Science.gov

Sample records for 3d image analysis

  1. A 3D image analysis tool for SPECT imaging

    NASA Astrophysics Data System (ADS)

    Kontos, Despina; Wang, Qiang; Megalooikonomou, Vasileios; Maurer, Alan H.; Knight, Linda C.; Kantor, Steve; Fisher, Robert S.; Simonian, Hrair P.; Parkman, Henry P.

    2005-04-01

    We have developed semi-automated and fully-automated tools for the analysis of 3D single-photon emission computed tomography (SPECT) images. The focus is on the efficient boundary delineation of complex 3D structures that enables accurate measurement of their structural and physiologic properties. We employ intensity based thresholding algorithms for interactive and semi-automated analysis. We also explore fuzzy-connectedness concepts for fully automating the segmentation process. We apply the proposed tools to SPECT image data capturing variation of gastric accommodation and emptying. These image analysis tools were developed within the framework of a noninvasive scintigraphic test to measure simultaneously both gastric emptying and gastric volume after ingestion of a solid or a liquid meal. The clinical focus of the particular analysis was to probe associations between gastric accommodation/emptying and functional dyspepsia. Employing the proposed tools, we outline effectively the complex three dimensional gastric boundaries shown in the 3D SPECT images. We also perform accurate volume calculations in order to quantitatively assess the gastric mass variation. This analysis was performed both with the semi-automated and fully-automated tools. The results were validated against manual segmentation performed by a human expert. We believe that the development of an automated segmentation tool for SPECT imaging of the gastric volume variability will allow for other new applications of SPECT imaging where there is a need to evaluate complex organ function or tumor masses.

  2. Imaging and 3D morphological analysis of collagen fibrils.

    PubMed

    Altendorf, H; Decencière, E; Jeulin, D; De sa Peixoto, P; Deniset-Besseau, A; Angelini, E; Mosser, G; Schanne-Klein, M-C

    2012-08-01

    The recent booming of multiphoton imaging of collagen fibrils by means of second harmonic generation microscopy generates the need for the development and automation of quantitative methods for image analysis. Standard approaches sequentially analyse two-dimensional (2D) slices to gain knowledge on the spatial arrangement and dimension of the fibrils, whereas the reconstructed three-dimensional (3D) image yields better information about these characteristics. In this work, a 3D analysis method is proposed for second harmonic generation images of collagen fibrils, based on a recently developed 3D fibre quantification method. This analysis uses operators from mathematical morphology. The fibril structure is scanned with a directional distance transform. Inertia moments of the directional distances yield the main fibre orientation, corresponding to the main inertia axis. The collaboration of directional distances and fibre orientation delivers a geometrical estimate of the fibre radius. The results include local maps as well as global distribution of orientation and radius of the fibrils over the 3D image. They also bring a segmentation of the image into foreground and background, as well as a classification of the foreground pixels into the preferred orientations. This accurate determination of the spatial arrangement of the fibrils within a 3D data set will be most relevant in biomedical applications. It brings the possibility to monitor remodelling of collagen tissues upon a variety of injuries and to guide tissues engineering because biomimetic 3D organizations and density are requested for better integration of implants.

  3. Hybrid segmentation framework for 3D medical image analysis

    NASA Astrophysics Data System (ADS)

    Chen, Ting; Metaxas, Dimitri N.

    2003-05-01

    Medical image segmentation is the process that defines the region of interest in the image volume. Classical segmentation methods such as region-based methods and boundary-based methods cannot make full use of the information provided by the image. In this paper we proposed a general hybrid framework for 3D medical image segmentation purposes. In our approach we combine the Gibbs Prior model, and the deformable model. First, Gibbs Prior models are applied onto each slice in a 3D medical image volume and the segmentation results are combined to a 3D binary masks of the object. Then we create a deformable mesh based on this 3D binary mask. The deformable model will be lead to the edge features in the volume with the help of image derived external forces. The deformable model segmentation result can be used to update the parameters for Gibbs Prior models. These methods will then work recursively to reach a global segmentation solution. The hybrid segmentation framework has been applied to images with the objective of lung, heart, colon, jaw, tumor, and brain. The experimental data includes MRI (T1, T2, PD), CT, X-ray, Ultra-Sound images. High quality results are achieved with relatively efficient time cost. We also did validation work using expert manual segmentation as the ground truth. The result shows that the hybrid segmentation may have further clinical use.

  4. 3D image analysis of abdominal aortic aneurysm

    NASA Astrophysics Data System (ADS)

    Subasic, Marko; Loncaric, Sven; Sorantin, Erich

    2001-07-01

    In this paper we propose a technique for 3-D segmentation of abdominal aortic aneurysm (AAA) from computed tomography angiography (CTA) images. Output data (3-D model) form the proposed method can be used for measurement of aortic shape and dimensions. Knowledge of aortic shape and size is very important in planning of minimally invasive procedure that is for selection of appropriate stent graft device for treatment of AAA. The technique is based on a 3-D deformable model and utilizes the level-set algorithm for implementation of the method. The method performs 3-D segmentation of CTA images and extracts a 3-D model of aortic wall. Once the 3-D model of aortic wall is available it is easy to perform all required measurements for appropriate stent graft selection. The method proposed in this paper uses the level-set algorithm for deformable models, instead of the classical snake algorithm. The main advantage of the level set algorithm is that it enables easy segmentation of complex structures, surpassing most of the drawbacks of the classical approach. We have extended the deformable model to incorporate the a priori knowledge about the shape of the AAA. This helps direct the evolution of the deformable model to correctly segment the aorta. The algorithm has been implemented in IDL and C languages. Experiments have been performed using real patient CTA images and have shown good results.

  5. Computerized analysis of pelvic incidence from 3D images

    NASA Astrophysics Data System (ADS)

    Vrtovec, Tomaž; Janssen, Michiel M. A.; Pernuš, Franjo; Castelein, René M.; Viergever, Max A.

    2012-02-01

    The sagittal alignment of the pelvis can be evaluated by the angle of pelvic incidence (PI), which is constant for an arbitrary subject position and orientation and can be therefore compared among subjects in standing, sitting or supine position. In this study, PI was measured from three-dimensional (3D) computed tomography (CT) images of normal subjects that were acquired in supine position. A novel computerized method, based on image processing techniques, was developed to automatically determine the anatomical references required to measure PI, i.e. the centers of the femoral heads in 3D, and the center and inclination of the sacral endplate in 3D. Multiplanar image reformation was applied to obtain perfect sagittal views with all anatomical structures completely in line with the hip axis, from which PI was calculated. The resulting PI (mean+/-standard deviation) was equal to 46.6°+/-9.2° for male subjects (N = 189), 47.6°+/-10.7° for female subjects (N = 181), and 47.1°+/-10.0° for all subjects (N = 370). The obtained measurements of PI from 3D images were not biased by acquisition projection or structure orientation, because all anatomical structures were completely in line with the hip axis. The performed measurements in 3D therefore represent PI according to the actual geometrical relationships among anatomical structures of the sacrum, pelvis and hips, as observed from the perfect sagittal views.

  6. 3D image analysis of abdominal aortic aneurysm

    NASA Astrophysics Data System (ADS)

    Subasic, Marko; Loncaric, Sven; Sorantin, Erich

    2002-05-01

    This paper presents a method for 3-D segmentation of abdominal aortic aneurysm from computed tomography angiography images. The proposed method is automatic and requires minimal user assistance. Segmentation is performed in two steps. First inner and then outer aortic border is segmented. Those two steps are different due to different image conditions on two aortic borders. Outputs of these two segmentations give a complete 3-D model of abdominal aorta. Such a 3-D model is used in measurements of aneurysm area. The deformable model is implemented using the level-set algorithm due to its ability to describe complex shapes in natural manner which frequently occur in pathology. In segmentation of outer aortic boundary we introduced some knowledge based preprocessing to enhance and reconstruct low contrast aortic boundary. The method has been implemented in IDL and C languages. Experiments have been performed using real patient CTA images and have shown good results.

  7. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  8. 3D image analysis of a volcanic deposit

    NASA Astrophysics Data System (ADS)

    de Witte, Y.; Vlassenbroeck, J.; Vandeputte, K.; Dewanckele, J.; Cnudde, V.; van Hoorebeke, L.; Ernst, G.; Jacobs, P.

    2009-04-01

    During the last decades, X-ray micro CT has become a well established technique for non-destructive testing in a wide variety of research fields. Using a series of X-ray transmission images of the sample at different projection angles, a stack of 2D cross-sections is reconstructed, resulting in a 3D volume representing the X-ray attenuation coefficients of the sample. Since the attenuation coefficient of a material depends on its density and atomic number, this volume provides valuable information about the internal structure and composition of the sample. Although much qualitative information can be derived directly from this 3D volume, researchers usually require more quantitative results to be able to provide a full characterization of the sample under investigation. This type of information needs to be retrieved using specialized image processing software. For most samples, it is imperative that this processing is performed on the 3D volume as a whole, since a sequence of 2D cross sections usually forms an inadequate approximation of the actual structure. The complete processing of a volume consists of three sequential steps. First, the volume is segmented into a set of objects. What these objects represent depends on what property of the sample needs to be analysed. The objects can be for instance concavities, dense inclusions or the matrix of the sample. When dealing with noisy data, it might be necessary to filter the data before applying the segmentation. The second step is the separation of connected objects into a set of smaller objects. This is necessary when objects appear to be connected because of the limited resolution and contrast of the scan. Separation can also be useful when the sample contains a network structure and one wants to study the individual cells of the network. The third and last step consists of the actual analysis of the various objects to derive the different parameters of interest. While some parameters require extensive

  9. Analysis and dynamic 3D visualization of cerebral blood flow combining 3D and 4D MR image sequences

    NASA Astrophysics Data System (ADS)

    Forkert, Nils Daniel; Säring, Dennis; Fiehler, Jens; Illies, Till; Möller, Dietmar; Handels, Heinz

    2009-02-01

    In this paper we present a method for the dynamic visualization of cerebral blood flow. Spatio-temporal 4D magnetic resonance angiography (MRA) image datasets and 3D MRA datasets with high spatial resolution were acquired for the analysis of arteriovenous malformations (AVMs). One of the main tasks is the combination of the information of the 3D and 4D MRA image sequences. Initially, in the 3D MRA dataset the vessel system is segmented and a 3D surface model is generated. Then, temporal intensity curves are analyzed voxelwise in the 4D MRA image sequences. A curve fitting of the temporal intensity curves to a patient individual reference curve is used to extract the bolus arrival times in the 4D MRA sequences. After non-linear registration of both MRA datasets the extracted hemodynamic information is transferred to the surface model where the time points of inflow can be visualized color coded dynamically over time. The dynamic visualizations computed using the curve fitting method for the estimation of the bolus arrival times were rated superior compared to those computed using conventional approaches for bolus arrival time estimation. In summary the procedure suggested allows a dynamic visualization of the individual hemodynamic situation and better understanding during the visual evaluation of cerebral vascular diseases.

  10. Image-based RSA: Roentgen stereophotogrammetric analysis based on 2D-3D image registration.

    PubMed

    de Bruin, P W; Kaptein, B L; Stoel, B C; Reiber, J H C; Rozing, P M; Valstar, E R

    2008-01-01

    Image-based Roentgen stereophotogrammetric analysis (IBRSA) integrates 2D-3D image registration and conventional RSA. Instead of radiopaque RSA bone markers, IBRSA uses 3D CT data, from which digitally reconstructed radiographs (DRRs) are generated. Using 2D-3D image registration, the 3D pose of the CT is iteratively adjusted such that the generated DRRs resemble the 2D RSA images as closely as possible, according to an image matching metric. Effectively, by registering all 2D follow-up moments to the same 3D CT, the CT volume functions as common ground. In two experiments, using RSA and using a micromanipulator as gold standard, IBRSA has been validated on cadaveric and sawbone scapula radiographs, and good matching results have been achieved. The accuracy was: |mu |< 0.083 mm for translations and |mu| < 0.023 degrees for rotations. The precision sigma in x-, y-, and z-direction was 0.090, 0.077, and 0.220 mm for translations and 0.155 degrees , 0.243 degrees , and 0.074 degrees for rotations. Our results show that the accuracy and precision of in vitro IBRSA, performed under ideal laboratory conditions, are lower than in vitro standard RSA but higher than in vivo standard RSA. Because IBRSA does not require radiopaque markers, it adds functionality to the RSA method by opening new directions and possibilities for research, such as dynamic analyses using fluoroscopy on subjects without markers and computer navigation applications.

  11. V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets.

    PubMed

    Peng, Hanchuan; Ruan, Zongcai; Long, Fuhui; Simpson, Julie H; Myers, Eugene W

    2010-04-01

    The V3D system provides three-dimensional (3D) visualization of gigabyte-sized microscopy image stacks in real time on current laptops and desktops. V3D streamlines the online analysis, measurement and proofreading of complicated image patterns by combining ergonomic functions for selecting a location in an image directly in 3D space and for displaying biological measurements, such as from fluorescent probes, using the overlaid surface objects. V3D runs on all major computer platforms and can be enhanced by software plug-ins to address specific biological problems. To demonstrate this extensibility, we built a V3D-based application, V3D-Neuron, to reconstruct complex 3D neuronal structures from high-resolution brain images. V3D-Neuron can precisely digitize the morphology of a single neuron in a fruitfly brain in minutes, with about a 17-fold improvement in reliability and tenfold savings in time compared with other neuron reconstruction tools. Using V3D-Neuron, we demonstrate the feasibility of building a 3D digital atlas of neurite tracts in the fruitfly brain. PMID:20231818

  12. Reducing Non-Uniqueness in Satellite Gravity Inversion using 3D Object Oriented Image Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Fadel, I.; van der Meijde, M.; Kerle, N.

    2013-12-01

    Non-uniqueness of satellite gravity interpretation has been usually reduced by using a priori information from various sources, e.g. seismic tomography models. The reduction in non-uniqueness has been based on velocity-density conversion formulas or user interpretation for 3D subsurface structures (objects) in seismic tomography models. However, these processes introduce additional uncertainty through the conversion relations due to the dependency on the other physical parameters such as temperature and pressure, or through the bias in the interpretation due to user choices and experience. In this research, a new methodology is introduced to extract the 3D subsurface structures from 3D geophysical data using a state-of-art 3D Object Oriented Image Analysis (OOA) technique. 3D OOA is tested using a set of synthetic models that simulate the real situation in the study area of this research. Then, 3D OOA is used to extract 3D subsurface objects from a real 3D seismic tomography model. The extracted 3D objects are used to reconstruct a forward model and its response is compared with the measured satellite gravity. Finally, the result of the forward modelling, based on the extracted 3D objects, is used to constrain the inversion process of satellite gravity data. Through this work, a new object-based approach is introduced to interpret and extract the 3D subsurface objects from 3D geophysical data. This can be used to constrain modelling and inversion of potential field data using the extracted 3D subsurface structures from other methods. In summary, a new approach is introduced to constrain inversion of satellite gravity measurements and enhance interpretation capabilities.

  13. Analysis of scalability of high-performance 3D image processing platform for virtual colonoscopy

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli

    2014-03-01

    One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. For this purpose, we previously developed a software platform for high-performance 3D medical image processing, called HPC 3D-MIP platform, which employs increasingly available and affordable commodity computing systems such as the multicore, cluster, and cloud computing systems. To achieve scalable high-performance computing, the platform employed size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D-MIP algorithms, supported task scheduling for efficient load distribution and balancing, and consisted of a layered parallel software libraries that allow image processing applications to share the common functionalities. We evaluated the performance of the HPC 3D-MIP platform by applying it to computationally intensive processes in virtual colonoscopy. Experimental results showed a 12-fold performance improvement on a workstation with 12-core CPUs over the original sequential implementation of the processes, indicating the efficiency of the platform. Analysis of performance scalability based on the Amdahl's law for symmetric multicore chips showed the potential of a high performance scalability of the HPC 3DMIP platform when a larger number of cores is available.

  14. Analysis of 3-D images of dental imprints using computer vision

    NASA Astrophysics Data System (ADS)

    Aubin, Michele; Cote, Jean; Laurendeau, Denis; Poussart, Denis

    1992-05-01

    This paper addressed two important aspects of dental analysis: (1) location and (2) identification of the types of teeth by means of 3-D image acquisition and segmentation. The 3-D images of both maxillaries are acquired using a wax wafer as support. The interstices between teeth are detected by non-linear filtering of the 3-D and grey-level data. Two operators are presented: one for the detection of the interstices between incisors, canines, and premolars and one for those between molars. Teeth are then identified by mapping the imprint under analysis on the computer model of an 'ideal' imprint. For the mapping to be valid, a set of three reference points is detected on the imprint. Then, the points are put in correspondence with similar points on the model. Two such points are chosen based on a least-squares fit of a second-order polynomial of the 3-D data in the area of canines. This area is of particular interest since the canines show a very characteristic shape and are easily detected on the imprint. The mapping technique is described in detail in the paper as well as pre-processing of the 3-D profiles. Experimental results are presented for different imprints.

  15. 3D texture analysis for classification of second harmonic generation images of human ovarian cancer

    PubMed Central

    Wen, Bruce; Campbell, Kirby R.; Tilbury, Karissa; Nadiarnykh, Oleg; Brewer, Molly A.; Patankar, Manish; Singh, Vikas; Eliceiri, Kevin. W.; Campagnola, Paul J.

    2016-01-01

    Remodeling of the collagen architecture in the extracellular matrix (ECM) has been implicated in ovarian cancer. To quantify these alterations we implemented a form of 3D texture analysis to delineate the fibrillar morphology observed in 3D Second Harmonic Generation (SHG) microscopy image data of normal (1) and high risk (2) ovarian stroma, benign ovarian tumors (3), low grade (4) and high grade (5) serous tumors, and endometrioid tumors (6). We developed a tailored set of 3D filters which extract textural features in the 3D image sets to build (or learn) statistical models of each tissue class. By applying k-nearest neighbor classification using these learned models, we achieved 83–91% accuracies for the six classes. The 3D method outperformed the analogous 2D classification on the same tissues, where we suggest this is due the increased information content. This classification based on ECM structural changes will complement conventional classification based on genetic profiles and can serve as an additional biomarker. Moreover, the texture analysis algorithm is quite general, as it does not rely on single morphological metrics such as fiber alignment, length, and width but their combined convolution with a customizable basis set. PMID:27767180

  16. High-resolution 3D micro-CT imaging of breast microcalcifications: a preliminary analysis

    PubMed Central

    2014-01-01

    Background Detection of microcalcifications on mammograms indicates the presence of breast lesion, and the shapes of the microcalcifications as seen by conventional mammography correlates with the probability of malignancy. This preliminary study evaluated the 3D shape of breast microcalcifications using micro-computed tomography (micro-CT) and compared the findings with those obtained using anatomopathological analysis. Methods The study analyzed breast biopsy samples from 11 women with findings of suspicious microcalcifications on routine mammograms. The samples were imaged using a micro-CT (SkyScan 1076) at a resolution of 35 μm. Images were reconstructed using filtered back-projection and analyzed in 3D using surface rendering. The samples were subsequently analyzed by the pathology service. Reconstructed 3D images were compared with the corresponding histological slices. Results Anatomopathological analysis showed that 5 of 11 patients had ductal breast carcinoma in situ. One patient was diagnosed with invasive ductal carcinoma. Individual object analysis was performed on 597 microcalcifications. Malignant microcalcifications tended to be thinner and to have a smaller volume and surface area, while their surface area-to-volume ratio was greater than that of benign microcalcifications. The structure model index values were the same for malignant and benign microcalcifications. Conclusions This is the first study to use micro-CT for quantitative 3D analysis of microcalcifications. This high-resolution imaging technique will be valuable for gaining a greater understanding of the morphologic characteristics of malignant and benign microcalcifications. The presence of many small microcalcifications can be an indication of malignancy. For the larger microcalcifications, 3D parameters confirmed the more irregular shape of malignant microcalcifications. PMID:24393444

  17. Evaluation of 3D multimodality image registration using receiver operating characteristic (ROC) analysis

    NASA Astrophysics Data System (ADS)

    Holton Tainter, Kerrie S.; Robb, Richard A.; Taneja, Udita; Gray, Joel E.

    1995-04-01

    Receiver operating characteristic analysis has evolved as a useful method for evaluating the discriminatory capability and efficacy of visualization. The ability of such analysis to account for the variance in decision criteria of multiple observers, multiple reading, and a wide range of difficulty in detection among case studies makes ROC especially useful for interpreting the results of a viewing experiment. We are currently using ROC analysis to evaluate the effectiveness of using fused multispectral, or complementary multimodality imaging data in the diagnostic process. The use of multispectral image recordings, gathered from multiple imaging modalities, to provide advanced image visualization and quantization capabilities in evaluating medical images is an important challenge facing medical imaging scientists. Such capabilities would potentially significantly enhance the ability of clinicians to extract scientific and diagnostic information from images. a first step in the effective use of multispectral information is the spatial registration of complementary image datasets so that a point-to-point correspondence exists between them. We are developing a paradigm of measuring the accuracy of existing image registration techniques which includes the ability to relate quantitative measurements, taken from the images themselves, to the decisions made by observers about the state of registration (SOR) of the 3D images. We have used ROC analysis to evaluate the ability of observers to discriminate between correctly registered and incorrectly registered multimodality fused images. We believe this experience is original and represents the first time that ROC analysis has been used to evaluate registered/fused images. We have simulated low-resolution and high-resolution images from real patient MR images of the brain, and fused them with the original MR to produce colorwash superposition images whose exact SOR is known. We have also attempted to extend this analysis to

  18. Quantification of Dynamic Morphological Drug Responses in 3D Organotypic Cell Cultures by Automated Image Analysis

    PubMed Central

    Härmä, Ville; Schukov, Hannu-Pekka; Happonen, Antti; Ahonen, Ilmari; Virtanen, Johannes; Siitari, Harri; Åkerfelt, Malin; Lötjönen, Jyrki; Nees, Matthias

    2014-01-01

    Glandular epithelial cells differentiate into complex multicellular or acinar structures, when embedded in three-dimensional (3D) extracellular matrix. The spectrum of different multicellular morphologies formed in 3D is a sensitive indicator for the differentiation potential of normal, non-transformed cells compared to different stages of malignant progression. In addition, single cells or cell aggregates may actively invade the matrix, utilizing epithelial, mesenchymal or mixed modes of motility. Dynamic phenotypic changes involved in 3D tumor cell invasion are sensitive to specific small-molecule inhibitors that target the actin cytoskeleton. We have used a panel of inhibitors to demonstrate the power of automated image analysis as a phenotypic or morphometric readout in cell-based assays. We introduce a streamlined stand-alone software solution that supports large-scale high-content screens, based on complex and organotypic cultures. AMIDA (Automated Morphometric Image Data Analysis) allows quantitative measurements of large numbers of images and structures, with a multitude of different spheroid shapes, sizes, and textures. AMIDA supports an automated workflow, and can be combined with quality control and statistical tools for data interpretation and visualization. We have used a representative panel of 12 prostate and breast cancer lines that display a broad spectrum of different spheroid morphologies and modes of invasion, challenged by a library of 19 direct or indirect modulators of the actin cytoskeleton which induce systematic changes in spheroid morphology and differentiation versus invasion. These results were independently validated by 2D proliferation, apoptosis and cell motility assays. We identified three drugs that primarily attenuated the invasion and formation of invasive processes in 3D, without affecting proliferation or apoptosis. Two of these compounds block Rac signalling, one affects cellular cAMP/cGMP accumulation. Our approach supports

  19. 3D CT Imaging for Craniofacial Analysis Based on Anatomical Regions.

    PubMed

    Wan Harun, W A R; Ahmad Rajion, Zainul; Abdul Aziz, Izhar; Rani Samsudin, Abdul

    2005-01-01

    The development of a craniofacial database is a multidisciplinary initiative that will provide an important reference for community, security, social and medical applications. A method of landmark identifications and measurements in 3d on craniofacial patients is described. anatomical regions such as mandible, orbits, zygoma and maxilla are located, created and stored as templates of 3D CAD files for subsequent analysis. Data from these images were tested for accuracy and repeatability by comparing with direct measurements using caliper and CMM. The landmark points are reproducible in CAD system for further analysis. it was found that the approach provides a fast, accurate and efficient method for landmarks identification of the craniofacial areas in database development. PMID:17282309

  20. 3D imaging for ballistics analysis using chromatic white light sensor

    NASA Astrophysics Data System (ADS)

    Makrushin, Andrey; Hildebrandt, Mario; Dittmann, Jana; Clausing, Eric; Fischer, Robert; Vielhauer, Claus

    2012-03-01

    The novel application of sensing technology, based on chromatic white light (CWL), gives a new insight into ballistic analysis of cartridge cases. The CWL sensor uses a beam of white light to acquire highly detailed topography and luminance data simultaneously. The proposed 3D imaging system combines advantages of 3D and 2D image processing algorithms in order to automate the extraction of firearm specific toolmarks shaped on fired specimens. The most important characteristics of a fired cartridge case are the type of the breech face marking as well as size, shape and location of extractor, ejector and firing pin marks. The feature extraction algorithm normalizes the casing surface and consistently searches for the appropriate distortions on the rim and on the primer. The location of the firing pin mark in relation to the lateral scratches on the rim provides unique rotation invariant characteristics of the firearm mechanisms. Additional characteristics are the volume and shape of the firing pin mark. The experimental evaluation relies on the data set of 15 cartridge cases fired from three 9mm firearms of different manufacturers. The results show very high potential of 3D imaging systems for casing-based computer-aided firearm identification, which is prospectively going to support human expertise.

  1. A Workstation for Interactive Display and Quantitative Analysis of 3-D and 4-D Biomedical Images

    PubMed Central

    Robb, R.A.; Heffeman, P.B.; Camp, J.J.; Hanson, D.P.

    1986-01-01

    The capability to extract objective and quantitatively accurate information from 3-D radiographic biomedical images has not kept pace with the capabilities to produce the images themselves. This is rather an ironic paradox, since on the one hand the new 3-D and 4-D imaging capabilities promise significant potential for providing greater specificity and sensitivity (i.e., precise objective discrimination and accurate quantitative measurement of body tissue characteristics and function) in clinical diagnostic and basic investigative imaging procedures than ever possible before, but on the other hand, the momentous advances in computer and associated electronic imaging technology which have made these 3-D imaging capabilities possible have not been concomitantly developed for full exploitation of these capabilities. Therefore, we have developed a powerful new microcomputer-based system which permits detailed investigations and evaluation of 3-D and 4-D (dynamic 3-D) biomedical images. The system comprises a special workstation to which all the information in a large 3-D image data base is accessible for rapid display, manipulation, and measurement. The system provides important capabilities for simultaneously representing and analyzing both structural and functional data and their relationships in various organs of the body. This paper provides a detailed description of this system, as well as some of the rationale, background, theoretical concepts, and practical considerations related to system implementation. ImagesFigure 5Figure 7Figure 8Figure 9Figure 10Figure 11Figure 12Figure 13Figure 14Figure 15Figure 16

  2. Noise analysis for near field 3-D FM-CW radar imaging systems

    SciTech Connect

    Sheen, David M.

    2015-06-19

    Near field radar imaging systems are used for several applications including concealed weapon detection in airports and other high-security venues. Despite the near-field operation, phase noise and thermal noise can limit the performance in several ways including reduction in system sensitivity and reduction of image dynamic range. In this paper, the effects of thermal noise, phase noise, and processing gain are analyzed in the context of a near field 3-D FM-CW imaging radar as might be used for concealed weapon detection. In addition to traditional frequency domain analysis, a time-domain simulation is employed to graphically demonstrate the effect of these noise sources on a fast-chirping FM-CW system.

  3. Autofocus for 3D imaging

    NASA Astrophysics Data System (ADS)

    Lee-Elkin, Forest

    2008-04-01

    Three dimensional (3D) autofocus remains a significant challenge for the development of practical 3D multipass radar imaging. The current 2D radar autofocus methods are not readily extendable across sensor passes. We propose a general framework that allows a class of data adaptive solutions for 3D auto-focus across passes with minimal constraints on the scene contents. The key enabling assumption is that portions of the scene are sparse in elevation which reduces the number of free variables and results in a system that is simultaneously solved for scatterer heights and autofocus parameters. The proposed method extends 2-pass interferometric synthetic aperture radar (IFSAR) methods to an arbitrary number of passes allowing the consideration of scattering from multiple height locations. A specific case from the proposed autofocus framework is solved and demonstrates autofocus and coherent multipass 3D estimation across the 8 passes of the "Gotcha Volumetric SAR Data Set" X-Band radar data.

  4. Breast Density Analysis with Automated Whole-Breast Ultrasound: Comparison with 3-D Magnetic Resonance Imaging.

    PubMed

    Chen, Jeon-Hor; Lee, Yan-Wei; Chan, Si-Wa; Yeh, Dah-Cherng; Chang, Ruey-Feng

    2016-05-01

    In this study, a semi-automatic breast segmentation method was proposed on the basis of the rib shadow to extract breast regions from 3-D automated whole-breast ultrasound (ABUS) images. The density results were correlated with breast density values acquired with 3-D magnetic resonance imaging (MRI). MRI images of 46 breasts were collected from 23 women without a history of breast disease. Each subject also underwent ABUS. We used Otsu's thresholding method on ABUS images to obtain local rib shadow information, which was combined with the global rib shadow information (extracted from all slice projections) and integrated with the anatomy's breast tissue structure to determine the chest wall line. The fuzzy C-means classifier was used to extract the fibroglandular tissues from the acquired images. Whole-breast volume (WBV) and breast percentage density (BPD) were calculated in both modalities. Linear regression was used to compute the correlation of density results between the two modalities. The consistency of density measurement was also analyzed on the basis of intra- and inter-operator variation. There was a high correlation of density results between MRI and ABUS (R(2) = 0.798 for WBV, R(2) = 0.825 for PBD). The mean WBV from ABUS images was slightly smaller than the mean WBV from MR images (MRI: 342.24 ± 128.08 cm(3), ABUS: 325.47 ± 136.16 cm(3), p < 0.05). In addition, the BPD calculated from MR images was smaller than the BPD from ABUS images (MRI: 24.71 ± 15.16%, ABUS: 28.90 ± 17.73%, p < 0.05). The intra-operator and inter-operator variant analysis results indicated that there was no statistically significant difference in breast density measurement variation between the two modalities. Our results revealed a high correlation in WBV and BPD between MRI and ABUS. Our study suggests that ABUS provides breast density information useful in the assessment of breast health. PMID:26831342

  5. Breast Density Analysis with Automated Whole-Breast Ultrasound: Comparison with 3-D Magnetic Resonance Imaging.

    PubMed

    Chen, Jeon-Hor; Lee, Yan-Wei; Chan, Si-Wa; Yeh, Dah-Cherng; Chang, Ruey-Feng

    2016-05-01

    In this study, a semi-automatic breast segmentation method was proposed on the basis of the rib shadow to extract breast regions from 3-D automated whole-breast ultrasound (ABUS) images. The density results were correlated with breast density values acquired with 3-D magnetic resonance imaging (MRI). MRI images of 46 breasts were collected from 23 women without a history of breast disease. Each subject also underwent ABUS. We used Otsu's thresholding method on ABUS images to obtain local rib shadow information, which was combined with the global rib shadow information (extracted from all slice projections) and integrated with the anatomy's breast tissue structure to determine the chest wall line. The fuzzy C-means classifier was used to extract the fibroglandular tissues from the acquired images. Whole-breast volume (WBV) and breast percentage density (BPD) were calculated in both modalities. Linear regression was used to compute the correlation of density results between the two modalities. The consistency of density measurement was also analyzed on the basis of intra- and inter-operator variation. There was a high correlation of density results between MRI and ABUS (R(2) = 0.798 for WBV, R(2) = 0.825 for PBD). The mean WBV from ABUS images was slightly smaller than the mean WBV from MR images (MRI: 342.24 ± 128.08 cm(3), ABUS: 325.47 ± 136.16 cm(3), p < 0.05). In addition, the BPD calculated from MR images was smaller than the BPD from ABUS images (MRI: 24.71 ± 15.16%, ABUS: 28.90 ± 17.73%, p < 0.05). The intra-operator and inter-operator variant analysis results indicated that there was no statistically significant difference in breast density measurement variation between the two modalities. Our results revealed a high correlation in WBV and BPD between MRI and ABUS. Our study suggests that ABUS provides breast density information useful in the assessment of breast health.

  6. Segmentation of vascular structures and hematopoietic cells in 3D microscopy images and quantitative analysis

    NASA Astrophysics Data System (ADS)

    Mu, Jian; Yang, Lin; Kamocka, Malgorzata M.; Zollman, Amy L.; Carlesso, Nadia; Chen, Danny Z.

    2015-03-01

    In this paper, we present image processing methods for quantitative study of how the bone marrow microenvironment changes (characterized by altered vascular structure and hematopoietic cell distribution) caused by diseases or various factors. We develop algorithms that automatically segment vascular structures and hematopoietic cells in 3-D microscopy images, perform quantitative analysis of the properties of the segmented vascular structures and cells, and examine how such properties change. In processing images, we apply local thresholding to segment vessels, and add post-processing steps to deal with imaging artifacts. We propose an improved watershed algorithm that relies on both intensity and shape information and can separate multiple overlapping cells better than common watershed methods. We then quantitatively compute various features of the vascular structures and hematopoietic cells, such as the branches and sizes of vessels and the distribution of cells. In analyzing vascular properties, we provide algorithms for pruning fake vessel segments and branches based on vessel skeletons. Our algorithms can segment vascular structures and hematopoietic cells with good quality. We use our methods to quantitatively examine the changes in the bone marrow microenvironment caused by the deletion of Notch pathway. Our quantitative analysis reveals property changes in samples with deleted Notch pathway. Our tool is useful for biologists to quantitatively measure changes in the bone marrow microenvironment, for developing possible therapeutic strategies to help the bone marrow microenvironment recovery.

  7. F3D Image Processing and Analysis for Many - and Multi-core Platforms

    SciTech Connect

    2014-10-01

    F3D is written in OpenCL, so it achieve[sic] platform-portable parallelism on modern mutli-core CPUs and many-core GPUs. The interface and mechanims to access F3D core are written in Java as a plugin for Fiji/ImageJ to deliver several key image-processing algorithms necessary to remove artifacts from micro-tomography data. The algorithms consist of data parallel aware filters that can efficiently utilizes[sic] resources and can work on out of core datasets and scale efficiently across multiple accelerators. Optimizing for data parallel filters, streaming out of core datasets, and efficient resource and memory and data managements over complex execution sequence of filters greatly expedites any scientific workflow with image processing requirements. F3D performs several different types of 3D image processing operations, such as non-linear filtering using bilateral filtering and/or median filtering and/or morphological operators (MM). F3D gray-level MM operators are one-pass constant time methods that can perform morphological transformations with a line-structuring element oriented in discrete directions. Additionally, MM operators can be applied to gray-scale images, and consist of two parts: (a) a reference shape or structuring element, which is translated over the image, and (b) a mechanism, or operation, that defines the comparisons to be performed between the image and the structuring element. This tool provides a critical component within many complex pipelines such as those for performing automated segmentation of image stacks. F3D is also called a "descendent" of Quant-CT, another software we developed in the past. These two modules are to be integrated in a next version. Further details were reported in: D.M. Ushizima, T. Perciano, H. Krishnan, B. Loring, H. Bale, D. Parkinson, and J. Sethian. Structure recognition from high-resolution images of ceramic composites. IEEE International Conference on Big Data, October 2014.

  8. Automated diagnosis of fetal alcohol syndrome using 3D facial image analysis

    PubMed Central

    Fang, Shiaofen; McLaughlin, Jason; Fang, Jiandong; Huang, Jeffrey; Autti-Rämö, Ilona; Fagerlund, Åse; Jacobson, Sandra W.; Robinson, Luther K.; Hoyme, H. Eugene; Mattson, Sarah N.; Riley, Edward; Zhou, Feng; Ward, Richard; Moore, Elizabeth S.; Foroud, Tatiana

    2012-01-01

    Objectives Use three-dimensional (3D) facial laser scanned images from children with fetal alcohol syndrome (FAS) and controls to develop an automated diagnosis technique that can reliably and accurately identify individuals prenatally exposed to alcohol. Methods A detailed dysmorphology evaluation, history of prenatal alcohol exposure, and 3D facial laser scans were obtained from 149 individuals (86 FAS; 63 Control) recruited from two study sites (Cape Town, South Africa and Helsinki, Finland). Computer graphics, machine learning, and pattern recognition techniques were used to automatically identify a set of facial features that best discriminated individuals with FAS from controls in each sample. Results An automated feature detection and analysis technique was developed and applied to the two study populations. A unique set of facial regions and features were identified for each population that accurately discriminated FAS and control faces without any human intervention. Conclusion Our results demonstrate that computer algorithms can be used to automatically detect facial features that can discriminate FAS and control faces. PMID:18713153

  9. Assessment of a nanocrystal 3-D morphology by the analysis of single HAADF-HRSTEM images

    PubMed Central

    2013-01-01

    This work presents the morphological characterization of CeO2 nanocrystals by the analysis of single unfiltered high-angle annular dark-field (HAADF)-high-resolution scanning transmission electron microscopy (HRSTEM) images. The thickness of each individual atomic column is estimated by the classification of its HAADF integrated intensity using a Gaussian mixture model. The resulting thickness maps obtained from two example nanocrystals with distinct morphology were analyzed with aid of the symmetry from the CeO2 crystallographic structure, providing an approximation for their 3-D morphology with high spatial resolution. A confidence level of ±1 atom per atomic column along the viewing direction on the thickness estimation is indicated by the use of multislice image simulation. The described characterization procedure stands out as a simple approach for retrieving morphological parameters of individual nanocrystals, such as volume and specific surface areas for different crystalline planes. The procedure is an alternative to the tilt-series tomography technique for a number of nanocrystalline systems, since its application does not require the acquisition of multiple images from the same nanocrystal along different zone axes. PMID:24225330

  10. F3D Image Processing and Analysis for Many - and Multi-core Platforms

    2014-10-01

    F3D is written in OpenCL, so it achieve[sic] platform-portable parallelism on modern mutli-core CPUs and many-core GPUs. The interface and mechanims to access F3D core are written in Java as a plugin for Fiji/ImageJ to deliver several key image-processing algorithms necessary to remove artifacts from micro-tomography data. The algorithms consist of data parallel aware filters that can efficiently utilizes[sic] resources and can work on out of core datasets and scale efficiently across multiple accelerators. Optimizingmore » for data parallel filters, streaming out of core datasets, and efficient resource and memory and data managements over complex execution sequence of filters greatly expedites any scientific workflow with image processing requirements. F3D performs several different types of 3D image processing operations, such as non-linear filtering using bilateral filtering and/or median filtering and/or morphological operators (MM). F3D gray-level MM operators are one-pass constant time methods that can perform morphological transformations with a line-structuring element oriented in discrete directions. Additionally, MM operators can be applied to gray-scale images, and consist of two parts: (a) a reference shape or structuring element, which is translated over the image, and (b) a mechanism, or operation, that defines the comparisons to be performed between the image and the structuring element. This tool provides a critical component within many complex pipelines such as those for performing automated segmentation of image stacks. F3D is also called a "descendent" of Quant-CT, another software we developed in the past. These two modules are to be integrated in a next version. Further details were reported in: D.M. Ushizima, T. Perciano, H. Krishnan, B. Loring, H. Bale, D. Parkinson, and J. Sethian. Structure recognition from high-resolution images of ceramic composites. IEEE International Conference on Big Data, October 2014.« less

  11. Noise analysis for near-field 3D FM-CW radar imaging systems

    NASA Astrophysics Data System (ADS)

    Sheen, David M.

    2015-05-01

    Near field radar imaging systems are used for demanding security applications including concealed weapon detection in airports and other high-security venues. Despite the near-field operation, phase noise and thermal noise can limit performance in several ways. Practical imaging systems can employ arrays with low gain antennas and relatively large signal distribution networks that have substantial losses which limit transmit power and increase the effective noise figure of the receiver chain, resulting in substantial thermal noise. Phase noise can also limit system performance. The signal coupled from transmitter to receiver is much larger than expected target signals. Phase noise from this coupled signal can set the system noise floor if the oscillator is too noisy. Frequency modulated continuous wave (FM-CW) radar transceivers used in short range systems are relatively immune to the effects of the coupled phase noise due to range correlation effects. This effect can reduce the phase-noise floor such that it is below the thermal noise floor for moderate performance oscillators. Phase noise is also manifested in the range response around bright targets, and can cause smaller targets to be obscured. Noise in synthetic aperture imaging systems is mitigated by the processing gain of the system. In this paper, the effects of thermal noise, phase noise, and processing gain are analyzed in the context of a near field 3-D FM-CW imaging radar as might be used for concealed weapon detection. In addition to traditional frequency domain analysis, a time-domain simulation is employed to graphically demonstrate the effect of these noise sources on a fast-chirping FM-CW system.

  12. Fibrillogenesis from nanosurfaces: multiphoton imaging and stereological analysis of collagen 3D self-assembly dynamics.

    PubMed

    Bancelin, Stéphane; Decencière, Etienne; Machairas, Vaïa; Albert, Claire; Coradin, Thibaud; Schanne-Klein, Marie-Claire; Aimé, Carole

    2014-09-21

    The assembly of proteins into fibrillar structures is an important process that concerns different biological contexts, including molecular medicine and functional biomaterials. Engineering of hybrid biomaterials can advantageously provide synergetic interactions of the biopolymers with an inorganic component to ensure specific supramolecular organization and dynamics. To this aim, we designed hybrid systems associating collagen and surface-functionalized silica particles and we built a new strategy to investigate fibrillogenesis processes in such multicomponents systems, working at the crossroads of chemistry, physics and mathematics. The self-assembly process was investigated by bimodal multiphoton imaging coupling second harmonic generation (SHG) and 2 photon excited fluorescence (2PEF). The in-depth spatial characterization of the system was further achieved using the three-dimensional analysis of the SHG/2PEF data via mathematical morphology processing. Quantitation of collagen distribution around particles offers strong evidence that the chemically induced confinement of the protein on the silica nanosurfaces has a key influence on the spatial extension of fibrillogenesis. This new approach is unique in the information it can provide on 3D dynamic hybrid systems and may be extended to other associations of fibrillar molecules with optically responsive nano-objects. PMID:25058449

  13. Miniaturized 3D microscope imaging system

    NASA Astrophysics Data System (ADS)

    Lan, Yung-Sung; Chang, Chir-Weei; Sung, Hsin-Yueh; Wang, Yen-Chang; Chang, Cheng-Yi

    2015-05-01

    We designed and assembled a portable 3-D miniature microscopic image system with the size of 35x35x105 mm3 . By integrating a microlens array (MLA) into the optical train of a handheld microscope, the biological specimen's image will be captured for ease of use in a single shot. With the light field raw data and program, the focal plane can be changed digitally and the 3-D image can be reconstructed after the image was taken. To localize an object in a 3-D volume, an automated data analysis algorithm to precisely distinguish profundity position is needed. The ability to create focal stacks from a single image allows moving or specimens to be recorded. Applying light field microscope algorithm to these focal stacks, a set of cross sections will be produced, which can be visualized using 3-D rendering. Furthermore, we have developed a series of design rules in order to enhance the pixel using efficiency and reduce the crosstalk between each microlens for obtain good image quality. In this paper, we demonstrate a handheld light field microscope (HLFM) to distinguish two different color fluorescence particles separated by a cover glass in a 600um range, show its focal stacks, and 3-D position.

  14. Analysis of the KROTOS KFC test by coupling X-Ray image analysis and MC3D calculations

    SciTech Connect

    Brayer, C.; Charton, A.; Grishchenko, D.; Fouquart, P.; Bullado, Y.; Compagnon, F.; Correggio, P.; Cassiaut-Louis, N.; Piluso, P.

    2012-07-01

    During a hypothetical severe accident sequence in a Pressurized Water Reactor (PWR), the hot molten materials (corium) issuing from the degraded reactor core may generate a steam explosion if they come in contact with water and may damage the structures and threaten the reactor integrity. The SERENA program is an international OECD project that aims at helping the understanding of this phenomenon also called Fuel Coolant Interaction (FCI) by providing data. CEA takes part in this program by performing tests in its KROTOS facility where steam explosions using prototypic corium can be triggered. Data about the different phases in the premixing are extracted from the KROTOS X-Ray radioscopy images by using KIWI software (KROTOS Image analysis of Water-corium Interaction) currently developed by CEA. The MC3D code, developed by IRSN, is a thermal-hydraulic multiphase code mainly dedicated to FCI studies. It is composed of two applications: premixing and explosion. An overall FCI calculation with MC3D requires a premixing calculation followed by an explosion calculation. The present paper proposes an alternative approach in which all the features of the premixing are extracted from the X-Ray pictures using the KIWI software and transferred to an MC3D dataset for a direct simulation of the explosion. The main hypothesis are discussed as well as the first explosion results obtained with MC3D for the KROTOS KFC test. These results are rather encouraging and are analyzed on the basis of comparisons with the experimental data. (authors)

  15. 3D Myocardial Contraction Imaging Based on Dynamic Grid Interpolation: Theory and Simulation Analysis

    NASA Astrophysics Data System (ADS)

    Bu, Shuhui; Shiina, Tsuyoshi; Yamakawa, Makoto; Takizawa, Hotaka

    Accurate assessment of local myocardial contraction is important for diagnosis of ischemic heart disease, because decreases of myocardial motion often appear in the early stages of the disease. Three-dimensional (3-D) assessment of the stiffness distribution is required for accurate diagnosis of ischemic heart disease. Since myocardium motion occurs radially within the left ventricle wall and the ultrasound beam propagates axially, conventional approaches, such as tissue Doppler imaging and strain-rate imaging techniques, cannot provide us with enough quantitative information about local myocardial contraction. In order to resolve this problem, we propose a novel myocardial contraction imaging system which utilizes the weighted phase gradient method, the extended combined autocorrelation method, and the dynamic grid interpolation (DGI) method. From the simulation results, we conclude that the strain image's accuracy and contrast have been improved by the proposed method.

  16. Heart wall motion analysis by dynamic 3D strain rate imaging from tissue Doppler echocardiography

    NASA Astrophysics Data System (ADS)

    Hastenteufel, Mark; Wolf, Ivo; de Simone, Raffaele; Mottl-Link, Sibylle; Meinzer, Hans-Peter

    2002-04-01

    The knowledge about the complex three-dimensional (3D) heart wall motion pattern, particular in the left ventricle, provides valuable information about potential malfunctions, e.g., myocardial ischemia. Nowadays, echocardiography (cardiac ultrasound) is the predominant technique for evaluation of cardiac function. Beside morphology, tissue velocities can be obtained by Doppler techniques (tissue Doppler imaging, TDI). Strain rate imaging (SRI) is a new technique to diagnose heart vitality. It provides information about the contraction ability of the myocardium. Two-dimensional color Doppler echocardiography is still the most important clinical method for estimation of morphology and function. Two-dimensional methods leads to a lack of information due to the three-dimensional overall nature of the heart movement. Due to this complex three-dimensional motion pattern of the heart, the knowledge about velocity and strain rate distribution over the whole ventricle can provide more valuable diagnostic information about motion disorders. For the assessment of intracardiac blood flow three-dimensional color Doppler has already shown its clinical utility. We have developed methods to produce strain rate images by means of 3D tissue Doppler echocardiography. The tissue Doppler and strain rate images can be visualized and quantified by different methods. The methods are integrated into an interactively usable software environment, making them available in clinical everyday life. Our software provides the physician with a valuable tool for diagnosis of heart wall motion.

  17. Acquisition and applications of 3D images

    NASA Astrophysics Data System (ADS)

    Sterian, Paul; Mocanu, Elena

    2007-08-01

    The moiré fringes method and their analysis up to medical and entertainment applications are discussed in this paper. We describe the procedure of capturing 3D images with an Inspeck Camera that is a real-time 3D shape acquisition system based on structured light techniques. The method is a high-resolution one. After processing the images, using computer, we can use the data for creating laser fashionable objects by engraving them with a Q-switched Nd:YAG. In medical field we mention the plastic surgery and the replacement of X-Ray especially in pediatric use.

  18. Nondestructive 3D confocal laser imaging with deconvolution of seven whole stardust tracks with complementary XRF and quantitative analysis

    SciTech Connect

    Greenberg, M.; Ebel, D.S.

    2009-03-19

    We present a nondestructive 3D system for analysis of whole Stardust tracks, using a combination of Laser Confocal Scanning Microscopy and synchrotron XRF. 3D deconvolution is used for optical corrections, and results of quantitative analyses of several tracks are presented. The Stardust mission to comet Wild 2 trapped many cometary and ISM particles in aerogel, leaving behind 'tracks' of melted silica aerogel on both sides of the collector. Collected particles and their tracks range in size from submicron to millimeter scale. Interstellar dust collected on the obverse of the aerogel collector is thought to have an average track length of {approx}15 {micro}m. It has been our goal to perform a total non-destructive 3D textural and XRF chemical analysis on both types of tracks. To that end, we use a combination of Laser Confocal Scanning Microscopy (LCSM) and X Ray Florescence (XRF) spectrometry. Utilized properly, the combination of 3D optical data and chemical data provides total nondestructive characterization of full tracks, prior to flattening or other destructive analysis methods. Our LCSM techniques allow imaging at 0.075 {micro}m/pixel, without the use of oil-based lenses. A full textural analysis on track No.82 is presented here as well as analysis of 6 additional tracks contained within 3 keystones (No.128, No.129 and No.140). We present a method of removing the axial distortion inherent in LCSM images, by means of a computational 3D Deconvolution algorithm, and present some preliminary experiments with computed point spread functions. The combination of 3D LCSM data and XRF data provides invaluable information, while preserving the integrity of the samples for further analysis. It is imperative that these samples, the first extraterrestrial solids returned since the Apollo era, be fully mapped nondestructively in 3D, to preserve the maximum amount of information prior to other, destructive analysis.

  19. Automated detection, 3D segmentation and analysis of high resolution spine MR images using statistical shape models

    NASA Astrophysics Data System (ADS)

    Neubert, A.; Fripp, J.; Engstrom, C.; Schwarz, R.; Lauer, L.; Salvado, O.; Crozier, S.

    2012-12-01

    Recent advances in high resolution magnetic resonance (MR) imaging of the spine provide a basis for the automated assessment of intervertebral disc (IVD) and vertebral body (VB) anatomy. High resolution three-dimensional (3D) morphological information contained in these images may be useful for early detection and monitoring of common spine disorders, such as disc degeneration. This work proposes an automated approach to extract the 3D segmentations of lumbar and thoracic IVDs and VBs from MR images using statistical shape analysis and registration of grey level intensity profiles. The algorithm was validated on a dataset of volumetric scans of the thoracolumbar spine of asymptomatic volunteers obtained on a 3T scanner using the relatively new 3D T2-weighted SPACE pulse sequence. Manual segmentations and expert radiological findings of early signs of disc degeneration were used in the validation. There was good agreement between manual and automated segmentation of the IVD and VB volumes with the mean Dice scores of 0.89 ± 0.04 and 0.91 ± 0.02 and mean absolute surface distances of 0.55 ± 0.18 mm and 0.67 ± 0.17 mm respectively. The method compares favourably to existing 3D MR segmentation techniques for VBs. This is the first time IVDs have been automatically segmented from 3D volumetric scans and shape parameters obtained were used in preliminary analyses to accurately classify (100% sensitivity, 98.3% specificity) disc abnormalities associated with early degenerative changes.

  20. Semi-automated 3D Leaf Reconstruction and Analysis of Trichome Patterning from Light Microscopic Images

    PubMed Central

    Schrader, Andrea; Hülskamp, Martin; Tresch, Achim

    2013-01-01

    Trichomes are leaf hairs that are formed by single cells on the leaf surface. They are known to be involved in pathogen resistance. Their patterning is considered to emerge from a field of initially equivalent cells through the action of a gene regulatory network involving trichome fate promoting and inhibiting factors. For a quantitative analysis of single and double mutants or the phenotypic variation of patterns in different ecotypes, it is imperative to statistically evaluate the pattern reliably on a large number of leaves. Here we present a method that enables the analysis of trichome patterns at early developmental leaf stages and the automatic analysis of various spatial parameters. We focus on the most challenging young leaf stages that require the analysis in three dimensions, as the leaves are typically not flat. Our software TrichEratops reconstructs 3D surface models from 2D stacks of conventional light-microscope pictures. It allows the GUI-based annotation of different stages of trichome development, which can be analyzed with respect to their spatial distribution to capture trichome patterning events. We show that 3D modeling removes biases of simpler 2D models and that novel trichome patterning features increase the sensitivity for inter-accession comparisons. PMID:23637587

  1. Semi-automated 3D leaf reconstruction and analysis of trichome patterning from light microscopic images.

    PubMed

    Failmezger, Henrik; Jaegle, Benjamin; Schrader, Andrea; Hülskamp, Martin; Tresch, Achim

    2013-04-01

    Trichomes are leaf hairs that are formed by single cells on the leaf surface. They are known to be involved in pathogen resistance. Their patterning is considered to emerge from a field of initially equivalent cells through the action of a gene regulatory network involving trichome fate promoting and inhibiting factors. For a quantitative analysis of single and double mutants or the phenotypic variation of patterns in different ecotypes, it is imperative to statistically evaluate the pattern reliably on a large number of leaves. Here we present a method that enables the analysis of trichome patterns at early developmental leaf stages and the automatic analysis of various spatial parameters. We focus on the most challenging young leaf stages that require the analysis in three dimensions, as the leaves are typically not flat. Our software TrichEratops reconstructs 3D surface models from 2D stacks of conventional light-microscope pictures. It allows the GUI-based annotation of different stages of trichome development, which can be analyzed with respect to their spatial distribution to capture trichome patterning events. We show that 3D modeling removes biases of simpler 2D models and that novel trichome patterning features increase the sensitivity for inter-accession comparisons.

  2. Quantitative Analysis of Vascular Heterogeneity in Breast Lesions Using Contrast-Enhanced 3-D Harmonic and Subharmonic Ultrasound Imaging

    PubMed Central

    Sridharan, Anush; Eisenbrey, John R.; Machado, Priscilla; Ojeda-Fournier, Haydee; Wilkes, Annina; Sevrukov, Alexander; Mattrey, Robert F.; Wallace, Kirk; Chalek, Carl L.; Thomenius, Kai E.; Forsberg, Flemming

    2015-01-01

    Ability to visualize breast lesion vascularity and quantify the vascular heterogeneity using contrast-enhanced 3-D harmonic (HI) and subharmonic (SHI) ultrasound imaging was investigated in a clinical population. Patients (n = 134) identified with breast lesions on mammography were scanned using power Doppler imaging, contrast-enhanced 3-D HI, and 3-D SHI on a modified Logiq 9 scanner (GE Healthcare). A region of interest corresponding to ultrasound contrast agent flow was identified in 4D View (GE Medical Systems) and mapped to raw slice data to generate a map of time-intensity curves for the lesion volume. Time points corresponding to baseline, peak intensity, and washout of ultrasound contrast agent were identified and used to generate and compare vascular heterogeneity plots for malignant and benign lesions. Vascularity was observed with power Doppler imaging in 84 lesions (63 benign and 21 malignant). The 3-D HI showed flow in 8 lesions (5 benign and 3 malignant), whereas 3-D SHI visualized flow in 68 lesions (49 benign and 19 malignant). Analysis of vascular heterogeneity in the 3-D SHI volumes found benign lesions having a significant difference in vascularity between central and peripheral sections (1.71 ± 0.96 vs. 1.13 ± 0.79 dB, p < 0.001, respectively), whereas malignant lesions showed no difference (1.66 ± 1.39 vs. 1.24 ± 1.14 dB, p = 0.24), indicative of more vascular coverage. These preliminary results suggest quantitative evaluation of vascular heterogeneity in breast lesions using contrast-enhanced 3-D SHI is feasible and able to detect variations in vascularity between central and peripheral sections for benign and malignant lesions. PMID:25935933

  3. Local plate/rod descriptors of 3D trabecular bone micro-CT images from medial axis topologic analysis

    SciTech Connect

    Peyrin, Francoise; Attali, Dominique; Chappard, Christine; Benhamou, Claude Laurent

    2010-08-15

    Purpose: Trabecular bone microarchitecture is made of a complex network of plate and rod structures evolving with age and disease. The purpose of this article is to propose a new 3D local analysis method for the quantitative assessment of parameters related to the geometry of trabecular bone microarchitecture. Methods: The method is based on the topologic classification of the medial axis of the 3D image into branches, rods, and plates. Thanks to the reversibility of the medial axis, the classification is next extended to the whole 3D image. Finally, the percentages of rods and plates as well as their mean thicknesses are calculated. The method was applied both to simulated test images and 3D micro-CT images of human trabecular bone. Results: The classification of simulated phantoms made of plates and rods shows that the maximum error in the quantitative percentages of plate and rods is less than 6% and smaller than with the structure model index (SMI). Micro-CT images of human femoral bone taken in osteoporosis and early or advanced osteoarthritis were analyzed. Despite the large physiological variability, the present method avoids the underestimation of rods observed with other local methods. The relative percentages of rods and plates were not significantly different between osteoarthritis and osteoporotic groups, whereas their absolute percentages were in relation to an increase of rod and plate thicknesses in advanced osteoarthritis with also higher relative and absolute number of nodes. Conclusions: The proposed method is model-independent, robust to surface irregularities, and enables geometrical characterization of not only skeletal structures but entire 3D images. Its application provided more accurate results than the standard SMI on simple simulated phantoms, but the discrepancy observed on the advanced osteoarthritis group raises questions that will require further investigations. The systematic use of such a local method in the characterization of

  4. Three-dimensional analysis of alveolar bone resorption by image processing of 3-D dental CT images

    NASA Astrophysics Data System (ADS)

    Nagao, Jiro; Kitasaka, Takayuki; Mori, Kensaku; Suenaga, Yasuhito; Yamada, Shohzoh; Naitoh, Munetaka

    2006-03-01

    We have developed a novel system that provides total support for assessment of alveolar bone resorption, caused by periodontitis, based on three-dimensional (3-D) dental CT images. In spite of the difficulty in perceiving the complex 3-D shape of resorption, dentists assessing resorption location and severity have been relying on two-dimensional radiography and probing, which merely provides one-dimensional information (depth) about resorption shape. However, there has been little work on assisting assessment of the disease by 3-D image processing and visualization techniques. This work provides quantitative evaluation results and figures for our system that measures the three-dimensional shape and spread of resorption. It has the following functions: (1) measures the depth of resorption by virtually simulating probing in the 3-D CT images, taking advantage of image processing of not suffering obstruction by teeth on the inter-proximal sides and much smaller measurement intervals than the conventional examination; (2) visualizes the disposition of the depth by movies and graphs; (3) produces a quantitative index and intuitive visual representation of the spread of resorption in the inter-radicular region in terms of area; and (4) calculates the volume of resorption as another severity index in the inter-radicular region and the region outside it. Experimental results in two cases of 3-D dental CT images and a comparison of the results with the clinical examination results and experts' measurements of the corresponding patients confirmed that the proposed system gives satisfying results, including 0.1 to 0.6mm of resorption measurement (probing) error and fairly intuitive presentation of measurement and calculation results.

  5. Acute effects of delayed reperfusion following myocardial infarction: a 3D x-ray imaging analysis

    NASA Astrophysics Data System (ADS)

    Simari, Robert D.; Bell, M. R.; Pao, Y. C.; Gersh, B. J.; Ritman, Erik L.

    1996-04-01

    Clinical and experimental data suggest that delayed reperfusion of the infarct related artery may limit infarct expansion without increasing myocardial salvage. In order to assess the potential mechanisms involved, an acute closed chest canine model of myocardial infarction and delayed reperfusion was studied. Nineteen dogs underwent 3D computed tomography in the Dynamic Spatial Reconstructor (a fast, volume imaging, CT scanner) at baseline and three and four hours later to estimate left ventricular chamber volumes, global distensibility and regional myocardial stiffness. A control group was scanned without intervention. An occlusion group underwent four hours of coronary artery occlusion. A reperfusion group underwent three hours of coronary artery occlusion followed by one hour of reperfusion. Similar infarct sizes were seen in the occlusion and reperfusion groups. Globally reperfusion was associated with increased left ventricular end diastolic pressure and prolongation of global relaxation. Regionally reperfusion was associated with increased myocardial stiffness, intramyocardial blood volume and wall thickness within the infarct zone relative to the not reperfused myocardium.

  6. Defining new dental phenotypes using 3-D image analysis to enhance discrimination and insights into biological processes

    PubMed Central

    Smith, Richard; Zaitoun, Halla; Coxon, Tom; Karmo, Mayada; Kaur, Gurpreet; Townsend, Grant; Harris, Edward F.; Brook, Alan

    2009-01-01

    Aims In studying aetiological interactions of genetic, epigenetic and environmental factors in normal and abnormal developments of the dentition, methods of measurement have often been limited to maximum mesio-distal and bucco-lingual crown diameters, obtained with hand-held calipers. While this approach has led to many important findings, there are potentially many other informative measurements that can be made to describe dental crown morphology. Advances in digital imaging and computer technology now offer the opportunity to define and measure new dental phenotypes in 3-D that have the potential to provide better anatomical discrimination and clearer insights into the underlying biological processes in dental development. Over recent years, image analysis in 2-D has proved to be a valuable addition to hand-measurement methods but a reliable and rapid 3-D method would increase greatly the morphological information obtainable from natural teeth and dental models. Additional measurements such as crown heights, surface contours, actual surface perimeters and areas, and tooth volumes would maximise our ability to discriminate between samples and to explore more deeply genetic and environmental contributions to observed variation. The research objectives were to investigate the limitations of existing methodologies and to develop and validate new methods for obtaining true 3-D measurements, including curvatures and volumes, in order to enhance discrimination to allow increased differentiation in studies of dental morphology and development. The validity of a new methodology for the 3-D measurement of teeth is compared against an established 2-D system. The intra- and inter-observer reliability of some additional measurements, made possible with a 3-D approach, are also tested. Methods and results From each of 20 study models, the permanent upper right lateral and upper left central incisors were separated and imaged independently by two operators using 2-D image

  7. Quantitative 3D Analysis of Plant Roots Growing in Soil Using Magnetic Resonance Imaging.

    PubMed

    van Dusschoten, Dagmar; Metzner, Ralf; Kochs, Johannes; Postma, Johannes A; Pflugfelder, Daniel; Bühler, Jonas; Schurr, Ulrich; Jahnke, Siegfried

    2016-03-01

    Precise measurements of root system architecture traits are an important requirement for plant phenotyping. Most of the current methods for analyzing root growth require either artificial growing conditions (e.g. hydroponics), are severely restricted in the fraction of roots detectable (e.g. rhizotrons), or are destructive (e.g. soil coring). On the other hand, modalities such as magnetic resonance imaging (MRI) are noninvasive and allow high-quality three-dimensional imaging of roots in soil. Here, we present a plant root imaging and analysis pipeline using MRI together with an advanced image visualization and analysis software toolbox named NMRooting. Pots up to 117 mm in diameter and 800 mm in height can be measured with the 4.7 T MRI instrument used here. For 1.5 l pots (81 mm diameter, 300 mm high), a fully automated system was developed enabling measurement of up to 18 pots per day. The most important root traits that can be nondestructively monitored over time are root mass, length, diameter, tip number, and growth angles (in two-dimensional polar coordinates) and spatial distribution. Various validation measurements for these traits were performed, showing that roots down to a diameter range between 200 μm and 300 μm can be quantitatively measured. Root fresh weight correlates linearly with root mass determined by MRI. We demonstrate the capabilities of MRI and the dedicated imaging pipeline in experimental series performed on soil-grown maize (Zea mays) and barley (Hordeum vulgare) plants.

  8. Quantitative 3D Analysis of Plant Roots Growing in Soil Using Magnetic Resonance Imaging.

    PubMed

    van Dusschoten, Dagmar; Metzner, Ralf; Kochs, Johannes; Postma, Johannes A; Pflugfelder, Daniel; Bühler, Jonas; Schurr, Ulrich; Jahnke, Siegfried

    2016-03-01

    Precise measurements of root system architecture traits are an important requirement for plant phenotyping. Most of the current methods for analyzing root growth require either artificial growing conditions (e.g. hydroponics), are severely restricted in the fraction of roots detectable (e.g. rhizotrons), or are destructive (e.g. soil coring). On the other hand, modalities such as magnetic resonance imaging (MRI) are noninvasive and allow high-quality three-dimensional imaging of roots in soil. Here, we present a plant root imaging and analysis pipeline using MRI together with an advanced image visualization and analysis software toolbox named NMRooting. Pots up to 117 mm in diameter and 800 mm in height can be measured with the 4.7 T MRI instrument used here. For 1.5 l pots (81 mm diameter, 300 mm high), a fully automated system was developed enabling measurement of up to 18 pots per day. The most important root traits that can be nondestructively monitored over time are root mass, length, diameter, tip number, and growth angles (in two-dimensional polar coordinates) and spatial distribution. Various validation measurements for these traits were performed, showing that roots down to a diameter range between 200 μm and 300 μm can be quantitatively measured. Root fresh weight correlates linearly with root mass determined by MRI. We demonstrate the capabilities of MRI and the dedicated imaging pipeline in experimental series performed on soil-grown maize (Zea mays) and barley (Hordeum vulgare) plants. PMID:26729797

  9. Quantitative 3D Analysis of Plant Roots Growing in Soil Using Magnetic Resonance Imaging1[OPEN

    PubMed Central

    Kochs, Johannes; Pflugfelder, Daniel

    2016-01-01

    Precise measurements of root system architecture traits are an important requirement for plant phenotyping. Most of the current methods for analyzing root growth require either artificial growing conditions (e.g. hydroponics), are severely restricted in the fraction of roots detectable (e.g. rhizotrons), or are destructive (e.g. soil coring). On the other hand, modalities such as magnetic resonance imaging (MRI) are noninvasive and allow high-quality three-dimensional imaging of roots in soil. Here, we present a plant root imaging and analysis pipeline using MRI together with an advanced image visualization and analysis software toolbox named NMRooting. Pots up to 117 mm in diameter and 800 mm in height can be measured with the 4.7 T MRI instrument used here. For 1.5 l pots (81 mm diameter, 300 mm high), a fully automated system was developed enabling measurement of up to 18 pots per day. The most important root traits that can be nondestructively monitored over time are root mass, length, diameter, tip number, and growth angles (in two-dimensional polar coordinates) and spatial distribution. Various validation measurements for these traits were performed, showing that roots down to a diameter range between 200 μm and 300 μm can be quantitatively measured. Root fresh weight correlates linearly with root mass determined by MRI. We demonstrate the capabilities of MRI and the dedicated imaging pipeline in experimental series performed on soil-grown maize (Zea mays) and barley (Hordeum vulgare) plants. PMID:26729797

  10. Improving Three-Dimensional (3D) Range Gated Reconstruction Through Time-of-Flight (TOF) Imaging Analysis

    NASA Astrophysics Data System (ADS)

    Chua, S. Y.; Wang, X.; Guo, N.; Tan, C. S.; Chai, T. Y.; Seet, G. L.

