was shown to be a preferential pathway for leachate leaking from a chemical storage pond. As shown by these case histories, shallow high-resolution seismic reflection has the potential to significantly enhance the economics and efficiency of preventing and/or solving many environmental problems. ?? 1994.

  1. Pen Branch fault program: Interim report on the High Resolution, Shallow Seismic Reflection surveys

    SciTech Connect

    Stieve, A.L. )

    1991-01-31

    The Pen Branch fault was identified in the subsurface at the Savannah River Site in 1989 based upon the interpretation of earlier seismic reflection surveys and other geologic investigations. A program was initiated at that time to further define the fault in terms of its capability to release seismic energy. The High-Resolution, Shallow Seismic Reflection survey recently completed at SRS was initiated to determine the shallowest extent of the fault and to demonstrate the presence of flat-lying sediments in the top 300 feet of sediments. Conclusions at this time are based upon this shallow seismic survey and the Conoco deep seismic survey (1988--1989). Deformation related to the Pen Branch fault is at least 200 milliseconds beneath the surface in the Conoco data and at least 150 milliseconds in the shallow seismic reflection data. This corresponds to approximately 300 feet below the surface. Sediments at that depth are lower Tertiary (Danian stage) or over 60 million years old. This indicates that the fault is not capable.

  2. Thrust fault growth within accretionary wedges: New Insights from 3D seismic reflection data

    NASA Astrophysics Data System (ADS)

    Orme, H.; Bell, R. E.; Jackson, C. A. L.

    2015-12-01

    The shallow parts of subduction megathrust faults are typically thought to be aseismic and incapable of propagating seismic rupture. The 2011 Tohoku-Oki earthquake, however, ruptured all the way to the trench, proving that in some locations rupture can propagate through the accretionary wedge. An improved understanding of the structural character and physical properties of accretionary wedges is therefore crucial to begin to assess why such anomalously shallow seismic rupture occurs. Despite its importance, we know surprisingly little regarding the 3D geometry and kinematics of thrust network development in accretionary prisms, largely due to a lack of 3D seismic reflection data providing high-resolution, 3D images of entire networks. Thus our current understanding is largely underpinned by observations from analogue and numerical modelling, with limited observational data from natural examples. In this contribution we use PSDM, 3D seismic reflection data from the Nankai margin (3D Muroto dataset, available from the UTIG Academic Seismic Portal, Marine Geoscience Data System) to examine how imbricate thrust fault networks evolve during accretionary wedge growth. Previous studies have reported en-echelon thrust fault geometries from the NW part of the dataset, and have related this complex structure to seamount subduction. We unravel the evolution of faults within the protothrust and imbricate thrust zones by interpreting multiple horizons across faults and measuring fault displacement and fold amplitude along-strike; by doing this, we are able to investigate the three dimensional accrual of strain. We document a number of local displacement minima along-strike of faults, suggesting that, the protothrust and imbricate thrusts developed from the linkage of smaller, previously isolated fault segments. We also demonstrate that the majority of faults grew upward from the décollement, although there is some evidence for downward fault propagation. Our observations

  3. High-resolution seismic reflection profiling for mapping shallow aquifers in Lee County, Florida

    USGS Publications Warehouse

    Missimer, T.M.; Gardner, Richard Alfred

    1976-01-01

    High-resolution continuous seismic reflection profiling equipment was utilized to define the configuration of sedimentary layers underlying part of Lee County, Florida. About 45 miles (72 kilometers) of profile were made on the Caloosahatchee River Estuary and San Carlos Bay. Two different acoustic energy sources, a high resolution boomer and a 45-electrode high resolution sparker, both having a power input of 300 joules, were used to obtain both adequate penetration and good resolution. The seismic profiles show that much of the strata of middle Miocene to Holocene age apparently are extensively folded but not faulted. Initial interpretations indicate that: (1) the top of the Hawthorn Formation (which contains the upper Hawthorn aquifer) has much relief due chiefly to apparent folding; (2) the limestone, sandstone, and unconsolidated sand and phosphorite, which together compose the sandstone aquifer, appear to be discontinuous; (3) the green clay unit of the Tamiami Formation contains large scale angular beds dipping eastward; and (4) numerous deeply cut alluvium-filled paleochannels underlie the Caloosahatchee River. (Woodard-USGS)

  4. Development of a High-Resolution Shallow Seismic Refraction Tomography System at the Monterey Bay Aquarium Research Institute

    NASA Astrophysics Data System (ADS)

    Henthorn, R.; Caress, D. W.; Chaffey, M. R.; McGill, P. R.; Kirkwood, W. J.; Burgess, W. C.

    2009-12-01

    The Monterey Bay Aquarium Research Institute (MBARI) is developing a high-resolution marine seismic refraction imaging system that can be deployed and operated using a remotely operated vehicle. Conventional marine seismic refraction methods typically use low-frequency sources and widely-spaced seafloor receivers to image crustal-scale subsurface structure. These systems often employ air-guns towed from a surface vessel to produce acoustic signals ranging from 1-100Hz, and ocean-bottom seismometers to record the refracted signals, resulting in images on the scale of hundreds of kilometers with resolutions no better than hundreds of meters. Images of subsurface structure at resolutions on the order of meters requires closely-spaced, near-seafloor sources and receivers capable of producing and recording higher-frequency signals centered around 3kHz. This poster will describe the first phase development of the High-Resolution Shallow Seismic Refraction Tomography System at MBARI including the science drivers, the design approach and trade-offs, and results from initial field tests conducted in the Monterey Bay. The capability to image fine-scale subsurface structure will augment ongoing research on hydrate deposits. Methane and the other hydrocarbon gases trapped in hydrates are climate-impacting greenhouse gases as well as potential energy sources. Therefore, research regarding the formation, stability, volume, and structure of these globally common deposits has considerable relevance today. High-resolution subsurface imaging can impact many important marine geological topics such as submarine faults, hydrothermal venting, and submarine volcanism. The system combines ROV-mounted transmission of chirp acoustic signals with a roughly 1-6 kHz sweep and an array of high-frequency ocean bottom hydrophone (OBH) receivers. The configuration of closely spaced receivers and a source pinging at tightly-spaced intervals provides the opportunity to pick refracted arrival times

  5. Sea level history in 3D: Data acquisition and processing for an ultra-high resolution MCS survey across IODP Expedition 313 drillsite

    NASA Astrophysics Data System (ADS)

    Nedimovic, M. R.; Mountain, G. S.; Austin, J. A., Jr.; Fulthorpe, C.; Aali, M.; Baldwin, K.; Bhatnagar, T.; Johnson, C.; Küçük, H. M.; Newton, A.; Stanley, J.

    2015-12-01

    In June-July 2015, we acquired the first 3D/2D hybrid (short/long streamer) multichannel seismic (MCS) reflection dataset. These data were collected simultaneously across IODP Exp. 313 drillsites, off New Jersey, using R/V Langsethand cover ~95% of the planned 12x50 km box. Despite the large survey area, the lateral and vertical resolution for the 3D dataset is almost a magnitude of order higher than for data gathered for standard petroleum exploration. Such high-resolution was made possible by collection of common midpoint (CMP) lines whose combined length is ~3 times the Earth's circumference (~120,000 profile km) and a source rich in high-frequencies. We present details on the data acquisition, ongoing data analysis, and preliminary results. The science driving this project is presented by Mountain et al. The 3D component of this innovative survey used an athwartship cross cable, extended laterally by 2 barovanes roughly 357.5 m apart and trailed by 24 50-m P-Cables spaced ~12.5 m with near-trace offset of 53 m. Each P-Cable had 8 single hydrophone groups spaced at 6.25 m for a total of 192 channels. Record length was 4 s and sample rate 0.5 ms, with no low cut and an 824 Hz high cut filter. We ran 77 sail lines spaced ~150 m. Receiver locations were determined using 2 GPS receivers mounted on floats and 2 compasses and depth sensors per streamer. Streamer depths varied from 2.1 to 3.7 m. The 2D component used a single 3 km streamer, with 240 9-hydrophone groups spaced at 12.5 m, towed astern with near-trace offset of 229 m. The record length was 4 s and sample rate 0.5 ms, with low cut filter at 2 Hz and high cut at 412 Hz. Receiver locations were recorded using GPS at the head float and tail buoy, combined with 12 bird compasses spaced ~300 m. Nominal streamer depth was 4.5 m. The source for both systems was a 700 in3 linear array of 4 Bolt air guns suspended at 4.5 m towing depth, 271.5 m behind the ship's stern. Shot spacing was 12.5 m. Data analysis to

  6. High-resolution seismic detection of shallow natural gas beneath Hutchinson, Kansas

    USGS Publications Warehouse

    Nissen, S.E.; Watney, W.L.; Xia, J.

    2004-01-01

    Two high-resolution seismic reflection surveys were conducted to identify shallow natural gas that had caused explosions in Hutchinson, Kansas, in January 2001. Gas presence is associated with both a bright spot and a dim-out on the seismic reflection profiles. Core and log data from wells drilled to vent the gas indicate that the gas-bearing interval corresponds to thin dolomite layers, which have higher P-wave velocities than the surrounding shales. Gas in fractures can reduce the velocity of the dolomite interval to that of the shales (or lower). Depending on the magnitude of the velocity change, either a dim-out or bright spot is produced. Sonic logs from gas-bearing vent wells, recorded after venting of gas, show no anomalous velocity, indicating that as gas dissipates, any associated seismic anomaly will be reduced. Lateral variations in the seismic properties of the gas-bearing interval and adjacent strata (namely, variations in dolomite and shale content) also have a significant effect on the seismic signature of the interval, mimicking the effect of a small amount of gas. Only where the gas zone is relatively thick (2-3 m; 7-10 ft), creating a high-amplitude negative seismic reflection, is the seismic signature diagnostic of gas. Therefore, whereas the dim-outs observed on the seismic reflection profiles may be the result of gas presence, they are equally well explained by lateral variations in lithology. Dim-outs should not be used in the Hutchinson area as an indicator of gas. The observed bright spot, however, is most likely a unique gas response. Copyright ?? 2004. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  7. Models for Holocene valley-fill sequences from high-resolution seismic facies of Galveston Bay

    SciTech Connect

    Smyth, W.; Thomas, M.A.; Anderson, J.B. )

    1988-02-01

    Reconstructions of the northern Gulf of Mexico shelf for the Holocene have relied on the dating of isolated bathymetric banks. These banks, which are interpreted as former shorelines, provide snapshots of the shelf during periods of relative sea level stillstand. A more complete sedimentary record of the Holocene transgression is likely preserved in the incised valley-fill sequences. The first step in deciphering the record of Holocene valley-fill sequences is development of high-resolution seismic facies models based on modern environments. The modern incised valley-estuarine system of Galveston Bay has been seismically surveyed. Important environments include bayhead delta (Trinity River delta), tidal inlet, flood tidal delta (Bolivar Roads), and estuarine sediments (central bay). Additionally, fluvial sediments partially infill the entrenched Trinity River valley. Seismic facies interpretation was corroborated by information obtained from sediment cores. The influence of the rate of relative sea level rise on incised valley-fill facies architecture is demonstrated in hypothetical sequence models which are applied to the interpretation of high-resolution surveys of Holocene shelf deposits.

  8. High-resolution seismic reflection to delineate shallow gas in Eastern Kansas

    USGS Publications Warehouse

    Miller, R.D.; Watney, W.L.; Begay, D.K.; Xia, J.

    2000-01-01

    Unique amplitude characteristics of shallow gas sands within Pennsylvanian clastic-carbonate dominated sequences are discernible on high-resolution seismic reflection data in eastern Kansas. Upward grading sequences of sand into shale represent a potential gas reservoir with a low-impedence acoustic contrast at the base of the encasing layer. The gas sand and encasing shale, which define the gas reservoir studied here, are part of an erosional incised valley where about 30 m of carbonates and shale have been replaced by sandstone and shale confined to the incised valley. These consolidated geologic settings would normally possess high impedence gas sand reservoirs as defined by abrupt contacts between the gas sand and encasing shale. Based orr core and borehole logs, the gas sand studied here grades from sand into shale in a fashion analogous to that observed in classic low-impedance environments. Amplitude and phase characteristics of high-resolution seismic data across this approximately 400-m wide gas sand are indicative of a low-impedance reservoir. Shot gathers possess classic amplitude with offsett-dependent characteristics which are manifeted on the stacked section as "bright spots." Dominant Frequencies of around 120 Hz allow detection of several reflectors within the 30+ meters of sand/shale that make up this localized gas-rich incised valley fill. The gradational nature of the trapping mechanism observed in this gas reservoir would make detection with conventional seismic reflection methods unlikely.

  9. High-resolution seismic-reflection data offshore of Dana Point, southern California borderland

    USGS Publications Warehouse

    Sliter, Ray W.; Ryan, Holly F.; Triezenberg, Peter J.

    2010-01-01

    The U.S. Geological Survey collected high-resolution shallow seismic-reflection profiles in September 2006 in the offshore area between Dana Point and San Mateo Point in southern Orange and northern San Diego Counties, California. Reflection profiles were located to image folds and reverse faults associated with the San Mateo fault zone and high-angle strike-slip faults near the shelf break (the Newport-Inglewood fault zone) and at the base of the slope. Interpretations of these data were used to update the USGS Quaternary fault database and in shaking hazard models for the State of California developed by the Working Group for California Earthquake Probabilities. This cruise was funded by the U.S. Geological Survey Coastal and Marine Catastrophic Hazards project. Seismic-reflection data were acquired aboard the R/V Sea Explorer, which is operated by the Ocean Institute at Dana Point. A SIG ELC820 minisparker seismic source and a SIG single-channel streamer were used. More than 420 km of seismic-reflection data were collected. This report includes maps of the seismic-survey sections, linked to Google Earth? software, and digital data files showing images of each transect in SEG-Y, JPEG, and TIFF formats.

  10. The USGS 3D Seismic Velocity Model for Northern California

    NASA Astrophysics Data System (ADS)

    Brocher, T. M.; Aagaard, B.; Simpson, R. W.; Jachens, R. C.

    2006-12-01

    We present a new regional 3D seismic velocity model for Northern California for use in strong motion simulations of the 1906 San Francisco and other earthquakes. The model includes compressional-wave velocity (Vp), shear-wave velocity (Vs), density, and intrinsic attenuation (Qp, Qs). These properties were assigned for each rock type in a 3D geologic model derived from surface outcrops, boreholes, gravity and magnetic data, and seismic reflection, refraction, and tomography studies. A detailed description of the model, USGS Bay Area Velocity Model 05.1.0, is available online [http://www.sf06simulation.org/geology/velocitymodel]. For ground motion simulations Vs and Qs are more important parameters than Vp and Qp because the strongest ground motions are generated chiefly by shear and surface wave arrivals. Because Vp data are more common than Vs data, however, we first developed Vp versus depth relations for each rock type and then converted these to Vs versus depth relations. For the most important rock types in Northern California we compiled measurements of Vp versus depth using borehole logs, laboratory measurements on hand samples, seismic refraction profiles, and tomography models. These rock types include Salinian and Sierran granitic rocks, metagraywackes and greenstones of the Franciscan Complex, Tertiary and Mesozoic sedimentary and volcanic rocks, and Quaternary and Holocene deposits (Brocher, USGS OFR 05-1317, 2005). Vp versus depth curves were converted to Vs versus depth curves using new empirical nonlinear relations between Vs and Vp (Brocher, BSSA, 2005). These relations, showing that Poisson's ratio is a nonlinear function of Vp, were similarly based on compilations of diverse Vs and Vp measurements on a large suite of rock types, mainly from California and the Pacific Northwest. The model is distributed in a discretized form with routines to query the model using C++, C, and Fortran 77 programming languages. The geologic model was discretized at

  11. Use of three-dimensional, high-resolution seismic technology to optimize the location of remedial systems

    SciTech Connect

    Bainer, R.W. ); Adams, M.L. )

    1993-02-01

    Two three-dimensional (3-D), high-resolution seismic reflection pilot studies were conducted in California at two sites, where the primary contaminants of concern are solvents. Identify pathways of contaminant migration. Determine the subsurface stratigraphy and structure to optimize the location for placement of remedial systems. The geology at the first site, located at the Lawrence Livermore National Laboratory in Livermore, California, is characterized by unconsolidated alluvium. Ground water varies in depth from about 30 to 100 ft. The site typically is subjected to extensive cultural noise. The second site, in Southern California, is located in a broad, synclinal depression in the Transverse Range. Shallow alluvium overlies a marine turbidite sequence that crops out as massive sandstone beds. Field work for both surveys took place in August 1992. A Bison Model 90120-A, 120-channel (DIFP) seismograph was used to record the data. Thirty-hertz, natural-frequency geophones were used to receive the data, and an Elastic Wave Generator (EWG) was used as the seismic source. The use of a signal-stacking, noninvasive source was found to be an effective method of overriding background noise at the sites. Prior to the commencement of the 3-D pilot studies, a two-dimensional (2-D) profile was recorded to test the acquisition parameters, which included the geometry of the survey, digital sample rate, and analog filter settings. The data were monitored in the field with a Bison 486 Explorer outdoor computer. The 2-D data were processed and displayed in the field. Both sites displayed coherent seismic reflections from the depths of interest on the field-stacked sections.

  12. High resolution seismic reflection, an exploration tool within an underground environment (example from Zimbabwe)

    NASA Astrophysics Data System (ADS)

    Mutyorauta, J. J.

    Metallurgical grade chromite ore in Zimbabwe is mined from two underground mines, Peak Mine and Railway Block Mine, in Shurugwi. Peak Mine is at present just over 800 m deep. In the search for new chromite ore bodies, such a depth limits the application of the conventional geophysical exploration tools. Exploration diamond drilling is becoming more and more an expensive resort. Alternative and effective geophysical techniques are therefore being actively sought after. The high resolution seismic reflection technique, carried out right within Peak Mine, has the potential to become a useful exploration tool.

  13. Continuous, Large-Scale Processing of Seismic Archives for High-Resolution Monitoring of Seismic Activity and Seismogenic Properties

    NASA Astrophysics Data System (ADS)

    Waldhauser, F.; Schaff, D. P.

    2012-12-01

    Archives of digital seismic data recorded by seismometer networks around the world have grown tremendously over the last several decades helped by the deployment of seismic stations and their continued operation within the framework of monitoring earthquake activity and verification of the Nuclear Test-Ban Treaty. We show results from our continuing effort in developing efficient waveform cross-correlation and double-difference analysis methods for the large-scale processing of regional and global seismic archives to improve existing earthquake parameter estimates, detect seismic events with magnitudes below current detection thresholds, and improve real-time monitoring procedures. We demonstrate the performance of these algorithms as applied to the 28-year long seismic archive of the Northern California Seismic Network. The tools enable the computation of periodic updates of a high-resolution earthquake catalog of currently over 500,000 earthquakes using simultaneous double-difference inversions, achieving up to three orders of magnitude resolution improvement over existing hypocenter locations. This catalog, together with associated metadata, form the underlying relational database for a real-time double-difference scheme, DDRT, which rapidly computes high-precision correlation times and hypocenter locations of new events with respect to the background archive (http://ddrt.ldeo.columbia.edu). The DDRT system facilitates near-real-time seismicity analysis, including the ability to search at an unprecedented resolution for spatio-temporal changes in seismogenic properties. In areas with continuously recording stations, we show that a detector built around a scaled cross-correlation function can lower the detection threshold by one magnitude unit compared to the STA/LTA based detector employed at the network. This leads to increased event density, which in turn pushes the resolution capability of our location algorithms. On a global scale, we are currently building

  14. Downhole seismic logging for high-resolution reflection surveying in unconsolidated overburden

    SciTech Connect

    Hunter, J.A.; Pullan, S.E.; Burns, R.A.; Good, R.L.; Harris, J.B.; Pugin, A.; Skvortsov, A.; Goriainov, N.N.

    1998-07-01

    Downhole seismic velocity logging techniques have been developed and applied in support of high-resolution reflection seismic surveys. Data obtained from downhole seismic logging can provide accurate velocity-depth functions and directly correlate seismic reflections to depth. The methodologies described in this paper are designed for slimhole applications in plastic-cased boreholes (minimum ID of 50 mm) and with source and detector arrays that yield similar frequency ranges and vertical depth resolutions as the surface reflection surveys. Compressional- (P-) wave logging uses a multichannel hydrophone array with 0.5-m detector spacings in a fluid-filled borehole and a high-frequency, in-hole shotgun source at the surface. Overlapping array positions downhole results in redundant first-arrival data which can be processed to provide accurate interval velocities. The data also can be displayed as a record suite, showing reflections and directly correlating reflection events with depths. Example applications include identification of gas zones, lithological boundaries within unconsolidated sediments, and the overburden-bedrock interface. Shear- (S-) wave logging uses a slimhole, well-locked, three-component (3-C) geophone pod and a horizontally polarized, hammer-and-loaded-plate source at ground surface. In unconsolidated sediments, shear-wave velocity contrasts can be associated with changes in material density or dynamic shear modulus, which in turn can be related to consolidation. Example applications include identification of a lithological boundary for earthquake hazard applications and mapping massive ice within permafrost materials.

  15. Fault and dyke detectability in high resolution seismic surveys for coal: a view from numerical modelling*

    NASA Astrophysics Data System (ADS)

    Zhou, Binzhong 13Hatherly, Peter

    2014-10-01

    Modern underground coal mining requires certainty about geological faults, dykes and other structural features. Faults with throws of even just a few metres can create safety issues and lead to costly delays in mine production. In this paper, we use numerical modelling in an ideal, noise-free environment with homogeneous layering to investigate the detectability of small faults by seismic reflection surveying. If the layering is horizontal, faults with throws of 1/8 of the wavelength should be detectable in a 2D survey. In a coal mining setting where the seismic velocity of the overburden ranges from 3000 m/s to 4000 m/s and the dominant seismic frequency is ~100 Hz, this corresponds to a fault with a throw of 4-5 m. However, if the layers are dipping or folded, the faults may be more difficult to detect, especially when their throws oppose the trend of the background structure. In the case of 3D seismic surveying we suggest that faults with throws as small as 1/16 of wavelength (2-2.5 m) can be detectable because of the benefits offered by computer-aided horizon identification and the improved spatial coherence in 3D seismic surveys. With dykes, we find that Berkhout's definition of the Fresnel zone is more consistent with actual experience. At a depth of 500 m, which is typically encountered in coal mining, and a 100 Hz dominant seismic frequency, dykes less than 8 m in width are undetectable, even after migration.

  16. True 3D kinematic analysis for slope instability assessment in the Siq of Petra (Jordan), from high resolution TLS

    NASA Astrophysics Data System (ADS)

    Gigli, Giovanni; Margottini, Claudio; Spizzichino, Daniele; Ruther, Heinz; Casagli, Nicola

    2016-04-01

    Most classifications of mass movements in rock slopes use relatively simple, idealized geometries for the basal sliding surface, like planar sliding, wedge sliding, toppling or columnar failures. For small volumes, the real sliding surface can be often well described by such simple geometries. Extended and complex rock surfaces, however, can exhibit a large number of mass movements, also showing various kind of kinematisms. As a consequence, the real situation in large rock surfaces with a complicate geometry is generally very complex and a site depending analysis, such as fieldwork and compass, cannot be comprehensive of the real situation. Since the outstanding development of terrestrial laser scanner (TLS) in recent years, rock slopes can now be investigated and mapped through high resolution point clouds, reaching the resolution of few mm's and accuracy less than a cm in most advanced instruments, even from remote surveying. The availability of slope surface digital data can offer a unique chance to determine potential kinematisms in a wide distributed area for all the investigated geomorphological processes. More in detail the proposed method is based on the definition of least squares fitting planes on clusters of points extracted by moving a sampling cube on the point cloud. If the associated standard deviation is below a defined threshold, the cluster is considered valid. By applying geometric criteria it is possible to join all the clusters lying on the same surface; in this way discontinuity planes can be reconstructed, rock mass geometrical properties are calculated and, finally, potential kinematisms established. The Siq of Petra (Jordan), is a 1.2 km naturally formed gorge, with an irregular horizontal shape and a complex vertical slope, that represents the main entrance to Nabatean archaeological site. In the Siq, discontinuities of various type (bedding, joints, faults), mainly related to geomorphological evolution of the slope, lateral stress

  17. Effects of multiple-interaction photon events in a high-resolution PET system that uses 3-D positioning detectors

    PubMed Central

    Gu, Yi; Pratx, Guillem; Lau, Frances W. Y.; Levin, Craig S.

    2010-01-01

    Purpose: The authors’ laboratory is developing a dual-panel, breast-dedicated PET system. The detector panels are built from dual-LSO-position-sensitive avalanche photodiode (PSAPD) modules—units holding two 8×8 arrays of 1 mm3 LSO crystals, where each array is coupled to a PSAPD. When stacked to form an imaging volume, these modules are capable of recording the 3-D coordinates of individual interactions of a multiple-interaction photon event (MIPE). The small size of the scintillation crystal elements used increases the likelihood of photon scattering between crystal arrays. In this article, the authors investigate how MIPEs impact the system photon sensitivity, the data acquisition scheme, and the quality and quantitative accuracy of reconstructed PET images. Methods: A Monte Carlo simulated PET scan using the dual-panel system was performed on a uniformly radioactive phantom for the photon sensitivity study. To establish the impact of MIPEs on a proposed PSAPD multiplexing scheme, experimental data were collected from a dual-LSO-PSAPD module edge-irradiated with a 22Na point source, the data were compared against simulation data based on an identical setup. To assess the impact of MIPEs on the dual-panel PET images, a simulated PET of a phantom comprising a matrix of hot spherical radiation sources of varying diameters immersed in a warm background was performed. The list-mode output data were used for image reconstruction, where various methods were used for estimating the location of the first photon interaction in MIPEs for more accurate line of response positioning. The contrast recovery coefficient (CRC), contrast to noise ratio (CNR), and the full width at half maximum spatial resolution of the spheres in the reconstructed images were used as figures of merit to facilitate comparison. Results: Compared to image reconstruction employing only events with interactions confined to one LSO array, a potential single photon sensitivity gain of >46.9% (>115

  18. Intraplate Seismicity and Lithospheric Strength as Inferred from 3D Seismic Models

    NASA Astrophysics Data System (ADS)

    Mooney, W. D.; Pollitz, F. F.; Ritsema, J.

    2014-12-01

    Focal mechanism studies and other stress indicators indicate that intraplate earthquakes in central and eastern North America are consistent with an ENE-WSW compressive stress field that acts on existing faults. Here we argue that either locally thinned lithosphere (as beneath the Reelfoot Rift, central US) or regional lithospheric thinning (as beneath the edge of the North American craton or the rifted continental margin) constitutes zones of relatively low lithospheric strength where crustal strain accumulates. We use seismic surface waves to determine the 3D shear-wave seismic velocity structure of the lithosphere, and find that the Reelfoot Rift is underlain by a zone with low mantle seismic velocities that extends to at least 200 km depth. Thus, the Reelfoot Rift, which hosts the New Madrid Seismic Zone, is unique among North American paleo-rifts in term of the properties in the mantle. We hypothesize that this low-velocity mantle volume is weaker than its surroundings and that the Reelfoot Rift consequently has relatively lower elastic plate thickness that would tend to concentrate tectonic stress within this zone. On a continental scale, the 3D velocity model clearly identifies an approximately 220-km-thick, high seismic velocity lithospheric root beneath the North America craton which has a low rate of crustal seismicity and very few events with Mw≥6. We attribute the relatively aseismic nature of the craton to dry, cold conditions within the cratonic lower crust and mantle lithosphere. Conversely, we find that a high proportion of intraplate events are concentrated around the pronounced lateral gradient in lithospheric thickness that surrounds the craton. We attribute this observation to a lateral decrease in lithospheric strength at the edge of the North American craton. This relationship between intraplate seismicity and lithospheric properties is apparent in maps that compare regional and continental lithospheric thickness with crustal seismicity. We

  19. Three dimensional attenuation and high resolution earthquake location: Applications to the new Madrid seismic zone and Costa Rica seismogenic zone

    NASA Astrophysics Data System (ADS)

    Bisrat, Shishay Tesfay

    Part 1: Event archives and continuous waveform data recorded by the Cooperative New Madrid Seismic Network (CNSMN) from 1995 to 2008 are analyzed with waveform cross-correlation techniques to investigate the spatiotemporal distribution of MD < 2.4 earthquakes in the New Madrid Seismic Zone (NMSZ). The resulting clusters are divided into swarm clusters and repeating earthquake clusters depending on interevent duration of time. Most swarm clusters occur near Ridgely, Tennessee. Other swarms and repeating earthquake clusters occur at proposed fault intersections in the crystalline basement or along strong velocity contrasts. The presence of anomalously high pore-fluid pressure is the most likely cause of swarm activity. Repeating earthquake ruptures are interpreted as reactivation of small asperities. Part 2: A three-dimensional, high-resolution P-wave seismic attenuation model (QP) for NMSZ is determined from P-wave path attenuation (t*) values of MD < 3.9 earthquakes recorded at 89 seismometers of the CNMSN and 40 seismometers of the Portable Array for Numerical Data Acquisition (PANDA) deployment. The amplitude spectra of all the earthquakes are simultaneously inverted for source, path and site parameters. The t* values are inverted for Qp using local earthquake tomography (LET) methods and a known 3D P-wave velocity model for the region. The four major seismicity arms of the NMSZ exhibit lower Q P values than the surrounding crust. The larger QP anomalies coincide with previously reported high swarm activity attributed to possibly fluid rich fractures along the southeast extension of the Reelfoot fault. Part 3: We use the spectra of 210 earthquakes recorded by 35 seismometers to image the attenuation structure of the seismogenic zone below Nicoya Peninsula, Costa Rica. The amplitude spectra of the earthquakes are used to estimate t* using common spectrum method. An attenuation map is then obtained using LET using a previously constrained velocity model and

  20. In vivo application of 3D-line skeleton graph analysis (LSGA) technique with high-resolution magnetic resonance imaging of trabecular bone structure.

    PubMed

    Pothuaud, Laurent; Newitt, David C; Lu, Ying; MacDonald, Brian; Majumdar, Sharmila

    2004-05-01

    Over the last several years magnetic resonance (MR) imaging has emerged as a means of measuring in vivo 3D trabecular bone structure. In particular, MR based diagnosis could be used to complement standard bone mineral density (BMD) methods for assessing osteoporosis and evaluating longitudinal changes. The aim of this study was to demonstrate the feasibility of using the 3D-LSGA technique for the evaluation of trabecular bone structure of high-resolution MR images, particularly for assessing longitudinal changes, in vivo. First, the reproducibility of topological 3D-LSGA based measurements was evaluated in a set of seven volunteers, and coefficients of variations ranged from 3.5% to 6%. Second, high-resolution MR images of the radius in 30 postmenopausal women from a placebo controlled drug study (Idoxifene), divided into placebo ( n=9) and treated ( n=21) groups, were obtained at baseline (BL) and after 1 year of treatment (follow-up, FU). In addition, dual X-ray absorptiometry (DXA) measures of BMD were obtained in the distal radius. Standard morphological measurements based on the mean intercept length (MIL) technique as well as 3D-LSGA based measurements were applied to the 3D MR images. Significant changes from BL to FU were detected, in the treated group, using the topological 3D-LSGA based measurements, morphological measures of volume of connected trabeculae and App Tb.N from MIL analysis. The duration of the study was short, and the number of patients remaining in the study was small, hence these results cannot be interpreted with regard to a true therapeutic response. Furthermore, the site (wrist) and the drug (idoxifene) are not optimal for follow-up study. However, this paper demonstrated the feasibility of using 3D-LSGA based evaluation coupled with in vivo high-resolution MR imaging as a complementary approach for the monitoring of trabecular bone changes in individual subjects.

  1. Groundwater penetrating radar and high resolution seismic for locating shallow faults in unconsolidated sediments

    SciTech Connect

    Wyatt, D.E. |; Waddell, M.G.; Sexton, B.G.

    1993-12-31

    Faults in shallow, unconsolidated sediments, particularly in coastal plain settings, are very difficult to discern during subsurface exploration yet have critical impact to groundwater flow, contaminant transport and geotechnical evaluations. This paper presents a case study using cross-over geophysical technologies in an area where shallow faulting is probable and known contamination exists. A comparison is made between Wenner and dipole-dipole resistivity data, ground penetrating radar, and high resolution seismic data. Data from these methods were verified with a cone penetrometer investigation for subsurface lithology and compared to existing monitoring well data. Interpretations from these techniques are compared with actual and theoretical shallow faulting found in the literature. The results of this study suggests that (1) the CPT study, combined with the monitoring well data may suggest that discontinuities in correlatable zones may indicate that faulting is present (2) the addition of the Wenner and dipole-dipole data may further suggest that offset zones exist in the shallow subsurface but not allow specific fault planes or fault stranding to be mapped (3) the high resolution seismic data will image faults to within a few feet of the surface but does not have the resolution to identify the faulting on the scale of our models, however it will suggest locations for upward continuation of faulted zones (4) offset 100 MHz and 200 MHz CMP GPR will image zones and features that may be fault planes and strands similar to our models (5) 300 MHz GPR will image higher resolution features that may suggest the presence of deeper faults and strands, and (6) the combination of all of the tools in this study, particularly the GPR and seismic may allow for the mapping of small scale, shallow faulting in unconsolidated sediments.

  2. High Resolution Seismic Imaging of the Trench Canyon Fault Zone, Mono Lake, Northeastern California

    NASA Astrophysics Data System (ADS)

    Novick, M. W.; Jayko, A. S.; Roeske, S.; McClain, J. S.; Hart, P. E.; Boyle, M.

    2009-12-01

    High resolution seismic imaging of Mono Lake, located in northeastern California, has revealed an approximately northwest striking fault in the area to the west of aerially exposed Negit Volcano. This fault, henceforth referred to as the Trench Canyon Fault (TCF), has also been mapped onshore along a correlating strike as far north as Cedar Hill Volcano, located to the northeast of the lake on the California/Nevada border. Onshore, the TCF was mapped for approximately 10 kilometers using air photos, DEM images, and standard geologic pace and compass mapping techniques. The TCF post- dates the last glacial maximum, evidenced by the cutting of wave cut benches along Cedar Hill Volcano. Relict, non-historic shorelines, left by the steady evaporation of Mono Lake beginning approximately 13k, are also repeatedly cut by the fault. Additional evidence of fault presence includes sag ponds, pressure ridges, tectonically fractured rocks, and normal fault scarps found along strike. Offshore, DEM images show a northeast striking structure to the northwest of Negit Volcano, which is co-linear with the onshore TCF. High resolution seismic imaging of the structure, using an applied acoustic/SIG mini-sparker system, reveals steeply dipping Holocene sediments, as well as volcanic deposits from active vents which have erupted in the last 1000 years, offset by the fault. Detailed structural analysis of the previously unstudied Trench Canyon Fault (TFC) and faults in the Cedar Hill region of northern California, along with seismic studies of sediments beneath Mono Lake not only allow for a better comprehension of this minor fault system, but provide greater understanding of the larger and more complex Walker Lane Shear Zone. Fault analyses, combined and correlated with those from CHV, give a better understanding of how slip is transferred into the complicated Mina defection to the east, from the dextral and normal faults along the Sierra Nevada Range front.

  3. Testing & Validating: 3D Seismic Travel Time Tomography (Detailed Shallow Subsurface Imaging)

    NASA Astrophysics Data System (ADS)

    Marti, David; Marzan, Ignacio; Alvarez-Marron, Joaquina; Carbonell, Ramon

    2016-04-01

    A detailed full 3 dimensional P wave seismic velocity model was constrained by a high-resolution seismic tomography experiment. A regular and dense grid of shots and receivers was use to image a 500x500x200 m volume of the shallow subsurface. 10 GEODE's resulting in a 240 channels recording system and a 250 kg weight drop were used for the acquisition. The recording geometry consisted in 10x20m geophone grid spacing, and a 20x20 m stagered source spacing. A total of 1200 receivers and 676 source points. The study area is located within the Iberian Meseta, in Villar de Cañas (Cuenca, Spain). The lithological/geological target consisted in a Neogen sedimentary sequence formed from bottom to top by a transition from gyspum to silstones. The main objectives consisted in resolving the underground structure: contacts/discontinuities; constrain the 3D geometry of the lithology (possible cavities, faults/fractures). These targets were achieved by mapping the 3D distribution of the physical properties (P-wave velocity). The regularly space dense acquisition grid forced to acquire the survey in different stages and with a variety of weather conditions. Therefore, a careful quality control was required. More than a half million first arrivals were inverted to provide a 3D Vp velocity model that reached depths of 120 m in the areas with the highest ray coverage. An extended borehole campaign, that included borehole geophysical measurements in some wells provided unique tight constraints on the lithology an a validation scheme for the tomographic results. The final image reveals a laterally variable structure consisting of four different lithological units. In this methodological validation test travel-time tomography features a high capacity of imaging in detail the lithological contrasts for complex structures located at very shallow depths.

