Science.gov

Sample records for 3d image segmentation

  1. Active segmentation of 3D axonal images.

    PubMed

    Muralidhar, Gautam S; Gopinath, Ajay; Bovik, Alan C; Ben-Yakar, Adela

    2012-01-01

    We present an active contour framework for segmenting neuronal axons on 3D confocal microscopy data. Our work is motivated by the need to conduct high throughput experiments involving microfluidic devices and femtosecond lasers to study the genetic mechanisms behind nerve regeneration and repair. While most of the applications for active contours have focused on segmenting closed regions in 2D medical and natural images, there haven't been many applications that have focused on segmenting open-ended curvilinear structures in 2D or higher dimensions. The active contour framework we present here ties together a well known 2D active contour model [5] along with the physics of projection imaging geometry to yield a segmented axon in 3D. Qualitative results illustrate the promise of our approach for segmenting neruonal axons on 3D confocal microscopy data.

  2. A hybrid framework for 3D medical image segmentation.

    PubMed

    Chen, Ting; Metaxas, Dimitris

    2005-12-01

    In this paper we propose a novel hybrid 3D segmentation framework which combines Gibbs models, marching cubes and deformable models. In the framework, first we construct a new Gibbs model whose energy function is defined on a high order clique system. The new model includes both region and boundary information during segmentation. Next we improve the original marching cubes method to construct 3D meshes from Gibbs models' output. The 3D mesh serves as the initial geometry of the deformable model. Then we deform the deformable model using external image forces so that the model converges to the object surface. We run the Gibbs model and the deformable model recursively by updating the Gibbs model's parameters using the region and boundary information in the deformable model segmentation result. In our approach, the hybrid combination of region-based methods and boundary-based methods results in improved segmentations of complex structures. The benefit of the methodology is that it produces high quality segmentations of 3D structures using little prior information and minimal user intervention. The modules in this segmentation methodology are developed within the context of the Insight ToolKit (ITK). We present experimental segmentation results of brain tumors and evaluate our method by comparing experimental results with expert manual segmentations. The evaluation results show that the methodology achieves high quality segmentation results with computational efficiency. We also present segmentation results of other clinical objects to illustrate the strength of the methodology as a generic segmentation framework.

  3. Unsupervised fuzzy segmentation of 3D magnetic resonance brain images

    NASA Astrophysics Data System (ADS)

    Velthuizen, Robert P.; Hall, Lawrence O.; Clarke, Laurence P.; Bensaid, Amine M.; Arrington, J. A.; Silbiger, Martin L.

    1993-07-01

    Unsupervised fuzzy methods are proposed for segmentation of 3D Magnetic Resonance images of the brain. Fuzzy c-means (FCM) has shown promising results for segmentation of single slices. FCM has been investigated for volume segmentations, both by combining results of single slices and by segmenting the full volume. Different strategies and initializations have been tried. In particular, two approaches have been used: (1) a method by which, iteratively, the furthest sample is split off to form a new cluster center, and (2) the traditional FCM in which the membership grade matrix is initialized in some way. Results have been compared with volume segmentations by k-means and with two supervised methods, k-nearest neighbors and region growing. Results of individual segmentations are presented as well as comparisons on the application of the different methods to a number of tumor patient data sets.

  4. Object Segmentation and Ground Truth in 3D Embryonic Imaging

    PubMed Central

    Rajasekaran, Bhavna; Uriu, Koichiro; Valentin, Guillaume; Tinevez, Jean-Yves; Oates, Andrew C.

    2016-01-01

    Many questions in developmental biology depend on measuring the position and movement of individual cells within developing embryos. Yet, tools that provide this data are often challenged by high cell density and their accuracy is difficult to measure. Here, we present a three-step procedure to address this problem. Step one is a novel segmentation algorithm based on image derivatives that, in combination with selective post-processing, reliably and automatically segments cell nuclei from images of densely packed tissue. Step two is a quantitative validation using synthetic images to ascertain the efficiency of the algorithm with respect to signal-to-noise ratio and object density. Finally, we propose an original method to generate reliable and experimentally faithful ground truth datasets: Sparse-dense dual-labeled embryo chimeras are used to unambiguously measure segmentation errors within experimental data. Together, the three steps outlined here establish a robust, iterative procedure to fine-tune image analysis algorithms and microscopy settings associated with embryonic 3D image data sets. PMID:27332860

  5. Object Segmentation and Ground Truth in 3D Embryonic Imaging.

    PubMed

    Rajasekaran, Bhavna; Uriu, Koichiro; Valentin, Guillaume; Tinevez, Jean-Yves; Oates, Andrew C

    2016-01-01

    Many questions in developmental biology depend on measuring the position and movement of individual cells within developing embryos. Yet, tools that provide this data are often challenged by high cell density and their accuracy is difficult to measure. Here, we present a three-step procedure to address this problem. Step one is a novel segmentation algorithm based on image derivatives that, in combination with selective post-processing, reliably and automatically segments cell nuclei from images of densely packed tissue. Step two is a quantitative validation using synthetic images to ascertain the efficiency of the algorithm with respect to signal-to-noise ratio and object density. Finally, we propose an original method to generate reliable and experimentally faithful ground truth datasets: Sparse-dense dual-labeled embryo chimeras are used to unambiguously measure segmentation errors within experimental data. Together, the three steps outlined here establish a robust, iterative procedure to fine-tune image analysis algorithms and microscopy settings associated with embryonic 3D image data sets.

  6. Automated 3D renal segmentation based on image partitioning

    NASA Astrophysics Data System (ADS)

    Yeghiazaryan, Varduhi; Voiculescu, Irina D.

    2016-03-01

    Despite several decades of research into segmentation techniques, automated medical image segmentation is barely usable in a clinical context, and still at vast user time expense. This paper illustrates unsupervised organ segmentation through the use of a novel automated labelling approximation algorithm followed by a hypersurface front propagation method. The approximation stage relies on a pre-computed image partition forest obtained directly from CT scan data. We have implemented all procedures to operate directly on 3D volumes, rather than slice-by-slice, because our algorithms are dimensionality-independent. The results picture segmentations which identify kidneys, but can easily be extrapolated to other body parts. Quantitative analysis of our automated segmentation compared against hand-segmented gold standards indicates an average Dice similarity coefficient of 90%. Results were obtained over volumes of CT data with 9 kidneys, computing both volume-based similarity measures (such as the Dice and Jaccard coefficients, true positive volume fraction) and size-based measures (such as the relative volume difference). The analysis considered both healthy and diseased kidneys, although extreme pathological cases were excluded from the overall count. Such cases are difficult to segment both manually and automatically due to the large amplitude of Hounsfield unit distribution in the scan, and the wide spread of the tumorous tissue inside the abdomen. In the case of kidneys that have maintained their shape, the similarity range lies around the values obtained for inter-operator variability. Whilst the procedure is fully automated, our tools also provide a light level of manual editing.

  7. Image segmentation to inspect 3-D object sizes

    NASA Astrophysics Data System (ADS)

    Hsu, Jui-Pin; Fuh, Chiou-Shann

    1996-01-01

    Object size inspection is an important task and has various applications in computer vision. For example, the automatic control of stone-breaking machines, which perform better if the sizes of the stones to be broken can be predicted. An algorithm is proposed for image segmentation in size inspection for almost round stones with high or low texture. Although our experiments are focused on stones, the algorithm can be applied to other 3-D objects. We use one fixed camera and four light sources at four different positions one at a time, to take four images. Then we compute the image differences and binarize them to extract edges. We explain, step by step, the photographing, the edge extraction, the noise removal, and the edge gap filling. Experimental results are presented.

  8. 3D ultrasound image segmentation using multiple incomplete feature sets

    NASA Astrophysics Data System (ADS)

    Fan, Liexiang; Herrington, David M.; Santago, Peter, II

    1999-05-01

    We use three features, the intensity, texture and motion to obtain robust results for segmentation of intracoronary ultrasound images. Using a parameterized equation to describe the lumen-plaque and media-adventitia boundaries, we formulate the segmentation as a parameter estimation through a cost functional based on the posterior probability, which can handle the incompleteness of the features in ultrasound images by employing outlier detection.

  9. Segmented images and 3D images for studying the anatomical structures in MRIs

    NASA Astrophysics Data System (ADS)

    Lee, Yong Sook; Chung, Min Suk; Cho, Jae Hyun

    2004-05-01

    For identifying the pathological findings in MRIs, the anatomical structures in MRIs should be identified in advance. For studying the anatomical structures in MRIs, an education al tool that includes the horizontal, coronal, sagittal MRIs of entire body, corresponding segmented images, 3D images, and browsing software is necessary. Such an educational tool, however, is hard to obtain. Therefore, in this research, such an educational tool which helps medical students and doctors study the anatomical structures in MRIs was made as follows. A healthy, young Korean male adult with standard body shape was selected. Six hundred thirteen horizontal MRIs of the entire body were scanned and inputted to the personal computer. Sixty anatomical structures in the horizontal MRIs were segmented to make horizontal segmented images. Coronal, sagittal MRIs and coronal, sagittal segmented images were made. 3D images of anatomical structures in the segmented images were reconstructed by surface rendering method. Browsing software of the MRIs, segmented images, and 3D images was composed. This educational tool that includes horizontal, coronal, sagittal MRIs of entire body, corresponding segmented images, 3D images, and browsing software is expected to help medical students and doctors study anatomical structures in MRIs.

  10. Segmentation and interpretation of 3D protein images

    SciTech Connect

    Leherte, L.; Baxter, K.; Glasgow, J.; Fortier, S.

    1994-12-31

    The segmentation and interpretation of three-dimensional images of proteins is considered. A topological approach is used to represent a protein structure as a spanning tree of critical points, where each critical point corresponds to a residue or the connectivity between residues. The critical points are subsequently analyzed to recognize secondary structure motifs within the protein. Results of applying the approach to ideal and experimental images of proteins at medium resolution are presented.

  11. Automated 3D ultrasound image segmentation to aid breast cancer image interpretation.

    PubMed

    Gu, Peng; Lee, Won-Mean; Roubidoux, Marilyn A; Yuan, Jie; Wang, Xueding; Carson, Paul L

    2016-02-01

    Segmentation of an ultrasound image into functional tissues is of great importance to clinical diagnosis of breast cancer. However, many studies are found to segment only the mass of interest and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an automated segmentation method to make results operator-independent. Furthermore, manual segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular tissue. To test its efficacy and consistency, the proposed automated method was employed on a database of 21 cases of whole breast ultrasound. Experimental results show that our proposed method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying cyst/mass. Comparison of density assessment between the automated method and manual segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great potential as an automated approach to segment 3D whole breast ultrasound volumes into functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and assist in density based prognosis of breast cancer.

  12. Automated 3D Ultrasound Image Segmentation to Aid Breast Cancer Image Interpretation

    PubMed Central

    Gu, Peng; Lee, Won-Mean; Roubidoux, Marilyn A.; Yuan, Jie; Wang, Xueding; Carson, Paul L.

    2015-01-01

    Segmentation of an ultrasound image into functional tissues is of great importance to clinical diagnosis of breast cancer. However, many studies are found to segment only the mass of interest and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an automated segmentation method to make results operator-independent. Furthermore, manual segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular tissue. To test its efficacy and consistency, the proposed automated method was employed on a database of 21 cases of whole breast ultrasound. Experimental results show that our proposed method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying cyst/mass. Comparison of density assessment between the automated method and manual segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great potential as an automated approach to segment 3D whole breast ultrasound volumes into functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and assist in density based prognosis of breast cancer. PMID:26547117

  13. Segmentation of brain blood vessels using projections in 3-D CT angiography images.

    PubMed

    Babin, Danilo; Vansteenkiste, Ewout; Pizurica, Aleksandra; Philips, Wilfried

    2011-01-01

    Segmenting cerebral blood vessels is of great importance in diagnostic and clinical applications, especially in quantitative diagnostics and surgery on aneurysms and arteriovenous malformations (AVM). Segmentation of CT angiography images requires algorithms robust to high intensity noise, while being able to segment low-contrast vessels. Because of this, most of the existing methods require user intervention. In this work we propose an automatic algorithm for efficient segmentation of 3-D CT angiography images of cerebral blood vessels. Our method is robust to high intensity noise and is able to accurately segment blood vessels with high range of luminance values, as well as low-contrast vessels.

  14. Segmentation and length measurement of the abdominal blood vessels in 3-D MRI images.

    PubMed

    Babin, Danilo; Vansteenkiste, Ewout; Pizurica, Aleksandra; Philips, Wilfried

    2009-01-01

    In diagnosing diseases and planning surgeries the structure and length of blood vessels is of great importance. In this research we develop a novel method for the segmentation of 2-D and 3-D images with an application to blood vessel length measurements in 3-D abdominal MRI images. Our approach is robust to noise and does not require contrast-enhanced images for segmentation. We use an effective algorithm for skeletonization, graph construction and shortest path estimation to measure the length of blood vessels of interest.

  15. 3D segmentation and image annotation for quantitative diagnosis in lung CT images with pulmonary lesions

    NASA Astrophysics Data System (ADS)

    Li, Suo; Zhu, Yanjie; Sun, Jianyong; Zhang, Jianguo

    2013-03-01

    Pulmonary nodules and ground glass opacities are highly significant findings in high-resolution computed tomography (HRCT) of patients with pulmonary lesion. The appearances of pulmonary nodules and ground glass opacities show a relationship with different lung diseases. According to corresponding characteristic of lesion, pertinent segment methods and quantitative analysis are helpful for control and treat diseases at an earlier and potentially more curable stage. Currently, most of the studies have focused on two-dimensional quantitative analysis of these kinds of deceases. Compared to two-dimensional images, three-dimensional quantitative analysis can take full advantage of isotropic image data acquired by using thin slicing HRCT in space and has better quantitative precision for clinical diagnosis. This presentation designs a computer-aided diagnosis component to segment 3D disease areas of nodules and ground glass opacities in lung CT images, and use AIML (Annotation and image makeup language) to annotate the segmented 3D pulmonary lesions with information of quantitative measurement which may provide more features and information to the radiologists in clinical diagnosis.

  16. 3D watershed-based segmentation of internal structures within MR brain images

    NASA Astrophysics Data System (ADS)

    Bueno, Gloria; Musse, Olivier; Heitz, Fabrice; Armspach, Jean-Paul

    2000-06-01

    In this paper an image-based method founded on mathematical morphology is presented in order to facilitate the segmentation of cerebral structures on 3D magnetic resonance images (MRIs). The segmentation is described as an immersion simulation, applied to the modified gradient image, modeled by a generated 3D region adjacency graph (RAG). The segmentation relies on two main processes: homotopy modification and contour decision. The first one is achieved by a marker extraction stage where homogeneous 3D regions are identified in order to attribute an influence zone only to relevant minima of the image. This stage uses contrasted regions from morphological reconstruction and labeled flat regions constrained by the RAG. The goal of the decision stage is to precisely locate the contours of regions detected by the marker extraction. This decision is performed by a 3D extension of the watershed transform. Upon completion of the segmentation, the outcome of the preceding process is presented to the user for manual selection of the structures of interest (SOI). Results of this approach are described and illustrated with examples of segmented 3D MRIs of the human head.

  17. Random Walk Based Segmentation for the Prostate on 3D Transrectal Ultrasound Images.

    PubMed

    Ma, Ling; Guo, Rongrong; Tian, Zhiqiang; Venkataraman, Rajesh; Sarkar, Saradwata; Liu, Xiabi; Nieh, Peter T; Master, Viraj V; Schuster, David M; Fei, Baowei

    2016-02-27

    This paper proposes a new semi-automatic segmentation method for the prostate on 3D transrectal ultrasound images (TRUS) by combining the region and classification information. We use a random walk algorithm to express the region information efficiently and flexibly because it can avoid segmentation leakage and shrinking bias. We further use the decision tree as the classifier to distinguish the prostate from the non-prostate tissue because of its fast speed and superior performance, especially for a binary classification problem. Our segmentation algorithm is initialized with the user roughly marking the prostate and non-prostate points on the mid-gland slice which are fitted into an ellipse for obtaining more points. Based on these fitted seed points, we run the random walk algorithm to segment the prostate on the mid-gland slice. The segmented contour and the information from the decision tree classification are combined to determine the initial seed points for the other slices. The random walk algorithm is then used to segment the prostate on the adjacent slice. We propagate the process until all slices are segmented. The segmentation method was tested in 32 3D transrectal ultrasound images. Manual segmentation by a radiologist serves as the gold standard for the validation. The experimental results show that the proposed method achieved a Dice similarity coefficient of 91.37±0.05%. The segmentation method can be applied to 3D ultrasound-guided prostate biopsy and other applications.

  18. Random walk based segmentation for the prostate on 3D transrectal ultrasound images

    NASA Astrophysics Data System (ADS)

    Ma, Ling; Guo, Rongrong; Tian, Zhiqiang; Venkataraman, Rajesh; Sarkar, Saradwata; Liu, Xiabi; Nieh, Peter T.; Master, Viraj V.; Schuster, David M.; Fei, Baowei

    2016-03-01

    This paper proposes a new semi-automatic segmentation method for the prostate on 3D transrectal ultrasound images (TRUS) by combining the region and classification information. We use a random walk algorithm to express the region information efficiently and flexibly because it can avoid segmentation leakage and shrinking bias. We further use the decision tree as the classifier to distinguish the prostate from the non-prostate tissue because of its fast speed and superior performance, especially for a binary classification problem. Our segmentation algorithm is initialized with the user roughly marking the prostate and non-prostate points on the mid-gland slice which are fitted into an ellipse for obtaining more points. Based on these fitted seed points, we run the random walk algorithm to segment the prostate on the mid-gland slice. The segmented contour and the information from the decision tree classification are combined to determine the initial seed points for the other slices. The random walk algorithm is then used to segment the prostate on the adjacent slice. We propagate the process until all slices are segmented. The segmentation method was tested in 32 3D transrectal ultrasound images. Manual segmentation by a radiologist serves as the gold standard for the validation. The experimental results show that the proposed method achieved a Dice similarity coefficient of 91.37+/-0.05%. The segmentation method can be applied to 3D ultrasound-guided prostate biopsy and other applications.

  19. Random Walk Based Segmentation for the Prostate on 3D Transrectal Ultrasound Images

    PubMed Central

    Ma, Ling; Guo, Rongrong; Tian, Zhiqiang; Venkataraman, Rajesh; Sarkar, Saradwata; Liu, Xiabi; Nieh, Peter T.; Master, Viraj V.; Schuster, David M.; Fei, Baowei

    2016-01-01

    This paper proposes a new semi-automatic segmentation method for the prostate on 3D transrectal ultrasound images (TRUS) by combining the region and classification information. We use a random walk algorithm to express the region information efficiently and flexibly because it can avoid segmentation leakage and shrinking bias. We further use the decision tree as the classifier to distinguish the prostate from the non-prostate tissue because of its fast speed and superior performance, especially for a binary classification problem. Our segmentation algorithm is initialized with the user roughly marking the prostate and non-prostate points on the mid-gland slice which are fitted into an ellipse for obtaining more points. Based on these fitted seed points, we run the random walk algorithm to segment the prostate on the mid-gland slice. The segmented contour and the information from the decision tree classification are combined to determine the initial seed points for the other slices. The random walk algorithm is then used to segment the prostate on the adjacent slice. We propagate the process until all slices are segmented. The segmentation method was tested in 32 3D transrectal ultrasound images. Manual segmentation by a radiologist serves as the gold standard for the validation. The experimental results show that the proposed method achieved a Dice similarity coefficient of 91.37±0.05%. The segmentation method can be applied to 3D ultrasound-guided prostate biopsy and other applications. PMID:27660383

  20. Hybrid atlas-based and image-based approach for segmenting 3D brain MRIs

    NASA Astrophysics Data System (ADS)

    Bueno, Gloria; Musse, Olivier; Heitz, Fabrice; Armspach, Jean-Paul

    2001-07-01

    This work is a contribution to the problem of localizing key cerebral structures in 3D MRIs and its quantitative evaluation. In pursuing it, the cooperation between an image-based segmentation method and a hierarchical deformable registration approach has been considered. The segmentation relies on two main processes: homotopy modification and contour decision. The first one is achieved by a marker extraction stage where homogeneous 3D regions of an image, I(s), from the data set are identified. These regions, M(I), are obtained combining information from deformable atlas, achieved by the warping of eight previous labeled maps on I(s). Then, the goal of the decision stage is to precisely locate the contours of the 3D regions set by the markers. This contour decision is performed by a 3D extension of the watershed transform. The anatomical structures taken into consideration and embedded into the atlas are brain, ventricles, corpus callosum, cerebellum, right and left hippocampus, medulla and midbrain. The hybrid method operates fully automatically and in 3D, successfully providing segmented brain structures. The quality of the segmentation has been studied in terms of the detected volume ratio by using kappa statistic and ROC analysis. Results of the method are shown and validated on a 3D MRI phantom. This study forms part of an on-going long term research aiming at the creation of a 3D probabilistic multi-purpose anatomical brain atlas.

  1. 3D Materials image segmentation by 2D propagation: a graph-cut approach considering homomorphism.

    PubMed

    Waggoner, Jarrell; Zhou, Youjie; Simmons, Jeff; De Graef, Marc; Wang, Song

    2013-12-01

    Segmentation propagation, similar to tracking, is the problem of transferring a segmentation of an image to a neighboring image in a sequence. This problem is of particular importance to materials science, where the accurate segmentation of a series of 2D serial-sectioned images of multiple, contiguous 3D structures has important applications. Such structures may have distinct shape, appearance, and topology, which can be considered to improve segmentation accuracy. For example, some materials images may have structures with a specific shape or appearance in each serial section slice, which only changes minimally from slice to slice, and some materials may exhibit specific inter-structure topology that constrains their neighboring relations. Some of these properties have been individually incorporated to segment specific materials images in prior work. In this paper, we develop a propagation framework for materials image segmentation where each propagation is formulated as an optimal labeling problem that can be efficiently solved using the graph-cut algorithm. Our framework makes three key contributions: 1) a homomorphic propagation approach, which considers the consistency of region adjacency in the propagation; 2) incorporation of shape and appearance consistency in the propagation; and 3) a local non-homomorphism strategy to handle newly appearing and disappearing substructures during this propagation. To show the effectiveness of our framework, we conduct experiments on various 3D materials images, and compare the performance against several existing image segmentation methods.

  2. Methods for 2-D and 3-D Endobronchial Ultrasound Image Segmentation.

    PubMed

    Zang, Xiaonan; Bascom, Rebecca; Gilbert, Christopher; Toth, Jennifer; Higgins, William

    2016-07-01

    Endobronchial ultrasound (EBUS) is now commonly used for cancer-staging bronchoscopy. Unfortunately, EBUS is challenging to use and interpreting EBUS video sequences is difficult. Other ultrasound imaging domains, hampered by related difficulties, have benefited from computer-based image-segmentation methods. Yet, so far, no such methods have been proposed for EBUS. We propose image-segmentation methods for 2-D EBUS frames and 3-D EBUS sequences. Our 2-D method adapts the fast-marching level-set process, anisotropic diffusion, and region growing to the problem of segmenting 2-D EBUS frames. Our 3-D method builds upon the 2-D method while also incorporating the geodesic level-set process for segmenting EBUS sequences. Tests with lung-cancer patient data showed that the methods ran fully automatically for nearly 80% of test cases. For the remaining cases, the only user-interaction required was the selection of a seed point. When compared to ground-truth segmentations, the 2-D method achieved an overall Dice index = 90.0% ±4.9%, while the 3-D method achieved an overall Dice index = 83.9 ± 6.0%. In addition, the computation time (2-D, 0.070 s/frame; 3-D, 0.088 s/frame) was two orders of magnitude faster than interactive contour definition. Finally, we demonstrate the potential of the methods for EBUS localization in a multimodal image-guided bronchoscopy system.

  3. Deep Learning Segmentation of Optical Microscopy Images Improves 3D Neuron Reconstruction.

    PubMed

    Li, Rongjian; Zeng, Tao; Peng, Hanchuan; Ji, Shuiwang

    2017-03-08

    Digital reconstruction, or tracing, of 3-dimensional (3D) neuron structure from microscopy images is a critical step toward reversing engineering the wiring and anatomy of a brain. Despite a number of prior attempts, this task remains very challenging, especially when images are contaminated by noises or have discontinued segments of neurite patterns. An approach for addressing such problems is to identify the locations of neuronal voxels using image segmentation methods prior to applying tracing or reconstruction techniques. This preprocessing step is expected to remove noises in the data, thereby leading to improved reconstruction results. In this work, we proposed to use 3D Convolutional neural networks (CNNs) for segmenting the neuronal microscopy images. Specifically, we designed a novel CNN architecture that takes volumetric images as the inputs and their voxel-wise segmentation maps as the outputs. The developed architecture allows us to train and predict using large microscopy images in an end-to-end manner. We evaluated the performance of our model on a variety of challenging 3D microscopy images from different organisms. Results showed that the proposed methods improved the tracing performance significantly when combined with different reconstruction algorithms.

  4. 3D segmentations of neuronal nuclei from confocal microscope image stacks.

    PubMed

    Latorre, Antonio; Alonso-Nanclares, Lidia; Muelas, Santiago; Peña, José-María; Defelipe, Javier

    2013-01-01

    In this paper, we present an algorithm to create 3D segmentations of neuronal cells from stacks of previously segmented 2D images. The idea behind this proposal is to provide a general method to reconstruct 3D structures from 2D stacks, regardless of how these 2D stacks have been obtained. The algorithm not only reuses the information obtained in the 2D segmentation, but also attempts to correct some typical mistakes made by the 2D segmentation algorithms (for example, under segmentation of tightly-coupled clusters of cells). We have tested our algorithm in a real scenario-the segmentation of the neuronal nuclei in different layers of the rat cerebral cortex. Several representative images from different layers of the cerebral cortex have been considered and several 2D segmentation algorithms have been compared. Furthermore, the algorithm has also been compared with the traditional 3D Watershed algorithm and the results obtained here show better performance in terms of correctly identified neuronal nuclei.

  5. 3D segmentations of neuronal nuclei from confocal microscope image stacks

    PubMed Central

    LaTorre, Antonio; Alonso-Nanclares, Lidia; Muelas, Santiago; Peña, José-María; DeFelipe, Javier

    2013-01-01

    In this paper, we present an algorithm to create 3D segmentations of neuronal cells from stacks of previously segmented 2D images. The idea behind this proposal is to provide a general method to reconstruct 3D structures from 2D stacks, regardless of how these 2D stacks have been obtained. The algorithm not only reuses the information obtained in the 2D segmentation, but also attempts to correct some typical mistakes made by the 2D segmentation algorithms (for example, under segmentation of tightly-coupled clusters of cells). We have tested our algorithm in a real scenario—the segmentation of the neuronal nuclei in different layers of the rat cerebral cortex. Several representative images from different layers of the cerebral cortex have been considered and several 2D segmentation algorithms have been compared. Furthermore, the algorithm has also been compared with the traditional 3D Watershed algorithm and the results obtained here show better performance in terms of correctly identified neuronal nuclei. PMID:24409123

  6. Automated 3D ultrasound image segmentation for assistant diagnosis of breast cancer

    NASA Astrophysics Data System (ADS)

    Wang, Yuxin; Gu, Peng; Lee, Won-Mean; Roubidoux, Marilyn A.; Du, Sidan; Yuan, Jie; Wang, Xueding; Carson, Paul L.

    2016-04-01

    Segmentation of an ultrasound image into functional tissues is of great importance to clinical diagnosis of breast cancer. However, many studies are found to segment only the mass of interest and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an automated segmentation method to make results operator-independent. Furthermore, manual segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular tissue. To test its efficacy and consistency, the proposed automated method was employed on a database of 21 cases of whole breast ultrasound. Experimental results show that our proposed method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying cyst/mass. Comparison of density assessment between the automated method and manual segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great potential as an automated approach to segment 3D whole breast ultrasound volumes into functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and assist in density based prognosis of breast cancer.

  7. Segmentation of Blood Vessels and 3D Representation of CMR Image

    NASA Astrophysics Data System (ADS)

    Jiji, G. W.

    2013-06-01

    Current cardiac magnetic resonance imaging (CMR) technology allows the determination of patient-individual coronary tree structure, detection of infarctions, and assessment of myocardial perfusion. The purpose of this work is to segment heart blood vessels and visualize it in 3D. In this work, 3D visualisation of vessel was performed into four phases. The first step is to detect the tubular structures using multiscale medialness function, which distinguishes tube-like structures from and other structures. Second step is to extract the centrelines of the tubes. From the centreline radius the cylindrical tube model is constructed. The third step is segmentation of the tubular structures. The cylindrical tube model is used in segmentation process. Fourth step is to 3D representation of the tubular structure using Volume . The proposed approach is applied to 10 datasets of patients from the clinical routine and tested the results with radiologists.

  8. Initialisation of 3D level set for hippocampus segmentation from volumetric brain MR images

    NASA Astrophysics Data System (ADS)

    Hajiesmaeili, Maryam; Dehmeshki, Jamshid; Bagheri Nakhjavanlo, Bashir; Ellis, Tim

    2014-04-01

    Shrinkage of the hippocampus is a primary biomarker for Alzheimer's disease and can be measured through accurate segmentation of brain MR images. The paper will describe the problem of initialisation of a 3D level set algorithm for hippocampus segmentation that must cope with the some challenging characteristics, such as small size, wide range of intensities, narrow width, and shape variation. In addition, MR images require bias correction, to account for additional inhomogeneity associated with the scanner technology. Due to these inhomogeneities, using a single initialisation seed region inside the hippocampus is prone to failure. Alternative initialisation strategies are explored, such as using multiple initialisations in different sections (such as the head, body and tail) of the hippocampus. The Dice metric is used to validate our segmentation results with respect to ground truth for a dataset of 25 MR images. Experimental results indicate significant improvement in segmentation performance using the multiple initialisations techniques, yielding more accurate segmentation results for the hippocampus.

  9. 3-D segmentation of articular cartilages by graph cuts using knee MR images from osteoarthritis initiative

    NASA Astrophysics Data System (ADS)

    Shim, Hackjoon; Lee, Soochan; Kim, Bohyeong; Tao, Cheng; Chang, Samuel; Yun, Il Dong; Lee, Sang Uk; Kwoh, Kent; Bae, Kyongtae

    2008-03-01

    Knee osteoarthritis is the most common debilitating health condition affecting elderly population. MR imaging of the knee is highly sensitive for diagnosis and evaluation of the extent of knee osteoarthritis. Quantitative analysis of the progression of osteoarthritis is commonly based on segmentation and measurement of articular cartilage from knee MR images. Segmentation of the knee articular cartilage, however, is extremely laborious and technically demanding, because the cartilage is of complex geometry and thin and small in size. To improve precision and efficiency of the segmentation of the cartilage, we have applied a semi-automated segmentation method that is based on an s/t graph cut algorithm. The cost function was defined integrating regional and boundary cues. While regional cues can encode any intensity distributions of two regions, "object" (cartilage) and "background" (the rest), boundary cues are based on the intensity differences between neighboring pixels. For three-dimensional (3-D) segmentation, hard constraints are also specified in 3-D way facilitating user interaction. When our proposed semi-automated method was tested on clinical patients' MR images (160 slices, 0.7 mm slice thickness), a considerable amount of segmentation time was saved with improved efficiency, compared to a manual segmentation approach.

  10. The iterative image foresting transform and its application to user-steered 3D segmentation

    NASA Astrophysics Data System (ADS)

    Falcao, Alexandre X.; Bergo, Felipe P. G.

    2003-05-01

    Segmentation and 3D visualization at interactive speeds are highly desirable for routine use in clinical settings. We circumvent this problem in the framework of the image foresting transform (IFT) - a graph-based approach to the design of image processing operators. In this paper we introduce the iterative image foresting transform (IFT+), which computes sequences of IFTs in a differencial way, present the general IFT+ algorithm, and instantiate it to be a watershed transform. The IFT+-watershed transform is evaluated in the context of interactive segmentation, where the user makes corrections by adding/removing scene regions with mouse clicks. The IFT+-watershed requires time proportional to the number of voxels in the modified regions, while the conventional algorithm computes one watershed transform over the entire scene for each iteration. The IFT+-watershed is 5.75 times faster than the watershed and considerably reduces from 17.7 to 3.16 seconds the user's waiting time in segmentation with 3D visualization. These results were obtained in an 1.5GHz Pentium-IV PC over 10 MR scenes of the head, requiring 12 to 28 corrections to segment cerebellum, pons-medulla, ventricle, and the rest of the brain, simultaneously. These results indicate that the IFT+ is a significant contribution toward interactive segmentation and 3D visualization.

  11. Correlation-based discrimination between cardiac tissue and blood for segmentation of 3D echocardiographic images

    NASA Astrophysics Data System (ADS)

    Saris, Anne E. C. M.; Nillesen, Maartje M.; Lopata, Richard G. P.; de Korte, Chris L.

