Science.gov

Sample records for 3d human body

  1. 3D measurement of human upper body for gesture recognition

    NASA Astrophysics Data System (ADS)

    Wan, Khairunizam; Sawada, Hideyuki

    2007-10-01

    Measurement of human motion is widely required for various applications, and a significant part of this task is to identify motion in the process of human motion recognition. There are several application purposes of doing this research such as in surveillance, entertainment, medical treatment and traffic applications as user interfaces that require the recognition of different parts of human body to identify an action or a motion. The most challenging task in human motion recognition is to achieve the ability and reliability of a motion capture system for tracking and recognizing dynamic movements, because human body structure has many degrees of freedom. Many attempts for recognizing body actions have been reported so far, in which gestural motions have to be measured by some sensors first, and the obtained data are processed in a computer. This paper introduces the 3D motion analysis of human upper body using an optical motion capture system for the purpose of gesture recognition. In this study, the image processing technique to track optical markers attached at feature points of human body is introduced for constructing a human upper body model and estimating its three dimensional motion.

  2. Human Body 3D Posture Estimation Using Significant Points and Two Cameras

    PubMed Central

    Juang, Chia-Feng; Chen, Teng-Chang; Du, Wei-Chin

    2014-01-01

    This paper proposes a three-dimensional (3D) human posture estimation system that locates 3D significant body points based on 2D body contours extracted from two cameras without using any depth sensors. The 3D significant body points that are located by this system include the head, the center of the body, the tips of the feet, the tips of the hands, the elbows, and the knees. First, a linear support vector machine- (SVM-) based segmentation method is proposed to distinguish the human body from the background in red, green, and blue (RGB) color space. The SVM-based segmentation method uses not only normalized color differences but also included angle between pixels in the current frame and the background in order to reduce shadow influence. After segmentation, 2D significant points in each of the two extracted images are located. A significant point volume matching (SPVM) method is then proposed to reconstruct the 3D significant body point locations by using 2D posture estimation results. Experimental results show that the proposed SVM-based segmentation method shows better performance than other gray level- and RGB-based segmentation approaches. This paper also shows the effectiveness of the 3D posture estimation results in different postures. PMID:24883422

  3. 3D measurement of the human body for apparel mass customization

    NASA Astrophysics Data System (ADS)

    Xu, Bugao; Lin, Sheng; Chen, Tong

    2000-12-01

    An automatic body measurement system is essential for apparel mass customization. This paper introduces the development of a body-scanning system using the multi-line triangulation technique, and methods for body size extraction and body modeling. The scanning system can rapidly acquire the surface data of a body, provide accurate body dimensions, many of which are not measurable with conventional methods, and also construct a body form based on the scanned data as a digital model of the body for 3D garment design and for virtual try-on of a designed garment.

  4. Multicamera 3D modeling system to digitize human head and body

    NASA Astrophysics Data System (ADS)

    Fujimura, Kouta; Matsumoto, Yukinori; Emi, Tetsuichi

    2001-04-01

    A multi-camera 3D modeling system to digitize a human head and body is presented in this paper. The main features of this system are as follows: 1) Fast capturing: Both of texture images and pattern images can be taken within a few seconds using multiple digital still cameras which are set around the target human. Slide projectors are also set to provide a color line patterned light on the target for pattern image capturing, 2) Realistic Shape and Texture: The whole shape and photo-realistic textures of the human head including hair can be digitized at a time on a personal computer, and 3) Hybrid Algorithm: Our modeling algorithm is based on a hybrid method where the Shape-from-Silhouette technique and the Active-Stereo technique are combined. In the first step, the rough shape of the target is estimated in a voxel space using our Extended Shape-from-Silhouette method. In the next step, the shape is refined based on the depth-map data that is calculated using a multi-camera active stereo method. This combination makes up for the shortcomings of each method. Our system has been applied to the digitizing several Japanese people using sixteen cameras for texture image capturing and twelve cameras and two projectors for pattern image capturing. Its capturing time is approximately three seconds and calculation time is about 15-20 minutes on a personal computer with the Pentium-III processor (600MHz) and 512MB memory to digitize the whole shape as well as the texture of the human head and body.

  5. Learning Dictionaries of Sparse Codes of 3D Movements of Body Joints for Real-Time Human Activity Understanding

    PubMed Central

    Qi, Jin; Yang, Zhiyong

    2014-01-01

    Real-time human activity recognition is essential for human-robot interactions for assisted healthy independent living. Most previous work in this area is performed on traditional two-dimensional (2D) videos and both global and local methods have been used. Since 2D videos are sensitive to changes of lighting condition, view angle, and scale, researchers begun to explore applications of 3D information in human activity understanding in recently years. Unfortunately, features that work well on 2D videos usually don't perform well on 3D videos and there is no consensus on what 3D features should be used. Here we propose a model of human activity recognition based on 3D movements of body joints. Our method has three steps, learning dictionaries of sparse codes of 3D movements of joints, sparse coding, and classification. In the first step, space-time volumes of 3D movements of body joints are obtained via dense sampling and independent component analysis is then performed to construct a dictionary of sparse codes for each activity. In the second step, the space-time volumes are projected to the dictionaries and a set of sparse histograms of the projection coefficients are constructed as feature representations of the activities. Finally, the sparse histograms are used as inputs to a support vector machine to recognize human activities. We tested this model on three databases of human activities and found that it outperforms the state-of-the-art algorithms. Thus, this model can be used for real-time human activity recognition in many applications. PMID:25473850

  6. Learning dictionaries of sparse codes of 3D movements of body joints for real-time human activity understanding.

    PubMed

    Qi, Jin; Yang, Zhiyong

    2014-01-01

    Real-time human activity recognition is essential for human-robot interactions for assisted healthy independent living. Most previous work in this area is performed on traditional two-dimensional (2D) videos and both global and local methods have been used. Since 2D videos are sensitive to changes of lighting condition, view angle, and scale, researchers begun to explore applications of 3D information in human activity understanding in recently years. Unfortunately, features that work well on 2D videos usually don't perform well on 3D videos and there is no consensus on what 3D features should be used. Here we propose a model of human activity recognition based on 3D movements of body joints. Our method has three steps, learning dictionaries of sparse codes of 3D movements of joints, sparse coding, and classification. In the first step, space-time volumes of 3D movements of body joints are obtained via dense sampling and independent component analysis is then performed to construct a dictionary of sparse codes for each activity. In the second step, the space-time volumes are projected to the dictionaries and a set of sparse histograms of the projection coefficients are constructed as feature representations of the activities. Finally, the sparse histograms are used as inputs to a support vector machine to recognize human activities. We tested this model on three databases of human activities and found that it outperforms the state-of-the-art algorithms. Thus, this model can be used for real-time human activity recognition in many applications. PMID:25473850

  7. 3-D Human body models in C.A.D. : Anthropometric Aspects

    NASA Astrophysics Data System (ADS)

    Renaud, C.; Steck, R.; Pineau, J. C.

    1986-07-01

    Modeling and simulation methods of man-machine systems are developed at the laboratory by interactive infography and C.A.D. technics. In order to better apprehend the morphological variability of populations we have enriched the 3-D model with a parametric function using classical anthropometric dimensions. We have selected reference, associate and complementary dimensions : lengths, breadths, circumferences and depths, which depend on operator's tasks and characteristics of workplaces. All anthropometric values come from the International Data Bank of Human Biometry of ERGODATA System. The utilization of the parametric function brings a quick and accurate description of morphology for theoretic subjects and can be used in C.A.D. analysis.

  8. The mathematical description of the body centre of mass 3D path in human and animal locomotion.

    PubMed

    Minetti, Alberto E; Cisotti, Caterina; Mian, Omar S

    2011-05-17

    Although the 3D trajectory of the body centre of mass during ambulation constitutes the 'locomotor signature' at different gaits and speeds for humans and other legged species, no quantitative method for its description has been proposed in the literature so far. By combining the mathematical discoveries of Jean Baptiste Joseph Fourier (1768-1830, analysis of periodic events) and of Jules Antoine Lissajous (1822-1880, parametric equation for closed loops) we designed a method simultaneously capturing the spatial and dynamical features of that 3D trajectory. The motion analysis of walking and running humans, and the re-processing of previously published data on trotting and galloping horses, as moving on a treadmill, allowed to obtain closed loops for the body centre of mass showing general and individual locomotor characteristics. The mechanical dynamics due to the different energy exchange, the asymmetry along each 3D axis, and the sagittal and lateral energy recovery, among other parameters, were evaluated for each gait according to the present methodology. The proposed mathematical description of the 3D trajectory of the body centre of mass could be used to better understand the physiology and biomechanics of normal locomotion, from monopods to octopods, and to evaluate individual deviations with respect to average values as resulting from gait pathologies and the restoration of a normal pattern after pharmacological, physiotherapeutic and surgical treatments. PMID:21463861

  9. VIRO 3D: fast three-dimensional full-body scanning for humans and other living objects

    NASA Astrophysics Data System (ADS)

    Stein, Norbert; Minge, Bernhard

    1998-03-01

    The development of a family of partial and whole body scanners provides a complete technology for fully three-dimensional and contact-free scans on human bodies or other living objects within seconds. This paper gives insight into the design and the functional principles of the whole body scanner VIRO 3D operating on the basis of the laser split-beam method. The arrangement of up to 24 camera/laser combinations, thus dividing the area into different camera fields and an all- around sensor configuration travelling in vertical direction allow the complete 360-degree-scan of an object within 6 - 20 seconds. Due to a special calibration process the different sensors are matched and the measured data are combined. Up to 10 million 3D measuring points with a resolution of approximately 1 mm are processed in all coordinate axes to generate a 3D model. By means of high-performance processors in combination with real-time image processing chips the image data from almost any number of sensors can be recorded and evaluated synchronously in video real-time. VIRO 3D scanning systems have already been successfully implemented in various applications and will open up new perspectives in different other fields, ranging from industry, orthopaedic medicine, plastic surgery to art and photography.

  10. Selecting best-fit models for estimating the body mass from 3D data of the human calcaneus.

    PubMed

    Jung, Go-Un; Lee, U-Young; Kim, Dong-Ho; Kwak, Dai-Soon; Ahn, Yong-Woo; Han, Seung-Ho; Kim, Yi-Suk

    2016-05-01

    Body mass (BM) estimation could facilitate the interpretation of skeletal materials in terms of the individual's body size and physique in forensic anthropology. However, few metric studies have tried to estimate BM by focusing on prominent biomechanical properties of the calcaneus. The purpose of this study was to prepare best-fit models for estimating BM from the 3D human calcaneus by two major linear regression analysis (the heuristic statistical and all-possible-regressions techniques) and validate the models through predicted residual sum of squares (PRESS) statistics. A metric analysis was conducted based on 70 human calcaneus samples (29 males and 41 females) taken from 3D models in the Digital Korean Database and 10 variables were measured for each sample. Three best-fit models were postulated by F-statistics, Mallows' Cp, and Akaike information criterion (AIC) and Bayes information criterion (BIC) for each available candidate models. Finally, the most accurate regression model yields lowest %SEE and 0.843 of R(2). Through the application of leave-one-out cross validation, the predictive power was indicated a high level of validation accuracy. This study also confirms that the equations for estimating BM using 3D models of human calcaneus will be helpful to establish identification in forensic cases with consistent reliability. PMID:26970867

  11. Physics-based Simulation of Human Posture Using 3D Whole Body Scanning Technology for Astronaut Space Suit Evaluation

    NASA Technical Reports Server (NTRS)

    Kim, Kyu-Jung

    2005-01-01

    Over the past few years high precision three-dimensional (3D) full body laser scanners have been developed to be used as a powerful anthropometry tool for quantification of the morphology of the human body. The full body scanner can quickly extract body characteristics in non-contact fashion. It is required for the Anthropometry and Biomechanics Facility (ABF) to have capabilities for kinematics simulation of a digital human at various postures whereas the laser scanner only allows capturing a single static posture at each time. During this summer fellowship period a theoretical study has been conducted to estimate an arbitrary posture with a series of example postures through finite element (FE) approximation and found that four-point isoparametric FE approximation would result in reasonable maximum position errors less than 5%. Subsequent pilot scan experiments demonstrated that a bead marker with a nominal size of 6 mm could be used as a marker for digitizing 3-D coordinates of anatomical landmarks for further kinematic analysis. Two sessions of human subject testing were conducted for reconstruction of an arbitrary postures from a set of example postures for each joint motion for the forearm/hand complex and the whole upper extremity.

  12. Study of human body: Kinematics and kinetics of a martial arts (Silat) performers using 3D-motion capture

    NASA Astrophysics Data System (ADS)

    Soh, Ahmad Afiq Sabqi Awang; Jafri, Mohd Zubir Mat; Azraai, Nur Zaidi

    2015-04-01

    The Interest in this studies of human kinematics goes back very far in human history drove by curiosity or need for the understanding the complexity of human body motion. To find new and accurate information about the human movement as the advance computing technology became available for human movement that can perform. Martial arts (silat) were chose and multiple type of movement was studied. This project has done by using cutting-edge technology which is 3D motion capture to characterize and to measure the motion done by the performers of martial arts (silat). The camera will detect the markers (infrared reflection by the marker) around the performer body (total of 24 markers) and will show as dot in the computer software. The markers detected were analyzing using kinematic kinetic approach and time as reference. A graph of velocity, acceleration and position at time,t (seconds) of each marker was plot. Then from the information obtain, more parameters were determined such as work done, momentum, center of mass of a body using mathematical approach. This data can be used for development of the effectiveness movement in martial arts which is contributed to the people in arts. More future works can be implemented from this project such as analysis of a martial arts competition.

  13. A virtual interface for interactions with 3D models of the human body.

    PubMed

    De Paolis, Lucio T; Pulimeno, Marco; Aloisio, Giovanni

    2009-01-01

    The developed system is the first prototype of a virtual interface designed to avoid contact with the computer so that the surgeon is able to visualize 3D models of the patient's organs more effectively during surgical procedure or to use this in the pre-operative planning. The doctor will be able to rotate, to translate and to zoom in on 3D models of the patient's organs simply by moving his finger in free space; in addition, it is possible to choose to visualize all of the organs or only some of them. All of the interactions with the models happen in real-time using the virtual interface which appears as a touch-screen suspended in free space in a position chosen by the user when the application is started up. Finger movements are detected by means of an optical tracking system and are used to simulate touch with the interface and to interact by pressing the buttons present on the virtual screen. PMID:19377116

  14. Study of the counting efficiency of a WBC setup by using a computational 3D human body library in sitting position based on polygonal mesh surfaces.

    PubMed

    Fonseca, T C Ferreira; Bogaerts, R; Lebacq, A L; Mihailescu, C L; Vanhavere, F

    2014-04-01

    A realistic computational 3D human body library, called MaMP and FeMP (Male and Female Mesh Phantoms), based on polygonal mesh surface geometry, has been created to be used for numerical calibration of the whole body counter (WBC) system of the nuclear power plant (NPP) in Doel, Belgium. The main objective was to create flexible computational models varying in gender, body height, and mass for studying the morphology-induced variation of the detector counting efficiency (CE) and reducing the measurement uncertainties. First, the counting room and an HPGe detector were modeled using MCNPX (Monte Carlo radiation transport code). The validation of the model was carried out for different sample-detector geometries with point sources and a physical phantom. Second, CE values were calculated for a total of 36 different mesh phantoms in a seated position using the validated Monte Carlo model. This paper reports on the validation process of the in vivo whole body system and the CE calculated for different body heights and weights. The results reveal that the CE is strongly dependent on the individual body shape, size, and gender and may vary by a factor of 1.5 to 3 depending on the morphology aspects of the individual to be measured. PMID:24562069

  15. The 3-D motion of the centre of gravity of the human body during level walking. II. Lower limb amputees.

    PubMed

    Tesio, L; Lanzi, D; Detrembleur, C

    1998-03-01

    OBJECTIVE: To analyse the motion of the centre of gravity (CG) of the body during gait in unilateral lower limb amputees with good kinematic patterns. DESIGN: Three transtibial (below-knee, BK) and four transfemoral (above-knee, AK) amputees were required to perform successive walks over a 2.4 m long force plate, at freely chosen cadence and speed. BACKGROUND: In previous studies it has been shown that in unilateral lower limb amputee gait, the motion of the CG can be more asymmetric than might be suspected from kinematic analysis. METHODS: The mechanical energy changes of the CG due to its motion in the vertical, forward and lateral direction were measured. Gait speed ranged 0.75-1.32 m s(-1) in the different subjects. This allowed calculation of (a) the positive work done by muscles to maintain the motion of the CG with respect to the ground ('external' work, W(ext)) and (b) the amount of the pendulum-like, energy-saving transfer between gravitational potential energy and kinetic energy of the CG during each step (percent recovery, R). Step length and vertical displacement of the CG were also measured. RESULTS: The recorded variables were kept within the normal limits, calculated in a previous work, when an average was made of the steps performed on the prosthetic (P) and on the normal (N) limb. Asymmetries were found, however, between the P and the N step. In BK amputees, the P step R was 5% greater and W(ext) was 21% lower than in the N step; in AK amputees, in the P step R was 54% greater and W(ext) was 66% lower than in the N step. Asymmetries were also found in the relative magnitude of the external work provided by each lower limb during the single stance as compared with the double stance: a marked deficit of work occurred at the P to N transition. PMID:11415775

  16. 3D Human Motion Editing and Synthesis: A Survey

    PubMed Central

    Wang, Xin; Chen, Qiudi; Wang, Wanliang

    2014-01-01

    The ways to compute the kinematics and dynamic quantities of human bodies in motion have been studied in many biomedical papers. This paper presents a comprehensive survey of 3D human motion editing and synthesis techniques. Firstly, four types of methods for 3D human motion synthesis are introduced and compared. Secondly, motion capture data representation, motion editing, and motion synthesis are reviewed successively. Finally, future research directions are suggested. PMID:25045395

  17. A 3D surface imaging system for assessing human obesity

    NASA Astrophysics Data System (ADS)

    Xu, B.; Yu, W.; Yao, M.; Yao, X.; Li, Q.; Pepper, M. R.; Freeland-Graves, J. H.

    2009-08-01

    The increasing prevalence of obesity suggests a need to develop a convenient, reliable and economical tool for assessment of this condition. Three-dimensional (3D) body surface imaging has emerged as an exciting technology for estimation of body composition. This paper presents a new 3D body imaging system, which was designed for enhanced portability, affordability, and functionality. In this system, stereo vision technology was used to satisfy the requirements for a simple hardware setup and fast image acquisitions. The portability of the system was created via a two-stand configuration, and the accuracy of body volume measurements was improved by customizing stereo matching and surface reconstruction algorithms that target specific problems in 3D body imaging. Body measurement functions dedicated to body composition assessment also were developed. The overall performance of the system was evaluated in human subjects by comparison to other conventional anthropometric methods, as well as air displacement plethysmography, for body fat assessment.

  18. 3D body scanning technology for fashion and apparel industry

    NASA Astrophysics Data System (ADS)

    D'Apuzzo, Nicola

    2007-01-01

    This paper presents an overview of 3D body scanning technologies with applications to the fashion and apparel industry. Complete systems for the digitization of the human body exist since more than fifteen years. One of the main users of this technology with application in the textile field was the military industry. In fact, body scanning technology is being successfully employed since many years in military bases for a fast selection of the correct size of uniforms for the entire staff. Complete solutions were especially developed for this field of application. Many different research projects were issued for the exploitation of the same technology in the commercial field. Experiments were performed and start-up projects are to time running in different parts of the world by installing full body scanning systems in various locations such as shopping malls, boutiques or dedicated scanning centers. Everything is actually ready to be exploited and all the required hardware, software and solutions are available: full body scanning systems, software for the automatic and reliable extraction of body measurements, e-kiosk and web solutions for the presentation of garments, high-end and low-end virtual-try-on systems. However, complete solutions in this area have still not yet found the expected commercial success. Today, with the on-going large cost reduction given by the appearance of new competitors, methods for digitization of the human body becomes more interesting for the fashion and apparel industry. Therefore, a large expansion of these technologies is expected in the near future. To date, different methods are used commercially for the measurement of the human body. These can be divided into three major distinguished groups: laser-scanning, projection of light patterns, combination modeling and image processing. The different solutions have strengths and weaknesses that profile their suitability for specific applications. This paper gives an overview of their

  19. The 3D trajectory of the body centre of mass during adult human walking: evidence for a speed-curvature power law.

    PubMed

    Tesio, Luigi; Rota, Viviana; Perucca, Laura

    2011-02-24

    During straight walking, the body centre of mass (CM) follows a 3D figure-of-eight ("bow-tie") trajectory about 0.2 m long and with sizes around 0.05 m on each orthogonal axis. This was shown in 18 healthy adults walking at 0.3 to 1.4 ms⁻¹ on a force-treadmill (Tesio and Rota, 2008). Double integration of force signals can provide both the changes of mechanical energy of the CM and its 3D displacements (Tesio et al., 2010). In the same subjects, the relationship between the tangential speed of the CM, Vt, the curvature, C, and its inverse--the radius of curvature, r(c), were analyzed. A "power law" (PL) model was applied, i.e. logVt was regressed over logr(c). A PL is known to apply to the most various goal-directed planar movements (e.g. drawing), where the coefficient of logr(c), β, usually takes values around 13. When the PL was fitted to the whole dataset, β was 0.346 and variance explanation, R², was 59.8%. However, when the data were split into low- and high-curvature subsets (LC, HC, arbitrary cut-off of C=0.05 mm⁻¹, r(c)=20mm), β was 0.185 in the LC (R² 0.214) and 0.486 in the HC (R² 0.536) tracts. R² on the whole dataset increased to 0.763 if the LC-HC classification of the forward speed and their interaction entered the model. The β coefficient, the curvature C, and the pendulum-like recovery of mechanical energy were lower during the double foot-ground contact phase, compared to the single contact. Along the CM trajectory, curvature and muscle power output peaked together around the inversions of lateral direction. Non-zero torsion values were randomly distributed along 60% of the trajectory, suggesting that this is not segmented into piecewise planar tracts. It is proposed that the trajectory can be segmented into one tract that is more actively controlled (tie) where a PL fits poorly and another tract which is more ballistic (bow) where a PL fits well. Results need confirmation through more appropriate 3D PL modelling. PMID:21075377

  20. Generation and use of human 3D-CAD models

    NASA Astrophysics Data System (ADS)

    Grotepass, Juergen; Speyer, Hartmut; Kaiser, Ralf

    2002-05-01

    Individualized Products are one of the ten mega trends of the 21st Century with human modeling as the key issue for tomorrow's design and product development. The use of human modeling software for computer based ergonomic simulations within the production process increases quality while reducing costs by 30- 50 percent and shortening production time. This presentation focuses on the use of human 3D-CAD models for both, the ergonomic design of working environments and made to measure garment production. Today, the entire production chain can be designed, individualized models generated and analyzed in 3D computer environments. Anthropometric design for ergonomics is matched to human needs, thus preserving health. Ergonomic simulation includes topics as human vision, reachability, kinematics, force and comfort analysis and international design capabilities. In German more than 17 billions of Mark are moved to other industries, because clothes do not fit. Individual clothing tailored to the customer's preference means surplus value, pleasure and perfect fit. The body scanning technology is the key to generation and use of human 3D-CAD models for both, the ergonomic design of working environments and made to measure garment production.

  1. Unsteady 3D Turbulent Flow Separation around a ROV Body

    NASA Astrophysics Data System (ADS)

    Ungureanu, Costel; Lungu, Adrian

    2009-09-01

    Turbulent separated flows around ellipsoids of various aspect ratios are investigated using a numerical method. The Reynolds averaged equations for continuity and momentum are solved by cell-centered finite-volume method for the primitive variables to describe the 3D turbulent incompressible flow. The objectives of the study are: (a) to investigate the propulsive performances of a moving Remotely Operated Vehicle (ROV hereafter) ellipsoidal body; (b) to validate the computational solutions through comparisons with the experimental data; (c) to investigate the effects of the angle of attack on the separation pattern as well as on the hydrodynamic forces and moments.

  2. What is 3D good for? A review of human performance on stereoscopic 3D displays

    NASA Astrophysics Data System (ADS)

    McIntire, John P.; Havig, Paul R.; Geiselman, Eric E.

    2012-06-01

    This work reviews the human factors-related literature on the task performance implications of stereoscopic 3D displays, in order to point out the specific performance benefits (or lack thereof) one might reasonably expect to observe when utilizing these displays. What exactly is 3D good for? Relative to traditional 2D displays, stereoscopic displays have been shown to enhance performance on a variety of depth-related tasks. These tasks include judging absolute and relative distances, finding and identifying objects (by breaking camouflage and eliciting perceptual "pop-out"), performing spatial manipulations of objects (object positioning, orienting, and tracking), and navigating. More cognitively, stereoscopic displays can improve the spatial understanding of 3D scenes or objects, improve memory/recall of scenes or objects, and improve learning of spatial relationships and environments. However, for tasks that are relatively simple, that do not strictly require depth information for good performance, where other strong cues to depth can be utilized, or for depth tasks that lie outside the effective viewing volume of the display, the purported performance benefits of 3D may be small or altogether absent. Stereoscopic 3D displays come with a host of unique human factors problems including the simulator-sickness-type symptoms of eyestrain, headache, fatigue, disorientation, nausea, and malaise, which appear to effect large numbers of viewers (perhaps as many as 25% to 50% of the general population). Thus, 3D technology should be wielded delicately and applied carefully; and perhaps used only as is necessary to ensure good performance.

  3. Whole-body 3D scanner and scan data report

    NASA Astrophysics Data System (ADS)

    Addleman, Stephen R.

    1997-03-01

    With the first whole-body 3D scanner now available the next adventure confronting the user is what to do with all of the data. While the system was built for anthropologists, it has created interest among users from a wide variety of fields. Users with applications in the fields of anthropology, costume design, garment design, entertainment, VR and gaming have a need for the data in formats unique to their fields. Data from the scanner is being converted to solid models for art and design and NURBS for computer graphics applications. Motion capture has made scan data move and dance. The scanner has created a need for advanced application software just as other scanners have in the past.

  4. Numerical Analysis of Three-Dimensional Cervical Behaviors in Posterior-Oblique Car Collisions Using 3-D Human Whole Body Finite Element Model

    NASA Astrophysics Data System (ADS)

    Kang, Yu-Bong; Jung, Duk-Young; Tanaka, Masatoshi; Yoshino, Nobuyuki; Tsutsumi, Sadami; Ikeuchi, Ken

    Whiplash injuries are most common disorders in rear-end car accidents, while the injury mechanism is yet unknown. Many numerical and experimental approaches have conducted to investigate the cervical behaviors with solely two-dimensional analyses in the sagittal plane. In real accidents, however, as impacts may affect several directions, the cervical behaviors should be evaluated three-dimensionally. Therefore, we evaluated the cervical behaviors under assumption of the posterior-oblique impacts depending on the impact angles with 3-D FE analysis. In addition, we analyzed the stresses occurred in the facet joints considering the relationship with a whiplash disorders. The cervical behaviors showed complex motion combined with axial torsion and lateral bending. The bending angle peaked in the impact at the angle of 15°, and the peak compressive and shear stress on the facet cartilage at C6-C7 increased by 11% and 14%. In the impact at the angle of 30°, the torsion angle peaked at C2-C3, the peak shear stress in the facet cartilage increased by 27%. It showed that the torsion and lateral bending affected the cervical behaviors, and caused the increase of peak stresses on the soft tissues. It is assumed as one of important causes of whiplash injury.

  5. The 3-D motion of the centre of gravity of the human body during level walking. I. Normal subjects at low and intermediate walking speeds.

    PubMed

    Tesio, L; Lanzi, D; Detrembleur, C

    1998-03-01

    OBJECTIVE: To measure the mechanical energy changes of the centre of gravity (CG) of the body in the forward, lateral and vertical direction during normal level walking at intermediate and low speeds. DESIGN: Eight healthy adults performed successive walks at speeds ranging from 0.25 to 1.75 m s(-1) over a dedicated force platform system. BACKGROUND: In previous studies, it was shown that the motion of the CG during gait can be altered more than the motion of individual segments. However, more detailed normative data are needed for clinical analysis. METHODS: The positive work done during the step to accelerate the body CG in the forward direction, W(f), to lift it, W(v), to accelerate it in the lateral direction, W(I), and the actual work done by the muscles to maintain its motion with respect to the ground ('external' work), W(ext), were measured. This allowed the calculation of the pendulum-like transfer between gravitational potential energy and kinetic energy of the CG, (percentage recovery, R). At the optimal speed of about 1.3 m s(-1), this transfer allows saving of as much as 65% of the muscular work which would have been otherwise needed to keep the body in motion with respect to the ground. The distance covered by the CG at each step either forward (step length, S(I)), or vertically (vertical displacement, S(v)) was also recorded. RESULTS: W(I) was, as a median, only 1.6-5.9% of W(ext). This ratio was higher, the lower the speed. At each step, W(ext) is needed to sustain two distinct increments of the total mechanical energy of the CG, E(tot). The increment a takes place during the double stance phase; the increment b takes place during the single stance phase. Both of these increments increased with speed. Over the speed range analyzed, the power spent to to sustain the a increment was 2.8-3.9 times higher than the power spent to sustain the b increment. PMID:11415774

  6. Personalized development of human organs using 3D printing technology.

    PubMed

    Radenkovic, Dina; Solouk, Atefeh; Seifalian, Alexander

    2016-02-01

    3D printing is a technique of fabricating physical models from a 3D volumetric digital image. The image is sliced and printed using a specific material into thin layers, and successive layering of the material produces a 3D model. It has already been used for printing surgical models for preoperative planning and in constructing personalized prostheses for patients. The ultimate goal is to achieve the development of functional human organs and tissues, to overcome limitations of organ transplantation created by the lack of organ donors and life-long immunosuppression. We hypothesized a precision medicine approach to human organ fabrication using 3D printed technology, in which the digital volumetric data would be collected by imaging of a patient, i.e. CT or MRI images followed by mathematical modeling to create a digital 3D image. Then a suitable biocompatible material, with an optimal resolution for cells seeding and maintenance of cell viability during the printing process, would be printed with a compatible printer type and finally implanted into the patient. Life-saving operations with 3D printed implants were already performed in patients. However, several issues need to be addressed before translational application of 3D printing into clinical medicine. These are vascularization, innervation, and financial cost of 3D printing and safety of biomaterials used for the construct. PMID:26826637

  7. Tracking 3-D body motion for docking and robot control

    NASA Technical Reports Server (NTRS)

    Donath, M.; Sorensen, B.; Yang, G. B.; Starr, R.

    1987-01-01

    An advanced method of tracking three-dimensional motion of bodies has been developed. This system has the potential to dynamically characterize machine and other structural motion, even in the presence of structural flexibility, thus facilitating closed loop structural motion control. The system's operation is based on the concept that the intersection of three planes defines a point. Three rotating planes of laser light, fixed and moving photovoltaic diode targets, and a pipe-lined architecture of analog and digital electronics are used to locate multiple targets whose number is only limited by available computer memory. Data collection rates are a function of the laser scan rotation speed and are currently selectable up to 480 Hz. The tested performance on a preliminary prototype designed for 0.1 in accuracy (for tracking human motion) at a 480 Hz data rate includes a worst case resolution of 0.8 mm (0.03 inches), a repeatability of plus or minus 0.635 mm (plus or minus 0.025 inches), and an absolute accuracy of plus or minus 2.0 mm (plus or minus 0.08 inches) within an eight cubic meter volume with all results applicable at the 95 percent level of confidence along each coordinate region. The full six degrees of freedom of a body can be computed by attaching three or more target detectors to the body of interest.

  8. 3-D rigid body tracking using vision and depth sensors.

    PubMed

    Gedik, O Serdar; Alatan, A Aydn

    2013-10-01

    In robotics and augmented reality applications, model-based 3-D tracking of rigid objects is generally required. With the help of accurate pose estimates, it is required to increase reliability and decrease jitter in total. Among many solutions of pose estimation in the literature, pure vision-based 3-D trackers require either manual initializations or offline training stages. On the other hand, trackers relying on pure depth sensors are not suitable for AR applications. An automated 3-D tracking algorithm, which is based on fusion of vision and depth sensors via extended Kalman filter, is proposed in this paper. A novel measurement-tracking scheme, which is based on estimation of optical flow using intensity and shape index map data of 3-D point cloud, increases 2-D, as well as 3-D, tracking performance significantly. The proposed method requires neither manual initialization of pose nor offline training, while enabling highly accurate 3-D tracking. The accuracy of the proposed method is tested against a number of conventional techniques, and a superior performance is clearly observed in terms of both objectively via error metrics and subjectively for the rendered scenes. PMID:23955795

  9. Web-based Three-dimensional Virtual Body Structures: W3D-VBS

    PubMed Central

    Temkin, Bharti; Acosta, Eric; Hatfield, Paul; Onal, Erhan; Tong, Alex

    2002-01-01

    Major efforts are being made to improve the teaching of human anatomy to foster cognition of visuospatial relationships. The Visible Human Project of the National Library of Medicine makes it possible to create virtual reality-based applications for teaching anatomy. Integration of traditional cadaver and illustration-based methods with Internet-based simulations brings us closer to this goal. Web-based three-dimensional Virtual Body Structures (W3D-VBS) is a next-generation immersive anatomical training system for teaching human anatomy over the Internet. It uses Visible Human data to dynamically explore, select, extract, visualize, manipulate, and stereoscopically palpate realistic virtual body structures with a haptic device. Tracking user’s progress through evaluation tools helps customize lesson plans. A self-guided “virtual tour” of the whole body allows investigation of labeled virtual dissections repetitively, at any time and place a user requires it. PMID:12223495

  10. Web-based three-dimensional Virtual Body Structures: W3D-VBS.

    PubMed

    Temkin, Bharti; Acosta, Eric; Hatfield, Paul; Onal, Erhan; Tong, Alex

    2002-01-01

    Major efforts are being made to improve the teaching of human anatomy to foster cognition of visuospatial relationships. The Visible Human Project of the National Library of Medicine makes it possible to create virtual reality-based applications for teaching anatomy. Integration of traditional cadaver and illustration-based methods with Internet-based simulations brings us closer to this goal. Web-based three-dimensional Virtual Body Structures (W3D-VBS) is a next-generation immersive anatomical training system for teaching human anatomy over the Internet. It uses Visible Human data to dynamically explore, select, extract, visualize, manipulate, and stereoscopically palpate realistic virtual body structures with a haptic device. Tracking user's progress through evaluation tools helps customize lesson plans. A self-guided "virtual tour" of the whole body allows investigation of labeled virtual dissections repetitively, at any time and place a user requires it. PMID:12223495

  11. 3D recovery of human gaze in natural environments

    NASA Astrophysics Data System (ADS)

    Paletta, Lucas; Santner, Katrin; Fritz, Gerald; Mayer, Heinz

    2013-01-01

    The estimation of human attention has recently been addressed in the context of human robot interaction. Today, joint work spaces already exist and challenge cooperating systems to jointly focus on common objects, scenes and work niches. With the advent of Google glasses and increasingly affordable wearable eye-tracking, monitoring of human attention will soon become ubiquitous. The presented work describes for the first time a method for the estimation of human fixations in 3D environments that does not require any artificial landmarks in the field of view and enables attention mapping in 3D models. It enables full 3D recovery of the human view frustum and the gaze pointer in a previously acquired 3D model of the environment in real time. The study on the precision of this method reports a mean projection error ≈1.1 cm and a mean angle error ≈0.6° within the chosen 3D model - the precision does not go below the one of the technical instrument (≈1°). This innovative methodology will open new opportunities for joint attention studies as well as for bringing new potential into automated processing for human factors technologies.

  12. Understanding 3D human torso shape via manifold clustering

    NASA Astrophysics Data System (ADS)

    Li, Sheng; Li, Peng; Fu, Yun

    2013-05-01

    Discovering the variations in human torso shape plays a key role in many design-oriented applications, such as suit designing. With recent advances in 3D surface imaging technologies, people can obtain 3D human torso data that provide more information than traditional measurements. However, how to find different human shapes from 3D torso data is still an open problem. In this paper, we propose to use spectral clustering approach on torso manifold to address this problem. We first represent high-dimensional torso data in a low-dimensional space using manifold learning algorithm. Then the spectral clustering method is performed to get several disjoint clusters. Experimental results show that the clusters discovered by our approach can describe the discrepancies in both genders and human shapes, and our approach achieves better performance than the compared clustering method.

  13. Subject-specific body segment parameter estimation using 3D photogrammetry with multiple cameras

    PubMed Central

    Morris, Mark; Sellers, William I.

    2015-01-01

    Inertial properties of body segments, such as mass, centre of mass or moments of inertia, are important parameters when studying movements of the human body. However, these quantities are not directly measurable. Current approaches include using regression models which have limited accuracy: geometric models with lengthy measuring procedures or acquiring and post-processing MRI scans of participants. We propose a geometric methodology based on 3D photogrammetry using multiple cameras to provide subject-specific body segment parameters while minimizing the interaction time with the participants. A low-cost body scanner was built using multiple cameras and 3D point cloud data generated using structure from motion photogrammetric reconstruction algorithms. The point cloud was manually separated into body segments, and convex hulling applied to each segment to produce the required geometric outlines. The accuracy of the method can be adjusted by choosing the number of subdivisions of the body segments. The body segment parameters of six participants (four male and two female) are presented using the proposed method. The multi-camera photogrammetric approach is expected to be particularly suited for studies including populations for which regression models are not available in literature and where other geometric techniques or MRI scanning are not applicable due to time or ethical constraints. PMID:25780778

  14. Parallel Adaptive Computation of Blood Flow in a 3D ``Whole'' Body Model

    NASA Astrophysics Data System (ADS)

    Zhou, M.; Figueroa, C. A.; Taylor, C. A.; Sahni, O.; Jansen, K. E.

    2008-11-01

    Accurate numerical simulations of vascular trauma require the consideration of a larger portion of the vasculature than previously considered, due to the systemic nature of the human body's response. A patient-specific 3D model composed of 78 connected arterial branches extending from the neck to the lower legs is constructed to effectively represent the entire body. Recently developed outflow boundary conditions that appropriately represent the downstream vasculature bed which is not included in the 3D computational domain are applied at 78 outlets. In this work, the pulsatile blood flow simulations are started on a fairly uniform, unstructured mesh that is subsequently adapted using a solution-based approach to efficiently resolve the flow features. The adapted mesh contains non-uniform, anisotropic elements resulting in resolution that conforms with the physical length scales present in the problem. The effects of the mesh resolution on the flow field are studied, specifically on relevant quantities of pressure, velocity and wall shear stress.

  15. 3-D PARTICLE TRANSPORT WITHIN THE HUMAN UPPER RESPIRATORY TRACT

    EPA Science Inventory

    In this study trajectories of inhaled particulate matter (PM) were simulated within a three-dimensional (3-D) computer model of the human upper respiratory tract (URT). The airways were described by computer-reconstructed images of a silicone rubber cast of the human head, throat...

  16. Robust bioengineered 3D functional human intestinal epithelium

    PubMed Central

    Chen, Ying; Lin, Yinan; Davis, Kimberly M.; Wang, Qianrui; Rnjak-Kovacina, Jelena; Li, Chunmei; Isberg, Ralph R.; Kumamoto, Carol A.; Mecsas, Joan; Kaplan, David L.

    2015-01-01

    Intestinal functions are central to human physiology, health and disease. Options to study these functions with direct relevance to the human condition remain severely limited when using conventional cell cultures, microfluidic systems, organoids, animal surrogates or human studies. To replicate in vitro the tissue architecture and microenvironments of native intestine, we developed a 3D porous protein scaffolding system, containing a geometrically-engineered hollow lumen, with adaptability to both large and small intestines. These intestinal tissues demonstrated representative human responses by permitting continuous accumulation of mucous secretions on the epithelial surface, establishing low oxygen tension in the lumen, and interacting with gut-colonizing bacteria. The newly developed 3D intestine model enabled months-long sustained access to these intestinal functions in vitro, readily integrable with a multitude of different organ mimics and will therefore ensure a reliable ex vivo tissue system for studies in a broad context of human intestinal diseases and treatments. PMID:26374193

  17. Rigid Body Motion in Stereo 3D Simulation

    ERIC Educational Resources Information Center

    Zabunov, Svetoslav

    2010-01-01

    This paper addresses the difficulties experienced by first-grade students studying rigid body motion at Sofia University. Most quantities describing the rigid body are in relations that the students find hard to visualize and understand. They also lose the notion of cause-result relations between vector quantities, such as the relation between…

  18. Tissuelike 3D Assemblies of Human Broncho-Epithelial Cells

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.

    2010-01-01

    Three-dimensional (3D) tissuelike assemblies (TLAs) of human broncho-epithelial (HBE) cells have been developed for use in in vitro research on infection of humans by respiratory viruses. The 2D monolayer HBE cell cultures heretofore used in such research lack the complex cell structures and interactions characteristic of in vivo tissues and, consequently, do not adequately emulate the infection dynamics of in-vivo microbial adhesion and invasion. In contrast, the 3D HBE TLAs are characterized by more-realistic reproductions of the geometrical and functional complexity, differentiation of cells, cell-to-cell interactions, and cell-to-matrix interactions characteristic of human respiratory epithelia. Hence, the 3D HBE TLAs are expected to make it possible to perform at least some of the research in vitro under more-realistic conditions, without need to infect human subjects. The TLAs are grown on collagen-coated cyclodextran microbeads under controlled conditions in a nutrient liquid in the simulated microgravitational environment of a bioreactor of the rotating- wall-vessel type. Primary human mesenchymal bronchial-tracheal cells are used as a foundation matrix, while adult human bronchial epithelial immortalized cells are used as the overlying component. The beads become coated with cells, and cells on adjacent beads coalesce into 3D masses. The resulting TLAs have been found to share significant characteristics with in vivo human respiratory epithelia including polarization, tight junctions, desmosomes, and microvilli. The differentiation of the cells in these TLAs into tissues functionally similar to in vivo tissues is confirmed by the presence of compounds, including villin, keratins, and specific lung epithelium marker compounds, and by the production of tissue mucin. In a series of initial infection tests, TLA cultures were inoculated with human respiratory syncytial viruses and parainfluenza type 3 viruses. Infection was confirmed by photomicrographs that

  19. 3-D segmentation of human sternum in lung MDCT images.

    PubMed

    Pazokifard, Banafsheh; Sowmya, Arcot

    2013-01-01

    A fully automatic novel algorithm is presented for accurate 3-D segmentation of the human sternum in lung multi detector computed tomography (MDCT) images. The segmentation result is refined by employing active contours to remove calcified costal cartilage that is attached to the sternum. For each dataset, costal notches (sternocostal joints) are localized in 3-D by using a sternum mask and positions of the costal notches on it as reference. The proposed algorithm for sternum segmentation was tested on 16 complete lung MDCT datasets and comparison of the segmentation results to the reference delineation provided by a radiologist, shows high sensitivity (92.49%) and specificity (99.51%) and small mean distance (dmean=1.07 mm). Total average of the Euclidean distance error for costal notches positioning in 3-D is 4.2 mm. PMID:24110446

  20. 3D Reconstruction of Human Motion from Monocular Image Sequences.

    PubMed

    Wandt, Bastian; Ackermann, Hanno; Rosenhahn, Bodo

    2016-08-01

    This article tackles the problem of estimating non-rigid human 3D shape and motion from image sequences taken by uncalibrated cameras. Similar to other state-of-the-art solutions we factorize 2D observations in camera parameters, base poses and mixing coefficients. Existing methods require sufficient camera motion during the sequence to achieve a correct 3D reconstruction. To obtain convincing 3D reconstructions from arbitrary camera motion, our method is based on a-priorly trained base poses. We show that strong periodic assumptions on the coefficients can be used to define an efficient and accurate algorithm for estimating periodic motion such as walking patterns. For the extension to non-periodic motion we propose a novel regularization term based on temporal bone length constancy. In contrast to other works, the proposed method does not use a predefined skeleton or anthropometric constraints and can handle arbitrary camera motion. We achieve convincing 3D reconstructions, even under the influence of noise and occlusions. Multiple experiments based on a 3D error metric demonstrate the stability of the proposed method. Compared to other state-of-the-art methods our algorithm shows a significant improvement. PMID:27093439

  1. 2D and 3D Mechanobiology in Human and Nonhuman Systems.

    PubMed

    Warren, Kristin M; Islam, Md Mydul; LeDuc, Philip R; Steward, Robert

    2016-08-31

    Mechanobiology involves the investigation of mechanical forces and their effect on the development, physiology, and pathology of biological systems. The human body has garnered much attention from many groups in the field, as mechanical forces have been shown to influence almost all aspects of human life ranging from breathing to cancer metastasis. Beyond being influential in human systems, mechanical forces have also been shown to impact nonhuman systems such as algae and zebrafish. Studies of nonhuman and human systems at the cellular level have primarily been done in two-dimensional (2D) environments, but most of these systems reside in three-dimensional (3D) environments. Furthermore, outcomes obtained from 3D studies are often quite different than those from 2D studies. We present here an overview of a select group of human and nonhuman systems in 2D and 3D environments. We also highlight mechanobiological approaches and their respective implications for human and nonhuman physiology. PMID:27214883

  2. Rapid and automatic 3D body measurement system based on a GPU-Steger line detector.

    PubMed

    Liu, Xingjian; Zhao, Hengshuang; Zhan, Guomin; Zhong, Kai; Li, Zhongwei; Chao, Yuhjin; Shi, Yusheng

    2016-07-20

    This paper proposes a rapid and automatic measurement system to acquire a 3D shape of a human body. A flexible calibration method was developed to decrease the complexity in system calibration. To reduce the computation cost, a GPU-Steger line detector was proposed to more rapidly detect the center of the laser pattern and at subpixel level. The processing time of line detection is significantly shortened by the GPU-Steger line detector, which can be over 110 times faster than that by CPU. The key technologies are introduced, and the experimental results are presented in this paper to illustrate the performance of the proposed system. The system can be used to measure human body surfaces with nonuniform reflectance such as hair, skin, and clothes with rich texture. PMID:27463902

  3. Molecular cartography of the human skin surface in 3D

    PubMed Central

    Bouslimani, Amina; Porto, Carla; Rath, Christopher M.; Wang, Mingxun; Guo, Yurong; Gonzalez, Antonio; Berg-Lyon, Donna; Ackermann, Gail; Moeller Christensen, Gitte Julie; Nakatsuji, Teruaki; Zhang, Lingjuan; Borkowski, Andrew W.; Meehan, Michael J.; Dorrestein, Kathleen; Gallo, Richard L.; Bandeira, Nuno; Knight, Rob; Alexandrov, Theodore; Dorrestein, Pieter C.

    2015-01-01

    The human skin is an organ with a surface area of 1.5–2 m2 that provides our interface with the environment. The molecular composition of this organ is derived from host cells, microbiota, and external molecules. The chemical makeup of the skin surface is largely undefined. Here we advance the technologies needed to explore the topographical distribution of skin molecules, using 3D mapping of mass spectrometry data and microbial 16S rRNA amplicon sequences. Our 3D maps reveal that the molecular composition of skin has diverse distributions and that the composition is defined not only by skin cells and microbes but also by our daily routines, including the application of hygiene products. The technological development of these maps lays a foundation for studying the spatial relationships of human skin with hygiene, the microbiota, and environment, with potential for developing predictive models of skin phenotypes tailored to individual health. PMID:25825778

  4. Molecular cartography of the human skin surface in 3D.

    PubMed

    Bouslimani, Amina; Porto, Carla; Rath, Christopher M; Wang, Mingxun; Guo, Yurong; Gonzalez, Antonio; Berg-Lyon, Donna; Ackermann, Gail; Moeller Christensen, Gitte Julie; Nakatsuji, Teruaki; Zhang, Lingjuan; Borkowski, Andrew W; Meehan, Michael J; Dorrestein, Kathleen; Gallo, Richard L; Bandeira, Nuno; Knight, Rob; Alexandrov, Theodore; Dorrestein, Pieter C

    2015-04-28

    The human skin is an organ with a surface area of 1.5-2 m(2) that provides our interface with the environment. The molecular composition of this organ is derived from host cells, microbiota, and external molecules. The chemical makeup of the skin surface is largely undefined. Here we advance the technologies needed to explore the topographical distribution of skin molecules, using 3D mapping of mass spectrometry data and microbial 16S rRNA amplicon sequences. Our 3D maps reveal that the molecular composition of skin has diverse distributions and that the composition is defined not only by skin cells and microbes but also by our daily routines, including the application of hygiene products. The technological development of these maps lays a foundation for studying the spatial relationships of human skin with hygiene, the microbiota, and environment, with potential for developing predictive models of skin phenotypes tailored to individual health. PMID:25825778

  5. 3D map of the human corneal endothelial cell.

    PubMed

    He, Zhiguo; Forest, Fabien; Gain, Philippe; Rageade, Damien; Bernard, Aurélien; Acquart, Sophie; Peoc'h, Michel; Defoe, Dennis M; Thuret, Gilles

    2016-01-01

    Corneal endothelial cells (CECs) are terminally differentiated cells, specialized in regulating corneal hydration and transparency. They are highly polarized flat cells that separate the cornea from the aqueous humor. Their apical surface, in contact with aqueous humor is hexagonal, whereas their basal surface is irregular. We characterized the structure of human CECs in 3D using confocal microscopy of immunostained whole corneas in which cells and their interrelationships remain intact. Hexagonality of the apical surface was maintained by the interaction between tight junctions and a submembraneous network of actomyosin, braced like a drum. Lateral membranes, which support enzymatic pumps, presented complex expansions resembling interdigitated foot processes at the basal surface. Using computer-aided design and drafting software, we obtained a first simplified 3D model of CECs. By comparing their expression with those in epithelial, stromal and trabecular corneal cells, we selected 9 structural or functional proteins for which 3D patterns were specific to CECs. This first 3D map aids our understanding of the morphologic and functional specificity of CECs and could be used as a reference for characterizing future cell therapy products destined to treat endothelial dysfunctions. PMID:27381832

  6. 3D map of the human corneal endothelial cell

    PubMed Central

    He, Zhiguo; Forest, Fabien; Gain, Philippe; Rageade, Damien; Bernard, Aurélien; Acquart, Sophie; Peoc’h, Michel; Defoe, Dennis M.; Thuret, Gilles

    2016-01-01

    Corneal endothelial cells (CECs) are terminally differentiated cells, specialized in regulating corneal hydration and transparency. They are highly polarized flat cells that separate the cornea from the aqueous humor. Their apical surface, in contact with aqueous humor is hexagonal, whereas their basal surface is irregular. We characterized the structure of human CECs in 3D using confocal microscopy of immunostained whole corneas in which cells and their interrelationships remain intact. Hexagonality of the apical surface was maintained by the interaction between tight junctions and a submembraneous network of actomyosin, braced like a drum. Lateral membranes, which support enzymatic pumps, presented complex expansions resembling interdigitated foot processes at the basal surface. Using computer-aided design and drafting software, we obtained a first simplified 3D model of CECs. By comparing their expression with those in epithelial, stromal and trabecular corneal cells, we selected 9 structural or functional proteins for which 3D patterns were specific to CECs. This first 3D map aids our understanding of the morphologic and functional specificity of CECs and could be used as a reference for characterizing future cell therapy products destined to treat endothelial dysfunctions. PMID:27381832

  7. 3D Extracellular Matrix from Sectioned Human Tissues

    PubMed Central

    Campbell, Catherine B; Cukierman, Edna; Artym, Vira V

    2014-01-01

    corneal endothelial cell lines produce an ECM mimicking an in vivo subendothelium, and the EHS tumor cell line produces a matrix that can be extracted to produce Matrigel, which simulates basement membrane molecular complexity including laminin, collagen IV and nidogen (Beacham, et al., 2007; Friedl and Brocker, 2000). To simulate a physiological environment even more closely, 3D matrices derived from mouse tissue slices from which cells were extracted have reportedly provided successful ECM replicas for studying in vivo cellular behavior (Cukierman, et al., 2001). Because of the important roles of the extracellular microenvironment on normal and tumor cells, we have developed protocols to produce cell-free (decellularized) 3D matrices from cryostat sections of normal and tumor human tissues. These extracted matrices can be used as a 3D tissue culture environment to analyze effects of various 3D matrices on normal and tumor cell responses and behavior. Using human pancreas and breast tissue samples, we have successfully prepared cell-free 3D ECM models, used them as cell culture substrates for a human breast cancer cell line, MDA-MB-231, and then performed immunofluorescence staining to characterize intracellular structures. A frequently observed difference between normal and tumor tissue-derived ECM environments involves the amount of deposited fibrillar collagen (Provenzano, 2008). Tumor tissues from both breast and pancreas often contain substantially more collagen than normal adjacent tissue, and this protocol preserves this difference in cell-free 3D matrices from these tissues (Vidi, et al., 2013). This 3D culture system we describe using cell-free 3D matrix provides an approach to studying cellular behavior and migratory mechanisms associated with cancer. The basic protocol describes methods for successfully extracting cells and cellular debris from human tissue cryostat sections to obtain a clean, cell-free 3D ECM for plating cell lines (Figure 1). Cellular

  8. Creation of 3D multi-body orthodontic models by using independent imaging sensors.

    PubMed

    Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano

    2013-01-01

    In the field of dental health care, plaster models combined with 2D radiographs are widely used in clinical practice for orthodontic diagnoses. However, complex malocclusions can be better analyzed by exploiting 3D digital dental models, which allow virtual simulations and treatment planning processes. In this paper, dental data captured by independent imaging sensors are fused to create multi-body orthodontic models composed of teeth, oral soft tissues and alveolar bone structures. The methodology is based on integrating Cone-Beam Computed Tomography (CBCT) and surface structured light scanning. The optical scanner is used to reconstruct tooth crowns and soft tissues (visible surfaces) through the digitalization of both patients' mouth impressions and plaster casts. These data are also used to guide the segmentation of internal dental tissues by processing CBCT data sets. The 3D individual dental tissues obtained by the optical scanner and the CBCT sensor are fused within multi-body orthodontic models without human supervisions to identify target anatomical structures. The final multi-body models represent valuable virtual platforms to clinical diagnostic and treatment planning. PMID:23385416

  9. 3-D Volumetric Evaluation of Human Mandibular Growth

    PubMed Central

    Reynolds, Mathew; Reynolds, Michael; Adeeb, Samer; El-Bialy, Tarek

    2011-01-01

    Bone growth is a complex process that is controlled by a multitude of mechanisms that are not fully understood.Most of the current methods employed to measure the growth of bones focus on either studying cadaveric bones from different individuals of different ages, or successive two-dimensional (2D) radiographs. Both techniques have their known limitations. The purpose of this study was to explore a technique for quantifying the three dimensional (3D) growth of an adolescent human mandible over the period of one year utilizing cone beam computed tomography (CBCT) scans taken for regular orthodontic records. Three -dimensional virtual models were created from the CBCT data using mainstream medical imaging software. A comparison between computer-generated surface meshes of successive 3-D virtual models illustrates the magnitude of relative mandible growth. The results of this work are in agreement with previously reported data from human cadaveric studies and implantable marker studies. The presented method provides a new relatively simple basis (utilizing commercially available software) to visualize and evaluate individualized 3D (mandibular) growth in vivo. PMID:22046201

  10. Tensor3D: A computer graphics program to simulate 3D real-time deformation and visualization of geometric bodies

    NASA Astrophysics Data System (ADS)

    Pallozzi Lavorante, Luca; Dirk Ebert, Hans

    2008-07-01

    Tensor3D is a geometric modeling program with the capacity to simulate and visualize in real-time the deformation, specified through a tensor matrix and applied to triangulated models representing geological bodies. 3D visualization allows the study of deformational processes that are traditionally conducted in 2D, such as simple and pure shears. Besides geometric objects that are immediately available in the program window, the program can read other models from disk, thus being able to import objects created with different open-source or proprietary programs. A strain ellipsoid and a bounding box are simultaneously shown and instantly deformed with the main object. The principal axes of strain are visualized as well to provide graphical information about the orientation of the tensor's normal components. The deformed models can also be saved, retrieved later and deformed again, in order to study different steps of progressive strain, or to make this data available to other programs. The shape of stress ellipsoids and the corresponding Mohr circles defined by any stress tensor can also be represented. The application was written using the Visualization ToolKit, a powerful scientific visualization library in the public domain. This development choice, allied to the use of the Tcl/Tk programming language, which is independent on the host computational platform, makes the program a useful tool for the study of geometric deformations directly in three dimensions in teaching as well as research activities.

  11. Segmentation of vertebral bodies in CT and MR images based on 3D deterministic models

    NASA Astrophysics Data System (ADS)

    Štern, Darko; Vrtovec, Tomaž; Pernuš, Franjo; Likar, Boštjan

    2011-03-01

    The evaluation of vertebral deformations is of great importance in clinical diagnostics and therapy of pathological conditions affecting the spine. Although modern clinical practice is oriented towards the computed tomography (CT) and magnetic resonance (MR) imaging techniques, as they can provide a detailed 3D representation of vertebrae, the established methods for the evaluation of vertebral deformations still provide only a two-dimensional (2D) geometrical description. Segmentation of vertebrae in 3D may therefore not only improve their visualization, but also provide reliable and accurate 3D measurements of vertebral deformations. In this paper we propose a method for 3D segmentation of individual vertebral bodies that can be performed in CT and MR images. Initialized with a single point inside the vertebral body, the segmentation is performed by optimizing the parameters of a 3D deterministic model of the vertebral body to achieve the best match of the model to the vertebral body in the image. The performance of the proposed method was evaluated on five CT (40 vertebrae) and five T2-weighted MR (40 vertebrae) spine images, among them five are normal and five are pathological. The results show that the proposed method can be used for 3D segmentation of vertebral bodies in CT and MR images and that the proposed model can describe a variety of vertebral body shapes. The method may be therefore used for initializing whole vertebra segmentation or reliably describing vertebral body deformations.

  12. Human efficiency for recognizing 3-D objects in luminance noise.

    PubMed

    Tjan, B S; Braje, W L; Legge, G E; Kersten, D

    1995-11-01

    The purpose of this study was to establish how efficiently humans use visual information to recognize simple 3-D objects. The stimuli were computer-rendered images of four simple 3-D objects--wedge, cone, cylinder, and pyramid--each rendered from 8 randomly chosen viewing positions as shaded objects, line drawings, or silhouettes. The objects were presented in static, 2-D Gaussian luminance noise. The observer's task was to indicate which of the four objects had been presented. We obtained human contrast thresholds for recognition, and compared these to an ideal observer's thresholds to obtain efficiencies. In two auxiliary experiments, we measured efficiencies for object detection and letter recognition. Our results showed that human object-recognition efficiency is low (3-8%) when compared to efficiencies reported for some other visual-information processing tasks. The low efficiency means that human recognition performance is limited primarily by factors intrinsic to the observer rather than the information content of the stimuli. We found three factors that play a large role in accounting for low object-recognition efficiency: stimulus size, spatial uncertainty, and detection efficiency. Four other factors play a smaller role in limiting object-recognition efficiency: observers' internal noise, stimulus rendering condition, stimulus familiarity, and categorization across views. PMID:8533342

  13. 3D Cultivation Techniques for Primary Human Hepatocytes

    PubMed Central

    Bachmann, Anastasia; Moll, Matthias; Gottwald, Eric; Nies, Cordula; Zantl, Roman; Wagner, Helga; Burkhardt, Britta; Sánchez, Juan J. Martínez; Ladurner, Ruth; Thasler, Wolfgang; Damm, Georg; Nussler, Andreas K.

    2015-01-01

    One of the main challenges in drug development is the prediction of in vivo toxicity based on in vitro data. The standard cultivation system for primary human hepatocytes is based on monolayer cultures, even if it is known that these conditions result in a loss of hepatocyte morphology and of liver-specific functions, such as drug-metabolizing enzymes and transporters. As it has been demonstrated that hepatocytes embedded between two sheets of collagen maintain their function, various hydrogels and scaffolds for the 3D cultivation of hepatocytes have been developed. To further improve or maintain hepatic functions, 3D cultivation has been combined with perfusion. In this manuscript, we discuss the benefits and drawbacks of different 3D microfluidic devices. For most systems that are currently available, the main issues are the requirement of large cell numbers, the low throughput, and expensive equipment, which render these devices unattractive for research and the drug-developing industry. A higher acceptance of these devices could be achieved by their simplification and their compatibility with high-throughput, as both aspects are of major importance for a user-friendly device.

  14. Parametric modelling and segmentation of vertebral bodies in 3D CT and MR spine images

    NASA Astrophysics Data System (ADS)

    Štern, Darko; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž

    2011-12-01

    Accurate and objective evaluation of vertebral deformations is of significant importance in clinical diagnostics and therapy of pathological conditions affecting the spine. Although modern clinical practice is focused on three-dimensional (3D) computed tomography (CT) and magnetic resonance (MR) imaging techniques, the established methods for evaluation of vertebral deformations are limited to measuring deformations in two-dimensional (2D) x-ray images. In this paper, we propose a method for quantitative description of vertebral body deformations by efficient modelling and segmentation of vertebral bodies in 3D. The deformations are evaluated from the parameters of a 3D superquadric model, which is initialized as an elliptical cylinder and then gradually deformed by introducing transformations that yield a more detailed representation of the vertebral body shape. After modelling the vertebral body shape with 25 clinically meaningful parameters and the vertebral body pose with six rigid body parameters, the 3D model is aligned to the observed vertebral body in the 3D image. The performance of the method was evaluated on 75 vertebrae from CT and 75 vertebrae from T2-weighted MR spine images, extracted from the thoracolumbar part of normal and pathological spines. The results show that the proposed method can be used for 3D segmentation of vertebral bodies in CT and MR images, as the proposed 3D model is able to describe both normal and pathological vertebral body deformations. The method may therefore be used for initialization of whole vertebra segmentation or for quantitative measurement of vertebral body deformations.

  15. Model-based 3D human shape estimation from silhouettes for virtual fitting

    NASA Astrophysics Data System (ADS)

    Saito, Shunta; Kouchi, Makiko; Mochimaru, Masaaki; Aoki, Yoshimitsu

    2014-03-01

    We propose a model-based 3D human shape reconstruction system from two silhouettes. Firstly, we synthesize a deformable body model from 3D human shape database consists of a hundred whole body mesh models. Each mesh model is homologous, so that it has the same topology and same number of vertices among all models. We perform principal component analysis (PCA) on the database and synthesize an Active Shape Model (ASM). ASM allows changing the body type of the model with a few parameters. The pose changing of our model can be achieved by reconstructing the skeleton structures from implanted joints of the model. By applying pose changing after body type deformation, our model can represents various body types and any pose. We apply the model to the problem of 3D human shape reconstruction from front and side silhouette. Our approach is simply comparing the contours between the model's and input silhouettes', we then use only torso part contour of the model to reconstruct whole shape. We optimize the model parameters by minimizing the difference between corresponding silhouettes by using a stochastic, derivative-free non-linear optimization method, CMA-ES.

  16. Gene Electrotransfer in 3D Reconstructed Human Dermal Tissue.

    PubMed

    Madi, Moinecha; Rols, Marie-Pierre; Gibot, Laure

    2016-01-01

    Gene electrotransfer into the skin is of particular interest for the development of medical applications including DNA vaccination, cancer treatment, wound healing or treatment of local skin disorders. However, such clinical applications are currently limited due to poor understanding of the mechanisms governing DNA electrotransfer within human tissue. Nowadays, most studies are carried out in rodent models but rodent skin varies from human skin in terms of cell composition and architecture. We used a tissue-engineering approach to study gene electrotransfer mechanisms in a human tissue context. Primary human dermal fibroblasts were cultured according to the self-assembly method to produce 3D reconstructed human dermal tissue. In this study, we showed that cells of the reconstructed cutaneous tissue were efficiently electropermeabilized by applying millisecond electric pulses, without affecting their viability. A reporter gene was successfully electrotransferred into this human tissue and gene expression was detected for up to 48h. Interestingly, the transfected cells were solely located on the upper surface of the tissue, where they were in close contact with plasmid DNA solution. Furthermore, we report evidences that electrotransfection success depends on plasmid mobility within tissue- rich in collagens, but not on cell proliferation status. In conclusion, in addition to proposing a reliable alternative to animal experiments, tissue engineering produces valid biological tool for the in vitro study of gene electrotransfer mechanisms in human tissue. PMID:27029947

  17. 3D Chromosome Regulatory Landscape of Human Pluripotent Cells.

    PubMed

    Ji, Xiong; Dadon, Daniel B; Powell, Benjamin E; Fan, Zi Peng; Borges-Rivera, Diego; Shachar, Sigal; Weintraub, Abraham S; Hnisz, Denes; Pegoraro, Gianluca; Lee, Tong Ihn; Misteli, Tom; Jaenisch, Rudolf; Young, Richard A

    2016-02-01

    In this study, we describe the 3D chromosome regulatory landscape of human naive and primed embryonic stem cells. To devise this map, we identified transcriptional enhancers and insulators in these cells and placed them within the context of cohesin-associated CTCF-CTCF loops using cohesin ChIA-PET data. The CTCF-CTCF loops we identified form a chromosomal framework of insulated neighborhoods, which in turn form topologically associating domains (TADs) that are largely preserved during the transition between the naive and primed states. Regulatory changes in enhancer-promoter interactions occur within insulated neighborhoods during cell state transition. The CTCF anchor regions we identified are conserved across species, influence gene expression, and are a frequent site of mutations in cancer cells, underscoring their functional importance in cellular regulation. These 3D regulatory maps of human pluripotent cells therefore provide a foundation for future interrogation of the relationships between chromosome structure and gene control in development and disease. PMID:26686465

  18. 3D measurement of human face by stereophotogrammetry

    NASA Astrophysics Data System (ADS)

    Wagner, Holger; Wiegmann, Axel; Kowarschik, Richard; Zöllner, Friedrich

    2006-01-01

    The following article describes a stereophotogrammetry based technique for 3D measurement of human faces. The method was developed for function orientated diagnostics and therapy in dentistry to provide prognoses for jaw-growth or surgical procedures. The main aim of our activities was to realize both -- a rapid measurement and a dense point cloud. The setup consists of two digital cameras in a convergent arrangement and a digital projector. During the measurement a rapid sequence of about 20 statistical generated patterns were projected onto the face and synchronously captured by the two cameras. Therefore, every single pixel of the two cameras is encoded by a characteristically stack of intensity values. To find corresponding points into the image sequences a correlation technique is used. At least, the 3D reconstruction is done by triangulation. The advantages of the shown method are the possible short measurement time (< 1 second) and - in comparison to gray code and phase shift techniques - the low quality requirements of the projection unit. At present the reached accuracy is +/- 0.1mm (rms), which is sufficient for medical applications. But the demonstrated method is not restricted to evaluate the shape of human faces. Also technical objects could be measured.

  19. Objective and subjective quality assessment of geometry compression of reconstructed 3D humans in a 3D virtual room

    NASA Astrophysics Data System (ADS)

    Mekuria, Rufael; Cesar, Pablo; Doumanis, Ioannis; Frisiello, Antonella

    2015-09-01

    Compression of 3D object based video is relevant for 3D Immersive applications. Nevertheless, the perceptual aspects of the degradation introduced by codecs for meshes and point clouds are not well understood. In this paper we evaluate the subjective and objective degradations introduced by such codecs in a state of art 3D immersive virtual room. In the 3D immersive virtual room, users are captured with multiple cameras, and their surfaces are reconstructed as photorealistic colored/textured 3D meshes or point clouds. To test the perceptual effect of compression and transmission, we render degraded versions with different frame rates in different contexts (near/far) in the scene. A quantitative subjective study with 16 users shows that negligible distortion of decoded surfaces compared to the original reconstructions can be achieved in the 3D virtual room. In addition, a qualitative task based analysis in a full prototype field trial shows increased presence, emotion, user and state recognition of the reconstructed 3D Human representation compared to animated computer avatars.

  20. Determination of a new uniform thorax density representative of the living population from 3D external body shape modeling.

    PubMed

    Amabile, Celia; Choisne, Julie; Nérot, Agathe; Pillet, Hélène; Skalli, Wafa

    2016-05-01

    Body segment parameters (BSP) for each body׳s segment are needed for biomechanical analysis. To provide population-specific BSP, precise estimation of body׳s segments volume and density are needed. Widely used uniform densities, provided by cadavers׳ studies, did not consider the air present in the lungs when determining the thorax density. The purpose of this study was to propose a new uniform thorax density representative of the living population from 3D external body shape modeling. Bi-planar X-ray radiographies were acquired on 58 participants allowing 3D reconstructions of the spine, rib cage and human body shape. Three methods of computing the thorax mass were compared for 48 subjects: (1) the Dempster Uniform Density Method, currently in use for BSPs calculation, using Dempster density data, (2) the Personalized Method using full-description of the thorax based on 3D reconstruction of the rib cage and spine and (3) the Improved Uniform Density Method using a uniform thorax density resulting from the Personalized Method. For 10 participants, comparison was made between the body mass obtained from a force-plate and the body mass computed with each of the three methods. The Dempster Uniform Density Method presented a mean error of 4.8% in the total body mass compared to the force-plate vs 0.2% for the Personalized Method and 0.4% for the Improved Uniform Density Method. The adjusted thorax density found from the 3D reconstruction was 0.74g/cm(3) for men and 0.73g/cm(3) for women instead of the one provided by Dempster (0.92g/cm(3)), leading to a better estimate of the thorax mass and body mass. PMID:26976227

  1. Elemental concentration distribution in human fingernails - A 3D study

    NASA Astrophysics Data System (ADS)

    Pineda-Vargas, C. A.; Mars, J. A.; Gihwala, D.

    2012-02-01

    The verification of pathologies has normally been based on analysis of blood (serum and plasma), and physiological tissue. Recently, nails and in particular human fingernails have become an important medium for pathological studies, especially those of environmental origin. The analytical technique of PIXE has been used extensively in the analysis of industrial samples and human tissue specimens. The application of the analytical technique to nails has been mainly to bulk samples. In this study we use micro-PIXE and -RBS, as both complementary and supplementary, to determine the elemental concentration distribution of human fingernails of individuals. We report on the 3D quantitative elemental concentration distributions (QECDs) of various elements that include C, N and O as major elements (10-20%), P, S, Cl, K and Ca as minor elements (1-10%) and Fe, Mn, Zn, Ti, Na, Mg, Cu, Ni, Cr, Rb, Br, Sr and Se as trace elements (less than 1%). For PIXE and RBS the specimens were bombarded with a 3 MeV proton beam. To ascertain any correlations in the quantitative elemental concentration distributions, a linear traverse analysis was performed across the width of the nail. Elemental distribution correlations were also obtained.

  2. The 3D Human Motion Control Through Refined Video Gesture Annotation

    NASA Astrophysics Data System (ADS)

    Jin, Yohan; Suk, Myunghoon; Prabhakaran, B.

    In the beginning of computer and video game industry, simple game controllers consisting of buttons and joysticks were employed, but recently game consoles are replacing joystick buttons with novel interfaces such as the remote controllers with motion sensing technology on the Nintendo Wii [1] Especially video-based human computer interaction (HCI) technique has been applied to games, and the representative game is 'Eyetoy' on the Sony PlayStation 2. Video-based HCI technique has great benefit to release players from the intractable game controller. Moreover, in order to communicate between humans and computers, video-based HCI is very crucial since it is intuitive, easy to get, and inexpensive. On the one hand, extracting semantic low-level features from video human motion data is still a major challenge. The level of accuracy is really dependent on each subject's characteristic and environmental noises. Of late, people have been using 3D motion-capture data for visualizing real human motions in 3D space (e.g, 'Tiger Woods' in EA Sports, 'Angelina Jolie' in Bear-Wolf movie) and analyzing motions for specific performance (e.g, 'golf swing' and 'walking'). 3D motion-capture system ('VICON') generates a matrix for each motion clip. Here, a column is corresponding to a human's sub-body part and row represents time frames of data capture. Thus, we can extract sub-body part's motion only by selecting specific columns. Different from low-level feature values of video human motion, 3D human motion-capture data matrix are not pixel values, but is closer to human level of semantics.

  3. NVision: A 3D Visualization Environment for N-Body Simulations

    NASA Astrophysics Data System (ADS)

    Markiel, J. A.

    2000-05-01

    NVision: A 3D Visualization Environment for N-Body Simulations We are developing a set of packages for 3D visualization and analysis of our numerical N-body simulations. These tools are intended to be generalizable to a wide range of related problems including cosmological, planetary dynamics, and molecular dynamics simulations. The applications and source code will be fully available to the community. To prototype this project we have adopted the Java platform with the newly released Java3D extension to take advantage of its portability, object-oriented environment, and availability of extensive documentation and class libraries. We will describe the goals and design principles of the project and demo the currently implemented features, including visualization of cosmological simulations and the simulated collision of two rubble-pile asteroids. This research is supported by NSF grants AST99-73209 and AST99-79891.

  4. J-Asteroid, 3D Data Formats and Issues for the Visualization of Small Bodies

    NASA Astrophysics Data System (ADS)

    Hagee, W.; Anwar, S.; Noss, D.; Dickenshied, S.