  4. Fast history matching of time-lapse seismic and production data for high resolution models

    NASA Astrophysics Data System (ADS)

    Jimenez Arismendi, Eduardo Antonio

    Integrated reservoir modeling has become an important part of day-to-day decision analysis in oil and gas management practices. A very attractive and promising technology is the use of time-lapse or 4D seismic as an essential component in subsurface modeling. Today, 4D seismic is enabling oil companies to optimize production and increase recovery through monitoring fluid movements throughout the reservoir. 4D seismic advances are also being driven by an increased need by the petroleum engineering community to become more quantitative and accurate in our ability to monitor reservoir processes. Qualitative interpretations of time-lapse anomalies are being replaced by quantitative inversions of 4D seismic data to produce accurate maps of fluid saturations, pore pressure, temperature, among others. Within all steps involved in this subsurface modeling process, the most demanding one is integrating the geologic model with dynamic field data, including 4Dseismic when available. The validation of the geologic model with observed dynamic data is accomplished through a "history matching" (HM) process typically carried out with well-based measurements. Due to low resolution of production data, the validation process is severely limited in its reservoir areal coverage, compromising the quality of the model and any subsequent predictive exercise. This research will aim to provide a novel history matching approach that can use information from high-resolution seismic data to supplement the areally sparse production data. The proposed approach will utilize streamline-derived sensitivities as means of relating the forward model performance with the prior geologic model. The essential ideas underlying this approach are similar to those used for high-frequency approximations in seismic wave propagation. In both cases, this leads to solutions that are defined along "streamlines" (fluid flow), or "rays" (seismic wave propagation). Synthetic and field data examples will be used

  5. New results from a 3D seismic academic dataset across the west Galicia margin

    NASA Astrophysics Data System (ADS)

    Lymer, Gaël; Cresswell, Derren; Reston, Tim; Stevenson, Carl; Sawyer, Dale

    2016-04-01

    The west Galicia margin (western Spain) is a magma-poor margin and has limited sedimentary cover, providing ideal conditions to study the processes of continental extension and break-up through seismic imaging. The margin is characterised by hyper-extended continental crust, well defined rotated faults blocks with associated syn-kinematic sedimentary wedges, and exhumed serpentinized continental mantle. Faulted blocks overlie a bright reflection, the S reflector, generally interpreted as both a detachment and the crust-mantle boundary. But open questions remain concerning the role of the S detachment in extension leading to breakup. To study further the S reflection and its role in continental breakup, a new 3D high-resolution multi-channel seismic dataset has been acquired over the Galicia margin during summer 2013. It consists in 800 inlines and 5000 crosslines distributed on a ~680 km2 areal. This 3D dataset is thus the largest academic one of its kind. It extends across the edge of the continental crust and captures the 3D nature of extension and break-up of the northern Atlantic continental margins. Here we present some results from our interpretations of the 3D volume, which allow various horizons, including the base of the post-rift sedimentary cover, the top basement and the S reflector, to be mapped out in 3D. These maps provide 3D views of the margin structure and also reveal the texture of each horizon. We also focus on the internal structure of some of the faulted blocks through interpretation of the crustal normal faults. The main normal faults are generally connected downward on the S reflector, revealing strong interactions between crustal thinning and the S. The half-grabens and the fault blocks are dominantly N-S oriented, but the crustal structures vary both along strike and cross strike. We particularly observe an intriguingly NW-SE trend, highlighted by a pronounced low within the crest of the fault blocks. We also observe this trend from

  6. High resolution seismic survey, Pen Branch Fault, Savannah River Site, South Carolina

    SciTech Connect

    Berkman, E. )

    1991-04-01

    An investigation of the Pen Branch Fault at the Savannah River Site by a series of short, high resolution seismic reflection lines was conducted. The purpose was to acquire, process, and interpret 19.9 miles of data, optimized for the upper 300 ft of geologic strata, in sufficient density such that processing performed in the conventional stepwise approach, followed by detailed interpretation, would define small scale spatial variability and structural features in the vicinity of the fault leading to definition of the location of the fault, the shallowest extent of the fault, and the quantification of the sense and magnitude of motion. The depth of optimization for the last two lines was modified to the 300 ft of geologic strata immediately above basement. Three older seismic surveys, other geophysical data, and associated borehole and geologic data were reviewed. The equipment and the acquisition, processing, and interpretation procedures are discussed in the report. The report includes a detailed line by line description and discussion of the interpretation. Figures include reference maps, contour displays of the stacking and interval velocities, diagrammatic references sketches of the interpreted layering and sedimentary features, index sketches, and specific color prints made on the workstation during the course of the interpretation. A volume of manuals on seismic devices and related equipment is included.

  7. High resolution seismic survey, Pen Branch Fault, Savannah River Site, South Carolina. Final report

    SciTech Connect

    Berkman, E.

    1991-04-01

    An investigation of the Pen Branch Fault at the Savannah River Site by a series of short, high resolution seismic reflection lines was conducted. The purpose was to acquire, process, and interpret 19.9 miles of data, optimized for the upper 300 ft of geologic strata, in sufficient density such that processing performed in the conventional stepwise approach, followed by detailed interpretation, would define small scale spatial variability and structural features in the vicinity of the fault leading to definition of the location of the fault, the shallowest extent of the fault, and the quantification of the sense and magnitude of motion. The depth of optimization for the last two lines was modified to the 300 ft of geologic strata immediately above basement. Three older seismic surveys, other geophysical data, and associated borehole and geologic data were reviewed. The equipment and the acquisition, processing, and interpretation procedures are discussed in the report. The report includes a detailed line by line description and discussion of the interpretation. Figures include reference maps, contour displays of the stacking and interval velocities, diagrammatic references sketches of the interpreted layering and sedimentary features, index sketches, and specific color prints made on the workstation during the course of the interpretation. A volume of manuals on seismic devices and related equipment is included.

  8. Articular cartilage grading of the knee: diagnostic performance of fat-suppressed 3D volume isotropic turbo spin-echo acquisition (VISTA) compared with 3D T1 high-resolution isovolumetric examination (THRIVE).

    PubMed

    Lee, Young Han; Hahn, Seok; Lim, Daekeon; Suh, Jin-Suck

    2017-02-01

    Background Conventionally, two-dimensional (2D) fast spin-echo (FSE) sequences have been widely used for clinical cartilage imaging as well as gradient (GRE) sequences. Recently, three-dimensional (3D) volumetric magnetic resonance imaging (MRI) has been introduced with one 3D volumetric scan, and this is replacing slice-by-slice 2D MR scans. Purpose To evaluate the image quality and diagnostic performance of two 3D sequences for abnormalities of knee cartilage: fat-suppressed (FS) FSE-based 3D volume isotropic turbo spin-echo acquisition (VISTA) and GRE-based 3D T1 high-resolution isovolumetric examination (THRIVE). Material and Methods The institutional review board approved the protocol of this retrospective review. This study enrolled 40 patients (41 knees) with arthroscopically confirmed abnormalities of cartilage. All patients underwent isovoxel 3D-VISTA and 3D-THRIVE MR sequences on 3T MRI. We assessed the cartilage grade on the two 3D sequences using arthroscopy as a gold standard. Inter-observer agreement for each technique was evaluated with the intraclass correlation coefficient (ICC). Differences in the area under the curve (AUC) were compared between the 3D-THRIVE and 3D-VISTA. Results Although inter-observer agreement for both sequences was excellent, the inter-observer agreement for 3D-VISTA was higher than for 3D-THRIVE for cartilage grading in all regions of the knee. There was no significant difference in the diagnostic performance ( P > 0.05) between the two sequences for detecting cartilage grade. Conclusion FSE-based 3D-VISTA images had good diagnostic performance that was comparable to GRE-based 3D-THRIVE images in the evaluation of knee cartilage, and can be used in routine knee MR protocols for the evaluation of cartilage.

  9. Active faults in the deformation zone off Noto Peninsula, Japan, revealed by high- resolution seismic profiles

    NASA Astrophysics Data System (ADS)

    Inoue, T.; Okamura, Y.; Murakami, F.; Kimura, H.; Ikehara, K.

    2008-12-01

    Recently, a lot of earthquakes occur in Japan. The deformation zone which many faults and folds have concentrated exists on the Japan Sea side of Japan. The 2007 Noto Hanto Earthquake (MJMA 6.9) and 2007 Chuetsu-oki Earthquake (MJMA 6.8) were caused by activity of parts of faults in this deformation zone. The Noto Hanto Earthquake occurred on 25 March, 2007 under the northwestern coast of Noto Peninsula, Ishikawa Prefecture, Japan. This earthquake is located in Quaternary deformation zone that is continued from northern margin of Noto Peninsula to southeast direction (Okamura, 2007a). National Institute of Advanced Industrial Science and Technology (AIST) carried out high-resolution seismic survey using Boomer and 12 channels short streamer cable in the northern part off Noto Peninsula, in order to clarify distribution and activities of active faults in the deformation zone. A twelve channels short streamer cable with 2.5 meter channel spacing developed by AIST and private corporation is designed to get high resolution seismic profiles in shallow sea area. The multi-channel system is possible to equip on a small fishing boat, because the data acquisition system is based on PC and the length of the cable is short and easy to handle. Moreover, because the channel spacing is short, this cable is very effective for a high- resolution seismic profiling survey in the shallow sea, and seismic data obtained by multi-channel cable can be improved by velocity analysis and CDP stack. In the northern part off Noto Peninsula, seismic profiles depicting geologic structure up to 100 meters deep under sea floor were obtained. The most remarkable reflection surface recognized in the seismic profiles is erosion surface at the Last Glacial Maximum (LGM). In the western part, sediments about 30 meters (40 msec) thick cover the erosional surface that is distributed under the shelf shallower than 100m in depth and the sediments thin toward offshore and east. Flexures like deformation in

  10. High-Resolution 3D Imaging and Quantification of Gold Nanoparticles in a Whole Cell Using Scanning Transmission Ion Microscopy

    PubMed Central

    Chen, Xiao; Chen, Ce-Belle; Udalagama, Chammika N.B.; Ren, Minqin; Fong, Kah Ee; Yung, Lin Yue Lanry; Giorgia, Pastorin; Bettiol, Andrew Anthony; Watt, Frank

    2013-01-01

    Increasing interest in the use of nanoparticles (NPs) to elucidate the function of nanometer-sized assemblies of macromolecules and organelles within cells, and to develop biomedical applications such as drug delivery, labeling, diagnostic sensing, and heat treatment of cancer cells has prompted investigations into novel techniques that can image NPs within whole cells and tissue at high resolution. Using fast ions focused to nanodimensions, we show that gold NPs (AuNPs) inside whole cells can be imaged at high resolution, and the precise location of the particles and the number of particles can be quantified. High-resolution density information of the cell can be generated using scanning transmission ion microscopy, enhanced contrast for AuNPs can be achieved using forward scattering transmission ion microscopy, and depth information can be generated from elastically backscattered ions (Rutherford backscattering spectrometry). These techniques and associated instrumentation are at an early stage of technical development, but we believe there are no physical constraints that will prevent whole-cell three-dimensional imaging at <10 nm resolution. PMID:23561518

  11. Protocol for volumetric segmentation of medial temporal structures using high-resolution 3-D magnetic resonance imaging.

    PubMed

    Bonilha, Leonardo; Kobayashi, Eliane; Cendes, Fernando; Min Li, Li

    2004-06-01

    Quantitative analysis of brain structures in normal subjects and in different neurological conditions can be carried out in vivo through magnetic resonance imaging (MRI) volumetric studies. The use of high-resolution MRI combined with image post-processing that allows simultaneous multiplanar view may facilitate volumetric segmentation of temporal lobe structures. We define a protocol for volumetric studies of medial temporal lobe structures using high-resolution MR images and we studied 30 healthy subjects (19 women; mean age, 33 years; age range, 21-55 years). Images underwent field non-homogeneity correction and linear stereotaxic transformation into a standard space. Structures of interest comprised temporopolar, entorhinal, perirhinal, parahippocampal cortices, hippocampus, and the amygdala. Segmentation was carried out with multiplanar assessment. There was no statistically significant left/right-sided asymmetry concerning any structure analyzed. Neither gender nor age influenced the volumes obtained. The coefficient of repeatability showed no significant difference of intra- and interobserver measurements. Imaging post-processing and simultaneous multiplanar view of high-resolution MRI facilitates volumetric assessment of the medial portion of the temporal lobe with strict adherence to anatomic landmarks. This protocol shows no significant inter- and intraobserver variations and thus is reliable for longitudinal studies.

  12. High resolution velocity structure beneath Mount Vesuvius from seismic array data

    NASA Astrophysics Data System (ADS)

    Scarpa, Roberto; Tronca, Fabrizio; Bianco, Francesca; Del Pezzo, Edoardo

    2002-11-01

    A high resolution P-wave image of Mt. Vesuvius edifice has been derived from simultaneous inversion of travel times and hypocentral parameters of local earthquakes, land based shots and small aperture array data. The results give details down to 300-500 m. The relocated local seismicity appears to extend down to 5 km below the central crater, distributed in a major cluster, centered at 3 km below the central crater and in a minor group, with diffuse hypocenters inside the volcanic edifice. The two clusters are separated by an anomalously high Vp region at around 1 km depth. A zone with high Vp/Vs in the upper layers is interpreted as produced by the presence of intense fluid circulation. The highest energy quakes (up to M = 3.6) are located in the deeper cluster, in a high P-wave velocity zone. Our results favor an interpretation in terms of absence of shallow magma reservoirs.

  13. High-resolution seismic reflection survey at the Manson crater, Iowa

    NASA Technical Reports Server (NTRS)

    Keiswetter, D. A.; Black, R.; Steeples, D. W.; Anderson, R. R.

    1993-01-01

    Approximately 17.4 km of high-resolution reflection data were acquired along an east-west radius of the Manson Impact Structure (MIS) to delineate the shallow (upper 300 m) subsurface structural configuration. The geometry of the shallow structure is poorly known due to a 30-90 m thick Pleistocene till cover. The resolution of the new seismic data is roughly 5-10 times that of existing Vibroseis data. Data quality varies rapidly along the line from exceptional to poor, due primarily to velocity variations associated with the geological complexity of the area. Preliminary results indicate subsurface structural blocks previously envisioned to be several hundreds of meters in size are actually an order of magnitude smaller and more complex. A seismogram-by-seismogram analysis is necessary to confidently identify intricate stratigraphic and structural relationships seen on preliminary CDP sections, as numerous faults, diffractions, and complicated reflection patterns create potential pitfalls.

  14. Imaging the Seattle Fault Zone with high-resolution seismic tomography

    USGS Publications Warehouse

    Calvert, A.J.; Fisher, M.A.

    2001-01-01

    The Seattle fault, which trends east-west through the greater Seattle metropolitan area, is a thrust fault that, around 1100 years ago, produced a major earthquake believed to have had a magnitude greater than 7. We present the first high resolution image of the shallow P wave velocity variation across the fault zone obtained by tomographic inversion of first arrivals recorded on a seismic reflection profile shot through Puget Sound adjacent to Seattle. The velocity image shows that above 500 m depth the fault zone extending beneath Seattle comprises three distinct fault splays, the northernmost of which dips to the south at around 60??. The degree of uplift of Tertiary rocks within the fault zone suggests that the slip-rate along the northernmost splay during the Quaternary is 0.5 mm a-1, which is twice the average slip-rate of the Seattle fault over the last 40 Ma.

  15. Analysis and modeling of high-resolution multicomponent seismic reflection data

    NASA Astrophysics Data System (ADS)

    Guy, Erich D.

    The facts that seismic body-wave types are sensitive to different physical properties, seismic sources radiate polarized waves, and seismic receivers are sensitive to the polarization of scattered body-waves and coherent noise, mean that it is important to consider recording and analyzing different wave-types and data components prior to high-resolution reflection surveys. In this dissertation, important aspects of elastic-wave propagation relevant to high-resolution multicomponent surveying have been analyzed experimentally and numerically, and methodologies have been tested and developed that will improve near-surface imaging and characterization. Factors affecting the ability of common-mode P- and S-wave reflection surveys for mapping features in the near-surface are described and illustrated through analyses of experimental field data and modeling. It is demonstrated through comparisons of known subsurface conditions and processed stacked sections, that combined P- and S-wave common-mode reflection information can allow a geologic sequence to be imaged more effectively than by using solely P- or S-wave reflection information. Near-surface mode-converted seismic reflection imaging potential was tested experimentally and evaluated through modeling. Modeling results demonstrate that potential advantages of near-surface mode-conversion imaging can be realized in theory. Analyses of acquired multicomponent data however demonstrate that mode-conversion imaging could not be accomplished in the field study area, due to the low amplitudes of events and the presence of noise in field data. Analysis methods are presented that can be used for assessing converted-wave imaging potential in future reflection studies. Factors affecting the ability of SH-wave reflection measurements for allowing near-surface interfaces and discontinuities to be effectively imaged are described. A SH-wave reflection data analysis workflow is presented that provides a methodology for delineating

  16. Thrust fault segmentation and downward fault propagation in accretionary wedges: New Insights from 3D seismic reflection data

    NASA Astrophysics Data System (ADS)

    Orme, Haydn; Bell, Rebecca; Jackson, Christopher

    2016-04-01

    The shallow parts of subduction megathrust faults are typically thought to be aseismic and incapable of propagating seismic rupture. The 2011 Tohoku-Oki earthquake, however, ruptured all the way to the trench, proving that in some locations rupture can propagate through the accretionary wedge. An improved understanding of the structural character and physical properties of accretionary wedges is therefore crucial to begin to assess why such anomalously shallow seismic rupture occurs. Despite its importance, we know surprisingly little regarding the 3D geometry and kinematics of thrust network development in accretionary prisms, largely due to a lack of 3D seismic reflection data providing high-resolution, 3D images of entire networks. Thus our current understanding is largely underpinned by observations from analogue and numerical modelling, with limited observational data from natural examples. In this contribution we use PSDM, 3D seismic reflection data from the Nankai margin (3D Muroto dataset, available from the UTIG Academic Seismic Portal, Marine Geoscience Data System) to examine how imbricate thrust fault networks evolve during accretionary wedge growth. We unravel the evolution of faults within the protothrust and imbricate thrust zones by interpreting multiple horizons across faults and measuring fault displacement and fold amplitude along-strike; by doing this, we are able to investigate the three dimensional accrual of strain. We document a number of local displacement minima along-strike of faults, suggesting that, the protothrust and imbricate thrusts developed from the linkage of smaller, previously isolated fault segments. Although we often assume imbricate faults are likely to have propagated upwards from the décollement we show strong evidence for fault nucleation at shallow depths and downward propagation to intersect the décollement. The complex fault interactions documented here have implications for hydraulic compartmentalisation and pore

  17. 3D Modelling of Seismically Active Parts of Underground Faults via Seismic Data Mining

    NASA Astrophysics Data System (ADS)

    Frantzeskakis, Theofanis; Konstantaras, Anthony

    2015-04-01

    During the last few years rapid steps have been taken towards drilling for oil in the western Mediterranean sea. Since most of the countries in the region benefit mainly from tourism and considering that the Mediterranean is a closed sea only replenishing its water once every ninety years careful measures are being taken to ensure safe drilling. In that concept this research work attempts to derive a three dimensional model of the seismically active parts of the underlying underground faults in areas of petroleum interest. For that purpose seismic spatio-temporal clustering has been applied to seismic data to identify potential distinct seismic regions in the area of interest. Results have been coalesced with two dimensional maps of underground faults from past surveys and seismic epicentres, having followed careful reallocation processing, have been used to provide information regarding the vertical extent of multiple underground faults in the region of interest. The end product is a three dimensional map of the possible underground location and extent of the seismically active parts of underground faults. Indexing terms: underground faults modelling, seismic data mining, 3D visualisation, active seismic source mapping, seismic hazard evaluation, dangerous phenomena modelling Acknowledgment This research work is supported by the ESPA Operational Programme, Education and Life Long Learning, Students Practical Placement Initiative. References [1] Alves, T.M., Kokinou, E. and Zodiatis, G.: 'A three-step model to assess shoreline and offshore susceptibility to oil spills: The South Aegean (Crete) as an analogue for confined marine basins', Marine Pollution Bulletin, In Press, 2014 [2] Ciappa, A., Costabile, S.: 'Oil spill hazard assessment using a reverse trajectory method for the Egadi marine protected area (Central Mediterranean Sea)', Marine Pollution Bulletin, vol. 84 (1-2), pp. 44-55, 2014 [3] Ganas, A., Karastathis, V., Moshou, A., Valkaniotis, S., Mouzakiotis

  18. 3D interpretation of SHARAD radargram data using seismic processing routines

    NASA Astrophysics Data System (ADS)

    Kleuskens, M. H. P.; Oosthoek, J. H. P.

    2009-04-01

    engineering software package Petrel of Schlumberger to interpret the radar data in 3D, using its powerful seismic interpretation tool. Since the radardata does not contain an absolute vertical time reference, the surface reflection in the radargram is referenced to the Mars Orbiter Laser Altimeter (MOLA) topography data of the region. By doing this, we can visualize all radar traces in 3D and interpret the combined 3D dataset altogether. Furthermore, MOLA and high resolution satellite images can be projected simultaneously in Petrel as a reference. This method gives much more insight in the data than analyzing each 2D radargram individually: an anomaly that is spotted in a 2D radargram can be validated by a radargram that is positioned perpendicular to the first one. This method helps us to distinguish between different layers and detect instrument and cross-track anomalies. Furthermore, we can perform automatic analyses such as estimating volumes of different formations. This helps us to understand the formation process of the ice cap.

  19. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    SciTech Connect

    Bjorn N. P. Paulsson

    2006-09-30

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to perform high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology has been hampered by the lack of acquisition technology necessary to record large volumes of high frequency, high signal-to-noise-ratio borehole seismic data. This project took aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array has removed the technical acquisition barrier for recording the data volumes necessary to do high resolution 3D VSP and 3D cross-well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that promise to take the gas industry to the next level in their quest for higher resolution images of deep and complex oil and gas reservoirs. Today only a fraction of the oil or gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of detailed compartmentalization of oil and gas reservoirs. In this project, we developed a 400 level 3C borehole seismic receiver array that allows for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. This new array has significantly increased the efficiency of recording large data volumes at sufficiently dense spatial sampling to resolve reservoir complexities. The receiver pods have been fabricated and tested to withstand high temperature (200 C/400 F) and high pressure (25,000 psi), so that they can operate in wells up to 7,620 meters (25,000 feet) deep. The receiver array is deployed on standard production or drill tubing. In combination with 3C surface seismic or 3C borehole seismic sources, the 400

  20. Fast high-resolution 3D total internal reflection fluorescence microscopy by incidence angle scanning and azimuthal averaging

    PubMed Central

    Boulanger, Jérôme; Gueudry, Charles; Münch, Daniel; Cinquin, Bertrand; Paul-Gilloteaux, Perrine; Bardin, Sabine; Guérin, Christophe; Senger, Fabrice; Blanchoin, Laurent; Salamero, Jean

    2014-01-01

    Total internal reflection fluorescence microscopy (TIRFM) is the method of choice to visualize a variety of cellular processes in particular events localized near the plasma membrane of live adherent cells. This imaging technique not relying on particular fluorescent probes provides a high sectioning capability. It is, however, restricted to a single plane. We present here a method based on a versatile design enabling fast multiwavelength azimuthal averaging and incidence angles scanning to computationally reconstruct 3D images sequences. We achieve unprecedented 50-nm axial resolution over a range of 800 nm above the coverslip. We apply this imaging modality to obtain structural and dynamical information about 3D actin architectures. We also temporally decipher distinct Rab11a-dependent exocytosis events in 3D at a rate of seven stacks per second. PMID:25404337

  1. Fast high-resolution 3D total internal reflection fluorescence microscopy by incidence angle scanning and azimuthal averaging.

    PubMed

    Boulanger, Jérôme; Gueudry, Charles; Münch, Daniel; Cinquin, Bertrand; Paul-Gilloteaux, Perrine; Bardin, Sabine; Guérin, Christophe; Senger, Fabrice; Blanchoin, Laurent; Salamero, Jean

    2014-12-02

    Total internal reflection fluorescence microscopy (TIRFM) is the method of choice to visualize a variety of cellular processes in particular events localized near the plasma membrane of live adherent cells. This imaging technique not relying on particular fluorescent probes provides a high sectioning capability. It is, however, restricted to a single plane. We present here a method based on a versatile design enabling fast multiwavelength azimuthal averaging and incidence angles scanning to computationally reconstruct 3D images sequences. We achieve unprecedented 50-nm axial resolution over a range of 800 nm above the coverslip. We apply this imaging modality to obtain structural and dynamical information about 3D actin architectures. We also temporally decipher distinct Rab11a-dependent exocytosis events in 3D at a rate of seven stacks per second.

  2. A high resolution 3D velocity model beneath the Tokyo Metropolitan area by MeSO-net

    NASA Astrophysics Data System (ADS)

    Nakagawa, S.; Sakai, S.; Honda, R.; Kimura, H.; Hirata, N.

    2015-12-01

    Beneath the Tokyo metropolitan area, the Philippine Sea Plate (PSP) subducts and causes devastating mega-thrust earthquakes, such as the 1703 Genroku earthquake (M8.0) and the 1923 Kanto earthquake (M7.9). An M7 or greater (M7+) earthquake in this area at present has high potential to produce devastating serious loss of life and property with even greater global economic repercussions. The Central Disaster Management Council of Japan estimates that an M7+ earthquake will cause 23,000 fatalities and 95 trillion yen (about 1 trillion US$) economic loss. We have launched the Special Project for Reducing Vulnerability for Urban Mega Earthquake Disasters in collaboration with scientists, engineers, and social-scientists in nationwide institutions since 2012. We analyze data from the dense seismic array called Metropolitan Seismic Observation network (MeSO-net), which has 296 seismic stations with spacing of 5 km (Sakai and Hirata, 2009; Kasahara et al., 2009). We applied the double-difference tomography method (Zhang and Thurber, 2003) and estimated the velocity structure and the upper boundary of PSP (Nakagawa et al., 2010). The 2011 Tohoku-oki earthquake (M9.0) has activated seismicity also in Kanto region, providing better coverage of ray paths for tomographic analysis. We obtain much higher resolution velocity models from whole dataset observed by MeSO-net between 2008 and 2015. A detailed image of tomograms shows that PSP contacts Pacific plate at a depth of 50 km beneath northern Tokyo bay. A variation of velocity along the oceanic crust suggests dehydration reaction to produce seismicity in a slab, which may related to the M7+ earthquake. Acknowledgement: This study was supported by the Special Project for Reducing Vulnerability for Urban Mega Earthquake Disasters of MEXT, Japan and the Earthquake Research Institute cooperative research program.

  3. High-resolution seismic-reflection data from offshore northern California — Bolinas to Sea Ranch

    USGS Publications Warehouse

    Sliter, Ray W.; Johnson, Samuel Y.; Chin, John L.; Allwardt, Parker; Beeson, Jeffrey; Triezenberg, Peter J.

    2016-12-05

    The U.S. Geological Survey collected high-resolution seismic-reflection data in September 2009, on survey S-8-09-NC, offshore of northern California between Bolinas and Sea Ranch.The survey area spans about 125 km of California’s coast and extends around Point Reyes. Data were collected aboard the U.S. Geological Survey R/V Parke Snavely. Cumulatively, ~1,150 km of seismic-reflection data were acquired using a SIG 2mille minisparker. Subbottom acoustic depth of penetration spanned tens to several hundred meters and varied by location and underlying sediments and rock types.This report includes maps and a navigation file of the surveyed transects, utilizing Google Earth™ software, as well as digital data files showing images of each transect in SEG-Y and JPEG formats. The images of bedrock, sediment deposits, and tectonic structure provide geologic information that is essential to hazard assessment, regional sediment management, and coastal and marine spatial planning at Federal, State and local levels. This information is also valuable for future research on the geomorphic, sedimentary, tectonic, and climatic record of central California.

  4. High-resolution seismic structure analysis of an active submarine mud volcano area off SW Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Hsiao-Shan; Hsu, Shu-Kun; Tsai, Wan-Lin; Tsai, Ching-Hui; Lin, Shin-Yi; Chen, Song-Chuen

    2015-04-01

    In order to better understand the subsurface structure related to an active mud volcano MV1 and to understand their relationship with gas hydrate/cold seep formation, we conducted deep-towed side-scan sonar (SSS), sub-bottom profiler (SBP), multibeam echo sounding (MBES), and multi-channel reflection seismic (MCS) surveys off SW Taiwan from 2009 to 2011. As shown in the high-resolution sub-bottom profiler and EK500 sonar data, the detailed structures reveal more gas seeps and gas flares in the study area. In addition, the survey profiles show several submarine landslides occurred near the thrust faults. Based on the MCS results, we can find that the MV1 is located on top of a mud diapiric structure. It indicates that the MV1 has the same source as the associated mud diapir. The blanking of the seismic signal may indicate the conduit for the upward migration of the gas (methane or CO2). Therefore, we suggest that the submarine mud volcano could be due to a deep source of mud compressed by the tectonic convergence. Fluids and argillaceous materials have thus migrated upward along structural faults and reach the seafloor. The gas-charged sediments or gas seeps in sediments thus make the seafloor instable and may trigger submarine landslides.

  5. Depositional history and neotectonics in Great Salt Lake, Utah, from high-resolution seismic stratigraphy

    USGS Publications Warehouse

    Colman, Steven M.; Kelts, K.R.; Dinter, D.A.

    2002-01-01

    High-resolution seismic-reflection data from Great Salt Lake show that the basinal sediment sequence is cut by numerous faults with N-S and NE-SW orientations. This faulting shows evidence of varied timing and relative offsets, but includes at least three events totaling about 12 m following the Bonneville phase of the lake (since about 13.5 ka). Several faults displace the uppermost sediments and the lake floor. Bioherm structures are present above some faults, which suggests that the faults served as conduits for sublacustrine discharge of fresh water. A shallow, fault-controlled ridge between Carrington Island and Promontory Point, underlain by a well-cemented pavement, separates the main lake into two basins. The pavement appears to be early Holocene in age and younger sediments lap onto it. Onlap-offlap relationships, reflection truncations, and morphology of the lake floor indicate a low lake, well below the present level, during the early Holocene, during which most of the basin was probably a playa. This low stand is represented by irregular reflections in seismic profiles from the deepest part of the basin. Other prominent reflectors in the profiles are correlated with lithologic changes in sediment cores related to the end of the Bonneville stage of the lake, a thick mirabilite layer in the northern basin, and the Mazama tephra. Reflections below those penetrated by sediment cores document earlier lacustrine cycles. ?? 2002 Elsevier Science B.V. All rights reserved.

  6. High-Resolution Analysis of Seismic Air Gun Impulses and Their Reverberant Field as Contributors to an Acoustic Environment.

    PubMed

    Guerra, Melania; Dugan, Peter J; Ponirakis, Dimitri W; Popescu, Marian; Shiu, Yu; Rice, Aaron N; Clark, Christopher W

    2016-01-01

    In September and October 2011, a seismic survey took place in Baffin Bay, Western Greenland, in close proximity to a marine protected area (MPA). As part of the mitigation effort, five bottom-mounted marine acoustic recording units (MARUs) collected data that were used for the purpose of measuring temporal and spectral features from each impulsive event, providing a high-resolution record of seismic reverberation persistent after the direct impulse. Results were compared with ambient-noise levels as computed after the seismic survey to evidence that as a consequence of a series of repeating seismic impulses, sustained elevated levels create the potential for masking.

  7. Near-surface fault detection using high-resolution shear wave reflection seismics at the CO2CRC Otway Project site, Australia

    NASA Astrophysics Data System (ADS)

    Beilecke, Thies; Krawczyk, Charlotte M.; Ziesch, Jennifer; Tanner, David C.

    2016-09-01

    High-resolution, near-surface, shear wave reflection seismic measurements were carried out in November 2013 at the CO2CRC Otway Project site, Victoria, Australia, with the aim to determine whether and, if so, where deeper faults reach the near subsurface. From a previous P wave 3-D reflection seismic data set that was concentrated on a reservoir at 2 km depth, we can only interpret faults up to 400 m below sea level. For the future monitoring in the overburden of the CO2 reservoir it is important to know whether and how the faults continue in the subsurface. We prove that two regional fault zones do in fact reach the surface instead of dying out at depth. Individual first-break signatures in the shot gathers along the profiles support this interpretation. However, this finding does not imply perforce communication between the reservoir and the surface in the framework of CO2 injection. The shear wave seismic sections are complementary to existing P wave volumes. They image with high resolution (better than 3 m vertically) different tectonic structures. Similar structures also outcrop on the southern coast of the Otway Basin. Both the seismic and the outcrops evidence the complex youngest structural history of the area.

  8. 3-D seismic velocity and attenuation structures in the geothermal field

    SciTech Connect

    Nugraha, Andri Dian; Syahputra, Ahmad; Fatkhan,; Sule, Rachmat

    2013-09-09

    We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

  9. High Resolution Imaging of Fault Zone Structures With Seismic Fault Zone Waves

    NASA Astrophysics Data System (ADS)

    Ben-Zion, Y.; Zhigang, P.; Lewis, M. A.; McGuire, J.

    2006-12-01

    Large fault zone (FZ) structures with damaged rocks and material discontinuity interfaces can generate several indicative wave propagation signals. High crack density may produce prominent scattering and non-linear effects. A preferred crack orientation can lead to shear wave splitting. A lithology contrast can produce FZ head waves that propagate along the material interface with the velocity and motion polarity of the faster medium. A coherent low velocity layer may generate FZ trapped waves. These signals can be used to obtain high resolution imaging of the subsurface structure of fault zones, and to track possible temporal evolution of FZ material properties. Several results have emerged from recent systematic analyses of such signals. The trapped waves are generated typically by ~100 m wide layers that extend only to ~3-4 km depth and are characterized by 30-50% velocity reduction and strong attenuation. The trapping structures are surrounded by broader anisotropic and scattering zones limited primarily also to the shallow crust. Results associated with anisotropy and scattering around the North Anatolian fault using repeating earthquake clusters do not show precursory temporal evolution. The anisotropy results show small co-seismic changes, while the scattering results show larger co-seismic changes and post-seismic logarithmic recovery. The temporal changes probably reflect damage evolution in the top few hundred m of the crust. Systematic analyses of head waves along several sections of the San Andreas fault reveal material interfaces that extend to the bottom of the seismogenic zone. Joint arrival time inversions of direct and FZ head waves imply velocity contrasts of 20% or more in the top 3 km and lower contrasts of 5-15% in the deeper section. In several places, analyses of trapped and head waves indicate that the shallow damaged layers are asymmetric across the fault. The observed damage asymmetry may reflect preferred propagation direction of

  10. Glaciotectonic structures mapped by GPR, geoelectrical, high-resolution seismic and airborne transient electromagnetic methods

    NASA Astrophysics Data System (ADS)

    Høyer, Anne-Sophie; Møller, Ingelise; Jørgensen, Flemming

    2013-04-01

    Glaciotectonic structures have traditionally been recognized through observations in the landscape or exposures like cliffs. However, mapping of these structures can highly benefit from geophysical data, which can give information on buried glaciotectonic complexes. In the current study, we focus on the appearance of glaciotectonic structures in data from four commonly used geophysical methods: Ground penetrating radar (GPR), geoelectrical, high-resolution seismic and airborne transient electromagnetic (SkyTEM). The data are collected within a study area that covers 100 km2 and is located in the western part of Denmark. The study area is characterized by a highly heterogeneous geological setting, which has been influenced by multiple glacial deformation phases resulting in a buried glaciotectonic complex. The glaciotectonic structures appear as folds and faults and are recognizable at all scales. As a consequence of the different resolution capabilities of the methods, different degrees of detail are observed: Large-scale structures are recognized based on the seismic and airborne transient electromagnetic data, whereas small-scale structures are interpreted based on the GPR and geoelectrical data. At the same time, the nature of the methods results in different types of information from the data: The GPR and the seismic data generally provide detailed structural information, whereas the electric and electromagnetic data provide a more 'blurred' resistivity image of the subsurface. In order to recognize geological structures on the electric and electromagnetic data, the structures therefore need to influence sediments with contrasting resistivities to the surroundings. The structures are recognizable on all the different data sets, but the understanding and thus, the interpretation, of the geological environment strongly benefits from the combined observations from the different types of data.

  11. High-resolution seismic images of potentially seismogenic structures beneath the northwest Canterbury Plains, New Zealand

    NASA Astrophysics Data System (ADS)

    Dorn, C.; Green, A. G.; Jongens, R.; Carpentier, S.; Kaiser, A. E.; Campbell, F.; Horstmeyer, H.; Campbell, J.; Finnemore, M.; Pettinga, J.

    2010-11-01

    The transpressional boundary between the Australian and Pacific plates in the central South Island of New Zealand comprises the Alpine Fault and a broad region of distributed strain concentrated in the Southern Alps but encompassing regions further to the east, including the northwest Canterbury Plains. Low to moderate levels of seismicity (e.g., 2 > M 5 events since 1974 and 2 > M 4.0 in 2009) and Holocene sediments offset or disrupted along rare exposed active fault segments are evidence for ongoing tectonism in the northwest plains, the surface topography of which is remarkably flat and even. Because the geology underlying the late Quaternary alluvial fan deposits that carpet most of the plains is not established, the detailed tectonic evolution of this region and the potential for larger earthquakes is only poorly understood. To address these issues, we have processed and interpreted high-resolution (2.5 m subsurface sampling interval) seismic data acquired along lines strategically located relative to extensive rock exposures to the north, west, and southwest and rare exposures to the east. Geological information provided by these rock exposures offer important constraints on the interpretation of the seismic data. The processed seismic reflection sections image a variably thick layer of generally undisturbed younger (i.e., < 24 ka) Quaternary alluvial sediments unconformably overlying an older (>59 ka) Quaternary sedimentary sequence that shows evidence of moderate faulting and folding during and subsequent to deposition. These Quaternary units are in unconformable contact with Late Cretaceous-Tertiary interbedded sedimentary and volcanic rocks that are highly faulted, folded, and tilted. The lowest imaged unit is largely reflection-free Permian - Triassic basement rocks. Quaternary-age deformation has affected all the rocks underlying the younger alluvial sediments, and there is evidence for ongoing deformation. Eight primary and numerous secondary faults as

  12. First results of a high resolution reflection seismic survey of the Central Northern Venezuelan Shelf

    NASA Astrophysics Data System (ADS)

    Avila, J.; van Welden, A.; Audemard, F.; de Batist, M.; Beck, C.; Scientific Party, G.

    2008-05-01

    In September - November 2007 the first high resolution marine seismic campaign on the North-Central coast of Venezuela was carried out between Cabo Codera and Golfo Triste. The principal aim of this work was to characterize the active San Sebastian Fault (SSF) and to analyze Cenozoic sedimentation on the Venezuela shelf focusing on: i) effects of active tectonics and ii) coastal landslides/flashflood deposits related to 1999 Vargas catastrophic event or to similar phenomena. Data were acquired onboard R/V GUAIQUERI II from the Oceanographic Institute of the Oriente University. The seismic source was a "CENTIPEDE" sparker (RCGM) operated between 300 and 600 J, 1.3 kHz main frequency. We used a single-channel streamer with 10 hydrophones. In total, 49 seismic profiles were collected, with a cumulative length of 1000 km approximately. In these seismic profiles we identified and separated the deposits into three main units. Unit (U1) comprises low energy reflectors mainly dipping in southward direction (i.e. toward the coast bounded by the San Sebastian Fault). This unit also includes a number of isolated acoustic anomalies, which we tentatively interpret as coral reefs. Its top is defined as Basal Erosional Discontinuity (BED) onto which Unit 2 (U2) deposits are onlapping. U2 is acoustically well-stratified, with strong reflectors. Gradual variations in thickness and a wavy configuration allow us to interpret U2 as probably Quaternary current-related deposits. Last Unit (U3) was defined on the Venezuela shelf and corresponds to prograding sequences probably related to the terrigenous input of the Tuy River. Impact of eustatic fluctuations on these deposits are discussed. The data were also used to construct a simplified bathymetry of the studied area. The lateral transition from the western Cariaco-Tuy pull-apart basin to the (single) SSF was clearly imaged (mostly folds and gravity faults). The survey also displayed prograding sediments bodies in La Tortuga Shelf

  13. Definition of subsurface stratigraphy, structure and rock properties from 3-D seismic data

    NASA Astrophysics Data System (ADS)

    Hart, Bruce S.