    2016-04-01

    This paper performs an experimental investigation on the TOF imaging profile which strongly influences the quality of reconstruction to accomplish accurate range sensing. From our analysis, the reflected intensity profile recorded appears to deviate from Gaussian model which is commonly assumed and can be perceived as a mixture of noises and actual reflected signal. Noise-weighted Average range calculation is therefore proposed to alleviate noise influence based on the signal detection threshold and system noises. From our experimental result, this alternative range solution demonstrates better accuracy as compared to the conventional weighted average method and proven as a para-axial correction to improve range reconstruction in 3D gated imaging system.

  11. 3D ultrafast ultrasound imaging in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra--and inter-observer variability.

  12. 3D ultrafast ultrasound imaging in vivo

    NASA Astrophysics Data System (ADS)

    Provost, Jean; Papadacci, Clement; Esteban Arango, Juan; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra—and inter-observer variability.

  13. 3D ultrafast ultrasound imaging in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra--and inter-observer variability. PMID:25207828

  14. 3D Backscatter Imaging System

    NASA Technical Reports Server (NTRS)

    Turner, D. Clark (Inventor); Whitaker, Ross (Inventor)

    2016-01-01

    Systems and methods for imaging an object using backscattered radiation are described. The imaging system comprises both a radiation source for irradiating an object that is rotationally movable about the object, and a detector for detecting backscattered radiation from the object that can be disposed on substantially the same side of the object as the source and which can be rotationally movable about the object. The detector can be separated into multiple detector segments with each segment having a single line of sight projection through the object and so detects radiation along that line of sight. Thus, each detector segment can isolate the desired component of the backscattered radiation. By moving independently of each other about the object, the source and detector can collect multiple images of the object at different angles of rotation and generate a three dimensional reconstruction of the object. Other embodiments are described.

  15. Biologically relevant 3D tumor arrays: imaging-based methods for quantification of reproducible growth and analysis of treatment response

    NASA Astrophysics Data System (ADS)

    Celli, Jonathan P.; Rizvi, Imran; Blanden, Adam R.; Abu-Yousif, Adnan O.; Spring, Bryan Q.; Hasan, Tayyaba

    2011-02-01

    Three-dimensional in vitro tumor models have emerged as powerful research tools in cancer biology, though the vast potential of these systems as high-throughput, biologically relevant reporters of treatment response has yet to be adequately explored. Here, building on previous studies, we demonstrate the utility of using 3D models for ovarian and pancreatic cancers in conjunction with quantitative image processing to reveal aspects of growth behavior and treatment response that would not be evident without either modeling or quantitative analysis component. In this report we specifically focus on recent improvements in the imaging component of this integrative research platform and emphasize analysis to establish reproducible growth properties in 3D tumor arrays, a key consideration in establishing the utility of this platform as a reliable reporter of therapeutic response. Building on previous studies using automated segmentation of low magnification image fields containing large numbers of nodules to study size dependent treatment effects, we introduce an improvement to this method using multiresolution decomposition to remove gradient background from transmitted light images for more reliable feature identification. This approach facilitates the development of a new treatment response metric, disruption fraction (Dfrac), which quantifies dose dependent distribution shifts from nodular fragmentation induced by cytotoxic therapies. Using this approach we show that PDT treatment is associated with significant dose-dependent increases in Dfrac, while this is not observed with carboplatin treatment. The ability to quantify this response to therapy could play a key role in design of combination regimens involving these two modalities.

  16. 3D Ultrafast Ultrasound Imaging In Vivo

    PubMed Central

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-01-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative real-time imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in three dimensions based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32×32 matrix-array probe. Its capability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3-D Shear-Wave Imaging, 3-D Ultrafast Doppler Imaging and finally 3D Ultrafast combined Tissue and Flow Doppler. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3-D Ultrafast Doppler was used to obtain 3-D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, for the first time, the complex 3-D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, and the 3-D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3-D Ultrafast Ultrasound Imaging for the 3-D real-time mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra- and inter-observer variability. PMID:25207828

  17. 3D imaging of the Corinth rift from a new passive seismic tomography and receiver function analysis

    NASA Astrophysics Data System (ADS)

    Godano, Maxime; Gesret, Alexandrine; Noble, Mark; Lyon-Caen, Hélène; Gautier, Stéphanie; Deschamps, Anne

    2016-04-01

    model and earthquake location. In addition to the tomographic imaging, we perform a preliminary receiver function analysis of teleseismic data recorded by the broadband stations of the CRL network. The RF analysis should provide the interface depths beneath seismometers and increase the imaging resolution of the upper crustal structures provided by the 3D tomography. In this first attempt, we adjust the 1D velocity model that produces a synthetic RF as similar as possible to the observed RF for a subset of data. We compare the identified interfaces with structures imaged by the tomography.

  18. Perception of detail in 3D images

    NASA Astrophysics Data System (ADS)

    Heynderickx, Ingrid; Kaptein, Ronald

    2009-01-01

    A lot of current 3D displays suffer from the fact that their spatial resolution is lower compared to their 2D counterparts. One reason for this is that the multiple views needed to generate 3D are often spatially multiplexed. Besides this, imperfect separation of the left- and right-eye view leads to blurring or ghosting, and therefore to a decrease in perceived sharpness. However, people watching stereoscopic videos have reported that the 3D scene contained more details, compared to the 2D scene with identical spatial resolution. This is an interesting notion, that has never been tested in a systematic and quantitative way. To investigate this effect, we had people compare the amount of detail ("detailedness") in pairs of 2D and 3D images. A blur filter was applied to one of the two images, and the blur level was varied using an adaptive staircase procedure. In this way, the blur threshold for which the 2D and 3D image contained perceptually the same amount of detail could be found. Our results show that the 3D image needed to be blurred more than the 2D image. This confirms the earlier qualitative findings that 3D images contain perceptually more details than 2D images with the same spatial resolution.

  19. Evaluation of 3D imaging.

    PubMed

    Vannier, M W

    2000-10-01

    Interactive computer-based simulation is gaining acceptance for craniofacial surgical planning. Subjective visualization without objective measurement capability, however, severely limits the value of simulation since spatial accuracy must be maintained. This study investigated the error sources involved in one method of surgical simulation evaluation. Linear and angular measurement errors were found to be within +/- 1 mm and 1 degree. Surface match of scanned objects was slightly less accurate, with errors up to 3 voxels and 4 degrees, and Boolean subtraction methods were 93 to 99% accurate. Once validated, these testing methods were applied to objectively compare craniofacial surgical simulations to post-operative outcomes, and verified that the form of simulation used in this study yields accurate depictions of surgical outcome. However, to fully evaluate surgical simulation, future work is still required to test the new methods in sufficient numbers of patients to achieve statistically significant results. Once completely validated, simulation cannot only be used in pre-operative surgical planning, but also as a post-operative descriptor of surgical and traumatic physical changes. Validated image comparison methods can also show discrepancy of surgical outcome to surgical plan, thus allowing evaluation of surgical technique. PMID:11098409

  20. 3D image analysis of plants using electron tomography and micro-CT.

    PubMed

    Mineyuki, Yoshinobu

    2014-11-01

    help to promote MT bundling. Cell plate attachment to the parental wall leads to the fusion of the newly formed middle lamellae in the cell plate to the middle lamella of parental cell wall, and a three-way junction is created. Air space develops from the three-way junction. To determine 3D arrangement of cells and air spaces, we used X-ray micro-CT at the SPring-8 synchrotron radiation facility. Using micro-CT available in BL20XU (8 keV, 0.2 µm/pixel), we were able to elucidate ∼90% of the cortical cell outlines in the hypocotyl-radicle axis of arabidopsis seeds [4] and to analyze cell geometrical properties. As the strength of the system X-ray is too strong for seed survival, we used another beam line BL20B2 (10-15 keV, 2.4-2.7 µm/pixel) to examine air space development during seed imbibition [4,5]. Using this system, we were able to detect air space development at the early imbibition stages of seeds without causing damage during seed germination. AcknowledgmentThe author would like to thank Dr. Ichirou Karahara (Univ. Toyama), Dr. L. Andrew Staehelin (Univ. Colorado), Ms. Naoko Kajimura, Dr. Akio Takaoka (Osaka Univ.), Dr. Kazuyo Misaki, Dr. Shigenobu Yonemura (RIKEN CDB), Dr. Kazuyoshi Murata (NIP), Dr. Kentaro Uesugi, Dr. Akihisa Takeuchi, Dr. Yoshio Suzuki (JASRI), Dr. Miyuki Takeuchi, Dr. Daisuke Tamaoki, Dr. Daisuke Yamauchi, and Ms. Aki Fukuda (Univ. Hyogo) for their collaborations in the work presented here. PMID:25359847

  1. 3D spatial resolution and spectral resolution of interferometric 3D imaging spectrometry.

    PubMed

    Obara, Masaki; Yoshimori, Kyu

    2016-04-01

    Recently developed interferometric 3D imaging spectrometry (J. Opt. Soc. Am A18, 765 [2001]1084-7529JOAOD610.1364/JOSAA.18.000765) enables obtainment of the spectral information and 3D spatial information for incoherently illuminated or self-luminous object simultaneously. Using this method, we can obtain multispectral components of complex holograms, which correspond directly to the phase distribution of the wavefronts propagated from the polychromatic object. This paper focuses on the analysis of spectral resolution and 3D spatial resolution in interferometric 3D imaging spectrometry. Our analysis is based on a novel analytical impulse response function defined over four-dimensional space. We found that the experimental results agree well with the theoretical prediction. This work also suggests a new criterion and estimate method regarding 3D spatial resolution of digital holography. PMID:27139648

  2. Performance analysis of different surface reconstruction algorithms for 3D reconstruction of outdoor objects from their digital images.

    PubMed

    Maiti, Abhik; Chakravarty, Debashish

    2016-01-01

    3D reconstruction of geo-objects from their digital images is a time-efficient and convenient way of studying the structural features of the object being modelled. This paper presents a 3D reconstruction methodology which can be used to generate photo-realistic 3D watertight surface of different irregular shaped objects, from digital image sequences of the objects. The 3D reconstruction approach described here is robust, simplistic and can be readily used in reconstructing watertight 3D surface of any object from its digital image sequence. Here, digital images of different objects are used to build sparse, followed by dense 3D point clouds of the objects. These image-obtained point clouds are then used for generation of photo-realistic 3D surfaces, using different surface reconstruction algorithms such as Poisson reconstruction and Ball-pivoting algorithm. Different control parameters of these algorithms are identified, which affect the quality and computation time of the reconstructed 3D surface. The effects of these control parameters in generation of 3D surface from point clouds of different density are studied. It is shown that the reconstructed surface quality of Poisson reconstruction depends on Samples per node (SN) significantly, greater SN values resulting in better quality surfaces. Also, the quality of the 3D surface generated using Ball-Pivoting algorithm is found to be highly depend upon Clustering radius and Angle threshold values. The results obtained from this study give the readers of the article a valuable insight into the effects of different control parameters on determining the reconstructed surface quality. PMID:27386376

  3. Performance analysis of different surface reconstruction algorithms for 3D reconstruction of outdoor objects from their digital images.

    PubMed

    Maiti, Abhik; Chakravarty, Debashish

    2016-01-01

    3D reconstruction of geo-objects from their digital images is a time-efficient and convenient way of studying the structural features of the object being modelled. This paper presents a 3D reconstruction methodology which can be used to generate photo-realistic 3D watertight surface of different irregular shaped objects, from digital image sequences of the objects. The 3D reconstruction approach described here is robust, simplistic and can be readily used in reconstructing watertight 3D surface of any object from its digital image sequence. Here, digital images of different objects are used to build sparse, followed by dense 3D point clouds of the objects. These image-obtained point clouds are then used for generation of photo-realistic 3D surfaces, using different surface reconstruction algorithms such as Poisson reconstruction and Ball-pivoting algorithm. Different control parameters of these algorithms are identified, which affect the quality and computation time of the reconstructed 3D surface. The effects of these control parameters in generation of 3D surface from point clouds of different density are studied. It is shown that the reconstructed surface quality of Poisson reconstruction depends on Samples per node (SN) significantly, greater SN values resulting in better quality surfaces. Also, the quality of the 3D surface generated using Ball-Pivoting algorithm is found to be highly depend upon Clustering radius and Angle threshold values. The results obtained from this study give the readers of the article a valuable insight into the effects of different control parameters on determining the reconstructed surface quality.

  4. 3D holoscopic video imaging system

    NASA Astrophysics Data System (ADS)

    Steurer, Johannes H.; Pesch, Matthias; Hahne, Christopher

    2012-03-01

    Since many years, integral imaging has been discussed as a technique to overcome the limitations of standard still photography imaging systems where a three-dimensional scene is irrevocably projected onto two dimensions. With the success of 3D stereoscopic movies, a huge interest in capturing three-dimensional motion picture scenes has been generated. In this paper, we present a test bench integral imaging camera system aiming to tailor the methods of light field imaging towards capturing integral 3D motion picture content. We estimate the hardware requirements needed to generate high quality 3D holoscopic images and show a prototype camera setup that allows us to study these requirements using existing technology. The necessary steps that are involved in the calibration of the system as well as the technique of generating human readable holoscopic images from the recorded data are discussed.

  5. Nonlaser-based 3D surface imaging

    SciTech Connect

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J.

    1994-11-15

    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  6. Analysis of 3-D Tongue Motion from Tagged and Cine Magnetic Resonance Images

    ERIC Educational Resources Information Center

    Xing, Fangxu; Woo, Jonghye; Lee, Junghoon; Murano, Emi Z.; Stone, Maureen; Prince, Jerry L.

    2016-01-01

    Purpose: Measuring tongue deformation and internal muscle motion during speech has been a challenging task because the tongue deforms in 3 dimensions, contains interdigitated muscles, and is largely hidden within the vocal tract. In this article, a new method is proposed to analyze tagged and cine magnetic resonance images of the tongue during…

  7. Structured light field 3D imaging.

    PubMed

    Cai, Zewei; Liu, Xiaoli; Peng, Xiang; Yin, Yongkai; Li, Ameng; Wu, Jiachen; Gao, Bruce Z

    2016-09-01

    In this paper, we propose a method by means of light field imaging under structured illumination to deal with high dynamic range 3D imaging. Fringe patterns are projected onto a scene and modulated by the scene depth then a structured light field is detected using light field recording devices. The structured light field contains information about ray direction and phase-encoded depth, via which the scene depth can be estimated from different directions. The multidirectional depth estimation can achieve high dynamic 3D imaging effectively. We analyzed and derived the phase-depth mapping in the structured light field and then proposed a flexible ray-based calibration approach to determine the independent mapping coefficients for each ray. Experimental results demonstrated the validity of the proposed method to perform high-quality 3D imaging for highly and lowly reflective surfaces. PMID:27607639

  8. Dynamic contrast-enhanced 3D photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Wong, Philip; Kosik, Ivan; Carson, Jeffrey J. L.

    2013-03-01

    Photoacoustic imaging (PAI) is a hybrid imaging modality that integrates the strengths from both optical imaging and acoustic imaging while simultaneously overcoming many of their respective weaknesses. In previous work, we reported on a real-time 3D PAI system comprised of a 32-element hemispherical array of transducers. Using the system, we demonstrated the ability to capture photoacoustic data, reconstruct a 3D photoacoustic image, and display select slices of the 3D image every 1.4 s, where each 3D image resulted from a single laser pulse. The present study aimed to exploit the rapid imaging speed of an upgraded 3D PAI system by evaluating its ability to perform dynamic contrast-enhanced imaging. The contrast dynamics can provide rich datasets that contain insight into perfusion, pharmacokinetics and physiology. We captured a series of 3D PA images of a flow phantom before and during injection of piglet and rabbit blood. Principal component analysis was utilized to classify the data according to its spatiotemporal information. The results suggested that this technique can be used to separate a sequence of 3D PA images into a series of images representative of main features according to spatiotemporal flow dynamics.

  9. ICER-3D Hyperspectral Image Compression Software

    NASA Technical Reports Server (NTRS)

    Xie, Hua; Kiely, Aaron; Klimesh, matthew; Aranki, Nazeeh

    2010-01-01

    Software has been developed to implement the ICER-3D algorithm. ICER-3D effects progressive, three-dimensional (3D), wavelet-based compression of hyperspectral images. If a compressed data stream is truncated, the progressive nature of the algorithm enables reconstruction of hyperspectral data at fidelity commensurate with the given data volume. The ICER-3D software is capable of providing either lossless or lossy compression, and incorporates an error-containment scheme to limit the effects of data loss during transmission. The compression algorithm, which was derived from the ICER image compression algorithm, includes wavelet-transform, context-modeling, and entropy coding subalgorithms. The 3D wavelet decomposition structure used by ICER-3D exploits correlations in all three dimensions of sets of hyperspectral image data, while facilitating elimination of spectral ringing artifacts, using a technique summarized in "Improving 3D Wavelet-Based Compression of Spectral Images" (NPO-41381), NASA Tech Briefs, Vol. 33, No. 3 (March 2009), page 7a. Correlation is further exploited by a context-modeling subalgorithm, which exploits spectral dependencies in the wavelet-transformed hyperspectral data, using an algorithm that is summarized in "Context Modeler for Wavelet Compression of Hyperspectral Images" (NPO-43239), which follows this article. An important feature of ICER-3D is a scheme for limiting the adverse effects of loss of data during transmission. In this scheme, as in the similar scheme used by ICER, the spatial-frequency domain is partitioned into rectangular error-containment regions. In ICER-3D, the partitions extend through all the wavelength bands. The data in each partition are compressed independently of those in the other partitions, so that loss or corruption of data from any partition does not affect the other partitions. Furthermore, because compression is progressive within each partition, when data are lost, any data from that partition received

  10. Automating Shallow 3D Seismic Imaging

    SciTech Connect

    Steeples, Don; Tsoflias, George

    2009-01-15

    Our efforts since 1997 have been directed toward developing ultra-shallow seismic imaging as a cost-effective method applicable to DOE facilities. This report covers the final year of grant-funded research to refine 3D shallow seismic imaging, which built on a previous 7-year grant (FG07-97ER14826) that refined and demonstrated the use of an automated method of conducting shallow seismic surveys; this represents a significant departure from conventional seismic-survey field procedures. The primary objective of this final project was to develop an automated three-dimensional (3D) shallow-seismic reflection imaging capability. This is a natural progression from our previous published work and is conceptually parallel to the innovative imaging methods used in the petroleum industry.

  11. Walker Ranch 3D seismic images

    DOE Data Explorer

    Robert J. Mellors

    2016-03-01

    Amplitude images (both vertical and depth slices) extracted from 3D seismic reflection survey over area of Walker Ranch area (adjacent to Raft River). Crossline spacing of 660 feet and inline of 165 feet using a Vibroseis source. Processing included depth migration. Micro-earthquake hypocenters on images. Stratigraphic information and nearby well tracks added to images. Images are embedded in a Microsoft Word document with additional information. Exact location and depth restricted for proprietary reasons. Data collection and processing funded by Agua Caliente. Original data remains property of Agua Caliente.

  12. Multivariate analysis of X-ray, ion and electron spectral images: from surface to 3D materials characterization.

    SciTech Connect

    Kotula, Paul Gabriel; Keenan, Michael Robert

    2005-02-01

    Spectral imaging where a complete spectrum is collected from each of a series of spatial locations (1D lines, 2D images or 3D volumes) is now available on a wide range of analytical tools - from electron and x-ray to ion beam instruments. With this capability to collect extremely large spectral images comes the need for automated data analysis tools that can rapidly and without bias reduce a large number of raw spectra to a compact, chemically relevant, and easily interpreted representation. It is clear that manual interrogation of individual spectra is impractical even for very small spectral images (< 5000 spectra). More typical spectral images can contain tens of thousands to millions of spectra, which given the constraint of acquisition time may contain between 5 and 300 counts per 1000-channel spectrum. Conventional manual approaches to spectral image analysis such as summing spectra from regions or constructing x-ray maps are prone to bias and possibly error. One way to comprehensively analyze spectral image data, which has been automated, is to utilize an unsupervised self-modeling multivariate statistical analysis method such as multivariate curve resolution (MCR). This approach has proven capable of solving a wide range of analytical problems based upon the counting of x-rays (SEM/STEM-EDX, XRF, PIXE), electrons (EELS, XPS) and ions (TOF-SIMS). As an example of the MCR approach, a STEM x-ray spectral image from a ZrB2-SiC composite was acquired and analyzed. The data were generated in a FEI Tecnai F30-ST TEM/STEM operated at 300kV, equipped with an EDAX SUTW x-ray detector. The spectral image was acquired with the TIA software on the STEM at 128 by 128 pixels (12nm/pixel) for 100msec dwell per pixel (total acquisition time was 30 minutes) with a probe of approximately the same size as each pixel. Each spectrum in the image had, on average, 500 counts. The calculation took 5 seconds on a PC workstation with dual 2.4GHz PentiumIV Xeon processors and 2Gbytes

  13. Metrological characterization of 3D imaging devices

    NASA Astrophysics Data System (ADS)

    Guidi, G.

    2013-04-01

    Manufacturers often express the performance of a 3D imaging device in various non-uniform ways for the lack of internationally recognized standard requirements for metrological parameters able to identify the capability of capturing a real scene. For this reason several national and international organizations in the last ten years have been developing protocols for verifying such performance. Ranging from VDI/VDE 2634, published by the Association of German Engineers and oriented to the world of mechanical 3D measurements (triangulation-based devices), to the ASTM technical committee E57, working also on laser systems based on direct range detection (TOF, Phase Shift, FM-CW, flash LADAR), this paper shows the state of the art about the characterization of active range devices, with special emphasis on measurement uncertainty, accuracy and resolution. Most of these protocols are based on special objects whose shape and size are certified with a known level of accuracy. By capturing the 3D shape of such objects with a range device, a comparison between the measured points and the theoretical shape they should represent is possible. The actual deviations can be directly analyzed or some derived parameters can be obtained (e.g. angles between planes, distances between barycenters of spheres rigidly connected, frequency domain parameters, etc.). This paper shows theoretical aspects and experimental results of some novel characterization methods applied to different categories of active 3D imaging devices based on both principles of triangulation and direct range detection.

  14. 3D MR imaging in real time

    NASA Astrophysics Data System (ADS)

    Guttman, Michael A.; McVeigh, Elliot R.

    2001-05-01

    A system has been developed to produce live 3D volume renderings from an MR scanner. Whereas real-time 2D MR imaging has been demonstrated by several groups, 3D volumes are currently rendered off-line to gain greater understanding of anatomical structures. For example, surgical planning is sometimes performed by viewing 2D images or 3D renderings from previously acquired image data. A disadvantage of this approach is misregistration which could occur if the anatomy changes due to normal muscle contractions or surgical manipulation. The ability to produce volume renderings in real-time and present them in the magnet room could eliminate this problem, and enable or benefit other types of interventional procedures. The system uses the data stream generated by a fast 2D multi- slice pulse sequence to update a volume rendering immediately after a new slice is available. We demonstrate some basic types of user interaction with the rendering during imaging at a rate of up to 20 frames per second.

  15. 3D stereophotogrammetric image superimposition onto 3D CT scan images: the future of orthognathic surgery. A pilot study.

    PubMed

    Khambay, Balvinder; Nebel, Jean-Christophe; Bowman, Janet; Walker, Fraser; Hadley, Donald M; Ayoub, Ashraf

    2002-01-01

    The aim of this study was to register and assess the accuracy of the superimposition method of a 3-dimensional (3D) soft tissue stereophotogrammetric image (C3D image) and a 3D image of the underlying skeletal tissue acquired by 3D spiral computerized tomography (CT). The study was conducted on a model head, in which an intact human skull was embedded with an overlying latex mask that reproduced anatomic features of a human face. Ten artificial radiopaque landmarks were secured to the surface of the latex mask. A stereophotogrammetric image of the mask and a 3D spiral CT image of the model head were captured. The C3D image and the CT images were registered for superimposition by 3 different methods: Procrustes superimposition using artificial landmarks, Procrustes analysis using anatomic landmarks, and partial Procrustes analysis using anatomic landmarks and then registration completion by HICP (a modified Iterative Closest Point algorithm) using a specified region of both images. The results showed that Procrustes superimposition using the artificial landmarks produced an error of superimposition on the order of 10 mm. Procrustes analysis using anatomic landmarks produced an error in the order of 2 mm. Partial Procrustes analysis using anatomic landmarks followed by HICP produced a superimposition accuracy of between 1.25 and 1.5 mm. It was concluded that a stereophotogrammetric and a 3D spiral CT scan image can be superimposed with an accuracy of between 1.25 and 1.5 mm using partial Procrustes analysis based on anatomic landmarks and then registration completion by HICP.

  16. Teat Morphology Characterization With 3D Imaging.

    PubMed

    Vesterinen, Heidi M; Corfe, Ian J; Sinkkonen, Ville; Iivanainen, Antti; Jernvall, Jukka; Laakkonen, Juha

    2015-07-01

    The objective of this study was to visualize, in a novel way, the morphological characteristics of bovine teats to gain a better understanding of the detailed teat morphology. We applied silicone casting and 3D digital imaging in order to obtain a more detailed image of the teat structures than that seen in previous studies. Teat samples from 65 dairy cows over 12 months of age were obtained from cows slaughtered at an abattoir. The teats were classified according to the teat condition scoring used in Finland and the lengths of the teat canals were measured. Silicone molds were made from the external teat surface surrounding the teat orifice and from the internal surface of the teat consisting of the papillary duct, Fürstenberg's rosette, and distal part of the teat cistern. The external and internal surface molds of 35 cows were scanned with a 3D laser scanner. The molds and the digital 3D models were used to evaluate internal and external teat surface morphology. A number of measurements were taken from the silicone molds. The 3D models reproduced the morphology of the teats accurately with high repeatability. Breed didn't correlate with the teat classification score. The rosette was found to have significant variation in its size and number of mucosal folds. The internal surface morphology of the rosette did not correlate with the external surface morphology of the teat implying that it is relatively independent of milking parameters that may impact the teat canal and the external surface of the teat. PMID:25382725

  17. 3D goes digital: from stereoscopy to modern 3D imaging techniques

    NASA Astrophysics Data System (ADS)

    Kerwien, N.

    2014-11-01

    In the 19th century, English physicist Charles Wheatstone discovered stereopsis, the basis for 3D perception. His construction of the first stereoscope established the foundation for stereoscopic 3D imaging. Since then, many optical instruments were influenced by these basic ideas. In recent decades, the advent of digital technologies revolutionized 3D imaging. Powerful readily available sensors and displays combined with efficient pre- or post-processing enable new methods for 3D imaging and applications. This paper draws an arc from basic concepts of 3D imaging to modern digital implementations, highlighting instructive examples from its 175 years of history.

  18. Geostatistical analysis of 3D microCT images of porous media for stochastic upscaling of spatially variable reactive surfaces

    NASA Astrophysics Data System (ADS)

    De Lucia, Marco; Kühn, Michael

    2015-04-01

    The 3D imaging of porous media through micro tomography allows the characterization of porous space and mineral abundances with unprecedented resolution. Such images can be used to perform computational determination of permeability and to obtain a realistic measure of the mineral surfaces exposed to fluid flow and thus to chemical interactions. However, the volume of the plugs that can be analysed with such detail is in the order of 1 cm3, so that their representativity at a larger scale, i.e. as needed for reactive transport modelling at Darcy scale, is questionable at best. In fact, the fine scale heterogeneity (from plug to plug at few cm distance within the same core) would originate substantially different readings of the investigated properties. Therefore, a comprehensive approach including the spatial variability and heterogeneity at the micro- and plug scale needs to be adopted to gain full advantage from the high resolution images in view of the upscaling to Darcy scale. In the framework of the collaborative project H2STORE, micro-CT imaging of different core samples from potential H2-storage sites has been performed by partners at TU Clausthal and Jena University before and after treatment with H2/CO2 mixtures in pressurized autoclaves. We present here the workflow which has been implemented to extract the relevant features from the available data concerning the heterogeneity of the medium at the microscopic and plug scale and to correlate the observed chemical reactions and changes in the porous structure with the geometrical features of the medium. First, a multivariate indicator-based geostatistical model for the microscopic structure of the plugs has been built and fitted to the available images. This involved the implementation of exploratory analysis algorithms such as experimental indicator variograms and cross-variograms. The implemented methods are able to efficiently deal with images in the order of 10003 voxels making use of parallelization

  19. Interactive 3D segmentation of the prostate in magnetic resonance images using shape and local appearance similarity analysis

    NASA Astrophysics Data System (ADS)

    Shahedi, Maysam; Fenster, Aaron; Cool, Derek W.; Romagnoli, Cesare; Ward, Aaron D.

    2013-03-01

    3D segmentation of the prostate in medical images is useful to prostate cancer diagnosis and therapy guidance, but is time-consuming to perform manually. Clinical translation of computer-assisted segmentation algorithms for this purpose requires a comprehensive and complementary set of evaluation metrics that are informative to the clinical end user. We have developed an interactive 3D prostate segmentation method for 1.5T and 3.0T T2-weighted magnetic resonance imaging (T2W MRI) acquired using an endorectal coil. We evaluated our method against manual segmentations of 36 3D images using complementary boundary-based (mean absolute distance; MAD), regional overlap (Dice similarity coefficient; DSC) and volume difference (ΔV) metrics. Our technique is based on inter-subject prostate shape and local boundary appearance similarity. In the training phase, we calculated a point distribution model (PDM) and a set of local mean intensity patches centered on the prostate border to capture shape and appearance variability. To segment an unseen image, we defined a set of rays - one corresponding to each of the mean intensity patches computed in training - emanating from the prostate centre. We used a radial-based search strategy and translated each mean intensity patch along its corresponding ray, selecting as a candidate the boundary point with the highest normalized cross correlation along each ray. These boundary points were then regularized using the PDM. For the whole gland, we measured a mean+/-std MAD of 2.5+/-0.7 mm, DSC of 80+/-4%, and ΔV of 1.1+/-8.8 cc. We also provided an anatomic breakdown of these metrics within the prostatic base, mid-gland, and apex.

  20. Composite model of a 3-D image

    NASA Technical Reports Server (NTRS)

    Dukhovich, I. J.

    1980-01-01

    This paper presents a composite model of a moving (3-D) image especially useful for the sequential image processing and encoding. A non-linear predictor based on the composite model is described. The performance of this predictor is used as a measure of the validity of the model for a real image source. The minimization of a total mean square prediction error provides an inequality which determines a condition for the profitable use of the composite model and can serve as a decision device for the selection of the number of subsources within the model. The paper also describes statistical properties of the prediction error and contains results of computer simulation of two non-linear predictors in the case of perfect classification between subsources.

  1. MExLab Planetary Geoportal: 3D-access to planetary images and results of spatial data analysis

    NASA Astrophysics Data System (ADS)

    Karachevtseva, I.; Garov, A.

    2015-10-01

    MExLab Planetary Geoportal was developed as Geodesy and Cartography Node which provide access to results of study of celestial bodies such as DEM and orthoimages, as well as basemaps, crater catalogues and derivative products: slope, roughness, crater density (http://cartsrv.mexlab.ru/geoportal). The main feature of designed Geoportal is the ability of spatial queries and access to the contents selecting from the list of available data set (Phobos, Mercury, Moon, including Lunokhod's archive data). Prior version of Geoportal has been developed using Flash technology. Now we are developing new version which will use 3D-API (OpenGL, WebGL) based on shaders not only for standard 3D-functionality, but for 2D-mapping as well. Users can obtain quantitative and qualitative characteristics of the objects in graphical, tabular and 3D-forms. It will bring the advantages of unification of code and speed of processing and provide a number of functional advantages based on GIS-tools such as: - possibility of dynamic raster transform for needed map projection; - effective implementation of the co-registration of planetary images by combining spatial data geometries; - presentation in 3D-form different types of data, including planetary atmospheric measurements, subsurface radar data, ect. The system will be created with a new software architecture, which has a potential for development and flexibility in reconfiguration based on cross platform solution: - an application for the three types of platforms: desktop (Windows, Linux, OSX), web platform (any HTML5 browser), and mobile application (Android, iOS); - a single codebase shared between platforms (using cross compilation for Web); - a new telecommunication solution to connect between modules and external system like PROVIDE WebGIS (http://www.provide-space.eu/progis/). The research leading to these result was partly supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n

  2. A Rapid and Efficient 2D/3D Nuclear Segmentation Method for Analysis of Early Mouse Embryo and Stem Cell Image Data

    PubMed Central

    Lou, Xinghua; Kang, Minjung; Xenopoulos, Panagiotis; Muñoz-Descalzo, Silvia; Hadjantonakis, Anna-Katerina

    2014-01-01

    Summary Segmentation is a fundamental problem that dominates the success of microscopic image analysis. In almost 25 years of cell detection software development, there is still no single piece of commercial software that works well in practice when applied to early mouse embryo or stem cell image data. To address this need, we developed MINS (modular interactive nuclear segmentation) as a MATLAB/C++-based segmentation tool tailored for counting cells and fluorescent intensity measurements of 2D and 3D image data. Our aim was to develop a tool that is accurate and efficient yet straightforward and user friendly. The MINS pipeline comprises three major cascaded modules: detection, segmentation, and cell position classification. An extensive evaluation of MINS on both 2D and 3D images, and comparison to related tools, reveals improvements in segmentation accuracy and usability. Thus, its accuracy and ease of use will allow MINS to be implemented for routine single-cell-level image analyses. PMID:24672759

  3. Computing and monitoring potential of public spaces by shading analysis using 3d lidar data and advanced image analysis

    NASA Astrophysics Data System (ADS)

    Zwolinski, A.; Jarzemski, M.

    2015-04-01

    The paper regards specific context of public spaces in "shadow" of tall buildings located in European cities. Majority of tall buildings in European cities were built in last 15 years. Tall buildings appear mainly in city centres, directly at important public spaces being viable environment for inhabitants with variety of public functions (open spaces, green areas, recreation places, shops, services etc.). All these amenities and services are under direct impact of extensive shading coming from the tall buildings. The paper focuses on analyses and representation of impact of shading from tall buildings on various public spaces in cities using 3D city models. Computer environment of 3D city models in cityGML standard uses 3D LiDAR data as one of data types for definition of 3D cities. The structure of cityGML allows analytic applications using existing computer tools, as well as developing new techniques to estimate extent of shading coming from high-risers, affecting life in public spaces. These measurable shading parameters in specific time are crucial for proper functioning, viability and attractiveness of public spaces - finally it is extremely important for location of tall buildings at main public spaces in cities. The paper explores impact of shading from tall buildings in different spatial contexts on the background of using cityGML models based on core LIDAR data to support controlled urban development in sense of viable public spaces. The article is prepared within research project 2TaLL: Application of 3D Virtual City Models in Urban Analyses of Tall Buildings, realized as a part of Polish-Norway Grants.

  4. 3D thermography imaging standardization technique for inflammation diagnosis

    NASA Astrophysics Data System (ADS)

    Ju, Xiangyang; Nebel, Jean-Christophe; Siebert, J. Paul

    2005-01-01

    We develop a 3D thermography imaging standardization technique to allow quantitative data analysis. Medical Digital Infrared Thermal Imaging is very sensitive and reliable mean of graphically mapping and display skin surface temperature. It allows doctors to visualise in colour and quantify temperature changes in skin surface. The spectrum of colours indicates both hot and cold responses which may co-exist if the pain associate with an inflammatory focus excites an increase in sympathetic activity. However, due to thermograph provides only qualitative diagnosis information, it has not gained acceptance in the medical and veterinary communities as a necessary or effective tool in inflammation and tumor detection. Here, our technique is based on the combination of visual 3D imaging technique and thermal imaging technique, which maps the 2D thermography images on to 3D anatomical model. Then we rectify the 3D thermogram into a view independent thermogram and conform it a standard shape template. The combination of these imaging facilities allows the generation of combined 3D and thermal data from which thermal signatures can be quantified.

  5. [3D interactive clipping technology in medical image processing].

    PubMed

    Sun, Shaoping; Yang, Kaitai; Li, Bin; Li, Yuanjun; Liang, Jing

    2013-09-01

    The aim of this paper is to study the methods of 3D visualization and the 3D interactive clipping of CT/MRI image sequence in arbitrary orientation based on the Visualization Toolkit (VTK). A new method for 3D CT/MRI reconstructed image clipping is presented, which can clip 3D object and 3D space of medical image sequence to observe the inner structure using 3D widget for manipulating an infinite plane. Experiment results show that the proposed method can implement 3D interactive clipping of medical image effectively and get satisfied results with good quality in short time.

  6. Photogrammetric 3D reconstruction using mobile imaging

    NASA Astrophysics Data System (ADS)

    Fritsch, Dieter; Syll, Miguel

    2015-03-01

    In our paper we demonstrate the development of an Android Application (AndroidSfM) for photogrammetric 3D reconstruction that works on smartphones and tablets likewise. The photos are taken with mobile devices, and can thereafter directly be calibrated using standard calibration algorithms of photogrammetry and computer vision, on that device. Due to still limited computing resources on mobile devices, a client-server handshake using Dropbox transfers the photos to the sever to run AndroidSfM for the pose estimation of all photos by Structure-from-Motion and, thereafter, uses the oriented bunch of photos for dense point cloud estimation by dense image matching algorithms. The result is transferred back to the mobile device for visualization and ad-hoc on-screen measurements.

  7. Characterization of tissue response to radiofrequency ablation using 3D model-based analysis of interventional MR images

    NASA Astrophysics Data System (ADS)

    Weinberg, Brent D.; Lazebnik, Roee S.; Breen, Michael S.; Lewin, Jonathan S.; Wilson, David L.

    2003-05-01

    Using magnetic resonance imaging (MRI), real-time guidance is feasible for radiofrequency (RF) current ablation of pathologic tissue. Lesions have a characteristic two-zone appearance: an inner core (Zone I) surrounded by a hyper-intense rim (Zone II). A better understanding of both the immediate (hyper-acute) and delayed (sub-acute) physiological response of the target tissue will aid development of minimally invasive tumor treatment strategies. We performed in vivo RF ablations in a rabbit thigh model and characterized the tissue response to treatment through contrast enhanced (CE) T1 and T2 weighted MR images at two time points. We measured zonal grayscale changes as well as zone volume changes using a 3D computationally fitted globally deformable parametric model. Comparison over time demonstrated an increase in the volume of both the inner necrotic core (mean 56.5% increase) and outer rim (mean 16.8% increase) of the lesion. Additionally, T2 images of the lesion exhibited contrast greater than or equal to CE T1 (mean 35% improvement). This work establishes a foundation for the clinical use of T2 MR images coupled with a geometric model of the ablation for noninvasive lesion monitoring and characterization.

  8. Imaging a Sustainable Future in 3D

    NASA Astrophysics Data System (ADS)

    Schuhr, W.; Lee, J. D.; Kanngieser, E.

    2012-07-01

    It is the intention of this paper, to contribute to a sustainable future by providing objective object information based on 3D photography as well as promoting 3D photography not only for scientists, but also for amateurs. Due to the presentation of this article by CIPA Task Group 3 on "3D Photographs in Cultural Heritage", the presented samples are masterpieces of historic as well as of current 3D photography concentrating on cultural heritage. In addition to a report on exemplarily access to international archives of 3D photographs, samples for new 3D photographs taken with modern 3D cameras, as well as by means of a ground based high resolution XLITE staff camera and also 3D photographs taken from a captive balloon and the use of civil drone platforms are dealt with. To advise on optimum suited 3D methodology, as well as to catch new trends in 3D, an updated synoptic overview of the 3D visualization technology, even claiming completeness, has been carried out as a result of a systematic survey. In this respect, e.g., today's lasered crystals might be "early bird" products in 3D, which, due to lack in resolution, contrast and color, remember to the stage of the invention of photography.

  9. Ames Lab 101: Real-Time 3D Imaging

    ScienceCinema

    Zhang, Song

    2016-07-12

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  10. Ames Lab 101: Real-Time 3D Imaging

    SciTech Connect

    Zhang, Song

    2010-01-01

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  11. Continuous section extraction and over-underbreak detection of tunnel based on 3D laser technology and image analysis

    NASA Astrophysics Data System (ADS)

    Wang, Weixing; Wang, Zhiwei; Han, Ya; Li, Shuang; Zhang, Xin

    2015-03-01

    Over Underbreak detection of road and solve the problemof the roadway data collection difficulties, this paper presents a new method of continuous section extraction and Over Underbreak detection of road based on 3D laser scanning technology and image processing, the method is divided into the following three steps: based on Canny edge detection, local axis fitting, continuous extraction section and Over Underbreak detection of section. First, after Canny edge detection, take the least-squares curve fitting method to achieve partial fitting in axis. Then adjust the attitude of local roadway that makes the axis of the roadway be consistent with the direction of the extraction reference, and extract section along the reference direction. Finally, we compare the actual cross-sectional view and the cross-sectional design to complete Overbreak detected. Experimental results show that the proposed method have a great advantage in computing costs and ensure cross-section orthogonal intercept terms compared with traditional detection methods.

  12. Multifractal analysis of white matter structural changes on 3D magnetic resonance imaging between normal aging and early Alzheimer’s disease

    NASA Astrophysics Data System (ADS)

    Ni, Huang-Jing; Zhou, Lu-Ping; Zeng, Peng; Huang, Xiao-Lin; Liu, Hong-Xing; Ning, Xin-Bao

    2015-07-01

    Applications of multifractal analysis to white matter structure changes on magnetic resonance imaging (MRI) have recently received increasing attentions. Although some progresses have been made, there is no evident study on applying multifractal analysis to evaluate the white matter structural changes on MRI for Alzheimer’s disease (AD) research. In this paper, to explore multifractal analysis of white matter structural changes on 3D MRI volumes between normal aging and early AD, we not only extend the traditional box-counting multifractal analysis (BCMA) into the 3D case, but also propose a modified integer ratio based BCMA (IRBCMA) algorithm to compensate for the rigid division rule in BCMA. We verify multifractal characteristics in 3D white matter MRI volumes. In addition to the previously well studied multifractal feature, Δα, we also demonstrated Δf as an alternative and effective multifractal feature to distinguish NC from AD subjects. Both Δα and Δf are found to have strong positive correlation with the clinical MMSE scores with statistical significance. Moreover, the proposed IRBCMA can be an alternative and more accurate algorithm for 3D volume analysis. Our findings highlight the potential usefulness of multifractal analysis, which may contribute to clarify some aspects of the etiology of AD through detection of structural changes in white matter. Project supported by the National Natural Science Foundation of China (Grant No. 61271079), the Vice Chancellor Research Grant in University of Wollongong, and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.

  13. Experimental validation of 3D printed patient-specific implants using digital image correlation and finite element analysis.

    PubMed

    Sutradhar, Alok; Park, Jaejong; Carrau, Diana; Miller, Michael J

    2014-09-01

    With the dawn of 3D printing technology, patient-specific implant designs are set to have a paradigm shift. A topology optimization method in designing patient-specific craniofacial implants has been developed to ensure adequate load transfer mechanism and restore the form and function of the mid-face. Patient-specific finite element models are used to design these implants and to validate whether they are viable for physiological loading such as mastication. Validation of these topology optimized finite element models using mechanical testing is a critical step. Instead of inserting the implants into a cadaver or patient, we embed the implants into the computer-aided skull model of a patient and, fuse them together to 3D print the complete skull model with the implant. Masticatory forces are applied in the molar region to simulate chewing and measure the stress-strain trajectory. Until recently, strain gages have been used to measure strains for validation. Digital Image Correlation (DIC) method is a relatively new technique for full-field strain measurement which provides a continuous deformation field data. The main objective of this study is to validate the finite element model of patient-specific craniofacial implants against the strain data from the DIC obtained during the mastication simulation and show that the optimized shapes provide adequate load-transfer mechanism. Patient-specific models are obtained from CT scans. The principal maximum and minimum strains are compared. The computational and experimental approach to designing patient-specific implants proved to be a viable technique for mid-face craniofacial reconstruction. PMID:24992729

  14. Progress in 3D imaging and display by integral imaging

    NASA Astrophysics Data System (ADS)

    Martinez-Cuenca, R.; Saavedra, G.; Martinez-Corral, M.; Pons, A.; Javidi, B.

    2009-05-01

    Three-dimensionality is currently considered an important added value in imaging devices, and therefore the search for an optimum 3D imaging and display technique is a hot topic that is attracting important research efforts. As main value, 3D monitors should provide the observers with different perspectives of a 3D scene by simply varying the head position. Three-dimensional imaging techniques have the potential to establish a future mass-market in the fields of entertainment and communications. Integral imaging (InI), which can capture true 3D color images, has been seen as the right technology to 3D viewing to audiences of more than one person. Due to the advanced degree of development, InI technology could be ready for commercialization in the coming years. This development is the result of a strong research effort performed along the past few years by many groups. Since Integral Imaging is still an emerging technology, the first aim of the "3D Imaging and Display Laboratory" at the University of Valencia, has been the realization of a thorough study of the principles that govern its operation. Is remarkable that some of these principles have been recognized and characterized by our group. Other contributions of our research have been addressed to overcome some of the classical limitations of InI systems, like the limited depth of field (in pickup and in display), the poor axial and lateral resolution, the pseudoscopic-to-orthoscopic conversion, the production of 3D images with continuous relief, or the limited range of viewing angles of InI monitors.

  15. Organ-wide 3D-imaging and topological analysis of the continuous microvascular network in a murine lymph node

    PubMed Central

    Kelch, Inken D.; Bogle, Gib; Sands, Gregory B.; Phillips, Anthony R. J.; LeGrice, Ian J.; Rod Dunbar, P.

    2015-01-01

    Understanding of the microvasculature has previously been limited by the lack of methods capable of capturing and modelling complete vascular networks. We used novel imaging and computational techniques to establish the topology of the entire blood vessel network of a murine lymph node, combining 63706 confocal images at 2 μm pixel resolution to cover a volume of 3.88 mm3. Detailed measurements including the distribution of vessel diameters, branch counts, and identification of voids were subsequently re-visualised in 3D revealing regional specialisation within the network. By focussing on critical immune microenvironments we quantified differences in their vascular topology. We further developed a morphology-based approach to identify High Endothelial Venules, key sites for lymphocyte extravasation. These data represent a comprehensive and continuous blood vessel network of an entire organ and provide benchmark measurements that will inform modelling of blood vessel networks as well as enable comparison of vascular topology in different organs. PMID:26567707

  16. Characterizing accuracy of total hemoglobin recovery using contrast-detail analysis in 3D image-guided near infrared spectroscopy with the boundary element method

    PubMed Central

    Ghadyani, Hamid R.; Srinivasan, Subhadra; Pogue, Brian W.; Paulsen, Keith D.

    2010-01-01

    The quantification of total hemoglobin concentration (HbT) obtained from multi-modality image-guided near infrared spectroscopy (IG-NIRS) was characterized using the boundary element method (BEM) for 3D image reconstruction. Multi-modality IG-NIRS systems use a priori information to guide the reconstruction process. While this has been shown to improve resolution, the effect on quantitative accuracy is unclear. Here, through systematic contrast-detail analysis, the fidelity of IG-NIRS in quantifying HbT was examined using 3D simulations. These simulations show that HbT could be recovered for medium sized (20mm in 100mm total diameter) spherical inclusions with an average error of 15%, for the physiologically relevant situation of 2:1 or higher contrast between background and inclusion. Using partial 3D volume meshes to reduce the ill-posed nature of the image reconstruction, inclusions as small as 14mm could be accurately quantified with less than 15% error, for contrasts of 1.5 or higher. This suggests that 3D IG-NIRS provides quantitatively accurate results for sizes seen early in treatment cycle of patients undergoing neoadjuvant chemotherapy when the tumors are larger than 30mm. PMID:20720975

  17. Detecting Radiation-Induced Injury Using Rapid 3D Variogram Analysis of CT Images of Rat Lungs

    SciTech Connect

    Jacob, Rick E.; Murphy, Mark K.; Creim, Jeffrey A.; Carson, James P.

    2013-10-01

    A new heterogeneity analysis approach to discern radiation-induced lung damage was tested on CT images of irradiated rats. The method, combining octree decomposition with variogram analysis, demonstrated a significant correlation with radiation exposure levels, whereas conventional measurements and pulmonary function tests did not. The results suggest the new approach may be highly sensitive for assessing even subtle radiation-induced changes

  18. Imaging fault zones using 3D seismic image processing techniques

    NASA Astrophysics Data System (ADS)

    Iacopini, David; Butler, Rob; Purves, Steve

    2013-04-01

    Significant advances in structural analysis of deep water structure, salt tectonic and extensional rift basin come from the descriptions of fault system geometries imaged in 3D seismic data. However, even where seismic data are excellent, in most cases the trajectory of thrust faults is highly conjectural and still significant uncertainty exists as to the patterns of deformation that develop between the main faults segments, and even of the fault architectures themselves. Moreover structural interpretations that conventionally define faults by breaks and apparent offsets of seismic reflectors are commonly conditioned by a narrow range of theoretical models of fault behavior. For example, almost all interpretations of thrust geometries on seismic data rely on theoretical "end-member" behaviors where concepts as strain localization or multilayer mechanics are simply avoided. Yet analogue outcrop studies confirm that such descriptions are commonly unsatisfactory and incomplete. In order to fill these gaps and improve the 3D visualization of deformation in the subsurface, seismic attribute methods are developed here in conjunction with conventional mapping of reflector amplitudes (Marfurt & Chopra, 2007)). These signal processing techniques recently developed and applied especially by the oil industry use variations in the amplitude and phase of the seismic wavelet. These seismic attributes improve the signal interpretation and are calculated and applied to the entire 3D seismic dataset. In this contribution we will show 3D seismic examples of fault structures from gravity-driven deep-water thrust structures and extensional basin systems to indicate how 3D seismic image processing methods can not only build better the geometrical interpretations of the faults but also begin to map both strain and damage through amplitude/phase properties of the seismic signal. This is done by quantifying and delineating the short-range anomalies on the intensity of reflector amplitudes

  19. Automated curved planar reformation of 3D spine images

    NASA Astrophysics Data System (ADS)

    Vrtovec, Tomaz; Likar, Bostjan; Pernus, Franjo

    2005-10-01

    Traditional techniques for visualizing anatomical structures are based on planar cross-sections from volume images, such as images obtained by computed tomography (CT) or magnetic resonance imaging (MRI). However, planar cross-sections taken in the coordinate system of the 3D image often do not provide sufficient or qualitative enough diagnostic information, because planar cross-sections cannot follow curved anatomical structures (e.g. arteries, colon, spine, etc). Therefore, not all of the important details can be shown simultaneously in any planar cross-section. To overcome this problem, reformatted images in the coordinate system of the inspected structure must be created. This operation is usually referred to as curved planar reformation (CPR). In this paper we propose an automated method for CPR of 3D spine images, which is based on the image transformation from the standard image-based to a novel spine-based coordinate system. The axes of the proposed spine-based coordinate system are determined on the curve that represents the vertebral column, and the rotation of the vertebrae around the spine curve, both of which are described by polynomial models. The optimal polynomial parameters are obtained in an image analysis based optimization framework. The proposed method was qualitatively and quantitatively evaluated on five CT spine images. The method performed well on both normal and pathological cases and was consistent with manually obtained ground truth data. The proposed spine-based CPR benefits from reduced structural complexity in favour of improved feature perception of the spine. The reformatted images are diagnostically valuable and enable easier navigation, manipulation and orientation in 3D space. Moreover, reformatted images may prove useful for segmentation and other image analysis tasks.

  20. Super deep 3D images from a 3D omnifocus video camera.

    PubMed

    Iizuka, Keigo

    2012-02-20

    When using stereographic image pairs to create three-dimensional (3D) images, a deep depth of field in the original scene enhances the depth perception in the 3D image. The omnifocus video camera has no depth of field limitations and produces images that are in focus throughout. By installing an attachment on the omnifocus video camera, real-time super deep stereoscopic pairs of video images were obtained. The deeper depth of field creates a larger perspective image shift, which makes greater demands on the binocular fusion of human vision. A means of reducing the perspective shift without harming the depth of field was found.

  1. Application of 3-D digital deconvolution to optically sectioned images for improving the automatic analysis of fluorescent-labeled tumor specimens

    NASA Astrophysics Data System (ADS)

    Lockett, Stephen J.; Jacobson, Kenneth A.; Herman, Brian

    1992-06-01

    The analysis of fluorescent stained clusters of cells has been improved by recording multiple images of the same microscopic scene at different focal planes and then applying a three dimensional (3-D) out of focus background subtraction algorithm. The algorithm significantly reduced the out of focus signal and improved the spatial resolution. The method was tested on specimens of 10 micrometers diameter ((phi) ) beads embedded in agarose and on a 5 micrometers breast tumor section labeled with a fluorescent DNA stain. The images were analyzed using an algorithm for automatically detecting fluorescent objects. The proportion of correctly detected in focus beads and breast nuclei increased from 1/8 to 8/8 and from 56/104 to 81/104 respectively after processing by the subtraction algorithm. Furthermore, the subtraction algorithm reduced the proportion of out of focus relative to in focus total intensity detected in the bead images from 51% to 33%. Further developments of these techniques, that utilize the 3-D point spread function (PSF) of the imaging system and a 3-D segmentation algorithm, should result in the correct detection and precise quantification of virtually all cells in solid tumor specimens. Thus the approach should serve as a highly reliable automated screening method for a wide variety of clinical specimens.

  2. 3D digital image processing for biofilm quantification from confocal laser scanning microscopy: Multidimensional statistical analysis of biofilm modeling

    NASA Astrophysics Data System (ADS)

    Zielinski, Jerzy S.

    The dramatic increase in number and volume of digital images produced in medical diagnostics, and the escalating demand for rapid access to these relevant medical data, along with the need for interpretation and retrieval has become of paramount importance to a modern healthcare system. Therefore, there is an ever growing need for processed, interpreted and saved images of various types. Due to the high cost and unreliability of human-dependent image analysis, it is necessary to develop an automated method for feature extraction, using sophisticated mathematical algorithms and reasoning. This work is focused on digital image signal processing of biological and biomedical data in one- two- and three-dimensional space. Methods and algorithms presented in this work were used to acquire data from genomic sequences, breast cancer, and biofilm images. One-dimensional analysis was applied to DNA sequences which were presented as a non-stationary sequence and modeled by a time-dependent autoregressive moving average (TD-ARMA) model. Two-dimensional analyses used 2D-ARMA model and applied it to detect breast cancer from x-ray mammograms or ultrasound images. Three-dimensional detection and classification techniques were applied to biofilm images acquired using confocal laser scanning microscopy. Modern medical images are geometrically arranged arrays of data. The broadening scope of imaging as a way to organize our observations of the biophysical world has led to a dramatic increase in our ability to apply new processing techniques and to combine multiple channels of data into sophisticated and complex mathematical models of physiological function and dysfunction. With explosion of the amount of data produced in a field of biomedicine, it is crucial to be able to construct accurate mathematical models of the data at hand. Two main purposes of signal modeling are: data size conservation and parameter extraction. Specifically, in biomedical imaging we have four key problems

  3. Image-based analysis of the internal microstructure of bone replacement scaffolds fabricated by 3D printing

    NASA Astrophysics Data System (ADS)

    Irsen, Stephan H.; Leukers, Barbara; Bruckschen, Björn; Tille, Carsten; Seitz, Hermann; Beckmann, Felix; Müller, Bert

    2006-08-01

    Rapid Prototyping and especially the 3D printing, allows generating complex porous ceramic scaffolds directly from powders. Furthermore, these technologies allow manufacturing patient-specific implants of centimeter size with an internal pore network to mimic bony structures including vascularization. Besides the biocompatibility properties of the base material, a high degree of open, interconnected porosity is crucial for the success of the synthetic bone graft. Pores with diameters between 100 and 500 μm are the prerequisite for vascularization to supply the cells with nutrients and oxygen, because simple diffusion transport is ineffective. The quantification of porosity on the macro-, micro-, and nanometer scale using well-established techniques such as Hg-porosimetry and electron microscopy is restricted. Alternatively, we have applied synchrotron-radiation-based micro computed tomography (SRμCT) to determine the porosity with high precision and to validate the macroscopic internal structure of the scaffold. We report on the difficulties in intensity-based segmentation for nanoporous materials but we also elucidate the power of SRμCT in the quantitative analysis of the pores at the different length scales.

  4. Stereotactic mammography imaging combined with 3D US imaging for image guided breast biopsy

    SciTech Connect

    Surry, K. J. M.; Mills, G. R.; Bevan, K.; Downey, D. B.; Fenster, A.

    2007-11-15

    Stereotactic X-ray mammography (SM) and ultrasound (US) guidance are both commonly used for breast biopsy. While SM provides three-dimensional (3D) targeting information and US provides real-time guidance, both have limitations. SM is a long and uncomfortable procedure and the US guided procedure is inherently two dimensional (2D), requiring a skilled physician for both safety and accuracy. The authors developed a 3D US-guided biopsy system to be integrated with, and to supplement SM imaging. Their goal is to be able to biopsy a larger percentage of suspicious masses using US, by clarifying ambiguous structures with SM imaging. Features from SM and US guided biopsy were combined, including breast stabilization, a confined needle trajectory, and dual modality imaging. The 3D US guided biopsy system uses a 7.5 MHz breast probe and is mounted on an upright SM machine for preprocedural imaging. Intraprocedural targeting and guidance was achieved with real-time 2D and near real-time 3D US imaging. Postbiopsy 3D US imaging allowed for confirmation that the needle was penetrating the target. The authors evaluated 3D US-guided biopsy accuracy of their system using test phantoms. To use mammographic imaging information, they registered the SM and 3D US coordinate systems. The 3D positions of targets identified in the SM images were determined with a target localization error (TLE) of 0.49 mm. The z component (x-ray tube to image) of the TLE dominated with a TLE{sub z} of 0.47 mm. The SM system was then registered to 3D US, with a fiducial registration error (FRE) and target registration error (TRE) of 0.82 and 0.92 mm, respectively. Analysis of the FRE and TRE components showed that these errors were dominated by inaccuracies in the z component with a FRE{sub z} of 0.76 mm and a TRE{sub z} of 0.85 mm. A stereotactic mammography and 3D US guided breast biopsy system should include breast compression for stability and safety and dual modality imaging for target localization

  5. An automated 3D reconstruction method of UAV images

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Wang, He; Liu, Xiaoyang; Li, Feng; Sun, Guangtong; Song, Ping

    2015-10-01

    In this paper a novel fully automated 3D reconstruction approach based on low-altitude unmanned aerial vehicle system (UAVs) images will be presented, which does not require previous camera calibration or any other external prior knowledge. Dense 3D point clouds are generated by integrating orderly feature extraction, image matching, structure from motion (SfM) and multi-view stereo (MVS) algorithms, overcoming many of the cost, time limitations of rigorous photogrammetry techniques. An image topology analysis strategy is introduced to speed up large scene reconstruction by taking advantage of the flight-control data acquired by UAV. Image topology map can significantly reduce the running time of feature matching by limiting the combination of images. A high-resolution digital surface model of the study area is produced base on UAV point clouds by constructing the triangular irregular network. Experimental results show that the proposed approach is robust and feasible for automatic 3D reconstruction of low-altitude UAV images, and has great potential for the acquisition of spatial information at large scales mapping, especially suitable for rapid response and precise modelling in disaster emergency.

  6. Automatic 2D-to-3D image conversion using 3D examples from the internet

    NASA Astrophysics Data System (ADS)

    Konrad, J.; Brown, G.; Wang, M.; Ishwar, P.; Wu, C.; Mukherjee, D.

    2012-03-01

    The availability of 3D hardware has so far outpaced the production of 3D content. Although to date many methods have been proposed to convert 2D images to 3D stereopairs, the most successful ones involve human operators and, therefore, are time-consuming and costly, while the fully-automatic ones have not yet achieved the same level of quality. This subpar performance is due to the fact that automatic methods usually rely on assumptions about the captured 3D scene that are often violated in practice. In this paper, we explore a radically different approach inspired by our work on saliency detection in images. Instead of relying on a deterministic scene model for the input 2D image, we propose to "learn" the model from a large dictionary of stereopairs, such as YouTube 3D. Our new approach is built upon a key observation and an assumption. The key observation is that among millions of stereopairs available on-line, there likely exist many stereopairs whose 3D content matches that of the 2D input (query). We assume that two stereopairs whose left images are photometrically similar are likely to have similar disparity fields. Our approach first finds a number of on-line stereopairs whose left image is a close photometric match to the 2D query and then extracts depth information from these stereopairs. Since disparities for the selected stereopairs differ due to differences in underlying image content, level of noise, distortions, etc., we combine them by using the median. We apply the resulting median disparity field to the 2D query to obtain the corresponding right image, while handling occlusions and newly-exposed areas in the usual way. We have applied our method in two scenarios. First, we used YouTube 3D videos in search of the most similar frames. Then, we repeated the experiments on a small, but carefully-selected, dictionary of stereopairs closely matching the query. This, to a degree, emulates the results one would expect from the use of an extremely large 3D

  7. 3D seismic imaging, example of 3D area in the middle of Banat

    NASA Astrophysics Data System (ADS)

    Antic, S.

    2009-04-01

    3D seismic imaging was carried out in the 3D seismic volume situated in the middle of Banat region in Serbia. The 3D area is about 300 km square. The aim of 3D investigation was defining geology structures and techtonics especially in Mesozoik complex. The investigation objects are located in depth from 2000 to 3000 m. There are number of wells in this area but they are not enough deep to help in the interpretation. It was necessary to get better seismic image in deeper area. Acquisition parameters were satisfactory (good quality of input parameters, length of input data was 5 s, fold was up to 4000 %) and preprocessed data was satisfied. GeoDepth is an integrated system for 3D velocity model building and for 3D seismic imaging. Input data for 3D seismic imaging consist of preprocessing data sorted to CMP gathers and RMS stacking velocity functions. Other type of input data are geological information derived from well data, time migrated images and time migrated maps. Workflow for this job was: loading and quality control the input data (CMP gathers and velocity), creating initial RMS Velocity Volume, PSTM, updating the RMS Velocity Volume, PSTM, building the Initial Interval Velocity Model, PSDM, updating the Interval Velocity Model, PSDM. In the first stage the attempt is to derive initial velocity model as simple as possible as.The higher frequency velocity changes are obtained in the updating stage. The next step, after running PSTM, is the time to depth conversion. After the model is built, we generate a 3D interval velocity volume and run 3D pre-stack depth migration. The main method for updating velocities is 3D tomography. The criteria used in velocity model determination are based on the flatness of pre-stack migrated gathers or the quality of the stacked image. The standard processing ended with poststack 3D time migration. Prestack depth migration is one of the powerful tool available to the interpretator to develop an accurate velocity model and get

  8. 3D face analysis for demographic biometrics

    SciTech Connect

    Tokola, Ryan A; Mikkilineni, Aravind K; Boehnen, Chris Bensing

    2015-01-01

    Despite being increasingly easy to acquire, 3D data is rarely used for face-based biometrics applications beyond identification. Recent work in image-based demographic biometrics has enjoyed much success, but these approaches suffer from the well-known limitations of 2D representations, particularly variations in illumination, texture, and pose, as well as a fundamental inability to describe 3D shape. This paper shows that simple 3D shape features in a face-based coordinate system are capable of representing many biometric attributes without problem-specific models or specialized domain knowledge. The same feature vector achieves impressive results for problems as diverse as age estimation, gender classification, and race classification.

  9. Extraction of 3D information from sonar image sequences.

    PubMed

    Trucco, A; Curletto, S

    2003-01-01

    This paper describes a set of methods that make it possible to estimate the position of a feature inside a three-dimensional (3D) space by starting from a sequence of two-dimensional (2D) acoustic images of the seafloor acquired with a sonar system. Typical sonar imaging systems are able to generate just 2D images, and the acquisition of 3D information involves sharp increases in complexity and costs. The front-scan sonar proposed in this paper is a new equipment devoted to acquiring a 2D image of the seafloor to sail over, and allows one to collect a sequence of images showing a specific feature during the approach of the ship. This fact seems to make it possible to recover the 3D position of a feature by comparing the feature positions along the sequence of images acquired from different (known) ship positions. This opportunity is investigated in the paper, where it is shown that encouraging results have been obtained by a processing chain composed of some blocks devoted to low-level processing, feature extraction and analysis, a Kalman filter for robust feature tracking, and some ad hoc equations for depth estimation and averaging. A statistical error analysis demonstrated the great potential of the proposed system also if some inaccuracies affect the sonar measures and the knowledge of the ship position. This was also confirmed by several tests performed on both simulated and real sequences, obtaining satisfactory results on both the feature tracking and, above all, the estimation of the 3D position.

  10. The effect of spatial micro-CT image resolution and surface complexity on the morphological 3D analysis of open porous structures

    SciTech Connect

    Pyka, Grzegorz; Kerckhofs, Greet

    2014-01-15

    In material science microfocus X-ray computed tomography (micro-CT) is one of the most popular non-destructive techniques to visualise and quantify the internal structure of materials in 3D. Despite constant system improvements, state-of-the-art micro-CT images can still hold several artefacts typical for X-ray CT imaging that hinder further image-based processing, structural and quantitative analysis. For example spatial resolution is crucial for an appropriate characterisation as the voxel size essentially influences the partial volume effect. However, defining the adequate image resolution is not a trivial aspect and understanding the correlation between scan parameters like voxel size and the structural properties is crucial for comprehensive material characterisation using micro-CT. Therefore, the objective of this study was to evaluate the influence of the spatial image resolution on the micro-CT based morphological analysis of three-dimensional (3D) open porous structures with a high surface complexity. In particular the correlation between the local surface properties and the accuracy of the micro-CT-based macro-morphology of 3D open porous Ti6Al4V structures produced by selective laser melting (SLM) was targeted and revealed for rough surfaces a strong dependence of the resulting structure characteristics on the scan resolution. Reducing the surface complexity by chemical etching decreased the sensitivity of the overall morphological analysis to the spatial image resolution and increased the detection limit. This study showed that scan settings and image processing parameters need to be customized to the material properties, morphological parameters under investigation and the desired final characteristics (in relation to the intended functional use). Customization of the scan resolution can increase the reliability of the micro-CT based analysis and at the same time reduce its operating costs. - Highlights: • We examine influence of the image resolution

  11. 3D ultrasound imaging for prosthesis fabrication and diagnostic imaging

    SciTech Connect

    Morimoto, A.K.; Bow, W.J.; Strong, D.S.

    1995-06-01

    The fabrication of a prosthetic socket for a below-the-knee amputee requires knowledge of the underlying bone structure in order to provide pressure relief for sensitive areas and support for load bearing areas. The goal is to enable the residual limb to bear pressure with greater ease and utility. Conventional methods of prosthesis fabrication are based on limited knowledge about the patient`s underlying bone structure. A 3D ultrasound imaging system was developed at Sandia National Laboratories. The imaging system provides information about the location of the bones in the residual limb along with the shape of the skin surface. Computer assisted design (CAD) software can use this data to design prosthetic sockets for amputees. Ultrasound was selected as the imaging modality. A computer model was developed to analyze the effect of the various scanning parameters and to assist in the design of the overall system. The 3D ultrasound imaging system combines off-the-shelf technology for image capturing, custom hardware, and control and image processing software to generate two types of image data -- volumetric and planar. Both volumetric and planar images reveal definition of skin and bone geometry with planar images providing details on muscle fascial planes, muscle/fat interfaces, and blood vessel definition. The 3D ultrasound imaging system was tested on 9 unilateral below-the- knee amputees. Image data was acquired from both the sound limb and the residual limb. The imaging system was operated in both volumetric and planar formats. An x-ray CT (Computed Tomography) scan was performed on each amputee for comparison. Results of the test indicate beneficial use of ultrasound to generate databases for fabrication of prostheses at a lower cost and with better initial fit as compared to manually fabricated prostheses.