    2015-06-01

    In adding support for 3D visualization of arbitrary data on small bodies, the J-Asteroid application has identified various pros and cons of existing data formats and issues rendering data in those formats. Key formats and issues will be presented.

  5. Melanin Transfer in Human 3D Skin Equivalents Generated Exclusively from Induced Pluripotent Stem Cells

    PubMed Central

    Gledhill, Karl; Guo, Zongyou; Umegaki-Arao, Noriko; Higgins, Claire A.; Itoh, Munenari; Christiano, Angela M.

    2015-01-01

    The current utility of 3D skin equivalents is limited by the fact that existing models fail to recapitulate the cellular complexity of human skin. They often contain few cell types and no appendages, in part because many cells found in the skin are difficult to isolate from intact tissue and cannot be expanded in culture. Induced pluripotent stem cells (iPSCs) present an avenue by which we can overcome this issue due to their ability to be differentiated into multiple cell types in the body and their unlimited growth potential. We previously reported generation of the first human 3D skin equivalents from iPSC-derived fibroblasts and iPSC-derived keratinocytes, demonstrating that iPSCs can provide a foundation for modeling a complex human organ such as skin. Here, we have increased the complexity of this model by including additional iPSC-derived melanocytes. Epidermal melanocytes, which are largely responsible for skin pigmentation, represent the second most numerous cell type found in normal human epidermis and as such represent a logical next addition. We report efficient melanin production from iPSC-derived melanocytes and transfer within an entirely iPSC-derived epidermal-melanin unit and generation of the first functional human 3D skin equivalents made from iPSC-derived fibroblasts, keratinocytes and melanocytes. PMID:26308443

  6. 3-D Human Action Recognition by Shape Analysis of Motion Trajectories on Riemannian Manifold.

    PubMed

    Devanne, Maxime; Wannous, Hazem; Berretti, Stefano; Pala, Pietro; Daoudi, Mohamed; Del Bimbo, Alberto

    2015-07-01

    Recognizing human actions in 3-D video sequences is an important open problem that is currently at the heart of many research domains including surveillance, natural interfaces and rehabilitation. However, the design and development of models for action recognition that are both accurate and efficient is a challenging task due to the variability of the human pose, clothing and appearance. In this paper, we propose a new framework to extract a compact representation of a human action captured through a depth sensor, and enable accurate action recognition. The proposed solution develops on fitting a human skeleton model to acquired data so as to represent the 3-D coordinates of the joints and their change over time as a trajectory in a suitable action space. Thanks to such a 3-D joint-based framework, the proposed solution is capable to capture both the shape and the dynamics of the human body, simultaneously. The action recognition problem is then formulated as the problem of computing the similarity between the shape of trajectories in a Riemannian manifold. Classification using k-nearest neighbors is finally performed on this manifold taking advantage of Riemannian geometry in the open curve shape space. Experiments are carried out on four representative benchmarks to demonstrate the potential of the proposed solution in terms of accuracy/latency for a low-latency action recognition. Comparative results with state-of-the-art methods are reported. PMID:25216492

  7. Multi-view indoor human behavior recognition based on 3D skeleton

    NASA Astrophysics Data System (ADS)

    Peng, Ling; Lu, Tongwei; Min, Feng

    2015-12-01

    For the problems caused by viewpoint changes in activity recognition, a multi-view interior human behavior recognition method based on 3D framework is presented. First, Microsoft's Kinect device is used to obtain body motion video in the positive perspective, the oblique angle and the side perspective. Second, it extracts bone joints and get global human features and the local features of arms and legs at the same time to form 3D skeletal features set. Third, online dictionary learning on feature set is used to reduce the dimension of feature. Finally, linear support vector machine (LSVM) is used to obtain the results of behavior recognition. The experimental results show that this method has better recognition rate.

  8. Virtual embryology: a 3D library reconstructed from human embryo sections and animation of development process.

    PubMed

    Komori, M; Miura, T; Shiota, K; Minato, K; Takahashi, T

    1995-01-01

    The volumetric shape of a human embryo and its development is hard to comprehend as they have been viewed as a 2D schemes in a textbook or microscopic sectional image. In this paper, a CAI and research support system for human embryology using multimedia presentation techniques is described. In this system, 3D data is acquired from a series of sliced specimens. Its 3D structure can be viewed interactively by rotating, extracting, and truncating its whole body or organ. Moreover, the development process of embryos can be animated using a morphing technique applied to the specimen in several stages. The system is intended to be used interactively, like a virtual reality system. Hence, the system is called Virtual Embryology. PMID:8591413

  9. The computation of steady 3-D separated flows over aerodynamic bodies at incidence and yaw

    NASA Technical Reports Server (NTRS)

    Pulliam, T. H.; Pan, D.

    1986-01-01

    This paper describes the implementation of a general purpose 3-D NS code and its application to simulated 3-D separated vortical flows over aerodynamic bodies. The thin-layer Reynolds-averaged NS equations are solved by an implicit approximate factorization scheme. The pencil data structure enables the code to run on very fine grids using only limited incore memories. Solutions of a low subsonic flow over an inclined ellipsoid are compared with experimental data to validate the code. Transonic flows over a yawed elliptical wing at incidence are computed and separations occurred at different yaw angles are discussed.

  10. Ankh in the depth - Subdermal 3D art implants: Radiological identification with body modification.

    PubMed

    Schaerli, Sarah; Berger, Florian; Thali, Michael J; Gascho, Dominic

    2016-05-01

    One of the core tasks in forensic medico-legal investigations is the identification of the deceased. Radiological identification using postmortem computed tomography (PMCT) is a powerful technique. In general, the implementation of forensic PMCT is rising worldwide. In addition to specific anatomical structures, medical implants or prostheses serve as markers for the comparison of antemortem and postmortem images to identify the deceased. However, non-medical implants, such as subdermal three-dimensional (3D) art implants, also allow for radiological identification. These implants are a type of body modification that have become increasingly popular over the last several decades and will therefore be employed more frequently in radiological identification in the future. To the best of our knowledge, this is the first case of radiological identification with a subdermal 3D art implant. Further, the present case shows the characteristics of a silicone 3D art implant on computed tomography, magnetic resonance imaging and X-rays. PMID:27161914

  11. An N-body Tree Algorithm for the Cray T3D

    NASA Technical Reports Server (NTRS)

    Olson, Kevin M.; Packer, Charles V.

    1996-01-01

    We describe in this paper an algorithm for solving the gravitational N-body problem using tree data structures on the Cray T3D parallel supercomputer. This implementation is an adaptation of previous work where this problem was solved using an SIMD, fine-grained parallel computer. We show here that this approach lends itself, with small modifications, to more coarse-grained parallelism as well. We also show that the performance of the algorithm on the Cray T3D parallel architecture scales adequately with the number of processors (up to 256). Specific levels to be reached using the Cray T3D parallel architecture. A peak performance level of 9.6 Gflop/s is reached on 256 processors for the time critical gravity computation.

  12. An N-body Tree Algorithm for the Cray T3D

    NASA Astrophysics Data System (ADS)

    Olson, Kevin M.; Packer, Charles V.

    1996-05-01

    We describe in this paper an algorithm for solving the gravitational N-body problem using tree data structures on the Cray T3D parallel supercomputer. This implementation is an adaptation of previous work where this problem was solved using an SIMD, fine-grained parallel computer. We show here that this approach lends itself, with small modifications, to more coarse-grained parallelism as well. We also show that the performance of the algorithm on the Cray T3D parallel architecture scales adequately with the number of processors (up to 256). Specific levels to be reached using the Cray T3D parallel architecture. A peak performance level of 9.6 Gflop/s is reached on 256 processors for the time critical gravity computation.

  13. 3D reconstruction of complex geological bodies: Examples from the Alps

    NASA Astrophysics Data System (ADS)

    Zanchi, Andrea; Francesca, Salvi; Stefano, Zanchetta; Simone, Sterlacchini; Graziano, Guerra

    2009-01-01

    Cartographic geological and structural data collected in the field and managed by Geographic Information Systems (GIS) technology can be used for 3D reconstruction of complex geological bodies. Using a link between GIS tools and gOcad, stratigraphic and tectonic surfaces can be reconstructed taking into account any geometrical constraint derived from field observations. Complex surfaces can be reconstructed using large data sets analysed by suitable geometrical techniques. Three main typologies of geometric features and related attributes are exported from a GIS-geodatabase: (1) topographic data as points from a digital elevation model; (2) stratigraphic and tectonic boundaries, and linear features as 2D polylines; (3) structural data as points. After having imported the available information into gOcad, the following steps should be performed: (1) construction of the topographic surface by interpolation of points; (2) 3D mapping of the linear geological boundaries and linear features by vertical projection on the reconstructed topographic surface; (3) definition of geometrical constraints from planar and linear outcrop data; (4) construction of a network of cross-sections based on field observations and geometrical constraints; (5) creation of 3D surfaces, closed volumes and grids from the constructed objects. Three examples of the reconstruction of complex geological bodies from the Italian Alps are presented here. The methodology demonstrates that although only outcrop data were available, 3D modelling has allows the checking of the geometrical consistency of the interpretative 2D sections and of the field geology, through a 3D visualisation of geometrical models. Application of a 3D geometrical model to the case studies can be very useful in geomechanical modelling for slope-stability or resource evaluation.

  14. Zebrafish response to 3D printed shoals of conspecifics: the effect of body size.

    PubMed

    Bartolini, Tiziana; Mwaffo, Violet; Showler, Ashleigh; Macrì, Simone; Butail, Sachit; Porfiri, Maurizio

    2016-04-01

    Recent progress in three-dimensional (3D) printing technology has enabled rapid prototyping of complex models at a limited cost. Virtually every research laboratory has access to a 3D printer, which can assist in the design and implementation of hypothesis-driven studies on animal behavior. In this study, we explore the possibility of using 3D printing technology to understand the role of body size in the social behavior of the zebrafish model organism. In a dichotomous preference test, we study the behavioral response of zebrafish to shoals of 3D printed replicas of varying size. We systematically vary the size of each replica without altering the coloration, aspect ratio, and stripe patterns, which are all selected to closely mimic zebrafish morphophysiology. The replicas are actuated through a robotic manipulator, mimicking the natural motion of live subjects. Zebrafish preference is assessed by scoring the time spent in the vicinity of the shoal of replicas, and the information theoretic construct of transfer entropy is used to further elucidate the influence of the replicas on zebrafish motion. Our results demonstrate that zebrafish adjust their behavior in response to variations in the size of the replicas. Subjects exhibit an avoidance reaction for larger replicas, and they are attracted toward and influenced by smaller replicas. The approach presented in this study, integrating 3D printing technology, robotics, and information theory, is expected to significantly aid preclinical research on zebrafish behavior. PMID:26891476

  15. 3D Human cartilage surface characterization by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Brill, Nicolai; Riedel, Jörn; Schmitt, Robert; Tingart, Markus; Truhn, Daniel; Pufe, Thomas; Jahr, Holger; Nebelung, Sven

    2015-10-01

    Early diagnosis and treatment of cartilage degeneration is of high clinical interest. Loss of surface integrity is considered one of the earliest and most reliable signs of degeneration, but cannot currently be evaluated objectively. Optical Coherence Tomography (OCT) is an arthroscopically available light-based non-destructive real-time imaging technology that allows imaging at micrometre resolutions to millimetre depths. As OCT-based surface evaluation standards remain to be defined, the present study investigated the diagnostic potential of 3D surface profile parameters in the comprehensive evaluation of cartilage degeneration. To this end, 45 cartilage samples of different degenerative grades were obtained from total knee replacements (2 males, 10 females; mean age 63.8 years), cut to standard size and imaged using a spectral-domain OCT device (Thorlabs, Germany). 3D OCT datasets of 8  ×  8, 4  ×  4 and 1  ×  1 mm (width  ×  length) were obtained and pre-processed (image adjustments, morphological filtering). Subsequent automated surface identification algorithms were used to obtain the 3D primary profiles, which were then filtered and processed using established algorithms employing ISO standards. The 3D surface profile thus obtained was used to calculate a set of 21 3D surface profile parameters, i.e. height (e.g. Sa), functional (e.g. Sk), hybrid (e.g. Sdq) and segmentation-related parameters (e.g. Spd). Samples underwent reference histological assessment according to the Degenerative Joint Disease classification. Statistical analyses included calculation of Spearman’s rho and assessment of inter-group differences using the Kruskal Wallis test. Overall, the majority of 3D surface profile parameters revealed significant degeneration-dependent differences and correlations with the exception of severe end-stage degeneration and were of distinct diagnostic value in the assessment of surface integrity. None of the 3D

  16. 3D Human cartilage surface characterization by optical coherence tomography.

    PubMed

    Brill, Nicolai; Riedel, Jörn; Schmitt, Robert; Tingart, Markus; Truhn, Daniel; Pufe, Thomas; Jahr, Holger; Nebelung, Sven

    2015-10-01

    Early diagnosis and treatment of cartilage degeneration is of high clinical interest. Loss of surface integrity is considered one of the earliest and most reliable signs of degeneration, but cannot currently be evaluated objectively. Optical Coherence Tomography (OCT) is an arthroscopically available light-based non-destructive real-time imaging technology that allows imaging at micrometre resolutions to millimetre depths. As OCT-based surface evaluation standards remain to be defined, the present study investigated the diagnostic potential of 3D surface profile parameters in the comprehensive evaluation of cartilage degeneration. To this end, 45 cartilage samples of different degenerative grades were obtained from total knee replacements (2 males, 10 females; mean age 63.8 years), cut to standard size and imaged using a spectral-domain OCT device (Thorlabs, Germany). 3D OCT datasets of 8  ×  8, 4  ×  4 and 1  ×  1 mm (width  ×  length) were obtained and pre-processed (image adjustments, morphological filtering). Subsequent automated surface identification algorithms were used to obtain the 3D primary profiles, which were then filtered and processed using established algorithms employing ISO standards. The 3D surface profile thus obtained was used to calculate a set of 21 3D surface profile parameters, i.e. height (e.g. Sa), functional (e.g. Sk), hybrid (e.g. Sdq) and segmentation-related parameters (e.g. Spd). Samples underwent reference histological assessment according to the Degenerative Joint Disease classification. Statistical analyses included calculation of Spearman's rho and assessment of inter-group differences using the Kruskal Wallis test. Overall, the majority of 3D surface profile parameters revealed significant degeneration-dependent differences and correlations with the exception of severe end-stage degeneration and were of distinct diagnostic value in the assessment of surface integrity. None of the 3D surface

  17. Biview learning for human posture segmentation from 3D points cloud.

    PubMed

    Qiao, Maoying; Cheng, Jun; Bian, Wei; Tao, Dacheng

    2014-01-01

    Posture segmentation plays an essential role in human motion analysis. The state-of-the-art method extracts sufficiently high-dimensional features from 3D depth images for each 3D point and learns an efficient body part classifier. However, high-dimensional features are memory-consuming and difficult to handle on large-scale training dataset. In this paper, we propose an efficient two-stage dimension reduction scheme, termed biview learning, to encode two independent views which are depth-difference features (DDF) and relative position features (RPF). Biview learning explores the complementary property of DDF and RPF, and uses two stages to learn a compact yet comprehensive low-dimensional feature space for posture segmentation. In the first stage, discriminative locality alignment (DLA) is applied to the high-dimensional DDF to learn a discriminative low-dimensional representation. In the second stage, canonical correlation analysis (CCA) is used to explore the complementary property of RPF and the dimensionality reduced DDF. Finally, we train a support vector machine (SVM) over the output of CCA. We carefully validate the effectiveness of DLA and CCA utilized in the two-stage scheme on our 3D human points cloud dataset. Experimental results show that the proposed biview learning scheme significantly outperforms the state-of-the-art method for human posture segmentation. PMID:24465721

  18. Robust 3D reconstruction system for human jaw modeling

    NASA Astrophysics Data System (ADS)

    Yamany, Sameh M.; Farag, Aly A.; Tazman, David; Farman, Allan G.

    1999-03-01

    This paper presents a model-based vision system for dentistry that will replace traditional approaches used in diagnosis, treatment planning and surgical simulation. Dentistry requires accurate 3D representation of the teeth and jaws for many diagnostic and treatment purposes. For example orthodontic treatment involves the application of force systems to teeth over time to correct malocclusion. In order to evaluate tooth movement progress, the orthodontists monitors this movement by means of visual inspection, intraoral measurements, fabrication of plastic models, photographs and radiographs, a process which is both costly and time consuming. In this paper an integrate system has been developed to record the patient's occlusion using computer vision. Data is acquired with an intraoral video camera. A modified shape from shading (SFS) technique, using perspective projection and camera calibration, is used to extract accurate 3D information from a sequence of 2D images of the jaw. A new technique for 3D data registration, using a Grid Closest Point transform and genetic algorithms, is used to register the SFS output. Triangulization is then performed, and a solid 3D model is obtained via a rapid prototype machine.

  19. SVD-GFD scheme to simulate complex moving body problems in 3D space

    NASA Astrophysics Data System (ADS)

    Wang, X. Y.; Yu, P.; Yeo, K. S.; Khoo, B. C.

    2010-03-01

    The present paper presents a hybrid meshfree-and-Cartesian grid method for simulating moving body incompressible viscous flow problems in 3D space. The method combines the merits of cost-efficient and accurate conventional finite difference approximations on Cartesian grids with the geometric freedom of generalized finite difference (GFD) approximations on meshfree grids. Error minimization in GFD is carried out by singular value decomposition (SVD). The Arbitrary Lagrangian-Eulerian (ALE) form of the Navier-Stokes equations on convecting nodes is integrated by a fractional-step projection method. The present hybrid grid method employs a relatively simple mode of nodal administration. Nevertheless, it has the geometrical flexibility of unstructured mesh-based finite-volume and finite element methods. Boundary conditions are precisely implemented on boundary nodes without interpolation. The present scheme is validated by a moving patch consistency test as well as against published results for 3D moving body problems. Finally, the method is applied on low-Reynolds number flapping wing applications, where large boundary motions are involved. The present study demonstrates the potential of the present hybrid meshfree-and-Cartesian grid scheme for solving complex moving body problems in 3D.

  20. Perineal body anatomy in living women: 3-D analysis using thin-slice magnetic resonance imaging

    PubMed Central

    Larson, Kindra A.; Yousuf, Aisha; Lewicky-Gaupp, Christina; Fenner, Dee E.; DeLancey, John O.L.

    2012-01-01

    Objective To describe a framework for visualizing the perineal body's complex anatomy using thin-slice MR imaging. Study Design Two mm-thick MR images were acquired in 11 women with normal pelvic support and no incontinence/prolapse symptoms. Anatomic structures were analyzed in axial, sagittal and coronal slices. 3-D models were generated from these images. Results Three distinct perineal body regions are visible on MRI: (1) a superficial region at the level of the vestibular bulb, (2) a mid region at the proximal end of the superficial transverse perineal muscle, and (3) a deep region at the level of the midurethra and puborectalis muscle. Structures are best visualized on axial scans while cranio-caudal relationships are appreciated on sagittal scans. The 3-D model further clarifies inter-relationships. Conclusion Advances in MR technology allow visualization of perineal body anatomy in living women and development of 3D models which enhance our understanding of its three different regions: superficial, mid and deep. PMID:21055513

  1. Synthesis of 3D Model of a Magnetic Field-Influenced Body from a Single Image

    NASA Technical Reports Server (NTRS)

    Wang, Cuilan; Newman, Timothy; Gallagher, Dennis

    2006-01-01

    A method for recovery of a 3D model of a cloud-like structure that is in motion and deforming but approximately governed by magnetic field properties is described. The method allows recovery of the model from a single intensity image in which the structure's silhouette can be observed. The method exploits envelope theory and a magnetic field model. Given one intensity image and the segmented silhouette in the image, the method proceeds without human intervention to produce the 3D model. In addition to allowing 3D model synthesis, the method's capability to yield a very compact description offers further utility. Application of the method to several real-world images is demonstrated.

  2. Analysis of 3D strain in the human medial meniscus.

    PubMed

    Kolaczek, S; Hewison, C; Caterine, S; Ragbar, M X; Getgood, A; Gordon, K D

    2016-10-01

    This study presents a method to evaluate three-dimensional strain in meniscal tissue using medical imaging. Strain is calculated by tracking small teflon markers implanted within the meniscal tissue using computed tomography imaging. The results are presented for strains in the middle and posterior third of the medial menisci of 10 human cadaveric knees, under simulated physiologically relevant loading. In the middle position, an average compressive strain of 3.4% was found in the medial-lateral direction, and average tensile strains of 1.4% and 3.5% were found in the anterior-posterior and superior-inferior directions respectively at 5° of knee flexion with an applied load of 1× body weight. In the posterior position, under the same conditions, average compressive strains of 2.2% and 6.3% were found in the medial-lateral and superior-inferior directions respectively, and an average tensile strain of 3.8% was found in the anterior-posterior direction. No statistically significant difference between strain in the middle or posterior of the meniscus or between the global strains is uncovered. PMID:27484043

  3. A Computational Model for Suspended Large Rigid Bodies in 3D Unsteady Viscous Flows

    NASA Astrophysics Data System (ADS)

    Xiao, Feng

    1999-11-01

    A 3D numerical model for computing large rigid objects suspended in fluid flow has been developed. Rather than calculating the surface pressure upon the solid body, we evaluate the net force and torque based on a volume force formulation. The total effective force is obtained by summing up the forces at the Eulerian grids occupied by the rigid body. The effects of the moving bodies are coupled to the fluid flow by imposing the velocity field of the bodies to the fluid. A Poisson equation is used to compute the pressure over the whole domain. The objects are identified by color functions and calculated by the PPM scheme and a tangent function transformation which scales the transition region of the computed interface to a compact thickness. The model is then implemented on a parallel computer of distributed memory and validated with Stokes and low Reynolds number flows.

  4. 3D reconstruction of internal structure of animal body using near-infrared light

    NASA Astrophysics Data System (ADS)

    Tran, Trung Nghia; Yamamoto, Kohei; Namita, Takeshi; Kato, Yuji; Shimizu, Koichi

    2014-03-01

    To realize three-dimensional (3D) optical imaging of the internal structure of animal body, we have developed a new technique to reconstruct CT images from two-dimensional (2D) transillumination images. In transillumination imaging, the image is blurred due to the strong scattering in the tissue. We had developed a scattering suppression technique using the point spread function (PSF) for a fluorescent light source in the body. In this study, we have newly proposed a technique to apply this PSF for a light source to the image of unknown light-absorbing structure. The effectiveness of the proposed technique was examined in the experiments with a model phantom and a mouse. In the phantom experiment, the absorbers were placed in the tissue-equivalent medium to simulate the light-absorbing organs in mouse body. Near-infrared light was illuminated from one side of the phantom and the image was recorded with CMOS camera from another side. Using the proposed techniques, the scattering effect was efficiently suppressed and the absorbing structure can be visualized in the 2D transillumination image. Using the 2D images obtained in many different orientations, we could reconstruct the 3D image. In the mouse experiment, an anesthetized mouse was held in an acrylic cylindrical holder. We can visualize the internal organs such as kidneys through mouse's abdomen using the proposed technique. The 3D image of the kidneys and a part of the liver were reconstructed. Through these experimental studies, the feasibility of practical 3D imaging of the internal light-absorbing structure of a small animal was verified.

  5. Articulated Non-Rigid Point Set Registration for Human Pose Estimation from 3D Sensors

    PubMed Central

    Ge, Song; Fan, Guoliang

    2015-01-01

    We propose a generative framework for 3D human pose estimation that is able to operate on both individual point sets and sequential depth data. We formulate human pose estimation as a point set registration problem, where we propose three new approaches to address several major technical challenges in this research. First, we integrate two registration techniques that have a complementary nature to cope with non-rigid and articulated deformations of the human body under a variety of poses. This unique combination allows us to handle point sets of complex body motion and large pose variation without any initial conditions, as required by most existing approaches. Second, we introduce an efficient pose tracking strategy to deal with sequential depth data, where the major challenge is the incomplete data due to self-occlusions and view changes. We introduce a visible point extraction method to initialize a new template for the current frame from the previous frame, which effectively reduces the ambiguity and uncertainty during registration. Third, to support robust and stable pose tracking, we develop a segment volume validation technique to detect tracking failures and to re-initialize pose registration if needed. The experimental results on both benchmark 3D laser scan and depth datasets demonstrate the effectiveness of the proposed framework when compared with state-of-the-art algorithms. PMID:26131673

  6. Equivalent Body Force Finite Elements Method and 3-D Earth Model Applied In 2004 Sumatra Earthquake

    NASA Astrophysics Data System (ADS)

    Qu, W.; Cheng, H.; Shi, Y.

    2015-12-01

    The 26 December 2004 Sumatra-Andaman earthquake with moment magnitude (Mw) of 9.1 to 9.3 is the first great earthquake recorded by digital broadband, high-dynamic-range seismometers and global positioning system (GPS) equipment, which recorded many high-quality geophysical data sets. The spherical curvature is not negligible in far field especially for large event and the real Earth is laterally inhomogeneity and the analytical results still are difficult to explain the geodetic measurements. We use equivalent body force finite elements method Zhang et al. (2015) and mesh the whole earth, to compute global co-seismic displacements using four fault slip models of the 2004 Sumatra earthquake provided by different authors. Comparisons of calculated co-seismic displacements and GPS show that the confidences are well in near field for four models, and the confidences are according to different models. In the whole four models, the Chlieh model (Chlieh et al., 2007) is the best as this slip model not only accord well with near field data but also far field data. And then we use the best slip model, Chlieh model to explore influence of three dimensional lateral earth structure on both layered spherically symmetric (PREM) and real 3-D heterogeneous earth model (Crust 1.0 model and GyPSuM). Results show that the effects of 3-D heterogeneous earth model are not negligible and decrease concomitantly with increasing distance from the epicenter. The relative effects of 3-D crust model are 23% and 40% for horizontal and vertical displacements, respectively. The effects of the 3-D mantle model are much smaller than that of 3-D crust model but with wider impacting area.

  7. Metrological analysis of the human foot: 3D multisensor exploration

    NASA Astrophysics Data System (ADS)

    Muñoz Potosi, A.; Meneses Fonseca, J.; León Téllez, J.

    2011-08-01

    In the podiatry field, many of the foot dysfunctions are mainly generated due to: Congenital malformations, accidents or misuse of footwear. For the treatment or prevention of foot disorders, the podiatrist diagnoses prosthesis or specific adapted footwear, according to the real dimension of foot. Therefore, it is necessary to acquire 3D information of foot with 360 degrees of observation. As alternative solution, it was developed and implemented an optical system of threedimensional reconstruction based in the principle of laser triangulation. The system is constituted by an illumination unit that project a laser plane into the foot surface, an acquisition unit with 4 CCD cameras placed around of axial foot axis, an axial moving unit that displaces the illumination and acquisition units in the axial axis direction and a processing and exploration unit. The exploration software allows the extraction of distances on three-dimensional image, taking into account the topography of foot. The optical system was tested and their metrological performances were evaluated in experimental conditions. The optical system was developed to acquire 3D information in order to design and make more appropriate footwear.

  8. Fluid force and static symmetry breaking modes of 3D bluff bodies.

    NASA Astrophysics Data System (ADS)

    Cadot, Olivier; Evrard, Antoine; DFA Team

    2015-11-01

    A cavity at the base of the squareback Ahmed model at Re =6.106 is able to reduce the base suction by 18% and the drag coefficient by 9%, while the flow at the separation remains unaffected. Instantaneous pressure measurements at the body base, fluid force measurements and wake velocity measurements are investigated varying the cavity depth from 0 to 35% of the base height. Due to the reflectional symmetry of the rectangular base, there are two Reflectional Symmetry Breaking (RSB) mirror modes present in the natural wake that switch from one to the other randomly in accordance with the recent findings of Grandemange et al. (2013). It is shown that these modes exhibit an energetic 3D static vortex system close to the base of the body. A sufficiently deep cavity is able to stabilize the wake toward a symmetry preserved wake, thus suppressing the RSB modes and leading to a weaker elliptical toric recirculation. The stabilization can be modeled with a Langevin equation. The plausible mechanism for drag reduction with the base cavity is based on the interaction of the static 3D vortex system of the RSB modes with the base and their suppression by stabilization. There are some strong evidences that this mechanism may be generalized to axisymmetric bodies with base cavity.

  9. 3-D attitude representation of human joints: a standardization proposal.

    PubMed

    Woltring, H J

    1994-12-01

    In view of the singularities, asymmetries and other adverse properties of existing, three-dimensional definitions for joint and segment angles, the present paper proposes a new convention for unambiguous and easily interpretable, 3-D joint angles, based on the concept of the attitude 'vector' as derived from Euler's theorem. The suggested standard can be easily explained to non-mathematically trained clinicians, is readily implemented in software, and can be simply related to classical Cardanic/Eulerian angles. For 'planar' rotations about a coordinate system's axes, the proposed convention coincides with the Cardanic convention. The attitude vector dispenses with the 'gimbal-lock' and non-orthogonality disadvantages of Cardanic/Eulerian conventions; therefore, its components have better metrical properties, and they are less sensitive to measurement errors and to coordinate system uncertainties than Cardanic/Eulerian angles. A sensitivity analysis and a physical interpretation of the proposed standard are given, and some experimental results that demonstrate its advantages. PMID:7806549

  10. Digimouse: a 3D whole body mouse atlas from CT and cryosection data

    PubMed Central

    Dogdas, Belma; Stout, David; Chatziioannou, Arion F; Leahy, Richard M

    2010-01-01

    We have constructed a three-dimensional (3D) whole body mouse atlas from coregistered x-ray CT and cryosection data of a normal nude male mouse. High quality PET, x-ray CT and cryosection images were acquired post mortem from a single mouse placed in a stereotactic frame with fiducial markers visible in all three modalities. The image data were coregistered to a common coordinate system using the fiducials and resampled to an isotropic 0.1 mm voxel size. Using interactive editing tools we segmented and labelled whole brain, cerebrum, cerebellum, olfactory bulbs, striatum, medulla, masseter muscles, eyes, lachrymal glands, heart, lungs, liver, stomach, spleen, pancreas, adrenal glands, kidneys, testes, bladder, skeleton and skin surface. The final atlas consists of the 3D volume, in which the voxels are labelled to define the anatomical structures listed above, with coregistered PET, x-ray CT and cryosection images. To illustrate use of the atlas we include simulations of 3D bioluminescence and PET image reconstruction. Optical scatter and absorption values are assigned to each organ to simulate realistic photon transport within the animal for bioluminescence imaging. Similarly, 511 keV photon attenuation values are assigned to each structure in the atlas to simulate realistic photon attenuation in PET. The Digimouse atlas and data are available at http://neuroimage.usc.edu/Digimouse.html. PMID:17228106

  11. Digimouse: a 3D whole body mouse atlas from CT and cryosection data

    NASA Astrophysics Data System (ADS)

    Dogdas, Belma; Stout, David; Chatziioannou, Arion F.; Leahy, Richard M.

    2007-02-01

    We have constructed a three-dimensional (3D) whole body mouse atlas from coregistered x-ray CT and cryosection data of a normal nude male mouse. High quality PET, x-ray CT and cryosection images were acquired post mortem from a single mouse placed in a stereotactic frame with fiducial markers visible in all three modalities. The image data were coregistered to a common coordinate system using the fiducials and resampled to an isotropic 0.1 mm voxel size. Using interactive editing tools we segmented and labelled whole brain, cerebrum, cerebellum, olfactory bulbs, striatum, medulla, masseter muscles, eyes, lachrymal glands, heart, lungs, liver, stomach, spleen, pancreas, adrenal glands, kidneys, testes, bladder, skeleton and skin surface. The final atlas consists of the 3D volume, in which the voxels are labelled to define the anatomical structures listed above, with coregistered PET, x-ray CT and cryosection images. To illustrate use of the atlas we include simulations of 3D bioluminescence and PET image reconstruction. Optical scatter and absorption values are assigned to each organ to simulate realistic photon transport within the animal for bioluminescence imaging. Similarly, 511 keV photon attenuation values are assigned to each structure in the atlas to simulate realistic photon attenuation in PET. The Digimouse atlas and data are available at http://neuroimage.usc.edu/Digimouse.html.

  12. 4D VMAT, gated VMAT, and 3D VMAT for stereotactic body radiation therapy in lung

    NASA Astrophysics Data System (ADS)

    Chin, E.; Loewen, S. K.; Nichol, A.; Otto, K.

    2013-02-01

    Four-dimensional volumetric modulated arc therapy (4D VMAT) is a treatment strategy for lung cancers that aims to exploit relative target and tissue motion to improve organ at risk (OAR) sparing. The algorithm incorporates the entire patient respiratory cycle using 4D CT data into the optimization process. Resulting treatment plans synchronize the delivery of each beam aperture to a specific phase of target motion. Stereotactic body radiation therapy treatment plans for 4D VMAT, gated VMAT, and 3D VMAT were generated on three patients with non-small cell lung cancer. Tumour motion ranged from 1.4-3.4 cm. The dose and fractionation scheme was 48 Gy in four fractions. A B-spline transformation model registered the 4D CT images. 4D dose volume histograms (4D DVH) were calculated from total dose accumulated at the maximum exhalation. For the majority of OARs, gated VMAT achieved the most radiation sparing but treatment times were 77-148% longer than 3D VMAT. 4D VMAT plan qualities were comparable to gated VMAT, but treatment times were only 11-25% longer than 3D VMAT. 4D VMAT's improvement of healthy tissue sparing can allow for further dose escalation. Future study could potentially adapt 4D VMAT to irregular patient breathing patterns.

  13. A Measure of the Effectiveness of Incorporating 3D Human Anatomy into an Online Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Hilbelink, Amy J.

    2009-01-01

    Results of a study designed to determine the effectiveness of implementing three-dimensional (3D) stereo images of a human skull in an undergraduate human anatomy online laboratory were gathered and analysed. Mental model theory and its applications to 3D relationships are discussed along with the research results. Quantitative results on 62 pairs…

  14. 3D virtual human atria: A computational platform for studying clinical atrial fibrillation.

    PubMed

    Aslanidi, Oleg V; Colman, Michael A; Stott, Jonathan; Dobrzynski, Halina; Boyett, Mark R; Holden, Arun V; Zhang, Henggui

    2011-10-01

    Despite a vast amount of experimental and clinical data on the underlying ionic, cellular and tissue substrates, the mechanisms of common atrial arrhythmias (such as atrial fibrillation, AF) arising from the functional interactions at the whole atria level remain unclear. Computational modelling provides a quantitative framework for integrating such multi-scale data and understanding the arrhythmogenic behaviour that emerges from the collective spatio-temporal dynamics in all parts of the heart. In this study, we have developed a multi-scale hierarchy of biophysically detailed computational models for the human atria--the 3D virtual human atria. Primarily, diffusion tensor MRI reconstruction of the tissue geometry and fibre orientation in the human sinoatrial node (SAN) and surrounding atrial muscle was integrated into the 3D model of the whole atria dissected from the Visible Human dataset. The anatomical models were combined with the heterogeneous atrial action potential (AP) models, and used to simulate the AP conduction in the human atria under various conditions: SAN pacemaking and atrial activation in the normal rhythm, break-down of regular AP wave-fronts during rapid atrial pacing, and the genesis of multiple re-entrant wavelets characteristic of AF. Contributions of different properties of the tissue to mechanisms of the normal rhythm and arrhythmogenesis were investigated. Primarily, the simulations showed that tissue heterogeneity caused the break-down of the normal AP wave-fronts at rapid pacing rates, which initiated a pair of re-entrant spiral waves; and tissue anisotropy resulted in a further break-down of the spiral waves into multiple meandering wavelets characteristic of AF. The 3D virtual atria model itself was incorporated into the torso model to simulate the body surface ECG patterns in the normal and arrhythmic conditions. Therefore, a state-of-the-art computational platform has been developed, which can be used for studying multi

  15. Upper body balance control strategy during continuous 3D postural perturbation in young adults.

    PubMed

    Amori, V; Petrarca, M; Patané, F; Castelli, E; Cappa, P

    2015-01-01

    We explored how changes in vision and perturbation frequency impacted upright postural control in healthy adults exposed to continuous multiaxial support-surface perturbation. Ten subjects were asked to maintain equilibrium in standing stance with eyes open (EO) and eyes closed (EC) during sinusoidal 3D rotations at 0.25 (L) and 0.50 Hz (H). We measured upper-body kinematics--head, trunk, and pelvis--and analyzed differences in horizontal displacements and roll, pitch, and yaw sways. The presence of vision significantly decreased upper-body displacements in the horizontal plane, especially at the head level, while in EC the head was the most unstable segment. H trials produced a greater segment stabilization compared to L ones in EO and EC. Analysis of sways showed that in EO participants stabilized their posture by reducing the variability of trunk angles; in H trials a sway decrease for the examined segments was observed in the yaw plane and, for the pelvis only, in the pitch plane. Our results suggest that, during continuous multiaxial perturbations, visual information induced: (i) in L condition, a continuous reconfiguration of multi-body-segments orientation to follow the perturbation; (ii) in H condition, a compensation for the ongoing perturbation. These findings were not confirmed in EC where the same strategy--that is, the use of the pelvis as a reference frame for the body balance was adopted both in L and H. PMID:25205381

  16. Computational 3-D Model of the Human Respiratory System

    EPA Science Inventory

    We are developing a comprehensive, morphologically-realistic computational model of the human respiratory system that can be used to study the inhalation, deposition, and clearance of contaminants, while being adaptable for age, race, gender, and health/disease status. The model ...

  17. Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction with Complex 3D Rigid Bodies.

    PubMed

    Borazjani, Iman; Ge, Liang; Sotiropoulos, Fotis

    2008-08-10

    The sharp-interface CURVIB approach of Ge and Sotiropoulos [L. Ge, F. Sotiropoulos, A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries, Journal of Computational Physics 225 (2007) 1782-1809] is extended to simulate fluid structure interaction (FSI) problems involving complex 3D rigid bodies undergoing large structural displacements. The FSI solver adopts the partitioned FSI solution approach and both loose and strong coupling strategies are implemented. The interfaces between immersed bodies and the fluid are discretized with a Lagrangian grid and tracked with an explicit front-tracking approach. An efficient ray-tracing algorithm is developed to quickly identify the relationship between the background grid and the moving bodies. Numerical experiments are carried out for two FSI problems: vortex induced vibration of elastically mounted cylinders and flow through a bileaflet mechanical heart valve at physiologic conditions. For both cases the computed results are in excellent agreement with benchmark simulations and experimental measurements. The numerical experiments suggest that both the properties of the structure (mass, geometry) and the local flow conditions can play an important role in determining the stability of the FSI algorithm. Under certain conditions unconditionally unstable iteration schemes result even when strong coupling FSI is employed. For such cases, however, combining the strong-coupling iteration with under-relaxation in conjunction with the Aitken's acceleration technique is shown to effectively resolve the stability problems. A theoretical analysis is presented to explain the findings of the numerical experiments. It is shown that the ratio of the added mass to the mass of the structure as well as the sign of the local time rate of change of the force or moment imparted on the structure by the fluid determine the stability and convergence of the FSI

  18. Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction with Complex 3D Rigid Bodies

    PubMed Central

    Borazjani, Iman; Ge, Liang; Sotiropoulos, Fotis

    2010-01-01

    The sharp-interface CURVIB approach of Ge and Sotiropoulos [L. Ge, F. Sotiropoulos, A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries, Journal of Computational Physics 225 (2007) 1782–1809] is extended to simulate fluid structure interaction (FSI) problems involving complex 3D rigid bodies undergoing large structural displacements. The FSI solver adopts the partitioned FSI solution approach and both loose and strong coupling strategies are implemented. The interfaces between immersed bodies and the fluid are discretized with a Lagrangian grid and tracked with an explicit front-tracking approach. An efficient ray-tracing algorithm is developed to quickly identify the relationship between the background grid and the moving bodies. Numerical experiments are carried out for two FSI problems: vortex induced vibration of elastically mounted cylinders and flow through a bileaflet mechanical heart valve at physiologic conditions. For both cases the computed results are in excellent agreement with benchmark simulations and experimental measurements. The numerical experiments suggest that both the properties of the structure (mass, geometry) and the local flow conditions can play an important role in determining the stability of the FSI algorithm. Under certain conditions unconditionally unstable iteration schemes result even when strong coupling FSI is employed. For such cases, however, combining the strong-coupling iteration with under-relaxation in conjunction with the Aitken’s acceleration technique is shown to effectively resolve the stability problems. A theoretical analysis is presented to explain the findings of the numerical experiments. It is shown that the ratio of the added mass to the mass of the structure as well as the sign of the local time rate of change of the force or moment imparted on the structure by the fluid determine the stability and convergence of the

  19. Drag and lift reduction of a 3D bluff-body using active vortex generators

    NASA Astrophysics Data System (ADS)

    Aider, Jean-Luc; Beaudoin, Jean-François; Wesfreid, José Eduardo

    2010-05-01

    In this study, a passive flow control experiment on a 3D bluff-body using vortex generators (VGs) is presented. The bluff-body is a modified Ahmed body (Ahmed in J Fluids Eng 105:429-434 1983) with a curved rear part, instead of a slanted one, so that the location of the flow separation is no longer forced by the geometry. The influence of a line of non-conventional trapezoïdal VGs on the aerodynamic forces (drag and lift) induced on the bluff-body is investigated. The high sensitivity to many geometric (angle between the trapezoïdal element and the wall, spanwise spacing between the VGs, longitudinal location on the curved surface) and physical (freestream velocity) parameters is clearly demonstrated. The maximum drag reduction is -12%, while the maximum global lift reduction can reach more than -60%, with a strong dependency on the freestream velocity. For some configurations, the lift on the rear axle of the model can be inverted (-104%). It is also shown that the VGs are still efficient even downstream of the natural separation line. Finally, a dynamic parameter is chosen and a new set-up with motorized vortex generators is proposed. Thanks to this active device. The optimal configurations depending on two parameters are found more easily, and a significant drag and lift reduction (up to -14% drag reduction) can be reached for different freestream velocities. These results are then analyzed through wall pressure and velocity measurements in the near-wake of the bluff-body with and without control. It appears that the largest drag and lift reduction is clearly associated to a strong increase of the size of the recirculation bubble over the rear slant. Investigation of the velocity field in a cross-section downstream the model reveals that, in the same time, the intensity of the longitudinal trailing vortices is strongly reduced, suggesting that the drag reduction is due to the breakdown of the balance between the separation bubble and the longitudinal vortices

  20. Sexual Dimorphism Analysis and Gender Classification in 3D Human Face

    NASA Astrophysics Data System (ADS)

    Hu, Yuan; Lu, Li; Yan, Jingqi; Liu, Zhi; Shi, Pengfei

    In this paper, we present the sexual dimorphism analysis in 3D human face and perform gender classification based on the result of sexual dimorphism analysis. Four types of features are extracted from a 3D human-face image. By using statistical methods, the existence of sexual dimorphism is demonstrated in 3D human face based on these features. The contributions of each feature to sexual dimorphism are quantified according to a novel criterion. The best gender classification rate is 94% by using SVMs and Matcher Weighting fusion method.This research adds to the knowledge of 3D faces in sexual dimorphism and affords a foundation that could be used to distinguish between male and female in 3D faces.

  1. 3D Measurement of Forearm and Upper Arm during Throwing Motion using Body Mounted Sensor

    NASA Astrophysics Data System (ADS)

    Koda, Hideharu; Sagawa, Koichi; Kuroshima, Kouta; Tsukamoto, Toshiaki; Urita, Kazutaka; Ishibashi, Yasuyuki

    The aim of this study is to propose the measurement method of three-dimensional (3D) movement of forearm and upper arm during pitching motion of baseball using inertial sensors without serious consideration of sensor installation. Although high accuracy measurement of sports motion is achieved by using optical motion capture system at present, it has some disadvantages such as the calibration of cameras and limitation of measurement place. Whereas the proposed method for 3D measurement of pitching motion using body mounted sensors provides trajectory and orientation of upper arm by the integration of acceleration and angular velocity measured on upper limb. The trajectory of forearm is derived so that the elbow joint axis of forearm corresponds to that of upper arm. Spatial relation between upper limb and sensor system is obtained by performing predetermined movements of upper limb and utilizing angular velocity and gravitational acceleration. The integration error is modified so that the estimated final position, velocity and posture of upper limb agree with the actual ones. The experimental results of the measurement of pitching motion show that trajectories of shoulder, elbow and wrist estimated by the proposed method are highly correlated to those from the motion capture system within the estimation error of about 10 [%].

  2. Body mass estimations for Plateosaurus engelhardti using laser scanning and 3D reconstruction methods

    NASA Astrophysics Data System (ADS)

    Gunga, Hanns-Christian; Suthau, Tim; Bellmann, Anke; Friedrich, Andreas; Schwanebeck, Thomas; Stoinski, Stefan; Trippel, Tobias; Kirsch, Karl; Hellwich, Olaf

    2007-08-01

    Both body mass and surface area are factors determining the essence of any living organism. This should also hold true for an extinct organism such as a dinosaur. The present report discusses the use of a new 3D laser scanner method to establish body masses and surface areas of an Asian elephant (Zoological Museum of Copenhagen, Denmark) and of Plateosaurus engelhardti, a prosauropod from the Upper Triassic, exhibited at the Paleontological Museum in Tübingen (Germany). This method was used to study the effect that slight changes in body shape had on body mass for P. engelhardti. It was established that body volumes varied between 0.79 m3 (slim version) and 1.14 m3 (robust version), resulting in a presumable body mass of 630 and 912 kg, respectively. The total body surface areas ranged between 8.8 and 10.2 m2, of which, in both reconstructions of P. engelhardti, ˜33% account for the thorax area alone. The main difference between the two models is in the tail and hind limb reconstruction. The tail of the slim version has a surface area of 1.98 m2, whereas that of the robust version has a surface area of 2.73 m2. The body volumes calculated for the slim version were as follows: head 0.006 m3, neck 0.016 m3, fore limbs 0.020 m3, hind limbs 0.08 m3, thoracic cavity 0.533 m3, and tail 0.136 m3. For the robust model, the following volumes were established: 0.01 m3 head, neck 0.026 m3, fore limbs 0.025 m3, hind limbs 0.18 m3, thoracic cavity 0.616 m3, and finally, tail 0.28 m3. Based on these body volumes, scaling equations were used to assess the size that the organs of this extinct dinosaur have.

  3. Optoacoustic 3D whole-body tomography: experiments in nude mice

    NASA Astrophysics Data System (ADS)

    Brecht, Hans-Peter; Su, Richard; Fronheiser, Matt; Ermilov, Sergey A.; Conjusteau, André; Liopo, Anton; Motamedi, Massoud; Oraevsky, Alexander A.

    2009-02-01

    We developed a 3D whole-body optoacoustic tomography system for applications in preclinical research on mice. The system is capable of generating images with resolution better than 0.6 mm. Two pulsed lasers, an Alexandrite laser operating at 755 nm and a Nd:YAG laser operating at 532 nm and 1064nm were used for light delivery. The tomographic images were obtained while the objects of study (phantoms or mice) were rotated within a sphere outlined by a concave arc-shaped array of 64 piezo-composite transducers. During the scan, the mouse was illuminated orthogonally to the array with two wide beams of light from a bifurcated fiber bundle. Illumination at 532 nm showed superficial vasculature, but limited penetration depth at this wavelength prevented the detection of deeper structures. Illumination at 755 and 1064 nm showed organs and blood vessels, respectively. Filtering of the optoacoustic signals using high frequency enhancing wavelets further emphasized the smaller blood vessels.

  4. BLUI: a body language user interface for 3D gestural drawing

    NASA Astrophysics Data System (ADS)

    Brody, Arthur W.; Hartman, Chris

    1999-05-01

    We are developing a system to implement gestural drawing in an immersive 3D environment. We present a virtual artist who draws expressive forms in virtual space. In the art world, the term 'gestural' commonly refers to mark making that drives from the richness of movement of the artist. This focus on the character of motion is much like a similar focus on follow-through in athletic activity. Accordingly, we base the appearance of the rendered image on the body language of the artists, hence the acronym BLUI. BLUI is developed on the ImmersaDESK, an immersive virtual reality environment where the artists wears head-tracking goggles and uses a wand. Information form video, wand, and head tracker is used to generate a virtual artist, whose brush tracks with the wand.

  5. A protocol for evaluating the accuracy of 3D body scanners.

    PubMed

    Kouchi, Makiko; Mochimaru, Masaaki; Bradtmiller, Bruce; Daanen, Hein; Li, Peng; Nacher, Beatriz; Nam, Yunja

    2012-01-01

    Scan-derived landmarks locations and surface shapes are more and more used, but there is no commonly accepted protocol for evaluating the accuracy of these measurements. Therefore we propose a protocol for evaluating the accuracy of surface shape and the repeatability of scan-derived landmark locations. According to existing Japanese and German domestic standards, we propose to use an artefact (e.g. sphere with diameter of about 120 mm) calibrated very accurately for evaluating the accuracy of scanner-systems. For evaluating the repeatability of landmark locations, we propose to use an anthropomorphic dummy with landmark locations premarked. These test objects are measured by a 3D body scanner to be evaluated. Evaluation parameters such as trueness, precision, and repeatability are calculated from the measured data. A round-robin test was conducted in six different institutes using 17 body/head/foot scanners produced by eight companies. The purposes of the roundrobin test were to evaluate the availability of test objects to different body scanners, and to examine the measurement locations of test objects and quality parameters to be reported. As a result, the proposed test objects could be measured and the data exported by all scanner systems except one, which could not export the ball measurement. For a comparative purpose, a figure of measured surface might be useful. PMID:22317336

  6. Understanding Human Perception of Building Categories in Virtual 3d Cities - a User Study

    NASA Astrophysics Data System (ADS)

    Tutzauer, P.; Becker, S.; Niese, T.; Deussen, O.; Fritsch, D.

    2016-06-01

    Virtual 3D cities are becoming increasingly important as a means of visually communicating diverse urban-related information. To get a deeper understanding of a human's cognitive experience of virtual 3D cities, this paper presents a user study on the human ability to perceive building categories (e.g. residential home, office building, building with shops etc.) from geometric 3D building representations. The study reveals various dependencies between geometric properties of the 3D representations and the perceptibility of the building categories. Knowledge about which geometries are relevant, helpful or obstructive for perceiving a specific building category is derived. The importance and usability of such knowledge is demonstrated based on a perception-guided 3D building abstraction process.

  7. Using of Bezier Interpolation in 3D Reconstruction of Human Femur Bone

    NASA Astrophysics Data System (ADS)

    Toth-Tascau, Mirela; Pater, Flavius; Stoia, Dan Ioan; Menyhardt, Karoly; Rosu, Serban; Rusu, Lucian; Vigaru, Cosmina

    2011-09-01

    The paper is focused on image acquisition and processing of CT scans of a human femur bone in order to obtain 3D reconstructions of the human femur. The objective of the presented study was to obtain 3D realistic model of the human femur bone. The reconstructed model provides useful data to the physician but more important are the data and 3D models that can be used for virtual testing of femoral implants and endoprosthesis. Using the B-spline patch a 3D volume model of the human femur bone can be achieved. This model can be easy imported in any CAD system, resulting a virtual femur model witch can be used in FEM analysis.

  8. Joint inversion of 3D crustal structure with ambient noise and earthquake body wave travel time

    NASA Astrophysics Data System (ADS)

    Li, Z.; Ni, S.; Chong, J.; Wang, X.

    2012-12-01

    Surface wave tomography based on the noise correlation function of seismic ambient noise has been widely used in studies of crustal and mantle structure . However, the periods of surface wave dispersions in the ambient noise tomography are typically less than 40 s, which limits its resolution on the lower crust. Travel times of earthquake body waves, such as Sg and SmS, could provide additional constraints to the crustal structure, especially to the lower crust due to the ray paths of SmS traveling through the lower crust twice. Here, we proposed a joint inversion method for 3D crustal structure with ambient noise and earthquake body wave travel time data, with the goal of providing better constraints and resolutions on the whole crust. We constructed the linear equations for joint inversion of crustal S velocity structure with the surface wave dispersion and body wave travel time data, and solved the equations with LSQR algorithm. Different weighting and damping factors, together with smoothing constraints, are adopted for surface wave dispersion and body wave travel time data to fit both dataset simultaneously. Synthetics experiments showed that the joint inversion could resolve the crust structure better than sole tomography of ambient noise or body wave travel time. We conducted the joint inversion around the Yangtze block in the eastern China. Rayleigh wave dispersions are extracted from the seismic ambient noise tomography by Zheng et al (2011) in this area. The body waves (e.g., Sg, SmS, Sn) are coherent to be identified and their travel times are measured with accuracy from high quality waveforms of some recent local earthquakes in this area. In order to minimize the travel time uncertainties, the focal depth and epicenter of these local earthquakes were resolved by depth phases and temporary aftershock observations. The result from joint inversion suggests that the crustal velocity structure, especially the lower crust, was well improved, which not only

  9. Measurements of the solid-body rotation of anisotropic particles in 3D turbulence

    NASA Astrophysics Data System (ADS)

    Marcus, Guy G.; Parsa, Shima; Kramel, Stefan; Ni, Rui; Voth, Greg A.

    2014-10-01

    We introduce a new method to measure Lagrangian vorticity and the rotational dynamics of anisotropic particles in a turbulent fluid flow. We use 3D printing technology to fabricate crosses (two perpendicular rods) and jacks (three mutually perpendicular rods). Time-resolved measurements of their orientation and solid-body rotation rate are obtained from four video images of their motion in a turbulent flow between oscillating grids with {{R}λ } = 91. The advected particles have a largest dimension of 6 times the Kolmogorov length, making them a good approximation to anisotropic tracer particles. Crosses rotate like disks and jacks rotate like spheres, so these measurements, combined with previous measurements of tracer rods, allow experimental study of axisymmetric ellipsoids across the full range of aspect ratios. The measured mean square tumbling rate, < {{\\dot{p}}i}{{\\dot{p}}i}> , confirms previous direct numerical simulations that indicate that disks tumble much more rapidly than rods. Measurements of the alignment of a unit vector defining the orientation of crosses with the direction of their solid-body rotation rate vector provide the first direct observation of the alignment of anisotropic particles by the velocity gradients in a turbulent flow.

  10. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications.

    PubMed

    Markstedt, Kajsa; Mantas, Athanasios; Tournier, Ivan; Martínez Ávila, Héctor; Hägg, Daniel; Gatenholm, Paul

    2015-05-11

    The introduction of 3D bioprinting is expected to revolutionize the field of tissue engineering and regenerative medicine. The 3D bioprinter is able to dispense materials while moving in X, Y, and Z directions, which enables the engineering of complex structures from the bottom up. In this study, a bioink that combines the outstanding shear thinning properties of nanofibrillated cellulose (NFC) with the fast cross-linking ability of alginate was formulated for the 3D bioprinting of living soft tissue with cells. Printability was evaluated with concern to printer parameters and shape fidelity. The shear thinning behavior of the tested bioinks enabled printing of both 2D gridlike structures as well as 3D constructs. Furthermore, anatomically shaped cartilage structures, such as a human ear and sheep meniscus, were 3D printed using MRI and CT images as blueprints. Human chondrocytes bioprinted in the noncytotoxic, nanocellulose-based bioink exhibited a cell viability of 73% and 86% after 1 and 7 days of 3D culture, respectively. On the basis of these results, we can conclude that the nanocellulose-based bioink is a suitable hydrogel for 3D bioprinting with living cells. This study demonstrates the potential use of nanocellulose for 3D bioprinting of living tissues and organs. PMID:25806996

  11. Moving Human Path Tracking Based on Video Surveillance in 3d Indoor Scenarios

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Zlatanova, Sisi; Wang, Zhe; Zhang, Yeting; Liu, Liu

    2016-06-01

    Video surveillance systems are increasingly used for a variety of 3D indoor applications. We can analyse human behaviour, discover and avoid crowded areas, monitor human traffic and so forth. In this paper we concentrate on use of surveillance cameras to track and reconstruct the path a person has followed. For the purpose we integrated video surveillance data with a 3D indoor model of the building and develop a single human moving path tracking method. We process the surveillance videos to detected single human moving traces; then we match the depth information of 3D scenes to the constructed 3D indoor network model and define the human traces in the 3D indoor space. Finally, the single human traces extracted from multiple cameras are connected with the help of the connectivity provided by the 3D network model. Using this approach, we can reconstruct the entire walking path. The provided experiments with a single person have verified the effectiveness and robustness of the method.

  12. A Microfluidic Bioreactor for Toxicity Testing of Stem Cell Derived 3D Cardiac Bodies.

    PubMed

    Christoffersson, Jonas; Bergström, Gunnar; Schwanke, Kristin; Kempf, Henning; Zweigerdt, Robert; Mandenius, Carl-Fredrik

    2016-01-01

    Modeling tissues and organs using conventional 2D cell cultures is problematic as the cells rapidly lose their in vivo phenotype. In microfluidic bioreactors the cells reside in microstructures that are continuously perfused with cell culture medium to provide a dynamic environment mimicking the cells natural habitat. These micro scale bioreactors are sometimes referred to as organs-on-chips and are developed in order to improve and extend cell culture experiments. Here, we describe the two manufacturing techniques photolithography and soft lithography that are used in order to easily produce microfluidic bioreactors. The use of these bioreactors is exemplified by a toxicity assessment on 3D clustered human pluripotent stem cells (hPSC)-derived cardiomyocytes by beating frequency imaging. PMID:27052611

  13. Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy

    PubMed Central

    Gualda, Emilio J.; Simão, Daniel; Pinto, Catarina; Alves, Paula M.; Brito, Catarina

    2014-01-01

    The development of three dimensional (3D) cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex 3D matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy (LSFM) is becoming an excellent tool for fast imaging of such 3D biological structures. We demonstrate the potential of this technique for the imaging of human differentiated 3D neural aggregates in fixed and live samples, namely calcium imaging and cell death processes, showing the power of imaging modality compared with traditional microscopy. The combination of light sheet microscopy and 3D neural cultures will open the door to more challenging experiments involving drug testing at large scale as well as a better understanding of relevant biological processes in a more realistic environment. PMID:25161607

  14. Documentation of program AFTBDY to generate coordinate system for 3D after body using body fitted curvilinear coordinates, part 1

    NASA Technical Reports Server (NTRS)

    Kumar, D.

    1980-01-01

    The computer program AFTBDY generates a body fitted curvilinear coordinate system for a wedge curved after body. This wedge curved after body is being used in an experimental program. The coordinate system generated by AFTBDY is used to solve 3D compressible N.S. equations. The coordinate system in the physical plane is a cartesian x,y,z system, whereas, in the transformed plane a rectangular xi, eta, zeta system is used. The coordinate system generated is such that in the transformed plane coordinate spacing in the xi, eta, zeta direction is constant and equal to unity. The physical plane coordinate lines in the different regions are clustered heavily or sparsely depending on the regions where physical quantities to be solved for by the N.S. equations have high or low gradients. The coordinate distribution in the physical plane is such that x stays constant in eta and zeta direction, whereas, z stays constant in xi and eta direction. The desired distribution in x and z is input to the program. Consequently, only the y-coordinate is solved for by the program AFTBDY.

  15. Identification of kimberlite bodies in Brazil from a 3D audio-magnetotelluric survey

    NASA Astrophysics Data System (ADS)

    De Lugao, P. P.; Eric, C. D. O.; Loureiro, F. O.; Arantes, P. R.; Pastana, A. F.

    2015-12-01

    We report on a succesfull identification of kimberlite bodies in Brazil through the use of the electromagnetic technique audio-magnetotelluric (AMT). Macnae (1979) writes that "In one large survey in South Africa, electromagnetic (EM) techniques have proven to be remarkably effective in detecting the presence of weathered clays or epiclastic kimberlite contained within the pipes." Full tensor AMT data were acquired at 65 points (stations) in a 3D configuration with frequencies ranging from 10kHz to 1Hz. The survey was located in the NW portion of the Mato Grosso state, Brazil, in na area of thick jungle coverage. During the AMT survey, few outcrops were seen because of the dense forest cover. Usually, the occurrences found were of sand deposits, indicating the occurence of Fazenda Casa Branca and Utiariti Formations and gravel from Salto das Nuvens Formation, widely used in paving trails n this region. In the area of the survey, three main targets were confirmed/identified: Kimberlite Area 1 - a classic kimberlite in the region, with the crater facies with different clasts and distinct size. We noted the occurrence of a red-brown soil and an unusual vegetation in this area. The resistivity model provided confirmed the presence of Kimberlite Area 1 and was used to identify other two areas. Area of Interest 1 - area with atypical vegetation along a trail. There is an excavation that displays soil of white color with several blocks present, there are small quartz crystal agglomerates in these blocks. The resistivity model cleary shows a conductive body here, indicative of the presence of a kimberlite. Area of Interest 2 - the presence of a kimberlite was confirmed, not exactly where the targeted Area 2 was, but the southwest of it. Close to this area, there was a very fine rock and a few blocks of pure silica, probably indicating a kimberlitic intrusion. In summary, the 3D resistivity model in depth obtained from inversion of the AMT data confirmed and identified

  16. Human factors guidelines for applications of 3D perspectives: a literature review

    NASA Astrophysics Data System (ADS)

    Dixon, Sharon; Fitzhugh, Elisabeth; Aleva, Denise

    2009-05-01

    Once considered too processing-intense for general utility, application of the third dimension to convey complex information is facilitated by the recent proliferation of technological advancements in computer processing, 3D displays, and 3D perspective (2.5D) renderings within a 2D medium. The profusion of complex and rapidly-changing dynamic information being conveyed in operational environments has elevated interest in possible military applications of 3D technologies. 3D can be a powerful mechanism for clearer information portrayal, facilitating rapid and accurate identification of key elements essential to mission performance and operator safety. However, implementation of 3D within legacy systems can be costly, making integration prohibitive. Therefore, identifying which tasks may benefit from 3D or 2.5D versus simple 2D visualizations is critical. Unfortunately, there is no "bible" of human factors guidelines for usability optimization of 2D, 2.5D, or 3D visualizations nor for determining which display best serves a particular application. Establishing such guidelines would provide an invaluable tool for designers and operators. Defining issues common to each will enhance design effectiveness. This paper presents the results of an extensive review of open source literature addressing 3D information displays, with particular emphasis on comparison of true 3D with 2D and 2.5D representations and their utility for military tasks. Seventy-five papers are summarized, highlighting militarily relevant applications of 3D visualizations and 2.5D perspective renderings. Based on these findings, human factors guidelines for when and how to use these visualizations, along with recommendations for further research are discussed.

  17. Correlating 3D morphology with molecular pathology: fibrotic remodelling in human lung biopsies.

    PubMed

    Kellner, Manuela; Wehling, Judith; Warnecke, Gregor; Heidrich, Marko; Izykowski, Nicole; Vogel-Claussen, Jens; Lorbeer, Raoul-Amadeus; Antonopoulos, Georgios; Janciauskiene, Sabina; Grothausmann, Roman; Knudsen, Lars; Ripken, Tammo; Meyer, Heiko; Kreipe, Hans; Ochs, Matthias; Jonigk, Danny; Kühnel, Mark Philipp

    2015-12-01

    Assessing alterations of the parenchymal architecture is essential in understanding fibrosing interstitial lung diseases. Here, we present a novel method to visualise fibrotic remodelling in human lungs and correlate morphological three-dimensional (3D) data with gene and protein expression in the very same sample. The key to our approach is a novel embedding resin that clears samples to full optical transparency and simultaneously allows 3D laser tomography and preparation of sections for histology, immunohistochemistry and RNA isolation. Correlating 3D laser tomography with molecular diagnostic techniques enables new insights into lung diseases. This approach has great potential to become an essential tool in pulmonary research. PMID:26108569

  18. Development of AN Innovative Three-Dimensional Complete Body Screening Device - 3D-CBS

    NASA Astrophysics Data System (ADS)

    Crosetto, D. B.

    2004-07-01

    This article describes an innovative technological approach that increases the efficiency with which a large number of particles (photons) can be detected and analyzed. The three-dimensional complete body screening (3D-CBS) combines the functional imaging capability of the Positron Emission Tomography (PET) with those of the anatomical imaging capability of Computed Tomography (CT). The novel techniques provide better images in a shorter time with less radiation to the patient. A primary means of accomplishing this is the use of a larger solid angle, but this requires a new electronic technique capable of handling the increased data rate. This technique, combined with an improved and simplified detector assembly, enables executing complex real-time algorithms and allows more efficiently use of economical crystals. These are the principal features of this invention. A good synergy of advanced techniques in particle detection, together with technological progress in industry (latest FPGA technology) and simple, but cost-effective ideas provide a revolutionary invention. This technology enables over 400 times PET efficiency improvement at once compared to two to three times improvements achieved every five years during the past decades. Details of the electronics are provided, including an IBM PC board with a parallel-processing architecture implemented in FPGA, enabling the execution of a programmable complex real-time algorithm for best detection of photons.

  19. Intrinsic FGF2 and FGF5 promotes angiogenesis of human aortic endothelial cells in 3D microfluidic angiogenesis system

    PubMed Central

    Seo, Ha-Rim; Jeong, Hyo Eun; Joo, Hyung Joon; Choi, Seung-Cheol; Park, Chi-Yeon; Kim, Jong-Ho; Choi, Ji-Hyun; Cui, Long-Hui; Hong, Soon Jun; Chung, Seok; Lim, Do-Sun

    2016-01-01

    The human body contains different endothelial cell types and differences in their angiogenic potential are poorly understood. We compared the functional angiogenic ability of human aortic endothelial cells (HAECs) and human umbilical vein endothelial cells (HUVECs) using a three-dimensional (3D) microfluidic cell culture system. HAECs and HUVECs exhibited similar cellular characteristics in a 2D culture system; however, in the 3D microfluidic angiogenesis system, HAECs exhibited stronger angiogenic potential than HUVECs. Interestingly, the expression level of fibroblast growth factor (FGF)2 and FGF5 under vascular endothelial growth factor (VEGF)-A stimulation was significantly higher in HAECs than in HUVECs. Moreover, small interfering RNA-mediated knockdown of FGF2 and FGF5 more significantly attenuated vascular sprouting induced from HAECs than HUVECs. Our results suggest that HAECs have greater angiogenic potential through FGF2 and FGF5 upregulation and could be a compatible endothelial cell type to achieve robust angiogenesis. PMID:27357248

  20. Intrinsic FGF2 and FGF5 promotes angiogenesis of human aortic endothelial cells in 3D microfluidic angiogenesis system.

    PubMed

    Seo, Ha-Rim; Jeong, Hyo Eun; Joo, Hyung Joon; Choi, Seung-Cheol; Park, Chi-Yeon; Kim, Jong-Ho; Choi, Ji-Hyun; Cui, Long-Hui; Hong, Soon Jun; Chung, Seok; Lim, Do-Sun

    2016-01-01

    The human body contains different endothelial cell types and differences in their angiogenic potential are poorly understood. We compared the functional angiogenic ability of human aortic endothelial cells (HAECs) and human umbilical vein endothelial cells (HUVECs) using a three-dimensional (3D) microfluidic cell culture system. HAECs and HUVECs exhibited similar cellular characteristics in a 2D culture system; however, in the 3D microfluidic angiogenesis system, HAECs exhibited stronger angiogenic potential than HUVECs. Interestingly, the expression level of fibroblast growth factor (FGF)2 and FGF5 under vascular endothelial growth factor (VEGF)-A stimulation was significantly higher in HAECs than in HUVECs. Moreover, small interfering RNA-mediated knockdown of FGF2 and FGF5 more significantly attenuated vascular sprouting induced from HAECs than HUVECs. Our results suggest that HAECs have greater angiogenic potential through FGF2 and FGF5 upregulation and could be a compatible endothelial cell type to achieve robust angiogenesis. PMID:27357248

  1. New 3D thermal evolution model for icy bodies application to trans-Neptunian objects

    NASA Astrophysics Data System (ADS)

    Guilbert-Lepoutre, A.; Lasue, J.; Federico, C.; Coradini, A.; Orosei, R.; Rosenberg, E. D.

    2011-05-01

    Context. Thermal evolution models have been developed over the years to investigate the evolution of thermal properties based on the transfer of heat fluxes or transport of gas through a porous matrix, among others. Applications of such models to trans-Neptunian objects (TNOs) and Centaurs has shown that these bodies could be strongly differentiated from the point of view of chemistry (i.e. loss of most volatile ices), as well as from physics (e.g. melting of water ice), resulting in stratified internal structures with differentiated cores and potential pristine material close to the surface. In this context, some observational results, such as the detection of crystalline water ice or volatiles, remain puzzling. Aims: In this paper, we would like to present a new fully three-dimensional thermal evolution model. With this model, we aim to improve determination of the temperature distribution inside icy bodies such as TNOs by accounting for lateral heat fluxes, which have been proven to be important for accurate simulations. We also would like to be able to account for heterogeneous boundary conditions at the surface through various albedo properties, for example, that might induce different local temperature distributions. Methods: In a departure from published modeling approaches, the heat diffusion problem and its boundary conditions are represented in terms of real spherical harmonics, increasing the numerical efficiency by roughly an order of magnitude. We then compare this new model and another 3D model recently published to illustrate the advantages and limits of the new model. We try to put some constraints on the presence of crystalline water ice at the surface of TNOs. Results: The results obtained with this new model are in excellent agreement with results obtained by different groups with various models. Small TNOs could remain primitive unless they are formed quickly (less than 2 Myr) or are debris from the disruption of larger bodies. We find that, for

  2. Development and Optimization of Viable Human Platforms through 3D Printing

    SciTech Connect

    Parker, Paul R.; Moya, Monica L.; Wheeler, Elizabeth K.

    2015-08-21

    3D printing technology offers a unique method for creating cell cultures in a manner far more conducive to accurate representation of human tissues and systems. Here we print cellular structures capable of forming vascular networks and exhibiting qualities of natural tissues and human systems. This allows for cheaper and readily available sources for further study of biological and pharmaceutical agents.

  3. Recognition by Humans and Pigeons of Novel Views of 3-D Objects and Their Photographs

    ERIC Educational Resources Information Center

    Friedman, Alinda; Spetch, Marcia L.; Ferrey, Anne

    2005-01-01

    Humans and pigeons were trained to discriminate between 2 views of actual 3-D objects or their photographs. They were tested on novel views that were either within the closest rotational distance between the training views (interpolated) or outside of that range (extrapolated). When training views were 60? apart, pigeons, but not humans,…

  4. Effects of 3-D microwell culture on growth kinetics and metabolism of human embryonic stem cells

    PubMed Central

    Azarin, Samira M.; Larson, Elise A.; Almodóvar-Cruz, Janice M; de Pablo, Juan J.; Palecek, Sean P.

    2013-01-01

    Human embryonic stem cells (hESCs) hold potential in the field of tissue engineering given their capacity for both limitless self-renewal and differentiation to any adult cell type. However, several limitations, including the ability to expand undifferentiated cells and efficiently direct differentiation at scales needed for commercial cell production, prevent realizing the potential of hESCs in tissue engineering. Numerous studies have illustrated that 3-D culture systems provide microenvironmental cues that affect hESC pluripotency and differentiation fates, but little is known about how 3-D culture affects cell expansion. Here we have used a 3-D microwell array to model the differences in hESC growth kinetics and metabolism in 2-D vs. 3-D cultures. Our results demonstrated that 3-D microwell culture reduced hESC size and proliferative capacity, and impacted cell cycle dynamics, lengthening the G1 phase and shortening the G2/M phase of the cell cycle. However, glucose and lactate metabolism were similar in 2-D and 3-D cultures. Elucidating the effects of 3-D culture on growth and metabolism of hESCs may facilitate efforts for developing integrated, scalable cell expansion and differentiation processes with these cells. PMID:23586789

  5. The Extraction of 3D Shape from Texture and Shading in the Human Brain

    PubMed Central

    Georgieva, Svetlana S.; Todd, James T.; Peeters, Ronald

    2008-01-01

    We used functional magnetic resonance imaging to investigate the human cortical areas involved in processing 3-dimensional (3D) shape from texture (SfT) and shading. The stimuli included monocular images of randomly shaped 3D surfaces and a wide variety of 2-dimensional (2D) controls. The results of both passive and active experiments reveal that the extraction of 3D SfT involves the bilateral caudal inferior temporal gyrus (caudal ITG), lateral occipital sulcus (LOS) and several bilateral sites along the intraparietal sulcus. These areas are largely consistent with those involved in the processing of 3D shape from motion and stereo. The experiments also demonstrate, however, that the analysis of 3D shape from shading is primarily restricted to the caudal ITG areas. Additional results from psychophysical experiments reveal that this difference in neuronal substrate cannot be explained by a difference in strength between the 2 cues. These results underscore the importance of the posterior part of the lateral occipital complex for the extraction of visual 3D shape information from all depth cues, and they suggest strongly that the importance of shading is diminished relative to other cues for the analysis of 3D shape in parietal regions. PMID:18281304

  6. In-body tissue-engineered aortic valve (Biovalve type VII) architecture based on 3D printer molding.

    PubMed

    Nakayama, Yasuhide; Takewa, Yoshiaki; Sumikura, Hirohito; Yamanami, Masashi; Matsui, Yuichi; Oie, Tomonori; Kishimoto, Yuichiro; Arakawa, Mamoru; Ohmuma, Kentaro; Tajikawa, Tsutomu; Kanda, Keiichi; Tatsumi, Eisuke

    2015-01-01

    In-body tissue architecture--a novel and practical regeneration medicine technology--can be used to prepare a completely autologous heart valve, based on the shape of a mold. In this study, a three-dimensional (3D) printer was used to produce the molds. A 3D printer can easily reproduce the 3D-shape and size of native heart valves within several processing hours. For a tri-leaflet, valved conduit with a sinus of Valsalva (Biovalve type VII), the mold was assembled using two conduit parts and three sinus parts produced by the 3D printer. Biovalves were generated from completely autologous connective tissue, containing collagen and fibroblasts, within 2 months following the subcutaneous embedding of the molds (success rate, 27/30). In vitro evaluation, using a pulsatile circulation circuit, showed excellent valvular function with a durability of at least 10 days. Interposed between two expanded polytetrafluoroethylene grafts, the Biovalves (N = 3) were implanted in goats through an apico-aortic bypass procedure. Postoperative echocardiography showed smooth movement of the leaflets with minimal regurgitation under systemic circulation. After 1 month of implantation, smooth white leaflets were observed with minimal thrombus formation. Functional, autologous, 3D-shaped heart valves with clinical application potential were formed following in-body embedding of specially designed molds that were created within several hours by 3D printer. PMID:24764308

  7. 3D reconstruction of a human heart fascicle using SurfDriver

    NASA Astrophysics Data System (ADS)

    Rader, Robert J.; Phillips, Steven J.; LaFollette, Paul S., Jr.