    1999-10-01

    This paper summarizes how three-dimensional (3-D) seismic technology is being used, primarily in the petroleum industry, to define subsurface structure, stratigraphy and rock properties. A 3-D seismic data volume: (a) provides a more accurate image of the subsurface than can be obtained with 2-D seismic methods; (b) is continuous, and so has a much greater spatial sampling than is obtained with 2-D seismic or other subsurface data (e.g., wells); and (c) can be viewed and interpreted interactively from a variety of perspectives, thus enhancing the interpreter's ability to generate an accurate description of subsurface features of interest. Seismic interpretation was once the almost exclusive realm of geophysicists, however, most 3-D seismic interpretation today is conducted by multidisciplinary teams that integrate geophysical, geological, petrophysical and engineering data and concepts into the 3-D seismic interpretation. These factors, plus proper survey design, help to increase the chances of success of a 3-D seismic interpretation project. Although there are cases where the technology is not appropriate or cannot be applied (for economic reasons or otherwise), the general success of 3-D seismic has led it to become a mainstay of the petroleum industry. The approach and technology, first developed in that industry, have potential applications in other applied and fundamental earth science disciplines, including mining, environmental geology, structural geology and stratigraphy.

  14. Assessment of the 3-d reconstruction and high-resolution geometrical modeling of the human skeletal trunk from 2-D radiographic images.

    PubMed

    Delorme, S; Petit, Y; de Guise, J A; Labelle, H; Aubin, C E; Dansereau, J

    2003-08-01

    This paper presents an in vivo validation of a method for the three-dimensional (3-D) high-resolution modeling of the human spine, rib cage, and pelvis for the study of spinal deformities. The method uses an adaptation of a standard close-range photogrammetry method called direct linear transformation to reconstruct the 3-D coordinates of anatomical landmarks from three radiographic images of the subject's trunk. It then deforms in 3-D 1-mm-resolution anatomical primitives (reference bones) obtained by serial computed tomography-scan reconstruction of a dry specimen. The free-form deformation is calculated using dual kriging equations. In vivo validation of this method on 40 scoliotic vertebrae gives an overall accuracy of 3.3 +/- 3.8 mm, making it an adequate tool for clinical studies and mechanical analysis purposes.

  15. A probabilistic approach to jointly integrate 3D/4D seismic, production data and geological information for building reservoir models

    NASA Astrophysics Data System (ADS)

    Castro, Scarlet A.

    Reservoir modeling aims at understanding static and dynamic components of the reservoir in order to make decisions about future surface operations. The practice of reservoir modeling calls for the integration of expertise from different disciplines, as well as the in tegration of a wide variety of data: geological data, (core data, well-logs, etc.), production data (fluid rates or volumes, pressure data, etc.), and geophysical data (3D seismic data). Although a single 3D seismic survey is the most common geophysical data available for most reservoirs, a suite of several 3D seismic surveys (4D seismic data) acquired for monitoring production can be available for mature reservoirs. The main contribution of this dissertation is to incorporate 4D seismic data within the reservoir modeling workflow while honoring all other available data. This dissertation proposes two general approaches to include 4D seismic data into the reservoir modeling workflow. The Probabilistic Data Integration approach (PDI), which consists of modeling the information content of 4D seismic through a spatial probability of facies occurrence; and the Forward Modeling (FM) approach, which consists of matching 4D seismic along with production data. The FM approach requires forward modeling the 4D seismic response, which requires to downscale the flow simulation response. This dissertation introduces a novel dynamic downscaling method that takes into account both static information (high-resolution per meability field) and dynamic information in the form of coarsened fluxes and saturations (flow simulation on the coarsened grid). The two proposed approaches (PDI and FM approaches) are applied to a prominent field in the North Sea, to model the channel facies of a fluvial reservoir. The PDI approach constrained the reservoir model to the spatial probability of facies occurrence (obtained from a calibration between well-log and 4D seismic data) as well as other static data while satisfactorily history

  16. Characterization of a high resolution and high sensitivity pre-clinical PET scanner with 3D event reconstruction

    NASA Astrophysics Data System (ADS)

    Rissi, M.; Bolle, E.; Völgyes, D.; Bjaalie, J. G.; Dorholt, O.; Hines, K. E.; Røhne, O.; Skretting, A.; Stapnes, S.

    2012-12-01

    COMPET is a preclinical PET scanner aiming towards a high sensitivity, a high resolution and MRI compatibility by implementing a novel detector geometry. In this approach, long scintillating LYSO crystals are used to absorb the γ-rays. To determine the point of interaction (POI) between γ-ray and crystal, the light exiting the crystals on one of the long sides is collected with wavelength shifters (WLS) perpendicularly arranged to the crystals. This concept has two main advantages: (1) The parallax error is reduced to a minimum and is equal for the whole field of view (FOV). (2) The POI and its energy deposit is known in all three dimension with a high resolution, allowing for the reconstruction of Compton scattered γ-rays. Point (1) leads to a uniform point source resolution (PSR) distribution over the whole FOV, and also allows to place the detector close to the object being imaged. Both points (1) and (2) lead to an increased sensitivity and allow for both high resolution and sensitivity at the same time, while keeping a low number of readout channels. In total, COMPET incorporates 1080 readout channels (600 crystals, 480 WLS). It has an axial FOV of 80 mm and adjustable bore opening between 30 mm and 80 mm. It consists of four modules with five layers each. Simulations show a PSR of below 1 mm in the transaxial plane and a sensitivity of up to 16% in the center of the FOV. The readout is based on time over threshold signals, sampled with an FPGA, which allows for the measurement of high event rates at the order of mega-counts per seconds. Its compact design and compatibility to high magnetic fields will allow to use it as an insert for an already existing MRI scanner. A first semi-layer with 12 WLS and 10 LYSO crystal was built and connected to the COMPET readout system. Coincidence data between this module and a tagger crystal using a small Ge-68 and a 60 MBq F-18 source was taken.

  17. Annual to sub-annual 3D surface evolution of an Antarctic blue-ice moraine using multi-platform, multi-temporal high resolution topography

    NASA Astrophysics Data System (ADS)

    Westoby, Matthew; Dunning, Stuart; Woodward, John; Hein, Andrew; Marrero, Shasta; Winter, Kate; Sugden, David

    2016-04-01

    High-resolution topographic data products are now routinely used for the geomorphological characterisation of Earth surface landforms and landscapes, whilst the acquisition and differencing of such datasets are swiftly becoming the preferred method for quantifying the transfer of mass through landscapes at the spatial scales of observation at which many processes operate. In this research, we employ 3-D differencing of repeat high-resolution topography to quantify the surface evolution of a 0.3 km2 blue-ice moraine complex in front of Patriot Hills, Antarctica. We used terrestrial laser scanning (TLS) to acquire multiple overlapping 3D datasets of the moraine surface at the beginning and end of the austral summer season in 2012/2013 and during a resurvey campaign in 2014. An additional topographic dataset was acquired at the end of season 1 through the application of a Structure-from-Motion with Multi-View Stereo (SfM-MVS) workflow to a set of aerial photographs acquired during a single unmanned aerial vehicle (UAV) sortie. 3D cloud-to-cloud differencing was undertaken using the M3C2 algorithm. The results of 3D differencing revealed net uplift (median ~0.05 m) and lateral (xy) movement (median 0.02 m) of the moraine crests within season 1. Analysis of results from the longest differencing epoch (start of season 1 to season 2) suggests gradual but persistent surface uplift (median ~0.11 m) and sustained lateral movement (median ~0.05 m). Locally, lowering of a similar magnitude to uplift was observed in inter-moraine troughs and close to the current ice margin. This research demonstrates that it is possible to detect dynamic surface topographic change across glacial moraines over short timescales through the acquisition and differencing of high-resolution topographic datasets. Such data and methods of analysis offer new opportunities to understand glaciological and geomorphological process linkages in remote glacial environments.

  18. An optimal transport approach for seismic tomography: application to 3D full waveform inversion

    NASA Astrophysics Data System (ADS)

    Métivier, L.; Brossier, R.; Mérigot, Q.; Oudet, E.; Virieux, J.

    2016-11-01

    The use of optimal transport distance has recently yielded significant progress in image processing for pattern recognition, shape identification, and histograms matching. In this study, the use of this distance is investigated for a seismic tomography problem exploiting the complete waveform; the full waveform inversion. In its conventional formulation, this high resolution seismic imaging method is based on the minimization of the L 2 distance between predicted and observed data. Application of this method is generally hampered by the local minima of the associated L 2 misfit function, which correspond to velocity models matching the data up to one or several phase shifts. Conversely, the optimal transport distance appears as a more suitable tool to compare the misfit between oscillatory signals, for its ability to detect shifted patterns. However, its application to the full waveform inversion is not straightforward, as the mass conservation between the compared data cannot be guaranteed, a crucial assumption for optimal transport. In this study, the use of a distance based on the Kantorovich-Rubinstein norm is introduced to overcome this difficulty. Its mathematical link with the optimal transport distance is made clear. An efficient numerical strategy for its computation, based on a proximal splitting technique, is introduced. We demonstrate that each iteration of the corresponding algorithm requires solving the Poisson equation, for which fast solvers can be used, relying either on the fast Fourier transform or on multigrid techniques. The development of this numerical method make possible applications to industrial scale data, involving tenths of millions of discrete unknowns. The results we obtain on such large scale synthetic data illustrate the potentialities of the optimal transport for seismic imaging. Starting from crude initial velocity models, optimal transport based inversion yields significantly better velocity reconstructions than those based on

  19. Accurate high-resolution measurements of 3-D tissue dynamics with registration-enhanced displacement encoded MRI.

    PubMed

    Gomez, Arnold D; Merchant, Samer S; Hsu, Edward W

    2014-06-01

    Displacement fields are important to analyze deformation, which is associated with functional and material tissue properties often used as indicators of health. Magnetic resonance imaging (MRI) techniques like DENSE and image registration methods like Hyperelastic Warping have been used to produce pixel-level deformation fields that are desirable in high-resolution analysis. However, DENSE can be complicated by challenges associated with image phase unwrapping, in particular offset determination. On the other hand, Hyperelastic Warping can be hampered by low local image contrast. The current work proposes a novel approach for measuring tissue displacement with both DENSE and Hyperelastic Warping, incorporating physically accurate displacements obtained by the latter to improve phase characterization in DENSE. The validity of the proposed technique is demonstrated using numerical and physical phantoms, and in vivo small animal cardiac MRI.

  20. High-resolution electrohydrodynamic jet printing for the direct fabrication of 3D multilayer terahertz metamaterial of high refractive index

    NASA Astrophysics Data System (ADS)

    Teguh Yudistira, Hadi; Pradhipta Tenggara, Ayodya; Oh, Sang Soon; Nguyen, VuDat; Choi, Muhan; Choi, Choon-gi; Byun, Doyoung

    2015-04-01

    The fabrication of 3D metamaterials, such as multilayer structures, is of great interest in practical applications of the metamaterial. Here we present an electrohydrodynamic jet printing technique as a direct fabrication method of 3D multilayer metamaterial. By alignment of the nozzle movement, we could fabricate multiple layers of the metamaterial. Controlling an electrical pulse to make droplets on-demand, we fabricated a high refractive index metamaterial and compared the optical performances of a single layer and multiple layers, with 10 µm width and 5 µm gap of I-shaped meta-atoms on the polyimide substrate. The peak refractive index was 25.7 at 0.46 THz for a four-layer metamaterial.

  1. Use of a High-Resolution 3D Laser Scanner for Minefield Surface Modeling and Terrain Characterization: Temperature Region

    DTIC Science & Technology

    2005-08-01

    al. 2005). Background The highly accurate and dense point data (or point clouds ) captured by terrestrial 3D laser scanners, such as the Leica...intensity value. The sophisticated design of the scanner enables point clouds to be captured that 1...additional analyses. A ScanWorld can be defined as a collection of scanned point clouds that are derived from consecutive scans at the same scanner

  2. The importance of 3D local averaging in turbulence theory: some examples from high-resolution DNS

    NASA Astrophysics Data System (ADS)

    Yeung, Pui-Kuen; Zhai, X. M.; Iyer, K. P.; Sreenivasan, K. R.

    2016-11-01

    Dissipation fluctuations in turbulence become increasingly intermittent as the Reynolds number increases. Both theoretical and practical reasons then force us to consider the fluctuations averaged locally over three-dimensional (3D) volumes of various sizes. Often, the practice has been to supplant 3D averages by 1D averages, and to replace proper 3D quantities by convenient 1D surrogates. We examine the consequence of these practices using DNS data on a large grid of 81923 at a Taylor-microscale Reynolds number 1300. We show that these common practices can often lead to erroneous results and significant ambiguities. For instance, both the dissipation and enstrophy turn out to possess the same inertial-range intermittency exponent; moments of locally-averaged dissipation and enstrophy become closer to each other with increasing order (because extreme events in both are spatially co-located); the longitudinal and transverse velocity increments scale similarly-all in contrast to results obtained using the simplifying practices mentioned above. Supported by NSF Grants ACI-1036170 and ACI-1640771.

  3. Quantification of gully volume using very high resolution DSM generated through 3D reconstruction from airborne and field digital imagery

    NASA Astrophysics Data System (ADS)

    Castillo, Carlos; Zarco-Tejada, Pablo; Laredo, Mario; Gómez, Jose Alfonso

    2013-04-01

    Major advances have been made recently in automatic 3D photo-reconstruction techniques using uncalibrated and non-metric cameras (James and Robson, 2012). However, its application on soil conservation studies and landscape feature identification is currently at the outset. The aim of this work is to compare the performance of a remote sensing technique using a digital camera mounted on an airborne platform, with 3D photo-reconstruction, a method already validated for gully erosion assessment purposes (Castillo et al., 2012). A field survey was conducted in November 2012 in a 250 m-long gully located in field crops on a Vertisol in Cordoba (Spain). The airborne campaign was conducted with a 4000x3000 digital camera installed onboard an aircraft flying at 300 m above ground level to acquire 6 cm resolution imagery. A total of 990 images were acquired over the area ensuring a large overlap in the across- and along-track direction of the aircraft. An ortho-mosaic and the digital surface model (DSM) were obtained through automatic aerial triangulation and camera calibration methods. For the field-level photo-reconstruction technique, the gully was divided in several reaches to allow appropriate reconstruction (about 150 pictures taken per reach) and, finally, the resulting point clouds were merged into a unique mesh. A centimetric-accuracy GPS provided a benchmark dataset for gully perimeter and distinguishable reference points in order to allow the assessment of measurement errors of the airborne technique and the georeferenciation of the photo-reconstruction 3D model. The uncertainty on the gully limits definition was explicitly addressed by comparison of several criteria obtained by 3D models (slope and second derivative) with the outer perimeter obtained by the GPS operator identifying visually the change in slope at the top of the gully walls. In this study we discussed the magnitude of planimetric and altimetric errors and the differences observed between the

  4. High-resolution Seismic Reflection Imaging of Thin, Diamondiferous Kimberlite Dykes and Sills

    NASA Astrophysics Data System (ADS)

    Hammer, P. T.; Clowes, R. M.; Ramachandran, K.

    2003-12-01

    synthetic seismograms in order to explore thin-bed resolution limitations, tuning effects and acquisition parameters. The seismic survey included two 2-d lines designed to obtain comparative datasets between different sources (explosives and vibroseis) and ground types (land and lake-ice). The explosive-source, land data yield a superb image of the thin dyke with high-amplitude reflections mapping the dyke topography to 1300 m depth. Weaker reflections indicate the dyke can be imaged to depths in excess of 1500 m. The vibroseis data detect the dyke only when sources and geophones are on land; they provide an image with nearly equivalent resolution. The dyke is not imaged beneath the ice by either source, due to reverberation and attenuation effects. The thickness of the thin intrusive layer is not directly resolved and 3-d structure makes the interpretation of fine-scale variations in reflectivity and continuity difficult. However, apparent correlations between variations in reflection characteristics and dyke properties (thickness, feathering, structure, and physical properties) suggest that seismic reflection data may be valuable for guiding drilling programs. The results demonstrate that, in the appropriate situation, seismic reflection methods have great potential for use in kimberlite exploration, subsurface mapping, and detailed imaging for mine development purposes.

  5. WE-AB-BRB-00: Session in Memory of Robert J. Shalek: High Resolution Dosimetry from 2D to 3D to Real-Time 3D.

    PubMed

    Li, Harold

    2016-06-01

    Despite widespread IMRT treatments at modern radiation therapy clinics, precise dosimetric commissioning of an IMRT system remains a challenge. In the most recent report from the Radiological Physics Center (RPC), nearly 20% of institutions failed an end-to-end test with an anthropomorphic head and neck phantom, a test that has rather lenient dose difference and distance-to-agreement criteria of 7% and 4 mm. The RPC report provides strong evidence that IMRT implementation is prone to error and that improved quality assurance tools are required. At the heart of radiation therapy dosimetry is the multidimensional dosimeter. However, due to the limited availability of water-equivalent dosimetry materials, research and development in this important field is challenging. In this session, we will review a few dosimeter developments that are either in the laboratory phase or in the pre-commercialization phase. 1) Radiochromic plastic. Novel formulations exhibit light absorbing optical contrast with very little scatter, enabling faster, broad beam optical CT design. 2) Storage phosphor. After irradiation, the dosimetry panels will be read out using a dedicated 2D scanning apparatus in a non-invasive, electro-optic manner and immediately restored for further use. 3) Liquid scintillator. Scintillators convert the energy from x-rays and proton beams into visible light, which can be recorded with a scientific camera (CCD or CMOS) from multiple angles. The 3D shape of the dose distribution can then be reconstructed. 4) Cherenkov emission imaging. Gated intensified imaging allows video-rate passive detection of Cherenkov emission during radiation therapy with the room lights on.

  6. Breaking the Crowther limit: combining depth-sectioning and tilt tomography for high-resolution, wide-field 3D reconstructions.

    PubMed

    Hovden, Robert; Ercius, Peter; Jiang, Yi; Wang, Deli; Yu, Yingchao; Abruña, Héctor D; Elser, Veit; Muller, David A

    2014-05-01

    To date, high-resolution (<1 nm) imaging of extended objects in three-dimensions (3D) has not been possible. A restriction known as the Crowther criterion forces a tradeoff between object size and resolution for 3D reconstructions by tomography. Further, the sub-Angstrom resolution of aberration-corrected electron microscopes is accompanied by a greatly diminished depth of field, causing regions of larger specimens (>6 nm) to appear blurred or missing. Here we demonstrate a three-dimensional imaging method that overcomes both these limits by combining through-focal depth sectioning and traditional tilt-series tomography to reconstruct extended objects, with high-resolution, in all three dimensions. The large convergence angle in aberration corrected instruments now becomes a benefit and not a hindrance to higher quality reconstructions. A through-focal reconstruction over a 390 nm 3D carbon support containing over 100 dealloyed and nanoporous PtCu catalyst particles revealed with sub-nanometer detail the extensive and connected interior pore structure that is created by the dealloying instability.

  7. Comparison of 3D Maximum A Posteriori and Filtered Backprojection algorithms for high resolution animal imaging in microPET

    SciTech Connect

    Chatziioannou, A.; Qi, J.; Moore, A.; Annala, A.; Nguyen, K.; Leahy, R.M.; Cherry, S.R.

    2000-01-01

    We have evaluated the performance of two three dimensional reconstruction algorithms with data acquired from microPET, a high resolution tomograph dedicated to small animal imaging. The first was a linear filtered-backprojection algorithm (FBP) with reprojection of the missing data and the second was a statistical maximum-aposteriori probability algorithm (MAP). The two algorithms were evaluated in terms of their resolution performance, both in phantoms and in vivo. Sixty independent realizations of a phantom simulating the brain of a baby monkey were acquired, each containing 3 million counts. Each of these realizations was reconstructed independently with both algorithms. The ensemble of the sixty reconstructed realizations was used to estimate the standard deviation as a measure of the noise for each reconstruction algorithm. More detail was recovered in the MAP reconstruction without an increase in noise relative to FBP. Studies in a simple cylindrical compartment phantom demonstrated improved recovery of known activity ratios with MAP. Finally in vivo studies also demonstrated a clear improvement in spatial resolution using the MAP algorithm. The quantitative accuracy of the MAP reconstruction was also evaluated by comparison with autoradiography and direct well counting of tissue samples and was shown to be superior.

  8. Cranial performance in the Komodo dragon (Varanus komodoensis) as revealed by high-resolution 3-D finite element analysis

    PubMed Central

    Moreno, Karen; Wroe, Stephen; Clausen, Philip; McHenry, Colin; D’Amore, Domenic C; Rayfield, Emily J; Cunningham, Eleanor

    2008-01-01

    The Komodo dragon (Varanus komodoensis) displays a unique hold and pull-feeding technique. Its delicate ‘space-frame’ skull morphology differs greatly from that apparent in most living large prey specialists and is suggestive of a high degree of optimization, wherein use of materials is minimized. Here, using high-resolution finite element modelling based on dissection and in vivo bite and pull data, we present results detailing the mechanical performance of the giant lizard's skull. Unlike most modern predators, V. komodoensis applies minimal input from the jaw muscles when butchering prey. Instead it uses series of actions controlled by postcranial muscles. A particularly interesting feature of the performance of the skull is that it reveals considerably lower overall stress when these additional extrinsic forces are added to those of the jaw adductors. This remarkable reduction in stress in response to additional force is facilitated by both internal and external bone anatomy. Functional correlations obtained from these analyses also provide a solid basis for the interpretation of feeding ecology in extinct species, including dinosaurs and sabre-tooth cats, with which V. komodoensis shares various cranial and dental characteristics. PMID:18510503

  9. Cranial performance in the Komodo dragon (Varanus komodoensis) as revealed by high-resolution 3-D finite element analysis.

    PubMed

    Moreno, Karen; Wroe, Stephen; Clausen, Philip; McHenry, Colin; D'Amore, Domenic C; Rayfield, Emily J; Cunningham, Eleanor

    2008-06-01

    The Komodo dragon (Varanus komodoensis) displays a unique hold and pull-feeding technique. Its delicate 'space-frame' skull morphology differs greatly from that apparent in most living large prey specialists and is suggestive of a high degree of optimization, wherein use of materials is minimized. Here, using high-resolution finite element modelling based on dissection and in vivo bite and pull data, we present results detailing the mechanical performance of the giant lizard's skull. Unlike most modern predators, V. komodoensis applies minimal input from the jaw muscles when butchering prey. Instead it uses series of actions controlled by postcranial muscles. A particularly interesting feature of the performance of the skull is that it reveals considerably lower overall stress when these additional extrinsic forces are added to those of the jaw adductors. This remarkable reduction in stress in response to additional force is facilitated by both internal and external bone anatomy. Functional correlations obtained from these analyses also provide a solid basis for the interpretation of feeding ecology in extinct species, including dinosaurs and sabre-tooth cats, with which V. komodoensis shares various cranial and dental characteristics.

  10. High-resolution 3D imaging of whole organ after clearing: taking a new look at the zebrafish testis

    PubMed Central

    Frétaud, Maxence; Rivière, Laurie; Job, Élodie De; Gay, Stéphanie; Lareyre, Jean-Jacques; Joly, Jean-Stéphane; Affaticati, Pierre; Thermes, Violette

    2017-01-01

    Zebrafish testis has become a powerful model for reproductive biology of teleostean fishes and other vertebrates and encompasses multiple applications in applied and basic research. Many studies have focused on 2D images, which is time consuming and implies extrapolation of results. Three-dimensional imaging of whole organs recently became an important challenge to better understand their architecture and allow cell enumeration. Several protocols have thus been developed to enhance sample transparency, a limiting step for imaging large biological samples. However, none of these methods has been applied to the zebrafish testis. We tested five clearing protocols to determine if some of them could be applied with only small modifications to the testis. We compared clearing efficiency at both macroscopic and microscopic levels. CUBIC and PACT were suitable for an efficient transparency, an optimal optical penetration, the GFP fluorescence preservation and avoiding meaningful tissue deformation. Finally, we succeeded in whole testis 3D capture at a cellular resolution with both CUBIC and PACT, which will be valuable in a standard workflow to investigate the 3D architecture of the testis and its cellular content. This paves the way for further development of high content phenotyping studies in several fields including development, genetic or toxicology. PMID:28211501

  11. An image of the Columbia Plateau from inversion of high-resolution seismic data

    SciTech Connect

    Lutter, W.J.; Catchings, R.D. ); Jarchow, C.M. )

    1994-08-01

    The authors use a method of traveltime inversion of high-resolution seismic data to provide the first reliable images of internal details of the Columbia River Basalt Group (CRBG), the subsurface basalt/sediment interface, and the deeper sediment/basement interface. Velocity structure within the basalts, delineated on the order of 1 km horizontally and 0.2 km vertically, is constrained to within [plus minus]0.1 km/s for most of the seismic profile. Over 5,000 observed traveltimes fit their model with an rms error of 0.018 s. The maximum depth of penetration of the basalt diving waves (truncated by underlying low-velocity sediments) provides a reliable estimate of the depth to the base of the basalt, which agrees with well-log measurements to within 0.05 km (165 ft). The authors use image blurring, calculated from the resolution matrix, to estimate the aspect ratio of images velocity anomaly widths to true widths for velocity features within the basalt. From their calculations of image blurring, they interpret low velocity zones (LVZ) within the basalts at Boylston Mountain and the Whiskey Dick anticline to have widths of 4.5 and 3 km, respectively, within the upper 1.5 km of the model. At greater depth, the widths of these imaged LVZs thin to approximately 2 km or less. They interpret these linear, subparallel, low-velocity zones imaged adjacent to anticlines of the Yakima Fold Belt to be brecciated fault zones. These fault zones dip to the south at angles between 15 to 45 degrees.

  12. Usefulness of high-resolution 3D multifusion medical imaging for preoperative planning in patients with posterior fossa hemangioblastoma: technical note.

    PubMed

    Yoshino, Masanori; Nakatomi, Hirofumi; Kin, Taichi; Saito, Toki; Shono, Naoyuki; Nomura, Seiji; Nakagawa, Daichi; Takayanagi, Shunsaku; Imai, Hideaki; Oyama, Hiroshi; Saito, Nobuhito

    2016-08-26

    Successful resection of hemangioblastoma depends on preoperative assessment of the precise locations of feeding arteries and draining veins. Simultaneous 3D visualization of feeding arteries, draining veins, and surrounding structures is needed. The present study evaluated the usefulness of high-resolution 3D multifusion medical imaging (hr-3DMMI) for preoperative planning of hemangioblastoma. The hr-3DMMI combined MRI, MR angiography, thin-slice CT, and 3D rotated angiography. Surface rendering was mainly used for the creation of hr-3DMMI using multiple thresholds to create 3D models, and processing took approximately 3-5 hours. This hr-3DMMI technique was used in 5 patients for preoperative planning and the imaging findings were compared with the operative findings. Hr-3DMMI could simulate the whole 3D tumor as a unique sphere and show the precise penetration points of both feeding arteries and draining veins with the same spatial relationships as the original tumor. All feeding arteries and draining veins were found intraoperatively at the same position as estimated preoperatively, and were occluded as planned preoperatively. This hr-3DMMI technique could demonstrate the precise locations of feeding arteries and draining veins preoperatively and estimate the appropriate route for resection of the tumor. Hr-3DMMI is expected to be a very useful support tool for surgery of hemangioblastoma.

  13. Assessing a 3D smoothed seismicity model of induced earthquakes

    NASA Astrophysics Data System (ADS)

    Zechar, Jeremy; Király, Eszter; Gischig, Valentin; Wiemer, Stefan

    2016-04-01

    As more energy exploration and extraction efforts cause earthquakes, it becomes increasingly important to control induced seismicity. Risk management schemes must be improved and should ultimately be based on near-real-time forecasting systems. With this goal in mind, we propose a test bench to evaluate models of induced seismicity based on metrics developed by the CSEP community. To illustrate the test bench, we consider a model based on the so-called seismogenic index and a rate decay; to produce three-dimensional forecasts, we smooth past earthquakes in space and time. We explore four variants of this model using the Basel 2006 and Soultz-sous-Forêts 2004 datasets to make short-term forecasts, test their consistency, and rank the model variants. Our results suggest that such a smoothed seismicity model is useful for forecasting induced seismicity within three days, and giving more weight to recent events improves forecast performance. Moreover, the location of the largest induced earthquake is forecast well by this model. Despite the good spatial performance, the model does not estimate the seismicity rate well: it frequently overestimates during stimulation and during the early post-stimulation period, and it systematically underestimates around shut-in. In this presentation, we also describe a robust estimate of information gain, a modification that can also benefit forecast experiments involving tectonic earthquakes.

  14. Revisiting the Submerged Paleo Elbe Valley (S North Sea) with High-Resolution Shallow Seismics

    NASA Astrophysics Data System (ADS)

    Papenmeier, S.; Hass, H. C.

    2014-12-01

    The Elbe paleo valley is the most prominent subsurface structure in the southern North Sea (~10,000 km²) and constitutes an important part of Germany's largest marine Natura 2000-Reserve "Sylter Außenriff" (European environmental protection area). It is supposed that the valley was formed by epeirogenic movement during the Tertiary. The depression developed to its present form during the Weichselian sea-level lowstand (-130 m below present). Melt waters that discharged in north-westerly directions fed the paleo Elbe at that time. During the Holocene the valley drowned in the rising sea. A narrow raster of new shallow seismic data combined with high resolution sidescan sonar data is used to shed new light on the Holocene development of the paleo Elbe valley and its adjacent regions in detail. Cross sections distributed with transect distances of 400 and 800 m, respectively, over a length of 100 km (approximately one third of the total valley length) enable a good comprehensive analysis of the historical process of sedimentary valley infill and coastal evolution with the successive Holocene sea level rise. The eastern flank of the valley is characterized by a relatively steep slope with one or more terraces, representing moraine deposits which are today still present at the seafloor surface, partly covered with Holocene marine deposits. The western slip-off slope of the valley is much smoother than the eastern undercut slope. West of the valley, sediment cores show peat and tidal flat sediments. Shallow seismic data show the base of the valley. There are conspicuous internal seismic reflectors above the base, inclined in northeastern direction. They indicate a sedimentary infill of the valley from the southwest when the southern part of the Dogger Bank was flooded during the early Holocene sea-level rise. In this process the steeper eastern slope acted as a natural barrier towards the northeast, averted sediment transport beyond the eastern boundary of the paleo

  15. A shallow high-resolution seismic reflection study of dudley ridge, south-east missouri

    NASA Astrophysics Data System (ADS)

    Shoemaker, M.; Vaughn, J. D.; Anderson, N. L.; Hoffman, D.; Palmer, J. R.

    1997-12-01

    Dudley Ridge is an arcuate, north-trending terrace remnant of Wisconsinan (late Quaternary) outwash in the Western Lowlands of southeast Missouri. The ridge, an elongate topographic bulge, is approximately 12 km long and 2 km wide with up to 5 m of relief. Previous workers have attributed the ridge to fluvial erosion, or to a combination of fluvial erosion and tectonic deformation during the late Quaternary. The Commerce geophysical lineament, which is a major northeast-trending basement feature, is located a few kilometers to the southeast, and swarms of paleoliquefaction and possible neotectonic deformations have been reported in nearby areas of the Western Lowlands. To test the tectonic hypothesis, in 1994 and 1995 we acquired two west-east high-resolution seismic reflection profiles along the crest and western flank of Dudley Ridge to determine whether Paleozoic, Cretaceous and shallow Quaternary strata are faulted or folded. Profile SPB-1 shows several near-vertical faults indicative of at least three periods of movement: Paleozoic to middle Mesozoic; late Cretaceous to Tertiary; and early to late Wisconsinan (late Quaternary). Profile SPB-2 shows three ambiguous fault-like features which cut Cretaceous and Quaternary reflectors, but cannot be interpreted unequivocally to extend down into the Paleozoic section. These new seismic reflection data are interpreted to show that at least three major periods of faulting have disrupted Paleozoic, Cretaceous and Quaternary strata beneath Dudley Ridge, with the most recent faulting being early to late Wisconsinan in age and producing about 6-8 m (8-10 ms) of near-vertical displacement. Because Quaternary reflectors cannot be resolved above about 30-40 ms, the seismic data alone do not reveal whether or not the Wisconsinan deformation affected the surface of Dudley Ridge or whether the faults may have died out as they propagated up through the soft, saturated Wisconsinan outwash. However, the presence of the Farmdale

  16. High-resolution laser radar: a powerful tool for 3D imaging with potential applications in artwork restoration and medical prosthesis

    NASA Astrophysics Data System (ADS)

    Fantoni, Roberta; Bordone, Andrea; Ferri De Collibus, Mario; Fornetti, Giorgio G.; Guarneri, Marianna; Poggi, Claudio; Ricci, Roberto

    2003-11-01

    A high-resolution laser radar has been developed for laboratory applications at an accurate 3D reconstruction of real objects. The laser scanner can be used to produce single cylindrical range image when the object is placed on a controlled rotating platform or, alternatively, 3 or more linear range images, in order to fully characterize the surface of the object as seen from different points of view. From the sample points, characterized by an uncertainty as small as 100 μm, the complete object surface can be reconstructed by using specifically developed software tools. The system has been successfully applied to scan different types of real surfaces (stone, wood, bones) with relevant applications in industrial machining, artwork classification and medical diagnostics. Significant examples of 3D reconstructions are shown and discussed in view of a specific utilization for reverse engineering applied to artwork restoration and medical prosthesis.

  17. Applying very high resolution microfocus X-ray CT and 3-D reconstruction to the human auditory apparatus.

    PubMed

    Shibata, T; Nagano, T

    1996-08-01

    Conventional high-resolution X-ray computed tomography (XCT) is an important medical technique because it provides sectional images (tomograms) of internal structures without destroying the specimen. However, it is difficult to observe and to analyze fine structures less than a few cubic millimeters in size because of its low spatial resolution of 0.4 mm. Overcoming this problem would not only enable visualization of human anatomical structures in living subjects by means of computer images but would make it possible to obtain the equivalent of microscopic images by XCT without making microscopic sections of biopsy material, which would allow the examination of the entire body and detection of focal lesions at an early stage. Bonse et al. and Kinney et al. studied absorption contrast microtomography by using synchrotron radiation and achieved 8-microns spatial resolution in human cancellous bone. Recently, Momose et al. reported examining the soft tissue of cancerous rabbit liver by a modification of the phase-contrast technique using synchrotron radiation with a spatial resolution of 30 microns (ref. 4). However, the equipment for synchrotron radiation requires a great deal of space and is very expensive. Aoki et al., on a different tack, reported microtomography of frog embryos by using a conventional laboratory microfocus X-ray source with a spot size of about 2 microns (ref. 5). As no human tomographic studies by superresolution microfocus XCT (MFXCT) using a normal open-type X-ray source have been reported, we tried using MFXCT with a maximum experimental spatial resolution of 2.5 microns, especially designed for industrial use, on the auditory ossicles of a human fetus, the smallest and lightest bones in the skeletal system. No XCT studies of fetal auditory ossicles have been reported to date. The fine tomograms with three-dimensional reconstructions obtained showed the existence of an apparently previously undescribed joint between the tympanic ring and the

  18. Subsurface fault geometries in Southern California illuminated through Full-3D Seismic Waveform Tomography (F3DT)

    NASA Astrophysics Data System (ADS)

    Lee, En-Jui; Chen, Po

    2017-04-01

    More precise spatial descriptions of fault systems play an essential role in tectonic interpretations, deformation modeling, and seismic hazard assessments. The recent developed full-3D waveform tomography techniques provide high-resolution images and are able to image the material property differences across faults to assist the understanding of fault systems. In the updated seismic velocity model for Southern California, CVM-S4.26, many velocity gradients show consistency with surface geology and major faults defined in the Community Fault Model (CFM) (Plesch et al. 2007), which was constructed by using various geological and geophysical observations. In addition to faults in CFM, CVM-S4.26 reveals a velocity reversal mainly beneath the San Gabriel Mountain and Western Mojave Desert regions, which is correlated with the detachment structure that has also been found in other independent studies. The high-resolution tomographic images of CVM-S4.26 could assist the understanding of fault systems in Southern California and therefore benefit the development of fault models as well as other applications, such as seismic hazard analysis, tectonic reconstructions, and crustal deformation modeling.

  19. High-resolution 3-D imaging of surface damage sites in fused silica with Optical Coherence Tomography

    SciTech Connect

    Guss, G; Bass, I; Hackel, R; Mailhiot, C; Demos, S G

    2007-10-30

    In this work, we present the first successful demonstration of a non-contact technique to precisely measure the 3D spatial characteristics of laser induced surface damage sites in fused silica for large aperture laser systems by employing Optical Coherence Tomography (OCT). What makes OCT particularly interesting in the characterization of optical materials for large aperture laser systems is that its axial resolution can be maintained with working distances greater than 5 cm, whether viewing through air or through the bulk of thick optics. Specifically, when mitigating surface damage sites against further growth by CO{sub 2} laser evaporation of the damage, it is important to know the depth of subsurface cracks below the damage site. These cracks are typically obscured by the damage rubble when imaged from above the surface. The results to date clearly demonstrate that OCT is a unique and valuable tool for characterizing damage sites before and after the mitigation process. We also demonstrated its utility as an in-situ diagnostic to guide and optimize our process when mitigating surface damage sites on large, high-value optics.

  20. 3D noninvasive, high-resolution imaging using a photoacoustic tomography (PAT) system and rapid wavelength-cycling lasers

    NASA Astrophysics Data System (ADS)

    Sampathkumar, Ashwin; Gross, Daniel; Klosner, Marc; Chan, Gary; Wu, Chunbai; Heller, Donald F.