  12. 3D Imaging by Mass Spectrometry: A New Frontier

    PubMed Central

    Seeley, Erin H.; Caprioli, Richard M.

    2012-01-01

    Summary Imaging mass spectrometry can generate three-dimensional volumes showing molecular distributions in an entire organ or animal through registration and stacking of serial tissue sections. Here we review the current state of 3D imaging mass spectrometry as well as provide insights and perspectives on the process of generating 3D mass spectral data along with a discussion of the process necessary to generate a 3D image volume. PMID:22276611

  13. 3D imaging and quantitative analysis of small solubilized membrane proteins and their complexes by transmission electron microscopy.

    PubMed

    Vahedi-Faridi, Ardeschir; Jastrzebska, Beata; Palczewski, Krzysztof; Engel, Andreas

    2013-02-01

    Inherently unstable, detergent-solubilized membrane protein complexes can often not be crystallized. For complexes that have a mass of >300 kDa, cryo-electron microscopy (EM) allows their three-dimensional (3D) structure to be assessed to a resolution that makes secondary structure elements visible in the best case. However, many interesting complexes exist whose mass is below 300 kDa and thus need alternative approaches. Two methods are reviewed: (i) Mass measurement in a scanning transmission electron microscope, which has provided important information on the stoichiometry of membrane protein complexes. This technique is applicable to particulate, filamentous and sheet-like structures. (ii) 3D-EM of negatively stained samples, which determines the molecular envelope of small membrane protein complexes. Staining and dehydration artifacts may corrupt the quality of the 3D map. Staining conditions thus need to be optimized. 3D maps of plant aquaporin SoPIP2;1 tetramers solubilized in different detergents illustrate that the flattening artifact can be partially prevented and that the detergent itself contributes significantly. Another example discussed is the complex of G protein-coupled receptor rhodopsin with its cognate G protein transducin.

  14. 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network

    PubMed Central

    Fedorov, Andriy; Beichel, Reinhard; Kalpathy-Cramer, Jayashree; Finet, Julien; Fillion-Robin, Jean-Christophe; Pujol, Sonia; Bauer, Christian; Jennings, Dominique; Fennessy, Fiona; Sonka, Milan; Buatti, John; Aylward, Stephen; Miller, James V.; Pieper, Steve; Kikinis, Ron

    2012-01-01

    Quantitative analysis has tremendous but mostly unrealized potential in healthcare to support objective and accurate interpretation of the clinical imaging. In 2008, the National Cancer Institute began building the Quantitative Imaging Network (QIN) initiative with the goal of advancing quantitative imaging in the context of personalized therapy and evaluation of treatment response. Computerized analysis is an important component contributing to reproducibility and efficiency of the quantitative imaging techniques. The success of quantitative imaging is contingent on robust analysis methods and software tools to bring these methods from bench to bedside. 3D Slicer is a free open source software application for medical image computing. As a clinical research tool, 3D Slicer is similar to a radiology workstation that supports versatile visualizations but also provides advanced functionality such as automated segmentation and registration for a variety of application domains. Unlike a typical radiology workstation, 3D Slicer is free and is not tied to specific hardware. As a programming platform, 3D Slicer facilitates translation and evaluation of the new quantitative methods by allowing the biomedical researcher to focus on the implementation of the algorithm, and providing abstractions for the common tasks of data communication, visualization and user interface development. Compared to other tools that provide aspects of this functionality, 3D Slicer is fully open source and can be readily extended and redistributed. In addition, 3D Slicer is designed to facilitate the development of new functionality in the form of 3D Slicer extensions. In this paper, we present an overview of 3D Slicer as a platform for prototyping, development and evaluation of image analysis tools for clinical research applications. To illustrate the utility of the platform in the scope of QIN, we discuss several use cases of 3D Slicer by the existing QIN teams, and we elaborate on the future

  15. Validation of image processing tools for 3-D fluorescence microscopy.

    PubMed

    Dieterlen, Alain; Xu, Chengqi; Gramain, Marie-Pierre; Haeberlé, Olivier; Colicchio, Bruno; Cudel, Christophe; Jacquey, Serge; Ginglinger, Emanuelle; Jung, Georges; Jeandidier, Eric

    2002-04-01

    3-D optical fluorescent microscopy becomes nowadays an efficient tool for volumic investigation of living biological samples. Using optical sectioning technique, a stack of 2-D images is obtained. However, due to the nature of the system optical transfer function and non-optimal experimental conditions, acquired raw data usually suffer from some distortions. In order to carry out biological analysis, raw data have to be restored by deconvolution. The system identification by the point-spread function is useful to obtain the knowledge of the actual system and experimental parameters, which is necessary to restore raw data. It is furthermore helpful to precise the experimental protocol. In order to facilitate the use of image processing techniques, a multi-platform-compatible software package called VIEW3D has been developed. It integrates a set of tools for the analysis of fluorescence images from 3-D wide-field or confocal microscopy. A number of regularisation parameters for data restoration are determined automatically. Common geometrical measurements and morphological descriptors of fluorescent sites are also implemented to facilitate the characterisation of biological samples. An example of this method concerning cytogenetics is presented.

  16. 3D subcellular SIMS imaging in cryogenically prepared single cells

    NASA Astrophysics Data System (ADS)

    Chandra, Subhash

    2004-06-01

    The analysis of a cell with dynamic SIMS ion microscopy depends on the gradual erosion (sputtering) of the cell surface for obtaining spatially resolved chemical information in the X-, Y-, and Z-dimensions. This ideal feature of ion microscopy is rarely explored in probing microfeatures hidden beneath the cell surface. In this study, this capability is explored for the analysis of cells undergoing cell division. The mitotic cells required 3D SIMS imaging in order to study the chemical composition of specialized subcellular regions, like the mitotic spindle, hidden beneath the cell surface. Human glioblastoma T98G cells were grown on silicon chips and cryogenically prepared with a sandwich freeze-fracture method. The fractured freeze-dried cells were used for SIMS analysis with the microscope mode of the CAMECA IMS-3f, which is capable of producing 500 nm lateral image resolution. SIMS analysis of calcium in the spindle region of metaphase cells required sequential recording of as many as 10 images. The T98G human glioblastoma tumor cells revealed an unusual depletion/lack of calcium store in the metaphase spindle, which is in contrast to the accumulation of calcium stores generally observed in normal cells. This study shows the feasibility of the microscope mode imaging in resolving subcellular microfeatures in 3D and opens new avenues of research in spatially resolved chemical analysis of dividing cells.

  17. 3D imaging: how to achieve highest accuracy

    NASA Astrophysics Data System (ADS)

    Luhmann, Thomas

    2011-07-01

    The generation of 3D information from images is a key technology in many different areas, e.g. in 3D modeling and representation of architectural or heritage objects, in human body motion tracking and scanning, in 3D scene analysis of traffic scenes, in industrial applications and many more. The basic concepts rely on mathematical representations of central perspective viewing as they are widely known from photogrammetry or computer vision approaches. The objectives of these methods differ, more or less, from high precision and well-structured measurements in (industrial) photogrammetry to fully-automated non-structured applications in computer vision. Accuracy and precision is a critical issue for the 3D measurement of industrial, engineering or medical objects. As state of the art, photogrammetric multi-view measurements achieve relative precisions in the order of 1:100000 to 1:200000, and relative accuracies with respect to retraceable lengths in the order of 1:50000 to 1:100000 of the largest object diameter. In order to obtain these figures a number of influencing parameters have to be optimized. These are, besides others: physical representation of object surface (targets, texture), illumination and light sources, imaging sensors, cameras and lenses, calibration strategies (camera model), orientation strategies (bundle adjustment), image processing of homologue features (target measurement, stereo and multi-image matching), representation of object or workpiece coordinate systems and object scale. The paper discusses the above mentioned parameters and offers strategies for obtaining highest accuracy in object space. Practical examples of high-quality stereo camera measurements and multi-image applications are used to prove the relevance of high accuracy in different applications, ranging from medical navigation to static and dynamic industrial measurements. In addition, standards for accuracy verifications are presented and demonstrated by practical examples

  18. A spherical harmonics intensity model for 3D segmentation and 3D shape analysis of heterochromatin foci.

    PubMed

    Eck, Simon; Wörz, Stefan; Müller-Ott, Katharina; Hahn, Matthias; Biesdorf, Andreas; Schotta, Gunnar; Rippe, Karsten; Rohr, Karl

    2016-08-01

    The genome is partitioned into regions of euchromatin and heterochromatin. The organization of heterochromatin is important for the regulation of cellular processes such as chromosome segregation and gene silencing, and their misregulation is linked to cancer and other diseases. We present a model-based approach for automatic 3D segmentation and 3D shape analysis of heterochromatin foci from 3D confocal light microscopy images. Our approach employs a novel 3D intensity model based on spherical harmonics, which analytically describes the shape and intensities of the foci. The model parameters are determined by fitting the model to the image intensities using least-squares minimization. To characterize the 3D shape of the foci, we exploit the computed spherical harmonics coefficients and determine a shape descriptor. We applied our approach to 3D synthetic image data as well as real 3D static and real 3D time-lapse microscopy images, and compared the performance with that of previous approaches. It turned out that our approach yields accurate 3D segmentation results and performs better than previous approaches. We also show that our approach can be used for quantifying 3D shape differences of heterochromatin foci.

  19. Automated Recognition of 3D Features in GPIR Images

    NASA Technical Reports Server (NTRS)

    Park, Han; Stough, Timothy; Fijany, Amir

    2007-01-01

    A method of automated recognition of three-dimensional (3D) features in images generated by ground-penetrating imaging radar (GPIR) is undergoing development. GPIR 3D images can be analyzed to detect and identify such subsurface features as pipes and other utility conduits. Until now, much of the analysis of GPIR images has been performed manually by expert operators who must visually identify and track each feature. The present method is intended to satisfy a need for more efficient and accurate analysis by means of algorithms that can automatically identify and track subsurface features, with minimal supervision by human operators. In this method, data from multiple sources (for example, data on different features extracted by different algorithms) are fused together for identifying subsurface objects. The algorithms of this method can be classified in several different ways. In one classification, the algorithms fall into three classes: (1) image-processing algorithms, (2) feature- extraction algorithms, and (3) a multiaxis data-fusion/pattern-recognition algorithm that includes a combination of machine-learning, pattern-recognition, and object-linking algorithms. The image-processing class includes preprocessing algorithms for reducing noise and enhancing target features for pattern recognition. The feature-extraction algorithms operate on preprocessed data to extract such specific features in images as two-dimensional (2D) slices of a pipe. Then the multiaxis data-fusion/ pattern-recognition algorithm identifies, classifies, and reconstructs 3D objects from the extracted features. In this process, multiple 2D features extracted by use of different algorithms and representing views along different directions are used to identify and reconstruct 3D objects. In object linking, which is an essential part of this process, features identified in successive 2D slices and located within a threshold radius of identical features in adjacent slices are linked in a

  20. Light field display and 3D image reconstruction

    NASA Astrophysics Data System (ADS)

    Iwane, Toru

    2016-06-01

    Light field optics and its applications become rather popular in these days. With light field optics or light field thesis, real 3D space can be described in 2D plane as 4D data, which we call as light field data. This process can be divided in two procedures. First, real3D scene is optically reduced with imaging lens. Second, this optically reduced 3D image is encoded into light field data. In later procedure we can say that 3D information is encoded onto a plane as 2D data by lens array plate. This transformation is reversible and acquired light field data can be decoded again into 3D image with the arrayed lens plate. "Refocusing" (focusing image on your favorite point after taking a picture), light-field camera's most popular function, is some kind of sectioning process from encoded 3D data (light field data) to 2D image. In this paper at first I show our actual light field camera and our 3D display using acquired and computer-simulated light field data, on which real 3D image is reconstructed. In second I explain our data processing method whose arithmetic operation is performed not in Fourier domain but in real domain. Then our 3D display system is characterized by a few features; reconstructed image is of finer resolutions than density of arrayed lenses and it is not necessary to adjust lens array plate to flat display on which light field data is displayed.

  1. Fringe projection 3D microscopy with the general imaging model.

    PubMed

    Yin, Yongkai; Wang, Meng; Gao, Bruce Z; Liu, Xiaoli; Peng, Xiang

    2015-03-01

    Three-dimensional (3D) imaging and metrology of microstructures is a critical task for the design, fabrication, and inspection of microelements. Newly developed fringe projection 3D microscopy is presented in this paper. The system is configured according to camera-projector layout and long working distance lenses. The Scheimpflug principle is employed to make full use of the limited depth of field. For such a specific system, the general imaging model is introduced to reach a full 3D reconstruction. A dedicated calibration procedure is developed to realize quantitative 3D imaging. Experiments with a prototype demonstrate the accessibility of the proposed configuration, model, and calibration approach.

  2. 3D Imaging with Structured Illumination for Advanced Security Applications

    SciTech Connect

    Birch, Gabriel Carisle; Dagel, Amber Lynn; Kast, Brian A.; Smith, Collin S.

    2015-09-01

    Three-dimensional (3D) information in a physical security system is a highly useful dis- criminator. The two-dimensional data from an imaging systems fails to provide target dis- tance and three-dimensional motion vector, which can be used to reduce nuisance alarm rates and increase system effectiveness. However, 3D imaging devices designed primarily for use in physical security systems are uncommon. This report discusses an architecture favorable to physical security systems; an inexpensive snapshot 3D imaging system utilizing a simple illumination system. The method of acquiring 3D data, tests to understand illumination de- sign, and software modifications possible to maximize information gathering capability are discussed.

  3. On Alternative Approaches to 3D Image Perception: Monoscopic 3D Techniques

    NASA Astrophysics Data System (ADS)

    Blundell, Barry G.

    2015-06-01

    In the eighteenth century, techniques that enabled a strong sense of 3D perception to be experienced without recourse to binocular disparities (arising from the spatial separation of the eyes) underpinned the first significant commercial sales of 3D viewing devices and associated content. However following the advent of stereoscopic techniques in the nineteenth century, 3D image depiction has become inextricably linked to binocular parallax and outside the vision science and arts communities relatively little attention has been directed towards earlier approaches. Here we introduce relevant concepts and terminology and consider a number of techniques and optical devices that enable 3D perception to be experienced on the basis of planar images rendered from a single vantage point. Subsequently we allude to possible mechanisms for non-binocular parallax based 3D perception. Particular attention is given to reviewing areas likely to be thought-provoking to those involved in 3D display development, spatial visualization, HCI, and other related areas of interdisciplinary research.

  4. 3D augmented reality with integral imaging display

    NASA Astrophysics Data System (ADS)

    Shen, Xin; Hua, Hong; Javidi, Bahram

    2016-06-01

    In this paper, a three-dimensional (3D) integral imaging display for augmented reality is presented. By implementing the pseudoscopic-to-orthoscopic conversion method, elemental image arrays with different capturing parameters can be transferred into the identical format for 3D display. With the proposed merging algorithm, a new set of elemental images for augmented reality display is generated. The newly generated elemental images contain both the virtual objects and real world scene with desired depth information and transparency parameters. The experimental results indicate the feasibility of the proposed 3D augmented reality with integral imaging.

  5. 3D-Modeling of deformed halite hopper crystals: Object based image analysis and support vector machine, a first evaluation

    NASA Astrophysics Data System (ADS)

    Leitner, Christoph; Hofmann, Peter; Marschallinger, Robert

    2014-05-01

    Halite hopper crystals are thought to develop by displacive growth in unconsolidated mud (Gornitz & Schreiber, 1984). The Alpine Haselgebirge, but also e.g. the salt deposits of the Rhine graben (mined at the beginning of the 20th century), comprise hopper crystals with shapes of cuboids, parallelepipeds and rhombohedrons (Görgey, 1912). Obviously, they deformed under oriented stress, which had been tried to reconstruct with respect to the sedimentary layering (Leitner et al., 2013). In the present work, deformed halite hopper crystals embedded in mudrock were automated reconstructed. Object based image analysis (OBIA) has been used successfully in remote sensing for 2D images before. The present study represents the first time that the method was used for reconstruction of three dimensional geological objects. First, manually a reference (gold standard) was created by redrawing contours of the halite crystals on each HRXCT scanning slice. Then, for OBIA, the computer program eCognition was used. For the automated reconstruction a rule set was developed. Thereby, the strength of OBIA was to recognize all objects similar to halite hopper crystals and in particular to eliminate cracks. In a second step, all the objects unsuitable for a structural deformation analysis were dismissed using a support vector machine (SVM) (clusters, polyhalite-coated crystals and spherical halites) The SVM simultaneously drastically reduced the number of halites. From 184 OBIA-objects 67 well shaped remained, which comes close to the number of pre-selected 52 objects. To assess the accuracy of the automated reconstruction, the result before and after SVM was compared to the reference, i.e. the gold standard. State-of the art per-scene statistics were extended to a per-object statistics. Görgey R (1912) Zur Kenntnis der Kalisalzlager von Wittelsheim im Ober-Elsaß. Tschermaks Mineral Petrogr Mitt 31:339-468 Gornitz VM, Schreiber BC (1981) Displacive halite hoppers from the dead sea

  6. Objective breast symmetry evaluation using 3-D surface imaging.

    PubMed

    Eder, Maximilian; Waldenfels, Fee V; Swobodnik, Alexandra; Klöppel, Markus; Pape, Ann-Kathrin; Schuster, Tibor; Raith, Stefan; Kitzler, Elena; Papadopulos, Nikolaos A; Machens, Hans-Günther; Kovacs, Laszlo

    2012-04-01

    This study develops an objective breast symmetry evaluation using 3-D surface imaging (Konica-Minolta V910(®) scanner) by superimposing the mirrored left breast over the right and objectively determining the mean 3-D contour difference between the 2 breast surfaces. 3 observers analyzed the evaluation protocol precision using 2 dummy models (n = 60), 10 test subjects (n = 300), clinically tested it on 30 patients (n = 900) and compared it to established 2-D measurements on 23 breast reconstructive patients using the BCCT.core software (n = 690). Mean 3-D evaluation precision, expressed as the coefficient of variation (VC), was 3.54 ± 0.18 for all human subjects without significant intra- and inter-observer differences (p > 0.05). The 3-D breast symmetry evaluation is observer independent, significantly more precise (p < 0.001) than the BCCT.core software (VC = 6.92 ± 0.88) and may play a part in an objective surgical outcome analysis after incorporation into clinical practice.

  7. Performance prediction for 3D filtering of multichannel images

    NASA Astrophysics Data System (ADS)

    Rubel, Oleksii; Kozhemiakin, Ruslan A.; Abramov, Sergey K.; Lukin, Vladimir V.; Vozel, Benoit; Chehdi, Kacem

    2015-10-01

    Performance of denoising based on discrete cosine transform applied to multichannel remote sensing images corrupted by additive white Gaussian noise is analyzed. Images obtained by satellite Earth Observing-1 (EO-1) mission using hyperspectral imager instrument (Hyperion) that have high input SNR are taken as test images. Denoising performance is characterized by improvement of PSNR. For hard-thresholding 3D DCT-based denoising, simple statistics (probabilities to be less than a certain threshold) are used to predict denoising efficiency using curves fitted into scatterplots. It is shown that the obtained curves (approximations) provide prediction of denoising efficiency with high accuracy. Analysis is carried out for different numbers of channels processed jointly. Universality of prediction for different number of channels is proven.

  8. Dual-view 3D displays based on integral imaging

    NASA Astrophysics Data System (ADS)

    Wang, Qiong-Hua; Deng, Huan; Wu, Fei

    2016-03-01

    We propose three dual-view integral imaging (DVII) three-dimensional (3D) displays. In the spatial-multiplexed DVII 3D display, each elemental image (EI) is cut into a left and right sub-EIs, and they are refracted to the left and right viewing zones by the corresponding micro-lens array (MLA). Different 3D images are reconstructed in the left and right viewing zones, and the viewing angle is decreased. In the DVII 3D display using polarizer parallax barriers, a polarizer parallax barrier is used in front of both the display panel and the MLA. The polarizer parallax barrier consists of two parts with perpendicular polarization directions. The elemental image array (EIA) is cut to left and right parts. The lights emitted from the left part are modulated by the left MLA and reconstruct a 3D image in the right viewing zone, whereas the lights emitted from the right part reconstruct another 3D image in the left viewing zone. The 3D resolution is decreased. In the time-multiplexed DVII 3D display, an orthogonal polarizer array is attached onto both the display panel and the MLA. The orthogonal polarizer array consists of horizontal and vertical polarizer units and the polarization directions of the adjacent units are orthogonal. In State 1, each EI is reconstructed by its corresponding micro-lens, whereas in State 2, each EI is reconstructed by its adjacent micro-lens. 3D images 1 and 2 are reconstructed alternately with a refresh rate up to 120HZ. The viewing angle and 3D resolution are the same as the conventional II 3D display.

  9. 3D model-based still image object categorization

    NASA Astrophysics Data System (ADS)

    Petre, Raluca-Diana; Zaharia, Titus

    2011-09-01

    This paper proposes a novel recognition scheme algorithm for semantic labeling of 2D object present in still images. The principle consists of matching unknown 2D objects with categorized 3D models in order to infer the semantics of the 3D object to the image. We tested our new recognition framework by using the MPEG-7 and Princeton 3D model databases in order to label unknown images randomly selected from the web. Results obtained show promising performances, with recognition rate up to 84%, which opens interesting perspectives in terms of semantic metadata extraction from still images/videos.

  10. Imaging hypoxia using 3D photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Stantz, Keith M.

    2010-02-01

    Purpose: The objective is to develop a multivariate in vivo hemodynamic model of tissue oxygenation (MiHMO2) based on 3D photoacoustic spectroscopy. Introduction: Low oxygen levels, or hypoxia, deprives cancer cells of oxygen and confers resistance to irradiation, some chemotherapeutic drugs, and oxygen-dependent therapies (phototherapy) leading to treatment failure and poor disease-free and overall survival. For example, clinical studies of patients with breast carcinomas, cervical cancer, and head and neck carcinomas (HNC) are more likely to suffer local reoccurrence and metastasis if their tumors are hypoxic. A novel method to non invasively measure tumor hypoxia, identify its type, and monitor its heterogeneity is devised by measuring tumor hemodynamics, MiHMO2. Material and Methods: Simulations are performed to compare tumor pO2 levels and hypoxia based on physiology - perfusion, fractional plasma volume, fractional cellular volume - and its hemoglobin status - oxygen saturation and hemoglobin concentration - based on in vivo measurements of breast, prostate, and ovarian tumors. Simulations of MiHMO2 are performed to assess the influence of scanner resolutions and different mathematic models of oxygen delivery. Results: Sensitivity of pO2 and hypoxic fraction to photoacoustic scanner resolution and dependencies on model complexity will be presented using hemodynamic parameters for different tumors. Conclusions: Photoacoustic CT spectroscopy provides a unique ability to monitor hemodynamic and cellular physiology in tissue, which can be used to longitudinally monitor tumor oxygenation and its response to anti-angiogenic therapies.

  11. 3D imaging of soil pore network: two different approaches

    NASA Astrophysics Data System (ADS)

    Matrecano, M.; Di Matteo, B.; Mele, G.; Terribile, F.

    2009-04-01

    system but on less noisy images. SSAT system showed more flexibility in terms of sample size although both techniques allowed investigation on REVs (Representative Elementary Volumes) for most of macroscopic properties describing soil processes. Morover, undoubted advantages of not destructivity and ease sample preparation for the Skysan 1172 are balanced by lower overall costs for the SSAT and its potential of producing 3D representation of soil features different from the simple solid/porous phases. Both approaches allow to use exactly the same image analysis procedures on the reconstructed 3D images although require some specific pre-processing treatments.

  12. Highway 3D model from image and lidar data

    NASA Astrophysics Data System (ADS)

    Chen, Jinfeng; Chu, Henry; Sun, Xiaoduan

    2014-05-01

    We present a new method of highway 3-D model construction developed based on feature extraction in highway images and LIDAR data. We describe the processing road coordinate data that connect the image frames to the coordinates of the elevation data. Image processing methods are used to extract sky, road, and ground regions as well as significant objects (such as signs and building fronts) in the roadside for the 3D model. LIDAR data are interpolated and processed to extract the road lanes as well as other features such as trees, ditches, and elevated objects to form the 3D model. 3D geometry reasoning is used to match the image features to the 3D model. Results from successive frames are integrated to improve the final model.

  13. Feature detection on 3D images of dental imprints

    NASA Astrophysics Data System (ADS)

    Mokhtari, Marielle; Laurendeau, Denis

    1994-09-01

    A computer vision approach for the extraction of feature points on 3D images of dental imprints is presented. The position of feature points are needed for the measurement of a set of parameters for automatic diagnosis of malocclusion problems in orthodontics. The system for the acquisition of the 3D profile of the imprint, the procedure for the detection of the interstices between teeth, and the approach for the identification of the type of tooth are described, as well as the algorithm for the reconstruction of the surface of each type of tooth. A new approach for the detection of feature points, called the watershed algorithm, is described in detail. The algorithm is a two-stage procedure which tracks the position of local minima at four different scales and produces a final map of the position of the minima. Experimental results of the application of the watershed algorithm on actual 3D images of dental imprints are presented for molars, premolars and canines. The segmentation approach for the analysis of the shape of incisors is also described in detail.

  14. Diffractive optical element for creating visual 3D images.

    PubMed

    Goncharsky, Alexander; Goncharsky, Anton; Durlevich, Svyatoslav

    2016-05-01

    A method is proposed to compute and synthesize the microrelief of a diffractive optical element to produce a new visual security feature - the vertical 3D/3D switch effect. The security feature consists in the alternation of two 3D color images when the diffractive element is tilted up/down. Optical security elements that produce the new security feature are synthesized using electron-beam technology. Sample optical security elements are manufactured that produce 3D to 3D visual switch effect when illuminated by white light. Photos and video records of the vertical 3D/3D switch effect of real optical elements are presented. The optical elements developed can be replicated using standard equipment employed for manufacturing security holograms. The new optical security feature is easy to control visually, safely protected against counterfeit, and designed to protect banknotes, documents, ID cards, etc. PMID:27137530

  15. Dedicated 3D photoacoustic breast imaging

    PubMed Central

    Kruger, Robert A.; Kuzmiak, Cherie M.; Lam, Richard B.; Reinecke, Daniel R.; Del Rio, Stephen P.; Steed, Doreen

    2013-01-01

    Purpose: To report the design and imaging methodology of a photoacoustic scanner dedicated to imaging hemoglobin distribution throughout a human breast. Methods: The authors developed a dedicated breast photoacoustic mammography (PAM) system using a spherical detector aperture based on our previous photoacoustic tomography scanner. The system uses 512 detectors with rectilinear scanning. The scan shape is a spiral pattern whose radius varies from 24 to 96 mm, thereby allowing a field of view that accommodates a wide range of breast sizes. The authors measured the contrast-to-noise ratio (CNR) using a target comprised of 1-mm dots printed on clear plastic. Each dot absorption coefficient was approximately the same as a 1-mm thickness of whole blood at 756 nm, the output wavelength of the Alexandrite laser used by this imaging system. The target was immersed in varying depths of an 8% solution of stock Liposyn II-20%, which mimics the attenuation of breast tissue (1.1 cm−1). The spatial resolution was measured using a 6 μm-diameter carbon fiber embedded in agar. The breasts of four healthy female volunteers, spanning a range of breast size from a brassiere C cup to a DD cup, were imaged using a 96-mm spiral protocol. Results: The CNR target was clearly visualized to a depth of 53 mm. Spatial resolution, which was estimated from the full width at half-maximum of a profile across the PAM image of a carbon fiber, was 0.42 mm. In the four human volunteers, the vasculature was well visualized throughout the breast tissue, including to the chest wall. Conclusions: CNR, lateral field-of-view and penetration depth of our dedicated PAM scanning system is sufficient to image breasts as large as 1335 mL, which should accommodate up to 90% of the women in the United States. PMID:24320471

  16. 3-D capacitance density imaging system

    DOEpatents

    Fasching, G.E.

    1988-03-18

    A three-dimensional capacitance density imaging of a gasified bed or the like in a containment vessel is achieved using a plurality of electrodes provided circumferentially about the bed in levels and along the bed in channels. The electrodes are individually and selectively excited electrically at each level to produce a plurality of current flux field patterns generated in the bed at each level. The current flux field patterns are suitably sensed and a density pattern of the bed at each level determined. By combining the determined density patterns at each level, a three-dimensional density image of the bed is achieved. 7 figs.

  17. 3-D seismic imaging of complex geologies

    SciTech Connect

    Womble, D.E.; Dosanjh, S.S.; VanDyke, J.P.; Oldfield, R.A.; Greenberg, D.S.

    1995-02-01

    We present three codes for the Intel Paragon that address the problem of three-dimensional seismic imaging of complex geologies. The first code models acoustic wave propagation and can be used to generate data sets to calibrate and validate seismic imaging codes. This code reported the fastest timings for acoustic wave propagation codes at a recent SEG (Society of Exploration Geophysicists) meeting. The second code implements a Kirchhoff method for pre-stack depth migration. Development of this code is almost complete, and preliminary results are presented. The third code implements a wave equation approach to seismic migration and is a Paragon implementation of a code from the ARCO Seismic Benchmark Suite.

  18. 3-D seismic imaging of complex geologies

    NASA Astrophysics Data System (ADS)

    Womble, David E.; Dosanjh, Sudip S.; Vandyke, John P.; Oldfield, Ron A.; Greenberg, David S.

    We present three codes for the Intel Paragon that address the problem of three-dimensional seismic imaging of complex geologies. The first code models acoustic wave propagation and can be used to generate data sets to calibrate and validate seismic imaging codes. This code reported the fastest timings for acoustic wave propagation codes at a recent SEG (Society of Exploration Geophysicists) meeting. The second code implements a Kirchhoff method for pre-stack depth migration. Development of this code is almost complete, and preliminary results are presented. The third code implements a wave equation approach to seismic migration and is a Paragon implementation of a code from the ARCO Seismic Benchmark Suite.

  19. Polarimetric 3D integral imaging in photon-starved conditions.

    PubMed

    Carnicer, Artur; Javidi, Bahram

    2015-03-01

    We develop a method for obtaining 3D polarimetric integral images from elemental images recorded in low light illumination conditions. Since photon-counting images are very sparse, calculation of the Stokes parameters and the degree of polarization should be handled carefully. In our approach, polarimetric 3D integral images are generated using the Maximum Likelihood Estimation and subsequently reconstructed by means of a Total Variation Denoising filter. In this way, polarimetric results are comparable to those obtained in conventional illumination conditions. We also show that polarimetric information retrieved from photon starved images can be used in 3D object recognition problems. To the best of our knowledge, this is the first report on 3D polarimetric photon counting integral imaging. PMID:25836861

  20. 3D laser imaging for concealed object identification

    NASA Astrophysics Data System (ADS)

    Berechet, Ion; Berginc, Gérard; Berechet, Stefan

    2014-09-01

    This paper deals with new optical non-conventional 3D laser imaging. Optical non-conventional imaging explores the advantages of laser imaging to form a three-dimensional image of the scene. 3D laser imaging can be used for threedimensional medical imaging, topography, surveillance, robotic vision because of ability to detect and recognize objects. In this paper, we present a 3D laser imaging for concealed object identification. The objective of this new 3D laser imaging is to provide the user a complete 3D reconstruction of the concealed object from available 2D data limited in number and with low representativeness. The 2D laser data used in this paper come from simulations that are based on the calculation of the laser interactions with the different interfaces of the scene of interest and from experimental results. We show the global 3D reconstruction procedures capable to separate objects from foliage and reconstruct a threedimensional image of the considered object. In this paper, we present examples of reconstruction and completion of three-dimensional images and we analyse the different parameters of the identification process such as resolution, the scenario of camouflage, noise impact and lacunarity degree.

  1. Phase Sensitive Cueing for 3D Objects in Overhead Images

    SciTech Connect

    Paglieroni, D

    2005-02-04

    Locating specific 3D objects in overhead images is an important problem in many remote sensing applications. 3D objects may contain either one connected component or multiple disconnected components. Solutions must accommodate images acquired with diverse sensors at various times of the day, in various seasons of the year, or under various weather conditions. Moreover, the physical manifestation of a 3D object with fixed physical dimensions in an overhead image is highly dependent on object physical dimensions, object position/orientation, image spatial resolution, and imaging geometry (e.g., obliqueness). This paper describes a two-stage computer-assisted approach for locating 3D objects in overhead images. In the matching stage, the computer matches models of 3D objects to overhead images. The strongest degree of match over all object orientations is computed at each pixel. Unambiguous local maxima in the degree of match as a function of pixel location are then found. In the cueing stage, the computer sorts image thumbnails in descending order of figure-of-merit and presents them to human analysts for visual inspection and interpretation. The figure-of-merit associated with an image thumbnail is computed from the degrees of match to a 3D object model associated with unambiguous local maxima that lie within the thumbnail. This form of computer assistance is invaluable when most of the relevant thumbnails are highly ranked, and the amount of inspection time needed is much less for the highly ranked thumbnails than for images as a whole.

  2. Evaluating quantitative 3-D image analysis as a design tool for low enriched uranium fuel compacts for the transient reactor test facility: A preliminary study

    DOE PAGES

    Kane, J. J.; van Rooyen, I. J.; Craft, A. E.; Roney, T. J.; Morrell, S. R.

    2016-02-05

    In this study, 3-D image analysis when combined with a non-destructive examination technique such as X-ray computed tomography (CT) provides a highly quantitative tool for the investigation of a material’s structure. In this investigation 3-D image analysis and X-ray CT were combined to analyze the microstructure of a preliminary subsized fuel compact for the Transient Reactor Test Facility’s low enriched uranium conversion program to assess the feasibility of the combined techniques for use in the optimization of the fuel compact fabrication process. The quantitative image analysis focused on determining the size and spatial distribution of the surrogate fuel particles andmore » the size, shape, and orientation of voids within the compact. Additionally, the maximum effect of microstructural features on heat transfer through the carbonaceous matrix of the preliminary compact was estimated. The surrogate fuel particles occupied 0.8% of the compact by volume with a log-normal distribution of particle sizes with a mean diameter of 39 μm and a standard deviation of 16 μm. Roughly 39% of the particles had a diameter greater than the specified maximum particle size of 44 μm suggesting that the particles agglomerate during fabrication. The local volume fraction of particles also varies significantly within the compact although uniformities appear to be evenly dispersed throughout the analysed volume. The voids produced during fabrication were on average plate-like in nature with their major axis oriented perpendicular to the compaction direction of the compact. Finally, the microstructure, mainly the large preferentially oriented voids, may cause a small degree of anisotropy in the thermal diffusivity within the compact. α∥/α⊥, the ratio of thermal diffusivities parallel to and perpendicular to the compaction direction are expected to be no less than 0.95 with an upper bound of 1.« less

  3. 3D/3D registration of coronary CTA and biplane XA reconstructions for improved image guidance

    SciTech Connect

    Dibildox, Gerardo Baka, Nora; Walsum, Theo van; Punt, Mark; Aben, Jean-Paul; Schultz, Carl; Niessen, Wiro

    2014-09-15

    Purpose: The authors aim to improve image guidance during percutaneous coronary interventions of chronic total occlusions (CTO) by providing information obtained from computed tomography angiography (CTA) to the cardiac interventionist. To this end, the authors investigate a method to register a 3D CTA model to biplane reconstructions. Methods: The authors developed a method for registering preoperative coronary CTA with intraoperative biplane x-ray angiography (XA) images via 3D models of the coronary arteries. The models are extracted from the CTA and biplane XA images, and are temporally aligned based on CTA reconstruction phase and XA ECG signals. Rigid spatial alignment is achieved with a robust probabilistic point set registration approach using Gaussian mixture models (GMMs). This approach is extended by including orientation in the Gaussian mixtures and by weighting bifurcation points. The method is evaluated on retrospectively acquired coronary CTA datasets of 23 CTO patients for which biplane XA images are available. Results: The Gaussian mixture model approach achieved a median registration accuracy of 1.7 mm. The extended GMM approach including orientation was not significantly different (P > 0.1) but did improve robustness with regards to the initialization of the 3D models. Conclusions: The authors demonstrated that the GMM approach can effectively be applied to register CTA to biplane XA images for the purpose of improving image guidance in percutaneous coronary interventions.

  4. Critical comparison of 3D imaging approaches

    SciTech Connect

    Bennett, C L

    1999-06-03

    Currently three imaging spectrometer architectures, tunable filter, dispersive, and Fourier transform, are viable for imaging the universe in three dimensions. There are domains of greatest utility for each of these architectures. The optimum choice among the various alternative architectures is dependent on the nature of the desired observations, the maturity of the relevant technology, and the character of the backgrounds. The domain appropriate for each of the alternatives is delineated; both for instruments having ideal performance as well as for instrumentation based on currently available technology. The environment and science objectives for the Next Generation Space Telescope will be used as a specific representative case to provide a basis for comparison of the various alternatives.

  5. Acoustic 3D imaging of dental structures

    SciTech Connect

    Lewis, D.K.; Hume, W.R.; Douglass, G.D.

    1997-02-01

    Our goals for the first year of this three dimensional electodynamic imaging project was to determine how to combine flexible, individual addressable; preprocessing of array source signals; spectral extrapolation or received signals; acoustic tomography codes; and acoustic propagation modeling code. We investigated flexible, individually addressable acoustic array material to find the best match in power, sensitivity and cost and settled on PVDF sheet arrays and 3-1 composite material.

  6. Research on the aero-thermal effects by 3D analysis model of the optical window of the infrared imaging guidance

    NASA Astrophysics Data System (ADS)

    Xu, Bo; Li, Lin; Zhu, Ying

    2014-11-01

    Researches on hypersonic vehicles have been a hotspot in the field of aerospace because of the pursuits for higher speed by human being. Infrared imaging guidance is playing a very important role in modern warfare. When an Infrared Ray(IR) imaging guided missile is flying in the air at high speed, its optical dome suffers from serious aero-optic effects because of air flow. The turbulence around the dome and the thermal effects of the optical window would cause disturbance to the wavefront from the target. Therefore, detected images will be biased, dithered and blurred, and the capabilities of the seeker for detecting, tracking and recognizing are weakened. In this paper, methods for thermal and structural analysis with Heat Transfer and Elastic Mechanics are introduced. By studying the aero-thermal effects and aero-thermal radiation effects of the optical window, a 3D analysis model of the optical window is established by using finite element method. The direct coupling analysis is employed as a solving strategy. The variation regularity of the temperature field is obtained. For light with different incident angles, the influence on the ray propagation caused by window deformation is analyzed with theoretical calculation and optical/thermal/structural integrated analysis method respectively.

  7. Horizontal structure and propagation characteristics of mesospheric gravity waves observed by Antarctic Gravity Wave Imaging/Instrument Network (ANGWIN), using a 3-D spectral analysis technique

    NASA Astrophysics Data System (ADS)

    Matsuda, Takashi S.; Nakamura, Takuji; Murphy, Damian; Tsutsumi, Masaki; Moffat-Griffin, Tracy; Zhao, Yucheng; Pautet, Pierre-Dominique; Ejiri, Mitsumu K.; Taylor, Michael

    2016-07-01

    ANGWIN (Antarctic Gravity Wave Imaging/Instrument Network) is an international airglow imager/instrument network in the Antarctic, which commenced observations in 2011. It seeks to reveal characteristics of mesospheric gravity waves, and to study sources, propagation, breaking of the gravity waves over the Antarctic and the effects on general circulation and upper atmosphere. In this study, we compared distributions of horizontal phase velocity of the gravity waves at around 90 km altitude observed in the mesospheric airglow imaging over different locations using our new statistical analysis method of 3-D Fourier transform, developed by Matsuda et al. (2014). Results from the airglow imagers at four stations at Syowa (69S, 40E), Halley (76S, 27W), Davis (69S, 78E) and McMurdo (78S, 156E) out of the ANGWIN imagers have been compared, for the observation period between April 6 and May 21 in 2013. In addition to the horizontal distribution of propagation and phase speed, gravity wave energies have been quantitatively compared, indicating a smaller GW activity in higher latitude stations. We further investigated frequency dependence of gravity wave propagation direction, as well as nightly variation of the gravity wave direction and correlation with the background wind variations. We found that variation of propagation direction is partly due to the effect of background wind in the middle atmosphere, but variation of wave sources could play important role as well. Secondary wave generation is also needed to explain the observed results.

  8. Advanced 3-D analysis, client-server systems, and cloud computing—Integration of cardiovascular imaging data into clinical workflows of transcatheter aortic valve replacement

    PubMed Central

    Zimmermann, Mathis; Falkner, Juergen

    2013-01-01

    Degenerative aortic stenosis is highly prevalent in the aging populations of industrialized countries and is associated with poor prognosis. Surgical valve replacement has been the only established treatment with documented improvement of long-term outcome. However, many of the older patients with aortic stenosis (AS) are high-risk or ineligible for surgery. For these patients, transcatheter aortic valve replacement (TAVR) has emerged as a treatment alternative. The TAVR procedure is characterized by a lack of visualization of the operative field. Therefore, pre- and intra-procedural imaging is critical for patient selection, pre-procedural planning, and intra-operative decision-making. Incremental to conventional angiography and 2-D echocardiography, multidetector computed tomography (CT) has assumed an important role before TAVR. The analysis of 3-D CT data requires extensive post-processing during direct interaction with the dataset, using advance analysis software. Organization and storage of the data according to complex clinical workflows and sharing of image information have become a critical part of these novel treatment approaches. Optimally, the data are integrated into a comprehensive image data file accessible to multiple groups of practitioners across the hospital. This creates new challenges for data management requiring a complex IT infrastructure, spanning across multiple locations, but is increasingly achieved with client-server solutions and private cloud technology. This article describes the challenges and opportunities created by the increased amount of patient-specific imaging data in the context of TAVR. PMID:24282750

  9. Real-time 3D reconstruction of road curvature in far look-ahead distance from analysis of image sequences

    NASA Astrophysics Data System (ADS)

    Behringer, Reinhold

    1995-12-01

    A system for visual road recognition in far look-ahead distance, implemented in the autonomous road vehicle VaMP (a passenger car), is described. Visual cues of a road in a video image are the bright lane markings and the edges formed at the road borders. In a distance of more than 100 m, the most relevant road cue is the homogeneous road area, limited by the two border edges. These cues can be detected by the image processing module KRONOS applying edge detection techniques and areal 2D segmentation based on resolution triangles (analogous to a resolution pyramid). An estimation process performs an update of a state vector, which describes spatial road shape and vehicle orientation relative to the road. This state vector is estimated every 40 ms by exploiting knowledge about the vehicle movement (spatio-temporal model of vehicle dynamics) and the road design rules (clothoidal segments). Kalman filter techniques are applied to obtain an optimal estimate of the state vector by evaluating the measurements of the road border positions in the image sequence taken by a set of CCD cameras. The road consists of segments with piecewise constant curvature parameters. The borders between these segments can be detected by applying methods which have been developed for detection of discontinuities during time-discrete measurements. The road recognition system has been tested in autonomous rides with VaMP on public Autobahnen in real traffic at speeds up to 130 km/h.

  10. 3D quantitative phase imaging of neural networks using WDT

    NASA Astrophysics Data System (ADS)

    Kim, Taewoo; Liu, S. C.; Iyer, Raj; Gillette, Martha U.; Popescu, Gabriel

    2015-03-01

    White-light diffraction tomography (WDT) is a recently developed 3D imaging technique based on a quantitative phase imaging system called spatial light interference microscopy (SLIM). The technique has achieved a sub-micron resolution in all three directions with high sensitivity granted by the low-coherence of a white-light source. Demonstrations of the technique on single cell imaging have been presented previously; however, imaging on any larger sample, including a cluster of cells, has not been demonstrated using the technique. Neurons in an animal body form a highly complex and spatially organized 3D structure, which can be characterized by neuronal networks or circuits. Currently, the most common method of studying the 3D structure of neuron networks is by using a confocal fluorescence microscope, which requires fluorescence tagging with either transient membrane dyes or after fixation of the cells. Therefore, studies on neurons are often limited to samples that are chemically treated and/or dead. WDT presents a solution for imaging live neuron networks with a high spatial and temporal resolution, because it is a 3D imaging method that is label-free and non-invasive. Using this method, a mouse or rat hippocampal neuron culture and a mouse dorsal root ganglion (DRG) neuron culture have been imaged in order to see the extension of processes between the cells in 3D. Furthermore, the tomogram is compared with a confocal fluorescence image in order to investigate the 3D structure at synapses.

  11. Investigation of 3D glenohumeral displacements from 3D reconstruction using biplane X-ray images: Accuracy and reproducibility of the technique and preliminary analysis in rotator cuff tear patients.

    PubMed

    Zhang, Cheng; Skalli, Wafa; Lagacé, Pierre-Yves; Billuart, Fabien; Ohl, Xavier; Cresson, Thierry; Bureau, Nathalie J; Rouleau, Dominique M; Roy, André; Tétreault, Patrice; Sauret, Christophe; de Guise, Jacques A; Hagemeister, Nicola

    2016-08-01

    Rotator cuff (RC) tears may be associated with increased glenohumeral instability; however, this instability is difficult to quantify using currently available diagnostic tools. Recently, the three-dimensional (3D) reconstruction and registration method of the scapula and humeral head, based on sequences of low-dose biplane X-ray images, has been proposed for glenohumeral displacement assessment. This research aimed to evaluate the accuracy and reproducibility of this technique and to investigate its potential with a preliminary application comparing RC tear patients and asymptomatic volunteers. Accuracy was assessed using CT scan model registration on biplane X-ray images for five cadaveric shoulder specimens and showed differences ranging from 0.6 to 1.4mm depending on the direction of interest. Intra- and interobserver reproducibility was assessed through two operators who repeated the reconstruction of five subjects three times, allowing defining 95% confidence interval ranging from ±1.8 to ±3.6mm. Intraclass correlation coefficient varied between 0.84 and 0.98. Comparison between RC tear patients and asymptomatic volunteers showed differences of glenohumeral displacements, especially in the superoinferior direction when shoulder was abducted at 20° and 45°. This study thus assessed the accuracy of the low-dose 3D biplane X-ray reconstruction technique for glenohumeral displacement assessment and showed potential in biomechanical and clinical research.

  12. SAMA: A Method for 3D Morphological Analysis.

    PubMed

    Paulose, Tessie; Montévil, Maël; Speroni, Lucia; Cerruti, Florent; Sonnenschein, Carlos; Soto, Ana M

    2016-01-01

    Three-dimensional (3D) culture models are critical tools for understanding tissue morphogenesis. A key requirement for their analysis is the ability to reconstruct the tissue into computational models that allow quantitative evaluation of the formed structures. Here, we present Software for Automated Morphological Analysis (SAMA), a method by which epithelial structures grown in 3D cultures can be imaged, reconstructed and analyzed with minimum human intervention. SAMA allows quantitative analysis of key features of epithelial morphogenesis such as ductal elongation, branching and lumen formation that distinguish different hormonal treatments. SAMA is a user-friendly set of customized macros operated via FIJI (http://fiji.sc/Fiji), an open-source image analysis platform in combination with a set of functions in R (http://www.r-project.org/), an open-source program for statistical analysis. SAMA enables a rapid, exhaustive and quantitative 3D analysis of the shape of a population of structures in a 3D image. SAMA is cross-platform, licensed under the GPLv3 and available at http://montevil.theobio.org/content/sama. PMID:27035711

  13. SAMA: A Method for 3D Morphological Analysis

    PubMed Central

    Cerruti, Florent; Sonnenschein, Carlos; Soto, Ana M.

    2016-01-01

    Three-dimensional (3D) culture models are critical tools for understanding tissue morphogenesis. A key requirement for their analysis is the ability to reconstruct the tissue into computational models that allow quantitative evaluation of the formed structures. Here, we present Software for Automated Morphological Analysis (SAMA), a method by which epithelial structures grown in 3D cultures can be imaged, reconstructed and analyzed with minimum human intervention. SAMA allows quantitative analysis of key features of epithelial morphogenesis such as ductal elongation, branching and lumen formation that distinguish different hormonal treatments. SAMA is a user-friendly set of customized macros operated via FIJI (http://fiji.sc/Fiji), an open-source image analysis platform in combination with a set of functions in R (http://www.r-project.org/), an open-source program for statistical analysis. SAMA enables a rapid, exhaustive and quantitative 3D analysis of the shape of a population of structures in a 3D image. SAMA is cross-platform, licensed under the GPLv3 and available at http://montevil.theobio.org/content/sama. PMID:27035711

  14. Accommodation response measurements for integral 3D image

    NASA Astrophysics Data System (ADS)

    Hiura, H.; Mishina, T.; Arai, J.; Iwadate, Y.

    2014-03-01

    We measured accommodation responses under integral photography (IP), binocular stereoscopic, and real object display conditions, and viewing conditions of binocular and monocular viewing conditions. The equipment we used was an optometric device and a 3D display. We developed the 3D display for IP and binocular stereoscopic images that comprises a high-resolution liquid crystal display (LCD) and a high-density lens array. The LCD has a resolution of 468 dpi and a diagonal size of 4.8 inches. The high-density lens array comprises 106 x 69 micro lenses that have a focal length of 3 mm and diameter of 1 mm. The lenses are arranged in a honeycomb pattern. The 3D display was positioned 60 cm from an observer under IP and binocular stereoscopic display conditions. The target was presented at eight depth positions relative to the 3D display: 15, 10, and 5 cm in front of the 3D display, on the 3D display panel, and 5, 10, 15 and 30 cm behind the 3D display under the IP and binocular stereoscopic display conditions. Under the real object display condition, the target was displayed on the 3D display panel, and the 3D display was placed at the eight positions. The results suggest that the IP image induced more natural accommodation responses compared to the binocular stereoscopic image. The accommodation responses of the IP image were weaker than those of a real object; however, they showed a similar tendency with those of the real object under the two viewing conditions. Therefore, IP can induce accommodation to the depth positions of 3D images.

  15. Fast iterative image reconstruction of 3D PET data

    SciTech Connect

    Kinahan, P.E.; Townsend, D.W.; Michel, C.

    1996-12-31

    For count-limited PET imaging protocols, two different approaches to reducing statistical noise are volume, or 3D, imaging to increase sensitivity, and statistical reconstruction methods to reduce noise propagation. These two approaches have largely been developed independently, likely due to the perception of the large computational demands of iterative 3D reconstruction methods. We present results of combining the sensitivity of 3D PET imaging with the noise reduction and reconstruction speed of 2D iterative image reconstruction methods. This combination is made possible by using the recently-developed Fourier rebinning technique (FORE), which accurately and noiselessly rebins 3D PET data into a 2D data set. The resulting 2D sinograms are then reconstructed independently by the ordered-subset EM (OSEM) iterative reconstruction method, although any other 2D reconstruction algorithm could be used. We demonstrate significant improvements in image quality for whole-body 3D PET scans by using the FORE+OSEM approach compared with the standard 3D Reprojection (3DRP) algorithm. In addition, the FORE+OSEM approach involves only 2D reconstruction and it therefore requires considerably less reconstruction time than the 3DRP algorithm, or any fully 3D statistical reconstruction algorithm.

  16. Image based 3D city modeling : Comparative study

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-06-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing rapidly for various engineering and non-engineering applications. Generally four main image based approaches were used for virtual 3D city models generation. In first approach, researchers were used Sketch based modeling, second method is Procedural grammar based modeling, third approach is Close range photogrammetry based modeling and fourth approach is mainly based on Computer Vision techniques. SketchUp, CityEngine, Photomodeler and Agisoft Photoscan are the main softwares to represent these approaches respectively. These softwares have different approaches & methods suitable for image based 3D city modeling. Literature study shows that till date, there is no complete such type of comparative study available to create complete 3D city model by using images. This paper gives a comparative assessment of these four image based 3D modeling approaches. This comparative study is mainly based on data acquisition methods, data processing techniques and output 3D model products. For this research work, study area is the campus of civil engineering department, Indian Institute of Technology, Roorkee (India). This 3D campus acts as a prototype for city. This study also explains various governing parameters, factors and work experiences. This research work also gives a brief introduction, strengths and weakness of these four image based techniques. Some personal comment is also given as what can do or what can't do from these softwares. At the last, this study shows; it concluded that, each and every software has some advantages and limitations. Choice of software depends on user requirements of 3D project. For normal visualization project, SketchUp software is a good option. For 3D documentation record, Photomodeler gives good result. For Large city

  17. Computational integral-imaging reconstruction-based 3-D volumetric target object recognition by using a 3-D reference object.

    PubMed

    Kim, Seung-Cheol; Park, Seok-Chan; Kim, Eun-Soo

    2009-12-01

    In this paper, we propose a novel computational integral-imaging reconstruction (CIIR)-based three-dimensional (3-D) image correlator system for the recognition of 3-D volumetric objects by employing a 3-D reference object. That is, a number of plane object images (POIs) computationally reconstructed from the 3-D reference object are used for the 3-D volumetric target recognition. In other words, simultaneous 3-D image correlations between two sets of target and reference POIs, which are depth-dependently reconstructed by using the CIIR method, are performed for effective recognition of 3-D volumetric objects in the proposed system. Successful experiments with this CIIR-based 3-D image correlator confirmed the feasibility of the proposed method.

  18. RGB Color Calibration for Quantitative Image Analysis: The “3D Thin-Plate Spline” Warping Approach

    PubMed Central

    Menesatti, Paolo; Angelini, Claudio; Pallottino, Federico; Antonucci, Francesca; Aguzzi, Jacopo; Costa, Corrado

    2012-01-01

    In the last years the need to numerically define color by its coordinates in n-dimensional space has increased strongly. Colorimetric calibration is fundamental in food processing and other biological disciplines to quantitatively compare samples' color during workflow with many devices. Several software programmes are available to perform standardized colorimetric procedures, but they are often too imprecise for scientific purposes. In this study, we applied the Thin-Plate Spline interpolation algorithm to calibrate colours in sRGB space (the corresponding Matlab code is reported in the Appendix). This was compared with other two approaches. The first is based on a commercial calibration system (ProfileMaker) and the second on a Partial Least Square analysis. Moreover, to explore device variability and resolution two different cameras were adopted and for each sensor, three consecutive pictures were acquired under four different light conditions. According to our results, the Thin-Plate Spline approach reported a very high efficiency of calibration allowing the possibility to create a revolution in the in-field applicative context of colour quantification not only in food sciences, but also in other biological disciplines. These results are of great importance for scientific color evaluation when lighting conditions are not controlled. Moreover, it allows the use of low cost instruments while still returning scientifically sound quantitative data. PMID:22969337

  19. SU-E-J-200: A Dosimetric Analysis of 3D Versus 4D Image-Based Dose Calculation for Stereotactic Body Radiation Therapy in Lung Tumors

    SciTech Connect

    Ma, M; Rouabhi, O; Flynn, R; Xia, J; Bayouth, J

    2014-06-01

    Purpose: To evaluate the dosimetric difference between 3D and 4Dweighted dose calculation using patient specific respiratory trace and deformable image registration for stereotactic body radiation therapy in lung tumors. Methods: Two dose calculation techniques, 3D and 4D-weighed dose calculation, were used for dosimetric comparison for 9 lung cancer patients. The magnitude of the tumor motion varied from 3 mm to 23 mm. Breath-hold exhale CT was used for 3D dose calculation with ITV generated from the motion observed from 4D-CT. For 4D-weighted calculation, dose of each binned CT image from the ten breathing amplitudes was first recomputed using the same planning parameters as those used in the 3D calculation. The dose distribution of each binned CT was mapped to the breath-hold CT using deformable image registration. The 4D-weighted dose was computed by summing the deformed doses with the temporal probabilities calculated from their corresponding respiratory traces. Dosimetric evaluation criteria includes lung V20, mean lung dose, and mean tumor dose. Results: Comparing with 3D calculation, lung V20, mean lung dose, and mean tumor dose using 4D-weighted dose calculation were changed by −0.67% ± 2.13%, −4.11% ± 6.94% (−0.36 Gy ± 0.87 Gy), −1.16% ± 1.36%(−0.73 Gy ± 0.85 Gy) accordingly. Conclusion: This work demonstrates that conventional 3D dose calculation method may overestimate the lung V20, MLD, and MTD. The absolute difference between 3D and 4D-weighted dose calculation in lung tumor may not be clinically significant. This research is supported by Siemens Medical Solutions USA, Inc and Iowa Center for Research By Undergraduates.

  20. Effect of Clouds on Optical Imaging of the Space Shuttle During the Ascent Phase: A Statistical Analysis Based on a 3D Model

    NASA Technical Reports Server (NTRS)

    Short, David A.; Lane, Robert E., Jr.; Winters, Katherine A.; Madura, John T.

    2004-01-01

    Clouds are highly effective in obscuring optical images of the Space Shuttle taken during its ascent by ground-based and airborne tracking cameras. Because the imagery is used for quick-look and post-flight engineering analysis, the Columbia Accident Investigation Board (CAIB) recommended the return-to-flight effort include an upgrade of the imaging system to enable it to obtain at least three useful views of the Shuttle from lift-off to at least solid rocket booster (SRB) separation (NASA 2003). The lifetimes of individual cloud elements capable of obscuring optical views of the Shuttle are typically 20 minutes or less. Therefore, accurately observing and forecasting cloud obscuration over an extended network of cameras poses an unprecedented challenge for the current state of observational and modeling techniques. In addition, even the best numerical simulations based on real observations will never reach "truth." In order to quantify the risk that clouds would obscure optical imagery of the Shuttle, a 3D model to calculate probabilistic risk was developed. The model was used to estimate the ability of a network of optical imaging cameras to obtain at least N simultaneous views of the Shuttle from lift-off to SRB separation in the presence of an idealized, randomized cloud field.

  1. Faster, higher quality volume visualization for 3D medical imaging

    NASA Astrophysics Data System (ADS)

    Kalvin, Alan D.; Laine, Andrew F.; Song, Ting

    2008-03-01

    The two major volume visualization methods used in biomedical applications are Maximum Intensity Projection (MIP) and Volume Rendering (VR), both of which involve the process of creating sets of 2D projections from 3D images. We have developed a new method for very fast, high-quality volume visualization of 3D biomedical images, based on the fact that the inverse of this process (transforming 2D projections into a 3D image) is essentially equivalent to tomographic image reconstruction. This new method uses the 2D projections acquired by the scanner, thereby obviating the need for the two computationally expensive steps currently required in the complete process of biomedical visualization, that is, (i) reconstructing the 3D image from 2D projection data, and (ii) computing the set of 2D projections from the reconstructed 3D image As well as improvements in computation speed, this method also results in improvements in visualization quality, and in the case of x-ray CT we can exploit this quality improvement to reduce radiation dosage. In this paper, demonstrate the benefits of developing biomedical visualization techniques by directly processing the sensor data acquired by body scanners, rather than by processing the image data reconstructed from the sensor data. We show results of using this approach for volume visualization for tomographic modalities, like x-ray CT, and as well as for MRI.

  2. 3D elemental sensitive imaging by full-field XFCT.

    PubMed

    Deng, Biao; Du, Guohao; Zhou, Guangzhao; Wang, Yudan; Ren, Yuqi; Chen, Rongchang; Sun, Pengfei; Xie, Honglan; Xiao, Tiqiao

    2015-05-21

    X-ray fluorescence computed tomography (XFCT) is a stimulated emission tomography modality that maps the three-dimensional (3D) distribution of elements. Generally, XFCT is done by scanning a pencil-beam across the sample. This paper presents a feasibility study of full-field XFCT (FF-XFCT) for 3D elemental imaging. The FF-XFCT consists of a pinhole collimator and X-ray imaging detector with no energy resolution. A prototype imaging system was set up at the Shanghai Synchrotron Radiation Facility (SSRF) for imaging the phantom. The first FF-XFCT experimental results are presented. The cadmium (Cd) and iodine (I) distributions were reconstructed. The results demonstrate FF-XFCT is fit for 3D elemental imaging and the sensitivity of FF-XFCT is higher than a conventional CT system.

  3. SU-E-J-55: End-To-End Effectiveness Analysis of 3D Surface Image Guided Voluntary Breath-Holding Radiotherapy for Left Breast

    SciTech Connect

    Lin, M; Feigenberg, S

    2015-06-15

    Purpose To evaluate the effectiveness of using 3D-surface-image to guide breath-holding (BH) left-side breast treatment. Methods Two 3D surface image guided BH procedures were implemented and evaluated: normal-BH, taking BH at a comfortable level, and deep-inspiration-breath-holding (DIBH). A total of 20 patients (10 Normal-BH and 10 DIBH) were recruited. Patients received a BH evaluation using a commercialized 3D-surface- tracking-system (VisionRT, London, UK) to quantify the reproducibility of BH positions prior to CT scan. Tangential 3D/IMRT plans were conducted. Patients were initially setup under free-breathing (FB) condition using the FB surface obtained from the untaged CT to ensure a correct patient position. Patients were then guided to reach the planned BH position using the BH surface obtained from the BH CT. Action-levels were set at each phase of treatment process based on the information provided by the 3D-surface-tracking-system for proper interventions (eliminate/re-setup/ re-coaching). We reviewed the frequency of interventions to evaluate its effectiveness. The FB-CBCT and port-film were utilized to evaluate the accuracy of 3D-surface-guided setups. Results 25% of BH candidates with BH positioning uncertainty > 2mm are eliminated prior to CT scan. For >90% of fractions, based on the setup deltas from3D-surface-trackingsystem, adjustments of patient setup are needed after the initial-setup using laser. 3D-surface-guided-setup accuracy is comparable as CBCT. For the BH guidance, frequency of interventions (a re-coaching/re-setup) is 40%(Normal-BH)/91%(DIBH) of treatments for the first 5-fractions and then drops to 16%(Normal-BH)/46%(DIBH). The necessity of re-setup is highly patient-specific for Normal-BH but highly random among patients for DIBH. Overall, a −0.8±2.4 mm accuracy of the anterior pericardial shadow position was achieved. Conclusion 3D-surface-image technology provides effective intervention to the treatment process and ensures

  4. Automatic 3D lesion segmentation on breast ultrasound images

    NASA Astrophysics Data System (ADS)

    Kuo, Hsien-Chi; Giger, Maryellen L.; Reiser, Ingrid; Drukker, Karen; Edwards, Alexandra; Sennett, Charlene A.

    2013-02-01

    Automatically acquired and reconstructed 3D breast ultrasound images allow radiologists to detect and evaluate breast lesions in 3D. However, assessing potential cancers in 3D ultrasound can be difficult and time consuming. In this study, we evaluate a 3D lesion segmentation method, which we had previously developed for breast CT, and investigate its robustness on lesions on 3D breast ultrasound images. Our dataset includes 98 3D breast ultrasound images obtained on an ABUS system from 55 patients containing 64 cancers. Cancers depicted on 54 US images had been clinically interpreted as negative on screening mammography and 44 had been clinically visible on mammography. All were from women with breast density BI-RADS 3 or 4. Tumor centers and margins were indicated and outlined by radiologists. Initial RGI-eroded contours were automatically calculated and served as input to the active contour segmentation algorithm yielding the final lesion contour. Tumor segmentation was evaluated by determining the overlap ratio (OR) between computer-determined and manually-drawn outlines. Resulting average overlap ratios on coronal, transverse, and sagittal views were 0.60 +/- 0.17, 0.57 +/- 0.18, and 0.58 +/- 0.17, respectively. All OR values were significantly higher the 0.4, which is deemed "acceptable". Within the groups of mammogram-negative and mammogram-positive cancers, the overlap ratios were 0.63 +/- 0.17 and 0.56 +/- 0.16, respectively, on the coronal views; with similar results on the other views. The segmentation performance was not found to be correlated to tumor size. Results indicate robustness of the 3D lesion segmentation technique in multi-modality 3D breast imaging.

  5. Object Segmentation and Ground Truth in 3D Embryonic Imaging.

    PubMed

    Rajasekaran, Bhavna; Uriu, Koichiro; Valentin, Guillaume; Tinevez, Jean-Yves; Oates, Andrew C

    2016-01-01

    Many questions in developmental biology depend on measuring the position and movement of individual cells within developing embryos. Yet, tools that provide this data are often challenged by high cell density and their accuracy is difficult to measure. Here, we present a three-step procedure to address this problem. Step one is a novel segmentation algorithm based on image derivatives that, in combination with selective post-processing, reliably and automatically segments cell nuclei from images of densely packed tissue. Step two is a quantitative validation using synthetic images to ascertain the efficiency of the algorithm with respect to signal-to-noise ratio and object density. Finally, we propose an original method to generate reliable and experimentally faithful ground truth datasets: Sparse-dense dual-labeled embryo chimeras are used to unambiguously measure segmentation errors within experimental data. Together, the three steps outlined here establish a robust, iterative procedure to fine-tune image analysis algorithms and microscopy settings associated with embryonic 3D image data sets. PMID:27332860

  6. Object Segmentation and Ground Truth in 3D Embryonic Imaging

    PubMed Central

    Rajasekaran, Bhavna; Uriu, Koichiro; Valentin, Guillaume; Tinevez, Jean-Yves; Oates, Andrew C.

    2016-01-01

    Many questions in developmental biology depend on measuring the position and movement of individual cells within developing embryos. Yet, tools that provide this data are often challenged by high cell density and their accuracy is difficult to measure. Here, we present a three-step procedure to address this problem. Step one is a novel segmentation algorithm based on image derivatives that, in combination with selective post-processing, reliably and automatically segments cell nuclei from images of densely packed tissue. Step two is a quantitative validation using synthetic images to ascertain the efficiency of the algorithm with respect to signal-to-noise ratio and object density. Finally, we propose an original method to generate reliable and experimentally faithful ground truth datasets: Sparse-dense dual-labeled embryo chimeras are used to unambiguously measure segmentation errors within experimental data. Together, the three steps outlined here establish a robust, iterative procedure to fine-tune image analysis algorithms and microscopy settings associated with embryonic 3D image data sets. PMID:27332860

  7. D3D augmented reality imaging system: proof of concept in mammography

    PubMed Central

    Douglas, David B; Petricoin, Emanuel F; Liotta, Lance; Wilson, Eugene

    2016-01-01

    Purpose The purpose of this article is to present images from simulated breast microcalcifications and assess the pattern of the microcalcifications with a technical development called “depth 3-dimensional (D3D) augmented reality”. Materials and methods A computer, head display unit, joystick, D3D augmented reality software, and an in-house script of simulated data of breast microcalcifications in a ductal distribution were used. No patient data was used and no statistical analysis was performed. Results The D3D augmented reality system demonstrated stereoscopic depth perception by presenting a unique image to each eye, focal point convergence, head position tracking, 3D cursor, and joystick fly-through. Conclusion The D3D augmented reality imaging system offers image viewing with depth perception and focal point convergence. The D3D augmented reality system should be tested to determine its utility in clinical practice. PMID:27563261

  8. Microtomographic images of rat's lumbar vertebra microstructure using 30 keV synchrotron X-rays: an analysis in terms of 3D visualization

    NASA Astrophysics Data System (ADS)

    Rao, D. V.; Takeda, T.; Kawakami, T.; Uesugi, K.; Tsuchiya, Y.; Wu, J.; Lwin, T. T.; Itai, Y.; Zeniya, T.; Yuasa, T.; Akatsuka, T.