    2000-06-01

    The Temple University Medical School has a sequence of over 400 serial sections of adult normal ventricular human heart tissue, cut at 25 micrometer thickness. We used a Zeiss Ultraphot with a 4x planapo objective and a Pixera digital camera to make a series of 45 sequential montages to use in the 3D reconstruction of a fascicle (muscle bundle). We wrote custom software to merge 4 smaller image fields from each section into one composite image. We used SurfDriver software, developed by Scott Lozanoff of the University of Hawaii and David Moody of the University of Alberta, for registration, object boundary identification, and 3D surface reconstruction. We used an Epson Stylus Color 900 printer to get photo-quality prints. We describe the challenge and our solution to the following problems: image acquisition and digitization, image merge, alignment and registration, boundary identification, 3D surface reconstruction, 3D visualization and orientation, snapshot, and photo-quality prints.

  8. Fish body surface data measurement based on 3D digital image correlation

    NASA Astrophysics Data System (ADS)

    Jiang, Ming; Qian, Chen; Yang, Wenkai

    2016-01-01

    To film the moving fish in the glass tank, light will be bent at the interface of air and glass, glass and water. Based on binocular stereo vision and refraction principle, we establish a mathematical model of 3D image correlation to reconstruct the 3D coordinates of samples in the water. Marking speckle in fish surface, a series of real-time speckle images of swimming fish will be obtained by two high-speed cameras, and instantaneous 3D shape, strain, displacement etc. of fish will be reconstructed.

  9. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting.

    PubMed

    Ma, Xuanyi; Qu, Xin; Zhu, Wei; Li, Yi-Shuan; Yuan, Suli; Zhang, Hong; Liu, Justin; Wang, Pengrui; Lai, Cheuk Sun Edwin; Zanella, Fabian; Feng, Gen-Sheng; Sheikh, Farah; Chien, Shu; Chen, Shaochen

    2016-02-23

    The functional maturation and preservation of hepatic cells derived from human induced pluripotent stem cells (hiPSCs) are essential to personalized in vitro drug screening and disease study. Major liver functions are tightly linked to the 3D assembly of hepatocytes, with the supporting cell types from both endodermal and mesodermal origins in a hexagonal lobule unit. Although there are many reports on functional 2D cell differentiation, few studies have demonstrated the in vitro maturation of hiPSC-derived hepatic progenitor cells (hiPSC-HPCs) in a 3D environment that depicts the physiologically relevant cell combination and microarchitecture. The application of rapid, digital 3D bioprinting to tissue engineering has allowed 3D patterning of multiple cell types in a predefined biomimetic manner. Here we present a 3D hydrogel-based triculture model that embeds hiPSC-HPCs with human umbilical vein endothelial cells and adipose-derived stem cells in a microscale hexagonal architecture. In comparison with 2D monolayer culture and a 3D HPC-only model, our 3D triculture model shows both phenotypic and functional enhancements in the hiPSC-HPCs over weeks of in vitro culture. Specifically, we find improved morphological organization, higher liver-specific gene expression levels, increased metabolic product secretion, and enhanced cytochrome P450 induction. The application of bioprinting technology in tissue engineering enables the development of a 3D biomimetic liver model that recapitulates the native liver module architecture and could be used for various applications such as early drug screening and disease modeling. PMID:26858399

  10. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting

    PubMed Central

    Ma, Xuanyi; Qu, Xin; Zhu, Wei; Li, Yi-Shuan; Yuan, Suli; Zhang, Hong; Liu, Justin; Wang, Pengrui; Lai, Cheuk Sun Edwin; Zanella, Fabian; Feng, Gen-Sheng; Sheikh, Farah; Chien, Shu; Chen, Shaochen

    2016-01-01

    The functional maturation and preservation of hepatic cells derived from human induced pluripotent stem cells (hiPSCs) are essential to personalized in vitro drug screening and disease study. Major liver functions are tightly linked to the 3D assembly of hepatocytes, with the supporting cell types from both endodermal and mesodermal origins in a hexagonal lobule unit. Although there are many reports on functional 2D cell differentiation, few studies have demonstrated the in vitro maturation of hiPSC-derived hepatic progenitor cells (hiPSC-HPCs) in a 3D environment that depicts the physiologically relevant cell combination and microarchitecture. The application of rapid, digital 3D bioprinting to tissue engineering has allowed 3D patterning of multiple cell types in a predefined biomimetic manner. Here we present a 3D hydrogel-based triculture model that embeds hiPSC-HPCs with human umbilical vein endothelial cells and adipose-derived stem cells in a microscale hexagonal architecture. In comparison with 2D monolayer culture and a 3D HPC-only model, our 3D triculture model shows both phenotypic and functional enhancements in the hiPSC-HPCs over weeks of in vitro culture. Specifically, we find improved morphological organization, higher liver-specific gene expression levels, increased metabolic product secretion, and enhanced cytochrome P450 induction. The application of bioprinting technology in tissue engineering enables the development of a 3D biomimetic liver model that recapitulates the native liver module architecture and could be used for various applications such as early drug screening and disease modeling. PMID:26858399

  11. Machine learning and synthetic aperture refocusing approach for more accurate masking of fish bodies in 3D PIV data

    NASA Astrophysics Data System (ADS)

    Ford, Logan; Bajpayee, Abhishek; Techet, Alexandra

    2015-11-01

    3D particle image velocimetry (PIV) is becoming a popular technique to study biological flows. PIV images that contain fish or other animals around which flow is being studied, need to be appropriately masked in order to remove the animal body from the 3D reconstructed volumes prior to calculating particle displacement vectors. Presented here is a machine learning and synthetic aperture (SA) refocusing based approach for more accurate masking of fish from reconstructed intensity fields for 3D PIV purposes. Using prior knowledge about the 3D shape and appearance of the fish along with SA refocused images at arbitrarily oriented focal planes, the location and orientation of a fish in a reconstructed volume can be accurately determined. Once the location and orientation of a fish in a volume is determined, it can be masked out.

  12. Multichannel Human Body Communication

    NASA Astrophysics Data System (ADS)

    Przystup, Piotr; Bujnowski, Adam; Wtorek, Jerzy

    2016-01-01

    Human Body Communication is an attractive alternative for traditional wireless communication (Bluetooth, ZigBee) in case of Body Sensor Networks. Low power, high data rates and data security makes it ideal solution for medical applications. In this paper, signal attenuation for different frequencies, using FR4 electrodes, has been investigated. Performance of single and multichannel transmission with frequency modulation of analog signal has been tested. Experiment results show that HBC is a feasible solution for transmitting data between BSN nodes.

  13. Stereomicroscopic 3D-pattern profiling of murine and human intestinal inflammation reveals unique structural phenotypes

    PubMed Central

    Rodriguez-Palacios, Alex; Kodani, Tomohiro; Kaydo, Lindsey; Pietropaoli, Davide; Corridoni, Daniele; Howell, Scott; Katz, Jeffry; Xin, Wei; Pizarro, Theresa T.; Cominelli, Fabio

    2015-01-01

    Histology is fundamental to assess two-dimensional intestinal inflammation; however, inflammatory bowel diseases (IBDs) are often indistinguishable microscopically on the basis of mucosal biopsies. Here, we use stereomicroscopy (SM) to rapidly profile the entire intestinal topography and assess inflammation. We examine the mucosal surface of >700 mice (encompassing >16 strains and various IBD-models), create a profiling catalogue of 3D-stereomicroscopic abnormalities and demonstrate that mice with comparable histological scores display unique sub-clusters of 3D-structure-patterns of IBD pathology, which we call 3D-stereoenterotypes, and which are otherwise indiscernible histologically. We show that two ileal IBD-stereoenterotypes (‘cobblestones' versus ‘villous mini-aggregation') cluster separately within two distinct mouse lines of spontaneous ileitis, suggesting that host genetics drive unique and divergent inflammatory 3D-structural patterns in the gut. In humans, stereomicroscopy reveals ‘liquefaction' lesions and hierarchical fistulous complexes, enriched with clostridia/segmented filamentous bacteria, running under healthy mucosa in Crohn's disease. We suggest that stereomicroscopic (3D-SMAPgut) profiling can be easily implemented and enable the comprehensive study of inflammatory 3D structures, genetics and flora in IBD. PMID:26154811

  14. Human tooth pulp anatomy visualization by 3D magnetic resonance microscopy

    PubMed Central

    Sustercic, Dusan; Sersa, Igor

    2012-01-01

    Background Precise assessment of dental pulp anatomy is of an extreme importance for a successful endodontic treatment. As standard radiographs of teeth provide very limited information on dental pulp anatomy, more capable methods are highly appreciated. One of these is 3D magnetic resonance (MR) microscopy of which diagnostic capabilities in terms of a better dental pulp anatomy assessment were evaluated in the study. Materials and methods Twenty extracted human teeth were scanned on a 2.35 T MRI system for MR microscopy using the 3D spin-echo method that enabled image acquisition with isotropic resolution of 100 μm. The 3D images were then post processed by ImageJ program (NIH) to obtain advanced volume rendered views of dental pulps. Results MR microscopy at 2.35 T provided accurate data on dental pulp anatomy in vitro. The data were presented as a sequence of thin 2D slices through the pulp in various orientations or as volume rendered 3D images reconstructed form arbitrary view-points. Sequential 2D images enabled only an approximate assessment of the pulp, while volume rendered 3D images were more precise in visualization of pulp anatomy and clearly showed pulp diverticles, number of pulp canals and root canal anastomosis. Conclusions This in vitro study demonstrated that MR microscopy could provide very accurate 3D visualization of dental pulp anatomy. A possible future application of the method in vivo may be of a great importance for the endodontic treatment. PMID:22933973

  15. Near-infrared optical imaging of human brain based on the semi-3D reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Meng, Wei; Qin, Zhuanping; Zhou, Xiaoqing; Zhao, Huijuan; Gao, Feng

    2013-03-01

    In the non-invasive brain imaging with near-infrared light, precise head model is of great significance to the forward model and the image reconstruction. To deal with the individual difference of human head tissues and the problem of the irregular curvature, in this paper, we extracted head structure with Mimics software from the MRI image of a volunteer. This scheme makes it possible to assign the optical parameters to every layer of the head tissues reasonably and solve the diffusion equation with the finite-element analysis. During the solution of the inverse problem, a semi-3D reconstruction algorithm is adopted to trade off the computation cost and accuracy between the full 3-D and the 2-D reconstructions. In this scheme, the changes in the optical properties of the inclusions are assumed either axially invariable or confined to the imaging plane, while the 3-D nature of the photon migration is still retained. This therefore leads to a 2-D inverse issue with the matched 3-D forward model. Simulation results show that comparing to the 3-D reconstruction algorithm, the Semi-3D reconstruction algorithm cut 27% the calculation time consumption.

  16. Hypoxia Created Human Mesenchymal Stem Cell Sheet for Prevascularized 3D Tissue Construction.

    PubMed

    Zhang, Lijun; Xing, Qi; Qian, Zichen; Tahtinen, Mitchell; Zhang, Zhaoqiang; Shearier, Emily; Qi, Shaohai; Zhao, Feng

    2016-02-01

    3D tissue based on human mesenchymal stem cell (hMSC) sheets offers many interesting opportunities for regenerating multiple types of connective tissues. Prevascularizing hMSC sheets with endothelial cells (ECs) will improve 3D tissue performance by supporting cell survival and accelerating integration with host tissue. It is hypothesized that hypoxia cultured hMSC sheets can promote microvessel network formation and preserve stemness of hMSCs. This study investigates the vascularization of hMSC sheets under different oxygen tensions. It is found that the HN condition, in which hMSC sheets formed under physiological hypoxia (2% O2 ) and then cocultured with ECs under normoxia (20% O2 ), enables longer and more branched microvessel network formation. The observation is corroborated by higher levels of angiogenic factors in coculture medium. Additionally, the hypoxic hMSC sheet is more uniform and less defective, which facilitates fabrication of 3D prevascularized tissue construct by layering the prevascularized hMSC sheets and maturing in rotating wall vessel bioreactor. The hMSCs in the 3D construct still maintain multilineage differentiation ability, which indicates the possible application of the 3D construct for various connective tissues regeneration. These results demonstrate that hypoxia created hMSC sheets benefit the microvessel growth and it is feasible to construct 3D prevascularized tissue construct using the prevascularized hMSC sheets. PMID:26663707

  17. Uniform Local Binary Pattern Based Texture-Edge Feature for 3D Human Behavior Recognition

    PubMed Central

    Ming, Yue; Wang, Guangchao; Fan, Chunxiao

    2015-01-01

    With the rapid development of 3D somatosensory technology, human behavior recognition has become an important research field. Human behavior feature analysis has evolved from traditional 2D features to 3D features. In order to improve the performance of human activity recognition, a human behavior recognition method is proposed, which is based on a hybrid texture-edge local pattern coding feature extraction and integration of RGB and depth videos information. The paper mainly focuses on background subtraction on RGB and depth video sequences of behaviors, extracting and integrating historical images of the behavior outlines, feature extraction and classification. The new method of 3D human behavior recognition has achieved the rapid and efficient recognition of behavior videos. A large number of experiments show that the proposed method has faster speed and higher recognition rate. The recognition method has good robustness for different environmental colors, lightings and other factors. Meanwhile, the feature of mixed texture-edge uniform local binary pattern can be used in most 3D behavior recognition. PMID:25942404

  18. Uniform Local Binary Pattern Based Texture-Edge Feature for 3D Human Behavior Recognition.

    PubMed

    Ming, Yue; Wang, Guangchao; Fan, Chunxiao

    2015-01-01

    With the rapid development of 3D somatosensory technology, human behavior recognition has become an important research field. Human behavior feature analysis has evolved from traditional 2D features to 3D features. In order to improve the performance of human activity recognition, a human behavior recognition method is proposed, which is based on a hybrid texture-edge local pattern coding feature extraction and integration of RGB and depth videos information. The paper mainly focuses on background subtraction on RGB and depth video sequences of behaviors, extracting and integrating historical images of the behavior outlines, feature extraction and classification. The new method of 3D human behavior recognition has achieved the rapid and efficient recognition of behavior videos. A large number of experiments show that the proposed method has faster speed and higher recognition rate. The recognition method has good robustness for different environmental colors, lightings and other factors. Meanwhile, the feature of mixed texture-edge uniform local binary pattern can be used in most 3D behavior recognition. PMID:25942404

  19. Functional metabolic interactions of human neuron-astrocyte 3D in vitro networks.

    PubMed

    Simão, Daniel; Terrasso, Ana P; Teixeira, Ana P; Brito, Catarina; Sonnewald, Ursula; Alves, Paula M

    2016-01-01

    The generation of human neural tissue-like 3D structures holds great promise for disease modeling, drug discovery and regenerative medicine strategies. Promoting the establishment of complex cell-cell interactions, 3D culture systems enable the development of human cell-based models with increased physiological relevance, over monolayer cultures. Here, we demonstrate the establishment of neuronal and astrocytic metabolic signatures and shuttles in a human 3D neural cell model, namely the glutamine-glutamate-GABA shuttle. This was indicated by labeling of neuronal GABA following incubation with the glia-specific substrate [2-(13)C]acetate, which decreased by methionine sulfoximine-induced inhibition of the glial enzyme glutamine synthetase. Cell metabolic specialization was further demonstrated by higher pyruvate carboxylase-derived labeling in glutamine than in glutamate, indicating its activity in astrocytes and not in neurons. Exposure to the neurotoxin acrylamide resulted in intracellular accumulation of glutamate and decreased GABA synthesis. These results suggest an acrylamide-induced impairment of neuronal synaptic vesicle trafficking and imbalanced glutamine-glutamate-GABA cycle, due to loss of cell-cell contacts at synaptic sites. This work demonstrates, for the first time to our knowledge, that neural differentiation of human cells in a 3D setting recapitulates neuronal-astrocytic metabolic interactions, highlighting the relevance of these models for toxicology and better understanding the crosstalk between human neural cells. PMID:27619889

  20. A Hormone-responsive 3D Culture Model of the Human Mammary Gland Epithelium.

    PubMed

    Speroni, Lucia; Sweeney, Michael F; Sonnenschein, Carlos; Soto, Ana M

    2016-01-01

    The process of mammary epithelial morphogenesis is influenced by hormones. The study of hormone action on the breast epithelium using 2D cultures is limited to cell proliferation and gene expression endpoints. However, in the organism, mammary morphogenesis occurs in a 3D environment. 3D culture systems help bridge the gap between monolayer cell culture (2D) and the complexity of the organism. Herein, we describe a 3D culture model of the human breast epithelium that is suitable to study hormone action. It uses the commercially available hormone-responsive human breast epithelial cell line, T47D, and rat tail collagen type 1 as a matrix. This 3D culture model responds to the main mammotropic hormones: estradiol, progestins and prolactin. The influence of these hormones on epithelial morphogenesis can be observed after 1- or 2-week treatment according to the endpoint. The 3D cultures can be harvested for analysis of epithelial morphogenesis, cell proliferation and gene expression. PMID:26891095

  1. Construction and application of 3D model sequence to illustrate the development of the human embryo

    NASA Astrophysics Data System (ADS)

    Mizuta, Shinobu; Kakusho, Koh; Minekura, Yutaka; Minoh, Michihiko; Nakatsu, Tomoko; Shiota, Kohei

    2002-05-01

    Embryology is one of the basic subjects in medical education, to learn the process of human development especially from fertilization to birth. The shape deformation in the development of human embryo is one of the most important points to be comprehended, but it is difficult to illustrate the deformation by texts, 2D drawings, photographs and so on, because it is extremely complicated. The purpose of our research is to construct a 3D model sequence to illustrate the deformation of human embryo, and to make the model sequence into the teaching materials for medical education. Firstly, 3D images of the specimens of human embryo were acquired using MR microscopy. Next, an initial 3D model sequence was manually modified by comparing with the features of the acquired images under the supervision of medical doctors, because the images were influenced not only by the noise or limitation of resolution in MR image acquisition, but also by the variation of shape depending on the difference of subject. Using the constructed 3D model sequence, CG animations and an interactive VRML system were composed as the teaching materials for embryology. These materials were quite helpful to understand the shape deformation compared with the conventional materials.

  2. A framework for human spine imaging using a freehand 3D ultrasound system.

    PubMed

    Purnama, Ketut E; Wilkinson, Michael H F; Veldhuizen, Albert G; van Ooijen, Peter M A; Lubbers, Jaap; Burgerhof, Johannes G M; Sardjono, Tri A; Verkerke, Gijbertus J

    2010-01-01

    The use of 3D ultrasound imaging to follow the progression of scoliosis, i.e., a 3D deformation of the spine, is described. Unlike other current examination modalities, in particular based on X-ray, its non-detrimental effect enables it to be used frequently to follow the progression of scoliosis which sometimes may develop rapidly. Furthermore, 3D ultrasound imaging provides information in 3D directly in contrast to projection methods. This paper describes a feasibility study of an ultrasound system to provide a 3D image of the human spine, and presents a framework of procedures to perform this task. The framework consist of an ultrasound image acquisition procedure to image a large part of the human spine by means of a freehand 3D ultrasound system and a volume reconstruction procedure which was performed in four stages: bin-filling, hole-filling, volume segment alignment, and volume segment compounding. The overall results of the procedures in this framework show that imaging of the human spine using ultrasound is feasible. Vertebral parts such as the transverse processes, laminae, superior articular processes, and spinous process of the vertebrae appear as clouds of voxels having intensities higher than the surrounding voxels. In sagittal slices, a string of transverse processes appears representing the curvature of the spine. In the bin-filling stage the estimated mean absolute noise level of a single measurement of a single voxel was determined. Our comparative study for the hole-filling methods based on rank sum statistics proved that the pixel nearest neighbour (PNN) method with variable radius and with the proposed olympic operation is the best method. Its mean absolute grey value error was less in magnitude than the noise level of a single measurement. PMID:20231799

  3. Rapid and high-throughput formation of 3D embryoid bodies in hydrogels using the dielectrophoresis technique.

    PubMed

    Ahadian, Samad; Yamada, Shukuyo; Ramón-Azcón, Javier; Ino, Kosuke; Shiku, Hitoshi; Khademhosseini, Ali; Matsue, Tomokazu

    2014-10-01

    In this manuscript, we demonstrate the rapid formation of three-dimensional (3D) embryonic stem cell (ESC) aggregates with controllable sizes and shapes in hydrogels using dielectrophoresis (DEP). The ESCs encapsulated within a methacrylated gelatin (GelMA) prepolymer were introduced into a DEP device and, upon applying an electric field and crosslinking of the GelMA hydrogel, formed 3D ESC aggregates. Embryoid bodies (EBs) fabricated using this method showed high cellular viability and pluripotency. The proposed technique enables production of EBs on a large scale and in a high-throughput manner for potential cell therapy and tissue regeneration applications. PMID:25082412

  4. A 3D human neural cell culture system for modeling Alzheimer’s disease

    PubMed Central

    Kim, Young Hye; Choi, Se Hoon; D’Avanzo, Carla; Hebisch, Matthias; Sliwinski, Christopher; Bylykbashi, Enjana; Washicosky, Kevin J.; Klee, Justin B.; Brüstle, Oliver; Tanzi, Rudolph E.; Kim, Doo Yeon

    2015-01-01

    Stem cell technologies have facilitated the development of human cellular disease models that can be used to study pathogenesis and test therapeutic candidates. These models hold promise for complex neurological diseases such as Alzheimer’s disease (AD) because existing animal models have been unable to fully recapitulate all aspects of pathology. We recently reported the characterization of a novel three-dimensional (3D) culture system that exhibits key events in AD pathogenesis, including extracellular aggregation of β-amyloid and accumulation of hyperphosphorylated tau. Here we provide instructions for the generation and analysis of 3D human neural cell cultures, including the production of genetically modified human neural progenitor cells (hNPCs) with familial AD mutations, the differentiation of the hNPCs in a 3D matrix, and the analysis of AD pathogenesis. The 3D culture generation takes 1–2 days. The aggregation of β-amyloid is observed after 6-weeks of differentiation followed by robust tau pathology after 10–14 weeks. PMID:26068894

  5. A 3D human neural cell culture system for modeling Alzheimer's disease.

    PubMed

    Kim, Young Hye; Choi, Se Hoon; D'Avanzo, Carla; Hebisch, Matthias; Sliwinski, Christopher; Bylykbashi, Enjana; Washicosky, Kevin J; Klee, Justin B; Brüstle, Oliver; Tanzi, Rudolph E; Kim, Doo Yeon

    2015-07-01

    Stem cell technologies have facilitated the development of human cellular disease models that can be used to study pathogenesis and test therapeutic candidates. These models hold promise for complex neurological diseases such as Alzheimer's disease (AD), because existing animal models have been unable to fully recapitulate all aspects of pathology. We recently reported the characterization of a novel 3D culture system that exhibits key events in AD pathogenesis, including extracellular aggregation of amyloid-β (Aβ) and accumulation of hyperphosphorylated tau. Here we provide instructions for the generation and analysis of 3D human neural cell cultures, including the production of genetically modified human neural progenitor cells (hNPCs) with familial AD mutations, the differentiation of the hNPCs in a 3D matrix and the analysis of AD pathogenesis. The 3D culture generation takes 1-2 d. The aggregation of Aβ is observed after 6 weeks of differentiation, followed by robust tau pathology after 10-14 weeks. PMID:26068894

  6. 3D Printed Microfluidic Device with Integrated Biosensors for Online Analysis of Subcutaneous Human Microdialysate

    PubMed Central

    2015-01-01

    This work presents the design, fabrication, and characterization of a robust 3D printed microfluidic analysis system that integrates with FDA-approved clinical microdialysis probes for continuous monitoring of human tissue metabolite levels. The microfluidic device incorporates removable needle type integrated biosensors for glucose and lactate, which are optimized for high tissue concentrations, housed in novel 3D printed electrode holders. A soft compressible 3D printed elastomer at the base of the holder ensures a good seal with the microfluidic chip. Optimization of the channel size significantly improves the response time of the sensor. As a proof-of-concept study, our microfluidic device was coupled to lab-built wireless potentiostats and used to monitor real-time subcutaneous glucose and lactate levels in cyclists undergoing a training regime. PMID:26070023

  7. X-Ray Phase Nanotomography Resolves the 3D Human Bone Ultrastructure

    PubMed Central

    Suhonen, Heikki; Grimal, Quentin; Cloetens, Peter; Peyrin, Françoise

    2012-01-01

    Bone strength and failure are increasingly thought to be due to ultrastructural properties, such as the morphology of the lacuno-canalicular network, the collagen fiber orientation and the mineralization on the nanoscale. However, these properties have not been studied in 3D so far. Here we report the investigation of the human bone ultrastructure with X-ray phase nanotomography, which now provides the required sensitivity, spatial resolution and field of view. The 3D organization of the lacuno-canalicular network is studied in detail over several cells in osteonal and interstitial tissue. Nanoscale density variations are revealed and show that the cement line separating these tissues is hypermineralized. Finally, we show that the collagen fibers are organized as a twisted plywood structure in 3D. PMID:22952569

  8. 3D Printed Microfluidic Device with Integrated Biosensors for Online Analysis of Subcutaneous Human Microdialysate.

    PubMed

    Gowers, Sally A N; Curto, Vincenzo F; Seneci, Carlo A; Wang, Chu; Anastasova, Salzitsa; Vadgama, Pankaj; Yang, Guang-Zhong; Boutelle, Martyn G

    2015-08-01

    This work presents the design, fabrication, and characterization of a robust 3D printed microfluidic analysis system that integrates with FDA-approved clinical microdialysis probes for continuous monitoring of human tissue metabolite levels. The microfluidic device incorporates removable needle type integrated biosensors for glucose and lactate, which are optimized for high tissue concentrations, housed in novel 3D printed electrode holders. A soft compressible 3D printed elastomer at the base of the holder ensures a good seal with the microfluidic chip. Optimization of the channel size significantly improves the response time of the sensor. As a proof-of-concept study, our microfluidic device was coupled to lab-built wireless potentiostats and used to monitor real-time subcutaneous glucose and lactate levels in cyclists undergoing a training regime. PMID:26070023

  9. X-ray phase nanotomography resolves the 3D human bone ultrastructure.

    PubMed

    Langer, Max; Pacureanu, Alexandra; Suhonen, Heikki; Grimal, Quentin; Cloetens, Peter; Peyrin, Françoise

    2012-01-01

    Bone strength and failure are increasingly thought to be due to ultrastructural properties, such as the morphology of the lacuno-canalicular network, the collagen fiber orientation and the mineralization on the nanoscale. However, these properties have not been studied in 3D so far. Here we report the investigation of the human bone ultrastructure with X-ray phase nanotomography, which now provides the required sensitivity, spatial resolution and field of view. The 3D organization of the lacuno-canalicular network is studied in detail over several cells in osteonal and interstitial tissue. Nanoscale density variations are revealed and show that the cement line separating these tissues is hypermineralized. Finally, we show that the collagen fibers are organized as a twisted plywood structure in 3D. PMID:22952569

  10. On human pluripotent stem cell control: The rise of 3D bioengineering and mechanobiology

    PubMed Central

    Shao, Yue; Sang, Jianming; Fu, Jianping

    2015-01-01

    Human pluripotent stem cells (hPSCs) provide promising resources for regenerating tissues and organs and modeling development and diseases in vitro. To fulfill their promise, the fate, function, and organization of hPSCs need to be precisely regulated in a three-dimensional (3D) environment to mimic cellular structures and functions of native tissues and organs. In the past decade, innovations in 3D culture systems with functional biomaterials have enabled efficient and versatile control of hPSC fate at the cellular level. However, we are just at the beginning of bringing hPSC-based regeneration and development and disease modeling to the tissue and organ levels. In this review, we summarize existing bioengineered culture platforms for controlling hPSC fate and function by regulating inductive mechanical and biochemical cues coexisting in the synthetic cell microenvironment. We highlight recent excitements in developing 3D hPSC-based in vitro tissue and organ models with in vivo-like cellular structures, interactions, and functions. We further discuss an emerging multifaceted mechanotransductive signaling network – with transcriptional coactivators YAP and TAZ at the center stage – that regulate fates and behaviors of mammalian cells, including hPSCs. Future development of 3D biomaterial systems should incorporate dynamically modulated mechanical and chemical properties targeting specific intracellular signaling events leading to desirable hPSC fate patterning and functional tissue formation in 3D. PMID:25818411

  11. 3D evaluation of palatal rugae for human identification using digital study models

    PubMed Central

    Taneva, Emilia D.; Johnson, Andrew; Viana, Grace; Evans, Carla A.

    2015-01-01

    Background: While there is literature suggesting that the palatal rugae could be used for human identification, most of these studies use two-dimensional (2D) approach. Aim: The aims of this study were to evaluate palatal ruga patterns using three-dimensional (3D) digital models; compare the most clinically relevant digital model conversion techniques for identification of the palatal rugae; develop a protocol for overlay registration; determine changes in palatal ruga individual patterns through time; and investigate the efficiency and accuracy of 3D matching processes between different individuals’ patterns. Material and Methods: Five cross sections in the anteroposterior dimension and four cross sections in the transverse dimension were computed which generated 18 2D variables. In addition, 13 3D variables were defined: The posterior point of incisive papilla (IP), and the most medial and lateral end points of the palatal rugae (R1MR, R1ML, R1LR, R1LL, R2MR, R2ML, R2LR, R2LL, R3MR, R3ML, R3LR, and R3LL). The deviation magnitude for each variable was statistically analyzed in this study. Five different data sets with the same 31 landmarks were evaluated in this study. Results: The results demonstrated that 2D images and linear measurements in the anteroposterior and transverse dimensions were not sufficient for comparing different digital model conversion techniques using the palatal rugae. 3D digital models proved to be a highly effective tool in evaluating different palatal ruga patterns. The 3D landmarks showed no statistically significant mean differences over time or as a result of orthodontic treatment. No statistically significant mean differences were found between different digital model conversion techniques, that is, between OrthoCAD™ and Ortho Insight 3D™, and between Ortho Insight 3D™ and the iTero® scans, when using 12 3D palatal rugae landmarks for comparison. Conclusion: Although 12 palatal 3D landmarks could be used for human

  12. Modularization and Validation of FUN3D as a CREATE-AV Helios Near-Body Solver

    NASA Technical Reports Server (NTRS)

    Jain, Rohit; Biedron, Robert T.; Jones, William T.; Lee-Rausch, Elizabeth M.

    2016-01-01

    Under a recent collaborative effort between the US Army Aeroflightdynamics Directorate (AFDD) and NASA Langley, NASA's general unstructured CFD solver, FUN3D, was modularized as a CREATE-AV Helios near-body unstructured grid solver. The strategies adopted in Helios/FUN3D integration effort are described. A validation study of the new capability is performed for rotorcraft cases spanning hover prediction, airloads prediction, coupling with computational structural dynamics, counter-rotating dual-rotor configurations, and free-flight trim. The integration of FUN3D, along with the previously integrated NASA OVERFLOW solver, lays the ground for future interaction opportunities where capabilities of one component could be leveraged with those of others in a relatively seamless fashion within CREATE-AV Helios.

  13. A fast method to measure the 3D surface of the human heart

    NASA Astrophysics Data System (ADS)

    Cao, Yiping; Su, Xianyu; Xiang, Liqun; Chen, Wenjing; Zhang, Qican

    2003-12-01

    Three-dimensional (3-D) automatic measurement of an object is widely used in many fields. In Biology and Medicine society, it can be applicable for surgery, orthopedics, viscera disease analysis and diagnosis etc. Here a new fast method to measure the 3D surface of human heart is proposed which can provide doctors a lot of information, such as the size of heart profile, the sizes of the left or right heart ventricle, and the curvature center and radius of heart ventricle, to fully analyze and diagnose pathobiology of human heart. The new fast method is optically and noncontacted and based upon the Phase Measurement Profilometry (PMP), which has higher measuring precision. A human heart specimen experiment has verified our method.

  14. Computerised 3-D anatomical modelling using plastinates: an example utilising the human heart.

    PubMed

    Tunali, S; Kawamoto, K; Farrell, M L; Labrash, S; Tamura, K; Lozanoff, S

    2011-08-01

    Computerised modelling methods have become highly useful for generating electronic representations of anatomical structures. These methods rely on crosssectional tissue slices in databases such as the Visible Human Male and Female, the Visible Korean Human, and the Visible Chinese Human. However, these databases are time consuming to generate and require labour-intensive manual digitisation while the number of specimens is very limited. Plastinated anatomical material could provide a possible alternative to data collection, requiring less time to prepare and enabling the use of virtually any anatomical or pathological structure routinely obtained in a gross anatomy laboratory. The purpose of this study was to establish an approach utilising plastinated anatomical material, specifically human hearts, for the purpose computerised 3-D modelling. Human hearts were collected following gross anatomical dissection and subjected to routine plastination procedures including dehydration (-25(o)C), defatting, forced impregnation, and curing at room temperature. A graphics pipeline was established comprising data collection with a hand-held scanner, 3-D modelling, model polishing, file conversion, and final rendering. Representative models were viewed and qualitatively assessed for accuracy and detail. The results showed that the heart model provided detailed surface information necessary for gross anatomical instructional purposes. Rendering tools facilitated optional model manipulation for further structural clarification if selected by the user. The use of plastinated material for generating 3-D computerised models has distinct advantages compared to cross-sectional tissue images. PMID:21866531

  15. Atomic identification of fluorescent Q-dots on tau-positive fibrils in 3D-reconstructed pick bodies.

    PubMed

    Uematsu, Miho; Adachi, Eijiro; Nakamura, Ayako; Tsuchiya, Kuniaki; Uchihara, Toshiki

    2012-04-01

    Pick body disease, characterized by the presence of Pick bodies, is distinguished from neurofibrillary tangles in Alzheimer disease on the basis of their smooth, spherical shape. Quantum dots (QDs) are nanometer-scale, water-soluble fluorophores that are detectable both as a fluorescent signal by light microscopy and as electron-dense particles under electron microscopy. In this study, tau-positive Pick bodies were immunofluorescently labeled with QD nanocrystals composed of cadmium selenide for three-dimensional (3D) reconstruction and subsequently subjected to electron microscopic observation to identify QD immunolabeling on the same Pick body for comparison in detail. The identity of the QD nanocrystals, which label the tau-positive fibrils, was confirmed by the presence of both cadmium and selenium on these nanocrystals, demonstrated as parallel peaks corresponding to these atoms on energy-dispersive X-ray spot analysis under super-resolution scanning transmission electron microscopy. This confirmation of the specificity of the QD labeling through both its fluorescence and energy-dispersive X-ray spectra reinforces the reliability of the labeling. In addition, this exact comparison of the same structure by electron microscopy and 3D light microscopy demonstrates how its ultrastructural details are related to its surrounding structures on a 3D basis, providing further insights into how molecules woven into specific pathological ultrastructures are at work in situ. PMID:22322305

  16. Clinically feasible reconstruction of 3D whole-body PET/CT data using blurred anatomical labels

    NASA Astrophysics Data System (ADS)

    Comtat, Claude; Kinahan, Paul E.; Fessler, Jeffrey A.; Beyer, Thomas; Townsend, David W.; Defrise, Michel; Michel, Christian

    2002-01-01

    We present the results of utilizing aligned anatomical information from CT images to locally adjust image smoothness during the reconstruction of three-dimensional (3D) whole-body positron emission tomography (PET) data. The ability of whole-body PET imaging to detect malignant neoplasms is becoming widely recognized. Potentially useful, however, is the role of whole-body PET in quantitative estimation of tracer uptake. The utility of PET in oncology is often limited by the high level of statistical noise in the images. Reduction in noise can be obtained by incorporating a priori image smoothness information from correlated anatomical information during the reconstruction of PET data. A combined PET/CT scanner allows the acquisition of accurately aligned PET and x-ray CT whole-body data. We use the Fourier rebinning algorithm (FORE) to accurately convert the 3D PET data to two-dimensional (2D) data to accelerate the image reconstruction process. The 2D datasets are reconstructed with successive over-relaxation of a penalized weighted least squares (PWLS) objective function to model the statistics of the acquisition, data corrections, and rebinning. A 3D voxel label model is presented that incorporates the anatomical information via the penalty weights of the PWLS objective function. This combination of FORE + PWLS + labels was developed as it allows for both reconstruction of 3D whole-body data sets in clinically feasible times and also the inclusion of anatomical information in such a way that convergence can be guaranteed. Since mismatches between anatomical (CT) and functional (PET) data are unavoidable in practice, the labels are 'blurred' to reflect the uncertainty associated with the anatomical information. Simulated and experimental results show the potential advantage of incorporating anatomical information by using blurred labels to calculate the penalty weights. We conclude that while the effect of this method on detection tasks is complicated and unclear

  17. 3D surface imaging of the human female torso in upright to supine positions.

    PubMed

    Reece, Gregory P; Merchant, Fatima; Andon, Johnny; Khatam, Hamed; Ravi-Chandar, K; Weston, June; Fingeret, Michelle C; Lane, Chris; Duncan, Kelly; Markey, Mia K

    2015-04-01

    Three-dimensional (3D) surface imaging of breasts is usually done with the patient in an upright position, which does not permit comparison of changes in breast morphology with changes in position of the torso. In theory, these limitations may be eliminated if the 3D camera system could remain fixed relative to the woman's torso as she is tilted from 0 to 90°. We mounted a 3dMDtorso imaging system onto a bariatric tilt table to image breasts at different tilt angles. The images were validated using a rigid plastic mannequin and the metrics compared to breast metrics obtained from five subjects with diverse morphology. The differences between distances between the same fiducial marks differed between the supine and upright positions by less than 1% for the mannequin, whereas the differences for distances between the same fiducial marks on the breasts of the five subjects differed significantly and could be correlated with body mass index and brassiere cup size for each position change. We show that a tilt table-3D imaging system can be used to determine quantitative changes in the morphology of ptotic breasts when the subject is tilted to various angles. PMID:25703742

  18. 3D Surface Imaging of the Human Female Torso in Upright to Supine Positions

    PubMed Central

    Reece, Gregory P.; Merchant, Fatima; Andon, Johnny; Khatam, Hamed; Ravi-Chandar, K.; Weston, June; Fingeret, Michelle C.; Lane, Chris; Duncan, Kelly; Markey, Mia K.

    2015-01-01

    Three-dimensional (3D) surface imaging of breasts is usually done with the patient in an upright position, which does not permit comparison of changes in breast morphology with changes in position of the torso. In theory, these limitations may be eliminated if the 3D camera system could remain fixed relative to the woman’s torso as she is tilted from 0 to 90 degrees. We mounted a 3dMDtorso imaging system onto a bariatric tilt table to image breasts at different tilt angles. The images were validated using a rigid plastic mannequin and the metrics compared to breast metrics obtained from 5 subjects with diverse morphology. The differences between distances between the same fiducial marks differed between the supine and upright positions by less than one percent for the mannequin, whereas the differences for distances between the same fiducial marks on the breasts of the 5 subjects differed significantly and could be correlated with body mass index and brassiere cup size for each position change. We show that a tilt table - 3D imaging system can be used to determine quantitative changes in the morphology of ptotic breasts when the subject is tilted to various angles. PMID:25703742

  19. Standardization based on human factors for 3D display: performance characteristics and measurement methods

    NASA Astrophysics Data System (ADS)

    Uehara, Shin-ichi; Ujike, Hiroyasu; Hamagishi, Goro; Taira, Kazuki; Koike, Takafumi; Kato, Chiaki; Nomura, Toshio; Horikoshi, Tsutomu; Mashitani, Ken; Yuuki, Akimasa; Izumi, Kuniaki; Hisatake, Yuzo; Watanabe, Naoko; Umezu, Naoaki; Nakano, Yoshihiko

    2010-02-01

    We are engaged in international standardization activities for 3D displays. We consider that for a sound development of 3D displays' market, the standards should be based on not only mechanism of 3D displays, but also human factors for stereopsis. However, we think that there is no common understanding on what the 3D display should be and that the situation makes developing the standards difficult. In this paper, to understand the mechanism and human factors, we focus on a double image, which occurs in some conditions on an autostereoscopic display. Although the double image is generally considered as an unwanted effect, we consider that whether the double image is unwanted or not depends on the situation and that there are some allowable double images. We tried to classify the double images into the unwanted and the allowable in terms of the display mechanism and visual ergonomics for stereopsis. The issues associated with the double image are closely related to performance characteristics for the autostereoscopic display. We also propose performance characteristics, measurement and analysis methods to represent interocular crosstalk and motion parallax.

  20. Magnetic human body communication.

    PubMed

    Park, Jiwoong; Mercier, Patrick P

    2015-08-01

    This paper presents a new human body communication (HBC) technique that employs magnetic resonance for data transfer in wireless body-area networks (BANs). Unlike electric field HBC (eHBC) links, which do not necessarily travel well through many biological tissues, the proposed magnetic HBC (mHBC) link easily travels through tissue, offering significantly reduced path loss and, as a result, reduced transceiver power consumption. In this paper the proposed mHBC concept is validated via finite element method simulations and measurements. It is demonstrated that path loss across the body under various postures varies from 10-20 dB, which is significantly lower than alternative BAN techniques. PMID:26736639

  1. High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories

    PubMed Central

    Su, Ting-Wei; Xue, Liang; Ozcan, Aydogan

    2012-01-01

    Dynamic tracking of human sperms across a large volume is a challenging task. To provide a high-throughput solution to this important need, here we describe a lensfree on-chip imaging technique that can track the three-dimensional (3D) trajectories of > 1,500 individual human sperms within an observation volume of approximately 8–17 mm3. This computational imaging platform relies on holographic lensfree shadows of sperms that are simultaneously acquired at two different wavelengths, emanating from two partially-coherent sources that are placed at 45° with respect to each other. This multiangle and multicolor illumination scheme permits us to dynamically track the 3D motion of human sperms across a field-of-view of > 17 mm2 and depth-of-field of approximately 0.5–1 mm with submicron positioning accuracy. The large statistics provided by this lensfree imaging platform revealed that only approximately 4–5% of the motile human sperms swim along well-defined helices and that this percentage can be significantly suppressed under seminal plasma. Furthermore, among these observed helical human sperms, a significant majority (approximately 90%) preferred right-handed helices over left-handed ones, with a helix radius of approximately 0.5–3 μm, a helical rotation speed of approximately 3–20 rotations/s and a linear speed of approximately 20–100 μm/s. This high-throughput 3D imaging platform could in general be quite valuable for observing the statistical swimming patterns of various other microorganisms, leading to new insights in their 3D motion and the underlying biophysics. PMID:22988076

  2. Uniformly spaced 3D modeling of human face from two images using parallel particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Chang, Yau-Zen; Hou, Jung-Fu; Tsao, Yi Hsiang; Lee, Shih-Tseng

    2011-09-01

    This paper proposes a scheme for finding the correspondence between uniformly spaced locations on the images of human face captured from different viewpoints at the same instant. The correspondence is dedicated for 3D reconstruction to be used in the registration procedure for neurosurgery where the exposure to projectors must be seriously restricted. The approach utilizes structured light to enhance patterns on the images and is initialized with the scale-invariant feature transform (SIFT). Successive locations are found according to spatial order using a parallel version of the particle swarm optimization algorithm. Furthermore, false locations are singled out for correction by searching for outliers from fitted curves. Case studies show that the scheme is able to correctly generate 456 evenly spaced 3D coordinate points in 23 seconds from a single shot of projected human face using a PC with 2.66 GHz Intel Q9400 CPU and 4GB RAM.

  3. TRAIL protein localization in human primary T cells by 3D microscopy using 3D interactive surface plot: a new method to visualize plasma membrane.

    PubMed

    Gras, Christophe; Smith, Nikaïa; Sengmanivong, Lucie; Gandini, Mariana; Kubelka, Claire Fernandes; Herbeuval, Jean-Philippe

    2013-01-31

    The apoptotic ligand TNF-related apoptosis ligand (TRAIL) is expressed on the membrane of immune cells during HIV infection. The intracellular stockade of TRAIL in human primary CD4(+) T cells is not known. Here we investigated whether primary CD4(+) T cells expressed TRAIL in their intracellular compartment and whether TRAIL is relocalized on the plasma membrane under HIV activation. We found that TRAIL protein was stocked in intracellular compartment in non activated CD4(+) T cells and that the total level of TRAIL protein was not increased under HIV-1 stimulation. However, TRAIL was massively relocalized on plasma membrane when cells were cultured with HIV. Using three dimensional (3D) microscopy we localized TRAIL protein in human T cells and developed a new method to visualize plasma membrane without the need of a membrane marker. This method used the 3D interactive surface plot and bright light acquired images. PMID:23085529

  4. Impact of 3-D printed PLA- and chitosan-based scaffolds on human monocyte/macrophage responses: unraveling the effect of 3-D structures on inflammation.

    PubMed

    Almeida, Catarina R; Serra, Tiziano; Oliveira, Marta I; Planell, Josep A; Barbosa, Mário A; Navarro, Melba

    2014-02-01

    Recent studies have pointed towards a decisive role of inflammation in triggering tissue repair and regeneration, while at the same time it is accepted that an exacerbated inflammatory response may lead to rejection of an implant. Within this context, understanding and having the capacity to regulate the inflammatory response elicited by 3-D scaffolds aimed for tissue regeneration is crucial. This work reports on the analysis of the cytokine profile of human monocytes/macrophages in contact with biodegradable 3-D scaffolds with different surface properties, architecture and controlled pore geometry, fabricated by 3-D printing technology. Fabrication processes were optimized to create four different 3-D platforms based on polylactic acid (PLA), PLA/calcium phosphate glass or chitosan. Cytokine secretion and cell morphology of human peripheral blood monocytes allowed to differentiate on the different matrices were analyzed. While all scaffolds supported monocyte/macrophage adhesion and stimulated cytokine production, striking differences between PLA-based and chitosan scaffolds were found, with chitosan eliciting increased secretion of tumor necrosis factor (TNF)-α, while PLA-based scaffolds induced higher production of interleukin (IL)-6, IL-12/23 and IL-10. Even though the material itself induced the biggest differences, the scaffold geometry also impacted on TNF-α and IL-12/23 production, with chitosan scaffolds having larger pores and wider angles leading to a higher secretion of these pro-inflammatory cytokines. These findings strengthen the appropriateness of these 3-D platforms to study modulation of macrophage responses by specific parameters (chemistry, topography, scaffold architecture). PMID:24211731

  5. 3D Printed Trileaflet Valve Conduits Using Biological Hydrogels and Human Valve Interstitial Cells

    PubMed Central

    Duan, Bin; Kapetanovic, Edi; Hockaday, Laura A.; Butcher, Jonathan T.

    2014-01-01

    Tissue engineering has great potential to provide a functional de novo living valve replacement capable of integration with host tissue and growth. Among various valve conduit fabrication techniques, 3D bioprinting enables deposition of cells and hydrogels into 3D constructs with anatomical geometry and heterogeneous mechanical properties. Successful translation of this approach is however constrained by the dearth of printable and biocompatible hydrogel materials. Furthermore, it is not known how human valve cells respond to these printed environments. In this study, we develop 3D printable formulations of hybrid hydrogels based on methacrylated hyaluronic acid (Me-HA) and methacrylated gelatin (Me-Gel), and utilize them to bioprint heart valve conduits containing encapsulated human aortic valvular interstitial cells (HAVIC). Increasing Me-Gel concentration resulted in lower stiffness and higher viscosity, facilitated cell spreading, and better maintained HAVIC fibroblastic phenotype. Bioprinting accuracy was dependent upon the relative concentrations of Me-Gel and Me-HA, but when optimized enabled the fabrication of a trileaflet valve shape accurate to the original design. HAVIC encapsulated within bioprinted heart valves maintained high viability, and remodeled the initial matrix by depositing collagen and glyosaminoglycans. These findings represent the first rational design of bioprinted trileaflet valve hydrogels that regulate encapsulated human VIC behavior. The use of anatomically accurate living valve scaffolds through bioprinting may accelerate our understanding of physiological valve cell interactions and our progress towards de novo living valve replacements. PMID:24334142

  6. 3D skin length deformation of lower body during knee joint flexion for the practical application of functional sportswear.

    PubMed

    Choi, Jiyoung; Hong, Kyunghi

    2015-05-01

    With the advent of 3D technology in the design process, a tremendous amount of scanned data is available. However, it is difficult to trace the quantitative skin deformation of a designated location on the 3D body surface data during movement. Without identical landmarks or reflective markers, tracing the same reference points on the different body postures is not easy because of the complex shape change of the body. To find the least deformed location on the body, which is regarded as the optimal position of seams for the various lengths of functional compression pants, landmarks were directly marked on the skin of six subjects and scanned during knee joint flexion. Lines of non-extension (LoNE) and maximum stretch (LoMS) were searched for, both by tracing landmarks and newly drawn guidelines based on ratio division in various directions. Considering the waist as the anchoring position of the pants, holistic changes were quantified and visualized from the waistline in lengthwise and curvilinear deformation along the dermatomes of the lower body for various lengths of pants. Widthwise and unit area skin deformation data of the skin were also provided as guidelines for further use such as streamlined pants or design of other local wearing devices. PMID:25683546

  7. Noninvasive MR to 3D Rotational x-ray registration of vetebral bodies

    NASA Astrophysics Data System (ADS)

    van de Kraats, Everine B.; van Walsum, Theo; Verlaan, Jorrit-Jan; Niessen, Wiro J.

    2003-05-01

    3D Rotational X-ray (3DRX) imaging can be used to intraoperatively acquire 3D volumes depicting bone structures in the patient. Registration of 3DRX to MR images, containing soft tissue information, facilitates image guided surgery on both soft tissue and bone tissue information simultaneously. In this paper, automated noninvasive registration using maximization of mutual information is compared to conventional interactive and invasive point-based registration using the least squares fit of corresponding point sets. Both methods were evaluated on 3DRX images (with a resolution of 0.62x0.62x0.62 mm3) and MRI images (with resolutions of 2x2x2 mm3, 1.5x1.5x1.5 mm3 and 1x1x1 mm3) of seven defrosted spinal segments implanted with six or seven markers. The markers were used for the evaluation of the registration transformations found by both point- and maximization of mutual information based registration. The root-mean-squared-error on markers that were left out during registration was calculated after transforming the marker set with the computed registration transformation. The results show that the noninvasive registration method performs significantly better (p<=0.01) for all MRI resolutions than point-based registration using four or five markers, which is the number of markers conventionally used in image guided surgery systems.

  8. Investigating the accuracy of microstereotactic-body-radiotherapy utilizing anatomically accurate 3D printed rodent-morphic dosimeters

    SciTech Connect

    Bache, Steven T.; Juang, Titania; Belley, Matthew D.; Koontz, Bridget F.; Yoshizumi, Terry T.; Kirsch, David G.; Oldham, Mark; Adamovics, John

    2015-02-15

    Purpose: Sophisticated small animal irradiators, incorporating cone-beam-CT image-guidance, have recently been developed which enable exploration of the efficacy of advanced radiation treatments in the preclinical setting. Microstereotactic-body-radiation-therapy (microSBRT) is one technique of interest, utilizing field sizes in the range of 1–15 mm. Verification of the accuracy of microSBRT treatment delivery is challenging due to the lack of available methods to comprehensively measure dose distributions in representative phantoms with sufficiently high spatial resolution and in 3 dimensions (3D). This work introduces a potential solution in the form of anatomically accurate rodent-morphic 3D dosimeters compatible with ultrahigh resolution (0.3 mm{sup 3}) optical computed tomography (optical-CT) dose read-out. Methods: Rodent-morphic dosimeters were produced by 3D-printing molds of rodent anatomy directly from contours defined on x-ray CT data sets of rats and mice, and using these molds to create tissue-equivalent radiochromic 3D dosimeters from Presage. Anatomically accurate spines were incorporated into some dosimeters, by first 3D printing the spine mold, then forming a high-Z bone equivalent spine insert. This spine insert was then set inside the tissue equivalent body mold. The high-Z spinal insert enabled representative cone-beam CT IGRT targeting. On irradiation, a linear radiochromic change in optical-density occurs in the dosimeter, which is proportional to absorbed dose, and was read out using optical-CT in high-resolution (0.5 mm isotropic voxels). Optical-CT data were converted to absolute dose in two ways: (i) using a calibration curve derived from other Presage dosimeters from the same batch, and (ii) by independent measurement of calibrated dose at a point using a novel detector comprised of a yttrium oxide based nanocrystalline scintillator, with a submillimeter active length. A microSBRT spinal treatment was delivered consisting of a 180

  9. Investigating the accuracy of microstereotactic-body-radiotherapy utilizing anatomically accurate 3D printed rodent-morphic dosimeters

    PubMed Central

    Bache, Steven T.; Juang, Titania; Belley, Matthew D.; Koontz, Bridget F.; Adamovics, John; Yoshizumi, Terry T.; Kirsch, David G.; Oldham, Mark

    2015-01-01

    Purpose: Sophisticated small animal irradiators, incorporating cone-beam-CT image-guidance, have recently been developed which enable exploration of the efficacy of advanced radiation treatments in the preclinical setting. Microstereotactic-body-radiation-therapy (microSBRT) is one technique of interest, utilizing field sizes in the range of 1–15 mm. Verification of the accuracy of microSBRT treatment delivery is challenging due to the lack of available methods to comprehensively measure dose distributions in representative phantoms with sufficiently high spatial resolution and in 3 dimensions (3D). This work introduces a potential solution in the form of anatomically accurate rodent-morphic 3D dosimeters compatible with ultrahigh resolution (0.3 mm3) optical computed tomography (optical-CT) dose read-out. Methods: Rodent-morphic dosimeters were produced by 3D-printing molds of rodent anatomy directly from contours defined on x-ray CT data sets of rats and mice, and using these molds to create tissue-equivalent radiochromic 3D dosimeters from Presage. Anatomically accurate spines were incorporated into some dosimeters, by first 3D printing the spine mold, then forming a high-Z bone equivalent spine insert. This spine insert was then set inside the tissue equivalent body mold. The high-Z spinal insert enabled representative cone-beam CT IGRT targeting. On irradiation, a linear radiochromic change in optical-density occurs in the dosimeter, which is proportional to absorbed dose, and was read out using optical-CT in high-resolution (0.5 mm isotropic voxels). Optical-CT data were converted to absolute dose in two ways: (i) using a calibration curve derived from other Presage dosimeters from the same batch, and (ii) by independent measurement of calibrated dose at a point using a novel detector comprised of a yttrium oxide based nanocrystalline scintillator, with a submillimeter active length. A microSBRT spinal treatment was delivered consisting of a 180

  10. Evaluation of 3D-human skin equivalents for assessment of human dermal absorption of some brominated flame retardants.

    PubMed

    Abdallah, Mohamed Abou-Elwafa; Pawar, Gopal; Harrad, Stuart

    2015-11-01

    Ethical and technical difficulties inherent to studies in human tissues are impeding assessment of the dermal bioavailability of brominated flame retardants (BFRs). This is further complicated by increasing restrictions on the use of animals in toxicity testing, and the uncertainties associated with extrapolating data from animal studies to humans due to inter-species variations. To overcome these difficulties, we evaluate 3D-human skin equivalents (3D-HSE) as a novel in vitro alternative to human and animal testing for assessment of dermal absorption of BFRs. The percutaneous penetration of hexabromocyclododecanes (HBCD) and tetrabromobisphenol-A (TBBP-A) through two commercially available 3D-HSE models was studied and compared to data obtained for human ex vivo skin according to a standard protocol. No statistically significant differences were observed between the results obtained using 3D-HSE and human ex vivo skin at two exposure levels. The absorbed dose was low (less than 7%) and was significantly correlated with log Kow of the tested BFR. Permeability coefficient values showed increasing dermal resistance to the penetration of γ-HBCD>β-HBCD>α-HBCD>TBBPA. The estimated long lag times (>30 min) suggests that frequent hand washing may reduce human exposure to HBCDs and TBBPA via dermal contact. PMID:26232142

  11. Large-scale probabilistic 3D organization of human chromosome territories.

    PubMed

    Sehgal, Nitasha; Fritz, Andrew J; Vecerova, Jaromira; Ding, Hu; Chen, Zihe; Stojkovic, Branislav; Bhattacharya, Sambit; Xu, Jinhui; Berezney, Ronald

    2016-02-01

    There is growing evidence that chromosome territories (CT) have a probabilistic non-random arrangement within the cell nucleus of mammalian cells including radial positioning and preferred patterns of interchromosomal interactions that are cell-type specific. While it is generally assumed that the three-dimensional (3D) arrangement of genes within the CT is linked to genomic regulation, the degree of non-random organization of individual CT remains unclear. As a first step to elucidating the global 3D organization (topology) of individual CT, we performed multi-color fluorescence in situ hybridization using six probes extending across each chromosome in human WI38 lung fibroblasts. Six CT were selected ranging in size and gene density (1, 4, 12, 17, 18 and X). In-house computational geometric algorithms were applied to measure the 3D distances between every combination of probes and to elucidate data-mined structural patterns. Our findings demonstrate a high degree of non-random arrangement of individual CT that vary from chromosome to chromosome and display distinct changes during the cell cycle. Application of a classic, well-defined data mining and pattern recognition approach termed the 'k-means' generated 3D models for the best fit arrangement of each chromosome. These predicted models correlated well with the detailed distance measurements and analysis. We propose that the unique 3D topology of each CT and characteristic changes during the cell cycle provide the structural framework for the global gene expression programs of the individual chromosomes. PMID:26604142

  12. Pitching motion control of a butterfly-like 3D flapping wing-body model

    NASA Astrophysics Data System (ADS)

    Suzuki, Kosuke; Minami, Keisuke; Inamuro, Takaji

    2014-11-01

    Free flights and a pitching motion control of a butterfly-like flapping wing-body model are numerically investigated by using an immersed boundary-lattice Boltzmann method. The model flaps downward for generating the lift force and backward for generating the thrust force. Although the model can go upward against the gravity by the generated lift force, the model generates the nose-up torque, consequently gets off-balance. In this study, we discuss a way to control the pitching motion by flexing the body of the wing-body model like an actual butterfly. The body of the model is composed of two straight rigid rod connected by a rotary actuator. It is found that the pitching angle is suppressed in the range of +/-5° by using the proportional-plus-integral-plus-derivative (PID) control for the input torque of the rotary actuator.

  13. Progress Toward Overset-Grid Moving Body Capability for USM3D Unstructured Flow Solver

    NASA Technical Reports Server (NTRS)

    Pandyna, Mohagna J.; Frink, Neal T.; Noack, Ralph W.

    2005-01-01

    A static and dynamic Chimera overset-grid capability is added to an established NASA tetrahedral unstructured parallel Navier-Stokes flow solver, USM3D. Modifications to the solver primarily consist of a few strategic calls to the Donor interpolation Receptor Transaction library (DiRTlib) to facilitate communication of solution information between various grids. The assembly of multiple overlapping grids into a single-zone composite grid is performed by the Structured, Unstructured and Generalized Grid AssembleR (SUGGAR) code. Several test cases are presented to verify the implementation, assess overset-grid solution accuracy and convergence relative to single-grid solutions, and demonstrate the prescribed relative grid motion capability.

  14. A guide for human factors research with stereoscopic 3D displays

    NASA Astrophysics Data System (ADS)

    McIntire, John P.; Havig, Paul R.; Pinkus, Alan R.

    2015-05-01

    In this work, we provide some common methods, techniques, information, concepts, and relevant citations for those conducting human factors-related research with stereoscopic 3D (S3D) displays. We give suggested methods for calculating binocular disparities, and show how to verify on-screen image separation measurements. We provide typical values for inter-pupillary distances that are useful in such calculations. We discuss the pros, cons, and suggested uses of some common stereovision clinical tests. We discuss the phenomena and prevalence rates of stereoanomalous, pseudo-stereoanomalous, stereo-deficient, and stereoblind viewers. The problems of eyestrain and fatigue-related effects from stereo viewing, and the possible causes, are enumerated. System and viewer crosstalk are defined and discussed, and the issue of stereo camera separation is explored. Typical binocular fusion limits are also provided for reference, and discussed in relation to zones of comfort. Finally, the concept of measuring disparity distributions is described. The implications of these issues for the human factors study of S3D displays are covered throughout.

  15. An investigation of matching symmetry in the human pinnae with possible implications for 3D ear recognition and sound localization.

    PubMed

    Claes, Peter; Reijniers, Jonas; Shriver, Mark D; Snyders, Jonatan; Suetens, Paul; Nielandt, Joachim; De Tré, Guy; Vandermeulen, Dirk

    2015-01-01

    The human external ears, or pinnae, have an intriguing shape and, like most parts of the human external body, bilateral symmetry is observed between left and right. It is a well-known part of our auditory sensory system and mediates the spatial localization of incoming sounds in 3D from monaural cues due to its shape-specific filtering as well as binaural cues due to the paired bilateral locations of the left and right ears. Another less broadly appreciated aspect of the human pinna shape is its uniqueness from one individual to another, which is on the level of what is seen in fingerprints and facial features. This makes pinnae very useful in human identification, which is of great interest in biometrics and forensics. Anatomically, the type of symmetry observed is known as matching symmetry, with structures present as separate mirror copies on both sides of the body, and in this work we report the first such investigation of the human pinna in 3D. Within the framework of geometric morphometrics, we started by partitioning ear shape, represented in a spatially dense way, into patterns of symmetry and asymmetry, following a two-factor anova design. Matching symmetry was measured in all substructures of the pinna anatomy. However, substructures that 'stick out' such as the helix, tragus, and lobule also contained a fair degree of asymmetry. In contrast, substructures such as the conchae, antitragus, and antihelix expressed relatively stronger degrees of symmetric variation in relation to their levels of asymmetry. Insights gained from this study were injected into an accompanying identification setup exploiting matching symmetry where improved performance is demonstrated. Finally, possible implications of the results in the context of ear recognition as well as sound localization are discussed. PMID:25382291

  16. An accurate 3D shape context based non-rigid registration method for mouse whole-body skeleton registration

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Zahra, David; Bourgeat, Pierrick; Berghofer, Paula; Acosta Tamayo, Oscar; Wimberley, Catriona; Gregoire, Marie C.; Salvado, Olivier

    2011-03-01

    Small animal image registration is challenging because of its joint structure, and posture and position difference in each acquisition without a standard scan protocol. In this paper, we face the issue of mouse whole-body skeleton registration from CT images. A novel method is developed for analyzing mouse hind-limb and fore-limb postures based on geodesic path descriptor and then registering the major skeletons and fore limb skeletons initially by thin-plate spline (TPS) transform based on the obtained geodesic paths and their enhanced correspondence fields. A target landmark correction method is proposed for improving the registration accuracy of the improved 3D shape context non-rigid registration method we previously proposed. A novel non-rigid registration framework, combining the skeleton posture analysis, geodesic path based initial alignment and 3D shape context model, is proposed for mouse whole-body skeleton registration. The performance of the proposed methods and framework was tested on 12 pairs of mouse whole-body skeletons. The experimental results demonstrated the flexibility, stability and accuracy of the proposed framework for automatic mouse whole body skeleton registration.

  17. Perfusion Stirred-Tank Bioreactors for 3D Differentiation of Human Neural Stem Cells.

    PubMed

    Simão, Daniel; Arez, Francisca; Terasso, Ana P; Pinto, Catarina; Sousa, Marcos F Q; Brito, Catarina; Alves, Paula M

    2016-01-01

    Therapeutic breakthroughs in neurological disorders have been hampered by the lack of accurate central nervous system (CNS) models. The development of these models allows the study of the disease onset/progression mechanisms and the preclinical evaluation of new therapeutics. This has traditionally relied on genetically engineered animal models that often diverge considerably from the human phenotype (developmental, anatomic, and physiological) and 2D in vitro cell models, which fail to recapitulate the characteristics of the target tissue (cell-cell and cell-matrix interactions, cell polarity, etc.). Recapitulation of CNS phenotypic and functional features in vitro requires the implementation of advanced culture strategies, such as 3D culture systems, which enable to mimic the in vivo structural and molecular complexity. Models based on differentiation of human neural stem cells (hNSC) in 3D cultures have great potential as complementary tools in preclinical research, bridging the gap between human clinical studies and animal models. The development of robust and scalable processes for the 3D differentiation of hNSC can improve the accuracy of early stage development in preclinical research. In this context, the use of software-controlled stirred-tank bioreactors (STB) provides an efficient technological platform for hNSC aggregation and differentiation. This system enables to monitor and control important physicochemical parameters for hNSC culture, such as dissolved oxygen. Importantly, the adoption of a perfusion operation mode allows a stable flow of nutrients and differentiation/neurotrophic factors, while clearing the toxic by-products. This contributes to a setting closer to the physiological, by mimicking the in vivo microenvironment. In this chapter, we address the technical requirements and procedures for the implementation of 3D differentiation strategies of hNSC, by operating STB under perfusion mode for long-term cultures. This strategy is suitable

  18. The Rufous Hummingbird in hovering flight -- full-body 3D immersed boundary simulation

    NASA Astrophysics Data System (ADS)

    Ferreira de Sousa, Paulo; Luo, Haoxiang; Bocanegra Evans, Humberto

    2009-11-01

    Hummingbirds are an interesting case study for the development of micro-air vehicles since they combine the high flight stability of insects with the low metabolic power per unit of body mass of bats, during hovering flight. In this study, simulations of a full-body hummingbird in hovering flight were performed at a Reynolds number around 3600. The simulations employ a versatile sharp-interface immersed boundary method recently enhanced at our lab that can treat thin membranes and solid bodies alike. Implemented on a Cartesian mesh, the numerical method allows us to capture the vortex dynamics of the wake accurately and efficiently. The whole-body simulation will allow us to clearly identify the three general patterns of flow velocity around the body of the hummingbird referred in Altshuler et al. (Exp Fluids 46 (5), 2009). One focus of the current study is to understand the interaction between the wakes of the two wings at the end of the upstroke, and how the tail actively defects the flow to contribute to pitch stability. Another focus of the study will be to identify the pair of unconnected loops underneath each wing.

  19. Body image, shape, and volumetric assessments using 3D whole body laser scanning and 2D digital photography in females with a diagnosed eating disorder: preliminary novel findings.

    PubMed

    Stewart, Arthur D; Klein, Susan; Young, Julie; Simpson, Susan; Lee, Amanda J; Harrild, Kirstin; Crockett, Philip; Benson, Philip J

    2012-05-01

    We piloted three-dimensional (3D) body scanning in eating disorder (ED) patients. Assessments of 22 ED patients (including nine anorexia nervosa (AN) patients, 12 bulimia nervosa (BN) patients, and one patient with eating disorder not otherwise specified) and 22 matched controls are presented. Volunteers underwent visual screening, two-dimensional (2D) digital photography to assess perception and dissatisfaction (via computerized image distortion), and adjunctive 3D full-body scanning. Patients and controls perceived themselves as bigger than their true shape (except in the chest region for controls and anorexia patients). All participants wished to be smaller across all body regions. Patients had poorer veridical perception and greater dissatisfaction than controls. Perception was generally poorer and dissatisfaction greater in bulimia compared with anorexia patients. 3D-volume:2D-area relationships showed that anorexia cases had least tissue on the torso and most on the arms and legs relative to frontal area. The engagement of patients with the scanning process suggests a validation study is viable. This would enable mental constructs of body image to be aligned with segmental volume of body areas, overcoming limitations, and errors associated with 2D instruments restricted to frontal (coronal) shapes. These novel data could inform the design of clinical trials in adjunctive treatments for eating disorders. PMID:22506746

  20. Symmetry breaking in 3D wake of a bluff body generates rotation and drift

    NASA Astrophysics Data System (ADS)

    Lacis, Ugis; Brosse, Nicolas; Bagheri, Shervin; Lundell, Fredrik; Mazzino, Andrea; Olivieri, Stefano; Kellay, Hamid

    2014-11-01

    Bluff body wakes have historically been important for understanding nature and aiding industry. For Reynolds numbers above approximately Re ~ 10 , a recirculation bubble develops behind the bluff body. If a solid or elastic appendage is attached to the bluff body, it may exert a torque and a side force on the body. Previously we have used theory, numerical simulations and experiments to investigate and explain this phenomenon in two dimensions. Now we advance our investigation to three dimensional objects. More specifically, we consider a sphere and attach a sheet of given shape behind it for Re = 200 . We investigate the problem using numerical simulations and extend our theoretical model developed in two dimensions. Then we complement our findings with water tank experiments of freely falling cylinder with sheet of various mass behind it. We show that the torque and side force can be greatly changed if the density of the sheet is different compared to the cylinder. Finally we discuss the possibility of optimal configurations for propulsion generation.

  1. Novel 3D Microscopic Analysis of Human Placental Villous Trees Reveals Unexpected Significance of Branching Angles

    PubMed Central

    Haeussner, Eva; Buehlmeyer, Antonia; Schmitz, Christoph; von Koch, Franz Edler; Frank, Hans-Georg

    2014-01-01

    The villous trees of human placentas delineate the fetomaternal border and are complex three-dimensional (3D) structures. Thus far, they have primarily been analyzed as thin, two-dimensional (2D) histological sections. However, 2D sections cannot provide access to key aspects such as branching nodes and branch order. Using samples taken from 50 normal human placentas at birth, in the present study we show that analysis procedures for 3D reconstruction of neuronal dendritic trees can also be used for analyzing trees of human placentas. Nodes and their branches (e.g., branching hierarchy, branching angles, diameters, and lengths of branches) can be efficiently measured in whole-mount preparations of isolated villous trees using high-end light microscopy. Such data differ qualitatively from the data obtainable from histological sections and go substantially beyond the morphological horizon of such histological data. Unexpectedly, branching angles of terminal branches of villous trees varied inversely with the fetoplacental weight ratio, a widely used clinical parameter. Since branching angles have never before been determined in the human placenta, this result requires further detailed studies in order to fully understand its impact. PMID:25155961

  2. A Novel Fully Humanized 3D Skin Equivalent to Model Early Melanoma Invasion.

    PubMed

    Hill, David S; Robinson, Neil D P; Caley, Matthew P; Chen, Mei; O'Toole, Edel A; Armstrong, Jane L; Przyborski, Stefan; Lovat, Penny E

    2015-11-01

    Metastatic melanoma remains incurable, emphasizing the acute need for improved research models to investigate the underlying biologic mechanisms mediating tumor invasion and metastasis, and to develop more effective targeted therapies to improve clinical outcome. Available animal models of melanoma do not accurately reflect human disease and current in vitro human skin equivalent models incorporating melanoma cells are not fully representative of the human skin microenvironment. We have developed a robust and reproducible, fully humanized three-dimensional (3D) skin equivalent comprising a stratified, terminally differentiated epidermis and a dermal compartment consisting of fibroblast-generated extracellular matrix. Melanoma cells incorporated into the epidermis were able to invade through the basement membrane and into the dermis, mirroring early tumor invasion in vivo. Comparison of our novel 3D melanoma skin equivalent with melanoma in situ and metastatic melanoma indicates that this model accurately recreates features of disease pathology, making it a physiologically representative model of early radial and vertical growth-phase melanoma invasion. PMID:26330548

  3. Energy cost and body centre of mass' 3D intracycle velocity variation in swimming.

    PubMed

    Figueiredo, Pedro; Barbosa, Tiago M; Vilas-Boas, João Paulo; Fernandes, Ricardo J

    2012-09-01

    The purpose of this study was to examine the relationship between the energy cost (C) and the 3D intracycle velocity variation (IVV; swimming direction--x, vertical--y and lateral--z axes) throughout the 200 m front crawl event. Ten international level swimmers performed a maximal 200 m front crawl swim followed by 50, 100 and 150 m bouts at the same pace as in the 200 m splits. Oxygen consumption was measured during the bouts and blood samples were collected before and after each one. The C was calculated for each 50 m lap as the ratio of the total energy expenditure (three energy pathways) to the distance. A respiratory snorkel and valve system with low hydrodynamic resistance was used to measure pulmonary ventilation and to collect breathing air samples. Two above water and four underwater cameras videotaped the swim bouts and thereafter APAS was used to assess the centre of mass IVV (x, y and z components). The increase in the C was significantly associated with the increase in the IVV in x for the first 50 m lap (R = -0.83, P < 0.01). It is concluded that the IVV relationship with C in a competitive event does not present the direct relationship found in the literature, revealing a great specificity, which suggests that the relation between these two parameters could not be used as a performance predictor in competitive events. PMID:22262010

  4. Utilization of 3D imaging flash lidar technology for autonomous safe landing on planetary bodies

    NASA Astrophysics Data System (ADS)

    Amzajerdian, Farzin; Vanek, Michael; Petway, Larry; Pierrottet, Diego; Busch, George; Bulyshev, Alexander

    2010-01-01

    NASA considers Flash Lidar a critical technology for enabling autonomous safe landing of future large robotic and crewed vehicles on the surface of the Moon and Mars. Flash Lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes during the final stages of descent and landing. The onboard flight comptuer can use the 3-D map of terain to guide the vehicle to a safe site. The capabilities of Flash Lidar technology were evaluated through a series of static tests using a calibrated target and through dynamic tests aboard a helicopter and a fixed wing airctarft. The aircraft flight tests were perfomed over Moonlike terrain in the California and Nevada deserts. This paper briefly describes the Flash Lidar static and aircraft flight test results. These test results are analyzed against the landing application requirements to identify the areas of technology improvement. The ongoing technology advancement activities are then explained and their goals are described.