    2015-05-01

    Globally, cancer is a major health issue as advances in modern medicine continue to extend the human life span. Breast cancer ranks second as a cause of cancer death in women in the United States. Photoacoustic (PA) imaging (PAI) provides high molecular contrast at greater depths in tissue without the use of ionizing radiation. In this work, we describe the development of a PA tomography (PAT) system and a rapid wavelength-cycling Alexandrite laser designed for clinical PAI applications. The laser produces 450 mJ/pulse at 25 Hz to illuminate the entire breast, which eliminates the need to scan the laser source. Wavelength cycling provides a pulse sequence in which the output wavelength repeatedly alternates between 755 nm and 797 nm rapidly within milliseconds. We present imaging results of breast phantoms with inclusions of different sizes at varying depths, obtained with this laser source, a 5-MHz 128-element transducer and a 128-channel Verasonics system. Results include PA images and 3D reconstruction of the breast phantom at 755 and 797 nm, delineating the inclusions that mimic tumors in the breast.

  1. The application of seismic stratigraphic methods on exploration 3D seismic data to define a reservoir model in OPL 210, Deepwater Nigeria

    SciTech Connect

    Ragnhild, L.; Ventris, P.; Osahon, G.

    1995-08-01

    OPL 210 lies in deepwater on the northwestern flank of the Niger Delta. The partners in this block are Allied Energy and The Statoil and BP Alliance. The license has a 5 year initial exploration phase and carries a 2 well commitment. At present the database comprises a 1 x 1 km grid of 2D seismic across the block, and 450 sq. km of 3D in an area of special interest. A larger 3D survey is planned for 1995. Little is known about the reservoir in the deep water, but we expect our main target to be ponded slope and basin turbidites. As such the bulk of the shelf well data available has little or no relevance to the play type likely to be encountered. Prior to drilling, seismic stratigraphy has been one of several methods used to generate a consistent predictive reservoir model. The excellent quality and high resolution of the 3D data have allowed identification and detailed description of several distinctive seismic facies. These facies are described in terms of their internal geometries and stacking patterns. The geometries are then interpreted based on a knowledge of depositional processes from analog slope settings. This enables a predictive model to be constructed for the distribution of reservoir within the observed facies. These predictions will be tested by one of the first wells drilled in the Nigerian deepwater in mid 1995.

  2. Development of a 2D Image Reconstruction and Viewing System for Histological Images from Multiple Tissue Blocks: Towards High-Resolution Whole-Organ 3D Histological Images.

    PubMed

    Hashimoto, Noriaki; Bautista, Pinky A; Haneishi, Hideaki; Snuderl, Matija; Yagi, Yukako

    2016-01-01

    High-resolution 3D histology image reconstruction of the whole brain organ starts from reconstructing the high-resolution 2D histology images of a brain slice. In this paper, we introduced a method to automatically align the histology images of thin tissue sections cut from the multiple paraffin-embedded tissue blocks of a brain slice. For this method, we employed template matching and incorporated an optimization technique to further improve the accuracy of the 2D reconstructed image. In the template matching, we used the gross image of the brain slice as a reference to the reconstructed 2D histology image of the slice, while in the optimization procedure, we utilized the Jaccard index as the metric of the reconstruction accuracy. The results of our experiment on the initial 3 different whole-brain tissue slices showed that while the method works, it is also constrained by tissue deformations introduced during the tissue processing and slicing. The size of the reconstructed high-resolution 2D histology image of a brain slice is huge, and designing an image viewer that makes particularly efficient use of the computing power of a standard computer used in our laboratories is of interest. We also present the initial implementation of our 2D image viewer system in this paper.

  3. High Resolution/High Fidelity Seismic Imaging and Parameter Estimation for Geological Structure and Material Characterization

    SciTech Connect

    Ru-Shan Wu, Xiao-Bi Xie, Thorne Lay

    2005-06-06

    In this project, we develop new theories and methods for multi-domain one-way wave-equation based propagators, and apply these techniques to seismic modeling, seismic imaging, seismic illumination and model parameter estimation in 3D complex environments. The major progress of this project includes: (1) The development of the dual-domain wave propagators. We continue to improve the one-way wave-equation based propagators. Our target is making propagators capable of handling more realistic velocity models. A wide-angle propagator for transversely isotropic media with vertically symmetric axis (VTI) has been developed for P-wave modeling and imaging. The resulting propagator is accurate for large velocity perturbations and wide propagation angles. The thin-slab propagator for one-way elastic-wave propagation is further improved. With the introduction of complex velocities, the quality factors Qp and Qs have been incorporated into the thin-slab propagator. The resulting viscoelastic thin-slab propagator can handle elastic-wave propagation in models with intrinsic attenuations. We apply this method to complex models for AVO modeling, random media characterization and frequency-dependent reflectivity simulation. (2) Exploring the Information in the Local Angle Domain. Traditionally, the local angle information can only be extracted using the ray-based method. We develop a wave-equation based technique to process the local angle domain information. The approach can avoid the singularity problem usually linked to the high-frequency asymptotic method. We successfully apply this technique to seismic illumination and the resulting method provides a practical tool for three-dimensional full-volume illumination analysis in complex structures. The directional illumination also provides information for angle-domain imaging corrections. (3) Elastic-Wave Imaging. We develop a multicomponent elastic migration method. The application of the multicomponent one-way elastic propagator

  4. SU-E-T-296: Dosimetric Analysis of Small Animal Image-Guided Irradiator Using High Resolution Optical CT Imaging of 3D Dosimeters

    SciTech Connect

    Na, Y; Qian, X; Wuu, C; Adamovics, J

    2015-06-15

    Purpose: To verify the dosimetric characteristics of a small animal image-guided irradiator using a high-resolution of optical CT imaging of 3D dosimeters. Methods: PRESAEGE 3D dosimeters were used to determine dosimetric characteristics of a small animal image-guided irradiator and compared with EBT2 films. Cylindrical PRESAGE dosimeters with 7cm height and 6cm diameter were placed along the central axis of the beam. The films were positioned between 6×6cm{sup 2} cubed plastic water phantoms perpendicular to the beam direction with multiple depths. PRESAGE dosimeters and EBT2 films were then irradiated with the irradiator beams at 220kVp and 13mA. Each of irradiated PRESAGE dosimeters named PA1, PA2, PB1, and PB2, was independently scanned using a high-resolution single laser beam optical CT scanner. The transverse images were reconstructed with a 0.1mm high-resolution pixel. A commercial Epson Expression 10000XL flatbed scanner was used for readout of irradiated EBT2 films at a 0.4mm pixel resolution. PDD curves and beam profiles were measured for the irradiated PRESAGE dosimeters and EBT2 films. Results: The PDD agreements between the irradiated PRESAGE dosimeter PA1, PA2, PB1, PB2 and the EB2 films were 1.7, 2.3, 1.9, and 1.9% for the multiple depths at 1, 5, 10, 15, 20, 30, 40 and 50mm, respectively. The FWHM measurements for each PRESAEGE dosimeter and film agreed with 0.5, 1.1, 0.4, and 1.7%, respectively, at 30mm depth. Both PDD and FWHM measurements for the PRESAGE dosimeters and the films agreed overall within 2%. The 20%–80% penumbral widths of each PRESAGE dosimeter and the film at a given depth were respectively found to be 0.97, 0.91, 0.79, 0.88, and 0.37mm. Conclusion: Dosimetric characteristics of a small animal image-guided irradiator have been demonstrated with the measurements of PRESAGE dosimeter and EB2 film. With the high resolution and accuracy obtained from this 3D dosimetry system, precise targeting small animal irradiation can be

  5. Real-Time High Resolution 3D Imaging of the Lyme Disease Spirochete Adhering to and Escaping from the Vasculature of a Living Host

    PubMed Central

    Colarusso, Pina; Bankhead, Troy; Kubes, Paul; Chaconas, George

    2008-01-01

    Pathogenic spirochetes are bacteria that cause a number of emerging and re-emerging diseases worldwide, including syphilis, leptospirosis, relapsing fever, and Lyme borreliosis. They navigate efficiently through dense extracellular matrix and cross the blood–brain barrier by unknown mechanisms. Due to their slender morphology, spirochetes are difficult to visualize by standard light microscopy, impeding studies of their behavior in situ. We engineered a fluorescent infectious strain of Borrelia burgdorferi, the Lyme disease pathogen, which expressed green fluorescent protein (GFP). Real-time 3D and 4D quantitative analysis of fluorescent spirochete dissemination from the microvasculature of living mice at high resolution revealed that dissemination was a multi-stage process that included transient tethering-type associations, short-term dragging interactions, and stationary adhesion. Stationary adhesions and extravasating spirochetes were most commonly observed at endothelial junctions, and translational motility of spirochetes appeared to play an integral role in transendothelial migration. To our knowledge, this is the first report of high resolution 3D and 4D visualization of dissemination of a bacterial pathogen in a living mammalian host, and provides the first direct insight into spirochete dissemination in vivo. PMID:18566656

  6. Real-time high resolution 3D imaging of the lyme disease spirochete adhering to and escaping from the vasculature of a living host.

    PubMed

    Moriarty, Tara J; Norman, M Ursula; Colarusso, Pina; Bankhead, Troy; Kubes, Paul; Chaconas, George

    2008-06-20

    Pathogenic spirochetes are bacteria that cause a number of emerging and re-emerging diseases worldwide, including syphilis, leptospirosis, relapsing fever, and Lyme borreliosis. They navigate efficiently through dense extracellular matrix and cross the blood-brain barrier by unknown mechanisms. Due to their slender morphology, spirochetes are difficult to visualize by standard light microscopy, impeding studies of their behavior in situ. We engineered a fluorescent infectious strain of Borrelia burgdorferi, the Lyme disease pathogen, which expressed green fluorescent protein (GFP). Real-time 3D and 4D quantitative analysis of fluorescent spirochete dissemination from the microvasculature of living mice at high resolution revealed that dissemination was a multi-stage process that included transient tethering-type associations, short-term dragging interactions, and stationary adhesion. Stationary adhesions and extravasating spirochetes were most commonly observed at endothelial junctions, and translational motility of spirochetes appeared to play an integral role in transendothelial migration. To our knowledge, this is the first report of high resolution 3D and 4D visualization of dissemination of a bacterial pathogen in a living mammalian host, and provides the first direct insight into spirochete dissemination in vivo.

  7. R2OBBIE-3D, a Fast Robotic High-Resolution System for Quantitative Phenotyping of Surface Geometry and Colour-Texture

    PubMed Central

    Manukyan, Liana; Milinkovitch, Michel C.

    2015-01-01

    While recent imaging techniques provide insights into biological processes from the molecular to the cellular scale, phenotypes at larger scales remain poorly amenable to quantitative analyses. For example, investigations of the biophysical mechanisms generating skin morphological complexity and diversity would greatly benefit from 3D geometry and colour-texture reconstructions. Here, we report on R2OBBIE-3D, an integrated system that combines a robotic arm, a high-resolution digital colour camera, an illumination basket of high-intensity light-emitting diodes and state-of-the-art 3D-reconstruction approaches. We demonstrate that R2OBBIE generates accurate 3D models of biological objects between 1 and 100 cm, makes multiview photometric stereo scanning possible in practical processing times, and enables the capture of colour-texture and geometric resolutions better than 15 μm without the use of magnifying lenses. R2OBBIE has the potential to greatly improve quantitative analyses of phenotypes in addition to providing multiple new applications in, e.g., biomedical science. PMID:26039509

  8. 3D Discontinuous Galerkin elastic seismic wave modeling based upon a grid injection method

    NASA Astrophysics Data System (ADS)

    Monteiller, V.

    2015-12-01

    Full waveform inversion (FWI) is a seismic imaging method that estimates thesub-surface physical properties with a spatial resolution of the order of thewavelength. FWI is generally recast as the iterative optimization of anobjective function that measures the distance between modeled and recordeddata. In the framework of local descent methods, FWI requires to perform atleast two seismic modelings per source and per FWI iteration.Due to the resulting computational burden, applications of elastic FWI have been usuallyrestricted to 2D geometries. Despite the continuous growth of high-performancecomputing facilities, application of 3D elastic FWI to real-scale problemsremain computationally too expensive. To perform elastic seismic modeling with a reasonable amount of time, weconsider a reduced computational domain embedded in a larger background modelin which seismic sources are located. Our aim is to compute repeatedly thefull wavefield in the targeted domain after model alteration, once theincident wavefield has been computed once for all in the background model. Toachieve this goal, we use a grid injection method referred to as the Total-Field/Scattered-Field (TF/SF) technique in theelectromagnetic community. We implemented the Total-Field/Scattered-Field approach in theDiscontinuous Galerkin Finite Element method (DG-FEM) that is used to performmodeling in the local domain. We show how to interface the DG-FEM with any modeling engine (analytical solution, finite difference or finite elements methods) that is suitable for the background simulation. One advantage of the Total-Field/Scattered-Field approach is related to thefact that the scattered wavefield instead of the full wavefield enter thePMLs, hence making more efficient the absorption of the outgoing waves at theouter edges of the computational domain. The domain reduction in which theDG-FEM is applied allows us to use modest computational resources opening theway for high-resolution imaging by full

  9. Using 3D visualization and seismic attributes to improve structural and stratigraphic resolution of reservoirs

    SciTech Connect

    Kerr, J. ); Jones, G.L. )

    1996-01-01

    Recent advances in hardware and software have given the interpreter and engineer new ways to view 3D seismic data and well bore information. Recent papers have also highlighted the use of various statistics and seismic attributes. By combining new 3D rendering technologies with recent trends in seismic analysis, the interpreter can improve the structural and stratigraphic resolution of hydrocarbon reservoirs. This paper gives several examples using 3D visualization to better define both the structural and stratigraphic aspects of several different structural types from around the world. Statistics, 3D visualization techniques and rapid animation are used to show complex faulting and detailed channel systems. These systems would be difficult to map using either 2D or 3D data with conventional interpretation techniques.

  10. Using 3D visualization and seismic attributes to improve structural and stratigraphic resolution of reservoirs

    SciTech Connect

    Kerr, J.; Jones, G.L.

    1996-12-31

    Recent advances in hardware and software have given the interpreter and engineer new ways to view 3D seismic data and well bore information. Recent papers have also highlighted the use of various statistics and seismic attributes. By combining new 3D rendering technologies with recent trends in seismic analysis, the interpreter can improve the structural and stratigraphic resolution of hydrocarbon reservoirs. This paper gives several examples using 3D visualization to better define both the structural and stratigraphic aspects of several different structural types from around the world. Statistics, 3D visualization techniques and rapid animation are used to show complex faulting and detailed channel systems. These systems would be difficult to map using either 2D or 3D data with conventional interpretation techniques.

  11. 3-D seismic response of buried pipelines laid through fault

    SciTech Connect

    Liang, J.W.

    1995-12-31

    An ideal model for the non-causative fault is put forward in which the fault is assumed to be composed by three horizontally adjacent soil media. Dynamic behaviors of pipelines laid through the fault is analyzed. Although simple, this model may qualitatively illustrate the accumulation of seismic waves in the fault, so illustrate the dynamic behaviors of the pipelines. The results show that, the fault is materially different from a two soil site even if the fault width is very narrow, and the dynamic behaviors of the pipelines laid through the fault are determined by the fault width, the stiffness ratio of the three soil media, and the type of the seismic waves.

  12. SU-C-BRE-04: Microbeam-Radiation-Therapy (MRT): Characterizing a Novel MRT Device Using High Resolution 3D Dosimetry

    SciTech Connect

    Li, Q; Juang, T; Bache, S; Chang, S; Oldham, M

    2014-06-15

    Purpose: The feasibility of MRT has recently been demonstrated utilizing a new technology of Carbon-Nano-Tube(CNT) field emission x-ray sources.This approach can deliver very high dose(10's of Gy) in narrow stripes(sub-mm) of radiation which enables the study of novel radiation treatment approaches. Here we investigate the application of highresolution (50um isotropic) PRESAGE/Optical-CT 3D dosimetry techniques to characterize the radiation delivered in this extremely dosimetrically challenging scenario. Methods: The CNT field emission x-ray source irradiator comprises of a linear cathode array and a novel collimator alignment system. This allows a precise delivery of high-energy small beams up to 160 kVp. A cylindrical dosimeter (∼2.2cm in height ∼2.5cm in diameter) was irradiated by CNT MRT delivering 3 strips of radiation with a nominal entrance dose of 32 Gy.A second dosimeter was irradiated with similar entrance dose, with a regular x-ray irradiator collimated to microscopical strip-beams. 50um (isotropic) 3D dosimetry was performed using an in-house optical-CT system designed and optimized for high resolution imaging (including a stray light deconvolution correction).The percentage depth dose (PDD), peak-to-valley ratio (PVR) and beam width (FWHM) data were obtained and analyzed in both cases. Results: High resolution 3D images were successfully achieved with the prototype system, enabling extraction of PDD and dose profiles. The PDDs for the CNT irradiation showed pronounced attenuation, but less build-up effect than that from the multibeam irradiation. The beam spacing between the three strips has an average value of 0.9mm while that for the 13 strips is 1.5 mm at a depth of 16.5 mm. The stray light corrected image shows line profiles with reduced noise and consistent PVR values. Conclusion: MRT dosimetry is extremely challenging due to the ultra small fields involved.This preliminary application of a novel, ultra-high resolution, optical-CT 3D

  13. Characterization of the Neuhauserwald Quaternary valley, northern Switzerland, using high-resolution seismic-reflection and seismic-refraction imaging

    NASA Astrophysics Data System (ADS)

    Reiser, Fabienne; Schmelzbach, Cedric; Horstmeyer, Heinrich; Sollberger, David; Rabenstein, Lasse; Maurer, Hansruedi; Robertsson, Johan

    2014-05-01

    The Swiss Molasse basin is largely covered by Quaternary sediments which have a thickness ranging from a few meters to several hundred meters. These glacial, glaciofluvial, and glaciolacustrine sedimentary deposits are of high interest for a number of reasons; for example, they contain a large part of Switzerland's underground freshwater supplies, and resolving their structure and deposition processes is important to reconstruct the climate history. Furthermore, this usually thin, but highly heterogeneous near-surface cover can have a significant deleterious effect on subsurface imaging by regional-scale seismic-reflection surveying. The study presented here was motivated by the observation of a hithertofore unknown Quaternary valley observed on recently acquired regional-scale seismic-reflection data. To characterize the depth and internal structure of the Neuhauserwald Quaternary valley, two high-resolution seismic-reflection/refraction datasets were acquired. The approximately 900 m long line 1 runs parallel to the valley axis, whereas the ~ 700 m long line 3 is oriented perpendicular to it. A borehole on line 1 provides lithological information and seismic velocities for the upper 150 m, which were determined by means of a check-shot experiment. The lithological sequence consists of alternating sand and gravel units over lacustrine silty sands. Mesozoic limestones are found at 128 m depth below surface. The final processed seismic reflection images show reflections down to around 200 ms traveltime (~ 130 m). The first-arrival traveltime tomography models show a distinct velocity increase from around 500 m/s at the surface to around 4000 m/s at about 150 m depth. For line 1, velocity variations between 500 m/s and 2000 m/s indicate vertical and lateral changes within the valley infill. The depth to the high-velocity basement, however, is only poorly constrained by a few rays in the refraction tomogram resulting from the paucity of long-offset traveltime picks

  14. High-Resolution Seismic Definition of the Distribution of Gas in the West Svalbard Margin

    NASA Astrophysics Data System (ADS)

    Minshull, T. A.; Westbrook, G. K.; Marin-Moreno, H.; Marsset, B.; Ker, S.; Sarkar, S.; Vardy, M. E.; Henstock, T.

    2014-12-01

    The widespread presence of gas beneath the seabed west of Svalbard is shown by negative-polarity high-amplitude reflectors (nephars), imaged in high-resolution near-surface and deep-towed seismic reflection data. The principal controls on the presence of gas are the gas hydrate stability zone (GHSZ), from which free gas is generally excluded, and stratigraphic control of permeable layers. A widespread bottom-simulating reflector (BSR) beneath the lower-mid continental slope indicates gas at the base of the GHSZ. The depth of the base of the GHSZ predicted by a numerical model that takes in to account variation in ocean temperature over the past two thousand years, is consistent with the depth of the BSR, even at its shallowest depth, where a steady-state model places base of the GHSZ shallower than the BSR. Similarly, farther up slope, where the BSR loses it coherency, the depths of the shallowest nephars are compatible with the predicted depth of the base of the GHSZ from the time-dependent model, but are about three times deeper than the predicted steady-state depth of the BSR. This approach to defining the limits of the GHSZ is not precise, as it depends upon the presence of gas. In the shallow sediment sequence, which has a high proportion of glacigenic sediments, gas is restricted to a smaller number of permeable units than in the contourite-dominated sequence farther down the continental slope. Where the seabed is shallower than the GHSZ, numerous plumes of methane gas ascend from the seabed, and gas, which has migrated up slope through dipping permeable layers, locally ponds beneath a thin veneer of unconformable glacial and post-glacial sediments on the continental shelf.

  15. Miscellaneous High-Resolution Seismic Imaging Investigations in Salt Lake and Utah Valleys for Earthquake Hazards

    USGS Publications Warehouse

    Stephenson, W.J.; Williams, R.A.; Odum, J.K.; Worley, D.M.

    2007-01-01

    Introduction In support of earthquake hazards and ground motion studies by researchers at the Utah Geological Survey, University of Utah, Utah State University, Brigham Young University, and San Diego State University, the U.S. Geological Survey Geologic Hazards Team Intermountain West Project conducted three high-resolution seismic imaging investigations along the Wasatch Front between September 2003 and September 2005. These three investigations include: (1) a proof-of-concept P-wave minivib reflection imaging profile in south-central Salt Lake Valley, (2) a series of seven deep (as deep as 400 m) S-wave reflection/refraction soundings using an S-wave minivib in both Salt Lake and Utah Valleys, and (3) an S-wave (and P-wave) investigation to 30 m at four sites in Utah Valley and at two previously investigated S-wave (Vs) minivib sites. In addition, we present results from a previously unpublished downhole S-wave investigation conducted at four sites in Utah Valley. The locations for each of these investigations are shown in figure 1. Coordinates for the investigation sites are listed in Table 1. With the exception of the P-wave common mid-point (CMP) reflection profile, whose end points are listed, these coordinates are for the midpoint of each velocity sounding. Vs30 and Vs100, also shown in Table 1, are defined as the average shear-wave velocities to depths of 30 and 100 m, respectively, and details of their calculation can be found in Stephenson and others (2005). The information from these studies will be incorporated into components of the urban hazards maps along the Wasatch Front being developed by the U.S. Geological Survey, Utah Geological Survey, and numerous collaborating research institutions.

  16. Development of a lab-scale, high-resolution, tube-generated X-ray computed-tomography system for three-dimensional (3D) materials characterization

    SciTech Connect

    Mertens, J.C.E. Williams, J.J. Chawla, Nikhilesh

    2014-06-01

    The design and construction of a modular high resolution X-ray computed tomography (XCT) system is highlighted in this paper. The design approach is detailed for meeting a specified set of instrument performance goals tailored towards experimental versatility and high resolution imaging. The XCT tool is unique in the detector and X-ray source design configuration, enabling control in the balance between detection efficiency and spatial resolution. The system package is also unique: The sample manipulation approach implemented enables a wide gamut of in situ experimentation to analyze structure evolution under applied stimulus, by optimizing scan conditions through a high degree of controllability. The component selection and design process is detailed: Incorporated components are specified, custom designs are shared, and the approach for their integration into a fully functional XCT scanner is provided. Custom designs discussed include the dual-target X-ray source cradle which maintains position and trajectory of the beam between the two X-ray target configurations with respect to a scintillator mounting and positioning assembly and the imaging sensor, as well as a novel large-format X-ray detector with enhanced adaptability. The instrument is discussed from an operational point of view, including the details of data acquisition and processing implemented for 3D imaging via micro-CT. The performance of the instrument is demonstrated on a silica-glass particle/hydroxyl-terminated-polybutadiene (HTPB) matrix binder PBX simulant. Post-scan data processing, specifically segmentation of the sample's relevant microstructure from the 3D reconstruction, is provided to demonstrate the utility of the instrument. - Highlights: • Custom built X-ray tomography system for microstructural characterization • Detector design for maximizing polychromatic X-ray detection efficiency • X-ray design offered for maximizing X-ray flux with respect to imaging resolution • Novel lab

  17. Application of the Minkowski functionals in 3D to high-resolution MR images of trabecular bone: prediction of the biomechanical strength by nonlinear topological measures

    NASA Astrophysics Data System (ADS)

    Boehm, Holger F.; Link, Thomas M.; Monetti, Roberto A.; Mueller, Dirk; Rummeny, Ernst J.; Newitt, David; Majumdar, Sharmila; Raeth, Christoph W.

    2004-05-01

    Multi-dimensional convex objects can be characterized with respect to shape, structure, and the connectivity of their components using a set of morphological descriptors known as the Minkowski functionals. In a 3D Euclidian space, these correspond to volume, surface area, mean integral curvature, and the Euler-Poincaré characteristic. We introduce the Minkowski functionals to medical image processing for the morphological analysis of trabecular bone tissue. In the context of osteoporosis-a metabolic disorder leading to a weakening of bone due to deterioration of micro-architecture-the structure of bone increasingly gains attention in the quantification of bone quality. The trabecular architecture of healthy cancellous bone consists of a complex 3D system of inter-connected mineralised elements whereas in osteoporosis the micro-structure is dominated by gaps and disconnections. At present, the standard parameter for diagnosis and assessment of fracture risk in osteoporosis is the bone mineral density (BMD) - a bulk measure of mineralisation irrespective of structural texture characteristics. With the development of modern imaging modalities (high resolution MRI, micro-CT) with spatial resolutions allowing to depict individual trabeculae bone micro-architecture has successfully been analysed using linear, 2- dimensional structural measures adopted from standard histo-morphometry. The preliminary results of our study demonstrate that due to the complex - i.e. the non-linear - network of trabecular bone structures non-linear measures in 3D are superior to linear ones in predicting mechanical properties of trabecular bone from structural information extracted from high resolution MR image data.

  18. High-resolution seismic imaging of the gas and gas hydrate system at Green Canyon 955 in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Haines, S. S.; Hart, P. E.; Collett, T. S.; Shedd, W. W.; Frye, M.

    2015-12-01

    High-resolution 2D seismic data acquired by the USGS in 2013 enable detailed characterization of the gas and gas hydrate system at lease block Green Canyon 955 (GC955) in the Gulf of Mexico, USA. Earlier studies, based on conventional industry 3D seismic data and logging-while-drilling (LWD) borehole data acquired in 2009, identified general aspects of the regional and local depositional setting along with two gas hydrate-bearing sand reservoirs and one layer containing fracture-filling gas hydrate within fine-grained sediments. These studies also highlighted a number of critical remaining questions. The 2013 high-resolution 2D data fill a significant gap in our previous understanding of the site by enabling interpretation of the complex system of faults and gas chimneys that provide conduits for gas flow and thus control the gas hydrate distribution observed in the LWD data. In addition, we have improved our understanding of the main channel/levee sand reservoir body, mapping in fine detail the levee sequences and the fault system that segments them into individual reservoirs. The 2013 data provide a rarely available high-resolution view of a levee reservoir package, with sequential levee deposits clearly imaged. Further, we can calculate the total gas hydrate resource present in the main reservoir body, refining earlier estimates. Based on the 2013 seismic data and assumptions derived from the LWD data, we estimate an in-place volume of 840 million cubic meters or 29 billion cubic feet of gas in the form of gas hydrate. Together, these interpretations provide a significantly improved understanding of the gas hydrate reservoirs and the gas migration system at GC955.

  19. WE-F-16A-04: Micro-Irradiator Treatment Verification with High-Resolution 3D-Printed Rodent-Morphic Dosimeters

    SciTech Connect

    Bache, S; Belley, M; Benning, R; Adamovics, J; Stanton, I; Therien, M; Yoshizumi, T; Oldham, M

    2014-06-15

    Purpose: Pre-clinical micro-radiation therapy studies often utilize very small beams (∼0.5-5mm), and require accurate dose delivery in order to effectively investigate treatment efficacy. Here we present a novel high-resolution absolute 3D dosimetry procedure, capable of ∼100-micron isotopic dosimetry in anatomically accurate rodent-morphic phantoms Methods: Anatomically accurate rat-shaped 3D dosimeters were made using 3D printing techniques from outer body contours and spinal contours outlined on CT. The dosimeters were made from a radiochromic plastic material PRESAGE, and incorporated high-Z PRESASGE inserts mimicking the spine. A simulated 180-degree spinal arc treatment was delivered through a 2 step process: (i) cone-beam-CT image-guided positioning was performed to precisely position the rat-dosimeter for treatment on the XRad225 small animal irradiator, then (ii) treatment was delivered with a simulated spine-treatment with a 180-degree arc with 20mm x 10mm cone at 225 kVp. Dose distribution was determined from the optical density change using a high-resolution in-house optical-CT system. Absolute dosimetry was enabled through calibration against a novel nano-particle scintillation detector positioned in a channel in the center of the distribution. Results: Sufficient contrast between regular PRESAGE (tissue equivalent) and high-Z PRESAGE (spinal insert) was observed to enable highly accurate image-guided alignment and targeting. The PRESAGE was found to have linear optical density (OD) change sensitivity with respect to dose (R{sup 2} = 0.9993). Absolute dose for 360-second irradiation at isocenter was found to be 9.21Gy when measured with OD change, and 9.4Gy with nano-particle detector- an agreement within 2%. The 3D dose distribution was measured at 500-micron resolution Conclusion: This work demonstrates for the first time, the feasibility of accurate absolute 3D dose measurement in anatomically accurate rat phantoms containing variable density

  20. Seismic waves in 3-D: from mantle asymmetries to reliable seismic hazard assessment

    NASA Astrophysics Data System (ADS)

    Panza, Giuliano F.; Romanelli, Fabio

    2014-10-01

    A global cross-section of the Earth parallel to the tectonic equator (TE) path, the great circle representing the equator of net lithosphere rotation, shows a difference in shear wave velocities between the western and eastern flanks of the three major oceanic rift basins. The low-velocity layer in the upper asthenosphere, at a depth range of 120 to 200 km, is assumed to represent the decoupling between the lithosphere and the underlying mantle. Along the TE-perturbed (TE-pert) path, a ubiquitous LVZ, about 1,000-km-wide and 100-km-thick, occurs in the asthenosphere. The existence of the TE-pert is a necessary prerequisite for the existence of a continuous global flow within the Earth. Ground-shaking scenarios were constructed using a scenario-based method for seismic hazard analysis (NDSHA), using realistic and duly validated synthetic time series, and generating a data bank of several thousands of seismograms that account for source, propagation, and site effects. Accordingly, with basic self-organized criticality concepts, NDSHA permits the integration of available information provided by the most updated seismological, geological, geophysical, and geotechnical databases for the site of interest, as well as advanced physical modeling techniques, to provide a reliable and robust background for the development of a design basis for cultural heritage and civil infrastructures. Estimates of seismic hazard obtained using the NDSHA and standard probabilistic approaches are compared for the Italian territory, and a case-study is discussed. In order to enable a reliable estimation of the ground motion response to an earthquake, three-dimensional velocity models have to be considered, resulting in a new, very efficient, analytical procedure for computing the broadband seismic wave-field in a 3-D anelastic Earth model.

  1. High resolution earthquake source mechanisms in a subduction zone: 3-D waveform simulations of aftershocks from the 2010 Mw 8.8 Chile rupture

    NASA Astrophysics Data System (ADS)

    Hicks, Stephen; Rietbrock, Andreas

    2015-04-01

    The earthquake rupture process is extremely heterogeneous. For subduction zone earthquakes in particular, it is vital to understand how structural variations in the overriding plate and downgoing slab may control slip style. The large-scale 3-D geometry of subduction plate boundaries is rapidly becoming well understood (e.g. Hayes et al., 2012); however, the nature of slip style along any finer-scale structures remains elusive. Regional earthquake moment tensor (RMT) inversion can shed light on faulting mechanisms. However, many traditional regional moment tensor inversions use simplified (1-D) Earth models (e.g. Agurto et al., 2012; Hayes et al., 2013) that only use the lowest frequency parts of the waveform, which may mask source complexity. As a result, we may have to take care when making small-scale interpretations about the causative fault and its slip style. This situation is compounded further by strong lateral variations in subsurface geology, as well as poor station coverage for recording offshore subduction earthquakes. A formal assessment of the resolving capability of RMT inversions in subduction zones is challenging and the application of 3-D waveform simulation techniques in highly heterogeneous media is needed. We generate 3-D waveform simulations of aftershocks from a large earthquake that struck Chile in 2010. The Mw 8.8 Maule earthquake is the sixth largest earthquake ever recorded. Following the earthquake, there was an international deployment of seismic stations in the rupture area, making this one of the best observed aftershock sequences to date. We therefore have a unique opportunity to compare recorded waveforms with simulated waveforms for many earthquakes, shedding light on the effect of 3-D heterogeneity on source imaging. We perform forward simulations using the spectral element wave propagation code, SPEFEM3D (e.g. Komatitsch et al., 2010) for a set of moderate-sized aftershocks (Mw 4.0-5.5). A detailed knowledge of velocity structure

  2. Reducing Disk Storage of Full-3D Seismic Waveform Tomography (F3DT) Through Lossy Online Compression

    SciTech Connect

    Lindstrom, Peter; Chen, Po; Lee, En-Jui

    2016-05-05

    Full-3D seismic waveform tomography (F3DT) is the latest seismic tomography technique that can assimilate broadband, multi-component seismic waveform observations into high-resolution 3D subsurface seismic structure models. The main drawback in the current F3DT implementation, in particular the scattering-integral implementation (F3DT-SI), is the high disk storage cost and the associated I/O overhead of archiving the 4D space-time wavefields of the receiver- or source-side strain tensors. The strain tensor fields are needed for computing the data sensitivity kernels, which are used for constructing the Jacobian matrix in the Gauss-Newton optimization algorithm. In this study, we have successfully integrated a lossy compression algorithm into our F3DT SI workflow to significantly reduce the disk space for storing the strain tensor fields. The compressor supports a user-specified tolerance for bounding the error, and can be integrated into our finite-difference wave-propagation simulation code used for computing the strain fields. The decompressor can be integrated into the kernel calculation code that reads the strain fields from the disk and compute the data sensitivity kernels. During the wave-propagation simulations, we compress the strain fields before writing them to the disk. To compute the data sensitivity kernels, we read the compressed strain fields from the disk and decompress them before using them in kernel calculations. Experiments using a realistic dataset in our California statewide F3DT project have shown that we can reduce the strain-field disk storage by at least an order of magnitude with acceptable loss, and also improve the overall I/O performance of the entire F3DT-SI workflow significantly. The integration of the lossy online compressor may potentially open up the possibilities of the wide adoption of F3DT-SI in routine seismic tomography practices in the near future.

  3. Reducing disk storage of full-3D seismic waveform tomography (F3DT) through lossy online compression

    NASA Astrophysics Data System (ADS)

    Lindstrom, Peter; Chen, Po; Lee, En-Jui

    2016-08-01

    Full-3D seismic waveform tomography (F3DT) is the latest seismic tomography technique that can assimilate broadband, multi-component seismic waveform observations into high-resolution 3D subsurface seismic structure models. The main drawback in the current F3DT implementation, in particular the scattering-integral implementation (F3DT-SI), is the high disk storage cost and the associated I/O overhead of archiving the 4D space-time wavefields of the receiver- or source-side strain tensors. The strain tensor fields are needed for computing the data sensitivity kernels, which are used for constructing the Jacobian matrix in the Gauss-Newton optimization algorithm. In this study, we have successfully integrated a lossy compression algorithm into our F3DT-SI workflow to significantly reduce the disk space for storing the strain tensor fields. The compressor supports a user-specified tolerance for bounding the error, and can be integrated into our finite-difference wave-propagation simulation code used for computing the strain fields. The decompressor can be integrated into the kernel calculation code that reads the strain fields from the disk and compute the data sensitivity kernels. During the wave-propagation simulations, we compress the strain fields before writing them to the disk. To compute the data sensitivity kernels, we read the compressed strain fields from the disk and decompress them before using them in kernel calculations. Experiments using a realistic dataset in our California statewide F3DT project have shown that we can reduce the strain-field disk storage by at least an order of magnitude with acceptable loss, and also improve the overall I/O performance of the entire F3DT-SI workflow significantly. The integration of the lossy online compressor may potentially open up the possibilities of the wide adoption of F3DT-SI in routine seismic tomography practices in the near future.

  4. Time-lapse 3-D seismic imaging of shallow subsurface contaminant flow.

    PubMed

    McKenna, J; Sherlock, D; Evans, B

    2001-12-01

    This paper presents a physical modelling study outlining a technique whereby buoyant contaminant flow within water-saturated unconsolidated sand was remotely monitored utilizing the time-lapse 3-D (TL3-D) seismic response. The controlled temperature and pressure conditions, along with the high level of acquisition repeatability attainable using sandbox physical models, allow the TL3-D seismic response to pore fluid movement to be distinguished from all other effects. TL3-D seismic techniques are currently being developed to monitor hydrocarbon reserves within producing reservoirs in an endeavour to improve overall recovery. However, in many ways, sandbox models under atmospheric conditions more accurately simulate the shallow subsurface than petroleum reservoirs. For this reason, perhaps the greatest application for analogue sandbox modelling is to improve our understanding of shallow groundwater and environmental flow mechanisms. Two fluid flow simulations were conducted whereby air and kerosene were injected into separate water-saturated unconsolidated sand models. In both experiments, a base 3-D seismic volume was recorded and compared with six later monitor surveys recorded while the injection program was conducted. Normal incidence amplitude and P-wave velocity information were extracted from the TL3-D seismic data to provide visualization of contaminant migration. Reflection amplitudes displayed qualitative areal distribution of fluids when a suitable impedance contrast existed between pore fluids. TL3-D seismic reflection tomography can potentially monitor the change in areal distribution of fluid contaminants over time, indicating flow patterns. However, other research and this current work have not established a quantifiable relationship between either normal reflection amplitudes and attenuation and fluid saturation. Generally, different pore fluids will have unique seismic velocities due to differences in compressibility and density. The predictable

  5. SU-E-CAMPUS-T-05: Validation of High-Resolution 3D Patient QA for Proton Pencil Beam Scanning and IMPT by Polymer Gel Dosimetry

    SciTech Connect

    Cardin, A; Avery, S; Ding, X; Kassaee, A; Lin, L; Maryanski, M

    2014-06-15

    Purpose: Validation of high-resolution 3D patient QA for proton pencil beam scanning and IMPT by polymer gel dosimetry. Methods: Four BANG3Pro polymer gel dosimeters (manufactured by MGS Research Inc, Madison, CT) were used for patient QA at the Robert's Proton Therapy Center (RPTC, Philadelphia, PA). All dosimeters were sealed in identical thin-wall Pyrex glass spheres. Each dosimeter contained a set of markers for 3D registration purposes. The dosimeters were mounted in a consistent and reproducible manner using a custom build holder. Two proton pencil beam scanning plans were designed using Varian Eclipse™ treatment planning system: 1) A two-field intensity modulated proton therapy (IMPT) plan and 2) one single field uniform dose (SFUD) plan. The IMPT fields were evaluated as a composite plan and individual fields, the SFUD plan was delivered as a single field plan.Laser CT scanning was performed using the manufacturer's OCTOPUS-IQ axial transmission laser CT scanner using a 1 mm slice thickness. 3D registration, analysis, and OD/cm to absorbed dose calibrations were perfomed using DICOM RT-Dose and CT files, and software developed by the manufacturer. 3D delta index, a metric equivalent to the gamma tool, was used for dose comparison. Results: Very good agreement with single IMPT fields and with SFUD was obtained. Composite IMPT fields had a less satisfactory agreement. The single fields had 3D delta index passing rates (3% dose difference, 3 mm DTA) of 98.98% and 94.91%. The composite 3D delta index passing rate was 80.80%. The SFUD passing rate was 93.77%. Required shifts of the dose distributions were less than 4 mm. Conclusion: A formulation of the BANG3Pro polymer gel dosimeter, suitable for 3D QA of proton patient plans is established and validated. Likewise, the mailed QA analysis service provided by the manufacturer is a practical option when required resources are unavailable. We fully disclose that the subject of this research regards a production

  6. 3D finite-difference seismic migration with parallel computers

    SciTech Connect

    Ober, C.C.; Gjertsen, R.; Minkoff, S.; Womble, D.E.