    2013-03-01

    Automated segmentation of 3D echocardiographic images in patients with congenital heart disease is challenging, because the boundary between blood and cardiac tissue is poorly defined in some regions. Cardiologists mentally incorporate movement of the heart, using temporal coherence of structures to resolve ambiguities. Therefore, we investigated the merit of temporal cross-correlation for automated segmentation over the entire cardiac cycle. Optimal settings for maximum cross-correlation (MCC) calculation, based on a 3D cross-correlation based displacement estimation algorithm, were determined to obtain the best contrast between blood and myocardial tissue over the entire cardiac cycle. Resulting envelope-based as well as RF-based MCC values were used as additional external force in a deformable model approach, to segment the left-ventricular cavity in entire systolic phase. MCC values were tested against, and combined with, adaptive filtered, demodulated RF-data. Segmentation results were compared with manually segmented volumes using a 3D Dice Similarity Index (3DSI). Results in 3D pediatric echocardiographic images sequences (n = 4) demonstrate that incorporation of temporal information improves segmentation. The use of MCC values, either alone or in combination with adaptive filtered, demodulated RF-data, resulted in an increase of the 3DSI in 75% of the cases (average 3DSI increase: 0.71 to 0.82). Results might be further improved by optimizing MCC-contrast locally, in regions with low blood-tissue contrast. Reducing underestimation of the endocardial volume due to MCC processing scheme (choice of window size) and consequential border-misalignment, could also lead to more accurate segmentations. Furthermore, increasing the frame rate will also increase MCC-contrast and thus improve segmentation.

  12. Segmentation of whole cells and cell nuclei from 3-D optical microscope images using dynamic programming.

    PubMed

    McCullough, D P; Gudla, P R; Harris, B S; Collins, J A; Meaburn, K J; Nakaya, M A; Yamaguchi, T P; Misteli, T; Lockett, S J

    2008-05-01

    Communications between cells in large part drive tissue development and function, as well as disease-related processes such as tumorigenesis. Understanding the mechanistic bases of these processes necessitates quantifying specific molecules in adjacent cells or cell nuclei of intact tissue. However, a major restriction on such analyses is the lack of an efficient method that correctly segments each object (cell or nucleus) from 3-D images of an intact tissue specimen. We report a highly reliable and accurate semi-automatic algorithmic method for segmenting fluorescence-labeled cells or nuclei from 3-D tissue images. Segmentation begins with semi-automatic, 2-D object delineation in a user-selected plane, using dynamic programming (DP) to locate the border with an accumulated intensity per unit length greater that any other possible border around the same object. Then the two surfaces of the object in planes above and below the selected plane are found using an algorithm that combines DP and combinatorial searching. Following segmentation, any perceived errors can be interactively corrected. Segmentation accuracy is not significantly affected by intermittent labeling of object surfaces, diffuse surfaces, or spurious signals away from surfaces. The unique strength of the segmentation method was demonstrated on a variety of biological tissue samples where all cells, including irregularly shaped cells, were accurately segmented based on visual inspection.

  13. Segmentation of the central-chest lymph nodes in 3D MDCT images.

    PubMed

    Lu, Kongkuo; Higgins, William E

    2011-09-01

    Central-chest lymph nodes play a vital role in lung-cancer staging. The definition of lymph nodes from three-dimensional (3D) multidetector computed-tomography (MDCT) images, however, remains an open problem. We propose two methods for computer-based segmentation of the central-chest lymph nodes from a 3D MDCT scan: the single-section live wire and the single-click live wire. For the single-section live wire, the user first applies the standard live wire to a single two-dimensional (2D) section after which automated analysis completes the segmentation process. The single-click live wire is similar but is almost completely automatic. Ground-truth studies involving human 3D MDCT scans demonstrate the robustness, efficiency, and intra-observer and inter-observer reproducibility of the methods.

  14. Automatic hip cartilage segmentation from 3D MR images using arc-weighted graph searching.

    PubMed

    Xia, Ying; Chandra, Shekhar S; Engstrom, Craig; Strudwick, Mark W; Crozier, Stuart; Fripp, Jurgen

    2014-12-07

    Accurate segmentation of hip joint cartilage from magnetic resonance (MR) images offers opportunities for quantitative investigations of pathoanatomical conditions such as osteoarthritis. In this paper, we present a fully automatic scheme for the segmentation of the individual femoral and acetabular cartilage plates in the human hip joint from high-resolution 3D MR images. The developed scheme uses an improved optimal multi-object multi-surface graph search framework with an arc-weighted graph representation that incorporates prior morphological knowledge as a basis for segmentation of the individual femoral and acetabular cartilage plates despite weak or incomplete boundary interfaces. This automated scheme was validated against manual segmentations from 3D true fast imaging with steady-state precession (TrueFISP) MR examinations of the right hip joints in 52 asymptomatic volunteers. Compared with expert manual segmentations of the combined, femoral and acetabular cartilage volumes, the automatic scheme obtained mean (± standard deviation) Dice's similarity coefficients of 0.81 (± 0.03), 0.79 (± 0.03) and 0.72 (± 0.05). The corresponding mean absolute volume difference errors were 8.44% (± 6.36), 9.44% (± 7.19) and 9.05% (± 8.02). The mean absolute differences between manual and automated measures of cartilage thickness for femoral and acetabular cartilage plates were 0.13 mm (± 0.12) and 0.11 mm (± 0.11), respectively.

  15. Segmentation of bone structures in 3D CT images based on continuous max-flow optimization

    NASA Astrophysics Data System (ADS)

    Pérez-Carrasco, J. A.; Acha-Piñero, B.; Serrano, C.

    2015-03-01

    In this paper an algorithm to carry out the automatic segmentation of bone structures in 3D CT images has been implemented. Automatic segmentation of bone structures is of special interest for radiologists and surgeons to analyze bone diseases or to plan some surgical interventions. This task is very complicated as bones usually present intensities overlapping with those of surrounding tissues. This overlapping is mainly due to the composition of bones and to the presence of some diseases such as Osteoarthritis, Osteoporosis, etc. Moreover, segmentation of bone structures is a very time-consuming task due to the 3D essence of the bones. Usually, this segmentation is implemented manually or with algorithms using simple techniques such as thresholding and thus providing bad results. In this paper gray information and 3D statistical information have been combined to be used as input to a continuous max-flow algorithm. Twenty CT images have been tested and different coefficients have been computed to assess the performance of our implementation. Dice and Sensitivity values above 0.91 and 0.97 respectively were obtained. A comparison with Level Sets and thresholding techniques has been carried out and our results outperformed them in terms of accuracy.

  16. Automated segmentation and geometrical modeling of the tricuspid aortic valve in 3D echocardiographic images.

    PubMed

    Pouch, Alison M; Wang, Hongzhi; Takabe, Manabu; Jackson, Benjamin M; Sehgal, Chandra M; Gorman, Joseph H; Gorman, Robert C; Yushkevich, Paul A

    2013-01-01

    The aortic valve has been described with variable anatomical definitions, and the consistency of 2D manual measurement of valve dimensions in medical image data has been questionable. Given the importance of image-based morphological assessment in the diagnosis and surgical treatment of aortic valve disease, there is considerable need to develop a standardized framework for 3D valve segmentation and shape representation. Towards this goal, this work integrates template-based medial modeling and multi-atlas label fusion techniques to automatically delineate and quantitatively describe aortic leaflet geometry in 3D echocardiographic (3DE) images, a challenging task that has been explored only to a limited extent. The method makes use of expert knowledge of aortic leaflet image appearance, generates segmentations with consistent topology, and establishes a shape-based coordinate system on the aortic leaflets that enables standardized automated measurements. In this study, the algorithm is evaluated on 11 3DE images of normal human aortic leaflets acquired at mid systole. The clinical relevance of the method is its ability to capture leaflet geometry in 3DE image data with minimal user interaction while producing consistent measurements of 3D aortic leaflet geometry.

  17. Image intensity standardization in 3D rotational angiography and its application to vascular segmentation

    NASA Astrophysics Data System (ADS)

    Bogunović, Hrvoje; Radaelli, Alessandro G.; De Craene, Mathieu; Delgado, David; Frangi, Alejandro F.

    2008-03-01

    Knowledge-based vascular segmentation methods typically rely on a pre-built training set of segmented images, which is used to estimate the probability of each voxel to belong to a particular tissue. In 3D Rotational Angiography (3DRA) the same tissue can correspond to different intensity ranges depending on the imaging device, settings and contrast injection protocol. As a result, pre-built training sets do not apply to all images and the best segmentation results are often obtained when the training set is built specifically for each individual image. We present an Image Intensity Standardization (IIS) method designed to ensure a correspondence between specific tissues and intensity ranges common to every image that undergoes the standardization process. The method applies a piecewise linear transformation to the image that aligns the intensity histogram to the histogram taken as reference. The reference histogram has been selected from a high quality image not containing artificial objects such as coils or stents. This is a pre-processing step that allows employing a training set built on a limited number of standardized images for the segmentation of standardized images which were not part of the training set. The effectiveness of the presented IIS technique in combination with a well-validated knowledge-based vasculature segmentation method is quantified on a variety of 3DRA images depicting cerebral arteries and intracranial aneurysms. The proposed IIS method offers a solution to the standardization of tissue classes in routine medical images and effectively improves automation and usability of knowledge-based vascular segmentation algorithms.

  18. Segmentation of Skin Tumors in High-Frequency 3-D Ultrasound Images.

    PubMed

    Sciolla, Bruno; Cowell, Lester; Dambry, Thibaut; Guibert, Benoît; Delachartre, Philippe

    2017-01-01

    High-frequency 3-D ultrasound imaging is an informative tool for diagnosis, surgery planning and skin lesion examination. The purpose of this article was to describe a semi-automated segmentation tool providing easy access to the extent, shape and volume of a lesion. We propose an adaptive log-likelihood level-set segmentation procedure using non-parametric estimates of the intensity distribution. The algorithm has a single parameter to control the smoothness of the contour, and we describe how a fixed value yields satisfactory segmentation results with an average Dice coefficient of D = 0.76. The algorithm is implemented on a grid, which increases the speed by a factor of 100 compared with a standard pixelwise segmentation. We compare the method with parametric methods making the hypothesis of Rayleigh or Nakagami distributed signals, and illustrate that our method has greater robustness with similar computational speed. Benchmarks are made on realistic synthetic ultrasound images and a data set of nine clinical 3-D images acquired with a 50-MHz imaging system. The proposed algorithm is suitable for use in a clinical context as a post-processing tool.

  19. Segmentation of the common carotid artery with active shape models from 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Jin, Jiaoying; He, Wanji; Yuchi, Ming; Ding, Mingyue

    2012-03-01

    Carotid atherosclerosis is a major cause of stroke, a leading cause of death and disability. In this paper, we develop and evaluate a new segmentation method for outlining both lumen and adventitia (inner and outer walls) of common carotid artery (CCA) from three-dimensional ultrasound (3D US) images for carotid atherosclerosis diagnosis and evaluation. The data set consists of sixty-eight, 17× 2× 2, 3D US volume data acquired from the left and right carotid arteries of seventeen patients (eight treated with 80mg atorvastain and nine with placebo), who had carotid stenosis of 60% or more, at baseline and after three months of treatment. We investigate the use of Active Shape Models (ASMs) to segment CCA inner and outer walls after statin therapy. The proposed method was evaluated with respect to expert manually outlined boundaries as a surrogate for ground truth. For the lumen and adventitia segmentations, respectively, the algorithm yielded Dice Similarity Coefficient (DSC) of 93.6%+/- 2.6%, 91.8%+/- 3.5%, mean absolute distances (MAD) of 0.28+/- 0.17mm and 0.34 +/- 0.19mm, maximum absolute distances (MAXD) of 0.87 +/- 0.37mm and 0.74 +/- 0.49mm. The proposed algorithm took 4.4 +/- 0.6min to segment a single 3D US images, compared to 11.7+/-1.2min for manual segmentation. Therefore, the method would promote the translation of carotid 3D US to clinical care for the fast, safety and economical monitoring of the atherosclerotic disease progression and regression during therapy.

  20. Iterative Mesh Transformation for 3D Segmentation of Livers with Cancers in CT Images

    PubMed Central

    Lu, Difei; Wu, Yin; Harris, Gordon; Cai, Wenli

    2015-01-01

    Segmentation of diseased liver remains a challenging task in clinical applications due to the high inter-patient variability in liver shapes, sizes and pathologies caused by cancers or other liver diseases. In this paper, we present a multi-resolution mesh segmentation algorithm for 3D segmentation of livers, called iterative mesh transformation that deforms the mesh of a region-of-interest (ROI) in a progressive manner by iterations between mesh transformation and contour optimization. Mesh transformation deforms the 3D mesh based on the deformation transfer model that searches the optimal mesh based on the affine transformation subjected to a set of constraints of targeting vertices. Besides, contour optimization searches the optimal transversal contours of the ROI by applying the dynamic-programming algorithm to the intersection polylines of the 3D mesh on 2D transversal image planes. The initial constraint set for mesh transformation can be defined by a very small number of targeting vertices, namely landmarks, and progressively updated by adding the targeting vertices selected from the optimal transversal contours calculated in contour optimization. This iterative 3D mesh transformation constrained by 2D optimal transversal contours provides an efficient solution to a progressive approximation of the mesh of the targeting ROI. Based on this iterative mesh transformation algorithm, we developed a semi-automated scheme for segmentation of diseased livers with cancers using as little as five user-identified landmarks. The evaluation study demonstrates that this semiautomated liver segmentation scheme can achieve accurate and reliable segmentation results with significant reduction of interaction time and efforts when dealing with diseased liver cases. PMID:25728595

  1. Iterative mesh transformation for 3D segmentation of livers with cancers in CT images.

    PubMed

    Lu, Difei; Wu, Yin; Harris, Gordon; Cai, Wenli

    2015-07-01

    Segmentation of diseased liver remains a challenging task in clinical applications due to the high inter-patient variability in liver shapes, sizes and pathologies caused by cancers or other liver diseases. In this paper, we present a multi-resolution mesh segmentation algorithm for 3D segmentation of livers, called iterative mesh transformation that deforms the mesh of a region-of-interest (ROI) in a progressive manner by iterations between mesh transformation and contour optimization. Mesh transformation deforms the 3D mesh based on the deformation transfer model that searches the optimal mesh based on the affine transformation subjected to a set of constraints of targeting vertices. Besides, contour optimization searches the optimal transversal contours of the ROI by applying the dynamic-programming algorithm to the intersection polylines of the 3D mesh on 2D transversal image planes. The initial constraint set for mesh transformation can be defined by a very small number of targeting vertices, namely landmarks, and progressively updated by adding the targeting vertices selected from the optimal transversal contours calculated in contour optimization. This iterative 3D mesh transformation constrained by 2D optimal transversal contours provides an efficient solution to a progressive approximation of the mesh of the targeting ROI. Based on this iterative mesh transformation algorithm, we developed a semi-automated scheme for segmentation of diseased livers with cancers using as little as five user-identified landmarks. The evaluation study demonstrates that this semi-automated liver segmentation scheme can achieve accurate and reliable segmentation results with significant reduction of interaction time and efforts when dealing with diseased liver cases.

  2. Segmentation of vascular structures and hematopoietic cells in 3D microscopy images and quantitative analysis

    NASA Astrophysics Data System (ADS)

    Mu, Jian; Yang, Lin; Kamocka, Malgorzata M.; Zollman, Amy L.; Carlesso, Nadia; Chen, Danny Z.

    2015-03-01

    In this paper, we present image processing methods for quantitative study of how the bone marrow microenvironment changes (characterized by altered vascular structure and hematopoietic cell distribution) caused by diseases or various factors. We develop algorithms that automatically segment vascular structures and hematopoietic cells in 3-D microscopy images, perform quantitative analysis of the properties of the segmented vascular structures and cells, and examine how such properties change. In processing images, we apply local thresholding to segment vessels, and add post-processing steps to deal with imaging artifacts. We propose an improved watershed algorithm that relies on both intensity and shape information and can separate multiple overlapping cells better than common watershed methods. We then quantitatively compute various features of the vascular structures and hematopoietic cells, such as the branches and sizes of vessels and the distribution of cells. In analyzing vascular properties, we provide algorithms for pruning fake vessel segments and branches based on vessel skeletons. Our algorithms can segment vascular structures and hematopoietic cells with good quality. We use our methods to quantitatively examine the changes in the bone marrow microenvironment caused by the deletion of Notch pathway. Our quantitative analysis reveals property changes in samples with deleted Notch pathway. Our tool is useful for biologists to quantitatively measure changes in the bone marrow microenvironment, for developing possible therapeutic strategies to help the bone marrow microenvironment recovery.

  3. 3D Kidney Segmentation from Abdominal Images Using Spatial-Appearance Models

    PubMed Central

    Khalifa, Fahmi; Soliman, Ahmed; Gimel'farb, Georgy

    2017-01-01

    Kidney segmentation is an essential step in developing any noninvasive computer-assisted diagnostic system for renal function assessment. This paper introduces an automated framework for 3D kidney segmentation from dynamic computed tomography (CT) images that integrates discriminative features from the current and prior CT appearances into a random forest classification approach. To account for CT images' inhomogeneities, we employ discriminate features that are extracted from a higher-order spatial model and an adaptive shape model in addition to the first-order CT appearance. To model the interactions between CT data voxels, we employed a higher-order spatial model, which adds the triple and quad clique families to the traditional pairwise clique family. The kidney shape prior model is built using a set of training CT data and is updated during segmentation using not only region labels but also voxels' appearances in neighboring spatial voxel locations. Our framework performance has been evaluated on in vivo dynamic CT data collected from 20 subjects and comprises multiple 3D scans acquired before and after contrast medium administration. Quantitative evaluation between manually and automatically segmented kidney contours using Dice similarity, percentage volume differences, and 95th-percentile bidirectional Hausdorff distances confirms the high accuracy of our approach. PMID:28280519

  4. Automatic segmentation and analysis of fibrin networks in 3D confocal microscopy images

    NASA Astrophysics Data System (ADS)

    Liu, Xiaomin; Mu, Jian; Machlus, Kellie R.; Wolberg, Alisa S.; Rosen, Elliot D.; Xu, Zhiliang; Alber, Mark S.; Chen, Danny Z.

    2012-02-01

    Fibrin networks are a major component of blood clots that provides structural support to the formation of growing clots. Abnormal fibrin networks that are too rigid or too unstable can promote cardiovascular problems and/or bleeding. However, current biological studies of fibrin networks rarely perform quantitative analysis of their structural properties (e.g., the density of branch points) due to the massive branching structures of the networks. In this paper, we present a new approach for segmenting and analyzing fibrin networks in 3D confocal microscopy images. We first identify the target fibrin network by applying the 3D region growing method with global thresholding. We then produce a one-voxel wide centerline for each fiber segment along which the branch points and other structural information of the network can be obtained. Branch points are identified by a novel approach based on the outer medial axis. Cells within the fibrin network are segmented by a new algorithm that combines cluster detection and surface reconstruction based on the α-shape approach. Our algorithm has been evaluated on computer phantom images of fibrin networks for identifying branch points. Experiments on z-stack images of different types of fibrin networks yielded results that are consistent with biological observations.

  5. Robust 3-D airway tree segmentation for image-guided peripheral bronchoscopy.

    PubMed

    Graham, Michael W; Gibbs, Jason D; Cornish, Duane C; Higgins, William E

    2010-04-01

    A vital task in the planning of peripheral bronchoscopy is the segmentation of the airway tree from a 3-D multidetector computed tomography chest scan. Unfortunately, existing methods typically do not sufficiently extract the necessary peripheral airways needed to plan a procedure. We present a robust method that draws upon both local and global information. The method begins with a conservative segmentation of the major airways. Follow-on stages then exhaustively search for additional candidate airway locations. Finally, a graph-based optimization method counterbalances both the benefit and cost of retaining candidate airway locations for the final segmentation. Results demonstrate that the proposed method typically extracts 2-3 more generations of airways than several other methods, and that the extracted airway trees enable image-guided bronchoscopy deeper into the human lung periphery than past studies.

  6. Automated bone segmentation from large field of view 3D MR images of the hip joint

    NASA Astrophysics Data System (ADS)

    Xia, Ying; Fripp, Jurgen; Chandra, Shekhar S.; Schwarz, Raphael; Engstrom, Craig; Crozier, Stuart

    2013-10-01

    Accurate bone segmentation in the hip joint region from magnetic resonance (MR) images can provide quantitative data for examining pathoanatomical conditions such as femoroacetabular impingement through to varying stages of osteoarthritis to monitor bone and associated cartilage morphometry. We evaluate two state-of-the-art methods (multi-atlas and active shape model (ASM) approaches) on bilateral MR images for automatic 3D bone segmentation in the hip region (proximal femur and innominate bone). Bilateral MR images of the hip joints were acquired at 3T from 30 volunteers. Image sequences included water-excitation dual echo stead state (FOV 38.6 × 24.1 cm, matrix 576 × 360, thickness 0.61 mm) in all subjects and multi-echo data image combination (FOV 37.6 × 23.5 cm, matrix 576 × 360, thickness 0.70 mm) for a subset of eight subjects. Following manual segmentation of femoral (head-neck, proximal-shaft) and innominate (ilium+ischium+pubis) bone, automated bone segmentation proceeded via two approaches: (1) multi-atlas segmentation incorporating non-rigid registration and (2) an advanced ASM-based scheme. Mean inter- and intra-rater reliability Dice's similarity coefficients (DSC) for manual segmentation of femoral and innominate bone were (0.970, 0.963) and (0.971, 0.965). Compared with manual data, mean DSC values for femoral and innominate bone volumes using automated multi-atlas and ASM-based methods were (0.950, 0.922) and (0.946, 0.917), respectively. Both approaches delivered accurate (high DSC values) segmentation results; notably, ASM data were generated in substantially less computational time (12 min versus 10 h). Both automated algorithms provided accurate 3D bone volumetric descriptions for MR-based measures in the hip region. The highly computational efficient ASM-based approach is more likely suitable for future clinical applications such as extracting bone-cartilage interfaces for potential cartilage segmentation.

  7. Using 3-D shape models to guide segmentation of MR brain images.

    PubMed Central

    Hinshaw, K. P.; Brinkley, J. F.

    1997-01-01

    Accurate segmentation of medical images poses one of the major challenges in computer vision. Approaches that rely solely on intensity information frequently fail because similar intensity values appear in multiple structures. This paper presents a method for using shape knowledge to guide the segmentation process, applying it to the task of finding the surface of the brain. A 3-D model that includes local shape constraints is fitted to an MR volume dataset. The resulting low-resolution surface is used to mask out regions far from the cortical surface, enabling an isosurface extraction algorithm to isolate a more detailed surface boundary. The surfaces generated by this technique are comparable to those achieved by other methods, without requiring user adjustment of a large number of ad hoc parameters. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9357670

  8. Focused shape models for hip joint segmentation in 3D magnetic resonance images.

    PubMed

    Chandra, Shekhar S; Xia, Ying; Engstrom, Craig; Crozier, Stuart; Schwarz, Raphael; Fripp, Jurgen

    2014-04-01

    Deformable models incorporating shape priors have proved to be a successful approach in segmenting anatomical regions and specific structures in medical images. This paper introduces weighted shape priors for deformable models in the context of 3D magnetic resonance (MR) image segmentation of the bony elements of the human hip joint. The fully automated approach allows the focusing of the shape model energy to a priori selected anatomical structures or regions of clinical interest by preferentially ordering the shape representation (or eigen-modes) within this type of model to the highly weighted areas. This focused shape model improves accuracy of the shape constraints in those regions compared to standard approaches. The proposed method achieved femoral head and acetabular bone segmentation mean absolute surface distance errors of 0.55±0.18mm and 0.75±0.20mm respectively in 35 3D unilateral MR datasets from 25 subjects acquired at 3T with different limited field of views for individual bony components of the hip joint.

  9. Free segmentation in rendered 3D images through synthetic impulse response in integral imaging

    NASA Astrophysics Data System (ADS)

    Martínez-Corral, M.; Llavador, A.; Sánchez-Ortiga, E.; Saavedra, G.; Javidi, B.

    2016-06-01

    Integral Imaging is a technique that has the capability of providing not only the spatial, but also the angular information of three-dimensional (3D) scenes. Some important applications are the 3D display and digital post-processing as for example, depth-reconstruction from integral images. In this contribution we propose a new reconstruction method that takes into account the integral image and a simplified version of the impulse response function (IRF) of the integral imaging (InI) system to perform a two-dimensional (2D) deconvolution. The IRF of an InI system has a periodic structure that depends directly on the axial position of the object. Considering different periods of the IRFs we recover by deconvolution the depth information of the 3D scene. An advantage of our method is that it is possible to obtain nonconventional reconstructions by considering alternative synthetic impulse responses. Our experiments show the feasibility of the proposed method.

  10. Automated multilayer segmentation and characterization in 3D spectral-domain optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Hu, Zhihong; Wu, Xiaodong; Hariri, Amirhossein; Sadda, SriniVas R.

    2013-03-01

    Spectral-domain optical coherence tomography (SD-OCT) is a 3-D imaging technique, allowing direct visualization of retinal morphology and architecture. The various layers of the retina may be affected differentially by various diseases. In this study, an automated graph-based multilayer approach was developed to sequentially segment eleven retinal surfaces including the inner retinal bands to the outer retinal bands in normal SD-OCT volume scans at three different stages. For stage 1, the four most detectable and/or distinct surfaces were identified in the four-times-downsampled images and were used as a priori positional information to limit the graph search for other surfaces at stage 2. Eleven surfaces were then detected in the two-times-downsampled images at stage 2, and refined in the original image space at stage 3 using the graph search integrating the estimated morphological shape models. Twenty macular SD-OCT (Heidelberg Spectralis) volume scans from 20 normal subjects (one eye per subject) were used in this study. The overall mean and absolute mean differences in border positions between the automated and manual segmentation for all 11 segmented surfaces were -0.20 +/- 0.53 voxels (-0.76 +/- 2.06 μm) and 0.82 +/- 0.64 voxels (3.19 +/- 2.46 μm). Intensity and thickness properties in the resultant retinal layers were investigated. This investigation in normal subjects may provide a comparative reference for subsequent investigations in eyes with disease.

  11. Chest-wall segmentation in automated 3D breast ultrasound images using thoracic volume classification

    NASA Astrophysics Data System (ADS)

    Tan, Tao; van Zelst, Jan; Zhang, Wei; Mann, Ritse M.; Platel, Bram; Karssemeijer, Nico

    2014-03-01

    Computer-aided detection (CAD) systems are expected to improve effectiveness and efficiency of radiologists in reading automated 3D breast ultrasound (ABUS) images. One challenging task on developing CAD is to reduce a large number of false positives. A large amount of false positives originate from acoustic shadowing caused by ribs. Therefore determining the location of the chestwall in ABUS is necessary in CAD systems to remove these false positives. Additionally it can be used as an anatomical landmark for inter- and intra-modal image registration. In this work, we extended our previous developed chestwall segmentation method that fits a cylinder to automated detected rib-surface points and we fit the cylinder model by minimizing a cost function which adopted a term of region cost computed from a thoracic volume classifier to improve segmentation accuracy. We examined the performance on a dataset of 52 images where our previous developed method fails. Using region-based cost, the average mean distance of the annotated points to the segmented chest wall decreased from 7.57±2.76 mm to 6.22±2.86 mm.art.

  12. Novel and powerful 3D adaptive crisp active contour method applied in the segmentation of CT lung images.

    PubMed

    Rebouças Filho, Pedro Pedrosa; Cortez, Paulo César; da Silva Barros, Antônio C; C Albuquerque, Victor Hugo; R S Tavares, João Manuel

    2017-01-01

    The World Health Organization estimates that 300 million people have asthma, 210 million people have Chronic Obstructive Pulmonary Disease (COPD), and, according to WHO, COPD will become the third major cause of death worldwide in 2030. Computational Vision systems are commonly used in pulmonology to address the task of image segmentation, which is essential for accurate medical diagnoses. Segmentation defines the regions of the lungs in CT images of the thorax that must be further analyzed by the system or by a specialist physician. This work proposes a novel and powerful technique named 3D Adaptive Crisp Active Contour Method (3D ACACM) for the segmentation of CT lung images. The method starts with a sphere within the lung to be segmented that is deformed by forces acting on it towards the lung borders. This process is performed iteratively in order to minimize an energy function associated with the 3D deformable model used. In the experimental assessment, the 3D ACACM is compared against three approaches commonly used in this field: the automatic 3D Region Growing, the level-set algorithm based on coherent propagation and the semi-automatic segmentation by an expert using the 3D OsiriX toolbox. When applied to 40 CT scans of the chest the 3D ACACM had an average F-measure of 99.22%, revealing its superiority and competency to segment lungs in CT images.

  13. Segmentation of 3D cell membrane images by PDE methods and its applications.

    PubMed

    Mikula, K; Peyriéras, N; Remešíková, M; Stašová, O

    2011-06-01

    We present a set of techniques that enable us to segment objects from 3D cell membrane images. Particularly, we propose methods for detection of approximate cell nuclei centers, extraction of the inner cell boundaries, the surface of the organism and the intercellular borders--the so called intercellular skeleton. All methods are based on numerical solution of partial differential equations. The center detection problem is represented by a level set equation for advective motion in normal direction with curvature term. In case of the inner cell boundaries and the global surface, we use the generalized subjective surface model. The intercellular borders are segmented by the advective level set equation where the velocity field is given by the gradient of the signed distance function to the segmented inner cell boundaries. The distance function is computed by solving the time relaxed eikonal equation. We describe the mathematical models, explain their numerical approximation and finally we present various possible practical applications on the images of zebrafish embryogenesis--computation of important quantitative characteristics, evaluation of the cell shape, detection of cell divisions and others.

  14. Deformable segmentation of 3D MR prostate images via distributed discriminative dictionary and ensemble learning

    SciTech Connect

    Guo, Yanrong; Shao, Yeqin; Gao, Yaozong; Price, True; Oto, Aytekin; Shen, Dinggang

    2014-07-15

    patches of the prostate surface and trained to adaptively capture the appearance in different prostate zones, thus achieving better local tissue differentiation. For each local region, multiple classifiers are trained based on the randomly selected samples and finally assembled by a specific fusion method. In addition to this nonparametric appearance model, a prostate shape model is learned from the shape statistics using a novel approach, sparse shape composition, which can model nonGaussian distributions of shape variation and regularize the 3D mesh deformation by constraining it within the observed shape subspace. Results: The proposed method has been evaluated on two datasets consisting of T2-weighted MR prostate images. For the first (internal) dataset, the classification effectiveness of the authors' improved dictionary learning has been validated by comparing it with three other variants of traditional dictionary learning methods. The experimental results show that the authors' method yields a Dice Ratio of 89.1% compared to the manual segmentation, which is more accurate than the three state-of-the-art MR prostate segmentation methods under comparison. For the second dataset, the MICCAI 2012 challenge dataset, the authors' proposed method yields a Dice Ratio of 87.4%, which also achieves better segmentation accuracy than other methods under comparison. Conclusions: A new magnetic resonance image prostate segmentation method is proposed based on the combination of deformable model and dictionary learning methods, which achieves more accurate segmentation performance on prostate T2 MR images.

  15. Segmentation of Image Data from Complex Organotypic 3D Models of Cancer Tissues with Markov Random Fields

    PubMed Central

    Robinson, Sean; Guyon, Laurent; Nevalainen, Jaakko; Toriseva, Mervi

    2015-01-01

    Organotypic, three dimensional (3D) cell culture models of epithelial tumour types such as prostate cancer recapitulate key aspects of the architecture and histology of solid cancers. Morphometric analysis of multicellular 3D organoids is particularly important when additional components such as the extracellular matrix and tumour microenvironment are included in the model. The complexity of such models has so far limited their successful implementation. There is a great need for automatic, accurate and robust image segmentation tools to facilitate the analysis of such biologically relevant 3D cell culture models. We present a segmentation method based on Markov random fields (MRFs) and illustrate our method using 3D stack image data from an organotypic 3D model of prostate cancer cells co-cultured with cancer-associated fibroblasts (CAFs). The 3D segmentation output suggests that these cell types are in physical contact with each other within the model, which has important implications for tumour biology. Segmentation performance is quantified using ground truth labels and we show how each step of our method increases segmentation accuracy. We provide the ground truth labels along with the image data and code. Using independent image data we show that our segmentation method is also more generally applicable to other types of cellular microscopy and not only limited to fluorescence microscopy. PMID:26630674

  16. A universal approach for automatic organ segmentations on 3D CT images based on organ localization and 3D GrabCut

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangrong; Ito, Takaaki; Zhou, Xinxin; Chen, Huayue; Hara, Takeshi; Yokoyama, Ryujiro; Kanematsu, Masayuki; Hoshi, Hiroaki; Fujita, Hiroshi

    2014-03-01

    This paper describes a universal approach to automatic segmentation of different internal organ and tissue regions in three-dimensional (3D) computerized tomography (CT) scans. The proposed approach combines object localization, a probabilistic atlas, and 3D GrabCut techniques to achieve automatic and quick segmentation. The proposed method first detects a tight 3D bounding box that contains the target organ region in CT images and then estimates the prior of each pixel inside the bounding box belonging to the organ region or background based on a dynamically generated probabilistic atlas. Finally, the target organ region is separated from the background by using an improved 3D GrabCut algorithm. A machine-learning method is used to train a detector to localize the 3D bounding box of the target organ using template matching on a selected feature space. A content-based image retrieval method is used for online generation of a patient-specific probabilistic atlas for the target organ based on a database. A 3D GrabCut algorithm is used for final organ segmentation by iteratively estimating the CT number distributions of the target organ and backgrounds using a graph-cuts algorithm. We applied this approach to localize and segment twelve major organ and tissue regions independently based on a database that includes 1300 torso CT scans. In our experiments, we randomly selected numerous CT scans and manually input nine principal types of inner organ regions for performance evaluation. Preliminary results showed the feasibility and efficiency of the proposed approach for addressing automatic organ segmentation issues on CT images.