    2004-05-01

    Microtomographic images of rat's lumbar vertebra of different age groups varying from 8, 56 and 78 weeks were obtained at 30 keV using synchrotron X-rays with a spatial resolution of 12 μm. The images are analyzed in terms of 3D visualization and micro-architecture. Density histogram of rat's lumbar vertebra is compared with test phantoms. Rat's lumbar volume and phantom volume are studied at different concentrations of hydroxyapatite with slice number. With the use of 2D slices, 3D images are reconstructed, in order to know the evolution and a state of decline of bone microstructure with aging. Cross-sectional μ-CT images shows that the bone of young rat has a fine trabecular microstructure while that of the old rat has large meshed structure.

  9. A 3D surface imaging system for assessing human obesity

    NASA Astrophysics Data System (ADS)

    Xu, B.; Yu, W.; Yao, M.; Yao, X.; Li, Q.; Pepper, M. R.; Freeland-Graves, J. H.

    2009-08-01

    The increasing prevalence of obesity suggests a need to develop a convenient, reliable and economical tool for assessment of this condition. Three-dimensional (3D) body surface imaging has emerged as an exciting technology for estimation of body composition. This paper presents a new 3D body imaging system, which was designed for enhanced portability, affordability, and functionality. In this system, stereo vision technology was used to satisfy the requirements for a simple hardware setup and fast image acquisitions. The portability of the system was created via a two-stand configuration, and the accuracy of body volume measurements was improved by customizing stereo matching and surface reconstruction algorithms that target specific problems in 3D body imaging. Body measurement functions dedicated to body composition assessment also were developed. The overall performance of the system was evaluated in human subjects by comparison to other conventional anthropometric methods, as well as air displacement plethysmography, for body fat assessment.

  10. Validation of hip joint center localization methods during gait analysis using 3D EOS imaging in typically developing and cerebral palsy children.

    PubMed

    Assi, Ayman; Sauret, Christophe; Massaad, Abir; Bakouny, Ziad; Pillet, Hélène; Skalli, Wafa; Ghanem, Ismat

    2016-07-01

    Localization of the hip joint center (HJC) is essential in computation of gait data. EOS low dose biplanar X-rays have been shown to be a good reference in evaluating various methods of HJC localization in adults. The aim is to evaluate predictive and functional techniques for HJC localization in typically developing (TD) and cerebral palsy (CP) children, using EOS as an image based reference. Eleven TD and 17 CP children underwent 3D gait analysis. Six HJC localization methods were evaluated in each group bilaterally: 3 predictive (Plug in Gait, Bell and Harrington) and 3 functional methods based on the star arc technique (symmetrical center of rotation estimate, center transformation technique and geometrical sphere fitting). All children then underwent EOS low dose biplanar radiographs. Pelvis, lower limbs and their corresponding external markers were reconstructed in 3D. The center of the femoral head was considered as the reference (HJCEOS). Euclidean distances between HJCs estimated by each of the 6 methods and the HJCEOS were calculated; distances were shown to be lower in predictive compared to functional methods (p<0.0001). Contrarily to findings in adults, functional methods were shown to be less accurate than predictive methods in TD and CP children, which could be mainly due to the shorter thigh segment in children. Harrington method was shown to be the most accurate in the prediction of HJC (mean error≈18mm, SD=9mm) and quasi-equivalent to the Bell method. The bias for each method was quantified, allowing its correction for an improved HJC estimation. PMID:27477704

  11. 3-D Terahertz Synthetic-Aperture Imaging and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Henry, Samuel C.

    Terahertz (THz) wavelengths have attracted recent interest in multiple disciplines within engineering and science. Situated between the infrared and the microwave region of the electromagnetic spectrum, THz energy can propagate through non-polar materials such as clothing or packaging layers. Moreover, many chemical compounds, including explosives and many drugs, reveal strong absorption signatures in the THz range. For these reasons, THz wavelengths have great potential for non-destructive evaluation and explosive detection. Three-dimensional (3-D) reflection imaging with considerable depth resolution is also possible using pulsed THz systems. While THz imaging (especially 3-D) systems typically operate in transmission mode, reflection offers the most practical configuration for standoff detection, especially for objects with high water content (like human tissue) which are opaque at THz frequencies. In this research, reflection-based THz synthetic-aperture (SA) imaging is investigated as a potential imaging solution. THz SA imaging results presented in this dissertation are unique in that a 2-D planar synthetic array was used to generate a 3-D image without relying on a narrow time-window for depth isolation cite [Shen 2005]. Novel THz chemical detection techniques are developed and combined with broadband THz SA capabilities to provide concurrent 3-D spectral imaging. All algorithms are tested with various objects and pressed pellets using a pulsed THz time-domain system in the Northwest Electromagnetics and Acoustics Research Laboratory (NEAR-Lab).

  12. MMSE Reconstruction for 3D Freehand Ultrasound Imaging

    PubMed Central

    Huang, Wei; Zheng, Yibin

    2008-01-01

    The reconstruction of 3D ultrasound (US) images from mechanically registered, but otherwise irregularly positioned, B-scan slices is of great interest in image guided therapy procedures. Conventional 3D ultrasound algorithms have low computational complexity, but the reconstructed volume suffers from severe speckle contamination. Furthermore, the current method cannot reconstruct uniform high-resolution data from several low-resolution B-scans. In this paper, the minimum mean-squared error (MMSE) method is applied to 3D ultrasound reconstruction. Data redundancies due to overlapping samples as well as correlation of the target and speckle are naturally accounted for in the MMSE reconstruction algorithm. Thus, the reconstruction process unifies the interpolation and spatial compounding. Simulation results for synthetic US images are presented to demonstrate the excellent reconstruction. PMID:18382623

  13. Single 3D cell segmentation from optical CT microscope images

    NASA Astrophysics Data System (ADS)

    Xie, Yiting; Reeves, Anthony P.

    2014-03-01

    The automated segmentation of the nucleus and cytoplasm regions in 3D optical CT microscope images has been achieved with two methods, a global threshold gradient based approach and a graph-cut approach. For the first method, the first two peaks of a gradient figure of merit curve are selected as the thresholds for cytoplasm and nucleus segmentation. The second method applies a graph-cut segmentation twice: the first identifies the nucleus region and the second identifies the cytoplasm region. Image segmentation of single cells is important for automated disease diagnostic systems. The segmentation methods were evaluated with 200 3D images consisting of 40 samples of 5 different cell types. The cell types consisted of columnar, macrophage, metaplastic and squamous human cells and cultured A549 cancer cells. The segmented cells were compared with both 2D and 3D reference images and the quality of segmentation was determined by the Dice Similarity Coefficient (DSC). In general, the graph-cut method had a superior performance to the gradient-based method. The graph-cut method achieved an average DSC of 86% and 72% for nucleus and cytoplasm segmentations respectively for the 2D reference images and 83% and 75% for the 3D reference images. The gradient method achieved an average DSC of 72% and 51% for nucleus and cytoplasm segmentation for the 2D reference images and 71% and 51% for the 3D reference images. The DSC of cytoplasm segmentation was significantly lower than for the nucleus since the cytoplasm was not differentiated as well by image intensity from the background.

  14. Optimized Bayes variational regularization prior for 3D PET images.

    PubMed

    Rapisarda, Eugenio; Presotto, Luca; De Bernardi, Elisabetta; Gilardi, Maria Carla; Bettinardi, Valentino

    2014-09-01

    A new prior for variational Maximum a Posteriori regularization is proposed to be used in a 3D One-Step-Late (OSL) reconstruction algorithm accounting also for the Point Spread Function (PSF) of the PET system. The new regularization prior strongly smoothes background regions, while preserving transitions. A detectability index is proposed to optimize the prior. The new algorithm has been compared with different reconstruction algorithms such as 3D-OSEM+PSF, 3D-OSEM+PSF+post-filtering and 3D-OSL with a Gauss-Total Variation (GTV) prior. The proposed regularization allows controlling noise, while maintaining good signal recovery; compared to the other algorithms it demonstrates a very good compromise between an improved quantitation and good image quality. PMID:24958594

  15. PCaAnalyser: a 2D-image analysis based module for effective determination of prostate cancer progression in 3D culture.

    PubMed

    Hoque, Md Tamjidul; Windus, Louisa C E; Lovitt, Carrie J; Avery, Vicky M

    2013-01-01

    Three-dimensional (3D) in vitro cell based assays for Prostate Cancer (PCa) research are rapidly becoming the preferred alternative to that of conventional 2D monolayer cultures. 3D assays more precisely mimic the microenvironment found in vivo, and thus are ideally suited to evaluate compounds and their suitability for progression in the drug discovery pipeline. To achieve the desired high throughput needed for most screening programs, automated quantification of 3D cultures is required. Towards this end, this paper reports on the development of a prototype analysis module for an automated high-content-analysis (HCA) system, which allows for accurate and fast investigation of in vitro 3D cell culture models for PCa. The Java based program, which we have named PCaAnalyser, uses novel algorithms that allow accurate and rapid quantitation of protein expression in 3D cell culture. As currently configured, the PCaAnalyser can quantify a range of biological parameters including: nuclei-count, nuclei-spheroid membership prediction, various function based classification of peripheral and non-peripheral areas to measure expression of biomarkers and protein constituents known to be associated with PCa progression, as well as defining segregate cellular-objects effectively for a range of signal-to-noise ratios. In addition, PCaAnalyser architecture is highly flexible, operating as a single independent analysis, as well as in batch mode; essential for High-Throughput-Screening (HTS). Utilising the PCaAnalyser, accurate and rapid analysis in an automated high throughput manner is provided, and reproducible analysis of the distribution and intensity of well-established markers associated with PCa progression in a range of metastatic PCa cell-lines (DU145 and PC3) in a 3D model demonstrated.

  16. 3D Regression Heat Map Analysis of Population Study Data.

    PubMed

    Klemm, Paul; Lawonn, Kai; Glaßer, Sylvia; Niemann, Uli; Hegenscheid, Katrin; Völzke, Henry; Preim, Bernhard

    2016-01-01

    Epidemiological studies comprise heterogeneous data about a subject group to define disease-specific risk factors. These data contain information (features) about a subject's lifestyle, medical status as well as medical image data. Statistical regression analysis is used to evaluate these features and to identify feature combinations indicating a disease (the target feature). We propose an analysis approach of epidemiological data sets by incorporating all features in an exhaustive regression-based analysis. This approach combines all independent features w.r.t. a target feature. It provides a visualization that reveals insights into the data by highlighting relationships. The 3D Regression Heat Map, a novel 3D visual encoding, acts as an overview of the whole data set. It shows all combinations of two to three independent features with a specific target disease. Slicing through the 3D Regression Heat Map allows for the detailed analysis of the underlying relationships. Expert knowledge about disease-specific hypotheses can be included into the analysis by adjusting the regression model formulas. Furthermore, the influences of features can be assessed using a difference view comparing different calculation results. We applied our 3D Regression Heat Map method to a hepatic steatosis data set to reproduce results from a data mining-driven analysis. A qualitative analysis was conducted on a breast density data set. We were able to derive new hypotheses about relations between breast density and breast lesions with breast cancer. With the 3D Regression Heat Map, we present a visual overview of epidemiological data that allows for the first time an interactive regression-based analysis of large feature sets with respect to a disease. PMID:26529689

  17. 3D Regression Heat Map Analysis of Population Study Data.

    PubMed

    Klemm, Paul; Lawonn, Kai; Glaßer, Sylvia; Niemann, Uli; Hegenscheid, Katrin; Völzke, Henry; Preim, Bernhard

    2016-01-01

    Epidemiological studies comprise heterogeneous data about a subject group to define disease-specific risk factors. These data contain information (features) about a subject's lifestyle, medical status as well as medical image data. Statistical regression analysis is used to evaluate these features and to identify feature combinations indicating a disease (the target feature). We propose an analysis approach of epidemiological data sets by incorporating all features in an exhaustive regression-based analysis. This approach combines all independent features w.r.t. a target feature. It provides a visualization that reveals insights into the data by highlighting relationships. The 3D Regression Heat Map, a novel 3D visual encoding, acts as an overview of the whole data set. It shows all combinations of two to three independent features with a specific target disease. Slicing through the 3D Regression Heat Map allows for the detailed analysis of the underlying relationships. Expert knowledge about disease-specific hypotheses can be included into the analysis by adjusting the regression model formulas. Furthermore, the influences of features can be assessed using a difference view comparing different calculation results. We applied our 3D Regression Heat Map method to a hepatic steatosis data set to reproduce results from a data mining-driven analysis. A qualitative analysis was conducted on a breast density data set. We were able to derive new hypotheses about relations between breast density and breast lesions with breast cancer. With the 3D Regression Heat Map, we present a visual overview of epidemiological data that allows for the first time an interactive regression-based analysis of large feature sets with respect to a disease.

  18. 3D high-density localization microscopy using hybrid astigmatic/ biplane imaging and sparse image reconstruction.

    PubMed

    Min, Junhong; Holden, Seamus J; Carlini, Lina; Unser, Michael; Manley, Suliana; Ye, Jong Chul

    2014-11-01

    Localization microscopy achieves nanoscale spatial resolution by iterative localization of sparsely activated molecules, which generally leads to a long acquisition time. By implementing advanced algorithms to treat overlapping point spread functions (PSFs), imaging of densely activated molecules can improve the limited temporal resolution, as has been well demonstrated in two-dimensional imaging. However, three-dimensional (3D) localization of high-density data remains challenging since PSFs are far more similar along the axial dimension than the lateral dimensions. Here, we present a new, high-density 3D imaging system and algorithm. The hybrid system is implemented by combining astigmatic and biplane imaging. The proposed 3D reconstruction algorithm is extended from our state-of-the art 2D high-density localization algorithm. Using mutual coherence analysis of model PSFs, we validated that the hybrid system is more suitable than astigmatic or biplane imaging alone for 3D localization of high-density data. The efficacy of the proposed method was confirmed via simulation and real data of microtubules. Furthermore, we also successfully demonstrated fluorescent-protein-based live cell 3D localization microscopy with a temporal resolution of just 3 seconds, capturing fast dynamics of the endoplasmic recticulum.

  19. Laboratory 3D Micro-XRF/Micro-CT Imaging System

    NASA Astrophysics Data System (ADS)

    Bruyndonckx, P.; Sasov, A.; Liu, X.

    2011-09-01

    A prototype micro-XRF laboratory system based on pinhole imaging was developed to produce 3D elemental maps. The fluorescence x-rays are detected by a deep-depleted CCD camera operating in photon-counting mode. A charge-clustering algorithm, together with dynamically adjusted exposure times, ensures a correct energy measurement. The XRF component has a spatial resolution of 70 μm and an energy resolution of 180 eV at 6.4 keV. The system is augmented by a micro-CT imaging modality. This is used for attenuation correction of the XRF images and to co-register features in the 3D XRF images with morphological structures visible in the volumetric CT images of the object.

  20. A miniature high resolution 3-D imaging sonar.

    PubMed

    Josserand, Tim; Wolley, Jason

    2011-04-01

    This paper discusses the design and development of a miniature, high resolution 3-D imaging sonar. The design utilizes frequency steered phased arrays (FSPA) technology. FSPAs present a small, low-power solution to the problem of underwater imaging sonars. The technology provides a method to build sonars with a large number of beams without the proportional power, circuitry and processing complexity. The design differs from previous methods in that the array elements are manufactured from a monolithic material. With this technique the arrays are flat and considerably smaller element dimensions are achievable which allows for higher frequency ranges and smaller array sizes. In the current frequency range, the demonstrated array has ultra high image resolution (1″ range×1° azimuth×1° elevation) and small size (<3″×3″). The design of the FSPA utilizes the phasing-induced frequency-dependent directionality of a linear phased array to produce multiple beams in a forward sector. The FSPA requires only two hardware channels per array and can be arranged in single and multiple array configurations that deliver wide sector 2-D images. 3-D images can be obtained by scanning the array in a direction perpendicular to the 2-D image field and applying suitable image processing to the multiple scanned 2-D images. This paper introduces the 3-D FSPA concept, theory and design methodology. Finally, results from a prototype array are presented and discussed.

  1. Advances in Image Pre-Processing to Improve Automated 3d Reconstruction

    NASA Astrophysics Data System (ADS)

    Ballabeni, A.; Apollonio, F. I.; Gaiani, M.; Remondino, F.

    2015-02-01

    Tools and algorithms for automated image processing and 3D reconstruction purposes have become more and more available, giving the possibility to process any dataset of unoriented and markerless images. Typically, dense 3D point clouds (or texture 3D polygonal models) are produced at reasonable processing time. In this paper, we evaluate how the radiometric pre-processing of image datasets (particularly in RAW format) can help in improving the performances of state-of-the-art automated image processing tools. Beside a review of common pre-processing methods, an efficient pipeline based on color enhancement, image denoising, RGB to Gray conversion and image content enrichment is presented. The performed tests, partly reported for sake of space, demonstrate how an effective image pre-processing, which considers the entire dataset in analysis, can improve the automated orientation procedure and dense 3D point cloud reconstruction, even in case of poor texture scenarios.

  2. 3-D Display Of Magnetic Resonance Imaging Of The Spine

    NASA Astrophysics Data System (ADS)

    Nelson, Alan C.; Kim, Yongmin; Haralick, Robert M.; Anderson, Paul A.; Johnson, Roger H.; DeSoto, Larry A.

    1988-06-01

    The original data is produced through standard magnetic resonance imaging (MRI) procedures with a surface coil applied to the lower back of a normal human subject. The 3-D spine image data consists of twenty-six contiguous slices with 256 x 256 pixels per slice. Two methods for visualization of the 3-D spine are explored. One method utilizes a verifocal mirror system which creates a true 3-D virtual picture of the object. Another method uses a standard high resolution monitor to simultaneously show the three orthogonal sections which intersect at any user-selected point within the object volume. We discuss the application of these systems in assessment of low back pain.

  3. Wave-CAIPI for Highly Accelerated 3D Imaging

    PubMed Central

    Bilgic, Berkin; Gagoski, Borjan A.; Cauley, Stephen F.; Fan, Audrey P.; Polimeni, Jonathan R.; Grant, P. Ellen; Wald, Lawrence L.; Setsompop, Kawin

    2014-01-01

    Purpose To introduce the Wave-CAIPI (Controlled Aliasing in Parallel Imaging) acquisition and reconstruction technique for highly accelerated 3D imaging with negligible g-factor and artifact penalties. Methods The Wave-CAIPI 3D acquisition involves playing sinusoidal gy and gz gradients during the readout of each kx encoding line, while modifying the 3D phase encoding strategy to incur inter-slice shifts as in 2D-CAIPI acquisitions. The resulting acquisition spreads the aliasing evenly in all spatial directions, thereby taking full advantage of 3D coil sensitivity distribution. By expressing the voxel spreading effect as a convolution in image space, an efficient reconstruction scheme that does not require data gridding is proposed. Rapid acquisition and high quality image reconstruction with Wave-CAIPI is demonstrated for high-resolution magnitude and phase imaging and Quantitative Susceptibility Mapping (QSM). Results Wave-CAIPI enables full-brain gradient echo (GRE) acquisition at 1 mm isotropic voxel size and R=3×3 acceleration with maximum g-factors of 1.08 at 3T, and 1.05 at 7T. Relative to the other advanced Cartesian encoding strategies 2D-CAIPI and Bunched Phase Encoding, Wave-CAIPI yields up to 2-fold reduction in maximum g-factor for 9-fold acceleration at both field strengths. Conclusion Wave-CAIPI allows highly accelerated 3D acquisitions with low artifact and negligible g-factor penalties, and may facilitate clinical application of high-resolution volumetric imaging. PMID:24986223

  4. Reduction of attenuation effects in 3D transrectal ultrasound images

    NASA Astrophysics Data System (ADS)

    Frimmel, Hans; Acosta, Oscar; Fenster, Aaron; Ourselin, Sébastien

    2007-03-01

    Ultrasound (US) is one of the most used imaging modalities today as it is cheap, reliable, safe and widely available. There are a number of issues with US images in general. Besides reflections which is the basis of ultrasonic imaging, other phenomena such as diffraction, refraction, attenuation, dispersion and scattering appear when ultrasound propagates through different tissues. The generated images are therefore corrupted by false boundaries, lack of signal for surface tangential to ultrasound propagation, large amount of noise giving rise to local properties, and anisotropic sampling space complicating image processing tasks. Although 3D Transrectal US (TRUS) probes are not yet widely available, within a few years they will likely be introduced in hospitals. Therefore, the improvement of automatic segmentation from 3D TRUS images, making the process independent of human factor is desirable. We introduce an algorithm for attenuation correction, reducing enhancement/shadowing effects and average attenuation effects in 3D US images, taking into account the physical properties of US. The parameters of acquisition such as logarithmic correction are unknown, therefore no additional information is available to restore the image. As the physical properties are related to the direction of each US ray, the 3D US data set is resampled into cylindrical coordinates using a fully automatic algorithm. Enhancement and shadowing effects, as well as average attenuation effects, are then removed with a rescaling process optimizing simultaneously in and perpendicular to the US ray direction. A set of tests using anisotropic diffusion are performed to illustrate the improvement in image quality, where well defined structures are visible. The evolution of both the entropy and the contrast show that our algorithm is a suitable pre-processing step for segmentation tasks.

  5. Imaging thin-bed reservoirs with 3-D seismic

    SciTech Connect

    Hardage, B.A.

    1996-12-01

    This article explains how a 3-D seismic data volume, a vertical seismic profile (VSP), electric well logs and reservoir pressure data can be used to image closely stacked thin-bed reservoirs. This interpretation focuses on the Oligocene Frio reservoir in South Texas which has multiple thin-beds spanning a vertical interval of about 3,000 ft.

  6. 3D imaging lidar for lunar robotic exploration

    NASA Astrophysics Data System (ADS)

    Hussein, Marwan W.; Tripp, Jeffrey W.

    2009-05-01

    Part of the requirements of the future Constellation program is to optimize lunar surface operations and reduce hazards to astronauts. Toward this end, many robotic platforms, rovers in specific, are being sought to carry out a multitude of missions involving potential EVA sites survey, surface reconnaissance, path planning and obstacle detection and classification. 3D imaging lidar technology provides an enabling capability that allows fast, accurate and detailed collection of three-dimensional information about the rover's environment. The lidar images the region of interest by scanning a laser beam and measuring the pulse time-of-flight and the bearing. The accumulated set of laser ranges and bearings constitutes the threedimensional image. As part of the ongoing NASA Ames research center activities in lunar robotics, the utility of 3D imaging lidar was evaluated by testing Optech's ILRIS-3D lidar on board the K-10 Red rover during the recent Human - Robotics Systems (HRS) field trails in Lake Moses, WA. This paper examines the results of the ILRIS-3D trials, presents the data obtained and discusses its application in lunar surface robotic surveying and scouting.

  7. Practical pseudo-3D registration for large tomographic images

    NASA Astrophysics Data System (ADS)

    Liu, Xuan; Laperre, Kjell; Sasov, Alexander

    2014-09-01

    Image registration is a powerful tool in various tomographic applications. Our main focus is on microCT applications in which samples/animals can be scanned multiple times under different conditions or at different time points. For this purpose, a registration tool capable of handling fairly large volumes has been developed, using a novel pseudo-3D method to achieve fast and interactive registration with simultaneous 3D visualization. To reduce computation complexity in 3D registration, we decompose it into several 2D registrations, which are applied to the orthogonal views (transaxial, sagittal and coronal) sequentially and iteratively. After registration in each view, the next view is retrieved with the new transformation matrix for registration. This reduces the computation complexity significantly. For rigid transform, we only need to search for 3 parameters (2 shifts, 1 rotation) in each of the 3 orthogonal views instead of 6 (3 shifts, 3 rotations) for full 3D volume. In addition, the amount of voxels involved is also significantly reduced. For the proposed pseudo-3D method, image-based registration is employed, with Sum of Square Difference (SSD) as the similarity measure. The searching engine is Powell's conjugate direction method. In this paper, only rigid transform is used. However, it can be extended to affine transform by adding scaling and possibly shearing to the transform model. We have noticed that more information can be used in the 2D registration if Maximum Intensity Projections (MIP) or Parallel Projections (PP) is used instead of the orthogonal views. Also, other similarity measures, such as covariance or mutual information, can be easily incorporated. The initial evaluation on microCT data shows very promising results. Two application examples are shown: dental samples before and after treatment and structural changes in materials before and after compression. Evaluation on registration accuracy between pseudo-3D method and true 3D method has

  8. 3D wavefront image formation for NIITEK GPR

    NASA Astrophysics Data System (ADS)

    Soumekh, Mehrdad; Ton, Tuan; Howard, Pete

    2009-05-01

    The U.S. Department of Defense Humanitarian Demining (HD) Research and Development Program focuses on developing, testing, demonstrating, and validating new technology for immediate use in humanitarian demining operations around the globe. Beginning in the late 1990's, the U.S. Army Countermine Division funded the development of the NIITEK ground penetrating radar (GPR) for detection of anti-tank (AT) landmines. This work is concerned with signal processing algorithms to suppress sources of artifacts in the NIITEK GPR, and formation of three-dimensional (3D) imagery from the resultant data. We first show that the NIITEK GPR data correspond to a 3D Synthetic Aperture Radar (SAR) database. An adaptive filtering method is utilized to suppress ground return and self-induced resonance (SIR) signals that are generated by the interaction of the radar-carrying platform and the transmitted radar signal. We examine signal processing methods to improve the fidelity of imagery for this 3D SAR system using pre-processing methods that suppress Doppler aliasing as well as other side lobe leakage artifacts that are introduced by the radar radiation pattern. The algorithm, known as digital spotlighting, imposes a filtering scheme on the azimuth-compressed SAR data, and manipulates the resultant spectral data to achieve a higher PRF to suppress the Doppler aliasing. We also present the 3D version of the Fourier-based wavefront reconstruction, a computationally-efficient and approximation-free SAR imaging method, for image formation with the NIITEK 3D SAR database.

  9. Optimizing 3D image quality and performance for stereoscopic gaming

    NASA Astrophysics Data System (ADS)

    Flack, Julien; Sanderson, Hugh; Pegg, Steven; Kwok, Simon; Paterson, Daniel

    2009-02-01

    The successful introduction of stereoscopic TV systems, such as Samsung's 3D Ready Plasma, requires high quality 3D content to be commercially available to the consumer. Console and PC games provide the most readily accessible source of high quality 3D content. This paper describes innovative developments in a generic, PC-based game driver architecture that addresses the two key issues affecting 3D gaming: quality and speed. At the heart of the quality issue are the same considerations that studios face producing stereoscopic renders from CG movies: how best to perform the mapping from a geometric CG environment into the stereoscopic display volume. The major difference being that for game drivers this mapping cannot be choreographed by hand but must be automatically calculated in real-time without significant impact on performance. Performance is a critical issue when dealing with gaming. Stereoscopic gaming has traditionally meant rendering the scene twice with the associated performance overhead. An alternative approach is to render the scene from one virtual camera position and use information from the z-buffer to generate a stereo pair using Depth-Image-Based Rendering (DIBR). We analyze this trade-off in more detail and provide some results relating to both 3D image quality and render performance.

  10. 3-D GPR data analysis for high-resolution imaging of shallow subsurface faults: the Mt Vettore case study (Central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Ercoli, Maurizio; Pauselli, Cristina; Frigeri, Alessandro; Forte, Emanuele; Federico, Costanzo

    2014-07-01

    The activation of Late Quaternary faults in the Central Apennines (Italy) could generate earthquakes with magnitude of about 6.5, and the Monte Vettore fault system probably belongs to the same category of seismogenetic faults. Such structure has been defined `silent', because of its geological and geomorphological evidences of past activation, but the absence of historical records in the seismic catalogues to be associated with its activation. The `Piano di Castelluccio' intramountain basin, resulting from the Quaternary activity of normal faults, is characterized by a secondary fault strand highlighted by a NW-SE fault scarp: it has been already studied through palaeoseismological trenches, which highlighted evidences of Quaternary shallow faulting due to strong earthquakes, and through a 2-D ground penetrating radar (GPR) survey, showing the first geophysical signature of faulting for this site. Within the same place, a 3-D GPR volume over a 20 × 20 m area has been collected. The collection of radar echoes in three dimensions allows to map both the vertical and lateral continuity of shallow geometries of the fault zone (Fz), imaging features with high resolution, ranging from few metres to centimetres and therefore imaging also local variations at the microscale. Several geophysical markers of faulting, already highlighted on this site, have been taken as reference to plan the 3-D survey. In this paper, we provide the first 3-D subsurface imaging of an active shallow fault belonging to the Umbria-Marche Apennine highlighting the subsurface fault geometry and the stratigraphic sequence up to a depth of about 5 m. From our data, geophysical faulting signatures are clearly visible in three dimensions: diffraction hyperbolas, truncations of layers, local attenuated zones and varying dip of the layers have been detected within the Fz. The interpretation of the 3-D data set provided qualitative and quantitative geological information in addition to the fault location

  11. 3D Winding Number: Theory and Application to Medical Imaging

    PubMed Central

    Becciu, Alessandro; Fuster, Andrea; Pottek, Mark; van den Heuvel, Bart; ter Haar Romeny, Bart; van Assen, Hans

    2011-01-01

    We develop a new formulation, mathematically elegant, to detect critical points of 3D scalar images. It is based on a topological number, which is the generalization to three dimensions of the 2D winding number. We illustrate our method by considering three different biomedical applications, namely, detection and counting of ovarian follicles and neuronal cells and estimation of cardiac motion from tagged MR images. Qualitative and quantitative evaluation emphasizes the reliability of the results. PMID:21317978

  12. 2D/3D image (facial) comparison using camera matching.

    PubMed

    Goos, Mirelle I M; Alberink, Ivo B; Ruifrok, Arnout C C

    2006-11-10

    A problem in forensic facial comparison of images of perpetrators and suspects is that distances between fixed anatomical points in the face, which form a good starting point for objective, anthropometric comparison, vary strongly according to the position and orientation of the camera. In case of a cooperating suspect, a 3D image may be taken using e.g. a laser scanning device. By projecting the 3D image onto a 2D image with the suspect's head in the same pose as that of the perpetrator, using the same focal length and pixel aspect ratio, numerical comparison of (ratios of) distances between fixed points becomes feasible. An experiment was performed in which, starting from two 3D scans and one 2D image of two colleagues, male and female, and using seven fixed anatomical locations in the face, comparisons were made for the matching and non-matching case. Using this method, the non-matching pair cannot be distinguished from the matching pair of faces. Facial expression and resolution of images were all more or less optimal, and the results of the study are not encouraging for the use of anthropometric arguments in the identification process. More research needs to be done though on larger sets of facial comparisons. PMID:16337353

  13. Preliminary comparison of 3D synthetic aperture imaging with Explososcan

    NASA Astrophysics Data System (ADS)

    Rasmussen, Morten Fischer; Hansen, Jens Munk; Férin, Guillaume; Dufait, Rémi; Jensen, Jørgen Arendt

    2012-03-01

    Explososcan is the 'gold standard' for real-time 3D medical ultrasound imaging. In this paper, 3D synthetic aperture imaging is compared to Explososcan by simulation of 3D point spread functions. The simulations mimic a 32×32 element prototype transducer. The transducer mimicked is a dense matrix phased array with a pitch of 300 μm, made by Vermon. For both imaging techniques, 289 emissions are used to image a volume spanning 60° in both the azimuth and elevation direction and 150mm in depth. This results for both techniques in a frame rate of 18 Hz. The implemented synthetic aperture technique reduces the number of transmit channels from 1024 to 256, compared to Explososcan. In terms of FWHM performance, was Explososcan and synthetic aperture found to perform similar. At 90mm depth is Explososcan's FWHM performance 7% better than that of synthetic aperture. Synthetic aperture improved the cystic resolution, which expresses the ability to detect anechoic cysts in a uniform scattering media, at all depths except at Explososcan's focus point. Synthetic aperture reduced the cyst radius, R20dB, at 90mm depth by 48%. Synthetic aperture imaging was shown to reduce the number of transmit channels by four and still, generally, improve the imaging quality.

  14. Refraction Correction in 3D Transcranial Ultrasound Imaging

    PubMed Central

    Lindsey, Brooks D.; Smith, Stephen W.

    2014-01-01

    We present the first correction of refraction in three-dimensional (3D) ultrasound imaging using an iterative approach that traces propagation paths through a two-layer planar tissue model, applying Snell’s law in 3D. This approach is applied to real-time 3D transcranial ultrasound imaging by precomputing delays offline for several skull thicknesses, allowing the user to switch between three sets of delays for phased array imaging at the push of a button. Simulations indicate that refraction correction may be expected to increase sensitivity, reduce beam steering errors, and partially restore lost spatial resolution, with the greatest improvements occurring at the largest steering angles. Distorted images of cylindrical lesions were created by imaging through an acrylic plate in a tissue-mimicking phantom. As a result of correcting for refraction, lesions were restored to 93.6% of their original diameter in the lateral direction and 98.1% of their original shape along the long axis of the cylinders. In imaging two healthy volunteers, the mean brightness increased by 8.3% and showed no spatial dependency. PMID:24275538

  15. The agreement between 3D, standard 2D and triplane 2D speckle tracking: effects of image quality and 3D volume rate

    PubMed Central

    Stöbe, Stephan; Tarr, Adrienn; Pfeiffer, Dietrich; Hagendorff, Andreas

    2014-01-01

    Comparison of 3D and 2D speckle tracking performed on standard 2D and triplane 2D datasets of normal and pathological left ventricular (LV) wall-motion patterns with a focus on the effect that 3D volume rate (3DVR), image quality and tracking artifacts have on the agreement between 2D and 3D speckle tracking. 37 patients with normal LV function and 18 patients with ischaemic wall-motion abnormalities underwent 2D and 3D echocardiography, followed by offline speckle tracking measurements. The values of 3D global, regional and segmental strain were compared with the standard 2D and triplane 2D strain values. Correlation analysis with the LV ejection fraction (LVEF) was also performed. The 3D and 2D global strain values correlated good in both normally and abnormally contracting hearts, though systematic differences between the two methods were observed. Of the 3D strain parameters, the area strain showed the best correlation with the LVEF. The numerical agreement of 3D and 2D analyses varied significantly with the volume rate and image quality of the 3D datasets. The highest correlation between 2D and 3D peak systolic strain values was found between 3D area and standard 2D longitudinal strain. Regional wall-motion abnormalities were similarly detected by 2D and 3D speckle tracking. 2DST of triplane datasets showed similar results to those of conventional 2D datasets. 2D and 3D speckle tracking similarly detect normal and pathological wall-motion patterns. Limited image quality has a significant impact on the agreement between 3D and 2D numerical strain values. PMID:26693303

  16. Visualization and Analysis of 3D Gene Expression Data

    SciTech Connect

    Bethel, E. Wes; Rubel, Oliver; Weber, Gunther H.; Hamann, Bernd; Hagen, Hans

    2007-10-25

    Recent methods for extracting precise measurements ofspatial gene expression patterns from three-dimensional (3D) image dataopens the way for new analysis of the complex gene regulatory networkscontrolling animal development. To support analysis of this novel andhighly complex data we developed PointCloudXplore (PCX), an integratedvisualization framework that supports dedicated multi-modal, physical andinformation visualization views along with algorithms to aid in analyzingthe relationships between gene expression levels. Using PCX, we helpedour science stakeholders to address many questions in 3D gene expressionresearch, e.g., to objectively define spatial pattern boundaries andtemporal profiles of genes and to analyze how mRNA patterns arecontrolled by their regulatory transcription factors.

  17. 1024 pixels single photon imaging array for 3D ranging

    NASA Astrophysics Data System (ADS)

    Bellisai, S.; Guerrieri, F.; Tisa, S.; Zappa, F.; Tosi, A.; Giudice, A.

    2011-01-01

    Three dimensions (3D) acquisition systems are driving applications in many research field. Nowadays 3D acquiring systems are used in a lot of applications, such as cinema industry or in automotive (for active security systems). Depending on the application, systems present different features, for example color sensitivity, bi-dimensional image resolution, distance measurement accuracy and acquisition frame rate. The system we developed acquires 3D movie using indirect Time of Flight (iTOF), starting from phase delay measurement of a sinusoidally modulated light. The system acquires live movie with a frame rate up to 50frame/s in a range distance between 10 cm up to 7.5 m.

  18. Optical-CT imaging of complex 3D dose distributions

    NASA Astrophysics Data System (ADS)

    Oldham, Mark; Kim, Leonard; Hugo, Geoffrey

    2005-04-01

    The limitations of conventional dosimeters restrict the comprehensiveness of verification that can be performed for advanced radiation treatments presenting an immediate and substantial problem for clinics attempting to implement these techniques. In essence, the rapid advances in the technology of radiation delivery have not been paralleled by corresponding advances in the ability to verify these treatments. Optical-CT gel-dosimetry is a relatively new technique with potential to address this imbalance by providing high resolution 3D dose maps in polymer and radiochromic gel dosimeters. We have constructed a 1st generation optical-CT scanner capable of high resolution 3D dosimetry and applied it to a number of simple and increasingly complex dose distributions including intensity-modulated-radiation-therapy (IMRT). Prior to application to IMRT, the robustness of optical-CT gel dosimetry was investigated on geometry and variable attenuation phantoms. Physical techniques and image processing methods were developed to minimize deleterious effects of refraction, reflection, and scattered laser light. Here we present results of investigations into achieving accurate high-resolution 3D dosimetry with optical-CT, and show clinical examples of 3D IMRT dosimetry verification. In conclusion, optical-CT gel dosimetry can provide high resolution 3D dose maps that greatly facilitate comprehensive verification of complex 3D radiation treatments. Good agreement was observed at high dose levels (>50%) between planned and measured dose distributions. Some systematic discrepancies were observed however (rms discrepancy 3% at high dose levels) indicating further work is required to eliminate confounding factors presently compromising the accuracy of optical-CT 3D gel-dosimetry.

  19. 3D robust digital image correlation for vibration measurement.

    PubMed

    Chen, Zhong; Zhang, Xianmin; Fatikow, Sergej

    2016-03-01

    Discrepancies of speckle images under dynamic measurement due to the different viewing angles will deteriorate the correspondence in 3D digital image correlation (3D-DIC) for vibration measurement. Facing this kind of bottleneck, this paper presents two types of robust 3D-DIC methods for vibration measurement, SSD-robust and SWD-robust, which use a sum of square difference (SSD) estimator plus a Geman-McClure regulating term and a Welch estimator plus a Geman-McClure regulating term, respectively. Because the regulating term with an adaptive rejecting bound can lessen the influence of the abnormal pixel data in the dynamical measuring process, the robustness of the algorithm is enhanced. The robustness and precision evaluation experiments using a dual-frequency laser interferometer are implemented. The experimental results indicate that the two presented robust estimators can suppress the effects of the abnormality in the speckle images and, meanwhile, keep higher precision in vibration measurement in contrast with the traditional SSD method; thus, the SWD-robust and SSD-robust methods are suitable for weak image noise and strong image noise, respectively. PMID:26974624

  20. 3D Reconstruction of Human Motion from Monocular Image Sequences.

    PubMed

    Wandt, Bastian; Ackermann, Hanno; Rosenhahn, Bodo

    2016-08-01

    This article tackles the problem of estimating non-rigid human 3D shape and motion from image sequences taken by uncalibrated cameras. Similar to other state-of-the-art solutions we factorize 2D observations in camera parameters, base poses and mixing coefficients. Existing methods require sufficient camera motion during the sequence to achieve a correct 3D reconstruction. To obtain convincing 3D reconstructions from arbitrary camera motion, our method is based on a-priorly trained base poses. We show that strong periodic assumptions on the coefficients can be used to define an efficient and accurate algorithm for estimating periodic motion such as walking patterns. For the extension to non-periodic motion we propose a novel regularization term based on temporal bone length constancy. In contrast to other works, the proposed method does not use a predefined skeleton or anthropometric constraints and can handle arbitrary camera motion. We achieve convincing 3D reconstructions, even under the influence of noise and occlusions. Multiple experiments based on a 3D error metric demonstrate the stability of the proposed method. Compared to other state-of-the-art methods our algorithm shows a significant improvement. PMID:27093439

  1. 3D Reconstruction of Human Motion from Monocular Image Sequences.

    PubMed

    Wandt, Bastian; Ackermann, Hanno; Rosenhahn, Bodo

    2016-08-01

    This article tackles the problem of estimating non-rigid human 3D shape and motion from image sequences taken by uncalibrated cameras. Similar to other state-of-the-art solutions we factorize 2D observations in camera parameters, base poses and mixing coefficients. Existing methods require sufficient camera motion during the sequence to achieve a correct 3D reconstruction. To obtain convincing 3D reconstructions from arbitrary camera motion, our method is based on a-priorly trained base poses. We show that strong periodic assumptions on the coefficients can be used to define an efficient and accurate algorithm for estimating periodic motion such as walking patterns. For the extension to non-periodic motion we propose a novel regularization term based on temporal bone length constancy. In contrast to other works, the proposed method does not use a predefined skeleton or anthropometric constraints and can handle arbitrary camera motion. We achieve convincing 3D reconstructions, even under the influence of noise and occlusions. Multiple experiments based on a 3D error metric demonstrate the stability of the proposed method. Compared to other state-of-the-art methods our algorithm shows a significant improvement.

  2. 3D lidar imaging for detecting and understanding plant responses and canopy structure.

    PubMed

    Omasa, Kenji; Hosoi, Fumiki; Konishi, Atsumi

    2007-01-01

    Understanding and diagnosing plant responses to stress will benefit greatly from three-dimensional (3D) measurement and analysis of plant properties because plant responses are strongly related to their 3D structures. Light detection and ranging (lidar) has recently emerged as a powerful tool for direct 3D measurement of plant structure. Here the use of 3D lidar imaging to estimate plant properties such as canopy height, canopy structure, carbon stock, and species is demonstrated, and plant growth and shape responses are assessed by reviewing the development of lidar systems and their applications from the leaf level to canopy remote sensing. In addition, the recent creation of accurate 3D lidar images combined with natural colour, chlorophyll fluorescence, photochemical reflectance index, and leaf temperature images is demonstrated, thereby providing information on responses of pigments, photosynthesis, transpiration, stomatal opening, and shape to environmental stresses; these data can be integrated with 3D images of the plants using computer graphics techniques. Future lidar applications that provide more accurate dynamic estimation of various plant properties should improve our understanding of plant responses to stress and of interactions between plants and their environment. Moreover, combining 3D lidar with other passive and active imaging techniques will potentially improve the accuracy of airborne and satellite remote sensing, and make it possible to analyse 3D information on ecophysiological responses and levels of various substances in agricultural and ecological applications and in observations of the global biosphere. PMID:17030540

  3. Quantification of the aortic arch morphology in 3D CTA images for endovascular aortic repair (EVAR)

    NASA Astrophysics Data System (ADS)

    Wörz, S.; von Tengg-Kobligk, H.; Henninger, V.; Böckler, D.; Kauczor, H.-U.; Rohr, K.

    2008-03-01

    We introduce a new model-based approach for the segmentation and quantification of the aortic arch morphology in 3D CTA images for endovascular aortic repair (EVAR). The approach is based on a 3D analytic intensity model for thick vessels, which is directly fitted to the image. Based on the fitting results we compute the (local) 3D vessel curvature and torsion as well as the relevant lengths not only along the 3D centerline but particularly along the inner and outer contour. These measurements are important for pre-operative planning in EVAR applications. We have successfully applied our approach using ten 3D CTA images and have compared the results with ground truth obtained by a radiologist. It turned out that our approach yields accurate estimation results. We have also performed a comparison with a commercial vascular analysis software.

  4. 3D Soil Images Structure Quantification using Relative Entropy

    NASA Astrophysics Data System (ADS)

    Tarquis, A. M.; Gonzalez-Nieto, P. L.; Bird, N. R. A.

    2012-04-01

    Soil voids manifest the cumulative effect of local pedogenic processes and ultimately influence soil behavior - especially as it pertains to aeration and hydrophysical properties. Because of the relatively weak attenuation of X-rays by air, compared with liquids or solids, non-disruptive CT scanning has become a very attractive tool for generating three-dimensional imagery of soil voids. One of the main steps involved in this analysis is the thresholding required to transform the original (greyscale) images into the type of binary representation (e.g., pores in white, solids in black) needed for fractal analysis or simulation with Lattice-Boltzmann models (Baveye et al., 2010). The objective of the current work is to apply an innovative approach to quantifying soil voids and pore networks in original X-ray CT imagery using Relative Entropy (Bird et al., 2006; Tarquis et al., 2008). These will be illustrated using typical imagery representing contrasting soil structures. Particular attention will be given to the need to consider the full 3D context of the CT imagery, as well as scaling issues, in the application and interpretation of this index.

  5. Interactive 2D to 3D stereoscopic image synthesis

    NASA Astrophysics Data System (ADS)

    Feldman, Mark H.; Lipton, Lenny

    2005-03-01

    Advances in stereoscopic display technologies, graphic card devices, and digital imaging algorithms have opened up new possibilities in synthesizing stereoscopic images. The power of today"s DirectX/OpenGL optimized graphics cards together with adapting new and creative imaging tools found in software products such as Adobe Photoshop, provide a powerful environment for converting planar drawings and photographs into stereoscopic images. The basis for such a creative process is the focus of this paper. This article presents a novel technique, which uses advanced imaging features and custom Windows-based software that utilizes the Direct X 9 API to provide the user with an interactive stereo image synthesizer. By creating an accurate and interactive world scene with moveable and flexible depth map altered textured surfaces, perspective stereoscopic cameras with both visible frustums and zero parallax planes, a user can precisely model a virtual three-dimensional representation of a real-world scene. Current versions of Adobe Photoshop provide a creative user with a rich assortment of tools needed to highlight elements of a 2D image, simulate hidden areas, and creatively shape them for a 3D scene representation. The technique described has been implemented as a Photoshop plug-in and thus allows for a seamless transition of these 2D image elements into 3D surfaces, which are subsequently rendered to create stereoscopic views.

  6. Large distance 3D imaging of hidden objects

    NASA Astrophysics Data System (ADS)

    Rozban, Daniel; Aharon Akram, Avihai; Kopeika, N. S.; Abramovich, A.; Levanon, Assaf

    2014-06-01

    Imaging systems in millimeter waves are required for applications in medicine, communications, homeland security, and space technology. This is because there is no known ionization hazard for biological tissue, and atmospheric attenuation in this range of the spectrum is low compared to that of infrared and optical rays. The lack of an inexpensive room temperature detector makes it difficult to give a suitable real time implement for the above applications. A 3D MMW imaging system based on chirp radar was studied previously using a scanning imaging system of a single detector. The system presented here proposes to employ a chirp radar method with Glow Discharge Detector (GDD) Focal Plane Array (FPA of plasma based detectors) using heterodyne detection. The intensity at each pixel in the GDD FPA yields the usual 2D image. The value of the I-F frequency yields the range information at each pixel. This will enable 3D MMW imaging. In this work we experimentally demonstrate the feasibility of implementing an imaging system based on radar principles and FPA of inexpensive detectors. This imaging system is shown to be capable of imaging objects from distances of at least 10 meters.

  7. 3D imaging of fetus vertebra by synchrotron radiation microtomography

    NASA Astrophysics Data System (ADS)

    Peyrin, Francoise; Pateyron-Salome, Murielle; Denis, Frederic; Braillon, Pierre; Laval-Jeantet, Anne-Marie; Cloetens, Peter

    1997-10-01

    A synchrotron radiation computed microtomography system allowing high resolution 3D imaging of bone samples has been developed at ESRF. The system uses a high resolution 2D detector based on a CCd camera coupled to a fluorescent screen through light optics. The spatial resolution of the device is particularly well adapted to the imaging of bone structure. In view of studying growth, vertebra samples of fetus with differential gestational ages were imaged. The first results show that fetus vertebra is quite different from adult bone both in terms of density and organization.

  8. Advanced 3D imaging lidar concepts for long range sensing

    NASA Astrophysics Data System (ADS)

    Gordon, K. J.; Hiskett, P. A.; Lamb, R. A.

    2014-06-01

    Recent developments in 3D imaging lidar are presented. Long range 3D imaging using photon counting is now a possibility, offering a low-cost approach to integrated remote sensing with step changing advantages in size, weight and power compared to conventional analogue active imaging technology. We report results using a Geiger-mode array for time-of-flight, single photon counting lidar for depth profiling and determination of the shape and size of tree canopies and distributed surface reflections at a range of 9km, with 4μJ pulses with a frame rate of 100kHz using a low-cost fibre laser operating at a wavelength of λ=1.5 μm. The range resolution is less than 4cm providing very high depth resolution for target identification. This specification opens up several additional functionalities for advanced lidar, for example: absolute rangefinding and depth profiling for long range identification, optical communications, turbulence sensing and time-of-flight spectroscopy. Future concepts for 3D time-of-flight polarimetric and multispectral imaging lidar, with optical communications in a single integrated system are also proposed.

  9. Linear tracking for 3-D medical ultrasound imaging.

    PubMed

    Huang, Qing-Hua; Yang, Zhao; Hu, Wei; Jin, Lian-Wen; Wei, Gang; Li, Xuelong

    2013-12-01

    As the clinical application grows, there is a rapid technical development of 3-D ultrasound imaging. Compared with 2-D ultrasound imaging, 3-D ultrasound imaging can provide improved qualitative and quantitative information for various clinical applications. In this paper, we proposed a novel tracking method for a freehand 3-D ultrasound imaging system with improved portability, reduced degree of freedom, and cost. We designed a sliding track with a linear position sensor attached, and it transmitted positional data via a wireless communication module based on Bluetooth, resulting in a wireless spatial tracking modality. A traditional 2-D ultrasound probe fixed to the position sensor on the sliding track was used to obtain real-time B-scans, and the positions of the B-scans were simultaneously acquired when moving the probe along the track in a freehand manner. In the experiments, the proposed method was applied to ultrasound phantoms and real human tissues. The results demonstrated that the new system outperformed a previously developed freehand system based on a traditional six-degree-of-freedom spatial sensor in phantom and in vivo studies, indicating its merit in clinical applications for human tissues and organs. PMID:23757592

  10. Method for extracting the aorta from 3D CT images

    NASA Astrophysics Data System (ADS)

    Taeprasartsit, Pinyo; Higgins, William E.

    2007-03-01

    Bronchoscopic biopsy of the central-chest lymph nodes is vital in the staging of lung cancer. Three-dimensional multi-detector CT (MDCT) images provide vivid anatomical detail for planning bronchoscopy. Unfortunately, many lymph nodes are situated close to the aorta, and an inadvertent needle biopsy could puncture the aorta, causing serious harm. As an eventual aid for more complete planning of lymph-node biopsy, it is important to define the aorta. This paper proposes a method for extracting the aorta from a 3D MDCT chest image. The method has two main phases: (1) Off-line Model Construction, which provides a set of training cases for fitting new images, and (2) On-Line Aorta Construction, which is used for new incoming 3D MDCT images. Off-Line Model Construction is done once using several representative human MDCT images and consists of the following steps: construct a likelihood image, select control points of the medial axis of the aortic arch, and recompute the control points to obtain a constant-interval medial-axis model. On-Line Aorta Construction consists of the following operations: construct a likelihood image, perform global fitting of the precomputed models to the current case's likelihood image to find the best fitting model, perform local fitting to adjust the medial axis to local data variations, and employ a region recovery method to arrive at the complete constructed 3D aorta. The region recovery method consists of two steps: model-based and region-growing steps. This region growing method can recover regions outside the model coverage and non-circular tube structures. In our experiments, we used three models and achieved satisfactory results on twelve of thirteen test cases.

  11. Phantom image results of an optimized full 3D USCT

    NASA Astrophysics Data System (ADS)

    Ruiter, Nicole V.; Zapf, Michael; Hopp, Torsten; Dapp, Robin; Gemmeke, Hartmut

    2012-03-01

    A promising candidate for improved imaging of breast cancer is ultrasound computer tomography (USCT). Current experimental USCT systems are still focused in elevation dimension resulting in a large slice thickness, limited depth of field, loss of out-of-plane reflections, and a large number of movement steps to acquire a stack of images. 3DUSCT emitting and receiving spherical wave fronts overcomes these limitations. We built an optimized 3DUSCT with nearly isotropic 3DPSF, realizing for the first time the full benefits of a 3Dsystem. In this paper results of the 3D point spread function measured with a dedicated phantom and images acquired with a clinical breast phantom are presented. The point spread function could be shown to be nearly isotropic in 3D, to have very low spatial variability and fit the predicted values. The contrast of the phantom images is very satisfactory in spite of imaging with a sparse aperture. The resolution and imaged details of the reflectivity reconstruction are comparable to a 3TeslaMRI volume of the breast phantom. Image quality and resolution is isotropic in all three dimensions, confirming the successful optimization experimentally.

  12. Automated 3D renal segmentation based on image partitioning

    NASA Astrophysics Data System (ADS)

    Yeghiazaryan, Varduhi; Voiculescu, Irina D.

    2016-03-01

    Despite several decades of research into segmentation techniques, automated medical image segmentation is barely usable in a clinical context, and still at vast user time expense. This paper illustrates unsupervised organ segmentation through the use of a novel automated labelling approximation algorithm followed by a hypersurface front propagation method. The approximation stage relies on a pre-computed image partition forest obtained directly from CT scan data. We have implemented all procedures to operate directly on 3D volumes, rather than slice-by-slice, because our algorithms are dimensionality-independent. The results picture segmentations which identify kidneys, but can easily be extrapolated to other body parts. Quantitative analysis of our automated segmentation compared against hand-segmented gold standards indicates an average Dice similarity coefficient of 90%. Results were obtained over volumes of CT data with 9 kidneys, computing both volume-based similarity measures (such as the Dice and Jaccard coefficients, true positive volume fraction) and size-based measures (such as the relative volume difference). The analysis considered both healthy and diseased kidneys, although extreme pathological cases were excluded from the overall count. Such cases are difficult to segment both manually and automatically due to the large amplitude of Hounsfield unit distribution in the scan, and the wide spread of the tumorous tissue inside the abdomen. In the case of kidneys that have maintained their shape, the similarity range lies around the values obtained for inter-operator variability. Whilst the procedure is fully automated, our tools also provide a light level of manual editing.

  13. Combined elasticity and 3D imaging of the prostate

    NASA Astrophysics Data System (ADS)

    Li, Yinbo; Hossack, John A.

    2005-04-01

    A method is described for repeatably assessing elasticity and 3D extent of suspected prostate cancers. Elasticity is measured by controlled water inflation of a sheath placed over a modified transrectal ultrasound transducer. The benefit of using fluid inflation is that it should be possible to make repeatable, accurate, measurements of elasticity that are of interest in the serial assessment of prostate cancer progression or remission. The second aspect of the work uses auxiliary tracking arrays placed at each end of the central imaging array that allow the transducer to be rotated while simultaneously collected 'tracking' information thus allowing the position of successive image planes to be located with approximately 11% volumetric accuracy in 3D space. In this way, we present a technique for quantifying volumetric extent of suspected cancer in addition to making measures of elastic anomalies.

  14. 3D reconstruction of concave surfaces using polarisation imaging

    NASA Astrophysics Data System (ADS)

    Sohaib, A.; Farooq, A. R.; Ahmed, J.; Smith, L. N.; Smith, M. L.

    2015-06-01

    This paper presents a novel algorithm for improved shape recovery using polarisation-based photometric stereo. The majority of previous research using photometric stereo involves 3D reconstruction using both the diffuse and specular components of light; however, this paper suggests the use of the specular component only as it is the only form of light that comes directly off the surface without subsurface scattering or interreflections. Experiments were carried out on both real and synthetic surfaces. Real images were obtained using a polarisation-based photometric stereo device while synthetic images were generated using PovRay® software. The results clearly demonstrate that the proposed method can extract three-dimensional (3D) surface information effectively even for concave surfaces with complex texture and surface reflectance.

  15. Getting in touch--3D printing in forensic imaging.

    PubMed

    Ebert, Lars Chr; Thali, Michael J; Ross, Steffen

    2011-09-10

    With the increasing use of medical imaging in forensics, as well as the technological advances in rapid prototyping, we suggest combining these techniques to generate displays of forensic findings. We used computed tomography (CT), CT angiography, magnetic resonance imaging (MRI) and surface scanning with photogrammetry in conjunction with segmentation techniques to generate 3D polygon meshes. Based on these data sets, a 3D printer created colored models of the anatomical structures. Using this technique, we could create models of bone fractures, vessels, cardiac infarctions, ruptured organs as well as bitemark wounds. The final models are anatomically accurate, fully colored representations of bones, vessels and soft tissue, and they demonstrate radiologically visible pathologies. The models are more easily understood by laypersons than volume rendering or 2D reconstructions. Therefore, they are suitable for presentations in courtrooms and for educational purposes. PMID:21602004

  16. 3D scene reconstruction based on 3D laser point cloud combining UAV images

    NASA Astrophysics Data System (ADS)

    Liu, Huiyun; Yan, Yangyang; Zhang, Xitong; Wu, Zhenzhen

    2016-03-01

    It is a big challenge capturing and modeling 3D information of the built environment. A number of techniques and technologies are now in use. These include GPS, and photogrammetric application and also remote sensing applications. The experiment uses multi-source data fusion technology for 3D scene reconstruction based on the principle of 3D laser scanning technology, which uses the laser point cloud data as the basis and Digital Ortho-photo Map as an auxiliary, uses 3DsMAX software as a basic tool for building three-dimensional scene reconstruction. The article includes data acquisition, data preprocessing, 3D scene construction. The results show that the 3D scene has better truthfulness, and the accuracy of the scene meet the need of 3D scene construction.

  17. Dynamic 3D computed tomography scanner for vascular imaging

    NASA Astrophysics Data System (ADS)

    Lee, Mark K.; Holdsworth, David W.; Fenster, Aaron

    2000-04-01

    A 3D dynamic computed-tomography (CT) scanner was developed for imaging objects undergoing periodic motion. The scanner system has high spatial and sufficient temporal resolution to produce quantitative tomographic/volume images of objects such as excised arterial samples perfused under physiological pressure conditions and enables the measurements of the local dynamic elastic modulus (Edyn) of the arteries in the axial and longitudinal directions. The system was comprised of a high resolution modified x-ray image intensifier (XRII) based computed tomographic system and a computer-controlled cardiac flow simulator. A standard NTSC CCD camera with a macro lens was coupled to the electro-optically zoomed XRII to acquire dynamic volumetric images. Through prospective cardiac gating and computer synchronized control, a time-resolved sequence of 20 mm thick high resolution volume images of porcine aortic specimens during one simulated cardiac cycle were obtained. Performance evaluation of the scanners illustrated that tomographic images can be obtained with resolution as high as 3.2 mm-1 with only a 9% decrease in the resolution for objects moving at velocities of 1 cm/s in 2D mode and static spatial resolution of 3.55 mm-1 with only a 14% decrease in the resolution in 3D mode for objects moving at a velocity of 10 cm/s. Application of the system for imaging of intact excised arterial specimens under simulated physiological flow/pressure conditions enabled measurements of the Edyn of the arteries with a precision of +/- kPa for the 3D scanner. Evaluation of the Edyn in the axial and longitudinal direction produced values of 428 +/- 35 kPa and 728 +/- 71 kPa, demonstrating the isotropic and homogeneous viscoelastic nature of the vascular specimens. These values obtained from the Dynamic CT systems were not statistically different (p less than 0.05) from the values obtained by standard uniaxial tensile testing and volumetric measurements.

  18. High-speed 3D imaging by DMD technology

    NASA Astrophysics Data System (ADS)

    Hoefling, Roland

    2004-05-01

    The paper presents an advanced solution for capturing the height of an object in addition to the 2D image as it is frequently desired in machine vision applications. Based upon the active fringe projection methodology, the system takes advantage of a series of patterns projected onto the object surface and observed by a camera to provide reliable, accurate and highly resolved 3D data from any scattering object surface. The paper shows how the recording of a projected image series can be significantly accelerated and improved in quality to overcome current limitations. The key is ALP - a metrology dedicated hardware design using the Discovery 1100 platform for the DMD micromirror device of Texas Instruments Inc. The paper describes how this DMD technology has been combined with latest LED illumination, high-performance optics, and recent digital camera solutions. The ALP based DMD projection can be exactly synchronized with one or multiple cameras so that gray value intensities generated by pulse-width modulation (PWM) are recorded with high linearity. Based upon these components, a novel 3D measuring system with outstanding properties is described. The "z-Snapper" represents a new class of 3D imaging devices, it is fast enough for time demanding in-line testing, and it can be built completely mobile: laptop based, hand-held, and battery powered. The turnkey system provides a "3D image" as simple as an usual b/w picture is grabbed. It can be instantly implemented into future machine vision applications that will benefit from the step into the third dimension.

  19. Discrete Method of Images for 3D Radio Propagation Modeling

    NASA Astrophysics Data System (ADS)

    Novak, Roman

    2016-09-01

    Discretization by rasterization is introduced into the method of images (MI) in the context of 3D deterministic radio propagation modeling as a way to exploit spatial coherence of electromagnetic propagation for fine-grained parallelism. Traditional algebraic treatment of bounding regions and surfaces is replaced by computer graphics rendering of 3D reflections and double refractions while building the image tree. The visibility of reception points and surfaces is also resolved by shader programs. The proposed rasterization is shown to be of comparable run time to that of the fundamentally parallel shooting and bouncing rays. The rasterization does not affect the signal evaluation backtracking step, thus preserving its advantage over the brute force ray-tracing methods in terms of accuracy. Moreover, the rendering resolution may be scaled back for a given level of scenario detail with only marginal impact on the image tree size. This allows selection of scene optimized execution parameters for faster execution, giving the method a competitive edge. The proposed variant of MI can be run on any GPU that supports real-time 3D graphics.

  20. Fast 3D fluid registration of brain magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Leporé, Natasha; Chou, Yi-Yu; Lopez, Oscar L.; Aizenstein, Howard J.; Becker, James T.; Toga, Arthur W.; Thompson, Paul M.

    2008-03-01

    Fluid registration is widely used in medical imaging to track anatomical changes, to correct image distortions, and to integrate multi-modality data. Fluid mappings guarantee that the template image deforms smoothly into the target, without tearing or folding, even when large deformations are required for accurate matching. Here we implemented an intensity-based fluid registration algorithm, accelerated by using a filter designed by Bro-Nielsen and Gramkow. We validated the algorithm on 2D and 3D geometric phantoms using the mean square difference between the final registered image and target as a measure of the accuracy of the registration. In tests on phantom images with different levels of overlap, varying amounts of Gaussian noise, and different intensity gradients, the fluid method outperformed a more commonly used elastic registration method, both in terms of accuracy and in avoiding topological errors during deformation. We also studied the effect of varying the viscosity coefficients in the viscous fluid equation, to optimize registration accuracy. Finally, we applied the fluid registration algorithm to a dataset of 2D binary corpus callosum images and 3D volumetric brain MRIs from 14 healthy individuals to assess its accuracy and robustness.

  1. Femoroacetabular impingement with chronic acetabular rim fracture - 3D computed tomography, 3D magnetic resonance imaging and arthroscopic correlation

    PubMed Central

    Chhabra, Avneesh; Nordeck, Shaun; Wadhwa, Vibhor; Madhavapeddi, Sai; Robertson, William J

    2015-01-01

    Femoroacetabular impingement is uncommonly associated with a large rim fragment of bone along the superolateral acetabulum. We report an unusual case of femoroacetabular impingement (FAI) with chronic acetabular rim fracture. Radiographic, 3D computed tomography, 3D magnetic resonance imaging and arthroscopy correlation is presented with discussion of relative advantages and disadvantages of various modalities in the context of FAI. PMID:26191497

  2. Pavement cracking measurements using 3D laser-scan images

    NASA Astrophysics Data System (ADS)

    Ouyang, W.; Xu, B.

    2013-10-01

    Pavement condition surveying is vital for pavement maintenance programs that ensure ride quality and traffic safety. This paper first introduces an automated pavement inspection system which uses a three-dimensional (3D) camera and a structured laser light to acquire dense transverse profiles of a pavement lane surface when it carries a moving vehicle. After the calibration, the 3D system can yield a depth resolution of 0.5 mm and a transverse resolution of 1.56 mm pixel-1 at 1.4 m camera height from the ground. The scanning rate of the camera can be set to its maximum at 5000 lines s-1, allowing the density of scanned profiles to vary with the vehicle's speed. The paper then illustrates the algorithms that utilize 3D information to detect pavement distress, such as transverse, longitudinal and alligator cracking, and presents the field tests on the system's repeatability when scanning a sample pavement in multiple runs at the same vehicle speed, at different vehicle speeds and under different weather conditions. The results show that this dedicated 3D system can capture accurate pavement images that detail surface distress, and obtain consistent crack measurements in repeated tests and under different driving and lighting conditions.

  3. 3D thermal medical image visualization tool: Integration between MRI and thermographic images.

    PubMed

    Abreu de Souza, Mauren; Chagas Paz, André Augusto; Sanches, Ionildo Jóse; Nohama, Percy; Gamba, Humberto Remigio

    2014-01-01

    Three-dimensional medical image reconstruction using different images modalities require registration techniques that are, in general, based on the stacking of 2D MRI/CT images slices. In this way, the integration of two different imaging modalities: anatomical (MRI/CT) and physiological information (infrared image), to generate a 3D thermal model, is a new methodology still under development. This paper presents a 3D THERMO interface that provides flexibility for the 3D visualization: it incorporates the DICOM parameters; different color scale palettes at the final 3D model; 3D visualization at different planes of sections; and a filtering option that provides better image visualization. To summarize, the 3D thermographc medical image visualization provides a realistic and precise medical tool. The merging of two different imaging modalities allows better quality and more fidelity, especially for medical applications in which the temperature changes are clinically significant.