  5. Utilization of 3-D Imaging Flash Lidar Technology for Autonomous Safe Landing on Planetary Bodies

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Vanek, Michael; Petway, Larry; Pierrotter, Diego; Busch, George; Bulyshev, Alexander

    2010-01-01

    NASA considers Flash Lidar a critical technology for enabling autonomous safe landing of future large robotic and crewed vehicles on the surface of the Moon and Mars. Flash Lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes during the final stages of descent and landing. The onboard flight computer can use the 3-D map of terrain to guide the vehicle to a safe site. The capabilities of Flash Lidar technology were evaluated through a series of static tests using a calibrated target and through dynamic tests aboard a helicopter and a fixed wing aircraft. The aircraft flight tests were performed over Moon-like terrain in the California and Nevada deserts. This paper briefly describes the Flash Lidar static and aircraft flight test results. These test results are analyzed against the landing application requirements to identify the areas of technology improvement. The ongoing technology advancement activities are then explained and their goals are described.

  6. 3-D imaging and quantitative comparison of human dentitions and simulated bite marks.

    PubMed

    Blackwell, S A; Taylor, R V; Gordon, I; Ogleby, C L; Tanijiri, T; Yoshino, M; Donald, M R; Clement, J G

    2007-01-01

    This study presents a technique developed for 3-D imaging and quantitative comparison of human dentitions and simulated bite marks. A sample of 42 study models and the corresponding bites, made by the same subjects in acrylic dental wax, were digitised by laser scanning. This technique allows image comparison of a 3-D dentition with a 3-D bite mark, eliminating distortion due to perspective as experienced in conventional photography. Cartesian co-ordinates of a series of landmarks were used to describe the dentitions and bite marks, and a matrix was created to compare all possible combinations of matches and non-matches using cross-validation techniques. An algorithm, which estimated the probability of a dentition matching its corresponding bite mark, was developed. A receiver operating characteristic graph illustrated the relationship between values for specificity and sensitivity. This graph also showed for this sample that 15% of non-matches could not be distinguished from the true match, translating to a 15% probability of falsely convicting an innocent person. PMID:16391946

  7. Microrheology and ROCK Signaling of Human Endothelial Cells Embedded in a 3D Matrix

    PubMed Central

    Panorchan, Porntula; Lee, Jerry S. H.; Kole, Thomas P.; Tseng, Yiider; Wirtz, Denis

    2006-01-01

    Cell function is profoundly affected by the geometry of the extracellular environment confining the cell. Whether and how cells plated on a two-dimensional matrix or embedded in a three-dimensional (3D) matrix mechanically sense the dimensionality of their environment is mostly unknown, partly because individual cells in an extended matrix are inaccessible to conventional cell-mechanics probes. Here we develop a functional assay based on multiple particle tracking microrheology coupled with ballistic injection of nanoparticles to measure the local intracellular micromechanical properties of individual cells embedded inside a matrix. With our novel assay, we probe the mechanical properties of the cytoplasm of individual human umbilical vein endothelial cells (HUVECs) embedded in a 3D peptide hydrogel in the presence or absence of vascular endothelial growth factor (VEGF). We found that VEGF treatment, which enhances endothelial migration, increases the compliance and reduces the elasticity of the cytoplasm of HUVECs in a matrix. This VEGF-induced softening response of the cytoplasm is abrogated by specific Rho-kinase (ROCK) inhibition. These results establish combined particle-tracking microrheology and ballistic injection as the first method able to probe the micromechanical properties and mechanical response to agonists and/or drug treatments of individual cells inside a matrix. These results suggest that ROCK plays an essential role in the regulation of the intracellular mechanical response to VEGF of endothelial cells in a 3D matrix. PMID:16891369

  8. Comparison of Cyberware PX and PS 3D human head scanners

    NASA Astrophysics Data System (ADS)

    Carson, Jeremy; Corner, Brian D.; Crockett, Eric; Li, Peng; Paquette, Steven

    2008-02-01

    A common limitation of laser line three-Dimensional (3D) scanners is the inability to scan objects with surfaces that are either parallel to the laser line or that self-occlude. Filling in missing areas adds some unwanted inaccuracy to the 3D model. Capturing the human head with a Cyberware PS Head Scanner is an example of obtaining a model where the incomplete areas are difficult to fill accurately. The PS scanner uses a single vertical laser line to illuminate the head and is unable to capture data at top of the head, where the line of sight is tangent to the surface, and under the chin, an area occluded by the chin when the subject looks straight forward. The Cyberware PX Scanner was developed to obtain this missing 3D head data. The PX scanner uses two cameras offset at different angles to provide a more detailed head scan that captures surfaces missed by the PS scanner. The PX scanner cameras also use new technology to obtain color maps that are of higher resolution than the PS Scanner. The two scanners were compared in terms of amount of surface captured (surface area and volume) and the quality of head measurements when compared to direct measurements obtained through standard anthropometry methods. Relative to the PS scanner, the PX head scans were more complete and provided the full set of head measurements, but actual measurement values, when available from both scanners, were about the same.

  9. Finding and tracing human MSC in 3D microenvironments with the photoconvertible protein Dendra2

    NASA Astrophysics Data System (ADS)

    Caires, Hugo R.; Gomez-Lazaro, Maria; Oliveira, Carla M.; Gomes, David; Mateus, Denisa D.; Oliveira, Carla; Barrias, Cristina C.; Barbosa, Mário A.; Almeida, Catarina R.

    2015-05-01

    Mesenchymal Stem/Stromal Cells (MSC) are a promising cell type for cell-based therapies - from tissue regeneration to treatment of autoimmune diseases - due to their capacity to migrate to damaged tissues, to differentiate in different lineages and to their immunomodulatory and paracrine properties. Here, a simple and reliable imaging technique was developed to study MSC dynamical behavior in natural and bioengineered 3D matrices. Human MSC were transfected to express a fluorescent photoswitchable protein, Dendra2, which was used to highlight and follow the same group of cells for more than seven days, even if removed from the microscope to the incubator. This strategy provided reliable tracking in 3D microenvironments with different properties, including the hydrogels Matrigel and alginate as well as chitosan porous scaffolds. Comparison of cells mobility within matrices with tuned physicochemical properties revealed that MSC embedded in Matrigel migrated 64% more with 5.2 mg protein/mL than with 9.6 mg/mL and that MSC embedded in RGD-alginate migrated 51% faster with 1% polymer concentration than in 2% RGD-alginate. This platform thus provides a straightforward approach to characterize MSC dynamics in 3D and has applications in the field of stem cell biology and for the development of biomaterials for tissue regeneration.

  10. Quantitative 3D Tracing of Gene-delivery Viral Vectors in Human Cells and Animal Tissues

    PubMed Central

    Xiao, Ping-Jie; Li, Chengwen; Neumann, Aaron; Samulski, R Jude

    2012-01-01

    Trafficking through a variety of cellular structures and organelles is essential for the interaction between gene-delivery vectors (i.e., adeno-associated virus (AAV) and liposomes) and host cells/tissues. Here, we present a method of computer-assisted quantitative 3D biodistribution microscopy that samples the whole population of fluorescently-labeled vectors and document their trafficking routes. Using AAV as a working model, we first experimentally defined numerical parameters for the singularity of Cy5-labeled particles by combining confocal microscopy and atomic force microscopy (AFM). We then developed a robust approach that integrates single-particle fluorescence imaging with 3D deconvolution and isosurface rendering to quantitate viral distribution and trafficking in human cells as well as animal tissues at the single-particle level. Using this quantitative method, we uncovered an as yet uncharacterized rate-limiting step during viral cell entry, while delineating nuclear accumulation of virions during the first 8 hours postinfection. Further, our studies revealed for the first time that following intramuscular injection, AAV spread progressively across muscle tissues through endomysium between myofibers instead of traversing through target cells. Such 3D resolution and quantitative dissection of vector–host interactions at the subcellular level should significantly improve our ability to resolve trafficking mechanisms of gene-delivery particles and facilitate the development of enhanced viral vectors. PMID:22108857

  11. Fractality in the neuron axonal topography of the human brain based on 3-D diffusion MRI

    NASA Astrophysics Data System (ADS)

    Katsaloulis, P.; Ghosh, A.; Philippe, A. C.; Provata, A.; Deriche, R.

    2012-05-01

    In this work the fractal architecture of the neuron axonal topography of the human brain is evaluated, as derived from 3-D diffusion MRI (dMRI) acquisitions. This is a 3D extension of work performed previously in 2D regions of interest (ROIs), where the fractal dimension of the neuron axonal topography was computed from dMRI data. A group study with 18 subjects is here conducted and the fractal dimensions D f of the entire 3-D volume of the brains is estimated via the box counting, the correlation dimension and the fractal mass dimension methods. The neuron axon data is obtained using tractography algorithms on diffusion tensor imaging of the brain. We find that all three calculations of D f give consistent results across subjects, namely, they demonstrate fractal characteristics in the short and medium length scales: different fractal exponents prevail at different length scales, an indication of multifractality. We surmise that this complexity stems as a collective property emerging when many local brain units, performing different functional tasks and having different local topologies, are recorded together.

  12. 3D cultured immortalized human hepatocytes useful to develop drugs for blood-borne HCV

    SciTech Connect

    Aly, Hussein Hassan; Shimotohno, Kunitada; Hijikata, Makoto

    2009-02-06

    Due to the high polymorphism of natural hepatitis C virus (HCV) variants, existing recombinant HCV replication models have failed to be effective in developing effective anti-HCV agents. In the current study, we describe an in vitro system that supports the infection and replication of natural HCV from patient blood using an immortalized primary human hepatocyte cell line cultured in a three-dimensional (3D) culture system. Comparison of the gene expression profile of cells cultured in the 3D system to those cultured in the existing 2D system demonstrated an up-regulation of several genes activated by peroxisome proliferator-activated receptor alpha (PPAR{alpha}) signaling. Furthermore, using PPAR{alpha} agonists and antagonists, we also analyzed the effect of PPAR{alpha} signaling on the modulation of HCV replication using this system. The 3D in vitro system described in this study provides significant insight into the search for novel anti-HCV strategies that are specific to various strains of HCV.

  13. Wavelet-based adaptive numerical simulation of unsteady 3D flow around a bluff body

    NASA Astrophysics Data System (ADS)

    de Stefano, Giuliano; Vasilyev, Oleg

    2012-11-01

    The unsteady three-dimensional flow past a two-dimensional bluff body is numerically simulated using a wavelet-based method. The body is modeled by exploiting the Brinkman volume-penalization method, which results in modifying the governing equations with the addition of an appropriate forcing term inside the spatial region occupied by the obstacle. The volume-penalized incompressible Navier-Stokes equations are numerically solved by means of the adaptive wavelet collocation method, where the non-uniform spatial grid is dynamically adapted to the flow evolution. The combined approach is successfully applied to the simulation of vortex shedding flow behind a stationary prism with square cross-section. The computation is conducted at transitional Reynolds numbers, where fundamental unstable three-dimensional vortical structures exist, by well-predicting the unsteady forces arising from fluid-structure interaction.

  14. Subcellular Microanatomy by 3D Deconvolution Brightfield Microscopy: Method and Analysis Using Human Chromatin in the Interphase Nucleus

    PubMed Central

    Tadrous, Paul Joseph

    2012-01-01

    Anatomy has advanced using 3-dimensional (3D) studies at macroscopic (e.g., dissection, injection moulding of vessels, radiology) and microscopic (e.g., serial section reconstruction with light and electron microscopy) levels. This paper presents the first results in human cells of a new method of subcellular 3D brightfield microscopy. Unlike traditional 3D deconvolution and confocal techniques, this method is suitable for general application to brightfield microscopy. Unlike brightfield serial sectioning it has subcellular resolution. Results are presented of the 3D structure of chromatin in the interphase nucleus of two human cell types, hepatocyte and plasma cell. I show how the freedom to examine these structures in 3D allows greater morphological discrimination between and within cell types and the 3D structural basis for the classical “clock-face” motif of the plasma cell nucleus is revealed. Potential for further applications discussed. PMID:22567315

  15. A 3D reconstruction method of the body envelope from biplanar X-rays: Evaluation of its accuracy and reliability.

    PubMed

    Nérot, Agathe; Choisne, Julie; Amabile, Célia; Travert, Christophe; Pillet, Hélène; Wang, Xuguang; Skalli, Wafa

    2015-12-16

    The aim of this study was to propose a novel method for reconstructing the external body envelope from the low dose biplanar X-rays of a person. The 3D body envelope was obtained by deforming a template to match the surface profiles in two X-rays images in three successive steps: global morphing to adopt the position of a person and scale the template׳s body segments, followed by a gross deformation and a fine deformation using two sets of pre-defined control points. To evaluate the method, a biplanar X-ray acquisition was obtained from head to foot for 12 volunteers in a standing posture. Up to 172 radio-opaque skin markers were attached to the body surface and used as reference positions. Each envelope was reconstructed three times by three operators. Results showed a bias lower than 7mm and a confidence interval (95%) of reproducibility lower than 6mm for all body parts, comparable to other existing methods matching a template onto stereographic photographs. The proposed method offers the possibility of reconstructing body shape in addition to the skeleton using a low dose biplanar X-rays system. PMID:26592437

  16. Nonlinear 3D projection printing of concave hydrogel microstructures for long-term multicellular spheroid and embryoid body culture.

    PubMed

    Hribar, K C; Finlay, D; Ma, X; Qu, X; Ondeck, M G; Chung, P H; Zanella, F; Engler, A J; Sheikh, F; Vuori, K; Chen, S C

    2015-06-01

    Long-term culture and monitoring of individual multicellular spheroids and embryoid bodies (EBs) remains a challenge for in vitro cell propagation. Here, we used a continuous 3D projection printing approach - with an important modification of nonlinear exposure - to generate concave hydrogel microstructures that permit spheroid growth and long-term maintenance, without the need for spheroid transfer. Breast cancer spheroids grown to 10 d in the concave structures showed hypoxic cores and signs of necrosis using immunofluorescent and histochemical staining, key features of the tumor microenvironment in vivo. EBs consisting of induced pluripotent stem cells (iPSCs) grown on the hydrogels demonstrated narrow size distribution and undifferentiated markers at 3 d, followed by signs of differentiation by the presence of cavities and staining of the three germ layers at 10 d. These findings demonstrate a new method for long-term (e.g. beyond spheroid formation at day 2, and with media exchange) 3D cell culture that should be able to assist in cancer spheroid studies as well as embryogenesis and patient-derived disease modeling with iPSC EBs. PMID:25900329

  17. Nonlinear 3D Projection Printing of Concave Hydrogel Microstructures for Long-Term Multicellular Spheroid and Embryoid Body Culture

    PubMed Central

    Hribar, K.C; Finlay, D.; Ma, X.; Qu, X.; Ondeck, M. G.; Chung, P. H.; Zanella, F.; Engler, A. J.; Sheikh, F.; Vuori, K.; Chen, S.

    2015-01-01

    Long-term culture and monitoring of individual multicellular spheroids and embryoid bodies (EBs) remains a challenge for in vitro cell propogation. Here, we used a continuous 3D projection printing approach – with an important modification of nonlinear exposure — to generate concave hydrogel microstructures that permit spheroid growth and long-term maintenance, without the need for spheroid transfer. Breast cancer spheroids grown to 10 d in the concave structures showed hypoxic cores and signs of necrosis using immunofluorescent and histochemical staining, key features of the tumor microenvironment in vivo. EBs consisting of induced pluripotent stem cells (iPSCs) grown on the hydrogels demonstrated narrow size distribution and undifferentiated markers at 3 d, followed by signs of differentiation by the presence of cavities and staining of the three germ layers at 10 d. These findings demonstrate a new method for long-term (e.g. beyond spheroid formation at day 2, and with media exchange) 3D cell culture that should be able to assist in cancer spheroid studies as well as embryogenesis and patient-derived disease modeling with iPSC EBs. PMID:25900329

  18. 3D Normal Human Neural Progenitor Tissue-Like Assemblies: A Model of Persistent VZV Infection

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.

    2013-01-01

    Varicella-zoster virus (VZV) is a neurotropic human alphaherpesvirus that causes varicella upon primary infection, establishes latency in multiple ganglionic neurons, and can reactivate to cause zoster. Live attenuated VZV vaccines are available; however, they can also establish latent infections and reactivate. Studies of VZV latency have been limited to the analyses of human ganglia removed at autopsy, as the virus is strictly a human pathogen. Recently, terminally differentiated human neurons have received much attention as a means to study the interaction between VZV and human neurons; however, the short life-span of these cells in culture has limited their application. Herein, we describe the construction of a model of normal human neural progenitor cells (NHNP) in tissue-like assemblies (TLAs), which can be successfully maintained for at least 180 days in three-dimensional (3D) culture, and exhibit an expression profile similar to that of human trigeminal ganglia. Infection of NHNP TLAs with cell-free VZV resulted in a persistent infection that was maintained for three months, during which the virus genome remained stable. Immediate-early, early and late VZV genes were transcribed, and low-levels of infectious VZV were recurrently detected in the culture supernatant. Our data suggest that NHNP TLAs are an effective system to investigate long-term interactions of VZV with complex assemblies of human neuronal cells.

  19. Human basal body basics.

    PubMed

    Vertii, Anastassiia; Hung, Hui-Fang; Hehnly, Heidi; Doxsey, Stephen

    2016-01-01

    In human cells, the basal body (BB) core comprises a ninefold microtubule-triplet cylindrical structure. Distal and subdistal appendages are located at the distal end of BB, where they play indispensable roles in cilium formation and function. Most cells that arrest in the G0 stage of the cell cycle initiate BB docking at the plasma membrane followed by BB-mediated growth of a solitary primary cilium, a structure required for sensing the extracellular environment and cell signaling. In addition to the primary cilium, motile cilia are present in specialized cells, such as sperm and airway epithelium. Mutations that affect BB function result in cilia dysfunction. This can generate syndromic disorders, collectively called ciliopathies, for which there are no effective treatments. In this review, we focus on the features and functions of BBs and centrosomes in Homo sapiens. PMID:26981235

  20. Three-dimensional surface anthropometry: Applications to the human body

    NASA Astrophysics Data System (ADS)

    Jones, Peter R. M.; Rioux, Marc

    1997-09-01

    Anthropometry is the study of the measurement of the human body. By tradition this has been carried out taking the measurements from body surface landmarks, such as circumferences and breadths, using simple instruments like tape measures and calipers. Three-dimensional (3D) surface anthropometry enables us to extend the study to 3D geometry and morphology of mainly external human body tissues. It includes the acquisition, indexing, transmission, archiving, retrieval, interrogation and analysis of body size, shape, and surface together with their variability throughout growth and development to adulthood. While 3D surface anthropometry surveying is relatively new, anthropometric surveying using traditional tools, such as calipers and tape measures, is not. Recorded studies of the human form date back to ancient times. Since at least the 17th century 1 investigators have made attempts to measure the human body for physical properties such as weight, size, and centre of mass. Martin documented 'standard' body measurement methods in a handbook in 1928. 2 This paper reviews the past and current literature devoted to the applications of 3D anthropometry because true 3D scanning of the complete human body is fast becoming a reality. We attempt to take readers through different forms of technology which deal with simple forms of projected light to the more complex advanced forms of laser and video technology giving low and/or high resolution 3D data. Information is also given about image capture of size and shape of the whole as well as most component parts of the human body. In particular, the review describes with explanations a multitude of applications, for example, medical, product design, human engineering, anthropometry and ergonomics etc.

  1. Human factors flight trial analysis for 2D/3D SVS

    NASA Astrophysics Data System (ADS)

    Schiefele, Jens; Howland, Duncan; Maris, John; Wipplinger, Patrick

    2004-08-01

    The paper describes flight trials performed in Reno, NV. Flight trial were conducted with a Cheyenne 1 from Marinvent. Twelve pilots flew the Cheyenne in seventy-two approaches to the Reno airfield. All pilots flew completely andomized settings. Three different settings (standard displays, 2D moving map, and 2D/3D moving map) were evaluated. They included seamless evaluation for STAR, approach, and taxi operations. The flight trial goal was to evaluate the objective performance of pilots compared among the different settings. As dependent variables, positional and time accuracy were measured. Analysis was conducted by an ANOVA test. In parallel, all pilots answered subjective Cooper-Harper, situation awareness rating technique (SART), situational awareness probe (SAP), and questionnaires.This article describes the human factor analysis from flight trials performed in Reno, NV. Flight trials were conducted with a Cheyenne 1 from Marinvent. Thirteen pilots flew the Cheyenne in seventy-two approaches to the Reno airfield. All pilots flew completely randomized settings. Three different display configurations: Elec. Flight Information System (EFIS), EFIS and 2D moving map, and 3D SVS Primary Flight Display (PFD) and 2D moving map were evaluated. They included normal/abnormal procedure evaluation for: Steep turns and reversals, Unusual attitude recovery, Radar vector guidance towards terrain, Non-precision approaches, En-route alternate for non-IFR rated pilots encountering IMC, and Taxiing on complex taxi-routes. The flight trial goal was to evaluate the objective performance of pilots for the different display configurations. As dependent variables, positional and time data were measured. Analysis was performed by an ANOVA test. In parallel, all pilots answered subjective NASA Task Load Index, Cooper-Harper, Situation Awareness Rating Technique (SART), and questionnaires. The result shows that pilots flying 2D/3D SVS perform no worse than pilots with conventional

  2. Aerodynamic heating on 3-D bodies including the effects of entropy-layer swallowing

    NASA Technical Reports Server (NTRS)

    Dejarnette, F. R.; Hamilton, H. H.

    1974-01-01

    A relatively simple method was developed previously (authors, 1973) for calculating laminar, transitional, and turbulent heating rates on three-dimensional bodies in hypersonic flows. This method was shown to yield reasonably accurate results for laminar heating on blunted circular and elliptical cones and an earlier version of the space shuttle vehicle. As the boundary layer along the surface grows, more and more of the inviscid-flow mass is entrained into the boundary layer, and the streamlines which passed through the nearly normal portion of the bow shock wave are 'swallowed' by the boundary layer. This phenomenon is often referred to as entropy-layer or streamline swallowing, and it can have a significant effect on the calculated heating rates. An approximate, yet simple, method for including the effects of entropy-layer swallowing in the heating-rate calculations is given.

  3. Force sensing using 3D displacement measurements in linear elastic bodies

    NASA Astrophysics Data System (ADS)

    Feng, Xinzeng; Hui, Chung-Yuen

    2016-07-01

    In cell traction microscopy, the mechanical forces exerted by a cell on its environment is usually determined from experimentally measured displacement by solving an inverse problem in elasticity. In this paper, an innovative numerical method is proposed which finds the "optimal" traction to the inverse problem. When sufficient regularization is applied, we demonstrate that the proposed method significantly improves the widely used approach using Green's functions. Motivated by real cell experiments, the equilibrium condition of a slowly migrating cell is imposed as a set of equality constraints on the unknown traction. Our validation benchmarks demonstrate that the numeric solution to the constrained inverse problem well recovers the actual traction when the optimal regularization parameter is used. The proposed method can thus be applied to study general force sensing problems, which utilize displacement measurements to sense inaccessible forces in linear elastic bodies with a priori constraints.

  4. Resonances in the forced turbulent wake past a 3D blunt body

    NASA Astrophysics Data System (ADS)

    Barros, Diogo; Borée, Jacques; Noack, Bernd R.; Spohn, Andreas

    2016-06-01

    We study the resonances of a forced turbulent wake past a flat-based bluff body using symmetric and antisymmetric actuation modes. The natural, unforced wake flow exhibits broadband dynamics superimposed on oscillatory motions linked to the reminiscent laminar Bénard-von Kármán instability in the turbulent flow. Harmonic and subharmonic resonances can be controlled by the phase relationship of periodic forcing and are linked to the symmetry properties of vortex shedding. Symmetric forcing leads to a strong subharmonic amplification of vortex shedding in the wake, but no harmonic excitation. The robustness of the subharmonic resonance is confirmed at different Reynolds numbers. Antisymmetric actuation, however, promotes a harmonic resonance with very similar wake and drag features.

  5. Force sensing using 3D displacement measurements in linear elastic bodies

    NASA Astrophysics Data System (ADS)

    Feng, Xinzeng; Hui, Chung-Yuen

    2016-04-01

    In cell traction microscopy, the mechanical forces exerted by a cell on its environment is usually determined from experimentally measured displacement by solving an inverse problem in elasticity. In this paper, an innovative numerical method is proposed which finds the "optimal" traction to the inverse problem. When sufficient regularization is applied, we demonstrate that the proposed method significantly improves the widely used approach using Green's functions. Motivated by real cell experiments, the equilibrium condition of a slowly migrating cell is imposed as a set of equality constraints on the unknown traction. Our validation benchmarks demonstrate that the numeric solution to the constrained inverse problem well recovers the actual traction when the optimal regularization parameter is used. The proposed method can thus be applied to study general force sensing problems, which utilize displacement measurements to sense inaccessible forces in linear elastic bodies with a priori constraints.

  6. Distributed collaborative environment with real-time tracking of 3D body postures

    NASA Astrophysics Data System (ADS)

    Alisi, Thomas M.; Del Bimbo, Alberto; Pucci, Fabio; Valli, Alessandro

    2003-12-01

    In this paper a multi-user motion capture system is presented, where users work from separate locations and interact in a common virtual environment. The system functions well on low-end personal computers; it implements a natural human/machine interaction due to the complete absence of markers and weak constraints on users' clothes and environment lighting. It is suitable for every-day use, where the great precision reached by complex commercial systems is not the principal requisite.

  7. ZIP3D: An elastic and elastic-plastic finite-element analysis program for cracked bodies

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Newman, J. C., Jr.

    1990-01-01

    ZIP3D is an elastic and an elastic-plastic finite element program to analyze cracks in three dimensional solids. The program may also be used to analyze uncracked bodies or multi-body problems involving contacting surfaces. For crack problems, the program has several unique features including the calculation of mixed-mode strain energy release rates using the three dimensional virtual crack closure technique, the calculation of the J integral using the equivalent domain integral method, the capability to extend the crack front under monotonic or cyclic loading, and the capability to close or open the crack surfaces during cyclic loading. The theories behind the various aspects of the program are explained briefly. Line-by-line data preparation is presented. Input data and results for an elastic analysis of a surface crack in a plate and for an elastic-plastic analysis of a single-edge-crack-tension specimen are also presented.

  8. Generation and transplantation of reprogrammed human neurons in the brain using 3D microtopographic scaffolds

    PubMed Central

    Carlson, Aaron L.; Bennett, Neal K.; Francis, Nicola L.; Halikere, Apoorva; Clarke, Stephen; Moore, Jennifer C.; Hart, Ronald P.; Paradiso, Kenneth; Wernig, Marius; Kohn, Joachim; Pang, Zhiping P.; Moghe, Prabhas V.

    2016-01-01

    Cell replacement therapy with human pluripotent stem cell-derived neurons has the potential to ameliorate neurodegenerative dysfunction and central nervous system injuries, but reprogrammed neurons are dissociated and spatially disorganized during transplantation, rendering poor cell survival, functionality and engraftment in vivo. Here, we present the design of three-dimensional (3D) microtopographic scaffolds, using tunable electrospun microfibrous polymeric substrates that promote in situ stem cell neuronal reprogramming, neural network establishment and support neuronal engraftment into the brain. Scaffold-supported, reprogrammed neuronal networks were successfully grafted into organotypic hippocampal brain slices, showing an ∼3.5-fold improvement in neurite outgrowth and increased action potential firing relative to injected isolated cells. Transplantation of scaffold-supported neuronal networks into mouse brain striatum improved survival ∼38-fold at the injection site relative to injected isolated cells, and allowed delivery of multiple neuronal subtypes. Thus, 3D microscale biomaterials represent a promising platform for the transplantation of therapeutic human neurons with broad neuro-regenerative relevance. PMID:26983594

  9. Wound healing properties of a 3-D scaffold comprising soluble silkworm gland hydrolysate and human collagen.

    PubMed

    Kim, Kyu-Oh; Lee, Youngjun; Hwang, Jung-Wook; Kim, Hojin; Kim, Sun Mi; Chang, Sung Woon; Lee, Heui Sam; Choi, Yong-Soo

    2014-04-01

    Biomaterials that serve as scaffolds for cell proliferation and differentiation are increasingly being used in wound repair. In this study, the potential regenerative properties of a 3-D scaffold containing soluble silkworm gland hydrolysate (SSGH) and human collagen were evaluated. The scaffold was generated by solid-liquid phase separation and a freeze-drying method using a homogeneous aqueous solution. The porosity, swelling behavior, protein release, cytotoxicity, and antioxidative properties of scaffolds containing various ratios of SSGH and collagen were evaluated. SSGH/collagen scaffolds had a high porosity of 61-81% and swelling behavior studies demonstrated a 50-75% increase in swelling, along with complete protein release in the presence of phosphate-buffered saline. Cytocompatibility of the SSGH/collagen scaffold was demonstrated using mesenchymal stem cells from human umbilical cord. Furthermore, SSGH/collagen efficiently attenuated oxidative stress-induced cell damage. In an in vivo mouse model of wound healing, the SSGH/collagen scaffold accelerated wound re-epithelialization over a 15-day period. Overall, the microporous SSGH/collagen 3-D scaffold maintained optimal hydration of the exposed tissues and decreased wound healing time. These results contribute to the generation of advanced wound healing materials and may have future therapeutic implications. PMID:24503353

  10. Standardized 3D Bioprinting of Soft Tissue Models with Human Primary Cells.

    PubMed

    Rimann, Markus; Bono, Epifania; Annaheim, Helene; Bleisch, Matthias; Graf-Hausner, Ursula

    2016-08-01

    Cells grown in 3D are more physiologically relevant than cells cultured in 2D. To use 3D models in substance testing and regenerative medicine, reproducibility and standardization are important. Bioprinting offers not only automated standardizable processes but also the production of complex tissue-like structures in an additive manner. We developed an all-in-one bioprinting solution to produce soft tissue models. The holistic approach included (1) a bioprinter in a sterile environment, (2) a light-induced bioink polymerization unit, (3) a user-friendly software, (4) the capability to print in standard labware for high-throughput screening, (5) cell-compatible inkjet-based printheads, (6) a cell-compatible ready-to-use BioInk, and (7) standard operating procedures. In a proof-of-concept study, skin as a reference soft tissue model was printed. To produce dermal equivalents, primary human dermal fibroblasts were printed in alternating layers with BioInk and cultured for up to 7 weeks. During long-term cultures, the models were remodeled and fully populated with viable and spreaded fibroblasts. Primary human dermal keratinocytes were seeded on top of dermal equivalents, and epidermis-like structures were formed as verified with hematoxylin and eosin staining and immunostaining. However, a fully stratified epidermis was not achieved. Nevertheless, this is one of the first reports of an integrative bioprinting strategy for industrial routine application. PMID:25609254

  11. CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription.

    PubMed

    Tang, Zhonghui; Luo, Oscar Junhong; Li, Xingwang; Zheng, Meizhen; Zhu, Jacqueline Jufen; Szalaj, Przemyslaw; Trzaskoma, Pawel; Magalska, Adriana; Wlodarczyk, Jakub; Ruszczycki, Blazej; Michalski, Paul; Piecuch, Emaly; Wang, Ping; Wang, Danjuan; Tian, Simon Zhongyuan; Penrad-Mobayed, May; Sachs, Laurent M; Ruan, Xiaoan; Wei, Chia-Lin; Liu, Edison T; Wilczynski, Grzegorz M; Plewczynski, Dariusz; Li, Guoliang; Ruan, Yijun

    2015-12-17

    Spatial genome organization and its effect on transcription remains a fundamental question. We applied an advanced chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) strategy to comprehensively map higher-order chromosome folding and specific chromatin interactions mediated by CCCTC-binding factor (CTCF) and RNA polymerase II (RNAPII) with haplotype specificity and nucleotide resolution in different human cell lineages. We find that CTCF/cohesin-mediated interaction anchors serve as structural foci for spatial organization of constitutive genes concordant with CTCF-motif orientation, whereas RNAPII interacts within these structures by selectively drawing cell-type-specific genes toward CTCF foci for coordinated transcription. Furthermore, we show that haplotype variants and allelic interactions have differential effects on chromosome configuration, influencing gene expression, and may provide mechanistic insights into functions associated with disease susceptibility. 3D genome simulation suggests a model of chromatin folding around chromosomal axes, where CTCF is involved in defining the interface between condensed and open compartments for structural regulation. Our 3D genome strategy thus provides unique insights in the topological mechanism of human variations and diseases. PMID:26686651

  12. The Relationship Between Human Nucleolar Organizer Regions and Nucleoli, Probed by 3D-ImmunoFISH.

    PubMed

    van Sluis, Marjolein; van Vuuren, Chelly; McStay, Brian

    2016-01-01

    3D-immunoFISH is a valuable technique to compare the localization of DNA sequences and proteins in cells where three-dimensional structure has been preserved. As nucleoli contain a multitude of protein factors dedicated to ribosome biogenesis and form around specific chromosomal loci, 3D-immunoFISH is a particularly relevant technique for their study. In human cells, nucleoli form around transcriptionally active ribosomal gene (rDNA) arrays termed nucleolar organizer regions (NORs) positioned on the p-arms of each of the acrocentric chromosomes. Here, we provide a protocol for fixing and permeabilizing human cells grown on microscope slides such that nucleolar proteins can be visualized using antibodies and NORs visualized by DNA FISH. Antibodies against UBF recognize transcriptionally active rDNA/NORs and NOP52 antibodies provide a convenient way of visualizing the nucleolar volume. We describe a probe designed to visualize rDNA and introduce a probe comprised of NOR distal sequences, which can be used to identify or count individual NORs. PMID:27576706

  13. 3D Reconstruction of the Vortex in a Human Right Ventricle Model using High Speed PIV

    NASA Astrophysics Data System (ADS)

    Kheradvar, Arash; Falahatpisheh, Ahmad

    2011-11-01

    This work aims to characterize the formation process and translation of the vortex, which forms along with the trans-tricuspid jet in a realistic model of a human right ventricle (RV). A clear model of the RV made of silicone rubber was carefully casted in real size from echocardiographic data of an adult human heart. The RV model was used in our heart pulsed-flow simulator at KLAB at UCI to perform experiments. Bioprosthetic heart valves in appropriate sizes were used at tricuspid and pulmonary positions. Multi-planar high-speed PIV was performed to capture and reconstruct the 3D flow field with a 1-millisecond time gap between each two velocity frames. λ2 iso-surfaces were used to illustrate the evolution of vortex cores. The highly asymmetric shape of the RV chamber results in a complex 3D trans-tricuspid vortex that forms and translates toward right ventricular outflow tract, and finally departs RV from pulmonary valve. Through this study, -for the first time- the formation, evolution and pathway of the RV vortex have been characterized in vitro.

  14. Drag Prediction for the NASA CRM Wing-Body-Tail Using CFL3D and OVERFLOW on an Overset Mesh

    NASA Technical Reports Server (NTRS)

    Sclafani, Anthony J.; DeHaan, Mark A.; Vassberg, John C.; Rumsey, Christopher L.; Pulliam, Thomas H.

    2010-01-01

    In response to the fourth AIAA CFD Drag Prediction Workshop (DPW-IV), the NASA Common Research Model (CRM) wing-body and wing-body-tail configurations are analyzed using the Reynolds-averaged Navier-Stokes (RANS) flow solvers CFL3D and OVERFLOW. Two families of structured, overset grids are built for DPW-IV. Grid Family 1 (GF1) consists of a coarse (7.2 million), medium (16.9 million), fine (56.5 million), and extra-fine (189.4 million) mesh. Grid Family 2 (GF2) is an extension of the first and includes a superfine (714.2 million) and an ultra-fine (2.4 billion) mesh. The medium grid anchors both families with an established build process for accurate cruise drag prediction studies. This base mesh is coarsened and enhanced to form a set of parametrically equivalent grids that increase in size by a factor of roughly 3.4 from one level to the next denser level. Both CFL3D and OVERFLOW are run on GF1 using a consistent numerical approach. Additional OVERFLOW runs are made to study effects of differencing scheme and turbulence model on GF1 and to obtain results for GF2. All CFD results are post-processed using Richardson extrapolation, and approximate grid-converged values of drag are compared. The medium grid is also used to compute a trimmed drag polar for both codes.

  15. Nonintrusive 3D reconstruction of human bone models to simulate their bio-mechanical response

    NASA Astrophysics Data System (ADS)

    Alexander, Tsouknidas; Antonis, Lontos; Savvas, Savvakis; Nikolaos, Michailidis

    2012-06-01

    3D finite element models representing functional parts of the human skeletal system, have been repeatedly introduced over the last years, to simulate biomechanical response of anatomical characteristics or investigate surgical treatment. The reconstruction of geometrically accurate FEM models, poses a significant challenge for engineers and physicians, as recent advances in tissue engineering dictate highly customized implants, while facilitating the production of alloplast materials that are employed to restore, replace or supplement the function of human tissue. The premises of every accurate reconstruction method, is to encapture the precise geometrical characteristics of the examined tissue and thus the selection of a sufficient imaging technique is of the up-most importance. This paper reviews existing and potential applications related to the current state-of-the-art of medical imaging and simulation techniques. The procedures are examined by introducing their concepts; strengths and limitations, while the authors also present part of their recent activities in these areas. [Figure not available: see fulltext.

  16. Quantitative 3D molecular cutaneous absorption in human skin using label free nonlinear microscopy.

    PubMed

    Chen, Xueqin; Grégoire, Sébastien; Formanek, Florian; Galey, Jean-Baptiste; Rigneault, Hervé

    2015-02-28

    Understanding the penetration mechanisms of drugs into human skin is a key issue in pharmaceutical and cosmetics research. To date, the techniques available for percutaneous penetration of compounds fail to provide a quantitative 3D map of molecular concentration distribution in complex tissues as the detected microscopy images are an intricate combination of concentration distribution and laser beam attenuation upon deep penetration. Here we introduce and validate a novel framework for imaging and reconstructing molecular concentration within the depth of artificial and human skin samples. Our approach combines the use of deuterated molecular compounds together with coherent anti-Stokes Raman scattering spectroscopy and microscopy that permits targeted molecules to be unambiguously discriminated within skin layers. We demonstrate both intercellular and transcellular pathways for different active compounds, together with in-depth concentration profiles reflecting the detailed skin barrier architecture. This method provides an enabling platform for establishing functional activity of topically applied products. PMID:25550155

  17. Creation of 3D digital anthropomorphic phantoms which model actual patient non-rigid body motion as determined from MRI and position tracking studies of volunteers

    NASA Astrophysics Data System (ADS)

    Connolly, C. M.; Konik, A.; Dasari, P. K. R.; Segars, P.; Zheng, S.; Johnson, K. L.; Dey, J.; King, M. A.

    2011-03-01

    Patient motion can cause artifacts, which can lead to difficulty in interpretation. The purpose of this study is to create 3D digital anthropomorphic phantoms which model the location of the structures of the chest and upper abdomen of human volunteers undergoing a series of clinically relevant motions. The 3D anatomy is modeled using the XCAT phantom and based on MRI studies. The NURBS surfaces of the XCAT are interactively adapted to fit the MRI studies. A detailed XCAT phantom is first developed from an EKG triggered Navigator acquisition composed of sagittal slices with a 3 x 3 x 3 mm voxel dimension. Rigid body motion states are then acquired at breath-hold as sagittal slices partially covering the thorax, centered on the heart, with 9 mm gaps between them. For non-rigid body motion requiring greater sampling, modified Navigator sequences covering the entire thorax with 3 mm gaps between slices are obtained. The structures of the initial XCAT are then adapted to fit these different motion states. Simultaneous to MRI imaging the positions of multiple reflective markers on stretchy bands about the volunteer's chest and abdomen are optically tracked in 3D via stereo imaging. These phantoms with combined position tracking will be used to investigate both imaging-data-driven and motion-tracking strategies to estimate and correct for patient motion. Our initial application will be to cardiacperfusion SPECT imaging where the XCAT phantoms will be used to create patient activity and attenuation distributions for each volunteer with corresponding motion tracking data from the markers on the body-surface. Monte Carlo methods will then be used to simulate SPECT acquisitions, which will be used to evaluate various motion estimation and correction strategies.

  18. 3D visualization of aqueous humor outflow structures in-situ in humans.

    PubMed

    Kagemann, Larry; Wollstein, Gadi; Ishikawa, Hiroshi; Sigal, Ian A; Folio, Lindsey S; Xu, Juan; Gong, Haiyan; Schuman, Joel S

    2011-09-01

    Aqueous humor (AH) exiting the eye via the trabecular meshwork and Schlemm's canal (SC) passes through the deep and intrascleral venous plexus (ISVP) or directly through aqueous veins. The purpose of this study was to visualize the human AH outflow system 360° in three dimensions (3D) during active AH outflow in a virtual casting. The conventional AH outflow pathways of 7 donor eyes were imaged with a modified Bioptigen spectral-domain optical coherence tomography system (Bioptigen Inc, USA; SuperLum LTD, Ireland) at a perfusion pressure of 20 mmHg (N = 3), and 10 mmHg (N = 4). In all eyes, 36 scans (3 equally distributed in each clock hour), each covering a 2 × 3 × 2 mm volume (512 frames, each 512 × 1024 pixels), were obtained. All image data were black/white inverted, and the background subtracted (ImageJ 1.40 g, http://rsb.info.nih.gov/ij/). Contrast was adjusted to isolate the ISVP. SC, collector channels, the deep and ISVP, and episcleral veins were observed throughout the limbus. Aqueous veins could be observed extending into the episcleral veins. Individual scan ISVP castings were rendered and assembled in 3D space in Amira 4.1 (Visage Imaging Inc. USA). A 360-degree casting of the ISVP was obtained in all perfused eyes. The ISVP tended to be dense and overlapping in the superior and inferior quadrants, and thinner in the lateral quadrants. The human AH outflow pathway can be imaged using SD-OCT. The more superficial structures of the AH outflow pathway present with sufficient contrast as to be optically isolated and cast in-situ 360° in cadaver eye perfusion models. This approach may be useful as a model in future studies of human AH outflow. PMID:21514296

  19. Engineering a perfusable 3D human liver platform from iPS cells.

    PubMed

    Schepers, Arnout; Li, Cheri; Chhabra, Arnav; Seney, Benjamin Tschudy; Bhatia, Sangeeta

    2016-07-01

    In vitro models of human tissue are crucial to our ability to study human disease as well as develop safe and effective drug therapies. Models of single organs in static and microfluidic culture have been established and shown utility for modeling some aspects of health and disease; however, these systems lack multi-organ interactions that are critical to some aspects of drug metabolism and toxicity. Thus, as part of a consortium of researchers, we have developed a liver chip that meets the following criteria: (1) employs human iPS cells from a patient of interest, (2) cultures cells in perfusable 3D organoids, and (3) is robust to variations in perfusion rate so as to be compatible in series with other specialized tissue chips (e.g. heart, lung). In order to achieve this, we describe methods to form hepatocyte aggregates from primary and iPS-derived cells, alone and in co-culture with support cells. This necessitated a novel culture protocol for the interrupted differentiation of iPS cells that permits their removal from a plated surface and aggregation while maintaining phenotypic hepatic functions. In order to incorporate these 3D aggregates in a perfusable platform, we next encapsulated the cells in a PEG hydrogel to prevent aggregation and overgrowth once on chip. We adapted a C-trap chip architecture from the literature that enabled robust loading with encapsulated organoids and culture over a range of flow rates. Finally, we characterize the liver functions of this iHep organoid chip under perfusion and demonstrate a lifetime of at least 28 days. We envision that such this strategy can be generalized to other microfluidic tissue models and provides an opportunity to query patient-specific liver responses in vitro. PMID:27296616

  20. Primary human osteoblast culture on 3D porous collagen-hydroxyapatite scaffolds.

    PubMed

    Jones, Gemma L; Walton, Robin; Czernuszka, Jan; Griffiths, Sarah L; El Haj, Alicia J; Cartmell, Sarah H

    2010-09-15

    There is a need in tissue-engineering for 3D scaffolds that mimic the natural extracellular matrix of bone to enhance cell adhesion, proliferation, and differentiation. The scaffold is also required to be degradable. A highly porous scaffold has been developed to incorporate two of the extracellular components found in bone-collagen and hydroxyapatite (HA). The scaffold's collagen component is an afibrillar monomeric type I atelocollagen extracted from foetal calf's skin. This provided a novel environment for the inclusion of HA powder. Five hundred thousand primary human osteoblasts were seeded onto 4 mm cubed scaffolds that varied in ratio of HA to collagen. Weight ratios of 1:99, 25:75, 50:50, and 75:25 hydroxyapatite:collagen (HA:Collagen) were analysed. The scaffolds plus cells were cultured for 21 days. DNA assays and live/dead viability staining demonstrated that all of the scaffolds supported cell proliferation and viability. An alkaline phosphatase assay showed similar osteoblast phenotype maintenance on all of the 3D scaffolds analysed at 21 days. MicroCT analysis demonstrated an increase in total sample volume (correlating to increase in unmineralised matrix production). An even distribution of HA throughout the collagen matrix was observed using this technique. Also at 3 weeks, reductions in the percentage of the mineralised phase of the constructs were seen. These results indicate that each of the ratios of HA/collagen scaffolds have great potential for bone tissue engineering. PMID:20694991

  1. Rapid 3D human ribcage and kidney modeling for transcostal HIFU surgery

    NASA Astrophysics Data System (ADS)

    Cao, Rui; Gao, Jing; Melzer, Andreas; Nabi, Ghulam; Huang, Zhihong

    2012-11-01

    A rapid modeling technique for constructing human ribcage and kidney models for high intensity focused ultrasound through the ribcage is proposed and tested. In this study, a 3D model reconstructed from a patient's CT images provides solutions for the conversion of 3D image data into multi-part volumetric models of kidney and ribcage. The model was imported into PZFlex for simulation of acoustic field analysis. Tissue mimicking materials for the phantom were selected based on the acoustic characterisation result. The effect of the ribcage on HIFU sonication and acoustic pressure distribution were measured in the focal plane. Porcine ribcage sample was used in experiments for comparison. Results showed that with the presence of the ribcage phantom, the maximum temperature at the focus was reduced by approximately 60-70% and the maximum pressure at the focal zone was halved. Focus splitting with the ribcage in place was demonstrated both in experiments and simulations. The development of this model provides basis for using patient's data for transcostal HIFU research and maximise the efficiency of the HIFU surgery.

  2. 3D dose distribution calculation in a voxelized human phantom by means of Monte Carlo method.

    PubMed

    Abella, V; Miró, R; Juste, B; Verdú, G

    2010-01-01

    The aim of this work is to provide the reconstruction of a real human voxelized phantom by means of a MatLab program and the simulation of the irradiation of such phantom with the photon beam generated in a Theratron 780 (MDS Nordion) (60)Co radiotherapy unit, by using the Monte Carlo transport code MCNP (Monte Carlo N-Particle), version 5. The project results in 3D dose mapping calculations inside the voxelized antropomorphic head phantom. The program provides the voxelization by first processing the CT slices; the process follows a two-dimensional pixel and material identification algorithm on each slice and three-dimensional interpolation in order to describe the phantom geometry via small cubic cells, resulting in an MCNP input deck format output. Dose rates are calculated by using the MCNP5 tool FMESH, superimposed mesh tally, which gives the track length estimation of the particle flux in units of particles/cm(2). Furthermore, the particle flux is converted into dose by using the conversion coefficients extracted from the NIST Physical Reference Data. The voxelization using a three-dimensional interpolation technique in combination with the use of the FMESH tool of the MCNP Monte Carlo code offers an optimal simulation which results in 3D dose mapping calculations inside anthropomorphic phantoms. This tool is very useful in radiation treatment assessments, in which voxelized phantoms are widely utilized. PMID:19892556

  3. A second generation of physical anthropomorphic 3D breast phantoms based on human subject data

    NASA Astrophysics Data System (ADS)

    Nolte, Adam; Kiarashi, Nooshin; Samei, Ehsan; Segars, W. P.; Lo, Joseph Y.

    2014-03-01

    Previous fabrication of anthropomorphic breast phantoms has demonstrated their viability as a model for 2D (mammography) and 3D (tomosynthesis) breast imaging systems. Further development of these models will be essential for the evaluation of breast x-ray systems. There is also the potential to use them as the ground truth in virtual clinical trials. The first generation of phantoms was segmented from human subject dedicated breast computed tomography data and fabricated into physical models using highresolution 3D printing. Two variations were made. The first was a multi-material model (doublet) printed with two photopolymers to represent glandular and adipose tissues with the greatest physical contrast available, mimicking 75% and 35% glandular tissue. The second model was printed with a single 75% glandular equivalent photopolymer (singlet) to represent glandular tissue, which can be filled independently with an adipose-equivalent material such as oil. For this study, we have focused on improving the latter, the singlet phantom. First, the temporary oil filler has been replaced with a permanent adipose-equivalent urethane-based polymer. This offers more realistic contrast as compared to the multi-material approach at the expense of air bubbles and pockets that form during the filling process. Second, microcalcification clusters have been included in the singlet model via crushed eggshells, which have very similar chemical composition to calcifications in vivo. The results from these new prototypes demonstrate significant improvement over the first generation of anthropomorphic physical phantoms.

  4. Estimation of foot pressure from human footprint depths using 3D scanner

    NASA Astrophysics Data System (ADS)

    Wibowo, Dwi Basuki; Haryadi, Gunawan Dwi; Priambodo, Agus

    2016-03-01

    The analysis of normal and pathological variation in human foot morphology is central to several biomedical disciplines, including orthopedics, orthotic design, sports sciences, and physical anthropology, and it is also important for efficient footwear design. A classic and frequently used approach to study foot morphology is analysis of the footprint shape and footprint depth. Footprints are relatively easy to produce and to measure, and they can be preserved naturally in different soils. In this study, we need to correlate footprint depth with corresponding foot pressure of individual using 3D scanner. Several approaches are used for modeling and estimating footprint depths and foot pressures. The deepest footprint point is calculated from z max coordinate-z min coordinate and the average of foot pressure is calculated from GRF divided to foot area contact and identical with the average of footprint depth. Evaluation of footprint depth was found from importing 3D scanner file (dxf) in AutoCAD, the z-coordinates than sorted from the highest to the lowest value using Microsoft Excel to make footprinting depth in difference color. This research is only qualitatif study because doesn't use foot pressure device as comparator, and resulting the maximum pressure on calceneus is 3.02 N/cm2, lateral arch is 3.66 N/cm2, and metatarsal and hallux is 3.68 N/cm2.

  5. A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies

    NASA Astrophysics Data System (ADS)

    Gilmanov, Anvar; Sotiropoulos, Fotis

    2005-08-01

    A numerical method is developed for solving the 3D, unsteady, incompressible Navier-Stokes equations in Cartesian domains containing immersed boundaries of arbitrary geometrical complexity moving with prescribed kinematics. The governing equations are discretized on a hybrid staggered/non-staggered grid layout using second-order accurate finite-difference formulas. The discrete equations are integrated in time via a second-order accurate dual-time-stepping, artificial compressibility iteration scheme. Unstructured, triangular meshes are employed to discretize complex immersed boundaries. The nodes of the surface mesh constitute a set of Lagrangian control points used to track the motion of the flexible body. At every instant in time, the influence of the body on the flow is accounted for by applying boundary conditions at Cartesian grid nodes located in the exterior but in the immediate vicinity of the body by reconstructing the solution along the local normal to the body surface. Grid convergence tests are carried out for the flow induced by an oscillating sphere in a cubic cavity, which show that the method is second-order accurate. The method is validated by applying it to calculate flow in a Cartesian domain containing a rigid sphere rotating at constant angular velocity as well as flow induced by a flapping wing. The ability of the method to simulate flows in domains with arbitrarily complex moving bodies is demonstrated by applying to simulate flow past an undulating fish-like body and flow past an anatomically realistic planktonic copepod performing an escape-like maneuver.

  6. The biodigital human: a web-based 3D platform for medical visualization and education.

    PubMed

    Qualter, John; Sculli, Frank; Oliker, Aaron; Napier, Zachary; Lee, Sabrina; Garcia, Julio; Frenkel, Sally; Harnik, Victoria; Triola, Marc

    2012-01-01

    NYU School of Medicine's Division of Educational Informatics in collaboration with BioDigital Systems LLC (New York, NY) has created a virtual human body dataset that is being used for visualization, education and training and is accessible over modern web browsers. PMID:22357018

  7. Sci—Sat AM: Stereo — 01: 3D Pre-treatment Dose Verification for Stereotactic Body Radiation Therapy Patients

    SciTech Connect

    Asuni, G; Beek, T van; Van Utyven, E; McCowan, P; McCurdy, B.M.C.

    2014-08-15

    Radical treatment techniques such as stereotactic body radiation therapy (SBRT) are becoming popular and they involve delivery of large doses in fewer fractions. Due to this feature of SBRT, a high-resolution, pre-treatment dose verification method that makes use of a 3D patient representation would be appropriate. Such a technique will provide additional information about dose delivered to the target volume(s) and organs-at-risk (OARs) in the patient volume compared to 2D verification methods. In this work, we investigate an electronic portal imaging device (EPID) based pre-treatment QA method which provides an accurate reconstruction of the 3D-dose distribution in the patient model. Customized patient plans are delivered ‘in air’ and the portal images are collected using the EPID in cine mode. The images are then analysed to determine an estimate of the incident energy fluence. This is then passed to a collapsed-cone convolution dose algorithm which reconstructs a 3D patient dose estimate on the CT imaging dataset. To date, the method has been applied to 5 SBRT patient plans. Reconstructed doses were compared to those calculated by the TPS. Reconstructed mean doses were mostly within 3% of those in the TPS. DVHs of target volumes and OARs compared well. The Chi pass rates using 3%/3mm in the high dose region are greater than 97% in all cases. These initial results demonstrate clinical feasibility and utility of a robust, efficient, effective and convenient pre-treatment QA method using EPID. Research sponsored in part by Varian Medical Systems.

  8. What Is an Attractive Body? Using an Interactive 3D Program to Create the Ideal Body for You and Your Partner

    PubMed Central

    Crossley, Kara L.; Cornelissen, Piers L.; Tovée, Martin J.

    2012-01-01

    What is the ideal body size and shape that we want for ourselves and our partners? What are the important physical features in this ideal? And do both genders agree on what is an attractive body? To answer these questions we used a 3D interactive software system which allows our participants to produce a photorealistic, virtual male or female body. Forty female and forty male heterosexual Caucasian observers (females mean age 19.10 years, s.d. 1.01; 40 males mean age 19.84, s.d. 1.66) set their own ideal size and shape, and the size and shape of their ideal partner using the DAZ studio image manipulation programme. In this programme the shape and size of a 3D body can be altered along 94 independent dimensions, allowing each participant to create the exact size and shape of the body they want. The volume (and thus the weight assuming a standard density) and the circumference of the bust, waist and hips of these 3D models can then be measured. The ideal female body set by women (BMI = 18.9, WHR = 0.70, WCR = 0.67) was very similar to the ideal partner set by men, particularly in their BMI (BMI = 18.8, WHR = 0.73, WCR = 0.69). This was a lower BMI than the actual BMI of 39 of the 40 women. The ideal male body set by the men (BMI = 25.9, WHR = 0.87, WCR = 0.74) was very similar to the ideal partner set by the women (BMI = 24.5, WHR = 0.86, WCR = 0.77). This was a lower BMI than the actual BMI of roughly half of the men and a higher BMI than the other half. The results suggest a consistent preference for an ideal male and female body size and shape across both genders. The results also suggest that both BMI and torso shape are important components for the creation of the ideal body. PMID:23209791

  9. What is an attractive body? Using an interactive 3D program to create the ideal body for you and your partner.

    PubMed

    Crossley, Kara L; Cornelissen, Piers L; Tovée, Martin J

    2012-01-01

    What is the ideal body size and shape that we want for ourselves and our partners? What are the important physical features in this ideal? And do both genders agree on what is an attractive body? To answer these questions we used a 3D interactive software system which allows our participants to produce a photorealistic, virtual male or female body. Forty female and forty male heterosexual Caucasian observers (females mean age 19.10 years, s.d. 1.01; 40 males mean age 19.84, s.d. 1.66) set their own ideal size and shape, and the size and shape of their ideal partner using the DAZ studio image manipulation programme. In this programme the shape and size of a 3D body can be altered along 94 independent dimensions, allowing each participant to create the exact size and shape of the body they want. The volume (and thus the weight assuming a standard density) and the circumference of the bust, waist and hips of these 3D models can then be measured. The ideal female body set by women (BMI = 18.9, WHR = 0.70, WCR = 0.67) was very similar to the ideal partner set by men, particularly in their BMI (BMI = 18.8, WHR = 0.73, WCR = 0.69). This was a lower BMI than the actual BMI of 39 of the 40 women. The ideal male body set by the men (BMI = 25.9, WHR = 0.87, WCR = 0.74) was very similar to the ideal partner set by the women (BMI = 24.5, WHR = 0.86, WCR = 0.77). This was a lower BMI than the actual BMI of roughly half of the men and a higher BMI than the other half. The results suggest a consistent preference for an ideal male and female body size and shape across both genders. The results also suggest that both BMI and torso shape are important components for the creation of the ideal body. PMID:23209791

  10. Spontaneous gene transfection of human bone cells using 3D mineralized alginate-chitosan macrocapsules.

    PubMed

    Green, David W; Kim, Eun-Jung; Jung, Han-Sung

    2015-09-01

    The effectiveness of nonviral gene therapy remains uncertain because of low transfection efficiencies and high toxicities compared with viral-based strategies. We describe a simple system for transient transfection of continuous human cell lines, with low toxicity, using mineral-coated chitosan and alginate capsules. As proof-of-concept, we demonstrate transfection of Saos-2 and MG63 human osteosarcoma continuous cell lines with gfp, LacZ reporter genes, and a Sox-9 carrying plasmid, to illustrate expression of a functional gene with therapeutic relevance. We show that continuous cell lines transfect with significant efficiency of up to 65% possibly through the interplay between chitosan and DNA complexation and calcium/phosphate-induced translocation into cells entrapped within the 3D polysaccharide based environment, as evidenced by an absence of transfection in unmineralized and chitosan-free capsules. We demonstrated that our transfection system was equally effective at transfection of primary human bone marrow stromal cells. To illustrate, the Sox-9, DNA plasmid was spontaneously expressed in primary human bone marrow stromal cells at 7 days with up to 90% efficiency in two repeats. Mineralized polysaccharide macrocapsules are gene delivery vehicles with a number of biological and practical advantages. They are highly efficient at self-transfecting primary bone cells, with programmable spatial and temporal delivery prospects, premineralized bone-like environments, and have no cytotoxic effects, as compared with many other nonviral systems. PMID:25645372

  11. Telomere-surrounding regions are transcription-permissive 3D nuclear compartments in human cells

    SciTech Connect

    Quina, Ana Sofia; Parreira, Leonor . E-mail: lparreir@igc.gulbenkian.pt

    2005-07-01

    Positioning of genes relative to nuclear heterochromatic compartments is thought to help regulate their transcriptional activity. Given that human subtelomeric regions are rich in highly expressed genes, we asked whether human telomeres are related to transcription-permissive nuclear compartments. To address this question, we investigated in the nuclei of normal human lymphocytes the spatial relations of two constitutively expressed genes (ACTB and RARA) and three nuclear transcripts (ACTB, IL2RA and TCRB) to telomeres and centromeres, as a function of gene activity and transcription levels. We observed that genes and gene transcripts locate close to telomere clusters and away from chromocenters upon activation of transcription. These findings, together with the observation that SC35 domains, which are enriched in pre-mRNA processing factors, are in close proximity to telomeres, indicate that telomere-neighboring regions are permissive to gene expression in human cells. Therefore, the associations of telomeres observed in the interphase nucleus might contribute, as opposed to chromocenters, for the establishment of transcription-permissive 3D nuclear compartments.

  12. Outer electrospun polycaprolactone shell induces massive foreign body reaction and impairs axonal regeneration through 3D multichannel chitosan nerve guides.

    PubMed

    Duda, Sven; Dreyer, Lutz; Behrens, Peter; Wienecke, Soenke; Chakradeo, Tanmay; Glasmacher, Birgit; Haastert-Talini, Kirsten

    2014-01-01

    We report on the performance of composite nerve grafts with an inner 3D multichannel porous chitosan core and an outer electrospun polycaprolactone shell. The inner chitosan core provided multiple guidance channels for regrowing axons. To analyze the in vivo properties of the bare chitosan cores, we separately implanted them into an epineural sheath. The effects of both graft types on structural and functional regeneration across a 10 mm rat sciatic nerve gap were compared to autologous nerve transplantation (ANT). The mechanical biomaterial properties and the immunological impact of the grafts were assessed with histological techniques before and after transplantation in vivo. Furthermore during a 13-week examination period functional tests and electrophysiological recordings were performed and supplemented by nerve morphometry. The sheathing of the chitosan core with a polycaprolactone shell induced massive foreign body reaction and impairment of nerve regeneration. Although the isolated novel chitosan core did allow regeneration of axons in a similar size distribution as the ANT, the ANT was superior in terms of functional regeneration. We conclude that an outer polycaprolactone shell should not be used for the purpose of bioartificial nerve grafting, while 3D multichannel porous chitosan cores could be candidate scaffolds for structured nerve grafts. PMID:24818158

  13. Outer Electrospun Polycaprolactone Shell Induces Massive Foreign Body Reaction and Impairs Axonal Regeneration through 3D Multichannel Chitosan Nerve Guides

    PubMed Central

    Behrens, Peter; Wienecke, Soenke; Chakradeo, Tanmay; Glasmacher, Birgit

    2014-01-01

    We report on the performance of composite nerve grafts with an inner 3D multichannel porous chitosan core and an outer electrospun polycaprolactone shell. The inner chitosan core provided multiple guidance channels for regrowing axons. To analyze the in vivo properties of the bare chitosan cores, we separately implanted them into an epineural sheath. The effects of both graft types on structural and functional regeneration across a 10 mm rat sciatic nerve gap were compared to autologous nerve transplantation (ANT). The mechanical biomaterial properties and the immunological impact of the grafts were assessed with histological techniques before and after transplantation in vivo. Furthermore during a 13-week examination period functional tests and electrophysiological recordings were performed and supplemented by nerve morphometry. The sheathing of the chitosan core with a polycaprolactone shell induced massive foreign body reaction and impairment of nerve regeneration. Although the isolated novel chitosan core did allow regeneration of axons in a similar size distribution as the ANT, the ANT was superior in terms of functional regeneration. We conclude that an outer polycaprolactone shell should not be used for the purpose of bioartificial nerve grafting, while 3D multichannel porous chitosan cores could be candidate scaffolds for structured nerve grafts. PMID:24818158

  14. Influence of Young's moduli in 3D fluid-structure coupled models of the human cochlea

    NASA Astrophysics Data System (ADS)

    Böhnke, Frank; Semmelbauer, Sebastian; Marquardt, Torsten

    2015-12-01

    The acoustic wave propagation in the human cochlea was studied using a tapered box-model with linear assumptions respective to all mechanical parameters. The discretisation and evaluation is conducted by a commercial finite element package (ANSYS). The main difference to former models of the cochlea was the representation of the basilar membrane by a 3D elastic solid. The Young's moduli of this solid were modified to study their influence on the travelling wave. The lymph in the scala vestibuli and scala tympani was represented by a viscous and nearly incompressible fluid finite element approach. Our results show the maximum displacement for f = 2kHz at half of the length of the cochlea in accordance with former experiments. For low frequencies f <200 Hz nearly zero phase shifts were found, whereas for f =1 kHz it reaches values up to -12 cycles depending on the degree of orthotropy.

  15. Cognitive/emotional models for human behavior representation in 3D avatar simulations

    NASA Astrophysics Data System (ADS)

    Peterson, James K.

    2004-08-01

    Simplified models of human cognition and emotional response are presented which are based on models of auditory/ visual polymodal fusion. At the core of these models is a computational model of Area 37 of the temporal cortex which is based on new isocortex models presented recently by Grossberg. These models are trained using carefully chosen auditory (musical sequences), visual (paintings) and higher level abstract (meta level) data obtained from studies of how optimization strategies are chosen in response to outside managerial inputs. The software modules developed are then used as inputs to character generation codes in standard 3D virtual world simulations. The auditory and visual training data also enable the development of simple music and painting composition generators which significantly enhance one's ability to validate the cognitive model. The cognitive models are handled as interacting software agents implemented as CORBA objects to allow the use of multiple language coding choices (C++, Java, Python etc) and efficient use of legacy code.

  16. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping.

    PubMed

    Rao, Suhas S P; Huntley, Miriam H; Durand, Neva C; Stamenova, Elena K; Bochkov, Ivan D; Robinson, James T; Sanborn, Adrian L; Machol, Ido; Omer, Arina D; Lander, Eric S; Aiden, Erez Lieberman

    2014-12-18

    We use in situ Hi-C to probe the 3D architecture of genomes, constructing haploid and diploid maps of nine cell types. The densest, in human lymphoblastoid cells, contains 4.9 billion contacts, achieving 1 kb resolution. We find that genomes are partitioned into contact domains (median length, 185 kb), which are associated with distinct patterns of histone marks and segregate into six subcompartments. We identify ∼10,000 loops. These loops frequently link promoters and enhancers, correlate with gene activation, and show conservation across cell types and species. Loop anchors typically occur at domain boundaries and bind CTCF. CTCF sites at loop anchors occur predominantly (>90%) in a convergent orientation, with the asymmetric motifs "facing" one another. The inactive X chromosome splits into two massive domains and contains large loops anchored at CTCF-binding repeats. PMID:25497547

  17. Accurate 3D rigid-body target motion and structure estimation by using GMTI/HRR with template information

    NASA Astrophysics Data System (ADS)

    Wu, Shunguang; Hong, Lang

    2008-04-01

    A framework of simultaneously estimating the motion and structure parameters of a 3D object by using high range resolution (HRR) and ground moving target indicator (GMTI) measurements with template information is given. By decoupling the motion and structure information and employing rigid-body constraints, we have developed the kinematic and measurement equations of the problem. Since the kinematic system is unobservable by using only one scan HRR and GMTI measurements, we designed an architecture to run the motion and structure filters in parallel by using multi-scan measurements. Moreover, to improve the estimation accuracy in large noise and/or false alarm environments, an interacting multi-template joint tracking (IMTJT) algorithm is proposed. Simulation results have shown that the averaged root mean square errors for both motion and structure state vectors have been significantly reduced by using the template information.

  18. Development of a numerical procedure to map a general 3-d body onto a near-circle

    NASA Technical Reports Server (NTRS)

    Hommel, M. J.

    1986-01-01

    Conformal mapping is a classical technique utilized for solving problems in aerodynamics and hydrodynamics. Conformal mapping is utilized in the construction of grids around airfoils, engine inlets and other aircraft configurations. These shapes are transformed onto a near-circle image for which the equations of fluid motion are discretized on the mapped plane and solved numerically by utilizing the appropriate techniques. In comparison to other grid-generation techniques such as algerbraic or differential type, conformal mapping offers an analytical and accurate form even if the grid deformation is large. One of the most appealing features is that the grid can be constrained to remain orthogonal to the body after the transformation. Hence, the grid is suitable for analyzing the supersonic flow past a blunt object. The associated shock as a coordinate surface adjusts its position in the course of computation until convergence is reached. The present work applied conformal mapping to 3-D bodies with no axis of symmetry such as the Aerobraking Flight Experiment (AFE) vehicle, transforming the AFE shape onto a near-circle image. A numerical procedure and code are used to generate grids around the AFE body.

  19. More-Realistic Digital Modeling of a Human Body

    NASA Technical Reports Server (NTRS)

    Rogge, Renee

    2010-01-01

    A MATLAB computer program has been written to enable improved (relative to an older program) modeling of a human body for purposes of designing space suits and other hardware with which an astronaut must interact. The older program implements a kinematic model based on traditional anthropometric measurements that do provide important volume and surface information. The present program generates a three-dimensional (3D) whole-body model from 3D body-scan data. The program utilizes thin-plate spline theory to reposition the model without need for additional scans.

  20. 3D domain swapping causes extensive multimerisation of human interleukin-10 when expressed in planta.

    PubMed

    Westerhof, Lotte B; Wilbers, Ruud H P; Roosien, Jan; van de Velde, Jan; Goverse, Aska; Bakker, Jaap; Schots, Arjen

    2012-01-01

    Heterologous expression platforms of biopharmaceutical proteins have been significantly improved over the last decade. Further improvement can be established by examining the intrinsic properties of proteins. Interleukin-10 (IL-10) is an anti-inflammatory cytokine with a short half-life that plays an important role in re-establishing immune homeostasis. This homodimeric protein of 36 kDa has significant therapeutic potential to treat inflammatory and autoimmune diseases. In this study we show that the major production bottleneck of human IL-10 is not protein instability as previously suggested, but extensive multimerisation due to its intrinsic 3D domain swapping characteristic. Extensive multimerisation of human IL-10 could be visualised as granules in planta. On the other hand, mouse IL-10 hardly multimerised, which could be largely attributed to its glycosylation. By introducing a short glycine-serine-linker between the fourth and fifth alpha helix of human IL-10 a stable monomeric form of IL-10 (hIL-10(mono)) was created that no longer multimerised and increased yield up to 20-fold. However, hIL-10(mono) no longer had the ability to reduce pro-inflammatory cytokine secretion from lipopolysaccharide-stimulated macrophages. Forcing dimerisation restored biological activity. This was achieved by fusing human IL-10(mono) to the C-terminal end of constant domains 2 and 3 of human immunoglobulin A (Fcα), a natural dimer. Stable dimeric forms of IL-10, like Fcα-IL-10, may not only be a better format for improved production, but also a more suitable format for medical applications. PMID:23049703

  1. Dynamic Human Body Modeling Using a Single RGB Camera

    PubMed Central

    Zhu, Haiyu; Yu, Yao; Zhou, Yu; Du, Sidan

    2016-01-01

    In this paper, we present a novel automatic pipeline to build personalized parametric models of dynamic people using a single RGB camera. Compared to previous approaches that use monocular RGB images, our system can model a 3D human body automatically and incrementally, taking advantage of human motion. Based on coarse 2D and 3D poses estimated from image sequences, we first perform a kinematic classification of human body parts to refine the poses and obtain reconstructed body parts. Next, a personalized parametric human model is generated by driving a general template to fit the body parts and calculating the non-rigid deformation. Experimental results show that our shape estimation method achieves comparable accuracy with reconstructed models using depth cameras, yet requires neither user interaction nor any dedicated devices, leading to the feasibility of using this method on widely available smart phones. PMID:26999159

  2. Dynamic Human Body Modeling Using a Single RGB Camera.

    PubMed

    Zhu, Haiyu; Yu, Yao; Zhou, Yu; Du, Sidan

    2016-01-01

    In this paper, we present a novel automatic pipeline to build personalized parametric models of dynamic people using a single RGB camera. Compared to previous approaches that use monocular RGB images, our system can model a 3D human body automatically and incrementally, taking advantage of human motion. Based on coarse 2D and 3D poses estimated from image sequences, we first perform a kinematic classification of human body parts to refine the poses and obtain reconstructed body parts. Next, a personalized parametric human model is generated by driving a general template to fit the body parts and calculating the non-rigid deformation. Experimental results show that our shape estimation method achieves comparable accuracy with reconstructed models using depth cameras, yet requires neither user interaction nor any dedicated devices, leading to the feasibility of using this method on widely available smart phones. PMID:26999159

  3. 3D Reconstruction of Human Laryngeal Dynamics Based on Endoscopic High-Speed Recordings.