  17. Supervised recursive segmentation of volumetric CT images for 3D reconstruction of lung and vessel tree.

    PubMed

    Li, Xuanping; Wang, Xue; Dai, Yixiang; Zhang, Pengbo

    2015-12-01

    Three dimensional reconstruction of lung and vessel tree has great significance to 3D observation and quantitative analysis for lung diseases. This paper presents non-sheltered 3D models of lung and vessel tree based on a supervised semi-3D lung tissues segmentation method. A recursive strategy based on geometric active contour is proposed instead of the "coarse-to-fine" framework in existing literature to extract lung tissues from the volumetric CT slices. In this model, the segmentation of the current slice is supervised by the result of the previous one slice due to the slight changes between adjacent slice of lung tissues. Through this mechanism, lung tissues in all the slices are segmented fast and accurately. The serious problems of left and right lungs fusion, caused by partial volume effects, and segmentation of pleural nodules can be settled meanwhile during the semi-3D process. The proposed scheme is evaluated by fifteen scans, from eight healthy participants and seven participants suffering from early-stage lung tumors. The results validate the good performance of the proposed method compared with the "coarse-to-fine" framework. The segmented datasets are utilized to reconstruct the non-sheltered 3D models of lung and vessel tree.

  18. Comparative Local Quality Assessment of 3D Medical Image Segmentations with Focus on Statistical Shape Model-Based Algorithms.

    PubMed

    Landesberger, Tatiana von; Basgier, Dennis; Becker, Meike

    2016-12-01

    The quality of automatic 3D medical segmentation algorithms needs to be assessed on test datasets comprising several 3D images (i.e., instances of an organ). The experts need to compare the segmentation quality across the dataset in order to detect systematic segmentation problems. However, such comparative evaluation is not supported well by current methods. We present a novel system for assessing and comparing segmentation quality in a dataset with multiple 3D images. The data is analyzed and visualized in several views. We detect and show regions with systematic segmentation quality characteristics. For this purpose, we extended a hierarchical clustering algorithm with a connectivity criterion. We combine quality values across the dataset for determining regions with characteristic segmentation quality across instances. Using our system, the experts can also identify 3D segmentations with extraordinary quality characteristics. While we focus on algorithms based on statistical shape models, our approach can also be applied to cases, where landmark correspondences among instances can be established. We applied our approach to three real datasets: liver, cochlea and facial nerve. The segmentation experts were able to identify organ regions with systematic segmentation characteristics as well as to detect outlier instances.

  19. Correlation based 3-D segmentation of the left ventricle in pediatric echocardiographic images using radio-frequency data.

    PubMed

    Nillesen, Maartje M; Lopata, Richard G P; Huisman, H J; Thijssen, Johan M; Kapusta, Livia; de Korte, Chris L

    2011-09-01

    Clinical diagnosis of heart disease might be substantially supported by automated segmentation of the endocardial surface in three-dimensional (3-D) echographic images. Because of the poor echogenicity contrast between blood and myocardial tissue in some regions and the inherent speckle noise, automated analysis of these images is challenging. A priori knowledge on the shape of the heart cannot always be relied on, e.g., in children with congenital heart disease, segmentation should be based on the echo features solely. The objective of this study was to investigate the merit of using temporal cross-correlation of radio-frequency (RF) data for automated segmentation of 3-D echocardiographic images. Maximum temporal cross-correlation (MCC) values were determined locally from the RF-data using an iterative 3-D technique. MCC values as well as a combination of MCC values and adaptive filtered, demodulated RF-data were used as an additional, external force in a deformable model approach to segment the endocardial surface and were tested against manually segmented surfaces. Results on 3-D full volume images (Philips, iE33) of 10 healthy children demonstrate that MCC values derived from the RF signal yield a useful parameter to distinguish between blood and myocardium in regions with low echogenicity contrast and incorporation of MCC improves the segmentation results significantly. Further investigation of the MCC over the whole cardiac cycle is required to exploit the full benefit of it for automated segmentation.

  20. Probabilistic intra-retinal layer segmentation in 3-D OCT images using global shape regularization.

    PubMed

    Rathke, Fabian; Schmidt, Stefan; Schnörr, Christoph

    2014-07-01

    With the introduction of spectral-domain optical coherence tomography (OCT), resulting in a significant increase in acquisition speed, the fast and accurate segmentation of 3-D OCT scans has become evermore important. This paper presents a novel probabilistic approach, that models the appearance of retinal layers as well as the global shape variations of layer boundaries. Given an OCT scan, the full posterior distribution over segmentations is approximately inferred using a variational method enabling efficient probabilistic inference in terms of computationally tractable model components: Segmenting a full 3-D volume takes around a minute. Accurate segmentations demonstrate the benefit of using global shape regularization: We segmented 35 fovea-centered 3-D volumes with an average unsigned error of 2.46 ± 0.22 μm as well as 80 normal and 66 glaucomatous 2-D circular scans with errors of 2.92 ± 0.5 μm and 4.09 ± 0.98 μm respectively. Furthermore, we utilized the inferred posterior distribution to rate the quality of the segmentation, point out potentially erroneous regions and discriminate normal from pathological scans. No pre- or postprocessing was required and we used the same set of parameters for all data sets, underlining the robustness and out-of-the-box nature of our approach.

  1. Streaming level set algorithm for 3D segmentation of confocal microscopy images.

    PubMed

    Gouaillard, Alexandre; Mosaliganti, Kishore; Gelas, Arnaud; Souhait, Lydie; Obholzer, Nikolaus; Megason, Sean

    2009-01-01

    We present a high performance variant of the popular geodesic active contours which are used for splitting cell clusters in microscopy images. Previously, we implemented a linear pipelined version that incorporates as many cues as possible into developing a suitable level-set speed function so that an evolving contour exactly segments a cell/nuclei blob. We use image gradients, distance maps, multiple channel information and a shape model to drive the evolution. We also developed a dedicated seeding strategy that uses the spatial coherency of the data to generate an over complete set of seeds along with a quality metric which is further used to sort out which seed should be used for a given cell. However, the computational performance of any level-set methodology is quite poor when applied to thousands of 3D data-sets each containing thousands of cells. Those data-sets are common in confocal microscopy. In this work, we explore methods to stream the algorithm in shared memory, multi-core environments. By partitioning the input and output using spatial data structures we insure the spatial coherency needed by our seeding algorithm as well as improve drastically the speed without memory overhead. Our results show speed-ups up to a factor of six.

  2. Automated detection, 3D segmentation and analysis of high resolution spine MR images using statistical shape models

    NASA Astrophysics Data System (ADS)

    Neubert, A.; Fripp, J.; Engstrom, C.; Schwarz, R.; Lauer, L.; Salvado, O.; Crozier, S.

    2012-12-01

    Recent advances in high resolution magnetic resonance (MR) imaging of the spine provide a basis for the automated assessment of intervertebral disc (IVD) and vertebral body (VB) anatomy. High resolution three-dimensional (3D) morphological information contained in these images may be useful for early detection and monitoring of common spine disorders, such as disc degeneration. This work proposes an automated approach to extract the 3D segmentations of lumbar and thoracic IVDs and VBs from MR images using statistical shape analysis and registration of grey level intensity profiles. The algorithm was validated on a dataset of volumetric scans of the thoracolumbar spine of asymptomatic volunteers obtained on a 3T scanner using the relatively new 3D T2-weighted SPACE pulse sequence. Manual segmentations and expert radiological findings of early signs of disc degeneration were used in the validation. There was good agreement between manual and automated segmentation of the IVD and VB volumes with the mean Dice scores of 0.89 ± 0.04 and 0.91 ± 0.02 and mean absolute surface distances of 0.55 ± 0.18 mm and 0.67 ± 0.17 mm respectively. The method compares favourably to existing 3D MR segmentation techniques for VBs. This is the first time IVDs have been automatically segmented from 3D volumetric scans and shape parameters obtained were used in preliminary analyses to accurately classify (100% sensitivity, 98.3% specificity) disc abnormalities associated with early degenerative changes.

  3. Effect of segmentation errors on 3D-to-2D registration of implant models in X-ray images.

    PubMed

    Mahfouz, Mohamed R; Hoff, William A; Komistek, Richard D; Dennis, Douglas A

    2005-02-01

    In many biomedical applications, it is desirable to estimate the three-dimensional (3D) position and orientation (pose) of a metallic rigid object (such as a knee or hip implant) from its projection in a two-dimensional (2D) X-ray image. If the geometry of the object is known, as well as the details of the image formation process, then the pose of the object with respect to the sensor can be determined. A common method for 3D-to-2D registration is to first segment the silhouette contour from the X-ray image; that is, identify all points in the image that belong to the 2D silhouette and not to the background. This segmentation step is then followed by a search for the 3D pose that will best match the observed contour with a predicted contour. Although the silhouette of a metallic object is often clearly visible in an X-ray image, adjacent tissue and occlusions can make the exact location of the silhouette contour difficult to determine in places. Occlusion can occur when another object (such as another implant component) partially blocks the view of the object of interest. In this paper, we argue that common methods for segmentation can produce errors in the location of the 2D contour, and hence errors in the resulting 3D estimate of the pose. We show, on a typical fluoroscopy image of a knee implant component, that interactive and automatic methods for segmentation result in segmented contours that vary significantly. We show how the variability in the 2D contours (quantified by two different metrics) corresponds to variability in the 3D poses. Finally, we illustrate how traditional segmentation methods can fail completely in the (not uncommon) cases of images with occlusion.

  4. Three dimensional level set based semiautomatic segmentation of atherosclerotic carotid artery wall volume using 3D ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Murad; AlMuhanna, Khalid; Zhao, Limin; Lal, Brajesh K.; Sikdar, Siddhartha

    2014-03-01

    3D segmentation of carotid plaque from ultrasound (US) images is challenging due to image artifacts and poor boundary definition. Semiautomatic segmentation algorithms for calculating vessel wall volume (VWV) have been proposed for the common carotid artery (CCA) but they have not been applied on plaques in the internal carotid artery (ICA). In this work, we describe a 3D segmentation algorithm that is robust to shadowing and missing boundaries. Our algorithm uses distance regularized level set method with edge and region based energy to segment the adventitial wall boundary (AWB) and lumen-intima boundary (LIB) of plaques in the CCA, ICA and external carotid artery (ECA). The algorithm is initialized by manually placing points on the boundary of a subset of transverse slices with an interslice distance of 4mm. We propose a novel user defined stopping surface based energy to prevent leaking of evolving surface across poorly defined boundaries. Validation was performed against manual segmentation using 3D US volumes acquired from five asymptomatic patients with carotid stenosis using a linear 4D probe. A pseudo gold-standard boundary was formed from manual segmentation by three observers. The Dice similarity coefficient (DSC), Hausdor distance (HD) and modified HD (MHD) were used to compare the algorithm results against the pseudo gold-standard on 1205 cross sectional slices of 5 3D US image sets. The algorithm showed good agreement with the pseudo gold standard boundary with mean DSC of 93.3% (AWB) and 89.82% (LIB); mean MHD of 0.34 mm (AWB) and 0.24 mm (LIB); mean HD of 1.27 mm (AWB) and 0.72 mm (LIB). The proposed 3D semiautomatic segmentation is the first step towards full characterization of 3D plaque progression and longitudinal monitoring.

  5. Bone canalicular network segmentation in 3D nano-CT images through geodesic voting and image tessellation

    NASA Astrophysics Data System (ADS)

    Zuluaga, Maria A.; Orkisz, Maciej; Dong, Pei; Pacureanu, Alexandra; Gouttenoire, Pierre-Jean; Peyrin, Françoise

    2014-05-01

    Recent studies emphasized the role of the bone lacuno-canalicular network (LCN) in the understanding of bone diseases such as osteoporosis. However, suitable methods to investigate this structure are lacking. The aim of this paper is to introduce a methodology to segment the LCN from three-dimensional (3D) synchrotron radiation nano-CT images. Segmentation of such structures is challenging due to several factors such as limited contrast and signal-to-noise ratio, partial volume effects and huge number of data that needs to be processed, which restrains user interaction. We use an approach based on minimum-cost paths and geodesic voting, for which we propose a fully automatic initialization scheme based on a tessellation of the image domain. The centroids of pre-segmented lacunæ are used as Voronoi-tessellation seeds and as start-points of a fast-marching front propagation, whereas the end-points are distributed in the vicinity of each Voronoi-region boundary. This initialization scheme was devised to cope with complex biological structures involving cells interconnected by multiple thread-like, branching processes, while the seminal geodesic-voting method only copes with tree-like structures. Our method has been assessed quantitatively on phantom data and qualitatively on real datasets, demonstrating its feasibility. To the best of our knowledge, presented 3D renderings of lacunæ interconnected by their canaliculi were achieved for the first time.

  6. Model-based segmentation and quantification of subcellular structures in 2D and 3D fluorescent microscopy images

    NASA Astrophysics Data System (ADS)

    Wörz, Stefan; Heinzer, Stephan; Weiss, Matthias; Rohr, Karl

    2008-03-01

    We introduce a model-based approach for segmenting and quantifying GFP-tagged subcellular structures of the Golgi apparatus in 2D and 3D microscopy images. The approach is based on 2D and 3D intensity models, which are directly fitted to an image within 2D circular or 3D spherical regions-of-interest (ROIs). We also propose automatic approaches for the detection of candidates, for the initialization of the model parameters, and for adapting the size of the ROI used for model fitting. Based on the fitting results, we determine statistical information about the spatial distribution and the total amount of intensity (fluorescence) of the subcellular structures. We demonstrate the applicability of our new approach based on 2D and 3D microscopy images.

  7. 3D Segmentation with an application of level set-method using MRI volumes for image guided surgery.

    PubMed

    Bosnjak, A; Montilla, G; Villegas, R; Jara, I

    2007-01-01

    This paper proposes an innovation in the application for image guided surgery using a comparative study of three different method of segmentation. This segmentation method is faster than the manual segmentation of images, with the advantage that it allows to use the same patient as anatomical reference, which has more precision than a generic atlas. This new methodology for 3D information extraction is based on a processing chain structured of the following modules: 1) 3D Filtering: the purpose is to preserve the contours of the structures and to smooth the homogeneous areas; several filters were tested and finally an anisotropic diffusion filter was used. 2) 3D Segmentation. This module compares three different methods: Region growing Algorithm, Cubic spline hand assisted, and Level Set Method. It then proposes a Level Set-based on the front propagation method that allows the making of the reconstruction of the internal walls of the anatomical structures of the brain. 3) 3D visualization. The new contribution of this work consists on the visualization of the segmented model and its use in the pre-surgery planning.

  8. 3D cerebral MR image segmentation using multiple-classifier system.

    PubMed

    Amiri, Saba; Movahedi, Mohammad Mehdi; Kazemi, Kamran; Parsaei, Hossein

    2017-03-01

    The three soft brain tissues white matter (WM), gray matter (GM), and cerebral spinal fluid (CSF) identified in a magnetic resonance (MR) image via image segmentation techniques can aid in structural and functional brain analysis, brain's anatomical structures measurement and visualization, neurodegenerative disorders diagnosis, and surgical planning and image-guided interventions, but only if obtained segmentation results are correct. This paper presents a multiple-classifier-based system for automatic brain tissue segmentation from cerebral MR images. The developed system categorizes each voxel of a given MR image as GM, WM, and CSF. The algorithm consists of preprocessing, feature extraction, and supervised classification steps. In the first step, intensity non-uniformity in a given MR image is corrected and then non-brain tissues such as skull, eyeballs, and skin are removed from the image. For each voxel, statistical features and non-statistical features were computed and used a feature vector representing the voxel. Three multilayer perceptron (MLP) neural networks trained using three different datasets were used as the base classifiers of the multiple-classifier system. The output of the base classifiers was fused using majority voting scheme. Evaluation of the proposed system was performed using Brainweb simulated MR images with different noise and intensity non-uniformity and internet brain segmentation repository (IBSR) real MR images. The quantitative assessment of the proposed method using Dice, Jaccard, and conformity coefficient metrics demonstrates improvement (around 5 % for CSF) in terms of accuracy as compared to single MLP classifier and the existing methods and tools such FSL-FAST and SPM. As accurately segmenting a MR image is of paramount importance for successfully promoting the clinical application of MR image segmentation techniques, the improvement obtained by using multiple-classifier-based system is encouraging.

  9. Combining Population and Patient-Specific Characteristics for Prostate Segmentation on 3D CT Images.

    PubMed

    Ma, Ling; Guo, Rongrong; Tian, Zhiqiang; Venkataraman, Rajesh; Sarkar, Saradwata; Liu, Xiabi; Tade, Funmilayo; Schuster, David M; Fei, Baowei

    2016-02-27

    Prostate segmentation on CT images is a challenging task. In this paper, we explore the population and patient-specific characteristics for the segmentation of the prostate on CT images. Because population learning does not consider the inter-patient variations and because patient-specific learning may not perform well for different patients, we are combining the population and patient-specific information to improve segmentation performance. Specifically, we train a population model based on the population data and train a patient-specific model based on the manual segmentation on three slice of the new patient. We compute the similarity between the two models to explore the influence of applicable population knowledge on the specific patient. By combining the patient-specific knowledge with the influence, we can capture the population and patient-specific characteristics to calculate the probability of a pixel belonging to the prostate. Finally, we smooth the prostate surface according to the prostate-density value of the pixels in the distance transform image. We conducted the leave-one-out validation experiments on a set of CT volumes from 15 patients. Manual segmentation results from a radiologist serve as the gold standard for the evaluation. Experimental results show that our method achieved an average DSC of 85.1% as compared to the manual segmentation gold standard. This method outperformed the population learning method and the patient-specific learning approach alone. The CT segmentation method can have various applications in prostate cancer diagnosis and therapy.

  10. Combining population and patient-specific characteristics for prostate segmentation on 3D CT images

    NASA Astrophysics Data System (ADS)

    Ma, Ling; Guo, Rongrong; Tian, Zhiqiang; Venkataraman, Rajesh; Sarkar, Saradwata; Liu, Xiabi; Tade, Funmilayo; Schuster, David M.; Fei, Baowei

    2016-03-01

    Prostate segmentation on CT images is a challenging task. In this paper, we explore the population and patient-specific characteristics for the segmentation of the prostate on CT images. Because population learning does not consider the inter-patient variations and because patient-specific learning may not perform well for different patients, we are combining the population and patient-specific information to improve segmentation performance. Specifically, we train a population model based on the population data and train a patient-specific model based on the manual segmentation on three slice of the new patient. We compute the similarity between the two models to explore the influence of applicable population knowledge on the specific patient. By combining the patient-specific knowledge with the influence, we can capture the population and patient-specific characteristics to calculate the probability of a pixel belonging to the prostate. Finally, we smooth the prostate surface according to the prostate-density value of the pixels in the distance transform image. We conducted the leave-one-out validation experiments on a set of CT volumes from 15 patients. Manual segmentation results from a radiologist serve as the gold standard for the evaluation. Experimental results show that our method achieved an average DSC of 85.1% as compared to the manual segmentation gold standard. This method outperformed the population learning method and the patient-specific learning approach alone. The CT segmentation method can have various applications in prostate cancer diagnosis and therapy.

  11. Combining Population and Patient-Specific Characteristics for Prostate Segmentation on 3D CT Images

    PubMed Central

    Ma, Ling; Guo, Rongrong; Tian, Zhiqiang; Venkataraman, Rajesh; Sarkar, Saradwata; Liu, Xiabi; Tade, Funmilayo; Schuster, David M.; Fei, Baowei

    2016-01-01

    Prostate segmentation on CT images is a challenging task. In this paper, we explore the population and patient-specific characteristics for the segmentation of the prostate on CT images. Because population learning does not consider the inter-patient variations and because patient-specific learning may not perform well for different patients, we are combining the population and patient-specific information to improve segmentation performance. Specifically, we train a population model based on the population data and train a patient-specific model based on the manual segmentation on three slice of the new patient. We compute the similarity between the two models to explore the influence of applicable population knowledge on the specific patient. By combining the patient-specific knowledge with the influence, we can capture the population and patient-specific characteristics to calculate the probability of a pixel belonging to the prostate. Finally, we smooth the prostate surface according to the prostate-density value of the pixels in the distance transform image. We conducted the leave-one-out validation experiments on a set of CT volumes from 15 patients. Manual segmentation results from a radiologist serve as the gold standard for the evaluation. Experimental results show that our method achieved an average DSC of 85.1% as compared to the manual segmentation gold standard. This method outperformed the population learning method and the patient-specific learning approach alone. The CT segmentation method can have various applications in prostate cancer diagnosis and therapy. PMID:27660382

  12. Data-driven interactive 3D medical image segmentation based on structured patch model.

    PubMed

    Park, Sang Hyun; Yun, Il Dong; Lee, Sang Uk

    2013-01-01

    In this paper, we present a novel three dimensional interactive medical image segmentation method based on high level knowledge of training set. Since the interactive system should provide intermediate results to an user quickly, insufficient low level models are used for most of previous methods. To exploit the high level knowledge within a short time, we construct a structured patch model that consists of multiple corresponding patch sets. The structured patch model includes the spatial relationships between neighboring patch sets and the prior knowledge of the corresponding patch set on each local region. The spatial relationships accelerate the search of corresponding patch in test time, while the prior knowledge improves the segmentation accuracy. The proposed framework provides not only fast editing tool, but the incremental learning system through adding the segmentation result to the training set. Experiments demonstrate that the proposed method is useful for fast and accurate segmentation of target objects from the multiple medical images.

  13. User-guided segmentation of preterm neonate ventricular system from 3-D ultrasound images using convex optimization.

    PubMed

    Qiu, Wu; Yuan, Jing; Kishimoto, Jessica; McLeod, Jonathan; Chen, Yimin; de Ribaupierre, Sandrine; Fenster, Aaron

    2015-02-01

    A three-dimensional (3-D) ultrasound (US) system has been developed to monitor the intracranial ventricular system of preterm neonates with intraventricular hemorrhage (IVH) and the resultant dilation of the ventricles (ventriculomegaly). To measure ventricular volume from 3-D US images, a semi-automatic convex optimization-based approach is proposed for segmentation of the cerebral ventricular system in preterm neonates with IVH from 3-D US images. The proposed semi-automatic segmentation method makes use of the convex optimization technique supervised by user-initialized information. Experiments using 58 patient 3-D US images reveal that our proposed approach yielded a mean Dice similarity coefficient of 78.2% compared with the surfaces that were manually contoured, suggesting good agreement between these two segmentations. Additional metrics, the mean absolute distance of 0.65 mm and the maximum absolute distance of 3.2 mm, indicated small distance errors for a voxel spacing of 0.22 × 0.22 × 0.22 mm(3). The Pearson correlation coefficient (r = 0.97, p < 0.001) indicated a significant correlation of algorithm-generated ventricular system volume (VSV) with the manually generated VSV. The calculated minimal detectable difference in ventricular volume change indicated that the proposed segmentation approach with 3-D US images is capable of detecting a VSV difference of 6.5 cm(3) with 95% confidence, suggesting that this approach might be used for monitoring IVH patients' ventricular changes using 3-D US imaging. The mean segmentation times of the graphics processing unit (GPU)- and central processing unit-implemented algorithms were 50 ± 2 and 205 ± 5 s for one 3-D US image, respectively, in addition to 120 ± 10 s for initialization, less than the approximately 35 min required by manual segmentation. In addition, repeatability experiments indicated that the intra-observer variability ranges from 6.5% to 7.5%, and the inter-observer variability is 8.5% in terms

  14. Freehand 3D ultrasound breast tumor segmentation

    NASA Astrophysics Data System (ADS)

    Liu, Qi; Ge, Yinan; Ou, Yue; Cao, Biao

    2007-12-01

    It is very important for physicians to accurately determine breast tumor location, size and shape in ultrasound image. The precision of breast tumor volume quantification relies on the accurate segmentation of the images. Given the known location and orientation of the ultrasound probe, We propose using freehand three dimensional (3D) ultrasound to acquire original images of the breast tumor and the surrounding tissues in real-time, after preprocessing with anisotropic diffusion filtering, the segmentation operation is performed slice by slice based on the level set method in the image stack. For the segmentation on each slice, the user can adjust the parameters to fit the requirement in the specified image in order to get the satisfied result. By the quantification procedure, the user can know the tumor size varying in different images in the stack. Surface rendering and interpolation are used to reconstruct the 3D breast tumor image. And the breast volume is constructed by the segmented contours in the stack of images. After the segmentation, the volume of the breast tumor in the 3D image data can be obtained.

  15. Segmentation of complex objects with non-spherical topologies from volumetric medical images using 3D livewire

    NASA Astrophysics Data System (ADS)

    Poon, Kelvin; Hamarneh, Ghassan; Abugharbieh, Rafeef

    2007-03-01

    Segmentation of 3D data is one of the most challenging tasks in medical image analysis. While reliable automatic methods are typically preferred, their success is often hindered by poor image quality and significant variations in anatomy. Recent years have thus seen an increasing interest in the development of semi-automated segmentation methods that combine computational tools with intuitive, minimal user interaction. In an earlier work, we introduced a highly-automated technique for medical image segmentation, where a 3D extension of the traditional 2D Livewire was proposed. In this paper, we present an enhanced and more powerful 3D Livewire-based segmentation approach with new features designed to primarily enable the handling of complex object topologies that are common in biological structures. The point ordering algorithm we proposed earlier, which automatically pairs up seedpoints in 3D, is improved in this work such that multiple sets of points are allowed to simultaneously exist. Point sets can now be automatically merged and split to accommodate for the presence of concavities, protrusions, and non-spherical topologies. The robustness of the method is further improved by extending the 'turtle algorithm', presented earlier, by using a turtle-path pruning step. Tests on both synthetic and real medical images demonstrate the efficiency, reproducibility, accuracy, and robustness of the proposed approach. Among the examples illustrated is the segmentation of the left and right ventricles from a T1-weighted MRI scan, where an average task time reduction of 84.7% was achieved when compared to a user performing 2D Livewire segmentation on every slice.

  16. Estimation of 3-D pore network coordination number of rocks from watershed segmentation of a single 2-D image

    NASA Astrophysics Data System (ADS)

    Rabbani, Arash; Ayatollahi, Shahab; Kharrat, Riyaz; Dashti, Nader

    2016-08-01

    In this study, we have utilized 3-D micro-tomography images of real and synthetic rocks to introduce two mathematical correlations which estimate the distribution parameters of 3-D coordination number using a single 2-D cross-sectional image. By applying a watershed segmentation algorithm, it is found that the distribution of 3-D coordination number is acceptably predictable by statistical analysis of the network extracted from 2-D images. In this study, we have utilized 25 volumetric images of rocks in order to propose two mathematical formulas. These formulas aim to approximate the average and standard deviation of coordination number in 3-D pore networks. Then, the formulas are applied for five independent test samples to evaluate the reliability. Finally, pore network flow modeling is used to find the error of absolute permeability prediction using estimated and measured coordination numbers. Results show that the 2-D images are considerably informative about the 3-D network of the rocks and can be utilized to approximate the 3-D connectivity of the porous spaces with determination coefficient of about 0.85 that seems to be acceptable considering the variety of the studied samples.

  17. Model-based 3D segmentation of the bones of joints in medical images

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Udupa, Jayaram K.; Saha, Punam K.; Odhner, Dewey; Hirsch, Bruce E.; Siegler, Sorin; Simon, Scott; Winkelstein, Beth A.

    2005-04-01

    There are several medical application areas that require the segmentation and separation of the component bones of joints in a sequence of acquired images of the joint under various loading conditions, our own target area being joint motion analysis. This is a challenging problem due to the proximity of bones at the joint, partial volume effects, and other imaging modality-specific factors that confound boundary contrast. A model-based strategy is proposed in this paper wherein a rigid model of the bone is generated from a segmentation of the bone in the image corresponding to one position of the joint by using the live wire method. In other images of the joint, this model is used to search for the same bone by minimizing an energy functional that utilizes both boundary- and region-based information. An evaluation of the method by utilizing a total of 60 data sets on MR and CT images of the ankle complex and cervical spine indicates that the segmentations agree very closely with the live wire segmentations yielding true positive and false positive volume fractions in the range 89-97% and 0.2-0.7%. The method requires 1-2 minutes of operator time and 6-7 minutes of computer time, which makes it significantly more efficient than live wire - the only method currently available for the task.

  18. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  19. Pancreas segmentation from 3D abdominal CT images using patient-specific weighted subspatial probabilistic atlases

    NASA Astrophysics Data System (ADS)

    Karasawa, Kenichi; Oda, Masahiro; Hayashi, Yuichiro; Nimura, Yukitaka; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Rueckert, Daniel; Mori, Kensaku

    2015-03-01

    Abdominal organ segmentations from CT volumes are now widely used in the computer-aided diagnosis and surgery assistance systems. Among abdominal organs, the pancreas is especially difficult to segment because of its large individual differences of the shape and position. In this paper, we propose a new pancreas segmentation method from 3D abdominal CT volumes using patient-specific weighted-subspatial probabilistic atlases. First of all, we perform normalization of organ shapes in training volumes and an input volume. We extract the Volume Of Interest (VOI) of the pancreas from the training volumes and an input volume. We divide each training VOI and input VOI into some cubic regions. We use a nonrigid registration method to register these cubic regions of the training VOI to corresponding regions of the input VOI. Based on the registration results, we calculate similarities between each cubic region of the training VOI and corresponding region of the input VOI. We select cubic regions of training volumes having the top N similarities in each cubic region. We subspatially construct probabilistic atlases weighted by the similarities in each cubic region. After integrating these probabilistic atlases in cubic regions into one, we perform a rough-to-precise segmentation of the pancreas using the atlas. The results of the experiments showed that utilization of the training volumes having the top N similarities in each cubic region led good results of the pancreas segmentation. The Jaccard Index and the average surface distance of the result were 58.9% and 2.04mm on average, respectively.

  20. 3D segmentation of annulus fibrosus and nucleus pulposus from T2-weighted magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Castro-Mateos, Isaac; Pozo, Jose M.; Eltes, Peter E.; Del Rio, Luis; Lazary, Aron; Frangi, Alejandro F.

    2014-12-01

    Computational medicine aims at employing personalised computational models in diagnosis and treatment planning. The use of such models to help physicians in finding the best treatment for low back pain (LBP) is becoming popular. One of the challenges of creating such models is to derive patient-specific anatomical and tissue models of the lumbar intervertebral discs (IVDs), as a prior step. This article presents a segmentation scheme that obtains accurate results irrespective of the degree of IVD degeneration, including pathological discs with protrusion or herniation. The segmentation algorithm, employing a novel feature selector, iteratively deforms an initial shape, which is projected into a statistical shape model space at first and then, into a B-Spline space to improve accuracy. The method was tested on a MR dataset of 59 patients suffering from LBP. The images follow a standard T2-weighted protocol in coronal and sagittal acquisitions. These two image volumes were fused in order to overcome large inter-slice spacing. The agreement between expert-delineated structures, used here as gold-standard, and our automatic segmentation was evaluated using Dice Similarity Index and surface-to-surface distances, obtaining a mean error of 0.68 mm in the annulus segmentation and 1.88 mm in the nucleus, which are the best results with respect to the image resolution in the current literature.

  1. 3D segmentation of annulus fibrosus and nucleus pulposus from T2-weighted magnetic resonance images.

    PubMed

    Castro-Mateos, Isaac; Pozo, Jose M; Eltes, Peter E; Rio, Luis Del; Lazary, Aron; Frangi, Alejandro F

    2014-12-21

    Computational medicine aims at employing personalised computational models in diagnosis and treatment planning. The use of such models to help physicians in finding the best treatment for low back pain (LBP) is becoming popular. One of the challenges of creating such models is to derive patient-specific anatomical and tissue models of the lumbar intervertebral discs (IVDs), as a prior step. This article presents a segmentation scheme that obtains accurate results irrespective of the degree of IVD degeneration, including pathological discs with protrusion or herniation. The segmentation algorithm, employing a novel feature selector, iteratively deforms an initial shape, which is projected into a statistical shape model space at first and then, into a B-Spline space to improve accuracy.The method was tested on a MR dataset of 59 patients suffering from LBP. The images follow a standard T2-weighted protocol in coronal and sagittal acquisitions. These two image volumes were fused in order to overcome large inter-slice spacing. The agreement between expert-delineated structures, used here as gold-standard, and our automatic segmentation was evaluated using Dice Similarity Index and surface-to-surface distances, obtaining a mean error of 0.68 mm in the annulus segmentation and 1.88 mm in the nucleus, which are the best results with respect to the image resolution in the current literature.