    1998-11-01

    The ability to image complex geologies such as salt domes in the Gulf of Mexico and thrusts in mountainous regions is essential for reducing the risk associated with oil exploration. Imaging these structures, however, is computationally expensive as datasets can be terabytes in size. Traditional ray-tracing migration methods cannot handle complex velocity variations commonly found near such salt structures. Instead the authors use the full 3D acoustic wave equation, discretized via a finite difference algorithm. They reduce the cost of solving the apraxial wave equation by a number of numerical techniques including the method of fractional steps and pipelining the tridiagonal solves. The imaging code, Salvo, uses both frequency parallelism (generally 90% efficient) and spatial parallelism (65% efficient). Salvo has been tested on synthetic and real data and produces clear images of the subsurface even beneath complicated salt structures.

  7. Mapping 3D fault geometry in earthquakes using high-resolution topography: Examples from the 2010 El Mayor-Cucapah (Mexico) and 2013 Balochistan (Pakistan) earthquakes

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Walker, Richard T.; Elliott, John R.; Parsons, Barry

    2016-04-01

    Fault dips are usually measured from outcrops in the field or inferred through geodetic or seismological modeling. Here we apply the classic structural geology approach of calculating dip from a fault's 3-D surface trace using recent, high-resolution topography. A test study applied to the 2010 El Mayor-Cucapah earthquake shows very good agreement between our results and those previously determined from field measurements. To obtain a reliable estimate, a fault segment ≥120 m long with a topographic variation ≥15 m is suggested. We then applied this method to the 2013 Balochistan earthquake, getting dips similar to previous estimates. Our dip estimates show a switch from north to south dipping at the southern end of the main trace, which appears to be a response to local extension within a stepover. We suggest that this previously unidentified geometrical complexity may act as the endpoint of earthquake ruptures for the southern end of the Hoshab fault.

  8. High-resolution seismic imaging, Mono Lake fault zone, eastern Sierra region, Walker Lane, California

    NASA Astrophysics Data System (ADS)

    Jayko, A. S.; Childs, J. R.; Hart, P. E.; Bursik, M. I.; McClain, J. S.

    2012-12-01

    Multiple strands of the Mono Lake fault zone (MLfz), a segment of the Sierra Nevada frontal fault zone, have been imaged on several high-resolution seismic reflection profiles collected during 2009 and 2011 at Mono Lake. The profiles show coherent reflectors to about 30-40 ms depth below the lake bottom (~30 m thick section) in nearshore areas north of the Lee Vining delta. The MLfz is well imaged on 8 lines including 4 lines ~normal to the trend of the fault zone. The fault zone is ~ 0.75 km wide. Deep reflection horizons appear gently tilted and rotated into the fault zone with a prominent clastic wedge overlying the west-tilted horizons. Shallow reflectors above the clastic wedge are generally east-sloping, but noticeably less inclined above the fault zone. At least two ruptures offset Holocene deposits, with ~0.5-1.8 m dip-slip offset around 2.5 ka and ~3.6-6.13 m dip-slip offset around 4.7 to 6.25 ka. The ages of reflection horizons are estimated using published Holocene and late Pleistocene sedimentation rates, as well as correlation with a published nearby shallow core. The short term fault slip rate based on the timing of the most recent event and multiple events in the profile lines suggests fault slip rates of about 0.26 to 0.55 m/ka using ages based only on sedimentation rate and of about 0.31 to 0.34 m/ka using correlation ages from nearby shallow core. This offshore dip-slip rate is significantly lower than previous published 1.0-2.0 m/ka dip-slip rates estimated using cosmogenic dating of Tioga glacial moraines in Lundy Canyon and offset older moraines. The offset on the large scarp in Lundy Canyon (~20 m) decreases both north and south of the canyon and flanking lateral moraines where the scarp is on the order of only ~4-7 m high. A possible explanation for the apparent difference in MLfz slip rates onshore and offshore in this part of Mono Basin may be soft sediment deformation of saturated glacial-deltaic sediment within Lundy Canyon that causes

  9. High Resolution Quaternary Seismic Stratigraphy of the New York Bight Continental Shelf

    USGS Publications Warehouse

    Schwab, William C.; Denny, J.F.; Foster, D.S.; Lotto, L.L.; Allison, M.A.; Uchupi, E.; Swift, B.A.; Danforth, W.W.; Thieler, E.R.; Butman, Bradford

    2003-01-01

    A principal focus for the U.S. Geological Survey (USGS) Coastal and Marine Geology Program (marine.usgs.gov) is regional reconnaissance mapping of inner-continental shelf areas, with initial emphasis on heavily used areas of the sea floor near major population centers. The objectives are to develop a detailed regional synthesis of the sea-floor geology in order to provide information for a wide range of management decisions and to form a basis for further investigations of marine geological processes. In 1995, the USGS, in cooperation with the U.S. Army Corps of Engineers (USACOE), New York District, began to generate reconnaissance maps of the continental shelf seaward of the New York - New Jersey metropolitan area. This mapping encompassed the New York Bight inner-continental shelf, one of the most heavily trafficked and exploited coastal regions in the United States. Contiguous areas of the Hudson Shelf Valley, the largest physiographic feature on this segment of the continental shelf, also were mapped as part of a USGS study of contaminated sediments (Buchholtz ten Brink and others, 1994; 1996). The goal of the reconnaissance mapping was to provide a regional synthesis of the sea-floor geology in the New York Bight area, including: (a) a description of sea-floor morphology; (b) a map of sea-floor sedimentary lithotypes; (c) the geometry and structure of the Cretaceous strata and Quaternary deposits; and (d) the geologic history of the region. Pursuing the course of this mapping effort, we obtained sidescan-sonar images of 100 % of the sea floor in the study area. Initial interpretations of these sidescan data were presented by Schwab and others, (1997a, 1997b, 2000a). High-resolution seismic-reflection profiles collected along each sidescan-sonar line used multiple acoustic sources (e.g., watergun, CHIRP, Geopulse). Multibeam swath-bathymetry data also were obtained for a portion of the study area (Butman and others, 1998;). In this report, we present a series

  10. High Resolution/High Fidelity Seismic Imaging and Parameter Estimation for Geological Structure and Material Characterization

    SciTech Connect

    Ru-Shan Wu; Xiao-Bi Xie

    2008-06-08

    Our proposed work on high resolution/high fidelity seismic imaging focused on three general areas: (1) development of new, more efficient, wave-equation-based propagators and imaging conditions, (2) developments towards amplitude-preserving imaging in the local angle domain, in particular, imaging methods that allow us to estimate the reflection as a function of angle at a layer boundary, and (3) studies of wave inversion for local parameter estimation. In this report we summarize the results and progress we made during the project period. The report is divided into three parts, totaling 10 chapters. The first part is on resolution analysis and its relation to directional illumination analysis. The second part, which is composed of 6 chapters, is on the main theme of our work, the true-reflection imaging. True-reflection imaging is an advanced imaging technology which aims at keeping the image amplitude proportional to the reflection strength of the local reflectors or to obtain the reflection coefficient as function of reflection-angle. There are many factors which may influence the image amplitude, such as geometrical spreading, transmission loss, path absorption, acquisition aperture effect, etc. However, we can group these into two categories: one is the propagator effect (geometric spreading, path losses); the other is the acquisition-aperture effect. We have made significant progress in both categories. We studied the effects of different terms in the true-amplitude one-way propagators, especially the terms including lateral velocity variation of the medium. We also demonstrate the improvements by optimizing the expansion coefficients in different terms. Our research also includes directional illumination analysis for both the one-way propagators and full-wave propagators. We developed the fast acquisition-aperture correction method in the local angle-domain, which is an important element in the true-reflection imaging. Other developments include the super

  11. High resolution applications of seismic tomography: low velocity anomalies and static corrections using wave-equation datuming

    NASA Astrophysics Data System (ADS)

    Flecha, I.; Marti, D.; Escuder, J.; Perez-Estaun, A.; Carbonell, R.

    2003-04-01

    A detailed characterization of the internal structure and physical properties of shallow surface can be obtained using high-resolution seismic tomography. Two applications of high resolution seismic tomography are presented in this study. Several synthetics simulations have been carried out to asses the resolving power of this methodology in different cases. The first studied case is the detection of low velocity anomalies in the shallow subsoil. Underground cavities (mines), water flows (formation wich loose sand), etc., are geological features present in the shallow subsurface characterized by low seismic velocities, and are targets of considerable social interest. We have considered a 400m×50m two dimensional velocity model consisting of a background velocity gradient in depth from 3 to 4 Km/s which included a rectangular low velocity anomaly (300 m/s). This anomaly was placed between 10m and 30m in depth and between 180m and 220m in length. The inversions schemes provided estimates of the velocity, however the tomograms and the ray tracing diagrams indicated a low resolution for the anomaly. In the second case we have applied wave-equation datuming to pre-stack layer replacement. The standard seismic data processing applies a vertical time shift to the data traces. However, it is not a good option when we are dealing with rugged topography or bathymetry, and when the media presents a high heterogeneity. Wave-equation datuming extrapolates seismic time data to some level datum keeping consistency between raypaths and wavefield propagation. It improves considerably seismic reflectors imaging. In order to implement this technique a velocity model is required, and usually a constant velocity is used to propagate the wavefield; instead of it we have used seismic tomography to provide an accurate velocity model.

  12. High Resolution Seismic Survey off the Pacific Shore of Costa Rica - Detailed Imaging of Deformational Patterns, Fluid Venting and Carbonate Mounds

    NASA Astrophysics Data System (ADS)

    Fekete, N.; Spiess, V.; Heidersdorf, F.; v. Lom, H.; Zuehlsdorff, L.; Denil, D.; Huguen, C.; Schnabel, M.

    2003-04-01

    R/V METEOR Research Cruise M54/1 in summer 2002 from Balboa (Panama) to Caldera (Costa Rica) aimed at imaging the near sea floor sedimentary structures of both the continental and oceanic plates of the Costa Rican Subduction Zone with the high resolution seismic method. The cruise evolved from a cooperation of the Marine Seismics Group of the University of Bremen with the DFG funded Special Research Project 574 - Fluids and Volatiles in Subduction Zones - and is intended to supplement the marine geophysical, geological and geochemical as well as oceanographic data collected during R/V SONNE cruises in the area, as well as subsequent R/V METEOR cruises M54/2 and /3. The objectives of SFB 574 are the investigation of shallow and deep processes in subduction zones through near surface sampling of fluid vent sites and gas hydrate occurrences, as well as through detailed seismic and acoustic imaging of related structures. The main objectives of the cruise were to study 1) the volatile and material input into the sedimentary system on the oceanic plate, 2) the distribution of gas hydrates within the sediments, and 3) possible pathways and resulting structures of fluid/gas escape. Several working areas were selected, which had been identified as highly fractured sediment packages above subducting seamounts (Jaco Scar, Parrita Scar, Rio Bongo, Hongo area), areas of pronounced decollement reflection, major slump masses (Nicoya slide), regions of major fracturing of the oceanic crust, or carbonate mounds (Hongo area, Mound Culebra) during previous cruises. For calibration of seismic data, survey lines were also shot in the vicinity of ODP Leg 170 drill sites. Several seismic examples from various survey sites will be shown. Closely spaced profiles, allowing the acquisition of 3D and 2.5D seismic data in the Hongo area and near Mound Culebra, respectively, reveal the complex internal structure of fluid pathways, the distribution of gas hydrates, and the tectonic framework of

  13. Fluid Lensing, Applications to High-Resolution 3D Subaqueous Imaging & Automated Remote Biosphere Assessment from Airborne and Space-borne Platforms

    NASA Astrophysics Data System (ADS)

    Chirayath, V.

    2014-12-01

    Fluid Lensing is a theoretical model and algorithm I present for fluid-optical interactions in turbulent flows as well as two-fluid surface boundaries that, when coupled with an unique computer vision and image-processing pipeline, may be used to significantly enhance the angular resolution of a remote sensing optical system with applicability to high-resolution 3D imaging of subaqueous regions and through turbulent fluid flows. This novel remote sensing technology has recently been implemented on a quadcopter-based UAS for imaging shallow benthic systems to create the first dataset of a biosphere with unprecedented sub-cm-level imagery in 3D over areas as large as 15 square kilometers. Perturbed two-fluid boundaries with different refractive indices, such as the surface between the ocean and air, may be exploited for use as lensing elements for imaging targets on either side of the interface with enhanced angular resolution. I present theoretical developments behind Fluid Lensing and experimental results from its recent implementation for the Reactive Reefs project to image shallow reef ecosystems at cm scales. Preliminary results from petabyte-scale aerial survey efforts using Fluid Lensing to image at-risk coral reefs in American Samoa (August, 2013) show broad applicability to large-scale automated species identification, morphology studies and reef ecosystem characterization for shallow marine environments and terrestrial biospheres, of crucial importance to understanding climate change's impact on coastal zones, global oxygen production and carbon sequestration.

  14. Growth of lithospheric-scale fault system in NE Tibet: numerical modeling constrained by high-resolution seismic reflection data

    NASA Astrophysics Data System (ADS)

    Fu, Zhen; Zhang, Haiming

    2016-04-01

    The growth of lithospheric-scale fault system is strongly coupled with the deformation of continental lithosphere in Tibetan Plateau. Therefore, prediction of fault growth is important to understand the tectonic history of continental deformation with fault system. Recently, high-resolution seismic reflection profiling across the Kunlun fault in northeasten Tibet reveals several fault systems at the scale of lithosphere. A 2D mid-crustal strain-transfer model, which emphasized on the lateral heterogeneity of crust, was proposed to explain the seismic reflection profiling under the condition of compression. In order to understand the dynamic process of lithospheric deformation, an elastic-plastic constitutive relationship in finite element modeling is used to investigate the mechanism of the fault growth in the section under the condition of compression by allowing permanent strains to develop in response to the applied loads. The vertical and lateral heterogeneity of material, effect of plastic parameters and geometry of models from nature structure are all discussed in this study. The results compared with high-resolution seismic image show that well-designed geomechanical modeling can produce overall process of fault growth for both continuum without preexisting fault and discontinuous deformation with a peexisting fault. But the model of the Kunlun fault cutting down the Moho is not supported by the results compared with the seismic data.

  15. 3D Tromso survey planning: Cost efficiency through seismic data quality

    SciTech Connect

    Savini, L.; La Bella, G.; Ronchitelli, G.; Seldal, J.

    1996-12-31

    The approach described in this case history allows for the production of a full 3D dataset in order to solve the interpretation problems of the area at reduced cost. The structural definition of the main prospects in the area was unclear, mainly due to the poor quality of 2D seismic data. The committed 2D seismic survey would have probably supplied a seismic-data set of slightly better quality, but on the other hand, there would not have been a suitable improvement in the imaging of the main prospects. In an attempt to overcome these problems, an Explorative 3D survey was planned. In order to ensure a proper quality of the 3D dataset, an integrated approach to the acquisition and processing planning was adopted. Acquisition was carried out utilizing skipped configuration capable of acquiring 12 CMP lines for each sail line with a considerable reduction in cost.

  16. Comprehensive Non-Destructive Conservation Documentation of Lunar Samples Using High-Resolution Image-Based 3D Reconstructions and X-Ray CT Data

    NASA Technical Reports Server (NTRS)

    Blumenfeld, E. H.; Evans, C. A.; Oshel, E. R.; Liddle, D. A.; Beaulieu, K.; Zeigler, R. A.; Hanna, R. D.; Ketcham, R. A.

    2015-01-01

    Established contemporary conservation methods within the fields of Natural and Cultural Heritage encourage an interdisciplinary approach to preservation of heritage material (both tangible and intangible) that holds "Outstanding Universal Value" for our global community. NASA's lunar samples were acquired from the moon for the primary purpose of intensive scientific investigation. These samples, however, also invoke cultural significance, as evidenced by the millions of people per year that visit lunar displays in museums and heritage centers around the world. Being both scientifically and culturally significant, the lunar samples require a unique conservation approach. Government mandate dictates that NASA's Astromaterials Acquisition and Curation Office develop and maintain protocols for "documentation, preservation, preparation and distribution of samples for research, education and public outreach" for both current and future collections of astromaterials. Documentation, considered the first stage within the conservation methodology, has evolved many new techniques since curation protocols for the lunar samples were first implemented, and the development of new documentation strategies for current and future astromaterials is beneficial to keeping curation protocols up to date. We have developed and tested a comprehensive non-destructive documentation technique using high-resolution image-based 3D reconstruction and X-ray CT (XCT) data in order to create interactive 3D models of lunar samples that would ultimately be served to both researchers and the public. These data enhance preliminary scientific investigations including targeted sample requests, and also provide a new visual platform for the public to experience and interact with the lunar samples. We intend to serve these data as they are acquired on NASA's Astromaterials Acquisistion and Curation website at http://curator.jsc.nasa.gov/. Providing 3D interior and exterior documentation of astromaterial

  17. What's the Point of a Raster ? Advantages of 3D Point Cloud Processing over Raster Based Methods for Accurate Geomorphic Analysis of High Resolution Topography.

    NASA Astrophysics Data System (ADS)

    Lague, D.

    2014-12-01

    High Resolution Topographic (HRT) datasets are predominantly stored and analyzed as 2D raster grids of elevations (i.e., Digital Elevation Models). Raster grid processing is common in GIS software and benefits from a large library of fast algorithms dedicated to geometrical analysis, drainage network computation and topographic change measurement. Yet, all instruments or methods currently generating HRT datasets (e.g., ALS, TLS, SFM, stereo satellite imagery) output natively 3D unstructured point clouds that are (i) non-regularly sampled, (ii) incomplete (e.g., submerged parts of river channels are rarely measured), and (iii) include 3D elements (e.g., vegetation, vertical features such as river banks or cliffs) that cannot be accurately described in a DEM. Interpolating the raw point cloud onto a 2D grid generally results in a loss of position accuracy, spatial resolution and in more or less controlled interpolation. Here I demonstrate how studying earth surface topography and processes directly on native 3D point cloud datasets offers several advantages over raster based methods: point cloud methods preserve the accuracy of the original data, can better handle the evaluation of uncertainty associated to topographic change measurements and are more suitable to study vegetation characteristics and steep features of the landscape. In this presentation, I will illustrate and compare Point Cloud based and Raster based workflows with various examples involving ALS, TLS and SFM for the analysis of bank erosion processes in bedrock and alluvial rivers, rockfall statistics (including rockfall volume estimate directly from point clouds) and the interaction of vegetation/hydraulics and sedimentation in salt marshes. These workflows use 2 recently published algorithms for point cloud classification (CANUPO) and point cloud comparison (M3C2) now implemented in the open source software CloudCompare.

  18. Comparison of high-resolution P- and SH-wave reflection seismic data in alluvial and pyroclastic deposits in Indonesia

    NASA Astrophysics Data System (ADS)

    Wiyono, Wiyono; Polom, Ulrich; Krawczyk, Charlotte M.

    2013-04-01

    Seismic reflection is one of the stable methods to investigate subsurface conditions. However, there are still many unresolved issues, especially for areas with specific and complex geological environments. Here, each location has an own characteristic due to material compounds and the geological structure. We acquired high-resolution, P-and SH-wave seismic reflection profiles at two different locations in Indonesia. The first location was in Semarang (Central Java) and the second one was in Tiris (East Java). The first region is located on an alluvial plain with thick alluvial deposits of more than 100 m estimated thickness, and the second location was located on pyroclastic deposit material. The seismic measurements for both locations were carried out using a 48-channel recording system (14-Hz P-wave, 10-Hz SH-wave geophones) with geophone intervals of 5 m (P-waves) and 1 m (SH-waves), respectively. The seismic source for the P-wave was a ca. 4 kg sledge hammer which generated a seismic signal by by hitting on an aluminum plate of 30x30 cm, whereas the SH-wave source was a mini-vibrator ELVIS (Electrodynamic Vibrator System), version 3. Thirteen seismic profiles at Semarang and eighth profiles at Tiris were acquired. The results of seismic data in Semarang show fair to good seismic records for both P-and SH-waves. The raw data contain high signal-to-noise-ratio. Many clear reflectors can be detected. The P-wave data shows reflectors down to 250 ms two-way time while the SH-wave records show seismic events up to 600 ms two-way time. This result is in strong contrast to the seismic data result from the Tiris region. The P-wave data show very low signal to noise ratio, there is no reflection signal visible, only the surface waves and the ambient noise from the surrounding area are visible. The SH-waves give a fair to good result which enables reflector detection down to 300 ms two-way time. The results from the two seismic campaigns show that SH-wave reflection

  19. Seismic source inversion using Green's reciprocity and a 3-D structural model for the Japanese Islands

    NASA Astrophysics Data System (ADS)

    Simutė, S.; Fichtner, A.

    2015-12-01

    We present a feasibility study for seismic source inversions using a 3-D velocity model for the Japanese Islands. The approach involves numerically calculating 3-D Green's tensors, which is made efficient by exploiting Green's reciprocity. The rationale for 3-D seismic source inversion has several aspects. For structurally complex regions, such as the Japan area, it is necessary to account for 3-D Earth heterogeneities to prevent unknown structure polluting source solutions. In addition, earthquake source characterisation can serve as a means to delineate existing faults. Source parameters obtained for more realistic Earth models can then facilitate improvements in seismic tomography and early warning systems, which are particularly important for seismically active areas, such as Japan. We have created a database of numerically computed 3-D Green's reciprocals for a 40°× 40°× 600 km size area around the Japanese Archipelago for >150 broadband stations. For this we used a regional 3-D velocity model, recently obtained from full waveform inversion. The model includes attenuation and radial anisotropy and explains seismic waveform data for periods between 10 - 80 s generally well. The aim is to perform source inversions using the database of 3-D Green's tensors. As preliminary steps, we present initial concepts to address issues that are at the basis of our approach. We first investigate to which extent Green's reciprocity works in a discrete domain. Considering substantial amounts of computed Green's tensors we address storage requirements and file formatting. We discuss the importance of the initial source model, as an intelligent choice can substantially reduce the search volume. Possibilities to perform a Bayesian inversion and ways to move to finite source inversion are also explored.

  20. High-resolution seismic imaging in deep sea from a joint deep-towed/OBH reflection experiment: application to a Mass Transport Complex offshore Nigeria

    NASA Astrophysics Data System (ADS)

    Ker, S.; Marsset, B.; Garziglia, S.; Le Gonidec, Y.; Gibert, D.; Voisset, M.; Adamy, J.

    2010-09-01

    We assess the feasibility of high-resolution seismic depth imaging in deep water based on a new geophysical approach involving the joint use of a deep-towed seismic device (SYSIF) and ocean bottom hydrophones (OBHs). Source signature measurement enables signature deconvolution to be used to improve the vertical resolution and signal-to-noise ratio. The source signature was also used to precisely determine direct traveltimes that were inverted to relocate source and receiver positions. The very high accuracy of the positioning that was obtained enabled depth imaging and a stack of the OBH data to be performed. The determination of the P-wave velocity distribution was realized by the adaptation of an iterative focusing approach to the specific acquisition geometry. This innovative experiment combined with advanced processing succeeded in reaching lateral and vertical resolution (2.5 and 1 m) in accordance with the objectives of imaging fine scale structures and correlation with in situ measurements. To illustrate the technological and processing advances of the approach, we present a first application performed during the ERIG3D cruise offshore Nigeria with the seismic data acquired over NG1, a buried Mass Transport Complex (MTC) interpreted as a debris flow by conventional data. Evidence for a slide nature of a part of the MTC was provided by the high resolution of the OBH depth images. Rigid behaviour may be inferred from movement of coherent material inside the MTC and thrust structures at the base of the MTC. Furthermore, a silt layer that was disrupted during emplacement but has maintained its stratigraphic position supports a short transport distance.

  1. High Resolution Seismic Study of the Holocene Infill of the Elkhorn Slough, Central California

    EPA Science Inventory

    The seismic analysis of the sedimentary infill of the Elkhorn Slough, central California, reveals a succession of three main seismic units: U1, U2, U3, with their correspondent discontinuities d2, d3. These units are deposited over a paleorelief representing the channel location ...

  2. Marine High-Resolution Seismic-Reflection Data in Southeastern Florida: Indications of a Regional Seal Bypass System

    NASA Astrophysics Data System (ADS)

    Cunningham, K. J.; Walker, C.; Reich, C. D.

    2008-05-01

    In southeastern Florida during 2007, about 108 km of marine, multichannel, high-resolution, seismic-reflection data were acquired almost entirely inside Biscayne National Park at water depths ranging from about 0.9 to 100 m. Fourteen profiles were acquired between the shoreline of the Florida peninsula and a series of small keys that separate Biscayne Bay from the Atlantic Ocean. Additionally, three profiles were collected eastward of the islands with two extending seaward of the present-day shelf margin and its discontinuous reefs. The set of seismic images from the 17 profiles is providing recognition of intriguing geologic features beneath and beyond Biscayne Bay. For example, the seismic sections provide clues as to the sealing capacity of confining units above a highly permeable zone (Boulder Zone) in the lower part of the Floridan aquifer system used on the southeastern peninsula for deep well injection of treated wastewater. Many of the seismic profiles exhibit continuous vertical disturbances in parallel seismic reflections that correspond to the rocks of the karst Floridan aquifer system and overlying intermediate confining unit. These features indicate fractures that disrupt seismic reflections representative of confining units and may allow ground water to flow across confinement. Combined, the fractures could act as a regional seal bypass system. If this bypass system allows cross-stratal fluid migration, it could provide many pathways for upward directed ground- water flow with leakage to higher hydrostratigraphic levels or to the surface as submarine ground-water discharge. Future research will include acquisition of additional marine seismic profiles and the use of streaming marine resistivity profiling and radon water column mapping. These data will be used to investigate the source waters of submarine ground-water discharge to Biscayne Bay, which could be associated with the fractures imaged on the seismic sections.

  3. Integration of high-resolution seismic and aeromagnetic data for earthquake hazards evaluations: An example from the Willamette Valley, Oregon

    USGS Publications Warehouse

    Liberty, L.M.; Trehu, A.M.; Blakely, R.J.; Dougherty, M.E.

    1999-01-01

    Aeromagnetic and high-resolution seismic reflection data were integrated to place constraints on the history of seismic activity and to determine the continuity of the possibly active, yet largely concealed Mount Angel fault in the Willamette Valley, Oregon. Recent seismic activity possibly related to the 20-km-long fault includes a swarm of small earthquakes near Woodburn in 1990 and the magnitude 5.6 Scotts Mills earthquake in 1993. Newly acquired aeromagnetic data show several large northwest-trending anomalies, including one associated with the Mount Angel fault. The magnetic signature indicates that the fault may actually extend 70 km across the Willamette Valley to join the Newberg and Gales Creek faults in the Oregon Coast Range. We collected 24-fold high-resolution seismic reflection data along two transects near Woodburn, Oregon, to image the offset of the Miocene-age Columbia River Basalts (CRB) and overlying sediments at and northwest of the known mapped extent of the Mount Angel fault. The seismic data show a 100-200-m offset in the CRB reflector at depths from 300 to 700 m. Folded or offset sediments appear above the CRB with decreasing amplitude to depths as shallow as were imaged (approximately 40 m). Modeling experiments based on the magnetic data indicate, however, that the anomaly associated with the Mount Angel fault is not caused solely by an offset of the CRB and overlying sediments. Underlying magnetic sources, which we presume to be volcanic rocks of the Siletz terrane, must have vertical offsets of at least 500 m to fit the observed data. We conclude that the Mount Angel fault appears to have been active since Eocene age and that the Gales Creek, Newberg, and Mount Angel faults should be considered a single potentially active fault system. This fault, as well as other parallel northwest-trending faults in the Willamette Valley, should be considered as risks for future potentially damaging earthquakes.

  4. Automatic detection of karstic sinkholes in seismic 3D images using circular Hough transform

    NASA Astrophysics Data System (ADS)

    Heydari Parchkoohi, Mostafa; Keshavarz Farajkhah, Nasser; Salimi Delshad, Meysam

    2015-10-01

    More than 30% of hydrocarbon reservoirs are reported in carbonates that mostly include evidence of fractures and karstification. Generally, the detection of karstic sinkholes prognosticate good quality hydrocarbon reservoirs where looser sediments fill the holes penetrating hard limestone and the overburden pressure on infill sediments is mostly tolerated by their sturdier surrounding structure. They are also useful for the detection of erosional surfaces in seismic stratigraphic studies and imply possible relative sea level fall at the time of establishment. Karstic sinkholes are identified straightforwardly by using seismic geometric attributes (e.g. coherency, curvature) in which lateral variations are much more emphasized with respect to the original 3D seismic image. Then, seismic interpreters rely on their visual skills and experience in detecting roughly round objects in seismic attribute maps. In this paper, we introduce an image processing workflow to enhance selective edges in seismic attribute volumes stemming from karstic sinkholes and finally locate them in a high quality 3D seismic image by using circular Hough transform. Afterwards, we present a case study from an on-shore oilfield in southwest Iran, in which the proposed algorithm is applied and karstic sinkholes are traced.

  5. Seismic Activity Seen Through Evolution of the Hurst Exponent Model in 3D

    NASA Astrophysics Data System (ADS)

    Patiño Ortiz, J.; Carreño Aguilera, R.; Balankin, A. S.; Patiño Ortiz, M.; Tovar Rodriguez, J. C.; Acevedo Mosqueda, M. A.; Martinez Cruz, M. A.; Yu, Wen

    2016-10-01

    The dynamics seismic activity occurred in the Cocos Plate - Mexico is analyzed through the evolution of Hurst exponent and 3D fractal dimension, under the mathematical fractal structure based on seismic activity time series, taking into account the magnitude (M) as the main parameter to be estimated. The seismic activity time series and, annual intervals are considered first for finding the Hurst exponent of each year since 1988 (the year in which the database is consistent) until 2012, and then the following years are accumulated describing the cumulative Hurst exponent. The seismic activity description is based on Cocos Plate data information; during a period conform from 1 January 1988 to 31 December 2012. Analyses were performed following methods, mainly considering that the Hurst exponent analysis provides the ability to find the seismicity behavior time-space, described by parameters obtained under the fractal dimension and complex systems.

  6. Areal 3-D seismic technique for reservoir delineation: Case history from offshore Niger Delta

    SciTech Connect

    Idowu, A.O. )

    1993-02-01

    In the 1950s, early exploration period in the Niger Delta witnessed the use of 2-D (two dimensional) seismic reflection method which adequate for imaging large subsurface geologic features including growth faulting and roll-over anticlines. This technique involves the Common-Depth-Point method (CDP) which acquires a plane of seismic information in distance along the surface and in time into the geological section, and is used to improve the signal-to-noise (S/N) ratio, to remove multiples and consequently give a representation of the subsurface particularly if the data are collected up- or downdip. By mid-1980s, the obvious geological structures have, in general, been discovered and it became necessary to adopt a more sophisticated technique such as the 3-D (three dimensional) seismic method to delineate more subtle reservoirs and resolve complex fault patterns in order to aid exploration as well as facilitate efficient field development. The case history discussed in this paper involves the use of areal 3-D seismic method for delineating the reservoir characterization of the O-field located in a shallow water area of the western Niger Delta. The areal 3-D seismic technique is superior to the earlier CDP method in that a cube of seismic data can be collected in two dimensions in space and one in time by a variety of techniques including the swath seismic shooting pattern adopted for gathering the 3-D data for the O-field's reservoir which involves the line of sources. The objective is to adequately sample the subsurface so that changes in various parameters such as the amplitude phase or power in the siesmic signal or velocity of propagation can be mapped areally and interpreted as an indication of changes in the physical properties of the rock matrix.

  7. High resolution seismic imaging of faults beneath Limón Bay, northern Panama Canal, Republic of Panama

    NASA Astrophysics Data System (ADS)

    Pratt, Thomas L.; Holmes, Mark; Schweig, Eugene S.; Gomberg, Joan; Cowan, Hugh A.

    2003-06-01

    High-resolution seismic reflection profiles from Limón Bay, Republic of Panama, were acquired as part of a seismic hazard investigation of the northern Panama Canal region. The seismic profiles image gently west and northwest dipping strata of upper Miocene Gatún Formation, unconformably overlain by a thin (<20 m) sequence of Holocene muds. Numerous faults, which have northeast trends where they can be correlated between seismic profiles, break the upper Miocene strata. Some of the faults have normal displacement, but on many faults, the amount and type of displacement cannot be determined. The age of displacement is constrained to be Late Miocene or younger, and regional geologic considerations suggest Pliocene movement. The faults may be part of a more extensive set of north- to northeast-trending faults and fractures in the canal region of central Panama. Low topography and the faults in the canal area may be the result of the modern regional stress field, bending of the Isthmus of Panama, shearing in eastern Panama, or minor deformation of the Panama Block above the Caribbean subduction zone. For seismic hazard analysis of the northern canal area, these faults led us to include a source zone of shallow faults proximal to northern canal facilities.

  8. High resolution seismic imaging of faults beneath Limón Bay, northern Panama Canal, Republic of Panama

    USGS Publications Warehouse

    Pratt, Thomas L.; Holmes, Mark; Schweig, Eugene S.; Gomberg, Joan S.; Cowan, Hugh A.

    2003-01-01

    High-resolution seismic reflection profiles from Limo??n Bay, Republic of Panama, were acquired as part of a seismic hazard investigation of the northern Panama Canal region. The seismic profiles image gently west and northwest dipping strata of upper Miocene Gatu??n Formation, unconformably overlain by a thin (<20 m) sequence of Holocene muds. Numerous faults, which have northeast trends where they can be correlated between seismic profiles, break the upper Miocene strata. Some of the faults have normal displacement, but on many faults, the amount and type of displacement cannot be determined. The age of displacement is constrained to be Late Miocene or younger, and regional geologic considerations suggest Pliocene movement. The faults may be part of a more extensive set of north- to northeast-trending faults and fractures in the canal region of central Panama. Low topography and the faults in the canal area may be the result of the modern regional stress field, bending of the Isthmus of Panama, shearing in eastern Panama, or minor deformation of the Panama Block above the Caribbean subduction zone. For seismic hazard analysis of the northern canal area, these faults led us to include a source zone of shallow faults proximal to northern canal facilities. ?? 2003 Elsevier B.V. All rights reserved.

  9. The offshore Yangsan fault activity in the Quaternary, SE Korea: Analysis of high-resolution seismic profiles

    NASA Astrophysics Data System (ADS)

    Kim, Han-Joon; Moon, Seonghoon; Jou, Hyeong-Tae; Lee, Gwang Hoon; Yoo, Dong Geun; Lee, Sang Hoon; Kim, Kwang Hee

    2016-12-01

    The NNE-trending dextral Yangsan fault is a > 190-km-long structure in the Korean Peninsula traced to the southeastern coast. The scarcity of Quaternary deposits onland precludes any detailed investigation of the Quaternary activity and structure of the Yangsan fault using seismic reflection profiling. We acquired offshore high-resolution seismic profiles to investigate the extension of the Yangsan fault and constrain its Quaternary activity using stratigraphic markers. The seismic profiles reveal a NNE-trending fault system consisting of a main fault and an array of subsidiary faults that displaced Quaternary sequences. Stratigraphic analysis of seismic profiles indicates that the offshore faults were activated repeatedly in the Quaternary. The up-to-the-east sense of throw on the main fault and plan-view pattern of the fault system are explained by dextral strike-slip faulting. The main fault, when projected toward the Korean Peninsula along its strike, aligns well with the Yangsan fault. We suggest that the offshore fault system is a continuation of the Yangsan fault and has spatial correlation with weak but ongoing seismicity.

  10. High-Resolution Seismic-Reflection and Marine Magnetic Data Along the Hosgri Fault Zone, Central California

    USGS Publications Warehouse

    Sliter, Ray W.; Triezenberg, Peter J.; Hart, Patrick E.; Watt, Janet T.; Johnson, Samuel Y.; Scheirer, Daniel S.

    2009-01-01

    The U.S. Geological Survey (USGS) collected high-resolution shallow seismic-reflection and marine magnetic data in June 2008 in the offshore areas between the towns of Cayucos and Pismo Beach, Calif., from the nearshore (~6-m depth) to just west of the Hosgri Fault Zone (~200-m depth). These data are in support of the California State Waters Mapping Program and the Cooperative Research and Development Agreement (CRADA) between the Pacific Gas & Electric Co. and the U.S. Geological Survey. Seismic-reflection and marine magnetic data were acquired aboard the R/V Parke Snavely, using a SIG 2Mille minisparker seismic source and a Geometrics G882 cesium-vapor marine magnetometer. More than 550 km of seismic and marine magnetic data was collected simultaneously along shore-perpendicular transects spaced 800 m apart, with an additional 220 km of marine magnetometer data collected across the Hosgri Fault Zone, resulting in spacing locally as smallas 400 m. This report includes maps of the seismic-survey sections, linked to Google Earth software, and digital data files showing images of each transect in SEG-Y, JPEG, and TIFF formats, as well as preliminary gridded marine-magnetic-anomaly and residual-magnetic-anomaly (shallow magnetic source) maps.