  4. Analysis of the advantage of individual PTVs defined on axial 3D CT and 4D CT images for liver cancer.

    PubMed

    Li, Fengxiang; Li, Jianbin; Xing, Jun; Zhang, Yingjie; Fan, Tingyong; Xu, Min; Shang, Dongping; Liu, Tonghai; Song, Jinlong

    2012-11-08

    The purpose of this study was to compare positional and volumetric differences of planning target volumes (PTVs) defined on axial three dimensional CT (3D CT) and four dimensional CT (4D CT) for liver cancer. Fourteen patients with liver cancer underwent 3D CT and 4D CT simulation scans during free breathing. The tumor motion was measured by 4D CT. Three internal target volumes (ITVs) were produced based on the clinical target volume from 3DCT (CTV3D): i) A conventional ITV (ITVconv) was produced by adding 10 mm in CC direction and 5 mm in LR and and AP directions to CTV3D; ii) A specific ITV (ITVspec) was created using a specific margin in transaxial direction; iii) ITVvector was produced by adding an isotropic margin derived from the individual tumor motion vector. ITV4D was defined on the fusion of CTVs on all phases of 4D CT. PTVs were generated by adding a 5 mm setup margin to ITVs. The average centroid shifts between PTVs derived from 3DCT and PTV4D in left-right (LR), anterior-posterior (AP), and cranial-caudal (CC) directions were close to zero. Comparing PTV4D to PTVconv, PTVspec, and PTVvector resulted in a decrease in volume size by 33.18% ± 12.39%, 24.95% ± 13.01%, 48.08% ± 15.32%, respectively. The mean degree of inclusions (DI) of PTV4D in PTVconv, and PTV4D in PTVspec, and PTV4D in PTVvector was 0.98, 0.97, and 0.99, which showed no significant correlation to tumor motion vector (r = -0.470, 0.259, and 0.244; p = 0.090, 0.371, and 0.401). The mean DIs of PTVconv in PTV4D, PTVspec in PTV4D, and PTVvector in PTV4D was 0.66, 0.73, and 0.52. The size of individual PTV from 4D CT is significantly less than that of PTVs from 3DCT. The position of targets derived from axial 3DCT images scatters around the center of 4D targets randomly. Compared to conventional PTV, the use of 3D CT-based PTVs with individual margins cannot significantly reduce normal tissues being unnecessarily irradiated, but may contribute to reducing the risk of missing targets for

  5. 3D object recognition using kernel construction of phase wrapped images

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Su, Hongjun

    2011-06-01

    Kernel methods are effective machine learning techniques for many image based pattern recognition problems. Incorporating 3D information is useful in such applications. The optical profilometries and interforometric techniques provide 3D information in an implicit form. Typically phase unwrapping process, which is often hindered by the presence of noises, spots of low intensity modulation, and instability of the solutions, is applied to retrieve the proper depth information. In certain applications such as pattern recognition problems, the goal is to classify the 3D objects in the image, rather than to simply display or reconstruct them. In this paper we present a technique for constructing kernels on the measured data directly without explicit phase unwrapping. Such a kernel will naturally incorporate the 3D depth information and can be used to improve the systems involving 3D object analysis and classification.

  6. Nonrigid registration and classification of the kidneys in 3D dynamic contrast enhanced (DCE) MR images

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Ghafourian, Pegah; Sharma, Puneet; Salman, Khalil; Martin, Diego; Fei, Baowei

    2012-02-01

    We have applied image analysis methods in the assessment of human kidney perfusion based on 3D dynamic contrast-enhanced (DCE) MRI data. This approach consists of 3D non-rigid image registration of the kidneys and fuzzy C-mean classification of kidney tissues. The proposed registration method reduced motion artifacts in the dynamic images and improved the analysis of kidney compartments (cortex, medulla, and cavities). The dynamic intensity curves show the successive transition of the contrast agent through kidney compartments. The proposed method for motion correction and kidney compartment classification may be used to improve the validity and usefulness of further model-based pharmacokinetic analysis of kidney function.

  7. Automatic structural matching of 3D image data

    NASA Astrophysics Data System (ADS)

    Ponomarev, Svjatoslav; Lutsiv, Vadim; Malyshev, Igor

    2015-10-01

    A new image matching technique is described. It is implemented as an object-independent hierarchical structural juxtaposition algorithm based on an alphabet of simple object-independent contour structural elements. The structural matching applied implements an optimized method of walking through a truncated tree of all possible juxtapositions of two sets of structural elements. The algorithm was initially developed for dealing with 2D images such as the aerospace photographs, and it turned out to be sufficiently robust and reliable for matching successfully the pictures of natural landscapes taken in differing seasons from differing aspect angles by differing sensors (the visible optical, IR, and SAR pictures, as well as the depth maps and geographical vector-type maps). At present (in the reported version), the algorithm is enhanced based on additional use of information on third spatial coordinates of observed points of object surfaces. Thus, it is now capable of matching the images of 3D scenes in the tasks of automatic navigation of extremely low flying unmanned vehicles or autonomous terrestrial robots. The basic principles of 3D structural description and matching of images are described, and the examples of image matching are presented.

  8. 2D and 3D MALDI-imaging: conceptual strategies for visualization and data mining.

    PubMed

    Thiele, Herbert; Heldmann, Stefan; Trede, Dennis; Strehlow, Jan; Wirtz, Stefan; Dreher, Wolfgang; Berger, Judith; Oetjen, Janina; Kobarg, Jan Hendrik; Fischer, Bernd; Maass, Peter

    2014-01-01

    3D imaging has a significant impact on many challenges in life sciences, because biology is a 3-dimensional phenomenon. Current 3D imaging-technologies (various types MRI, PET, SPECT) are labeled, i.e. they trace the localization of a specific compound in the body. In contrast, 3D MALDI mass spectrometry-imaging (MALDI-MSI) is a label-free method imaging the spatial distribution of molecular compounds. It complements 3D imaging labeled methods, immunohistochemistry, and genetics-based methods. However, 3D MALDI-MSI cannot tap its full potential due to the lack of statistical methods for analysis and interpretation of large and complex 3D datasets. To overcome this, we established a complete and robust 3D MALDI-MSI pipeline combined with efficient computational data analysis methods for 3D edge preserving image denoising, 3D spatial segmentation as well as finding colocalized m/z values, which will be reviewed here in detail. Furthermore, we explain, why the integration and correlation of the MALDI imaging data with other imaging modalities allows to enhance the interpretation of the molecular data and provides visualization of molecular patterns that may otherwise not be apparent. Therefore, a 3D data acquisition workflow is described generating a set of 3 different dimensional images representing the same anatomies. First, an in-vitro MRI measurement is performed which results in a three-dimensional image modality representing the 3D structure of the measured object. After sectioning the 3D object into N consecutive slices, all N slices are scanned using an optical digital scanner, enabling for performing the MS measurements. Scanning the individual sections results into low-resolution images, which define the base coordinate system for the whole pipeline. The scanned images conclude the information from the spatial (MRI) and the mass spectrometric (MALDI-MSI) dimension and are used for the spatial three-dimensional reconstruction of the object performed by image

  9. Underwater 3d Modeling: Image Enhancement and Point Cloud Filtering

    NASA Astrophysics Data System (ADS)

    Sarakinou, I.; Papadimitriou, K.; Georgoula, O.; Patias, P.

    2016-06-01

    This paper examines the results of image enhancement and point cloud filtering on the visual and geometric quality of 3D models for the representation of underwater features. Specifically it evaluates the combination of effects from the manual editing of images' radiometry (captured at shallow depths) and the selection of parameters for point cloud definition and mesh building (processed in 3D modeling software). Such datasets, are usually collected by divers, handled by scientists and used for geovisualization purposes. In the presented study, have been created 3D models from three sets of images (seafloor, part of a wreck and a small boat's wreck) captured at three different depths (3.5m, 10m and 14m respectively). Four models have been created from the first dataset (seafloor) in order to evaluate the results from the application of image enhancement techniques and point cloud filtering. The main process for this preliminary study included a) the definition of parameters for the point cloud filtering and the creation of a reference model, b) the radiometric editing of images, followed by the creation of three improved models and c) the assessment of results by comparing the visual and the geometric quality of improved models versus the reference one. Finally, the selected technique is tested on two other data sets in order to examine its appropriateness for different depths (at 10m and 14m) and different objects (part of a wreck and a small boat's wreck) in the context of an ongoing research in the Laboratory of Photogrammetry and Remote Sensing.

  10. Sparse aperture 3D passive image sensing and recognition

    NASA Astrophysics Data System (ADS)

    Daneshpanah, Mehdi

    The way we perceive, capture, store, communicate and visualize the world has greatly changed in the past century Novel three dimensional (3D) imaging and display systems are being pursued both in academic and industrial settings. In many cases, these systems have revolutionized traditional approaches and/or enabled new technologies in other disciplines including medical imaging and diagnostics, industrial metrology, entertainment, robotics as well as defense and security. In this dissertation, we focus on novel aspects of sparse aperture multi-view imaging systems and their application in quantum-limited object recognition in two separate parts. In the first part, two concepts are proposed. First a solution is presented that involves a generalized framework for 3D imaging using randomly distributed sparse apertures. Second, a method is suggested to extract the profile of objects in the scene through statistical properties of the reconstructed light field. In both cases, experimental results are presented that demonstrate the feasibility of the techniques. In the second part, the application of 3D imaging systems in sensing and recognition of objects is addressed. In particular, we focus on the scenario in which only 10s of photons reach the sensor from the object of interest, as opposed to hundreds of billions of photons in normal imaging conditions. At this level, the quantum limited behavior of light will dominate and traditional object recognition practices may fail. We suggest a likelihood based object recognition framework that incorporates the physics of sensing at quantum-limited conditions. Sensor dark noise has been modeled and taken into account. This framework is applied to 3D sensing of thermal objects using visible spectrum detectors. Thermal objects as cold as 250K are shown to provide enough signature photons to be sensed and recognized within background and dark noise with mature, visible band, image forming optics and detector arrays. The results

  11. A shortcut to align 3D images captured from multiple views

    NASA Astrophysics Data System (ADS)

    Heng, Wei; Wang, Hao

    2008-11-01

    In order to get whole shape of an object, lots of parts of 3D images need to be captured from multiple views and aligned into a same 3D coordinate. That usually involves in both complex software process and expensive hardware system. In this paper, a shortcut approach is proposed to align 3D images captured from multiple views. Employing only a calibrated turntable, a single-view 3D camera can capture a sequence of 3D images of an object from different view angle one by one, then align them quickly and automatically. The alignment doesn't need any help from the operator. It can achieve good performances such as high accuracy, robust, rapidly capturing and low cost. The turntable calibration can be easily implemented by the single-view 3D camera. Fixed with the turntable, single-view 3D camera can calibrate the revolving-axis of the turntable just by measuring the positions of a little calibration-ball revolving with the turntable at several angles. Then system can get the coordinate transformation formula between multiple views of different revolving angle by a LMS algorithm. The formulae for calibration and alignment are given with the precision analysis. Experiments were performed and showed effective result to recover 3D objects.

  12. Phase Sensitive Cueing for 3D Objects in Overhead Images

    SciTech Connect

    Paglieroni, D W; Eppler, W G; Poland, D N

    2005-02-18

    A 3D solid model-aided object cueing method that matches phase angles of directional derivative vectors at image pixels to phase angles of vectors normal to projected model edges is described. It is intended for finding specific types of objects at arbitrary position and orientation in overhead images, independent of spatial resolution, obliqueness, acquisition conditions, and type of imaging sensor. It is shown that the phase similarity measure can be efficiently evaluated over all combinations of model position and orientation using the FFT. The highest degree of similarity over all model orientations is captured in a match surface of similarity values vs. model position. Unambiguous peaks in this surface are sorted in descending order of similarity value, and the small image thumbnails that contain them are presented to human analysts for inspection in sorted order.

  13. 3D Lunar Terrain Reconstruction from Apollo Images

    NASA Technical Reports Server (NTRS)

    Broxton, Michael J.; Nefian, Ara V.; Moratto, Zachary; Kim, Taemin; Lundy, Michael; Segal, Alkeksandr V.

    2009-01-01

    Generating accurate three dimensional planetary models is becoming increasingly important as NASA plans manned missions to return to the Moon in the next decade. This paper describes a 3D surface reconstruction system called the Ames Stereo Pipeline that is designed to produce such models automatically by processing orbital stereo imagery. We discuss two important core aspects of this system: (1) refinement of satellite station positions and pose estimates through least squares bundle adjustment; and (2) a stochastic plane fitting algorithm that generalizes the Lucas-Kanade method for optimal matching between stereo pair images.. These techniques allow us to automatically produce seamless, highly accurate digital elevation models from multiple stereo image pairs while significantly reducing the influence of image noise. Our technique is demonstrated on a set of 71 high resolution scanned images from the Apollo 15 mission

  14. 3D super-resolution imaging with blinking quantum dots.

    PubMed

    Wang, Yong; Fruhwirth, Gilbert; Cai, En; Ng, Tony; Selvin, Paul R

    2013-11-13

    Quantum dots are promising candidates for single molecule imaging due to their exceptional photophysical properties, including their intense brightness and resistance to photobleaching. They are also notorious for their blinking. Here we report a novel way to take advantage of quantum dot blinking to develop an imaging technique in three-dimensions with nanometric resolution. We first applied this method to simulated images of quantum dots and then to quantum dots immobilized on microspheres. We achieved imaging resolutions (fwhm) of 8-17 nm in the x-y plane and 58 nm (on coverslip) or 81 nm (deep in solution) in the z-direction, approximately 3-7 times better than what has been achieved previously with quantum dots. This approach was applied to resolve the 3D distribution of epidermal growth factor receptor (EGFR) molecules at, and inside of, the plasma membrane of resting basal breast cancer cells.

  15. Scattering robust 3D reconstruction via polarized transient imaging.

    PubMed

    Wu, Rihui; Suo, Jinli; Dai, Feng; Zhang, Yongdong; Dai, Qionghai

    2016-09-01

    Reconstructing 3D structure of scenes in the scattering medium is a challenging task with great research value. Existing techniques often impose strong assumptions on the scattering behaviors and are of limited performance. Recently, a low-cost transient imaging system has provided a feasible way to resolve the scene depth, by detecting the reflection instant on the time profile of a surface point. However, in cases with scattering medium, the rays are both reflected and scattered during transmission, and the depth calculated from the time profile largely deviates from the true value. To handle this problem, we used the different polarization behaviors of the reflection and scattering components, and introduced active polarization to separate the reflection component to estimate the scattering robust depth. Our experiments have demonstrated that our approach can accurately reconstruct the 3D structure underlying the scattering medium. PMID:27607944

  16. The 3D model control of image processing

    NASA Technical Reports Server (NTRS)

    Nguyen, An H.; Stark, Lawrence

    1989-01-01

    Telerobotics studies remote control of distant robots by a human operator using supervisory or direct control. Even if the robot manipulators has vision or other senses, problems arise involving control, communications, and delay. The communication delays that may be expected with telerobots working in space stations while being controlled from an Earth lab have led to a number of experiments attempting to circumvent the problem. This delay in communication is a main motivating factor in moving from well understood instantaneous hands-on manual control to less well understood supervisory control; the ultimate step would be the realization of a fully autonomous robot. The 3-D model control plays a crucial role in resolving many conflicting image processing problems that are inherent in resolving in the bottom-up approach of most current machine vision processes. The 3-D model control approach is also capable of providing the necessary visual feedback information for both the control algorithms and for the human operator.

  17. 3D Imaging of the OH mesospheric emissive layer

    NASA Astrophysics Data System (ADS)

    Kouahla, M. N.; Moreels, G.; Faivre, M.; Clairemidi, J.; Meriwether, J. W.; Lehmacher, G. A.; Vidal, E.; Veliz, O.

    2010-01-01

    A new and original stereo imaging method is introduced to measure the altitude of the OH nightglow layer and provide a 3D perspective map of the altitude of the layer centroid. Near-IR photographs of the OH layer are taken at two sites separated by a 645 km distance. Each photograph is processed in order to provide a satellite view of the layer. When superposed, the two views present a common diamond-shaped area. Pairs of matched points that correspond to a physical emissive point in the common area are identified in calculating a normalized cross-correlation coefficient (NCC). This method is suitable for obtaining 3D representations in the case of low-contrast objects. An observational campaign was conducted in July 2006 in Peru. The images were taken simultaneously at Cerro Cosmos (12°09‧08.2″ S, 75°33‧49.3″ W, altitude 4630 m) close to Huancayo and Cerro Verde Tellolo (16°33‧17.6″ S, 71°39‧59.4″ W, altitude 2272 m) close to Arequipa. 3D maps of the layer surface were retrieved and compared with pseudo-relief intensity maps of the same region. The mean altitude of the emission barycenter is located at 86.3 km on July 26. Comparable relief wavy features appear in the 3D and intensity maps. It is shown that the vertical amplitude of the wave system varies as exp (Δz/2H) within the altitude range Δz = 83.5-88.0 km, H being the scale height. The oscillatory kinetic energy at the altitude of the OH layer is comprised between 3 × 10-4 and 5.4 × 10-4 J/m3, which is 2-3 times smaller than the values derived from partial radio wave at 52°N latitude.

  18. 3D range scan enhancement using image-based methods

    NASA Astrophysics Data System (ADS)

    Herbort, Steffen; Gerken, Britta; Schugk, Daniel; Wöhler, Christian

    2013-10-01

    This paper addresses the problem of 3D surface scan refinement, which is desirable due to noise, outliers, and missing measurements being present in the 3D surfaces obtained with a laser scanner. We present a novel algorithm for the fusion of absolute laser scanner depth profiles and photometrically estimated surface normal data, which yields a noise-reduced and highly detailed depth profile with large scale shape robustness. In contrast to other approaches published in the literature, the presented algorithm (1) regards non-Lambertian surfaces, (2) simultaneously computes surface reflectance (i.e. BRDF) parameters required for 3D reconstruction, (3) models pixelwise incident light and viewing directions, and (4) accounts for interreflections. The algorithm as such relies on the minimization of a three-component error term, which penalizes intensity deviations, integrability deviations, and deviations from the known large-scale surface shape. The solution of the error minimization is obtained iteratively based on a calculus of variations. BRDF parameters are estimated by initially reducing and then iteratively refining the optical resolution, which provides the required robust data basis. The 3D reconstruction of concave surface regions affected by interreflections is improved by compensating global illumination in the image data. The algorithm is evaluated based on eight objects with varying albedos and reflectance behaviors (diffuse, specular, metallic). The qualitative evaluation shows a removal of outliers and a strong reduction of noise, while the large scale shape is preserved. Fine surface details Which are previously not contained in the surface scans, are incorporated through using image data. The algorithm is evaluated with respect to its absolute accuracy using two caliper objects of known shape, and based on synthetically generated data. The beneficial effect of interreflection compensation on the reconstruction accuracy is evaluated quantitatively in a

  19. Multiple 2D video/3D medical image registration algorithm

    NASA Astrophysics Data System (ADS)

    Clarkson, Matthew J.; Rueckert, Daniel; Hill, Derek L.; Hawkes, David J.

    2000-06-01

    In this paper we propose a novel method to register at least two vide images to a 3D surface model. The potential applications of such a registration method could be in image guided surgery, high precision radiotherapy, robotics or computer vision. Registration is performed by optimizing a similarity measure with respect to the pose parameters. The similarity measure is based on 'photo-consistency' and computes for each surface point, how consistent the corresponding video image information in each view is with a lighting model. We took four video views of a volunteer's face, and used an independent method to reconstruct a surface that was intrinsically registered to the four views. In addition, we extracted a skin surface from the volunteer's MR scan. The surfaces were misregistered from a gold standard pose and our algorithm was used to register both types of surfaces to the video images. For the reconstructed surface, the mean 3D error was 1.53 mm. For the MR surface, the standard deviation of the pose parameters after registration ranged from 0.12 to 0.70 mm and degrees. The performance of the algorithm is accurate, precise and robust.

  20. 3D seismic imaging on massively parallel computers

    SciTech Connect

    Womble, D.E.; Ober, C.C.; Oldfield, R.

    1997-02-01

    The ability to image complex geologies such as salt domes in the Gulf of Mexico and thrusts in mountainous regions is a key to reducing the risk and cost associated with oil and gas exploration. Imaging these structures, however, is computationally expensive. Datasets can be terabytes in size, and the processing time required for the multiple iterations needed to produce a velocity model can take months, even with the massively parallel computers available today. Some algorithms, such as 3D, finite-difference, prestack, depth migration remain beyond the capacity of production seismic processing. Massively parallel processors (MPPs) and algorithms research are the tools that will enable this project to provide new seismic processing capabilities to the oil and gas industry. The goals of this work are to (1) develop finite-difference algorithms for 3D, prestack, depth migration; (2) develop efficient computational approaches for seismic imaging and for processing terabyte datasets on massively parallel computers; and (3) develop a modular, portable, seismic imaging code.

  1. Depth-varying density and organization of chondrocytes in immature and mature bovine articular cartilage assessed by 3d imaging and analysis

    NASA Technical Reports Server (NTRS)

    Jadin, Kyle D.; Wong, Benjamin L.; Bae, Won C.; Li, Kelvin W.; Williamson, Amanda K.; Schumacher, Barbara L.; Price, Jeffrey H.; Sah, Robert L.

    2005-01-01

    Articular cartilage is a heterogeneous tissue, with cell density and organization varying with depth from the surface. The objectives of the present study were to establish a method for localizing individual cells in three-dimensional (3D) images of cartilage and quantifying depth-associated variation in cellularity and cell organization at different stages of growth. Accuracy of nucleus localization was high, with 99% sensitivity relative to manual localization. Cellularity (million cells per cm3) decreased from 290, 310, and 150 near the articular surface in fetal, calf, and adult samples, respectively, to 120, 110, and 50 at a depth of 1.0 mm. The distance/angle to the nearest neighboring cell was 7.9 microm/31 degrees , 7.1 microm/31 degrees , and 9.1 microm/31 degrees for cells at the articular surface of fetal, calf, and adult samples, respectively, and increased/decreased to 11.6 microm/31 degrees , 12.0 microm/30 degrees , and 19.2 microm/25 degrees at a depth of 0.7 mm. The methodologies described here may be useful for analyzing the 3D cellular organization of cartilage during growth, maturation, aging, degeneration, and regeneration.

  2. Quantitative Analysis of Porosity and Transport Properties by FIB-SEM 3D Imaging of a Solder Based Sintered Silver for a New Microelectronic Component

    NASA Astrophysics Data System (ADS)

    Rmili, W.; Vivet, N.; Chupin, S.; Le Bihan, T.; Le Quilliec, G.; Richard, C.

    2016-04-01

    As part of development of a new assembly technology to achieve bonding for an innovative silicon carbide (SiC) power device used in harsh environments, the aim of this study is to compare two silver sintering profiles and then to define the best candidate for die attach material for this new component. To achieve this goal, the solder joints have been characterized in terms of porosity by determination of the morphological characteristics of the material heterogeneities and estimating their thermal and electrical transport properties. The three dimensional (3D) microstructure of sintered silver samples has been reconstructed using a focused ion beam scanning electron microscope (FIB-SEM) tomography technique. The sample preparation and the experimental milling and imaging parameters have been optimized in order to obtain a high quality of 3D reconstruction. Volume fractions and volumetric connectivity of the individual phases (silver and voids) have been determined. Effective thermal and electrical conductivities of the samples and the tortuosity of the silver phase have been also evaluated by solving the diffusive transport equation.

  3. Improving 3D Wavelet-Based Compression of Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Klimesh, Matthew; Kiely, Aaron; Xie, Hua; Aranki, Nazeeh

    2009-01-01

    Two methods of increasing the effectiveness of three-dimensional (3D) wavelet-based compression of hyperspectral images have been developed. (As used here, images signifies both images and digital data representing images.) The methods are oriented toward reducing or eliminating detrimental effects of a phenomenon, referred to as spectral ringing, that is described below. In 3D wavelet-based compression, an image is represented by a multiresolution wavelet decomposition consisting of several subbands obtained by applying wavelet transforms in the two spatial dimensions corresponding to the two spatial coordinate axes of the image plane, and by applying wavelet transforms in the spectral dimension. Spectral ringing is named after the more familiar spatial ringing (spurious spatial oscillations) that can be seen parallel to and near edges in ordinary images reconstructed from compressed data. These ringing phenomena are attributable to effects of quantization. In hyperspectral data, the individual spectral bands play the role of edges, causing spurious oscillations to occur in the spectral dimension. In the absence of such corrective measures as the present two methods, spectral ringing can manifest itself as systematic biases in some reconstructed spectral bands and can reduce the effectiveness of compression of spatially-low-pass subbands. One of the two methods is denoted mean subtraction. The basic idea of this method is to subtract mean values from spatial planes of spatially low-pass subbands prior to encoding, because (a) such spatial planes often have mean values that are far from zero and (b) zero-mean data are better suited for compression by methods that are effective for subbands of two-dimensional (2D) images. In this method, after the 3D wavelet decomposition is performed, mean values are computed for and subtracted from each spatial plane of each spatially-low-pass subband. The resulting data are converted to sign-magnitude form and compressed in a

  4. Development of 3D microwave imaging reflectometry in LHD (invited).

    PubMed

    Nagayama, Y; Kuwahara, D; Yoshinaga, T; Hamada, Y; Kogi, Y; Mase, A; Tsuchiya, H; Tsuji-Iio, S; Yamaguchi, S

    2012-10-01

    Three-dimensional (3D) microwave imaging reflectometry has been developed in the large helical device to visualize fluctuating reflection surface which is caused by the density fluctuations. The plasma is illuminated by the probe wave with four frequencies, which correspond to four radial positions. The imaging optics makes the image of cut-off surface onto the 2D (7 × 7 channels) horn antenna mixer arrays. Multi-channel receivers have been also developed using micro-strip-line technology to handle many channels at reasonable cost. This system is first applied to observe the edge harmonic oscillation (EHO), which is an MHD mode with many harmonics that appears in the edge plasma. A narrow structure along field lines is observed during EHO.

  5. Density-tapered spiral arrays for ultrasound 3-D imaging.

    PubMed

    Ramalli, Alessandro; Boni, Enrico; Savoia, Alessandro Stuart; Tortoli, Piero

    2015-08-01

    The current high interest in 3-D ultrasound imaging is pushing the development of 2-D probes with a challenging number of active elements. The most popular approach to limit this number is the sparse array technique, which designs the array layout by means of complex optimization algorithms. These algorithms are typically constrained by a few steering conditions, and, as such, cannot guarantee uniform side-lobe performance at all angles. The performance may be improved by the ungridded extensions of the sparse array technique, but this result is achieved at the expense of a further complication of the optimization process. In this paper, a method to design the layout of large circular arrays with a limited number of elements according to Fermat's spiral seeds and spatial density modulation is proposed and shown to be suitable for application to 3-D ultrasound imaging. This deterministic, aperiodic, and balanced positioning procedure attempts to guarantee uniform performance over a wide range of steering angles. The capabilities of the method are demonstrated by simulating and comparing the performance of spiral and dense arrays. A good trade-off for small vessel imaging is found, e.g., in the 60λ spiral array with 1.0λ elements and Blackman density tapering window. Here, the grating lobe level is -16 dB, the lateral resolution is lower than 6λ the depth of field is 120λ and, the average contrast is 10.3 dB, while the sensitivity remains in a 5 dB range for a wide selection of steering angles. The simulation results may represent a reference guide to the design of spiral sparse array probes for different application fields. PMID:26285181

  6. 3D-LZ helicopter ladar imaging system

    NASA Astrophysics Data System (ADS)

    Savage, James; Harrington, Walter; McKinley, R. Andrew; Burns, H. N.; Braddom, Steven; Szoboszlay, Zoltan

    2010-04-01

    A joint-service team led by the Air Force Research Laboratory's Munitions and Sensors Directorates completed a successful flight test demonstration of the 3D-LZ Helicopter LADAR Imaging System. This was a milestone demonstration in the development of technology solutions for a problem known as "helicopter brownout", the loss of situational awareness caused by swirling sand during approach and landing. The 3D-LZ LADAR was developed by H.N. Burns Engineering and integrated with the US Army Aeroflightdynamics Directorate's Brown-Out Symbology System aircraft state symbology aboard a US Army EH-60 Black Hawk helicopter. The combination of these systems provided an integrated degraded visual environment landing solution with landing zone situational awareness as well as aircraft guidance and obstacle avoidance information. Pilots from the U.S. Army, Air Force, Navy, and Marine Corps achieved a 77% landing rate in full brownout conditions at a test range at Yuma Proving Ground, Arizona. This paper will focus on the LADAR technology used in 3D-LZ and the results of this milestone demonstration.

  7. Kinematic Analysis of Healthy Hips during Weight-Bearing Activities by 3D-to-2D Model-to-Image Registration Technique

    PubMed Central

    Hara, Daisuke; Nakashima, Yasuharu; Hamai, Satoshi; Higaki, Hidehiko; Ikebe, Satoru; Shimoto, Takeshi; Hirata, Masanobu; Kanazawa, Masayuki; Kohno, Yusuke; Iwamoto, Yukihide

    2014-01-01

    Dynamic hip kinematics during weight-bearing activities were analyzed for six healthy subjects. Continuous X-ray images of gait, chair-rising, squatting, and twisting were taken using a flat panel X-ray detector. Digitally reconstructed radiographic images were used for 3D-to-2D model-to-image registration technique. The root-mean-square errors associated with tracking the pelvis and femur were less than 0.3 mm and 0.3° for translations and rotations. For gait, chair-rising, and squatting, the maximum hip flexion angles averaged 29.6°, 81.3°, and 102.4°, respectively. The pelvis was tilted anteriorly around 4.4° on average during full gait cycle. For chair-rising and squatting, the maximum absolute value of anterior/posterior pelvic tilt averaged 12.4°/11.7° and 10.7°/10.8°, respectively. Hip flexion peaked on the way of movement due to further anterior pelvic tilt during both chair-rising and squatting. For twisting, the maximum absolute value of hip internal/external rotation averaged 29.2°/30.7°. This study revealed activity dependent kinematics of healthy hip joints with coordinated pelvic and femoral dynamic movements. Kinematics' data during activities of daily living may provide important insight as to the evaluating kinematics of pathological and reconstructed hips. PMID:25506056

  8. Ultra-realistic 3-D imaging based on colour holography

    NASA Astrophysics Data System (ADS)

    Bjelkhagen, H. I.

    2013-02-01

    A review of recent progress in colour holography is provided with new applications. Colour holography recording techniques in silver-halide emulsions are discussed. Both analogue, mainly Denisyuk colour holograms, and digitally-printed colour holograms are described and their recent improvements. An alternative to silver-halide materials are the panchromatic photopolymer materials such as the DuPont and Bayer photopolymers which are covered. The light sources used to illuminate the recorded holograms are very important to obtain ultra-realistic 3-D images. In particular the new light sources based on RGB LEDs are described. They show improved image quality over today's commonly used halogen lights. Recent work in colour holography by holographers and companies in different countries around the world are included. To record and display ultra-realistic 3-D images with perfect colour rendering are highly dependent on the correct recording technique using the optimal recording laser wavelengths, the availability of improved panchromatic recording materials and combined with new display light sources.

  9. Image segmentation and 3D visualization for MRI mammography

    NASA Astrophysics Data System (ADS)

    Li, Lihua; Chu, Yong; Salem, Angela F.; Clark, Robert A.

    2002-05-01

    MRI mammography has a number of advantages, including the tomographic, and therefore three-dimensional (3-D) nature, of the images. It allows the application of MRI mammography to breasts with dense tissue, post operative scarring, and silicon implants. However, due to the vast quantity of images and subtlety of difference in MR sequence, there is a need for reliable computer diagnosis to reduce the radiologist's workload. The purpose of this work was to develop automatic breast/tissue segmentation and visualization algorithms to aid physicians in detecting and observing abnormalities in breast. Two segmentation algorithms were developed: one for breast segmentation, the other for glandular tissue segmentation. In breast segmentation, the MRI image is first segmented using an adaptive growing clustering method. Two tracing algorithms were then developed to refine the breast air and chest wall boundaries of breast. The glandular tissue segmentation was performed using an adaptive thresholding method, in which the threshold value was spatially adaptive using a sliding window. The 3D visualization of the segmented 2D slices of MRI mammography was implemented under IDL environment. The breast and glandular tissue rendering, slicing and animation were displayed.

  10. Precise 3D image alignment in micro-axial tomography.

    PubMed

    Matula, P; Kozubek, M; Staier, F; Hausmann, M

    2003-02-01

    Micro (micro-) axial tomography is a challenging technique in microscopy which improves quantitative imaging especially in cytogenetic applications by means of defined sample rotation under the microscope objective. The advantage of micro-axial tomography is an effective improvement of the precision of distance measurements between point-like objects. Under certain circumstances, the effective (3D) resolution can be improved by optimized acquisition depending on subsequent, multi-perspective image recording of the same objects followed by reconstruction methods. This requires, however, a very precise alignment of the tilted views. We present a novel feature-based image alignment method with a precision better than the full width at half maximum of the point spread function. The features are the positions (centres of gravity) of all fluorescent objects observed in the images (e.g. cell nuclei, fluorescent signals inside cell nuclei, fluorescent beads, etc.). Thus, real alignment precision depends on the localization precision of these objects. The method automatically determines the corresponding objects in subsequently tilted perspectives using a weighted bipartite graph. The optimum transformation function is computed in a least squares manner based on the coordinates of the centres of gravity of the matched objects. The theoretically feasible precision of the method was calculated using computer-generated data and confirmed by tests on real image series obtained from data sets of 200 nm fluorescent nano-particles. The advantages of the proposed algorithm are its speed and accuracy, which means that if enough objects are included, the real alignment precision is better than the axial localization precision of a single object. The alignment precision can be assessed directly from the algorithm's output. Thus, the method can be applied not only for image alignment and object matching in tilted view series in order to reconstruct (3D) images, but also to validate the

  11. 3D Multispectral Light Propagation Model For Subcutaneous Veins Imaging

    SciTech Connect

    Paquit, Vincent C; Price, Jeffery R; Meriaudeau, Fabrice; Tobin Jr, Kenneth William

    2008-01-01

    In this paper, we describe a new 3D light propagation model aimed at understanding the effects of various physiological properties on subcutaneous vein imaging. In particular, we build upon the well known MCML (Monte Carlo Multi Layer) code and present a tissue model that improves upon the current state-of-the-art by: incorporating physiological variation, such as melanin concentration, fat content, and layer thickness; including veins of varying depth and diameter; using curved surfaces from real arm shapes; and modeling the vessel wall interface. We describe our model, present results from the Monte Carlo modeling, and compare these results with those obtained with other Monte Carlo methods.

  12. 3D laser optoacoustic ultrasonic imaging system for preclinical research

    NASA Astrophysics Data System (ADS)

    Ermilov, Sergey A.; Conjusteau, André; Hernandez, Travis; Su, Richard; Nadvoretskiy, Vyacheslav; Tsyboulski, Dmitri; Anis, Fatima; Anastasio, Mark A.; Oraevsky, Alexander A.

    2013-03-01

    In this work, we introduce a novel three-dimensional imaging system for in vivo high-resolution anatomical and functional whole-body visualization of small animal models developed for preclinical or other type of biomedical research. The system (LOUIS-3DM) combines a multi-wavelength optoacoustic and ultrawide-band laser ultrasound tomographies to obtain coregistered maps of tissue optical absorption and acoustic properties, displayed within the skin outline of the studied animal. The most promising applications of the LOUIS-3DM include 3D angiography, cancer research, and longitudinal studies of biological distribution of optoacoustic contrast agents (carbon nanotubes, metal plasmonic nanoparticles, etc.).

  13. 3D imaging of neutron tracks using confocal microscopy

    NASA Astrophysics Data System (ADS)

    Gillmore, Gavin; Wertheim, David; Flowers, Alan

    2016-04-01

    Neutron detection and neutron flux assessment are important aspects in monitoring nuclear energy production. Neutron flux measurements can also provide information on potential biological damage from exposure. In addition to the applications for neutron measurement in nuclear energy, neutron detection has been proposed as a method of enhancing neutrino detectors and cosmic ray flux has also been assessed using ground-level neutron detectors. Solid State Nuclear Track Detectors (or SSNTDs) have been used extensively to examine cosmic rays, long-lived radioactive elements, radon concentrations in buildings and the age of geological samples. Passive SSNTDs consisting of a CR-39 plastic are commonly used to measure radon because they respond to incident charged particles such as alpha particles from radon gas in air. They have a large dynamic range and a linear flux response. We have previously applied confocal microscopy to obtain 3D images of alpha particle tracks in SSNTDs from radon track monitoring (1). As a charged particle traverses through the polymer it creates an ionisation trail along its path. The trail or track is normally enhanced by chemical etching to better expose radiation damage, as the damaged area is more sensitive to the etchant than the bulk material. Particle tracks in CR-39 are usually assessed using 2D optical microscopy. In this study 6 detectors were examined using an Olympus OLS4100 LEXT 3D laser scanning confocal microscope (Olympus Corporation, Japan). The detectors had been etched for 2 hours 50 minutes at 85 °C in 6.25M NaOH. Post etch the plastics had been treated with a 10 minute immersion in a 2% acetic acid stop bath, followed by rinsing in deionised water. The detectors examined had been irradiated with a 2mSv neutron dose from an Am(Be) neutron source (producing roughly 20 tracks per mm2). We were able to successfully acquire 3D images of neutron tracks in the detectors studied. The range of track diameter observed was between 4

  14. 3D joint dynamics analysis of healthy children's gait.

    PubMed

    Samson, William; Desroches, Guillaume; Cheze, Laurence; Dumas, Raphaël

    2009-11-13

    The 3D joint moments and 2D joint powers have been largely explored in the literature of healthy children's gait, in particular to compare them with pathologic subjects' gait. However, no study reported on 3D joint power in children which could be due to the difficulties in interpreting the results. Recently, the analysis of the 3D angle between the joint moment and the joint angular velocity vectors has been proposed in order to help 3D joint power interpretation. Our hypothesis is that this 3D angle may help in characterizing the level of gait maturation. The present study explores 3D joint moments, 3D joint power and the proposed 3D angle for both children's and adults' gaits to highlight differences in the strategies used. The results seem to confirm that children have an alternative strategy of mainly ankle stabilization and hip propulsion compared to the adults' strategy of mainly ankle resistance and propulsion and hip stabilization. In the future, the same 3D angle analysis should be applied to different age groups for better describing the evolution of the 3D joint dynamic strategies during the growth.

  15. 3D reconstruction of SEM images by use of optical photogrammetry software.

    PubMed

    Eulitz, Mona; Reiss, Gebhard

    2015-08-01

    Reconstruction of the three-dimensional (3D) surface of an object to be examined is widely used for structure analysis in science and many biological questions require information about their true 3D structure. For Scanning Electron Microscopy (SEM) there has been no efficient non-destructive solution for reconstruction of the surface morphology to date. The well-known method of recording stereo pair images generates a 3D stereoscope reconstruction of a section, but not of the complete sample surface. We present a simple and non-destructive method of 3D surface reconstruction from SEM samples based on the principles of optical close range photogrammetry. In optical close range photogrammetry a series of overlapping photos is used to generate a 3D model of the surface of an object. We adapted this method to the special SEM requirements. Instead of moving a detector around the object, the object itself was rotated. A series of overlapping photos was stitched and converted into a 3D model using the software commonly used for optical photogrammetry. A rabbit kidney glomerulus was used to demonstrate the workflow of this adaption. The reconstruction produced a realistic and high-resolution 3D mesh model of the glomerular surface. The study showed that SEM micrographs are suitable for 3D reconstruction by optical photogrammetry. This new approach is a simple and useful method of 3D surface reconstruction and suitable for various applications in research and teaching.

  16. Image quality of a cone beam O-arm 3D imaging system

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Weir, Victor; Lin, Jingying; Hsiung, Hsiang; Ritenour, E. Russell

    2009-02-01

    The O-arm is a cone beam imaging system designed primarily to support orthopedic surgery and is also used for image-guided and vascular surgery. Using a gantry that can be opened or closed, the O-arm can function as a 2-dimensional (2D) fluoroscopy device or collect 3-dimensional (3D) volumetric imaging data like a CT system. Clinical applications of the O-arm in spine surgical procedures, assessment of pedicle screw position, and kyphoplasty procedures show that the O-arm 3D mode provides enhanced imaging information compared to radiographs or fluoroscopy alone. In this study, the image quality of an O-arm system was quantitatively evaluated. A 20 cm diameter CATPHAN 424 phantom was scanned using the pre-programmed head protocols: small/medium (120 kVp, 100 mAs), large (120 kVp, 128 mAs), and extra-large (120 kVp, 160 mAs) in 3D mode. High resolution reconstruction mode (512×512×0.83 mm) was used to reconstruct images for the analysis of low and high contrast resolution, and noise power spectrum. MTF was measured using the point spread function. The results show that the O-arm image is uniform but with a noise pattern which cannot be removed by simply increasing the mAs. The high contrast resolution of the O-arm system was approximately 9 lp/cm. The system has a 10% MTF at 0.45 mm. The low-contrast resolution cannot be decided due to the noise pattern. For surgery where locations of a structure are emphasized over a survey of all image details, the image quality of the O-arm is well accepted clinically.

  17. Quantitative 3D Optical Imaging: Applications in Dosimetry and Biophysics

    NASA Astrophysics Data System (ADS)

    Thomas, Andrew Stephen

    Optical-CT has been shown to be a potentially useful imaging tool for the two very different spheres of biologists and radiation therapy physicists, but it has yet to live up to that potential. In radiation therapy, researchers have used optical-CT for the readout of 3D dosimeters, but it is yet to be a clinically relevant tool as the technology is too slow to be considered practical. Biologists have used the technique for structural imaging, but have struggled with emission tomography as the reality of photon attenuation for both excitation and emission have made the images quantitatively irrelevant. Dosimetry. The DLOS (Duke Large field of view Optical-CT Scanner) was designed and constructed to make 3D dosimetry utilizing optical-CT a fast and practical tool while maintaining the accuracy of readout of the previous, slower readout technologies. Upon construction/optimization/implementation of several components including a diffuser, band pass filter, registration mount & fluid filtration system the dosimetry system provides high quality data comparable to or exceeding that of commercial products. In addition, a stray light correction algorithm was tested and implemented. The DLOS in combination with the 3D dosimeter it was designed for, PREAGETM, then underwent rigorous commissioning and benchmarking tests validating its performance against gold standard data including a set of 6 irradiations. DLOS commissioning tests resulted in sub-mm isotropic spatial resolution (MTF >0.5 for frequencies of 1.5lp/mm) and a dynamic range of ˜60dB. Flood field uniformity was 10% and stable after 45minutes. Stray light proved to be small, due to telecentricity, but even the residual can be removed through deconvolution. Benchmarking tests showed the mean 3D passing gamma rate (3%, 3mm, 5% dose threshold) over the 6 benchmark data sets was 97.3% +/- 0.6% (range 96%-98%) scans totaling ˜10 minutes, indicating excellent ability to perform 3D dosimetry while improving the speed of

  18. Cell-selective knockout and 3D confocal image analysis reveals separate roles for astrocyte-and endothelial-derived CCL2 in neuroinflammation

    PubMed Central

    2014-01-01

    Background Expression of chemokine CCL2 in the normal central nervous system (CNS) is nearly undetectable, but is significantly upregulated and drives neuroinflammation during experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis which is considered a contributing factor in the human disease. As astrocytes and brain microvascular endothelial cells (BMEC) forming the blood–brain barrier (BBB) are sources of CCL2 in EAE and other neuroinflammatory conditions, it is unclear if one or both CCL2 pools are critical to disease and by what mechanism(s). Methods Mice with selective CCL2 gene knockout (KO) in astrocytes (Astro KO) or endothelial cells (Endo KO) were used to evaluate the respective contributions of these sources to neuroinflammation, i.e., clinical disease progression, BBB damage, and parenchymal leukocyte invasion in a myelin oligodendrocyte glycoprotein peptide (MOG35-55)-induced EAE model. High-resolution 3-dimensional (3D) immunofluorescence confocal microscopy and colloidal gold immuno-electron microscopy were employed to confirm sites of CCL2 expression, and 3D immunofluorescence confocal microscopy utilized to assess inflammatory responses along the CNS microvasculature. Results Cell-selective loss of CCL2 immunoreactivity was demonstrated in the respective KO mice. Compared to wild-type (WT) mice, Astro KO mice showed reduced EAE severity but similar onset, while Endo KO mice displayed near normal severity but significantly delayed onset. Neither of the KO mice showed deficits in T cell proliferation, or IL-17 and IFN-γ production, following MOG35-55 exposure in vitro, or altered MOG-major histocompatibility complex class II tetramer binding. 3D confocal imaging further revealed distinct actions of the two CCL2 pools in the CNS. Astro KOs lacked the CNS leukocyte penetration and disrupted immunostaining of CLN-5 at the BBB seen during early EAE in WT mice, while Endo KOs uniquely displayed leukocytes stalled in the

  19. 3-D imaging of particle tracks in solid state nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Wertheim, D.; Gillmore, G.; Brown, L.; Petford, N.

    2010-05-01

    It has been suggested that 3 to 5% of total lung cancer deaths in the UK may be associated with elevated radon concentration. Radon gas levels can be assessed using CR-39 plastic detectors which are often assessed by 2-D image analysis of surface images. 3-D analysis has the potential to provide information relating to the angle at which alpha particles impinge on the detector. In this study we used a "LEXT" OLS3100 confocal laser scanning microscope (Olympus Corporation, Tokyo, Japan) to image tracks on five CR-39 detectors. We were able to identify several patterns of single and coalescing tracks from 3-D visualisation. Thus this method may provide a means of detailed 3-D analysis of Solid State Nuclear Track Detectors.

  20. Recent progress in 3-D imaging of sea freight containers

    SciTech Connect

    Fuchs, Theobald Schön, Tobias Sukowski, Frank; Dittmann, Jonas; Hanke, Randolf

    2015-03-31

    The inspection of very large objects like sea freight containers with X-ray Computed Tomography (CT) is an emerging technology. A complete 3-D CT scan of a see-freight container takes several hours. Of course, this is too slow to apply it to a large number of containers. However, the benefits of a 3-D CT for sealed freight are obvious: detection of potential threats or illicit cargo without being confronted with legal complications or high time consumption and risks for the security personnel during a manual inspection. Recently distinct progress was made in the field of reconstruction of projections with only a relatively low number of angular positions. Instead of today’s 500 to 1000 rotational steps, as needed for conventional CT reconstruction techniques, this new class of algorithms provides the potential to reduce the number of projection angles approximately by a factor of 10. The main drawback of these advanced iterative methods is the high consumption for numerical processing. But as computational power is getting steadily cheaper, there will be practical applications of these complex algorithms in a foreseeable future. In this paper, we discuss the properties of iterative image reconstruction algorithms and show results of their application to CT of extremely large objects scanning a sea-freight container. A specific test specimen is used to quantitatively evaluate the image quality in terms of spatial and contrast resolution and depending on different number of projections.

  1. Tactile-optical 3D sensor applying image processing

    NASA Astrophysics Data System (ADS)

    Neuschaefer-Rube, Ulrich; Wissmann, Mark

    2009-01-01

    The tactile-optical probe (so-called fiber probe) is a well-known probe in micro-coordinate metrology. It consists of an optical fiber with a probing element at its end. This probing element is adjusted in the imaging plane of the optical system of an optical coordinate measuring machine (CMM). It can be illuminated through the fiber by a LED. The position of the probe is directly detected by image processing algorithms available in every modern optical CMM and not by deflections at the fixation of the probing shaft. Therefore, the probing shaft can be very thin and flexible. This facilitates the measurement with very small probing forces and the realization of very small probing elements (diameter: down to 10 μm). A limitation of this method is that at present the probe does not have full 3D measurement capability. At the Physikalisch-Technische Bundesanstalt (PTB), several arrangements and measurement principles for a full 3D tactile-optical probe have been implemented and tested successfully in cooperation with Werth-Messtechnik, Giessen, Germany. This contribution provides an overview of the results of these activities.

  2. Recent progress in 3-D imaging of sea freight containers

    NASA Astrophysics Data System (ADS)

    Fuchs, Theobald; Schön, Tobias; Dittmann, Jonas; Sukowski, Frank; Hanke, Randolf

    2015-03-01

    The inspection of very large objects like sea freight containers with X-ray Computed Tomography (CT) is an emerging technology. A complete 3-D CT scan of a see-freight container takes several hours. Of course, this is too slow to apply it to a large number of containers. However, the benefits of a 3-D CT for sealed freight are obvious: detection of potential threats or illicit cargo without being confronted with legal complications or high time consumption and risks for the security personnel during a manual inspection. Recently distinct progress was made in the field of reconstruction of projections with only a relatively low number of angular positions. Instead of today's 500 to 1000 rotational steps, as needed for conventional CT reconstruction techniques, this new class of algorithms provides the potential to reduce the number of projection angles approximately by a factor of 10. The main drawback of these advanced iterative methods is the high consumption for numerical processing. But as computational power is getting steadily cheaper, there will be practical applications of these complex algorithms in a foreseeable future. In this paper, we discuss the properties of iterative image reconstruction algorithms and show results of their application to CT of extremely large objects scanning a sea-freight container. A specific test specimen is used to quantitatively evaluate the image quality in terms of spatial and contrast resolution and depending on different number of projections.

  3. 3D fluoroscopic image estimation using patient-specific 4DCBCT-based motion models.

    PubMed

    Dhou, S; Hurwitz, M; Mishra, P; Cai, W; Rottmann, J; Li, R; Williams, C; Wagar, M; Berbeco, R; Ionascu, D; Lewis, J H

    2015-05-01

    3D fluoroscopic images represent volumetric patient anatomy during treatment with high spatial and temporal resolution. 3D fluoroscopic images estimated using motion models built using 4DCT images, taken days or weeks prior to treatment, do not reliably represent patient anatomy during treatment. In this study we developed and performed initial evaluation of techniques to develop patient-specific motion models from 4D cone-beam CT (4DCBCT) images, taken immediately before treatment, and used these models to estimate 3D fluoroscopic images based on 2D kV projections captured during treatment. We evaluate the accuracy of 3D fluoroscopic images by comparison to ground truth digital and physical phantom images. The performance of 4DCBCT-based and 4DCT-based motion models are compared in simulated clinical situations representing tumor baseline shift or initial patient positioning errors. The results of this study demonstrate the ability for 4DCBCT imaging to generate motion models that can account for changes that cannot be accounted for with 4DCT-based motion models. When simulating tumor baseline shift and patient positioning errors of up to 5 mm, the average tumor localization error and the 95th percentile error in six datasets were 1.20 and 2.2 mm, respectively, for 4DCBCT-based motion models. 4DCT-based motion models applied to the same six datasets resulted in average tumor localization error and the 95th percentile error of 4.18 and 5.4 mm, respectively. Analysis of voxel-wise intensity differences was also conducted for all experiments. In summary, this study demonstrates the feasibility of 4DCBCT-based 3D fluoroscopic image generation in digital and physical phantoms and shows the potential advantage of 4DCBCT-based 3D fluoroscopic image estimation when there are changes in anatomy between the time of 4DCT imaging and the time of treatment delivery.

  4. 3D imaging in CUBIC-cleared mouse heart tissue: going deeper

    PubMed Central

    Nehrhoff, Imke; Bocancea, Diana; Vaquero, Javier; Vaquero, Juan José; Ripoll, Jorge; Desco, Manuel; Gómez-Gaviro, María Victoria

    2016-01-01

    The ability to acquire high resolution 3D images of the heart enables to study heart diseases more in detail. In this work, the CUBIC (clear, unobstructed brain imaging cocktails and computational analysis) clearing protocol was optimized for thick mouse heart sections to enhance the penetration depth of the confocal microscope lasers into the tissue. In addition, the optimized CUBIC clearing of the heart enhances antibody penetration into the tissue by a factor of five. The present protocol enables deep 3D high-quality image acquisition in the heart allowing a much more accurate assessment of the cellular and structural changes that underlie heart diseases. PMID:27699132

  5. 3D imaging in CUBIC-cleared mouse heart tissue: going deeper

    PubMed Central

    Nehrhoff, Imke; Bocancea, Diana; Vaquero, Javier; Vaquero, Juan José; Ripoll, Jorge; Desco, Manuel; Gómez-Gaviro, María Victoria

    2016-01-01

    The ability to acquire high resolution 3D images of the heart enables to study heart diseases more in detail. In this work, the CUBIC (clear, unobstructed brain imaging cocktails and computational analysis) clearing protocol was optimized for thick mouse heart sections to enhance the penetration depth of the confocal microscope lasers into the tissue. In addition, the optimized CUBIC clearing of the heart enhances antibody penetration into the tissue by a factor of five. The present protocol enables deep 3D high-quality image acquisition in the heart allowing a much more accurate assessment of the cellular and structural changes that underlie heart diseases.

  6. Quantitative validation of 3D image registration techniques

    NASA Astrophysics Data System (ADS)

    Holton Tainter, Kerrie S.; Taneja, Udita; Robb, Richard A.

    1995-05-01

    Multimodality images obtained from different medical imaging systems such as magnetic resonance (MR), computed tomography (CT), ultrasound (US), positron emission tomography (PET), single photon emission computed tomography (SPECT) provide largely complementary characteristic or diagnostic information. Therefore, it is an important research objective to `fuse' or combine this complementary data into a composite form which would provide synergistic information about the objects under examination. An important first step in the use of complementary fused images is 3D image registration, where multi-modality images are brought into spatial alignment so that the point-to-point correspondence between image data sets is known. Current research in the field of multimodality image registration has resulted in the development and implementation of several different registration algorithms, each with its own set of requirements and parameters. Our research has focused on the development of a general paradigm for measuring, evaluating and comparing the performance of different registration algorithms. Rather than evaluating the results of one algorithm under a specific set of conditions, we suggest a general approach to validation using simulation experiments, where the exact spatial relationship between data sets is known, along with phantom data, to characterize the behavior of an algorithm via a set of quantitative image measurements. This behavior may then be related to the algorithm's performance with real patient data, where the exact spatial relationship between multimodality images is unknown. Current results indicate that our approach is general enough to apply to several different registration algorithms. Our methods are useful for understanding the different sources of registration error and for comparing the results between different algorithms.

  7. Active and interactive floating image display using holographic 3D images

    NASA Astrophysics Data System (ADS)

    Morii, Tsutomu; Sakamoto, Kunio

    2006-08-01

    We developed a prototype tabletop holographic display system. This system consists of the object recognition system and the spatial imaging system. In this paper, we describe the recognition system using an RFID tag and the 3D display system using a holographic technology. A 3D display system is useful technology for virtual reality, mixed reality and augmented reality. We have researched spatial imaging and interaction system. We have ever proposed 3D displays using the slit as a parallax barrier, the lenticular screen and the holographic optical elements(HOEs) for displaying active image 1,2,3. The purpose of this paper is to propose the interactive system using these 3D imaging technologies. In this paper, the authors describe the interactive tabletop 3D display system. The observer can view virtual images when the user puts the special object on the display table. The key technologies of this system are the object recognition system and the spatial imaging display.

  8. High Resolution 3D Radar Imaging of Comet Interiors

    NASA Astrophysics Data System (ADS)

    Asphaug, E. I.; Gim, Y.; Belton, M.; Brophy, J.; Weissman, P. R.; Heggy, E.

    2012-12-01

    Knowing the interiors of comets and other primitive bodies is fundamental to our understanding of how planets formed. We have developed a Discovery-class mission formulation, Comet Radar Explorer (CORE), based on the use of previously flown planetary radar sounding techniques, with the goal of obtaining high resolution 3D images of the interior of a small primitive body. We focus on the Jupiter-Family Comets (JFCs) as these are among the most primitive bodies reachable by spacecraft. Scattered in from far beyond Neptune, they are ultimate targets of a cryogenic sample return mission according to the Decadal Survey. Other suitable targets include primitive NEOs, Main Belt Comets, and Jupiter Trojans. The approach is optimal for small icy bodies ~3-20 km diameter with spin periods faster than about 12 hours, since (a) navigation is relatively easy, (b) radar penetration is global for decameter wavelengths, and (c) repeated overlapping ground tracks are obtained. The science mission can be as short as ~1 month for a fast-rotating JFC. Bodies smaller than ~1 km can be globally imaged, but the navigation solutions are less accurate and the relative resolution is coarse. Larger comets are more interesting, but radar signal is unlikely to be reflected from depths greater than ~10 km. So, JFCs are excellent targets for a variety of reasons. We furthermore focus on the use of Solar Electric Propulsion (SEP) to rendezvous shortly after the comet's perihelion. This approach leaves us with ample power for science operations under dormant conditions beyond ~2-3 AU. This leads to a natural mission approach of distant observation, followed by closer inspection, terminated by a dedicated radar mapping orbit. Radar reflections are obtained from a polar orbit about the icy nucleus, which spins underneath. Echoes are obtained from a sounder operating at dual frequencies 5 and 15 MHz, with 1 and 10 MHz bandwidths respectively. The dense network of echoes is used to obtain global 3D

  9. Compensation of log-compressed images for 3-D ultrasound.

    PubMed

    Sanches, João M; Marques, Jorge S

    2003-02-01

    In this study, a Bayesian approach was used for 3-D reconstruction in the presence of multiplicative noise and nonlinear compression of the ultrasound (US) data. Ultrasound images are often considered as being corrupted by multiplicative noise (speckle). Several statistical models have been developed to represent the US data. However, commercial US equipment performs a nonlinear image compression that reduces the dynamic range of the US signal for visualization purposes. This operation changes the distribution of the image pixels, preventing a straightforward application of the models. In this paper, the nonlinear compression is explicitly modeled and considered in the reconstruction process, where the speckle noise present in the radio frequency (RF) US data is modeled with a Rayleigh distribution. The results obtained by considering the compression of the US data are then compared with those obtained assuming no compression. It is shown that the estimation performed using the nonlinear log-compression model leads to better results than those obtained with the Rayleigh reconstruction method. The proposed algorithm is tested with synthetic and real data and the results are discussed. The results have shown an improvement in the reconstruction results when the compression operation is included in the image formation model, leading to sharper images with enhanced anatomical details.

  10. Real-time cylindrical curvilinear 3-D ultrasound imaging.

    PubMed

    Pua, E C; Yen, J T; Smith, S W

    2003-07-01

    In patients who are obese or exhibit signs of pulmonary disease, standard transthoracic scanning may yield poor quality cardiac images. For these conditions, two-dimensional transesophageal echocardiography (TEE) is established as an essential diagnostic tool. Current techniques in transesophageal scanning, though, are limited by incomplete visualization of cardiac structures in close proximity to the transducer. Thus, we propose a 2D curvilinear array for 3D transesophageal echocardiography in order to widen the field of view and increase visualization close to the transducer face. In this project, a 440 channel 5 MHz two-dimensional array with a 12.6 mm aperture diameter on a flexible interconnect circuit has been molded to a 4 mm radius of curvature. A 75% element yield was achieved during fabrication and an average -6dB bandwidth of 30% was observed in pulse-echo tests. Using this transducer in conjunction with modifications to the beam former delay software and scan converter display software of the our 3D scanner, we obtained cylindrical real-time curvilinear volumetric scans of tissue phantoms, including a field of view of greater than 120 degrees in the curved, azimuth direction and 65 degrees phased array sector scans in the elevation direction. These images were achieved using a stepped subaperture across the cylindrical curvilinear direction of the transducer face and phased array sector scanning in the noncurved plane. In addition, real-time volume rendered images of a tissue mimicking phantom with holes ranging from 1 cm to less than 4 mm have been obtained. 3D color flow Doppler results have also been acquired. This configuration can theoretically achieve volumes displaying 180 degrees by 120 degrees. The transducer is also capable of obtaining images through a curvilinear stepped subaperture in azimuth in conjunction with a rectilinear stepped subaperture in elevation, further increasing the field of view close to the transducer face. Future work

  11. Near-infrared optical imaging of human brain based on the semi-3D reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Meng, Wei; Qin, Zhuanping; Zhou, Xiaoqing; Zhao, Huijuan; Gao, Feng

    2013-03-01

    In the non-invasive brain imaging with near-infrared light, precise head model is of great significance to the forward model and the image reconstruction. To deal with the individual difference of human head tissues and the problem of the irregular curvature, in this paper, we extracted head structure with Mimics software from the MRI image of a volunteer. This scheme makes it possible to assign the optical parameters to every layer of the head tissues reasonably and solve the diffusion equation with the finite-element analysis. During the solution of the inverse problem, a semi-3D reconstruction algorithm is adopted to trade off the computation cost and accuracy between the full 3-D and the 2-D reconstructions. In this scheme, the changes in the optical properties of the inclusions are assumed either axially invariable or confined to the imaging plane, while the 3-D nature of the photon migration is still retained. This therefore leads to a 2-D inverse issue with the matched 3-D forward model. Simulation results show that comparing to the 3-D reconstruction algorithm, the Semi-3D reconstruction algorithm cut 27% the calculation time consumption.

  12. Constraining 3D Process Sedimentological Models to Geophysical Data Using Image Quilting

    NASA Astrophysics Data System (ADS)

    Tahmasebi, P.; Da Pra, A.; Pontiggia, M.; Caers, J.

    2014-12-01

    3D process geological models, whether for carbonate or sedimentological systems, have been proposed for modeling realistic subsurface heterogeneity. The problem with such forward process models is that they are not constrained to any subsurface data whether to wells or geophysical surveys. We propose a new method for realistic geological modeling of complex heterogeneity by hybridizing 3D process modeling of geological deposition with conditioning by means of a novel multiple-point geostatistics (MPS) technique termed image quilting (IQ). Image quilting is a pattern-based techniques that stiches together patterns extracted from training images to generate stochastic realizations that look like the training image. In this paper, we illustrate how 3D process model realizations can be used as training images in image quilting. To constrain the realization to seismic data we first interpret each facies in the geophysical data. These interpretation, while overly smooth and not reflecting finer scale variation are used as auxiliary variables in the generation of the image quilting realizations. To condition to well data, we first perform a kriging of the well data to generate a kriging map and kriging variance. The kriging map is used as additional auxiliary variable while the kriging variance is used as a weight given to the kriging derived auxiliary variable. We present an application to a giant offshore reservoir. Starting from seismic advanced attribute analysis and sedimentological interpretation, we build the 3D sedimentological process based model and use it as non-stationary training image for conditional image quilting.

  13. 3D-Geomorphometrics tooth shape analysis in hypodontia

    PubMed Central

    Al-Shahrani, Ibrahim; Dirks, Wendy; Jepson, Nicholas; Khalaf, Khaled

    2014-01-01

    Assessment of tooth morphology is an important part of the diagnosis and management of hypodontia patients. Several techniques have been used to analyze tooth form in hypodontia patients and these have shown smaller tooth dimensions and anomalous tooth shapes in patients with hypodontia when compared with controls. However, previous studies have mainly used 2D images and provided limited information. In the present study, 3D surface-imaging and statistical shape analysis were used to evaluate tooth form differences between hypodontia and control patients. Eighteen anatomical landmarks were recorded on the clinical crown of the lower left first permanent molar of 3D scanned study models of hypodontia and control subjects. The study sample group comprised of 120 hypodontia patients (40 mild, 40 moderate, and 40 severe hypodontia patients) and 40 age- and sex-matched controls. Procrustes coordinates were utilized to scale and superimpose the landmark coordinate data and then were subjected to principal component analysis (PCA). Subsequently, differences in shape as well as size were tested statistically using allometric analysis and MANOVA. Significant interaction was found between the two factor variables “group” and “sex” (p < 0.002). Overall expected accuracies were 66 and 56% for females and males, respectively, in the cross-validated discriminant-analysis using the first 20 PCs. Hypodontia groups showed significant shape differences compared with the control subjects (p < 0.0001). Significant differences in tooth crown shape were also found between sexes (p < 0.0001) within groups. Furthermore, the degree of variation in tooth form was proportional to the degree of the severity of the hypodontia. Thus, quantitative measurement of tooth shape in hypodontia patients may enhance the multidisciplinary management of those patients. PMID:24795649

  14. 3D CARS image reconstruction and pattern recognition on SHG images

    NASA Astrophysics Data System (ADS)

    Medyukhina, Anna; Vogler, Nadine; Latka, Ines; Dietzek, Benjamin; Cicchi, Riccardo; Pavone, Francesco S.; Popp, Jürgen

    2012-06-01

    Nonlinear optical imaging techniques based e.g. on coherent anti-Stokes Raman scattering (CARS) or second-harmonic generation (SHG) show great potential for in-vivo investigations of tissue. While the microspectroscopic imaging tools are established, automized data evaluation, i.e. image pattern recognition and automized image classification, of nonlinear optical images still bares great possibilities for future developments towards an objective clinical diagnosis. This contribution details the capability of nonlinear microscopy for both 3D visualization of human tissues and automated discrimination between healthy and diseased patterns using ex-vivo human skin samples. By means of CARS image alignment we show how to obtain a quasi-3D model of a skin biopsy, which allows us to trace the tissue structure in different projections. Furthermore, the potential of automated pattern and organization recognition to distinguish between healthy and keloidal skin tissue is discussed. A first classification algorithm employs the intrinsic geometrical features of collagen, which can be efficiently visualized by SHG microscopy. The shape of the collagen pattern allows conclusions about the physiological state of the skin, as the typical wavy collagen structure of healthy skin is disturbed e.g. in keloid formation. Based on the different collagen patterns a quantitative score characterizing the collagen waviness - and hence reflecting the physiological state of the tissue - is obtained. Further, two additional scoring methods for collagen organization, respectively based on a statistical analysis of the mutual organization of fibers and on FFT, are presented.

  15. Hybrid atlas-based and image-based approach for segmenting 3D brain MRIs

    NASA Astrophysics Data System (ADS)

    Bueno, Gloria; Musse, Olivier; Heitz, Fabrice; Armspach, Jean-Paul

    2001-07-01

    This work is a contribution to the problem of localizing key cerebral structures in 3D MRIs and its quantitative evaluation. In pursuing it, the cooperation between an image-based segmentation method and a hierarchical deformable registration approach has been considered. The segmentation relies on two main processes: homotopy modification and contour decision. The first one is achieved by a marker extraction stage where homogeneous 3D regions of an image, I(s), from the data set are identified. These regions, M(I), are obtained combining information from deformable atlas, achieved by the warping of eight previous labeled maps on I(s). Then, the goal of the decision stage is to precisely locate the contours of the 3D regions set by the markers. This contour decision is performed by a 3D extension of the watershed transform. The anatomical structures taken into consideration and embedded into the atlas are brain, ventricles, corpus callosum, cerebellum, right and left hippocampus, medulla and midbrain. The hybrid method operates fully automatically and in 3D, successfully providing segmented brain structures. The quality of the segmentation has been studied in terms of the detected volume ratio by using kappa statistic and ROC analysis. Results of the method are shown and validated on a 3D MRI phantom. This study forms part of an on-going long term research aiming at the creation of a 3D probabilistic multi-purpose anatomical brain atlas.

  16. Fast 3D subsurface imaging with stepped-frequency GPR

    NASA Astrophysics Data System (ADS)

    Masarik, Matthew P.; Burns, Joseph; Thelen, Brian T.; Sutter, Lena

    2015-05-01

    This paper investigates an algorithm for forming 3D images of the subsurface using stepped-frequency GPR data. The algorithm is specifically designed for a handheld GPR and therefore accounts for the irregular sampling pattern in the data and the spatially-variant air-ground interface by estimating an effective "ground-plane" and then registering the data to the plane. The algorithm efficiently solves the 4th-order polynomial for the Snell reflection points using a fully vectorized iterative scheme. The forward operator is implemented efficiently using an accelerated nonuniform FFT (Greengard and Lee, 2004); the adjoint operator is implemented efficiently using an interpolation step coupled with an upsampled FFT. The imaging is done as a linearized version of the full inverse problem, which is regularized using a sparsity constraint to reduce sidelobes and therefore improve image localization. Applying an appropriate sparsity constraint, the algorithm is able to eliminate most the surrounding clutter and sidelobes, while still rendering valuable image properties such as shape and size. The algorithm is applied to simulated data, controlled experimental data (made available by Dr. Waymond Scott, Georgia Institute of Technology), and government-provided data with irregular sampling and air-ground interface.