  2. Fast algorithm for optimal graph-Laplacian based 3D image segmentation

    NASA Astrophysics Data System (ADS)

    Harizanov, S.; Georgiev, I.

    2016-10-01

    In this paper we propose an iterative steepest-descent-type algorithm that is observed to converge towards the exact solution of the ℓ0 discrete optimization problem, related to graph-Laplacian based image segmentation. Such an algorithm allows for significant additional improvements on the segmentation quality once the minimizer of the associated relaxed ℓ1 continuous optimization problem is computed, unlike the standard strategy of simply hard-thresholding the latter. Convergence analysis of the algorithm is not a subject of this work. Instead, various numerical experiments, confirming the practical value of the algorithm, are documented.

  3. 3D-FIESTA Magnetic Resonance Angiography Fusion Imaging of Distal Segment of Occluded Middle Cerebral Artery.

    PubMed

    Kuribara, Tomoyoshi; Haraguchi, Koichi; Ogane, Kazumi; Matsuura, Nobuki; Ito, Takeo

    2015-01-01

    Middle cerebral artery (MCA) occlusion was examined with basi-parallel anatomical scanning (BPAS) using three-dimensional fast imaging employing steady-state acquisition (3D-FIESTA), and 3D-FIESTA and magnetic resonance angiography (MRA) fusion images were created. We expected that an incidence of hemorrhagic complications due to vessel perforations would be decreased by obtaining vascular information beyond the occlusion and thus acute endovascular revascularization could be performed using such techniques. We performed revascularization for acute MCA occlusion for five patients who were admitted in our hospital from October 2012 to October 2014. Patients consisted of 1 man and 4 women with a mean age of 76.2 years (range: 59-86 years). Fusion images were created from three-dimensional time of flight (3D-TOF) MRA and 3D-FIESTA with phase cycling (3D-FIESTA-C). Then thrombectomy was performed in all the 5 patients. Merci retriever to 1 patient, Penumbra system to 1, urokinase infusion to 2, and Solitaire to 1 using such techniques. In all cases, a 3D-FIESTA-MRA fusion imaging could depict approximately clear vascular information to at least the M3 segment beyond the occlusion. And each acute revascularization was able to perform smoothly using these imaging techniques. In all cases, there was no symptomatic hemorrhagic complication. It showed that 3D-FIESTA MRA fusion imaging technique could obtain vascular information beyond the MCA occlusion. In this study, no symptomatic hemorrhagic complications were detected. It could imply that such techniques were useful not only to improve treatment efficiency but also to reduce the risk of development of hemorrhagic complications caused by vessel perforations in acute revascularization.

  4. Interactive 3D segmentation of the prostate in magnetic resonance images using shape and local appearance similarity analysis

    NASA Astrophysics Data System (ADS)

    Shahedi, Maysam; Fenster, Aaron; Cool, Derek W.; Romagnoli, Cesare; Ward, Aaron D.

    2013-03-01

    3D segmentation of the prostate in medical images is useful to prostate cancer diagnosis and therapy guidance, but is time-consuming to perform manually. Clinical translation of computer-assisted segmentation algorithms for this purpose requires a comprehensive and complementary set of evaluation metrics that are informative to the clinical end user. We have developed an interactive 3D prostate segmentation method for 1.5T and 3.0T T2-weighted magnetic resonance imaging (T2W MRI) acquired using an endorectal coil. We evaluated our method against manual segmentations of 36 3D images using complementary boundary-based (mean absolute distance; MAD), regional overlap (Dice similarity coefficient; DSC) and volume difference (ΔV) metrics. Our technique is based on inter-subject prostate shape and local boundary appearance similarity. In the training phase, we calculated a point distribution model (PDM) and a set of local mean intensity patches centered on the prostate border to capture shape and appearance variability. To segment an unseen image, we defined a set of rays - one corresponding to each of the mean intensity patches computed in training - emanating from the prostate centre. We used a radial-based search strategy and translated each mean intensity patch along its corresponding ray, selecting as a candidate the boundary point with the highest normalized cross correlation along each ray. These boundary points were then regularized using the PDM. For the whole gland, we measured a mean+/-std MAD of 2.5+/-0.7 mm, DSC of 80+/-4%, and ΔV of 1.1+/-8.8 cc. We also provided an anatomic breakdown of these metrics within the prostatic base, mid-gland, and apex.

  5. Acquisition and automated 3-D segmentation of respiratory/cardiac-gated PET transmission images

    SciTech Connect

    Reutter, B.W.; Klein, G.J.; Brennan, K.M.; Huesman, R.H. |

    1996-12-31

    To evaluate the impact of respiratory motion on attenuation correction of cardiac PET data, we acquired and automatically segmented gated transmission data for a dog breathing on its own under gas anesthesia. Data were acquired for 20 min on a CTI/Siemens ECAT EXACT HR (47-slice) scanner configured for 12 gates in a static study, Two respiratory gates were obtained using data from a pneumatic bellows placed around the dog`s chest, in conjunction with 6 cardiac gates from standard EKG gating. Both signals were directed to a LabVIEW-controlled Macintosh, which translated them into one of 12 gate addresses. The respiratory gating threshold was placed near end-expiration to acquire 6 cardiac-gated datasets at end-expiration and 6 cardiac-gated datasets during breaths. Breaths occurred about once every 10 sec and lasted about 1-1.5 sec. For each respiratory gate, data were summed over cardiac gates and torso and lung surfaces were segmented automatically using a differential 3-D edge detection algorithm. Three-dimensional visualizations showed that lung surfaces adjacent to the heart translated 9 mm inferiorly during breaths. Our results suggest that respiration-compensated attenuation correction is feasible with a modest amount of gated transmission data and is necessary for accurate quantitation of high-resolution gated cardiac PET data.

  6. 3D segmentation of abdominal aorta from CT-scan and MR images.

    PubMed

    Duquette, Anthony Adam; Jodoin, Pierre-Marc; Bouchot, Olivier; Lalande, Alain

    2012-06-01

    We designed a generic method for segmenting the aneurismal sac of an abdominal aortic aneurysm (AAA) both from multi-slice MR and CT-scan examinations. It is a semi-automatic method requiring little human intervention and based on graph cut theory to segment the lumen interface and the aortic wall of AAAs. Our segmentation method works independently on MRI and CT-scan volumes and has been tested on a 44 patient dataset and 10 synthetic images. Segmentation and maximum diameter estimation were compared to manual tracing from 4 experts. An inter-observer study was performed in order to measure the variability range of a human observer. Based on three metrics (the maximum aortic diameter, the volume overlap and the Hausdorff distance) the variability of the results obtained by our method is shown to be similar to that of a human operator, both for the lumen interface and the aortic wall. As will be shown, the average distance obtained with our method is less than one standard deviation away from each expert, both for healthy subjects and for patients with AAA. Our semi-automatic method provides reliable contours of the abdominal aorta from CT-scan or MRI, allowing rapid and reproducible evaluations of AAA.

  7. Image segmentation and registration for the analysis of joint motion from 3D MRI

    NASA Astrophysics Data System (ADS)

    Hu, Yangqiu; Haynor, David R.; Fassbind, Michael; Rohr, Eric; Ledoux, William

    2006-03-01

    We report an image segmentation and registration method for studying joint morphology and kinematics from in vivo MRI scans and its application to the analysis of ankle joint motion. Using an MR-compatible loading device, a foot was scanned in a single neutral and seven dynamic positions including maximal flexion, rotation and inversion/eversion. A segmentation method combining graph cuts and level sets was developed which allows a user to interactively delineate 14 bones in the neutral position volume in less than 30 minutes total, including less than 10 minutes of user interaction. In the subsequent registration step, a separate rigid body transformation for each bone is obtained by registering the neutral position dataset to each of the dynamic ones, which produces an accurate description of the motion between them. We have processed six datasets, including 3 normal and 3 pathological feet. For validation our results were compared with those obtained from 3DViewnix, a semi-automatic segmentation program, and achieved good agreement in volume overlap ratios (mean: 91.57%, standard deviation: 3.58%) for all bones. Our tool requires only 1/50 and 1/150 of the user interaction time required by 3DViewnix and NIH Image Plus, respectively, an improvement that has the potential to make joint motion analysis from MRI practical in research and clinical applications.

  8. Automated torso organ segmentation from 3D CT images using structured perceptron and dual decomposition

    NASA Astrophysics Data System (ADS)

    Nimura, Yukitaka; Hayashi, Yuichiro; Kitasaka, Takayuki; Mori, Kensaku

    2015-03-01

    This paper presents a method for torso organ segmentation from abdominal CT images using structured perceptron and dual decomposition. A lot of methods have been proposed to enable automated extraction of organ regions from volumetric medical images. However, it is necessary to adjust empirical parameters of them to obtain precise organ regions. This paper proposes an organ segmentation method using structured output learning. Our method utilizes a graphical model and binary features which represent the relationship between voxel intensities and organ labels. Also we optimize the weights of the graphical model by structured perceptron and estimate the best organ label for a given image by dynamic programming and dual decomposition. The experimental result revealed that the proposed method can extract organ regions automatically using structured output learning. The error of organ label estimation was 4.4%. The DICE coefficients of left lung, right lung, heart, liver, spleen, pancreas, left kidney, right kidney, and gallbladder were 0.91, 0.95, 0.77, 0.81, 0.74, 0.08, 0.83, 0.84, and 0.03, respectively.

  9. Automated torso organ segmentation from 3D CT images using conditional random field

    NASA Astrophysics Data System (ADS)

    Nimura, Yukitaka; Hayashi, Yuichiro; Kitasaka, Takayuki; Misawa, Kazunari; Mori, Kensaku

    2016-03-01

    This paper presents a segmentation method for torso organs using conditional random field (CRF) from medical images. A lot of methods have been proposed to enable automated extraction of organ regions from volumetric medical images. However, it is necessary to adjust empirical parameters of them to obtain precise organ regions. In this paper, we propose an organ segmentation method using structured output learning which is based on probabilistic graphical model. The proposed method utilizes CRF on three-dimensional grids as probabilistic graphical model and binary features which represent the relationship between voxel intensities and organ labels. Also we optimize the weight parameters of the CRF using stochastic gradient descent algorithm and estimate organ labels for a given image by maximum a posteriori (MAP) estimation. The experimental result revealed that the proposed method can extract organ regions automatically using structured output learning. The error of organ label estimation was 6.6%. The DICE coefficients of right lung, left lung, heart, liver, spleen, right kidney, and left kidney are 0.94, 0.92, 0.65, 0.67, 0.36, 0.38, and 0.37, respectively.

  10. Segmentation, surface rendering, and surface simplification of 3-D skull images for the repair of a large skull defect

    NASA Astrophysics Data System (ADS)

    Wan, Weibing; Shi, Pengfei; Li, Shuguang

    2009-10-01

    Given the potential demonstrated by research into bone-tissue engineering, the use of medical image data for the rapid prototyping (RP) of scaffolds is a subject worthy of research. Computer-aided design and manufacture and medical imaging have created new possibilities for RP. Accurate and efficient design and fabrication of anatomic models is critical to these applications. We explore the application of RP computational methods to the repair of a pediatric skull defect. The focus of this study is the segmentation of the defect region seen in computerized tomography (CT) slice images of this patient's skull and the three-dimensional (3-D) surface rendering of the patient's CT-scan data. We see if our segmentation and surface rendering software can improve the generation of an implant model to fill a skull defect.

  11. Multiscale Hessian fracture filtering for the enhancement and segmentation of narrow fractures in 3D image data

    NASA Astrophysics Data System (ADS)

    Voorn, Maarten; Exner, Ulrike; Rath, Alexander

    2013-08-01

    Narrow fractures—or more generally narrow planar features—can be difficult to extract from 3D image datasets, and available methods are often unsuitable or inapplicable. A proper extraction is however in many cases required for visualisation or future processing steps. We use the example of 3D X-ray micro-Computed Tomography (µCT) data of narrow fractures through core samples from a dolomitic hydrocarbon reservoir (Hauptdolomit below the Vienna Basin, Austria). The extraction and eventual binary segmentation of the fractures in these datasets is required for porosity determination and permeability modelling. In this paper, we present the multiscale Hessian fracture filtering technique for extracting narrow fractures from a 3D image dataset. The second-order information in the Hessian matrix is used to distinguish planar features from the dataset. Different results are obtained for different scales of analysis in the calculation of the Hessian matrix. By combining these various scales of analysis, the final output is multiscale; i.e. narrow fractures of different apertures are detected. The presented technique is implemented and made available as macro code for the multiplatform public domain image processing software ImageJ. Serial processing of blocks of data ensures that full 3D processing of relatively large datasets (example dataset: 1670×1670×1546 voxels) is possible on a desktop computer. Here, several hours of processing time are required, but interaction is only required in the beginning. Various post-processing steps (calibration, connectivity filtering, and binarisation) can be applied, depending on the goals of research. The multiscale Hessian fracture filtering technique provides very good results for extracting the narrow fractures in our example dataset, despite several drawbacks inherent to the use of the Hessian matrix. Although we apply the technique on a specific example, the general implementation makes the filter suitable for different

  12. 3D photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.

    2010-06-01

    Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of

  13. Segmentation of the Aortic Valve Apparatus in 3D Echocardiographic Images: Deformable Modeling of a Branching Medial Structure.

    PubMed

    Pouch, Alison M; Tian, Sijie; Takabe, Manabu; Wang, Hongzhi; Yuan, Jiefu; Cheung, Albert T; Jackson, Benjamin M; Gorman, Joseph H; Gorman, Robert C; Yushkevich, Paul A

    2015-01-01

    3D echocardiographic (3DE) imaging is a useful tool for assessing the complex geometry of the aortic valve apparatus. Segmentation of this structure in 3DE images is a challenging task that benefits from shape-guided deformable modeling methods, which enable inter-subject statistical shape comparison. Prior work demonstrates the efficacy of using continuous medial representation (cm-rep) as a shape descriptor for valve leaflets. However, its application to the entire aortic valve apparatus is limited since the structure has a branching medial geometry that cannot be explicitly parameterized in the original cm-rep framework. In this work, we show that the aortic valve apparatus can be accurately segmented using a new branching medial modeling paradigm. The segmentation method achieves a mean boundary displacement of 0.6 ± 0.1 mm (approximately one voxel) relative to manual segmentation on 11 3DE images of normal open aortic valves. This study demonstrates a promising approach for quantitative 3DE analysis of aortic valve morphology.

  14. Ellipsoid Segmentation Model for Analyzing Light-Attenuated 3D Confocal Image Stacks of Fluorescent Multi-Cellular Spheroids

    PubMed Central

    Barbier, Michaël; Jaensch, Steffen; Cornelissen, Frans; Vidic, Suzana; Gjerde, Kjersti; de Hoogt, Ronald; Graeser, Ralph; Gustin, Emmanuel; Chong, Yolanda T.

    2016-01-01

    In oncology, two-dimensional in-vitro culture models are the standard test beds for the discovery and development of cancer treatments, but in the last decades, evidence emerged that such models have low predictive value for clinical efficacy. Therefore they are increasingly complemented by more physiologically relevant 3D models, such as spheroid micro-tumor cultures. If suitable fluorescent labels are applied, confocal 3D image stacks can characterize the structure of such volumetric cultures and, for example, cell proliferation. However, several issues hamper accurate analysis. In particular, signal attenuation within the tissue of the spheroids prevents the acquisition of a complete image for spheroids over 100 micrometers in diameter. And quantitative analysis of large 3D image data sets is challenging, creating a need for methods which can be applied to large-scale experiments and account for impeding factors. We present a robust, computationally inexpensive 2.5D method for the segmentation of spheroid cultures and for counting proliferating cells within them. The spheroids are assumed to be approximately ellipsoid in shape. They are identified from information present in the Maximum Intensity Projection (MIP) and the corresponding height view, also known as Z-buffer. It alerts the user when potential bias-introducing factors cannot be compensated for and includes a compensation for signal attenuation. PMID:27303813

  15. Graph-cut Based Interactive Segmentation of 3D Materials-Science Images

    DTIC Science & Technology

    2014-04-26

    while still quickly and conveniently allowing manual addition and removal of segments in real -time, (2) multiple extensions to the interactive tools...inside the region, and – The mean intensity inside the region. These properties can be computed quickly, which fits well with the real -time...10), 1731–1744 (2000) 14. Cortes , C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995) 15. Django Software Foundation: Django

  16. A rapid and efficient 2D/3D nuclear segmentation method for analysis of early mouse embryo and stem cell image data.

    PubMed

    Lou, Xinghua; Kang, Minjung; Xenopoulos, Panagiotis; Muñoz-Descalzo, Silvia; Hadjantonakis, Anna-Katerina

    2014-03-11

    Segmentation is a fundamental problem that dominates the success of microscopic image analysis. In almost 25 years of cell detection software development, there is still no single piece of commercial software that works well in practice when applied to early mouse embryo or stem cell image data. To address this need, we developed MINS (modular interactive nuclear segmentation) as a MATLAB/C++-based segmentation tool tailored for counting cells and fluorescent intensity measurements of 2D and 3D image data. Our aim was to develop a tool that is accurate and efficient yet straightforward and user friendly. The MINS pipeline comprises three major cascaded modules: detection, segmentation, and cell position classification. An extensive evaluation of MINS on both 2D and 3D images, and comparison to related tools, reveals improvements in segmentation accuracy and usability. Thus, its accuracy and ease of use will allow MINS to be implemented for routine single-cell-level image analyses.

  17. Fully automatic segmentation of the mitral leaflets in 3D transesophageal echocardiographic images using multi-atlas joint label fusion and deformable medial modeling.

    PubMed

    Pouch, A M; Wang, H; Takabe, M; Jackson, B M; Gorman, J H; Gorman, R C; Yushkevich, P A; Sehgal, C M

    2014-01-01

    Comprehensive visual and quantitative analysis of in vivo human mitral valve morphology is central to the diagnosis and surgical treatment of mitral valve disease. Real-time 3D transesophageal echocardiography (3D TEE) is a practical, highly informative imaging modality for examining the mitral valve in a clinical setting. To facilitate visual and quantitative 3D TEE image analysis, we describe a fully automated method for segmenting the mitral leaflets in 3D TEE image data. The algorithm integrates complementary probabilistic segmentation and shape modeling techniques (multi-atlas joint label fusion and deformable modeling with continuous medial representation) to automatically generate 3D geometric models of the mitral leaflets from 3D TEE image data. These models are unique in that they establish a shape-based coordinate system on the valves of different subjects and represent the leaflets volumetrically, as structures with locally varying thickness. In this work, expert image analysis is the gold standard for evaluating automatic segmentation. Without any user interaction, we demonstrate that the automatic segmentation method accurately captures patient-specific leaflet geometry at both systole and diastole in 3D TEE data acquired from a mixed population of subjects with normal valve morphology and mitral valve disease.

  18. Liver Tumor Segmentation from MR Images Using 3D Fast Marching Algorithm and Single Hidden Layer Feedforward Neural Network.

    PubMed

    Le, Trong-Ngoc; Bao, Pham The; Huynh, Hieu Trung

    2016-01-01

    Objective. Our objective is to develop a computerized scheme for liver tumor segmentation in MR images. Materials and Methods. Our proposed scheme consists of four main stages. Firstly, the region of interest (ROI) image which contains the liver tumor region in the T1-weighted MR image series was extracted by using seed points. The noise in this ROI image was reduced and the boundaries were enhanced. A 3D fast marching algorithm was applied to generate the initial labeled regions which are considered as teacher regions. A single hidden layer feedforward neural network (SLFN), which was trained by a noniterative algorithm, was employed to classify the unlabeled voxels. Finally, the postprocessing stage was applied to extract and refine the liver tumor boundaries. The liver tumors determined by our scheme were compared with those manually traced by a radiologist, used as the "ground truth." Results. The study was evaluated on two datasets of 25 tumors from 16 patients. The proposed scheme obtained the mean volumetric overlap error of 27.43% and the mean percentage volume error of 15.73%. The mean of the average surface distance, the root mean square surface distance, and the maximal surface distance were 0.58 mm, 1.20 mm, and 6.29 mm, respectively.

  19. Liver Tumor Segmentation from MR Images Using 3D Fast Marching Algorithm and Single Hidden Layer Feedforward Neural Network

    PubMed Central

    2016-01-01

    Objective. Our objective is to develop a computerized scheme for liver tumor segmentation in MR images. Materials and Methods. Our proposed scheme consists of four main stages. Firstly, the region of interest (ROI) image which contains the liver tumor region in the T1-weighted MR image series was extracted by using seed points. The noise in this ROI image was reduced and the boundaries were enhanced. A 3D fast marching algorithm was applied to generate the initial labeled regions which are considered as teacher regions. A single hidden layer feedforward neural network (SLFN), which was trained by a noniterative algorithm, was employed to classify the unlabeled voxels. Finally, the postprocessing stage was applied to extract and refine the liver tumor boundaries. The liver tumors determined by our scheme were compared with those manually traced by a radiologist, used as the “ground truth.” Results. The study was evaluated on two datasets of 25 tumors from 16 patients. The proposed scheme obtained the mean volumetric overlap error of 27.43% and the mean percentage volume error of 15.73%. The mean of the average surface distance, the root mean square surface distance, and the maximal surface distance were 0.58 mm, 1.20 mm, and 6.29 mm, respectively. PMID:27597960

  20. Automatic segmentation of solitary pulmonary nodules based on local intensity structure analysis and 3D neighborhood features in 3D chest CT images

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Kitasaka, Takayuki; Honma, Hirotoshi; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi; Mori, Kensaku

    2012-03-01

    This paper presents a solitary pulmonary nodule (SPN) segmentation method based on local intensity structure analysis and neighborhood feature analysis in chest CT images. Automated segmentation of SPNs is desirable for a chest computer-aided detection/diagnosis (CAS) system since a SPN may indicate early stage of lung cancer. Due to the similar intensities of SPNs and other chest structures such as blood vessels, many false positives (FPs) are generated by nodule detection methods. To reduce such FPs, we introduce two features that analyze the relation between each segmented nodule candidate and it neighborhood region. The proposed method utilizes a blob-like structure enhancement (BSE) filter based on Hessian analysis to augment the blob-like structures as initial nodule candidates. Then a fine segmentation is performed to segment much more accurate region of each nodule candidate. FP reduction is mainly addressed by investigating two neighborhood features based on volume ratio and eigenvector of Hessian that are calculates from the neighborhood region of each nodule candidate. We evaluated the proposed method by using 40 chest CT images, include 20 standard-dose CT images that we randomly chosen from a local database and 20 low-dose CT images that were randomly chosen from a public database: LIDC. The experimental results revealed that the average TP rate of proposed method was 93.6% with 12.3 FPs/case.

  1. Optic disc boundary segmentation from diffeomorphic demons registration of monocular fundus image sequences versus 3D visualization of stereo fundus image pairs for automated early stage glaucoma assessment

    NASA Astrophysics Data System (ADS)

    Gatti, Vijay; Hill, Jason; Mitra, Sunanda; Nutter, Brian

    2014-03-01

    Despite the current availability in resource-rich regions of advanced technologies in scanning and 3-D imaging in current ophthalmology practice, world-wide screening tests for early detection and progression of glaucoma still consist of a variety of simple tools, including fundus image-based parameters such as CDR (cup to disc diameter ratio) and CAR (cup to disc area ratio), especially in resource -poor regions. Reliable automated computation of the relevant parameters from fundus image sequences requires robust non-rigid registration and segmentation techniques. Recent research work demonstrated that proper non-rigid registration of multi-view monocular fundus image sequences could result in acceptable segmentation of cup boundaries for automated computation of CAR and CDR. This research work introduces a composite diffeomorphic demons registration algorithm for segmentation of cup boundaries from a sequence of monocular images and compares the resulting CAR and CDR values with those computed manually by experts and from 3-D visualization of stereo pairs. Our preliminary results show that the automated computation of CDR and CAR from composite diffeomorphic segmentation of monocular image sequences yield values comparable with those from the other two techniques and thus may provide global healthcare with a cost-effective yet accurate tool for management of glaucoma in its early stage.

  2. WE-EF-210-08: BEST IN PHYSICS (IMAGING): 3D Prostate Segmentation in Ultrasound Images Using Patch-Based Anatomical Feature

    SciTech Connect

    Yang, X; Rossi, P; Jani, A; Ogunleye, T; Curran, W; Liu, T

    2015-06-15

    Purpose: Transrectal ultrasound (TRUS) is the standard imaging modality for the image-guided prostate-cancer interventions (e.g., biopsy and brachytherapy) due to its versatility and real-time capability. Accurate segmentation of the prostate plays a key role in biopsy needle placement, treatment planning, and motion monitoring. As ultrasound images have a relatively low signal-to-noise ratio (SNR), automatic segmentation of the prostate is difficult. However, manual segmentation during biopsy or radiation therapy can be time consuming. We are developing an automated method to address this technical challenge. Methods: The proposed segmentation method consists of two major stages: the training stage and the segmentation stage. During the training stage, patch-based anatomical features are extracted from the registered training images with patient-specific information, because these training images have been mapped to the new patient’ images, and the more informative anatomical features are selected to train the kernel support vector machine (KSVM). During the segmentation stage, the selected anatomical features are extracted from newly acquired image as the input of the well-trained KSVM and the output of this trained KSVM is the segmented prostate of this patient. Results: This segmentation technique was validated with a clinical study of 10 patients. The accuracy of our approach was assessed using the manual segmentation. The mean volume Dice Overlap Coefficient was 89.7±2.3%, and the average surface distance was 1.52 ± 0.57 mm between our and manual segmentation, which indicate that the automatic segmentation method works well and could be used for 3D ultrasound-guided prostate intervention. Conclusion: We have developed a new prostate segmentation approach based on the optimal feature learning framework, demonstrated its clinical feasibility, and validated its accuracy with manual segmentation (gold standard). This segmentation technique could be a useful

  3. Segmentation of densely populated cell nuclei from confocal image stacks using 3D non-parametric shape priors.

    PubMed

    Ong, Lee-Ling S; Wang, Mengmeng; Dauwels, Justin; Asada, H Harry

    2014-01-01

    An approach to jointly estimate 3D shapes and poses of stained nuclei from confocal microscopy images, using statistical prior information, is presented. Extracting nuclei boundaries from our experimental images of cell migration is challenging due to clustered nuclei and variations in their shapes. This issue is formulated as a maximum a posteriori estimation problem. By incorporating statistical prior models of 3D nuclei shapes into level set functions, the active contour evolutions applied on the images is constrained. A 3D alignment algorithm is developed to build the training databases and to match contours obtained from the images to them. To address the issue of aligning the model over multiple clustered nuclei, a watershed-like technique is used to detect and separate clustered regions prior to active contour evolution. Our method is tested on confocal images of endothelial cells in microfluidic devices, compared with existing approaches.

  4. ACM-based automatic liver segmentation from 3-D CT images by combining multiple atlases and improved mean-shift techniques.

    PubMed

    Ji, Hongwei; He, Jiangping; Yang, Xin; Deklerck, Rudi; Cornelis, Jan

    2013-05-01

    In this paper, we present an autocontext model(ACM)-based automatic liver segmentation algorithm, which combines ACM, multiatlases, and mean-shift techniques to segment liver from 3-D CT images. Our algorithm is a learning-based method and can be divided into two stages. At the first stage, i.e., the training stage, ACM is performed to learn a sequence of classifiers in each atlas space (based on each atlas and other aligned atlases). With the use of multiple atlases, multiple sequences of ACM-based classifiers are obtained. At the second stage, i.e., the segmentation stage, the test image will be segmented in each atlas space by applying each sequence of ACM-based classifiers. The final segmentation result will be obtained by fusing segmentation results from all atlas spaces via a multiclassifier fusion technique. Specially, in order to speed up segmentation, given a test image, we first use an improved mean-shift algorithm to perform over-segmentation and then implement the region-based image labeling instead of the original inefficient pixel-based image labeling. The proposed method is evaluated on the datasets of MICCAI 2007 liver segmentation challenge. The experimental results show that the average volume overlap error and the average surface distance achieved by our method are 8.3% and 1.5 m, respectively, which are comparable to the results reported in the existing state-of-the-art work on liver segmentation.

  5. Computer-aided diagnosis: a 3D segmentation method for lung nodules in CT images by use of a spiral-scanning technique

    NASA Astrophysics Data System (ADS)

    Wang, Jiahui; Engelmann, Roger; Li, Qiang

    2008-03-01

    Lung nodule segmentation in computed tomography (CT) plays an important role in computer-aided detection, diagnosis, and quantification systems for lung cancer. In this study, we developed a simple but accurate nodule segmentation method in three-dimensional (3D) CT. First, a volume of interest (VOI) was determined at the location of a nodule. We then transformed the VOI into a two-dimensional (2D) image by use of a "spiral-scanning" technique, in which a radial line originating from the center of the VOI spirally scanned the VOI. The voxels scanned by the radial line were arranged sequentially to form a transformed 2D image. Because the surface of a nodule in 3D image became a curve in the transformed 2D image, the spiral-scanning technique considerably simplified our segmentation method and enabled us to obtain accurate segmentation results. We employed a dynamic programming technique to delineate the "optimal" outline of a nodule in the 2D image, which was transformed back into the 3D image space to provide the interior of the nodule. The proposed segmentation method was trained on the first and was tested on the second Lung Image Database Consortium (LIDC) datasets. An overlap between nodule regions provided by computer and by the radiologists was employed as a performance metric. The experimental results on the LIDC database demonstrated that our segmentation method provided relatively robust and accurate segmentation results with mean overlap values of 66% and 64% for the nodules in the first and second LIDC datasets, respectively, and would be useful for the quantification, detection, and diagnosis of lung cancer.

  6. Computer-aided classification of liver tumors in 3D ultrasound images with combined deformable model segmentation and support vector machine

    NASA Astrophysics Data System (ADS)

    Lee, Myungeun; Kim, Jong Hyo; Park, Moon Ho; Kim, Ye-Hoon; Seong, Yeong Kyeong; Cho, Baek Hwan; Woo, Kyoung-Gu

    2014-03-01

    In this study, we propose a computer-aided classification scheme of liver tumor in 3D ultrasound by using a combination of deformable model segmentation and support vector machine. For segmentation of tumors in 3D ultrasound images, a novel segmentation model was used which combined edge, region, and contour smoothness energies. Then four features were extracted from the segmented tumor including tumor edge, roundness, contrast, and internal texture. We used a support vector machine for the classification of features. The performance of the developed method was evaluated with a dataset of 79 cases including 20 cysts, 20 hemangiomas, and 39 hepatocellular carcinomas, as determined by the radiologist's visual scoring. Evaluation of the results showed that our proposed method produced tumor boundaries that were equal to or better than acceptable in 89.8% of cases, and achieved 93.7% accuracy in classification of cyst and hemangioma.

  7. 3D multi-object segmentation of cardiac MSCT imaging by using a multi-agent approach.

    PubMed

    Fleureau, Julien; Garreau, Mireille; Boulmier, Dominique; Hernández, Alfredo

    2007-01-01

    We propose a new technique for general purpose, semi-interactive and multi-object segmentation in N-dimensional images, applied to the extraction of cardiac structures in MultiSlice Computed Tomography (MSCT) imaging. The proposed approach makes use of a multi-agent scheme combined with a supervised classification methodology allowing the introduction of a priori information and presenting fast computing times. The multi-agent system is organised around a communicating agent which manages a population of situated agents which segment the image through cooperative and competitive interactions. The proposed technique has been tested on several patient data sets. Some typical results are finally presented and discussed.

  8. 3D Multi-Object Segmentation of Cardiac MSCT Imaging by using a Multi-Agent Approach

    PubMed Central

    Fleureau, Julien; Garreau, Mireille; Boulmier, Dominique; Hernandez, Alfredo

    2007-01-01

    We propose a new technique for general purpose, semi-interactive and multi-object segmentation in N-dimensional images, applied to the extraction of cardiac structures in MultiSlice Computed Tomography (MSCT) imaging. The proposed approach makes use of a multi-agent scheme combined with a supervised classification methodology allowing the introduction of a priori information and presenting fast computing times. The multi-agent system is organised around a communicating agent which manages a population of situated agents which segment the image through cooperative and competitive interactions. The proposed technique has been tested on several patient data sets. Some typical results are finally presented and discussed. PMID:18003382

  9. Metallic Material Image Segmentation by using 3D Grain Structure Consistency and Intra/Inter-Grain Model Information

    DTIC Science & Technology

    2015-01-05

    Cao, Q. Li, Q. Mao, and S. Wang. Cracktree: Automatic crack detection from pavement images . Pattern Recognition Letters, 33:227–238, 2012. 17 Personnel...Y. Cao, Q. Li, Q. Mao, S. Wang. CrackTree: Automatic Crack Detection from Pavement Images , Pattern Recognition Letters, 33(3):227-238, 2012 20 34. F...Superalloy Image Segmentation, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 17-24, Colorado Springs, CO, 2011 Dissertations: Four

  10. Rigid model-based 3D segmentation of the bones of joints in MR and CT images for motion analysis.

    PubMed

    Liu, Jiamin; Udupa, Jayaram K; Saha, Punam K; Odhner, Dewey; Hirsch, Bruce E; Siegler, Sorin; Simon, Scott; Winkelstein, Beth A

    2008-08-01

    There are several medical application areas that require the segmentation and separation of the component bones of joints in a sequence of images of the joint acquired under various loading conditions, our own target area being joint motion analysis. This is a challenging problem due to the proximity of bones at the joint, partial volume effects, and other imaging modality-specific factors that confound boundary contrast. In this article, a two-step model-based segmentation strategy is proposed that utilizes the unique context of the current application wherein the shape of each individual bone is preserved in all scans of a particular joint while the spatial arrangement of the bones alters significantly among bones and scans. In the first step, a rigid deterministic model of the bone is generated from a segmentation of the bone in the image corresponding to one position of the joint by using the live wire method. Subsequently, in other images of the same joint, this model is used to search for the same bone by minimizing an energy function that utilizes both boundary- and region-based information. An evaluation of the method by utilizing a total of 60 data sets on MR and CT images of the ankle complex and cervical spine indicates that the segmentations agree very closely with the live wire segmentations, yielding true positive and false positive volume fractions in the range 89%-97% and 0.2%-0.7%. The method requires 1-2 minutes of operator time and 6-7 min of computer time per data set, which makes it significantly more efficient than live wire-the method currently available for the task that can be used routinely.