  11. Realtime infiltration process monitoring in macroporous soil - a plot-scale experiment accompanied by high-resolution time-lapse 3D GPR

    NASA Astrophysics Data System (ADS)

    Jackisch, Conrad; Allroggen, Niklas

    2016-04-01

    Infiltration and quick vertical redistribution of event water through rapid subsurface flow in soil structures is one of the key issues in hydrology. Although the importance of preferential flow is broadly recognised, our theories, observation techniques and modelling approaches lose grounds when the assumption of well-mixed states in REVs collapses. To characterise the combination of advective and diffusive flow is especially challenging. We have shown in earlier studies that a combination of TDR monitoring, dye- and salt-tracer recovery and time-lapse 3D GPR in irrigation experiments provides means to characterise infiltration dynamics at the plot- and hillslope-scale also in highly structured soils. We pinpointed that the spatial and temporal resolution requires special attention and improvement - particularly owing to the facts of high velocity (10-3 ms-1) of advective flow and small scale (10-2 m) of the respective flow structures. We present insights from a novel technique of continuous high-resolution time-lapse 3D GPR measurements during and after a plot-scale (1 m x 1 m) irrigation experiment. Continuous TDR soil moisture measurements, dye tracer excavation and salt-tracer samples are used as qualitative and quantitative references. While classical infiltration experiments either look at spatial patterns or temporal dynamics at singular gauges, we highlight the advantage of combining both to achieve a more complete image of the infiltration process. Although operating at the limits of the techniques this setup enables non-invasive observation of preferential flow processes in the field and allows to explore and characterise macropore matrix exchange.

  12. A Geo-referenced 3D model of the Juan de Fuca Slab and associated seismicity

    USGS Publications Warehouse

    Blair, J.L.; McCrory, P.A.; Oppenheimer, D.H.; Waldhauser, F.

    2011-01-01

    We present a Geographic Information System (GIS) of a new 3-dimensional (3D) model of the subducted Juan de Fuca Plate beneath western North America and associated seismicity of the Cascadia subduction system. The geo-referenced 3D model was constructed from weighted control points that integrate depth information from hypocenter locations and regional seismic velocity studies. We used the 3D model to differentiate earthquakes that occur above the Juan de Fuca Plate surface from earthquakes that occur below the plate surface. This GIS project of the Cascadia subduction system supersedes the one previously published by McCrory and others (2006). Our new slab model updates the model with new constraints. The most significant updates to the model include: (1) weighted control points to incorporate spatial uncertainty, (2) an additional gridded slab surface based on the Generic Mapping Tools (GMT) Surface program which constructs surfaces based on splines in tension (see expanded description below), (3) double-differenced hypocenter locations in northern California to better constrain slab location there, and (4) revised slab shape based on new hypocenter profiles that incorporate routine depth uncertainties as well as data from new seismic-reflection and seismic-refraction studies. We also provide a 3D fly-through animation of the model for use as a visualization tool.

  13. Reaction-induced porosity and onset of low-temperature carbonation in abyssal peridotites: Insights from 3D high-resolution microtomography

    NASA Astrophysics Data System (ADS)

    Jöns, Niels; Kahl, Wolf-Achim; Bach, Wolfgang

    2017-01-01

    In a drillcore sample of serpentinized harzburgite from the uppermost oceanic crust (Mid-Atlantic Ridge, ODP Leg 209, Site 1270), we demonstrate using high-resolution 3D-microtomography that micron-sized open cavities are present. The development of porosity is interpreted to result from dissolution of brucite and/or olivine. Petrographic observations indicate that voids are integrated in a network of carbonate veins, the formation of which is linked to changing alkalinity in conjunction with dissolution reactions. Partial carbonate filling of pore spaces indicates that under static conditions low-temperature carbonation leads to clogging of fluid pathways and thus to a reduction in permeability. Electron microprobe analyses show that the inner walls of open voids are lined with Fe-rich precipitates. We propose that the iron in those phases was released by brucite or olivine dissolution and was subsequently oxidized and precipitated as ferric hydroxide. Thermodynamic computations show that this process may be a potential source of catabolic energy for microorganisms inhabiting serpentinites. The proposed carbonation mechanism implies that carbonate precipitation may start soon after exposure of the abyssal peridotites, when dissolution of brucite and weathering of olivine begin, and continue until the phases become inaccessible to seawater. Predicting carbonation rates of abyssal peridotites will hence require understanding of permeability reactions.

  14. High-Resolution Seismic Velocity and Attenuation Models of Eastern Tibet and Adjacent Regions (Post Print)

    DTIC Science & Technology

    2012-06-04

    Basin. QLg and QPg models have been determined using a Reverse Two- station/event Method, which shows a high seismic attenuation zone along the...been determined using a Reverse Two-station/event Method, which shows a high seismic attenuation zone along the Kunlun belt. We have also observed...Like Pn and body wave results, low velocity anomalies occur across and within major strike-slip fault zones in the Qiangtang and Songpan-Ganzi

  15. 3D reflection seismic imaging at the 2.5 km deep COSC-1 scientific borehole, central Scandinavian Caledonides

    NASA Astrophysics Data System (ADS)

    Hedin, Peter; Almqvist, Bjarne; Berthet, Théo; Juhlin, Christopher; Buske, Stefan; Simon, Helge; Giese, Rüdiger; Krauß, Felix; Rosberg, Jan-Erik; Alm, Per-Gunnar

    2016-10-01

    The 2.5 km deep scientific COSC-1 borehole (ICDP 5054-1-A) was successfully drilled with nearly complete core recovery during spring and summer of 2014. Downhole and on-core measurements through the targeted Lower Seve Nappe provide a comprehensive data set. An observed gradual increase in strain below 1700 m, with mica schists and intermittent mylonites increasing in frequency and thickness, is here interpreted as the basal thrust zone of the Lower Seve Nappe. This high strain zone was not fully penetrated at the total drilled depth and is thus greater than 800 m in thickness. To allow extrapolation of the results from downhole logging, core analysis and other experiments into the surrounding rock and to link these with the regional tectonic setting and evolution, three post-drilling high-resolution seismic experiments were conducted in and around the borehole. One of these, the first 3D seismic reflection land survey to target the nappe structures of the Scandinavian Caledonides, is presented here. It provides new information on the 3D geometry of structures both within the drilled Lower Seve Nappe and underlying rocks down to at least 9 km. The observed reflectivity correlates well with results from the core analysis and downhole logging, despite challenges in processing. Reflections from the uppermost part of the Lower Seve Nappe have limited lateral extent and varying dips, possibly related to mafic lenses or boudins of variable character within felsic rock. Reflections occurring within the high strain zone, however, are laterally continuous over distances of a kilometer or more and dip 10-15° towards the southeast. Reflections from structures beneath the high strain unit and the COSC-1 borehole can be followed through most of the seismic volume down to at least 9 km and have dips of varying degree, mainly in the east-west thrust direction of the orogen.

  16. Identifying High Potential Well Targets with 3D Seismic and Mineralogy

    SciTech Connect

    Mellors, R. J.

    2015-10-30

    Seismic reflection the primary tool used in petroleum exploration and production, but use in geothermal exploration is less standard, in part due to cost but also due to the challenges in identifying the highly-permeable zones essential for economic hydrothermal systems [e.g. Louie et al., 2011; Majer, 2003]. Newer technology, such as wireless sensors and low-cost high performance computing, has helped reduce the cost and effort needed to conduct 3D surveys. The second difficulty, identifying permeable zones, has been less tractable so far. Here we report on the use of seismic attributes from a 3D seismic survey to identify and map permeable zones in a hydrothermal area.

  17. Using 3D Simulation of Elastic Wave Propagation in Laplace Domain for Electromagnetic-Seismic Inverse Modeling

    NASA Astrophysics Data System (ADS)

    Petrov, P.; Newman, G. A.

    2010-12-01

    Quantitative imaging of the subsurface objects is essential part of modern geophysical technology important in oil and gas exploration and wide-range engineering applications. A significant advancement in developing a robust, high resolution imaging technology is concerned with using the different geophysical measurements (gravity, EM and seismic) sense the subsurface structure. A joint image of the subsurface geophysical attributes (velocity, electrical conductivity and density) requires the consistent treatment of the different geophysical data (electromagnetic and seismic) due to their differing physical nature - diffusive and attenuated propagation of electromagnetic energy and nonlinear, multiple scattering wave propagation of seismic energy. Recent progress has been reported in the solution of this problem by reducing the complexity of seismic wave field. Works formed by Shin and Cha (2009 and 2008) suggests that low-pass filtering the seismic trace via Laplace-Fourier transformation can be an effective approach for obtaining seismic data that has similar spatial resolution to EM data. The effect of Laplace- Fourier transformation on the low-pass filtered trace changes the modeling of the seismic wave field from multi-wave propagation to diffusion. The key benefit of transformation is that diffusive wave-field inversion works well for both data sets seismic (Shin and Cha, 2008) and electromagnetic (Commer and Newman 2008, Newman et al., 2010). Moreover the different data sets can also be matched for similar and consistent resolution. Finally, the low pass seismic image is also an excellent choice for a starting model when analyzing the entire seismic waveform to recover the high spatial frequency components of the seismic image; its reflectivity (Shin and Cha, 2009). Without a good starting model full waveform seismic imaging and migration can encounter serious difficulties. To produce seismic wave fields consistent for joint imaging in the Laplace

  18. 3-D seismic tomographic modelling of the crustal structure of northwestern Svalbard based on deep seismic soundings

    NASA Astrophysics Data System (ADS)

    Czuba, Wojciech

    2016-11-01

    Wide angle refraction and reflection measurements were carried out in the passive continental margin zone of the northwestern Svalbard during several expeditions in 1978-1999. Data from a set of 2-D archival and modern seismic profiles recorded in-line and off-line, and from an additional permanent seismic station, were altogether used for seismic modelling of the crustal structure of the study area. Seismic arrivals (airgun and chemical explosive sources) were recorded by land (onshore) seismic stations, ocean bottom seismometers (OBS), and ocean bottom hydrophone stations (OBH). Good quality refracted and reflected P waves have provided an excellent data base for a seismic modelling. Chemical explosive sources were recorded even up to 300 km distances. The 3-D tomographic inversion method was applied. The results are comparable to the earlier 2-D modelling. Additional off-line information allowed to develop a 3-D image of the crustal structure. The continental crust thins to the west and north. A minimum depth of about 6 km to the Moho interface was determined east of the Molloy Deep and in the Knipovich Ridge. The Moho discontinuity deepens down to about 30 km below the continental crust of Spitsbergen.

  19. 3-D seismic tomographic modelling of the crustal structure of northwestern Svalbard based on deep seismic soundings

    NASA Astrophysics Data System (ADS)

    Czuba, Wojciech

    2017-01-01

    Wide angle refraction and reflection measurements were carried out in the passive continental margin zone of the northwestern Svalbard during several expeditions in 1978-1999. Data from a set of 2-D archival and modern seismic profiles recorded in-line and off-line, and from an additional permanent seismic station, were altogether used for seismic modelling of the crustal structure of the study area. Seismic arrivals (airgun and chemical explosive sources) were recorded by land (onshore) seismic stations, ocean bottom seismometers (OBS), and ocean bottom hydrophone stations (OBH). Good quality refracted and reflected P waves have provided an excellent data base for a seismic modelling. Chemical explosive sources were recorded even up to 300 km distances. The 3-D tomographic inversion method was applied. The results are comparable to the earlier 2-D modelling. Additional off-line information allowed to develop a 3-D image of the crustal structure. The continental crust thins to the west and north. A minimum depth of about 6 km to the Moho interface was determined east of the Molloy Deep and in the Knipovich Ridge. The Moho discontinuity deepens down to about 30 km below the continental crust of Spitsbergen.

  20. High-resolution seismic imaging of the Kevitsa mafic-ultramafic Cu-Ni-PGE hosted intrusion, northern Finland

    NASA Astrophysics Data System (ADS)

    Malehmir, Alireza; Koivisto, Emilia; Wjins, Chris; Tryggvason, Ari; Juhlin, Christopher

    2014-05-01

    Kevitsa, in northern Finland, is a large nickel/copper ore body hosted by a massive mafic-ultramafic intrusion with measured and indicated resources of 240 million tons (cutoff 0.1%) grading 0.30% Ni and 0.41% Cu. Mining started in 2012 with an open pit that will extend down to about 550-600 m depth. The expected mine life is more than 20 years. Numerous boreholes are available in the area, but the majority of them are shallow and do not provide a comprehensive understanding of the dimensions of the intrusion. However, a number of boreholes do penetrate the basal contact of the intrusion. Most of these are also shallow and concentrated at the edge of the intrusion. A better knowledge of the geometry of the intrusion would provide a framework for near-mine and deep exploration in the area, but also a better understanding of the geology. Exact mapping of the basal contact of the intrusion would also provide an exploration target for the contact-type mineralization that is often more massive and richer in Ni-Cu than the disseminated mineralization away from the contact. With the objective of better characterizing the intrusion, a series of 2D profiles were acquired followed by a 3D reflection survey that covered an area of about 3 km by 3 km. Even though the geology is complex and the seismic P-wave velocity ranges between 5 to 8 km/s, conventional processing results show gently- to steeply-dipping reflections from depths of approximately 2 km to as shallow as 100 m. Many of these reflections are interpreted to originate from either fault systems or internal magmatic layering within the Kevitsa main intrusion. Correlations between the 3D surface seismic data and VSP data, based upon time shifts or phase changes along the reflections, support the interpretation that numerous faults are imaged in the volume. Some of these faults cross the planned open-pit mine at depths of about 300-500 m, and it is, therefore, critical to map them for mine planning. The seismic 3D

  1. 3D Transient Hydraulic Tomography (3DTHT): An Efficient Field and Modeling Method for High-Resolution Estimation of Aquifer Heterogeneity

    NASA Astrophysics Data System (ADS)

    Barrash, W.; Cardiff, M. A.; Kitanidis, P. K.

    2012-12-01

    The distribution of hydraulic conductivity (K) is a major control on groundwater flow and contaminant transport. Our limited ability to determine 3D heterogeneous distributions of K is a major reason for increased costs and uncertainties associated with virtually all aspects of groundwater contamination management (e.g., site investigations, risk assessments, remediation method selection/design/operation, monitoring system design/operation). Hydraulic tomography (HT) is an emerging method for directly estimating the spatially variable distribution of K - in a similar fashion to medical or geophysical imaging. Here we present results from 3D transient field-scale experiments (3DTHT) which capture the heterogeneous K distribution in a permeable, moderately heterogeneous, coarse fluvial unconfined aquifer at the Boise Hydrogeophysical Research Site (BHRS). The results are verified against high-resolution K profiles from multi-level slug tests at BHRS wells. The 3DTHT field system for well instrumentation and data acquisition/feedback is fully modular and portable, and the in-well packer-and-port system is easily assembled and disassembled without expensive support equipment or need for gas pressurization. Tests are run for 15-20 min and the aquifer is allowed to recover while the pumping equipment is repositioned between tests. The tomographic modeling software developed uses as input observations of temporal drawdown behavior from each of numerous zones isolated in numerous observation wells during a series of pumping tests conducted from numerous isolated intervals in one or more pumping wells. The software solves for distributed K (as well as storage parameters Ss and Sy, if desired) and estimates parameter uncertainties using: a transient 3D unconfined forward model in MODFLOW, the adjoint state method for calculating sensitivities (Clemo 2007), and the quasi-linear geostatistical inverse method (Kitanidis 1995) for the inversion. We solve for K at >100,000 sub-m3

  2. Advancing New 3D Seismic Interpretation Methods for Exploration and Development of Fractured Tight Gas Reservoirs

    SciTech Connect

    James Reeves

    2005-01-31

    In a study funded by the U.S. Department of Energy and GeoSpectrum, Inc., new P-wave 3D seismic interpretation methods to characterize fractured gas reservoirs are developed. A data driven exploratory approach is used to determine empirical relationships for reservoir properties. Fractures are predicted using seismic lineament mapping through a series of horizon and time slices in the reservoir zone. A seismic lineament is a linear feature seen in a slice through the seismic volume that has negligible vertical offset. We interpret that in regions of high seismic lineament density there is a greater likelihood of fractured reservoir. Seismic AVO attributes are developed to map brittle reservoir rock (low clay) and gas content. Brittle rocks are interpreted to be more fractured when seismic lineaments are present. The most important attribute developed in this study is the gas sensitive phase gradient (a new AVO attribute), as reservoir fractures may provide a plumbing system for both water and gas. Success is obtained when economic gas and oil discoveries are found. In a gas field previously plagued with poor drilling results, four new wells were spotted using the new methodology and recently drilled. The wells have estimated best of 12-months production indicators of 2106, 1652, 941, and 227 MCFGPD. The latter well was drilled in a region of swarming seismic lineaments but has poor gas sensitive phase gradient (AVO) and clay volume attributes. GeoSpectrum advised the unit operators that this location did not appear to have significant Lower Dakota gas before the well was drilled. The other three wells are considered good wells in this part of the basin and among the best wells in the area. These new drilling results have nearly doubled the gas production and the value of the field. The interpretation method is ready for commercialization and gas exploration and development. The new technology is adaptable to conventional lower cost 3D seismic surveys.

  3. Matching high-resolution seismic and electrical resistivity profiling to infer the shallow structure of Solfatara Volcano (Italy)

    NASA Astrophysics Data System (ADS)

    Bruno, Pier Paolo; Gresse, Marceau; Maraio, Stefano; Vandemeulebrouck, Jean; Di Fiore, Vincenzo

    2016-04-01

    Two coincident high-resolution seismic reflection and electrical resistivity profiles were acquired in the Solfatara tuff cone in May and November 2014, along with CO2 flux and surface temperature measurements. The acquired data are a subset of the MedSuV - RICEN dataset, which also includes a wider series of time-lapse geophysical and geochemical experiments carried out within Solfatara volcano, with the aim of studying changes in the properties of the medium at small scales through repeated high-resolution multi-parameter observations over time. Seismic reflection data were processed using the Common-Reflection-Surface stack, a fast and cost-effective alternative to standard reflection processing which allows to greatly improve signal-to-noise ratio in settings where structural complexity and high levels of ambient noise make it challenging to obtain a reliable seismic image. The reflection profiles provide the first high-resolution seismic images of Solfatara crater, depicting an asymmetrical structure filled by volcanoclastic sediments and whose bottom is found at about 400 ms TWT. Seismic data also display several narrow zones with distinctive anomalous of very low amplitude located in several areas within the crater, which were interpreted as gas chimneys created by intersection of NE- and NW-trending sets of sub-vertical fault and fractures and filled by fluids (both in gas and liquid phases) escaping from the deeper hydrothermal source. The imaged degassing pathways terminate against a strong horizontal reflector at about 100 ms TWT. Just above those structural pathways, electric data show the presence of a dome-shaped electrically conductive structure, buried in the centre of the volcano at a minimum depth of 50 m and interpreted as the upper end of the hydrothermal plume. The plume projection at the surface of the crater matches with high CO2 flux and soil temperature anomalies. Our results provide a solid framework to constrain the near

  4. Integrating 3D seismic curvature and curvature gradient attributes for fracture characterization: Methodologies and interpretational implications

    SciTech Connect

    Gao, Dengliang

    2013-03-01

    In 3D seismic interpretation, curvature is a popular attribute that depicts the geometry of seismic reflectors and has been widely used to detect faults in the subsurface; however, it provides only part of the solutions to subsurface structure analysis. This study extends the curvature algorithm to a new curvature gradient algorithm, and integrates both algorithms for fracture detection using a 3D seismic test data set over Teapot Dome (Wyoming). In fractured reservoirs at Teapot Dome known to be formed by tectonic folding and faulting, curvature helps define the crestal portion of the reservoirs that is associated with strong seismic amplitude and high oil productivity. In contrast, curvature gradient helps better define the regional northwest-trending and the cross-regional northeast-trending lineaments that are associated with weak seismic amplitude and low oil productivity. In concert with previous reports from image logs, cores, and outcrops, the current study based on an integrated seismic curvature and curvature gradient analysis suggests that curvature might help define areas of enhanced potential to form tensile fractures, whereas curvature gradient might help define zones of enhanced potential to develop shear fractures. In certain fractured reservoirs such as at Teapot Dome where faulting and fault-related folding contribute dominantly to the formation and evolution of fractures, curvature and curvature gradient attributes can be potentially applied to differentiate fracture mode, to predict fracture intensity and orientation, to detect fracture volume and connectivity, and to model fracture networks.

  5. Reservoir lithofacies analysis using 3D seismic data in dissimilarity space

    NASA Astrophysics Data System (ADS)

    Bagheri, M.; Riahi, M. A.; Hashemi, H.

    2013-06-01

    Seismic data interpretation is one of the most important steps in exploration seismology. Seismic facies analysis (SFA) with emphasis on lithofacies can be used to extract more information about structures and geology, which results in seismic interpretation enhancement. Facies analysis is based on unsupervised and supervised classification using seismic attributes. In this paper, supervised classification by a support vector machine using well logs and seismic attributes is applied. Dissimilarity as a new measuring space is employed, after which classification is carried out. Often, SFA is carried out in a feature space in which each dimension stands as a seismic attribute. Different facies show lots of class overlap in the feature space; hence, high classification error values are reported. Therefore, decreasing class overlap before classification is a necessary step to be targeted. To achieve this goal, a dissimilarity space is initially created. As a result of the definition of the new space, the class overlap between objects (seismic samples) is reduced and hence the classification can be done reliably. This strategy causes an increase in the accuracy of classification, and a more trustworthy lithofacies analysis is attained. For applying this method, 3D seismic data from an oil field in Iran were selected and the results obtained by a support vector classifier (SVC) in dissimilarity space are presented, discussed and compared with the SVC applied in conventional feature space.

  6. On horizontal resolution for seismic acquisition geometries in complex 3D media

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Fu, Li-Yun

    2014-09-01

    Spatial sampling has a crucial influence on the horizontal resolution of seismic imaging, but how to quantify the influence is still controversial especially in complex media. Most of the studies on horizontal resolution focus on the measurement of wavelet widths for seismic migration, but neglect to evaluate the effect of side-lobe perturbations on spatial resolution. The side-lobe effect, as a migration noise, is important for seismic imaging in complex media. In this article, with focal beam analysis, we define two parameters to represent the horizontal resolution of an acquisition geometry: the width of the main lobe (WML) along the inline and crossline directions and the ratio of the main-lobe amplitude to the total amplitude (RMT) in a focal beam. We provide examples of typical acquisition geometries to show how spatial sampling affects the horizontal resolution, measured in terms of WML and RMT values. WML defines the horizontal resolution to image the target, whereas RMT describes the clarity of the imaging. Migration noise reduces with increasing RMT, indirectly improving both the vertical and horizontal resolutions of seismic imaging. Case studies of seismic migration with 3D seismic data from an oil field of China, demonstrate how the acquisition geometries with different WML and RMT values influence the performance of seismic imaging. Prior WML and RMT analyses to predict the quality of acquired datasets can optimize acquisition geometries before the implementation of seismic acquisition.

  7. Prestack reverse time migration for 3D marine reflection seismic data

    SciTech Connect

    Jang, Seonghyung; Kim, Taeyoun

    2015-03-10

    Prestack reverse time migration (RTM) is a method for imaging the subsurface using the inner product of wavefield extrapolation in shot domain and in receiver domain. It is well known that RTM is better for preserving amplitudes and phases than other prestack migrations. Since 3D seismic data is huge data volume and it needs heavy computing works, it requires parallel computing in order to have a meaningful depth image of the 3D subsurface. We implemented a parallelized version of 3D RTM for prestack depth migration. The results of numerical example for 3D SEG/EAGE salt model showed good agreement with the original geological model. We applied RTM to offshore 3D seismic reflection data. The study area is 12 × 25 km with 120 survey lines. Shot and receiver spacing is 25 m and 12.5 m. The line spacing is 100 m. Shot gathers were preprocessed to enhance signal to noise ratio and velocity model was calculated from conventional stack velocity. Both of them were used to obtain 3D image using RTM. The results show reasonable subsurface image.

  8. 3D and 4D Seismic Imaging in the Oilfield; the state of the art

    NASA Astrophysics Data System (ADS)

    Strudley, A.

    2005-05-01

    Seismic imaging in the oilfield context has seen enormous changes over the last 20 years driven by a combination of improved subsurface illumination (2D to 3D), increased computational power and improved physical understanding. Today Kirchhoff Pre-stack migration (in time or depth) is the norm with anisotropic parameterisation and finite difference methods being increasingly employed. In the production context Time-Lapse (4D) Seismic is of growing importance as a tool for monitoring reservoir changes to facilitate increased productivity and recovery. In this paper we present an overview of state of the art technology in 3D and 4D seismic and look at future trends. Pre-stack Kirchhoff migration in time or depth is the imaging tool of choice for the majority of contemporary 3D datasets. Recent developments in 3D pre-stack imaging have been focussed around finite difference solutions to the acoustic wave equation, the so-called Wave Equation Migration methods (WEM). Application of finite difference solutions to imaging is certainly not new, however 3D pre-stack migration using these schemes is a relatively recent development driven by the need for imaging complex geologic structures such as sub salt, and facilitated by increased computational resources. Finally there are a class of imaging methods referred to as beam migration. These methods may be based on either the wave equation or rays, but all operate on a localised (in space and direction) part of the wavefield. These methods offer a bridge between the computational efficiency of Kirchhoff schemes and the improved image quality of WEM methods. Just as 3D seismic has had a radical impact on the quality of the static model of the reservoir, 4D seismic is having a dramatic impact on the dynamic model. Repeat shooting of seismic surveys after a period of production (typically one to several years) reveals changes in pressure and saturation through changes in the seismic response. The growth in interest in 4D seismic

  9. Integration of P- and SH-wave high-resolution seismic reflection and micro-gravity techniques to improve interpretation of shallow subsurface structure: New Madrid seismic zone

    USGS Publications Warehouse

    Bexfield, C.E.; McBride, J.H.; Pugin, Andre J.M.; Ravat, D.; Biswas, S.; Nelson, W.J.; Larson, T.H.; Sargent, S.L.; Fillerup, M.A.; Tingey, B.E.; Wald, L.; Northcott, M.L.; South, J.V.; Okure, M.S.; Chandler, M.R.

    2006-01-01

    Shallow high-resolution seismic reflection surveys have traditionally been restricted to either compressional (P) or horizontally polarized shear (SH) waves in order to produce 2-D images of subsurface structure. The northernmost Mississippi embayment and coincident New Madrid seismic zone (NMSZ) provide an ideal laboratory to study the experimental use of integrating P- and SH-wave seismic profiles, integrated, where practicable, with micro-gravity data. In this area, the relation between "deeper" deformation of Paleozoic bedrock associated with the formation of the Reelfoot rift and NMSZ seismicity and "shallower" deformation of overlying sediments has remained elusive, but could be revealed using integrated P- and SH-wave reflection. Surface expressions of deformation are almost non-existent in this region, which makes seismic reflection surveying the only means of detecting structures that are possibly pertinent to seismic hazard assessment. Since P- and SH-waves respond differently to the rock and fluid properties and travel at dissimilar speeds, the resulting seismic profiles provide complementary views of the subsurface based on different levels of resolution and imaging capability. P-wave profiles acquired in southwestern Illinois and western Kentucky (USA) detect faulting of deep, Paleozoic bedrock and Cretaceous reflectors while coincident SH-wave surveys show that this deformation propagates higher into overlying Tertiary and Quaternary strata. Forward modeling of micro-gravity data acquired along one of the seismic profiles further supports an interpretation of faulting of bedrock and Cretaceous strata. The integration of the two seismic and the micro-gravity methods therefore increases the scope for investigating the relation between the older and younger deformation in an area of critical seismic hazard. ?? 2006 Elsevier B.V. All rights reserved.

  10. High-resolution spectroscopy of Saturn at 3 microns: CH 4, CH 3D, C 2H 2, C 2H 6, PH 3, clouds, and haze

    NASA Astrophysics Data System (ADS)

    Kim, Joo Hyeon; Kim, Sang J.; Geballe, Thomas R.; Kim, Sungsoo S.; Brown, Linda R.

    2006-12-01

    We report observation and analysis of a high-resolution 2.87-3.54 μm spectrum of the southern temperate region of Saturn obtained with NIRSPEC at Keck II. The spectrum reveals absorption and emission lines of five molecular species as well as spectral features of haze particles. The ν+ν band of CH 3D is detected in absorption between 2.87 and 2.92 μm; and we derived from it a mixing ratio approximately consistent with the Infrared Space Observatory result. The ν band of C 2H 2 also is detected in absorption between 2.95 and 3.05 μm; analysis indicates a sudden drop in the C 2H 2 mixing ratio at 15 mbar (130 km above the 1 bar level), probably due to condensation in the low stratosphere. The presence of the ν+ν+ν band of C 2H 6 near 3.07 μm, first reported by Bjoraker et al. [Bjoraker, G.L., Larson, H.P., Fink, U., 1981. Astrophys. J. 248, 856-862], is confirmed, and a C 2H 6 condensation altitude of 10 mbar (140 km) in the low stratosphere is determined. We assign weak emission lines within the 3.3 μm band of CH 4 to the ν band of C 2H 6, and derive a mixing ratio of 9±4×10 for this species. Most of the C 2H 6 3.3 μm line emission arises in the altitude range 460-620 km (at ˜μbar pressure levels), much higher than the 160-370 km range where the 12 μm thermal molecular line emission of this species arises. At 2.87-2.90 μm the major absorber is tropospheric PH 3. The cloud level determined here and at 3.22-3.54 is 390-460 mbar (˜30 km), somewhat higher than found by Kim and Geballe [Kim, S.J., Geballe, T.R., 2005. Icarus 179, 449-458] from analysis of a low resolution spectrum. A broad absorption feature at 2.96 μm, which might be due to NH 3 ice particles in saturnian clouds, is also present. The effect of a haze layer at about 125 km (˜12 mbar level) on the 3.20-3.54 μm spectrum, which was not apparent in the low resolution spectrum, is clearly evident in the high resolution data, and the spectral properties of the haze particles suggest that

  11. High-resolution gravity and seismic-refraction surveys of the Smoke Tree Wash area, Joshua Tree National Park, California

    USGS Publications Warehouse

    Langenheim, Victoria E.; Rymer, Michael J.; Catchings, Rufus D.; Goldman, Mark R.; Watt, Janet T.; Powell, Robert E.; Matti, Jonathan C.

    2016-03-02

    We describe high-resolution gravity and seismic refraction surveys acquired to determine the thickness of valley-fill deposits and to delineate geologic structures that might influence groundwater flow beneath the Smoke Tree Wash area in Joshua Tree National Park. These surveys identified a sedimentary basin that is fault-controlled. A profile across the Smoke Tree Wash fault zone reveals low gravity values and seismic velocities that coincide with a mapped strand of the Smoke Tree Wash fault. Modeling of the gravity data reveals a basin about 2–2.5 km long and 1 km wide that is roughly centered on this mapped strand, and bounded by inferred faults. According to the gravity model the deepest part of the basin is about 270 m, but this area coincides with low velocities that are not characteristic of typical basement complex rocks. Most likely, the density contrast assumed in the inversion is too high or the uncharacteristically low velocities represent highly fractured or weathered basement rocks, or both. A longer seismic profile extending onto basement outcrops would help differentiate which scenario is more accurate. The seismic velocities also determine the depth to water table along the profile to be about 40–60 m, consistent with water levels measured in water wells near the northern end of the profile.

  12. Fault Imaging with High-Resolution Seismic Reflection for Earthquake Hazard and Geothermal Resource Assessment in Reno, Nevada

    SciTech Connect

    Frary, Roxanna

    2012-05-05

    The Truckee Meadows basin is situated adjacent to the Sierra Nevada microplate, on the western boundary of the Walker Lane. Being in the transition zone between a range-front normal fault on the west and northwest-striking right-lateral strike slip faults to the east, there is no absence of faulting in this basin. The Reno- Sparks metropolitan area is located in this basin, and with a signi cant population living here, it is important to know where these faults are. High-resolution seismic reflection surveys are used for the imaging of these faults along the Truckee River, across which only one fault was previously mapped, and in southern Reno near and along Manzanita Lane, where a swarm of short faults has been mapped. The reflection profiles constrain the geometries of these faults, and suggest additional faults not seen before. Used in conjunction with depth to bedrock calculations and gravity measurements, the seismic reflection surveys provide de nitive locations of faults, as well as their orientations. O sets on these faults indicate how active they are, and this in turn has implications for seismic hazard in the area. In addition to seismic hazard, the faults imaged here tell us something about the conduits for geothermal fluid resources in Reno.

  13. High-Resolution Subduction Zone Seismicity and Velocity Structure in Ibaraki, Japan

    NASA Astrophysics Data System (ADS)

    Shelly, D. R.; Beroza, G. C.; Zhang, H.; Thurber, C. H.; Ide, S.

    2004-12-01

    We use double-difference tomography (tomoDD) [Zhang and Thurber, 2003] and waveform-derived cross-correlation differential arrival times to invert for the earthquake locations and P- and S-wave velocity distributions in the subduction zone under Ibaraki Prefecture of north-central Honshu, Japan. The Ibaraki region is attractive for its high rate of slab seismicity and for the presence of an intermediate-depth double seismic zone. We relocate ~8000 events occurring in this region between June 2002 and June 2004. We use a combination of ~200,000 absolute travel times, ~5 million catalog-derived differential times, and ~5 million cross-correlation differential times derived from more than 150,000 waveforms, with roughly equal numbers of P- and S-wave data. Many of the waveforms are from HiNet borehole stations that provide particularly high-quality data. We also use data from JMA, the University of Tokyo, and Tohoku University. Since it is natural to expect sharp velocity contrasts in a subduction zone, we regularize the inversion using the total variation (TV) approach implemented through iteratively reweighted least squares. Because TV is an L1-norm regularization, sharp changes in velocity are penalized no more than gradual ones, but undulations in the velocity model remain damped. We will compare the TV results with those determined by standard least-squares, L2-norm regularization. Our results show increasingly organized seismicity including narrowing by up to 50% of the upper and lower limbs of the double seismic zone as viewed in cross-section. We find a zone of interplate events extending as deep as 60 km, forming a very distinct lineation in cross-section. Focal mechanisms support the interpretation that these are low angle, subduction interface events. These earthquakes are accompanied by a zone of very high Vp/Vs ratio within the downgoing plate, just beneath the seismicity, suggesting that high pore-pressures may enable seismic slip on the subduction

  14. High Resolution Seismic Imaging of Fault Zones: Methods and Examples From The San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Catchings, R. D.; Rymer, M. J.; Goldman, M.; Prentice, C. S.; Sickler, R. R.; Criley, C.

    2011-12-01

    Seismic imaging of fault zones at shallow depths is challenging. Conventional seismic reflection methods do not work well in fault zones that consist of non-planar strata or that have large variations in velocity structure, two properties that occur in most fault zones. Understanding the structure and geometry of fault zones is important to elucidate the earthquake hazard associated with fault zones and the barrier effect that faults impose on subsurface fluid flow. In collaboration with the San Francisco Public Utilities Commission (SFPUC) at San Andreas Lake on the San Francisco peninsula, we acquired combined seismic P-wave and S-wave reflection, refraction, and guided-wave data to image the principal strand of the San Andreas Fault (SAF) that ruptured the surface during the 1906 San Francisco earthquake and additional fault strands east of the rupture. The locations and geometries of these fault strands are important because the SFPUC is seismically retrofitting the Hetch Hetchy water delivery system, which provides much of the water for the San Francisco Bay area, and the delivery system is close to the SAF at San Andreas Lake. Seismic reflection images did not image the SAF zone well due to the brecciated bedrock, a lack of layered stratigraphy, and widely varying velocities. Tomographic P-wave velocity images clearly delineate the fault zone as a low-velocity zone at about 10 m depth in more competent rock, but due to soil saturation above the rock, the P-waves do not clearly image the fault strands at shallower depths. S-wave velocity images, however, clearly show a diagnostic low-velocity zone at the mapped 1906 surface break. To image the fault zone at greater depths, we utilized guided waves, which exhibit high amplitude seismic energy within fault zones. The guided waves appear to image the fault zone at varying depths depending on the frequency of the seismic waves. At higher frequencies (~30 to 40 Hz), the guided waves show strong amplification at the

  15. Drill site geohazard identification facilitated by rework of suitable existing 3D seismic data volumes

    SciTech Connect

    Cowlard, A.P.

    1996-12-31

    3D seismic volumes are increasingly being used to assist in the mapping and identification of drilling hazards. A method of reworking the 3D volume, termed the Short Offset method, is proposed which offers the benefit of optimized resolution in the shallow section and therefore provides the interpreter with an enhanced image of the near surface geology. The processing sequence contrasts markedly with conventional 3D processing and involves the inclusion of only near normal incidence traces. Two case histories are described which illustrate the application of the Short Offset method and its robustness even in conditions not conducive to enhancing frequency bandwidth. In summary, Short Offset reprocessing results in a product which offers considerably improved resolution when compared to a conventional 3D volume and far finer areal sampling when compared to a traditional 2D site survey thus providing the industry with a valuable tool for drilling hazard investigation.

  16. How 3D seismic-CAEX combination affected development of N. Frisco City field in Alabama

    SciTech Connect

    Stephenson, M.; Cox, J.; Jones-Fuentes, P. )

    1992-10-26

    This paper reports that by applying the latest in 3D seismic and computer aided exploration and production (CAEX) technology, small and mid-size independents are changing the methods by which fields are discovered and profitably developed. The combination of 3D and CAEX has, in many cases, altered oilfield economics. Nuevo Energy Co.'s North Frisco City development---located in the updip Jurassic Haynesville trend of Southwest Alabama---offers a case in point. The 3D technology employed at North Frisco City produced and accurate, detailed picture of the subsurface. Ultimately it more than doubled the drilling success rate over that of a nearby, closely related field in which 3D was not used.