    PubMed

    Semmler, Marion; Kniesburges, Stefan; Birk, Veronika; Ziethe, Anke; Patel, Rita; Dollinger, Michael

    2016-07-01

    Standard laryngoscopic imaging techniques provide only limited two-dimensional insights into the vocal fold vibrations not taking the vertical component into account. However, previous experiments have shown a significant vertical component in the vibration of the vocal folds. We present a 3D reconstruction of the entire superior vocal fold surface from 2D high-speed videoendoscopy via stereo triangulation. In a typical camera-laser set-up the structured laser light pattern is projected on the vocal folds and captured at 4000 fps. The measuring device is suitable for in vivo application since the external dimensions of the miniaturized set-up barely exceed the size of a standard rigid laryngoscope. We provide a conservative estimate on the resulting resolution based on the hardware components and point out the possibilities and limitations of the miniaturized camera-laser set-up. In addition to the 3D vocal fold surface, we extended previous approaches with a G2-continuous model of the vocal fold edge. The clinical applicability was successfully established by the reconstruction of visual data acquired from 2D in vivo high-speed recordings of a female and a male subject. We present extracted dynamic parameters like maximum amplitude and velocity in the vertical direction. The additional vertical component reveals deeper insights into the vibratory dynamics of the vocal folds by means of a non-invasive method. The successful miniaturization allows for in vivo application giving access to the most realistic model available and hence enables a comprehensive understanding of the human phonation process. PMID:26829782

  4. Challenge for 3D culture technology: Application in carcinogenesis studies with human airway epithelial cells.

    PubMed

    Emura, M; Aufderheide, M

    2016-05-01

    Lung cancer is still one of the major intractable diseases and we urgently need more efficient preventive and curative measures. Recent molecular studies have provided strong evidence that allows us to believe that classically well-known early airway lesions such as hyperplasia, metaplasia, dysplasia and carcinoma in situ are really precancerous lesions progressing toward cancer but not necessarily transient and reversible alteration. This suggests that adequate early control of the precancerous lesions may lead to improved prevention of lung cancer. This knowledge is encouraging in view of the imminent necessity for additional experimental systems to investigate the causal mechanisms of cancers directly in human cells and tissues. There are many questions with regard to various precancerous lesions of the airways. For example, should cells, before reaching a stage of invasive carcinoma, undergo all precancerous stages such as hyperplasia or metaplasia and dysplasia, or is there any shortcut to bypass one or more of the precancerous stages? For the study of such questions, the emerging 3-dimensional (3D) cell culture technology appears to provide an effective and valuable tool. Though a great challenge, it is expected that this in vitro technology will be rapidly and reliably improved to enable the cultures to be maintained in an in vivo-mimicking state of differentiation for much longer than a period of at best a few months, as is currently the case. With the help of a "causes recombination-Lox" (Cre-lox) technology, it has been possible to trace cells giving rise to specific lung tumor types. In this short review we have attempted to assess the future role of 3D technology in the study of lung carcinogenesis. PMID:26951634

  5. Effects of pore size in 3-D fibrous matrix on human trophoblast tissue development.

    PubMed

    Ma, T; Li, Y; Yang, S T; Kniss, D A

    2000-12-20

    The effects of pore size in a 3-D polyethylene terephthalate (PET) nonwoven fibrous matrix on long-term tissue development of human trophoblast ED27 cells were studied. Thermal compression was used to modify the porosity and pore size of the PET matrix. The pore size distributions in PET matrices were quantified using a liquid extrusion method. Cell metabolic activities, estradiol production, and cell proliferation and differentiation were studied for ED27 cells cultured in the thermally compressed PET matrices with known pore structure characteristics. In general, metabolic activities and proliferation rate were higher initially for cultures grown in the low-porosity (LP) PET matrix (porosity of 0.849, average pore size of 30 microm in diameter) than those in the high-porosity (HP) matrix (porosity of 0.896, average pore size of 39 microm in diameter). However, 17beta-estradiol production and cell differentiation activity in the HP matrix surpassed those in the LP matrix after 12 days. The expression levels of cyclin B1 and p27kip1 in cells revealed progressively decreasing proliferation and increasing differentiation activities for cells grown in PET matrices. Also, difference in pore size controlled the cell spatial organization in the PET matrices and contributed to the tissue development in varying degrees of proliferation and differentiation. It was also found that cells grown on the 2-D surface behaved differently in cell cycle progression and did not show increased differentiation activities after growth had stopped and proliferation activities had lowered to a minimal level. The results from this study suggest that the 3-D cell organization guided by the tissue scaffold is important to tissue formation in vitro. PMID:11064329

  6. Multiple capture locations for 3D ultrasound-guided robotic retrieval of moving bodies from a beating heart

    NASA Astrophysics Data System (ADS)

    Thienphrapa, Paul; Ramachandran, Bharat; Elhawary, Haytham; Taylor, Russell H.; Popovic, Aleksandra

    2012-02-01

    Free moving bodies in the heart pose a serious health risk as they may be released in the arteries causing blood flow disruption. These bodies may be the result of various medical conditions and trauma. The conventional approach to removing these objects involves open surgery with sternotomy, the use of cardiopulmonary bypass, and a wide resection of the heart muscle. We advocate a minimally invasive surgical approach using a flexible robotic end effector guided by 3D transesophageal echocardiography. In a phantom study, we track a moving body in a beating heart using a modified normalized cross-correlation method, with mean RMS errors of 2.3 mm. We previously found the foreign body motion to be fast and abrupt, rendering infeasible a retrieval method based on direct tracking. We proposed a strategy based on guiding a robot to the most spatially probable location of the fragment and securing it upon its reentry to said location. To improve efficacy in the context of a robotic retrieval system, we extend this approach by exploring multiple candidate capture locations. Salient locations are identified based on spatial probability, dwell time, and visit frequency; secondary locations are also examined. Aggregate results indicate that the location of highest spatial probability (50% occupancy) is distinct from the longest-dwelled location (0.84 seconds). Such metrics are vital in informing the design of a retrieval system and capture strategies, and they can be computed intraoperatively to select the best capture location based on constraints such as workspace, time, and device manipulability. Given the complex nature of fragment motion, the ability to analyze multiple capture locations is a desirable capability in an interventional system.

  7. 3D, or Not to Be?

    ERIC Educational Resources Information Center

    Norbury, Keith

    2012-01-01

    It may be too soon for students to be showing up for class with popcorn and gummy bears, but technology similar to that behind the 3D blockbuster movie "Avatar" is slowly finding its way into college classrooms. 3D classroom projectors are taking students on fantastic voyages inside the human body, to the ruins of ancient Greece--even to faraway…

  8. Reconstituted Human Upper Airway Epithelium as 3-D In Vitro Model for Nasal Polyposis

    PubMed Central

    de Borja Callejas, Francisco; Martínez-Antón, Asunción; Alobid, Isam; Fuentes, Mireya; Cortijo, Julio; Picado, César

    2014-01-01

    Background Primary human airway epithelial cells cultured in an air-liquid interface (ALI) develop a well-differentiated epithelium. However, neither characterization of mucociliar differentiation overtime nor the inflammatory function of reconstituted nasal polyp (NP) epithelia have been described. Objectives 1st) To develop and characterize the mucociliar differentiation overtime of human epithelial cells of chronic rhinosinusitis with nasal polyps (CRSwNP) in ALI culture system; 2nd) To corroborate that 3D in vitro model of NP reconstituted epithelium maintains, compared to control nasal mucosa (NM), an inflammatory function. Methods Epithelial cells were obtained from 9 NP and 7 control NM, and differentiated in ALI culture for 28 days. Mucociliary differentiation was characterized at different times (0, 7, 14, 21, and 28 days) using ultrastructure analysis by electron microscopy; ΔNp63 (basal stem/progenitor cell), β-tubulin IV (cilia), and MUC5AC (goblet cell) expression by immunocytochemistry; and mucous (MUC5AC, MUC5B) and serous (Lactoferrin) secretion by ELISA. Inflammatory function of ALI cultures (at days 0, 14, and 28) through cytokine (IL-8, IL-1β, IL-6, IL-10, TNF-α, and IL-12p70) and chemokine (RANTES, MIG, MCP-1, IP-10, eotaxin-1, and GM-CSF) production was analysed by CBA (Cytometric Bead Array). Results In both NP and control NM ALI cultures, pseudostratified epithelium with ciliated, mucus-secreting, and basal cells were observed by electron microscopy at days 14 and 28. Displaying epithelial cell re-differentation, β-tubulin IV and MUC5AC positive cells increased, while ΔNp63 positive cells decreased overtime. No significant differences were found overtime in MUC5AC, MUC5B, and lactoferrin secretions between both ALI cultures. IL-8 and GM-CSF were significantly increased in NP compared to control NM regenerated epithelia. Conclusion Reconstituted epithelia from human NP epithelial cells cultured in ALI system provides a 3D in vitro model

  9. Improved Human Bone Marrow Mesenchymal Stem Cell Osteogenesis in 3D Bioprinted Tissue Scaffolds with Low Intensity Pulsed Ultrasound Stimulation

    PubMed Central

    Zhou, Xuan; Castro, Nathan J.; Zhu, Wei; Cui, Haitao; Aliabouzar, Mitra; Sarkar, Kausik; Zhang, Lijie Grace

    2016-01-01

    3D printing and ultrasound techniques are showing great promise in the evolution of human musculoskeletal tissue repair and regeneration medicine. The uniqueness of the present study was to combine low intensity pulsed ultrasound (LIPUS) and advanced 3D printing techniques to synergistically improve growth and osteogenic differentiation of human mesenchymal stem cells (MSC). Specifically, polyethylene glycol diacrylate bioinks containing cell adhesive Arginine-Glycine-Aspartic acid-Serene (RGDS) peptide and/or nanocrystalline hydroxyapatite (nHA) were used to fabricate 3D scaffolds with different geometric patterns via novel table-top stereolithography 3D printer. The resultant scaffolds provide a highly porous and interconnected 3D environment to support cell proliferation. Scaffolds with small square pores were determined to be the optimal geometric pattern for MSC attachment and growth. The optimal LIPUS working parameters were determined to be 1.5 MHz, 20% duty cycle with 150 mW/cm2 intensity. Results demonstrated that RGDS peptide and nHA containing 3D printed scaffolds under LIPUS treatment can greatly promote MSC proliferation, alkaline phosphatase activity, calcium deposition and total protein content. These results illustrate the effectiveness of the combination of LIPUS and biomimetic 3D printing scaffolds as a valuable combinatorial tool for improved MSC function, thus make them promising for future clinical and various regenerative medicine application. PMID:27597635

  10. Improved Human Bone Marrow Mesenchymal Stem Cell Osteogenesis in 3D Bioprinted Tissue Scaffolds with Low Intensity Pulsed Ultrasound Stimulation.

    PubMed

    Zhou, Xuan; Castro, Nathan J; Zhu, Wei; Cui, Haitao; Aliabouzar, Mitra; Sarkar, Kausik; Zhang, Lijie Grace

    2016-01-01

    3D printing and ultrasound techniques are showing great promise in the evolution of human musculoskeletal tissue repair and regeneration medicine. The uniqueness of the present study was to combine low intensity pulsed ultrasound (LIPUS) and advanced 3D printing techniques to synergistically improve growth and osteogenic differentiation of human mesenchymal stem cells (MSC). Specifically, polyethylene glycol diacrylate bioinks containing cell adhesive Arginine-Glycine-Aspartic acid-Serene (RGDS) peptide and/or nanocrystalline hydroxyapatite (nHA) were used to fabricate 3D scaffolds with different geometric patterns via novel table-top stereolithography 3D printer. The resultant scaffolds provide a highly porous and interconnected 3D environment to support cell proliferation. Scaffolds with small square pores were determined to be the optimal geometric pattern for MSC attachment and growth. The optimal LIPUS working parameters were determined to be 1.5 MHz, 20% duty cycle with 150 mW/cm(2) intensity. Results demonstrated that RGDS peptide and nHA containing 3D printed scaffolds under LIPUS treatment can greatly promote MSC proliferation, alkaline phosphatase activity, calcium deposition and total protein content. These results illustrate the effectiveness of the combination of LIPUS and biomimetic 3D printing scaffolds as a valuable combinatorial tool for improved MSC function, thus make them promising for future clinical and various regenerative medicine application. PMID:27597635

  11. “Taller and Shorter”: Human 3-D Spatial Memory Distorts Familiar Multilevel Buildings

    PubMed Central

    Brandt, Thomas; Huber, Markus; Schramm, Hannah; Kugler, Günter; Dieterich, Marianne; Glasauer, Stefan

    2015-01-01

    Animal experiments report contradictory findings on the presence of a behavioural and neuronal anisotropy exhibited in vertical and horizontal capabilities of spatial orientation and navigation. We performed a pointing experiment in humans on the imagined 3-D direction of the location of various invisible goals that were distributed horizontally and vertically in a familiar multilevel hospital building. The 21 participants were employees who had worked for years in this building. The hypothesis was that comparison of the experimentally determined directions and the true directions would reveal systematic inaccuracy or dimensional anisotropy of the localizations. The study provides first evidence that the internal representation of a familiar multilevel building was distorted compared to the dimensions of the true building: vertically 215% taller and horizontally 51% shorter. This was not only demonstrated in the mathematical reconstruction of the mental model based on the analysis of the pointing experiments but also by the participants’ drawings of the front view and the ground plan of the building. Thus, in the mental model both planes were altered in different directions: compressed for the horizontal floor plane and stretched for the vertical column plane. This could be related to human anisotropic behavioural performance of horizontal and vertical navigation in such buildings. PMID:26509927

  12. "Taller and Shorter": Human 3-D Spatial Memory Distorts Familiar Multilevel Buildings.

    PubMed

    Brandt, Thomas; Huber, Markus; Schramm, Hannah; Kugler, Günter; Dieterich, Marianne; Glasauer, Stefan

    2015-01-01

    Animal experiments report contradictory findings on the presence of a behavioural and neuronal anisotropy exhibited in vertical and horizontal capabilities of spatial orientation and navigation. We performed a pointing experiment in humans on the imagined 3-D direction of the location of various invisible goals that were distributed horizontally and vertically in a familiar multilevel hospital building. The 21 participants were employees who had worked for years in this building. The hypothesis was that comparison of the experimentally determined directions and the true directions would reveal systematic inaccuracy or dimensional anisotropy of the localizations. The study provides first evidence that the internal representation of a familiar multilevel building was distorted compared to the dimensions of the true building: vertically 215% taller and horizontally 51% shorter. This was not only demonstrated in the mathematical reconstruction of the mental model based on the analysis of the pointing experiments but also by the participants' drawings of the front view and the ground plan of the building. Thus, in the mental model both planes were altered in different directions: compressed for the horizontal floor plane and stretched for the vertical column plane. This could be related to human anisotropic behavioural performance of horizontal and vertical navigation in such buildings. PMID:26509927

  13. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity.

    PubMed

    Kang, Hyun-Wook; Lee, Sang Jin; Ko, In Kap; Kengla, Carlos; Yoo, James J; Atala, Anthony

    2016-03-01

    A challenge for tissue engineering is producing three-dimensional (3D), vascularized cellular constructs of clinically relevant size, shape and structural integrity. We present an integrated tissue-organ printer (ITOP) that can fabricate stable, human-scale tissue constructs of any shape. Mechanical stability is achieved by printing cell-laden hydrogels together with biodegradable polymers in integrated patterns and anchored on sacrificial hydrogels. The correct shape of the tissue construct is achieved by representing clinical imaging data as a computer model of the anatomical defect and translating the model into a program that controls the motions of the printer nozzles, which dispense cells to discrete locations. The incorporation of microchannels into the tissue constructs facilitates diffusion of nutrients to printed cells, thereby overcoming the diffusion limit of 100-200 μm for cell survival in engineered tissues. We demonstrate capabilities of the ITOP by fabricating mandible and calvarial bone, cartilage and skeletal muscle. Future development of the ITOP is being directed to the production of tissues for human applications and to the building of more complex tissues and solid organs. PMID:26878319

  14. Personalized Medicine Approaches in Prostate Cancer Employing Patient Derived 3D Organoids and Humanized Mice

    PubMed Central

    Bartucci, Monica; Ferrari, Anna C.; Kim, Isaac Yi; Ploss, Alexander; Yarmush, Martin; Sabaawy, Hatem E.

    2016-01-01

    Prostate cancer (PCa) is the most common malignancy and the second most common cause of cancer death in Western men. Despite its prevalence, PCa has proven very difficult to propagate in vitro. PCa represents a complex organ-like multicellular structure maintained by the dynamic interaction of tumoral cells with parenchymal stroma, endothelial and immune cells, and components of the extracellular matrix (ECM). The lack of PCa models that recapitulate this intricate system has hampered progress toward understanding disease progression and lackluster therapeutic responses. Tissue slices, monolayer cultures and genetically engineered mouse models (GEMM) fail to mimic the complexities of the PCa microenvironment or reproduce the diverse mechanisms of therapy resistance. Moreover, patient derived xenografts (PDXs) are expensive, time consuming, difficult to establish for prostate cancer, lack immune cell-tumor regulation, and often tumors undergo selective engraftments. Here, we describe an interdisciplinary approach using primary PCa and tumor initiating cells (TICs), three-dimensional (3D) tissue engineering, genetic and morphometric profiling, and humanized mice to generate patient-derived organoids for examining personalized therapeutic responses in vitro and in mice co-engrafted with a human immune system (HIS), employing adaptive T-cell- and chimeric antigen receptor- (CAR) immunotherapy. The development of patient specific therapies targeting the vulnerabilities of cancer, when combined with antiproliferative and immunotherapy approaches could help to achieve the full transformative power of cancer precision medicine. PMID:27446916

  15. Personalized Medicine Approaches in Prostate Cancer Employing Patient Derived 3D Organoids and Humanized Mice.

    PubMed

    Bartucci, Monica; Ferrari, Anna C; Kim, Isaac Yi; Ploss, Alexander; Yarmush, Martin; Sabaawy, Hatem E

    2016-01-01

    Prostate cancer (PCa) is the most common malignancy and the second most common cause of cancer death in Western men. Despite its prevalence, PCa has proven very difficult to propagate in vitro. PCa represents a complex organ-like multicellular structure maintained by the dynamic interaction of tumoral cells with parenchymal stroma, endothelial and immune cells, and components of the extracellular matrix (ECM). The lack of PCa models that recapitulate this intricate system has hampered progress toward understanding disease progression and lackluster therapeutic responses. Tissue slices, monolayer cultures and genetically engineered mouse models (GEMM) fail to mimic the complexities of the PCa microenvironment or reproduce the diverse mechanisms of therapy resistance. Moreover, patient derived xenografts (PDXs) are expensive, time consuming, difficult to establish for prostate cancer, lack immune cell-tumor regulation, and often tumors undergo selective engraftments. Here, we describe an interdisciplinary approach using primary PCa and tumor initiating cells (TICs), three-dimensional (3D) tissue engineering, genetic and morphometric profiling, and humanized mice to generate patient-derived organoids for examining personalized therapeutic responses in vitro and in mice co-engrafted with a human immune system (HIS), employing adaptive T-cell- and chimeric antigen receptor- (CAR) immunotherapy. The development of patient specific therapies targeting the vulnerabilities of cancer, when combined with antiproliferative and immunotherapy approaches could help to achieve the full transformative power of cancer precision medicine. PMID:27446916

  16. Utilization of 3-D elastic transformation in the registration of chest x-ray CT and whole body PET

    SciTech Connect

    Tai, Yuan-Chuan; Hoh, C.K.; Hoffman, E.J.

    1996-12-31

    X-ray CT is widely used for detection and localization of lesions in the thorax. Whole Body PET with 18-FDG is becoming accepted for staging of cancer because of its ability to detect malignancy. Combining information from these two modalities has a significant value to improve lung cancer staging and treatment planning. Due to the non-rigid nature of the thorax and the differences in the acquisition conventions, the subject is stretched non-uniformly and the images of these two modalities requires non-rigid transformation for proper registration. Techniques to register chest x-ray CT and Whole Body PET images were developed and evaluated. Accuracy of 3-D elastic transformation was tested by phantom study. Studies on patients with lung carcinoma were used to validate the technique in localizing the 18-FDG uptake and in correlating PET to x-ray CT images. The fused images showed an accurate alignment and provided confident identification of the detailed anatomy of the CT with the functional information of the PET images.

  17. Simulated Microgravity and 3D Culture Enhance Induction, Viability, Proliferation and Differentiation of Cardiac Progenitors from Human Pluripotent Stem Cells.

    PubMed

    Jha, Rajneesh; Wu, Qingling; Singh, Monalisa; Preininger, Marcela K; Han, Pengcheng; Ding, Gouliang; Cho, Hee Cheol; Jo, Hanjoong; Maher, Kevin O; Wagner, Mary B; Xu, Chunhui

    2016-01-01

    Efficient generation of cardiomyocytes from human pluripotent stem cells is critical for their regenerative applications. Microgravity and 3D culture can profoundly modulate cell proliferation and survival. Here, we engineered microscale progenitor cardiac spheres from human pluripotent stem cells and exposed the spheres to simulated microgravity using a random positioning machine for 3 days during their differentiation to cardiomyocytes. This process resulted in the production of highly enriched cardiomyocytes (99% purity) with high viability (90%) and expected functional properties, with a 1.5 to 4-fold higher yield of cardiomyocytes from each undifferentiated stem cell as compared with 3D-standard gravity culture. Increased induction, proliferation and viability of cardiac progenitors as well as up-regulation of genes associated with proliferation and survival at the early stage of differentiation were observed in the 3D culture under simulated microgravity. Therefore, a combination of 3D culture and simulated microgravity can be used to efficiently generate highly enriched cardiomyocytes. PMID:27492371

  18. Simulated Microgravity and 3D Culture Enhance Induction, Viability, Proliferation and Differentiation of Cardiac Progenitors from Human Pluripotent Stem Cells

    PubMed Central

    Jha, Rajneesh; Wu, Qingling; Singh, Monalisa; Preininger, Marcela K.; Han, Pengcheng; Ding, Gouliang; Cho, Hee Cheol; Jo, Hanjoong; Maher, Kevin O.; Wagner, Mary B.; Xu, Chunhui

    2016-01-01

    Efficient generation of cardiomyocytes from human pluripotent stem cells is critical for their regenerative applications. Microgravity and 3D culture can profoundly modulate cell proliferation and survival. Here, we engineered microscale progenitor cardiac spheres from human pluripotent stem cells and exposed the spheres to simulated microgravity using a random positioning machine for 3 days during their differentiation to cardiomyocytes. This process resulted in the production of highly enriched cardiomyocytes (99% purity) with high viability (90%) and expected functional properties, with a 1.5 to 4-fold higher yield of cardiomyocytes from each undifferentiated stem cell as compared with 3D-standard gravity culture. Increased induction, proliferation and viability of cardiac progenitors as well as up-regulation of genes associated with proliferation and survival at the early stage of differentiation were observed in the 3D culture under simulated microgravity. Therefore, a combination of 3D culture and simulated microgravity can be used to efficiently generate highly enriched cardiomyocytes. PMID:27492371

  19. 3-D analysis of dictyosomes and multivesicular bodies in the green alga Micrasterias denticulata by FIB/SEM tomography☆

    PubMed Central

    Wanner, Gerhard; Schäfer, Tillman; Lütz-Meindl, Ursula

    2013-01-01

    In the present study we employ FIB/SEM tomography for analyzing 3-D architecture of dictyosomes and formation of multivesicular bodies (MVB) in high pressure frozen and cryo-substituted interphase cells of the green algal model system Micrasterias denticulata. The ability of FIB/SEM of milling very thin ‘slices’ (5–10 nm), viewing the block face and of capturing cytoplasmic volumes of several hundred μm3 provides new insight into the close spatial connection of the ER–Golgi machinery in an algal cell particularly in z-direction, complementary to informations obtained by TEM serial sectioning or electron tomography. Our FIB/SEM series and 3-D reconstructions show that interphase dictyosomes of Micrasterias are not only closely associated to an ER system at their cis-side which is common in various plant cells, but are surrounded by a huge “trans-ER” sheath leading to an almost complete enwrapping of dictyosomes by the ER. This is particularly interesting as the presence of a trans-dictyosomal ER system is well known from mammalian secretory cells but not from cells of higher plants to which the alga Micrasterias is closely related. In contrast to findings in plant storage tissue indicating that MVBs originate from the trans-Golgi network or its derivatives our investigations show that MVBs in Micrasterias are in direct spatial contact with both, trans-Golgi cisternae and the trans-ER sheath which provides evidence that both endomembrane compartments are involved in their formation. PMID:24135121

  20. 3-D analysis of dictyosomes and multivesicular bodies in the green alga Micrasterias denticulata by FIB/SEM tomography.

    PubMed

    Wanner, Gerhard; Schäfer, Tillman; Lütz-Meindl, Ursula

    2013-11-01

    In the present study we employ FIB/SEM tomography for analyzing 3-D architecture of dictyosomes and formation of multivesicular bodies (MVB) in high pressure frozen and cryo-substituted interphase cells of the green algal model system Micrasterias denticulata. The ability of FIB/SEM of milling very thin 'slices' (5-10 nm), viewing the block face and of capturing cytoplasmic volumes of several hundred μm(3) provides new insight into the close spatial connection of the ER-Golgi machinery in an algal cell particularly in z-direction, complementary to informations obtained by TEM serial sectioning or electron tomography. Our FIB/SEM series and 3-D reconstructions show that interphase dictyosomes of Micrasterias are not only closely associated to an ER system at their cis-side which is common in various plant cells, but are surrounded by a huge "trans-ER" sheath leading to an almost complete enwrapping of dictyosomes by the ER. This is particularly interesting as the presence of a trans-dictyosomal ER system is well known from mammalian secretory cells but not from cells of higher plants to which the alga Micrasterias is closely related. In contrast to findings in plant storage tissue indicating that MVBs originate from the trans-Golgi network or its derivatives our investigations show that MVBs in Micrasterias are in direct spatial contact with both, trans-Golgi cisternae and the trans-ER sheath which provides evidence that both endomembrane compartments are involved in their formation. PMID:24135121

  1. Employing Virtual Humans for Education and Training in X3D/VRML Worlds

    ERIC Educational Resources Information Center

    Ieronutti, Lucio; Chittaro, Luca

    2007-01-01

    Web-based education and training provides a new paradigm for imparting knowledge; students can access the learning material anytime by operating remotely from any location. Web3D open standards, such as X3D and VRML, support Web-based delivery of Educational Virtual Environments (EVEs). EVEs have a great potential for learning and training…

  2. Isomap transform for segmenting human body shapes.

    PubMed

    Cerveri, P; Sarro, K J; Marchente, M; Barros, R M L

    2011-09-01

    Segmentation of the 3D human body is a very challenging problem in applications exploiting volume capture data. Direct clustering in the Euclidean space is usually complex or even unsolvable. This paper presents an original method based on the Isomap (isometric feature mapping) transform of the volume data-set. The 3D articulated posture is mapped by Isomap in the pose of Da Vinci's Vitruvian man. The limbs are unrolled from each other and separated from the trunk and pelvis, and the topology of the human body shape is recovered. In such a configuration, Hoshen-Kopelman clustering applied to concentric spherical shells is used to automatically group points into the labelled principal curves. Shepard interpolation is utilised to back-map points of the principal curves into the original volume space. The experimental results performed on many different postures have proved the validity of the proposed method. Reliability of less than 2 cm and 3° in the location of the joint centres and direction axes of rotations has been obtained, respectively, which qualifies this procedure as a potential tool for markerless motion analysis. PMID:21360362

  3. Human astrocytes develop physiological morphology and remain quiescent in a novel 3D matrix.

    PubMed

    Placone, Amanda L; McGuiggan, Patricia M; Bergles, Dwight E; Guerrero-Cazares, Hugo; Quiñones-Hinojosa, Alfredo; Searson, Peter C

    2015-02-01

    Astrocytes are the most abundant glial cells in the brain and are responsible for diverse functions, from modulating synapse function to regulating the blood-brain barrier. In vivo, these cells exhibit a star-shaped morphology with multiple radial processes that contact synapses and completely surround brain capillaries. In response to trauma or CNS disease, astrocytes become activated, a state associated with profound changes in gene expression, including upregulation of intermediate filament proteins, such as glial fibrillary acidic protein (GFAP). The inability to recapitulate the complex structure of astrocytes and maintain their quiescent state in vitro is a major roadblock to further developments in tissue engineering and regenerative medicine. Here, we characterize astrocyte morphology and activation in various hydrogels to assess the feasibility of developing a matrix that mimics key aspects of the native microenvironment. We show that astrocytes seeded in optimized matrix composed of collagen, hyaluronic acid, and matrigel exhibit a star-shaped morphology with radial processes and do not upregulate GFAP expression, hallmarks of quiescent astrocytes in the brain. In these optimized gels, collagen I provides structural support, HA mimics the brain extracellular matrix, and matrigel provides endothelial cell compatibility and was found to minimize GFAP upregulation. This defined 3D microenvironment for maintaining human astrocytes in vitro provides new opportunities for developing improved models of the blood-brain barrier and studying their response to stress signals. PMID:25542801

  4. 3D Raman mapping of the collagen fibril orientation in human osteonal lamellae.

    PubMed

    Schrof, Susanne; Varga, Peter; Galvis, Leonardo; Raum, Kay; Masic, Admir

    2014-09-01

    Chemical composition and fibrillar organization are the major determinants of osteonal bone mechanics. However, prominent methodologies commonly applied to investigate mechanical properties of bone on the micro scale are usually not able to concurrently describe both factors. In this study, we used polarized Raman spectroscopy (PRS) to simultaneously analyze structural and chemical information of collagen fibrils in human osteonal bone in a single experiment. Specifically, the three-dimensional arrangement of collagen fibrils in osteonal lamellae was assessed. By analyzing the anisotropic intensity of the amide I Raman band of collagen as a function of the orientation of the incident laser polarization, different parameters related to the orientation of the collagen fibrils and the degree of alignment of the fibrils were derived. Based on the analysis of several osteons, two major fibrillar organization patterns were identified, one with a monotonic and another with a periodically changing twist direction. These results confirm earlier reported twisted and oscillating plywood arrangements, respectively. Furthermore, indicators of the degree of alignment suggested the presence of disordered collagen within the lamellar organization of the osteon. The results show the versatility of the analytical PRS approach and demonstrate its capability in providing not only compositional, but also 3D structural information in a complex hierarchically structured biological material. The concurrent assessment of chemical and structural features may contribute to a comprehensive characterization of the microstructure of bone and other collagen-based tissues. PMID:25025981

  5. Indoor Localization Algorithms for an Ambulatory Human Operated 3D Mobile Mapping System

    SciTech Connect

    Corso, N; Zakhor, A

    2013-12-03

    Indoor localization and mapping is an important problem with many applications such as emergency response, architectural modeling, and historical preservation. In this paper, we develop an automatic, off-line pipeline for metrically accurate, GPS-denied, indoor 3D mobile mapping using a human-mounted backpack system consisting of a variety of sensors. There are three novel contributions in our proposed mapping approach. First, we present an algorithm which automatically detects loop closure constraints from an occupancy grid map. In doing so, we ensure that constraints are detected only in locations that are well conditioned for scan matching. Secondly, we address the problem of scan matching with poor initial condition by presenting an outlier-resistant, genetic scan matching algorithm that accurately matches scans despite a poor initial condition. Third, we present two metrics based on the amount and complexity of overlapping geometry in order to vet the estimated loop closure constraints. By doing so, we automatically prevent erroneous loop closures from degrading the accuracy of the reconstructed trajectory. The proposed algorithms are experimentally verified using both controlled and real-world data. The end-to-end system performance is evaluated using 100 surveyed control points in an office environment and obtains a mean accuracy of 10 cm. Experimental results are also shown on three additional datasets from real world environments including a 1500 meter trajectory in a warehouse sized retail shopping center.

  6. Bioengineered glaucomatous 3D human trabecular meshwork as an in vitro disease model.

    PubMed

    Torrejon, Karen Y; Papke, Ellen L; Halman, Justin R; Stolwijk, Judith; Dautriche, Cula N; Bergkvist, Magnus; Danias, John; Sharfstein, Susan T; Xie, Yubing

    2016-06-01

    Intraocular pressure (IOP) is mostly regulated by aqueous humor outflow through the human trabecular meshwork (HTM) and represents the only modifiable risk factor of glaucoma. The lack of IOP-modulating therapeutics that targets HTM underscores the need of engineering HTM for understanding the outflow physiology and glaucoma pathology in vitro. Using a 3D HTM model that allows for regulation of outflow in response to a pharmacologic steroid, a fibrotic state has been induced resembling that of glaucomatous HTM. This disease model exhibits HTM marker expression, ECM overproduction, impaired HTM cell phagocytic activity and outflow resistance, which represent characteristics found in steroid-induced glaucoma. In particular, steroid-induced ECM alterations in the glaucomatous model can be modified by a ROCK inhibitor. Altogether, this work presents a novel in vitro disease model that allows for physiological and pathological studies pertaining to regulating outflow, leading to improved understanding of steroid-induced glaucoma and accelerated discovery of new therapeutic targets. Biotechnol. Bioeng. 2016;113: 1357-1368. © 2015 Wiley Periodicals, Inc. PMID:26615056

  7. A Comparison of a Multi-body Model and 3D Kinematics and EMG ofDouble-leg Circle on Pommel Horse

    PubMed Central

    Qian, Jing-guang; Su, Yang; Song, Ya-wei; Qiang, Ye; Zhang, Songning

    2012-01-01

    The purpose of this study was to establish a multi-segment dynamic model in the LifeMOD to examine kinematics of the center of mass and foot, and muscle forces of selected upper extremity muslces during a double-leg circle (DLC) movement on pommel horse in gymnastics and compared with three-dimensional kinematics of the movement and surface electromyographic (sEMG) activity of the muscles. The DLC movement of one elite male gymnast was collected. The three-dimensional (3D) data was imported in the Lifemod to create a full-body human model. A 16-Channel surface electromyography system was used to collect sEMG signals of middle deltoid, biceps brachii, triceps brachii, latissimusdorsi, and pectoralis major. The 3D center of mass and foot displacement showed a good match with the computer simulated results. The muscle force estimations from the model during the four DLC phases were also generally supported by the integrated sEMG results, suggesting that the model was valid. A potential application of this model is to help identify shortcomings of athletes and help establish appropriate training plans errors in the DLC technique during training. PMID:23487347

  8. A Comparison of a Multi-body Model and 3D Kinematics and EMG ofDouble-leg Circle on Pommel Horse.

    PubMed

    Qian, Jing-Guang; Su, Yang; Song, Ya-Wei; Qiang, Ye; Zhang, Songning

    2012-03-01

    The purpose of this study was to establish a multi-segment dynamic model in the LifeMOD to examine kinematics of the center of mass and foot, and muscle forces of selected upper extremity muslces during a double-leg circle (DLC) movement on pommel horse in gymnastics and compared with three-dimensional kinematics of the movement and surface electromyographic (sEMG) activity of the muscles. The DLC movement of one elite male gymnast was collected. The three-dimensional (3D) data was imported in the Lifemod to create a full-body human model. A 16-Channel surface electromyography system was used to collect sEMG signals of middle deltoid, biceps brachii, triceps brachii, latissimusdorsi, and pectoralis major. The 3D center of mass and foot displacement showed a good match with the computer simulated results. The muscle force estimations from the model during the four DLC phases were also generally supported by the integrated sEMG results, suggesting that the model was valid. A potential application of this model is to help identify shortcomings of athletes and help establish appropriate training plans errors in the DLC technique during training. PMID:23487347

  9. Development of microgravity, full body functional reach envelope using 3-D computer graphic models and virtual reality technology

    NASA Technical Reports Server (NTRS)

    Lindsey, Patricia F.

    1994-01-01

    In microgravity conditions mobility is greatly enhanced and body stability is difficult to achieve. Because of these difficulties, optimum placement and accessibility of objects and controls can be critical to required tasks on board shuttle flights or on the proposed space station. Anthropometric measurement of the maximum reach of occupants of a microgravity environment provide knowledge about maximum functional placement for tasking situations. Calculations for a full body, functional reach envelope for microgravity environments are imperative. To this end, three dimensional computer modeled human figures, providing a method of anthropometric measurement, were used to locate the data points that define the full body, functional reach envelope. Virtual reality technology was utilized to enable an occupant of the microgravity environment to experience movement within the reach envelope while immersed in a simulated microgravity environment.

  10. 3D Human Adipose-Derived Stem Cell Clusters as a Model for In Vitro Fibrosis.

    PubMed

    Rajangam, Thanavel; Park, Min Hee; Kim, Sang-Heon

    2016-07-01

    Excessive extracellular matrix (ECM) deposition is a cause of progressive fibrosis, which ultimately leads to progressive organ dysfunction. The lack of an in vitro fibrosis model and in vitro drug screening tools limits the development of effective antifibrotic drugs. The profibrotic cytokine transforming growth factor-β1 (TGF-β1), which is secreted by a variety of cells under continuous hypoxic condition, correlates strongly with tissue fibrosis and is largely responsible for the observed increases in ECM deposition in fibrotic diseases. In this study, we established an in vitro fibrosis model in which human adipose-derived stem cells (hASCs) secrete TGF-β1 by engineering three-dimensional cell masses (3DCMs) of hASCs on a maltose-binding protein-basic fibroblast growth factor (MBP-FGF2)-immobilized substrate. We found that the hypoxic microenvironment created in the interior of 3DCMs during the early stages of culture leads to activation and synthesis of TGF-β1. The gene expression of fibrosis-related molecules such as TGF-β1, α-smooth muscle actin (αSMA), and collagen type I was upregulated in 3DCMs. As culture time increased, overexpression of TGF-β1 led to differentiation of hASCs into activated myofibroblasts, which accumulate excessive collagen type I and are characterized by αSMA expression. Furthermore, immunofluorescence data verified the increase in collagen type I synthesis in αSMA-positive cells. Scanning electron microscopy revealed rigid and compact 3DCMs, probably due to accumulation of ECM components and cross-linking of these components. The advantage of this TGF-β1-mediated 3D in vitro fibrosis model is that it opens up new avenues to understand the common mechanism of fibrosis, which will then facilitate the development of broadly effective antifibrotic compounds and the screening of existing antifibrotic agents. To the best of our knowledge, this is the first proper biomimetic 3D in vitro fibrosis model to be developed. PMID

  11. Engineering Human TMJ Discs with Protein-Releasing 3D-Printed Scaffolds.

    PubMed

    Legemate, K; Tarafder, S; Jun, Y; Lee, C H

    2016-07-01

    The temporomandibular joint (TMJ) disc is a heterogeneous fibrocartilaginous tissue positioned between the mandibular condyle and glenoid fossa of the temporal bone, with important roles in TMJ functions. Tissue engineering TMJ discs has emerged as an alternative approach to overcoming limitations of current treatments for TMJ disorders. However, the anisotropic collagen orientation and inhomogeneous fibrocartilaginous matrix distribution present challenges in the tissue engineering of functional TMJ discs. Here, we developed 3-dimensional (3D)-printed anatomically correct scaffolds with region-variant microstrand alignment, mimicking anisotropic collagen alignment in the TMJ disc and corresponding mechanical properties. Connective tissue growth factor (CTGF) and transforming growth factor beta 3 (TGFβ3) were then delivered in the scaffolds by spatially embedding CTGF- or TGFβ3-encapsulated microspheres (µS) to reconstruct the regionally variant fibrocartilaginous matrix in the native TMJ disc. When cultured with human mesenchymal stem/progenitor cells (MSCs) for 6 wk, 3D-printed scaffolds with CTGF/TGFβ3-µS resulted in a heterogeneous fibrocartilaginous matrix with overall distribution of collagen-rich fibrous structure in the anterior/posterior (AP) bands and fibrocartilaginous matrix in the intermediate zone, reminiscent of the native TMJ disc. High dose of CTGF/TGFβ3-µS (100 mg µS/g of scaffold) showed significantly more collagen II and aggrecan in the intermediate zone than a low dose (50 mg µS/g of scaffold). Similarly, a high dose of CTGF/TGFβ3-µS yielded significantly higher collagen I expression in the AP bands compared with the low-dose and empty µS. From stress relaxation tests, the ratio of relaxation modulus to instantaneous modulus was significantly smaller with CTGF/TGFβ3-µS than empty µS. Similarly, a significantly higher coefficient of viscosity was achieved with the high dose of CTGF/TGFβ3-µS compared with the low-dose and empty

  12. Effects of Polyamidoamine Dendrimers on a 3-D Neurosphere System Using Human Neural Progenitor Cells.

    PubMed

    Zeng, Yang; Kurokawa, Yoshika; Zeng, Qin; Win-Shwe, Tin-Tin; Nansai, Hiroko; Zhang, Zhenya; Sone, Hideko

    2016-07-01

    The practical application of engineered nanomaterials or nanoparticles like polyamidoamine (PAMAM) dendrimers has been promoted in medical devices or industrial uses. The safety of PAMAM dendrimers needs to be assessed when used as a drug carrier to treat brain disease. However, the effects of PAMAM on the human nervous system remain unknown. In this study, human neural progenitor cells cultured as a 3D neurosphere model were used to study the effects of PAMAM dendrimers on the nervous system. Neurospheres were exposed to different G4-PAMAM dendrimers for 72 h at concentrations of 0.3, 1, 3, and 10 μg/ml. The biodistribution was investigated using fluorescence-labeled PAMAM dendrimers, and gene expression was evaluated using microarray analysis followed by pathway and network analysis. Results showed that PAMAM dendrimer nanoparticles can penetrate into neurospheres via superficial cells on them. PAMAM-NH2 but not PAMAM-SC can inhibit neurosphere growth. A reduced number of MAP2-positive cells in flare regions were inhibited after 10 days of differentiation, indicating an inhibitory effect of PAMAM-NH2 on cell proliferation and neuronal migration. A microarray assay showed 32 dendrimer toxicity-related genes, with network analysis showing 3 independent networks of the selected gene targets. Inducible immediate early gene early growth response gene 1 (Egr1), insulin-like growth factor-binding protein 3 (IGFBP3), tissue factor pathway inhibitor (TFPI2), and adrenomedullin (ADM) were the key genes in each network, and the expression of these genes was significantly down regulated. These findings suggest that exposure of neurospheres to PAMAM-NH2 dendrimers affects cell proliferation and migration through pathways regulated by Egr1, IGFBP3, TFPI2, and ADM. PMID:27125967

  13. Computation of Flow Over a Drag Prediction Workshop Wing/Body Transport Configuration Using CFL3D

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Biedron, Robert T.

    2001-01-01

    A Drag Prediction Workshop was held in conjunction with the 19th AIAA Applied Aerodynamics Conference in June 2001. The purpose of the workshop was to assess the prediction of drag by computational methods for a wing/body configuration (DLR-F4) representative of subsonic transport aircraft. This report details computed results submitted to this workshop using the Reynolds-averaged Navier-Stokes code CFL3D. Two supplied grids were used: a point-matched 1-to-1 multi-block grid, and an overset multi-block grid. The 1-to-1 grid, generally of much poorer quality and with less streamwise resolution than the overset grid, is found to be too coarse to adequately resolve the surface pressures. However, the global forces and moments are nonetheless similar to those computed using the overset grid. The effect of three different turbulence models is assessed using the 1-to-1 grid. Surface pressures are very similar overall, and the drag variation due to turbulence model is 18 drag counts. Most of this drag variation is in the friction component, and is attributed in part to insufficient grid resolution of the 1-to-1 grid. The misnomer of 'fully turbulent' computations is discussed; comparisons are made using different transition locations and their effects on the global forces and moments are quantified. Finally, the effect of two different versions of a widely used one-equation turbulence model is explored.

  14. A 3D Toolbox to Enhance Physiological Relevance of Human Tissue Models.

    PubMed

    Picollet-D'hahan, Nathalie; Dolega, Monika E; Liguori, Lavinia; Marquette, Christophe; Le Gac, Séverine; Gidrol, Xavier; Martin, Donald K

    2016-09-01

    We discuss the current challenges and future prospects of flow-based organoid models and 3D self-assembling scaffolds. The existing paradigm of 3D culture suffers from a lack of control over organoid size and shape; can be an obstacle for cell harvesting and extended cellular and molecular analysis; and does not provide access to the function of exocrine glands. Moreover, existing organ-on-chip models are mostly composed of 2D extracellular matrix (ECM)-coated elastomeric membranes that do not mimic real organ architectures. A new comprehensive 3D toolbox for cell biology has emerged to address some of these issues. Advances in microfabrication and cell-culturing approaches enable the engineering of sophisticated models that mimic organ 3D architectures and physiological conditions, while supporting flow-based drug screening and secretomics-based diagnosis. PMID:27497676

  15. Heterogeneous Differentiation of Human Mesenchymal Stem Cells in 3D Extracellular Matrix Composites

    PubMed Central

    Jung, Jangwook P.; Bache-Wiig, Meredith K.; Provenzano, Paolo P.; Ogle, Brenda M.

    2016-01-01

    Abstract Extracellular matrix (ECM) proteins are structural elements of tissue and also potent signaling molecules. Previously, our laboratory showed that ECM of 2D coatings can trigger differentiation of bone marrow-derived mesenchymal stem cells (MSCs) into mesodermal lineages in an ECM-specific manner over 14 days, in some cases comparable to chemical induction. To test whether a similar effect was possible in a 3D, tissue-like environment, we designed a synthetic-natural biomaterial composite. The composite can present whole-molecule ECM proteins to cells, even those that do not spontaneously form hydrogels ex vivo, in 3D. To this end, we entrapped collagen type I, laminin-111, or fibronectin in ECM composites with MSCs and directly compared markers of mesodermal differentiation including cardiomyogenic (ACTC1), osteogenic (SPP1), adipogenic (PPARG), and chondrogenic (SOX9) in 2D versus 3D. We found the 3D condition largely mimicked the 2D condition such that the addition of type I collagen was the most potent inducer of differentiation to all lineages tested. One notable difference between 2D and 3D was pronounced adipogenic differentiation in 3D especially in the presence of exogenous collagen type I. In particular, PPARG gene expression was significantly increased ∼16-fold relative to chemical induction, in 3D and not in 2D. Unexpectedly, 3D engagement of ECM proteins also altered immunomodulatory function of MSCs in that expression of IL-6 gene was elevated relative to basal levels in 2D. In fact, levels of IL-6 gene expression in 3D composites containing exogenously supplied collagen type I or fibronectin were statistically similar to levels attained in 2D with tumor necrosis factor-α (TNF-α) stimulation and these levels were sustained over a 2-week period. Thus, this novel biomaterial platform allowed us to compare the biochemical impact of whole-molecule ECM proteins in 2D versus 3D indicating enhanced adipogenic differentiation and IL-6 expression

  16. Heterogeneous Differentiation of Human Mesenchymal Stem Cells in 3D Extracellular Matrix Composites.

    PubMed

    Jung, Jangwook P; Bache-Wiig, Meredith K; Provenzano, Paolo P; Ogle, Brenda M

    2016-01-01

    Extracellular matrix (ECM) proteins are structural elements of tissue and also potent signaling molecules. Previously, our laboratory showed that ECM of 2D coatings can trigger differentiation of bone marrow-derived mesenchymal stem cells (MSCs) into mesodermal lineages in an ECM-specific manner over 14 days, in some cases comparable to chemical induction. To test whether a similar effect was possible in a 3D, tissue-like environment, we designed a synthetic-natural biomaterial composite. The composite can present whole-molecule ECM proteins to cells, even those that do not spontaneously form hydrogels ex vivo, in 3D. To this end, we entrapped collagen type I, laminin-111, or fibronectin in ECM composites with MSCs and directly compared markers of mesodermal differentiation including cardiomyogenic (ACTC1), osteogenic (SPP1), adipogenic (PPARG), and chondrogenic (SOX9) in 2D versus 3D. We found the 3D condition largely mimicked the 2D condition such that the addition of type I collagen was the most potent inducer of differentiation to all lineages tested. One notable difference between 2D and 3D was pronounced adipogenic differentiation in 3D especially in the presence of exogenous collagen type I. In particular, PPARG gene expression was significantly increased ∼16-fold relative to chemical induction, in 3D and not in 2D. Unexpectedly, 3D engagement of ECM proteins also altered immunomodulatory function of MSCs in that expression of IL-6 gene was elevated relative to basal levels in 2D. In fact, levels of IL-6 gene expression in 3D composites containing exogenously supplied collagen type I or fibronectin were statistically similar to levels attained in 2D with tumor necrosis factor-α (TNF-α) stimulation and these levels were sustained over a 2-week period. Thus, this novel biomaterial platform allowed us to compare the biochemical impact of whole-molecule ECM proteins in 2D versus 3D indicating enhanced adipogenic differentiation and IL-6 expression of MSC in

  17. Novel carbocyclic curcumin analog CUR3d modulates genes involved in multiple apoptosis pathways in human hepatocellular carcinoma cells.

    PubMed

    Bhullar, Khushwant S; Jha, Amitabh; Rupasinghe, H P Vasantha

    2015-12-01

    Anticancer activity of a novel curcumin analog (E)-2-(4-hydroxy-3-methoxybenzylidene)-5-((E)-3-(4-hydroxy-3-methoxyphenyl)acryloyl)cyclopentanone (CUR3d) was studied using a human hepatocellular carcinoma cell line (HepG2). The results showed that CUR3d completely inhibits the tumor cell proliferation in a dose- and time-dependent manner. CUR3d at 100 μmol/L activated the pro-apoptotic caspase-3 along with downregulation of anti-apoptotic BIRC5 and Bcl2. CUR3d treatment controlled the cancer cell growth by downregulating the expression of PI3K/Akt (Akt1, Akt2) pathway along with NF-κB. CUR3d down-regulated the members of epidermal growth receptor family (EGFR, ERBB3, ERBB2) and insulin like growth receptors (IGF1, IGF-1R, IGF2). This correlated with the downregulation of G-protein (RHOA, RHOB) and RAS (ATF2, HRAS, KRAS, NRAS) pathway signaling. CUR3d also arrested cell cycle via inhibition of CDK2, CDK4, CDK5, CDK9, MDM2, MDM4 and TERT genes. Cell cycle essential aurora kinases (AURKα, AURKβ) and polo-like kinases (PLK1, PLK2, PLK3) were also modulated by CUR3d. Topoisomerases (TOP2α, TOP2β), important factors in cancer cell immortality, as well as HIF-1α were downregulated following CUR3d treatment. The expression of protein kinase-C family (PRKC-A, PRKC-D, PRKC-E) was also attenuated by CUR3d. The downregulation of histone deacetylases (Class I, II, IV) and PARP I further strengthened the anticancer efficacy of CUR3d. Downregulation of carcinogenic cathepsins (CTSB, CTSD) and heat shock proteins exhibited CUR3d's potency as a potential immunological adjuvant. Finally, the non-toxic manifestation of CUR3d in healthy liver and lung cells along with downregulation of drug resistant gene ABCC1 further warrant need for advance investigations. PMID:26409325

  18. Preclinical validation and imaging of Wnt-induced repair in human 3D lung tissue cultures.

    PubMed

    Uhl, Franziska E; Vierkotten, Sarah; Wagner, Darcy E; Burgstaller, Gerald; Costa, Rita; Koch, Ina; Lindner, Michael; Meiners, Silke; Eickelberg, Oliver; Königshoff, Melanie

    2015-10-01

    Chronic obstructive pulmonary disease (COPD) is characterised by a progressive loss of lung tissue. Inducing repair processes within the adult diseased lung is of major interest and Wnt/β-catenin signalling represents a promising target for lung repair. However, the translation of novel therapeutic targets from model systems into clinical use remains a major challenge.We generated murine and patient-derived three-dimensional (3D) ex vivo lung tissue cultures (LTCs), which closely mimic the 3D lung microenvironment in vivo. Using two well-known glycogen synthase kinase-3β inhibitors, lithium chloride (LiCl) and CHIR 99021 (CT), we determined Wnt/β-catenin-driven lung repair processes in high spatiotemporal resolution using quantitative PCR, Western blotting, ELISA, (immuno)histological assessment, and four-dimensional confocal live tissue imaging.Viable 3D-LTCs exhibited preserved lung structure and function for up to 5 days. We demonstrate successful Wnt/β-catenin signal activation in murine and patient-derived 3D-LTCs from COPD patients. Wnt/β-catenin signalling led to increased alveolar epithelial cell marker expression, decreased matrix metalloproteinase-12 expression, as well as altered macrophage activity and elastin remodelling. Importantly, induction of surfactant protein C significantly correlated with disease stage (per cent predicted forced expiratory volume in 1 s) in patient-derived 3D-LTCs.Patient-derived 3D-LTCs represent a valuable tool to analyse potential targets and drugs for lung repair. Enhanced Wnt/β-catenin signalling attenuated pathological features of patient-derived COPD 3D-LTCs. PMID:25929950

  19. FHR3 Blocks C3d-Mediated Coactivation of Human B Cells.

    PubMed

    Buhlmann, Denise; Eberhardt, Hannes U; Medyukhina, Anna; Prodinger, Wolfgang M; Figge, Marc Thilo; Zipfel, Peter F; Skerka, Christine

    2016-07-15

    The autoimmune renal disease deficient for complement factor H-related (CFHR) genes and autoantibody-positive form of hemolytic uremic syndrome is characterized by the presence of autoantibodies specific for the central complement regulator, factor H, combined with a homozygous deficiency, mostly in CFHR3 and CFHR1 Because FHR3 and FHR1 bind to C3d and inactivated C3b, which are ligands for complement receptor type 2 (CR2/CD21), the aim of the current study was to examine whether FHR3-C3d or FHR1-C3d complexes modulate B cell activation. Laser-scanning microscopy and automated image-based analysis showed that FHR3, but not FHR1 or factor H, blocked B cell activation by the BCR coreceptor complex (CD19/CD21/CD81). FHR3 bound to C3d, thereby inhibiting the interaction between C3d and CD21 and preventing colocalization of the coreceptor complex with the BCR. FHR3 neutralized the adjuvant effect of C3d on B cells, as shown by inhibited intracellular CD19 and Akt phosphorylation in Raji cells, as well as Ca(2+) release in peripheral B cells. In cases of CFHR3/CFHR1 deficiency, the FHR3 binding sites on C3d are occupied by factor H, which lacks B cell-inhibitory functions. These data provide evidence that FHR3, which is absent in patients with the autoimmune form of hemolytic uremic syndrome, is involved in B cell regulation. PMID:27279373

  20. Functional 3D Neural Mini-Tissues from Printed Gel-Based Bioink and Human Neural Stem Cells.

    PubMed

    Gu, Qi; Tomaskovic-Crook, Eva; Lozano, Rodrigo; Chen, Yu; Kapsa, Robert M; Zhou, Qi; Wallace, Gordon G; Crook, Jeremy M

    2016-06-01

    Direct-write printing of stem cells within biomaterials presents an opportunity to engineer tissue for in vitro modeling and regenerative medicine. Here, a first example of constructing neural tissue by printing human neural stem cells that are differentiated in situ to functional neurons and supporting neuroglia is reported. The supporting biomaterial incorporates a novel clinically relevant polysaccharide-based bioink comprising alginate, carboxymethyl-chitosan, and agarose. The printed bioink rapidly gels by stable cross-linking to form a porous 3D scaffold encapsulating stem cells for in situ expansion and differentiation. Differentiated neurons form synaptic contacts, establish networks, are spontaneously active, show a bicuculline-induced increased calcium response, and are predominantly gamma-aminobutyric acid expressing. The 3D tissues will facilitate investigation of human neural development, function, and disease, and may be adaptable for engineering other 3D tissues from different stem cell types. PMID:27028356

  1. True-3D Accentuating of Grids and Streets in Urban Topographic Maps Enhances Human Object Location Memory

    PubMed Central

    Edler, Dennis; Bestgen, Anne-Kathrin; Kuchinke, Lars; Dickmann, Frank

    2015-01-01

    Cognitive representations of learned map information are subject to systematic distortion errors. Map elements that divide a map surface into regions, such as content-related linear symbols (e.g. streets, rivers, railway systems) or additional artificial layers (coordinate grids), provide an orientation pattern that can help users to reduce distortions in their mental representations. In recent years, the television industry has started to establish True-3D (autostereoscopic) displays as mass media. These modern displays make it possible to watch dynamic and static images including depth illusions without additional devices, such as 3D glasses. In these images, visual details can be distributed over different positions along the depth axis. Some empirical studies of vision research provided first evidence that 3D stereoscopic content attracts higher attention and is processed faster. So far, the impact of True-3D accentuating has not yet been explored concerning spatial memory tasks and cartography. This paper reports the results of two empirical studies that focus on investigations whether True-3D accentuating of artificial, regular overlaying line features (i.e. grids) and content-related, irregular line features (i.e. highways and main streets) in official urban topographic maps (scale 1/10,000) further improves human object location memory performance. The memory performance is measured as both the percentage of correctly recalled object locations (hit rate) and the mean distances of correctly recalled objects (spatial accuracy). It is shown that the True-3D accentuating of grids (depth offset: 5 cm) significantly enhances the spatial accuracy of recalled map object locations, whereas the True-3D emphasis of streets significantly improves the hit rate of recalled map object locations. These results show the potential of True-3D displays for an improvement of the cognitive representation of learned cartographic information. PMID:25679208

  2. True-3D accentuating of grids and streets in urban topographic maps enhances human object location memory.

    PubMed

    Edler, Dennis; Bestgen, Anne-Kathrin; Kuchinke, Lars; Dickmann, Frank

    2015-01-01

    Cognitive representations of learned map information are subject to systematic distortion errors. Map elements that divide a map surface into regions, such as content-related linear symbols (e.g. streets, rivers, railway systems) or additional artificial layers (coordinate grids), provide an orientation pattern that can help users to reduce distortions in their mental representations. In recent years, the television industry has started to establish True-3D (autostereoscopic) displays as mass media. These modern displays make it possible to watch dynamic and static images including depth illusions without additional devices, such as 3D glasses. In these images, visual details can be distributed over different positions along the depth axis. Some empirical studies of vision research provided first evidence that 3D stereoscopic content attracts higher attention and is processed faster. So far, the impact of True-3D accentuating has not yet been explored concerning spatial memory tasks and cartography. This paper reports the results of two empirical studies that focus on investigations whether True-3D accentuating of artificial, regular overlaying line features (i.e. grids) and content-related, irregular line features (i.e. highways and main streets) in official urban topographic maps (scale 1/10,000) further improves human object location memory performance. The memory performance is measured as both the percentage of correctly recalled object locations (hit rate) and the mean distances of correctly recalled objects (spatial accuracy). It is shown that the True-3D accentuating of grids (depth offset: 5 cm) significantly enhances the spatial accuracy of recalled map object locations, whereas the True-3D emphasis of streets significantly improves the hit rate of recalled map object locations. These results show the potential of True-3D displays for an improvement of the cognitive representation of learned cartographic information. PMID:25679208

  3. Human Liver Infection in a Dish: Easy-To-Build 3D Liver Models for Studying Microbial Infection

    PubMed Central

    Petropolis, Debora B.; Faust, Daniela M.; Tolle, Matthieu; Rivière, Lise; Valentin, Tanguy; Neuveut, Christine; Hernandez-Cuevas, Nora; Dufour, Alexandre; Olivo-Marin, Jean-Christophe; Guillen, Nancy

    2016-01-01

    Human liver infection is a major cause of death worldwide, but fundamental studies on infectious diseases affecting humans have been hampered by the lack of robust experimental models that accurately reproduce pathogen-host interactions in an environment relevant for the human disease. In the case of liver infection, one consequence of this absence of relevant models is a lack of understanding of how pathogens cross the sinusoidal endothelial barrier and parenchyma. To fill that gap we elaborated human 3D liver in vitro models, composed of human liver sinusoidal endothelial cells (LSEC) and Huh-7 hepatoma cells as hepatocyte model, layered in a structure mimicking the hepatic sinusoid, which enable studies of key features of early steps of hepatic infection. Built with established cell lines and scaffold, these models provide a reproducible and easy-to-build cell culture approach of reduced complexity compared to animal models, while preserving higher physiological relevance compared to standard 2D systems. For proof-of-principle we challenged the models with two hepatotropic pathogens: the parasitic amoeba Entamoeba histolytica and hepatitis B virus (HBV). We constructed four distinct setups dedicated to investigating specific aspects of hepatic invasion: 1) pathogen 3D migration towards hepatocytes, 2) hepatocyte barrier crossing, 3) LSEC and subsequent hepatocyte crossing, and 4) quantification of human hepatic virus replication (HBV). Our methods comprise automated quantification of E. histolytica migration and hepatic cells layer crossing in the 3D liver models. Moreover, replication of HBV virus occurs in our virus infection 3D liver model, indicating that routine in vitro assays using HBV or others viruses can be performed in this easy-to-build but more physiological hepatic environment. These results illustrate that our new 3D liver infection models are simple but effective, enabling new investigations on infectious disease mechanisms. The better

  4. Human Liver Infection in a Dish: Easy-To-Build 3D Liver Models for Studying Microbial Infection.

    PubMed

    Petropolis, Debora B; Faust, Daniela M; Tolle, Matthieu; Rivière, Lise; Valentin, Tanguy; Neuveut, Christine; Hernandez-Cuevas, Nora; Dufour, Alexandre; Olivo-Marin, Jean-Christophe; Guillen, Nancy

    2016-01-01

    Human liver infection is a major cause of death worldwide, but fundamental studies on infectious diseases affecting humans have been hampered by the lack of robust experimental models that accurately reproduce pathogen-host interactions in an environment relevant for the human disease. In the case of liver infection, one consequence of this absence of relevant models is a lack of understanding of how pathogens cross the sinusoidal endothelial barrier and parenchyma. To fill that gap we elaborated human 3D liver in vitro models, composed of human liver sinusoidal endothelial cells (LSEC) and Huh-7 hepatoma cells as hepatocyte model, layered in a structure mimicking the hepatic sinusoid, which enable studies of key features of early steps of hepatic infection. Built with established cell lines and scaffold, these models provide a reproducible and easy-to-build cell culture approach of reduced complexity compared to animal models, while preserving higher physiological relevance compared to standard 2D systems. For proof-of-principle we challenged the models with two hepatotropic pathogens: the parasitic amoeba Entamoeba histolytica and hepatitis B virus (HBV). We constructed four distinct setups dedicated to investigating specific aspects of hepatic invasion: 1) pathogen 3D migration towards hepatocytes, 2) hepatocyte barrier crossing, 3) LSEC and subsequent hepatocyte crossing, and 4) quantification of human hepatic virus replication (HBV). Our methods comprise automated quantification of E. histolytica migration and hepatic cells layer crossing in the 3D liver models. Moreover, replication of HBV virus occurs in our virus infection 3D liver model, indicating that routine in vitro assays using HBV or others viruses can be performed in this easy-to-build but more physiological hepatic environment. These results illustrate that our new 3D liver infection models are simple but effective, enabling new investigations on infectious disease mechanisms. The better

  5. Shape and 3D acoustically induced vibrations of the human eardrum characterized by digital holography

    NASA Astrophysics Data System (ADS)

    Khaleghi, Morteza; Furlong, Cosme; Cheng, Jeffrey Tao; Rosowski, John J.

    2014-07-01

    The eardrum or Tympanic Membrane (TM) transfers acoustic energy from the ear canal (at the external ear) into mechanical motions of the ossicles (at the middle ear). The acousto-mechanical-transformer behavior of the TM is determined by its shape and mechanical properties. For a better understanding of hearing mysteries, full-field-of-view techniques are required to quantify shape, nanometer-scale sound-induced displacement, and mechanical properties of the TM in 3D. In this paper, full-field-of-view, three-dimensional shape and sound-induced displacement of the surface of the TM are obtained by the methods of multiple wavelengths and multiple sensitivity vectors with lensless digital holography. Using our developed digital holographic systems, unique 3D information such as, shape (with micrometer resolution), 3D acoustically-induced displacement (with nanometer resolution), full strain tensor (with nano-strain resolution), 3D phase of motion, and 3D directional cosines of the displacement vectors can be obtained in full-field-ofview with a spatial resolution of about 3 million points on the surface of the TM and a temporal resolution of 15 Hz.

  6. Survey of Stereotactic Body Radiation Therapy in Japan by the Japan 3-D Conformal External Beam Radiotherapy Group

    SciTech Connect

    Nagata, Yasushi Hiraoka, Masahiro; Mizowaki, Takashi; Narita, Yuichiro; Matsuo, Yukinori; Norihisa, Yoshiki; Onishi, Hiroshi; Shirato, Hiroki

    2009-10-01

    Purpose: To recognize the current status of stereotactic body radiotherapy (SBRT) in Japan, using a nationwide survey conducted by the Japan 3-D Conformal External Beam Radiotherapy Group. Methods and Materials: The questionnaire was sent by mail to 117 institutions. Ninety-four institutions (80%) responded by the end of November 2005. Fifty-three institutions indicated that they have already started SBRT, and 38 institutions had been reimbursed by insurance. Results: A total of 1111 patients with histologically confirmed lung cancer were treated. Among these patients, 637 had T1N0M0 and 272 had T2N0M0 lung cancer. Metastatic lung cancer was found in 702 and histologically unconfirmed lung tumor in 291 patients. Primary liver cancer was found in 207 and metastatic liver cancer in 76 patients. The most frequent schedule used for primary lung cancer was 48Gy in 4 fractions at 22 institutions (52%), followed by 50Gy in 5 fractions at 11 institutions (26%) and 60Gy in 8 fractions at 4 institutions (10%). The tendency was the same for metastatic lung cancer. The average number of personnel involved in SBRT was 1.8 radiation oncologists, including 1.1 certified radiation oncologists, 2.8 technologists, 0.7 nurses, and 0.6 certified quality assurance personnel and 0.3 physicists. The most frequent amount of time for treatment planning was 61-120min, for quality assurance was 50-60min, and for treatment was 30min. There were 14 (0.6% of all cases) reported Grade 5 complications: 11 cases of radiation pneumonitis, 2 cases of hemoptysis, and 1 case of radiation esophagitis. Conclusion: The current status of SBRT in Japan was surveyed.

  7. Mitigation of Lethal Radiation Syndrome in Mice by Intramuscular Injection of 3D Cultured Adherent Human Placental Stromal Cells.

    PubMed

    Gaberman, Elena; Pinzur, Lena; Levdansky, Lilia; Tsirlin, Maria; Netzer, Nir; Aberman, Zami; Gorodetsky, Raphael

    2013-01-01

    Exposure to high lethal dose of ionizing radiation results in acute radiation syndrome with deleterious systemic effects to different organs. A primary target is the highly sensitive bone marrow and the hematopoietic system. In the current study C3H/HeN mice were total body irradiated by 7.7 Gy. Twenty four hrs and 5 days after irradiation 2×10(6) cells from different preparations of human derived 3D expanded adherent placental stromal cells (PLX) were injected intramuscularly. Treatment with batches consisting of pure maternal cell preparations (PLX-Mat) increased the survival of the irradiated mice from ∼27% to 68% (P<0.001), while cell preparations with a mixture of maternal and fetal derived cells (PLX-RAD) increased the survival to ∼98% (P<0.0001). The dose modifying factor of this treatment for both 50% and 37% survival (DMF50 and DMF37) was∼1.23. Initiation of the more effective treatment with PLX-RAD injection could be delayed for up to 48 hrs after irradiation with similar effect. A delayed treatment by 72 hrs had lower, but still significantly effect (p<0.05). A faster recovery of the BM and improved reconstitution of all blood cell lineages in the PLX-RAD treated mice during the follow-up explains the increased survival of the cells treated irradiated mice. The number of CD45+/SCA1+ hematopoietic progenitor cells within the fast recovering population of nucleated BM cells in the irradiated mice was also elevated in the PLX-RAD treated mice. Our study suggests that IM treatment with PLX-RAD cells may serve as a highly effective "off the shelf" therapy to treat BM failure following total body exposure to high doses of radiation. The results suggest that similar treatments may be beneficial also for clinical conditions associated with severe BM aplasia and pancytopenia. PMID:23823334

  8. Mitigation of Lethal Radiation Syndrome in Mice by Intramuscular Injection of 3D Cultured Adherent Human Placental Stromal Cells

    PubMed Central

    Gaberman, Elena; Pinzur, Lena; Levdansky, Lilia; Tsirlin, Maria; Netzer, Nir; Aberman, Zami; Gorodetsky, Raphael

    2013-01-01

    Exposure to high lethal dose of ionizing radiation results in acute radiation syndrome with deleterious systemic effects to different organs. A primary target is the highly sensitive bone marrow and the hematopoietic system. In the current study C3H/HeN mice were total body irradiated by 7.7 Gy. Twenty four hrs and 5 days after irradiation 2×106 cells from different preparations of human derived 3D expanded adherent placental stromal cells (PLX) were injected intramuscularly. Treatment with batches consisting of pure maternal cell preparations (PLX-Mat) increased the survival of the irradiated mice from ∼27% to 68% (P<0.001), while cell preparations with a mixture of maternal and fetal derived cells (PLX-RAD) increased the survival to ∼98% (P<0.0001). The dose modifying factor of this treatment for both 50% and 37% survival (DMF50 and DMF37) was∼1.23. Initiation of the more effective treatment with PLX-RAD injection could be delayed for up to 48 hrs after irradiation with similar effect. A delayed treatment by 72 hrs had lower, but still significantly effect (p<0.05). A faster recovery of the BM and improved reconstitution of all blood cell lineages in the PLX-RAD treated mice during the follow-up explains the increased survival of the cells treated irradiated mice. The number of CD45+/SCA1+ hematopoietic progenitor cells within the fast recovering population of nucleated BM cells in the irradiated mice was also elevated in the PLX-RAD treated mice. Our study suggests that IM treatment with PLX-RAD cells may serve as a highly effective “off the shelf” therapy to treat BM failure following total body exposure to high doses of radiation. The results suggest that similar treatments may be beneficial also for clinical conditions associated with severe BM aplasia and pancytopenia. PMID:23823334

  9. DEVELOPMENT OF 3-D COMPUTER MODELS OF HUMAN LUNG MORPHOLOGY FOR IMPROOVED RISK ASSESSMENT OF INHALED PARTICULATE MATTER

    EPA Science Inventory

    DEVELOPMENT OF 3-D COMPUTER MODELS OF HUMAN LUNG MORPHOLOGY FOR IMPROVED RISK ASSESSMENT OF INHALED PARTICULATE MATTER

    Jeffry D. Schroeter, Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC 27599; Ted B. Martonen, ETD, NHEERL, USEPA, RTP, NC 27711; Do...

  10. A pilot study of the photoprotective effect of almond phytochemicals in a 3D human skin equivalent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    UV exposure causes oxidative stress, inflammation, erythema, and skin cancer. Alpha-Tocopherol (AT) and polyphenols (AP) present in almonds may serve as photoprotectants. Our objectives were to assess the feasibility of using a 3D human skin equivalent (HSE) in photoprotectant research and to deter...

  11. Role of Ceacam1 in VEGF induced vasculogenesis of murine embryonic stem cell-derived embryoid bodies in 3D culture

    SciTech Connect

    Gu, Angel; Tsark, Walter; Holmes, Kathryn V.; Shively, John E.

    2009-06-10

    CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1), a type I transmembrane glycoprotein involved in cell-cell adhesion has been shown to act as an angiogenic factor for mouse and human endothelial cells. Based on the ability of CEACAM1 to initiate lumen formation in human mammary epithelial cells grown in 3D culture (Matrigel), we hypothesized that murine CEACAM1 may play a similar role in vasculogenesis. In order to test this hypothesis, murine embryonic stem (ES) cells stimulated with VEGF were differentiated into embryoid bodies (EB) for 8 days (- 8-0 d) and transferred to Matrigel in the presence or absence of anti-CEACAM1 antibody for an additional 12 days (0-12 d). In the absence of anti-CEACAM1 antibody or in the presence of an isotype control antibody, the EB in Matrigel underwent extensive sprouting, generating lengthy vascular structures with well-defined lumina as demonstrated by confocal microscopy, electron microscopy, and immunohistochemical analysis. Both the length and architecture of the vascular tubes were inhibited by anti-CEACAM1 mAb CC1, a mAb that blocks the cell-cell adhesion functions of CEACAM1, thus demonstrating a critical role for this cell-cell adhesion molecule in generating and maintaining vasculogenesis. QRT-PCR analysis of the VEGF treated ES cells grown under conditions that convert them to EB revealed expression of Ceacam1 as early as - 5 to - 3 d reaching a maximum at day 0 at which time EBs were transferred to Matrigel, thereafter levels at first declined and then increased over time. Other markers of vasculogenesis including Pecam1, VE-Cad, and Tie-1 were not detected until day 0 when EBs were transferred to Matrigel followed by a steady increase in levels, indicating later roles in vasculogenesis. In contrast, Tie-2 and Flk-1 (VEGFR2) were detected on day five of EB formation reaching a maximum at day 0 on transfer to Matrigel, similar to Ceacam1, but after which Tie-2 declined over time, while Flk-1 increased

  12. Effects of scatter on model parameter estimates in 3D PET studies of the human brain

    SciTech Connect

    Cherry, S.R.; Huang, S.C.