  11. A Marked Poisson Process Driven Latent Shape Model for 3D Segmentation of Reflectance Confocal Microscopy Image Stacks of Human Skin.

    PubMed

    Ghanta, Sindhu; Jordan, Michael I; Kose, Kivanc; Brooks, Dana H; Rajadhyaksha, Milind; Dy, Jennifer G

    2016-10-05

    Segmenting objects of interest from 3D datasets is a common problem encountered in biological data. Small field of view and intrinsic biological variability combined with optically subtle changes of intensity, resolution and low contrast in images make the task of segmentation difficult, especially for microscopy of unstained living or freshly excised thick tissues. Incorporating shape information in addition to the appearance of the object of interest can often help improve segmentation performance. However, shapes of objects in tissue can be highly variable and design of a flexible shape model that encompasses these variations is challenging. To address such complex segmentation problems, we propose a unified probabilistic framework that can incorporate the uncertainty associated with complex shapes, variable appearance and unknown locations. The driving application which inspired the development of this framework is a biologically important segmentation problem: the task of automatically detecting and segmenting the dermal-epidermal junction (DEJ) in 3D reflectance confocal microscopy (RCM) images of human skin. RCM imaging allows noninvasive observation of cellular, nuclear and morphological detail. The DEJ is an important morphological feature as it is where disorder, disease and cancer usually start. Detecting the DEJ is challenging because it is a 2D surface in a 3D volume which has strong but highly variable number of irregularly spaced and variably shaped "peaks and valleys". In addition, RCM imaging resolution, contrast and intensity vary with depth. Thus a prior model needs to incorporate the intrinsic structure while allowing variability in essentially all its parameters. We propose a model which can incorporate objects of interest with complex shapes and variable appearance in an unsupervised setting by utilizing domain knowledge to build appropriate priors of the model. Our novel strategy to model this structure combines a spatial Poisson process with

  12. A Marked Poisson Process Driven Latent Shape Model for 3D Segmentation of Reflectance Confocal Microscopy Image Stacks of Human Skin.

    PubMed

    Ghanta, Sindhu; Jordan, Michael I; Kose, Kivanc; Brooks, Dana H; Rajadhyaksha, Milind; Dy, Jennifer G

    2017-01-01

    Segmenting objects of interest from 3D data sets is a common problem encountered in biological data. Small field of view and intrinsic biological variability combined with optically subtle changes of intensity, resolution, and low contrast in images make the task of segmentation difficult, especially for microscopy of unstained living or freshly excised thick tissues. Incorporating shape information in addition to the appearance of the object of interest can often help improve segmentation performance. However, the shapes of objects in tissue can be highly variable and design of a flexible shape model that encompasses these variations is challenging. To address such complex segmentation problems, we propose a unified probabilistic framework that can incorporate the uncertainty associated with complex shapes, variable appearance, and unknown locations. The driving application that inspired the development of this framework is a biologically important segmentation problem: the task of automatically detecting and segmenting the dermal-epidermal junction (DEJ) in 3D reflectance confocal microscopy (RCM) images of human skin. RCM imaging allows noninvasive observation of cellular, nuclear, and morphological detail. The DEJ is an important morphological feature as it is where disorder, disease, and cancer usually start. Detecting the DEJ is challenging, because it is a 2D surface in a 3D volume which has strong but highly variable number of irregularly spaced and variably shaped "peaks and valleys." In addition, RCM imaging resolution, contrast, and intensity vary with depth. Thus, a prior model needs to incorporate the intrinsic structure while allowing variability in essentially all its parameters. We propose a model which can incorporate objects of interest with complex shapes and variable appearance in an unsupervised setting by utilizing domain knowledge to build appropriate priors of the model. Our novel strategy to model this structure combines a spatial Poisson

  13. Fully Automatic Localization and Segmentation of 3D Vertebral Bodies from CT/MR Images via a Learning-Based Method.

    PubMed

    Chu, Chengwen; Belavý, Daniel L; Armbrecht, Gabriele; Bansmann, Martin; Felsenberg, Dieter; Zheng, Guoyan

    2015-01-01

    In this paper, we address the problems of fully automatic localization and segmentation of 3D vertebral bodies from CT/MR images. We propose a learning-based, unified random forest regression and classification framework to tackle these two problems. More specifically, in the first stage, the localization of 3D vertebral bodies is solved with random forest regression where we aggregate the votes from a set of randomly sampled image patches to get a probability map of the center of a target vertebral body in a given image. The resultant probability map is then further regularized by Hidden Markov Model (HMM) to eliminate potential ambiguity caused by the neighboring vertebral bodies. The output from the first stage allows us to define a region of interest (ROI) for the segmentation step, where we use random forest classification to estimate the likelihood of a voxel in the ROI being foreground or background. The estimated likelihood is combined with the prior probability, which is learned from a set of training data, to get the posterior probability of the voxel. The segmentation of the target vertebral body is then done by a binary thresholding of the estimated probability. We evaluated the present approach on two openly available datasets: 1) 3D T2-weighted spine MR images from 23 patients and 2) 3D spine CT images from 10 patients. Taking manual segmentation as the ground truth (each MR image contains at least 7 vertebral bodies from T11 to L5 and each CT image contains 5 vertebral bodies from L1 to L5), we evaluated the present approach with leave-one-out experiments. Specifically, for the T2-weighted MR images, we achieved for localization a mean error of 1.6 mm, and for segmentation a mean Dice metric of 88.7% and a mean surface distance of 1.5 mm, respectively. For the CT images we achieved for localization a mean error of 1.9 mm, and for segmentation a mean Dice metric of 91.0% and a mean surface distance of 0.9 mm, respectively.

  14. Fully Automatic Localization and Segmentation of 3D Vertebral Bodies from CT/MR Images via a Learning-Based Method

    PubMed Central

    Chu, Chengwen; Belavý, Daniel L.; Armbrecht, Gabriele; Bansmann, Martin; Felsenberg, Dieter; Zheng, Guoyan

    2015-01-01

    In this paper, we address the problems of fully automatic localization and segmentation of 3D vertebral bodies from CT/MR images. We propose a learning-based, unified random forest regression and classification framework to tackle these two problems. More specifically, in the first stage, the localization of 3D vertebral bodies is solved with random forest regression where we aggregate the votes from a set of randomly sampled image patches to get a probability map of the center of a target vertebral body in a given image. The resultant probability map is then further regularized by Hidden Markov Model (HMM) to eliminate potential ambiguity caused by the neighboring vertebral bodies. The output from the first stage allows us to define a region of interest (ROI) for the segmentation step, where we use random forest classification to estimate the likelihood of a voxel in the ROI being foreground or background. The estimated likelihood is combined with the prior probability, which is learned from a set of training data, to get the posterior probability of the voxel. The segmentation of the target vertebral body is then done by a binary thresholding of the estimated probability. We evaluated the present approach on two openly available datasets: 1) 3D T2-weighted spine MR images from 23 patients and 2) 3D spine CT images from 10 patients. Taking manual segmentation as the ground truth (each MR image contains at least 7 vertebral bodies from T11 to L5 and each CT image contains 5 vertebral bodies from L1 to L5), we evaluated the present approach with leave-one-out experiments. Specifically, for the T2-weighted MR images, we achieved for localization a mean error of 1.6 mm, and for segmentation a mean Dice metric of 88.7% and a mean surface distance of 1.5 mm, respectively. For the CT images we achieved for localization a mean error of 1.9 mm, and for segmentation a mean Dice metric of 91.0% and a mean surface distance of 0.9 mm, respectively. PMID:26599505

  15. A novel 3D graph cut based co-segmentation of lung tumor on PET-CT images with Gaussian mixture models

    NASA Astrophysics Data System (ADS)

    Yu, Kai; Chen, Xinjian; Shi, Fei; Zhu, Weifang; Zhang, Bin; Xiang, Dehui

    2016-03-01

    Positron Emission Tomography (PET) and Computed Tomography (CT) have been widely used in clinical practice for radiation therapy. Most existing methods only used one image modality, either PET or CT, which suffers from the low spatial resolution in PET or low contrast in CT. In this paper, a novel 3D graph cut method is proposed, which integrated Gaussian Mixture Models (GMMs) into the graph cut method. We also employed the random walk method as an initialization step to provide object seeds for the improvement of the graph cut based segmentation on PET and CT images. The constructed graph consists of two sub-graphs and a special link between the sub-graphs which penalize the difference segmentation between the two modalities. Finally, the segmentation problem is solved by the max-flow/min-cut method. The proposed method was tested on 20 patients' PET-CT images, and the experimental results demonstrated the accuracy and efficiency of the proposed algorithm.

  16. Segmentation of 3D objects using live wire

    NASA Astrophysics Data System (ADS)

    Falcao, Alexandre X.; Udupa, Jayaram K.

    1997-04-01

    We have been developing user-steered image segmentation methods for situations which require considerable user assistance in object definition. In such situations, our segmentation methods aim (1) to provide effective control to the user on the segmentation process while it is being executed and (2) to minimize the total user's time required in the process. In the past, we have presented two paradigms, referred to as live wire and live lane, for segmenting 3D/4D object boundaries in a slice-by-slice fashion. In this paper, we introduce a 3D extension of the live wire approach which can further reduce the time spent by the user in the segmentation process. In 2D live wire, given a slice, for two specified points (pixel vertices) on the boundary of the object, the best boundary segment (as a set of oriented pixel edges) is the minimum-cost path between the two points. This segment is found via dynamic programming in real time as the user anchors the first point and moves the cursor to indicate the second point. A complete 2D boundary in this slice is identified as a set of consecutive boundary segments forming a 'closed,' 'connected,' 'oriented' contour. The strategy of the 3D extension is that, first, users specify contours via live- wiring on a few orthogonal slices. If these slices are selected strategically, then we have a sufficient number of points on the 3D boundary of the object to do live-wiring automatically on all axial slices of the 3D scene. Based on several validation studies involving segmentation of the bones of the foot in MR images, we found that the 3D extension of live wire is statistically significantly (p less than 0.0001) more repeatable and 2 - 6 times faster (p less than 0.01) than the 2D live wire method and 3 - 15 times faster than manual tracing.

  17. Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information.

    PubMed

    Klein, Stefan; van der Heide, Uulke A; Lips, Irene M; van Vulpen, Marco; Staring, Marius; Pluim, Josien P W

    2008-04-01

    An automatic method for delineating the prostate (including the seminal vesicles) in three-dimensional magnetic resonance scans is presented. The method is based on nonrigid registration of a set of prelabeled atlas images. Each atlas image is nonrigidly registered with the target patient image. Subsequently, the deformed atlas label images are fused to yield a single segmentation of the patient image. The proposed method is evaluated on 50 clinical scans, which were manually segmented by three experts. The Dice similarity coefficient (DSC) is used to quantify the overlap between the automatic and manual segmentations. We investigate the impact of several factors on the performance of the segmentation method. For the registration, two similarity measures are compared: Mutual information and a localized version of mutual information. The latter turns out to be superior (median DeltaDSC approximately equal 0.02, p < 0.01 with a paired two-sided Wilcoxon test) and comes at no added computational cost, thanks to the use of a novel stochastic optimization scheme. For the atlas fusion step we consider a majority voting rule and the "simultaneous truth and performance level estimation" algorithm, both with and without a preceding atlas selection stage. The differences between the various fusion methods appear to be small and mostly not statistically significant (p > 0.05). To assess the influence of the atlas composition, two atlas sets are compared. The first set consists of 38 scans of healthy volunteers. The second set is constructed by a leave-one-out approach using the 50 clinical scans that are used for evaluation. The second atlas set gives substantially better performance (DeltaDSC=0.04, p < 0.01), stressing the importance of a careful atlas definition. With the best settings, a median DSC of around 0.85 is achieved, which is close to the median interobserver DSC of 0.87. The segmentation quality is especially good at the prostate-rectum interface, where the

  18. Comparative evaluation of a novel 3D segmentation algorithm on in-treatment radiotherapy cone beam CT images

    NASA Astrophysics Data System (ADS)

    Price, Gareth; Moore, Chris

    2007-03-01

    Image segmentation and delineation is at the heart of modern radiotherapy, where the aim is to deliver as high a radiation dose as possible to a cancerous target whilst sparing the surrounding healthy tissues. This, of course, requires that a radiation oncologist dictates both where the tumour and any nearby critical organs are located. As well as in treatment planning, delineation is of vital importance in image guided radiotherapy (IGRT): organ motion studies demand that features across image databases are accurately segmented, whilst if on-line adaptive IGRT is to become a reality, speedy and correct target identification is a necessity. Recently, much work has been put into the development of automatic and semi-automatic segmentation tools, often using prior knowledge to constrain some grey level, or derivative thereof, interrogation algorithm. It is hoped that such techniques can be applied to organ at risk and tumour segmentation in radiotherapy. In this work, however, we make the assumption that grey levels do not necessarily determine a tumour's extent, especially in CT where the attenuation coefficient can often vary little between cancerous and normal tissue. In this context we present an algorithm that generates a discontinuity free delineation surface driven by user placed, evidence based support points. In regions of sparse user supplied information, prior knowledge, in the form of a statistical shape model, provides guidance. A small case study is used to illustrate the method. Multiple observers (between 3 and 7) used both the presented tool and a commercial manual contouring package to delineate the bladder on a serially imaged (10 cone beam CT volumes ) prostate patient. A previously presented shape analysis technique is used to quantitatively compare the observer variability.

  19. Protocol for volumetric segmentation of medial temporal structures using high-resolution 3-D magnetic resonance imaging.

    PubMed

    Bonilha, Leonardo; Kobayashi, Eliane; Cendes, Fernando; Min Li, Li

    2004-06-01

    Quantitative analysis of brain structures in normal subjects and in different neurological conditions can be carried out in vivo through magnetic resonance imaging (MRI) volumetric studies. The use of high-resolution MRI combined with image post-processing that allows simultaneous multiplanar view may facilitate volumetric segmentation of temporal lobe structures. We define a protocol for volumetric studies of medial temporal lobe structures using high-resolution MR images and we studied 30 healthy subjects (19 women; mean age, 33 years; age range, 21-55 years). Images underwent field non-homogeneity correction and linear stereotaxic transformation into a standard space. Structures of interest comprised temporopolar, entorhinal, perirhinal, parahippocampal cortices, hippocampus, and the amygdala. Segmentation was carried out with multiplanar assessment. There was no statistically significant left/right-sided asymmetry concerning any structure analyzed. Neither gender nor age influenced the volumes obtained. The coefficient of repeatability showed no significant difference of intra- and interobserver measurements. Imaging post-processing and simultaneous multiplanar view of high-resolution MRI facilitates volumetric assessment of the medial portion of the temporal lobe with strict adherence to anatomic landmarks. This protocol shows no significant inter- and intraobserver variations and thus is reliable for longitudinal studies.

  20. Inner and outer coronary vessel wall segmentation from CCTA using an active contour model with machine learning-based 3D voxel context-aware image force

    NASA Astrophysics Data System (ADS)

    Sivalingam, Udhayaraj; Wels, Michael; Rempfler, Markus; Grosskopf, Stefan; Suehling, Michael; Menze, Bjoern H.

    2016-03-01

    In this paper, we present a fully automated approach to coronary vessel segmentation, which involves calcification or soft plaque delineation in addition to accurate lumen delineation, from 3D Cardiac Computed Tomography Angiography data. Adequately virtualizing the coronary lumen plays a crucial role for simulating blood ow by means of fluid dynamics while additionally identifying the outer vessel wall in the case of arteriosclerosis is a prerequisite for further plaque compartment analysis. Our method is a hybrid approach complementing Active Contour Model-based segmentation with an external image force that relies on a Random Forest Regression model generated off-line. The regression model provides a strong estimate of the distance to the true vessel surface for every surface candidate point taking into account 3D wavelet-encoded contextual image features, which are aligned with the current surface hypothesis. The associated external image force is integrated in the objective function of the active contour model, such that the overall segmentation approach benefits from the advantages associated with snakes and from the ones associated with machine learning-based regression alike. This yields an integrated approach achieving competitive results on a publicly available benchmark data collection (Rotterdam segmentation challenge).

  1. Needle segmentation using 3D Hough transform in 3D TRUS guided prostate transperineal therapy

    SciTech Connect

    Qiu Wu; Yuchi Ming; Ding Mingyue; Tessier, David; Fenster, Aaron

    2013-04-15

    Purpose: Prostate adenocarcinoma is the most common noncutaneous malignancy in American men with over 200 000 new cases diagnosed each year. Prostate interventional therapy, such as cryotherapy and brachytherapy, is an effective treatment for prostate cancer. Its success relies on the correct needle implant position. This paper proposes a robust and efficient needle segmentation method, which acts as an aid to localize the needle in three-dimensional (3D) transrectal ultrasound (TRUS) guided prostate therapy. Methods: The procedure of locating the needle in a 3D TRUS image is a three-step process. First, the original 3D ultrasound image containing a needle is cropped; the cropped image is then converted to a binary format based on its histogram. Second, a 3D Hough transform based needle segmentation method is applied to the 3D binary image in order to locate the needle axis. The position of the needle endpoint is finally determined by an optimal threshold based analysis of the intensity probability distribution. The overall efficiency is improved through implementing a coarse-fine searching strategy. The proposed method was validated in tissue-mimicking agar phantoms, chicken breast phantoms, and 3D TRUS patient images from prostate brachytherapy and cryotherapy procedures by comparison to the manual segmentation. The robustness of the proposed approach was tested by means of varying parameters such as needle insertion angle, needle insertion length, binarization threshold level, and cropping size. Results: The validation results indicate that the proposed Hough transform based method is accurate and robust, with an achieved endpoint localization accuracy of 0.5 mm for agar phantom images, 0.7 mm for chicken breast phantom images, and 1 mm for in vivo patient cryotherapy and brachytherapy images. The mean execution time of needle segmentation algorithm was 2 s for a 3D TRUS image with size of 264 Multiplication-Sign 376 Multiplication-Sign 630 voxels. Conclusions

  2. Chest wall segmentation in automated 3D breast ultrasound scans.

    PubMed

    Tan, Tao; Platel, Bram; Mann, Ritse M; Huisman, Henkjan; Karssemeijer, Nico

    2013-12-01

    In this paper, we present an automatic method to segment the chest wall in automated 3D breast ultrasound images. Determining the location of the chest wall in automated 3D breast ultrasound images is necessary in computer-aided detection systems to remove automatically detected cancer candidates beyond the chest wall and it can be of great help for inter- and intra-modal image registration. We show that the visible part of the chest wall in an automated 3D breast ultrasound image can be accurately modeled by a cylinder. We fit the surface of our cylinder model to a set of automatically detected rib-surface points. The detection of the rib-surface points is done by a classifier using features representing local image intensity patterns and presence of rib shadows. Due to attenuation of the ultrasound signal, a clear shadow is visible behind the ribs. Evaluation of our segmentation method is done by computing the distance of manually annotated rib points to the surface of the automatically detected chest wall. We examined the performance on images obtained with the two most common 3D breast ultrasound devices in the market. In a dataset of 142 images, the average mean distance of the annotated points to the segmented chest wall was 5.59 ± 3.08 mm.

  3. An accurate multimodal 3-D vessel segmentation method based on brightness variations on OCT layers and curvelet domain fundus image analysis.

    PubMed

    Kafieh, Raheleh; Rabbani, Hossein; Hajizadeh, Fedra; Ommani, Mohammadreza

    2013-10-01

    This paper proposes a multimodal approach for vessel segmentation of macular optical coherence tomography (OCT) slices along with the fundus image. The method is comprised of two separate stages; the first step is 2-D segmentation of blood vessels in curvelet domain, enhanced by taking advantage of vessel information in crossing OCT slices (named feedback procedure), and improved by suppressing the false positives around the optic nerve head. The proposed method for vessel localization of OCT slices is also enhanced utilizing the fact that retinal nerve fiber layer becomes thicker in the presence of the blood vessels. The second stage of this method is axial localization of the vessels in OCT slices and 3-D reconstruction of the blood vessels. Twenty-four macular spectral 3-D OCT scans of 16 normal subjects were acquired using a Heidelberg HRA OCT scanner. Each dataset consisted of a scanning laser ophthalmoscopy (SLO) image and limited number of OCT scans with size of 496 × 512 (namely, for a data with 19 selected OCT slices, the whole data size was 496 × 512 × 19). The method is developed with least complicated algorithms and the results show considerable improvement in accuracy of vessel segmentation over similar methods to produce a local accuracy of 0.9632 in area of SLO, covered with OCT slices, and the overall accuracy of 0.9467 in the whole SLO image. The results are also demonstrative of a direct relation between the overall accuracy and percentage of SLO coverage by OCT slices.

  4. Automating measurement of subtle changes in articular cartilage from MRI of the knee by combining 3D image registration and segmentation

    NASA Astrophysics Data System (ADS)

    Lynch, John A.; Zaim, Souhil; Zhao, Jenny; Peterfy, Charles G.; Genant, Harry K.

    2001-07-01

    In osteoarthritis, articular cartilage loses integrity and becomes thinned. This usually occurs at sites which bear weight during normal use. Measurement of such loss from MRI scans, requires precise and reproducible techniques, which can overcome the difficulties of patient repositioning within the scanner. In this study, we combine a previously described technique for segmentation of cartilage from MRI of the knee, with a technique for 3D image registration that matches localized regions of interest at followup and baseline. Two patients, who had recently undergone meniscal surgery, and developed lesions during the 12 month followup period were examined. Image registration matched regions of interest (ROI) between baseline and followup, and changes within the cartilage lesions were estimate to be about a 16% reduction in cartilage volume within each ROI. This was more than 5 times the reproducibility of the measurement, but only represented a change of between 1 and 2% in total femoral cartilage volume. Changes in total cartilage volume may be insensitive for quantifying changes in cartilage morphology. A combined used of automated image segmentation, with 3D image registration could be a useful tool for the precise and sensitive measurement of localized changes in cartilage from MRI of the knee.

  5. Automatic Segmentation of the Eye in 3D Magnetic Resonance Imaging: A Novel Statistical Shape Model for Treatment Planning of Retinoblastoma

    SciTech Connect

    Ciller, Carlos; De Zanet, Sandro I.; Rüegsegger, Michael B.; Pica, Alessia; Sznitman, Raphael; Thiran, Jean-Philippe; Maeder, Philippe; Munier, Francis L.; Kowal, Jens H.; and others

    2015-07-15

    Purpose: Proper delineation of ocular anatomy in 3-dimensional (3D) imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic resonance imaging (MRI) is presently used in clinical practice for diagnosis confirmation and treatment planning for treatment of retinoblastoma in infants, where it serves as a source of information, complementary to the fundus or ultrasonographic imaging. Here we present a framework to fully automatically segment the eye anatomy for MRI based on 3D active shape models (ASM), and we validate the results and present a proof of concept to automatically segment pathological eyes. Methods and Materials: Manual and automatic segmentation were performed in 24 images of healthy children's eyes (3.29 ± 2.15 years of age). Imaging was performed using a 3-T MRI scanner. The ASM consists of the lens, the vitreous humor, the sclera, and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens, and the optic nerve, and then aligning the model and fitting it to the patient. We validated our segmentation method by using a leave-one-out cross-validation. The segmentation results were evaluated by measuring the overlap, using the Dice similarity coefficient (DSC) and the mean distance error. Results: We obtained a DSC of 94.90 ± 2.12% for the sclera and the cornea, 94.72 ± 1.89% for the vitreous humor, and 85.16 ± 4.91% for the lens. The mean distance error was 0.26 ± 0.09 mm. The entire process took 14 seconds on average per eye. Conclusion: We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor, and the lens, using MRI. We additionally present a proof of concept for fully automatically segmenting eye pathology. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor.

  6. Autofocus for 3D imaging

    NASA Astrophysics Data System (ADS)

    Lee-Elkin, Forest

    2008-04-01

    Three dimensional (3D) autofocus remains a significant challenge for the development of practical 3D multipass radar imaging. The current 2D radar autofocus methods are not readily extendable across sensor passes. We propose a general framework that allows a class of data adaptive solutions for 3D auto-focus across passes with minimal constraints on the scene contents. The key enabling assumption is that portions of the scene are sparse in elevation which reduces the number of free variables and results in a system that is simultaneously solved for scatterer heights and autofocus parameters. The proposed method extends 2-pass interferometric synthetic aperture radar (IFSAR) methods to an arbitrary number of passes allowing the consideration of scattering from multiple height locations. A specific case from the proposed autofocus framework is solved and demonstrates autofocus and coherent multipass 3D estimation across the 8 passes of the "Gotcha Volumetric SAR Data Set" X-Band radar data.

  7. 3D Backscatter Imaging System

    NASA Technical Reports Server (NTRS)

    Turner, D. Clark (Inventor); Whitaker, Ross (Inventor)

    2016-01-01

    Systems and methods for imaging an object using backscattered radiation are described. The imaging system comprises both a radiation source for irradiating an object that is rotationally movable about the object, and a detector for detecting backscattered radiation from the object that can be disposed on substantially the same side of the object as the source and which can be rotationally movable about the object. The detector can be separated into multiple detector segments with each segment having a single line of sight projection through the object and so detects radiation along that line of sight. Thus, each detector segment can isolate the desired component of the backscattered radiation. By moving independently of each other about the object, the source and detector can collect multiple images of the object at different angles of rotation and generate a three dimensional reconstruction of the object. Other embodiments are described.

  8. Midbrain segmentation in transcranial 3D ultrasound for Parkinson diagnosis.

    PubMed

    Ahmadi, Seyed-Ahmad; Baust, Maximilian; Karamalis, Athanasios; Plate, Annika; Boetzel, Kai; Klein, Tassilo; Navab, Nassir

    2011-01-01

    Ultrasound examination of the human brain through the temporal bone window, also called transcranial ultrasound (TC-US), is a completely non-invasive and cost-efficient technique, which has established itself for differential diagnosis of Parkinson's Disease (PD) in the past decade. The method requires spatial analysis of ultrasound hyperechogenicities produced by pathological changes within the Substantia Nigra (SN), which belongs to the basal ganglia within the midbrain. Related work on computer aided PD diagnosis shows the urgent need for an accurate and robust segmentation of the midbrain from 3D TC-US, which is an extremely difficult task due to poor image quality of TC-US. In contrast to 2D segmentations within earlier approaches, we develop the first method for semi-automatic midbrain segmentation from 3D TC-US and demonstrate its potential benefit on a database of 11 diagnosed Parkinson patients and 11 healthy controls.

  9. Evaluation of multimodal segmentation based on 3D T1-, T2- and FLAIR-weighted images - the difficulty of choosing.

    PubMed

    Lindig, Tobias; Kotikalapudi, Raviteja; Schweikardt, Daniel; Martin, Pascal; Bender, Friedemann; Klose, Uwe; Ernemann, Ulrike; Focke, Niels K; Bender, Benjamin

    2017-02-07

    Voxel-based morphometry is still mainly based on T1-weighted MRI scans. Misclassification of vessels and dura mater as gray matter has been previously reported. Goal of the present work was to evaluate the effect of multimodal segmentation methods available in SPM12, and their influence on identification of age related atrophy and lesion detection in epilepsy patients. 3D T1-, T2- and FLAIR-images of 77 healthy adults (mean age 35.8 years, 19-66 years, 45 females), 7 patients with malformation of cortical development (MCD) (mean age 28.1 years,19-40 years, 3 females), and 5 patients with left hippocampal sclerosis (LHS) (mean age 49.0 years, 25-67 years, 3 females) from a 3T scanner were evaluated. Segmentation based on T1-only, T1+T2, T1+FLAIR, T2+FLAIR, and T1+T2+FLAIR were compared in the healthy subjects. Clinical VBM results based on the different segmentation approaches for MCD and for LHS were compared. T1-only segmentation overestimated total intracranial volume by about 80ml compared to the other segmentation methods. This was due to misclassification of dura mater and vessels as GM and CSF. Significant differences were found for several anatomical regions: the occipital lobe, the basal ganglia/thalamus, the pre- and postcentral gyrus, the cerebellum, and the brainstem. None of the segmentation methods yielded completely satisfying results for the basal ganglia/thalamus and the brainstem. The best correlation with age could be found for the multimodal T1+T2+FLAIR segmentation. Highest T-scores for identification of LHS were found for T1+T2 segmentation, while highest T-scores for MCD were dependent on lesion and anatomical location. Multimodal segmentation is superior to T1-only segmentation and reduces the misclassification of dura mater and vessels as GM and CSF. Depending on the anatomical region and the pathology of interest (atrophy, lesion detection, etc.), different combinations of T1, T2 and FLAIR yield optimal results.

  10. A fully automatic, threshold-based segmentation method for the estimation of the Metabolic Tumor Volume from PET images: validation on 3D printed anthropomorphic oncological lesions

    NASA Astrophysics Data System (ADS)

    Gallivanone, F.; Interlenghi, M.; Canervari, C.; Castiglioni, I.

    2016-01-01

    18F-Fluorodeoxyglucose (18F-FDG) Positron Emission Tomography (PET) is a standard functional diagnostic technique to in vivo image cancer. Different quantitative paramters can be extracted from PET images and used as in vivo cancer biomarkers. Between PET biomarkers Metabolic Tumor Volume (MTV) has gained an important role in particular considering the development of patient-personalized radiotherapy treatment for non-homogeneous dose delivery. Different imaging processing methods have been developed to define MTV. The different proposed PET segmentation strategies were validated in ideal condition (e.g. in spherical objects with uniform radioactivity concentration), while the majority of cancer lesions doesn't fulfill these requirements. In this context, this work has a twofold objective: 1) to implement and optimize a fully automatic, threshold-based segmentation method for the estimation of MTV, feasible in clinical practice 2) to develop a strategy to obtain anthropomorphic phantoms, including non-spherical and non-uniform objects, miming realistic oncological patient conditions. The developed PET segmentation algorithm combines an automatic threshold-based algorithm for the definition of MTV and a k-means clustering algorithm for the estimation of the background. The method is based on parameters always available in clinical studies and was calibrated using NEMA IQ Phantom. Validation of the method was performed both in ideal (e.g. in spherical objects with uniform radioactivity concentration) and non-ideal (e.g. in non-spherical objects with a non-uniform radioactivity concentration) conditions. The strategy to obtain a phantom with synthetic realistic lesions (e.g. with irregular shape and a non-homogeneous uptake) consisted into the combined use of standard anthropomorphic phantoms commercially and irregular molds generated using 3D printer technology and filled with a radioactive chromatic alginate. The proposed segmentation algorithm was feasible in a

  11. 3-D imaging of the CNS.

    PubMed

    Runge, V M; Gelblum, D Y; Wood, M L

    1990-01-01

    3-D gradient echo techniques, and in particular FLASH, represent a significant advance in MR imaging strategy allowing thin section, high resolution imaging through a large region of interest. Anatomical areas of application include the brain, spine, and extremities, although the majority of work to date has been performed in the brain. Superior T1 contrast and thus sensitivity to the presence of GdDTPA is achieved with 3-D FLASH when compared to 2-D spin echo technique. There is marked arterial and venous enhancement following Gd DTPA administration on 3-D FLASH, a less common finding with 2-D spin echo. Enhancement of the falx and tentorium is also more prominent. From a single data acquisition, requiring less than 11 min of scan time, high resolution reformatted sagittal, coronal, and axial images can obtained in addition to sections in any arbitrary plane. Tissue segmentation techniques can be applied and lesions displayed in three dimensions. These results may lead to the replacement of 2-D spin echo with 3-D FLASH for high resolution T1-weighted MR imaging of the CNS, particularly in the study of mass lesions and structural anomalies. The application of similar T2-weighted gradient echo techniques may follow, however the signal-to-noise ratio which can be achieved remains a potential limitation.