  17. High-resolution seismic constraints on flow dynamics in the oceanic asthenosphere

    NASA Astrophysics Data System (ADS)

    Lin, Pei-Ying Patty; Gaherty, James B.; Jin, Ge; Collins, John A.; Lizarralde, Daniel; Evans, Rob. L.; Hirth, Greg

    2016-07-01

    Convective flow in the mantle and the motions of tectonic plates produce deformation of Earth’s interior, and the rock fabric produced by this deformation can be discerned using the anisotropy of the seismic wavespeed. This deformation is commonly inferred close to lithospheric boundaries beneath the ocean in the uppermost mantle, including near seafloor-spreading centres as new plates are formed via corner flow, and within a weak asthenosphere that lubricates large-scale plate-driven flow and accommodates smaller-scale convection. Seismic models of oceanic upper mantle differ as to the relative importance of these deformation processes: seafloor-spreading fabric is very strong just beneath the crust-mantle boundary (the Mohorovičić discontinuity, or Moho) at relatively local scales, but at the global and ocean-basin scales, oceanic lithosphere typically appears weakly anisotropic when compared to the asthenosphere. Here we use Rayleigh waves, recorded across an ocean-bottom seismograph array in the central Pacific Ocean (the NoMelt Experiment), to provide unique localized constraints on seismic anisotropy within the oceanic lithosphere-asthenosphere system in the middle of a plate. We find that azimuthal anisotropy is strongest within the high-seismic-velocity lid, with the fast direction coincident with seafloor spreading. A minimum in the magnitude of azimuthal anisotropy occurs within the middle of the seismic low-velocity zone, and then increases with depth below the weakest portion of the asthenosphere. At no depth does the fast direction correlate with the apparent plate motion. Our results suggest that the highest strain deformation in the shallow oceanic mantle occurs during corner flow at the ridge axis, and via pressure-driven or buoyancy-driven flow within the asthenosphere. Shear associated with motion of the plate over the underlying asthenosphere, if present, is weak compared to these other processes.

  18. High-resolution seismic constraints on flow dynamics in the oceanic asthenosphere.

    PubMed

    Lin, Pei-Ying Patty; Gaherty, James B; Jin, Ge; Collins, John A; Lizarralde, Daniel; Evans, Rob L; Hirth, Greg

    2016-07-28

    Convective flow in the mantle and the motions of tectonic plates produce deformation of Earth's interior, and the rock fabric produced by this deformation can be discerned using the anisotropy of the seismic wave speed. This deformation is commonly inferred close to lithospheric boundaries beneath the ocean in the uppermost mantle, including near seafloor-spreading centres as new plates are formed via corner flow, and within a weak asthenosphere that lubricates large-scale plate-driven flow and accommodates smaller scale convection. Seismic models of oceanic upper mantle differ as to the relative importance of these deformation processes: seafloor spreading fabric is very strong just beneath the crust-mantle boundary (the Mohorovičić discontinuity, or Moho) at relatively local scales, but at the global and ocean-basin scales, oceanic lithosphere typically appears weakly anisotropic when compared to the asthenosphere. Here we use Rayleigh waves, recorded across an ocean-bottom seismograph array in the central Pacific Ocean (the NoMelt Experiment), to provide unique localized constraints on seismic anisotropy within the oceanic lithosphere-asthenosphere system in the middle of a plate. We find that azimuthal anisotropy is strongest within the high-seismic-velocity lid, with the fast direction coincident with seafloor spreading. A minimum in the magnitude of azimuthal anisotropy occurs within the middle of the seismic low-velocity zone, and then increases with depth below the weakest portion of the asthenosphere. At no depth does the fast direction correlate with the apparent plate motion. Our results suggest that the highest strain deformation in the shallow oceanic mantle occurs during corner flow at the ridge axis, and via pressure-driven or buoyancy-driven flow within the asthenosphere. Shear associated with motion of the plate over the underlying asthenosphere, if present, is weak compared to these other processes.

  19. ActiveSeismoPick3D - automatic first arrival determination for large active seismic arrays

    NASA Astrophysics Data System (ADS)

    Paffrath, Marcel; Küperkoch, Ludger; Wehling-Benatelli, Sebastian; Friederich, Wolfgang

    2016-04-01

    We developed a tool for automatic determination of first arrivals in active seismic data based on an approach, that utilises higher order statistics (HOS) and the Akaike information criterion (AIC), commonly used in seismology, but not in active seismics. Automatic picking is highly desirable in active seismics as the number of data provided by large seismic arrays rapidly exceeds of what an analyst can evaluate in a reasonable amount of time. To bring the functionality of automatic phase picking into the context of active data, the software package ActiveSeismoPick3D was developed in Python. It uses a modified algorithm for the determination of first arrivals which searches for the HOS maximum in unfiltered data. Additionally, it offers tools for manual quality control and postprocessing, e.g. various visualisation and repicking functionalities. For flexibility, the tool also includes methods for the preparation of geometry information of large seismic arrays and improved interfaces to the Fast Marching Tomography Package (FMTOMO), which can be used for the prediction of travel times and inversion for subsurface properties. Output files are generated in the VTK format, allowing the 3D visualization of e.g. the inversion results. As a test case, a data set consisting of 9216 traces from 64 shots was gathered, recorded at 144 receivers deployed in a regular 2D array of a size of 100 x 100 m. ActiveSeismoPick3D automatically checks the determined first arrivals by a dynamic signal to noise ratio threshold. From the data a 3D model of the subsurface was generated using the export functionality of the package and FMTOMO.

  20. Soil process-oriented modelling of within-field variability based on high-resolution 3D soil type distribution maps.

    NASA Astrophysics Data System (ADS)

    Bönecke, Eric; Lück, Erika; Gründling, Ralf; Rühlmann, Jörg; Franko, Uwe

    2016-04-01

    Today, the knowledge of within-field variability is essential for numerous purposes, including practical issues, such as precision and sustainable soil management. Therefore, process-oriented soil models have been applied for a considerable time to answer question of spatial soil nutrient and water dynamics, although, they can only be as consistent as their variation and resolution of soil input data. Traditional approaches, describe distribution of soil types, soil texture or other soil properties for greater soil units through generalised point information, e.g. from classical soil survey maps. Those simplifications are known to be afflicted with large uncertainties. Varying soil, crop or yield conditions are detected even within such homogenised soil units. However, recent advances of non-invasive soil survey and on-the-go monitoring techniques, made it possible to obtain vertical and horizontal dense information (3D) about various soil properties, particularly soil texture distribution which serves as an essential soil key variable affecting various other soil properties. Thus, in this study we based our simulations on detailed 3D soil type distribution (STD) maps (4x4 m) to adjacently built-up sufficient informative soil profiles including various soil physical and chemical properties. Our estimates of spatial STD are based on high-resolution lateral and vertical changes of electrical resistivity (ER), detected by a relatively new multi-sensor on-the-go ER monitoring device. We performed an algorithm including fuzzy-c-mean (FCM) logic and traditional soil classification to estimate STD from those inverted and layer-wise available ER data. STD is then used as key input parameter for our carbon, nitrogen and water transport model. We identified Pedological horizon depths and inferred hydrological soil variables (field capacity, permanent wilting point) from pedotransferfunctions (PTF) for each horizon. Furthermore, the spatial distribution of soil organic carbon

  1. Reducing Disk Storage of Full-3D Seismic Waveform Tomography (F3DT) Through Lossy Online Compression

    DOE PAGES

    Lindstrom, Peter; Chen, Po; Lee, En-Jui

    2016-05-05

    Full-3D seismic waveform tomography (F3DT) is the latest seismic tomography technique that can assimilate broadband, multi-component seismic waveform observations into high-resolution 3D subsurface seismic structure models. The main drawback in the current F3DT implementation, in particular the scattering-integral implementation (F3DT-SI), is the high disk storage cost and the associated I/O overhead of archiving the 4D space-time wavefields of the receiver- or source-side strain tensors. The strain tensor fields are needed for computing the data sensitivity kernels, which are used for constructing the Jacobian matrix in the Gauss-Newton optimization algorithm. In this study, we have successfully integrated a lossy compression algorithmmore » into our F3DT SI workflow to significantly reduce the disk space for storing the strain tensor fields. The compressor supports a user-specified tolerance for bounding the error, and can be integrated into our finite-difference wave-propagation simulation code used for computing the strain fields. The decompressor can be integrated into the kernel calculation code that reads the strain fields from the disk and compute the data sensitivity kernels. During the wave-propagation simulations, we compress the strain fields before writing them to the disk. To compute the data sensitivity kernels, we read the compressed strain fields from the disk and decompress them before using them in kernel calculations. Experiments using a realistic dataset in our California statewide F3DT project have shown that we can reduce the strain-field disk storage by at least an order of magnitude with acceptable loss, and also improve the overall I/O performance of the entire F3DT-SI workflow significantly. The integration of the lossy online compressor may potentially open up the possibilities of the wide adoption of F3DT-SI in routine seismic tomography practices in the near future.« less

  2. 3D Porosity Estimation of the Nankai Trough Sediments from Core-log-seismic Integration

    NASA Astrophysics Data System (ADS)

    Park, J. O.

    2015-12-01

    The Nankai Trough off southwest Japan is one of the best subduction-zone to study megathrust earthquake fault. Historic, great megathrust earthquakes with a recurrence interval of 100-200 yr have generated strong motion and large tsunamis along the Nankai Trough subduction zone. At the Nankai Trough margin, the Philippine Sea Plate (PSP) is being subducted beneath the Eurasian Plate to the northwest at a convergence rate ~4 cm/yr. The Shikoku Basin, the northern part of the PSP, is estimated to have opened between 25 and 15 Ma by backarc spreading of the Izu-Bonin arc. The >100-km-wide Nankai accretionary wedge, which has developed landward of the trench since the Miocene, mainly consists of offscraped and underplated materials from the trough-fill turbidites and the Shikoku Basin hemipelagic sediments. Particularly, physical properties of the incoming hemipelagic sediments may be critical for seismogenic behavior of the megathrust fault. We have carried out core-log-seismic integration (CLSI) to estimate 3D acoustic impedance and porosity for the incoming sediments in the Nankai Trough. For the CLSI, we used 3D seismic reflection data, P-wave velocity and density data obtained during IODP (Integrated Ocean Drilling Program) Expeditions 322 and 333. We computed acoustic impedance depth profiles for the IODP drilling sites from P-wave velocity and density data. We constructed seismic convolution models with the acoustic impedance profiles and a source wavelet which is extracted from the seismic data, adjusting the seismic models to observed seismic traces with inversion method. As a result, we obtained 3D acoustic impedance volume and then converted it to 3D porosity volume. In general, the 3D porosities show decrease with depth. We found a porosity anomaly zone with alteration of high and low porosities seaward of the trough axis. In this talk, we will show detailed 3D porosity of the incoming sediments, and present implications of the porosity anomaly zone for the

  3. Complex Crustal Structure Beneath Western Turkey Revealed by 3D Seismic Full Waveform Inversion (FWI)

    NASA Astrophysics Data System (ADS)

    Cubuk-Sabuncu, Yesim; Taymaz, Tuncay; Fichtner, Andreas

    2016-04-01

    We present a 3D radially anisotropic velocity model of the crust and uppermost mantle structure beneath the Sea of Marmara and surroundings based on the full waveform inversion method. The intense seismic activity and crustal deformation are observed in the Northwest Turkey due to transition tectonics between the strike-slip North Anatolian Fault (NAF) and the extensional Aegean region. We have selected and simulated complete waveforms of 62 earthquakes (Mw > 4.0) occurred during 2007-2015, and recorded at (Δ < 10°) distances. Three component earthquake data is obtained from broadband seismic stations of Kandilli Observatory and Earthquake Research Center (KOERI, Turkey), Hellenic Unified Seismic Network (HUSN, Greece) and Earthquake Research Center of Turkey (AFAD-DAD). The spectral-element solver of the wave equation, SES3D algorithm, is used to simulate seismic wave propagation in 3D spherical coordinates (Fichtner, 2009). The Large Scale Seismic Inversion Framework (LASIF) workflow tool is also used to perform full seismic waveform inversion (Krischer et al., 2015). The initial 3D Earth model is implemented from the multi-scale seismic tomography study of Fichtner et al. (2013). Discrepancies between the observed and simulated synthetic waveforms are determined using the time-frequency misfits which allows a separation between phase and amplitude information (Fichtner et al., 2008). The conjugate gradient optimization method is used to iteratively update the initial Earth model when minimizing the misfit. The inversion is terminated after 19 iterations since no further advances are observed in updated models. Our analysis revealed shear wave velocity variations of the shallow and deeper crustal structure beneath western Turkey down to depths of ~35-40 km. Low shear wave velocity anomalies are observed in the upper and mid crustal depths beneath major fault zones located in the study region. Low velocity zones also tend to mark the outline of young volcanic

  4. Towards Automated Seismic Moment Tensor Inversion in Australia Using 3D Structural Model

    NASA Astrophysics Data System (ADS)

    Hingee, M.; Tkalcic, H.; Fichtner, A.; Sambridge, M.; Kennett, B. L.; Gorbatov, A.

    2009-12-01

    There is significant seismic activity in the region around Australia, largely due to the plate boundaries to the north and to the east of the mainland. This seismicity poses serious seismic and tsunamigenic hazard in a wider region, and risk to coastal areas of Australia, and is monitored by Geoscience Australia (GA) using a network of permanent broadband seismometers within Australia. Earthquake and tsunami warning systems were established by the Australian Government and have been using the waveforms from the GA seismological network. The permanent instruments are augmented by non-GA seismic stations based both within and outside of Australia. In particular, seismic moment tensor (MT) solutions for events around Australia as well as local distances are useful for both warning systems and geophysical studies in general. These monitoring systems, however, currently use only one dimensional, spherically-symmetric models of the Earth for source parameter determination. Recently, a novel 3D model of Australia and the surrounding area has been developed from spectral element simulations [1], taking into account not only velocity heterogeneities, but also radial anisotropy and seismic attenuation. This development, inter alia, introduces the potential of providing significant improvements in MT solution accuracy. Allowing reliable MT solutions with reduced dependence on non-GA stations is a secondary advantage. We studied the feasibility of using 1D versus 3D structural models. The accuracy of the 3D model has been investigated, confirming that these models are in most cases superior to the 1D models. A full MT inversion method using a point source approximation was developed as the first step, keeping in mind that for more complex source time functions, a finite source inversion will be needed. Synthetic experiments have been performed with random noise added to the signal to test the code in the both 1D and 3D setting, using a precomputed library of structural Greens

  5. 3D imaging of the Corinth rift from a new passive seismic tomography and receiver function analysis

    NASA Astrophysics Data System (ADS)

    Godano, Maxime; Gesret, Alexandrine; Noble, Mark; Lyon-Caen, Hélène; Gautier, Stéphanie; Deschamps, Anne

    2016-04-01

    The Corinth Rift is the most seismically active zone in Europe. The area is characterized by very localized NS extension at a rate of ~ 1.5cm/year, the occurrence of frequent and intensive microseismic crises and occasional moderate to large earthquakes like in 1995 (Mw=6.1). Since the year 2000, the Corinth Rift Laboratory (CRL, http://crlab.eu) consisting in a multidisciplinary natural observatory, aims at understanding the mechanics of faulting and earthquake nucleation in the Rift. Recent studies have improved our view about fault geometry and mechanics within CRL, but there is still a critical need for a better knowledge of the structure at depth both for the accuracy of earthquake locations and for mechanical interpretation of the seismicity. In this project, we aim to analyze the complete seismological database (13 years of recordings) of CRL by using recently developed methodologies of structural imaging, in order to determine at the same time and with high resolution, the local 3D structure and the earthquake locations. We perform an iterative joint determination of 3D velocity model and earthquake coordinates. In a first step, P and S velocity models are determined using first arrival time tomography method proposed by Taillandier et al. (2009). It consists in the minimization of the cost function between observed and theoretical arrival times which is achieved by the steepest descent method (e.g. Tarantola 1987). This latter requires computing the gradient of the cost function by using the adjoint state method (Chavent 1974). In a second step, earthquakes are located in the new velocity model with a non-linear inversion method based on a Bayesian formulation (Gesret et al. 2015). Step 1 and 2 are repeated until the cost function no longer decreases. We present preliminary results consisting in: (1) the adjustement of a 1D velocity model that is used as initial model of the 3D tomography and (2) a first attempt of the joint determination of 3D velocity

  6. High-resolution seismic-reflection images across the ICDP-USGS Eyreville deep drilling site, Chesapeake Bay impact structure

    USGS Publications Warehouse

    Powars, David S.; Catchings, Rufus D.; Goldman, Mark R.; Gohn, Gregory S.; Horton, J. Wright; Edwards, Lucy E.; Rymer, Michael J.; Gandhok, Gini

    2009-01-01

    The U.S. Geological Survey (USGS) acquired two 1.4-km-long, high-resolution (~5 m vertical resolution) seismic-reflection lines in 2006 that cross near the International Continental Scientific Drilling Program (ICDP)-USGS Eyreville deep drilling site located above the late Eocene Chesapeake Bay impact structure in Virginia, USA. Five-meter spacing of seismic sources and geophones produced high-resolution images of the subsurface adjacent to the 1766-m-depth Eyreville core holes. Analysis of these lines, in the context of the core hole stratigraphy, shows that moderate-amplitude, discontinuous, dipping reflections below ~527 m correlate with a variety of Chesapeake Bay impact structure sediment and rock breccias recovered in the cores. High-amplitude, continuous, subhorizontal reflections above ~527 m depth correlate with the uppermost part of the Chesapeake Bay impact structure crater-fill sediments and postimpact Eocene to Pleistocene sediments. Reflections with ~20-30 m of relief in the uppermost part of the crater-fill and lowermost part of the postimpact section suggest differential compaction of the crater-fill materials during early postimpact time. The top of the crater-fill section also shows ~20 m of relief that appears to represent an original synimpact surface. Truncation surfaces, locally dipping reflections, and depth variations in reflection amplitudes generally correlate with the lithostrati-graphic and sequence-stratigraphic units and contacts in the core. Seismic images show apparent postimpact paleochannels that include the first possible Miocene paleochannels in the Mid-Atlantic Coastal Plain. Broad downwarping in the postim-pact section unrelated to structures in the crater fill indicates postimpact sediment compaction.

  7. High-resolution seismic-reflection images across the ICDP-USGS Eyreville deep drilling site, Chesapeake Bay impact structure

    USGS Publications Warehouse

    Powars, D.S.; Catchings, R.D.; Goldman, M.R.; Gohn, G.S.; Horton, J.W.; Edwards, L.E.; Rymer, M.J.; Gandhok, G.

    2009-01-01

    The U.S. Geological Survey (USGS) acquired two 1.4-km-long, high-resolution (??5 m vertical resolution) seismic-reflection lines in 2006 that cross near the International Continental Scientifi c Drilling Program (ICDP)-USGS Eyreville deep drilling site located above the late Eocene Chesapeake Bay impact structure in Virginia, USA. Five-meter spacing of seismic sources and geophones produced high-resolution images of the subsurface adjacent to the 1766-m-depth Eyreville core holes. Analysis of these lines, in the context of the core hole stratigraphy, shows that moderateamplitude, discontinuous, dipping reflections below ??527 m correlate with a variety of Chesapeake Bay impact structure sediment and rock breccias recovered in the cores. High-amplitude, continuous, subhorizontal reflections above ??527 m depth correlate with the uppermost part of the Chesapeake Bay impact structure crater-fi ll sediments and postimpact Eocene to Pleistocene sediments. Refl ections with ??20-30 m of relief in the uppermost part of the crater-fi ll and lowermost part of the postimpact section suggest differential compaction of the crater-fi ll materials during early postimpact time. The top of the crater-fi ll section also shows ??20 m of relief that appears to represent an original synimpact surface. Truncation surfaces, locally dipping reflections, and depth variations in reflection amplitudes generally correlate with the lithostratigraphic and sequence-stratigraphic units and contacts in the core. Seismic images show apparent postimpact paleochannels that include the fi rst possible Miocene paleochannels in the Mid-Atlantic Coastal Plain. Broad downwarping in the postimpact section unrelated to structures in the crater fi ll indicates postimpact sediment compaction. ?? 2009 The Geological Society of America.

  8. 3D Simulation of Elastic Wave Propagation in Heterogeneous Anisotropic Media in Laplace Domain for Electromagnetic-Seismic Inverse Modeling

    NASA Astrophysics Data System (ADS)

    Petrov, P.; Newman, G. A.

    2011-12-01

    Recent developments in high resolution imaging technology of subsurface objects involves a combination of different geophysical measurements (gravity, EM and seismic). A joint image of the subsurface geophysical attributes (velocity, electrical conductivity and density) requires the consistent treatment of the different geophysical data due to their differing physical nature. For example, in conducting media, which is typical of the Earth's interior, EM energy propagation is defined by a diffusive mechanism and may be characterized by two specific length scales: wavelength and skin depth. However, the propagation of seismic signals is a multiwave process and is characterized by a set of wavelengths. Thus, to consistently treat seismic and electromagnetic data an additional length scale is needed for seismic data that does not directly depend on a wavelength and describes a diffusive process, similar to EM wave propagation in the subsurface. Works by Brown et al.(2005), Shin and Cha(2008), and Shin and Ha(2008) suggest that an artificial damping of seismic wave fields via Laplace-Fourier transformation can be an effective approach to obtain a seismic data that have similar spatial resolution to EM data. The key benefit of such transformation is that diffusive wave-field inversion works well for both data sets: seismic (Brown et al.,2005; Shin and Cha,2008) and electromagnetic (Commer and Newman,2008; Newman et al.,2010). With the recent interest in the Laplace-Fourier domain full waveform inversion, 3D fourth and second-order finite-difference schemes for modeling of seismic wave propagation have been developed (Petrov and Newman, 2010). Incorporation of attenuation and anisotropy into a velocity model is a necessary step for a more realistic description of subsurface media. Here we consider the extension of our method which includes attenuation and VTI anisotropy. Our approach is based on the integro-interpolation technique for velocity-stress formulation. Seven

  9. Application of high-resolution passive seismic tomographic inversion and estimating reservoir properties

    NASA Astrophysics Data System (ADS)

    Ayatollahy Tafti, T.; Aminzadeh, F.

    2011-12-01

    We use the travel time information from micro-seismic events of the micro earthquake data to perform tomographic inversion to accurately estimate P wave and S wave velocities. These velocities lead us to structural and lithological information about the subsurface. We test the method using the MEQ data from the NW Geysers geothermal field for both velocity inversion and estimating the reservoir properties. Complementary geophysical data are helpful for imaging the sub-surface structure. We integrate the available geologic information with the MEQ data. Porosity, fracture density and permeability are some of the properties that we extract from our integrated method. In addition, we quantify the changes of the velocities with time in parts of the field; we then ascribe such changes to various phenomena of transient geological processes such as, dyke intrusions or fluid pressure increase in the fracture network or even fracture network propagation into the medium. We demonstrate that integrating the passive seismic tomography with geologic information allows us to detect the space-time dependency of elastic properties in response to local variations of fluid pressure. We use the seismicity data set as a geothermal reservoir monitoring tool for mapping the fluid movements and other changes in reservoir properties. Our results are consistent with both injection and production well data. We focus on two sub-regions for our investigation. One region corresponds to a traditional hydrothermal reservoir. The second region relates to a high temperature zone, a candidate for creation of Enhanced Geothermal System (EGS) project. These results show the importance of integration of passive seismic tomography with geologic information for estimating the geothermal reservoir properties where sufficient microseismicity is present.

  10. High-resolution shallow-seismic experiments in sand. Part 1: Water table, fluid flow, and saturation

    SciTech Connect

    Bachrach, R.; Nur, A.

    1998-07-01

    A high-resolution, very shallow seismic reflection and refraction experiment was conducted to investigate the seismic response of groundwater level changes in beach sand in situ. A fixed 10-m-long receiver array was used for repeated seismic profiling. Direct measurements of water level in a monitoring well and moisture content in the sand were taken as well. The water table in the well changed by about 1 m in slightly delayed response to the nearby ocean tides. In contrast, inversion of the seismic data yielded a totally different picture. The reflection from the water table at high tide appeared at a later time than the reflection at low tide. This unexpected discrepancy can be reconciled using Gassmann`s equation: a low-velocity layer must exist between the near-surface dry sand and the deeper and much faster fully saturated sand. This low-velocity layer coincides with the newly saturated zone and is caused by a combination of the sand`s high density (close to that of fully saturated sand), and its high compressibility (close to that of dry sand). This low-velocity zone causes a velocity pull-down for the high-frequency reflections, and causes a high-tide reflection to appear later in time than low-tide reflection. The calculated velocities in the dry layer show changes with time that correlate with sand dryness, as predicted by the temporal changes of the sand`s density due to changing water/air ratio. The results show that near-surface velocities in sand are sensitive to partial saturation in the transition zone between dry and saturated sand. The authors were able to extract the saturation of the first layer and the depth to the water table from the seismic velocities.

  11. Quaternary layer anomalies around the Carlsberg Fault zone mapped with high-resolution shear-wave seismics south of Copenhagen

    NASA Astrophysics Data System (ADS)

    Kammann, Janina; Hübscher, Christian; Nielsen, Lars; Boldreel, Lars Ole

    2015-04-01

    The Carlsberg Fault zone is located in the N-S striking Höllviken Graben and traverses the city of Copenhagen. The fault zone is a NNW-SSE striking structure in direct vicinity to the transition zone of the Danish Basin and the Baltic Shield. Recent small earthquakes indicate activity in the area, although none of the mapped earthquakes appear to have occurred on the Carlsberg Fault. We examined the fault evolution by a combination of very high resolution onshore shear-wave seismic data, one conventional onshore seismic profile and marine reflection seismic profiles. The chalk stratigraphy and the localization of the fault zone at depth was inferred from previous studies by other authors. We extrapolated the Jurassic and Triassic stratigraphy from the Pomeranian Bay to the area of investigation. The fault zone shows a flower structure in the Triassic as well as in Cretaceous sediments. The faulting geometry indicates strong influence of Triassic processes when subsidence and rifting prevailed in the Central European Basin System. Growth strata within the surrounding Höllviken Graben reveal syntectonic sedimentation in the lower Triassic, indicating the opening to be a result of Triassic rifting. In the Upper Cretaceous growth faulting documents continued rifting. This finding contrasts the Late Cretaceous to Paleogene inversion tectonics in neighbouring structures, as the Tornquist Zone. The high-resolution shear-wave seismic method was used to image structures in Quaternary layers in the Carlsberg Fault zone. The portable compact vibrator source ElViS III S8 was used to acquire a 1150 m long seismic section on the island Amager, south of Copenhagen. The shallow subsurface in the investigation area is dominated by Quaternary glacial till deposits in the upper 5-11 m and Danian limestone below. In the shear-wave profile, we imaged the 30 m of the upward continuation of the Carlsberg Fault zone. In our area of investigation, the fault zone appears to comprise

  12. Imaging of 3-D seismic velocity structure of Southern Sumatra region using double difference tomographic method

    NASA Astrophysics Data System (ADS)

    Lestari, Titik; Nugraha, Andri Dian

    2015-04-01

    Southern Sumatra region has a high level of seismicity due to the influence of the subduction system, Sumatra fault, Mentawai fault and stretching zone activities. The seismic activities of Southern Sumatra region are recorded by Meteorological Climatological and Geophysical Agency (MCGA's) Seismograph network. In this study, we used earthquake data catalog compiled by MCGA for 3013 events from 10 seismic stations around Southern Sumatra region for time periods of April 2009 - April 2014 in order to invert for the 3-D seismic velocities structure (Vp, Vs, and Vp/Vs ratio). We applied double-difference seismic tomography method (tomoDD) to determine Vp, Vs and Vp/Vs ratio with hypocenter adjustment. For the inversion procedure, we started from the initial 1-D seismic velocity model of AK135 and constant Vp/Vs of 1.73. The synthetic travel time from source to receiver was calculated using ray pseudo-bending technique, while the main tomographic inversion was applied using LSQR method. The resolution model was evaluated using checkerboard test and Derivative Weigh Sum (DWS). Our preliminary results show low Vp and Vs anomalies region along Bukit Barisan which is may be associated with weak zone of Sumatran fault and migration of partial melted material. Low velocity anomalies at 30-50 km depth in the fore arc region may indicated the hydrous material circulation because the slab dehydration. We detected low seismic seismicity in the fore arc region that may be indicated as seismic gap. It is coincides contact zone of high and low velocity anomalies. And two large earthquakes (Jambi and Mentawai) also occurred at the contact of contrast velocity.

  13. Imaging of 3-D seismic velocity structure of Southern Sumatra region using double difference tomographic method

    SciTech Connect

    Lestari, Titik; Nugraha, Andri Dian

    2015-04-24

    Southern Sumatra region has a high level of seismicity due to the influence of the subduction system, Sumatra fault, Mentawai fault and stretching zone activities. The seismic activities of Southern Sumatra region are recorded by Meteorological Climatological and Geophysical Agency (MCGA’s) Seismograph network. In this study, we used earthquake data catalog compiled by MCGA for 3013 events from 10 seismic stations around Southern Sumatra region for time periods of April 2009 – April 2014 in order to invert for the 3-D seismic velocities structure (Vp, Vs, and Vp/Vs ratio). We applied double-difference seismic tomography method (tomoDD) to determine Vp, Vs and Vp/Vs ratio with hypocenter adjustment. For the inversion procedure, we started from the initial 1-D seismic velocity model of AK135 and constant Vp/Vs of 1.73. The synthetic travel time from source to receiver was calculated using ray pseudo-bending technique, while the main tomographic inversion was applied using LSQR method. The resolution model was evaluated using checkerboard test and Derivative Weigh Sum (DWS). Our preliminary results show low Vp and Vs anomalies region along Bukit Barisan which is may be associated with weak zone of Sumatran fault and migration of partial melted material. Low velocity anomalies at 30-50 km depth in the fore arc region may indicated the hydrous material circulation because the slab dehydration. We detected low seismic seismicity in the fore arc region that may be indicated as seismic gap. It is coincides contact zone of high and low velocity anomalies. And two large earthquakes (Jambi and Mentawai) also occurred at the contact of contrast velocity.

  14. Combining sequence stratigraphy with 3-D seismic imaging in low-accommodation basins

    SciTech Connect

    Hardage, B.A.; Carr, D.L.; Simmons, J.L. Jr.

    1995-12-31

    Pennsylvania-age rocks in several areas of the Midcontinent of the United States were deposited in low-accommodation basinal settings, that is, in basinal areas where only modest verticle reliefs could accept the sediment influx. Many thin Pennsylvanian sequences in these low-accommodation environments exhibit severe lateral heterogeneity because they have been extensively reworked by repeated transgressions and regressions of a fluctuating sea. Consequently, the distinctive geometries of relic depositional features (such as meandering channels) tend to be distorted or even totally destroyed, as compared with how such geometries appear in high-accommodation basins where depositional topography, once buried, is rarely exposed to destructive processes. Our objectives are to show examples of 3-D seismic images of several depositional topographies in a moderate- to low-accommodation basin and to explain how these thin sequences can be identified in well control and interpreted in 3-D seismic data volumes.

  15. Geological model of Lobodice underground gas storage facility based on 3D seismic interpretation

    NASA Astrophysics Data System (ADS)

    Kopal, Lukáš; Čížek, Pavel; Milička, Ján

    2016-06-01

    The Lobodice underground gas storage (UGS) is developed in a natural aquifer reservoir located in the Central Moravian part of the Carpathian Foredeep in the Czech Republic. In order to learn more about the UGS geological structure a 3D seismic survey was performed in 2009. The reservoir is rather shallow, 400-500 m below the surface. This article describes the process workflow from the 3D seismic field data acquisition to the creation of the geological model. The outcomes of this workflow define the geometry of the UGS reservoir, its tectonics and the sealing features of the structure. Better geological knowledge of the reservoir will reduce the risks involved in the localization of new wells for increasing UGS withdrawal rates.

  16. High-resolution seismic monitoring of geomorphic activity in a catchment

    NASA Astrophysics Data System (ADS)

    Burtin, A.; Hovius, N.; Turowski, J.; McArdell, B.; Vergne, J.

    2012-04-01

    Continuous survey of the surface activity in a river catchment is essential for the understanding of the landscape dynamics. In steep mountain catchments, a detailed spatial and temporal monitoring of geomorphic processes is generally impossible. The classic techniques (imagery and in situ channel approaches) are not adapted to the extreme conditions that occur during strong rainstorms. There is a real need to develop a method and to define the procedures that will allow the study of surface processes without any environmental dependency. Nowadays, more and more studies explore the use of the seismic instruments to survey the catchment activity. Seismometers can be deployed in sheltered area, which allow us to record in continuous the ground vibrations induced by surface processes, like the sediment transport and mass movements. To continue the exploration of this potential, we deployed a dense array of 10 seismometers in the Illgraben, a 10-km2 catchment in the Swiss Alps, during the summer 2011. This catchment is highly prone to hillslope and debris flow activity, so almost every summer convective storms trigger geomorphic events. The network was designed to monitor the spatial and temporal features of every type of surface activity. Thus during rainstorms, the stations located along the main stream well record the channel activity like the passage of sediment flows, while the instruments installed around the catchment reveal the occurrences of many rockfalls. These latter events show a spectral seismic signature at high frequencies (> 1 Hz), whereas the channel activity is dominant between 10 and 30 Hz. For the largest debris flow of the summer, we are able to identify the location of its initiation from the hillslope. Then, we can map the secondary events, which were triggered by the propagation of the debris flow. With these preliminary results, we demonstrate that the use of a dense seismic array is relevant to map in real time the landscape dynamics at the

  17. Sedimentary evolution of Lake Van (Eastern Turkey) reconstructed from high-resolution seismic investigations

    NASA Astrophysics Data System (ADS)

    Cukur, Deniz; Krastel, Sebastian; Demirel-Schlüter, Filiz; Demirbağ, Emin; Imren, Caner; Niessen, Frank; Toker, Mustafa

    2013-03-01

    This paper presents results of a multi-channel seismic reflection survey at Lake Van and provides constraints on the sedimentary evolution of the lake. The geophysical data of the lake confirm the existence of three physiographic provinces: a shelf, a slope, and a deep, relatively flat basin. The most prominent features identified on the shelf and slope are clinoforms, submerged channels, as well as closely spaced lake floor depressions, reflecting a highly variable lake-level history. The morphological depressions are interpreted as resulting from subaquatic erosion by channelized, sediment-laden currents into horizontally bedded fan sediments. Submerged channels on the eastern shelf are interpreted as meandering-slope channels, probably as a consequence of a lake-level fall that exposed the shelf area. Clinoforms on the Eastern fan may represent relict deltas formed during stationary or slightly rising lake-level intervals. Merging subsurface imaging interpretation with morphological studies of exposed sediments reveals lake-level fluctuations of several hundreds of meters during the past ca. ~550 ka. The lake has three prominent basins (Tatvan, Deveboynu, and the Northern basin) separated by basement ridges (e.g., the Northern ridge). The seismic units in the Tatvan and Northern basins are dominated by alternations of well-stratified and chaotic reflections, while the Deveboynu basin subsurface consists mainly of chaotic units. The chaotic seismic facies are interpreted as mass-flow deposits, probably triggered by earthquakes and/or rapid lake-level fluctuations. The moderate-to-high-amplitude, well-stratified facies seen in the deeper parts of the basins are interpreted as lacustrine deposits intercalated with tephra layers. The occurrence of a clinoform in the deepest part of the lake suggests a major flooding stage of Lake Van more than ~400 ka ago. Seismic profiles from the deepest part of the lake basin show remarkably uniform and continuous stratigraphic

  18. Characterization of landslide geometry using 3D seismic refraction traveltime tomography

    NASA Astrophysics Data System (ADS)

    Samyn, K.; Travelletti, J.; Bitri, A.; Grandjean, G.; Malet, J. P.

    2012-04-01

    The geometry of the bedrock, internal layers and shear surfaces/bands controls the deformation pattern and the mechanisms of landslides. A challenge to progress in the forecast of landslide acceleration in terms of early-warning is therefore to characterize the 3D geometry of the unstable mass at a high level of spatial resolution, both in the horizontal and vertical directions, by integrating information from different surveying techniques. For such characterization, seismic investigations are potentially of a great interest. In the case of complex structures, the measure and the processing of seismic data need to be performed in 3D. The objective of this work is to present the implementation of a 3D seismic refraction traveltime tomography technique based on an existing 2D Simultaneous Iterative Reconstruction Technique (SIRT). First the processing algorithm is detailed and its performance is discussed, and second an application to the La Valette complex landslide is presented. Inversion of first-arrival traveltimes produces a 3D tomogram that underlines the presence of many areas characterized by low P-wave velocity of 500-1800 m.s-1. These low P-wave velocity structures result from the presence of reworked blocks, surficial cracks and in-depth fracture zones. These structures seem to extend to around 25 m in depth over a 80 x 130 m area. Based on borehole geotechnical data and previous geophysical investigations, an interface corresponding to an internal slip surface can be suspected near the isovalue of 1200 m.s-1 at a depth of -10 to -15 m. The stable substratum is characterized by higher values of P-wave velocity of 1800-3000 m.s-1. The features identified in the 3D tomogram allow to better (1) delineate the boundary between the landslide and the surrounding stable slopes, and (2) understand the morphological structures within the landslide at a hectometric scale. The integration of the 3D seismic tomography interpretation to previous geophysical

  19. Preliminary results of the CRISP 3D seismic experiment, offshore Costa Rica

    NASA Astrophysics Data System (ADS)

    Bangs, N. L.; McIntosh, K. D.; Silver, E. A.; Ranero, C. R.; Kluesner, J. W.; von Huene, R.; Cavanaugh, S.; Graf, S.; Cameselle, A. L.; Baracco, A. M.; Nuñez, E.

    2011-12-01

    In April and May of 2011, we acquired a new 3D seismic reflection data volume offshore Costa Rica, northwest of the Osa Peninsula. The goal of the survey was to examine the crustal structure and deformation history of this collision zone, and to clearly image the plate-boundary fault from the trench and into the seismogenic zone. These data will also help locate a deep site for riser drilling as part of the CRISP drilling program. The 3D survey covered 55 km across the upper shelf and slope, and into the trench. It extended 11 km along strike for a total survey area of 11 x 55 km. These data were acquired with the R/V Langseth using a 3300 cubic inch source shot every 50 m. We recorded the data on four 6-km-long, 468-channel streamers with 150m separation. We have preliminary results from processing 2D seismic lines extracted from the 3D volume, and from initial 3D volume processing. In the preliminary images we can trace strong seismic reflections from the plate-boundary fault down to 3 s two-way travel time (approx. 5 km depth) below the seafloor and 26 km landward from the trench. The plate-boundary fault reflection amplitudes decrease substantially with depth and are difficult to depict on these preliminary profiles. The upper plate structure shows numerous faults, many extending down to the plate-interface, and intense folding and faulting of the slope cover sequences. Currently these data are being processed by the Spanish oil company, Repsol, and should reveal far more detail with complete 3D processing.