  17. 3D lung image retrieval using localized features

    NASA Astrophysics Data System (ADS)

    Depeursinge, Adrien; Zrimec, Tatjana; Busayarat, Sata; Müller, Henning

    2011-03-01

    The interpretation of high-resolution computed tomography (HRCT) images of the chest showing disorders of the lung tissue associated with interstitial lung diseases (ILDs) is time-consuming and requires experience. Whereas automatic detection and quantification of the lung tissue patterns showed promising results in several studies, its aid for the clinicians is limited to the challenge of image interpretation, letting the radiologists with the problem of the final histological diagnosis. Complementary to lung tissue categorization, providing visually similar cases using content-based image retrieval (CBIR) is in line with the clinical workflow of the radiologists. In a preliminary study, a Euclidean distance based on volume percentages of five lung tissue types was used as inter-case distance for CBIR. The latter showed the feasibility of retrieving similar histological diagnoses of ILD based on visual content, although no localization information was used for CBIR. However, to retrieve and show similar images with pathology appearing at a particular lung position was not possible. In this work, a 3D localization system based on lung anatomy is used to localize low-level features used for CBIR. When compared to our previous study, the introduction of localization features allows improving early precision for some histological diagnoses, especially when the region of appearance of lung tissue disorders is important.

  18. Research of Fast 3D Imaging Based on Multiple Mode

    NASA Astrophysics Data System (ADS)

    Chen, Shibing; Yan, Huimin; Ni, Xuxiang; Zhang, Xiuda; Wang, Yu

    2016-02-01

    Three-dimensional (3D) imaging has received increasingly extensive attention and has been widely used currently. Lots of efforts have been put on three-dimensional imaging method and system study, in order to meet fast and high accurate requirement. In this article, we realize a fast and high quality stereo matching algorithm on field programmable gate array (FPGA) using the combination of time-of-flight (TOF) camera and binocular camera. Images captured from the two cameras own a same spatial resolution, letting us use the depth maps taken by the TOF camera to figure initial disparity. Under the constraint of the depth map as the stereo pairs when comes to stereo matching, expected disparity of each pixel is limited within a narrow search range. In the meanwhile, using field programmable gate array (FPGA, altera cyclone IV series) concurrent computing we can configure multi core image matching system, thus doing stereo matching on embedded system. The simulation results demonstrate that it can speed up the process of stereo matching and increase matching reliability and stability, realize embedded calculation, expand application range.

  19. Brain surface maps from 3-D medical images

    NASA Astrophysics Data System (ADS)

    Lu, Jiuhuai; Hansen, Eric W.; Gazzaniga, Michael S.

    1991-06-01

    The anatomic and functional localization of brain lesions for neurologic diagnosis and brain surgery is facilitated by labeling the cortical surface in 3D images. This paper presents a method which extracts cortical contours from magnetic resonance (MR) image series and then produces a planar surface map which preserves important anatomic features. The resultant map may be used for manual anatomic localization as well as for further automatic labeling. Outer contours are determined on MR cross-sectional images by following the clear boundaries between gray matter and cerebral-spinal fluid, skipping over sulci. Carrying this contour below the surface by shrinking it along its normal produces an inner contour that alternately intercepts gray matter (sulci) and white matter along its length. This procedure is applied to every section in the set, and the image (grayscale) values along the inner contours are radially projected and interpolated onto a semi-cylindrical surface with axis normal to the slices and large enough to cover the whole brain. A planar map of the cortical surface results by flattening this cylindrical surface. The projection from inner contour to cylindrical surface is unique in the sense that different points on the inner contour correspond to different points on the cylindrical surface. As the outer contours are readily obtained by automatic segmentation, cortical maps can be made directly from an MR series.

  20. MIMO based 3D imaging system at 360 GHz

    NASA Astrophysics Data System (ADS)

    Herschel, R.; Nowok, S.; Zimmermann, R.; Lang, S. A.; Pohl, N.

    2016-05-01

    A MIMO radar imaging system at 360 GHz is presented as a part of the comprehensive approach of the European FP7 project TeraSCREEN, using multiple frequency bands for active and passive imaging. The MIMO system consists of 16 transmitter and 16 receiver antennas within one single array. Using a bandwidth of 30 GHz, a range resolution up to 5 mm is obtained. With the 16×16 MIMO system 256 different azimuth bins can be distinguished. Mechanical beam steering is used to measure 130 different elevation angles where the angular resolution is obtained by a focusing elliptical mirror. With this system a high resolution 3D image can be generated with 4 frames per second, each containing 16 million points. The principle of the system is presented starting from the functional structure, covering the hardware design and including the digital image generation. This is supported by simulated data and discussed using experimental results from a preliminary 90 GHz system underlining the feasibility of the approach.

  1. Fast 3-D Tomographic Microwave Imaging for Breast Cancer Detection

    PubMed Central

    Meaney, Paul M.; Kaufman, Peter A.; diFlorio-Alexander, Roberta M.; Paulsen, Keith D.

    2013-01-01

    Microwave breast imaging (using electromagnetic waves of frequencies around 1 GHz) has mostly remained at the research level for the past decade, gaining little clinical acceptance. The major hurdles limiting patient use are both at the hardware level (challenges in collecting accurate and noncorrupted data) and software level (often plagued by unrealistic reconstruction times in the tens of hours). In this paper we report improvements that address both issues. First, the hardware is able to measure signals down to levels compatible with sub-centimeter image resolution while keeping an exam time under 2 min. Second, the software overcomes the enormous time burden and produces similarly accurate images in less than 20 min. The combination of the new hardware and software allows us to produce and report here the first clinical 3-D microwave tomographic images of the breast. Two clinical examples are selected out of 400+ exams conducted at the Dartmouth Hitchcock Medical Center (Lebanon, NH). The first example demonstrates the potential usefulness of our system for breast cancer screening while the second example focuses on therapy monitoring. PMID:22562726

  2. 3D Chemical and Elemental Imaging by STXM Spectrotomography

    NASA Astrophysics Data System (ADS)

    Wang, J.; Hitchcock, A. P.; Karunakaran, C.; Prange, A.; Franz, B.; Harkness, T.; Lu, Y.; Obst, M.; Hormes, J.

    2011-09-01

    Spectrotomography based on the scanning transmission x-ray microscope (STXM) at the 10ID-1 spectromicroscopy beamline of the Canadian Light Source was used to study two selected unicellular microorganisms. Spatial distributions of sulphur globules, calcium, protein, and polysaccharide in sulphur-metabolizing bacteria (Allochromatium vinosum) were determined at the S 2p, C 1s, and Ca 2p edges. 3D chemical mapping showed that the sulphur globules are located inside the bacteria with a strong spatial correlation with calcium ions (it is most probably calcium carbonate from the medium; however, with STXM the distribution and localization in the cell can be made visible, which is very interesting for a biologist) and polysaccharide-rich polymers, suggesting an influence of the organic components on the formation of the sulphur and calcium deposits. A second study investigated copper accumulating in yeast cells (Saccharomyces cerevisiae) treated with copper sulphate. 3D elemental imaging at the Cu 2p edge showed that Cu(II) is reduced to Cu(I) on the yeast cell wall. A novel needle-like wet cell sample holder for STXM spectrotomography studies of fully hydrated samples is discussed.

  3. 3D Chemical and Elemental Imaging by STXM Spectrotomography

    SciTech Connect

    Wang, J.; Karunakaran, C.; Lu, Y.; Hormes, J.; Hitchcock, A. P.; Prange, A.; Franz, B.; Harkness, T.; Obst, M.

    2011-09-09

    Spectrotomography based on the scanning transmission x-ray microscope (STXM) at the 10ID-1 spectromicroscopy beamline of the Canadian Light Source was used to study two selected unicellular microorganisms. Spatial distributions of sulphur globules, calcium, protein, and polysaccharide in sulphur-metabolizing bacteria (Allochromatium vinosum) were determined at the S 2p, C 1s, and Ca 2p edges. 3D chemical mapping showed that the sulphur globules are located inside the bacteria with a strong spatial correlation with calcium ions (it is most probably calcium carbonate from the medium; however, with STXM the distribution and localization in the cell can be made visible, which is very interesting for a biologist) and polysaccharide-rich polymers, suggesting an influence of the organic components on the formation of the sulphur and calcium deposits. A second study investigated copper accumulating in yeast cells (Saccharomyces cerevisiae) treated with copper sulphate. 3D elemental imaging at the Cu 2p edge showed that Cu(II) is reduced to Cu(I) on the yeast cell wall. A novel needle-like wet cell sample holder for STXM spectrotomography studies of fully hydrated samples is discussed.

  4. 3D optical sectioning with a new hyperspectral confocal fluorescence imaging system.

    SciTech Connect

    Nieman, Linda T.; Sinclair, Michael B.; Davidson, George S.; Van Benthem, Mark Hilary; Haaland, David Michael; Timlin, Jerilyn Ann; Sasaki, Darryl Yoshio; Bachand, George David; Jones, Howland D. T.

    2007-02-01

    A novel hyperspectral fluorescence microscope for high-resolution 3D optical sectioning of cells and other structures has been designed, constructed, and used to investigate a number of different problems. We have significantly extended new multivariate curve resolution (MCR) data analysis methods to deconvolve the hyperspectral image data and to rapidly extract quantitative 3D concentration distribution maps of all emitting species. The imaging system has many advantages over current confocal imaging systems including simultaneous monitoring of numerous highly overlapped fluorophores, immunity to autofluorescence or impurity fluorescence, enhanced sensitivity, and dramatically improved accuracy, reliability, and dynamic range. Efficient data compression in the spectral dimension has allowed personal computers to perform quantitative analysis of hyperspectral images of large size without loss of image quality. We have also developed and tested software to perform analysis of time resolved hyperspectral images using trilinear multivariate analysis methods. The new imaging system is an enabling technology for numerous applications including (1) 3D composition mapping analysis of multicomponent processes occurring during host-pathogen interactions, (2) monitoring microfluidic processes, (3) imaging of molecular motors and (4) understanding photosynthetic processes in wild type and mutant Synechocystis cyanobacteria.

  5. Subnuclear foci quantification using high-throughput 3D image cytometry

    NASA Astrophysics Data System (ADS)

    Wadduwage, Dushan N.; Parrish, Marcus; Choi, Heejin; Engelward, Bevin P.; Matsudaira, Paul; So, Peter T. C.

    2015-07-01

    Ionising radiation causes various types of DNA damages including double strand breaks (DSBs). DSBs are often recognized by DNA repair protein ATM which forms gamma-H2AX foci at the site of the DSBs that can be visualized using immunohistochemistry. However most of such experiments are of low throughput in terms of imaging and image analysis techniques. Most of the studies still use manual counting or classification. Hence they are limited to counting a low number of foci per cell (5 foci per nucleus) as the quantification process is extremely labour intensive. Therefore we have developed a high throughput instrumentation and computational pipeline specialized for gamma-H2AX foci quantification. A population of cells with highly clustered foci inside nuclei were imaged, in 3D with submicron resolution, using an in-house developed high throughput image cytometer. Imaging speeds as high as 800 cells/second in 3D were achieved by using HiLo wide-field depth resolved imaging and a remote z-scanning technique. Then the number of foci per cell nucleus were quantified using a 3D extended maxima transform based algorithm. Our results suggests that while most of the other 2D imaging and manual quantification studies can count only up to about 5 foci per nucleus our method is capable of counting more than 100. Moreover we show that 3D analysis is significantly superior compared to the 2D techniques.

  6. 3D Image-Guided Automatic Pipette Positioning for Single Cell Experiments in vivo.

    PubMed

    Long, Brian; Li, Lu; Knoblich, Ulf; Zeng, Hongkui; Peng, Hanchuan

    2015-01-01

    We report a method to facilitate single cell, image-guided experiments including in vivo electrophysiology and electroporation. Our method combines 3D image data acquisition, visualization and on-line image analysis with precise control of physical probes such as electrophysiology microelectrodes in brain tissue in vivo. Adaptive pipette positioning provides a platform for future advances in automated, single cell in vivo experiments. PMID:26689553

  7. Recovery and Visualization of 3D Structure of Chromosomes from Tomographic Reconstruction Images

    NASA Astrophysics Data System (ADS)

    Babu, Sabarish; Liao, Pao-Chuan; Shin, Min C.; Tsap, Leonid V.

    2006-12-01

    The objectives of this work include automatic recovery and visualization of a 3D chromosome structure from a sequence of 2D tomographic reconstruction images taken through the nucleus of a cell. Structure is very important for biologists as it affects chromosome functions, behavior of the cell, and its state. Analysis of chromosome structure is significant in the detection of diseases, identification of chromosomal abnormalities, study of DNA structural conformation, in-depth study of chromosomal surface morphology, observation of in vivo behavior of the chromosomes over time, and in monitoring environmental gene mutations. The methodology incorporates thresholding based on a histogram analysis with a polyline splitting algorithm, contour extraction via active contours, and detection of the 3D chromosome structure by establishing corresponding regions throughout the slices. Visualization using point cloud meshing generates a 3D surface. The 3D triangular mesh of the chromosomes provides surface detail and allows a user to interactively analyze chromosomes using visualization software.

  8. Recovery and Visualization of 3D Structure of Chromosomes from Tomographic Reconstruction Images

    SciTech Connect

    Babu, S; Liao, P; Shin, M C; Tsap, L V

    2004-04-28

    The objectives of this work include automatic recovery and visualization of a 3D chromosome structure from a sequence of 2D tomographic reconstruction images taken through the nucleus of a cell. Structure is very important for biologists as it affects chromosome functions, behavior of the cell and its state. Chromosome analysis is significant in the detection of deceases and in monitoring environmental gene mutations. The algorithm incorporates thresholding based on a histogram analysis with a polyline splitting algorithm, contour extraction via active contours, and detection of the 3D chromosome structure by establishing corresponding regions throughout the slices. Visualization using point cloud meshing generates a 3D surface. The 3D triangular mesh of the chromosomes provides surface detail and allows a user to interactively analyze chromosomes using visualization software.

  9. Nanoparticle imaging. 3D structure of individual nanocrystals in solution by electron microscopy.

    PubMed

    Park, Jungwon; Elmlund, Hans; Ercius, Peter; Yuk, Jong Min; Limmer, David T; Chen, Qian; Kim, Kwanpyo; Han, Sang Hoon; Weitz, David A; Zettl, A; Alivisatos, A Paul

    2015-07-17

    Knowledge about the synthesis, growth mechanisms, and physical properties of colloidal nanoparticles has been limited by technical impediments. We introduce a method for determining three-dimensional (3D) structures of individual nanoparticles in solution. We combine a graphene liquid cell, high-resolution transmission electron microscopy, a direct electron detector, and an algorithm for single-particle 3D reconstruction originally developed for analysis of biological molecules. This method yielded two 3D structures of individual platinum nanocrystals at near-atomic resolution. Because our method derives the 3D structure from images of individual nanoparticles rotating freely in solution, it enables the analysis of heterogeneous populations of potentially unordered nanoparticles that are synthesized in solution, thereby providing a means to understand the structure and stability of defects at the nanoscale. PMID:26185247

  10. 3D imaging of the early embryonic chicken heart with focused ion beam scanning electron microscopy.

    PubMed

    Rennie, Monique Y; Gahan, Curran G; López, Claudia S; Thornburg, Kent L; Rugonyi, Sandra

    2014-08-01

    Early embryonic heart development is a period of dynamic growth and remodeling, with rapid changes occurring at the tissue, cell, and subcellular levels. A detailed understanding of the events that establish the components of the heart wall has been hampered by a lack of methodologies for three-dimensional (3D), high-resolution imaging. Focused ion beam scanning electron microscopy (FIB-SEM) is a novel technology for imaging 3D tissue volumes at the subcellular level. FIB-SEM alternates between imaging the block face with a scanning electron beam and milling away thin sections of tissue with a FIB, allowing for collection and analysis of 3D data. FIB-SEM was used to image the three layers of the day 4 chicken embryo heart: myocardium, cardiac jelly, and endocardium. Individual images obtained with FIB-SEM were comparable in quality and resolution to those obtained with transmission electron microscopy. Up to 1,100 serial images were obtained in 4 nm increments at 4.88 nm resolution, and image stacks were aligned to create volumes 800-1,500 μm3 in size. Segmentation of organelles revealed their organization and distinct volume fractions between cardiac wall layers. We conclude that FIB-SEM is a powerful modality for 3D subcellular imaging of the embryonic heart wall.

  11. An Efficient 3D Imaging using Structured Light Systems

    NASA Astrophysics Data System (ADS)

    Lee, Deokwoo

    Structured light 3D surface imaging has been crucial in the fields of image processing and computer vision, particularly in reconstruction, recognition and others. In this dissertation, we propose the approaches to development of an efficient 3D surface imaging system using structured light patterns including reconstruction, recognition and sampling criterion. To achieve an efficient reconstruction system, we address the problem in its many dimensions. In the first, we extract geometric 3D coordinates of an object which is illuminated by a set of concentric circular patterns and reflected to a 2D image plane. The relationship between the original and the deformed shape of the light patterns due to a surface shape provides sufficient 3D coordinates information. In the second, we consider system efficiency. The efficiency, which can be quantified by the size of data, is improved by reducing the number of circular patterns to be projected onto an object of interest. Akin to the Shannon-Nyquist Sampling Theorem, we derive the minimum number of circular patterns which sufficiently represents the target object with no considerable information loss. Specific geometric information (e.g. the highest curvature) of an object is key to deriving the minimum sampling density. In the third, the object, represented using the minimum number of patterns, has incomplete color information (i.e. color information is given a priori along with the curves). An interpolation is carried out to complete the photometric reconstruction. The results can be approximately reconstructed because the minimum number of the patterns may not exactly reconstruct the original object. But the result does not show considerable information loss, and the performance of an approximate reconstruction is evaluated by performing recognition or classification. In an object recognition, we use facial curves which are deformed circular curves (patterns) on a target object. We simply carry out comparison between the

  12. 3D imaging of semiconductor components by discrete laminography

    SciTech Connect

    Batenburg, K. J.; Palenstijn, W. J.; Sijbers, J.

    2014-06-19

    X-ray laminography is a powerful technique for quality control of semiconductor components. Despite the advantages of nondestructive 3D imaging over 2D techniques based on sectioning, the acquisition time is still a major obstacle for practical use of the technique. In this paper, we consider the application of Discrete Tomography to laminography data, which can potentially reduce the scanning time while still maintaining a high reconstruction quality. By incorporating prior knowledge in the reconstruction algorithm about the materials present in the scanned object, far more accurate reconstructions can be obtained from the same measured data compared to classical reconstruction methods. We present a series of simulation experiments that illustrate the potential of the approach.

  13. Near field 3D scene simulation for passive microwave imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Wu, Ji

    2006-10-01

    Scene simulation is a necessary work in near field passive microwave remote sensing. A 3-D scene simulation model of microwave radiometric imaging based on ray tracing method is present in this paper. The essential influencing factors and general requirements are considered in this model such as the rough surface radiation, the sky radiation witch act as the uppermost illuminator in out door circumstance, the polarization rotation of the temperature rays caused by multiple reflections, and the antenna point spread function witch determines the resolution of the model final outputs. Using this model we simulate a virtual scene and analyzed the appeared microwave radiometric phenomenology, at last two real scenes of building and airstrip were simulated for validating the model. The comparison between the simulation and field measurements indicates that this model is completely feasible in practice. Furthermore, we analyzed the signatures of model outputs, and achieved some underlying phenomenology of microwave radiation witch is deferent with that in optical and infrared bands.

  14. Needle placement for piriformis injection using 3-D imaging.

    PubMed

    Clendenen, Steven R; Candler, Shawn A; Osborne, Michael D; Palmer, Scott C; Duench, Stephanie; Glynn, Laura; Ghazi, Salim M

    2013-01-01

    Piriformis syndrome is a pain syndrome originating in the buttock and is attributed to 6% - 8% of patients referred for the treatment of back and leg pain. The treatment for piriformis syndrome using fluoroscopy, computed tomography (CT), electromyography (EMG), and ultrasound (US) has become standard practice. The treatment of Piriformis Syndrome has evolved to include fluoroscopy and EMG with CT guidance. We present a case study of 5 successful piriformis injections using 3-D computer-assisted electromagnet needle tracking coupled with ultrasound. A 6-degree of freedom electromagnetic position tracker was attached to the ultrasound probe that allowed the system to detect the position and orientation of the probe in the magnetic field. The tracked ultrasound probe was used to find the posterior superior iliac spine. Subsequently, 3 points were captured to register the ultrasound image with the CT or magnetic resonance image scan. Moreover, after the registration was obtained, the navigation system visualized the tracked needle relative to the CT scan in real-time using 2 orthogonal multi-planar reconstructions centered at the tracked needle tip. Conversely, a recent study revealed that fluoroscopically guided injections had 30% accuracy compared to ultrasound guided injections, which tripled the accuracy percentage. This novel technique exhibited an accurate needle guidance injection precision of 98% while advancing to the piriformis muscle and avoiding the sciatic nerve. The mean (± SD) procedure time was 19.08 (± 4.9) minutes. This technique allows for electromagnetic instrument tip tracking with real-time 3-D guidance to the selected target. As with any new technique, a learning curve is expected; however, this technique could offer an alternative, minimizing radiation exposure. PMID:23703429

  15. 3D imaging of particle tracks in Solid State Nuclear Track Detectors

    NASA Astrophysics Data System (ADS)

    Wertheim, D.; Gillmore, G.; Brown, L.; Petford, N.

    2009-04-01

    Inhalation of radon gas (222Rn) and associated ionizing decay products is known to cause lung cancer in human. In the U.K., it has been suggested that 3 to 5 % of total lung cancer deaths can be linked to elevated radon concentrations in the home and/or workplace. Radon monitoring in buildings is therefore routinely undertaken in areas of known risk. Indeed, some organisations such as the Radon Council in the UK and the Environmental Protection Agency in the USA, advocate a ‘to test is best' policy. Radon gas occurs naturally, emanating from the decay of 238U in rock and soils. Its concentration can be measured using CR?39 plastic detectors which conventionally are assessed by 2D image analysis of the surface; however there can be some variation in outcomes / readings even in closely spaced detectors. A number of radon measurement methods are currently in use (for examples, activated carbon and electrets) but the most widely used are CR?39 solid state nuclear track?etch detectors (SSNTDs). In this technique, heavily ionizing alpha particles leave tracks in the form of radiation damage (via interaction between alpha particles and the atoms making up the CR?39 polymer). 3D imaging of the tracks has the potential to provide information relating to angle and energy of alpha particles but this could be time consuming. Here we describe a new method for rapid high resolution 3D imaging of SSNTDs. A ‘LEXT' OLS3100 confocal laser scanning microscope was used in confocal mode to successfully obtain 3D image data on four CR?39 plastic detectors. 3D visualisation and image analysis enabled characterisation of track features. This method may provide a means of rapid and detailed 3D analysis of SSNTDs. Keywords: Radon; SSNTDs; confocal laser scanning microscope; 3D imaging; LEXT

  16. GPU-accelerated denoising of 3D magnetic resonance images

    SciTech Connect

    Howison, Mark; Wes Bethel, E.

    2014-05-29

    The raw computational power of GPU accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. In practice, applying these filtering operations requires setting multiple parameters. This study was designed to provide better guidance to practitioners for choosing the most appropriate parameters by answering two questions: what parameters yield the best denoising results in practice? And what tuning is necessary to achieve optimal performance on a modern GPU? To answer the first question, we use two different metrics, mean squared error (MSE) and mean structural similarity (MSSIM), to compare denoising quality against a reference image. Surprisingly, the best improvement in structural similarity with the bilateral filter is achieved with a small stencil size that lies within the range of real-time execution on an NVIDIA Tesla M2050 GPU. Moreover, inappropriate choices for parameters, especially scaling parameters, can yield very poor denoising performance. To answer the second question, we perform an autotuning study to empirically determine optimal memory tiling on the GPU. The variation in these results suggests that such tuning is an essential step in achieving real-time performance. These results have important implications for the real-time application of denoising to MR images in clinical settings that require fast turn-around times.

  17. Spectral ladar: towards active 3D multispectral imaging

    NASA Astrophysics Data System (ADS)

    Powers, Michael A.; Davis, Christopher C.

    2010-04-01

    In this paper we present our Spectral LADAR concept, an augmented implementation of traditional LADAR. This sensor uses a polychromatic source to obtain range-resolved 3D spectral images which are used to identify objects based on combined spatial and spectral features, resolving positions in three dimensions and up to hundreds of meters in distance. We report on a proof-of-concept Spectral LADAR demonstrator that generates spectral point clouds from static scenes. The demonstrator transmits nanosecond supercontinuum pulses generated in a photonic crystal fiber. Currently we use a rapidly tuned receiver with a high-speed InGaAs APD for 25 spectral bands with the future expectation of implementing a linear APD array spectrograph. Each spectral band is independently range resolved with multiple return pulse recognition. This is a critical feature, enabling simultaneous spectral and spatial unmixing of partially obscured objects when not achievable using image fusion of monochromatic LADAR and passive spectral imagers. This enables higher identification confidence in highly cluttered environments such as forested or urban areas (e.g. vehicles behind camouflage or foliage). These environments present challenges for situational awareness and robotic perception which can benefit from the unique attributes of Spectral LADAR. Results from this demonstrator unit are presented for scenes typical of military operations and characterize the operation of the device. The results are discussed here in the context of autonomous vehicle navigation and target recognition.

  18. Performance assessment of 3D surface imaging technique for medical imaging applications

    NASA Astrophysics Data System (ADS)

    Li, Tuotuo; Geng, Jason; Li, Shidong

    2013-03-01

    Recent development in optical 3D surface imaging technologies provide better ways to digitalize the 3D surface and its motion in real-time. The non-invasive 3D surface imaging approach has great potential for many medical imaging applications, such as motion monitoring of radiotherapy, pre/post evaluation of plastic surgery and dermatology, to name a few. Various commercial 3D surface imaging systems have appeared on the market with different dimension, speed and accuracy. For clinical applications, the accuracy, reproducibility and robustness across the widely heterogeneous skin color, tone, texture, shape properties, and ambient lighting is very crucial. Till now, a systematic approach for evaluating the performance of different 3D surface imaging systems still yet exist. In this paper, we present a systematic performance assessment approach to 3D surface imaging system assessment for medical applications. We use this assessment approach to exam a new real-time surface imaging system we developed, dubbed "Neo3D Camera", for image-guided radiotherapy (IGRT). The assessments include accuracy, field of view, coverage, repeatability, speed and sensitivity to environment, texture and color.

  19. High resolution 3D imaging of synchrotron generated microbeams

    SciTech Connect

    Gagliardi, Frank M.; Cornelius, Iwan; Blencowe, Anton; Franich, Rick D.; Geso, Moshi

    2015-12-15

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery.

  20. Acquiring 3-D information about thick objects from differential interference contrast images using texture extraction

    NASA Astrophysics Data System (ADS)

    Sierra, Heidy; Brooks, Dana; Dimarzio, Charles

    2010-07-01

    The extraction of 3-D morphological information about thick objects is explored in this work. We extract this information from 3-D differential interference contrast (DIC) images by applying a texture detection method. Texture extraction methods have been successfully used in different applications to study biological samples. A 3-D texture image is obtained by applying a local entropy-based texture extraction method. The use of this method to detect regions of blastocyst mouse embryos that are used in assisted reproduction techniques such as in vitro fertilization is presented as an example. Results demonstrate the potential of using texture detection methods to improve morphological analysis of thick samples, which is relevant to many biomedical and biological studies. Fluorescence and optical quadrature microscope phase images are used for validation.

  1. Note: An improved 3D imaging system for electron-electron coincidence measurements

    SciTech Connect

    Lin, Yun Fei; Lee, Suk Kyoung; Adhikari, Pradip; Herath, Thushani; Lingenfelter, Steven; Winney, Alexander H.; Li, Wen

    2015-09-15

    We demonstrate an improved imaging system that can achieve highly efficient 3D detection of two electrons in coincidence. The imaging system is based on a fast frame complementary metal-oxide semiconductor camera and a high-speed waveform digitizer. We have shown previously that this detection system is capable of 3D detection of ions and electrons with good temporal and spatial resolution. Here, we show that with a new timing analysis algorithm, this system can achieve an unprecedented dead-time (<0.7 ns) and dead-space (<1 mm) when detecting two electrons. A true zero dead-time detection is also demonstrated.

  2. Note: An improved 3D imaging system for electron-electron coincidence measurements

    NASA Astrophysics Data System (ADS)

    Lin, Yun Fei; Lee, Suk Kyoung; Adhikari, Pradip; Herath, Thushani; Lingenfelter, Steven; Winney, Alexander H.; Li, Wen

    2015-09-01

    We demonstrate an improved imaging system that can achieve highly efficient 3D detection of two electrons in coincidence. The imaging system is based on a fast frame complementary metal-oxide semiconductor camera and a high-speed waveform digitizer. We have shown previously that this detection system is capable of 3D detection of ions and electrons with good temporal and spatial resolution. Here, we show that with a new timing analysis algorithm, this system can achieve an unprecedented dead-time (<0.7 ns) and dead-space (<1 mm) when detecting two electrons. A true zero dead-time detection is also demonstrated.

  3. A GUI visualization system for airborne lidar image data to reconstruct 3D city model

    NASA Astrophysics Data System (ADS)

    Kawata, Yoshiyuki; Koizumi, Kohei

    2015-10-01

    A visualization toolbox system with graphical user interfaces (GUIs) was developed for the analysis of LiDAR point cloud data, as a compound object oriented widget application in IDL (Interractive Data Language). The main features in our system include file input and output abilities, data conversion capability from ascii formatted LiDAR point cloud data to LiDAR image data whose pixel value corresponds the altitude measured by LiDAR, visualization of 2D/3D images in various processing steps and automatic reconstruction ability of 3D city model. The performance and advantages of our graphical user interface (GUI) visualization system for LiDAR data are demonstrated.

  4. Defining multiple, distinct, and shared spatiotemporal patterns of DNA replication and endoreduplication from 3D image analysis of developing maize (Zea mays L.) root tip nuclei.

    PubMed

    Bass, Hank W; Hoffman, Gregg G; Lee, Tae-Jin; Wear, Emily E; Joseph, Stacey R; Allen, George C; Hanley-Bowdoin, Linda; Thompson, William F

    2015-11-01

    Spatiotemporal patterns of DNA replication have been described for yeast and many types of cultured animal cells, frequently after cell cycle arrest to aid in synchronization. However, patterns of DNA replication in nuclei from plants or naturally developing organs remain largely uncharacterized. Here we report findings from 3D quantitative analysis of DNA replication and endoreduplication in nuclei from pulse-labeled developing maize root tips. In both early and middle S phase nuclei, flow-sorted on the basis of DNA content, replicative labeling was widely distributed across euchromatic regions of the nucleoplasm. We did not observe the perinuclear or perinucleolar replicative labeling patterns characteristic of middle S phase in mammals. Instead, the early versus middle S phase patterns in maize could be distinguished cytologically by correlating two quantitative, continuous variables, replicative labeling and DAPI staining. Early S nuclei exhibited widely distributed euchromatic labeling preferentially localized to regions with weak DAPI signals. Middle S nuclei also exhibited widely distributed euchromatic labeling, but the label was preferentially localized to regions with strong DAPI signals. Highly condensed heterochromatin, including knobs, replicated during late S phase as previously reported. Similar spatiotemporal replication patterns were observed for both mitotic and endocycling maize nuclei. These results revealed that maize euchromatin exists as an intermingled mixture of two components distinguished by their condensation state and replication timing. These different patterns might reflect a previously described genome organization pattern, with "gene islands" mostly replicating during early S phase followed by most of the intergenic repetitive regions replicating during middle S phase.

  5. Understanding Crystal Populations; Looking Towards 3D Quantitative Analysis

    NASA Astrophysics Data System (ADS)

    Jerram, D. A.; Morgan, D. J.

    2010-12-01

    In order to understand volcanic systems, the potential record held within crystal populations needs to be revealed. It is becoming increasingly clear, however, that the crystal populations that arrive at the surface in volcanic eruptions are commonly mixtures of crystals, which may be representative of simple crystallization, recycling of crystals and incorporation of alien crystals. If we can quantify the true 3D population within a sample then we will be able to separate crystals with different histories and begin to interrogate the true and complex plumbing within the volcanic system. Modeling crystal populations is one area where we can investigate the best methodologies to use when dealing with sections through 3D populations. By producing known 3D shapes and sizes with virtual textures and looking at the statistics of shape and size when such populations are sectioned, we are able to gain confidence about what our 2D information is telling us about the population. We can also use this approach to test the size of population we need to analyze. 3D imaging through serial sectioning or x-ray CT, provides a complete 3D quantification of a rocks texture. Individual phases can be identified and in principle the true 3D statistics of the population can be interrogated. In practice we need to develop strategies (as with 2D-3D transformations), that enable a true characterization of the 3D data, and an understanding of the errors and pitfalls that exist. Ultimately, the reproduction of true 3D textures and the wealth of information they hold, is now within our reach.

  6. ROIC for gated 3D imaging LADAR receiver

    NASA Astrophysics Data System (ADS)

    Chen, Guoqiang; Zhang, Junling; Wang, Pan; Zhou, Jie; Gao, Lei; Ding, Ruijun

    2013-09-01

    Time of flight laser range finding, deep space communications and scanning video imaging are three applications requiring very low noise optical receivers to achieve detection of fast and weak optical signal. HgCdTe electrons initiated avalanche photodiodes (e-APDs) in linear multiplication mode is the detector of choice thanks to its high quantum efficiency, high gain at low bias, high bandwidth and low noise factor. In this project, a readout integrated circuit of hybrid e-APD focal plane array (FPA) with 100um pitch for 3D-LADAR was designed for gated optical receiver. The ROIC works at 77K, including unit cell circuit, column-level circuit, timing control, bias circuit and output driver. The unit cell circuit is a key component, which consists of preamplifier, correlated double Sampling (CDS), bias circuit and timing control module. Specially, the preamplifier used the capacitor feedback transimpedance amplifier (CTIA) structure which has two capacitors to offer switchable capacitance for passive/active dual mode imaging. The main circuit of column-level circuit is a precision Multiply-by-Two circuit which is implemented by switched-capacitor circuit. Switched-capacitor circuit is quite suitable for the signal processing of readout integrated circuit (ROIC) due to the working characteristics. The output driver uses a simply unity-gain buffer. Because the signal is amplified in column-level circuit, the amplifier in unity-gain buffer uses a rail-rail amplifier. In active imaging mode, the integration time is 80ns. Integrating current from 200nA to 4uA, this circuit shows the nonlinearity is less than 1%. In passive imaging mode, the integration time is 150ns. Integrating current from 1nA to 20nA shows the nonlinearity less than 1%.

  7. Deformable M-Reps for 3D Medical Image Segmentation.

    PubMed

    Pizer, Stephen M; Fletcher, P Thomas; Joshi, Sarang; Thall, Andrew; Chen, James Z; Fridman, Yonatan; Fritsch, Daniel S; Gash, Graham; Glotzer, John M; Jiroutek, Michael R; Lu, Conglin; Muller, Keith E; Tracton, Gregg; Yushkevich, Paul; Chaney, Edward L

    2003-11-01

    M-reps (formerly called DSLs) are a multiscale medial means for modeling and rendering 3D solid geometry. They are particularly well suited to model anatomic objects and in particular to capture prior geometric information effectively in deformable models segmentation approaches. The representation is based on figural models, which define objects at coarse scale by a hierarchy of figures - each figure generally a slab representing a solid region and its boundary simultaneously. This paper focuses on the use of single figure models to segment objects of relatively simple structure. A single figure is a sheet of medial atoms, which is interpolated from the model formed by a net, i.e., a mesh or chain, of medial atoms (hence the name m-reps), each atom modeling a solid region via not only a position and a width but also a local figural frame giving figural directions and an object angle between opposing, corresponding positions on the boundary implied by the m-rep. The special capability of an m-rep is to provide spatial and orientational correspondence between an object in two different states of deformation. This ability is central to effective measurement of both geometric typicality and geometry to image match, the two terms of the objective function optimized in segmentation by deformable models. The other ability of m-reps central to effective segmentation is their ability to support segmentation at multiple levels of scale, with successively finer precision. Objects modeled by single figures are segmented first by a similarity transform augmented by object elongation, then by adjustment of each medial atom, and finally by displacing a dense sampling of the m-rep implied boundary. While these models and approaches also exist in 2D, we focus on 3D objects. The segmentation of the kidney from CT and the hippocampus from MRI serve as the major examples in this paper. The accuracy of segmentation as compared to manual, slice-by-slice segmentation is reported.

  8. 3D imaging of enzymes working in situ.

    PubMed

    Jamme, F; Bourquin, D; Tawil, G; Viksø-Nielsen, A; Buléon, A; Réfrégiers, M

    2014-06-01

    Today, development of slowly digestible food with positive health impact and production of biofuels is a matter of intense research. The latter is achieved via enzymatic hydrolysis of starch or biomass such as lignocellulose. Free label imaging, using UV autofluorescence, provides a great tool to follow one single enzyme when acting on a non-UV-fluorescent substrate. In this article, we report synchrotron DUV fluorescence in 3-dimensional imaging to visualize in situ the diffusion of enzymes on solid substrate. The degradation pathway of single starch granules by two amylases optimized for biofuel production and industrial starch hydrolysis was followed by tryptophan autofluorescence (excitation at 280 nm, emission filter at 350 nm). The new setup has been specially designed and developed for a 3D representation of the enzyme-substrate interaction during hydrolysis. Thus, this tool is particularly effective for improving knowledge and understanding of enzymatic hydrolysis of solid substrates such as starch and lignocellulosic biomass. It could open up the way to new routes in the field of green chemistry and sustainable development, that is, in biotechnology, biorefining, or biofuels. PMID:24796213

  9. Complex adaptation-based LDR image rendering for 3D image reconstruction

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Hak; Kwon, Hyuk-Ju; Sohng, Kyu-Ik

    2014-07-01

    A low-dynamic tone-compression technique is developed for realistic image rendering that can make three-dimensional (3D) images similar to realistic scenes by overcoming brightness dimming in the 3D display mode. The 3D surround provides varying conditions for image quality, illuminant adaptation, contrast, gamma, color, sharpness, and so on. In general, gain/offset adjustment, gamma compensation, and histogram equalization have performed well in contrast compression; however, as a result of signal saturation and clipping effects, image details are removed and information is lost on bright and dark areas. Thus, an enhanced image mapping technique is proposed based on space-varying image compression. The performance of contrast compression is enhanced with complex adaptation in a 3D viewing surround combining global and local adaptation. Evaluating local image rendering in view of tone and color expression, noise reduction, and edge compensation confirms that the proposed 3D image-mapping model can compensate for the loss of image quality in the 3D mode.

  10. Computer-aided diagnosis for osteoporosis using chest 3D CT images

    NASA Astrophysics Data System (ADS)

    Yoneda, K.; Matsuhiro, M.; Suzuki, H.; Kawata, Y.; Niki, N.; Nakano, Y.; Ohmatsu, H.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, M.

    2016-03-01

    The patients of osteoporosis comprised of about 13 million people in Japan and it is one of the problems the aging society has. In order to prevent the osteoporosis, it is necessary to do early detection and treatment. Multi-slice CT technology has been improving the three dimensional (3-D) image analysis with higher body axis resolution and shorter scan time. The 3-D image analysis using multi-slice CT images of thoracic vertebra can be used as a support to diagnose osteoporosis and at the same time can be used for lung cancer diagnosis which may lead to early detection. We develop automatic extraction and partitioning algorithm for spinal column by analyzing vertebral body structure, and the analysis algorithm of the vertebral body using shape analysis and a bone density measurement for the diagnosis of osteoporosis. Osteoporosis diagnosis support system obtained high extraction rate of the thoracic vertebral in both normal and low doses.

  11. JULIDE: a software tool for 3D reconstruction and statistical analysis of autoradiographic mouse brain sections.

    PubMed

    Ribes, Delphine; Parafita, Julia; Charrier, Rémi; Magara, Fulvio; Magistretti, Pierre J; Thiran, Jean-Philippe

    2010-11-23

    In this article we introduce JULIDE, a software toolkit developed to perform the 3D reconstruction, intensity normalization, volume standardization by 3D image registration and voxel-wise statistical analysis of autoradiographs of mouse brain sections. This software tool has been developed in the open-source ITK software framework and is freely available under a GPL license. The article presents the complete image processing chain from raw data acquisition to 3D statistical group analysis. Results of the group comparison in the context of a study on spatial learning are shown as an illustration of the data that can be obtained with this tool.

  12. An optical real-time 3D measurement for analysis of facial shape and movement

    NASA Astrophysics Data System (ADS)

    Zhang, Qican; Su, Xianyu; Chen, Wenjing; Cao, Yiping; Xiang, Liqun

    2003-12-01

    Optical non-contact 3-D shape measurement provides a novel and useful tool for analysis of facial shape and movement in presurgical and postsurgical regular check. In this article we present a system, which allows a precise 3-D visualization of the patient's facial before and after craniofacial surgery. We discussed, in this paper, the real time 3-D image capture, processing and the 3-D phase unwrapping method to recover complex shape deformation when the movement of the mouth. The result of real-time measurement for facial shape and movement will be helpful for the more ideal effect in plastic surgery.

  13. Defining multiple, distinct, and shared spatiotemporal patterns of DNA replication and endoreduplication from 3D image analysis of developing maize (Zea mays L.) root tip nuclei.

    PubMed

    Bass, Hank W; Hoffman, Gregg G; Lee, Tae-Jin; Wear, Emily E; Joseph, Stacey R; Allen, George C; Hanley-Bowdoin, Linda; Thompson, William F

    2015-11-01

    Spatiotemporal patterns of DNA replication have been described for yeast and many types of cultured animal cells, frequently after cell cycle arrest to aid in synchronization. However, patterns of DNA replication in nuclei from plants or naturally developing organs remain largely uncharacterized. Here we report findings from 3D quantitative analysis of DNA replication and endoreduplication in nuclei from pulse-labeled developing maize root tips. In both early and middle S phase nuclei, flow-sorted on the basis of DNA content, replicative labeling was widely distributed across euchromatic regions of the nucleoplasm. We did not observe the perinuclear or perinucleolar replicative labeling patterns characteristic of middle S phase in mammals. Instead, the early versus middle S phase patterns in maize could be distinguished cytologically by correlating two quantitative, continuous variables, replicative labeling and DAPI staining. Early S nuclei exhibited widely distributed euchromatic labeling preferentially localized to regions with weak DAPI signals. Middle S nuclei also exhibited widely distributed euchromatic labeling, but the label was preferentially localized to regions with strong DAPI signals. Highly condensed heterochromatin, including knobs, replicated during late S phase as previously reported. Similar spatiotemporal replication patterns were observed for both mitotic and endocycling maize nuclei. These results revealed that maize euchromatin exists as an intermingled mixture of two components distinguished by their condensation state and replication timing. These different patterns might reflect a previously described genome organization pattern, with "gene islands" mostly replicating during early S phase followed by most of the intergenic repetitive regions replicating during middle S phase. PMID:26394866

  14. Improvements of 3-D image quality in integral display by reducing distortion errors

    NASA Astrophysics Data System (ADS)

    Kawakita, Masahiro; Sasaki, Hisayuki; Arai, Jun; Okano, Fumio; Suehiro, Koya; Haino, Yasuyuki; Yoshimura, Makoto; Sato, Masahito

    2008-02-01

    An integral three-dimensional (3-D) system based on the principle of integral photography can display natural 3-D images. We studied ways of improving the resolution and viewing angle of 3-D images by using extremely highresolution (EHR) video in an integral 3-D video system. One of the problems with the EHR projection-type integral 3-D system is that positional errors appear between the elemental image and the elemental lens when there is geometric distortion in the projected image. We analyzed the relationships between the geometric distortion in the elemental images caused by the projection lens and the spatial distortion of the reconstructed 3-D image. As a result, we clarified that 3-D images reconstructed far from the lens array were greatly affected by the distortion of the elemental images, and that the 3-D images were significantly distorted in the depth direction at the corners of the displayed images. Moreover, we developed a video signal processor that electrically compensated the distortion in the elemental images for an EHR projection-type integral 3-D system. Therefore, the distortion in the displayed 3-D image was removed, and the viewing angle of the 3-D image was expanded to nearly double that obtained with the previous prototype system.

  15. Quantitative Analysis of Autophagy using Advanced 3D Fluorescence Microscopy

    PubMed Central

    Changou, Chun A.; Wolfson, Deanna L.; Ahluwalia, Balpreet Singh; Bold, Richard J.; Kung, Hsing-Jien; Chuang, Frank Y.S.

    2013-01-01

    Prostate cancer is the leading form of malignancies among men in the U.S. While surgery carries a significant risk of impotence and incontinence, traditional chemotherapeutic approaches have been largely unsuccessful. Hormone therapy is effective at early stage, but often fails with the eventual development of hormone-refractory tumors. We have been interested in developing therapeutics targeting specific metabolic deficiency of tumor cells. We recently showed that prostate tumor cells specifically lack an enzyme (argininosuccinate synthase, or ASS) involved in the synthesis of the amino acid arginine1. This condition causes the tumor cells to become dependent on exogenous arginine, and they undergo metabolic stress when free arginine is depleted by arginine deiminase (ADI)1,10. Indeed, we have shown that human prostate cancer cells CWR22Rv1 are effectively killed by ADI with caspase-independent apoptosis and aggressive autophagy (or macroautophagy)1,2,3. Autophagy is an evolutionarily-conserved process that allows cells to metabolize unwanted proteins by lysosomal breakdown during nutritional starvation4,5. Although the essential components of this pathway are well-characterized6,7,8,9, many aspects of the molecular mechanism are still unclear - in particular, what is the role of autophagy in the death-response of prostate cancer cells after ADI treatment? In order to address this question, we required an experimental method to measure the level and extent of autophagic response in cells - and since there are no known molecular markers that can accurately track this process, we chose to develop an imaging-based approach, using quantitative 3D fluorescence microscopy11,12. Using CWR22Rv1 cells specifically-labeled with fluorescent probes for autophagosomes and lysosomes, we show that 3D image stacks acquired with either widefield deconvolution microscopy (and later, with super-resolution, structured-illumination microscopy) can clearly capture the early stages of

  16. Quantitative analysis of autophagy using advanced 3D fluorescence microscopy.

    PubMed

    Changou, Chun A; Wolfson, Deanna L; Ahluwalia, Balpreet Singh; Bold, Richard J; Kung, Hsing-Jien; Chuang, Frank Y S

    2013-01-01

    Prostate cancer is the leading form of malignancies among men in the U.S. While surgery carries a significant risk of impotence and incontinence, traditional chemotherapeutic approaches have been largely unsuccessful. Hormone therapy is effective at early stage, but often fails with the eventual development of hormone-refractory tumors. We have been interested in developing therapeutics targeting specific metabolic deficiency of tumor cells. We recently showed that prostate tumor cells specifically lack an enzyme (argininosuccinate synthase, or ASS) involved in the synthesis of the amino acid arginine(1). This condition causes the tumor cells to become dependent on exogenous arginine, and they undergo metabolic stress when free arginine is depleted by arginine deiminase (ADI)(1,10). Indeed, we have shown that human prostate cancer cells CWR22Rv1 are effectively killed by ADI with caspase-independent apoptosis and aggressive autophagy (or macroautophagy)(1,2,3). Autophagy is an evolutionarily-conserved process that allows cells to metabolize unwanted proteins by lysosomal breakdown during nutritional starvation(4,5). Although the essential components of this pathway are well-characterized(6,7,8,9), many aspects of the molecular mechanism are still unclear - in particular, what is the role of autophagy in the death-response of prostate cancer cells after ADI treatment? In order to address this question, we required an experimental method to measure the level and extent of autophagic response in cells - and since there are no known molecular markers that can accurately track this process, we chose to develop an imaging-based approach, using quantitative 3D fluorescence microscopy(11,12). Using CWR22Rv1 cells specifically-labeled with fluorescent probes for autophagosomes and lysosomes, we show that 3D image stacks acquired with either widefield deconvolution microscopy (and later, with super-resolution, structured-illumination microscopy) can clearly capture the early

  17. Quantitative analysis of autophagy using advanced 3D fluorescence microscopy.

    PubMed

    Changou, Chun A; Wolfson, Deanna L; Ahluwalia, Balpreet Singh; Bold, Richard J; Kung, Hsing-Jien; Chuang, Frank Y S

    2013-05-03

    Prostate cancer is the leading form of malignancies among men in the U.S. While surgery carries a significant risk of impotence and incontinence, traditional chemotherapeutic approaches have been largely unsuccessful. Hormone therapy is effective at early stage, but often fails with the eventual development of hormone-refractory tumors. We have been interested in developing therapeutics targeting specific metabolic deficiency of tumor cells. We recently showed that prostate tumor cells specifically lack an enzyme (argininosuccinate synthase, or ASS) involved in the synthesis of the amino acid arginine(1). This condition causes the tumor cells to become dependent on exogenous arginine, and they undergo metabolic stress when free arginine is depleted by arginine deiminase (ADI)(1,10). Indeed, we have shown that human prostate cancer cells CWR22Rv1 are effectively killed by ADI with caspase-independent apoptosis and aggressive autophagy (or macroautophagy)(1,2,3). Autophagy is an evolutionarily-conserved process that allows cells to metabolize unwanted proteins by lysosomal breakdown during nutritional starvation(4,5). Although the essential components of this pathway are well-characterized(6,7,8,9), many aspects of the molecular mechanism are still unclear - in particular, what is the role of autophagy in the death-response of prostate cancer cells after ADI treatment? In order to address this question, we required an experimental method to measure the level and extent of autophagic response in cells - and since there are no known molecular markers that can accurately track this process, we chose to develop an imaging-based approach, using quantitative 3D fluorescence microscopy(11,12). Using CWR22Rv1 cells specifically-labeled with fluorescent probes for autophagosomes and lysosomes, we show that 3D image stacks acquired with either widefield deconvolution microscopy (and later, with super-resolution, structured-illumination microscopy) can clearly capture the early

  18. 3D texture-based classification applied on brain white matter lesions on MR images

    NASA Astrophysics Data System (ADS)

    Leite, Mariana; Gobbi, David; Salluzi, Marina; Frayne, Richard; Lotufo, Roberto; Rittner, Letícia

    2016-03-01

    Lesions in the brain white matter are among the most frequently observed incidental findings on MR images. This paper presents a 3D texture-based classification to distinguish normal appearing white matter from white matter containing lesions, and compares it with the 2D approach. Texture analysis were based on 55 texture attributes extracted from gray-level histogram, gray-level co-occurrence matrix, run-length matrix and gradient. The results show that the 3D approach achieves an accuracy rate of 99.28%, against 97.41% of the 2D approach by using a support vector machine classifier. Furthermore, the most discriminating texture attributes on both 2D and 3D cases were obtained from the image histogram and co-occurrence matrix.

  19. Image processing and 3D visualization in the interpretation of patterned injury of the skin

    NASA Astrophysics Data System (ADS)

    Oliver, William R.; Altschuler, Bruce R.

    1995-09-01

    The use of image processing is becoming increasingly important in the evaluation of violent crime. While much work has been done in the use of these techniques for forensic purposes outside of forensic pathology, its use in the pathologic examination of wounding has been limited. We are investigating the use of image processing in the analysis of patterned injuries and tissue damage. Our interests are currently concentrated on 1) the use of image processing techniques to aid the investigator in observing and evaluating patterned injuries in photographs, 2) measurement of the 3D shape characteristics of surface lesions, and 3) correlation of patterned injuries with deep tissue injury as a problem in 3D visualization. We are beginning investigations in data-acquisition problems for performing 3D scene reconstructions from the pathology perspective of correlating tissue injury to scene features and trace evidence localization. Our primary tool for correlation of surface injuries with deep tissue injuries has been the comparison of processed surface injury photographs with 3D reconstructions from antemortem CT and MRI data. We have developed a prototype robot for the acquisition of 3D wound and scene data.

  20. 3D imaging of nanomaterials by discrete tomography.

    PubMed

    Batenburg, K J; Bals, S; Sijbers, J; Kübel, C; Midgley, P A; Hernandez, J C; Kaiser, U; Encina, E R; Coronado, E A; Van Tendeloo, G

    2009-05-01

    The field of discrete tomography focuses on the reconstruction of samples that consist of only a few different materials. Ideally, a three-dimensional (3D) reconstruction of such a sample should contain only one grey level for each of the compositions in the sample. By exploiting this property in the reconstruction algorithm, either the quality of the reconstruction can be improved significantly, or the number of required projection images can be reduced. The discrete reconstruction typically contains fewer artifacts and does not have to be segmented, as it already contains one grey level for each composition. Recently, a new algorithm, called discrete algebraic reconstruction technique (DART), has been proposed that can be used effectively on experimental electron tomography datasets. In this paper, we propose discrete tomography as a general reconstruction method for electron tomography in materials science. We describe the basic principles of DART and show that it can be applied successfully to three different types of samples, consisting of embedded ErSi(2) nanocrystals, a carbon nanotube grown from a catalyst particle and a single gold nanoparticle, respectively. PMID:19269094

  1. Deformable M-Reps for 3D Medical Image Segmentation

    PubMed Central

    Pizer, Stephen M.; Fletcher, P. Thomas; Joshi, Sarang; Thall, Andrew; Chen, James Z.; Fridman, Yonatan; Fritsch, Daniel S.; Gash, Graham; Glotzer, John M.; Jiroutek, Michael R.; Lu, Conglin; Muller, Keith E.; Tracton, Gregg; Yushkevich, Paul; Chaney, Edward L.

    2013-01-01

    M-reps (formerly called DSLs) are a multiscale medial means for modeling and rendering 3D solid geometry. They are particularly well suited to model anatomic objects and in particular to capture prior geometric information effectively in deformable models segmentation approaches. The representation is based on figural models, which define objects at coarse scale by a hierarchy of figures – each figure generally a slab representing a solid region and its boundary simultaneously. This paper focuses on the use of single figure models to segment objects of relatively simple structure. A single figure is a sheet of medial atoms, which is interpolated from the model formed by a net, i.e., a mesh or chain, of medial atoms (hence the name m-reps), each atom modeling a solid region via not only a position and a width but also a local figural frame giving figural directions and an object angle between opposing, corresponding positions on the boundary implied by the m-rep. The special capability of an m-rep is to provide spatial and orientational correspondence between an object in two different states of deformation. This ability is central to effective measurement of both geometric typicality and geometry to image match, the two terms of the objective function optimized in segmentation by deformable models. The other ability of m-reps central to effective segmentation is their ability to support segmentation at multiple levels of scale, with successively finer precision. Objects modeled by single figures are segmented first by a similarity transform augmented by object elongation, then by adjustment of each medial atom, and finally by displacing a dense sampling of the m-rep implied boundary. While these models and approaches also exist in 2D, we focus on 3D objects. The segmentation of the kidney from CT and the hippocampus from MRI serve as the major examples in this paper. The accuracy of segmentation as compared to manual, slice-by-slice segmentation is reported. PMID

  2. Predicting 3D pose in partially overlapped X-ray images of knee prostheses using model-based Roentgen stereophotogrammetric analysis (RSA).

    PubMed

    Hsu, Chi-Pin; Lin, Shang-Chih; Shih, Kao-Shang; Huang, Chang-Hung; Lee, Chian-Her

    2014-12-01

    After total knee replacement, the model-based Roentgen stereophotogrammetric analysis (RSA) technique has been used to monitor the status of prosthetic wear, misalignment, and even failure. However, the overlap of the prosthetic outlines inevitably increases errors in the estimation of prosthetic poses due to the limited amount of available outlines. In the literature, quite a few studies have investigated the problems induced by the overlapped outlines, and manual adjustment is still the mainstream. This study proposes two methods to automate the image processing of overlapped outlines prior to the pose registration of prosthetic models. The outline-separated method defines the intersected points and segments the overlapped outlines. The feature-recognized method uses the point and line features of the remaining outlines to initiate registration. Overlap percentage is defined as the ratio of overlapped to non-overlapped outlines. The simulated images with five overlapping percentages are used to evaluate the robustness and accuracy of the proposed methods. Compared with non-overlapped images, overlapped images reduce the number of outlines available for model-based RSA calculation. The maximum and root mean square errors for a prosthetic outline are 0.35 and 0.04 mm, respectively. The mean translation and rotation errors are 0.11 mm and 0.18°, respectively. The errors of the model-based RSA results are increased when the overlap percentage is beyond about 9%. In conclusion, both outline-separated and feature-recognized methods can be seamlessly integrated to automate the calculation of rough registration. This can significantly increase the clinical practicability of the model-based RSA technique.

  3. Image guidance using 3D-ultrasound (3D-US) for daily positioning of lumpectomy cavity for boost irradiation

    PubMed Central

    2011-01-01

    Purpose The goal of this study was to evaluate the use of 3D ultrasound (3DUS) breast IGRT for electron and photon lumpectomy site boost treatments. Materials and methods 20 patients with a prescribed photon or electron boost were enrolled in this study. 3DUS images were acquired both at time of simulation, to form a coregistered CT/3DUS dataset, and at the time of daily treatment delivery. Intrafractional motion between treatment and simulation 3DUS datasets were calculated to determine IGRT shifts. Photon shifts were evaluated isocentrically, while electron shifts were evaluated in the beam's-eye-view. Volume differences between simulation and first boost fraction were calculated. Further, to control for the effect of change in seroma/cavity volume due to time lapse between the 2 sets of images, interfraction IGRT shifts using the first boost fraction as reference for all subsequent treatment fractions were also calculated. Results For photon boosts, IGRT shifts were 1.1 ± 0.5 cm and 50% of fractions required a shift >1.0 cm. Volume change between simulation and boost was 49 ± 31%. Shifts when using the first boost fraction as reference were 0.8 ± 0.4 cm and 24% required a shift >1.0 cm. For electron boosts, shifts were 1.0 ± 0.5 cm and 52% fell outside the dosimetric penumbra. Interfraction analysis relative to the first fraction noted the shifts to be 0.8 ± 0.4 cm and 36% fell outside the penumbra. Conclusion The lumpectomy cavity can shift significantly during fractionated radiation therapy. 3DUS can be used to image the cavity and correct for interfractional motion. Further studies to better define the protocol for clinical application of IGRT in breast cancer is needed. PMID:21554697

  4. Measuring Femoral Torsion In Vivo Using Freehand 3-D Ultrasound Imaging.

    PubMed

    Passmore, Elyse; Pandy, Marcus G; Graham, H Kerr; Sangeux, Morgan

    2016-02-01

    Despite variation in bone geometry, muscle and joint function is often investigated using generic musculoskeletal models. Patient-specific bone geometry can be obtained from computerised tomography, which involves ionising radiation, or magnetic resonance imaging (MRI), which is costly and time consuming. Freehand 3-D ultrasound provides an alternative to obtain bony geometry. The purpose of this study was to determine the accuracy and repeatability of 3-D ultrasound in measuring femoral torsion. Measurements of femoral torsion were performed on 10 healthy adults using MRI and 3-D ultrasound. Measurements of femoral torsion from 3-D ultrasound were, on average, smaller than those from MRI (mean difference = 1.8°; 95% confidence interval: -3.9°, 7.5°). MRI and 3-D ultrasound had Bland and Altman repeatability coefficients of 3.1° and 3.7°, respectively. Accurate measurements of femoral torsion were obtained with 3-D ultrasound offering the potential to acquire patient-specific bone geometry for musculoskeletal modelling. Three-dimensional ultrasound is non-invasive and relatively inexpensive and can be integrated into gait analysis.

  5. 3-D transient analysis of pebble-bed HTGR by TORT-TD/ATTICA3D

    SciTech Connect

    Seubert, A.; Sureda, A.; Lapins, J.; Buck, M.; Bader, J.; Laurien, E.

    2012-07-01

    As most of the acceptance criteria are local core parameters, application of transient 3-D fine mesh neutron transport and thermal hydraulics coupled codes is mandatory for best estimate evaluations of safety margins. This also applies to high-temperature gas cooled reactors (HTGR). Application of 3-D fine-mesh transient transport codes using few energy groups coupled with 3-D thermal hydraulics codes becomes feasible in view of increasing computing power. This paper describes the discrete ordinates based coupled code system TORT-TD/ATTICA3D that has recently been extended by a fine-mesh diffusion solver. Based on transient analyses for the PBMR-400 design, the transport/diffusion capabilities are demonstrated and 3-D local flux and power redistribution effects during a partial control rod withdrawal are shown. (authors)

  6. 3D imaging of microbial biofilms: integration of synchrotron imaging and an interactive visualization interface.

    PubMed

    Thomas, Mathew; Marshall, Matthew J; Miller, Erin A; Kuprat, Andrew P; Kleese-van Dam, Kerstin; Carson, James P

    2014-01-01

    Understanding the structure of microbial biofilms and other complex microbial communities is now possible through x-ray microtomography imaging. Feature detection and image processing for this type of data focuses on efficiently identifying and segmenting biofilm biomass in the datasets. These datasets are very large and segmentation often requires manual interventions due to low contrast between objects and high noise levels. New software is required for the effectual interpretation and analysis of such data. This work specifies the evolution and ability to analyze and visualize high resolution x-ray microtomography datasets. Major functionalities include read/write with multiple popular file formats, down-sampling large datasets to generate quick-views on low-power computers, image processing, and generating high quality output images and videos. These capabilities have been wrapped into a new interactive software toolkit, BiofilmViewer. A major focus of our work is to facilitate data transfer and to utilize the capabilities of existing powerful visualization and analytical tools including MATLAB, ImageJ, Paraview, Chimera, Vaa3D, Cell Profiler, Icy, BioImageXD, and Drishti.

  7. Individual 3D region-of-interest atlas of the human brain: knowledge-based class image analysis for extraction of anatomical objects

    NASA Astrophysics Data System (ADS)

    Wagenknecht, Gudrun; Kaiser, Hans-Juergen; Sabri, Osama; Buell, Udalrich

    2000-06-01

    After neural network-based classification of tissue types, the second step of atlas extraction is knowledge-based class image analysis to get anatomically meaningful objects. Basic algorithms are region growing, mathematical morphology operations, and template matching. A special algorithm was designed for each object. The class label of each voxel and the knowledge about the relative position of anatomical objects to each other and to the sagittal midplane of the brain can be utilized for object extraction. User interaction is only necessary to define starting, mid- and end planes for most object extractions and to determine the number of iterations for erosion and dilation operations. Extraction can be done for the following anatomical brain regions: cerebrum; cerebral hemispheres; cerebellum; brain stem; white matter (e.g., centrum semiovale); gray matter [cortex, frontal, parietal, occipital, temporal lobes, cingulum, insula, basal ganglia (nuclei caudati, putamen, thalami)]. For atlas- based quantification of functional data, anatomical objects can be convoluted with the point spread function of functional data to take into account the different resolutions of morphological and functional modalities. This method allows individual atlas extraction from MRI image data of a patient without the need of warping individual data to an anatomical or statistical MRI brain atlas.

  8. Assessing 3D tunnel position in ACL reconstruction using a novel single image 3D-2D registration

    NASA Astrophysics Data System (ADS)

    Kang, X.; Yau, W. P.; Otake, Y.; Cheung, P. Y. S.; Hu, Y.; Taylor, R. H.

    2012-02-01

    The routinely used procedure for evaluating tunnel positions following anterior cruciate ligament (ACL) reconstructions based on standard X-ray images is known to pose difficulties in terms of obtaining accurate measures, especially in providing three-dimensional tunnel positions. This is largely due to the variability in individual knee joint pose relative to X-ray plates. Accurate results were reported using postoperative CT. However, its extensive usage in clinical routine is hampered by its major requirement of having CT scans of individual patients, which is not available for most ACL reconstructions. These difficulties are addressed through the proposed method, which aligns a knee model to X-ray images using our novel single-image 3D-2D registration method and then estimates the 3D tunnel position. In the proposed method, the alignment is achieved by using a novel contour-based 3D-2D registration method wherein image contours are treated as a set of oriented points. However, instead of using some form of orientation weighting function and multiplying it with a distance function, we formulate the 3D-2D registration as a probability density estimation using a mixture of von Mises-Fisher-Gaussian (vMFG) distributions and solve it through an expectation maximization (EM) algorithm. Compared with the ground-truth established from postoperative CT, our registration method in an experiment using a plastic phantom showed accurate results with errors of (-0.43°+/-1.19°, 0.45°+/-2.17°, 0.23°+/-1.05°) and (0.03+/-0.55, -0.03+/-0.54, -2.73+/-1.64) mm. As for the entry point of the ACL tunnel, one of the key measurements, it was obtained with high accuracy of 0.53+/-0.30 mm distance errors.

  9. Accurate 3D kinematic measurement of temporomandibular joint using X-ray fluoroscopic images

    NASA Astrophysics Data System (ADS)

    Yamazaki, Takaharu; Matsumoto, Akiko; Sugamoto, Kazuomi; Matsumoto, Ken; Kakimoto, Naoya; Yura, Yoshiaki

    2014-04-01

    Accurate measurement and analysis of 3D kinematics of temporomandibular joint (TMJ) is very important for assisting clinical diagnosis and treatment of prosthodontics and orthodontics, and oral surgery. This study presents a new 3D kinematic measurement technique of the TMJ using X-ray fluoroscopic images, which can easily obtain the TMJ kinematic data in natural motion. In vivo kinematics of the TMJ (maxilla and mandibular bone) is determined using a feature-based 2D/3D registration, which uses beads silhouette on fluoroscopic images and 3D surface bone models with beads. The 3D surface models of maxilla and mandibular bone with beads were created from CT scans data of the subject using the mouthpiece with the seven strategically placed beads. In order to validate the accuracy of pose estimation for the maxilla and mandibular bone, computer simulation test was performed using five patterns of synthetic tantalum beads silhouette images. In the clinical applications, dynamic movement during jaw opening and closing was conducted, and the relative pose of the mandibular bone with respect to the maxilla bone was determined. The results of computer simulation test showed that the root mean square errors were sufficiently smaller than 1.0 mm and 1.0 degree. In the results of clinical application, during jaw opening from 0.0 to 36.8 degree of rotation, mandibular condyle exhibited 19.8 mm of anterior sliding relative to maxillary articular fossa, and these measurement values were clinically similar to the previous reports. Consequently, present technique was thought to be suitable for the 3D TMJ kinematic analysis.

  10. 3-D Adaptive Sparsity Based Image Compression with Applications to Optical Coherence Tomography

    PubMed Central

    Fang, Leyuan; Li, Shutao; Kang, Xudong; Izatt, Joseph A.; Farsiu, Sina

    2015-01-01

    We present a novel general-purpose compression method for tomographic images, termed 3D adaptive sparse representation based compression (3D-ASRC). In this paper, we focus on applications of 3D-ASRC for the compression of ophthalmic 3D optical coherence tomography (OCT) images. The 3D-ASRC algorithm exploits correlations among adjacent OCT images to improve compression performance, yet is sensitive to preserving their differences. Due to the inherent denoising mechanism of the sparsity based 3D-ASRC, the quality of the compressed images are often better than the raw images they are based on. Experiments on clinical-grade retinal OCT images demonstrate the superiority of the proposed 3D-ASRC over other well-known compression methods. PMID:25561591

  11. Lossy compression of hyperspectral images using shearlet transform and 3D SPECK

    NASA Astrophysics Data System (ADS)

    Karami, A.

    2015-10-01

    In this paper, a new lossy compression method for hyperspectral images (HSI) is introduced. HSI are considered as a 3D dataset with two dimensions in the spatial and one dimension in the spectral domain. In the proposed method, first 3D multidirectional anisotropic shearlet transform is applied to the HSI. Because, unlike traditional wavelets, shearlets are theoretically optimal in representing images with edges and other geometrical features. Second, soft thresholding method is applied to the shearlet transform coefficients and finally the modified coefficients are encoded using Three Dimensional- Set Partitioned Embedded bloCK (3D SPECK). Our simulation results show that the proposed method, in comparison with well-known approaches such as 3D SPECK (using 3D wavelet) and combined PCA and JPEG2000 algorithms, provides a higher SNR (signal to noise ratio) for any given compression ratio (CR). It is noteworthy to mention that the superiority of proposed method is distinguishable as the value of CR grows. In addition, the effect of proposed method on the spectral unmixing analysis is also evaluated.