  12. A spherical harmonics intensity model for 3D segmentation and 3D shape analysis of heterochromatin foci.

    PubMed

    Eck, Simon; Wörz, Stefan; Müller-Ott, Katharina; Hahn, Matthias; Biesdorf, Andreas; Schotta, Gunnar; Rippe, Karsten; Rohr, Karl

    2016-08-01

    The genome is partitioned into regions of euchromatin and heterochromatin. The organization of heterochromatin is important for the regulation of cellular processes such as chromosome segregation and gene silencing, and their misregulation is linked to cancer and other diseases. We present a model-based approach for automatic 3D segmentation and 3D shape analysis of heterochromatin foci from 3D confocal light microscopy images. Our approach employs a novel 3D intensity model based on spherical harmonics, which analytically describes the shape and intensities of the foci. The model parameters are determined by fitting the model to the image intensities using least-squares minimization. To characterize the 3D shape of the foci, we exploit the computed spherical harmonics coefficients and determine a shape descriptor. We applied our approach to 3D synthetic image data as well as real 3D static and real 3D time-lapse microscopy images, and compared the performance with that of previous approaches. It turned out that our approach yields accurate 3D segmentation results and performs better than previous approaches. We also show that our approach can be used for quantifying 3D shape differences of heterochromatin foci.

  13. Dynamic deformable models for 3D MRI heart segmentation

    NASA Astrophysics Data System (ADS)

    Zhukov, Leonid; Bao, Zhaosheng; Gusikov, Igor; Wood, John; Breen, David E.

    2002-05-01

    Automated or semiautomated segmentation of medical images decreases interstudy variation, observer bias, and postprocessing time as well as providing clincally-relevant quantitative data. In this paper we present a new dynamic deformable modeling approach to 3D segmentation. It utilizes recently developed dynamic remeshing techniques and curvature estimation methods to produce high-quality meshes. The approach has been implemented in an interactive environment that allows a user to specify an initial model and identify key features in the data. These features act as hard constraints that the model must not pass through as it deforms. We have employed the method to perform semi-automatic segmentation of heart structures from cine MRI data.

  14. Tilted planes in 3D image analysis

    NASA Astrophysics Data System (ADS)

    Pargas, Roy P.; Staples, Nancy J.; Malloy, Brian F.; Cantrell, Ken; Chhatriwala, Murtuza

    1998-03-01

    Reliable 3D wholebody scanners which output digitized 3D images of a complete human body are now commercially available. This paper describes a software package, called 3DM, being developed by researchers at Clemson University and which manipulates and extracts measurements from such images. The focus of this paper is on tilted planes, a 3DM tool which allows a user to define a plane through a scanned image, tilt it in any direction, and effectively define three disjoint regions on the image: the points on the plane and the points on either side of the plane. With tilted planes, the user can accurately take measurements required in applications such as apparel manufacturing. The user can manually segment the body rather precisely. Tilted planes assist the user in analyzing the form of the body and classifying the body in terms of body shape. Finally, titled planes allow the user to eliminate extraneous and unwanted points often generated by a 3D scanner. This paper describes the user interface for tilted planes, the equations defining the plane as the user moves it through the scanned image, an overview of the algorithms, and the interaction of the tilted plane feature with other tools in 3DM.

  15. 3D statistical shape models incorporating 3D random forest regression voting for robust CT liver segmentation

    NASA Astrophysics Data System (ADS)

    Norajitra, Tobias; Meinzer, Hans-Peter; Maier-Hein, Klaus H.

    2015-03-01

    During image segmentation, 3D Statistical Shape Models (SSM) usually conduct a limited search for target landmarks within one-dimensional search profiles perpendicular to the model surface. In addition, landmark appearance is modeled only locally based on linear profiles and weak learners, altogether leading to segmentation errors from landmark ambiguities and limited search coverage. We present a new method for 3D SSM segmentation based on 3D Random Forest Regression Voting. For each surface landmark, a Random Regression Forest is trained that learns a 3D spatial displacement function between the according reference landmark and a set of surrounding sample points, based on an infinite set of non-local randomized 3D Haar-like features. Landmark search is then conducted omni-directionally within 3D search spaces, where voxelwise forest predictions on landmark position contribute to a common voting map which reflects the overall position estimate. Segmentation experiments were conducted on a set of 45 CT volumes of the human liver, of which 40 images were randomly chosen for training and 5 for testing. Without parameter optimization, using a simple candidate selection and a single resolution approach, excellent results were achieved, while faster convergence and better concavity segmentation were observed, altogether underlining the potential of our approach in terms of increased robustness from distinct landmark detection and from better search coverage.

  16. 3D Clumped Cell Segmentation Using Curvature Based Seeded Watershed

    PubMed Central

    Atta-Fosu, Thomas; Guo, Weihong; Jeter, Dana; Mizutani, Claudia M.; Stopczynski, Nathan; Sousa-Neves, Rui

    2017-01-01

    Image segmentation is an important process that separates objects from the background and also from each other. Applied to cells, the results can be used for cell counting which is very important in medical diagnosis and treatment, and biological research that is often used by scientists and medical practitioners. Segmenting 3D confocal microscopy images containing cells of different shapes and sizes is still challenging as the nuclei are closely packed. The watershed transform provides an efficient tool in segmenting such nuclei provided a reasonable set of markers can be found in the image. In the presence of low-contrast variation or excessive noise in the given image, the watershed transform leads to over-segmentation (a single object is overly split into multiple objects). The traditional watershed uses the local minima of the input image and will characteristically find multiple minima in one object unless they are specified (marker-controlled watershed). An alternative to using the local minima is by a supervised technique called seeded watershed, which supplies single seeds to replace the minima for the objects. Consequently, the accuracy of a seeded watershed algorithm relies on the accuracy of the predefined seeds. In this paper, we present a segmentation approach based on the geometric morphological properties of the ‘landscape’ using curvatures. The curvatures are computed as the eigenvalues of the Shape matrix, producing accurate seeds that also inherit the original shape of their respective cells. We compare with some popular approaches and show the advantage of the proposed method. PMID:28280723

  17. True 3d Images and Their Applications

    NASA Astrophysics Data System (ADS)

    Wang, Z.; wang@hzgeospace., zheng.

    2012-07-01

    A true 3D image is a geo-referenced image. Besides having its radiometric information, it also has true 3Dground coordinates XYZ for every pixels of it. For a true 3D image, especially a true 3D oblique image, it has true 3D coordinates not only for building roofs and/or open grounds, but also for all other visible objects on the ground, such as visible building walls/windows and even trees. The true 3D image breaks the 2D barrier of the traditional orthophotos by introducing the third dimension (elevation) into the image. From a true 3D image, for example, people will not only be able to read a building's location (XY), but also its height (Z). true 3D images will fundamentally change, if not revolutionize, the way people display, look, extract, use, and represent the geospatial information from imagery. In many areas, true 3D images can make profound impacts on the ways of how geospatial information is represented, how true 3D ground modeling is performed, and how the real world scenes are presented. This paper first gives a definition and description of a true 3D image and followed by a brief review of what key advancements of geospatial technologies have made the creation of true 3D images possible. Next, the paper introduces what a true 3D image is made of. Then, the paper discusses some possible contributions and impacts the true 3D images can make to geospatial information fields. At the end, the paper presents a list of the benefits of having and using true 3D images and the applications of true 3D images in a couple of 3D city modeling projects.

  18. Large depth-high resolution full 3D imaging of the anterior segments of the eye using high speed optical frequency domain imaging

    NASA Astrophysics Data System (ADS)

    Kerbage, C.; Lim, H.; Sun, W.; Mujat, M.; de Boer, J. F.

    2007-06-01

    Three dimensional rapid large depth range imaging of the anterior segments of the human eye by an optical frequency domain imaging system is presented. The tunable source spans from 1217 to 1356 nm with an average output power of 60 mW providing a measured axial resolution of 10 μm in air based on the coherence envelope. The effective depth range is 4 mm, defined as the distance over which the sensitivity drops by 6 dB, achieved by frequency shifting the optical signal using acousto-optic modulators. The measured maximum sensitivity is 109 dB at a sample arm power of 14.7mW and A-lines rate of 43,900 per second. Images consisting of 512 depth profiles are acquired at an acquisition rate of 85 frames per second. We demonstrate an optical frequency domain imaging system capable of mapping in vivo the entire area of the human anterior segment (13.4 x 12 x 4.2 mm) in 1.4 seconds.

  19. 3D carotid plaque MR Imaging

    PubMed Central

    Parker, Dennis L.

    2015-01-01

    SYNOPSIS There has been significant progress made in 3D carotid plaque magnetic resonance imaging techniques in recent years. 3D plaque imaging clearly represents the future in clinical use. With effective flow suppression techniques, choices of different contrast weighting acquisitions, and time-efficient imaging approaches, 3D plaque imaging offers flexible imaging plane and view angle analysis, large coverage, multi-vascular beds capability, and even can be used in fast screening. PMID:26610656

  20. Improving segmentation of 3D touching cell nuclei using flow tracking on surface meshes.

    PubMed

    Li, Gang; Guo, Lei

    2012-01-01

    Automatic segmentation of touching cell nuclei in 3D microscopy images is of great importance in bioimage informatics and computational biology. This paper presents a novel method for improving 3D touching cell nuclei segmentation. Given binary touching nuclei by the method in Li et al. (2007), our method herein consists of several steps: surface mesh reconstruction and curvature information estimation; direction field diffusion on surface meshes; flow tracking on surface meshes; and projection of surface mesh segmentation to volumetric images. The method is validated on both synthesised and real 3D touching cell nuclei images, demonstrating its validity and effectiveness.

  1. 3D image analysis of abdominal aortic aneurysm

    NASA Astrophysics Data System (ADS)

    Subasic, Marko; Loncaric, Sven; Sorantin, Erich

    2002-05-01

    This paper presents a method for 3-D segmentation of abdominal aortic aneurysm from computed tomography angiography images. The proposed method is automatic and requires minimal user assistance. Segmentation is performed in two steps. First inner and then outer aortic border is segmented. Those two steps are different due to different image conditions on two aortic borders. Outputs of these two segmentations give a complete 3-D model of abdominal aorta. Such a 3-D model is used in measurements of aneurysm area. The deformable model is implemented using the level-set algorithm due to its ability to describe complex shapes in natural manner which frequently occur in pathology. In segmentation of outer aortic boundary we introduced some knowledge based preprocessing to enhance and reconstruct low contrast aortic boundary. The method has been implemented in IDL and C languages. Experiments have been performed using real patient CTA images and have shown good results.

  2. Simultaneous 3D segmentation of three bone compartments on high resolution knee MR images from osteoarthritis initiative (OAI) using graph cuts

    NASA Astrophysics Data System (ADS)

    Shim, Hackjoon; Kwoh, C. Kent; Yun, Il Dong; Lee, Sang Uk; Bae, Kyongtae

    2009-02-01

    Osteoarthritis (OA) is associated with degradation of cartilage and related changes in the underlying bone. Quantitative measurement of those changes from MR images is an important biomarker to study the progression of OA and it requires a reliable segmentation of knee bone and cartilage. As the most popular method, manual segmentation of knee joint structures by boundary delineation is highly laborious and subject to user-variation. To overcome these difficulties, we have developed a semi-automated method for segmentation of knee bones, which consisted of two steps: placement of seeds and computation of segmentation. In the first step, seeds were placed by the user on a number of slices and then were propagated automatically to neighboring images. The seed placement could be performed on any of sagittal, coronal, and axial planes. The second step, computation of segmentation, was based on a graph-cuts algorithm where the optimal segmentation is the one that minimizes a cost function, which integrated the seeds specified by the user and both the regional and boundary properties of the regions to be segmented. The algorithm also allows simultaneous segmentation of three compartments of the knee bone (femur, tibia, patella). Our method was tested on the knee MR images of six subjects from the osteoarthritis initiative (OAI). The segmentation processing time (mean+/-SD) was (22+/-4)min, which is much shorter than that by the manual boundary delineation method (typically several hours). With this improved efficiency, our segmentation method will facilitate the quantitative morphologic analysis of changes in knee bones associated with osteoarthritis.

  3. Vessel segmentation in 3D spectral OCT scans of the retina

    NASA Astrophysics Data System (ADS)

    Niemeijer, Meindert; Garvin, Mona K.; van Ginneken, Bram; Sonka, Milan; Abràmoff, Michael D.

    2008-03-01

    The latest generation of spectral optical coherence tomography (OCT) scanners is able to image 3D cross-sectional volumes of the retina at a high resolution and high speed. These scans offer a detailed view of the structure of the retina. Automated segmentation of the vessels in these volumes may lead to more objective diagnosis of retinal vascular disease including hypertensive retinopathy, retinopathy of prematurity. Additionally, vessel segmentation can allow color fundus images to be registered to these 3D volumes, possibly leading to a better understanding of the structure and localization of retinal structures and lesions. In this paper we present a method for automatically segmenting the vessels in a 3D OCT volume. First, the retina is automatically segmented into multiple layers, using simultaneous segmentation of their boundary surfaces in 3D. Next, a 2D projection of the vessels is produced by only using information from certain segmented layers. Finally, a supervised, pixel classification based vessel segmentation approach is applied to the projection image. We compared the influence of two methods for the projection on the performance of the vessel segmentation on 10 optic nerve head centered 3D OCT scans. The method was trained on 5 independent scans. Using ROC analysis, our proposed vessel segmentation system obtains an area under the curve of 0.970 when compared with the segmentation of a human observer.

  4. Digital holography and 3-D imaging.

    PubMed

    Banerjee, Partha; Barbastathis, George; Kim, Myung; Kukhtarev, Nickolai

    2011-03-01

    This feature issue on Digital Holography and 3-D Imaging comprises 15 papers on digital holographic techniques and applications, computer-generated holography and encryption techniques, and 3-D display. It is hoped that future work in the area leads to innovative applications of digital holography and 3-D imaging to biology and sensing, and to the development of novel nonlinear dynamic digital holographic techniques.

  5. 3D ultrafast ultrasound imaging in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-07

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra--and inter-observer variability.

  6. 3D ultrafast ultrasound imaging in vivo

    NASA Astrophysics Data System (ADS)

    Provost, Jean; Papadacci, Clement; Esteban Arango, Juan; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra—and inter-observer variability.

  7. Ultrafast superpixel segmentation of large 3D medical datasets

    NASA Astrophysics Data System (ADS)

    Leblond, Antoine; Kauffmann, Claude

    2016-03-01

    Even with recent hardware improvements, superpixel segmentation of large 3D medical images at interactive speed (<500 ms) remains a challenge. We will describe methods to achieve such performances using a GPU based hybrid framework implementing wavefront propagation and cellular automata resolution. Tasks will be scheduled in blocks (work units) using a wavefront propagation strategy, therefore allowing sparse scheduling. Because work units has been designed as spatially cohesive, the fast Thread Group Shared Memory can be used and reused through a Gauss-Seidel like acceleration. The work unit partitioning scheme will however vary on odd- and even-numbered iterations to reduce convergence barriers. Synchronization will be ensured by an 8-step 3D variant of the traditional Red Black Ordering scheme. An attack model and early termination will also be described and implemented as additional acceleration techniques. Using our hybrid framework and typical operating parameters, we were able to compute the superpixels of a high-resolution 512x512x512 aortic angioCT scan in 283 ms using a AMD R9 290X GPU. We achieved a 22.3X speed-up factor compared to the published reference GPU implementation.

  8. Automated 3D vascular segmentation in CT hepatic venography

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Lucidarme, Olivier; Preteux, Francoise

    2005-08-01

    In the framework of preoperative evaluation of the hepatic venous anatomy in living-donor liver transplantation or oncologic rejections, this paper proposes an automated approach for the 3D segmentation of the liver vascular structure from 3D CT hepatic venography data. The developed segmentation approach takes into account the specificities of anatomical structures in terms of spatial location, connectivity and morphometric properties. It implements basic and advanced morphological operators (closing, geodesic dilation, gray-level reconstruction, sup-constrained connection cost) in mono- and multi-resolution filtering schemes in order to achieve an automated 3D reconstruction of the opacified hepatic vessels. A thorough investigation of the venous anatomy including morphometric parameter estimation is then possible via computer-vision 3D rendering, interaction and navigation capabilities.

  9. Segmentation of 3D microPET images of the rat brain via the hybrid gaussian mixture method with kernel density estimation.

    PubMed

    Chen, Tai-Been; Chen, Jyh-Cheng; Lu, Henry Horng-Shing

    2012-01-01

    Segmentation of positron emission tomography (PET) is typically achieved using the K-Means method or other approaches. In preclinical and clinical applications, the K-Means method needs a prior estimation of parameters such as the number of clusters and appropriate initialized values. This work segments microPET images using a hybrid method combining the Gaussian mixture model (GMM) with kernel density estimation. Segmentation is crucial to registration of disordered 2-deoxy-2-fluoro-D-glucose (FDG) accumulation locations with functional diagnosis and to estimate standardized uptake values (SUVs) of region of interests (ROIs) in PET images. Therefore, simulation studies are conducted to apply spherical targets to evaluate segmentation accuracy based on Tanimoto's definition of similarity. The proposed method generates a higher degree of similarity than the K-Means method. The PET images of a rat brain are used to compare the segmented shape and area of the cerebral cortex by the K-Means method and the proposed method by volume rendering. The proposed method provides clearer and more detailed activity structures of an FDG accumulation location in the cerebral cortex than those by the K-Means method.

  10. 3D Segmentation of Maxilla in Cone-beam Computed Tomography Imaging Using Base Invariant Wavelet Active Shape Model on Customized Two-manifold Topology

    PubMed Central

    Chang, Yu-Bing; Xia, James J.; Yuan, Peng; Kuo, Tai-Hong; Xiong, Zixiang; Gateno, Jaime; Zhou, Xiaobo

    2013-01-01

    Recent advances in cone-beam computed tomography (CBCT) have rapidly enabled widepsread applications of dentomaxillofacial imaging and orthodontic practices in the past decades due to its low radiation dose, high spatial resolution, and accessibility. However, low contrast resolution in CBCT image has become its major limitation in building skull models. Intensive hand-segmentation is usually required to reconstruct the skull models. One of the regions affected by this limitation the most is the thin bone images. This paper presents a novel segmentation approach based on wavelet density model (WDM) for a particular interest in the outer surface of anterior wall of maxilla. Nineteen CBCT datasets are used to conduct two experiments. This mode-based segmentation approach is validated and compared with three different segmentation approaches. The results show that the performance of this model-based segmentation approach is better than those of the other approaches. It can achieve 0.25 ± 0.2mm of surface error from ground truth of bone surface. PMID:23694914

  11. 3D image analysis of abdominal aortic aneurysm

    NASA Astrophysics Data System (ADS)

    Subasic, Marko; Loncaric, Sven; Sorantin, Erich

    2001-07-01

    In this paper we propose a technique for 3-D segmentation of abdominal aortic aneurysm (AAA) from computed tomography angiography (CTA) images. Output data (3-D model) form the proposed method can be used for measurement of aortic shape and dimensions. Knowledge of aortic shape and size is very important in planning of minimally invasive procedure that is for selection of appropriate stent graft device for treatment of AAA. The technique is based on a 3-D deformable model and utilizes the level-set algorithm for implementation of the method. The method performs 3-D segmentation of CTA images and extracts a 3-D model of aortic wall. Once the 3-D model of aortic wall is available it is easy to perform all required measurements for appropriate stent graft selection. The method proposed in this paper uses the level-set algorithm for deformable models, instead of the classical snake algorithm. The main advantage of the level set algorithm is that it enables easy segmentation of complex structures, surpassing most of the drawbacks of the classical approach. We have extended the deformable model to incorporate the a priori knowledge about the shape of the AAA. This helps direct the evolution of the deformable model to correctly segment the aorta. The algorithm has been implemented in IDL and C languages. Experiments have been performed using real patient CTA images and have shown good results.

  12. 3D Ultrafast Ultrasound Imaging In Vivo

    PubMed Central

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-01-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative real-time imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in three dimensions based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32×32 matrix-array probe. Its capability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3-D Shear-Wave Imaging, 3-D Ultrafast Doppler Imaging and finally 3D Ultrafast combined Tissue and Flow Doppler. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3-D Ultrafast Doppler was used to obtain 3-D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, for the first time, the complex 3-D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, and the 3-D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3-D Ultrafast Ultrasound Imaging for the 3-D real-time mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra- and inter-observer variability. PMID:25207828

  13. An automated image-based method of 3D subject-specific body segment parameter estimation for kinetic analyses of rapid movements.

    PubMed

    Sheets, Alison L; Corazza, Stefano; Andriacchi, Thomas P

    2010-01-01

    Accurate subject-specific body segment parameters (BSPs) are necessary to perform kinetic analyses of human movements with large accelerations, or no external contact forces or moments. A new automated topographical image-based method of estimating segment mass, center of mass (CM) position, and moments of inertia is presented. Body geometry and volume were measured using a laser scanner, then an automated pose and shape registration algorithm segmented the scanned body surface, and identified joint center (JC) positions. Assuming the constant segment densities of Dempster, thigh and shank masses, CM locations, and moments of inertia were estimated for four male subjects with body mass indexes (BMIs) of 19.7-38.2. The subject-specific BSP were compared with those determined using Dempster and Clauser regression equations. The influence of BSP and BMI differences on knee and hip net forces and moments during a running swing phase were quantified for the subjects with the smallest and largest BMIs. Subject-specific BSP for 15 body segments were quickly calculated using the image-based method, and total subject masses were overestimated by 1.7-2.9%.When compared with the Dempster and Clauser methods, image-based and regression estimated thigh BSP varied more than the shank parameters. Thigh masses and hip JC to thigh CM distances were consistently larger, and each transverse moment of inertia was smaller using the image-based method. Because the shank had larger linear and angular accelerations than the thigh during the running swing phase, shank BSP differences had a larger effect on calculated intersegmental forces and moments at the knee joint than thigh BSP differences did at the hip. It was the net knee kinetic differences caused by the shank BSP differences that were the largest contributors to the hip variations. Finally, BSP differences produced larger kinetic differences for the subject with larger segment masses, suggesting that parameter accuracy is more

  14. 3D model retrieval method based on mesh segmentation

    NASA Astrophysics Data System (ADS)

    Gan, Yuanchao; Tang, Yan; Zhang, Qingchen

    2012-04-01

    In the process of feature description and extraction, current 3D model retrieval algorithms focus on the global features of 3D models but ignore the combination of global and local features of the model. For this reason, they show less effective performance to the models with similar global shape and different local shape. This paper proposes a novel algorithm for 3D model retrieval based on mesh segmentation. The key idea is to exact the structure feature and the local shape feature of 3D models, and then to compares the similarities of the two characteristics and the total similarity between the models. A system that realizes this approach was built and tested on a database of 200 objects and achieves expected results. The results show that the proposed algorithm improves the precision and the recall rate effectively.

  15. 3D imaging in forensic odontology.

    PubMed

    Evans, Sam; Jones, Carl; Plassmann, Peter

    2010-06-16

    This paper describes the investigation of a new 3D capture method for acquiring and subsequent forensic analysis of bite mark injuries on human skin. When documenting bite marks with standard 2D cameras errors in photographic technique can occur if best practice is not followed. Subsequent forensic analysis of the mark is problematic when a 3D structure is recorded into a 2D space. Although strict guidelines (BAFO) exist, these are time-consuming to follow and, due to their complexity, may produce errors. A 3D image capture and processing system might avoid the problems resulting from the 2D reduction process, simplifying the guidelines and reducing errors. Proposed Solution: a series of experiments are described in this paper to demonstrate that the potential of a 3D system might produce suitable results. The experiments tested precision and accuracy of the traditional 2D and 3D methods. A 3D image capture device minimises the amount of angular distortion, therefore such a system has the potential to create more robust forensic evidence for use in courts. A first set of experiments tested and demonstrated which method of forensic analysis creates the least amount of intra-operator error. A second set tested and demonstrated which method of image capture creates the least amount of inter-operator error and visual distortion. In a third set the effects of angular distortion on 2D and 3D methods of image capture were evaluated.

  16. Nonlaser-based 3D surface imaging

    SciTech Connect

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J.

    1994-11-15

    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  17. Alignment, segmentation and 3-D reconstruction of serial sections based on automated algorithm

    NASA Astrophysics Data System (ADS)

    Bian, Weiguo; Tang, Shaojie; Xu, Qiong; Lian, Qin; Wang, Jin; Li, Dichen

    2012-12-01

    A well-defined three-dimensional (3-D) reconstruction of bone-cartilage transitional structures is crucial for the osteochondral restoration. This paper presents an accurate, computationally efficient and fully-automated algorithm for the alignment and segmentation of two-dimensional (2-D) serial to construct the 3-D model of bone-cartilage transitional structures. Entire system includes the following five components: (1) image harvest, (2) image registration, (3) image segmentation, (4) 3-D reconstruction and visualization, and (5) evaluation. A computer program was developed in the environment of Matlab for the automatic alignment and segmentation of serial sections. Automatic alignment algorithm based on the position's cross-correlation of the anatomical characteristic feature points of two sequential sections. A method combining an automatic segmentation and an image threshold processing was applied to capture the regions and structures of interest. SEM micrograph and 3-D model reconstructed directly in digital microscope were used to evaluate the reliability and accuracy of this strategy. The morphology of 3-D model constructed by serial sections is consistent with the results of SEM micrograph and 3-D model of digital microscope.

  18. Visualization and analysis of 3D microscopic images.

    PubMed

    Long, Fuhui; Zhou, Jianlong; Peng, Hanchuan

    2012-01-01

    In a wide range of biological studies, it is highly desirable to visualize and analyze three-dimensional (3D) microscopic images. In this primer, we first introduce several major methods for visualizing typical 3D images and related multi-scale, multi-time-point, multi-color data sets. Then, we discuss three key categories of image analysis tasks, namely segmentation, registration, and annotation. We demonstrate how to pipeline these visualization and analysis modules using examples of profiling the single-cell gene-expression of C. elegans and constructing a map of stereotyped neurite tracts in a fruit fly brain.

  19. Visualization and Analysis of 3D Microscopic Images

    PubMed Central

    Long, Fuhui; Zhou, Jianlong; Peng, Hanchuan

    2012-01-01

    In a wide range of biological studies, it is highly desirable to visualize and analyze three-dimensional (3D) microscopic images. In this primer, we first introduce several major methods for visualizing typical 3D images and related multi-scale, multi-time-point, multi-color data sets. Then, we discuss three key categories of image analysis tasks, namely segmentation, registration, and annotation. We demonstrate how to pipeline these visualization and analysis modules using examples of profiling the single-cell gene-expression of C. elegans and constructing a map of stereotyped neurite tracts in a fruit fly brain. PMID:22719236

  20. 3D integral imaging with optical processing

    NASA Astrophysics Data System (ADS)

    Martínez-Corral, Manuel; Martínez-Cuenca, Raúl; Saavedra, Genaro; Javidi, Bahram

    2008-04-01

    Integral imaging (InI) systems are imaging devices that provide auto-stereoscopic images of 3D intensity objects. Since the birth of this new technology, InI systems have faced satisfactorily many of their initial drawbacks. Basically, two kind of procedures have been used: digital and optical procedures. The "3D Imaging and Display Group" at the University of Valencia, with the essential collaboration of Prof. Javidi, has centered its efforts in the 3D InI with optical processing. Among other achievements, our Group has proposed the annular amplitude modulation for enlargement of the depth of field, dynamic focusing for reduction of the facet-braiding effect, or the TRES and MATRES devices to enlarge the viewing angle.

  1. Interactive algorithms for the segmentation and quantitation of 3-D MRI brain scans.

    PubMed

    Freeborough, P A; Fox, N C; Kitney, R I

    1997-05-01

    Interactive algorithms are an attractive approach to the accurate segmentation of 3D brain scans as they potentially improve the reliability of fully automated segmentation while avoiding the labour intensiveness and inaccuracies of manual segmentation. We present a 3D image analysis package (MIDAS) with a novel architecture enabling highly interactive segmentation algorithms to be implemented as add on modules. Interactive methods based on intensity thresholding, region growing and the constrained application of morphological operators are also presented. The methods involve the application of constraints and freedoms on the algorithms coupled with real time visualisation of the effect. This methodology has been applied to the segmentation, visualisation and measurement of the whole brain and a small irregular neuroanatomical structure, the hippocampus. We demonstrate reproducible and anatomically accurate segmentations of these structures. The efficacy of one method in measuring volume loss (atrophy) of the hippocampus in Alzheimer's disease is shown and is compared to conventional methods.

  2. ICER-3D Hyperspectral Image Compression Software

    NASA Technical Reports Server (NTRS)

    Xie, Hua; Kiely, Aaron; Klimesh, matthew; Aranki, Nazeeh

    2010-01-01

    Software has been developed to implement the ICER-3D algorithm. ICER-3D effects progressive, three-dimensional (3D), wavelet-based compression of hyperspectral images. If a compressed data stream is truncated, the progressive nature of the algorithm enables reconstruction of hyperspectral data at fidelity commensurate with the given data volume. The ICER-3D software is capable of providing either lossless or lossy compression, and incorporates an error-containment scheme to limit the effects of data loss during transmission. The compression algorithm, which was derived from the ICER image compression algorithm, includes wavelet-transform, context-modeling, and entropy coding subalgorithms. The 3D wavelet decomposition structure used by ICER-3D exploits correlations in all three dimensions of sets of hyperspectral image data, while facilitating elimination of spectral ringing artifacts, using a technique summarized in "Improving 3D Wavelet-Based Compression of Spectral Images" (NPO-41381), NASA Tech Briefs, Vol. 33, No. 3 (March 2009), page 7a. Correlation is further exploited by a context-modeling subalgorithm, which exploits spectral dependencies in the wavelet-transformed hyperspectral data, using an algorithm that is summarized in "Context Modeler for Wavelet Compression of Hyperspectral Images" (NPO-43239), which follows this article. An important feature of ICER-3D is a scheme for limiting the adverse effects of loss of data during transmission. In this scheme, as in the similar scheme used by ICER, the spatial-frequency domain is partitioned into rectangular error-containment regions. In ICER-3D, the partitions extend through all the wavelength bands. The data in each partition are compressed independently of those in the other partitions, so that loss or corruption of data from any partition does not affect the other partitions. Furthermore, because compression is progressive within each partition, when data are lost, any data from that partition received

  3. Acquisition and applications of 3D images

    NASA Astrophysics Data System (ADS)

    Sterian, Paul; Mocanu, Elena

    2007-08-01

    The moiré fringes method and their analysis up to medical and entertainment applications are discussed in this paper. We describe the procedure of capturing 3D images with an Inspeck Camera that is a real-time 3D shape acquisition system based on structured light techniques. The method is a high-resolution one. After processing the images, using computer, we can use the data for creating laser fashionable objects by engraving them with a Q-switched Nd:YAG. In medical field we mention the plastic surgery and the replacement of X-Ray especially in pediatric use.

  4. Blood Pool Segmentation Results in Superior Virtual Cardiac Models than Myocardial Segmentation for 3D Printing.

    PubMed

    Farooqi, Kanwal M; Lengua, Carlos Gonzalez; Weinberg, Alan D; Nielsen, James C; Sanz, Javier

    2016-08-01

    The method of cardiac magnetic resonance (CMR) three-dimensional (3D) image acquisition and post-processing which should be used to create optimal virtual models for 3D printing has not been studied systematically. Patients (n = 19) who had undergone CMR including both 3D balanced steady-state free precession (bSSFP) imaging and contrast-enhanced magnetic resonance angiography (MRA) were retrospectively identified. Post-processing for the creation of virtual 3D models involved using both myocardial (MS) and blood pool (BP) segmentation, resulting in four groups: Group 1-bSSFP/MS, Group 2-bSSFP/BP, Group 3-MRA/MS and Group 4-MRA/BP. The models created were assessed by two raters for overall quality (1-poor; 2-good; 3-excellent) and ability to identify predefined vessels (1-5: superior vena cava, inferior vena cava, main pulmonary artery, ascending aorta and at least one pulmonary vein). A total of 76 virtual models were created from 19 patient CMR datasets. The mean overall quality scores for Raters 1/2 were 1.63 ± 0.50/1.26 ± 0.45 for Group 1, 2.12 ± 0.50/2.26 ± 0.73 for Group 2, 1.74 ± 0.56/1.53 ± 0.61 for Group 3 and 2.26 ± 0.65/2.68 ± 0.48 for Group 4. The numbers of identified vessels for Raters 1/2 were 4.11 ± 1.32/4.05 ± 1.31 for Group 1, 4.90 ± 0.46/4.95 ± 0.23 for Group 2, 4.32 ± 1.00/4.47 ± 0.84 for Group 3 and 4.74 ± 0.56/4.63 ± 0.49 for Group 4. Models created using BP segmentation (Groups 2 and 4) received significantly higher ratings than those created using MS for both overall quality and number of vessels visualized (p < 0.05), regardless of the acquisition technique. There were no significant differences between Groups 1 and 3. The ratings for Raters 1 and 2 had good correlation for overall quality (ICC = 0.63) and excellent correlation for the total number of vessels visualized (ICC = 0.77). The intra-rater reliability was good for Rater A (ICC = 0.65). Three models were successfully printed

  5. 3D Brain Segmentation Using Dual-Front Active Contours with Optional User Interaction

    PubMed Central

    Yezzi, Anthony; Cohen, Laurent D.