    1995-08-01

    Phantom measurements and simulated data were used to characterize the effects of scatter on 3D PET projection data, reconstructed images and model parameter estimates. Scatter distributions were estimated form studies of the 3D Hoffman brain phantom by the 2D/3D difference method. The total scatter fraction in the projection data was 40%, but reduces to 27% when only those counts within the boundary of the brain are considered. After reconstruction, the whole brain scatter fraction is 20%, averaging 10% in cortical gray matter, 21% in basal ganglia and 40% in white matter. The scatter contribution varies by almost a factor of two from the edge to the center of the brain due to the shape of the scatter distribution and the effects of attenuation correction. The effect of scatter on estimates of cerebral metabolic rate for glucose (CMRGI) and cerebral blood flow (CBF) is evaluated by simulating typical gray matter time activity curves (TAC`s) and adding a scatter component based on whole-brain activity. Both CMRGI and CBF change in a linear fashion with scatter fraction. Efforts of between 10 and 30% will typically result if 3D studies are not corrected for scatter. The authors also present results from a simple and fast scatter correction which fits a gaussian function to the scattered events outside the brain. This reduced the scatter fraction to <2% in a range of phantom studies with different activity distributions. Using this correction, quantitative errors in 3D PET studies of CMRGI and CBF can be reduced to well below 10%.

  13. Simultaneous full-field 3-D vibrometry of the human eardrum using spatial-bandwidth multiplexed holography

    PubMed Central

    Khaleghi, Morteza; Guignard, Jérémie; Furlong, Cosme; Rosowski, John J.

    2015-01-01

    Abstract. Holographic interferometric methods typically require the use of three sensitivity vectors in order to obtain three-dimensional (3-D) information. Methods based on multiple directions of illumination have limited applications when studying biological tissues that have temporally varying responses such as the tympanic membrane (TM). Therefore, to measure 3-D displacements in such applications, the measurements along all the sensitivity vectors have to be done simultaneously. We propose a multiple-illumination directions approach to measure 3-D displacements from a single-shot hologram that contains displacement information from three sensitivity vectors. The hologram of an object of interest is simultaneously recorded with three incoherently superimposed pairs of reference and object beams. The incident off-axis angles of the reference beams are adjusted such that the frequency components of the multiplexed hologram are completely separate. Because of the differences in the directions and wavelengths of the reference beams, the positions of each reconstructed image corresponding to each sensitivity vector are different. We implemented a registration algorithm to accurately translate individual components of the hologram into a single global coordinate system to calculate 3-D displacements. The results include magnitudes and phases of 3-D sound-induced motions of a human cadaveric TM at several excitation frequencies showing modal and traveling wave motions on its surface. PMID:25984986

  14. Vasculogenesis and angiogenesis in the first trimester human placenta: an innovative 3D study using an immersive Virtual Reality system.

    PubMed

    van Oppenraaij, R H F; Koning, A H J; Lisman, B A; Boer, K; van den Hoff, M J B; van der Spek, P J; Steegers, E A P; Exalto, N

    2009-03-01

    First trimester human villous vascularization is mainly studied by conventional two-dimensional (2D) microscopy. With this (2D) technique it is not possible to observe the spatial arrangement of the haemangioblastic cords and vessels, transition of cords into vessels and the transition of vasculogenesis to angiogenesis. The Confocal Laser Scanning Microscopy (CLSM) allows for a three-dimensional (3D) reconstruction of images of early pregnancy villous vascularization. These 3D reconstructions, however, are normally analyzed on a 2D medium, lacking depth perception. We performed a descriptive morphologic study, using an immersive Virtual Reality system to utilize the full third dimension completely. This innovative 3D technique visualizes 3D datasets as enlarged 3D holograms and provided detailed insight in the spatial arrangement of first trimester villous vascularization, the beginning of lumen formation within various junctions of haemangioblastic cords between 5 and 7 weeks gestational age and in the gradual transition of vasculogenesis to angiogenesis. This innovative immersive Virtual Reality system enables new perspectives for vascular research and will be implemented for future investigation. PMID:19185915

  15. Comparison of Changes in Immunological Parameters in Human Lymphocytes in 2D Versus 3D Clinostats-Goal Towards Microgravity Analog Calibration for Future Space Experiments

    NASA Astrophysics Data System (ADS)

    Sundaresan, Alamelu; Russomano, Thais; Pellis, Neal R.

    2008-06-01

    Exposure to microgravity may produce changes in the performance of the immunological system at the cellular level as well as in the major physiological systems of the body. Studies in true spaceflight and similar studies in 2D clinostats (Rotating wall vessels) related to decreased immune function in astronaut blood and normal human lymphocytes indicate a decrease in cell proliferation, T cell activation, locomotion and altered lymphocyte signal transduction (Sundaresan and Pellis, 2008, Sundaresan et al., 2004). The present study was designed to investigate whether the proliferation and viability of lymphocytes are reduced by exposure to rotation in a 3D-Clinostat, which is used to simulate microgravity for cells.

  16. Variability in human body size

    NASA Technical Reports Server (NTRS)

    Annis, J. F.

    1978-01-01

    The range of variability found among homogeneous groups is described and illustrated. Those trends that show significantly marked differences between sexes and among a number of racial/ethnic groups are also presented. Causes of human-body size variability discussed include genetic endowment, aging, nutrition, protective garments, and occupation. The information is presented to aid design engineers of space flight hardware and equipment.

  17. Perceptual integration for qualitatively different 3-D cues in the human brain.

    PubMed

    Dövencioğlu, Dicle; Ban, Hiroshi; Schofield, Andrew J; Welchman, Andrew E

    2013-09-01

    The visual system's flexibility in estimating depth is remarkable: We readily perceive 3-D structure under diverse conditions from the seemingly random dots of a "magic eye" stereogram to the aesthetically beautiful, but obviously flat, canvasses of the Old Masters. Yet, 3-D perception is often enhanced when different cues specify the same depth. This perceptual process is understood as Bayesian inference that improves sensory estimates. Despite considerable behavioral support for this theory, insights into the cortical circuits involved are limited. Moreover, extant work tested quantitatively similar cues, reducing some of the challenges associated with integrating computationally and qualitatively different signals. Here we address this challenge by measuring fMRI responses to depth structures defined by shading, binocular disparity, and their combination. We quantified information about depth configurations (convex "bumps" vs. concave "dimples") in different visual cortical areas using pattern classification analysis. We found that fMRI responses in dorsal visual area V3B/KO were more discriminable when disparity and shading concurrently signaled depth, in line with the predictions of cue integration. Importantly, by relating fMRI and psychophysical tests of integration, we observed a close association between depth judgments and activity in this area. Finally, using a cross-cue transfer test, we found that fMRI responses evoked by one cue afford classification of responses evoked by the other. This reveals a generalized depth representation in dorsal visual cortex that combines qualitatively different information in line with 3-D perception. PMID:23647559

  18. Extracting the inclination angle of nerve fibers within the human brain with 3D-PLI independent of system properties

    NASA Astrophysics Data System (ADS)

    Reckfort, Julia; Wiese, Hendrik; Dohmen, Melanie; Grässel, David; Pietrzyk, Uwe; Zilles, Karl; Amunts, Katrin; Axer, Markus

    2013-09-01

    The neuroimaging technique 3D-polarized light imaging (3D-PLI) has opened up new avenues to study the complex nerve fiber architecture of the human brain at sub-millimeter spatial resolution. This polarimetry technique is applicable to histological sections of postmortem brains utilizing the birefringence of nerve fibers caused by the regular arrangement of lipids and proteins in the myelin sheaths surrounding axons. 3D-PLI provides a three-dimensional description of the anatomical wiring scheme defined by the in-section direction angle and the out-of-section inclination angle. To date, 3D-PLI is the only available method that allows bridging the microscopic and the macroscopic description of the fiber architecture of the human brain. Here we introduce a new approach to retrieve the inclination angle of the fibers independently of the properties of the used polarimeters. This is relevant because the image resolution and the signal transmission inuence the measured birefringent signal (retardation) significantly. The image resolution was determined using the USAF- 1951 testchart applying the Rayleigh criterion. The signal transmission was measured by elliptical polarizers applying the Michelson contrast and histological slices of the optic tract of a postmortem brain. Based on these results, a modified retardation-inclination transfer function was proposed to extract the fiber inclination. The comparison of the actual and the inclination angles calculated with the theoretically proposed and the modified transfer function revealed a significant improvement in the extraction of the fiber inclinations.

  19. Computer-aided segmentation and 3D analysis of in vivo MRI examinations of the human vocal tract during phonation

    NASA Astrophysics Data System (ADS)

    Wismüller, Axel; Behrends, Johannes; Hoole, Phil; Leinsinger, Gerda L.; Meyer-Baese, Anke; Reiser, Maximilian F.

    2008-03-01

    We developed, tested, and evaluated a 3D segmentation and analysis system for in vivo MRI examinations of the human vocal tract during phonation. For this purpose, six professionally trained speakers, age 22-34y, were examined using a standardized MRI protocol (1.5 T, T1w FLASH, ST 4mm, 23 slices, acq. time 21s). The volunteers performed a prolonged (>=21s) emission of sounds of the German phonemic inventory. Simultaneous audio tape recording was obtained to control correct utterance. Scans were made in axial, coronal, and sagittal planes each. Computer-aided quantitative 3D evaluation included (i) automated registration of the phoneme-specific data acquired in different slice orientations, (ii) semi-automated segmentation of oropharyngeal structures, (iii) computation of a curvilinear vocal tract midline in 3D by nonlinear PCA, (iv) computation of cross-sectional areas of the vocal tract perpendicular to this midline. For the vowels /a/,/e/,/i/,/o/,/ø/,/u/,/y/, the extracted area functions were used to synthesize phoneme sounds based on an articulatory-acoustic model. For quantitative analysis, recorded and synthesized phonemes were compared, where area functions extracted from 2D midsagittal slices were used as a reference. All vowels could be identified correctly based on the synthesized phoneme sounds. The comparison between synthesized and recorded vowel phonemes revealed that the quality of phoneme sound synthesis was improved for phonemes /a/ and /y/, if 3D instead of 2D data were used, as measured by the average relative frequency shift between recorded and synthesized vowel formants (p<0.05, one-sided Wilcoxon rank sum test). In summary, the combination of fast MRI followed by subsequent 3D segmentation and analysis is a novel approach to examine human phonation in vivo. It unveils functional anatomical findings that may be essential for realistic modelling of the human vocal tract during speech production.

  20. [Wireless human body communication technology].

    PubMed

    Sun, Lei; Zhang, Xiaojuan

    2014-12-01

    The Wireless Body Area Network (WBAN) is a key part of the wearable monitoring technologies, which has many communication technologies to choose from, like Bluetooth, ZigBee, Ultra Wideband, and Wireless Human Body Communication (WHBC). As for the WHBC developed in recent years, it is worthy to be further studied. The WHBC has a strong momentum of growth and a natural advantage in the formation of WBAN. In this paper, we first briefly describe the technical background of WHBC, then introduce theoretical model of human-channel communication and digital transmission machine based on human channel. And finally we analyze various of the interference of the WHBC and show the AFH (Adaptive Frequency Hopping) technology which can effectively deal with the interference. PMID:25868265

  1. Serotonin receptor diversity in the human colon: Expression of serotonin type 3 receptor subunits 5-HT3C, 5-HT3D, and 5-HT3E

    PubMed Central

    Kapeller, Johannes; Möller, Dorothee; Lasitschka, Felix; Autschbach, Frank; Hovius, Ruud; Rappold, Gudrun; Brüss, Michael; Gershon, Michael D.

    2011-01-01

    Since the first description of 5-HT3 receptors more than 50 years ago, there has been speculation about the molecular basis of their receptor heterogeneity. We have cloned the genes encoding novel 5-HT3 subunits 5-HT3C, 5-HT3D, and 5-HT3E and have shown that these subunits are able to form functional heteromeric receptors when coexpressed with the 5-HT3A subunit. However, whether these subunits are actually expressed in human tissue remained to be confirmed. In the current study, we performed immunocytochemistry to locate the 5-HT3A as well as the 5-HT3C, 5-HT3D, and 5-HT3E subunits within the human colon. Western blot analysis was used to confirm subunit expression, and RT-PCR was employed to detect transcripts encoding 5-HT3 receptor subunits in microdissected tissue samples. This investigation revealed, for the first time, that 5-HT3C, 5-HT3D, and 5-HT3E subunits are coexpressed with 5-HT3A in cell bodies of myenteric neurons. Furthermore, 5-HT3A and 5-HT3D were found to be expressed in submucosal plexus of the human large intestine. These data provide a strong basis for future studies of the roles that specific 5-HT3 receptor subtypes play in the function of the enteric and central nervous systems and the contribution that specific 5-HT3 receptors make to the pathophysiology of gastrointestinal disorders such as irritable bowel syndrome and dyspepsia. PMID:21192076

  2. The estimation of 3D SAR distributions in the human head from mobile phone compliance testing data for epidemiological studies

    NASA Astrophysics Data System (ADS)

    Wake, Kanako; Varsier, Nadège; Watanabe, Soichi; Taki, Masao; Wiart, Joe; Mann, Simon; Deltour, Isabelle; Cardis, Elisabeth

    2009-10-01

    A worldwide epidemiological study called 'INTERPHONE' has been conducted to estimate the hypothetical relationship between brain tumors and mobile phone use. In this study, we proposed a method to estimate 3D distribution of the specific absorption rate (SAR) in the human head due to mobile phone use to provide the exposure gradient for epidemiological studies. 3D SAR distributions due to exposure to an electromagnetic field from mobile phones are estimated from mobile phone compliance testing data for actual devices. The data for compliance testing are measured only on the surface in the region near the device and in a small 3D region around the maximum on the surface in a homogeneous phantom with a specific shape. The method includes an interpolation/extrapolation and a head shape conversion. With the interpolation/extrapolation, SAR distributions in the whole head are estimated from the limited measured data. 3D SAR distributions in the numerical head models, where the tumor location is identified in the epidemiological studies, are obtained from measured SAR data with the head shape conversion by projection. Validation of the proposed method was performed experimentally and numerically. It was confirmed that the proposed method provided good estimation of 3D SAR distribution in the head, especially in the brain, which is the tissue of major interest in epidemiological studies. We conclude that it is possible to estimate 3D SAR distributions in a realistic head model from the data obtained by compliance testing measurements to provide a measure for the exposure gradient in specific locations of the brain for the purpose of exposure assessment in epidemiological studies. The proposed method has been used in several studies in the INTERPHONE.

  3. In Vivo 3D Meibography of the Human Eyelid Using Real Time Imaging Fourier-Domain OCT

    PubMed Central

    Hwang, Ho Sik; Shin, Jun Geun; Lee, Byeong Ha; Eom, Tae Joong; Joo, Choun-Ki

    2013-01-01

    Recently, we reported obtaining tomograms of meibomian glands from healthy volunteers using commercial anterior segment optical coherence tomography (AS-OCT), which is widely employed in clinics for examination of the anterior segment. However, we could not create 3D images of the meibomian glands, because the commercial OCT does not have a 3D reconstruction function. In this study we report the creation of 3D images of the meibomian glands by reconstructing the tomograms of these glands using high speed Fourier-Domain OCT (FD-OCT) developed in our laboratory. This research was jointly undertaken at the Department of Ophthalmology, Seoul St. Mary's Hospital (Seoul, Korea) and the Advanced Photonics Research Institute of Gwangju Institute of Science and Technology (Gwangju, Korea) with two healthy volunteers and seven patients with meibomian gland dysfunction. A real time imaging FD-OCT system based on a high-speed wavelength swept laser was developed that had a spectral bandwidth of 100 nm at the 1310 nm center wavelength. The axial resolution was 5 µm and the lateral resolution was 13 µm in air. Using this device, the meibomian glands of nine subjects were examined. A series of tomograms from the upper eyelid measuring 5 mm (from left to right, B-scan) × 2 mm (from upper part to lower part, C-scan) were collected. Three-D images of the meibomian glands were then reconstructed using 3D “data visualization, analysis, and modeling software”. Established infrared meibography was also performed for comparison. The 3D images of healthy subjects clearly showed the meibomian glands, which looked similar to bunches of grapes. These results were consistent with previous infrared meibography results. The meibomian glands were parallel to each other, and the saccular acini were clearly visible. Here we report the successful production of 3D images of human meibomian glands by reconstructing tomograms of these glands with high speed FD-OCT. PMID:23805297

  4. Increasing 3D Matrix Rigidity Strengthens Proliferation and Spheroid Development of Human Liver Cells in a Constant Growth Factor Environment.

    PubMed

    Bomo, Jérémy; Ezan, Frédéric; Tiaho, François; Bellamri, Medjda; Langouët, Sophie; Theret, Nathalie; Baffet, Georges

    2016-03-01

    Mechanical forces influence the growth and shape of virtually all tissues and organs. Recent studies show that increased cell contractibility, growth and differentiation might be normalized by modulating cell tensions. Particularly, the role of these tensions applied by the extracellular matrix during liver fibrosis could influence the hepatocarcinogenesis process. The objective of this study is to determine if 3D stiffness could influence growth and phenotype of normal and transformed hepatocytes and to integrate extracellular matrix (ECM) stiffness to tensional homeostasis. We have developed an appropriate 3D culture model: hepatic cells within three-dimensional collagen matrices with varying rigidity. Our results demonstrate that the rigidity influenced the cell phenotype and induced spheroid clusters development whereas in soft matrices, Huh7 transformed cells were less proliferative, well-spread and flattened. We confirmed that ERK1 played a predominant role over ERK2 in cisplatin-induced death, whereas ERK2 mainly controlled proliferation. As compared to 2D culture, 3D cultures are associated with epithelial markers expression. Interestingly, proliferation of normal hepatocytes was also induced in rigid gels. Furthermore, biotransformation activities are increased in 3D gels, where CYP1A2 enzyme can be highly induced/activated in primary culture of human hepatocytes embedded in the matrix. In conclusion, we demonstrated that increasing 3D rigidity could promote proliferation and spheroid developments of liver cells demonstrating that 3D collagen gels are an attractive tool for studying rigidity-dependent homeostasis of the liver cells embedded in the matrix and should be privileged for both chronic toxicological and pharmacological drug screening. PMID:26331987

  5. Exome-Scale Discovery of Hotspot Mutation Regions in Human Cancer Using 3D Protein Structure.

    PubMed

    Tokheim, Collin; Bhattacharya, Rohit; Niknafs, Noushin; Gygax, Derek M; Kim, Rick; Ryan, Michael; Masica, David L; Karchin, Rachel

    2016-07-01

    The impact of somatic missense mutation on cancer etiology and progression is often difficult to interpret. One common approach for assessing the contribution of missense mutations in carcinogenesis is to identify genes mutated with statistically nonrandom frequencies. Even given the large number of sequenced cancer samples currently available, this approach remains underpowered to detect drivers, particularly in less studied cancer types. Alternative statistical and bioinformatic approaches are needed. One approach to increase power is to focus on localized regions of increased missense mutation density or hotspot regions, rather than a whole gene or protein domain. Detecting missense mutation hotspot regions in three-dimensional (3D) protein structure may also be beneficial because linear sequence alone does not fully describe the biologically relevant organization of codons. Here, we present a novel and statistically rigorous algorithm for detecting missense mutation hotspot regions in 3D protein structures. We analyzed approximately 3 × 10(5) mutations from The Cancer Genome Atlas (TCGA) and identified 216 tumor-type-specific hotspot regions. In addition to experimentally determined protein structures, we considered high-quality structural models, which increase genomic coverage from approximately 5,000 to more than 15,000 genes. We provide new evidence that 3D mutation analysis has unique advantages. It enables discovery of hotspot regions in many more genes than previously shown and increases sensitivity to hotspot regions in tumor suppressor genes (TSG). Although hotspot regions have long been known to exist in both TSGs and oncogenes, we provide the first report that they have different characteristic properties in the two types of driver genes. We show how cancer researchers can use our results to link 3D protein structure and the biologic functions of missense mutations in cancer, and to generate testable hypotheses about driver mechanisms. Our results

  6. Evaluation of local electric fields generated by transcranial direct current stimulation with an extracephalic reference electrode based on realistic 3D body modeling

    NASA Astrophysics Data System (ADS)

    Im, Chang-Hwan; Park, Ji-Hye; Shim, Miseon; Chang, Won Hyuk; Kim, Yun-Hee

    2012-04-01

    In this study, local electric field distributions generated by transcranial direct current stimulation (tDCS) with an extracephalic reference electrode were evaluated to address extracephalic tDCS safety issues. To this aim, we generated a numerical model of an adult male human upper body and applied the 3D finite element method to electric current conduction analysis. In our simulations, the active electrode was placed over the left primary motor cortex (M1) and the reference electrode was placed at six different locations: over the right temporal lobe, on the right supraorbital region, on the right deltoid, on the left deltoid, under the chin, and on the right buccinator muscle. The maximum current density and electric field intensity values in the brainstem generated by the extracephalic reference electrodes were comparable to, or even less than, those generated by the cephalic reference electrodes. These results suggest that extracephalic reference electrodes do not lead to unwanted modulation of the brainstem cardio-respiratory and autonomic centers, as indicated by recent experimental studies. The volume energy density was concentrated at the neck area by the use of deltoid reference electrodes, but was still smaller than that around the active electrode locations. In addition, the distributions of elicited cortical electric fields demonstrated that the use of extracephalic reference electrodes might allow for the robust prediction of cortical modulations with little dependence on the reference electrode locations.

  7. From 2D to 3D--a New Dimension for Modelling the Effect of Natural Products on Human Tissue.

    PubMed

    Wrzesinski, Krzysztof; Fey, Stephen J

    2015-01-01

    Natural products, or their synthetic derivatives are a treasure trove to find potential candidates for novel drugs for human treatment. The selection of diamonds from the huge pile of worthless stone is a critical--and difficult--stage in the discovery pipeline. Of all the factors to be considered, perhaps the most important, is that the compound should have the desired effect on the tissue in vivo. Since it is not possible (or ethical) to test all compounds in vivo one must preselect using a surrogate assay system. While animal models have the advantage of being holistic and current 3D culture systems are reductionistic, they at least can be constructed from human cell types. In this review we will consider some of the evidence demonstrating that cells grown in 3D cultures have physiological performances that mimic functions seen in human tissues significantly better than cells grown using classical 2D culture systems. We will discuss advantages and disadvantages of these new culture technologies and highlight theoretical reasons for the differences. 3D cell culture technologies are more labour intensive than 2D culture systems and therefore their introduction is a trade-off between the value of obtaining data that is more relevant to the human condition against their through-put. It is already clear that future in vitro 3D systems will become more complex, using multiple cell types to more faithfully represent a particular tissue or even organ system. And one thing is sure - the diamonds are not easy to find! PMID:26429710

  8. Laser 3D printing with sub-microscale resolution of porous elastomeric scaffolds for supporting human bone stem cells.

    PubMed

    Petrochenko, Peter E; Torgersen, Jan; Gruber, Peter; Hicks, Lucas A; Zheng, Jiwen; Kumar, Girish; Narayan, Roger J; Goering, Peter L; Liska, Robert; Stampfl, Jürgen; Ovsianikov, Aleksandr

    2015-04-01

    A reproducible method is needed to fabricate 3D scaffold constructs that results in periodic and uniform structures with precise control at sub-micrometer and micrometer length scales. In this study, fabrication of scaffolds by two-photon polymerization (2PP) of a biodegradable urethane and acrylate-based photoelastomer is demonstrated. This material supports 2PP processing with sub-micrometer spatial resolution. The high photoreactivity of the biophotoelastomer permits 2PP processing at a scanning speed of 1000 mm s(-1), facilitating rapid fabrication of relatively large structures (>5 mm(3)). These structures are custom printed for in vitro assay screening in 96-well plates and are sufficiently flexible to enable facile handling and transplantation. These results indicate that stable scaffolds with porosities of greater than 60% can be produced using 2PP. Human bone marrow stromal cells grown on 3D scaffolds exhibit increased growth and proliferation compared to smooth 2D scaffold controls. 3D scaffolds adsorb larger amounts of protein than smooth 2D scaffolds due to their larger surface area; the scaffolds also allow cells to attach in multiple planes and to completely infiltrate the porous scaffolds. The flexible photoelastomer material is biocompatible in vitro and is associated with facile handling, making it a viable candidate for further study of complex 3D-printed scaffolds. PMID:25522214

  9. A video, text, and speech-driven realistic 3-d virtual head for human-machine interface.

    PubMed

    Yu, Jun; Wang, Zeng-Fu

    2015-05-01

    A multiple inputs-driven realistic facial animation system based on 3-D virtual head for human-machine interface is proposed. The system can be driven independently by video, text, and speech, thus can interact with humans through diverse interfaces. The combination of parameterized model and muscular model is used to obtain a tradeoff between computational efficiency and high realism of 3-D facial animation. The online appearance model is used to track 3-D facial motion from video in the framework of particle filtering, and multiple measurements, i.e., pixel color value of input image and Gabor wavelet coefficient of illumination ratio image, are infused to reduce the influence of lighting and person dependence for the construction of online appearance model. The tri-phone model is used to reduce the computational consumption of visual co-articulation in speech synchronized viseme synthesis without sacrificing any performance. The objective and subjective experiments show that the system is suitable for human-machine interaction. PMID:25122851

  10. SU-E-J-200: A Dosimetric Analysis of 3D Versus 4D Image-Based Dose Calculation for Stereotactic Body Radiation Therapy in Lung Tumors

    SciTech Connect

    Ma, M; Rouabhi, O; Flynn, R; Xia, J; Bayouth, J

    2014-06-01

    Purpose: To evaluate the dosimetric difference between 3D and 4Dweighted dose calculation using patient specific respiratory trace and deformable image registration for stereotactic body radiation therapy in lung tumors. Methods: Two dose calculation techniques, 3D and 4D-weighed dose calculation, were used for dosimetric comparison for 9 lung cancer patients. The magnitude of the tumor motion varied from 3 mm to 23 mm. Breath-hold exhale CT was used for 3D dose calculation with ITV generated from the motion observed from 4D-CT. For 4D-weighted calculation, dose of each binned CT image from the ten breathing amplitudes was first recomputed using the same planning parameters as those used in the 3D calculation. The dose distribution of each binned CT was mapped to the breath-hold CT using deformable image registration. The 4D-weighted dose was computed by summing the deformed doses with the temporal probabilities calculated from their corresponding respiratory traces. Dosimetric evaluation criteria includes lung V20, mean lung dose, and mean tumor dose. Results: Comparing with 3D calculation, lung V20, mean lung dose, and mean tumor dose using 4D-weighted dose calculation were changed by −0.67% ± 2.13%, −4.11% ± 6.94% (−0.36 Gy ± 0.87 Gy), −1.16% ± 1.36%(−0.73 Gy ± 0.85 Gy) accordingly. Conclusion: This work demonstrates that conventional 3D dose calculation method may overestimate the lung V20, MLD, and MTD. The absolute difference between 3D and 4D-weighted dose calculation in lung tumor may not be clinically significant. This research is supported by Siemens Medical Solutions USA, Inc and Iowa Center for Research By Undergraduates.

  11. Biostereometric Data Processing In ERGODATA: Choice Of Human Body Models

    NASA Astrophysics Data System (ADS)

    Pineau, J. C.; Mollard, R.; Sauvignon, M.; Amphoux, M.

    1983-07-01

    The definition of human body models was elaborated with anthropometric data from ERGODATA. The first model reduces the human body into a series of points and lines. The second model is well adapted to represent volumes of each segmentary element. The third is an original model built from the conventional anatomical points. Each segment is defined in space by a tri-angular plane located with its 3-D coordinates. This new model can answer all the processing possibilities in the field of computer-aided design (C.A.D.) in ergonomy but also biomechanics and orthopaedics.

  12. A microwave imaging-based 3D localization algorithm for an in-body RF source as in wireless capsule endoscopes.

    PubMed

    Chandra, Rohit; Balasingham, Ilangko

    2015-08-01

    A microwave imaging-based technique for 3D localization of an in-body RF source is presented. Such a technique can be useful for localization of an RF source as in wireless capsule endoscopes for positioning of any abnormality in the gastrointestinal tract. Microwave imaging is used to determine the dielectric properties (relative permittivity and conductivity) of the tissues that are required for a precise localization. A 2D microwave imaging algorithm is used for determination of the dielectric properties. Calibration method is developed for removing any error due to the used 2D imaging algorithm on the imaging data of a 3D body. The developed method is tested on a simple 3D heterogeneous phantom through finite-difference-time-domain simulations. Additive white Gaussian noise at the signal-to-noise ratio of 30 dB is added to the simulated data to make them more realistic. The developed calibration method improves the imaging and the localization accuracy. Statistics on the localization accuracy are generated by randomly placing the RF source at various positions inside the small intestine of the phantom. The cumulative distribution function of the localization error is plotted. In 90% of the cases, the localization accuracy was found within 1.67 cm, showing the capability of the developed method for 3D localization. PMID:26737194

  13. Atypical pyramidal cells in epileptic human cortex: CFLS and 3-D reconstructions.

    PubMed

    Belichencko, P; Dahlström, A; von Essen, C; Lindström, S; Nordborg, C; Sourander, P

    1992-09-01

    Epileptic temporal cortices, removed from 3 patients with intractable partial epilepsy (IPE) during neurosurgery, were studied. Pyramidal neurons (40-50 per slice) in laminae III, V and white matter, were injected with lucifer yellow. Samples were examined in a confocal laser scanning microscope (Biorad 600) and individual cells scanned at 0.1-1 microns incremental levels. 2-D maximal linear projection was used for overview. Frames (50-60) of scanned neurons were transformed into 3-D volumes, using VoxelView software on a Silicone Graphics workstation and rotated. All samples contained neurons with duplicated apical dendrites, additional basal dendrites or were misplaced in a horizontal position in the white matter. The relation between these preliminary observations and the disease is discussed. PMID:1421134

  14. 3D Simulation of Ultrasound in the Ultra-Distal Human Radius

    NASA Astrophysics Data System (ADS)

    Kaufman, Jonathan J.; Luo, Gangming; Siffert, Robert S.

    The overall objective of this research is to develop an ultrasonic method for non-invasive assessment of the ultradistal radius (UDR). The specific objective of this study was to examine the propagation of ultrasound through the UDR and determine the relationships between bone mass and ultrasound, as well as the ability of ultrasound to discriminate between fracture and non-fracture cases. High-resolution peripheral-QCT (HR-pQCT) images were obtained from a set of 110 subjects that were part of a larger study on osteoporosis. Twenty-three of the subjects had experienced a UDR fracture within the past 2 years; the other 87 subjects served as controls. Each 3D image was used to simulate ultrasound measurements that would result from propagation through the UDR, from its anterior to its posterior surfaces. The simulation was carried out using Wave3000 (CyberLogic, Inc., New York, USA), which solves the full 3D viscoelastic wave equation using a finite difference time domain method. Bone mineral density associated with each radius was computed for each subject, and an ultrasound parameter known as net time delay (NTD) was evaluated. NTD has been shown to be highly correlated with total bone mass in both in vitro and clinical studies. Significant correlations were found between NTD and total bone mass (R2 = 0.91, p < 0.001). The data also showed a statistically significant difference in the NTD for the fracture and non-fracture cases (i.e., a decrease in mean NTD of 14% (P < 0.001), with a t-test statistic of 3.8). The study shows that ultrasound is correlated with bone mass at the UDR, as well as with fracture incidence. Therefore ultrasound may prove useful as a simple and convenient method for non-invasive assessment of osteoporosis and fracture risk. Work is ongoing to compare the simulated ultrasound data with clinical ultrasound measurements made on the same individuals.

  15. 3D models as a platform for urban analysis and studies on human perception of space

    NASA Astrophysics Data System (ADS)

    Fisher-Gewirtzman, D.

    2012-10-01

    The objective of this work is to develop an integrated visual analysis and modelling for environmental and urban systems in respect to interior space layout and functionality. This work involves interdisciplinary research efforts that focus primarily on architecture design discipline, yet incorporates experts from other and different disciplines, such as Geoinformatics, computer sciences and environment-behavior studies. This work integrates an advanced Spatial Openness Index (SOI) model within realistic geovisualized Geographical Information System (GIS) environment and assessment using subjective residents' evaluation. The advanced SOI model measures the volume of visible space at any required view point practically, for every room or function. This model enables accurate 3D simulation of the built environment regarding built structure and surrounding vegetation. This paper demonstrates the work on a case study. A 3D model of Neve-Shaanan neighbourhood in Haifa was developed. Students that live in this neighbourhood had participated in this research. Their apartments were modelled in details and inserted into a general model, representing topography and the volumes of buildings. The visual space for each room in every apartment was documented and measured and at the same time the students were asked to answer questions regarding their perception of space and view from their residence. The results of this research work had shown potential contribution to professional users, such as researchers, designers and city planners. This model can be easily used by professionals and by non-professionals such as city dwellers, contractors and developers. This work continues with additional case studies having different building typologies and functions variety, using virtual reality tools.

  16. Use of 3-D magnetic resonance electrical impedance tomography in detecting human cerebral stroke: a simulation study*

    PubMed Central

    Gao, Nuo; Zhu, Shan-an; He, Bin

    2005-01-01

    We have developed a new three dimensional (3-D) conductivity imaging approach and have used it to detect human brain conductivity changes corresponding to acute cerebral stroke. The proposed Magnetic Resonance Electrical Impedance Tomography (MREIT) approach is based on the J-Substitution algorithm and is expanded to imaging 3-D subject conductivity distribution changes. Computer simulation studies have been conducted to evaluate the present MREIT imaging approach. Simulations of both types of cerebral stroke, hemorrhagic stroke and ischemic stroke, were performed on a four-sphere head model. Simulation results showed that the correlation coefficient (CC) and relative error (RE) between target and estimated conductivity distributions were 0.9245±0.0068 and 8.9997%±0.0084%, for hemorrhagic stroke, and 0.6748±0.0197 and 8.8986%±0.0089%, for ischemic stroke, when the SNR (signal-to-noise radio) of added GWN (Gaussian White Noise) was 40. The convergence characteristic was also evaluated according to the changes of CC and RE with different iteration numbers. The CC increases and RE decreases monotonously with the increasing number of iterations. The present simulation results show the feasibility of the proposed 3-D MREIT approach in hemorrhagic and ischemic stroke detection and suggest that the method may become a useful alternative in clinical diagnosis of acute cerebral stroke in humans. PMID:15822161

  17. Volumetric modulated arc planning for lung stereotactic body radiotherapy using conventional and unflattened photon beams: a dosimetric comparison with 3D technique

    PubMed Central

    2011-01-01

    Purpose Frequently, three-dimensional (3D) conformal beams are used in lung cancer stereotactic body radiotherapy (SBRT). Recently, volumetric modulated arc therapy (VMAT) was introduced as a new treatment modality. VMAT techniques shorten delivery time, reducing the possibility of intrafraction target motion. However dose distributions can be quite different from standard 3D therapy. This study quantifies those differences, with focus on VMAT plans using unflattened photon beams. Methods A total of 15 lung cancer patients previously treated with 3D or VMAT SBRT were randomly selected. For each patient, non-coplanar 3D, coplanar and non-coplanar VMAT and flattening filter free VMAT (FFF-VMAT) plans were generated to meet the same objectives with 50 Gy covering 95% of the PTV. Two dynamic arcs were used in each VMAT plan. The couch was set at ± 5° to the 0° straight position for the two non-coplanar arcs. Pinnacle version 9.0 (Philips Radiation Oncology, Fitchburg WI) treatment planning system with VMAT capabilities was used. We analyzed the conformity index (CI), which is the ratio of the total volume receiving at least the prescription dose to the target volume receiving at least the prescription dose; the conformity number (CN) which is the ratio of the target coverage to CI; and the gradient index (GI) which is the ratio of the volume of 50% of the prescription isodose to the volume of the prescription isodose; as well as the V20, V5, and mean lung dose (MLD). Paired non-parametric analysis of variance tests with post-tests were performed to examine the statistical significance of the differences of the dosimetric indices. Results Dosimetric indices CI, CN and MLD all show statistically significant improvement for all studied VMAT techniques compared with 3D plans (p < 0.05). V5 and V20 show statistically significant improvement for the FFF-VMAT plans compared with 3D (p < 0.001). GI is improved for the FFF-VMAT and the non-coplanar VMAT plans (p < 0.01 and p

  18. Unique characteristics of human mesenchymal stem/progenitor cells (MSC) pre-activated in 3D cultures under different conditions

    PubMed Central

    Ylostalo, Joni H.; Bartosh, Thomas J.; Tiblow, April; Prockop, Darwin J.

    2014-01-01

    Background Human mesenchymal stem cells (MSCs) are being employed in clinical trials, but the best protocol to prepare the cells for administration to patients remains unclear. We previously demonstrated that MSCs could be pre-activated to express therapeutic factors by culturing the cells in 3D. Here we compared the activation of MSCs in 3D in fetal bovine serum (FBS) containing medium and in multiple xeno-free media formulations. Methods MSC aggregation and sphere formation was studied using hanging drop cultures with medium containing FBS or with various commercially available stem cell media with or without human serum albumin (HSA). Activation of MSCs was studied with gene expression and protein secretion measurements and with functional studies using macrophages and cancer cells. Results MSCs did not condense into tight spheroids and express a full complement of therapeutic genes in MEMα or several commercial stem-cell media. However, we identified a chemically-defined xeno-free media that when supplemented with HSA from blood or recombinant HSA, resulted in compact spheres with high cell viability, together with high expression of anti-inflammatory (PGE2, TSG-6) and anti-cancer molecules (TRAIL, IL-24). Furthermore, spheres cultured in this medium showed potent anti-inflammatory effects in an LPS-stimulated macrophage system, and suppressed the growth of prostate cancer cells by promoting cell-cycle arrest and cell death. Discussion We demonstrated that cell activation in 3D depends critically on the culture medium. The conditions developed here for 3D culture of MSCs should be useful in further research on MSCs and their potential therapeutic applications. PMID:25231893

  19. Comparison of Mesenchymal Stem Cell Source Differentiation Toward Human Pediatric Aortic Valve Interstitial Cells within 3D Engineered Matrices.

    PubMed

    Duan, Bin; Hockaday, Laura A; Das, Shoshana; Xu, Charlie; Butcher, Jonathan T

    2015-08-01

    Living tissue-engineered heart valves (TEHV) would be a major benefit for children who require a replacement with the capacity for growth and biological integration. A persistent challenge for TEHV is accessible human cell source(s) that can mimic native valve cell phenotypes and matrix remodeling characteristics that are essential for long-term function. Mesenchymal stem cells derived from bone marrow (BMMSC) or adipose tissue (ADMSC) are intriguing cell sources for TEHV, but they have not been compared with pediatric human aortic valve interstitial cells (pHAVIC) in relevant 3D environments. In this study, we compared the spontaneous and induced multipotency of ADMSC and BMMSC with that of pHAVIC using different induction media within three-dimensional (3D) bioactive hybrid hydrogels with material modulus comparable to that of aortic heart valve leaflets. pHAVIC possessed some multi-lineage differentiation capacity in response to induction media, but limited to the earliest stages and much less potent than either ADMSC or BMMSC. ADMSC expressed cell phenotype markers more similar to pHAVIC when conditioned in basic fibroblast growth factor (bFGF) containing HAVIC growth medium, while BMMSC generally expressed similar extracellular matrix remodeling characteristics to pHAVIC. Finally, we covalently attached bFGF to PEG monoacrylate linkers and further covalently immobilized in the 3D hybrid hydrogels. Immobilized bFGF upregulated vimentin expression and promoted the fibroblastic differentiation of pHAVIC, ADMSC, and BMMSC. These findings suggest that stem cells retain a heightened capacity for osteogenic differentiation in 3D culture, but can be shifted toward fibroblast differentiation through matrix tethering of bFGF. Such a strategy is likely important for utilizing stem cell sources in heart valve tissue engineering applications. PMID:25594437

  20. Assessment of a Microsoft Kinect-based 3D scanning system for taking body segment girth measurements: a comparison to ISAK and ISO standards.

    PubMed

    Clarkson, Sean; Wheat, Jon; Heller, Ben; Choppin, Simon

    2016-06-01

    Use of anthropometric data to infer sporting performance is increasing in popularity, particularly within elite sport programmes. Measurement typically follows standards set by the International Society for the Advancement of Kinanthropometry (ISAK). However, such techniques are time consuming, which reduces their practicality. Schranz et al. recently suggested 3D body scanners could replace current measurement techniques; however, current systems are costly. Recent interest in natural user interaction has led to a range of low-cost depth cameras capable of producing 3D body scans, from which anthropometrics can be calculated. A scanning system comprising 4 depth cameras was used to scan 4 cylinders, representative of the body segments. Girth measurements were calculated from the 3D scans and compared to gold standard measurements. Requirements of a Level 1 ISAK practitioner were met in all 4 cylinders, and ISO standards for scan-derived girth measurements were met in the 2 larger cylinders only. A fixed measurement bias was identified that could be corrected with a simple offset factor. Further work is required to determine comparable performance across a wider range of measurements performed upon living participants. Nevertheless, findings of the study suggest such a system offers many advantages over current techniques, having a range of potential applications. PMID:26358314

  1. Real-time 3D visualization of the thoraco-abdominal surface during breathing with body movement and deformation extraction.

    PubMed

    Povšič, K; Jezeršek, M; Možina, J

    2015-07-01

    Real-time 3D visualization of the breathing displacements can be a useful diagnostic tool in order to immediately observe the most active regions on the thoraco-abdominal surface. The developed method is capable of separating non-relevant torso movement and deformations from the deformations that are solely related to breathing. This makes it possible to visualize only the breathing displacements. The system is based on the structured laser triangulation principle, with simultaneous spatial and color data acquisition of the thoraco-abdominal region. Based on the tracking of the attached passive markers, the torso movement and deformation is compensated using rigid and non-rigid transformation models on the three-dimensional (3D) data. The total time of 3D data processing together with visualization equals 20 ms per cycle.In vitro verification of the rigid movement extraction was performed using the iterative closest point algorithm as a reference. Furthermore, a volumetric evaluation on a live subject was performed to establish the accuracy of the rigid and non-rigid model. The root mean square deviation between the measured and the reference volumes shows an error of  ±0.08 dm(3) for rigid movement extraction. Similarly, the error was calculated to be  ±0.02 dm(3) for torsional deformation extraction and  ±0.11 dm(3) for lateral bending deformation extraction. The results confirm that during the torso movement and deformation, the proposed method is sufficiently accurate to visualize only the displacements related to breathing. The method can be used, for example, during the breathing exercise on an indoor bicycle or a treadmill. PMID:26020444

  2. SU-C-213-04: Application of Depth Sensing and 3D-Printing Technique for Total Body Irradiation (TBI) Patient Measurement and Treatment Planning

    SciTech Connect

    Lee, M; Suh, T; Han, B; Xing, L; Jenkins, C

    2015-06-15

    Purpose: To develop and validate an innovative method of using depth sensing cameras and 3D printing techniques for Total Body Irradiation (TBI) treatment planning and compensator fabrication. Methods: A tablet with motion tracking cameras and integrated depth sensing was used to scan a RANDOTM phantom arranged in a TBI treatment booth to detect and store the 3D surface in a point cloud (PC) format. The accuracy of the detected surface was evaluated by comparison to extracted measurements from CT scan images. The thickness, source to surface distance and off-axis distance of the phantom at different body section was measured for TBI treatment planning. A 2D map containing a detailed compensator design was calculated to achieve uniform dose distribution throughout the phantom. The compensator was fabricated using a 3D printer, silicone molding and tungsten powder. In vivo dosimetry measurements were performed using optically stimulated luminescent detectors (OSLDs). Results: The whole scan of the anthropomorphic phantom took approximately 30 seconds. The mean error for thickness measurements at each section of phantom compare to CT was 0.44 ± 0.268 cm. These errors resulted in approximately 2% dose error calculation and 0.4 mm tungsten thickness deviation for the compensator design. The accuracy of 3D compensator printing was within 0.2 mm. In vivo measurements for an end-to-end test showed the overall dose difference was within 3%. Conclusion: Motion cameras and depth sensing techniques proved to be an accurate and efficient tool for TBI patient measurement and treatment planning. 3D printing technique improved the efficiency and accuracy of the compensator production and ensured a more accurate treatment delivery.

  3. Human whole body cold adaptation

    PubMed Central

    Daanen, Hein A.M.; Van Marken Lichtenbelt, Wouter D.

    2016-01-01

    ABSTRACT Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold. PMID:27227100

  4. Human whole body cold adaptation.

    PubMed

    Daanen, Hein A M; Van Marken Lichtenbelt, Wouter D

    2016-01-01

    Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold. PMID:27227100

  5. Production of 3-D Airway Organoids From Primary Human Airway Basal Cells and Their Use in High-Throughput Screening.

    PubMed

    Hild, Marc; Jaffe, Aron B

    2016-01-01

    The ability of human airway basal cells to serve as progenitor cells in the conducting airway makes them an attractive target in a number of respiratory diseases associated with epithelial remodeling. This unit describes a protocol for the culture of 'bronchospheres', three-dimensional (3-D) organoids that are derived from primary human airway basal cells. Mature bronchospheres are composed of functional multi-ciliated cells, mucin-producing goblet cells, and airway basal cells. In contrast to existing methods used for the culture of well-differentiated human airway epithelial cells, bronchospheres do not require growth on a permeable support and can be cultured in 384-well assay plates. The system provides a mechanism for investigating the regulation of basal cell fate during airway epithelial morphogenesis, as well as a basis for studying the function of the human airway epithelium in high-throughput assays. © 2016 by John Wiley & Sons, Inc. PMID:27171795

  6. Atlas-registration based image segmentation of MRI human thigh muscles in 3D space

    NASA Astrophysics Data System (ADS)

    Ahmad, Ezak; Yap, Moi Hoon; Degens, Hans; McPhee, Jamie S.

    2014-03-01

    Automatic segmentation of anatomic structures of magnetic resonance thigh scans can be a challenging task due to the potential lack of precisely defined muscle boundaries and issues related to intensity inhomogeneity or bias field across an image. In this paper, we demonstrate a combination framework of atlas construction and image registration methods to propagate the desired region of interest (ROI) between atlas image and the targeted MRI thigh scans for quadriceps muscles, femur cortical layer and bone marrow segmentations. The proposed system employs a semi-automatic segmentation method on an initial image in one dataset (from a series of images). The segmented initial image is then used as an atlas image to automate the segmentation of other images in the MRI scans (3-D space). The processes include: ROI labeling, atlas construction and registration, and morphological transform correspondence pixels (in terms of feature and intensity value) between the atlas (template) image and the targeted image based on the prior atlas information and non-rigid image registration methods.

  7. Human and tree classification based on a model using 3D ladar in a GPS-denied environment

    NASA Astrophysics Data System (ADS)

    Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok

    2013-05-01

    This study explained a method to classify humans and trees by extraction their geometric and statistical features in data obtained from 3D LADAR. In a wooded GPS-denied environment, it is difficult to identify the location of unmanned ground vehicles and it is also difficult to properly recognize the environment in which these vehicles move. In this study, using the point cloud data obtained via 3D LADAR, a method to extract the features of humans, trees, and other objects within an environment was implemented and verified through the processes of segmentation, feature extraction, and classification. First, for the segmentation, the radially bounded nearest neighbor method was applied. Second, for the feature extraction, each segmented object was divided into three parts, and then their geometrical and statistical features were extracted. A human was divided into three parts: the head, trunk and legs. A tree was also divided into three parts: the top, middle, and bottom. The geometric features were the variance of the x-y data for the center of each part in an object, using the distance between the two central points for each part, using K-mean clustering. The statistical features were the variance of each of the parts. In this study, three, six and six features of data were extracted, respectively, resulting in a total of 15 features. Finally, after training the extracted data via an artificial network, new data were classified. This study showed the results of an experiment that applied an algorithm proposed with a vehicle equipped with 3D LADAR in a thickly forested area, which is a GPS-denied environment. A total of 5,158 segments were obtained and the classification rates for human and trees were 82.9% and 87.4%, respectively.

  8. High-resolution, low-dose phase contrast X-ray tomography for 3D diagnosis of human breast cancers.

    PubMed

    Zhao, Yunzhe; Brun, Emmanuel; Coan, Paola; Huang, Zhifeng; Sztrókay, Aniko; Diemoz, Paul Claude; Liebhardt, Susanne; Mittone, Alberto; Gasilov, Sergei; Miao, Jianwei; Bravin, Alberto

    2012-11-01

    Mammography is the primary imaging tool for screening and diagnosis of human breast cancers, but ~10-20% of palpable tumors are not detectable on mammograms and only about 40% of biopsied lesions are malignant. Here we report a high-resolution, low-dose phase contrast X-ray tomographic method for 3D diagnosis of human breast cancers. By combining phase contrast X-ray imaging with an image reconstruction method known as equally sloped tomography, we imaged a human breast in three dimensions and identified a malignant cancer with a pixel size of 92 μm and a radiation dose less than that of dual-view mammography. According to a blind evaluation by five independent radiologists, our method can reduce the radiation dose and acquisition time by ~74% relative to conventional phase contrast X-ray tomography, while maintaining high image resolution and image contrast. These results demonstrate that high-resolution 3D diagnostic imaging of human breast cancers can, in principle, be performed at clinical compatible doses. PMID:23091003

  9. Internal waves patterns in the wake of a 3D body towed in a two-layer fluid

    NASA Astrophysics Data System (ADS)

    Lacaze, Laurent; Mercier, Matthieu; Thual, Olivier; Paci, Alexandre

    2014-11-01

    Stratified flows over obstacles are important features in meteorology and oceanography. The characterization of these flows is crucial in order to propose models of geophysical processes such as mixing and ocean circulation or orographic drag in the atmosphere. For some specific stratification profiles, the energy of internal waves generated by the obstacle can be trapped at a given depth, at the base of the oceanic mixing layer or at the top of the atmospheric boundary layer for instance. This scenario can be modelled by a two-layer stratified fluid for which gravity waves spread at the interface between the two layers. The work presented here focuses on a two-layer flow over a 3D obstacle, or equivalently, an obstacle towed in a fluid at rest. Experiments performed both in the large-scale flume of CNRM-GAME Toulouse (METEO-FRANCE & CNRS) and in a smaller tank apparatus, are presented with a specific attention on the measurement of the 3D wave patterns. A non-hydrostatic linear analysis is used to describe the observed wave patterns. The experiments highlight the strong influence of the Froude number on the generated waves. More specifically, we investigate the nature of the wake angle obtained from the wave pattern, and discuss a transition from Kelvin to Mach angle.

  10. ATHENA, the Desktop Human "Body"

    SciTech Connect

    Iyer, Rashi; Harris, Jennifer

    2014-09-29

    Creating surrogate human organs, coupled with insights from highly sensitive mass spectrometry technologies, a new project is on the brink of revolutionizing the way we screen new drugs and toxic agents. ATHENA, the Advanced Tissue-engineered Human Ectypal Network Analyzer project team, is developing four human organ constructs - liver, heart, lung and kidney - that are based on a significantly miniaturized platform. Each organ component will be about the size of a smartphone screen, and the whole ATHENA "body" of interconnected organs would fit neatly on a desk. "By developing this 'homo minutus,' we are stepping beyond the need for animal or Petri dish testing: There are huge benefits in developing drug and toxicity analysis systems that can mimic the response of actual human organs," said Rashi Iyer, a senior scientist at Los Alamos National Laboratory, the lead laboratory on the five-year, $19 million multi-institutional effort. The project is supported by the Defense Threat Reduction Agency (DTRA). Some 40 percent of pharmaceuticals fail their clinical trials, Iyer noted, and there are thousands of chemicals whose effects on humans are simply unknown. Providing a realistic, cost-effective and rapid screening system such as ATHENA with high-throughput capabilities could provide major benefits to the medical field, screening more accurately and offering a greater chance of clinical trial success.

  11. ATHENA, the Desktop Human "Body"

    ScienceCinema

    Iyer, Rashi; Harris, Jennifer

    2015-01-05

    Creating surrogate human organs, coupled with insights from highly sensitive mass spectrometry technologies, a new project is on the brink of revolutionizing the way we screen new drugs and toxic agents. ATHENA, the Advanced Tissue-engineered Human Ectypal Network Analyzer project team, is developing four human organ constructs - liver, heart, lung and kidney - that are based on a significantly miniaturized platform. Each organ component will be about the size of a smartphone screen, and the whole ATHENA "body" of interconnected organs would fit neatly on a desk. "By developing this 'homo minutus,' we are stepping beyond the need for animal or Petri dish testing: There are huge benefits in developing drug and toxicity analysis systems that can mimic the response of actual human organs," said Rashi Iyer, a senior scientist at Los Alamos National Laboratory, the lead laboratory on the five-year, $19 million multi-institutional effort. The project is supported by the Defense Threat Reduction Agency (DTRA). Some 40 percent of pharmaceuticals fail their clinical trials, Iyer noted, and there are thousands of chemicals whose effects on humans are simply unknown. Providing a realistic, cost-effective and rapid screening system such as ATHENA with high-throughput capabilities could provide major benefits to the medical field, screening more accurately and offering a greater chance of clinical trial success.

  12. Parameters of the human 3D gaze while observing portable autostereoscopic display: a model and measurement results

    NASA Astrophysics Data System (ADS)

    Boev, Atanas; Hanhela, Marianne; Gotchev, Atanas; Utirainen, Timo; Jumisko-Pyykkö, Satu; Hannuksela, Miska

    2012-02-01

    We present an approach to measure and model the parameters of human point-of-gaze (PoG) in 3D space. Our model considers the following three parameters: position of the gaze in 3D space, volume encompassed by the gaze and time for the gaze to arrive on the desired target. Extracting the 3D gaze position from binocular gaze data is hindered by three problems. The first problem is the lack of convergence - due to micro saccadic movements the optical lines of both eyes rarely intersect at a point in space. The second problem is resolution - the combination of short observation distance and limited comfort disparity zone typical for a mobile 3D display does not allow the depth of the gaze position to be reliably extracted. The third problem is measurement noise - due to the limited display size, the noise range is close to the range of properly measured data. We have developed a methodology which allows us to suppress most of the measurement noise. This allows us to estimate the typical time which is needed for the point-of-gaze to travel in x, y or z direction. We identify three temporal properties of the binocular PoG. The first is reaction time, which is the minimum time that the vision reacts to a stimulus position change, and is measured as the time between the event and the time the PoG leaves the proximity of the old stimulus position. The second is the travel time of the PoG between the old and new stimulus position. The third is the time-to-arrive, which is the time combining the reaction time, travel time, and the time required for the PoG to settle in the new position. We present the method for filtering the PoG outliers, for deriving the PoG center from binocular eye-tracking data and for calculating the gaze volume as a function of the distance between PoG and the observer. As an outcome from our experiments we present binocular heat maps aggregated over all observers who participated in a viewing test. We also show the mean values for all temporal

  13. Two-way regulation between cells and aligned collagen fibrils: local 3D matrix formation and accelerated neural differentiation of human decidua parietalis placental stem cells.

    PubMed

    Li, Wen; Zhu, Bofan; Strakova, Zuzana; Wang, Rong

    2014-08-01

    It has been well established that an aligned matrix provides structural and signaling cues to guide cell polarization and cell fate decision. However, the modulation role of cells in matrix remodeling and the feedforward effect on stem cell differentiation have not been studied extensively. In this study, we report on the concerted changes of human decidua parietalis placental stem cells (hdpPSCs) and the highly ordered collagen fibril matrix in response to cell-matrix interaction. With high-resolution imaging, we found the hdpPSCs interacted with the matrix by deforming the cell shape, harvesting the nearby collagen fibrils, and reorganizing the fibrils around the cell body to transform a 2D matrix to a localized 3D matrix. Such a unique 3D matrix prompted high expression of β-1 integrin around the cell body that mediates and facilitates the stem cell differentiation toward neural cells. The study offers insights into the coordinated, dynamic changes at the cell-matrix interface and elucidates cell modulation of its matrix to establish structural and biochemical cues for effective cell growth and differentiation. PMID:25003322

  14. Preservation of protein fluorescence in embedded human dendritic cells for targeted 3D light and electron microscopy.

    PubMed

    Höhn, K; Fuchs, J; Fröber, A; Kirmse, R; Glass, B; Anders-Össwein, M; Walther, P; Kräusslich, H-G; Dietrich, C

    2015-08-01

    In this study, we present a correlative microscopy workflow to combine detailed 3D fluorescence light microscopy data with ultrastructural information gained by 3D focused ion beam assisted scanning electron microscopy. The workflow is based on an optimized high pressure freezing/freeze substitution protocol that preserves good ultrastructural detail along with retaining the fluorescence signal in the resin embedded specimens. Consequently, cellular structures of interest can readily be identified and imaged by state of the art 3D confocal fluorescence microscopy and are precisely referenced with respect to an imprinted coordinate system on the surface of the resin block. This allows precise guidance of the focused ion beam assisted scanning electron microscopy and limits the volume to be imaged to the structure of interest. This, in turn, minimizes the total acquisition time necessary to conduct the time consuming ultrastructural scanning electron microscope imaging while eliminating the risk to miss parts of the target structure. We illustrate the value of this workflow for targeting virus compartments, which are formed in HIV-pulsed mature human dendritic cells. PMID:25786567

  15. A 3D sphere culture system containing functional polymers for large-scale human pluripotent stem cell production.

    PubMed

    Otsuji, Tomomi G; Bin, Jiang; Yoshimura, Azumi; Tomura, Misayo; Tateyama, Daiki; Minami, Itsunari; Yoshikawa, Yoshihiro; Aiba, Kazuhiro; Heuser, John E; Nishino, Taito; Hasegawa, Kouichi; Nakatsuji, Norio

    2014-05-01

    Utilizing human pluripotent stem cells (hPSCs) in cell-based therapy and drug discovery requires large-scale cell production. However, scaling up conventional adherent cultures presents challenges of maintaining a uniform high quality at low cost. In this regard, suspension cultures are a viable alternative, because they are scalable and do not require adhesion surfaces. 3D culture systems such as bioreactors can be exploited for large-scale production. However, the limitations of current suspension culture methods include spontaneous fusion between cell aggregates and suboptimal passaging methods by dissociation and reaggregation. 3D culture systems that dynamically stir carrier beads or cell aggregates should be refined to reduce shearing forces that damage hPSCs. Here, we report a simple 3D sphere culture system that incorporates mechanical passaging and functional polymers. This setup resolves major problems associated with suspension culture methods and dynamic stirring systems and may be optimal for applications involving large-scale hPSC production. PMID:24936458

  16. Occluded human recognition for a leader following system using 3D range and image data in forest environment

    NASA Astrophysics Data System (ADS)

    Cho, Kuk; Ilyas, Muhammad; Baeg, Seung-Ho; Park, Sangdeok

    2014-06-01

    This paper describes the occluded target recognition and tracking method for a leader-following system by fusing 3D range and image data acquired from 3D light detection and ranging (LIDAR) and a color camera installed on an autonomous vehicle in forest environment. During 3D data processing, the distance-based clustering method has an instinctive problem in close encounters. In the tracking phase, we divide an object tracking process into three phases based on occlusion scenario; before an occlusion (BO) phase, a partially or fully occlusion phase and after an occlusion (AO) phase. To improve the data association performance, we use camera's rich information to find correspondence among objects during above mentioned three phases of occlusion. In this paper, we solve a correspondence problem using the color features of human objects with the sum of squared distance (SSD) and the normalized cross correlation (NCC). The features are integrated with derived windows from Harris corner. The experimental results for a leader following on an autonomous vehicle are shown with LIDAR and camera for improving a data association problem in a multiple object tracking system.

  17. Preservation of protein fluorescence in embedded human dendritic cells for targeted 3D light and electron microscopy

    PubMed Central

    HÖHN, K.; FUCHS, J.; FRÖBER, A.; KIRMSE, R.; GLASS, B.; ANDERS‐ÖSSWEIN, M.; WALTHER, P.; KRÄUSSLICH, H.‐G.

    2015-01-01

    Summary In this study, we present a correlative microscopy workflow to combine detailed 3D fluorescence light microscopy data with ultrastructural information gained by 3D focused ion beam assisted scanning electron microscopy. The workflow is based on an optimized high pressure freezing/freeze substitution protocol that preserves good ultrastructural detail along with retaining the fluorescence signal in the resin embedded specimens. Consequently, cellular structures of interest can readily be identified and imaged by state of the art 3D confocal fluorescence microscopy and are precisely referenced with respect to an imprinted coordinate system on the surface of the resin block. This allows precise guidance of the focused ion beam assisted scanning electron microscopy and limits the volume to be imaged to the structure of interest. This, in turn, minimizes the total acquisition time necessary to conduct the time consuming ultrastructural scanning electron microscope imaging while eliminating the risk to miss parts of the target structure. We illustrate the value of this workflow for targeting virus compartments, which are formed in HIV‐pulsed mature human dendritic cells. PMID:25786567

  18. Biologic variability of human foreskin fibroblasts in 2D and 3D culture: implications for a wound healing model

    PubMed Central

    2009-01-01

    Background The fibroblast-populated 3D collagen matrix is a model of tissue and healing which has been used since the 1980's. It was hypothesized that anchorage disruption of the collagen matrix would produce p53-dependent apoptosis in the embedded fibroblasts, but results of hypothesis testing were variant. Findings The response of p53 to anchorage disruption in 3D culture or to UV irradiation in 2D culture was influenced both by fibroblast strain and culture conditions. It also was determined that data scatter in a collagen matrix contraction assay was related to fibroblast strain and possibly to technical factors, such as cell culture technician and/or number of matrices utilized. Subsequent analysis suggested that phenotypic drift and/or inter-strain genetic variability may have been responsible for the data scatter. In addition, several technical factors were identified that may have contributed to the scatter. Conclusion Experimentation with human foreskin fibroblasts in both 2D and 3D culture can produce variant data. The underlying cause of the data scatter appears to be partially due to the biologic variability of the fibroblast. PMID:19922655

  19. Fully Automatic Localization and Segmentation of 3D Vertebral Bodies from CT/MR Images via a Learning-Based Method

    PubMed Central

    Chu, Chengwen; Belavý, Daniel L.; Armbrecht, Gabriele; Bansmann, Martin; Felsenberg, Dieter; Zheng, Guoyan

    2015-01-01

    In this paper, we address the problems of fully automatic localization and segmentation of 3D vertebral bodies from CT/MR images. We propose a learning-based, unified random forest regression and classification framework to tackle these two problems. More specifically, in the first stage, the localization of 3D vertebral bodies is solved with random forest regression where we aggregate the votes from a set of randomly sampled image patches to get a probability map of the center of a target vertebral body in a given image. The resultant probability map is then further regularized by Hidden Markov Model (HMM) to eliminate potential ambiguity caused by the neighboring vertebral bodies. The output from the first stage allows us to define a region of interest (ROI) for the segmentation step, where we use random forest classification to estimate the likelihood of a voxel in the ROI being foreground or background. The estimated likelihood is combined with the prior probability, which is learned from a set of training data, to get the posterior probability of the voxel. The segmentation of the target vertebral body is then done by a binary thresholding of the estimated probability. We evaluated the present approach on two openly available datasets: 1) 3D T2-weighted spine MR images from 23 patients and 2) 3D spine CT images from 10 patients. Taking manual segmentation as the ground truth (each MR image contains at least 7 vertebral bodies from T11 to L5 and each CT image contains 5 vertebral bodies from L1 to L5), we evaluated the present approach with leave-one-out experiments. Specifically, for the T2-weighted MR images, we achieved for localization a mean error of 1.6 mm, and for segmentation a mean Dice metric of 88.7% and a mean surface distance of 1.5 mm, respectively. For the CT images we achieved for localization a mean error of 1.9 mm, and for segmentation a mean Dice metric of 91.0% and a mean surface distance of 0.9 mm, respectively. PMID:26599505

  20. Fully Automatic Localization and Segmentation of 3D Vertebral Bodies from CT/MR Images via a Learning-Based Method.

    PubMed

    Chu, Chengwen; Belavý, Daniel L; Armbrecht, Gabriele; Bansmann, Martin; Felsenberg, Dieter; Zheng, Guoyan

    2015-01-01

    In this paper, we address the problems of fully automatic localization and segmentation of 3D vertebral bodies from CT/MR images. We propose a learning-based, unified random forest regression and classification framework to tackle these two problems. More specifically, in the first stage, the localization of 3D vertebral bodies is solved with random forest regression where we aggregate the votes from a set of randomly sampled image patches to get a probability map of the center of a target vertebral body in a given image. The resultant probability map is then further regularized by Hidden Markov Model (HMM) to eliminate potential ambiguity caused by the neighboring vertebral bodies. The output from the first stage allows us to define a region of interest (ROI) for the segmentation step, where we use random forest classification to estimate the likelihood of a voxel in the ROI being foreground or background. The estimated likelihood is combined with the prior probability, which is learned from a set of training data, to get the posterior probability of the voxel. The segmentation of the target vertebral body is then done by a binary thresholding of the estimated probability. We evaluated the present approach on two openly available datasets: 1) 3D T2-weighted spine MR images from 23 patients and 2) 3D spine CT images from 10 patients. Taking manual segmentation as the ground truth (each MR image contains at least 7 vertebral bodies from T11 to L5 and each CT image contains 5 vertebral bodies from L1 to L5), we evaluated the present approach with leave-one-out experiments. Specifically, for the T2-weighted MR images, we achieved for localization a mean error of 1.6 mm, and for segmentation a mean Dice metric of 88.7% and a mean surface distance of 1.5 mm, respectively. For the CT images we achieved for localization a mean error of 1.9 mm, and for segmentation a mean Dice metric of 91.0% and a mean surface distance of 0.9 mm, respectively. PMID:26599505

  1. Human L3L4 intervertebral disc mean 3D shape, modes of variation, and their relationship to degeneration

    PubMed Central

    Peloquin, John M.; Yoder, Jonathon H.; Jacobs, Nathan T.; Moon, Sung M.; Wright, Alexander C.; Vresilovic, Edward J.; Elliott, Dawn M.

    2014-01-01

    Intervertebral disc mechanics are affected by both disc shape and disc degeneration, which in turn each affect the other; disc mechanics additionally have a role in the etiology of disc degeneration. Finite element analysis (FEA) is a favored tool to investigate these relationships, but limited data for intervertebral disc 3D shape has forced the use of simplified or single-subject geometries, with the effect of inter-individual shape variation investigated only in specialized studies. Similarly, most data on disc shape variation with degeneration is based on 2D mid-sagittal images, which incompletely define 3D shape changes. Therefore, the objective of this study was to quantify inter-individual disc shape variation in 3D, classify this variation into independently-occurring modes using a statistical shape model, and identify correlations between disc shape and degeneration. Three-dimensional disc shapes were obtained from MRI of 13 human male cadaver L3L4 discs. An average disc shape and four major modes of shape variation (representing 90% of the variance) were identified. The first mode represented disc axial area and was significantly correlated to degeneration (R2 = 0.44), indicating larger axial area in degenerate discs. Disc height variation occurred in three distinct modes, each also involving non-height variation. The statistical shape model provides an average L3L4 disc shape for FEA that is fully defined in 3D, and makes it convenient to generate a set of shapes with which to represent aggregate inter-individual variation. Degeneration grade-specific shapes can also be generated. To facilitate application, the model is included in this paper’s supplemental content. PMID:24792581

  2. Automated quantitative analysis of 3D morphology and mean corpuscular hemoglobin in human red blood cells stored in different periods.

    PubMed

    Moon, Inkyu; Yi, Faliu; Lee, Yeon H; Javidi, Bahram; Boss, Daniel; Marquet, Pierre

    2013-12-16

    Quantitative phase (QP) images of red blood cells (RBCs), which are obtained by off-axis digital holographic microscopy, can provide quantitative information about three-dimensional (3D) morphology of human RBCs and the characteristic properties such as mean corpuscular hemoglobin (MCH) and MCH surface density (MCHSD). In this paper, we investigate modifications of the 3D morphology and MCH in RBCs induced by the period of storage time for the purpose of classification of RBCs with different periods of storage by using off-axis digital holographic microscopy. The classification of RBCs based on the duration of storage is highly relevant because a long storage of blood before transfusion may alter the functionality of RBCs and, therefore, cause complications in patients. To analyze any changes in the 3D morphology and MCH of RBCs due to storage, we use data sets from RBC samples stored for 8, 13, 16, 23, 27, 30, 34, 37, 40, 47, and 57 days, respectively. The data sets consist of more than 3,300 blood cells in eleven classes, with more than 300 blood cells per class. The classes indicate the storage period of RBCs and are listed in chronological order. Using the RBCs donated by healthy persons, the off-axis digital holographic microscopy reconstructs several quantitative phase images of RBC samples stored for eleven different periods. We employ marker-controlled watershed transform to remove the background in the RBC quantitative phase images obtained by the off-axis digital holographic microscopy. More than 300 single RBCs are extracted from the segmented quantitative phase images for each class. Such a large number of RBC samples enable us to obtain statistical distributions of the characteristic properties of RBCs after a specific period of storage. Experimental results show that the 3D morphology of the RBCs, in contrast to MCH, is essentially related to the aging of the RBCs. PMID:24514667

  3. Combining 3D human in vitro methods for a 3Rs evaluation of novel titanium surfaces in orthopaedic applications

    PubMed Central

    Stevenson, G.; Rehman, S.; Draper, E.; Hernández‐Nava, E.; Hunt, J.

    2016-01-01

    ABSTRACT In this study, we report on a group of complementary human osteoblast in vitro test methods for the preclinical evaluation of 3D porous titanium surfaces. The surfaces were prepared by additive manufacturing (electron beam melting [EBM]) and plasma spraying, allowing the creation of complex lattice surface geometries. Physical properties of the surfaces were characterized by SEM and profilometry and 3D in vitro cell culture using human osteoblasts. Primary human osteoblast cells were found to elicit greater differences between titanium sample surfaces than an MG63 osteoblast‐like cell line, particularly in terms of cell survival. Surface morphology was associated with higher osteoblast metabolic activity and mineralization on rougher titanium plasma spray coated surfaces than smoother surfaces. Differences in osteoblast survival and metabolic activity on titanium lattice structures were also found, despite analogous surface morphology at the cellular level. 3D confocal microscopy identified osteoblast organization within complex titanium surface geometries, adhesion, spreading, and alignment to the biomaterial strut geometries. Mineralized nodule formation throughout the lattice structures was also observed, and indicative of early markers of bone in‐growth on such materials. Testing methods such as those presented are not traditionally considered by medical device manufacturers, but we suggest have value as an increasingly vital tool in efficiently translating pre‐clinical studies, especially in balance with current regulatory practice, commercial demands, the 3Rs, and the relative merits of in vitro and in vivo studies. Biotechnol. Bioeng. 2016;113: 1586–1599. © 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:26702609

  4. A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation

    NASA Astrophysics Data System (ADS)

    Lei, Yuguo; Schaffer, David V.

    2013-12-01

    Human pluripotent stem cells (hPSCs), including human embryonic stem cells and induced pluripotent stem cells, are promising for numerous biomedical applications, such as cell replacement therapies, tissue and whole-organ engineering, and high-throughput pharmacology and toxicology screening. Each of these applications requires large numbers of cells of high quality; however, the scalable expansion and differentiation of hPSCs, especially for clinical utilization, remains a challenge. We report a simple, defined, efficient, scalable, and good manufacturing practice-compatible 3D culture system for hPSC expansion and differentiation. It employs a thermoresponsive hydrogel that combines easy manipulation and completely defined conditions, free of any human- or animal-derived factors, and entailing only recombinant protein factors. Under an optimized protocol, the 3D system enables long-term, serial expansion of multiple hPSCs lines with a high expansion rate (∼20-fold per 5-d passage, for a 1072-fold expansion over 280 d), yield (∼2.0 × 107 cells per mL of hydrogel), and purity (∼95% Oct4+), even with single-cell inoculation, all of which offer considerable advantages relative to current approaches. Moreover, the system enabled 3D directed differentiation of hPSCs into multiple lineages, including dopaminergic neuron progenitors with a yield of ∼8 × 107 dopaminergic progenitors per mL of hydrogel and ∼80-fold expansion by the end of a 15-d derivation. This versatile system may be useful at numerous scales, from basic biological investigation to clinical development.