  20. "High resolution seismic imaging of an active fault in the eastern Guadalquivir Basin (Betic Cordillera, Southern Spain)"

    NASA Astrophysics Data System (ADS)

    Serrano, Inmaculada; Torcal, Federico; Martín, José Benito

    2015-10-01

    We calculated the high resolution seismic velocity, Poisson's ratio, crack density and saturation ratio structures in and around the source areas of the Torreperogil seismic series (October 2012-April 2013). This seismic series, characterized by a large number of low magnitude (below Mw 3.7 or Md 3.9) and very shallow microearthquakes, took place in the Guadalquivir Basin, a large flexural foreland basin with a linear ENE-WSW trending bounded to the north by the Iberian Massif and to the south by the Betic Cordillera and filled from a middle Miocene to Plio-Quaternary sedimentary sequence. In the upper layers of the crust, strong low-velocity anomalies are extensively distributed under the central zone, which together with high Poisson's ratio and crack density values may correspond to rocks which are less likely to fracture, perhaps due to the accumulation of tectonic and seismic stress. 93% of the earthquakes occurred at depths of up to 8 km, which could indicate that the base of the seismogenic zone lies at this depth. The seismic series was concentrated in layers of strong structural heterogeneities (in the boundary area between low and high anomalies), which were likely to generate earthquakes due to differential strain accumulation beneath the region. The high velocity areas are also considered to be strong yet brittle parts of the fault zone, which may generate earthquakes (at depths of between 5 km and 9 km). By contrast, low velocity areas are less prone to fracture, allowing seismic slippage to take place (from 2 to 4 km depth). The best estimate of the depth of the main shock (mbLg 3.9) is 7.6 km, which could tend to nucleate at the base of the seismogenic zone, at the "fault end" on the boundary between a low velocity zone to the east and a high velocity zone to the west, indicating the fault plane which separates both areas laterally. Assuming that this seismic contrast is one of the main Torreperogil faults it could imply that stress has accumulated

  1. A Robust MEMS Based Multi-Component Sensor for 3D Borehole Seismic Arrays

    SciTech Connect

    Paulsson Geophysical Services

    2008-03-31

    The objective of this project was to develop, prototype and test a robust multi-component sensor that combines both Fiber Optic and MEMS technology for use in a borehole seismic array. The use such FOMEMS based sensors allows a dramatic increase in the number of sensors that can be deployed simultaneously in a borehole seismic array. Therefore, denser sampling of the seismic wave field can be afforded, which in turn allows us to efficiently and adequately sample P-wave as well as S-wave for high-resolution imaging purposes. Design, packaging and integration of the multi-component sensors and deployment system will target maximum operating temperature of 350-400 F and a maximum pressure of 15000-25000 psi, thus allowing operation under conditions encountered in deep gas reservoirs. This project aimed at using existing pieces of deployment technology as well as MEMS and fiber-optic technology. A sensor design and analysis study has been carried out and a laboratory prototype of an interrogator for a robust borehole seismic array system has been assembled and validated.

  2. Sequence stratigraphy and 3-D seismic imaging in low-accommodation basins

    SciTech Connect

    Hardage, B.A.; Carr, D.L.; Hamilton, D.S.; Simmons, J.L. Jr. )

    1996-01-01

    Pennsylvanian-age rocks in several areas of the Midcontinent of the United States were deposited in low-accommodation basinal settings. Many sequences in these low-accommodation environments exhibit severe lateral heterogeneity because they have been extensively reworked by repeated transgressions and regressions. Consequently, the distinctive geometries of relic depositional features tend to be distorted or totally destroyed, in contrast to such geometries in high-accommodation basins where depositional topography, once buried, is rarely exposed to erosional processes. Our objective is to show how these thin and obscure low-accommodation sequences can be identified in well control and interpreted in 3-D seismic data volumes. Numerous, deep-rooted karst-collapse zones affected the areal continuity of many sequences in some Midcontinent basins. We combine sequence stratigraphy with 3-D seismic imaging to document that many of these karst-collapse zones originate at deep Ellenburger ( ) levels and then extend vertically for a distance of 2,000 ft (600 m) or more into Pennsylvanian-age rocks. We also offer evidence that properly chosen seismic attributes, calculated in thin, accurately defined seismic time windows that correspond to log-defined sequences, show compartmented reservoir facies in low-accommodation basins.

  3. Sequence stratigraphy and 3-D seismic imaging in low-accommodation basins

    SciTech Connect

    Hardage, B.A.; Carr, D.L.; Hamilton, D.S.; Simmons, J.L. Jr.

    1996-12-31

    Pennsylvanian-age rocks in several areas of the Midcontinent of the United States were deposited in low-accommodation basinal settings. Many sequences in these low-accommodation environments exhibit severe lateral heterogeneity because they have been extensively reworked by repeated transgressions and regressions. Consequently, the distinctive geometries of relic depositional features tend to be distorted or totally destroyed, in contrast to such geometries in high-accommodation basins where depositional topography, once buried, is rarely exposed to erosional processes. Our objective is to show how these thin and obscure low-accommodation sequences can be identified in well control and interpreted in 3-D seismic data volumes. Numerous, deep-rooted karst-collapse zones affected the areal continuity of many sequences in some Midcontinent basins. We combine sequence stratigraphy with 3-D seismic imaging to document that many of these karst-collapse zones originate at deep Ellenburger (?) levels and then extend vertically for a distance of 2,000 ft (600 m) or more into Pennsylvanian-age rocks. We also offer evidence that properly chosen seismic attributes, calculated in thin, accurately defined seismic time windows that correspond to log-defined sequences, show compartmented reservoir facies in low-accommodation basins.

  4. Development of a seismic borehole sonde for high resolution geophysical exploration ahead and around the drill bit

    NASA Astrophysics Data System (ADS)

    Jaksch, K.; Giese, R.; Kopf, M.

    2012-04-01

    The importance of exploration with high resolution increases more and more because reservoirs especially in geothermal fields are characterized of small-scale geological structures. Today, surface seismic surveys were often combined with borehole seismic measurements like VSP or SWD to improve the velocity model and to image the structures with higher resolution. The accuracy of structure localization depends strongly on the surveying depth. There is the need for resolution of such small-scale structures in the range of meters to explore deeper structures with a high resolution. In the project "Seismic Prediction While Drilling" (SPWD) a new approach for a seismic exploration method in boreholes will be examined. SPWD comprises the seismic sources and receivers in one device. This allows an exploration with a resolution independent from depth and a system development for an exploration ahead and around the drill bit. At first a prototype of a borehole device for dry horizontal boreholes in a mine was developed and tested. The source device consists of four magnetostrictive vibrators emitting sweep signals from 500 Hz to 5000 Hz. To achieve a radiation pattern for focusing the seismic wave energy in predefined directions the signals of each vibrator must be independently controlled in amplitude and phase. The adjustment of amplitudes and phases of each sweep signal resulting in constructive interference with a predefined direction. A control of the emitted signals is retained by 30 three-component receivers mounted along the surrounding galleries in distances of up to 50 m. In measurements several parameters were examined to control the radiation pattern. The enhancement and diminishment of the wave amplitudes in the predefined directions of the radiation pattern is clearly exhibited also a dependency of the frequency. Using a three-component Fresnel-Volume-Migration to image the reflected wave field the results show clearly the effect of the radiation pattern on

  5. Comparison of borehole geophysics, CPT, resistivity, GPR, and high-resolution seismic data across a shallow structure in unconsolidated sediments

    SciTech Connect

    Temples, T.J.; Wyatt, D.E.; Cumbest, R.; Waddell, M.G.

    1995-12-31

    The geological characterization of the shallow subsurface in the unconsolidated sediments of the Atlantic Coastal Plain, and other unconsolidated sediment regimes, may involve faulting and channeling not readily detectable by conventional drilling and mapping. A knowledge of these features is required in environment and geotechnical studies in areas that may have critical impact to groundwater flow and contaminant transport. In many cases, shallow structural influences are missed during site characterization. A case study is presented using ground penetrating radar (GPR) and high resolution seismic data, compared with a geologic interpretation from borehole logs and core data, with Wenner and dipole-dipole resistivity data and with cone penetrometer (CPT) data in an area where shallow structure is probable and contamination exists.

  6. A high-resolution seismic reflection/refraction study of the Chugach- Peninsular terrane boundary, southern Alaska

    USGS Publications Warehouse

    Brocher, T.M.; Fisher, M.A.; Geist, E.L.; Christensen, N.I.

    1989-01-01

    We present results from a high-resolution seismic refraction analysis of the shallow (approximately 2 km) crustal structure along the 107-km-long Trans-Alaska Crustal Transect Chugach reflection line in southern Alaska and a comparison with laboratory measurements of field samples. The refraction analysis includes the two-dimensional interpretation of several thousand first- and secondary-arrival travel times digitized from 1024-channel split-spread common shot gathers. The velocity model derived from this analysis better defines the location and geometry of terrane boundaries than does the normal incidence reflection section and agrees well with surface mapping of lithologies. Furthermore, the model predicts travel times within 100 ms of the reflection times recorded from the base of the Quaternary on the Chugach reflection section. -from Authors

  7. Offshore fault system in the Al Hoceima region from new high-resolution bathymetric and seismic reflection data

    NASA Astrophysics Data System (ADS)

    Lafosse, Manfred; d'Acremont, Elia; Rabaute, Alain; Mercier de l'Epinay, Bernard; Gorini, Christian; André Gutscher, Marc; Poort, Jeffrey; Ammar, Abdellah; Tahayt, Abdelilah; Leroy, Pascal; Smit, Jeroen; Do Couto, Damien; Cancouët, Romain; Prunier, Christophe; Ercilla, Gemma

    2014-05-01

    The Al-Hoceima Region (Morocco) is the one of the most active seismic area of the western Mediterranean Sea. Detailed surveys in a shallow water environment are required to identify the connecting onshore-offshore active structures and to propose a tectonic framework. We use combined high-resolution seismic reflection and swath-bathymetry data from the Marlboro-2 cruise, which took place in 2012 off the coast of Al Hoceima, to detail the fault system through the Nekor basin, between the Trougout Fault and the Boussekour Agdal fault. The Boussekour-Agdal fault is a N026 oriented fault, dipping east and affecting the plio-quaternary sequence offshore and the internal units of the oriental Rif onshore. The fault trace shows a vertical offset of 6.5 m on the high-resolution swath bathymetry close to the shoreline, while the northern prolongation of the fault is buried. The Bokkoya fault (Calvert et al. 1997) is a N029 oriented fault dipping east. The vertical offset at the seafloor is 13m. This fault affects sedimentary structures above a paleo-terrace at -105mbsl, probably related to the last sea-level fall. The onshore-offshore N-S oriented Trougout fault corresponds to the eastern boundary between the plio-quaternary Nekor basin and the volcano-clastic deposits of Ras Tarf. This fault produces a vertical offset of 2.3m at the sea-floor. These three major fault zones limit two basins: the Nekor basin between the Bokkoya and the Trougout faults, and a depression between the Boussekour-Agdal and the Bokkoya Faults. The quaternary deposits are syn-tectonic. In the Nekor basin secondary normal faults are oriented N150, shift the sea-floor and affect the Messinian unconformity. Successive positions of a paleo-canyon (seen in the seismic lines) show a migration of the subsidence from east to west inside the Nekor basin. Faults affecting the Messinian unconformity control this subsidence. Between the Boussekour-Agdal and the Bokkoya faults, the thickness and the geometry of

  8. High-resolution reflection seismic investigations of quick-clay and associated formations at a landslide scar in southwest Sweden

    NASA Astrophysics Data System (ADS)

    Malehmir, Alireza; Saleem, Muhammad Umar; Bastani, Mehrdad

    2013-05-01

    We present high-resolution reflection seismic data from four lines (total 1.9 km) that cross a quick-clay landslide scar located close to the shore of the Göta River in southwest Sweden, and compare the results with geotechnical data from boreholes. The seismic data allow the imaging of bedrock topography and normally to weakly consolidated sediments to a subsurface depth of about 100 m. Different types of seismic sources, including sledgehammer, accelerated weight-drop and dynamite were utilized and compared with each other. Analysis of their power spectra suggests that weight-drop and dynamite have higher frequency content and energy than the sledgehammer, which makes these two sources suitable also for waveform tomography and surface-wave data analysis. The shallowest non-bedrock reflector is observed at about 10-20 m below the surface, it overlays the bedrock, and is interpreted to originate from the contact between clay formations above and a coarse-grained layer below. The coarse-grained layer appears to be spatially linked to the presence of quick-clays. It is a regional scale formation, laterally heterogeneous, which deepens to the west of the study area and correlates well with the available geotechnical data. Continuity of the coarse-grained layer becomes obscured by the landslide scar. There may be a link between the coarse-grained layer and landslides in the study area, although this possibility requires further hydrogeological and geotechnical investigations. Reflectors from the top of the bedrock suggest a depression zone with its deepest point below the landslide scar and a bowl-shaped structure in the northern portion of one of the seismic lines.

  9. High resolution regional seismic attenuation tomography in eastern Tibetan Plateau and adjacent regions

    NASA Astrophysics Data System (ADS)

    Bao, Xueyang; Sandvol, Eric; Ni, James; Hearn, Thomas; Chen, Yongshun John; Shen, Yang

    2011-08-01

    The Q of regional seismic phases Lg and Pg within the crust is assumed as a proxy for crustal Qβ and Qα, which is used as a constraint of crustal rheology. We measure regional-phase Q of the eastern Tibetan Plateau and adjacent areas. This method eliminates contributions from source and site responses and is an improvement on the Two-Station Method (TSM). We have generated tomographic images of crustal attenuation anomalies with resolution as high as 1°. In general we observe low Q in the northernmost portions of the Tibetan Plateau and high Q in the more tectonically stable regions such as the interior of the Qaidam basin. The calculated site responses appear to correlate with topography or sediment thickness. Furthermore the relationship between earthquake magnitudes and calculated source terms suggest that the RTM method effectively removes the source response and may be used as an alternative to source magnitude.

  10. High-resolution sequence stratigraphy from outcrop study, with the integration of log and seismic data

    SciTech Connect

    Ardevol, L.; Krauss, S. ); Klimowitz, J. )

    1993-09-01

    The detailed sequence stratigraphic analysis of the siliciclastic-dominated Late Cretaceous sediments (Aren Sandstone and Garumnian red beds, south central Pyrenees, Spain) reveals the repeating disposition of critical elements and controlling mechanisms of cycles and sequences. Our approach integrates (a) hierarchy of unconformity-bounded units, (b) physical expression of boundaries traceable from the continent to the basin, (c) featuring facies and depositional systems, (d) well log and seismic expression, and (e) driving basing-filling mechanisms. A comparison to other active basins is suggested in order to prove the validity beyond the regional scale. Four basin-wide transgressive facies cycles were identified and interpreted as third-order units. The transgressive phase of each cycle is represented by mixed shelf deposits, while regressive periods consists of complex delta systems. The cycles are composed within their regressive phase of fourth-order depositional sequences, trapped in structural lows, which are controlled by synsedimentary compressive tectonics. Both cycles and sequences are set up by similar building blocks. Our example, cycle two, localized in the Tremp area, displays seven sequences: lowstand systems tracts are channelized turbidites; transgressive systems tracts are lagoon-barrier systems and/or storm-dominated shoreface deposits; and fluvial, coastal plain, and delta deposits build highstand systems tracts. The physical continuity of the sequences (and cycles) is frequently disrupted by erosion due to lowstand or transgressive processes and active faulting. Synsedimentary ramp anticlines, which control the entire basin, and third-order unconformities have been recognized in seismic lines. Their interpretation has led to the identification and correlation of cycles and sequences in the well logs of the region.

  11. Initial Look at 3d Seismic Data Acquired Over the Galicia Margin

    NASA Astrophysics Data System (ADS)

    Sawyer, D. S.; Reston, T. J.; Shillington, D. J.; Minshull, T. A.; Klaeschen, D.; Morgan, J. K.

    2013-12-01

    In June thru September, 2013, a 3D reflection and long offset seismic experiment was conducted at the Galicia rifted margin by investigators from the US, UK, Germany, and Spain. The 3D multichannel experiment covered 64 km by 20 km (1280 km2), using the RV Marcus Langseth. Four streamers 6 km long were deployed at 12.5 m hydrophone channel spacing. The streamers were 200 m apart. Two airgun arrays, each 3300 cu in, were fired alternately every 37.5 m, to collectively yield a 400 m wide sail line consisting of 8 CMP lines at 50 m spacing. The long offset seismic experiment included 72 short period OBS's deployed below the 3D reflection survey box. Most of the instruments recorded all the shots from the airgun array shots. A few of the instruments were deployed twice, once to densify the instruments on a single profile and then to be moved into the full array. Finally, 6 of the OBS's were deployed on a profile extending 90 km to the west of the 3D box, in order to use combined MCS and OBS data to locate the boundary between the oceanic crust and exhumed upper mantle. The 3D seismic box covered a variety of geologic features including the Peridotite Ridge (PR) associated with the exhumation of upper mantle rocks to the seafloor, the S reflector interpreted to be a low-angle detachment fault formed late in the rifting process, and a number of rotated fault block basins and ranges containing pre- and syn-rift sediments. Initial observations, based only on 2D seismic dip lines (albeit 400 m apart), show the along strike variation of the PR: ~1050 m higher than adjacent basement in the South of the 3D box and much increased in size, ~2200 m high in the North. Some cross-sections of the PR show apparent internal structure that may help identify the emplacement mechanism of the feature and its relationship with the boundary between rifted continental crust blocks and exhumed upper mantle rocks. To the immediate East and West of the PR there are strong negative

  12. Training toward Advanced 3D Seismic Methods for CO2 Monitoring, Verification, and Accounting

    SciTech Connect

    Christopher Liner

    2012-05-31

    The objective of our work is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2}, specifically better quantification and sensitivity for mapping of caprock integrity, fractures, and other potential leakage pathways. We utilize data and results developed through previous DOE-funded CO{sub 2} characterization project (DE-FG26-06NT42734) at the Dickman Field of Ness County, KS. Dickman is a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontinent to Indiana and Illinois. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. In a previous DOE-funded project, geological and seismic data were integrated to create a geological property model and a flow simulation grid. We believe that sequestration of CO{sub 2} will largely occur in areas of relatively flat geology and simple near surface, similar to Dickman. The challenge is not complex geology, but development of improved, lower-cost methods for detecting natural fractures and subtle faults. Our project used numerical simulation to test methods of gathering multicomponent, full azimuth data ideal for this purpose. Our specific objectives were to apply advanced seismic methods to aide in quantifying reservoir properties and lateral continuity of CO{sub 2} sequestration targets. The purpose of the current project is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2

  13. Long-term deformation in the Mississippi Embayment (Central USA) imaged by high-resolution seismic reflection data

    NASA Astrophysics Data System (ADS)

    Hao, Yanjun

    Large magnitude intraplate earthquakes are a puzzling exception to plate tectonic theory. Unlike earthquakes occurring along plate boundaries, large continental intraplate earthquakes are a rare occurrence and are often distributed over broad regions. Albeit rare, their occurrence can cause widespread damage because of the low attenuation of seismic energy typical of plate interiors [Hanks and Johnston, 1992]. In the Central USA, most of the recent tectonic intraplate seismicity concentrates along the New Madrid seismic zone (NMSZ), where three large (M>7) earthquakes occurred between 1811--1812 [Johnston and Schweig, 1996]. Here the low surface deformation rates [Calais and Stein, 2009] conflict with the elevated instrument-recorded seismicity and the occurrence of historical and prehistorical large magnitude events [Tuttle et al., 2002]. One of the promising hypotheses proposed to reconcile this apparent contradiction is that intraplate earthquakes may be temporally clustered, episodic or cyclic, and may migrate spatially at the regional or continental scale across multiple faults or fault systems. In order to test this hypothesis and to understand how and where the long-term deformation is accommodated in the Mississippi Embayment, Central USA, I utilize high-resolution seismic reflection data acquired by the Mississippi River Project [Magnani and McIntosh, 2009] and by a 2010 survey across the Meeman-Shelby fault [Magnani, 2011; Hao et al., 2013]. To identify the location of Quaternary deformation and characterize deformation history, I acquired, processed, and interpreted the seismic reflection data and integrated them with other available geophysical (e.g. seismicity, crustal and lithospheric models) and geological (e.g. magmatism and borehole) data. For my research, I focus on three regions in the Mississippi Embayment: 1) the Meeman-Shelby fault west of Memphis, Tennessee, 2) the eastern Reelfoot rift margin north of Memphis, Tennessee, and 3) the area in

  14. Fast 3D elastic micro-seismic source location using new GPU features

    NASA Astrophysics Data System (ADS)

    Xue, Qingfeng; Wang, Yibo; Chang, Xu

    2016-12-01

    In this paper, we describe new GPU features and their applications in passive seismic - micro-seismic location. Locating micro-seismic events is quite important in seismic exploration, especially when searching for unconventional oil and gas resources. Different from the traditional ray-based methods, the wave equation method, such as the method we use in our paper, has a remarkable advantage in adapting to low signal-to-noise ratio conditions and does not need a person to select the data. However, because it has a conspicuous deficiency due to its computation cost, these methods are not widely used in industrial fields. To make the method useful, we implement imaging-like wave equation micro-seismic location in a 3D elastic media and use GPU to accelerate our algorithm. We also introduce some new GPU features into the implementation to solve the data transfer and GPU utilization problems. Numerical and field data experiments show that our method can achieve a more than 30% performance improvement in GPU implementation just by using these new features.

  15. Shallow subsurface morpho-tectonics at the Northern offshore Sumatra subduction system using high resolution reflection and refraction seismics

    NASA Astrophysics Data System (ADS)

    Ghosal, D.; Dibakar Ghosal*, S. C. Singh, A. P. S. Chauhan, H. Carton, N. D. Hananto

    2011-12-01

    The oblique subduction of Indo-Australian plate below the Eurosian plate regulates the subsurface geology of the Sumatra subduction system from south to north. Although many geological, geophysical and geodetic studies have been carried over since several decades nevertheless a high resolution subsurface image describing the detailed structural features over the Northern Sumatra is still missing. To scrutinize the northern part of this subduction system we had carried out a multi channel seismic (MCS) and OBS survey using a 12 km long streamer and 56 ocean bottom seismometers in 2006 and procured a high resolution deep seismic reflection and refraction data over a 500 km long profile mapping the whole subduction setting from the subduction front, forearc high and basin, Sumatra platform, Sumatra fault and volcanic arc. The acoustic basement along the profile is very complex because of its extremities lies in a range of 300 m to 5000 m. In order to overcome the imaging-intricacies caused due to the abrupt changes of water depth, we have downward continued the 12 km streamer data to the seafloor, which provides refraction arrivals from near zero offsets to 12 km, and subsequently a high-resolution travel time tomography keeping node spacing of 50m x 50m has accomplished to procure a detail velocity structure along the profile. We have conducted our analysis in two important areas at northern offshore Sumatra: (1) subduction front and accretionary settings and (2) forearc high and West Anadman Fault. Our main goal lies to observe the nature of shallow subsurface velocity distribution over these regions. Tomographic result of the subduction front demonstrates the changes in velocity gradient along up-dip. The 1D velocity gradients become shallower toward the subduction trench inferring the fact of lithification of accreted sediments around the accretionary wedge. At the forearc high adjacent to the Aceh basin a pile of 1 km thick low velocity sediments is underlain by

  16. High-resolution seismic-reflection imaging 25 years of change in I-70 sinkhole, Russell County, Kansas

    USGS Publications Warehouse

    Miller, R.D.; Steeples, D.W.; Lambrecht, J.L.; Croxton, N.

    2006-01-01

    Time-lapse seismic reflection imaging improved our understanding of the consistent, gradual surface subsidence ongoing at two sinkholes in the Gorham Oilfield discovered beneath a stretch of Interstate Highway 70 through Russell and Ellis Counties in Kansas in 1966. With subsidence occurring at a rate of around 10 cm per year since discovery, monitoring has been beneficial to ensure public safety and optimize maintenance. A miniSOSIE reflection survey conducted in 1980 delineated the affected subsurface and successfully predicted development of a third sinkhole at this site. In 2004 and 2005 a high-resolution vibroseis survey was completed to ascertain current conditions of the subsurface, rate and pattern of growth since 1980, and potential for continued growth. With time and improved understanding of the salt dissolution affected subsurface in this area it appears that these features represent little risk to the public from catastrophic failure. However, from an operational perspective the Kansas Department of Transportation should expect continued subsidence, with future increases in surface area likely at a slightly reduced vertical rate. Seismic characteristics appear empirically consistent with gradual earth material compaction/settling. ?? 2005 Society of Exploration Geophysicists.

  17. 3D Numerical Simulation on the Sloshing Waves Excited by the Seismic Shacking

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Wu, Tso-Ren

    2016-04-01

    In the event of 2015 Nepal earthquake, a video clip broadcasted worldwide showed a violent water spilling in a hotel swimming pool. This sloshing phenomenon indicates a potential water loss in the sensitive facilities, e.g. the spent fuel pools in nuclear power plant, has to be taken into account carefully under the consideration of seismic-induced ground acceleration. In the previous studies, the simulation of sloshing mainly focused on the pressure force on the structure by using a simplified Spring-Mass Method developed in the field of solid mechanics. However, restricted by the assumptions of plane water surface and limited wave height, significant error will be made in evaluating the amount of water loss in the tank. In this paper, the computational fluid dynamical model, Splash3D, was adopted for studying the sloshing problem accurately. Splash3D solved 3D Navier-Stokes Equation directly with Large-Eddy Simulation (LES) turbulent closure. The Volume-of-fluid (VOF) method with piecewise linear interface calculation (PLIC) was used to track the complex breaking water surface. The time series acceleration of a design seismic was loaded to excite the water. With few restrictions from the assumptions, the accuracy of the simulation results were improved dramatically. A series model validations were conducted by compared to a 2D theoretical solution, and a 3D experimental data. Good comparisons can be seen. After the validation, we performed the simulation for considering a sloshing case in a rectangular water tank with a dimension of 12 m long, 8 m wide, 8 m deep, which contained water with 7 m in depth. The seismic movement was imported by considering time-series acceleration in three dimensions, which were about 0.5 g to 1.2 g in the horizontal directions, and 0.3 g to 1 g in the vertical direction. We focused the discussions on the kinematics of the water surface, wave breaking, velocity field, pressure field, water force on the side walls, and, most

  18. Seismic Response of 3D Steel Buildings considering the Effect of PR Connections and Gravity Frames

    PubMed Central

    Haldar, Achintya; López-Barraza, Arturo; Rivera-Salas, J. Luz

    2014-01-01

    The nonlinear seismic responses of 3D steel buildings with perimeter moment resisting frames (PMRF) and interior gravity frames (IGF) are studied explicitly considering the contribution of the IGF. The effect on the structural response of the stiffness of the beam-to-column connections of the IGF, which is usually neglected, is also studied. It is commonly believed that the flexibility of shear connections is negligible and that 2D models can be used to properly represent 3D real structures. The results of the study indicate, however, that the moments developed on columns of IGF can be considerable and that modeling buildings as plane frames may result in very conservative designs. The contribution of IGF to the lateral structural resistance may be significant. The contribution increases when their connections are assumed to be partially restrained (PR). The incremented participation of IGF when the stiffness of their connections is considered helps to counteract the no conservative effect that results in practice when lateral seismic loads are not considered in IGF while designing steel buildings with PMRF. Thus, if the structural system under consideration is used, the three-dimensional model should be used in seismic analysis and the IGF and the stiffness of their connections should be considered as part of the lateral resistance system. PMID:24995357

  19. Seismic response of 3D steel buildings considering the effect of PR connections and gravity frames.

    PubMed

    Reyes-Salazar, Alfredo; Bojórquez, Edén; Haldar, Achintya; López-Barraza, Arturo; Rivera-Salas, J Luz

    2014-01-01

    The nonlinear seismic responses of 3D steel buildings with perimeter moment resisting frames (PMRF) and interior gravity frames (IGF) are studied explicitly considering the contribution of the IGF. The effect on the structural response of the stiffness of the beam-to-column connections of the IGF, which is usually neglected, is also studied. It is commonly believed that the flexibility of shear connections is negligible and that 2D models can be used to properly represent 3D real structures. The results of the study indicate, however, that the moments developed on columns of IGF can be considerable and that modeling buildings as plane frames may result in very conservative designs. The contribution of IGF to the lateral structural resistance may be significant. The contribution increases when their connections are assumed to be partially restrained (PR). The incremented participation of IGF when the stiffness of their connections is considered helps to counteract the no conservative effect that results in practice when lateral seismic loads are not considered in IGF while designing steel buildings with PMRF. Thus, if the structural system under consideration is used, the three-dimensional model should be used in seismic analysis and the IGF and the stiffness of their connections should be considered as part of the lateral resistance system.

  20. 3D Seismic Flexure Analysis for Subsurface Fault Detection and Fracture Characterization

    NASA Astrophysics Data System (ADS)

    Di, Haibin; Gao, Dengliang

    2017-03-01

    Seismic flexure is a new geometric attribute with the potential of delineating subtle faults and fractures from three-dimensional (3D) seismic surveys, especially those overlooked by the popular discontinuity and curvature attributes. Although the concept of flexure and its related algorithms have been published in the literature, the attribute has not been sufficiently applied to subsurface fault detection and fracture characterization. This paper provides a comprehensive study of the flexure attribute, including its definition, computation, as well as geologic implications for evaluating the fundamental fracture properties that are essential to fracture characterization and network modeling in the subsurface, through applications to the fractured reservoir at Teapot Dome, Wyoming (USA). Specifically, flexure measures the third-order variation of the geometry of a seismic reflector and is dependent on the measuring direction in 3D space; among all possible directions, flexure is considered most useful when extracted perpendicular to the orientation of dominant deformation; and flexure offers new insights into qualitative/quantitative fracture characterization, with its magnitude indicating the intensity of faulting and fracturing, its azimuth defining the orientation of most-likely fracture trends, and its sign differentiating the sense of displacement of faults and fractures.

  1. 3D Seismic Flexure Analysis for Subsurface Fault Detection and Fracture Characterization

    NASA Astrophysics Data System (ADS)

    Di, Haibin; Gao, Dengliang

    2016-10-01

    Seismic flexure is a new geometric attribute with the potential of delineating subtle faults and fractures from three-dimensional (3D) seismic surveys, especially those overlooked by the popular discontinuity and curvature attributes. Although the concept of flexure and its related algorithms have been published in the literature, the attribute has not been sufficiently applied to subsurface fault detection and fracture characterization. This paper provides a comprehensive study of the flexure attribute, including its definition, computation, as well as geologic implications for evaluating the fundamental fracture properties that are essential to fracture characterization and network modeling in the subsurface, through applications to the fractured reservoir at Teapot Dome, Wyoming (USA). Specifically, flexure measures the third-order variation of the geometry of a seismic reflector and is dependent on the measuring direction in 3D space; among all possible directions, flexure is considered most useful when extracted perpendicular to the orientation of dominant deformation; and flexure offers new insights into qualitative/quantitative fracture characterization, with its magnitude indicating the intensity of faulting and fracturing, its azimuth defining the orientation of most-likely fracture trends, and its sign differentiating the sense of displacement of faults and fractures.

  2. Detection of ancient morphology and potential hydrocarbon traps using 3-D seismic data and attribute analysis

    SciTech Connect

    Heggland, R.

    1995-12-31

    This paper presents the use of seismic attributes on 3D data to reveal Tertiary and Cretaceous geological features in Norwegian block 9/2. Some of the features would hardly be possible to map using only 2D seismic data. The method which involves a precise interpretation of horizons, attribute analysis and manipulation of colour displays, may be useful when studying morphology, faults and hydrocarbon traps. The interval of interest in this study was from 0 to 1.5 s TWT. Horizontal displays (timeslices and attribute maps), seemed to highlight very nicely geological features such as shallow channels, fractures, karst topography and faults. The attributes used for mapping these features were amplitude, total reflection energy (a volume or time interval attribute), dip and azimuth. The choice of colour scale and manipulation of colour displays were also critical for the results. The data examples clearly demonstrate how it is possible to achieve a very detailed mapping of geological features using 3D seismic data and attribute analysis. The results of this study were useful for the understanding of hydrocarbon migration paths and hydrocarbon traps.

  3. 3D seismic interpretation of subsurface eruptive centers in a Permian large igneous province, Tazhong Uplift, central Tarim Basin, NW China

    NASA Astrophysics Data System (ADS)

    Yang, Jiangfeng; Zhu, Wenbin; Guan, Da; Zhu, Beibei; Yuan, Liansheng; Xiang, Xuemei; Su, Jinbao; He, Jingwen; Wu, Xinhui

    2016-11-01

    A 1445-km2 high-resolution 3D seismic reflection dataset is used to analyze the Permian large igneous province in the subsurface of the Tazhong area in the central Tarim Basin in northwestern China. Constrained by the synthetic seismograms of four wells, the top and base of the igneous rocks were identified in the seismic data. Seven large volcanic craters, each >10 km2 in area, have been discovered via the application of coherency and amplitude attributes. The thickness and volume of the igneous rocks were obtained by time-depth transformation. In the study area, all of the igneous rocks, with thicknesses from 120 to 1133 m, were formed by eruptions in the Early Permian. These events produced huge erupted volumes (178 km3) and multiple closely spaced volcanic edifices (<13 km). These features suggest that the study area may be the part of the eruptive center of the Permian igneous rocks in the Tarim Basin.

  4. Constraints on Flow Dynamics within the Oceanic Asthenosphere from a High-Resolution Estimate of Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Gaherty, J. B.; Lin, P. Y.; Jin, G.; Collins, J. A.; Lizarralde, D.; Evans, R. L.; Hirth, G.; Mark, H. F.

    2015-12-01

    Convective flow in the mantle and the motions of tectonic plates produce deformation of the Earth's interior, and the rock fabric produced by this deformation can be discerned using anisotropy of seismic wavespeed. This deformation is particularly prevalent within the oceanic asthenosphere, including near seafloor-spreading centers as new plates are formed via corner flow, and within a weak asthenosphere that lubricates large-scale plate-driven flow and/or accommodates smaller-scale convection. Seismic models of oceanic upper mantle are conflicting regarding the relative importance of these deformation processes. Seafloor-spreading fabric is very strong just beneath the Moho at relatively local scales. At ocean-basin scales, the strongest fabric in the asthenosphere, and the relative importance of density-driven flow and plate-induced shear is ambiguous. Using Rayleigh waves recorded across the NoMelt ocean-bottom seismograph (OBS) array in the central Pacific, we provide a unique high-resolution constraint on seismic anisotropy within the oceanic lithosphere-asthenosphere system in the middle of a plate. Shear-velocity and conductivity profiles delineate a dry, high-velocity lid overlying a damp, weak asthenosphere. Azimuthal anisotropy is strongest within the lid, with fast direction coincident with seafloor spreading, consistent with Pn observations. Minimum azimuthal anisotropy occurs within the lowest-velocity (weakest) portion of the asthenosphere, and below which it increases to a secondary maximum. In no depth range does the fast direction correspond to apparent plate motion. The results suggest that the dominant deformation in the oceanic mantle occurs during corner flow at the ridge axis, and via pressure- and/or buoyancy-driven flow within the asthenosphere, possibly within a non-Newtonian low-viscosity channel. Shear associated with motion of the plate over the underlying asthenosphere, if present, is weak compared to these processes.

  5. HIGH-RESOLUTION SEISMIC VELOCITY AND ATTENUATION MODELS OF THE CAUCASUS-CASPIAN REGION

    SciTech Connect

    Mellors, R; Gok, R; Pasyanos, M; Skobeltsyn, G; Teoman, U; Godoladze, T; Sandvol, E

    2008-07-01

    The southwest edge of Eurasia is a tectonically and structurally complex region that includes the Caspian and Black Sea basins, the Caucasus Mountains, and the high plateaus south of the Caucasus. Using data from 25 broadband stations located in the region, new estimates of crustal and upper mantle thickness, velocity structure, and attenuation are being developed. Receiver functions have been determined for all stations. Depth to Moho is estimated using slant stacking of the receiver functions, forward modeling, and inversion. Moho depths along the Caspian and in the Kura Depression are in general poorly constrained using only receiver functions due to thick sedimentary basin sediments. The best fitting models suggest a low velocity upper crust with Moho depths ranging from 30 to 40 km. Crustal thicknesses increase in the Greater Caucasus with Moho depths of 40 to 50 km. Pronounced variations with azimuth of source are observed indicating 3D structural complexity and upper crustal velocities are higher than in the Kura Depression to the south. In the Lesser Caucasus, south and west of the Kura Depression, the crust is thicker (40 to 50 km) and upper crustal velocities are higher. Work is underway to refine these models with the event based surface wave dispersion and ambient noise correlation measurements from continuous data. Regional phase (Lg and Pg) attenuation models as well as blockage maps for Pn and Sn are being developed. Two methods are used to estimate Q: the two-station method to estimate inter-station Q and the reversed, two-station, two event method. The results are then inverted to create Lg and Pg Q maps. Initial results suggest substantial variations in both Pg and Lg Q in the region. A zone of higher Pg Q extends west from the Caspian between the Lesser and Greater Caucasus and a narrow area of higher Lg Q is observed.

  6. New High-Resolution Marine Single-Channel Seismic Data From the Emperor Seamounts: Initial Observations From ODP Leg 197

    NASA Astrophysics Data System (ADS)

    Kerr, B. C.; Scholl, D. W.

    2001-12-01

    In July-August of 2001, ODP Leg 197 drilled Detroit, Nintoku, and Koko Seamounts of the Emperor seamount chain to obtain cores of basaltic lava flows. These basalt cores will provide radiometric age and paleomagnetic data to accurately and precisely constrain the paleolatitude of the Hawaiian hotspot. In addition, recovered cores will determine temporal changes in the geochemistry of Hawaiian hotspot volcanic products. Prior to drilling, the JOIDES Resolution, performed