    2006-01-01

    Important attributes of 3D brain cortex segmentation algorithms include robustness, accuracy, computational efficiency, and facilitation of user interaction, yet few algorithms incorporate all of these traits. Manual segmentation is highly accurate but tedious and laborious. Most automatic techniques, while less demanding on the user, are much less accurate. It would be useful to employ a fast automatic segmentation procedure to do most of the work but still allow an expert user to interactively guide the segmentation to ensure an accurate final result. We propose a novel 3D brain cortex segmentation procedure utilizing dual-front active contours which minimize image-based energies in a manner that yields flexibly global minimizers based on active regions. Region-based information and boundary-based information may be combined flexibly in the evolution potentials for accurate segmentation results. The resulting scheme is not only more robust but much faster and allows the user to guide the final segmentation through simple mouse clicks which add extra seed points. Due to the flexibly global nature of the dual-front evolution model, single mouse clicks yield corrections to the segmentation that extend far beyond their initial locations, thus minimizing the user effort. Results on 15 simulated and 20 real 3D brain images demonstrate the robustness, accuracy, and speed of our scheme compared with other methods. PMID:23165037

  6. Segmentation of Brain MRI Using SOM-FCM-Based Method and 3D Statistical Descriptors

    PubMed Central

    Ortiz, Andrés; Palacio, Antonio A.; Górriz, Juan M.; Ramírez, Javier; Salas-González, Diego

    2013-01-01

    Current medical imaging systems provide excellent spatial resolution, high tissue contrast, and up to 65535 intensity levels. Thus, image processing techniques which aim to exploit the information contained in the images are necessary for using these images in computer-aided diagnosis (CAD) systems. Image segmentation may be defined as the process of parcelling the image to delimit different neuroanatomical tissues present on the brain. In this paper we propose a segmentation technique using 3D statistical features extracted from the volume image. In addition, the presented method is based on unsupervised vector quantization and fuzzy clustering techniques and does not use any a priori information. The resulting fuzzy segmentation method addresses the problem of partial volume effect (PVE) and has been assessed using real brain images from the Internet Brain Image Repository (IBSR). PMID:23762192

  7. A Hierarchical Building Segmentation in Digital Surface Models for 3D Reconstruction

    PubMed Central

    Yan, Yiming; Gao, Fengjiao; Deng, Shupei; Su, Nan

    2017-01-01

    In this study, a hierarchical method for segmenting buildings in a digital surface model (DSM), which is used in a novel framework for 3D reconstruction, is proposed. Most 3D reconstructions of buildings are model-based. However, the limitations of these methods are overreliance on completeness of the offline-constructed models of buildings, and the completeness is not easily guaranteed since in modern cities buildings can be of a variety of types. Therefore, a model-free framework using high precision DSM and texture-images buildings was introduced. There are two key problems with this framework. The first one is how to accurately extract the buildings from the DSM. Most segmentation methods are limited by either the terrain factors or the difficult choice of parameter-settings. A level-set method are employed to roughly find the building regions in the DSM, and then a recently proposed ‘occlusions of random textures model’ are used to enhance the local segmentation of the buildings. The second problem is how to generate the facades of buildings. Synergizing with the corresponding texture-images, we propose a roof-contour guided interpolation of building facades. The 3D reconstruction results achieved by airborne-like images and satellites are compared. Experiments show that the segmentation method has good performance, and 3D reconstruction is easily performed by our framework, and better visualization results can be obtained by airborne-like images, which can be further replaced by UAV images. PMID:28125018

  8. Walker Ranch 3D seismic images

    SciTech Connect

    Robert J. Mellors

    2016-03-01

    Amplitude images (both vertical and depth slices) extracted from 3D seismic reflection survey over area of Walker Ranch area (adjacent to Raft River). Crossline spacing of 660 feet and inline of 165 feet using a Vibroseis source. Processing included depth migration. Micro-earthquake hypocenters on images. Stratigraphic information and nearby well tracks added to images. Images are embedded in a Microsoft Word document with additional information. Exact location and depth restricted for proprietary reasons. Data collection and processing funded by Agua Caliente. Original data remains property of Agua Caliente.

  9. 3D quantitative analysis of brain SPECT images

    NASA Astrophysics Data System (ADS)

    Loncaric, Sven; Ceskovic, Ivan; Petrovic, Ratimir; Loncaric, Srecko

    2001-07-01

    The main purpose of this work is to develop a computer-based technique for quantitative analysis of 3-D brain images obtained by single photon emission computed tomography (SPECT). In particular, the volume and location of ischemic lesion and penumbra is important for early diagnosis and treatment of infracted regions of the brain. SPECT imaging is typically used as diagnostic tool to assess the size and location of the ischemic lesion. The segmentation method presented in this paper utilizes a 3-D deformable model in order to determine size and location of the regions of interest. The evolution of the model is computed using a level-set implementation of the algorithm. In addition to 3-D deformable model the method utilizes edge detection and region growing for realization of a pre-processing. Initial experimental results have shown that the method is useful for SPECT image analysis.

  10. 3D segmentation of lung CT data with graph-cuts: analysis of parameter sensitivities

    NASA Astrophysics Data System (ADS)

    Cha, Jung won; Dunlap, Neal; Wang, Brian; Amini, Amir

    2016-03-01

    Lung boundary image segmentation is important for many tasks including for example in development of radiation treatment plans for subjects with thoracic malignancies. In this paper, we describe a method and parameter settings for accurate 3D lung boundary segmentation based on graph-cuts from X-ray CT data1. Even though previously several researchers have used graph-cuts for image segmentation, to date, no systematic studies have been performed regarding the range of parameter that give accurate results. The energy function in the graph-cuts algorithm requires 3 suitable parameter settings: K, a large constant for assigning seed points, c, the similarity coefficient for n-links, and λ, the terminal coefficient for t-links. We analyzed the parameter sensitivity with four lung data sets from subjects with lung cancer using error metrics. Large values of K created artifacts on segmented images, and relatively much larger value of c than the value of λ influenced the balance between the boundary term and the data term in the energy function, leading to unacceptable segmentation results. For a range of parameter settings, we performed 3D image segmentation, and in each case compared the results with the expert-delineated lung boundaries. We used simple 6-neighborhood systems for n-link in 3D. The 3D image segmentation took 10 minutes for a 512x512x118 ~ 512x512x190 lung CT image volume. Our results indicate that the graph-cuts algorithm was more sensitive to the K and λ parameter settings than to the C parameter and furthermore that amongst the range of parameters tested, K=5 and λ=0.5 yielded good results.

  11. Backhoe 3D "gold standard" image

    NASA Astrophysics Data System (ADS)

    Gorham, LeRoy; Naidu, Kiranmai D.; Majumder, Uttam; Minardi, Michael A.

    2005-05-01

    ViSUAl-D (VIsual Sar Using ALl Dimensions), a 2004 DARPA/IXO seedling effort, is developing a capability for reliable high confidence ID from standoff ranges. Recent conflicts have demonstrated that the warfighter would greatly benefit from the ability to ID targets beyond visual and electro-optical ranges[1]. Forming optical-quality SAR images while exploiting full polarization, wide angles, and large bandwidth would be key evidence such a capability is achievable. Using data generated by the Xpatch EM scattering code, ViSUAl-D investigates all degrees of freedom available to the radar designer, including 6 GHz bandwidth, full polarization and angle sampling over 2π steradians (upper hemisphere), in order to produce a "literal" image or representation of the target. This effort includes the generation of a "Gold Standard" image that can be produced at X-band utilizing all available target data. This "Gold Standard" image of the backhoe will serve as a test bed for future more relevant military targets and their image development. The seedling team produced a public release data which was released at the 2004 SPIE conference, as well as a 3D "Gold Standard" backhoe image using a 3D image formation algorithm. This paper describes the full backhoe data set, the image formation algorithm, the visualization process and the resulting image.

  12. Efficient segmentation of 3D fluoroscopic datasets from mobile C-arm

    NASA Astrophysics Data System (ADS)

    Styner, Martin A.; Talib, Haydar; Singh, Digvijay; Nolte, Lutz-Peter

    2004-05-01

    The emerging mobile fluoroscopic 3D technology linked with a navigation system combines the advantages of CT-based and C-arm-based navigation. The intra-operative, automatic segmentation of 3D fluoroscopy datasets enables the combined visualization of surgical instruments and anatomical structures for enhanced planning, surgical eye-navigation and landmark digitization. We performed a thorough evaluation of several segmentation algorithms using a large set of data from different anatomical regions and man-made phantom objects. The analyzed segmentation methods include automatic thresholding, morphological operations, an adapted region growing method and an implicit 3D geodesic snake method. In regard to computational efficiency, all methods performed within acceptable limits on a standard Desktop PC (30sec-5min). In general, the best results were obtained with datasets from long bones, followed by extremities. The segmentations of spine, pelvis and shoulder datasets were generally of poorer quality. As expected, the threshold-based methods produced the worst results. The combined thresholding and morphological operations methods were considered appropriate for a smaller set of clean images. The region growing method performed generally much better in regard to computational efficiency and segmentation correctness, especially for datasets of joints, and lumbar and cervical spine regions. The less efficient implicit snake method was able to additionally remove wrongly segmented skin tissue regions. This study presents a step towards efficient intra-operative segmentation of 3D fluoroscopy datasets, but there is room for improvement. Next, we plan to study model-based approaches for datasets from the knee and hip joint region, which would be thenceforth applied to all anatomical regions in our continuing development of an ideal segmentation procedure for 3D fluoroscopic images.

  13. Framework for quantitative evaluation of 3D vessel segmentation approaches using vascular phantoms in conjunction with 3D landmark localization and registration

    NASA Astrophysics Data System (ADS)

    Wörz, Stefan; Hoegen, Philipp; Liao, Wei; Müller-Eschner, Matthias; Kauczor, Hans-Ulrich; von Tengg-Kobligk, Hendrik; Rohr, Karl

    2016-03-01

    We introduce a framework for quantitative evaluation of 3D vessel segmentation approaches using vascular phantoms. Phantoms are designed using a CAD system and created with a 3D printer, and comprise realistic shapes including branches and pathologies such as abdominal aortic aneurysms (AAA). To transfer ground truth information to the 3D image coordinate system, we use a landmark-based registration scheme utilizing fiducial markers integrated in the phantom design. For accurate 3D localization of the markers we developed a novel 3D parametric intensity model that is directly fitted to the markers in the images. We also performed a quantitative evaluation of different vessel segmentation approaches for a phantom of an AAA.

  14. 3D TEM reconstruction and segmentation process of laminar bio-nanocomposites

    SciTech Connect

    Iturrondobeitia, M. Okariz, A.; Fernandez-Martinez, R.; Jimbert, P.; Guraya, T.; Ibarretxe, J.

    2015-03-30

    The microstructure of laminar bio-nanocomposites (Poly (lactic acid)(PLA)/clay) depends on the amount of clay platelet opening after integration with the polymer matrix and determines the final properties of the material. Transmission electron microscopy (TEM) technique is the only one that can provide a direct observation of the layer dispersion and the degree of exfoliation. However, the orientation of the clay platelets, which affects the final properties, is practically immeasurable from a single 2D TEM image. This issue can be overcome using transmission electron tomography (ET), a technique that allows the complete 3D characterization of the structure, including the measurement of the orientation of clay platelets, their morphology and their 3D distribution. ET involves a 3D reconstruction of the study volume and a subsequent segmentation of the study object. Currently, accurate segmentation is performed manually, which is inefficient and tedious. The aim of this work is to propose an objective/automated segmentation methodology process of a 3D TEM tomography reconstruction. In this method the segmentation threshold is optimized by minimizing the variation of the dimensions of the segmented objects and matching the segmented V{sub clay} (%) and the actual one. The method is first validated using a fictitious set of objects, and then applied on a nanocomposite.

  15. Feasibility of 3D harmonic contrast imaging.

    PubMed

    Voormolen, M M; Bouakaz, A; Krenning, B J; Lancée, C T; ten Cate, F J; de Jong, N

    2004-04-01

    Improved endocardial border delineation with the application of contrast agents should allow for less complex and faster tracing algorithms for left ventricular volume analysis. We developed a fast rotating phased array transducer for 3D imaging of the heart with harmonic capabilities making it suitable for contrast imaging. In this study the feasibility of 3D harmonic contrast imaging is evaluated in vitro. A commercially available tissue mimicking flow phantom was used in combination with Sonovue. Backscatter power spectra from a tissue and contrast region of interest were calculated from recorded radio frequency data. The spectra and the extracted contrast to tissue ratio from these spectra were used to optimize the excitation frequency, the pulse length and the receive filter settings of the transducer. Frequencies ranging from 1.66 to 2.35 MHz and pulse lengths of 1.5, 2 and 2.5 cycles were explored. An increase of more than 15 dB in the contrast to tissue ratio was found around the second harmonic compared with the fundamental level at an optimal excitation frequency of 1.74 MHz and a pulse length of 2.5 cycles. Using the optimal settings for 3D harmonic contrast recordings volume measurements of a left ventricular shaped agar phantom were performed. Without contrast the extracted volume data resulted in a volume error of 1.5%, with contrast an accuracy of 3.8% was achieved. The results show the feasibility of accurate volume measurements from 3D harmonic contrast images. Further investigations will include the clinical evaluation of the presented technique for improved assessment of the heart.

  16. MRI Slice Segmentation and 3D Modelling of Temporomandibular Joint Measured by Microscopic Coil

    NASA Astrophysics Data System (ADS)

    Smirg, O.; Liberda, O.; Smekal, Z.; Sprlakova-Pukova, A.

    2012-01-01

    The paper focuses on the segmentation of magnetic resonance imaging (MRI) slices and 3D modelling of the temporomandibular joint disc in order to help physicians diagnose patients with dysfunction of the temporomandibular joint (TMJ). The TMJ is one of the most complex joints in the human body. The most common joint dysfunction is due to the disc. The disc is a soft tissue, which in principle cannot be diagnosed by the CT method. Therefore, a 3D model is made from the MRI slices, which can image soft tissues. For the segmentation of the disc in individual slices a new method is developed based on spatial distribution and anatomical TMJ structure with automatic thresholding. The thresholding is controlled by a genetic algorithm. The 3D model is realized using the marching cube method.

  17. 3D imaging system for biometric applications

    NASA Astrophysics Data System (ADS)

    Harding, Kevin; Abramovich, Gil; Paruchura, Vijay; Manickam, Swaminathan; Vemury, Arun

    2010-04-01

    There is a growing interest in the use of 3D data for many new applications beyond traditional metrology areas. In particular, using 3D data to obtain shape information of both people and objects for applications ranging from identification to game inputs does not require high degrees of calibration or resolutions in the tens of micron range, but does require a means to quickly and robustly collect data in the millimeter range. Systems using methods such as structured light or stereo have seen wide use in measurements, but due to the use of a triangulation angle, and thus the need for a separated second viewpoint, may not be practical for looking at a subject 10 meters away. Even when working close to a subject, such as capturing hands or fingers, the triangulation angle causes occlusions, shadows, and a physically large system that may get in the way. This paper will describe methods to collect medium resolution 3D data, plus highresolution 2D images, using a line of sight approach. The methods use no moving parts and as such are robust to movement (for portability), reliable, and potentially very fast at capturing 3D data. This paper will describe the optical methods considered, variations on these methods, and present experimental data obtained with the approach.

  18. A 3-D liver segmentation method with parallel computing for selective internal radiation therapy.

    PubMed

    Goryawala, Mohammed; Guillen, Magno R; Cabrerizo, Mercedes; Barreto, Armando; Gulec, Seza; Barot, Tushar C; Suthar, Rekha R; Bhatt, Ruchir N; Mcgoron, Anthony; Adjouadi, Malek

    2012-01-01

    This study describes a new 3-D liver segmentation method in support of the selective internal radiation treatment as a treatment for liver tumors. This 3-D segmentation is based on coupling a modified k-means segmentation method with a special localized contouring algorithm. In the segmentation process, five separate regions are identified on the computerized tomography image frames. The merit of the proposed method lays in its potential to provide fast and accurate liver segmentation and 3-D rendering as well as in delineating tumor region(s), all with minimal user interaction. Leveraging of multicore platforms is shown to speed up the processing of medical images considerably, making this method more suitable in clinical settings. Experiments were performed to assess the effect of parallelization using up to 442 slices. Empirical results, using a single workstation, show a reduction in processing time from 4.5 h to almost 1 h for a 78% gain. Most important is the accuracy achieved in estimating the volumes of the liver and tumor region(s), yielding an average error of less than 2% in volume estimation over volumes generated on the basis of the current manually guided segmentation processes. Results were assessed using the analysis of variance statistical analysis.

  19. Electric field theory based approach to search-direction line definition in image segmentation: application to optimal femur-tibia cartilage segmentation in knee-joint 3-D MR

    NASA Astrophysics Data System (ADS)

    Yin, Y.; Sonka, M.

    2010-03-01

    A novel method is presented for definition of search lines in a variety of surface segmentation approaches. The method is inspired by properties of electric field direction lines and is applicable to general-purpose n-D shapebased image segmentation tasks. Its utility is demonstrated in graph construction and optimal segmentation of multiple mutually interacting objects. The properties of the electric field-based graph construction guarantee that inter-object graph connecting lines are non-intersecting and inherently covering the entire object-interaction space. When applied to inter-object cross-surface mapping, our approach generates one-to-one and all-to-all vertex correspondent pairs between the regions of mutual interaction. We demonstrate the benefits of the electric field approach in several examples ranging from relatively simple single-surface segmentation to complex multiobject multi-surface segmentation of femur-tibia cartilage. The performance of our approach is demonstrated in 60 MR images from the Osteoarthritis Initiative (OAI), in which our approach achieved a very good performance as judged by surface positioning errors (average of 0.29 and 0.59 mm for signed and unsigned cartilage positioning errors, respectively).

  20. Pattern based 3D image Steganography

    NASA Astrophysics Data System (ADS)

    Thiyagarajan, P.; Natarajan, V.; Aghila, G.; Prasanna Venkatesan, V.; Anitha, R.

    2013-03-01

    This paper proposes a new high capacity Steganographic scheme using 3D geometric models. The novel algorithm re-triangulates a part of a triangle mesh and embeds the secret information into newly added position of triangle meshes. Up to nine bits of secret data can be embedded into vertices of a triangle without causing any changes in the visual quality and the geometric properties of the cover image. Experimental results show that the proposed algorithm is secure, with high capacity and low distortion rate. Our algorithm also resists against uniform affine transformations such as cropping, rotation and scaling. Also, the performance of the method is compared with other existing 3D Steganography algorithms. [Figure not available: see fulltext.

  1. Left Ventricular Myocardial Segmentation in 3-D Ultrasound Recordings: Effect of Different Endocardial and Epicardial Coupling Strategies.

    PubMed

    Pedrosa, Joao; Barbosa, Daniel; Heyde, Brecht; Schnell, Frederic; Rosner, Assami; Claus, Piet; D'hooge, Jan

    2017-03-01

    Cardiac volume/function assessment remains a critical step in daily cardiology, and 3-D ultrasound plays an increasingly important role. Though development of automatic endocardial segmentation methods has received much attention, the same cannot be said about epicardial segmentation, in spite of the importance of full myocardial segmentation. In this paper, different ways of coupling the endocardial and epicardial segmentations are contrasted and compared with uncoupled segmentation. For this purpose, the B-spline explicit active surfaces framework was used; 27 3-D echocardiographic images were used to validate the different coupling strategies, which were compared with manual contouring of the endocardial and epicardial borders performed by an expert. It is shown that an independent segmentation of the endocardium followed by an epicardial segmentation coupled to the endocardium is the most advantageous. In this way, a framework for fully automatic 3-D myocardial segmentation is proposed using a novel coupling strategy.

  2. 3D goes digital: from stereoscopy to modern 3D imaging techniques

    NASA Astrophysics Data System (ADS)

    Kerwien, N.

    2014-11-01

    In the 19th century, English physicist Charles Wheatstone discovered stereopsis, the basis for 3D perception. His construction of the first stereoscope established the foundation for stereoscopic 3D imaging. Since then, many optical instruments were influenced by these basic ideas. In recent decades, the advent of digital technologies revolutionized 3D imaging. Powerful readily available sensors and displays combined with efficient pre- or post-processing enable new methods for 3D imaging and applications. This paper draws an arc from basic concepts of 3D imaging to modern digital implementations, highlighting instructive examples from its 175 years of history.

  3. 3D seismic image processing for interpretation

    NASA Astrophysics Data System (ADS)

    Wu, Xinming

    Extracting fault, unconformity, and horizon surfaces from a seismic image is useful for interpretation of geologic structures and stratigraphic features. Although interpretation of these surfaces has been automated to some extent by others, significant manual effort is still required for extracting each type of these geologic surfaces. I propose methods to automatically extract all the fault, unconformity, and horizon surfaces from a 3D seismic image. To a large degree, these methods just involve image processing or array processing which is achieved by efficiently solving partial differential equations. For fault interpretation, I propose a linked data structure, which is simpler than triangle or quad meshes, to represent a fault surface. In this simple data structure, each sample of a fault corresponds to exactly one image sample. Using this linked data structure, I extract complete and intersecting fault surfaces without holes from 3D seismic images. I use the same structure in subsequent processing to estimate fault slip vectors. I further propose two methods, using precomputed fault surfaces and slips, to undo faulting in seismic images by simultaneously moving fault blocks and faults themselves. For unconformity interpretation, I first propose a new method to compute a unconformity likelihood image that highlights both the termination areas and the corresponding parallel unconformities and correlative conformities. I then extract unconformity surfaces from the likelihood image and use these surfaces as constraints to more accurately estimate seismic normal vectors that are discontinuous near the unconformities. Finally, I use the estimated normal vectors and use the unconformities as constraints to compute a flattened image, in which seismic reflectors are all flat and vertical gaps correspond to the unconformities. Horizon extraction is straightforward after computing a map of image flattening; we can first extract horizontal slices in the flattened space

  4. Quantification of thyroid volume using 3-D ultrasound imaging.

    PubMed

    Kollorz, E K; Hahn, D A; Linke, R; Goecke, T W; Hornegger, J; Kuwert, T

    2008-04-01

    Ultrasound (US) is among the most popular diagnostic techniques today. It is non-invasive, fast, comparably cheap, and does not require ionizing radiation. US is commonly used to examine the size, and structure of the thyroid gland. In clinical routine, thyroid imaging is usually performed by means of 2-D US. Conventional approaches for measuring the volume of the thyroid gland or its nodules may therefore be inaccurate due to the lack of 3-D information. This work reports a semi-automatic segmentation approach for the classification, and analysis of the thyroid gland based on 3-D US data. The images are scanned in 3-D, pre-processed, and segmented. Several pre-processing methods, and an extension of a commonly used geodesic active contour level set formulation are discussed in detail. The results obtained by this approach are compared to manual interactive segmentations by a medical expert in five representative patients. Our work proposes a novel framework for the volumetric quantification of thyroid gland lobes, which may also be expanded to other parenchymatous organs.

  5. Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution.

    PubMed

    Hu, Peijun; Wu, Fa; Peng, Jialin; Liang, Ping; Kong, Dexing

    2016-12-21

    The detection and delineation of the liver from abdominal 3D computed tomography (CT) images are fundamental tasks in computer-assisted liver surgery planning. However, automatic and accurate segmentation, especially liver detection, remains challenging due to complex backgrounds, ambiguous boundaries, heterogeneous appearances and highly varied shapes of the liver. To address these difficulties, we propose an automatic segmentation framework based on 3D convolutional neural network (CNN) and globally optimized surface evolution. First, a deep 3D CNN is trained to learn a subject-specific probability map of the liver, which gives the initial surface and acts as a shape prior in the following segmentation step. Then, both global and local appearance information from the prior segmentation are adaptively incorporated into a segmentation model, which is globally optimized in a surface evolution way. The proposed method has been validated on 42 CT images from the public Sliver07 database and local hospitals. On the Sliver07 online testing set, the proposed method can achieve an overall score of [Formula: see text], yielding a mean Dice similarity coefficient of [Formula: see text], and an average symmetric surface distance of [Formula: see text] mm. The quantitative validations and comparisons show that the proposed method is accurate and effective for clinical application.

  6. Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution

    NASA Astrophysics Data System (ADS)

    Hu, Peijun; Wu, Fa; Peng, Jialin; Liang, Ping; Kong, Dexing

    2016-12-01

    The detection and delineation of the liver from abdominal 3D computed tomography (CT) images are fundamental tasks in computer-assisted liver surgery planning. However, automatic and accurate segmentation, especially liver detection, remains challenging due to complex backgrounds, ambiguous boundaries, heterogeneous appearances and highly varied shapes of the liver. To address these difficulties, we propose an automatic segmentation framework based on 3D convolutional neural network (CNN) and globally optimized surface evolution. First, a deep 3D CNN is trained to learn a subject-specific probability map of the liver, which gives the initial surface and acts as a shape prior in the following segmentation step. Then, both global and local appearance information from the prior segmentation are adaptively incorporated into a segmentation model, which is globally optimized in a surface evolution way. The proposed method has been validated on 42 CT images from the public Sliver07 database and local hospitals. On the Sliver07 online testing set, the proposed method can achieve an overall score of 80.3+/- 4.5 , yielding a mean Dice similarity coefficient of 97.25+/- 0.65 % , and an average symmetric surface distance of 0.84+/- 0.25 mm. The quantitative validations and comparisons show that the proposed method is accurate and effective for clinical application.

  7. Semi-automatic segmentation for 3D motion analysis of the tongue with dynamic MRI.

    PubMed

    Lee, Junghoon; Woo, Jonghye; Xing, Fangxu; Murano, Emi Z; Stone, Maureen; Prince, Jerry L

    2014-12-01

    Dynamic MRI has been widely used to track the motion of the tongue and measure its internal deformation during speech and swallowing. Accurate segmentation of the tongue is a prerequisite step to define the target boundary and constrain the tracking to tissue points within the tongue. Segmentation of 2D slices or 3D volumes is challenging because of the large number of slices and time frames involved in the segmentation, as well as the incorporation of numerous local deformations that occur throughout the tongue during motion. In this paper, we propose a semi-automatic approach to segment 3D dynamic MRI of the tongue. The algorithm steps include seeding a few slices at one time frame, propagating seeds to the same slices at different time frames using deformable registration, and random walker segmentation based on these seed positions. This method was validated on the tongue of five normal subjects carrying out the same speech task with multi-slice 2D dynamic cine-MR images obtained at three orthogonal orientations and 26 time frames. The resulting semi-automatic segmentations of a total of 130 volumes showed an average dice similarity coefficient (DSC) score of 0.92 with less segmented volume variability between time frames than in manual segmentations.

  8. 3D GPR Imaging of Wooden Logs

    NASA Astrophysics Data System (ADS)

    Halabe, Udaya B.; Pyakurel, Sandeep

    2007-03-01

    There has been a lack of an effective NDE technique to locate internal defects within wooden logs. The few available elastic wave propagation based techniques are limited to predicting E values. Other techniques such as X-rays have not been very successful in detecting internal defects in logs. If defects such as embedded metals could be identified before the sawing process, the saw mills could significantly increase their production by reducing the probability of damage to the saw blade and the associated downtime and the repair cost. Also, if the internal defects such as knots and decayed areas could be identified in logs, the sawing blade can be oriented to exclude the defective portion and optimize the volume of high valued lumber that can be obtained from the logs. In this research, GPR has been successfully used to locate internal defects (knots, decays and embedded metals) within the logs. This paper discusses GPR imaging and mapping of the internal defects using both 2D and 3D interpretation methodology. Metal pieces were inserted in a log and the reflection patterns from these metals were interpreted from the radargrams acquired using 900 MHz antenna. Also, GPR was able to accurately identify the location of knots and decays. Scans from several orientations of the log were collected to generate 3D cylindrical volume. The actual location of the defects showed good correlation with the interpreted defects in the 3D volume. The time/depth slices from 3D cylindrical volume data were useful in understanding the extent of defects inside the log.

  9. Graph-based segmentation for RGB-D data using 3-D geometry enhanced superpixels.

    PubMed

    Yang, Jingyu; Gan, Ziqiao; Li, Kun; Hou, Chunping

    2015-05-01

    With the advances of depth sensing technologies, color image plus depth information (referred to as RGB-D data hereafter) is more and more popular for comprehensive description of 3-D scenes. This paper proposes a two-stage segmentation method for RGB-D data: 1) oversegmentation by 3-D geometry enhanced superpixels and 2) graph-based merging with label cost from superpixels. In the oversegmentation stage, 3-D geometrical information is reconstructed from the depth map. Then, a K-means-like clustering method is applied to the RGB-D data for oversegmentation using an 8-D distance metric constructed from both color and 3-D geometrical information. In the merging stage, treating each superpixel as a node, a graph-based model is set up to relabel the superpixels into semantically-coherent segments. In the graph-based model, RGB-D proximity, texture similarity, and boundary continuity are incorporated into the smoothness term to exploit the correlations of neighboring superpixels. To obtain a compact labeling, the label term is designed to penalize labels linking to similar superpixels that likely belong to the same object. Both the proposed 3-D geometry enhanced superpixel clustering method and the graph-based merging method from superpixels are evaluated by qualitative and quantitative results. By the fusion of color and depth information, the proposed method achieves superior segmentation performance over several state-of-the-art algorithms.

  10. Automated curved planar reformation of 3D spine images

    NASA Astrophysics Data System (ADS)

    Vrtovec, Tomaz; Likar, Bostjan; Pernus, Franjo

    2005-10-01

    Traditional techniques for visualizing anatomical structures are based on planar cross-sections from volume images, such as images obtained by computed tomography (CT) or magnetic resonance imaging (MRI). However, planar cross-sections taken in the coordinate system of the 3D image often do not provide sufficient or qualitative enough diagnostic information, because planar cross-sections cannot follow curved anatomical structures (e.g. arteries, colon, spine, etc). Therefore, not all of the important details can be shown simultaneously in any planar cross-section. To overcome this problem, reformatted images in the coordinate system of the inspected structure must be created. This operation is usually referred to as curved planar reformation (CPR). In this paper we propose an automated method for CPR of 3D spine images, which is based on the image transformation from the standard image-based to a novel spine-based coordinate system. The axes of the proposed spine-based coordinate system are determined on the curve that represents the vertebral column, and the rotation of the vertebrae around the spine curve, both of which are described by polynomial models. The optimal polynomial parameters are obtained in an image analysis based optimization framework. The proposed method was qualitatively and quantitatively evaluated on five CT spine images. The method performed well on both normal and pathological cases and was consistent with manually obtained ground truth data. The proposed spine-based CPR benefits from reduced structural complexity in favour of improved feature perception of the spine. The reformatted images are diagnostically valuable and enable easier navigation, manipulation and orientation in 3D space. Moreover, reformatted images may prove useful for segmentation and other image analysis tasks.

  11. Getting in touch--3D printing in forensic imaging.

    PubMed

    Ebert, Lars Chr; Thali, Michael J; Ross, Steffen

    2011-09-10

    With the increasing use of medical imaging in forensics, as well as the technological advances in rapid prototyping, we suggest combining these techniques to generate displays of forensic findings. We used computed tomography (CT), CT angiography, magnetic resonance imaging (MRI) and surface scanning with photogrammetry in conjunction with segmentation techniques to generate 3D polygon meshes. Based on these data sets, a 3D printer created colored models of the anatomical structures. Using this technique, we could create models of bone fractures, vessels, cardiac infarctions, ruptured organs as well as bitemark wounds. The final models are anatomically accurate, fully colored representations of bones, vessels and soft tissue, and they demonstrate radiologically visible pathologies. The models are more easily understood by laypersons than volume rendering or 2D reconstructions. Therefore, they are suitable for presentations in courtrooms and for educational purposes.