  12. Computational-optical microscopy for 3D biological imaging beyond the diffraction limit

    NASA Astrophysics Data System (ADS)

    Grover, Ginni

    In recent years, super-resolution imaging has become an important fluorescent microscopy tool. It has enabled imaging of structures smaller than the optical diffraction limit with resolution less than 50 nm. Extension to high-resolution volume imaging has been achieved by integration with various optical techniques. In this thesis, development of a fluorescent microscope to enable high resolution, extended depth, three dimensional (3D) imaging is discussed; which is achieved by integration of computational methods with optical systems. In the first part of the thesis, point spread function (PSF) engineering for volume imaging is discussed. A class of PSFs, referred to as double-helix (DH) PSFs, is generated. The PSFs exhibit two focused spots in the image plane which rotate about the optical axis, encoding depth in rotation of the image. These PSFs extend the depth-of-field up to a factor of ˜5. Precision performance of the DH-PSFs, based on an information theoretical analysis, is compared with other 3D methods with conclusion that the DH-PSFs provide the best precision and the longest depth-of-field. Out of various possible DH-PSFs, a suitable PSF is obtained for super-resolution microscopy. The DH-PSFs are implemented in imaging systems, such as a microscope, with a special phase modulation at the pupil plane. Surface-relief elements which are polarization-insensitive and ˜90% light efficient are developed for phase modulation. The photon-efficient DH-PSF microscopes thus developed are used, along with optimal position estimation algorithms, for tracking and super-resolution imaging in 3D. Imaging at depths-of-field of up to 2.5 microm is achieved without focus scanning. Microtubules were imaged with 3D resolution of (6, 9, 39) nm, which is in close agreement with the theoretical limit. A quantitative study of co-localization of two proteins in volume was conducted in live bacteria. In the last part of the thesis practical aspects of the DH-PSF microscope are

  13. 3-D Imaging Systems for Agricultural Applications-A Review.

    PubMed

    Vázquez-Arellano, Manuel; Griepentrog, Hans W; Reiser, David; Paraforos, Dimitris S

    2016-01-01

    Efficiency increase of resources through automation of agriculture requires more information about the production process, as well as process and machinery status. Sensors are necessary for monitoring the status and condition of production by recognizing the surrounding structures such as objects, field structures, natural or artificial markers, and obstacles. Currently, three dimensional (3-D) sensors are economically affordable and technologically advanced to a great extent, so a breakthrough is already possible if enough research projects are commercialized. The aim of this review paper is to investigate the state-of-the-art of 3-D vision systems in agriculture, and the role and value that only 3-D data can have to provide information about environmental structures based on the recent progress in optical 3-D sensors. The structure of this research consists of an overview of the different optical 3-D vision techniques, based on the basic principles. Afterwards, their application in agriculture are reviewed. The main focus lays on vehicle navigation, and crop and animal husbandry. The depth dimension brought by 3-D sensors provides key information that greatly facilitates the implementation of automation and robotics in agriculture.

  14. 3-D Imaging Systems for Agricultural Applications-A Review.

    PubMed

    Vázquez-Arellano, Manuel; Griepentrog, Hans W; Reiser, David; Paraforos, Dimitris S

    2016-01-01

    Efficiency increase of resources through automation of agriculture requires more information about the production process, as well as process and machinery status. Sensors are necessary for monitoring the status and condition of production by recognizing the surrounding structures such as objects, field structures, natural or artificial markers, and obstacles. Currently, three dimensional (3-D) sensors are economically affordable and technologically advanced to a great extent, so a breakthrough is already possible if enough research projects are commercialized. The aim of this review paper is to investigate the state-of-the-art of 3-D vision systems in agriculture, and the role and value that only 3-D data can have to provide information about environmental structures based on the recent progress in optical 3-D sensors. The structure of this research consists of an overview of the different optical 3-D vision techniques, based on the basic principles. Afterwards, their application in agriculture are reviewed. The main focus lays on vehicle navigation, and crop and animal husbandry. The depth dimension brought by 3-D sensors provides key information that greatly facilitates the implementation of automation and robotics in agriculture. PMID:27136560

  15. 3-D Imaging Systems for Agricultural Applications—A Review

    PubMed Central

    Vázquez-Arellano, Manuel; Griepentrog, Hans W.; Reiser, David; Paraforos, Dimitris S.

    2016-01-01

    Efficiency increase of resources through automation of agriculture requires more information about the production process, as well as process and machinery status. Sensors are necessary for monitoring the status and condition of production by recognizing the surrounding structures such as objects, field structures, natural or artificial markers, and obstacles. Currently, three dimensional (3-D) sensors are economically affordable and technologically advanced to a great extent, so a breakthrough is already possible if enough research projects are commercialized. The aim of this review paper is to investigate the state-of-the-art of 3-D vision systems in agriculture, and the role and value that only 3-D data can have to provide information about environmental structures based on the recent progress in optical 3-D sensors. The structure of this research consists of an overview of the different optical 3-D vision techniques, based on the basic principles. Afterwards, their application in agriculture are reviewed. The main focus lays on vehicle navigation, and crop and animal husbandry. The depth dimension brought by 3-D sensors provides key information that greatly facilitates the implementation of automation and robotics in agriculture. PMID:27136560

  16. 3D surface imaging for guidance in breast cancer radiotherapy: organs at risk

    NASA Astrophysics Data System (ADS)

    Alderliesten, Tanja; Betgen, Anja; van Vliet-Vroegindeweij, Corine; Remeijer, Peter

    2013-03-01

    Purpose: To evaluate the variability in heart position in deep-inspiration breath-hold (DIBH) radiotherapy for breast cancer when 3D surface imaging would be used for monitoring the depth of the breath hold during treatment. Materials and Methods: Ten patients who received DIBH radiotherapy after breast-conserving surgery (BCS) were included. Retrospectively, heart-based registrations were performed for cone-beam computed tomography (CBCT) to planning CT and breast surface registrations were performed for a 3D surface (two different regions of interest [ROIs]), captured concurrently with CBCT, to planning CT. The resulting setup errors were compared with linear regression analysis and receiver operating characteristic (ROC) analysis was performed to investigate the prediction quality of 3D surface imaging for 3D heart displacement. Further, the residual setup errors (systematic [Σ] and random [σ]) of the heart were estimated relative to the surface registrations. Results: When surface imaging [ROIleft-side;ROIboth-sides] would be used for monitoring, the residual errors of the heart position are in left-right: Σ=[0.360.12], σ=[0.160.14] cranio-caudal: Σ=[0.540.54], σ=[0.280.31] and in anteriorposterior: Σ=[0.180.14], σ=[0.200.19] cm. Correlations between setup errors were: R2 = [0.23;0.73], [0.67;0.65], [0.65;0.73] in left-right, cranio-caudal, and anterior-posterior direction, respectively. ROC analysis resulted in an area under the ROC curve of [0.82;0.78]. Conclusion: The use of ROIboth-sides provided promising results. However, considerable variability in the heart position, particularly in CC direction, is observed when 3D surface imaging would be used for guidance in DIBH radiotherapy after BCS. Planning organ at risk volume margins should be used to take into account the heart-position variability.

  17. Dense 3d Point Cloud Generation from Uav Images from Image Matching and Global Optimazation

    NASA Astrophysics Data System (ADS)

    Rhee, S.; Kim, T.

    2016-06-01

    3D spatial information from unmanned aerial vehicles (UAV) images is usually provided in the form of 3D point clouds. For various UAV applications, it is important to generate dense 3D point clouds automatically from over the entire extent of UAV images. In this paper, we aim to apply image matching for generation of local point clouds over a pair or group of images and global optimization to combine local point clouds over the whole region of interest. We tried to apply two types of image matching, an object space-based matching technique and an image space-based matching technique, and to compare the performance of the two techniques. The object space-based matching used here sets a list of candidate height values for a fixed horizontal position in the object space. For each height, its corresponding image point is calculated and similarity is measured by grey-level correlation. The image space-based matching used here is a modified relaxation matching. We devised a global optimization scheme for finding optimal pairs (or groups) to apply image matching, defining local match region in image- or object- space, and merging local point clouds into a global one. For optimal pair selection, tiepoints among images were extracted and stereo coverage network was defined by forming a maximum spanning tree using the tiepoints. From experiments, we confirmed that through image matching and global optimization, 3D point clouds were generated successfully. However, results also revealed some limitations. In case of image-based matching results, we observed some blanks in 3D point clouds. In case of object space-based matching results, we observed more blunders than image-based matching ones and noisy local height variations. We suspect these might be due to inaccurate orientation parameters. The work in this paper is still ongoing. We will further test our approach with more precise orientation parameters.

  18. Segmented images and 3D images for studying the anatomical structures in MRIs

    NASA Astrophysics Data System (ADS)

    Lee, Yong Sook; Chung, Min Suk; Cho, Jae Hyun

    2004-05-01

    For identifying the pathological findings in MRIs, the anatomical structures in MRIs should be identified in advance. For studying the anatomical structures in MRIs, an education al tool that includes the horizontal, coronal, sagittal MRIs of entire body, corresponding segmented images, 3D images, and browsing software is necessary. Such an educational tool, however, is hard to obtain. Therefore, in this research, such an educational tool which helps medical students and doctors study the anatomical structures in MRIs was made as follows. A healthy, young Korean male adult with standard body shape was selected. Six hundred thirteen horizontal MRIs of the entire body were scanned and inputted to the personal computer. Sixty anatomical structures in the horizontal MRIs were segmented to make horizontal segmented images. Coronal, sagittal MRIs and coronal, sagittal segmented images were made. 3D images of anatomical structures in the segmented images were reconstructed by surface rendering method. Browsing software of the MRIs, segmented images, and 3D images was composed. This educational tool that includes horizontal, coronal, sagittal MRIs of entire body, corresponding segmented images, 3D images, and browsing software is expected to help medical students and doctors study anatomical structures in MRIs.

  19. 3-D Reconstruction From 2-D Radiographic Images and Its Application to Clinical Veterinary Medicine

    NASA Astrophysics Data System (ADS)

    Hamamoto, Kazuhiko; Sato, Motoyoshi

    3D imaging technique is very important and indispensable in diagnosis. The main stream of the technique is one in which 3D image is reconstructed from a set of slice images, such as X-ray CT and MRI. However, these systems require large space and high costs. On the other hand, a low cost and small size 3D imaging system is needed in clinical veterinary medicine, for example, in the case of diagnosis in X-ray car or pasture area. We propose a novel 3D imaging technique using 2-D X-ray radiographic images. This system can be realized by cheaper system than X-ray CT and enables to get 3D image in X-ray car or portable X-ray equipment. In this paper, a 3D visualization technique from 2-D radiographic images is proposed and several reconstructions are shown. These reconstructions are evaluated by veterinarians.

  20. Radar Imaging of Spheres in 3D using MUSIC

    SciTech Connect

    Chambers, D H; Berryman, J G

    2003-01-21

    We have shown that multiple spheres can be imaged by linear and planar EM arrays using only one component of polarization. The imaging approach involves calculating the SVD of the scattering response matrix, selecting a subset of singular values that represents noise, and evaluating the MUSIC functional. The noise threshold applied to the spectrum of singular values for optimal performance is typically around 1%. The resulting signal subspace includes more than one singular value per sphere. The presence of reflections from the ground improves height localization, even for a linear array parallel to the ground. However, the interference between direct and reflected energy modulates the field, creating periodic nulls that can obscure targets in typical images. These nulls are largely eliminated by normalizing the MUSIC functional with the broadside beam pattern of the array. The resulting images show excellent localization for 1 and 2 spheres. The performance for the 3 sphere configurations are complicated by shadowing effects and the greater range of the 3rd sphere in case 2. Two of the three spheres are easily located by MUSIC but the third is difficult to distinguish from other local maxima of the complex imaging functional. Improvement is seen when the linear array is replace with a planar array, which increases the effective aperture height. Further analysis of the singular values and their relationship to modes of scattering from the spheres, as well as better ways to exploit polarization, should improve performance. Work along these lines is currently being pursued by the authors.

  1. 3D Network Analysis for Indoor Space Applications

    NASA Astrophysics Data System (ADS)

    Tsiliakou, E.; Dimopoulou, E.

    2016-10-01

    Indoor space differs from outdoor environments, since it is characterized by a higher level of structural complexity, geometry, as well as topological relations. Indoor space can be considered as the most important component in a building's conceptual modelling, on which applications such as indoor navigation, routing or analysis are performed. Therefore, the conceptual meaning of sub spaces or the activities taking place in physical building boundaries (e.g. walls), require the comprehension of the building's indoor hierarchical structure. The scope of this paper is to perform 3D network analysis in a building's interior and is structured as follows: In Section 1 the definition of indoor space is provided and indoor navigation requirements are analysed. Section 2 describes the processes of indoor space modeling, as well as routing applications. In Section 3, a case study is examined involving a 3D building model generated in CityEngine (exterior shell) and ArcScene (interior parts), in which the use of commercially available software tools (ArcGIS, ESRI), in terms of indoor routing and 3D network analysis, are explored. The fundamentals of performing 3D analysis with the ArcGIS Network Analyst extension were tested. Finally a geoprocessing model was presented, which was specifically designed to be used to interactively find the best route in ArcScene. The paper ends with discussion and concluding remarks on Section 4.

  2. 3D Imaging of Nanoparticle Distribution in Biological Tissue by Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gimenez, Y.; Busser, B.; Trichard, F.; Kulesza, A.; Laurent, J. M.; Zaun, V.; Lux, F.; Benoit, J. M.; Panczer, G.; Dugourd, P.; Tillement, O.; Pelascini, F.; Sancey, L.; Motto-Ros, V.

    2016-07-01

    Nanomaterials represent a rapidly expanding area of research with huge potential for future medical applications. Nanotechnology indeed promises to revolutionize diagnostics, drug delivery, gene therapy, and many other areas of research. For any biological investigation involving nanomaterials, it is crucial to study the behavior of such nano-objects within tissues to evaluate both their efficacy and their toxicity. Here, we provide the first account of 3D label-free nanoparticle imaging at the entire-organ scale. The technology used is known as laser-induced breakdown spectroscopy (LIBS) and possesses several advantages such as speed of operation, ease of use and full compatibility with optical microscopy. We then used two different but complementary approaches to achieve 3D elemental imaging with LIBS: a volume reconstruction of a sliced organ and in-depth analysis. This proof-of-concept study demonstrates the quantitative imaging of both endogenous and exogenous elements within entire organs and paves the way for innumerable applications.

  3. Graph-regularized 3D shape reconstruction from highly anisotropic and noisy images

    PubMed Central

    Heinrich, Stephanie; Drewe, Philipp; Lou, Xinghua; Umrania, Shefali; Rätsch, Gunnar

    2014-01-01

    Analysis of microscopy images can provide insight into many biological processes. One particularly challenging problem is cellular nuclear segmentation in highly anisotropic and noisy 3D image data. Manually localizing and segmenting each and every cellular nucleus is very time-consuming, which remains a bottleneck in large-scale biological experiments. In this work, we present a tool for automated segmentation of cellular nuclei from 3D fluorescent microscopic data. Our tool is based on state-of-the-art image processing and machine learning techniques and provides a user-friendly graphical user interface. We show that our tool is as accurate as manual annotation and greatly reduces the time for the registration. PMID:25866587

  4. Dual-view integral imaging 3D display using polarizer parallax barriers.

    PubMed

    Wu, Fei; Wang, Qiong-Hua; Luo, Cheng-Gao; Li, Da-Hai; Deng, Huan

    2014-04-01

    We propose a dual-view integral imaging (DVII) 3D display using polarizer parallax barriers (PPBs). The DVII 3D display consists of a display panel, a microlens array, and two PPBs. The elemental images (EIs) displayed on the left and right half of the display panel are captured from two different 3D scenes, respectively. The lights emitted from two kinds of EIs are modulated by the left and right half of the microlens array to present two different 3D images, respectively. A prototype of the DVII 3D display is developed, and the experimental results agree well with the theory.

  5. Free segmentation in rendered 3D images through synthetic impulse response in integral imaging

    NASA Astrophysics Data System (ADS)

    Martínez-Corral, M.; Llavador, A.; Sánchez-Ortiga, E.; Saavedra, G.; Javidi, B.

    2016-06-01

    Integral Imaging is a technique that has the capability of providing not only the spatial, but also the angular information of three-dimensional (3D) scenes. Some important applications are the 3D display and digital post-processing as for example, depth-reconstruction from integral images. In this contribution we propose a new reconstruction method that takes into account the integral image and a simplified version of the impulse response function (IRF) of the integral imaging (InI) system to perform a two-dimensional (2D) deconvolution. The IRF of an InI system has a periodic structure that depends directly on the axial position of the object. Considering different periods of the IRFs we recover by deconvolution the depth information of the 3D scene. An advantage of our method is that it is possible to obtain nonconventional reconstructions by considering alternative synthetic impulse responses. Our experiments show the feasibility of the proposed method.

  6. A comparison of 3D poly(ε-caprolactone) tissue engineering scaffolds produced with conventional and additive manufacturing techniques by means of quantitative analysis of SR μ-CT images

    NASA Astrophysics Data System (ADS)

    Brun, F.; Intranuovo, F.; Mohammadi, S.; Domingos, M.; Favia, P.; Tromba, G.

    2013-07-01

    The technique used to produce a 3D tissue engineering (TE) scaffold is of fundamental importance in order to guarantee its proper morphological characteristics. An accurate assessment of the resulting structural properties is therefore crucial in order to evaluate the effectiveness of the produced scaffold. Synchrotron radiation (SR) computed microtomography (μ-CT) combined with further image analysis seems to be one of the most effective techniques to this aim. However, a quantitative assessment of the morphological parameters directly from the reconstructed images is a non trivial task. This study considers two different poly(ε-caprolactone) (PCL) scaffolds fabricated with a conventional technique (Solvent Casting Particulate Leaching, SCPL) and an additive manufacturing (AM) technique (BioCell Printing), respectively. With the first technique it is possible to produce scaffolds with random, non-regular, rounded pore geometry. The AM technique instead is able to produce scaffolds with square-shaped interconnected pores of regular dimension. Therefore, the final morphology of the AM scaffolds can be predicted and the resulting model can be used for the validation of the applied imaging and image analysis protocols. It is here reported a SR μ-CT image analysis approach that is able to effectively and accurately reveal the differences in the pore- and throat-size distributions as well as connectivity of both AM and SCPL scaffolds.

  7. Implementation of wireless 3D stereo image capture system and 3D exaggeration algorithm for the region of interest

    NASA Astrophysics Data System (ADS)

    Ham, Woonchul; Song, Chulgyu; Lee, Kangsan; Badarch, Luubaatar

    2015-05-01

    In this paper, we introduce the mobile embedded system implemented for capturing stereo image based on two CMOS camera module. We use WinCE as an operating system and capture the stereo image by using device driver for CMOS camera interface and Direct Draw API functions. We aslo comments on the GPU hardware and CUDA programming for implementation of 3D exaggeraion algorithm for ROI by adjusting and synthesizing the disparity value of ROI (region of interest) in real time. We comment on the pattern of aperture for deblurring of CMOS camera module based on the Kirchhoff diffraction formula and clarify the reason why we can get more sharp and clear image by blocking some portion of aperture or geometric sampling. Synthesized stereo image is real time monitored on the shutter glass type three-dimensional LCD monitor and disparity values of each segment are analyzed to prove the validness of emphasizing effect of ROI.

  8. Imaging 3D strain field monitoring during hydraulic fracturing processes

    NASA Astrophysics Data System (ADS)

    Chen, Rongzhang; Zaghloul, Mohamed A. S.; Yan, Aidong; Li, Shuo; Lu, Guanyi; Ames, Brandon C.; Zolfaghari, Navid; Bunger, Andrew P.; Li, Ming-Jun; Chen, Kevin P.

    2016-05-01

    In this paper, we present a distributed fiber optic sensing scheme to study 3D strain fields inside concrete cubes during hydraulic fracturing process. Optical fibers embedded in concrete were used to monitor 3D strain field build-up with external hydraulic pressures. High spatial resolution strain fields were interrogated by the in-fiber Rayleigh backscattering with 1-cm spatial resolution using optical frequency domain reflectometry. The fiber optics sensor scheme presented in this paper provides scientists and engineers a unique laboratory tool to understand the hydraulic fracturing processes in various rock formations and its impacts to environments.

  9. Quantitative 3-D imaging topogrammetry for telemedicine applications

    NASA Technical Reports Server (NTRS)

    Altschuler, Bruce R.

    1994-01-01

    The technology to reliably transmit high-resolution visual imagery over short to medium distances in real time has led to the serious considerations of the use of telemedicine, telepresence, and telerobotics in the delivery of health care. These concepts may involve, and evolve toward: consultation from remote expert teaching centers; diagnosis; triage; real-time remote advice to the surgeon; and real-time remote surgical instrument manipulation (telerobotics with virtual reality). Further extrapolation leads to teledesign and telereplication of spare surgical parts through quantitative teleimaging of 3-D surfaces tied to CAD/CAM devices and an artificially intelligent archival data base of 'normal' shapes. The ability to generate 'topogrames' or 3-D surface numerical tables of coordinate values capable of creating computer-generated virtual holographic-like displays, machine part replication, and statistical diagnostic shape assessment is critical to the progression of telemedicine. Any virtual reality simulation will remain in 'video-game' realm until realistic dimensional and spatial relational inputs from real measurements in vivo during surgeries are added to an ever-growing statistical data archive. The challenges of managing and interpreting this 3-D data base, which would include radiographic and surface quantitative data, are considerable. As technology drives toward dynamic and continuous 3-D surface measurements, presenting millions of X, Y, Z data points per second of flexing, stretching, moving human organs, the knowledge base and interpretive capabilities of 'brilliant robots' to work as a surgeon's tireless assistants becomes imaginable. The brilliant robot would 'see' what the surgeon sees--and more, for the robot could quantify its 3-D sensing and would 'see' in a wider spectral range than humans, and could zoom its 'eyes' from the macro world to long-distance microscopy. Unerring robot hands could rapidly perform machine-aided suturing with

  10. 3D fingerprint imaging system based on full-field fringe projection profilometry

    NASA Astrophysics Data System (ADS)

    Huang, Shujun; Zhang, Zonghua; Zhao, Yan; Dai, Jie; Chen, Chao; Xu, Yongjia; Zhang, E.; Xie, Lili

    2014-01-01

    As an unique, unchangeable and easily acquired biometrics, fingerprint has been widely studied in academics and applied in many fields over the years. The traditional fingerprint recognition methods are based on the obtained 2D feature of fingerprint. However, fingerprint is a 3D biological characteristic. The mapping from 3D to 2D loses 1D information and causes nonlinear distortion of the captured fingerprint. Therefore, it is becoming more and more important to obtain 3D fingerprint information for recognition. In this paper, a novel 3D fingerprint imaging system is presented based on fringe projection technique to obtain 3D features and the corresponding color texture information. A series of color sinusoidal fringe patterns with optimum three-fringe numbers are projected onto a finger surface. From another viewpoint, the fringe patterns are deformed by the finger surface and captured by a CCD camera. 3D shape data of the finger can be obtained from the captured fringe pattern images. This paper studies the prototype of the 3D fingerprint imaging system, including principle of 3D fingerprint acquisition, hardware design of the 3D imaging system, 3D calibration of the system, and software development. Some experiments are carried out by acquiring several 3D fingerprint data. The experimental results demonstrate the feasibility of the proposed 3D fingerprint imaging system.

  11. Display of travelling 3D scenes from single integral-imaging capture

    NASA Astrophysics Data System (ADS)

    Martinez-Corral, Manuel; Dorado, Adrian; Hong, Seok-Min; Sola-Pikabea, Jorge; Saavedra, Genaro

    2016-06-01

    Integral imaging (InI) is a 3D auto-stereoscopic technique that captures and displays 3D images. We present a method for easily projecting the information recorded with this technique by transforming the integral image into a plenoptic image, as well as choosing, at will, the field of view (FOV) and the focused plane of the displayed plenoptic image. Furthermore, with this method we can generate a sequence of images that simulates a camera travelling through the scene from a single integral image. The application of this method permits to improve the quality of 3D display images and videos.

  12. 2D image classification for 3D anatomy localization: employing deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    de Vos, Bob D.; Wolterink, Jelmer M.; de Jong, Pim A.; Viergever, Max A.; Išgum, Ivana

    2016-03-01

    Localization of anatomical regions of interest (ROIs) is a preprocessing step in many medical image analysis tasks. While trivial for humans, it is complex for automatic methods. Classic machine learning approaches require the challenge of hand crafting features to describe differences between ROIs and background. Deep convolutional neural networks (CNNs) alleviate this by automatically finding hierarchical feature representations from raw images. We employ this trait to detect anatomical ROIs in 2D image slices in order to localize them in 3D. In 100 low-dose non-contrast enhanced non-ECG synchronized screening chest CT scans, a reference standard was defined by manually delineating rectangular bounding boxes around three anatomical ROIs -- heart, aortic arch, and descending aorta. Every anatomical ROI was automatically identified using a combination of three CNNs, each analyzing one orthogonal image plane. While single CNNs predicted presence or absence of a specific ROI in the given plane, the combination of their results provided a 3D bounding box around it. Classification performance of each CNN, expressed in area under the receiver operating characteristic curve, was >=0.988. Additionally, the performance of ROI localization was evaluated. Median Dice scores for automatically determined bounding boxes around the heart, aortic arch, and descending aorta were 0.89, 0.70, and 0.85 respectively. The results demonstrate that accurate automatic 3D localization of anatomical structures by CNN-based 2D image classification is feasible.

  13. Lensfree diffractive tomography for the imaging of 3D cell cultures

    PubMed Central

    Momey, F.; Berdeu, A.; Bordy, T.; Dinten, J.-M.; Marcel, F. Kermarrec; Picollet-D’hahan, N.; Gidrol, X.; Allier, C.

    2016-01-01

    New microscopes are needed to help realize the full potential of 3D organoid culture studies. In order to image large volumes of 3D organoid cultures while preserving the ability to catch every single cell, we propose a new imaging platform based on lensfree microscopy. We have built a lensfree diffractive tomography setup performing multi-angle acquisitions of 3D organoid culture embedded in Matrigel and developed a dedicated 3D holographic reconstruction algorithm based on the Fourier diffraction theorem. With this new imaging platform, we have been able to reconstruct a 3D volume as large as 21.5 mm3 of a 3D organoid culture of prostatic RWPE1 cells showing the ability of these cells to assemble in 3D intricate cellular network at the mesoscopic scale. Importantly, comparisons with 2D images show that it is possible to resolve single cells isolated from the main cellular structure with our lensfree diffractive tomography setup. PMID:27231600

  14. Lensfree diffractive tomography for the imaging of 3D cell cultures.

    PubMed

    Momey, F; Berdeu, A; Bordy, T; Dinten, J-M; Marcel, F Kermarrec; Picollet-D'hahan, N; Gidrol, X; Allier, C

    2016-03-01

    New microscopes are needed to help realize the full potential of 3D organoid culture studies. In order to image large volumes of 3D organoid cultures while preserving the ability to catch every single cell, we propose a new imaging platform based on lensfree microscopy. We have built a lensfree diffractive tomography setup performing multi-angle acquisitions of 3D organoid culture embedded in Matrigel and developed a dedicated 3D holographic reconstruction algorithm based on the Fourier diffraction theorem. With this new imaging platform, we have been able to reconstruct a 3D volume as large as 21.5 mm (3) of a 3D organoid culture of prostatic RWPE1 cells showing the ability of these cells to assemble in 3D intricate cellular network at the mesoscopic scale. Importantly, comparisons with 2D images show that it is possible to resolve single cells isolated from the main cellular structure with our lensfree diffractive tomography setup. PMID:27231600

  15. Phenotypic profiling of Raf inhibitors and mitochondrial toxicity in 3D tissue using biodynamic imaging.

    PubMed

    An, Ran; Merrill, Dan; Avramova, Larisa; Sturgis, Jennifer; Tsiper, Maria; Robinson, J Paul; Turek, John; Nolte, David D

    2014-04-01

    The existence of phenotypic differences in the drug responses of 3D tissue relative to 2D cell culture is a concern in high-content drug screening. Biodynamic imaging is an emerging technology that probes 3D tissue using short-coherence dynamic light scattering to measure the intracellular motions inside tissues in their natural microenvironments. The information content of biodynamic imaging is displayed through tissue dynamics spectroscopy (TDS) but has not previously been correlated against morphological image analysis of 2D cell culture. In this article, a set of mitochondria-affecting compounds (FCCP, valinomycin, nicardipine, ionomycin) and Raf kinase inhibitors (PLX4032, PLX4720, GDC, and sorafenib) are applied to multicellular tumor spheroids from two colon adenocarcinoma cell lines (HT-29 and DLD-1). These were screened by TDS and then compared against conventional image-based high-content analysis (HCA). The responses to the Raf inhibitors PLX4032 and PLX4720 are grouped separately by cell line, reflecting the Braf/Kras difference in these cell lines. There is a correlation between TDS and HCA phenotypic clustering for most cases, which demonstrates the ability of dynamic measurements to capture phenotypic responses to drugs. However, there are significant 2D versus 3D phenotypic differences exhibited by several of the drugs/cell lines.

  16. Phenotypic Profiling of Raf Inhibitors and Mitochondrial Toxicity in 3D Tissue Using Biodynamic Imaging

    PubMed Central

    An, Ran; Merrill, Dan; Avramova, Larisa; Sturgis, Jennifer; Tsiper, Maria; Robinson, J. Paul; Turek, John; Nolte, David D.

    2014-01-01

    The existence of phenotypic differences in the drug responses of 3D tissue relative to 2D cell culture is a concern in high-content drug screening. Biodynamic imaging is an emerging technology that probes 3D tissue using short-coherence dynamic light scattering to measure the intracellular motions inside tissues in their natural microenvironments. The information content of biodynamic imaging is displayed through tissue dynamics spectroscopy (TDS) but has not previously been correlated against morphological image analysis of 2D cell culture. In this article, a set of mitochondria-affecting compounds (FCCP, valinomycin, nicardipine, ionomycin) and Raf kinase inhibitors (PLX4032, PLX4720, GDC, and sorafenib) are applied to multicellular tumor spheroids from two colon adenocarcinoma cell lines (HT-29 and DLD-1). These were screened by TDS and then compared against conventional image-based high-content analysis (HCA). The responses to the Raf inhibitors PLX4032 and PLX4720 are grouped separately by cell line, reflecting the Braf/Kras difference in these cell lines. There is a correlation between TDS and HCA phenotypic clustering for most cases, which demonstrates the ability of dynamic measurements to capture phenotypic responses to drugs. However, there are significant 2D versus 3D phenotypic differences exhibited by several of the drugs/cell lines. PMID:24361645

  17. Estimating Density Gradients and Drivers from 3D Ionospheric Imaging

    NASA Astrophysics Data System (ADS)

    Datta-Barua, S.; Bust, G. S.; Curtis, N.; Reynolds, A.; Crowley, G.

    2009-12-01

    The transition regions at the edges of the ionospheric storm-enhanced density (SED) are important for a detailed understanding of the mid-latitude physical processes occurring during major magnetic storms. At the boundary, the density gradients are evidence of the drivers that link the larger processes of the SED, with its connection to the plasmasphere and prompt-penetration electric fields, to the smaller irregularities that result in scintillations. For this reason, we present our estimates of both the plasma variation with horizontal and vertical spatial scale of 10 - 100 km and the plasma motion within and along the edges of the SED. To estimate the density gradients, we use Ionospheric Data Assimilation Four-Dimensional (IDA4D), a mature data assimilation algorithm that has been developed over several years and applied to investigations of polar cap patches and space weather storms [Bust and Crowley, 2007; Bust et al., 2007]. We use the density specification produced by IDA4D with a new tool for deducing ionospheric drivers from 3D time-evolving electron density maps, called Estimating Model Parameters from Ionospheric Reverse Engineering (EMPIRE). The EMPIRE technique has been tested on simulated data from TIMEGCM-ASPEN and on IDA4D-based density estimates with ongoing validation from Arecibo ISR measurements [Datta-Barua et al., 2009a; 2009b]. We investigate the SED that formed during the geomagnetic super storm of November 20, 2003. We run IDA4D at low-resolution continent-wide, and then re-run it at high (~10 km horizontal and ~5-20 km vertical) resolution locally along the boundary of the SED, where density gradients are expected to be highest. We input the high-resolution estimates of electron density to EMPIRE to estimate the ExB drifts and field-aligned plasma velocities along the boundaries of the SED. We expect that these drivers contribute to the density structuring observed along the SED during the storm. Bust, G. S. and G. Crowley (2007

  18. Monopulse radar 3-D imaging and application in terminal guidance radar

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Qin, Guodong; Zhang, Lina

    2007-11-01

    Monopulse radar 3-D imaging integrates ISAR, monopulse angle measurement and 3-D imaging processing to obtain the 3-D image which can reflect the real size of a target, which means any two of the three measurement parameters, namely azimuth difference beam elevation difference beam and radial range, can be used to form 3-D image of 3-D object. The basic principles of Monopulse radar 3-D imaging are briefly introduced, the effect of target carriage changes(including yaw, pitch, roll and movement of target itself) on 3-D imaging and 3-D moving compensation based on the chirp rate μ and Doppler frequency f d are analyzed, and the application of monopulse radar 3-D imaging to terminal guidance radars is forecasted. The computer simulation results show that monopulse radar 3-D imaging has apparent advantages in distinguishing a target from overside interference and precise assault on vital part of a target, and has great importance in terminal guidance radars.

  19. Recognition Accuracy Using 3D Endoscopic Images for Superficial Gastrointestinal Cancer: A Crossover Study

    PubMed Central

    Kaise, Mitsuru; Kikuchi, Daisuke; Iizuka, Toshiro; Fukuma, Yumiko; Kuribayashi, Yasutaka; Tanaka, Masami; Toba, Takahito; Furuhata, Tsukasa; Yamashita, Satoshi; Matsui, Akira; Mitani, Toshifumi; Hoteya, Shu

    2016-01-01

    Aim. To determine whether 3D endoscopic images improved recognition accuracy for superficial gastrointestinal cancer compared with 2D images. Methods. We created an image catalog using 2D and 3D images of 20 specimens resected by endoscopic submucosal dissection. The twelve participants were allocated into two groups. Group 1 evaluated only 2D images at first, group 2 evaluated 3D images, and, after an interval of 2 weeks, group 1 next evaluated 3D and group 2 evaluated 2D images. The evaluation items were as follows: (1) diagnostic accuracy of the tumor extent and (2) confidence levels in assessing (a) tumor extent, (b) morphology, (c) microsurface structure, and (d) comprehensive recognition. Results. The use of 3D images resulted in an improvement in diagnostic accuracy in both group 1 (2D: 76.9%, 3D: 78.6%) and group 2 (2D: 79.9%, 3D: 83.6%), with no statistically significant difference. The confidence levels were higher for all items ((a) to (d)) when 3D images were used. With respect to experience, the degree of the improvement showed the following trend: novices > trainees > experts. Conclusions. By conversion into 3D images, there was a significant improvement in the diagnostic confidence level for superficial tumors, and the improvement was greater in individuals with lower endoscopic expertise. PMID:27597863

  20. Recognition Accuracy Using 3D Endoscopic Images for Superficial Gastrointestinal Cancer: A Crossover Study

    PubMed Central

    Kaise, Mitsuru; Kikuchi, Daisuke; Iizuka, Toshiro; Fukuma, Yumiko; Kuribayashi, Yasutaka; Tanaka, Masami; Toba, Takahito; Furuhata, Tsukasa; Yamashita, Satoshi; Matsui, Akira; Mitani, Toshifumi; Hoteya, Shu

    2016-01-01

    Aim. To determine whether 3D endoscopic images improved recognition accuracy for superficial gastrointestinal cancer compared with 2D images. Methods. We created an image catalog using 2D and 3D images of 20 specimens resected by endoscopic submucosal dissection. The twelve participants were allocated into two groups. Group 1 evaluated only 2D images at first, group 2 evaluated 3D images, and, after an interval of 2 weeks, group 1 next evaluated 3D and group 2 evaluated 2D images. The evaluation items were as follows: (1) diagnostic accuracy of the tumor extent and (2) confidence levels in assessing (a) tumor extent, (b) morphology, (c) microsurface structure, and (d) comprehensive recognition. Results. The use of 3D images resulted in an improvement in diagnostic accuracy in both group 1 (2D: 76.9%, 3D: 78.6%) and group 2 (2D: 79.9%, 3D: 83.6%), with no statistically significant difference. The confidence levels were higher for all items ((a) to (d)) when 3D images were used. With respect to experience, the degree of the improvement showed the following trend: novices > trainees > experts. Conclusions. By conversion into 3D images, there was a significant improvement in the diagnostic confidence level for superficial tumors, and the improvement was greater in individuals with lower endoscopic expertise.

  1. Recognition Accuracy Using 3D Endoscopic Images for Superficial Gastrointestinal Cancer: A Crossover Study.

    PubMed

    Nomura, Kosuke; Kaise, Mitsuru; Kikuchi, Daisuke; Iizuka, Toshiro; Fukuma, Yumiko; Kuribayashi, Yasutaka; Tanaka, Masami; Toba, Takahito; Furuhata, Tsukasa; Yamashita, Satoshi; Matsui, Akira; Mitani, Toshifumi; Hoteya, Shu

    2016-01-01

    Aim. To determine whether 3D endoscopic images improved recognition accuracy for superficial gastrointestinal cancer compared with 2D images. Methods. We created an image catalog using 2D and 3D images of 20 specimens resected by endoscopic submucosal dissection. The twelve participants were allocated into two groups. Group 1 evaluated only 2D images at first, group 2 evaluated 3D images, and, after an interval of 2 weeks, group 1 next evaluated 3D and group 2 evaluated 2D images. The evaluation items were as follows: (1) diagnostic accuracy of the tumor extent and (2) confidence levels in assessing (a) tumor extent, (b) morphology, (c) microsurface structure, and (d) comprehensive recognition. Results. The use of 3D images resulted in an improvement in diagnostic accuracy in both group 1 (2D: 76.9%, 3D: 78.6%) and group 2 (2D: 79.9%, 3D: 83.6%), with no statistically significant difference. The confidence levels were higher for all items ((a) to (d)) when 3D images were used. With respect to experience, the degree of the improvement showed the following trend: novices > trainees > experts. Conclusions. By conversion into 3D images, there was a significant improvement in the diagnostic confidence level for superficial tumors, and the improvement was greater in individuals with lower endoscopic expertise.

  2. Recognition Accuracy Using 3D Endoscopic Images for Superficial Gastrointestinal Cancer: A Crossover Study.

    PubMed

    Nomura, Kosuke; Kaise, Mitsuru; Kikuchi, Daisuke; Iizuka, Toshiro; Fukuma, Yumiko; Kuribayashi, Yasutaka; Tanaka, Masami; Toba, Takahito; Furuhata, Tsukasa; Yamashita, Satoshi; Matsui, Akira; Mitani, Toshifumi; Hoteya, Shu

    2016-01-01

    Aim. To determine whether 3D endoscopic images improved recognition accuracy for superficial gastrointestinal cancer compared with 2D images. Methods. We created an image catalog using 2D and 3D images of 20 specimens resected by endoscopic submucosal dissection. The twelve participants were allocated into two groups. Group 1 evaluated only 2D images at first, group 2 evaluated 3D images, and, after an interval of 2 weeks, group 1 next evaluated 3D and group 2 evaluated 2D images. The evaluation items were as follows: (1) diagnostic accuracy of the tumor extent and (2) confidence levels in assessing (a) tumor extent, (b) morphology, (c) microsurface structure, and (d) comprehensive recognition. Results. The use of 3D images resulted in an improvement in diagnostic accuracy in both group 1 (2D: 76.9%, 3D: 78.6%) and group 2 (2D: 79.9%, 3D: 83.6%), with no statistically significant difference. The confidence levels were higher for all items ((a) to (d)) when 3D images were used. With respect to experience, the degree of the improvement showed the following trend: novices > trainees > experts. Conclusions. By conversion into 3D images, there was a significant improvement in the diagnostic confidence level for superficial tumors, and the improvement was greater in individuals with lower endoscopic expertise. PMID:27597863

  3. Pilot Application of 3d Underwater Imaging Techniques for Mapping Posidonia Oceanica (L.) Delile Meadows

    NASA Astrophysics Data System (ADS)

    Rende, F. S.; Irving, A. D.; Lagudi, A.; Bruno, F.; Scalise, S.; Cappa, P.; Montefalcone, M.; Bacci, T.; Penna, M.; Trabucco, B.; Di Mento, R.; Cicero, A. M.

    2015-04-01

    Seagrass communities are considered one of the most productive and complex marine ecosystems. Seagrasses belong to a small group of 66 species that can form extensive meadows in all coastal areas of our planet. Posidonia oceanica beds are the most characteristic ecosystem of the Mediterranean Sea, and should be constantly monitored, preserved and maintained, as specified by EU Habitats Directive for priority habitats. Underwater 3D imaging by means of still or video cameras can allow a detailed analysis of the temporal evolution of these meadows, but also of the seafloor morphology and integrity. Video-photographic devices and open source software for acquiring and managing 3D optical data rapidly became more and more effective and economically viable, making underwater 3D mapping an easier task to carry out. 3D reconstruction of the underwater scene can be obtained with photogrammetric techniques that require just one or more digital cameras, also in stereo configuration. In this work we present the preliminary results of a pilot 3D mapping project applied to the P. oceanica meadow in the Marine Protected Area of Capo Rizzuto (KR, Calabria Region - Italy).

  4. 3-D Experimental Fracture Analysis at High Temperature

    SciTech Connect

    John H. Jackson; Albert S. Kobayashi

    2001-09-14

    T*e, which is an elastic-plastic fracture parameter based on incremental theory of plasticity, was determined numerically and experimentally. The T*e integral of a tunneling crack in 2024-T3 aluminum, three point bend specimen was obtained through a hybrid analysis of moire interferometry and 3-D elastic-plastic finite element analysis. The results were verified by the good agreement between the experimentally and numerically determined T*e on the specimen surface.

  5. Analysis of patient movement during 3D USCT data acquisition

    NASA Astrophysics Data System (ADS)

    Ruiter, N. V.; Hopp, T.; Zapf, M.; Kretzek, E.; Gemmeke, H.

    2016-04-01

    In our first clinical study with a full 3D Ultrasound Computer Tomography (USCT) system patient data was acquired in eight minutes for one breast. In this paper the patient movement during the acquisition was analyzed quantitatively and as far as possible corrected in the resulting images. The movement was tracked in ten successive reflectivity reconstructions of full breast volumes acquired during 10 s intervals at different aperture positions, which were separated by 41 s intervals. The mean distance between initial and final position was 2.2 mm (standard deviation (STD) +/- 0.9 mm, max. 4.1 mm, min. 0.8 mm) and the average sum of all moved distances was 4.9 mm (STD +/- 1.9 mm, max. 8.8 mm, min. 2.7 mm). The tracked movement was corrected by summing successive images, which were transformed according to the detected movement. The contrast of these images increased and additional image content became visible.

  6. 360 degree realistic 3D image display and image processing from real objects

    NASA Astrophysics Data System (ADS)

    Luo, Xin; Chen, Yue; Huang, Yong; Tan, Xiaodi; Horimai, Hideyoshi

    2016-09-01

    A 360-degree realistic 3D image display system based on direct light scanning method, so-called Holo-Table has been introduced in this paper. High-density directional continuous 3D motion images can be displayed easily with only one spatial light modulator. Using the holographic screen as the beam deflector, 360-degree full horizontal viewing angle was achieved. As an accompany part of the system, CMOS camera based image acquisition platform was built to feed the display engine, which can take a full 360-degree continuous imaging of the sample at the center. Customized image processing techniques such as scaling, rotation, format transformation were also developed and embedded into the system control software platform. In the end several samples were imaged to demonstrate the capability of our system.

  7. Accuracy of volume measurement using 3D ultrasound and development of CT-3D US image fusion algorithm for prostate cancer radiotherapy

    SciTech Connect

    Baek, Jihye; Huh, Jangyoung; Hyun An, So; Oh, Yoonjin; Kim, Myungsoo; Kim, DongYoung; Chung, Kwangzoo; Cho, Sungho; Lee, Rena

    2013-02-15

    Purpose: To evaluate the accuracy of measuring volumes using three-dimensional ultrasound (3D US), and to verify the feasibility of the replacement of CT-MR fusion images with CT-3D US in radiotherapy treatment planning. Methods: Phantoms, consisting of water, contrast agent, and agarose, were manufactured. The volume was measured using 3D US, CT, and MR devices. A CT-3D US and MR-3D US image fusion software was developed using the Insight Toolkit library in order to acquire three-dimensional fusion images. The quality of the image fusion was evaluated using metric value and fusion images. Results: Volume measurement, using 3D US, shows a 2.8 {+-} 1.5% error, 4.4 {+-} 3.0% error for CT, and 3.1 {+-} 2.0% error for MR. The results imply that volume measurement using the 3D US devices has a similar accuracy level to that of CT and MR. Three-dimensional image fusion of CT-3D US and MR-3D US was successfully performed using phantom images. Moreover, MR-3D US image fusion was performed using human bladder images. Conclusions: 3D US could be used in the volume measurement of human bladders and prostates. CT-3D US image fusion could be used in monitoring the target position in each fraction of external beam radiation therapy. Moreover, the feasibility of replacing the CT-MR image fusion to the CT-3D US in radiotherapy treatment planning was verified.

  8. Image enhancement and segmentation of fluid-filled structures in 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Chalana, Vikram; Dudycha, Stephen; McMorrow, Gerald

    2003-05-01

    Segmentation of fluid-filled structures, such as the urinary bladder, from three-dimensional ultrasound images is necessary for measuring their volume. This paper describes a system for image enhancement, segmentation and volume measurement of fluid-filled structures on 3D ultrasound images. The system was applied for the measurement of urinary bladder volume. Results show an average error of less than 10% in the estimation of the total bladder volume.

  9. Post-processing methods of rendering and visualizing 3-D reconstructed tomographic images

    SciTech Connect

    Wong, S.T.C.

    1997-02-01

    The purpose of this presentation is to discuss the computer processing techniques of tomographic images, after they have been generated by imaging scanners, for volume visualization. Volume visualization is concerned with the representation, manipulation, and rendering of volumetric data. Since the first digital images were produced from computed tomography (CT) scanners in the mid 1970s, applications of visualization in medicine have expanded dramatically. Today, three-dimensional (3D) medical visualization has expanded from using CT data, the first inherently digital source of 3D medical data, to using data from various medical imaging modalities, including magnetic resonance scanners, positron emission scanners, digital ultrasound, electronic and confocal microscopy, and other medical imaging modalities. We have advanced from rendering anatomy to aid diagnosis and visualize complex anatomic structures to planning and assisting surgery and radiation treatment. New, more accurate and cost-effective procedures for clinical services and biomedical research have become possible by integrating computer graphics technology with medical images. This trend is particularly noticeable in current market-driven health care environment. For example, interventional imaging, image-guided surgery, and stereotactic and visualization techniques are now stemming into surgical practice. In this presentation, we discuss only computer-display-based approaches of volumetric medical visualization. That is, we assume that the display device available is two-dimensional (2D) in nature and all analysis of multidimensional image data is to be carried out via the 2D screen of the device. There are technologies such as holography and virtual reality that do provide a {open_quotes}true 3D screen{close_quotes}. To confine the scope, this presentation will not discuss such approaches.

  10. A new look at spotlight mode synthetic aperture radar as tomography: imaging 3-D targets.

    PubMed

    Jakowatz, C V; Thompson, P A

    1995-01-01

    A new 3D tomographic formulation of spotlight mode synthetic aperture radar (SAR) is developed. This extends the pioneering work of Munson et al. (1983), who first formally described SAR in terms of tomography but who made the simplifying assumption that the target scene was 2D. The present authors treat the more general and practical case in which the radar target reflectivities comprise a 3D function. The main goal is to demonstrate that the demodulated radar return data from a spotlight mode collection represent a certain set of samples of the 3D Fourier transform of the target reflectivity function and to do so using a tomographic paradigm instead of traditional range-Doppler analysis. They also show that the tomographic approach is useful in interpreting the reconstructed 2D SAR image corresponding to a 3D scene. Specifically, the well-known SAR phenomenon of layover is easily explained in terms of tomographic projections and is shown to be analogous to the projection effect in conventional optical imaging.

  11. 3D Image Reconstructions and the Nyquist-Shannon Theorem

    NASA Astrophysics Data System (ADS)

    Ficker, T.; Martišek, D.

    2015-09-01

    Fracture surfaces are occasionally modelled by Fourier's two-dimensional series that can be converted into digital 3D reliefs mapping the morphology of solid surfaces. Such digital replicas may suffer from various artefacts when processed inconveniently. Spatial aliasing is one of those artefacts that may devalue Fourier's replicas. According to the Nyquist-Shannon sampling theorem the spatial aliasing occurs when Fourier's frequencies exceed the Nyquist critical frequency. In the present paper it is shown that the Nyquist frequency is not the only critical limit determining aliasing artefacts but there are some other frequencies that intensify aliasing phenomena and form an infinite set of points at which numerical results abruptly and dramatically change their values. This unusual type of spatial aliasing is explored and some consequences for 3D computer reconstructions are presented.

  12. A 3D-Video-Based Computerized Analysis of Social and Sexual Interactions in Rats

    PubMed Central

    Matsumoto, Jumpei; Urakawa, Susumu; Takamura, Yusaku; Malcher-Lopes, Renato; Hori, Etsuro; Tomaz, Carlos; Ono, Taketoshi; Nishijo, Hisao

    2013-01-01

    A large number of studies have analyzed social and sexual interactions between rodents in relation to neural activity. Computerized video analysis has been successfully used to detect numerous behaviors quickly and objectively; however, to date only 2D video recording has been used, which cannot determine the 3D locations of animals and encounters difficulties in tracking animals when they are overlapping, e.g., when mounting. To overcome these limitations, we developed a novel 3D video analysis system for examining social and sexual interactions in rats. A 3D image was reconstructed by integrating images captured by multiple depth cameras at different viewpoints. The 3D positions of body parts of the rats were then estimated by fitting skeleton models of the rats to the 3D images using a physics-based fitting algorithm, and various behaviors were recognized based on the spatio-temporal patterns of the 3D movements of the body parts. Comparisons between the data collected by the 3D system and those by visual inspection indicated that this system could precisely estimate the 3D positions of body parts for 2 rats during social and sexual interactions with few manual interventions, and could compute the traces of the 2 animals even during mounting. We then analyzed the effects of AM-251 (a cannabinoid CB1 receptor antagonist) on male rat sexual behavior, and found that AM-251 decreased movements and trunk height before sexual behavior, but increased the duration of head-head contact during sexual behavior. These results demonstrate that the use of this 3D system in behavioral studies could open the door to new approaches for investigating the neuroscience of social and sexual behavior. PMID:24205238

  13. A 3D-video-based computerized analysis of social and sexual interactions in rats.

    PubMed

    Matsumoto, Jumpei; Urakawa, Susumu; Takamura, Yusaku; Malcher-Lopes, Renato; Hori, Etsuro; Tomaz, Carlos; Ono, Taketoshi; Nishijo, Hisao

    2013-01-01

    A large number of studies have analyzed social and sexual interactions between rodents in relation to neural activity. Computerized video analysis has been successfully used to detect numerous behaviors quickly and objectively; however, to date only 2D video recording has been used, which cannot determine the 3D locations of animals and encounters difficulties in tracking animals when they are overlapping, e.g., when mounting. To overcome these limitations, we developed a novel 3D video analysis system for examining social and sexual interactions in rats. A 3D image was reconstructed by integrating images captured by multiple depth cameras at different viewpoints. The 3D positions of body parts of the rats were then estimated by fitting skeleton models of the rats to the 3D images using a physics-based fitting algorithm, and various behaviors were recognized based on the spatio-temporal patterns of the 3D movements of the body parts. Comparisons between the data collected by the 3D system and those by visual inspection indicated that this system could precisely estimate the 3D positions of body parts for 2 rats during social and sexual interactions with few manual interventions, and could compute the traces of the 2 animals even during mounting. We then analyzed the effects of AM-251 (a cannabinoid CB1 receptor antagonist) on male rat sexual behavior, and found that AM-251 decreased movements and trunk height before sexual behavior, but increased the duration of head-head contact during sexual behavior. These results demonstrate that the use of this 3D system in behavioral studies could open the door to new approaches for investigating the neuroscience of social and sexual behavior. PMID:24205238

  14. Multi Length Scale Imaging of Flocculated Estuarine Sediments; Insights into their Complex 3D Structure

    NASA Astrophysics Data System (ADS)

    Wheatland, Jonathan; Bushby, Andy; Droppo, Ian; Carr, Simon; Spencer, Kate

    2015-04-01

    Suspended estuarine sediments form flocs that are compositionally complex, fragile and irregularly shaped. The fate and transport of suspended particulate matter (SPM) is determined by the size, shape, density, porosity and stability of these flocs and prediction of SPM transport requires accurate measurements of these three-dimensional (3D) physical properties. However, the multi-scaled nature of flocs in addition to their fragility makes their characterisation in 3D problematic. Correlative microscopy is a strategy involving the spatial registration of information collected at different scales using several imaging modalities. Previously, conventional optical microscopy (COM) and transmission electron microscopy (TEM) have enabled 2-dimensional (2D) floc characterisation at the gross (> 1 µm) and sub-micron scales respectively. Whilst this has proven insightful there remains a critical spatial and dimensional gap preventing the accurate measurement of geometric properties and an understanding of how structures at different scales are related. Within life sciences volumetric imaging techniques such as 3D micro-computed tomography (3D µCT) and focused ion beam scanning electron microscopy [FIB-SEM (or FIB-tomography)] have been combined to characterise materials at the centimetre to micron scale. Combining these techniques with TEM enables an advanced correlative study, allowing material properties across multiple spatial and dimensional scales to be visualised. The aims of this study are; 1) to formulate an advanced correlative imaging strategy combining 3D µCT, FIB-tomography and TEM; 2) to acquire 3D datasets; 3) to produce a model allowing their co-visualisation; 4) to interpret 3D floc structure. To reduce the chance of structural alterations during analysis samples were first 'fixed' in 2.5% glutaraldehyde/2% formaldehyde before being embedding in Durcupan resin. Intermediate steps were implemented to improve contrast and remove pore water, achieved by the

  15. Computation of optimized arrays for 3-D electrical imaging surveys

    NASA Astrophysics Data System (ADS)

    Loke, M. H.; Wilkinson, P. B.; Uhlemann, S. S.; Chambers, J. E.; Oxby, L. S.

    2014-12-01

    3-D electrical resistivity surveys and inversion models are required to accurately resolve structures in areas with very complex geology where 2-D models might suffer from artefacts. Many 3-D surveys use a grid where the number of electrodes along one direction (x) is much greater than in the perpendicular direction (y). Frequently, due to limitations in the number of independent electrodes in the multi-electrode system, the surveys use a roll-along system with a small number of parallel survey lines aligned along the x-direction. The `Compare R' array optimization method previously used for 2-D surveys is adapted for such 3-D surveys. Offset versions of the inline arrays used in 2-D surveys are included in the number of possible arrays (the comprehensive data set) to improve the sensitivity to structures in between the lines. The array geometric factor and its relative error are used to filter out potentially unstable arrays in the construction of the comprehensive data set. Comparisons of the conventional (consisting of dipole-dipole and Wenner-Schlumberger arrays) and optimized arrays are made using a synthetic model and experimental measurements in a tank. The tests show that structures located between the lines are better resolved with the optimized arrays. The optimized arrays also have significantly better depth resolution compared to the conventional arrays.

  16. Viewing effects of 3-D images synthesized from a series of 2-D tomograms by VAP and HAP approaches

    NASA Astrophysics Data System (ADS)

    Zhai, H. C.; Wang, M. W.; Liu, F. M.; Hsu, Ken Y.

    We report, for the first time, the experimental result and its analysis of synthesizing a series of simulating 2-D tomograms into a 3-D monochromatic image. Our result shows clearly the advantage in monochromaticity of a vertical area-partition (VAP) approach over a horizontal area-partition (HAP) approach during the final white-light reconstruction. This monochromaticity will ensure a 3-D image synthesis without any distortion in gray level or positional recovery.

  17. Pseudo-3D Imaging With The DICOM-8

    NASA Astrophysics Data System (ADS)

    Shalev, S.; Arenson, J.; Kettner, B.

    1985-09-01

    We have developed the DICOM.-8 digital imaging computer for video image acquisition, processing and display. It is a low-cost mobile systems based on a Z80 microcomputer which controls access to two 512 x 512 x 8-bit image planes through a real-time video arithmetic unit. Image presentation capabilities include orthographic images, isometric plots with hidden-line suppression, real-time mask subtraction, binocular red/green stereo, and volumetric imaging with both geometrical and density windows under operator interactive control. Examples are shown for multiplane series of CT images.

  18. 3D Guided Wave Motion Analysis on Laminated Composites

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Leckey, Cara; Yu, Lingyu

    2013-01-01

    Ultrasonic guided waves have proved useful for structural health monitoring (SHM) and nondestructive evaluation (NDE) due to their ability to propagate long distances with less energy loss compared to bulk waves and due to their sensitivity to small defects in the structure. Analysis of actively transmitted ultrasonic signals has long been used to detect and assess damage. However, there remain many challenging tasks for guided wave based SHM due to the complexity involved with propagating guided waves, especially in the case of composite materials. The multimodal nature of the ultrasonic guided waves complicates the related damage analysis. This paper presents results from parallel 3D elastodynamic finite integration technique (EFIT) simulations used to acquire 3D wave motion in the subject laminated carbon fiber reinforced polymer composites. The acquired 3D wave motion is then analyzed by frequency-wavenumber analysis to study the wave propagation and interaction in the composite laminate. The frequency-wavenumber analysis enables the study of individual modes and visualization of mode conversion. Delamination damage has been incorporated into the EFIT model to generate "damaged" data. The potential for damage detection in laminated composites is discussed in the end.

  19. Advanced computational tools for 3-D seismic analysis

    SciTech Connect

    Barhen, J.; Glover, C.W.; Protopopescu, V.A.

    1996-06-01

    The global objective of this effort is to develop advanced computational tools for 3-D seismic analysis, and test the products using a model dataset developed under the joint aegis of the United States` Society of Exploration Geophysicists (SEG) and the European Association of Exploration Geophysicists (EAEG). The goal is to enhance the value to the oil industry of the SEG/EAEG modeling project, carried out with US Department of Energy (DOE) funding in FY` 93-95. The primary objective of the ORNL Center for Engineering Systems Advanced Research (CESAR) is to spearhead the computational innovations techniques that would enable a revolutionary advance in 3-D seismic analysis. The CESAR effort is carried out in collaboration with world-class domain experts from leading universities, and in close coordination with other national laboratories and oil industry partners.

  20. A full-spectrum 3D noise-based infrared imaging sensor model

    NASA Astrophysics Data System (ADS)

    Richwine, Robert; Sood, Ashok; Puri, Yash; Heckathorn, Harry; Wilson, Larry; Goldspiel, Jules

    2006-08-01

    This model was developed in matlab with I/O links to excel spreadsheets to add realistic and accurate sensor effects to scene generator or actual sensor/camera images. The model imports scene generator or sensor images, converts these radiance images into electron maps and digital count maps, and modifies these images in accordance with user-defined sensor characteristics such as the response map, the detector dark current map, defective pixel maps, and 3-D noise (temporal and spatial noise). The model provides realistic line-of-sight motion and accurate and dynamic PSF blurring of the images. The sensor model allows for the import of raw nonuniformities in dark current and photoresponse, performs a user-defined two-point nonuniformity correction to calculate gain and offset terms and applies these terms to subsequent scene images. Some of the model's capabilities include the ability to fluctuate or ramp FPA and optics temperatures, or modify the PSF on a frame-by-frame basis. The model also functions as an FPA/sensor performance predictor and an FPA data analysis tool as FPA data frames can be input into the 3-D noise evaluation section of the model. The model was developed to produce realistic infrared images for IR sensors.

  1. 3D Prostate Segmentation of Ultrasound Images Combining Longitudinal Image Registration and Machine Learning

    PubMed Central

    Yang, Xiaofeng; Fei, Baowei

    2012-01-01

    We developed a three-dimensional (3D) segmentation method for transrectal ultrasound (TRUS) images, which is based on longitudinal image registration and machine learning. Using longitudinal images of each individual patient, we register previously acquired images to the new images of the same subject. Three orthogonal Gabor filter banks were used to extract texture features from each registered image. Patient-specific Gabor features from the registered images are used to train kernel support vector machines (KSVMs) and then to segment the newly acquired prostate image. The segmentation method was tested in TRUS data from five patients. The average surface distance between our and manual segmentation is 1.18 ± 0.31 mm, indicating that our automatic segmentation method based on longitudinal image registration is feasible for segmenting the prostate in TRUS images. PMID:24027622

  2. Increasing the depth of field in Multiview 3D images

    NASA Astrophysics Data System (ADS)

    Lee, Beom-Ryeol; Son, Jung-Young; Yano, Sumio; Jung, Ilkwon

    2016-06-01

    A super-multiview condition simulator which can project up to four different view images to each eye is introduced. This simulator with the image having both disparity and perspective informs that the depth of field (DOF) will be extended to more than the default DOF values as the number of simultaneously but separately projected different view images to each eye increase. The DOF range can be extended to near 2 diopters with the four simultaneous view images. However, the DOF value increments are not prominent as the image with both disparity and perspective with the image with disparity only.

  3. Advancements in 3D Structural Analysis of Geothermal Systems

    SciTech Connect

    Siler, Drew L; Faulds, James E; Mayhew, Brett; McNamara, David

    2013-06-23

    Robust geothermal activity in the Great Basin, USA is a product of both anomalously high regional heat flow and active fault-controlled extension. Elevated permeability associated with some fault systems provides pathways for circulation of geothermal fluids. Constraining the local-scale 3D geometry of these structures and their roles as fluid flow conduits is crucial in order to mitigate both the costs and risks of geothermal exploration and to identify blind (no surface expression) geothermal resources. Ongoing studies have indicated that much of the robust geothermal activity in the Great Basin is associated with high density faulting at structurally complex fault intersection/interaction areas, such as accommodation/transfer zones between discrete fault systems, step-overs or relay ramps in fault systems, intersection zones between faults with different strikes or different senses of slip, and horse-tailing fault terminations. These conceptualized models are crucial for locating and characterizing geothermal systems in a regional context. At the local scale, however, pinpointing drilling targets and characterizing resource potential within known or probable geothermal areas requires precise 3D characterization of the system. Employing a variety of surface and subsurface data sets, we have conducted detailed 3D geologic analyses of two Great Basin geothermal systems. Using EarthVision (Dynamic Graphics Inc., Alameda, CA) we constructed 3D geologic models of both the actively producing Brady’s geothermal system and a ‘greenfield’ geothermal prospect at Astor Pass, NV. These 3D models allow spatial comparison of disparate data sets in 3D and are the basis for quantitative structural analyses that can aid geothermal resource assessment and be used to pinpoint discrete drilling targets. The relatively abundant data set at Brady’s, ~80 km NE of Reno, NV, includes 24 wells with lithologies interpreted from careful analysis of cuttings and core, a 1

  4. Flash trajectory imaging of target 3D motion

    NASA Astrophysics Data System (ADS)

    Wang, Xinwei; Zhou, Yan; Fan, Songtao; He, Jun; Liu, Yuliang

    2011-03-01

    We present a flash trajectory imaging technique which can directly obtain target trajectory and realize non-contact measurement of motion parameters by range-gated imaging and time delay integration. Range-gated imaging gives the range of targets and realizes silhouette detection which can directly extract targets from complex background and decrease the complexity of moving target image processing. Time delay integration increases information of one single frame of image so that one can directly gain the moving trajectory. In this paper, we have studied the algorithm about flash trajectory imaging and performed initial experiments which successfully obtained the trajectory of a falling badminton. Our research demonstrates that flash trajectory imaging is an effective approach to imaging target trajectory and can give motion parameters of moving targets.

  5. Dual-color 3D superresolution microscopy by combined spectral-demixing and biplane imaging.

    PubMed

    Winterflood, Christian M; Platonova, Evgenia; Albrecht, David; Ewers, Helge

    2015-07-01

    Multicolor three-dimensional (3D) superresolution techniques allow important insight into the relative organization of cellular structures. While a number of innovative solutions have emerged, multicolor 3D techniques still face significant technical challenges. In this Letter we provide a straightforward approach to single-molecule localization microscopy imaging in three dimensions and two colors. We combine biplane imaging and spectral-demixing, which eliminates a number of problems, including color cross-talk, chromatic aberration effects, and problems with color registration. We present 3D dual-color images of nanoscopic structures in hippocampal neurons with a 3D compound resolution routinely achieved only in a single color.

  6. [3D Super-resolution Reconstruction and Visualization of Pulmonary Nodules from CT Image].

    PubMed

    Wang, Bing; Fan, Xing; Yang, Ying; Tian, Xuedong; Gu, Lixu

    2015-08-01

    The aim of this study was to propose an algorithm for three-dimensional projection onto convex sets (3D POCS) to achieve super resolution reconstruction of 3D lung computer tomography (CT) images, and to introduce multi-resolution mixed display mode to make 3D visualization of pulmonary nodules. Firstly, we built the low resolution 3D images which have spatial displacement in sub pixel level between each other and generate the reference image. Then, we mapped the low resolution images into the high resolution reference image using 3D motion estimation and revised the reference image based on the consistency constraint convex sets to reconstruct the 3D high resolution images iteratively. Finally, we displayed the different resolution images simultaneously. We then estimated the performance of provided method on 5 image sets and compared them with those of 3 interpolation reconstruction methods. The experiments showed that the performance of 3D POCS algorithm was better than that of 3 interpolation reconstruction methods in two aspects, i.e., subjective and objective aspects, and mixed display mode is suitable to the 3D visualization of high resolution of pulmonary nodules.

  7. Advanced 2D-3D registration for endovascular aortic interventions: addressing dissimilarity in images

    NASA Astrophysics Data System (ADS)

    Demirci, Stefanie; Kutter, Oliver; Manstad-Hulaas, Frode; Bauernschmitt, Robert; Navab, Nassir

    2008-03-01

    In the current clinical workflow of minimally invasive aortic procedures navigation tasks are performed under 2D or 3D angiographic imaging. Many solutions for navigation enhancement suggest an integration of the preoperatively acquired computed tomography angiography (CTA) in order to provide the physician with more image information and reduce contrast injection and radiation exposure. This requires exact registration algorithms that align the CTA volume to the intraoperative 2D or 3D images. Additional to the real-time constraint, the registration accuracy should be independent of image dissimilarities due to varying presence of medical instruments and contrast agent. In this paper, we propose efficient solutions for image-based 2D-3D and 3D-3D registration that reduce the dissimilarities by image preprocessing, e.g. implicit detection and segmentation, and adaptive weights introduced into the registration procedure. Experiments and evaluations are conducted on real patient data.