  5. Combining 3D human in vitro methods for a 3Rs evaluation of novel titanium surfaces in orthopaedic applications.

    PubMed

    Stevenson, G; Rehman, S; Draper, E; Hernández-Nava, E; Hunt, J; Haycock, J W

    2016-07-01

    In this study, we report on a group of complementary human osteoblast in vitro test methods for the preclinical evaluation of 3D porous titanium surfaces. The surfaces were prepared by additive manufacturing (electron beam melting [EBM]) and plasma spraying, allowing the creation of complex lattice surface geometries. Physical properties of the surfaces were characterized by SEM and profilometry and 3D in vitro cell culture using human osteoblasts. Primary human osteoblast cells were found to elicit greater differences between titanium sample surfaces than an MG63 osteoblast-like cell line, particularly in terms of cell survival. Surface morphology was associated with higher osteoblast metabolic activity and mineralization on rougher titanium plasma spray coated surfaces than smoother surfaces. Differences in osteoblast survival and metabolic activity on titanium lattice structures were also found, despite analogous surface morphology at the cellular level. 3D confocal microscopy identified osteoblast organization within complex titanium surface geometries, adhesion, spreading, and alignment to the biomaterial strut geometries. Mineralized nodule formation throughout the lattice structures was also observed, and indicative of early markers of bone in-growth on such materials. Testing methods such as those presented are not traditionally considered by medical device manufacturers, but we suggest have value as an increasingly vital tool in efficiently translating pre-clinical studies, especially in balance with current regulatory practice, commercial demands, the 3Rs, and the relative merits of in vitro and in vivo studies. Biotechnol. Bioeng. 2016;113: 1586-1599. © 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:26702609

  6. A Survey on Model Based Approaches for 2D and 3D Visual Human Pose Recovery

    PubMed Central

    Perez-Sala, Xavier; Escalera, Sergio; Angulo, Cecilio; Gonzàlez, Jordi

    2014-01-01

    Human Pose Recovery has been studied in the field of Computer Vision for the last 40 years. Several approaches have been reported, and significant improvements have been obtained in both data representation and model design. However, the problem of Human Pose Recovery in uncontrolled environments is far from being solved. In this paper, we define a general taxonomy to group model based approaches for Human Pose Recovery, which is composed of five main modules: appearance, viewpoint, spatial relations, temporal consistence, and behavior. Subsequently, a methodological comparison is performed following the proposed taxonomy, evaluating current SoA approaches in the aforementioned five group categories. As a result of this comparison, we discuss the main advantages and drawbacks of the reviewed literature. PMID:24594613

  7. Monitoring time course of human whole blood coagulation using a microfluidic dielectric sensor with a 3D capacitive structure.

    PubMed

    Maji, Debnath; Suster, Michael A; Stavrou, Evi; Gurkan, Umut A; Mohseni, Pedram

    2015-08-01

    This paper reports on the design, fabrication, and testing of a microfluidic sensor for dielectric spectroscopy (DS) of human whole blood during coagulation. The sensor employs a three-dimensional (3D), parallel-plate, capacitive sensing structure with a floating electrode integrated into a microfluidic channel. Using an impedance analyzer and after a 5-point calibration, the sensor is shown to measure the real part of complex relative dielectric permittivity of human whole blood in a frequency range of 10kHz to 100MHz. The temporal variation of dielectric permittivity at 1MHz for human whole blood from three different healthy donors shows a peak in permittivity at ~ 4 to 5 minutes, which also corresponds to the onset of CaCl2-initiated coagulation of the blood sample verified visually. PMID:26737635

  8. Fabrication and evaluation of electrohydrodynamic jet 3D printed polycaprolactone/chitosan cell carriers using human embryonic stem cell-derived fibroblasts.

    PubMed

    Wu, Yang; Sriram, Gopu; Fawzy, Amr S; Fuh, Jerry Yh; Rosa, Vinicius; Cao, Tong; Wong, Yoke San

    2016-08-01

    Biological function of adherent cells depends on the cell-cell and cell-matrix interactions in three-dimensional space. To understand the behavior of cells in 3D environment and their interactions with neighboring cells and matrix requires 3D culture systems. Here, we present a novel 3D cell carrier scaffold that provides an environment for routine 3D cell growth in vitro We have developed thin, mechanically stable electrohydrodynamic jet (E-jet) 3D printed polycaprolactone and polycaprolactone/Chitosan macroporous scaffolds with precise fiber orientation for basic 3D cell culture application. We have evaluated the application of this technology by growing human embryonic stem cell-derived fibroblasts within these 3D scaffolds. Assessment of cell viability and proliferation of cells seeded on polycaprolactone and polycaprolactone/Chitosan 3D-scaffolds show that the human embryonic stem cell-derived fibroblasts could adhere and proliferate on the scaffolds over time. Further, using confocal microscopy we demonstrate the ability to use fluorescence-labelled cells that could be microscopically monitored in real-time. Hence, these 3D printed polycaprolactone and polycaprolactone/Chitosan scaffolds could be used as a cell carrier for in vitro 3D cell culture-, bioreactor- and tissue engineering-related applications in the future. PMID:27252227

  9. Experimental evaluations of the accuracy of 3D and 4D planning in robotic tracking stereotactic body radiotherapy for lung cancers

    SciTech Connect

    Chan, Mark K. H.; Kwong, Dora L. W.; Ng, Sherry C. Y.; Tong, Anthony S. M.; Tam, Eric K. W.

    2013-04-15

    Purpose: Due to the complexity of 4D target tracking radiotherapy, the accuracy of this treatment strategy should be experimentally validated against established standard 3D technique. This work compared the accuracy of 3D and 4D dose calculations in respiration tracking stereotactic body radiotherapy (SBRT). Methods: Using the 4D planning module of the CyberKnife treatment planning system, treatment plans for a moving target and a static off-target cord structure were created on different four-dimensional computed tomography (4D-CT) datasets of a thorax phantom moving in different ranges. The 4D planning system used B-splines deformable image registrations (DIR) to accumulate dose distributions calculated on different breathing geometries, each corresponding to a static 3D-CT image of the 4D-CT dataset, onto a reference image to compose a 4D dose distribution. For each motion, 4D optimization was performed to generate a 4D treatment plan of the moving target. For comparison with standard 3D planning, each 4D plan was copied to the reference end-exhale images and a standard 3D dose calculation was followed. Treatment plans of the off-target structure were first obtained by standard 3D optimization on the end-exhale images. Subsequently, they were applied to recalculate the 4D dose distributions using DIRs. All dose distributions that were initially obtained using the ray-tracing algorithm with equivalent path-length heterogeneity correction (3D{sub EPL} and 4D{sub EPL}) were recalculated by a Monte Carlo algorithm (3D{sub MC} and 4D{sub MC}) to further investigate the effects of dose calculation algorithms. The calculated 3D{sub EPL}, 3D{sub MC}, 4D{sub EPL}, and 4D{sub MC} dose distributions were compared to measurements by Gafchromic EBT2 films in the axial and coronal planes of the moving target object, and the coronal plane for the static off-target object based on the {gamma} metric at 5%/3mm criteria ({gamma}{sub 5%/3mm}). Treatment plans were considered

  10. Genotoxicity assessment of reactive and disperse textile dyes using human dermal equivalent (3D cell culture system).

    PubMed

    Leme, Daniela Morais; Primo, Fernando Lucas; Gobo, Graciely Gomides; da Costa, Cleber Rafael Vieira; Tedesco, Antonio Claudio; de Oliveira, Danielle Palma

    2015-01-01

    Thousands of dyes are marketed daily for different purposes, including textile dyeing. However, there are several studies reporting attributing to dyes deleterious human effects such as DNA damage. Humans may be exposed to toxic dyes through either ingestion of contaminated waters or dermal contact with colored garments. With respect to dermal exposure, human skin equivalents are promising tools to assess in vitro genotoxicity of dermally applied chemicals using a three-dimensional (3D) model to mimic tissue behavior. This study investigated the sensitivity of an in-house human dermal equivalent (DE) for detecting genotoxicity of textile dyes. Two azo (reactive green 19 [RG19] and disperse red 1[DR1]) dyes and one anthraquinone (reactive blue 2 [RB2]) dye were analyzed. RG19 was genotoxic for DE in a dose-responsive manner, whereas RB2 and DR1 were nongenotoxic under the conditions tested. These findings are not in agreement with previous genotoxicological assessment of these dyes carried out using two-dimensional (2D) cell cultures, which showed that DR1 was genotoxic in human hepatoma cells (HepG2) and RG19 was nongenotoxic for normal human dermal fibroblasts (NHDF). These discrepant results probably may be due to differences between metabolic activities of each cell type (organ-specific genotoxicity, HepG2 and fibroblasts) and the test setup systems used in each study (fibroblasts cultured at 2D and three-dimensional [3D] culture systems). Genotoxicological assessment of textile dyes in context of organ-specific genotoxicity and using in vitro models that more closely resemble in vivo tissue architecture and physiology may provide more reliable estimates of genotoxic potential of these chemicals. PMID:25785560

  11. Establishment of 3D organotypic cultures using human neonatal epidermal cells.

    PubMed

    Gangatirkar, Pradnya; Paquet-Fifield, Sophie; Li, Amy; Rossi, Ralph; Kaur, Pritinder

    2007-01-01

    This protocol describes an ex vivo three-dimensional coculture system optimized to study the skin regenerative ability of primary human keratinocytes grown at the air-liquid interface on collagen matrices embedded with human dermal fibroblasts. An option for enrichment of keratinocyte stem cells and their progeny using fluorescence-activated cell sorting is also provided. Initially, dermal equivalents, comprising human passaged fibroblasts seeded in a collagen matrix, are grown on porous filters (3 mum) placed in transwells. After 1 week, primary human keratinocytes are seeded on this base. One week later, an air-lift transition is performed, leading to the differentiation of the keratinocytes, which are macroscopically visible as artificial skin after a couple of days. The cultures can be harvested 1 week after the air-lift and processed for immunohistochemistry or gene expression analysis. The overall procedure can be completed in 3 weeks, including the preparation of the dermal equivalent and the seeding of the primary keratinocytes. PMID:17401352

  12. Production, Characterization and Potential Uses of a 3D Tissue-engineered Human Esophageal Mucosal Model.

    PubMed

    Green, Nicola H; Corfe, Bernard M; Bury, Jonathan P; MacNeil, Sheila

    2015-01-01

    The incidence of both esophageal adenocarcinoma and its precursor, Barrett's Metaplasia, are rising rapidly in the western world. Furthermore esophageal adenocarcinoma generally has a poor prognosis, with little improvement in survival rates in recent years. These are difficult conditions to study and there has been a lack of suitable experimental platforms to investigate disorders of the esophageal mucosa. A model of the human esophageal mucosa has been developed in the MacNeil laboratory which, unlike conventional 2D cell culture systems, recapitulates the cell-cell and cell-matrix interactions present in vivo and produces a mature, stratified epithelium similar to that of the normal human esophagus. Briefly, the model utilizes non-transformed normal primary human esophageal fibroblasts and epithelial cells grown within a porcine-derived acellular esophageal scaffold. Immunohistochemical characterization of this model by CK4, CK14, Ki67 and involucrin staining demonstrates appropriate recapitulation of the histology of the normal human esophageal mucosa. This model provides a robust, biologically relevant experimental model of the human esophageal mucosa. It can easily be manipulated to investigate a number of research questions including the effectiveness of pharmacological agents and the impact of exposure to environmental factors such as alcohol, toxins, high temperature or gastro-esophageal refluxate components. The model also facilitates extended culture periods not achievable with conventional 2D cell culture, enabling, inter alia, the study of the impact of repeated exposure of a mature epithelium to the agent of interest for up to 20 days. Furthermore, a variety of cell lines, such as those derived from esophageal tumors or Barrett's Metaplasia, can be incorporated into the model to investigate processes such as tumor invasion and drug responsiveness in a more biologically relevant environment. PMID:26067284

  13. Toward a 3D model of human brain development for studying gene/environment interactions

    PubMed Central

    2013-01-01

    This project aims to establish and characterize an in vitro model of the developing human brain for the purpose of testing drugs and chemicals. To accurately assess risk, a model needs to recapitulate the complex interactions between different types of glial cells and neurons in a three-dimensional platform. Moreover, human cells are preferred over cells from rodents to eliminate cross-species differences in sensitivity to chemicals. Previously, we established conditions to culture rat primary cells as three-dimensional aggregates, which will be humanized and evaluated here with induced pluripotent stem cells (iPSCs). The use of iPSCs allows us to address gene/environment interactions as well as the potential of chemicals to interfere with epigenetic mechanisms. Additionally, iPSCs afford us the opportunity to study the effect of chemicals during very early stages of brain development. It is well recognized that assays for testing toxicity in the developing brain must consider differences in sensitivity and susceptibility that arise depending on the time of exposure. This model will reflect critical developmental processes such as proliferation, differentiation, lineage specification, migration, axonal growth, dendritic arborization and synaptogenesis, which will probably display differences in sensitivity to different types of chemicals. Functional endpoints will evaluate the complex cell-to-cell interactions that are affected in neurodevelopment through chemical perturbation, and the efficacy of drug intervention to prevent or reverse phenotypes. The model described is designed to assess developmental neurotoxicity effects on unique processes occurring during human brain development by leveraging human iPSCs from diverse genetic backgrounds, which can be differentiated into different cell types of the central nervous system. Our goal is to demonstrate the feasibility of the personalized model using iPSCs derived from individuals with neurodevelopmental disorders

  14. Depth-kymography: high-speed calibrated 3D imaging of human vocal fold vibration dynamics

    NASA Astrophysics Data System (ADS)

    George, Nibu A.; de Mul, Frits F. M.; Qiu, Qingjun; Rakhorst, Gerhard; Schutte, Harm K.

    2008-05-01

    We designed and developed a laser line-triangulation endoscope compatible with any standard high-speed camera for a complete three-dimensional profiling of human vocal fold vibration dynamics. With this novel device we are able to measure absolute values of vertical and horizontal vibration amplitudes, length and width of vocal folds as well as the opening and closing velocities from a single in vivo measurement. We have studied, for the first time, the generation and propagation of mucosal waves by locating the position of its maximum vertical position and the propagation velocity. Precise knowledge about the absolute dimensions of human vocal folds and their vibration parameters has significant importance in clinical diagnosis and treatment as well as in fundamental research in voice. The new device can be used to investigate different kinds of pathological conditions including periodic or aperiodic vibrations. Consequently, the new device has significant importance in investigating vocal fold paralysis and in phonosurgical applications.

  15. Using Fuzzy Gaussian Inference and Genetic Programming to Classify 3D Human Motions

    NASA Astrophysics Data System (ADS)

    Khoury, Mehdi; Liu, Honghai

    This research introduces and builds on the concept of Fuzzy Gaussian Inference (FGI) (Khoury and Liu in Proceedings of UKCI, 2008 and IEEE Workshop on Robotic Intelligence in Informationally Structured Space (RiiSS 2009), 2009) as a novel way to build Fuzzy Membership Functions that map to hidden Probability Distributions underlying human motions. This method is now combined with a Genetic Programming Fuzzy rule-based system in order to classify boxing moves from natural human Motion Capture data. In this experiment, FGI alone is able to recognise seven different boxing stances simultaneously with an accuracy superior to a GMM-based classifier. Results seem to indicate that adding an evolutionary Fuzzy Inference Engine on top of FGI improves the accuracy of the classifier in a consistent way.

  16. 3-D Cytoarchitectonic parcellation of human orbitofrontal cortex. Correlation with postmortem MRI

    PubMed Central

    Uylings, Harry B.M.; Sanz-Arigita, Ernesto J.; de Vos, Koos; Pool, Chris W.; Evers, Paul; Rajkowska, Grazyna

    2010-01-01

    The orbitofrontal cortex (OFC) is located on the basal surface of the frontal lobe and is distinguished by its unique anatomical and functional features. Clinical and postmortem studies suggest the involvement of the orbitofrontal cortex in psychiatric disorders. However, the exact parcellation of this cortical region is still a matter of debate. Therefore, the goal of this study is to provide a detailed description of the extent of borders of individual orbitofrontal cortical areas using cytoarchitectonic criteria in a large sample of human brains, which could be applied by independent neuroanatomists. To make this microscopic parcellation useful to neuroimaging studies, magnetic resonance images of postmortem brains in the coronal plane were collected prior to the preparation of coronal histological sections from the same brains. A complete series of coronal sections from 6 normal human brains and partial sections from the frontal cortex of 21 normal human brains were stained with general histological and immunohistochemical methods specific for different cell-types, These sections were examined microscopically by two independent neuroanatomists (HBMU and GR) to achieve reproducible delineations. After the borders were determined, the tissue sections were superimposed on corresponding MR images. Based on our cytoarchitectonical criteria, Brodmann's areas 47 and 11 were included in the human orbitofrontal cortex. Area 47 was further subdivided into three medial (located on the medial, anterior and posterior orbital gyri) and two lateral (located on the lateral orbital gyrus) subareas. In addition, we observed an anterior-posterior gradient in the cytoarchitecture of areas 11 and 47. The transverse orbital sulcus corresponds roughly to the transition between the subregions of the anterior and posterior OFC. Finally, the present delineation is contrasted with an overview of the different published nomenclatures for the OFC parcellation. PMID:20538437

  17. Ultrastructure Organization of Human Trabeculae Assessed by 3D sSAXS and Relation to Bone Microarchitecture.

    PubMed

    Georgiadis, Marios; Guizar-Sicairos, Manuel; Gschwend, Oliver; Hangartner, Peter; Bunk, Oliver; Müller, Ralph; Schneider, Philipp

    2016-01-01

    Although the organization of bone ultrastructure, i.e. the orientation and arrangement of the mineralized collagen fibrils, has been in the focus of research for many years for cortical bone, and many models on the osteonal arrangement have been proposed, limited attention has been paid to trabecular bone ultrastructure. This is surprising because trabeculae play a crucial role for the mechanical strength of several bone sites, including the vertebrae and the femoral head. On this account, we first validated a recently developed method (3D sSAXS or 3D scanning small-angle X-ray scattering) for investigating bone ultrastructure in a quantitative and spatially resolved way, using conventional linearly polarized light microscopy as a gold standard. While both methods are used to analyze thin tissue sections, in contrast to polarized light microscopy, 3D sSAXS has the important advantage that it provides 3D information on the orientation and arrangement of bone ultrastructure. In this first study of its kind, we used 3D sSAXS to investigate the ultrastructural organization of 22 vertebral trabeculae of different alignment, types and sizes, obtained from 4 subjects of different ages. Maps of ultrastructure orientation and arrangement of the trabeculae were retrieved by stacking information from consecutive 20-μm-thick bone sections. The organization of the ultrastructure was analyzed in relation to trabecular microarchitecture obtained from computed tomography and to relevant parameters such as distance to trabecular surface, local curvature or local bone mineralization. We found that (i) ultrastructure organization is similar for all investigated trabeculae independent of their particular characteristics, (ii) bone ultrastructure exhibiting a high degree of orientation was arranged in domains, (iii) highly oriented ultrastructural areas were located closer to the bone surface, (iv) the ultrastructure of the human trabecular bone specimens followed the

  18. Ultrastructure Organization of Human Trabeculae Assessed by 3D sSAXS and Relation to Bone Microarchitecture

    PubMed Central

    Guizar-Sicairos, Manuel; Gschwend, Oliver; Hangartner, Peter; Bunk, Oliver; Müller, Ralph; Schneider, Philipp

    2016-01-01

    Although the organization of bone ultrastructure, i.e. the orientation and arrangement of the mineralized collagen fibrils, has been in the focus of research for many years for cortical bone, and many models on the osteonal arrangement have been proposed, limited attention has been paid to trabecular bone ultrastructure. This is surprising because trabeculae play a crucial role for the mechanical strength of several bone sites, including the vertebrae and the femoral head. On this account, we first validated a recently developed method (3D sSAXS or 3D scanning small-angle X-ray scattering) for investigating bone ultrastructure in a quantitative and spatially resolved way, using conventional linearly polarized light microscopy as a gold standard. While both methods are used to analyze thin tissue sections, in contrast to polarized light microscopy, 3D sSAXS has the important advantage that it provides 3D information on the orientation and arrangement of bone ultrastructure. In this first study of its kind, we used 3D sSAXS to investigate the ultrastructural organization of 22 vertebral trabeculae of different alignment, types and sizes, obtained from 4 subjects of different ages. Maps of ultrastructure orientation and arrangement of the trabeculae were retrieved by stacking information from consecutive 20-μm-thick bone sections. The organization of the ultrastructure was analyzed in relation to trabecular microarchitecture obtained from computed tomography and to relevant parameters such as distance to trabecular surface, local curvature or local bone mineralization. We found that (i) ultrastructure organization is similar for all investigated trabeculae independent of their particular characteristics, (ii) bone ultrastructure exhibiting a high degree of orientation was arranged in domains, (iii) highly oriented ultrastructural areas were located closer to the bone surface, (iv) the ultrastructure of the human trabecular bone specimens followed the

  19. Bioprinting 3D cell-laden hydrogel microarray for screening human periodontal ligament stem cell response to extracellular matrix.

    PubMed

    Ma, Yufei; Ji, Yuan; Huang, Guoyou; Ling, Kai; Zhang, Xiaohui; Xu, Feng

    2015-01-01

    Periodontitis is an inflammatory disease negatively affecting up to 15% of adults worldwide. Periodontal ligament stem cells (PDLSCs) hold great promises for periodontal tissue regeneration, where it is necessary to find proper extracellular matrix (ECM) materials (e.g., composition, concentration). In this study, we proposed a bioprinting-based approach to generate nano-liter sized three-dimensional (3D) cell-laden hydrogel array with gradient of ECM components, through controlling the volume ratio of two hydrogels, such as gelatin methacrylate (GelMA) and poly(ethylene glycol) (PEG) dimethacrylate. The resulting cell-laden array with a gradient of GelMA/PEG composition was used to screen human PDLSC response to ECM. The behavior (e.g., cell viability, spreading) of human PDLSCs in GelMA/PEG array were found to be depended on the volume ratios of GelMA/PEG, with cell viability and spreading area decreased along with increasing the ratio of PEG. The developed approach would be useful for screening cell-biomaterial interaction in 3D and promoting regeneration of functional tissue. PMID:26696269

  20. gp140, the C3d receptor of human B lymphocytes, is also the Epstein-Barr virus receptor.

    PubMed

    Frade, R; Barel, M; Ehlin-Henriksson, B; Klein, G

    1985-03-01

    The relationship between gp140, the membrane C3d receptor (CR2) of human B lymphocytes, and the Epstein-Barr virus receptor (EBVR) was analyzed by using the polyclonal anti-gp140, previously prepared by immunizing rabbits with highly purified gp140 (isolated by some of us) from CR2/EBVR-positive Raji cells. Polyclonal anti-gp72, a C3-binding membrane component, not related to the EBVR but also expressed on the Raji cell surface, was used as a control. Binding of rabbit IgG and EBV on cells was assessed by using immunofluorescence techniques with analysis by flow cytofluorometry. A semiquantitative bioassay was also used to measure the EBV binding. Polyclonal monospecific anti-gp140 IgG inhibits directly the binding of EBV to Raji cells at the same concentration that inhibits the binding of EC3d on cells, whereas a 35 times higher concentration of anti-gp72 IgG or preimmune serum IgG does not. Anti-gp140 IgG treatment also inhibits the induction of EBV-determined nuclear antigen in normal tonsil B lymphocytes or in EBV-negative Ramos cells, whereas high concentrations of anti-gp72 IgG or preimmune serum IgG have no effect. These data strongly suggest that gp140, the CR2 of human B lymphocytes, is also the EBVR. PMID:2983347

  1. Targets For Three-Dimensional (3-D) Tracking Of Human Impact Test Subjects

    NASA Astrophysics Data System (ADS)

    Muzzy, William H.; Prell, Arthur M.

    1982-02-01

    Lightweight targets mounted on the head and neck of human volunteers are photographed by high-speed cameras during impact acceleration tests. The targets must be capable of being tracked through a wide angular motion by at least two cameras to obtain three-dimens-ional displacement and orientation. Because the targets are tracked and digitized by a computerized photodigitizer, their pattern must be selected to maximize recognition and minimize crossover confusion. This pater discusses the target construction, orientation on the accelerometer mount, pattern selection, and paint scheme.

  2. Integration of genomic and medical data into a 3D atlas of human anatomy.

    PubMed

    Turinsky, Andrei L; Fanea, Elena; Trinh, Quang; Dong, Xiaoli; Stromer, Julie N; Shu, Xueling; Wat, Stephen; Hallgrímsson, Benedikt; Hill, Jonathan W; Edwards, Carol; Grosenick, Brenda; Yajima, Masumi; Sensen, Christoph W

    2008-01-01

    We have developed a framework for the visual integration and exploration of multi-scale biomedical data, which includes anatomical and molecular components. We have also created a Java-based software system that integrates molecular information, such as gene expression data, into a three-dimensional digital atlas of the male adult human anatomy. Our atlas is structured according to the Terminologia Anatomica. The underlying data-indexing mechanism uses open standards and semantic ontology-processing tools to establish the associations between heterogeneous data types. The software system makes an extensive use of virtual reality visualization. PMID:18391362

  3. Human iPSC-derived osteoblasts and osteoclasts together promote bone regeneration in 3D biomaterials

    PubMed Central

    Jeon, Ok Hee; Panicker, Leelamma M.; Lu, Qiaozhi; Chae, Jeremy J.; Feldman, Ricardo A.; Elisseeff, Jennifer H.

    2016-01-01

    Bone substitutes can be designed to replicate physiological structure and function by creating a microenvironment that supports crosstalk between bone and immune cells found in the native tissue, specifically osteoblasts and osteoclasts. Human induced pluripotent stem cells (hiPSC) represent a powerful tool for bone regeneration because they are a source of patient-specific cells that can differentiate into all specialized cell types residing in bone. We show that osteoblasts and osteoclasts can be differentiated from hiPSC-mesenchymal stem cells and macrophages when co-cultured on hydroxyapatite-coated poly(lactic-co-glycolic acid)/poly(L-lactic acid) (HA–PLGA/PLLA) scaffolds. Both cell types seeded on the PLGA/PLLA especially with 5% w/v HA recapitulated the tissue remodeling process of human bone via coupling signals coordinating osteoblast and osteoclast activity and finely tuned expression of inflammatory molecules, resulting in accelerated in vitro bone formation. Following subcutaneous implantation in rodents, co-cultured hiPSC-MSC/-macrophage on such scaffolds showed mature bone-like tissue formation. These findings suggest the importance of coupling matrix remodeling through osteoblastic matrix deposition and osteoclastic tissue resorption and immunomodulation for tissue development. PMID:27225733

  4. Unmixing chromophores in human skin with a 3D multispectral optoacoustic mesoscopy system

    NASA Astrophysics Data System (ADS)

    Schwarz, Mathias; Aguirre, Juan; Soliman, Dominik; Buehler, Andreas; Ntziachristos, Vasilis

    2016-03-01

    The absorption of visible light by human skin is governed by a number of natural chromophores: Eumelanin, pheomelanin, oxyhemoglobin, and deoxyhemoglobin are the major absorbers in the visible range in cutaneous tissue. Label-free quantification of these tissue chromophores is an important step of optoacoustic (photoacoustic) imaging towards clinical application, since it provides relevant information in diseases. In tumor cells, for instance, there are metabolic changes (Warburg effect) compared to healthy cells, leading to changes in oxygenation in the environment of tumors. In malignant melanoma changes in the absorption spectrum have been observed compared to the spectrum of nonmalignant nevi. So far, optoacoustic imaging has been applied to human skin mostly in single-wavelength mode, providing anatomical information but no functional information. In this work, we excited the tissue by a tunable laser source in the spectral range from 413-680 nm with a repetition rate of 50 Hz. The laser was operated in wavelengthsweep mode emitting consecutive pulses at various wavelengths that allowed for automatic co-registration of the multispectral datasets. The multispectral raster-scan optoacoustic mesoscopy (MSOM) system provides a lateral resolution of <60 μm independent of wavelength. Based on the known absorption spectra of melanin, oxyhemoglobin, and deoxyhemoglobin, three-dimensional absorption maps of all three absorbers were calculated from the multispectral dataset.

  5. Deformable human body model development

    SciTech Connect

    Wray, W.O.; Aida, T.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). A Deformable Human Body Model (DHBM) capable of simulating a wide variety of deformation interactions between man and his environment has been developed. The model was intended to have applications in automobile safety analysis, soldier survivability studies and assistive technology development for the disabled. To date, we have demonstrated the utility of the DHBM in automobile safety analysis and are currently engaged in discussions with the U.S. military involving two additional applications. More specifically, the DHBM has been incorporated into a Virtual Safety Lab (VSL) for automobile design under contract to General Motors Corporation. Furthermore, we have won $1.8M in funding from the U.S. Army Medical Research and Material Command for development of a noninvasive intracranial pressure measurement system. The proposed research makes use of the detailed head model that is a component of the DHBM; the project duration is three years. In addition, we have been contacted by the Air Force Armstrong Aerospace Medical Research Laboratory concerning possible use of the DHBM in analyzing the loads and injury potential to pilots upon ejection from military aircraft. Current discussions with Armstrong involve possible LANL participation in a comparison between DHBM and the Air Force Articulated Total Body (ATB) model that is the current military standard.

  6. 3D Reconstruction of the Human Airway Mucosa In Vitro as an Experimental Model to Study NTHi Infections

    PubMed Central

    Marrazzo, Pasquale; Maccari, Silvia; Taddei, Annarita; Bevan, Luke; Telford, John; Soriani, Marco; Pezzicoli, Alfredo

    2016-01-01

    We have established an in vitro 3D system which recapitulates the human tracheo-bronchial mucosa comprehensive of the pseudostratified epithelium and the underlying stromal tissue. In particular, we reported that the mature model, entirely constituted of primary cells of human origin, develops key markers proper of the native tissue such as the mucociliary differentiation of the epithelial sheet and the formation of the basement membrane. The infection of the pseudo-tissue with a strain of NonTypeable Haemophilus influenzae results in bacteria association and crossing of the mucus layer leading to an apparent targeting of the stromal space where they release large amounts of vesicles and form macro-structures. In summary, we propose our in vitro model as a reliable and potentially customizable system to study mid/long term host-pathogen processes. PMID:27101006

  7. Sub-nm 3D observation of human hair melanin by high-voltage STEM.

    PubMed

    Imai, Takehito; Higuchi, Kimitaka; Yamamoto, Yuta; Arai, Shigeo; Nakano, Takashi; Tanaka, Nobuo

    2016-04-01

    The ultrastructure of melanin granules in human hair was studied using 1,000 kV high-voltage scanning transmission electron microscopy to successfully reconstruct three-dimensional images of the whole melanin granule. It was revealed that the melanin granule was composed of a membrane-like outer structure that included many spherical vesicles, and an inner matrix containing a sheet-like structure in the elongated direction of the melanin granule and a sheet-like arrays structure in the cross direction. The outer structure of the melanin granule was maintained even after exposure to hair-bleaching agents to decompose the melanin granule, suggesting that the outer structure was a highly robust structure and composition compared with the inner matrix . PMID:26705324

  8. A 3D map of the islet routes throughout the healthy human pancreas

    PubMed Central

    Ionescu-Tirgoviste, Constantin; Gagniuc, Paul A.; Gubceac, Elvira; Mardare, Liliana; Popescu, Irinel; Dima, Simona; Militaru, Manuella

    2015-01-01

    Islets of Langerhans are fundamental in understanding diabetes. A healthy human pancreas from a donor has been used to asses various islet parameters and their three-dimensional distribution. Here we show that islets are spread gradually from the head up to the tail section of the pancreas in the form of contracted or dilated islet routes. We also report a particular anatomical structure, namely the cluster of islets. Our observations revealed a total of 11 islet clusters which comprise of small islets that surround large blood vessels. Additional observations in the peripancreatic adipose tissue have shown lymphoid-like nodes and blood vessels captured in a local inflammatory process. Our observations are based on regional slice maps of the pancreas, comprising of 5,423 islets. We also devised an index of sphericity which briefly indicates various islet shapes that are dominant throughout the pancreas. PMID:26417671

  9. Adaptive optics SLO/OCT for 3D imaging of human photoreceptors in vivo

    PubMed Central

    Felberer, Franz; Kroisamer, Julia-Sophie; Baumann, Bernhard; Zotter, Stefan; Schmidt-Erfurth, Ursula; Hitzenberger, Christoph K.; Pircher, Michael

    2014-01-01

    We present a new instrument that is capable of imaging human photoreceptors in three dimensions. To achieve high lateral resolution, the system incorporates an adaptive optics system. The high axial resolution is achieved through the implementation of optical coherence tomography (OCT). The instrument records simultaneously both, scanning laser ophthalmoscope (SLO) and OCT en-face images, with a pixel to pixel correspondence. The information provided by the SLO is used to correct for transverse eye motion in post-processing. In order to correct for axial eye motion, the instrument is equipped with a high speed axial eye tracker. In vivo images of foveal cones as well as images recorded at an eccentricity from the fovea showing cones and rods are presented. PMID:24575339

  10. A 3D map of the islet routes throughout the healthy human pancreas.

    PubMed

    Ionescu-Tirgoviste, Constantin; Gagniuc, Paul A; Gubceac, Elvira; Mardare, Liliana; Popescu, Irinel; Dima, Simona; Militaru, Manuella

    2015-01-01

    Islets of Langerhans are fundamental in understanding diabetes. A healthy human pancreas from a donor has been used to asses various islet parameters and their three-dimensional distribution. Here we show that islets are spread gradually from the head up to the tail section of the pancreas in the form of contracted or dilated islet routes. We also report a particular anatomical structure, namely the cluster of islets. Our observations revealed a total of 11 islet clusters which comprise of small islets that surround large blood vessels. Additional observations in the peripancreatic adipose tissue have shown lymphoid-like nodes and blood vessels captured in a local inflammatory process. Our observations are based on regional slice maps of the pancreas, comprising of 5,423 islets. We also devised an index of sphericity which briefly indicates various islet shapes that are dominant throughout the pancreas. PMID:26417671

  11. Human body motion tracking based on quantum-inspired immune cloning algorithm

    NASA Astrophysics Data System (ADS)

    Han, Hong; Yue, Lichuan; Jiao, Licheng; Wu, Xing

    2009-10-01

    In a static monocular camera system, to gain a perfect 3D human body posture is a great challenge for Computer Vision technology now. This paper presented human postures recognition from video sequences using the Quantum-Inspired Immune Cloning Algorithm (QICA). The algorithm included three parts. Firstly, prior knowledge of human beings was used, the key joint points of human could be detected automatically from the human contours and skeletons which could be thinning from the contours; And due to the complexity of human movement, a forecasting mechanism of occlusion joint points was addressed to get optimum 2D key joint points of human body; And then pose estimation recovered by optimizing between the 2D projection of 3D human key joint points and 2D detection key joint points using QICA, which recovered the movement of human body perfectly, because this algorithm could acquire not only the global optimal solution, but the local optimal solution.

  12. Cross-correlative 3D micro-structural investigation of human bone processed into bone allografts.

    PubMed

    Singh, Atul Kumar; Gajiwala, Astrid Lobo; Rai, Ratan Kumar; Khan, Mohd Parvez; Singh, Chandan; Barbhuyan, Tarun; Vijayalakshmi, S; Chattopadhyay, Naibedya; Sinha, Neeraj; Kumar, Ashutosh; Bellare, Jayesh R

    2016-05-01

    Bone allografts (BA) are a cost-effective and sustainable alternative in orthopedic practice as they provide a permanent solution for preserving skeletal architecture and function. Such BA however, must be processed to be disease free and immunologically safe as well as biologically and clinically useful. Here, we have demonstrated a processing protocol for bone allografts and investigated the micro-structural properties of bone collected from osteoporotic and normal human donor samples. In order to characterize BA at different microscopic levels, a combination of techniques such as Solid State Nuclear Magnetic Resonance (ssNMR), Scanning Electron Microscope (SEM), micro-computed tomography (μCT) and Thermal Gravimetric Analysis (TGA) were used for delineating the ultra-structural property of bone. ssNMR revealed the extent of water, collagen fine structure and crystalline order in the bone. These were greatly perturbed in the bone taken from osteoporotic bone donor. Among the processing methods analyzed, pasteurization at 60 °C and radiation treatment appeared to substantially alter the bone integrity. SEM study showed a reduction in Ca/P ratio and non-uniform distribution of elements in osteoporotic bones. μ-CT and MIMICS (Materialize Interactive Medical Image Control System) demonstrated that pasteurization and radiation treatment affects the BA morphology and cause a shift in the HU unit. However, the combination of all these processes restored all-important parameters that are critical for BA integrity and sustainability. Cross-correlation between the various probes we used quantitatively demonstrated differences in morphological and micro-structural properties between BA taken from normal and osteoporotic human donor. Such details could also be instrumental in designing an appropriate bone scaffold. For the best restoration of bone microstructure and to be used as a biomaterial allograft, a step-wise processing method is recommended that preserves all

  13. Numerical simulation of inhaled aerosol particle deposition within 3D realistic human upper respiratory tract

    NASA Astrophysics Data System (ADS)

    Lin, J.; Fan, J. R.; Zheng, Y. Q.; Hu, G. L.; Pan, D.

    2010-03-01

    Computational fluid dynamics (CFD) simulations of airflow and particle deposition in the upper respiratory tract (URT) were conducted in this paper. Based on the CT (Computerized Tomography) scanned images of a 19-years-old healthy boy, a realistic geometric model of URT from oral cavity to the upper six-generation bronchial is rebuilt. To investigate airflow and particle deposition in the obtained realistic human upper respiratory tract, RNG k-ɛ turbulence model was used to describe the primary flow and particle deposition under three breathing intensity such as 15 L/min, 30 L/min and 60 L/min. The particle is tracked and analyzed in the Lagrangian frame. The velocity fields of airflow under different airflow rates were computed and discussed. In order to study the characteristics of particles movement and the effect of particles diameter on the deposition pattern, eleven kinds of sphere particles with different diameters are selected as research object. The diameters of selected particles as follows: 0.1 μm, 0.5 μm, 1 μm, 2.5 μm, 3 μm, 3.5 μm, 4 μm, 4.5 μm, 5 μm, 6.5 μm and 8 μm. The variation of inhalable particles deposition in realistic human upper respiratory tract with respiratory intensity and particle size was researched and compared. Furthermore, the more real inhalable particles with Rosin-Rammler mass distribution are used to study the effect of particles size. The deposition rate of particles with the different diameter scope in the different part of upper respiratory tract was summarized. The geometrical model based images technology promises to provide more real results of airflow field and particle deposition in the URT.

  14. Closed formulae to determine the angular velocity of a body-segment based on 3D measurements.

    PubMed

    Kocsis, L; Béda, G

    2001-01-01

    This paper suggests a simple method to determine the global coordinates of the angular velocity and the angular acceleration of a body segment determined by the coordinates of minimum three markers. There are commonly used calculations for the angular quantities basing on the "hypothesis" of planar motion. The usage of approximate methods can result in quantitative and qualitative errors that may completely disort the reality. The method mentioned here is theoretically absolutely correct and can be well used for smoothing noisy data. PMID:11811842

  15. Genome-Wide Prediction and Analysis of 3D-Domain Swapped Proteins in the Human Genome from Sequence Information

    PubMed Central

    Upadhyay, Atul Kumar; Sowdhamini, Ramanathan

    2016-01-01

    3D-domain swapping is one of the mechanisms of protein oligomerization and the proteins exhibiting this phenomenon have many biological functions. These proteins, which undergo domain swapping, have acquired much attention owing to their involvement in human diseases, such as conformational diseases, amyloidosis, serpinopathies, proteionopathies etc. Early realisation of proteins in the whole human genome that retain tendency to domain swap will enable many aspects of disease control management. Predictive models were developed by using machine learning approaches with an average accuracy of 78% (85.6% of sensitivity, 87.5% of specificity and an MCC value of 0.72) to predict putative domain swapping in protein sequences. These models were applied to many complete genomes with special emphasis on the human genome. Nearly 44% of the protein sequences in the human genome were predicted positive for domain swapping. Enrichment analysis was performed on the positively predicted sequences from human genome for their domain distribution, disease association and functional importance based on Gene Ontology (GO). Enrichment analysis was also performed to infer a better understanding of the functional importance of these sequences. Finally, we developed hinge region prediction, in the given putative domain swapped sequence, by using important physicochemical properties of amino acids. PMID:27467780

  16. Dynamics and cortical distribution of neural responses to 2D and 3D motion in human

    PubMed Central

    McKee, Suzanne P.; Norcia, Anthony M.

    2013-01-01

    The perception of motion-in-depth is important for avoiding collisions and for the control of vergence eye-movements and other motor actions. Previous psychophysical studies have suggested that sensitivity to motion-in-depth has a lower temporal processing limit than the perception of lateral motion. The present study used functional MRI-informed EEG source-imaging to study the spatiotemporal properties of the responses to lateral motion and motion-in-depth in human visual cortex. Lateral motion and motion-in-depth displays comprised stimuli whose only difference was interocular phase: monocular oscillatory motion was either in-phase in the two eyes (lateral motion) or in antiphase (motion-in-depth). Spectral analysis was used to break the steady-state visually evoked potentials responses down into even and odd harmonic components within five functionally defined regions of interest: V1, V4, lateral occipital complex, V3A, and hMT+. We also characterized the responses within two anatomically defined regions: the inferior and superior parietal cortex. Even harmonic components dominated the evoked responses and were a factor of approximately two larger for lateral motion than motion-in-depth. These responses were slower for motion-in-depth and were largely independent of absolute disparity. In each of our regions of interest, responses at odd-harmonics were relatively small, but were larger for motion-in-depth than lateral motion, especially in parietal cortex, and depended on absolute disparity. Taken together, our results suggest a plausible neural basis for reduced psychophysical sensitivity to rapid motion-in-depth. PMID:24198326

  17. Many body calculations of the optoelectronic properties of h-AlN: from 3D to 2D

    NASA Astrophysics Data System (ADS)

    Kecik, Deniz; Bacaksiz, Cihan; Durgun, Engin; Senger, Tugrul

    Outstanding electronic and optical properties of graphene, h-BN, MoS2 etc. motivate the further discovery of novel 2D materials such as AlN, a III-V compound, with remarkable features for potential optoelectronic applications, due to its wide indirect band gap. The layer and strain dependent optoelectronic properties of the recently synthesized monolayer hexagonal AlN (h-AlN) were investigated using density functional and many body perturbation theories, where RPA and BSE were employed on top of the QPG0W0 method. The optical spectra of 1-4 layered h-AlN revealed prominent absorption beyond the visible light regime; absorbance within the UV range increasing with the number of layers. In addition, the applied tensile strain (1 - 7 %) was observed to gradually redshift the absorption spectra. While the many body corrections induced significant blueshift to the optical spectra, evidence of bound excitons were also found for the layered structures. Hence, the optoelectronic properties of layered h-AlN can be tuned by modifying their structure and applying strain, moreover are greatly altered when electron-hole interactions are considered. This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK, Project No. 113T050).

  18. Controllable Production of Transplantable Adult Human High-Passage Dermal Papilla Spheroids Using 3D Matrigel Culture

    PubMed Central

    Miao, Yong; Sun, Ya Bin; Liu, Bing Cheng; Jiang, Jin Dou

    2014-01-01

    We have succeeded in culturing human dermal papilla (DP) cell spheroids and developed a three-dimensional (3D) Matrigel (basement membrane matrix) culture technique that can enhance and restore DP cells unique characteristics in vitro. When 1×104 DP cells were cultured on the 96-well plates precoated with Matrigel for 5 days, both passage 2 and passage 8 DP cells formed spheroidal microtissues with a diameter of 150–250 μm in an aggregative and proliferative manner. We transferred and recultured these DP spheroids onto commercial plates. Cells within DP spheres could disaggregate and migrate out, which was similar to primary DP. Moreover, we examined the expression of several genes and proteins associated with hair follicle inductivity of DP cells, such as NCAM, Versican, and α-smooth muscle actin, and confirmed that their expression level was elevated in the spheres compared with the dissociated DP cells. To examine the hair-inducing ability of DP spheres, hair germinal matrix cells (HGMCs) and DP spheres were mixed and cultured on Matrigel. Unlike the dissociated DP cells and HGMCs cocultured in two dimensions, HGMCs can differentiate into hair-like fibers under the induction of the DP spheres made from the high-passage cells (passage 8) in vitro. We are the first to show that passage 3 human HGMCs differentiate into hair-like fibers in the presence of human DP spheroids. These results suggest that the 3D Matrigel culture technique is an ideal culture model for forming DP spheroids and that sphere formation partially models the intact DP, resulting in hair induction, even by high-passage DP cells. PMID:24528213

  19. Assessment of the 3 D Pore Structure and Individual Components of Preshaped Catalyst Bodies by X-Ray Imaging

    PubMed Central

    da Silva, Julio C; Mader, Kevin; Holler, Mirko; Haberthür, David; Diaz, Ana; Guizar-Sicairos, Manuel; Cheng, Wu-Cheng; Shu, Yuying; Raabe, Jörg; Menzel, Andreas; van Bokhoven, Jeroen A

    2015-01-01

    Porosity in catalyst particles is essential because it enables reactants to reach the active sites and it enables products to leave the catalyst. The engineering of composite-particle catalysts through the tuning of pore-size distribution and connectivity is hampered by the inability to visualize structure and porosity at critical-length scales. Herein, it is shown that the combination of phase-contrast X-ray microtomography and high-resolution ptychographic X-ray tomography allows the visualization and characterization of the interparticle pores at micro- and nanometer-length scales. Furthermore, individual components in preshaped catalyst bodies used in fluid catalytic cracking, one of the most used catalysts, could be visualized and identified. The distribution of pore sizes, as well as enclosed pores, which cannot be probed by traditional methods, such as nitrogen physisorption and isotherm analysis, were determined. PMID:26191088

  20. Observed Human Errors in Interpreting 3D visualizations: implications for Teaching Students how to Comprehend Geological Block Diagrams

    NASA Astrophysics Data System (ADS)

    Bemis, K. G.; Pirl, E.; Chiang, J.; Tremaine, M.

    2009-12-01

    Block diagrams are commonly used to communicate three dimensional geological structures and other phenomena relevant to geological science (e.g., water bodies in the ocean). However, several recent studies have suggested that these 3D visualizations create difficulties for individuals with low to moderate spatial abilities. We have therefore initiated a series of studies to understand what it is about the 3D structures that make them so difficult for some people and also to determine if we can improve people’s understanding of these structures through web-based training not related to geology or other underlying information. Our first study examined what mistakes subjects made in a set of 3D block diagrams designed to represent progressively more difficult internal structures. Each block was shown bisected by a plane either perpendicular or at an angle to the block sides. Five low to medium spatial subjects were asked to draw the features that would appear on the bisecting plane. They were asked to talk aloud as they solved the problem. Each session was videotaped. Using the time it took subjects to solve the problems, the subject verbalizations of their problem solving and the drawings that were found to be in error, we have been able to find common patterns in the difficulties the subjects had with the diagrams. We have used these patterns to generate a set of strategies the subjects used in solving the problems. From these strategies, we are developing methods of teaching. A problem found in earlier work on geology structures was not observed in our study, that is, one of subjects failing to recognize the 2D representation of the block as 3D and drawing the cross-section as a combined version of the visible faces of the object. We attribute this to our experiment introduction, suggesting that even this simple training needs to be carried out with students encountering 3D block diagrams. Other problems subjects had included difficulties in perceptually

  1. Estimating 3D L5/S1 moments and ground reaction forces during trunk bending using a full-body ambulatory inertial motion capture system.

    PubMed

    Faber, G S; Chang, C C; Kingma, I; Dennerlein, J T; van Dieën, J H

    2016-04-11

    Inertial motion capture (IMC) systems have become increasingly popular for ambulatory movement analysis. However, few studies have attempted to use these measurement techniques to estimate kinetic variables, such as joint moments and ground reaction forces (GRFs). Therefore, we investigated the performance of a full-body ambulatory IMC system in estimating 3D L5/S1 moments and GRFs during symmetric, asymmetric and fast trunk bending, performed by nine male participants. Using an ambulatory IMC system (Xsens/MVN), L5/S1 moments were estimated based on the upper-body segment kinematics using a top-down inverse dynamics analysis, and GRFs were estimated based on full-body segment accelerations. As a reference, a laboratory measurement system was utilized: GRFs were measured with Kistler force plates (FPs), and L5/S1 moments were calculated using a bottom-up inverse dynamics model based on FP data and lower-body kinematics measured with an optical motion capture system (OMC). Correspondence between the OMC+FP and IMC systems was quantified by calculating root-mean-square errors (RMSerrors) of moment/force time series and the interclass correlation (ICC) of the absolute peak moments/forces. Averaged over subjects, L5/S1 moment RMSerrors remained below 10Nm (about 5% of the peak extension moment) and 3D GRF RMSerrors remained below 20N (about 2% of the peak vertical force). ICCs were high for the peak L5/S1 extension moment (0.971) and vertical GRF (0.998). Due to lower amplitudes, smaller ICCs were found for the peak asymmetric L5/S1 moments (0.690-0.781) and horizontal GRFs (0.559-0.948). In conclusion, close correspondence was found between the ambulatory IMC-based and laboratory-based estimates of back load. PMID:26795123

  2. Treatment Paradigms for Retinal and Macular Diseases Using 3-D Retina Cultures Derived From Human Reporter Pluripotent Stem Cell Lines.

    PubMed

    Kaewkhaw, Rossukon; Swaroop, Manju; Homma, Kohei; Nakamura, Jutaro; Brooks, Matthew; Kaya, Koray Dogan; Chaitankar, Vijender; Michael, Sam; Tawa, Gregory; Zou, Jizhong; Rao, Mahendra; Zheng, Wei; Cogliati, Tiziana; Swaroop, Anand

    2016-04-01

    We discuss the use of pluripotent stem cell lines carrying fluorescent reporters driven by retinal promoters to derive three-dimensional (3-D) retina in culture and how this system can be exploited for elucidating human retinal biology, creating disease models in a dish, and designing targeted drug screens for retinal and macular degeneration. Furthermore, we realize that stem cell investigations are labor-intensive and require extensive resources. To expedite scientific discovery by sharing of resources and to avoid duplication of efforts, we propose the formation of a Retinal Stem Cell Consortium. In the field of vision, such collaborative approaches have been enormously successful in elucidating genetic susceptibility associated with age-related macular degeneration. PMID:27116668

  3. Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone.

    PubMed

    Cole, J M; Wood, J C; Lopes, N C; Poder, K; Abel, R L; Alatabi, S; Bryant, J S J; Jin, A; Kneip, S; Mecseki, K; Symes, D R; Mangles, S P D; Najmudin, Z

    2015-01-01

    A bright μm-sized source of hard synchrotron x-rays (critical energy Ecrit > 30 keV) based on the betatron oscillations of laser wakefield accelerated electrons has been developed. The potential of this source for medical imaging was demonstrated by performing micro-computed tomography of a human femoral trabecular bone sample, allowing full 3D reconstruction to a resolution below 50 μm. The use of a 1 cm long wakefield accelerator means that the length of the beamline (excluding the laser) is dominated by the x-ray imaging distances rather than the electron acceleration distances. The source possesses high peak brightness, which allows each image to be recorded with a single exposure and reduces the time required for a full tomographic scan. These properties make this an interesting laboratory source for many tomographic imaging applications. PMID:26283308

  4. Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone

    NASA Astrophysics Data System (ADS)

    Cole, J. M.; Wood, J. C.; Lopes, N. C.; Poder, K.; Abel, R. L.; Alatabi, S.; Bryant, J. S. J.; Jin, A.; Kneip, S.; Mecseki, K.; Symes, D. R.; Mangles, S. P. D.; Najmudin, Z.

    2015-08-01

    A bright μm-sized source of hard synchrotron x-rays (critical energy Ecrit > 30 keV) based on the betatron oscillations of laser wakefield accelerated electrons has been developed. The potential of this source for medical imaging was demonstrated by performing micro-computed tomography of a human femoral trabecular bone sample, allowing full 3D reconstruction to a resolution below 50 μm. The use of a 1 cm long wakefield accelerator means that the length of the beamline (excluding the laser) is dominated by the x-ray imaging distances rather than the electron acceleration distances. The source possesses high peak brightness, which allows each image to be recorded with a single exposure and reduces the time required for a full tomographic scan. These properties make this an interesting laboratory source for many tomographic imaging applications.

  5. Automated analysis of 3D morphology of human red blood cells via off-axis digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Moon, Inkyu

    2013-05-01

    In this paper we overview an automated method for the analysis of clinical parameters of human red blood cells (RBCs). The digital holograms of mature RBCs are recorded by CCD camera with off-axis interferometry setup and the quantitative phase images of RBCs are formed by a numerical reconstruction technique. For automated investigation of the 3D morphology and mean corpuscular hemoglobin of RBCs, the unnecessary background in the RBCs phase images are removed by marker-controlled watershed segmentation algorithm. Then, characteristic properties of each RBC such as projected cell surface, average phase, mean corpuscular hemoglobin (MCH) and (MCH) surface density is quantitatively measured. Finally, the equality of covariance matrixes and mean vectors of these features for different kinds of RBCs are experimentally analyzed using statistical test scheme. Results show that these characteristic parameters of RBCs can be used as feature pattern to discriminate between RBC populations that differ in shape and hemoglobin content.

  6. Mini-pillar array for hydrogel-supported 3D culture and high-content histologic analysis of human tumor spheroids.

    PubMed

    Kang, Jihoon; Lee, Dong Woo; Hwang, Hyun Ju; Yeon, Sang-Eun; Lee, Moo-Yeal; Kuh, Hyo-Jeong

    2016-06-21

    Three-dimensional (3D) cancer cell culture models mimic the complex 3D organization and microenvironment of human solid tumor tissue and are thus considered as highly predictive models representing avascular tumor regions. Confocal laser scanning microscopy is useful for monitoring drug penetration and therapeutic responses in 3D tumor models; however, photonic attenuation at increasing imaging depths and limited penetration of common fluorescence tracers are significant technical challenges to imaging. Immunohistological staining would be a good alternative, but the preparation of tissue sections from rather fragile spheroids through fixing and embedding procedures is challenging. Here we introduce a novel 3 × 3 mini-pillar array chip that can be utilized for 3D cell culturing and sectioning for high-content histologic analysis. The mini-pillar array chip facilitated the generation of 3D spheroids of human cancer cells within hydrogels such as alginate, collagen, and Matrigel. As expected, visualization of the 3D distribution of calcein AM and doxorubicin by optical sectioning was limited by photonic attenuation and dye penetration. The integrity of the 3D microtissue section was confirmed by immunostaining on paraffin sections and cryo-sections. The applicability of the mini-pillar array for drug activity evaluation was tested by measuring viability changes in spheroids exposed to anti-cancer agents, 5-fluorouracil and tirapazamine. Thus, our novel mini-pillar array platform can potentially promote high-content histologic analysis of 3D cultures and can be further optimized for field-specific needs. PMID:27194205

  7. 3-D ore body modeling and structural settings of syn-to late orogenic Variscan hydrothermal mineralization, Siegerland district, Rhenish Massif, NW Germany

    NASA Astrophysics Data System (ADS)

    Peters, Meike; Hellmann, André; Meyer, Franz Michael

    2013-04-01

    The Siegerland district is located in the fold-and thrust-belt of the Rhenish Massif and hosts diverse syn-to late orogenic mineralization styles. Peak-metamorphism and deformation occurred at 312-316±10 Ma (Ahrendt et al., 1978) at temperature-pressure conditions of 280-320°C and 0.7-1.4 kbar (Hein, 1993). In addition to syn-orogenic siderite-quartz mineralization at least four different syn-to late orogenic mineralization stages are identified comprising Co-Ni-Cu-Au, Pb-Zn-Cu, Sb-Au, and hematite-digenite-bornite ores (Hellmann et al., 2012). The earliest type of syn-orogenic ore mineralization is formed by siderite-quartz veins, trending N-S, E-W and NE-SW. The vein systems are closely related to fold and reverse fault geometries (Hellmann et al., 2012). The most important structural feature is the first-order Siegen main reverse fault showing an offset into three major faults (Peters et al., 2012). The structural control on ore formation is demonstrated by the Co-Ni-Cu-Au mineralization generally hosted by NE-ENE trending reverse faults and associated imbrication zones that have reactivated the older siderite-quartz veins. In this study, we developed a 3-D model of the Alte Buntekuh ore bodies in the Siegerland district, using Datamine Studio3 to investigate the structural setting of Co-Ni-Cu-Au mineralization. The salient structural and spatial data for the 3-D model were taken from old mine level plans as well as from geological and topographical maps. The ore bodies are located immediately in the hanging wall of the southern branch of the Siegen main reverse fault (Peters et al., 2012). From the model it becomes obvious, that the earlier siderite-quartz veins, dipping steeply to the NW, are cross-cut and segmented by oppositely dipping oblique reverse faults. Individual ore body segments are rotated and displaced, showing a plunge direction to the SW. The 3-D model further reveals the presence of hook-like, folded vein arrays, highly enriched in cobalt

  8. A new dynamic 3D virtual methodology for teaching the mechanics of atrial septation as seen in the human heart.

    PubMed

    Schleich, Jean-Marc; Dillenseger, Jean-Louis; Houyel, Lucile; Almange, Claude; Anderson, Robert H

    2009-01-01

    Learning embryology remains difficult, since it requires understanding of many complex phenomena. The temporal evolution of developmental events has classically been illustrated using cartoons, which create difficulty in linking spatial and temporal aspects, such correlation being the keystone of descriptive embryology. We synthesized the bibliographic data from recent studies of atrial septal development. On the basis of this synthesis, consensus on the stages of atrial septation as seen in the human heart has been reached by a group of experts in cardiac embryology and pediatric cardiology. This has permitted the preparation of three-dimensional (3D) computer graphic objects for the anatomical components involved in the different stages of normal human atrial septation. We have provided a virtual guide to the process of normal atrial septation, the animation providing an appreciation of the temporal and morphologic events necessary to separate the systemic and pulmonary venous returns. We have shown that our animations of normal human atrial septation increase significantly the teaching of the complex developmental processes involved, and provide a new dynamic for the process of learning. PMID:19363807

  9. Unsteady Analysis of Particle Transport and Deposition in the Human Lung: A Hybrid 3D/0D Model

    NASA Astrophysics Data System (ADS)

    Haworth, Daniel C.; Kunz, Robert F.; Leemhuis, Laura S.; Banks, Syreeta S.; Kriete, Andres

    2003-11-01

    Three-dimensional CFD meshes including up the sixteenth generation of branching in a human tracheo-bronchial tree have been generated from surface data extracted using novel high-resolution bio-medical imaging and rendering methods. A zero-dimensional model for the deeper generations has been coupled with the three-dimensional model at each of the truncated branches. The 0D model imposes a time-varying volume to simulate realistic breathing cycles; it also includes a simple model for particle deposition. The resulting hybrid 3D/0D model has been exercised to compute the transport and deposition rates of particles of different sizes through full breathing cycles. Results are compared to earlier steady-flow CFD results, to results obtained using one-dimensional functional models of the human lung, and to experimental and modeling results for idealized branching-duct configurations. The aim of the research is to develop a virtual human respiratory system that can be used to address issues in pulmonary health in

  10. Effect of catheter placement on 3-D velocity profiles in curved tubes resembling the human coronary system.

    PubMed

    Krams, R; Wentzel, J J; Cespedes, I; Vinke, R; Carlier, S; van der Steen, A F; Lancee, C T; Slager, C J

    1999-06-01

    Novel measurement techniques based on intravenous ultrasound (IVUS) technology ('IVUS-Flowmetry') require the location of a catheter inside the coronary bed. The present study quantifies disturbances in the 3-D velocity profile induced by catheter placement inside a tube, applying computational fluid dynamics. Two curved, circular meshes (radius K = 0.025 m and K = 0.035 m) with and without a catheter inside the lumen were applied. The catheter was located at the inner curve, the outer curve and at the top position. Boundary conditions were: no slip on the wall, zero stress at the outlet, uniform inflow with entrance velocities of 0.1, 0.2 and 0.4 m/s. Curvature-associated centrifugal forces shifted the maximal velocity to the outer curve and introduced two symmetrical vortices. Additional catheter placement redistributed the 3-D axial velocity field away from the catheter, which was accompanied by the appearance of multiple low-strength vortices. In addition, peak axial velocity increased, peak secondary velocities decreased, axial pressure drop increased and shear stress increased. Flow calculations simulated to resemble IVUS-based flowmetry changed by only 1% after considering secondary velocity. In conclusion, placement of a catheter inside a curved tube resembling the human coronary system changes the velocity field and reduces secondary patterns. The present study supports the usefulness of catheter-based flowmetry during resting flow conditions. During hyperemic flow conditions, flow measurements might be accompanied by large axial pressure drops because the catheter, itself, might act as a significant stenosis. PMID:10414897

  11. 3D Bayesian inversion of gravity data: development and applications to the Ivrea Body and the Soufrière of Guadeloupe volcano

    NASA Astrophysics Data System (ADS)

    Barnoud, A.; Coutant, O.; Bouligand, C.

    2013-12-01

    We propose to use a Bayesian methodology combined with a grid node discretization to invert linearly for 3D density distributions. The inversion and the forward modeling are derived from seismological travel-time inversion techniques in order to facilitate joint inversion or interpretation of density and seismic velocity models. The Bayesian method (Tarantola, 2005) introduces covariance matrices to regularize this ill-posed problem and reduce the non-uniqueness of the solution. Spatial covariances and grid discretization favor smooth and compact solutions that compare to usual seismic tomographic results. Compared to similar approaches our development includes i) the computation of the gravity field for linear vertical gradients and layers, including surface topography, a standard model description in seismology, ii) an explicit formulation of the a-priori covariance matrix. This last point allows to easily modify the spatial a-priori covariance (or scale, or wavelength) and hence, to perform successive linear inversions at different wavelengths. A series of synthetic tests is performed for validation, and used to show the advantage and limitation of this methodology. The method is appropriate for crustal and volcanological area studies, and allows a natural coupling with seismological inversions (Coutant et al., 2012). We present here two case studies for 3D gravity inversions. First, the inversion is performed in a crustal alpine context, the area of the well studied Ivrea Body in Italy. Secondly, we apply the inversion to gravity data from the volcanic island of Basse-Terre whose internal structure is badly constrained. We use data from previous studies supplemented with new high quality data acquired in 2012 within the frame of the Domoscan project. A 3D density model of the island of Basse-Terre is derived for the first time.

  12. Tumor control probability and the utility of 4D vs 3D dose calculations for stereotactic body radiotherapy for lung cancer

    SciTech Connect

    Valdes, Gilmer; Robinson, Clifford; Lee, Percy; Morel, Delphine; Low, Daniel; Iwamoto, Keisuke S.; Lamb, James M.

    2015-04-01

    Four-dimensional (4D) dose calculations for lung cancer radiotherapy have been technically feasible for a number of years but have not become standard clinical practice. The purpose of this study was to determine if clinically significant differences in tumor control probability (TCP) exist between 3D and 4D dose calculations so as to inform the decision whether 4D dose calculations should be used routinely for treatment planning. Radiotherapy plans for Stage I-II lung cancer were created for 8 patients. Clinically acceptable treatment plans were created with dose calculated on the end-exhale 4D computed tomography (CT) phase using a Monte Carlo algorithm. Dose was then projected onto the remaining 9 phases of 4D-CT using the Monte Carlo algorithm and accumulated onto the end-exhale phase using commercially available deformable registration software. The resulting dose-volume histograms (DVH) of the gross tumor volume (GTV), planning tumor volume (PTV), and PTV{sub setup} were compared according to target coverage and dose. The PTV{sub setup} was defined as a volume including the GTV and a margin for setup uncertainties but not for respiratory motion. TCPs resulting from these DVHs were estimated using a wide range of alphas, betas, and tumor cell densities. Differences of up to 5 Gy were observed between 3D and 4D calculations for a PTV with highly irregular shape. When the TCP was calculated using the resulting DVHs for fractionation schedules typically used in stereotactic body radiation therapy (SBRT), the TCP differed at most by 5% between 4D and 3D cases, and in most cases, it was by less than 1%. We conclude that 4D dose calculations are not necessary for most cases treated with SBRT, but they might be valuable for irregularly shaped target volumes. If 4D calculations are used, 4D DVHs should be evaluated on volumes that include margin for setup uncertainty but not respiratory motion.

  13. Magma Emplacement and the 3D Geometry of Igneous Bodies in Rift Basins: Insights from the Bornu Basin, Onshore NE Nigeria

    NASA Astrophysics Data System (ADS)

    Suleiman, Adamu; Jackson, Christopher; Magee, Craig; Fraser, Alastair

    2016-04-01

    Recent studies of regional unconformities in the circum-South Atlantic tectonic plates have linked unconformity age to the timing of changes in the azimuth of oceanic fracture zones, caused by plate interactions during opening of the South Atlantic. This observation is significant, proposing that a plate boundary geodynamic processes are transmitted into and expressed in plate interiors. However, it is not yet clear if and how other geologic events, such as intra-plate magmatism, may be linked to changes in the oceanic fracture azimuthal geometry. Here we use 2D and 3D seismic reflection, geochemical, borehole datasets and outcrop observations from the Bornu Basin, one of several intra-continental rift basins located in NE Nigeria to constrain the 3D geometry of igneous bodies and magmatic emplacement processes. This allows us to link South Atlantic plate boundary geodynamics and magmatism in the surrounding continental rift basins. Seismic attributes, reflection intensity, relative acoustic impedance, were used to identify and map igneous intrusions. Saucer-shaped sills are the most common type of intrusion, although en-echelon sills, up to 1.4 km in length, were also identified. The 3D geometry of the sills reveals the detailed structural components like inner sill, inclined sheets and outer sill. A mapped bifurcating network of the sills suggests magma emplacement process through upward and outward propagation. Seismic-stratigraphic observations indicate that igneous activity occurred in the Early Cretaceous, Late Cretaceous and Paleogene corresponding to the timing of major azimuth changes observed in the Kane Oceanic fracture zone in the South Atlantic Ocean. Overall, our study, suggests a possible influence of plate boundary geodynamics on intra-plate magmatism as reflected in the link between the time of changes in the azimuth of oceanic fracture zones and magmatic emplacement observed in the tectono-stratigraphy of the intra-continental rift basins.

  14. Magma Emplacement and the 3D Geometry of Igneous Bodies in Rift Basins: Insights from the Bornu Basin, Onshore NE Nigeria

    NASA Astrophysics Data System (ADS)

    Suleiman, A. A.; Jackson, C. A. L.; Magee, C.; Fraser, A.

    2015-12-01

    Recent studies of regional unconformities in the circum-South Atlantic tectonic plates have linked unconformity age to the timing of changes in the azimuth of oceanic fracture zones, caused by plate interactions during opening of the South Atlantic. This observation is significant, proposing that a plate boundary geodynamic processes are transmitted into and expressed in plate interiors. However, it is not yet clear if and how other geologic events, such as intra-plate magmatism, may be linked to changes in the oceanic fracture azimuthal geometry. Here we use 2D and 3D seismic reflection, geochemical, borehole datasets and outcrop observations from the Bornu Basin, one of several intra-continental rift basins located in NE Nigeria to constrain the 3D geometry of igneous bodies and magmatic emplacement processes. This allows us to link South Atlantic plate boundary geodynamics and magmatism in the surrounding continental rift basins. Seismic attributes, reflection intensity, relative acoustic impedance, were used to identify and map igneous intrusions. Saucer-shaped sills are the most common type of intrusion, although en-echelon sills, up to 1.4 km in length, were also identified. The 3D geometry of the sills reveals the detailed structural components like inner sill, inclined sheets and outer sill (Fig.1). A mapped bifurcating network of the sills suggests magma emplacement process through upward and outward propagation. Seismic-stratigraphic observations indicate that igneous activity occurred in the Early Cretaceous, Late Cretaceous and Paleogene corresponding to the timing of major azimuth changes observed in the Kane Oceanic fracture zone in the South Atlantic Ocean. Overall, our study, suggests a possible influence of plate boundary geodynamics on intra-plate magmatism as reflected in the link between the time of changes in the azimuth of oceanic fracture zones and magmatic emplacement observed in the tectono-stratigraphy of the intra-continental rift basins.

  15. Modeling Forces on the Human Body.

    ERIC Educational Resources Information Center

    Pagonis, Vasilis; Drake, Russel; Morgan, Michael; Peters, Todd; Riddle, Chris; Rollins, Karen

    1999-01-01

    Presents five models of the human body as a mechanical system which can be used in introductory physics courses: human arms as levers, humans falling from small heights, a model of the human back, collisions during football, and the rotating gymnast. Gives ideas for discussions and activities, including Interactive Physics (TM) simulations. (WRM)

  16. Drag Prediction for the DLR-F4 Wing/Body using OVERFLOW and CFL3D on an Overset Mesh

    NASA Technical Reports Server (NTRS)

    Vassberg, John C.; Buning, Pieter G.; Rumsey, Christopher L.

    2002-01-01

    This paper reviews the importance of numerical drag prediction in an aircraft design environment. A chronicle of collaborations between the authors and colleagues is discussed. This retrospective provides a road-map which illustrates some of the actions taken in the past seven years in pursuit of accurate drag prediction. The advances made possible through these collaborations have changed the manner in which business is conducted during the design of all-new aircraft. The subject of this study is the DLR-F4 wing/body transonic model. Specifically, the work conducted herein was in support of the 1st CFD Drag Prediction Workshop, which was held in conjunction with the 19th Applied Aerodynamics Conference in Anaheim, CA during June, 2001. Comprehensive sets of OVERFLOW simulations were independently performed by several users on a variety of computational platforms. CFL3D was used on a limited basis for additional comparison on the same overset mesh. Drag polars based on this database were constructed with a CFD-to-Test correction applied and compared with test data from three facilities. These comparisons show that the predicted drag polars fall inside the scatter band of the test data, at least for pre-buffet conditions. This places the corrected drag levels within 1% of the averaged experimental values. At the design point, the OVERFLOW and CFL3D drag predictions are within 1-2% of each other. In addition, drag-rise characteristics and a boundary of drag-divergence Mach number are presented.

  17. A computerized framework for monitoring four-dimensional dose distributions during stereotactic body radiation therapy using a portal dose image-based 2D/3D registration approach.

    PubMed

    Nakamoto, Takahiro; Arimura, Hidetaka; Nakamura, Katsumasa; Shioyama, Yoshiyuki; Mizoguchi, Asumi; Hirose, Taka-Aki; Honda, Hiroshi; Umezu, Yoshiyuki; Nakamura, Yasuhiko; Hirata, Hideki

    2015-03-01

    A computerized framework for monitoring four-dimensional (4D) dose distributions during stereotactic body radiation therapy based on a portal dose image (PDI)-based 2D/3D registration approach has been proposed in this study. Using the PDI-based registration approach, simulated 4D "treatment" CT images were derived from the deformation of 3D planning CT images so that a 2D planning PDI could be similar to a 2D dynamic clinical PDI at a breathing phase. The planning PDI was calculated by applying a dose calculation algorithm (a pencil beam convolution algorithm) to the geometry of the planning CT image and a virtual water equivalent phantom. The dynamic clinical PDIs were estimated from electronic portal imaging device (EPID) dynamic images including breathing phase data obtained during a treatment. The parameters of the affine transformation matrix were optimized based on an objective function and a gamma pass rate using a Levenberg-Marquardt (LM) algorithm. The proposed framework was applied to the EPID dynamic images of ten lung cancer patients, which included 183 frames (mean: 18.3 per patient). The 4D dose distributions during the treatment time were successfully obtained by applying the dose calculation algorithm to the simulated 4D "treatment" CT images. The mean±standard deviation (SD) of the percentage errors between the prescribed dose and the estimated dose at an isocenter for all cases was 3.25±4.43%. The maximum error for the ten cases was 14.67% (prescribed dose: 1.50Gy, estimated dose: 1.72Gy), and the minimum error was 0.00%. The proposed framework could be feasible for monitoring the 4D dose distribution and dose errors within a patient's body during treatment. PMID:25592290

  18. 3D Modeling of the Lateral Ventricles and Histological Characterization of Periventricular Tissue in Humans and Mouse

    PubMed Central

    Acabchuk, Rebecca L.; Sun, Ye; Wolferz,, Richard; Eastman, Matthew B.; Lennington, Jessica B.; Shook, Brett A.; Wu, Qian; Conover, Joanne C.

    2015-01-01

    The ventricular system carries and circulates cerebral spinal fluid (CSF) and facilitates clearance of solutes and toxins from the brain. The functional units of the ventricles are ciliated epithelial cells termed ependymal cells, which line the ventricles and through ciliary action are capable of generating laminar flow of CSF at the ventricle surface. This monolayer of ependymal cells also provides barrier and filtration functions that promote exchange between brain interstitial fluids (ISF) and circulating CSF. Biochemical changes in the brain are thereby reflected in the composition of the CSF and destruction of the ependyma can disrupt the delicate balance of CSF and ISF exchange. In humans there is a strong correlation between lateral ventricle expansion and aging. Age-associated ventriculomegaly can occur even in the absence of dementia or obstruction of CSF flow. The exact cause and progression of ventriculomegaly is often unknown; however, enlarged ventricles can show regional and, often, extensive loss of ependymal cell coverage with ventricle surface astrogliosis and associated periventricular edema replacing the functional ependymal cell monolayer. Using MRI scans together with postmortem human brain tissue, we describe how to prepare, image and compile 3D renderings of lateral ventricle volumes, calculate lateral ventricle volumes, and characterize periventricular tissue through immunohistochemical analysis of en face lateral ventricle wall tissue preparations. Corresponding analyses of mouse brain tissue are also presented supporting the use of mouse models as a means to evaluate changes to the lateral ventricles and periventricular tissue found in human aging and disease. Together, these protocols allow investigations into the cause and effect of ventriculomegaly and highlight techniques to study ventricular system health and its important barrier and filtration functions within the brain. PMID:26068121

  19. 3D Modeling of the Lateral Ventricles and Histological Characterization of Periventricular Tissue in Humans and Mouse.