  8. Passive Markers for Tracking Surgical Instruments in Real-Time 3-D Ultrasound Imaging

    PubMed Central

    Stoll, Jeffrey; Ren, Hongliang; Dupont, Pierre E.

    2013-01-01

    A family of passive echogenic markers is presented by which the position and orientation of a surgical instrument can be determined in a 3-D ultrasound volume, using simple image processing. Markers are attached near the distal end of the instrument so that they appear in the ultrasound volume along with the instrument tip. They are detected and measured within the ultrasound image, thus requiring no external tracking device. This approach facilitates imaging instruments and tissue simultaneously in ultrasound-guided interventions. Marker-based estimates of instrument pose can be used in augmented reality displays or for image-based servoing. Design principles for marker shapes are presented that ensure imaging system and measurement uniqueness constraints are met. An error analysis is included that can be used to guide marker design and which also establishes a lower bound on measurement uncertainty. Finally, examples of marker measurement and tracking algorithms are presented along with experimental validation of the concepts. PMID:22042148

  9. Sensitivity Analysis of the Scattering-Based SARBM3D Despeckling Algorithm.

    PubMed

    Di Simone, Alessio

    2016-01-01

    Synthetic Aperture Radar (SAR) imagery greatly suffers from multiplicative speckle noise, typical of coherent image acquisition sensors, such as SAR systems. Therefore, a proper and accurate despeckling preprocessing step is almost mandatory to aid the interpretation and processing of SAR data by human users and computer algorithms, respectively. Very recently, a scattering-oriented version of the popular SAR Block-Matching 3D (SARBM3D) despeckling filter, named Scattering-Based (SB)-SARBM3D, was proposed. The new filter is based on the a priori knowledge of the local topography of the scene. In this paper, an experimental sensitivity analysis of the above-mentioned despeckling algorithm is carried out, and the main results are shown and discussed. In particular, the role of both electromagnetic and geometrical parameters of the surface and the impact of its scattering behavior are investigated. Furthermore, a comprehensive sensitivity analysis of the SB-SARBM3D filter against the Digital Elevation Model (DEM) resolution and the SAR image-DEM coregistration step is also provided. The sensitivity analysis shows a significant robustness of the algorithm against most of the surface parameters, while the DEM resolution plays a key role in the despeckling process. Furthermore, the SB-SARBM3D algorithm outperforms the original SARBM3D in the presence of the most realistic scattering behaviors of the surface. An actual scenario is also presented to assess the DEM role in real-life conditions. PMID:27347971

  10. Sensitivity Analysis of the Scattering-Based SARBM3D Despeckling Algorithm

    PubMed Central

    Di Simone, Alessio

    2016-01-01

    Synthetic Aperture Radar (SAR) imagery greatly suffers from multiplicative speckle noise, typical of coherent image acquisition sensors, such as SAR systems. Therefore, a proper and accurate despeckling preprocessing step is almost mandatory to aid the interpretation and processing of SAR data by human users and computer algorithms, respectively. Very recently, a scattering-oriented version of the popular SAR Block-Matching 3D (SARBM3D) despeckling filter, named Scattering-Based (SB)-SARBM3D, was proposed. The new filter is based on the a priori knowledge of the local topography of the scene. In this paper, an experimental sensitivity analysis of the above-mentioned despeckling algorithm is carried out, and the main results are shown and discussed. In particular, the role of both electromagnetic and geometrical parameters of the surface and the impact of its scattering behavior are investigated. Furthermore, a comprehensive sensitivity analysis of the SB-SARBM3D filter against the Digital Elevation Model (DEM) resolution and the SAR image-DEM coregistration step is also provided. The sensitivity analysis shows a significant robustness of the algorithm against most of the surface parameters, while the DEM resolution plays a key role in the despeckling process. Furthermore, the SB-SARBM3D algorithm outperforms the original SARBM3D in the presence of the most realistic scattering behaviors of the surface. An actual scenario is also presented to assess the DEM role in real-life conditions. PMID:27347971

  11. Sensitivity Analysis of the Scattering-Based SARBM3D Despeckling Algorithm.

    PubMed

    Di Simone, Alessio

    2016-01-01

    Synthetic Aperture Radar (SAR) imagery greatly suffers from multiplicative speckle noise, typical of coherent image acquisition sensors, such as SAR systems. Therefore, a proper and accurate despeckling preprocessing step is almost mandatory to aid the interpretation and processing of SAR data by human users and computer algorithms, respectively. Very recently, a scattering-oriented version of the popular SAR Block-Matching 3D (SARBM3D) despeckling filter, named Scattering-Based (SB)-SARBM3D, was proposed. The new filter is based on the a priori knowledge of the local topography of the scene. In this paper, an experimental sensitivity analysis of the above-mentioned despeckling algorithm is carried out, and the main results are shown and discussed. In particular, the role of both electromagnetic and geometrical parameters of the surface and the impact of its scattering behavior are investigated. Furthermore, a comprehensive sensitivity analysis of the SB-SARBM3D filter against the Digital Elevation Model (DEM) resolution and the SAR image-DEM coregistration step is also provided. The sensitivity analysis shows a significant robustness of the algorithm against most of the surface parameters, while the DEM resolution plays a key role in the despeckling process. Furthermore, the SB-SARBM3D algorithm outperforms the original SARBM3D in the presence of the most realistic scattering behaviors of the surface. An actual scenario is also presented to assess the DEM role in real-life conditions.

  12. 3D image display of fetal ultrasonic images by thin shell

    NASA Astrophysics Data System (ADS)

    Wang, Shyh-Roei; Sun, Yung-Nien; Chang, Fong-Ming; Jiang, Ching-Fen

    1999-05-01

    Due to the properties of convenience and non-invasion, ultrasound has become an essential tool for diagnosis of fetal abnormality during women pregnancy in obstetrics. However, the 'noisy and blurry' nature of ultrasound data makes the rendering of the data a challenge in comparison with MRI and CT images. In spite of the speckle noise, the unwanted objects usually occlude the target to be observed. In this paper, we proposed a new system that can effectively depress the speckle noise, extract the target object, and clearly render the 3D fetal image in almost real-time from 3D ultrasound image data. The system is based on a deformable model that detects contours of the object according to the local image feature of ultrasound. Besides, in order to accelerate rendering speed, a thin shell is defined to separate the observed organ from unrelated structures depending on those detected contours. In this way, we can support quick 3D display of ultrasound, and the efficient visualization of 3D fetal ultrasound thus becomes possible.

  13. 3D image reconstruction algorithms for cryo-electron-microscopy images of virus particles

    NASA Astrophysics Data System (ADS)

    Doerschuk, Peter C.; Johnson, John E.

    2000-11-01

    A statistical model for the object and the complete image formation process in cryo electron microscopy of viruses is presented. Using this model, maximum likelihood reconstructions of the 3D structure of viruses are computed using the expectation maximization algorithm and an example based on Cowpea mosaic virus is provided.

  14. Infrared imaging of the polymer 3D-printing process

    NASA Astrophysics Data System (ADS)

    Dinwiddie, Ralph B.; Kunc, Vlastimil; Lindal, John M.; Post, Brian; Smith, Rachel J.; Love, Lonnie; Duty, Chad E.

    2014-05-01

    Both mid-wave and long-wave IR cameras are used to measure various temperature profiles in thermoplastic parts as they are printed. Two significantly different 3D-printers are used in this study. The first is a small scale commercially available Solidoodle 3 printer, which prints parts with layer thicknesses on the order of 125μm. The second printer used is a "Big Area Additive Manufacturing" (BAAM) 3D-printer developed at Oak Ridge National Laboratory. The BAAM prints parts with a layer thicknesses of 4.06 mm. Of particular interest is the temperature of the previously deposited layer as the new hot layer is about to be extruded onto it. The two layers are expected have a stronger bond if the temperature of the substrate layer is above the glass transition temperature. This paper describes the measurement technique and results for a study of temperature decay and substrate layer temperature for ABS thermoplastic with and without the addition of chopped carbon fibers.

  15. 3D breast image registration--a review.

    PubMed

    Sivaramakrishna, Radhika

    2005-02-01

    Image registration is an important problem in breast imaging. It is used in a wide variety of applications that include better visualization of lesions on pre- and post-contrast breast MRI images, speckle tracking and image compounding in breast ultrasound images, alignment of positron emission, and standard mammography images on hybrid machines et cetera. It is a prerequisite to align images taken at different times to isolate small interval lesions. Image registration also has useful applications in monitoring cancer therapy. The field of breast image registration has gained considerable interest in recent years. While the primary focus of interest continues to be the registration of pre- and post-contrast breast MRI images, other areas like breast ultrasound registration have gained more attention in recent years. The focus of registration algorithms has also shifted from control point based semi-automated techniques, to more sophisticated voxel based automated techniques that use mutual information as a similarity measure. This paper visits the problem of breast image registration and provides an overview of the current state-of-the-art in this area. PMID:15649086

  16. 3D fluorescence anisotropy imaging using selective plane illumination microscopy

    PubMed Central

    Hedde, Per Niklas; Ranjit, Suman; Gratton, Enrico

    2015-01-01

    Fluorescence anisotropy imaging is a popular method to visualize changes in organization and conformation of biomolecules within cells and tissues. In such an experiment, depolarization effects resulting from differences in orientation, proximity and rotational mobility of fluorescently labeled molecules are probed with high spatial resolution. Fluorescence anisotropy is typically imaged using laser scanning and epifluorescence-based approaches. Unfortunately, those techniques are limited in either axial resolution, image acquisition speed, or by photobleaching. In the last decade, however, selective plane illumination microscopy has emerged as the preferred choice for three-dimensional time lapse imaging combining axial sectioning capability with fast, camera-based image acquisition, and minimal light exposure. We demonstrate how selective plane illumination microscopy can be utilized for three-dimensional fluorescence anisotropy imaging of live cells. We further examined the formation of focal adhesions by three-dimensional time lapse anisotropy imaging of CHO-K1 cells expressing an EGFP-paxillin fusion protein. PMID:26368202

  17. Beam Optics Analysis - An Advanced 3D Trajectory Code

    SciTech Connect

    Ives, R. Lawrence; Bui, Thuc; Vogler, William; Neilson, Jeff; Read, Mike; Shephard, Mark; Bauer, Andrew; Datta, Dibyendu; Beal, Mark

    2006-01-03

    Calabazas Creek Research, Inc. has completed initial development of an advanced, 3D program for modeling electron trajectories in electromagnetic fields. The code is being used to design complex guns and collectors. Beam Optics Analysis (BOA) is a fully relativistic, charged particle code using adaptive, finite element meshing. Geometrical input is imported from CAD programs generating ACIS-formatted files. Parametric data is inputted using an intuitive, graphical user interface (GUI), which also provides control of convergence, accuracy, and post processing. The program includes a magnetic field solver, and magnetic information can be imported from Maxwell 2D/3D and other programs. The program supports thermionic emission and injected beams. Secondary electron emission is also supported, including multiple generations. Work on field emission is in progress as well as implementation of computer optimization of both the geometry and operating parameters. The principle features of the program and its capabilities are presented.

  18. Beam Optics Analysis — An Advanced 3D Trajectory Code

    NASA Astrophysics Data System (ADS)

    Ives, R. Lawrence; Bui, Thuc; Vogler, William; Neilson, Jeff; Read, Mike; Shephard, Mark; Bauer, Andrew; Datta, Dibyendu; Beal, Mark

    2006-01-01

    Calabazas Creek Research, Inc. has completed initial development of an advanced, 3D program for modeling electron trajectories in electromagnetic fields. The code is being used to design complex guns and collectors. Beam Optics Analysis (BOA) is a fully relativistic, charged particle code using adaptive, finite element meshing. Geometrical input is imported from CAD programs generating ACIS-formatted files. Parametric data is inputted using an intuitive, graphical user interface (GUI), which also provides control of convergence, accuracy, and post processing. The program includes a magnetic field solver, and magnetic information can be imported from Maxwell 2D/3D and other programs. The program supports thermionic emission and injected beams. Secondary electron emission is also supported, including multiple generations. Work on field emission is in progress as well as implementation of computer optimization of both the geometry and operating parameters. The principle features of the program and its capabilities are presented.

  19. Traveltime computation and imaging from rugged topography in 3D TTI media

    NASA Astrophysics Data System (ADS)

    Liu, Shaoyong; Wang, Huazhong; Yang, Qinyong; Fang, Wubao

    2014-02-01

    Foothill areas with rugged topography are of great potential for oil and gas seismic exploration, but subsurface imaging in these areas is very challenging. Seismic acquisition with larger offset and wider azimuth is necessary for seismic imaging in complex areas. However, the scale anisotropy in this case must be taken into account. To generalize the pre-stack depth migration (PSDM) to 3D transversely isotropic media with vertical symmetry axes (VTI) and tilted symmetry axes (TTI) from rugged topography, a new dynamic programming approach for the first-arrival traveltime computation method is proposed. The first-arrival time on every uniform mesh point is calculated based on Fermat's principle with simple calculus techniques and a systematic mapping scheme. In order to calculate the minimum traveltime, a set of nonlinear equations is solved on each mesh point, where the group velocity is determined by the group angle. Based on the new first-arrival time calculation method, the corresponding PSDM and migration velocity analysis workflow for 3D anisotropic media from rugged surface is developed. Numerical tests demonstrate that the proposed traveltime calculation method is effective in both VTI and TTI media. The migration results for 3D field data show that it is necessary to choose a smooth datum to remove the high wavenumber move-out components for PSDM with rugged topography and take anisotropy into account to achieve better images.

  20. RV functional imaging: 3-D echo-derived dynamic geometry and flow field simulations.

    PubMed

    Pasipoularides, Ares D; Shu, Ming; Womack, Michael S; Shah, Ashish; Von Ramm, Olaf; Glower, Donald D

    2003-01-01

    We describe a novel functional imaging approach for quantitative analysis of right ventricular (RV) blood flow patterns in specific experimental animals (or humans) using real-time, three-dimensional (3-D) echocardiography (RT3D). The method is independent of the digital imaging modality used. It comprises three parts. First, a semiautomated segmentation aided by intraluminal contrast medium locates the RV endocardial surface. Second, a geometric scheme for dynamic RV chamber reconstruction applies a time interpolation procedure to the RT3D data to quantify wall geometry and motion at 400 Hz. A volumetric prism method validated the dynamic geometric reconstruction against simultaneous sonomicrometric canine measurements. Finally, the RV endocardial border motion information is used for mesh generation on a computational fluid dynamics solver to simulate development of the early RV diastolic inflow field. Boundary conditions (tessellated endocardial surface nodal velocities) for the solver are directly derived from the endocardial geometry and motion information. The new functional imaging approach may yield important kinematic information on the distribution of instantaneous velocities in the RV diastolic flow field of specific normal or diseased hearts. PMID:12388220

  1. Accelerated 3D MERGE Carotid Imaging using Compressed Sensing with a Hidden Markov Tree Model

    PubMed Central

    Makhijani, Mahender K.; Balu, Niranjan; Yamada, Kiyofumi; Yuan, Chun; Nayak, Krishna S.

    2012-01-01

    Purpose To determine the potential for accelerated 3D carotid magnetic resonance imaging (MRI) using wavelet based compressed sensing (CS) with a hidden Markov tree (HMT) model. Materials and Methods We retrospectively applied HMT model-based CS and conventional CS to 3D carotid MRI data with 0.7 mm isotropic resolution, from six subjects with known carotid stenosis (12 carotids). We applied a wavelet-tree model learnt from a training database of carotid images to improve CS reconstruction. Quantitative endpoints such as lumen area, wall area, mean and maximum wall thickness, plaque calicification, and necrotic core area, were measured and compared using Bland-Altman analysis along with image quality. Results Rate-4.5 acceleration with HMT model-based CS provided image quality comparable to that of rate-3 acceleration with conventional CS and fully sampled reference reconstructions. Morphological measurements made on rate-4.5 HMT model-based CS reconstructions were in good agreement with measurements made on fully sampled reference images. There was no significant bias or correlation between mean and difference of measurements when comparing rate 4.5 HMT model-based CS with fully sampled reference images. Conclusion HMT model-based CS can potentially be used to accelerate clinical carotid MRI by a factor of 4.5 without impacting diagnostic quality or quantitative endpoints. PMID:22826159

  2. Real-time computer-generated integral imaging and 3D image calibration for augmented reality surgical navigation.

    PubMed

    Wang, Junchen; Suenaga, Hideyuki; Liao, Hongen; Hoshi, Kazuto; Yang, Liangjing; Kobayashi, Etsuko; Sakuma, Ichiro

    2015-03-01

    Autostereoscopic 3D image overlay for augmented reality (AR) based surgical navigation has been studied and reported many times. For the purpose of surgical overlay, the 3D image is expected to have the same geometric shape as the original organ, and can be transformed to a specified location for image overlay. However, how to generate a 3D image with high geometric fidelity and quantitative evaluation of 3D image's geometric accuracy have not been addressed. This paper proposes a graphics processing unit (GPU) based computer-generated integral imaging pipeline for real-time autostereoscopic 3D display, and an automatic closed-loop 3D image calibration paradigm for displaying undistorted 3D images. Based on the proposed methods, a novel AR device for 3D image surgical overlay is presented, which mainly consists of a 3D display, an AR window, a stereo camera for 3D measurement, and a workstation for information processing. The evaluation on the 3D image rendering performance with 2560×1600 elemental image resolution shows the rendering speeds of 50-60 frames per second (fps) for surface models, and 5-8 fps for large medical volumes. The evaluation of the undistorted 3D image after the calibration yields sub-millimeter geometric accuracy. A phantom experiment simulating oral and maxillofacial surgery was also performed to evaluate the proposed AR overlay device in terms of the image registration accuracy, 3D image overlay accuracy, and the visual effects of the overlay. The experimental results show satisfactory image registration and image overlay accuracy, and confirm the system usability.

  3. Understanding fiber mixture by simulation in 3D Polarized Light Imaging.

    PubMed

    Dohmen, Melanie; Menzel, Miriam; Wiese, Hendrik; Reckfort, Julia; Hanke, Frederike; Pietrzyk, Uwe; Zilles, Karl; Amunts, Katrin; Axer, Markus

    2015-05-01

    3D Polarized Light Imaging (3D-PLI) is a neuroimaging technique that has opened up new avenues to study the complex architecture of nerve fibers in postmortem brains. The spatial orientations of the fibers are derived from birefringence measurements of unstained histological brain sections that are interpreted by a voxel-based analysis. This, however, implies that a single fiber orientation vector is obtained for each voxel and reflects the net effect of all comprised fibers. The mixture of various fiber orientations within an individual voxel is a priori not accessible by a standard 3D-PLI measurement. In order to better understand the effects of fiber mixture on the measured 3D-PLI signal and to improve the interpretation of real data, we have developed a simulation method referred to as SimPLI. By means of SimPLI, it is possible to reproduce the entire 3D-PLI analysis starting from synthetic fiber models in user-defined arrangements and ending with measurement-like tissue images. For the simulation, each synthetic fiber is considered as an optical retarder, i.e., multiple fibers within one voxel are described by multiple retarder elements. The investigation of different synthetic crossing fiber arrangements generated with SimPLI demonstrated that the derived fiber orientations are strongly influenced by the relative mixture of crossing fibers. In case of perpendicularly crossing fibers, for example, the derived fiber direction corresponds to the predominant fiber direction. The derived fiber inclination turned out to be not only influenced by myelin density but also systematically overestimated due to signal attenuation. Similar observations were made for synthetic models of optic chiasms of a human and a hooded seal which were opposed to experimental 3D-PLI data sets obtained from the chiasms of both species. Our study showed that SimPLI is a powerful method able to test hypotheses on the underlying fiber structure of brain tissue and, therefore, to improve the

  4. 3-D Target Location from Stereoscopic SAR Images

    SciTech Connect

    DOERRY,ARMIN W.

    1999-10-01

    SAR range-Doppler images are inherently 2-dimensional. Targets with a height offset lay over onto offset range and azimuth locations. Just which image locations are laid upon depends on the imaging geometry, including depression angle, squint angle, and target bearing. This is the well known layover phenomenon. Images formed with different aperture geometries will exhibit different layover characteristics. These differences can be exploited to ascertain target height information, in a stereoscopic manner. Depending on the imaging geometries, height accuracy can be on the order of horizontal position accuracies, thereby rivaling the best IFSAR capabilities in fine resolution SAR images. All that is required for this to work are two distinct passes with suitably different geometries from any plain old SAR.

  5. Thin client performance for remote 3-D image display.

    PubMed

    Lai, Albert; Nieh, Jason; Laine, Andrew; Starren, Justin

    2003-01-01

    Several trends in biomedical computing are converging in a way that will require new approaches to telehealth image display. Image viewing is becoming an "anytime, anywhere" activity. In addition, organizations are beginning to recognize that healthcare providers are highly mobile and optimal care requires providing information wherever the provider and patient are. Thin-client computing is one way to support image viewing this complex environment. However little is known about the behavior of thin client systems in supporting image transfer in modern heterogeneous networks. Our results show that using thin-clients can deliver acceptable performance over conditions commonly seen in wireless networks if newer protocols optimized for these conditions are used.

  6. Uncertainty Analysis for RELAP5-3D

    SciTech Connect

    Aaron J. Pawel; Dr. George L. Mesina

    2011-08-01

    In its current state, RELAP5-3D is a 'best-estimate' code; it is one of our most reliable programs for modeling what occurs within reactor systems in transients from given initial conditions. This code, however, remains an estimator. A statistical analysis has been performed that begins to lay the foundation for a full uncertainty analysis. By varying the inputs over assumed probability density functions, the output parameters were shown to vary. Using such statistical tools as means, variances, and tolerance intervals, a picture of how uncertain the results are based on the uncertainty of the inputs has been obtained.

  7. Pragmatic fully 3D image reconstruction for the MiCES mouse imaging PET scanner

    NASA Astrophysics Data System (ADS)

    Lee, Kisung; Kinahan, Paul E.; Fessler, Jeffrey A.; Miyaoka, Robert S.; Janes, Marie; Lewellen, Tom K.

    2004-10-01

    We present a pragmatic approach to image reconstruction for data from the micro crystal elements system (MiCES) fully 3D mouse imaging positron emission tomography (PET) scanner under construction at the University of Washington. Our approach is modelled on fully 3D image reconstruction used in clinical PET scanners, which is based on Fourier rebinning (FORE) followed by 2D iterative image reconstruction using ordered-subsets expectation-maximization (OSEM). The use of iterative methods allows modelling of physical effects (e.g., statistical noise, detector blurring, attenuation, etc), while FORE accelerates the reconstruction process by reducing the fully 3D data to a stacked set of independent 2D sinograms. Previous investigations have indicated that non-stationary detector point-spread response effects, which are typically ignored for clinical imaging, significantly impact image quality for the MiCES scanner geometry. To model the effect of non-stationary detector blurring (DB) in the FORE+OSEM(DB) algorithm, we have added a factorized system matrix to the ASPIRE reconstruction library. Initial results indicate that the proposed approach produces an improvement in resolution without an undue increase in noise and without a significant increase in the computational burden. The impact on task performance, however, remains to be evaluated.

  8. 3-D ultrafast Doppler imaging applied to the noninvasive mapping of blood vessels in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Demene, Charlie; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2015-08-01

    Ultrafast Doppler imaging was introduced as a technique to quantify blood flow in an entire 2-D field of view, expanding the field of application of ultrasound imaging to the highly sensitive anatomical and functional mapping of blood vessels. We have recently developed 3-D ultrafast ultrasound imaging, a technique that can produce thousands of ultrasound volumes per second, based on a 3-D plane and diverging wave emissions, and demonstrated its clinical feasibility in human subjects in vivo. In this study, we show that noninvasive 3-D ultrafast power Doppler, pulsed Doppler, and color Doppler imaging can be used to perform imaging of blood vessels in humans when using coherent compounding of 3-D tilted plane waves. A customized, programmable, 1024-channel ultrasound system was designed to perform 3-D ultrafast imaging. Using a 32 × 32, 3-MHz matrix phased array (Vermon, Tours, France), volumes were beamformed by coherently compounding successive tilted plane wave emissions. Doppler processing was then applied in a voxel-wise fashion. The proof of principle of 3-D ultrafast power Doppler imaging was first performed by imaging Tygon tubes of various diameters, and in vivo feasibility was demonstrated by imaging small vessels in the human thyroid. Simultaneous 3-D color and pulsed Doppler imaging using compounded emissions were also applied in the carotid artery and the jugular vein in one healthy volunteer.

  9. 3-D ultrafast Doppler imaging applied to the noninvasive mapping of blood vessels in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Demene, Charlie; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2015-08-01

    Ultrafast Doppler imaging was introduced as a technique to quantify blood flow in an entire 2-D field of view, expanding the field of application of ultrasound imaging to the highly sensitive anatomical and functional mapping of blood vessels. We have recently developed 3-D ultrafast ultrasound imaging, a technique that can produce thousands of ultrasound volumes per second, based on a 3-D plane and diverging wave emissions, and demonstrated its clinical feasibility in human subjects in vivo. In this study, we show that noninvasive 3-D ultrafast power Doppler, pulsed Doppler, and color Doppler imaging can be used to perform imaging of blood vessels in humans when using coherent compounding of 3-D tilted plane waves. A customized, programmable, 1024-channel ultrasound system was designed to perform 3-D ultrafast imaging. Using a 32 × 32, 3-MHz matrix phased array (Vermon, Tours, France), volumes were beamformed by coherently compounding successive tilted plane wave emissions. Doppler processing was then applied in a voxel-wise fashion. The proof of principle of 3-D ultrafast power Doppler imaging was first performed by imaging Tygon tubes of various diameters, and in vivo feasibility was demonstrated by imaging small vessels in the human thyroid. Simultaneous 3-D color and pulsed Doppler imaging using compounded emissions were also applied in the carotid artery and the jugular vein in one healthy volunteer. PMID:26276956

  10. Review of three-dimensional (3D) surface imaging for oncoplastic, reconstructive and aesthetic breast surgery.

    PubMed

    O'Connell, Rachel L; Stevens, Roger J G; Harris, Paul A; Rusby, Jennifer E

    2015-08-01

    Three-dimensional surface imaging (3D-SI) is being marketed as a tool in aesthetic breast surgery. It has recently also been studied in the objective evaluation of cosmetic outcome of oncological procedures. The aim of this review is to summarise the use of 3D-SI in oncoplastic, reconstructive and aesthetic breast surgery. An extensive literature review was undertaken to identify published studies. Two reviewers independently screened all abstracts and selected relevant articles using specific inclusion criteria. Seventy two articles relating to 3D-SI for breast surgery were identified. These covered endpoints such as image acquisition, calculations and data obtainable, comparison of 3D and 2D imaging and clinical research applications of 3D-SI. The literature provides a favourable view of 3D-SI. However, evidence of its superiority over current methods of clinical decision making, surgical planning, communication and evaluation of outcome is required before it can be accepted into mainstream practice.

  11. Computation of tooth axes of existent and missing teeth from 3D CT images.

    PubMed

    Wang, Yang; Wu, Lin; Guo, Huayan; Qiu, Tiantian; Huang, Yuanliang; Lin, Bin; Wang, Lisheng

    2015-12-01

    Orientations of tooth axes are important quantitative information used in dental diagnosis and surgery planning. However, their computation is a complex problem, and the existing methods have respective limitations. This paper proposes new methods to compute 3D tooth axes from 3D CT images for existent teeth with single root or multiple roots and to estimate 3D tooth axes from 3D CT images for missing teeth. The tooth axis of a single-root tooth will be determined by segmenting the pulp cavity of the tooth and computing the principal direction of the pulp cavity, and the estimation of tooth axes of the missing teeth is modeled as an interpolation problem of some quaternions along a 3D curve. The proposed methods can either avoid the difficult teeth segmentation problem or improve the limitations of existing methods. Their effectiveness and practicality are demonstrated by experimental results of different 3D CT images from the clinic.

  12. Breast tumor angiogenesis analysis using 3D power Doppler ultrasound

    NASA Astrophysics Data System (ADS)

    Chang, Ruey-Feng; Huang, Sheng-Fang; Lee, Yu-Hau; Chen, Dar-Ren; Moon, Woo Kyung

    2006-03-01

    Angiogenesis is the process that correlates to tumor growth, invasion, and metastasis. Breast cancer angiogenesis has been the most extensively studied and now serves as a paradigm for understanding the biology of angiogenesis and its effects on tumor outcome and patient prognosis. Most studies on characterization of angiogenesis focus on pixel/voxel counts more than morphological analysis. Nevertheless, in cancer, the blood flow is greatly affected by the morphological changes, such as the number of vessels, branching pattern, length, and diameter. This paper presents a computer-aided diagnostic (CAD) system that can quantify vascular morphology using 3-D power Doppler ultrasound (US) on breast tumors. We propose a scheme to extract the morphological information from angiography and to relate them to tumor diagnosis outcome. At first, a 3-D thinning algorithm helps narrow down the vessels into their skeletons. The measurements of vascular morphology significantly rely on the traversing of the vascular trees produced from skeletons. Our study of 3-D assessment of vascular morphological features regards vessel count, length, bifurcation, and diameter of vessels. Investigations into 221 solid breast tumors including 110 benign and 111 malignant cases, the p values using the Student's t-test for all features are less than 0.05 indicating that the proposed features are deemed statistically significant. Our scheme focuses on the vascular architecture without involving the technique of tumor segmentation. The results show that the proposed method is feasible, and have a good agreement with the diagnosis of the pathologists.

  13. USM3D Analysis of Low Boom Configuration

    NASA Technical Reports Server (NTRS)

    Carter, Melissa B.; Campbell, Richard L.; Nayani, Sudheer N.

    2011-01-01

    In the past few years considerable improvement was made in NASA's in house boom prediction capability. As part of this improved capability, the USM3D Navier-Stokes flow solver, when combined with a suitable unstructured grid, went from accurately predicting boom signatures at 1 body length to 10 body lengths. Since that time, the research emphasis has shifted from analysis to the design of supersonic configurations with boom signature mitigation In order to design an aircraft, the techniques for accurately predicting boom and drag need to be determined. This paper compares CFD results with the wind tunnel experimental results conducted on a Gulfstream reduced boom and drag configuration. Two different wind-tunnel models were designed and tested for drag and boom data. The goal of this study was to assess USM3D capability for predicting both boom and drag characteristics. Overall, USM3D coupled with a grid that was sheared and stretched was able to reasonably predict boom signature. The computational drag polar matched the experimental results for a lift coefficient above 0.1 despite some mismatch in the predicted lift-curve slope.

  14. A comparison of the 3D kinematic measurements obtained by single-plane 2D-3D image registration and RSA.

    PubMed

    Muhit, Abdullah A; Pickering, Mark R; Ward, Tom; Scarvell, Jennie M; Smith, Paul N

    2010-01-01

    3D computed tomography (CT) to single-plane 2D fluoroscopy registration is an emerging technology for many clinical applications such as kinematic analysis of human joints and image-guided surgery. However, previous registration approaches have suffered from the inaccuracy of determining precise motion parameters for out-of-plane movements. In this paper we compare kinematic measurements obtained by a new 2D-3D registration algorithm with measurements provided by the gold standard Roentgen Stereo Analysis (RSA). In particular, we are interested in the out-of-plane translation and rotations which are difficult to measure precisely using a single plane approach. Our experimental results show that the standard deviation of the error for out-of-plane translation is 0.42 mm which compares favourably to RSA. It is also evident that our approach produces very similar flexion/extension, abduction/adduction and external knee rotation angles when compared to RSA.

  15. Light sheet adaptive optics microscope for 3D live imaging

    NASA Astrophysics Data System (ADS)

    Bourgenot, C.; Taylor, J. M.; Saunter, C. D.; Girkin, J. M.; Love, G. D.

    2013-02-01

    We report on the incorporation of adaptive optics (AO) into the imaging arm of a selective plane illumination microscope (SPIM). SPIM has recently emerged as an important tool for life science research due to its ability to deliver high-speed, optically sectioned, time-lapse microscope images from deep within in vivo selected samples. SPIM provides a very interesting system for the incorporation of AO as the illumination and imaging paths are decoupled and AO may be useful in both paths. In this paper, we will report the use of AO applied to the imaging path of a SPIM, demonstrating significant improvement in image quality of a live GFP-labeled transgenic zebrafish embryo heart using a modal, wavefront sensorless approach and a heart synchronization method. These experimental results are linked to a computational model showing that significant aberrations are produced by the tube holding the sample in addition to the aberration from the biological sample itself.

  16. Real Time Quantitative 3-D Imaging of Diffusion Flame Species

    NASA Technical Reports Server (NTRS)

    Kane, Daniel J.; Silver, Joel A.

    1997-01-01

    A low-gravity environment, in space or ground-based facilities such as drop towers, provides a unique setting for study of combustion mechanisms. Understanding the physical phenomena controlling the ignition and spread of flames in microgravity has importance for space safety as well as better characterization of dynamical and chemical combustion processes which are normally masked by buoyancy and other gravity-related effects. Even the use of so-called 'limiting cases' or the construction of 1-D or 2-D models and experiments fail to make the analysis of combustion simultaneously simple and accurate. Ideally, to bridge the gap between chemistry and fluid mechanics in microgravity combustion, species concentrations and temperature profiles are needed throughout the flame. However, restrictions associated with performing measurements in reduced gravity, especially size and weight considerations, have generally limited microgravity combustion studies to the capture of flame emissions on film or video laser Schlieren imaging and (intrusive) temperature measurements using thermocouples. Given the development of detailed theoretical models, more sophisticated studies are needed to provide the kind of quantitative data necessary to characterize the properties of microgravity combustion processes as well as provide accurate feedback to improve the predictive capabilities of the computational models. While there have been a myriad of fluid mechanical visualization studies in microgravity combustion, little experimental work has been completed to obtain reactant and product concentrations within a microgravity flame. This is largely due to the fact that traditional sampling methods (quenching microprobes using GC and/or mass spec analysis) are too heavy, slow, and cumbersome for microgravity experiments. Non-intrusive optical spectroscopic techniques have - up until now - also required excessively bulky, power hungry equipment. However, with the advent of near-IR diode

  17. An imaging-based platform for high-content, quantitative evaluation of therapeutic response in 3D tumour models

    NASA Astrophysics Data System (ADS)

    Celli, Jonathan P.; Rizvi, Imran; Blanden, Adam R.; Massodi, Iqbal; Glidden, Michael D.; Pogue, Brian W.; Hasan, Tayyaba

    2014-01-01

    While it is increasingly recognized that three-dimensional (3D) cell culture models recapitulate drug responses of human cancers with more fidelity than monolayer cultures, a lack of quantitative analysis methods limit their implementation for reliable and routine assessment of emerging therapies. Here, we introduce an approach based on computational analysis of fluorescence image data to provide high-content readouts of dose-dependent cytotoxicity, growth inhibition, treatment-induced architectural changes and size-dependent response in 3D tumour models. We demonstrate this approach in adherent 3D ovarian and pancreatic multiwell extracellular matrix tumour overlays subjected to a panel of clinically relevant cytotoxic modalities and appropriately designed controls for reliable quantification of fluorescence signal. This streamlined methodology reads out the high density of information embedded in 3D culture systems, while maintaining a level of speed and efficiency traditionally achieved with global colorimetric reporters in order to facilitate broader implementation of 3D tumour models in therapeutic screening.

  18. Quality assessment of stereoscopic 3D image compression by binocular integration behaviors.

    PubMed

    Lin, Yu-Hsun; Wu, Ja-Ling

    2014-04-01

    The objective approaches of 3D image quality assessment play a key role for the development of compression standards and various 3D multimedia applications. The quality assessment of 3D images faces more new challenges, such as asymmetric stereo compression, depth perception, and virtual view synthesis, than its 2D counterparts. In addition, the widely used 2D image quality metrics (e.g., PSNR and SSIM) cannot be directly applied to deal with these newly introduced challenges. This statement can be verified by the low correlation between the computed objective measures and the subjectively measured mean opinion scores (MOSs), when 3D images are the tested targets. In order to meet these newly introduced challenges, in this paper, besides traditional 2D image metrics, the binocular integration behaviors-the binocular combination and the binocular frequency integration, are utilized as the bases for measuring the quality of stereoscopic 3D images. The effectiveness of the proposed metrics is verified by conducting subjective evaluations on publicly available stereoscopic image databases. Experimental results show that significant consistency could be reached between the measured MOS and the proposed metrics, in which the correlation coefficient between them can go up to 0.88. Furthermore, we found that the proposed metrics can also address the quality assessment of the synthesized color-plus-depth 3D images well. Therefore, it is our belief that the binocular integration behaviors are important factors in the development of objective quality assessment for 3D images.

  19. New Instruments for Survey: on Line Softwares for 3d Recontruction from Images

    NASA Astrophysics Data System (ADS)

    Fratus de Balestrini, E.; Guerra, F.

    2011-09-01

    3d scanning technologies had a significant development and have been widely used in documentation of cultural, architectural and archeological heritages. Modern methods of three-dimensional acquiring and modeling allow to represent an object through a digital model that combines visual potentialities of images (normally used for documentation) to the accuracy of the survey, becoming at the same time support for the visualization that for metric evaluation of any artefact that have an historical or artistic interest, opening up new possibilities for cultural heritage's fruition, cataloging and study. Despite this development, because of the small catchment area and the 3D laser scanner's sophisticated technologies, the cost of these instruments is very high and beyond the reach of most operators in the field of cultural heritages. This is the reason why they have appeared low-cost technologies or even free, allowing anyone to approach the issues of acquisition and 3D modeling, providing tools that allow to create three-dimensional models in a simple and economical way. The research, conducted by the Laboratory of Photogrammetry of the University IUAV of Venice, of which we present here some results, is intended to figure out whether, with Arc3D, it is possible to obtain results that can be somehow comparable, in therms of overall quality, to those of the laser scanner, and/or whether it is possible to integrate them. They were carried out a series of tests on certain types of objects, models made with Arc3D, from raster images, were compared with those obtained using the point clouds from laser scanner. We have also analyzed the conditions for an optimal use of Arc3D: environmental conditions (lighting), acquisition tools (digital cameras) and type and size of objects. After performing the tests described above, we analyzed the patterns generated by Arc3D to check what other graphic representations can be obtained from them: orthophotos and drawings. The research

  20. Electron Microscopy: From 2D to 3D Images with Special Reference to Muscle

    PubMed Central

    2015-01-01

    This is a brief and necessarily very sketchy presentation of the evolution in electron microscopy (EM) imaging that was driven by the necessity of extracting 3-D views from the essentially 2-D images produced by the electron beam. The lens design of standard transmission electron microscope has not been greatly altered since its inception. However, technical advances in specimen preparation, image collection and analysis gradually induced an astounding progression over a period of about 50 years. From the early images that redefined tissues, cell and cell organelles at the sub-micron level, to the current nano-resolution reconstructions of organelles and proteins the step is very large. The review is written by an investigator who has followed the field for many years, but often from the sidelines, and with great wonder. Her interest in muscle ultrastructure colors the writing. More specific detailed reviews are presented in this issue. PMID:26913146

  1. Multiplexed 3D FRET imaging in deep tissue of live embryos

    PubMed Central

    Zhao, Ming; Wan, Xiaoyang; Li, Yu; Zhou, Weibin; Peng, Leilei

    2015-01-01

    Current deep tissue microscopy techniques are mostly restricted to intensity mapping of fluorophores, which significantly limit their applications in investigating biochemical processes in vivo. We present a deep tissue multiplexed functional imaging method that probes multiple Förster resonant energy transfer (FRET) sensors in live embryos with high spatial resolution. The method simultaneously images fluorescence lifetimes in 3D with multiple excitation lasers. Through quantitative analysis of triple-channel intensity and lifetime images, we demonstrated that Ca2+ and cAMP levels of live embryos expressing dual FRET sensors can be monitored simultaneously at microscopic resolution. The method is compatible with a broad range of FRET sensors currently available for probing various cellular biochemical functions. It opens the door to imaging complex cellular circuitries in whole live organisms. PMID:26387920

  2. Electron Microscopy: From 2D to 3D Images with Special Reference to Muscle.

    PubMed

    Franzini-Armstrong, Clara

    2015-01-01

    This is a brief and necessarily very sketchy presentation of the evolution in electron microscopy (EM) imaging that was driven by the necessity of extracting 3-D views from the essentially 2-D images produced by the electron beam. The lens design of standard transmission electron microscope has not been greatly altered since its inception. However, technical advances in specimen preparation, image collection and analysis gradually induced an astounding progression over a period of about 50 years. From the early images that redefined tissues, cell and cell organelles at the sub-micron level, to the current nano-resolution reconstructions of organelles and proteins the step is very large. The review is written by an investigator who has followed the field for many years, but often from the sidelines, and with great wonder. Her interest in muscle ultrastructure colors the writing. More specific detailed reviews are presented in this issue. PMID:26913146

  3. Estimation of the degree of polarization in low-light 3D integral imaging

    NASA Astrophysics Data System (ADS)

    Carnicer, Artur; Javidi, Bahram

    2016-06-01

    The calculation of the Stokes Parameters and the Degree of Polarization in 3D integral images requires a careful manipulation of the polarimetric elemental images. This fact is particularly important if the scenes are taken in low-light conditions. In this paper, we show that the Degree of Polarization can be effectively estimated even when elemental images are recorded with few photons. The original idea was communicated in [A. Carnicer and B. Javidi, "Polarimetric 3D integral imaging in photon-starved conditions," Opt. Express 23, 6408-6417 (2015)]. First, we use the Maximum Likelihood Estimation approach for generating the 3D integral image. Nevertheless, this method produces very noisy images and thus, the degree of polarization cannot be calculated. We suggest using a Total Variation Denoising filter as a way to improve the quality of the generated 3D images. As a result, noise is suppressed but high frequency information is preserved. Finally, the degree of polarization is obtained successfully.

  4. Computer-generated hologram for 3D scene from multi-view images

    NASA Astrophysics Data System (ADS)

    Chang, Eun-Young; Kang, Yun-Suk; Moon, KyungAe; Ho, Yo-Sung; Kim, Jinwoong

    2013-05-01

    Recently, the computer generated hologram (CGH) calculated from real existing objects is more actively investigated to support holographic video and TV applications. In this paper, we propose a method of generating a hologram of the natural 3-D scene from multi-view images in order to provide motion parallax viewing with a suitable navigation range. After a unified 3-D point source set describing the captured 3-D scene is obtained from multi-view images, a hologram pattern supporting motion-parallax is calculated from the set using a point-based CGH method. We confirmed that 3-D scenes are faithfully reconstructed using numerical reconstruction.

  5. ICER-3D: A Progressive Wavelet-Based Compressor for Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Kiely, A.; Klimesh, M.; Xie, H.; Aranki, N.

    2005-01-01

    ICER-3D is a progressive, wavelet-based compressor for hyperspectral images. ICER-3D is derived from the ICER image compressor. ICER-3D can provide lossless and lossy compression, and incorporates an error-containment scheme to limit the effects of data loss during transmission. The three-dimensional wavelet decomposition structure used by ICER-3D exploits correlations in all three dimensions of hyperspectral data sets, while facilitating elimination of spectral ringing artifacts. Correlation is further exploited by a context modeler that effectively exploits spectral dependencies in the wavelet-transformed hyperspectral data. Performance results illustrating the benefits of these features are presented.

  6. Real-time auto-stereoscopic visualization of 3D medical images

    NASA Astrophysics Data System (ADS)

    Portoni, Luisa; Patak, Alexandre; Noirard, Pierre; Grossetie, Jean-Claude; van Berkel, Cees

    2000-04-01

    The work here described regards multi-viewer auto- stereoscopic visualization of 3D models of anatomical structures and organs of the human body. High-quality 3D models of more than 1600 anatomical structures have been reconstructed using the Visualization Toolkit, a freely available C++ class library for 3D graphics and visualization. 2D images used for 3D reconstruction comes from the Visible Human Data Set. Auto-stereoscopic 3D image visualization is obtained using a prototype monitor developed at Philips Research Labs, UK. This special multiview 3D-LCD screen has been connected directly to a SGI workstation, where 3D reconstruction and medical imaging applications are executed. Dedicated software has been developed to implement multiview capability. A number of static or animated contemporary views of the same object can simultaneously be seen on the 3D-LCD screen by several observers, having a real 3D perception of the visualized scene without the use of extra media as dedicated glasses or head-mounted displays. Developed software applications allow real-time interaction with visualized 3D models, didactical animations and movies have been realized as well.

  7. Image-driven, model-based 3D abdominal motion estimation for MR-guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Stemkens, Bjorn; Tijssen, Rob H. N.; de Senneville, Baudouin Denis; Lagendijk, Jan J. W.; van den Berg, Cornelis A. T.

    2016-07-01

    Respiratory motion introduces substantial uncertainties in abdominal radiotherapy for which traditionally large margins are used. The MR-Linac will open up the opportunity to acquire high resolution MR images just prior to radiation and during treatment. However, volumetric MRI time series are not able to characterize 3D tumor and organ-at-risk motion with sufficient temporal resolution. In this study we propose a method to estimate 3D deformation vector fields (DVFs) with high spatial and temporal resolution based on fast 2D imaging and a subject-specific motion model based on respiratory correlated MRI. In a pre-beam phase, a retrospectively sorted 4D-MRI is acquired, from which the motion is parameterized using a principal component analysis. This motion model is used in combination with fast 2D cine-MR images, which are acquired during radiation, to generate full field-of-view 3D DVFs with a temporal resolution of 476 ms. The geometrical accuracies of the input data (4D-MRI and 2D multi-slice acquisitions) and the fitting procedure were determined using an MR-compatible motion phantom and found to be 1.0-1.5 mm on average. The framework was tested on seven healthy volunteers for both the pancreas and the kidney. The calculated motion was independently validated using one of the 2D slices, with an average error of 1.45 mm. The calculated 3D DVFs can be used retrospectively for treatment simulations, plan evaluations, or to determine the accumulated dose for both the tumor and organs-at-risk on a subject-specific basis in MR-guided radiotherapy.

  8. Image-driven, model-based 3D abdominal motion estimation for MR-guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Stemkens, Bjorn; Tijssen, Rob H. N.; de Senneville, Baudouin Denis; Lagendijk, Jan J. W.; van den Berg, Cornelis A. T.

    2016-07-01

    Respiratory motion introduces substantial uncertainties in abdominal radiotherapy for which traditionally large margins are used. The MR-Linac will open up the opportunity to acquire high resolution MR images just prior to radiation and during treatment. However, volumetric MRI time series are not able to characterize 3D tumor and organ-at-risk motion with sufficient temporal resolution. In this study we propose a method to estimate 3D deformation vector fields (DVFs) with high spatial and temporal resolution based on fast 2D imaging and a subject-specific motion model based on respiratory correlated MRI. In a pre-beam phase, a retrospectively sorted 4D-MRI is acquired, from which the motion is parameterized using a principal component analysis. This motion model is used in combination with fast 2D cine-MR images, which are acquired during radiation, to generate full field-of-view 3D DVFs with a temporal resolution of 476 ms. The geometrical accuracies of the input data (4D-MRI and 2D multi-slice acquisitions) and the fitting procedure were determined using an MR-compatible motion phantom and found to be 1.0–1.5 mm on average. The framework was tested on seven healthy volunteers for both the pancreas and the kidney. The calculated motion was independently validated using one of the 2D slices, with an average error of 1.45 mm. The calculated 3D DVFs can be used retrospectively for treatment simulations, plan evaluations, or to determine the accumulated dose for both the tumor and organs-at-risk on a subject-specific basis in MR-guided radiotherapy.

  9. SU-E-J-209: Verification of 3D Surface Registration Between Stereograms and CT Images

    SciTech Connect

    Han, T; Gifford, K; Smith, B; Salehpour, M

    2014-06-01

    Purpose: Stereography can provide a visualization of the skin surface for radiation therapy patients. The aim of this study was to verify the registration algorithm in a commercial image analysis software, 3dMDVultus, for the fusion of stereograms and CT images. Methods: CT and stereographic scans were acquired of a head phantom and a deformable phantom. CT images were imported in 3dMDVultus and the surface contours were generated by threshold segmentation. Stereograms were reconstructed in 3dMDVultus. The resulting surfaces were registered with Vultus algorithm and then exported to in-house registration software and compared with four algorithms: rigid, affine, non-rigid iterative closest point (ICP) and b-spline algorithm. RMS (root-mean-square residuals of the surface point distances) error between the registered CT and stereogram surfaces was calculated and analyzed. Results: For the head phantom, the maximum RMS error between registered CT surfaces to stereogram was 6.6 mm for Vultus algorithm, whereas the mean RMS error was 0.7 mm. For the deformable phantom, the maximum RMS error was 16.2 mm for Vultus algorithm, whereas the mean RMS error was 4.4 mm. Non-rigid ICP demonstrated the best registration accuracy, as the mean of RMS errors were both within 1 mm. Conclusion: The accuracy of registration algorithm in 3dMDVultus was verified and exceeded RMS of 2 mm for deformable cases. Non-rigid ICP and b-spline algorithms improve the registration accuracy for both phantoms, especially in deformable one. For those patients whose body habitus deforms during radiation therapy, more advanced nonrigid algorithms need to be used.

  10. Image-driven, model-based 3D abdominal motion estimation for MR-guided radiotherapy.

    PubMed

    Stemkens, Bjorn; Tijssen, Rob H N; de Senneville, Baudouin Denis; Lagendijk, Jan J W; van den Berg, Cornelis A T

    2016-07-21

    Respiratory motion introduces substantial uncertainties in abdominal radiotherapy for which traditionally large margins are used. The MR-Linac will open up the opportunity to acquire high resolution MR images just prior to radiation and during treatment. However, volumetric MRI time series are not able to characterize 3D tumor and organ-at-risk motion with sufficient temporal resolution. In this study we propose a method to estimate 3D deformation vector fields (DVFs) with high spatial and temporal resolution based on fast 2D imaging and a subject-specific motion model based on respiratory correlated MRI. In a pre-beam phase, a retrospectively sorted 4D-MRI is acquired, from which the motion is parameterized using a principal component analysis. This motion model is used in combination with fast 2D cine-MR images, which are acquired during radiation, to generate full field-of-view 3D DVFs with a temporal resolution of 476 ms. The geometrical accuracies of the input data (4D-MRI and 2D multi-slice acquisitions) and the fitting procedure were determined using an MR-compatible motion phantom and found to be 1.0-1.5 mm on average. The framework was tested on seven healthy volunteers for both the pancreas and the kidney. The calculated motion was independently validated using one of the 2D slices, with an average error of 1.45 mm. The calculated 3D DVFs can be used retrospectively for treatment simulations, plan evaluations, or to determine the accumulated dose for both the tumor and organs-at-risk on a subject-specific basis in MR-guided radiotherapy.

  11. NDE of spacecraft materials using 3D Compton backscatter x-ray imaging

    NASA Astrophysics Data System (ADS)

    Burke, E. R.; Grubsky, V.; Romanov, V.; Shoemaker, K.

    2016-02-01

    We present the results of testing of the NDE performance of a Compton Imaging Tomography (CIT) system for single-sided, penetrating 3D inspection. The system was recently developed by Physical Optics Corporation (POC) and delivered to NASA for testing and evaluation. The CIT technology is based on 3D structure mapping by collecting the information on density profiles in multiple object cross sections through hard x-ray Compton backscatter imaging. The individual cross sections are processed and fused together in software, generating a 3D map of the density profile of the object which can then be analyzed slice-by-slice in x, y, or z directions. The developed CIT scanner is based on a 200-kV x-ray source, flat-panel x-ray detector (FPD), and apodized x-ray imaging optics. The CIT technology is particularly well suited to the NDE of lightweight aerospace materials, such as the thermal protection system (TPS) ceramic and composite materials, micrometeoroid and orbital debris (MMOD) shielding, spacecraft pressure walls, inflatable habitat structures, composite overwrapped pressure vessels (COPVs), and aluminum honeycomb materials. The current system provides 3D localization of defects and features with field of view 20x12x8 cm3 and spatial resolution ˜2 mm. In this paper, we review several aerospace NDE applications of the CIT technology, with particular emphasis on TPS. Based on the analysis of the testing results, we provide recommendations for continued development on TPS applications that can benefit the most from the unique capabilities of this new NDE technology.

  12. Online reconstruction of 3D magnetic particle imaging data

    NASA Astrophysics Data System (ADS)

    Knopp, T.; Hofmann, M.

    2016-06-01

    Magnetic particle imaging is a quantitative functional imaging technique that allows imaging of the spatial distribution of super-paramagnetic iron oxide particles at high temporal resolution. The raw data acquisition can be performed at frame rates of more than 40 volumes s‑1. However, to date image reconstruction is performed in an offline step and thus no direct feedback is available during the experiment. Considering potential interventional applications such direct feedback would be mandatory. In this work, an online reconstruction framework is implemented that allows direct visualization of the particle distribution on the screen of the acquisition computer with a latency of about 2 s. The reconstruction process is adaptive and performs block-averaging in order to optimize the signal quality for a given amount of reconstruction time.

  13. Online reconstruction of 3D magnetic particle imaging data

    NASA Astrophysics Data System (ADS)

    Knopp, T.; Hofmann, M.

    2016-06-01

    Magnetic particle imaging is a quantitative functional imaging technique that allows imaging of the spatial distribution of super-paramagnetic iron oxide particles at high temporal resolution. The raw data acquisition can be performed at frame rates of more than 40 volumes s-1. However, to date image reconstruction is performed in an offline step and thus no direct feedback is available during the experiment. Considering potential interventional applications such direct feedback would be mandatory. In this work, an online reconstruction framework is implemented that allows direct visualization of the particle distribution on the screen of the acquisition computer with a latency of about 2 s. The reconstruction process is adaptive and performs block-averaging in order to optimize the signal quality for a given amount of reconstruction time.

  14. Multiresolution 3-D reconstruction from side-scan sonar images.

    PubMed

    Coiras, Enrique; Petillot, Yvan; Lane, David M

    2007-02-01

    In this paper, a new method for the estimation of seabed elevation maps from side-scan sonar images is presented. The side-scan image formation process is represented by a Lambertian diffuse model, which is then inverted by a multiresolution optimization procedure inspired by expectation-maximization to account for the characteristics of the imaged seafloor region. On convergence of the model, approximations for seabed reflectivity, side-scan beam pattern, and seabed altitude are obtained. The performance of the system is evaluated against a real structure of known dimensions. Reconstruction results for images acquired by different sonar sensors are presented. Applications to augmented reality for the simulation of targets in sonar imagery are also discussed.

  15. Contactless operating table control based on 3D image processing.

    PubMed

    Schröder, Stephan; Loftfield, Nina; Langmann, Benjamin; Frank, Klaus; Reithmeier, Eduard

    2014-01-01

    Interaction with mobile consumer devices leads to a higher acceptance and affinity of persons to natural user interfaces and perceptional interaction possibilities. New interaction modalities become accessible and are capable to improve human machine interaction even in complex and high risk environments, like the operation room. Here, manifold medical disciplines cause a great variety of procedures and thus staff and equipment. One universal challenge is to meet the sterility requirements, for which common contact-afflicted remote interfaces always pose a potential risk causing a hazard for the process. The proposed operating table control system overcomes this process risk and thus improves the system usability significantly. The 3D sensor system, the Microsoft Kinect, captures the motion of the user, allowing a touchless manipulation of an operating table. Three gestures enable the user to select, activate and manipulate all segments of the motorised system in a safe and intuitive way. The gesture dynamics are synchronised with the table movement. In a usability study, 15 participants evaluated the system with a system usability score by Broke of 79. This states a high potential for implementation and acceptance in interventional environments. In the near future, even processes with higher risks could be controlled with the proposed interface, while interfaces become safer and more direct.

  16. Contactless operating table control based on 3D image processing.

    PubMed

    Schröder, Stephan; Loftfield, Nina; Langmann, Benjamin; Frank, Klaus; Reithmeier, Eduard

    2014-01-01

    Interaction with mobile consumer devices leads to a higher acceptance and affinity of persons to natural user interfaces and perceptional interaction possibilities. New interaction modalities become accessible and are capable to improve human machine interaction even in complex and high risk environments, like the operation room. Here, manifold medical disciplines cause a great variety of procedures and thus staff and equipment. One universal challenge is to meet the sterility requirements, for which common contact-afflicted remote interfaces always pose a potential risk causing a hazard for the process. The proposed operating table control system overcomes this process risk and thus improves the system usability significantly. The 3D sensor system, the Microsoft Kinect, captures the motion of the user, allowing a touchless manipulation of an operating table. Three gestures enable the user to select, activate and manipulate all segments of the motorised system in a safe and intuitive way. The gesture dynamics are synchronised with the table movement. In a usability study, 15 participants evaluated the system with a system usability score by Broke of 79. This states a high potential for implementation and acceptance in interventional environments. In the near future, even processes with higher risks could be controlled with the proposed interface, while interfaces become safer and more direct. PMID:25569978

  17. Interferometric synthetic aperture radar detection and estimation based 3D image reconstruction

    NASA Astrophysics Data System (ADS)

    Austin, Christian D.; Moses, Randolph L.

    2006-05-01

    This paper explores three-dimensional (3D) interferometric synthetic aperture radar (IFSAR) image reconstruction when multiple scattering centers and noise are present in a radar resolution cell. We introduce an IFSAR scattering model that accounts for both multiple scattering centers and noise. The problem of 3D image reconstruction is then posed as a multiple hypothesis detection and estimation problem; resolution cells containing a single scattering center are detected and the 3D location of these cells' pixels are estimated; all other pixels are rejected from the image. Detection and estimation statistics are derived using the multiple scattering center IFSAR model. A 3D image reconstruction algorithm using these statistics is then presented, and its performance is evaluated for a 3D reconstruction of a backhoe from noisy IFSAR data.

  18. Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy

    PubMed Central

    Gualda, Emilio J.; Simão, Daniel; Pinto, Catarina; Alves, Paula M.; Brito, Catarina

    2014-01-01

    The development of three dimensional (3D) cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex 3D matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy (LSFM) is becoming an excellent tool for fast imaging of such 3D biological structures. We demonstrate the potential of this technique for the imaging of human differentiated 3D neural aggregates in fixed and live samples, namely calcium imaging and cell death processes, showing the power of imaging modality compared with traditional microscopy. The combination of light sheet microscopy and 3D neural cultures will open the door to more challenging experiments involving drug testing at large scale as well as a better understanding of relevant biological processes in a more realistic environment. PMID:25161607

  19. Opti-acoustic stereo imaging: on system calibration and 3-D target reconstruction.

    PubMed

    Negahdaripour, Shahriar; Sekkati, Hicham; Pirsiavash, Hamed

    2009-06-01

    Utilization of an acoustic camera for range measurements is a key advantage for 3-D shape recovery of underwater targets by opti-acoustic stereo imaging, where the associated epipolar geometry of optical and acoustic image correspondences can be described in terms of conic sections. In this paper, we propose methods for system calibration and 3-D scene reconstruction by maximum likelihood estimation from noisy image measurements. The recursive 3-D reconstruction method utilized as initial condition a closed-form solution that integrates the advantages of two other closed-form solutions, referred to as the range and azimuth solutions. Synthetic data tests are given to provide insight into the merits of the new target imaging and 3-D reconstruction paradigm, while experiments with real data confirm the findings based on computer simulations, and demonstrate the merits of this novel 3-D reconstruction paradigm.

  20. Opti-acoustic stereo imaging: on system calibration and 3-D target reconstruction.

    PubMed

    Negahdaripour, Shahriar; Sekkati, Hicham; Pirsiavash, Hamed

    2009-06-01

    Utilization of an acoustic camera for range measurements is a key advantage for 3-D shape recovery of underwater targets by opti-acoustic stereo imaging, where the associated epipolar geometry of optical and acoustic image correspondences can be described in terms of conic sections. In this paper, we propose methods for system calibration and 3-D scene reconstruction by maximum likelihood estimation from noisy image measurements. The recursive 3-D reconstruction method utilized as initial condition a closed-form solution that integrates the advantages of two other closed-form solutions, referred to as the range and azimuth solutions. Synthetic data tests are given to provide insight into the merits of the new target imaging and 3-D reconstruction paradigm, while experiments with real data confirm the findings based on computer simulations, and demonstrate the merits of this novel 3-D reconstruction paradigm. PMID:19380272

  1. Spatiotemporal non-rigid image registration for 3D ultrasound cardiac motion estimation

    NASA Astrophysics Data System (ADS)

    Loeckx, D.; Ector, J.; Maes, F.; D'hooge, J.; Vandermeulen, D.; Voigt, J.-U.; Heidbüchel, H.; Suetens, P.

    2007-03-01

    We present a new method to evaluate 4D (3D + time) cardiac ultrasound data sets by nonrigid spatio-temporal image registration. First, a frame-to-frame registration is performed that yields a dense deformation field. The deformation field is used to calculate local spatiotemporal properties of the myocardium, such as the velocity, strain and strain rate. The field is also used to propagate particular points and surfaces, representing e.g. the endo-cardial surface over the different frames. As such, the 4D path of these point is obtained, which can be used to calculate the velocity by which the wall moves and the evolution of the local surface area over time. The wall velocity is not angle-dependent as in classical Doppler imaging, since the 4D data allows calculating the true 3D motion. Similarly, all 3D myocardium strain components can be estimated. Combined they result in local surface area or volume changes which van be color-coded as a measure of local contractability. A diagnostic method that strongly benefits from this technique is cardiac motion and deformation analysis, which is an important aid to quantify the mechanical properties of the myocardium.

  2. Estimation of the thermal conductivity of hemp based insulation material from 3D tomographic images

    NASA Astrophysics Data System (ADS)

    El-Sawalhi, R.; Lux, J.; Salagnac, P.

    2016-08-01

    In this work, we are interested in the structural and thermal characterization of natural fiber insulation materials. The thermal performance of these materials depends on the arrangement of fibers, which is the consequence of the manufacturing process. In order to optimize these materials, thermal conductivity models can be used to correlate some relevant structural parameters with the effective thermal conductivity. However, only a few models are able to take into account the anisotropy of such material related to the fibers orientation, and these models still need realistic input data (fiber orientation distribution, porosity, etc.). The structural characteristics are here directly measured on a 3D tomographic image using advanced image analysis techniques. Critical structural parameters like porosity, pore and fiber size distribution as well as local fiber orientation distribution are measured. The results of the tested conductivity models are then compared with the conductivity tensor obtained by numerical simulation on the discretized 3D microstructure, as well as available experimental measurements. We show that 1D analytical models are generally not suitable for assessing the thermal conductivity of such anisotropic media. Yet, a few anisotropic models can still be of interest to relate some structural parameters, like the fiber orientation distribution, to the thermal properties. Finally, our results emphasize that numerical simulations on 3D realistic microstructure is a very interesting alternative to experimental measurements.

  3. Space Radar Image Isla Isabela in 3-D

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a three-dimensional view of Isabela, one of the Galapagos Islands located off the western coast of Ecuador, South America. This view was constructed by overlaying a Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) image on a digital elevation map produced by TOPSAR, a prototype airborne interferometric radar which produces simultaneous image and elevation data. The vertical scale in this image is exaggerated by a factor of 1.87. The SIR-C/X-SAR image was taken on the 40th orbit of space shuttle Endeavour. The image is centered at about 0.5 degree south latitude and 91 degrees west longitude and covers an area of 75 by 60 kilometers (47 by 37 miles). The radar incidence angle at the center of the image is about 20 degrees. The western Galapagos Islands, which lie about 1,200 kilometers (750 miles)west of Ecuador in the eastern Pacific, have six active volcanoes similar to the volcanoes found in Hawaii and reflect the volcanic processes that occur where the ocean floor is created. Since the time of Charles Darwin's visit to the area in 1835, there have been more than 60 recorded eruptions on these volcanoes. This SIR-C/X-SAR image of Alcedo and Sierra Negra volcanoes shows the rougher lava flows as bright features, while ash deposits and smooth pahoehoe lava flows appear dark. Vertical exaggeration of relief is a common tool scientists use to detect relationships between structure (for example, faults, and fractures) and topography. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data

  4. Metrological analysis of the human foot: 3D multisensor exploration

    NASA Astrophysics Data System (ADS)

    Muñoz Potosi, A.; Meneses Fonseca, J.; León Téllez, J.

    2011-08-01

    In the podiatry field, many of the foot dysfunctions are mainly generated due to: Congenital malformations, accidents or misuse of footwear. For the treatment or prevention of foot disorders, the podiatrist diagnoses prosthesis or specific adapted footwear, according to the real dimension of foot. Therefore, it is necessary to acquire 3D information of foot with 360 degrees of observation. As alternative solution, it was developed and implemented an optical system of threedimensional reconstruction based in the principle of laser triangulation. The system is constituted by an illumination unit that project a laser plane into the foot surface, an acquisition unit with 4 CCD cameras placed around of axial foot axis, an axial moving unit that displaces the illumination and acquisition units in the axial axis direction and a processing and exploration unit. The exploration software allows the extraction of distances on three-dimensional image, taking into account the topography of foot. The optical system was tested and their metrological performances were evaluated in experimental conditions. The optical system was developed to acquire 3D information in order to design and make more appropriate footwear.

  5. The 3D inelastic analysis methods for hot section components

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Maffeo, R. J.; Tipton, M. T.; Weber, G.

    1992-01-01

    A two-year program to develop advanced 3D inelastic structural stress analysis methods and solution strategies for more accurate and cost effective analysis of combustors, turbine blades, and vanes is described. The approach was to develop a matrix of formulation elements and constitutive models. Three constitutive models were developed in conjunction with optimized iterating techniques, accelerators, and convergence criteria within a framework of dynamic time incrementing. Three formulation models were developed: an eight-noded midsurface shell element; a nine-noded midsurface shell element; and a twenty-noded isoparametric solid element. A separate computer program has been developed for each combination of constitutive model-formulation model. Each program provides a functional stand alone capability for performing cyclic nonlinear structural analysis. In addition, the analysis capabilities incorporated into each program can be abstracted in subroutine form for incorporation into other codes or to form new combinations.

  6. On 3D inelastic analysis methods for hot section components

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Chen, P. C.; Dame, L. T.; Holt, R. V.; Huang, H.; Hartle, M.; Gellin, S.; Allen, D. H.; Haisler, W. E.

    1986-01-01

    Accomplishments are described for the 2-year program, to develop advanced 3-D inelastic structural stress analysis methods and solution strategies for more accurate and cost effective analysis of combustors, turbine blades and vanes. The approach was to develop a matrix of formulation elements and constitutive models. Three constitutive models were developed in conjunction with optimized iterating techniques, accelerators, and convergence criteria within a framework of dynamic time incrementing. Three formulations models were developed; an eight-noded mid-surface shell element, a nine-noded mid-surface shell element and a twenty-noded isoparametric solid element. A separate computer program was developed for each combination of constitutive model-formulation model. Each program provides a functional stand alone capability for performing cyclic nonlinear structural analysis. In addition, the analysis capabilities incorporated into each program can be abstracted in subroutine form for incorporation into other codes or to form new combinations.

  7. Dosimetric Analysis of 3D Image-Guided HDR Brachytherapy Planning for the Treatment of Cervical Cancer: Is Point A-Based Dose Prescription Still Valid in Image-Guided Brachytherapy?

    SciTech Connect