    PubMed

    Acabchuk, Rebecca L; Sun, Ye; Wolferz, Richard; Eastman, Matthew B; Lennington, Jessica B; Shook, Brett A; Wu, Qian; Conover, Joanne C

    2015-01-01

    The ventricular system carries and circulates cerebral spinal fluid (CSF) and facilitates clearance of solutes and toxins from the brain. The functional units of the ventricles are ciliated epithelial cells termed ependymal cells, which line the ventricles and through ciliary action are capable of generating laminar flow of CSF at the ventricle surface. This monolayer of ependymal cells also provides barrier and filtration functions that promote exchange between brain interstitial fluids (ISF) and circulating CSF. Biochemical changes in the brain are thereby reflected in the composition of the CSF and destruction of the ependyma can disrupt the delicate balance of CSF and ISF exchange. In humans there is a strong correlation between lateral ventricle expansion and aging. Age-associated ventriculomegaly can occur even in the absence of dementia or obstruction of CSF flow. The exact cause and progression of ventriculomegaly is often unknown; however, enlarged ventricles can show regional and, often, extensive loss of ependymal cell coverage with ventricle surface astrogliosis and associated periventricular edema replacing the functional ependymal cell monolayer. Using MRI scans together with postmortem human brain tissue, we describe how to prepare, image and compile 3D renderings of lateral ventricle volumes, calculate lateral ventricle volumes, and characterize periventricular tissue through immunohistochemical analysis of en face lateral ventricle wall tissue preparations. Corresponding analyses of mouse brain tissue are also presented supporting the use of mouse models as a means to evaluate changes to the lateral ventricles and periventricular tissue found in human aging and disease. Together, these protocols allow investigations into the cause and effect of ventriculomegaly and highlight techniques to study ventricular system health and its important barrier and filtration functions within the brain. PMID:26068121

  20. Investigating the neuroglial differentiation effect of neuroblastoma conditioned medium in human endometrial stem cells cultured on 3D nanofibrous scaffold.

    PubMed

    Ebrahimi-Barough, Somayeh; Hoveizi, Elham; Norouzi Javidan, Abbas; Ai, Jafar

    2015-08-01

    Neural tissue engineering is an important area of research in the field of tissue-engineering especially for neurodegenerative disease such as spinal cord injury. The differentiation capacity of human endometrial stem cells (hEnSCs) into neuronal cells has yet to be elucidated. Here, the major aim of the present study was to investigate the differentiation ability of hEnSCs cultured on polylactic acid/chitosan (PLA/CS) nanofibrous scaffold into neuroglial cells in response to conditioned medium of BE(2)-C human neuroblastoma cells and growth factors. Here we investigated the use PLA/CS scaffold as a three dimensional (3D) system that increased neuro-glial cells differentiation. Human EnSCs after three passages were differentiated in neuro-glial like cells under neuroblastoma conditioned medium with FGF2/PDGF-AA on PLA/CS scaffold. By day 18, differentiated cells were analyzed for expression of neuroglial markers by qRT-PCR and immunofluorescence. The results revealed that hEnSCs attach, grow and differentiation on the nanofibrous PLA/CS scaffold. Additionally, our study showed the expression of neural and glial lineage markers such as Nestin, NF-L, MAP2, PDGFRa, CNP, Olig2, MBP, and GFAP in the level of mRNA and MAP2, Tuj-1, and NF-L in the protein level after 18 days. Our results demonstrate that hEnSCs cultured on PLA/CS nanofibrous scaffold have the potential to differentiate in neuronal and glial cells in presence of neuroblastoma conditioned medium on PLA/CS scaffold. The result of this study may have impact in tissue engineering and cells-base therapy of neurodegenerative diseases and have a great potential for wide application. PMID:25611196

  1. Biodynamics of deformable human body motion

    NASA Technical Reports Server (NTRS)

    Strauss, A. M.; Huston, R. L.

    1976-01-01

    The objective is to construct a framework wherein the various models of human biomaterials fit in order to describe the biodynamic response of the human body. The behavior of the human body in various situations, from low frequency, low amplitude vibrations to impact loadings in automobile and aircraft crashes, is very complicated with respect to all aspects of the problem: materials, geometry and dynamics. The materials problem is the primary concern, but the materials problem is intimately connected with geometry and dynamics.

  2. Differentiation of human gingival mesenchymal stem cells into neuronal lineages in 3D bioconjugated injectable protein hydrogel construct for the management of neuronal disorder.

    PubMed

    Rao, Suresh Ranga; Subbarayan, Rajasekaran; Dinesh, Murugan Girija; Arumugam, Gnanamani; Raja, Selvaraj Thirupathi Kumara

    2016-01-01

    The success of regeneration attempt is based on an ideal combination of stem cells, scaffolding and growth factors. Tissue constructs help to maintain stem cells in a required area for a desired time. There is a need for easily obtainable cells, potentially autologous stem cells and a biologically acceptable scaffold for use in humans in different difficult situations. This study aims to address these issues utilizing a unique combination of stem cells from gingiva and a hydrogel scaffold, based on a natural product for regenerative application. Human gingival mesenchymal stem cells (HGMSCs) were, with due induction, differentiated to neuronal lineages to overcome the problems associated with birth tissue-related stem cells. The differentiation potential of neuronal lineages was confirmed with suitable specific markers. The properties of mesenchymal stem cells in encapsulated form were observed to be similar to free cells. The encapsulated cells (3D) were then subjected to differentiation into neuronal lineages with suitable inducers, and the morphology and gene expression of transient cells were analyzed. HGMSCs was differentiated into neuronal lineages as both free and encapsulated forms without any significant differences. The presence of Nissl bodies and the neurite outgrowth confirm the differentiation. The advantages of this new combination appear to make it a promising tissue construct for translational application. PMID:26869025

  3. Differentiation of human gingival mesenchymal stem cells into neuronal lineages in 3D bioconjugated injectable protein hydrogel construct for the management of neuronal disorder

    PubMed Central

    Rao, Suresh Ranga; Subbarayan, Rajasekaran; Dinesh, Murugan Girija; Arumugam, Gnanamani; Raja, Selvaraj Thirupathi Kumara

    2016-01-01

    The success of regeneration attempt is based on an ideal combination of stem cells, scaffolding and growth factors. Tissue constructs help to maintain stem cells in a required area for a desired time. There is a need for easily obtainable cells, potentially autologous stem cells and a biologically acceptable scaffold for use in humans in different difficult situations. This study aims to address these issues utilizing a unique combination of stem cells from gingiva and a hydrogel scaffold, based on a natural product for regenerative application. Human gingival mesenchymal stem cells (HGMSCs) were, with due induction, differentiated to neuronal lineages to overcome the problems associated with birth tissue-related stem cells. The differentiation potential of neuronal lineages was confirmed with suitable specific markers. The properties of mesenchymal stem cells in encapsulated form were observed to be similar to free cells. The encapsulated cells (3D) were then subjected to differentiation into neuronal lineages with suitable inducers, and the morphology and gene expression of transient cells were analyzed. HGMSCs was differentiated into neuronal lineages as both free and encapsulated forms without any significant differences. The presence of Nissl bodies and the neurite outgrowth confirm the differentiation. The advantages of this new combination appear to make it a promising tissue construct for translational application. PMID:26869025

  4. E-Cadherin Suppression Directs Cytoskeletal Rearrangement and Intraepithelial Tumor Cell Migration in 3D Human Skin Equivalents

    PubMed Central

    Alt-Holland, Addy; Shamis, Yulia; Riley, Kathleen N.; DesRochers, Teresa M.; Fusenig, Norbert E.; Herman, Ira M.; Garlick, Jonathan A.

    2010-01-01

    The link between loss of cell–cell adhesion, the activation of cell migration, and the behavior of intraepithelial (IE) tumor cells during the early stages of skin cancer progression is not well understood. The current study characterized the migratory behavior of a squamous cell carcinoma cell line (HaCaT-II-4) upon E-cadherin suppression in both 2D, monolayer cultures and within human skin equivalents that mimic premalignant disease. The migratory behavior of tumor cells was first analyzed in 3D tissue context by developing a model that mimics transepithelial tumor cell migration. We show that loss of cell adhesion enabled migration of single, IE tumor cells between normal keratinocytes as a prerequisite for stromal invasion. To further understand this migratory behavior, E-cadherin-deficient cells were analyzed in 2D, monolayer cultures and displayed altered cytoarchitecture and enhanced membrane protrusive activity that was associated with circumferential actin organization and induction of the nonmuscle, β actin isoform. These features were associated with increased motility and random, individual cell migration in response to scrape-wounding. Thus, loss of E-cadherin-mediated adhesion led to the acquisition of phenotypic properties that augmented cell motility and directed the transition from the precancer to cancer in skin-like tissues. PMID:18528437

  5. The Development and Characterization of a Human Mesothelioma In Vitro 3D Model to Investigate Immunotoxin Therapy

    PubMed Central

    Feng, Mingqian; Nagashima, Kunio; Zhang, Jingli; Broaddus, V. Courtney; Hassan, Raffit; FitzGerald, David; Ho, Mitchell

    2011-01-01

    Background Tumor microenvironments present significant barriers to penetration by antibodies and immunoconjugates. Tumor microenvironments, however, are difficult to study in vitro. Cells cultured as monolayers exhibit less resistance to therapy than those grown in vivo and an alternative research model more representative of the in vivo tumor is more desirable. SS1P is an immunotoxin composed of the Fv portion of a mesothelin-specific antibody fused to a bacterial toxin that is presently undergoing clinical trials in mesothelioma. Methodology/Principal Findings Here, we examined how the tumor microenvironment affects the penetration and killing activity of SS1P in a new three-dimensional (3D) spheroid model cultured in vitro using the human mesothelioma cell line (NCI-H226) and two primary cell lines isolated from the ascites of malignant mesothelioma patients. Mesothelioma cells grown as monolayers or as spheroids expressed comparable levels of mesothelin; however, spheroids were at least 100 times less affected by SS1P. To understand this disparity in cytotoxicity, we made fluorescence-labeled SS1P molecules and used confocal microscopy to examine the time course of SS1P penetration within spheroids. The penetration was limited after 4 hours. Interestingly, we found a significant increase in the number of tight junctions in the core area of spheroids by electron microscopy. Expression of E-Cadherin, a protein involved in the assembly and sealing of tight junctions and highly expressed in malignant mesothelioma, was found significantly increased in spheroids as compared to monolayers. Moreover, we found that siRNA silencing and antibody inhibition targeting E-Cadherin could enhance SS1P immunotoxin therapy in vitro. Conclusion/Significance This work is one of the first to investigate immunotoxins in 3D tumor spheroids in vitro. This initial description of an in vitro tumor model may offer a simple and more representative model of in vivo tumors and will allow for

  6. Numerical 3D modeling of heat transfer in human tissues for microwave radiometry monitoring of brown fat metabolism

    PubMed Central

    Rodrigues, Dario B.; Maccarini, Paolo F.; Salahi, Sara; Colebeck, Erin; Topsakal, Erdem; Pereira, Pedro J. S.; Limão-Vieira, Paulo; Stauffer, Paul R.

    2013-01-01

    Background Brown adipose tissue (BAT) plays an important role in whole body metabolism and could potentially mediate weight gain and insulin sensitivity. Although some imaging techniques allow BAT detection, there are currently no viable methods for continuous acquisition of BAT energy expenditure. We present a non-invasive technique for long term monitoring of BAT metabolism using microwave radiometry. Methods A multilayer 3D computational model was created in HFSS™ with 1.5 mm skin, 3–10 mm subcutaneous fat, 200 mm muscle and a BAT region (2–6 cm3) located between fat and muscle. Based on this model, a log-spiral antenna was designed and optimized to maximize reception of thermal emissions from the target (BAT). The power absorption patterns calculated in HFSS™ were combined with simulated thermal distributions computed in COMSOL® to predict radiometric signal measured from an ultra-low-noise microwave radiometer. The power received by the antenna was characterized as a function of different levels of BAT metabolism under cold and noradrenergic stimulation. Results The optimized frequency band was 1.5–2.2 GHz, with averaged antenna efficiency of 19%. The simulated power received by the radiometric antenna increased 2–9 mdBm (noradrenergic stimulus) and 4–15 mdBm (cold stimulus) corresponding to increased 15-fold BAT metabolism. Conclusions Results demonstrated the ability to detect thermal radiation from small volumes (2–6 cm3) of BAT located up to 12 mm deep and to monitor small changes (0.5 °C) in BAT metabolism. As such, the developed miniature radiometric antenna sensor appears suitable for non-invasive long term monitoring of BAT metabolism. PMID:24244831

  7. Numerical 3D modeling of heat transfer in human tissues for microwave radiometry monitoring of brown fat metabolism

    NASA Astrophysics Data System (ADS)

    Rodrigues, Dario B.; Maccarini, Paolo F.; Salahi, Sara; Colebeck, Erin; Topsakal, Erdem; Pereira, Pedro J. S.; Limão-Vieira, Paulo; Stauffer, Paul R.

    2013-02-01

    Background: Brown adipose tissue (BAT) plays an important role in whole body metabolism and could potentially mediate weight gain and insulin sensitivity. Although some imaging techniques allow BAT detection, there are currently no viable methods for continuous acquisition of BAT energy expenditure. We present a non-invasive technique for long term monitoring of BAT metabolism using microwave radiometry. Methods: A multilayer 3D computational model was created in HFSSTM with 1.5 mm skin, 3-10 mm subcutaneous fat, 200 mm muscle and a BAT region (2-6 cm3) located between fat and muscle. Based on this model, a log-spiral antenna was designed and optimized to maximize reception of thermal emissions from the target (BAT). The power absorption patterns calculated in HFSSTM were combined with simulated thermal distributions computed in COMSOL® to predict radiometric signal measured from an ultra-low-noise microwave radiometer. The power received by the antenna was characterized as a function of different levels of BAT metabolism under cold and noradrenergic stimulation. Results: The optimized frequency band was 1.5-2.2 GHz, with averaged antenna efficiency of 19%. The simulated power received by the radiometric antenna increased 2-9 mdBm (noradrenergic stimulus) and 4-15 mdBm (cold stimulus) corresponding to increased 15-fold BAT metabolism. Conclusions: Results demonstrated the ability to detect thermal radiation from small volumes (2-6 cm3) of BAT located up to 12 mm deep and to monitor small changes (0.5 °C) in BAT metabolism. As such, the developed miniature radiometric antenna sensor appears suitable for non-invasive long term monitoring of BAT metabolism.

  8. Pneumococcal polysaccharides complexed with C3d bind to human B lymphocytes via complement receptor type 2.

    PubMed Central

    Griffioen, A W; Rijkers, G T; Janssens-Korpela, P; Zegers, B J

    1991-01-01

    The immunoregulatory function of the complement system has been the focus of many investigations. In particular, fragments of complement factor C3 have been shown to play a role in B-lymphocyte activation and proliferation, lymphokine production, and the generation of in vitro antibody production. Purified pneumococcal polysaccharides (PS) can induce direct activation of C3 via the alternative pathway. Using sera of C1q-deficient patients and healthy subjects, we demonstrated that C3d, a split product of C3 that is generated after degradation of iC3b, can be bound to PS antigens. The binding of C3d to PS can occur in the absence of specific antibodies. Subsequently, we showed that PS complexed with C3d can be recognized by complement receptor type 2 that is expressed on B cells. Treatment of B cells with a monoclonal antibody recognizing the C3d-binding site of complement receptor type 2 reduces the binding of PS-C3d to the cells. In addition, we showed that PS4 complexed with C3d exerted an increased immunogenicity compared with free PS4. Our results show that the complement system plays a role in the activation of PS-specific B cells, carrying membrane receptors for C3d. Consequently, the complement system plays a regulatory role in the antibody response to T-cell-independent type 2 antigens such as PS. PMID:1826897

  9. Compartment modeling anslysis of C-11 flumazenil kinetics in human brain using dynamic 2D and 3D PET

    SciTech Connect

    Choi, Y.; Simpson, N.; Townsend, D.W.

    1994-05-01

    We examined the feasibility of compartment modeling analysis and the numerical accuracy of model parameters of radioligand delivery and binding in the brain using 2D and 3D PET. Two subjects were injected with C-11 flumazenil (FMZ) i.v., and imaged over the brain with a dynamic sequence of 6x20 s, 2x30 s, 4x90 s, 4x180 s, 2x300 s, 2x600 s, and 2x1200 s frames. Different scatter correction methods were applied to the 3D data: No scatter correction (NOC), dual-energy window subtraction (DEW) and convolution-subtraction (CON). The kinetic data for regions listed below were fitted to a 2-compartment, 2-parameter model. Both 2D and 3D results are similar and within the expected range. The 3D %SE was less than 2D despite the smaller dose. The effect of the scatter in 3D parameter estimates appears to be small. These preliminary data indicate temporally sufficient kinetic data can be acquired in 3D mode to perform compartmental analysis of C-11 FMZ. Improved sensitivity in 3D may allow more accurate receptor characterization especially in small structures or in low specific binding areas.

  10. Hinge-loop mutation can be used to control 3D domain swapping and amyloidogenesis of human cystatin C.

    PubMed

    Orlikowska, Marta; Jankowska, Elżbieta; Kołodziejczyk, Robert; Jaskólski, Mariusz; Szymańska, Aneta

    2011-02-01

    Cystatins are natural inhibitors of cysteine proteases, enzymes that are widely distributed in animals, plants, and microorganisms. Human cystatin C (hCC) has been also recognized as an aggregating protein directly involved in the formation of pathological amyloid fibrils, and these amyloidogenic properties greatly increase in a naturally occurring L68Q hCC variant. For a long time only dimeric structure of wild-type hCC has been known. The dimer is created through 3D domain swapping process, in which two parts of the cystatin structure become separated from each other and next exchanged between two molecules. Important role in the domain swapping plays the L1 loop, which connects the exchanging segments and, upon dimerization, transforms from a β-turn into a part of a long β-strand. In the very recently published first monomeric structure of human cystatin C (hCC-stab1), dimerization was abrogated due to clasping of the β-strands from the swapping domains by an engineered disulfide bridge. We have designed and constructed another mutated cystatin C with the smallest possible structural intervention, that is a single-point mutation replacing hydrophobic V57 from the L1 loop by polar asparagine, known as a stabilizer of a β-turn motif. V57N hCC mutant occurred to be stable in its monomeric form and crystallized as a monomer, revealing typical cystatin fold with a five-stranded antiparallel β-sheet wrapped around an α-helix. Here we report a 2.04 Å resolution crystal structure of V57N hCC and discuss the architecture of the protein in comparison to chicken cystatin, hCC-stab1 and dimeric hCC. PMID:21074623

  11. HIF-2α Expression Regulates Sprout Formation into 3D Fibrin Matrices in Prolonged Hypoxia in Human Microvascular Endothelial Cells

    PubMed Central

    Nauta, Tessa D.; Duyndam, Monique C. A.; Weijers, Ester M.; van Hinsbergh, Victor M. W.; Koolwijk, Pieter

    2016-01-01

    Background During short-term hypoxia, Hypoxia Inducible Factors (particular their subunits HIF-1α and HIF-2α) regulate the expression of many genes including the potent angiogenesis stimulator VEGF. However, in some pathological conditions chronic hypoxia occurs and is accompanied by reduced angiogenesis. Objectives We investigated the effect of prolonged hypoxia on the proliferation and sprouting ability of human microvascular endothelial cells and the involvement of the HIFs and Dll4/Notch signaling. Methods and Results Human microvascular endothelial cells (hMVECs), cultured at 20% oxygen for 14 days and seeded on top of 3D fibrin matrices, formed sprouts when stimulated with VEGF-A/TNFα. In contrast, hMVECs precultured at 1% oxygen for 14 days were viable and proliferative, but did not form sprouts into fibrin upon VEGF-A/TNFα stimulation at 1% oxygen. Silencing of HIF-2α with si-RNA partially restored the inhibition of endothelial sprouting, whereas HIF-1α or HIF-3α by si-RNA had no effect. No involvement of Dll4/Notch pathway in the inhibitory effect on endothelial sprouting by prolonged hypoxia was found. In addition, hypoxia decreased the production of urokinase-type plasminogen activator (uPA), needed for migration and invasion, without a significant effect on its inhibitor PAI-1. This was independent of HIF-2α, as si-HIF-2α did not counteract uPA reduction. Conclusion Prolonged culturing of hMVECs at 1% oxygen inhibited endothelial sprouting into fibrin. Two independent mechanisms contribute. Silencing of HIF-2α with si-RNA partially restored the inhibition of endothelial sprouting pointing to a HIF-2α-dependent mechanism. In addition, reduction of uPA contributed to reduced endothelial tube formation in a fibrin matrix during prolonged hypoxia. PMID:27490118

  12. Human fine body hair enhances ectoparasite detection

    PubMed Central

    Dean, Isabelle; Siva-Jothy, Michael T.

    2012-01-01

    Although we are relatively naked in comparison with other primates, the human body is covered in a layer of fine hair (vellus and terminal hair) at a relatively high follicular density. There are relatively few explanations for the evolutionary maintenance of this type of human hair. Here, we experimentally test the hypothesis that human fine body hair plays a defensive function against ectoparasites (bed bugs). Our results show that fine body hair enhances the detection of ectoparasites through the combined effects of (i) increasing the parasite's search time and (ii) enhancing its detection. PMID:22171023

  13. 3D modeling of human cancer: A PEG-fibrin hydrogel system to study the role of tumor microenvironment and recapitulate the in vivo effect of oncolytic adenovirus.

    PubMed

    Del Bufalo, Francesca; Manzo, Teresa; Hoyos, Valentina; Yagyu, Shigeki; Caruana, Ignazio; Jacot, Jeffrey; Benavides, Omar; Rosen, Daniel; Brenner, Malcolm K

    2016-04-01

    Interactions between malignant and stromal cells and the 3D spatial architecture of the tumor both substantially modify tumor behavior, including the responses to small molecule drugs and biological therapies. Conventional 2D culture systems cannot replicate this complexity. To overcome these limitations and more accurately model solid tumors, we developed a highly versatile 3D PEG-fibrin hydrogel model of human lung adenocarcinoma. Our model relevantly recapitulates the effect of oncolytic adenovirus; tumor responses in this setting nearly reproduce those observed in vivo. We have also validated the use of this model for complex, long-term, 3D cultures of cancer cells and their stroma (fibroblasts and endothelial cells). Both tumor proliferation and invasiveness were enhanced in the presence of stromal components. These results validate our 3D hydrogel model as a relevant platform to study cancer biology and tumor responses to biological treatments. PMID:26826297

  14. Drag Prediction for the DLR-F6 Wing/Body and DPW Wing using CFL3D and OVERFLOW Overset Mesh

    NASA Technical Reports Server (NTRS)

    Sclanfani, Anthony J.; Vassberg, John C.; Harrison, Neal A.; DeHaan, Mark A.; Rumsey, Christopher L.; Rivers, S. Melissa; Morrison, Joseph H.

    2007-01-01

    A series of overset grids was generated in response to the 3rd AIAA CFD Drag Prediction Workshop (DPW-III) which preceded the 25th Applied Aerodynamics Conference in June 2006. DPW-III focused on accurate drag prediction for wing/body and wing-alone configurations. The grid series built for each configuration consists of a coarse, medium, fine, and extra-fine mesh. The medium mesh is first constructed using the current state of best practices for overset grid generation. The medium mesh is then coarsened and enhanced by applying a factor of 1.5 to each (I,J,K) dimension. The resulting set of parametrically equivalent grids increase in size by a factor of roughly 3.5 from one level to the next denser level. CFD simulations were performed on the overset grids using two different RANS flow solvers: CFL3D and OVERFLOW. The results were post-processed using Richardson extrapolation to approximate grid converged values of lift, drag, pitching moment, and angle-of-attack at the design condition. This technique appears to work well if the solution does not contain large regions of separated flow (similar to that seen n the DLR-F6 results) and appropriate grid densities are selected. The extra-fine grid data helped to establish asymptotic grid convergence for both the OVERFLOW FX2B wing/body results and the OVERFLOW DPW-W1/W2 wing-alone results. More CFL3D data is needed to establish grid convergence trends. The medium grid was utilized beyond the grid convergence study by running each configuration at several angles-of-attack so drag polars and lift/pitching moment curves could be evaluated. The alpha sweep results are used to compare data across configurations as well as across flow solvers. With the exception of the wing/body drag polar, the two codes compare well qualitatively showing consistent incremental trends and similar wing pressure comparisons.

  15. 3D imaging of subducting and fragmenting Indian continental lithosphere beneath southern and central Tibet using body-wave finite-frequency tomography

    NASA Astrophysics Data System (ADS)

    Liang, Xiaofeng; Chen, Yun; Tian, Xiaobo; Chen, Yongshun John; Ni, James; Gallegos, Andrea; Klemperer, Simon L.; Wang, Minling; Xu, Tao; Sun, Changqing; Si, Shaokun; Lan, Haiqiang; Teng, Jiwen

    2016-06-01

    We perform a finite-frequency tomographic inversion to image 3D velocity structures beneath southern and central Tibet using teleseismic body-wave data recorded by the TIBET-31N passive seismic array as well as waveforms from previous temporary seismic arrays. High-velocity bodies dip ∼40° northward beneath the Himalaya and the Lhasa Terrane. We interpret these high-velocity anomalies as subducting Indian Continental Lithosphere (ICL). The ICL appears to extend further north in central Tibet than in eastern Tibet, reaching 350 km depth at ∼31°N along 85°E but at ∼30°N along 91°E. Low P- and S-wave velocity anomalies extend from the lower crust to ≥180 km depth beneath the Tangra Yum Co Rift, Yadong-Gulu Rift, and the Cona Rift, suggesting that rifting in southern Tibet may involve the entire lithosphere. The anomaly beneath Tangra Yum Co Rift extends down to about 180 km, whereas the anomalies west of the Yadong-Gulu Rift and east of the Cona Rift extend to more than 300 km depth. The low-velocity upper mantle west of the Yadong-Gulu Rift extends furthest north and appears to connect with the extensive upper-mantle low-velocity region beneath central Tibet. Thus the northward-subducting Indian Plate is fragmented along north-south breaks that permit or induce asthenospheric upwellings indistinguishable from the upper mantle of northern Tibet.

  16. A 3D, fully Eulerian, VOF-based solver to study the interaction between two fluids and moving rigid bodies using the fictitious domain method

    NASA Astrophysics Data System (ADS)

    Pathak, Ashish; Raessi, Mehdi

    2016-04-01

    We present a three-dimensional (3D) and fully Eulerian approach to capturing the interaction between two fluids and moving rigid structures by using the fictitious domain and volume-of-fluid (VOF) methods. The solid bodies can have arbitrarily complex geometry and can pierce the fluid-fluid interface, forming contact lines. The three-phase interfaces are resolved and reconstructed by using a VOF-based methodology. Then, a consistent scheme is employed for transporting mass and momentum, allowing for simulations of three-phase flows of large density ratios. The Eulerian approach significantly simplifies numerical resolution of the kinematics of rigid bodies of complex geometry and with six degrees of freedom. The fluid-structure interaction (FSI) is computed using the fictitious domain method. The methodology was developed in a message passing interface (MPI) parallel framework accelerated with graphics processing units (GPUs). The computationally intensive solution of the pressure Poisson equation is ported to GPUs, while the remaining calculations are performed on CPUs. The performance and accuracy of the methodology are assessed using an array of test cases, focusing individually on the flow solver and the FSI in surface-piercing configurations. Finally, an application of the proposed methodology in simulations of the ocean wave energy converters is presented.

  17. Maximizing modern distribution of complex anatomical spatial information: 3D reconstruction and rapid prototype production of anatomical corrosion casts of human specimens.

    PubMed

    Li, Jianyi; Nie, Lanying; Li, Zeyu; Lin, Lijun; Tang, Lei; Ouyang, Jun

    2012-01-01

    Anatomical corrosion casts of human specimens are useful teaching aids. However, their use is limited due to ethical dilemmas associated with their production, their lack of perfect reproducibility, and their consumption of original specimens in the process of casting. In this study, new approaches with modern distribution of complex anatomical spatial information were explored to overcome these limitations through the digitalization of anatomical casts of human specimens through three-dimensional (3D) reconstruction, rapid prototype production, and Web-based 3D atlas construction. The corrosion cast of a lung, along with its associated arteries, veins, trachea, and bronchial tree was CT-scanned, and the data was then processed by Mimics software. Data from the lung casts were then reconstructed into 3D models using a hybrid method, utilizing both "image threshold" and "region growing." The fine structures of the bronchial tree, arterial, and venous network of the lung were clearly displayed and demonstrated their distinct relationships. The multiple divisions of bronchi and bronchopulmonary segments were identified. The 3D models were then uploaded into a rapid prototype 3D printer to physically duplicate the cast. The physically duplicated model of the lung was rescanned by CT and reconstructed to detect its production accuracy. Gross observation and accuracy detection were used to evaluate the duplication and few differences were found. Finally, Virtual Reality Modeling Language (VRML) was used to edit the 3D casting models to construct a Web-based 3D atlas accessible through Internet Explorer with 3D display and annotation functions. PMID:22653786

  18. 3-D reflectivity model of shallow magmatic structure using body wave seismic interferometry applied to Strombolian eruption coda for Erebus volcano

    NASA Astrophysics Data System (ADS)

    Chaput, J. A.; Zandomeneghi, D.; Aster, R. C.; Knox, H. A.; Kyle, P. R.

    2011-12-01

    Erebus volcano, Antarctica hosts a long-lived convecting phonolitic lava lake, and produces frequent VE0 Strombolian eruptions from large gas slugs rising through the conduit system. We present a novel application of body wave seismic interferometry using Strombolian eruption seismic coda to recover a 3-D impedance contrast image of the shallow magmatic system. Exploiting the extreme scattering of volcanic media, we use correlations of equipartioned eruption coda wavefields to extract single-station multicomponent Green's functions at 31 broadband and 78 short period seismic stations deployed on the upper volcano during 2007-2009. Using a novel rotation technique, we migrated Green's function maxima into a 3-D volume to yield a scattering map of the volcano. Results suggest a complex, bifurcating shallow conduit system that transitions into a more centralized structure near ~1.2 km depth. The shape of the imaged shallow conduit system helps explain the gas slug generation mechanism at Erebus volcano, which likely requires a low angle shallow roof at which to accrete gas bubbles. Other strong scattering features are also imaged, suggesting possible multipathing of the magmatic system as well as deeper small magma chambers. Principal shallow features observed in this study are corroborated by a concurrent active source tomographic study of the upper ~1 km of the volcanic edifice (Zandomeneghi et al. 2011), thus laying credence to the success of the method as well as its future potential. This study paves the way for real time structural monitoring of persistently active volcanoes. Given sufficiently energetic and broadband sources and a sufficiently dense network of sensors, it should be possible to calculate such correlograms and associated images at many volcanoes.

  19. New Window into the Human Body

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Michael Vannier, MD, a former NASA engineer, recognized the similarity between NASA's computerized image processing technology and nuclear magnetic resonance. With technical assistance from Kennedy Space Center, he developed a computer program for Mallinckrodt Institute of Radiology enabling Nuclear Magnetic Resonance (NMR) to scan body tissue for earlier diagnoses. Dr. Vannier feels that "satellite imaging" has opened a new window into the human body.

  20. Modelling staphylococcal pneumonia in a human 3D lung tissue model system delineates toxin-mediated pathology

    PubMed Central

    Mairpady Shambat, Srikanth; Chen, Puran; Nguyen Hoang, Anh Thu; Bergsten, Helena; Vandenesch, Francois; Siemens, Nikolai; Lina, Gerard; Monk, Ian R.; Foster, Timothy J.; Arakere, Gayathri; Svensson, Mattias; Norrby-Teglund, Anna

    2015-01-01

    ABSTRACT Staphylococcus aureus necrotizing pneumonia is recognized as a toxin-mediated disease, yet the tissue-destructive events remain elusive, partly as a result of lack of mechanistic studies in human lung tissue. In this study, a three-dimensional (3D) tissue model composed of human lung epithelial cells and fibroblasts was used to delineate the role of specific staphylococcal exotoxins in tissue pathology associated with severe pneumonia. To this end, the models were exposed to the mixture of exotoxins produced by S. aureus strains isolated from patients with varying severity of lung infection, namely necrotizing pneumonia or lung empyema, or to purified toxins. The necrotizing pneumonia strains secreted high levels of α-toxin and Panton-Valentine leukocidin (PVL), and triggered high cytotoxicity, inflammation, necrosis and loss of E-cadherin from the lung epithelium. In contrast, the lung empyema strain produced moderate levels of PVL, but negligible amounts of α-toxin, and triggered limited tissue damage. α-toxin had a direct damaging effect on the epithelium, as verified using toxin-deficient mutants and pure α-toxin. Moreover, PVL contributed to pathology through the lysis of neutrophils. A combination of α-toxin and PVL resulted in the most severe epithelial injury. In addition, toxin-induced release of pro-inflammatory mediators from lung tissue models resulted in enhanced neutrophil migration. Using a collection of 31 strains from patients with staphylococcal pneumonia revealed that strains producing high levels of α-toxin and PVL were cytotoxic and associated with fatal outcome. Also, the strains that produced the highest toxin levels induced significantly greater epithelial disruption. Of importance, toxin-mediated lung epithelium destruction could be inhibited by polyspecific intravenous immunoglobulin containing antibodies against α-toxin and PVL. This study introduces a novel model system for study of staphylococcal pneumonia in a human

  1. A Quantitative Comparison of Human HT-1080 Fibrosarcoma Cells and Primary Human Dermal Fibroblasts Identifies a 3D Migration Mechanism with Properties Unique to the Transformed Phenotype

    PubMed Central

    Schwartz, Michael P.; Rogers, Robert E.; Singh, Samir P.; Lee, Justin Y.; Loveland, Samuel G.; Koepsel, Justin T.; Witze, Eric S.; Montanez-Sauri, Sara I.; Sung, Kyung E.; Tokuda, Emi Y.; Sharma, Yasha; Everhart, Lydia M.; Nguyen, Eric H.; Zaman, Muhammad H.; Beebe, David J.; Ahn, Natalie G.; Murphy, William L.; Anseth, Kristi S.

    2013-01-01

    Here, we describe an engineering approach to quantitatively compare migration, morphologies, and adhesion for tumorigenic human fibrosarcoma cells (HT-1080s) and primary human dermal fibroblasts (hDFs) with the aim of identifying distinguishing properties of the transformed phenotype. Relative adhesiveness was quantified using self-assembled monolayer (SAM) arrays and proteolytic 3-dimensional (3D) migration was investigated using matrix metalloproteinase (MMP)-degradable poly(ethylene glycol) (PEG) hydrogels (“synthetic extracellular matrix” or “synthetic ECM”). In synthetic ECM, hDFs were characterized by vinculin-containing features on the tips of protrusions, multipolar morphologies, and organized actomyosin filaments. In contrast, HT-1080s were characterized by diffuse vinculin expression, pronounced β1-integrin on the tips of protrusions, a cortically-organized F-actin cytoskeleton, and quantitatively more rounded morphologies, decreased adhesiveness, and increased directional motility compared to hDFs. Further, HT-1080s were characterized by contractility-dependent motility, pronounced blebbing, and cortical contraction waves or constriction rings, while quantified 3D motility was similar in matrices with a wide range of biochemical and biophysical properties (including collagen) despite substantial morphological changes. While HT-1080s were distinct from hDFs for each of the 2D and 3D properties investigated, several features were similar to WM239a melanoma cells, including rounded, proteolytic migration modes, cortical F-actin organization, and prominent uropod-like structures enriched with β1-integrin, F-actin, and melanoma cell adhesion molecule (MCAM/CD146/MUC18). Importantly, many of the features observed for HT-1080s were analogous to cellular changes induced by transformation, including cell rounding, a disorganized F-actin cytoskeleton, altered organization of focal adhesion proteins, and a weakly adherent phenotype. Based on our results

  2. Automated fudicial labeling on human body data

    NASA Astrophysics Data System (ADS)

    Lewark, Erick A.; Nurre, Joseph H.

    1998-03-01

    The Cyberware WB4 whole body scanner generates a high- resolution data set of the outer surface of the human body. The acquisition of anthropometric data from this data set is important for the development of custom sizing for the apparel industry. Software for locating anthropometric landmarks from a cloud of more than 200,000 three-dimensional data points, captured from a human subject, is presented. The first phase of identification is to locate externally placed fudicials on the human body using luminance information captured at scan time. The fudicials are then autonomously labeled and categorized according to their general position and anthropometric significance in the scan. Once registration of the landmarks is complete, body measurements may be extracted for apparel sizing.

  3. A New Human 3D-Liver Model Unravels the Role of Galectins in Liver Infection by the Parasite Entamoeba histolytica

    PubMed Central

    Petropolis, Debora B.; Faust, Daniela M.; Deep Jhingan, Gagan; Guillen, Nancy

    2014-01-01

    Investigations of human parasitic diseases depend on the availability of appropriate in vivo animal models and ex vivo experimental systems, and are particularly difficult for pathogens whose exclusive natural hosts are humans, such as Entamoeba histolytica, the protozoan parasite responsible for amoebiasis. This common infectious human disease affects the intestine and liver. In the liver sinusoids E. histolytica crosses the endothelium and penetrates into the parenchyma, with the concomitant initiation of inflammatory foci and subsequent abscess formation. Studying factors responsible for human liver infection is hampered by the complexity of the hepatic environment and by the restrictions inherent to the use of human samples. Therefore, we built a human 3D-liver in vitro model composed of cultured liver sinusoidal endothelial cells and hepatocytes in a 3D collagen-I matrix sandwich. We determined the presence of important hepatic markers and demonstrated that the cell layers function as a biological barrier. E. histolytica invasion was assessed using wild-type strains and amoebae with altered virulence or different adhesive properties. We showed for the first time the dependence of endothelium crossing upon amoebic Gal/GalNAc lectin. The 3D-liver model enabled the molecular analysis of human cell responses, suggesting for the first time a crucial role of human galectins in parasite adhesion to the endothelial cells, which was confirmed by siRNA knockdown of galectin-1. Levels of several pro-inflammatory cytokines, including galectin-1 and -3, were highly increased upon contact of E. histolytica with the 3D-liver model. The presence of galectin-1 and -3 in the extracellular medium stimulated pro-inflammatory cytokine release, suggesting a further role for human galectins in the onset of the hepatic inflammatory response. These new findings are relevant for a better understanding of human liver infection by E. histolytica. PMID:25211477

  4. Analyzing the 3D Structure of Human Carbonic Anhydrase II and Its Mutants Using Deep View and the Protein Data Bank

    ERIC Educational Resources Information Center

    Ship, Noam J.; Zamble, Deborah B.

    2005-01-01

    The self directed study of a 3D image of a biomolecule stresses the complex nature of the intra- and intermolecular interactions that come together to define its structure. This is made up of a series of in vitro experiments with a wild-type and mutants forms of human carbonic anhydrase II (hCAII) that examine the structure function relationship…

  5. Evaluation of potential human health effects associated with the agricultural uses of 1,3-D: Spatial and temporal stochastic risk analysis.

    PubMed

    Driver, Jeffrey H; Price, Paul S; Van Wesenbeeck, Ian; Ross, John H; Gehen, Sean; Holden, Larry R; Landenberger, Bryce; Hastings, Kerry; Yan, Zhongyu June; Rasoulpour, Reza

    2016-11-15

    Dow AgroSciences (DAS) markets and sells 1,3-Dichloropropene (1,3-D), the active ingredient in Telone®, which is used as a pre-plant soil fumigant nematicide in economically important crops in California. 1,3-D has been regulated as a "probable human carcinogen" and the California Department of Pesticide Regulation limits use of 1,3-D based on human health risk assessments for bystanders. This paper presents a risk characterization for bystanders based on advances in the assessment of both exposure and hazard. The revised bystander risk assessment incorporates significant advances: 1) new data on residency duration and mobility in communities where 1,3-D is in high demand; 2) new information on spatial and temporal concentrations of 1,3-D in air based on multi-year modeling using a validated model; and 3) a new stochastic spatial and temporal model of long-term exposures. Predicted distributions of long-term, chronic exposures indicate that current, and anticipated uses of 1,3-D would result in lifetime average daily doses lower than 0.002mg/kg/d, a dose associated with theoretical lifetime excess cancer risk of <10(-5) to >95% of the local population based on a non-threshold risk assessment approach. Additionally, examination of 1,3-D toxicity studies including new chronic toxicity data and mechanism of action supports the use of a non-linear, threshold based risk assessment approach. The estimated maximum annual average daily dose of <0.0016mg/kg/d derived from the updated exposure assessment was then compared with a threshold point of departure. The calculated margin of exposure is >1000-fold, a clear indication of acceptable risk for human health. In summary, the best available science supports 1,3-D's threshold nature of hazard and the revised exposure assessment supports that current agricultural uses of 1,3-D are associated with reasonable certainty of no harm, i.e., estimated long-term exposures pose insignificant health risks to bystanders even when the

  6. 3D medical thermography device

    NASA Astrophysics Data System (ADS)

    Moghadam, Peyman

    2015-05-01

    In this paper, a novel handheld 3D medical thermography system is introduced. The proposed system consists of a thermal-infrared camera, a color camera and a depth camera rigidly attached in close proximity and mounted on an ergonomic handle. As a practitioner holding the device smoothly moves it around the human body parts, the proposed system generates and builds up a precise 3D thermogram model by incorporating information from each new measurement in real-time. The data is acquired in motion, thus it provides multiple points of view. When processed, these multiple points of view are adaptively combined by taking into account the reliability of each individual measurement which can vary due to a variety of factors such as angle of incidence, distance between the device and the subject and environmental sensor data or other factors influencing a confidence of the thermal-infrared data when captured. Finally, several case studies are presented to support the usability and performance of the proposed system.

  7. Faceless identification: a model for person identification using the 3D shape and 3D motion as cues

    NASA Astrophysics Data System (ADS)

    Klasen, Lena M.; Li, Haibo

    1999-02-01

    Person identification by using biometric methods based on image sequences, or still images, often requires a controllable and cooperative environment during the image capturing stage. In the forensic case the situation is more likely to be the opposite. In this work we propose a method that makes use of the anthropometry of the human body and human actions as cues for identification. Image sequences from surveillance systems are used, which can be seen as monocular image sequences. A 3D deformable wireframe body model is used as a platform to handle the non-rigid information of the 3D shape and 3D motion of the human body from the image sequence. A recursive method for estimating global motion and local shape variations is presented, using two recursive feedback systems.

  8. Fabricating 3D figurines with personalized faces.

    PubMed

    Tena, J Rafael; Mahler, Moshe; Beeler, Thabo; Grosse, Max; Hengchin Yeh; Matthews, Iain

    2013-01-01

    We present a semi-automated system for fabricating figurines with faces that are personalised to the individual likeness of the customer. The efficacy of the system has been demonstrated by commercial deployments at Walt Disney World Resort and Star Wars Celebration VI in Orlando Florida. Although the system is semi automated, human intervention is limited to a few simple tasks to maintain the high throughput and consistent quality required for commercial application. In contrast to existing systems that fabricate custom heads that are assembled to pre-fabricated plastic bodies, our system seamlessly integrates 3D facial data with a predefined figurine body into a unique and continuous object that is fabricated as a single piece. The combination of state-of-the-art 3D capture, modelling, and printing that are the core of our system provide the flexibility to fabricate figurines whose complexity is only limited by the creativity of the designer. PMID:24808129

  9. A multiscale approach for the reconstruction of the fiber architecture of the human brain based on 3D-PLI.

    PubMed

    Reckfort, Julia; Wiese, Hendrik; Pietrzyk, Uwe; Zilles, Karl; Amunts, Katrin; Axer, Markus

    2015-01-01

    Structural connectivity of the brain can be conceptionalized as a multiscale organization. The present study is built on 3D-Polarized Light Imaging (3D-PLI), a neuroimaging technique targeting the reconstruction of nerve fiber orientations and therefore contributing to the analysis of brain connectivity. Spatial orientations of the fibers are derived from birefringence measurements of unstained histological sections that are interpreted by means of a voxel-based analysis. This implies that a single fiber orientation vector is obtained for each voxel, which reflects the net effect of all comprised fibers. We have utilized two polarimetric setups providing an object space resolution of 1.3 μm/px (microscopic setup) and 64 μm/px (macroscopic setup) to carry out 3D-PLI and retrieve fiber orientations of the same tissue samples, but at complementary voxel sizes (i.e., scales). The present study identifies the main sources which cause a discrepancy of the measured fiber orientations observed when measuring the same sample with the two polarimetric systems. As such sources the differing optical resolutions and diverging retardances of the implemented waveplates were identified. A methodology was implemented that enables the compensation of measured different systems' responses to the same birefringent sample. This opens up new ways to conduct multiscale analysis in brains by means of 3D-PLI and to provide a reliable basis for the transition between different scales of the nerve fiber architecture. PMID:26388744

  10. A multiscale approach for the reconstruction of the fiber architecture of the human brain based on 3D-PLI

    PubMed Central

    Reckfort, Julia; Wiese, Hendrik; Pietrzyk, Uwe; Zilles, Karl; Amunts, Katrin; Axer, Markus

    2015-01-01

    Structural connectivity of the brain can be conceptionalized as a multiscale organization. The present study is built on 3D-Polarized Light Imaging (3D-PLI), a neuroimaging technique targeting the reconstruction of nerve fiber orientations and therefore contributing to the analysis of brain connectivity. Spatial orientations of the fibers are derived from birefringence measurements of unstained histological sections that are interpreted by means of a voxel-based analysis. This implies that a single fiber orientation vector is obtained for each voxel, which reflects the net effect of all comprised fibers. We have utilized two polarimetric setups providing an object space resolution of 1.3 μm/px (microscopic setup) and 64 μm/px (macroscopic setup) to carry out 3D-PLI and retrieve fiber orientations of the same tissue samples, but at complementary voxel sizes (i.e., scales). The present study identifies the main sources which cause a discrepancy of the measured fiber orientations observed when measuring the same sample with the two polarimetric systems. As such sources the differing optical resolutions and diverging retardances of the implemented waveplates were identified. A methodology was implemented that enables the compensation of measured different systems' responses to the same birefringent sample. This opens up new ways to conduct multiscale analysis in brains by means of 3D-PLI and to provide a reliable basis for the transition between different scales of the nerve fiber architecture. PMID:26388744

  11. Decrease of reactive oxygen species-related biomarkers in the tissue-mimic 3D spheroid culture of human lung cells exposed to zinc oxide nanoparticles.

    PubMed

    Kim, Eunjoo; Jeon, Won Bae; Kim, Soonhyun; Lee, Soo-Keun

    2014-05-01

    Common 2-dimensional (2D) cell cultures do not adequately represent cell-cell and cell-matrix signaling and substantially different diffusion/transport pathways. To obtain tissue-mimic information on nanoparticle toxicity from in vitro cell tests, we used a 3-dimensional (3D) culture of human lung cells (A549) prepared with elastin-like peptides modified with an arginine-glycine-aspartate motif. The 3D cells showed different cellular phenotypes, gene expression profiles, and functionalities compared to the 2D cultured cells. In gene array analysis, 3D cells displayed the induced extracellular matrix (ECM)-related biological functions such as cell-to-cell signaling and interaction, cellular function and maintenance, connective tissue development and function, molecular transport, and tissue morphology. Additionally, the expression of ECM-related molecules, such as laminin, fibronectin, and insulin-like growth factor binding protein 3 (IGFBP3), was simultaneously induced at both mRNA and protein levels. When 0.08-50 microg/ml zinc oxide nanoparticles (ZnO-NPs) were administered to 2D and 3D cells, the cell proliferation was not significantly changed. The level of molecular markers for oxidative stress, such as superoxide dismutase (SOD), Bcl-2, ATP synthase, and Complex IV (cytochrome C oxidase), was significantly reduced in 2D culture when exposed to 10 microg/ml ZnO-NPs, but no significant decrease was detected in 3D culture when exposed to the same concentration of ZnO-NPs. In conclusion, the tissue-mimic phenotype and functionality of 3D cells could be achieved through the elevated expression of ECM components. The 3D cells were expected to help to better predict the nanotoxicity of ZnO-NPs at tissue-level by increased cell-cell and cell-ECM adhesion and signaling. The tissue-mimic morphology would also be useful to simulate the diffusion/transport of the nanoparticles in vitro. PMID:24734552

  12. Local and systemic activation of the whole complement cascade in human leukocytoclastic cutaneous vasculitis; C3d,g and terminal complement complex as sensitive markers.

    PubMed Central

    Dauchel, H; Joly, P; Delpech, A; Thomine, E; Sauger, F; Le Loet, X; Lauret, P; Tron, F; Fontaine, M; Ripoche, J

    1993-01-01

    We have studied complement activation both in plasma samples and in lesional skin from patients with leukocytoclastic cutaneous vasculitis (LCV). Enzyme immunoassay (EIA) quantification of the complement activation markers, C3d,g and the terminal complement complex (TCC) in plasma, showed that their levels were significantly increased in 66% and 55% of the patients, respectively (n = 29) compared with healthy controls, whereas the standard measurements of C3, factor B, C1q, C4 and C2 were generally within normal range. Elevations of C3d,g and TCC levels in plasma were significantly correlated. Importantly, a significant correlation was found between the severity of the vasculitis and both C3d,g and TCC plasma levels. Immunofluorescence studies of skin biopsy specimens demonstrated simultaneous presence of perivascular dermal deposits of C3d,g and TCC in lesional skin from 96% and 80% respectively of the patients (n = 25). There was a significant correlation between the intensity of the deposits of both markers. Clusterin, a TCC inhibitory protein, was always found at the same sites of perivascular TCC deposits. Immunofluorescence studies at the epidermal basement membrane zone (BMZ) revealed in each case deposits of C3d,g which were accompanied by TCC deposits in 52% of the biopsy specimens. These data demonstrate that there is a local and systemic activation of the whole complement cascade in human LCV. The presence of both C3d,g and clusterin-associated TCC perivascular deposits suggests an intervention of a regulatory mechanism of local complement activation in LCV. Finally, measurement of plasma C3d,g and TCC appears to be a sensitive indicator of systemic complement activation and disease severity in LCV. Images Fig. 1 Fig. 2 PMID:8485913

  13. Human Lumbar Ligamentum Flavum Anatomy for Epidural Anesthesia: Reviewing a 3D MR-Based Interactive Model and Postmortem Samples.

    PubMed

    Reina, Miguel A; Lirk, Philipp; Puigdellívol-Sánchez, Anna; Mavar, Marija; Prats-Galino, Alberto

    2016-03-01

    The ligamentum flavum (LF) forms the anatomic basis for the loss-of-resistance technique essential to the performance of epidural anesthesia. However, the LF presents considerable interindividual variability, including the possibility of midline gaps, which may influence the performance of epidural anesthesia. We devise a method to reconstruct the anatomy of the digitally LF based on magnetic resonance images to clarify the exact limits and edges of LF and its different thickness, depending on the area examined, while avoiding destructive methods, as well as the dissection processes. Anatomic cadaveric cross sections enabled us to visually check the definition of the edges along the entire LF and compare them using 3D image reconstruction methods. Reconstruction was performed in images obtained from 7 patients. Images from 1 patient were used as a basis for the 3D spinal anatomy tool. In parallel, axial cuts, 2 to 3 cm thick, were performed in lumbar spines of 4 frozen cadavers. This technique allowed us to identify the entire ligament and its exact limits, while avoiding alterations resulting from cutting processes or from preparation methods. The LF extended between the laminas of adjacent vertebrae at all vertebral levels of the patients examined, but midline gaps are regularly encountered. These anatomical variants were reproduced in a 3D portable document format. The major anatomical features of the LF were reproduced in the 3D model. Details of its structure and variations of thickness in successive sagittal and axial slides could be visualized. Gaps within LF previously studied in cadavers have been identified in our interactive 3D model, which may help to understand their nature, as well as possible implications for epidural techniques. PMID:26891398

  14. Tensor body: real-time reconstruction of the human body and avatar synthesis from RGB-D.

    PubMed

    Barmpoutis, Angelos

    2013-10-01

    Real-time 3-D reconstruction of the human body has many applications in anthropometry, telecommunications, gaming, fashion, and other areas of human-computer interaction. In this paper, a novel framework is presented for reconstructing the 3-D model of the human body from a sequence of RGB-D frames. The reconstruction is performed in real time while the human subject moves arbitrarily in front of the camera. The method employs a novel parameterization of cylindrical-type objects using Cartesian tensor and b-spline bases along the radial and longitudinal dimension respectively. The proposed model, dubbed tensor body, is fitted to the input data using a multistep framework that involves segmentation of the different body regions, robust filtering of the data via a dynamic histogram, and energy-based optimization with positive-definite constraints. A Riemannian metric on the space of positive-definite tensor splines is analytically defined and employed in this framework. The efficacy of the presented methods is demonstrated in several real-data experiments using the Microsoft Kinect sensor. PMID:23974673

  15. A 3D co-culture of three human cell lines to model the inflamed intestinal mucosa for safety testing of nanomaterials.

    PubMed

    Susewind, Julia; de Souza Carvalho-Wodarz, Cristiane; Repnik, Urska; Collnot, Eva-Maria; Schneider-Daum, Nicole; Griffiths, Gareth Wyn; Lehr, Claus-Michael

    2016-01-01

    Oral exposure to nanomaterials is a current concern, asking for innovative biological test systems to assess their safety, especially also in conditions of inflammatory disorders. Aim of this study was to develop a 3D intestinal model, consisting of Caco-2 cells and two human immune cell lines, suitable to assess nanomaterial toxicity, in either healthy or diseased conditions. Human macrophages (THP-1) and human dendritic cells (MUTZ-3) were embedded in a collagen scaffold and seeded on the apical side of transwell inserts. Caco-2 cells were seeded on top of this layer, forming a 3D model of the intestinal mucosa. Toxicity of engineered nanoparticles (NM101 TiO2, NM300 Ag, Au) was evaluated in non-inflamed and inflamed co-cultures, and also compared to non-inflamed Caco-2 monocultures. Inflammation was elicited by IL-1β, and interactions with engineered NPs were addressed by different endpoints. The 3D co-culture showed well preserved ultrastructure and significant barrier properties. Ag NPs were found to be more toxic than TiO2 or Au NPs. But once inflamed with IL-1β, the co-cultures released higher amounts of IL-8 compared to Caco-2 monocultures. However, the cytotoxicity of Ag NPs was higher in Caco-2 monocultures than in 3D co-cultures. The naturally higher IL-8 production in the co-cultures was enhanced even further by the Ag NPs. This study shows that it is possible to mimic inflamed conditions in a 3D co-culture model of the intestinal mucosa. The fact that it is based on three easily available human cell lines makes this model valuable to study the safety of nanomaterials in the context of inflammation. PMID:25738417

  16. Distinct Contributions of Astrocytes and Pericytes to Neuroinflammation Identified in a 3D Human Blood-Brain Barrier on a Chip

    PubMed Central

    FitzGerald, Edward A.; Park, Tae-Eun; Sleeboom, Jelle J. F.; Ingber, Donald E.

    2016-01-01

    Neurovascular inflammation is a major contributor to many neurological disorders, but modeling these processes in vitro has proven to be difficult. Here, we microengineered a three-dimensional (3D) model of the human blood-brain barrier (BBB) within a microfluidic chip by creating a cylindrical collagen gel containing a central hollow lumen inside a microchannel, culturing primary human brain microvascular endothelial cells on the gel’s inner surface, and flowing medium through the lumen. Studies were carried out with the engineered microvessel containing endothelium in the presence or absence of either primary human brain pericytes beneath the endothelium or primary human brain astrocytes within the surrounding collagen gel to explore the ability of this simplified model to identify distinct contributions of these supporting cells to the neuroinflammatory response. This human 3D BBB-on-a-chip exhibited barrier permeability similar to that observed in other in vitro BBB models created with non-human cells, and when stimulated with the inflammatory trigger, tumor necrosis factor-alpha (TNF-α), different secretion profiles for granulocyte colony-stimulating factor (G-CSF) and interleukin-6 (IL-6) were observed depending on the presence of astrocytes or pericytes. Importantly, the levels of these responses detected in the 3D BBB chip were significantly greater than when the same cells were co-cultured in static Transwell plates. Thus, as G-CSF and IL-6 have been reported to play important roles in neuroprotection and neuroactivation in vivo, this 3D BBB chip potentially offers a new method to study human neurovascular function and inflammation in vitro, and to identify physiological contributions of individual cell types. PMID:26930059

  17. 1D and 3D inversion of VES data to outline a fresh water zone floating over saline water body at the northwestern coast of Egypt

    NASA Astrophysics Data System (ADS)

    Massoud, Usama; Soliman, Mamdouh; Taha, Ayman; Khozym, Ashraf; Salah, Hany

    2015-12-01

    Seawater intrusion is a widespread environmental problem in the Egyptian coastal aquifers. It affects the groundwater used in domestic and agricultural activities along these coasts. In this study, resistivity survey in the form of Vertical Electrical Sounding (VES) was conducted at ZAWYET EL HAWALA cultivated site, northwest coast of Egypt to outline a freshwater zone overlies the main saltwater body, and to determine the most suitable location for drilling water well for irrigation purposes. The VES data were measured at 11 stations in the studied site. After processing, the data were inverted in 1-D and 3-D schemes and the final model was presented as resistivity slices with depth. The results indicate that the effect of saltwater intrusion was observed, as low resistivity values, at 7.5 m below ground surface (bgs) at the northern part of the study area (toward the Mediterranean Sea), and extends southward with increasing depth covering the whole area at about 30 m bgs. The fresh water zone shows a minimum thickness of less than 7.5 m at the northern side and a maximum thickness of about 20 m at the southern side of the area. The proper site for drilling water well tap and the freshwater zone is the location of VES6 or VES9 with a maximum well depth of about 20 m bgs. The water withdrawal from the proposed well should be controlled not to raise the main saline water table in the well site. The main sources of the freshwater zone are the rainfall and surface runoff descending from the southern tableland. Excess rainfall and surface runoff can be avoided from direct discharge to the sea by collecting them in man-made outlined trenches and re-using the stored water in irrigation during the dry seasons.

  18. 3D Printing of Human Tissue Mimics via Layer-by-Layer Assembly of Polymer/Hydrogel Biopapers

    NASA Astrophysics Data System (ADS)

    Ringeisen, Bradley

    2015-03-01

    The foundations of tissue engineering were built on two fundamental areas of research: cells and scaffolds. Multipotent cells and their derivatives are traditionally randomly seeded into sophisticated polymer or hydrogel scaffolds, ultimately with the goal of forming a tissue-like material through cell differentiation and cell-material interactions. One problem with this approach is that no matter how complex or biomimetic the scaffold is, the cells are still homogeneously distributed throughout this three dimensional (3D) material. Natural tissue is inherently heterogeneous on both a microscopic and macroscopic level. It also contains different types of cells in close proximity, extracellular matrix, voids, and a complex vascularized network. Recently developed 3D cell and organ printers may be able to enhance traditional tissue engineering experiments by building scaffolds layer-by-layer that are crafted to mimic the microscopic and macroscopic structure of natural tissue or organs. Over the past decade, my laboratory has developed a capillary-free, live cell printer termed biological laser printing, or BioLP. We find that printed cells do not express heat shock protein and retain >99% viability. Printed cells also incur no DNA strand fracture and preserve their ability to differentiate. Recent work has used a layer-by-layer approach, stacking sheets of hybrid polymer/hydrogel biopapers in conjunction with live cell printing to create 3D tissue structures. Our specific work is now focused on the blood-brain-barrier and air-lung interface and will be described during the presentation.

  19. Novel 3D light microscopic analysis of IUGR placentas points to a morphological correlate of compensated ischemic placental disease in humans

    PubMed Central

    Haeussner, Eva; Schmitz, Christoph; Frank, Hans-Georg; Edler von Koch, Franz

    2016-01-01

    The villous tree of the human placenta is a complex three-dimensional (3D) structure with branches and nodes at the feto-maternal border in the key area of gas and nutrient exchange. Recently we introduced a novel, computer-assisted 3D light microscopic method that enables 3D topological analysis of branching patterns of the human placental villous tree. In the present study we applied this novel method to the 3D architecture of peripheral villous trees of placentas from patients with intrauterine growth retardation (IUGR placentas), a severe obstetric syndrome. We found that the mean branching angle of branches in terminal positions of the villous trees was significantly different statistically between IUGR placentas and clinically normal placentas. Furthermore, the mean tortuosity of branches of villous trees in directly preterminal positions was significantly different statistically between IUGR placentas and clinically normal placentas. We show that these differences can be interpreted as consequences of morphological adaptation of villous trees between IUGR placentas and clinically normal placentas, and may have important consequences for the understanding of the morphological correlates of the efficiency of the placental villous tree and their influence on fetal development. PMID:27045698

  20. Novel 3D light microscopic analysis of IUGR placentas points to a morphological correlate of compensated ischemic placental disease in humans.

    PubMed

    Haeussner, Eva; Schmitz, Christoph; Frank, Hans-Georg; Edler von Koch, Franz

    2016-01-01

    The villous tree of the human placenta is a complex three-dimensional (3D) structure with branches and nodes at the feto-maternal border in the key area of gas and nutrient exchange. Recently we introduced a novel, computer-assisted 3D light microscopic method that enables 3D topological analysis of branching patterns of the human placental villous tree. In the present study we applied this novel method to the 3D architecture of peripheral villous trees of placentas from patients with intrauterine growth retardation (IUGR placentas), a severe obstetric syndrome. We found that the mean branching angle of branches in terminal positions of the villous trees was significantly different statistically between IUGR placentas and clinically normal placentas. Furthermore, the mean tortuosity of branches of villous trees in directly preterminal positions was significantly different statistically between IUGR placentas and clinically normal placentas. We show that these differences can be interpreted as consequences of morphological adaptation of villous trees between IUGR placentas and clinically normal placentas, and may have important consequences for the understanding of the morphological correlates of the efficiency of the placental villous tree and their influence on fetal development. PMID:27045698

  1. [The solidarity of the human body].

    PubMed

    Bioy, Xavier

    2014-06-01

    The legal and bioethical regulation of the uses of the elements of the human body can be described by means of the concept of solidarity. From the French example, we can so show that the State tries to frame solidarities which already exist, for example between people who share the same genome, in the family, or, on the contrary, tent to impose or to direct the sharing of the human biological resources (organs, tissues, gametes, stem cell...). PMID:25272799

  2. Interactive Structure (EUCLID) For Static And Dynamic Representation Of Human Body

    NASA Astrophysics Data System (ADS)

    Renaud, Ch.; Steck, R.

    1983-07-01

    A specific software (EUCLID) for static and dynamic representation of human models is described. The data processing system is connected with ERGODATA and used in interactive mode by intrinsic or specific functions. More or less complex representations in 3-D view of models of the human body are developed. Biostereometric and conventional anthropometric raw data from the data bank are processed for different applications in ergonomy.

  3. A New Algorithm to Diagnose Atrial Ectopic Origin from Multi Lead ECG Systems - Insights from 3D Virtual Human Atria and Torso

    PubMed Central

    Alday, Erick A. Perez; Colman, Michael A.; Langley, Philip; Butters, Timothy D.; Higham, Jonathan; Workman, Antony J.; Hancox, Jules C.; Zhang, Henggui

    2015-01-01

    Rapid atrial arrhythmias such as atrial fibrillation (AF) predispose to ventricular arrhythmias, sudden cardiac death and stroke. Identifying the origin of atrial ectopic activity from the electrocardiogram (ECG) can help to diagnose the early onset of AF in a cost-effective manner. The complex and rapid atrial electrical activity during AF makes it difficult to obtain detailed information on atrial activation using the standard 12-lead ECG alone. Compared to conventional 12-lead ECG, more detailed ECG lead configurations may provide further information about spatio-temporal dynamics of the body surface potential (BSP) during atrial excitation. We apply a recently developed 3D human atrial model to simulate electrical activity during normal sinus rhythm and ectopic pacing. The atrial model is placed into a newly developed torso model which considers the presence of the lungs, liver and spinal cord. A boundary element method is used to compute the BSP resulting from atrial excitation. Elements of the torso mesh corresponding to the locations of the placement of the electrodes in the standard 12-lead and a more detailed 64-lead ECG configuration were selected. The ectopic focal activity was simulated at various origins across all the different regions of the atria. Simulated BSP maps during normal atrial excitation (i.e. sinoatrial node excitation) were compared to those observed experimentally (obtained from the 64-lead ECG system), showing a strong agreement between the evolution in time of the simulated and experimental data in the P-wave morphology of the ECG and dipole evolution. An algorithm to obtain the location of the stimulus from a 64-lead ECG system was developed. The algorithm presented had a success rate of 93%, meaning that it correctly identified the origin of atrial focus in 75/80 simulations, and involved a general approach relevant to any multi-lead ECG system. This represents a significant improvement over previously developed algorithms. PMID

  4. Three-dimensional X-ray absorptiometry (3D-XA): a method for reconstruction of human bones using a dual X-ray absorptiometry device.

    PubMed

    Kolta, S; Le Bras, A; Mitton, D; Bousson, V; de Guise, J A; Fechtenbaum, J; Laredo, J D; Roux, C; Skalli, W

    2005-08-01

    Three-dimensional accurate evaluation of the geometry of the proximal femur may be helpful for hip fracture risk evaluation. The purpose of this study was to apply and validate a stereo-radiographic 3D reconstruction method of the proximal femur, using contours identification from biplanar DXA images. Twenty-five excised human proximal femurs were investigated using a standard DXA unit. Three-dimensional personalized models were reconstructed using a dedicated non-stereo corresponding contours (NSCC) algorithm. Three-dimensional CT-scan reconstructions obtained on a clinical CT-scan unit were defined as geometric references for the comparison protocol, in order to assess accuracy and reproducibility of the 3D stereo-radiographic reconstructions. The precision of a set of 3D geometric parameters (femoral-neck axis length, mid-neck cross-section area, neck-shaft angle), obtained from stereo-radiographic models was also evaluated. This study shows that the NSCC method may be applied to obtain 3D reconstruction from biplanar DXA acquisitions. Applied to the proximal femur, this method showed good accuracy as compared with high-resolution personalized CT-scan models (mean error = 0.8 mm). Moreover, precision study for the set of 3D parameters yielded coefficients of variation lower than 5%. This is the first study providing 3D geometric parameters from standard 2D DXA images using the NSCC method. It has good accuracy and reproducibility in the present study on cadaveric femurs. In vivo prospective studies are needed to evaluate its discriminating potential on hip fracture risk prediction. PMID:15599494

  5. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  6. Human recognition by body shape features

    NASA Astrophysics Data System (ADS)

    Du, Ming; Guan, Ling

    2005-03-01

    Non-invasive biometrics is of particular importance because of its application under surveillance environment. Although traditional research in this field is mostly focused on gait recognition, feature based on human body shape is one of the alternate choices we can rely on. Here we propose a body shape based identification system, trying to explore the its distinguishing power in biometrics. Robust image processing procedures such as Wiener filter are implemented to extract binary silhouettes from frontal-view human walking video. The Kalman filter, usually adopted as a powerful tool to facilitate tracking in computer vision applications, here functions as a reliable estimator to recover body shape information from the corrupted observations. The dynamically extracted static feature vectors are then compared to templates to achieve identification. We provide experimental results to demonstrate the performance of our system.

  7. Thermodynamics of Cooling a (Live) Human Body.

    ERIC Educational Resources Information Center

    Weinstock, Harold

    1980-01-01

    Presents a practical problem to students in a junior-level thermodynamics course in which a human body regulates its own internal temperature. This problem can be utilized as well (with modification) in an introductory physics course for life science majors. (HM)

  8. Modeling forces on the human body

    NASA Astrophysics Data System (ADS)

    Pagonis, Vasilis; Drake, Russel; Morgan, Michael; Peters, Todd; Riddle, Chris; Rollins, Karen

    1999-11-01

    Several simulations involving the human body, using the simulation software Interactive Physics™, are used to analyze the forces during both static situations and dynamic collisions. The connection of the simulations with the biological sciences and with sports activities should make them appealing to both high school and college-level physics students.

  9. Visuals and Visualisation of Human Body Systems

    ERIC Educational Resources Information Center

    Mathai, Sindhu; Ramadas, Jayashree

    2009-01-01

    This paper explores the role of diagrams and text in middle school students' understanding and visualisation of human body systems. We develop a common framework based on structure and function to assess students' responses across diagram and verbal modes. Visualisation is defined in terms of understanding transformations on structure and relating…

  10. The promotion of hepatic maturation of human pluripotent stem cells in 3D co-culture using type I collagen and Swiss 3T3 cell sheets.

    PubMed

    Nagamoto, Yasuhito; Tashiro, Katsuhisa; Takayama, Kazuo; Ohashi, Kazuo; Kawabata, Kenji; Sakurai, Fuminori; Tachibana, Masashi; Hayakawa, Takao; Furue, Miho Kusuda; Mizuguchi, Hiroyuki

    2012-06-01

    Hepatocyte-like cells differentiated from human embryonic stem cells (hESCs) or human induced pluripotent stem cells (hiPSCs) are known to be a useful cell source for drug screening. We recently developed an efficient hepatic differentiation method from hESCs and hiPSCs by sequential transduction of FOXA2 and HNF1α. It is known that the combination of three-dimensional (3D) culture and co-culture, namely 3D co-culture, can maintain the functions of primary hepatocytes. However, hepatic maturation of hESC- or hiPSC-derived hepatocyte-like cells (hEHs or hiPHs, respectively) by 3D co-culture systems has not been examined. Therefore, we utilized a cell sheet engineering technology to promote hepatic maturation. The gene expression levels of hepatocyte-related markers (such as cytochrome P450 enzymes and conjugating enzymes) and the amount of albumin secretion in the hEHs or hiPHs, which were 3D co-cultured with the Swiss 3T3 cell sheet, were significantly up-regulated in comparison with those in the hEHs or hiPHs cultured in a monolayer. Furthermore, we found that type I collagen synthesized in Swiss 3T3 cells plays an important role in hepatic maturation. The hEHs or hiPHs that were 3D co-cultured with the Swiss 3T3 cell sheet would be powerful tools for medical applications, such as drug screening. PMID:22445253

  11. Stem Cell Bioprinting: Functional 3D Neural Mini-Tissues from Printed Gel-Based Bioink and Human Neural Stem Cells (Adv. Healthcare Mater. 12/2016).

    PubMed

    Gu, Qi; Tomaskovic-Crook, Eva; Lozano, Rodrigo; Chen, Yu; Kapsa, Robert M; Zhou, Qi; Wallace, Gordon G; Crook, Jeremy M

    2016-06-01

    On page 1429 G. G. Wallace, J. M. Crook, and co-workers report the first example of fabricating neural tissue by 3D bioprinting human neural stem cells. A novel polysaccharide based bioink preserves stem cell viability and function within the printed construct, enabling self-renewal and differentiation to neurons and supporting neuroglia. Neurons are predominantly GABAergic, establish networks, are spontaneously active, and show a bicuculline induced increased calcium response. PMID:27333401

  12. Genotoxic Effects of Low- and High-LET Radiation on Human Epithelial Cells Grown in 2-D Versus 3-D Culture

    NASA Technical Reports Server (NTRS)

    Patel, Z. S.; Cucinotta, F. A.; Huff, J. L.

    2011-01-01

    Risk estimation for radiation-induced cancer relies heavily on human epidemiology data obtained from terrestrial irradiation incidents from sources such as medical and occupational exposures as well as from the atomic bomb survivors. No such data exists for exposures to the types and doses of high-LET radiation that will be encountered during space travel; therefore, risk assessment for space radiation requires the use of data derived from cell culture and animal models. The use of experimental models that most accurately replicate the response of human tissues is critical for precision in risk projections. This work compares the genotoxic effects of radiation on normal human epithelial cells grown in standard 2-D monolayer culture compared to 3-D organotypic co-culture conditions. These 3-D organotypic models mimic the morphological features, differentiation markers, and growth characteristics of fully-differentiated normal human tissue and are reproducible using defined components. Cultures were irradiated with 2 Gy low-LET gamma rays or varying doses of high-LET particle radiation and genotoxic damage was measured using a modified cytokinesis block micronucleus assay. Our results revealed a 2-fold increase in residual damage in 2 Gy gamma irradiated cells grown under organotypic culture conditions compared to monolayer culture. Irradiation with high-LET particle radiation gave similar results, while background levels of damage were comparable under both scenarios. These observations may be related to the phenomenon of "multicellular resistance" where cancer cells grown as 3-D spheroids or in vivo exhibit an increased resistance to killing by chemotherapeutic agents compared to the same cells grown in 2-D culture. A variety of factors are likely involved in mediating this process, including increased cell-cell communication, microenvironment influences, and changes in cell cycle kinetics that may promote survival of damaged cells in 3-D culture that would

  13. Special Section: New Ways to Detect Colon Cancer 3-D virtual screening now being used

    MedlinePlus

    ... body) from the National Library of Medicine's Visible Human project (www.nlm.nih.gov). By 1996, Kaufman and his colleagues had patented a pioneering computer software system and techniques for