  12. Liver segmentation in contrast enhanced CT data using graph cuts and interactive 3D segmentation refinement methods

    SciTech Connect

    Beichel, Reinhard; Bornik, Alexander; Bauer, Christian; Sorantin, Erich

    2012-03-15

    Purpose: Liver segmentation is an important prerequisite for the assessment of liver cancer treatment options like tumor resection, image-guided radiation therapy (IGRT), radiofrequency ablation, etc. The purpose of this work was to evaluate a new approach for liver segmentation. Methods: A graph cuts segmentation method was combined with a three-dimensional virtual reality based segmentation refinement approach. The developed interactive segmentation system allowed the user to manipulate volume chunks and/or surfaces instead of 2D contours in cross-sectional images (i.e, slice-by-slice). The method was evaluated on twenty routinely acquired portal-phase contrast enhanced multislice computed tomography (CT) data sets. An independent reference was generated by utilizing a currently clinically utilized slice-by-slice segmentation method. After 1 h of introduction to the developed segmentation system, three experts were asked to segment all twenty data sets with the proposed method. Results: Compared to the independent standard, the relative volumetric segmentation overlap error averaged over all three experts and all twenty data sets was 3.74%. Liver segmentation required on average 16 min of user interaction per case. The calculated relative volumetric overlap errors were not found to be significantly different [analysis of variance (ANOVA) test, p = 0.82] between experts who utilized the proposed 3D system. In contrast, the time required by each expert for segmentation was found to be significantly different (ANOVA test, p = 0.0009). Major differences between generated segmentations and independent references were observed in areas were vessels enter or leave the liver and no accepted criteria for defining liver boundaries exist. In comparison, slice-by-slice based generation of the independent standard utilizing a live wire tool took 70.1 min on average. A standard 2D segmentation refinement approach applied to all twenty data sets required on average 38.2 min of

  13. A shape prior-based MRF model for 3D masseter muscle segmentation

    NASA Astrophysics Data System (ADS)

    Majeed, Tahir; Fundana, Ketut; Lüthi, Marcel; Beinemann, Jörg; Cattin, Philippe

    2012-02-01

    Medical image segmentation is generally an ill-posed problem that can only be solved by incorporating prior knowledge. The ambiguities arise due to the presence of noise, weak edges, imaging artifacts, inhomogeneous interior and adjacent anatomical structures having similar intensity profile as the target structure. In this paper we propose a novel approach to segment the masseter muscle using the graph-cut incorporating additional 3D shape priors in CT datasets, which is robust to noise; artifacts; and shape deformations. The main contribution of this paper is in translating the 3D shape knowledge into both unary and pairwise potentials of the Markov Random Field (MRF). The segmentation task is casted as a Maximum-A-Posteriori (MAP) estimation of the MRF. Graph-cut is then used to obtain the global minimum which results in the segmentation of the masseter muscle. The method is tested on 21 CT datasets of the masseter muscle, which are noisy with almost all possessing mild to severe imaging artifacts such as high-density artifacts caused by e.g. the very common dental fillings and dental implants. We show that the proposed technique produces clinically acceptable results to the challenging problem of muscle segmentation, and further provide a quantitative and qualitative comparison with other methods. We statistically show that adding additional shape prior into both unary and pairwise potentials can increase the robustness of the proposed method in noisy datasets.

  14. Imaging fault zones using 3D seismic image processing techniques

    NASA Astrophysics Data System (ADS)

    Iacopini, David; Butler, Rob; Purves, Steve

    2013-04-01

    Significant advances in structural analysis of deep water structure, salt tectonic and extensional rift basin come from the descriptions of fault system geometries imaged in 3D seismic data. However, even where seismic data are excellent, in most cases the trajectory of thrust faults is highly conjectural and still significant uncertainty exists as to the patterns of deformation that develop between the main faults segments, and even of the fault architectures themselves. Moreover structural interpretations that conventionally define faults by breaks and apparent offsets of seismic reflectors are commonly conditioned by a narrow range of theoretical models of fault behavior. For example, almost all interpretations of thrust geometries on seismic data rely on theoretical "end-member" behaviors where concepts as strain localization or multilayer mechanics are simply avoided. Yet analogue outcrop studies confirm that such descriptions are commonly unsatisfactory and incomplete. In order to fill these gaps and improve the 3D visualization of deformation in the subsurface, seismic attribute methods are developed here in conjunction with conventional mapping of reflector amplitudes (Marfurt & Chopra, 2007)). These signal processing techniques recently developed and applied especially by the oil industry use variations in the amplitude and phase of the seismic wavelet. These seismic attributes improve the signal interpretation and are calculated and applied to the entire 3D seismic dataset. In this contribution we will show 3D seismic examples of fault structures from gravity-driven deep-water thrust structures and extensional basin systems to indicate how 3D seismic image processing methods can not only build better the geometrical interpretations of the faults but also begin to map both strain and damage through amplitude/phase properties of the seismic signal. This is done by quantifying and delineating the short-range anomalies on the intensity of reflector amplitudes

  15. Photogrammetric 3D reconstruction using mobile imaging

    NASA Astrophysics Data System (ADS)

    Fritsch, Dieter; Syll, Miguel

    2015-03-01

    In our paper we demonstrate the development of an Android Application (AndroidSfM) for photogrammetric 3D reconstruction that works on smartphones and tablets likewise. The photos are taken with mobile devices, and can thereafter directly be calibrated using standard calibration algorithms of photogrammetry and computer vision, on that device. Due to still limited computing resources on mobile devices, a client-server handshake using Dropbox transfers the photos to the sever to run AndroidSfM for the pose estimation of all photos by Structure-from-Motion and, thereafter, uses the oriented bunch of photos for dense point cloud estimation by dense image matching algorithms. The result is transferred back to the mobile device for visualization and ad-hoc on-screen measurements.

  16. Ames Lab 101: Real-Time 3D Imaging

    SciTech Connect

    Zhang, Song

    2010-01-01

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  17. Ames Lab 101: Real-Time 3D Imaging

    ScienceCinema

    Zhang, Song

    2016-07-12

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  18. 3D Gabor wavelet based vessel filtering of photoacoustic images.

    PubMed

    Haq, Israr Ul; Nagoaka, Ryo; Makino, Takahiro; Tabata, Takuya; Saijo, Yoshifumi

    2016-08-01

    Filtering and segmentation of vasculature is an important issue in medical imaging. The visualization of vasculature is crucial for the early diagnosis and therapy in numerous medical applications. This paper investigates the use of Gabor wavelet to enhance the effect of vasculature while eliminating the noise due to size, sensitivity and aperture of the detector in 3D Optical Resolution Photoacoustic Microscopy (OR-PAM). A detailed multi-scale analysis of wavelet filtering and Hessian based method is analyzed for extracting vessels of different sizes since the blood vessels usually vary with in a range of radii. The proposed algorithm first enhances the vasculature in the image and then tubular structures are classified by eigenvalue decomposition of the local Hessian matrix at each voxel in the image. The algorithm is tested on non-invasive experiments, which shows appreciable results to enhance vasculature in photo-acoustic images.

  19. Improving Semantic Updating Method on 3d City Models Using Hybrid Semantic-Geometric 3d Segmentation Technique

    NASA Astrophysics Data System (ADS)

    Sharkawi, K.-H.; Abdul-Rahman, A.

    2013-09-01

    to LoD4. The accuracy and structural complexity of the 3D objects increases with the LoD level where LoD0 is the simplest LoD (2.5D; Digital Terrain Model (DTM) + building or roof print) while LoD4 is the most complex LoD (architectural details with interior structures). Semantic information is one of the main components in CityGML and 3D City Models, and provides important information for any analyses. However, more often than not, the semantic information is not available for the 3D city model due to the unstandardized modelling process. One of the examples is where a building is normally generated as one object (without specific feature layers such as Roof, Ground floor, Level 1, Level 2, Block A, Block B, etc). This research attempts to develop a method to improve the semantic data updating process by segmenting the 3D building into simpler parts which will make it easier for the users to select and update the semantic information. The methodology is implemented for 3D buildings in LoD2 where the buildings are generated without architectural details but with distinct roof structures. This paper also introduces hybrid semantic-geometric 3D segmentation method that deals with hierarchical segmentation of a 3D building based on its semantic value and surface characteristics, fitted by one of the predefined primitives. For future work, the segmentation method will be implemented as part of the change detection module that can detect any changes on the 3D buildings, store and retrieve semantic information of the changed structure, automatically updates the 3D models and visualize the results in a userfriendly graphical user interface (GUI).

  20. Automatic 2D and 3D segmentation of liver from Computerised Tomography

    NASA Astrophysics Data System (ADS)

    Evans, Alun

    As part of the diagnosis of liver disease, a Computerised Tomography (CT) scan is taken of the patient, which the clinician then uses for assistance in determining the presence and extent of the disease. This thesis presents the background, methodology, results and future work of a project that employs automated methods to segment liver tissue. The clinical motivation behind this work is the desire to facilitate the diagnosis of liver disease such as cirrhosis or cancer, assist in volume determination for liver transplantation, and possibly assist in measuring the effect of any treatment given to the liver. Previous attempts at automatic segmentation of liver tissue have relied on 2D, low-level segmentation techniques, such as thresholding and mathematical morphology, to obtain the basic liver structure. The derived boundary can then be smoothed or refined using more advanced methods. The 2D results presented in this thesis improve greatly on this previous work by using a topology adaptive active contour model to accurately segment liver tissue from CT images. The use of conventional snakes for liver segmentation is difficult due to the presence of other organs closely surrounding the liver this new technique avoids this problem by adding an inflationary force to the basic snake equation, and initialising the snake inside the liver. The concepts underlying the 2D technique are extended to 3D, and results of full 3D segmentation of the liver are presented. The 3D technique makes use of an inflationary active surface model which is adaptively reparameterised, according to its size and local curvature, in order that it may more accurately segment the organ. Statistical analysis of the accuracy of the segmentation is presented for 18 healthy liver datasets, and results of the segmentation of unhealthy livers are also shown. The novel work developed during the course of this project has possibilities for use in other areas of medical imaging research, for example the

  1. [3D display of sequential 2D medical images].

    PubMed

    Lu, Yisong; Chen, Yazhu

    2003-12-01

    A detailed review is given in this paper on various current 3D display methods for sequential 2D medical images and the new development in 3D medical image display. True 3D display, surface rendering, volume rendering, 3D texture mapping and distributed collaborative rendering are discussed in depth. For two kinds of medical applications: Real-time navigation system and high-fidelity diagnosis in computer aided surgery, different 3D display methods are presented.

  2. Progress in 3D imaging and display by integral imaging

    NASA Astrophysics Data System (ADS)

    Martinez-Cuenca, R.; Saavedra, G.; Martinez-Corral, M.; Pons, A.; Javidi, B.

    2009-05-01

    Three-dimensionality is currently considered an important added value in imaging devices, and therefore the search for an optimum 3D imaging and display technique is a hot topic that is attracting important research efforts. As main value, 3D monitors should provide the observers with different perspectives of a 3D scene by simply varying the head position. Three-dimensional imaging techniques have the potential to establish a future mass-market in the fields of entertainment and communications. Integral imaging (InI), which can capture true 3D color images, has been seen as the right technology to 3D viewing to audiences of more than one person. Due to the advanced degree of development, InI technology could be ready for commercialization in the coming years. This development is the result of a strong research effort performed along the past few years by many groups. Since Integral Imaging is still an emerging technology, the first aim of the "3D Imaging and Display Laboratory" at the University of Valencia, has been the realization of a thorough study of the principles that govern its operation. Is remarkable that some of these principles have been recognized and characterized by our group. Other contributions of our research have been addressed to overcome some of the classical limitations of InI systems, like the limited depth of field (in pickup and in display), the poor axial and lateral resolution, the pseudoscopic-to-orthoscopic conversion, the production of 3D images with continuous relief, or the limited range of viewing angles of InI monitors.

  3. Digital acquisition system for high-speed 3-D imaging

    NASA Astrophysics Data System (ADS)

    Yafuso, Eiji

    1997-11-01

    High-speed digital three-dimensional (3-D) imagery is possible using multiple independent charge-coupled device (CCD) cameras with sequentially triggered acquisition and individual field storage capability. The system described here utilizes sixteen independent cameras, providing versatility in configuration and image acquisition. By aligning the cameras in nearly coincident lines-of-sight, a sixteen frame two-dimensional (2-D) sequence can be captured. The delays can be individually adjusted lo yield a greater number of acquired frames during the more rapid segments of the event. Additionally, individual integration periods may be adjusted to ensure adequate radiometric response while minimizing image blur. An alternative alignment and triggering scheme arranges the cameras into two angularly separated banks of eight cameras each. By simultaneously triggering correlated stereo pairs, an eight-frame sequence of stereo images may be captured. In the first alignment scheme the camera lines-of-sight cannot be made precisely coincident. Thus representation of the data as a monocular sequence introduces the issue of independent camera coordinate registration with the real scene. This issue arises more significantly using the stereo pair method to reconstruct quantitative 3-D spatial information of the event as a function of time. The principal development here will be the derivation and evaluation of a solution transform and its inverse for the digital data which will yield a 3-D spatial mapping as a function of time.

  4. TU-F-BRF-06: 3D Pancreas MRI Segmentation Using Dictionary Learning and Manifold Clustering

    SciTech Connect

    Gou, S; Rapacchi, S; Hu, P; Sheng, K

    2014-06-15

    Purpose: The recent advent of MRI guided radiotherapy machines has lent an exciting platform for soft tissue target localization during treatment. However, tools to efficiently utilize MRI images for such purpose have not been developed. Specifically, to efficiently quantify the organ motion, we develop an automated segmentation method using dictionary learning and manifold clustering (DLMC). Methods: Fast 3D HASTE and VIBE MR images of 2 healthy volunteers and 3 patients were acquired. A bounding box was defined to include pancreas and surrounding normal organs including the liver, duodenum and stomach. The first slice of the MRI was used for dictionary learning based on mean-shift clustering and K-SVD sparse representation. Subsequent images were iteratively reconstructed until the error is less than a preset threshold. The preliminarily segmentation was subject to the constraints of manifold clustering. The segmentation results were compared with the mean shift merging (MSM), level set (LS) and manual segmentation methods. Results: DLMC resulted in consistently higher accuracy and robustness than comparing methods. Using manual contours as the ground truth, the mean Dices indices for all subjects are 0.54, 0.56 and 0.67 for MSM, LS and DLMC, respectively based on the HASTE image. The mean Dices indices are 0.70, 0.77 and 0.79 for the three methods based on VIBE images. DLMC is clearly more robust on the patients with the diseased pancreas while LS and MSM tend to over-segment the pancreas. DLMC also achieved higher sensitivity (0.80) and specificity (0.99) combining both imaging techniques. LS achieved equivalent sensitivity on VIBE images but was more computationally inefficient. Conclusion: We showed that pancreas and surrounding normal organs can be reliably segmented based on fast MRI using DLMC. This method will facilitate both planning volume definition and imaging guidance during treatment.

  5. Parallel graph search: application to intraretinal layer segmentation of 3D macular OCT scans

    NASA Astrophysics Data System (ADS)

    Lee, Kyungmoo; Abràmoff, Michael D.; Garvin, Mona K.; Sonka, Milan

    2012-02-01

    Image segmentation is of paramount importance for quantitative analysis of medical image data. Recently, a 3-D graph search method which can detect globally optimal interacting surfaces with respect to the cost function of volumetric images has been introduced, and its utility demonstrated in several application areas. Although the method provides excellent segmentation accuracy, its limitation is a slow processing speed when many surfaces are simultaneously segmented in large volumetric datasets. Here, we propose a novel method of parallel graph search, which overcomes the limitation and allows the quick detection of multiple surfaces. To demonstrate the obtained performance with respect to segmentation accuracy and processing speedup, the new approach was applied to retinal optical coherence tomography (OCT) image data and compared with the performance of the former non-parallel method. Our parallel graph search methods for single and double surface detection are approximately 267 and 181 times faster than the original graph search approach in 5 macular OCT volumes (200 x 5 x 1024 voxels) acquired from the right eyes of 5 normal subjects. The resulting segmentation differences were small as demonstrated by the mean unsigned differences between the non-parallel and parallel methods of 0.0 +/- 0.0 voxels (0.0 +/- 0.0 μm) and 0.27 +/- 0.34 voxels (0.53 +/- 0.66 μm) for the single- and dual-surface approaches, respectively.

  6. Abdominal aortic aneurysm imaging with 3-D ultrasound: 3-D-based maximum diameter measurement and volume quantification.

    PubMed

    Long, A; Rouet, L; Debreuve, A; Ardon, R; Barbe, C; Becquemin, J P; Allaire, E

    2013-08-01

    The clinical reliability of 3-D ultrasound imaging (3-DUS) in quantification of abdominal aortic aneurysm (AAA) was evaluated. B-mode and 3-DUS images of AAAs were acquired for 42 patients. AAAs were segmented. A 3-D-based maximum diameter (Max3-D) and partial volume (Vol30) were defined and quantified. Comparisons between 2-D (Max2-D) and 3-D diameters and between orthogonal acquisitions were performed. Intra- and inter-observer reproducibility was evaluated. Intra- and inter-observer coefficients of repeatability (CRs) were less than 5.18 mm for Max3-D. Intra-observer and inter-observer CRs were respectively less than 6.16 and 8.71 mL for Vol30. The mean of normalized errors of Vol30 was around 7%. Correlation between Max2-D and Max3-D was 0.988 (p < 0.0001). Max3-D and Vol30 were not influenced by a probe rotation of 90°. Use of 3-DUS to quantify AAA is a new approach in clinical practice. The present study proposed and evaluated dedicated parameters. Their reproducibility makes the technique clinically reliable.

  7. Depth map coding using residual segmentation for 3D video system

    NASA Astrophysics Data System (ADS)

    Lee, Cheon; Ho, Yo-Sung

    2013-06-01

    Advanced 3D video systems employ multi-view video-plus-depth data to support the free-viewpoint navigation and comfortable 3D viewing; thus efficient depth map coding becomes an important issue. Unlike the color image, the depth map has a property that depth values of the inner part of an object are monotonic, but those of object boundaries change abruptly. Therefore, residual data generated by prediction errors around object boundaries consume many bits in depth map coding. Representing them with segment data can be better than the use of the conventional transformation around the boundary regions. In this paper, we propose an efficient depth map coding method using a residual segmentation instead of using transformation. The proposed residual segmentation divides residual data into two regions with a segment map and two mean values. If the encoder selects the proposed method in terms of rates, two quantized mean values and an index of the segment map are transmitted. Simulation results show significant gains of up to 10 dB compared to the state-of-the-art coders, such as JPEG2000 and H.264/AVC. [Figure not available: see fulltext.

  8. Infrastructure for 3D Imaging Test Bed

    DTIC Science & Technology

    2007-05-11

    analysis. (c.) Real time detection & analysis of human gait: using a video camera we capture walking human silhouette for pattern modeling and gait ... analysis . Fig. 5 shows the scanning result result that is fed into a Geo-magic software tool for 3D meshing. Fig. 5: 3D scanning result In

  9. Computation of tooth axes of existent and missing teeth from 3D CT images.

    PubMed

    Wang, Yang; Wu, Lin; Guo, Huayan; Qiu, Tiantian; Huang, Yuanliang; Lin, Bin; Wang, Lisheng

    2015-12-01

    Orientations of tooth axes are important quantitative information used in dental diagnosis and surgery planning. However, their computation is a complex problem, and the existing methods have respective limitations. This paper proposes new methods to compute 3D tooth axes from 3D CT images for existent teeth with single root or multiple roots and to estimate 3D tooth axes from 3D CT images for missing teeth. The tooth axis of a single-root tooth will be determined by segmenting the pulp cavity of the tooth and computing the principal direction of the pulp cavity, and the estimation of tooth axes of the missing teeth is modeled as an interpolation problem of some quaternions along a 3D curve. The proposed methods can either avoid the difficult teeth segmentation problem or improve the limitations of existing methods. Their effectiveness and practicality are demonstrated by experimental results of different 3D CT images from the clinic.

  10. Feature detection on 3D images of dental imprints

    NASA Astrophysics Data System (ADS)

    Mokhtari, Marielle; Laurendeau, Denis

    1994-09-01

    A computer vision approach for the extraction of feature points on 3D images of dental imprints is presented. The position of feature points are needed for the measurement of a set of parameters for automatic diagnosis of malocclusion problems in orthodontics. The system for the acquisition of the 3D profile of the imprint, the procedure for the detection of the interstices between teeth, and the approach for the identification of the type of tooth are described, as well as the algorithm for the reconstruction of the surface of each type of tooth. A new approach for the detection of feature points, called the watershed algorithm, is described in detail. The algorithm is a two-stage procedure which tracks the position of local minima at four different scales and produces a final map of the position of the minima. Experimental results of the application of the watershed algorithm on actual 3D images of dental imprints are presented for molars, premolars and canines. The segmentation approach for the analysis of the shape of incisors is also described in detail.

  11. 3D Image Analysis of Geomaterials using Confocal Microscopy

    NASA Astrophysics Data System (ADS)

    Mulukutla, G.; Proussevitch, A.; Sahagian, D.

    2009-05-01

    Confocal microscopy is one of the most significant advances in optical microscopy of the last century. It is widely used in biological sciences but its application to geomaterials lingers due to a number of technical problems. Potentially the technique can perform non-invasive testing on a laser illuminated sample that fluoresces using a unique optical sectioning capability that rejects out-of-focus light reaching the confocal aperture. Fluorescence in geomaterials is commonly induced using epoxy doped with a fluorochrome that is impregnated into the sample to enable discrimination of various features such as void space or material boundaries. However, for many geomaterials, this method cannot be used because they do not naturally fluoresce and because epoxy cannot be impregnated into inaccessible parts of the sample due to lack of permeability. As a result, the confocal images of most geomaterials that have not been pre-processed with extensive sample preparation techniques are of poor quality and lack the necessary image and edge contrast necessary to apply any commonly used segmentation techniques to conduct any quantitative study of its features such as vesicularity, internal structure, etc. In our present work, we are developing a methodology to conduct a quantitative 3D analysis of images of geomaterials collected using a confocal microscope with minimal amount of prior sample preparation and no addition of fluorescence. Two sample geomaterials, a volcanic melt sample and a crystal chip containing fluid inclusions are used to assess the feasibility of the method. A step-by-step process of image analysis includes application of image filtration to enhance the edges or material interfaces and is based on two segmentation techniques: geodesic active contours and region competition. Both techniques have been applied extensively to the analysis of medical MRI images to segment anatomical structures. Preliminary analysis suggests that there is distortion in the

  12. Biview Learning for Human Posture Segmentation from 3D Points Cloud

    PubMed Central

    Qiao, Maoying; Cheng, Jun; Bian, Wei; Tao, Dacheng

    2014-01-01

    Posture segmentation plays an essential role in human motion analysis. The state-of-the-art method extracts sufficiently high-dimensional features from 3D depth images for each 3D point and learns an efficient body part classifier. However, high-dimensional features are memory-consuming and difficult to handle on large-scale training dataset. In this paper, we propose an efficient two-stage dimension reduction scheme, termed biview learning, to encode two independent views which are depth-difference features (DDF) and relative position features (RPF). Biview learning explores the complementary property of DDF and RPF, and uses two stages to learn a compact yet comprehensive low-dimensional feature space for posture segmentation. In the first stage, discriminative locality alignment (DLA) is applied to the high-dimensional DDF to learn a discriminative low-dimensional representation. In the second stage, canonical correlation analysis (CCA) is used to explore the complementary property of RPF and the dimensionality reduced DDF. Finally, we train a support vector machine (SVM) over the output of CCA. We carefully validate the effectiveness of DLA and CCA utilized in the two-stage scheme on our 3D human points cloud dataset. Experimental results show that the proposed biview learning scheme significantly outperforms the state-of-the-art method for human posture segmentation. PMID:24465721

  13. Intuitive terrain reconstruction using height observation-based ground segmentation and 3D object boundary estimation.

    PubMed

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-12-12

    Mobile robot operators must make rapid decisions based on information about the robot's surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot's array of sensors, but some upper parts of objects are beyond the sensors' measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances.

  14. Biview learning for human posture segmentation from 3D points cloud.

    PubMed

    Qiao, Maoying; Cheng, Jun; Bian, Wei; Tao, Dacheng

    2014-01-01

    Posture segmentation plays an essential role in human motion analysis. The state-of-the-art method extracts sufficiently high-dimensional features from 3D depth images for each 3D point and learns an efficient body part classifier. However, high-dimensional features are memory-consuming and difficult to handle on large-scale training dataset. In this paper, we propose an efficient two-stage dimension reduction scheme, termed biview learning, to encode two independent views which are depth-difference features (DDF) and relative position features (RPF). Biview learning explores the complementary property of DDF and RPF, and uses two stages to learn a compact yet comprehensive low-dimensional feature space for posture segmentation. In the first stage, discriminative locality alignment (DLA) is applied to the high-dimensional DDF to learn a discriminative low-dimensional representation. In the second stage, canonical correlation analysis (CCA) is used to explore the complementary property of RPF and the dimensionality reduced DDF. Finally, we train a support vector machine (SVM) over the output of CCA. We carefully validate the effectiveness of DLA and CCA utilized in the two-stage scheme on our 3D human points cloud dataset. Experimental results show that the proposed biview learning scheme significantly outperforms the state-of-the-art method for human posture segmentation.

  15. Intuitive Terrain Reconstruction Using Height Observation-Based Ground Segmentation and 3D Object Boundary Estimation

    PubMed Central

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-01-01

    Mobile robot operators must make rapid decisions based on information about the robot’s surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot’s array of sensors, but some upper parts of objects are beyond the sensors’ measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances. PMID:23235454

  16. 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network

    PubMed Central

    Fedorov, Andriy; Beichel, Reinhard; Kalpathy-Cramer, Jayashree; Finet, Julien; Fillion-Robin, Jean-Christophe; Pujol, Sonia; Bauer, Christian; Jennings, Dominique; Fennessy, Fiona; Sonka, Milan; Buatti, John; Aylward, Stephen; Miller, James V.; Pieper, Steve; Kikinis, Ron

    2012-01-01

    Quantitative analysis has tremendous but mostly unrealized potential in healthcare to support objective and accurate interpretation of the clinical imaging. In 2008, the National Cancer Institute began building the Quantitative Imaging Network (QIN) initiative with the goal of advancing quantitative imaging in the context of personalized therapy and evaluation of treatment response. Computerized analysis is an important component contributing to reproducibility and efficiency of the quantitative imaging techniques. The success of quantitative imaging is contingent on robust analysis methods and software tools to bring these methods from bench to bedside. 3D Slicer is a free open source software application for medical image computing. As a clinical research tool, 3D Slicer is similar to a radiology workstation that supports versatile visualizations but also provides advanced functionality such as automated segmentation and registration for a variety of application domains. Unlike a typical radiology workstation, 3D Slicer is free and is not tied to specific hardware. As a programming platform, 3D Slicer facilitates translation and evaluation of the new quantitative methods by allowing the biomedical researcher to focus on the implementation of the algorithm, and providing abstractions for the common tasks of data communication, visualization and user interface development. Compared to other tools that provide aspects of this functionality, 3D Slicer is fully open source and can be readily extended and redistributed. In addition, 3D Slicer is designed to facilitate the development of new functionality in the form of 3D Slicer extensions. In this paper, we present an overview of 3D Slicer as a platform for prototyping, development and evaluation of image analysis tools for clinical research applications. To illustrate the utility of the platform in the scope of QIN, we discuss several use cases of 3D Slicer by the existing QIN teams, and we elaborate on the future

  17. Deformable templates guided discriminative models for robust 3D brain MRI segmentation.

    PubMed

    Liu, Cheng-Yi; Iglesias, Juan Eugenio; Tu, Zhuowen

    2013-10-01

    Automatically segmenting anatomical structures from 3D brain MRI images is an important task in neuroimaging. One major challenge is to design and learn effective image models accounting for the large variability in anatomy and data acquisition protocols. A deformable template is a type of generative model that attempts to explicitly match an input image with a template (atlas), and thus, they are robust against global intensity changes. On the other hand, discriminative models combine local image features to capture complex image patterns. In this paper, we propose a robust brain image segmentation algorithm that fuses together deformable templates and informative features. It takes advantage of the adaptation capability of the generative model and the classification power of the discriminative models. The proposed algorithm achieves both robustness and efficiency, and can be used to segment brain MRI images with large anatomical variations. We perform an extensive experimental study on four datasets of T1-weighted brain MRI data from different sources (1,082 MRI scans in total) and observe consistent improvement over the state-of-the-art systems.

  18. Automatic segmentation and 3D feature extraction of protein aggregates in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Rodrigues, Pedro L.; Moreira, António H. J.; Teixeira-Castro, Andreia; Oliveira, João; Dias, Nuno; Rodrigues, Nuno F.; Vilaça, João L.

    2012-03-01

    In the last years, it has become increasingly clear that neurodegenerative diseases involve protein aggregation, a process often used as disease progression readout and to develop therapeutic strategies. This work presents an image processing tool to automatic segment, classify and quantify these aggregates and the whole 3D body of the nematode Caenorhabditis Elegans. A total of 150 data set images, containing different slices, were captured with a confocal microscope from animals of distinct genetic conditions. Because of the animals' transparency, most of the slices pixels appeared dark, hampering their body volume direct reconstruction. Therefore, for each data set, all slices were stacked in one single 2D image in order to determine a volume approximation. The gradient of this image was input to an anisotropic diffusion algorithm that uses the Tukey's biweight as edge-stopping function. The image histogram median of this outcome was used to dynamically determine a thresholding level, which allows the determination of a smoothed exterior contour of the worm and the medial axis of the worm body from thinning its skeleton. Based on this exterior contour diameter and the medial animal axis, random 3D points were then calculated to produce a volume mesh approximation. The protein aggregations were subsequently segmented based on an iso-value and blended with the resulting volume mesh. The results obtained were consistent with qualitative observations in literature, allowing non-biased, reliable and high throughput protein aggregates quantification. This may lead to a significant improvement on neurodegenerative diseases treatment planning and interventions prevention.

  19. 3D Mesh Segmentation Based on Markov Random Fields and Graph Cuts

    NASA Astrophysics Data System (ADS)

    Shi, Zhenfeng; Le, Dan; Yu, Liyang; Niu, Xiamu

    3D Mesh segmentation has become an important research field in computer graphics during the past few decades. Many geometry based and semantic oriented approaches for 3D mesh segmentation has been presented. However, only a few algorithms based on Markov Random Field (MRF) has been presented for 3D object segmentation. In this letter, we present a definition of mesh segmentation according to the labeling problem. Inspired by the capability of MRF combining the geometric information and the topology information of a 3D mesh, we propose a novel 3D mesh segmentation model based on MRF and Graph Cuts. Experimental results show that our MRF-based schema achieves an effective segmentation.

  20. Efficient global optimization based 3D carotid AB-LIB MRI segmentation by simultaneously evolving coupled surfaces.

    PubMed

    Ukwatta, Eranga; Yuan, Jing; Rajchl, Martin; Fenster, Aaron

    2012-01-01

    Magnetic resonance (MR) imaging of carotid atherosclerosis biomarkers are increasingly being investigated for the risk assessment of vulnerable plaques. A fast and robust 3D segmentation of the carotid adventitia (AB) and lumen-intima (LIB) boundaries can greatly alleviate the measurement burden of generating quantitative imaging biomarkers in clinical research. In this paper, we propose a novel global optimization-based approach to segment the carotid AB and LIB from 3D T1-weighted black blood MR images, by simultaneously evolving two coupled surfaces with enforcement of anatomical consistency of the AB and LIB. We show that the evolution of two surfaces at each discrete time-frame can be optimized exactly and globally by means of convex relaxation. Our continuous max-flow based algorithm is implemented in GPUs to achieve high computational performance. The experiment results from 16 carotid MR images show that the algorithm obtained high agreement with manual segmentations and achieved high repeatability in segmentation.

  1. 3-D segmentation and quantitative analysis of inner and outer walls of thrombotic abdominal aortic aneurysms

    NASA Astrophysics Data System (ADS)

    Lee, Kyungmoo; Yin, Yin; Wahle, Andreas; Olszewski, Mark E.; Sonka, Milan

    2008-03-01

    An abdominal aortic aneurysm (AAA) is an area of a localized widening of the abdominal aorta, with a frequent presence of thrombus. A ruptured aneurysm can cause death due to severe internal bleeding. AAA thrombus segmentation and quantitative analysis are of paramount importance for diagnosis, risk assessment, and determination of treatment options. Until now, only a small number of methods for thrombus segmentation and analysis have been presented in the literature, either requiring substantial user interaction or exhibiting insufficient performance. We report a novel method offering minimal user interaction and high accuracy. Our thrombus segmentation method is composed of an initial automated luminal surface segmentation, followed by a cost function-based optimal segmentation of the inner and outer surfaces of the aortic wall. The approach utilizes the power and flexibility of the optimal triangle mesh-based 3-D graph search method, in which cost functions for thrombus inner and outer surfaces are based on gradient magnitudes. Sometimes local failures caused by image ambiguity occur, in which case several control points are used to guide the computer segmentation without the need to trace borders manually. Our method was tested in 9 MDCT image datasets (951 image slices). With the exception of a case in which the thrombus was highly eccentric, visually acceptable aortic lumen and thrombus segmentation results were achieved. No user interaction was used in 3 out of 8 datasets, and 7.80 +/- 2.71 mouse clicks per case / 0.083 +/- 0.035 mouse clicks per image slice were required in the remaining 5 datasets.

  2. Glasses-free 3D viewing systems for medical imaging

    NASA Astrophysics Data System (ADS)

    Magalhães, Daniel S. F.; Serra, Rolando L.; Vannucci, André L.; Moreno, Alfredo B.; Li, Li M.

    2012-04-01

    In this work we show two different glasses-free 3D viewing systems for medical imaging: a stereoscopic system that employs a vertically dispersive holographic screen (VDHS) and a multi-autostereoscopic system, both used to produce 3D MRI/CT images. We describe how to obtain a VDHS in holographic plates optimized for this application, with field of view of 7 cm to each eye and focal length of 25 cm, showing images done with the system. We also describe a multi-autostereoscopic system, presenting how it can generate 3D medical imaging from viewpoints of a MRI or CT image, showing results of a 3D angioresonance image.

  3. Computerized Liver Volumetry on MRI by Using 3D Geodesic Active Contour Segmentation

    PubMed Central

    Huynh, Hieu Trung; Karademir, Ibrahim; Oto, Aytekin; Suzuki, Kenji

    2014-01-01

    OBJECTIVE Our purpose was to develop an accurate automated 3D liver segmentation scheme for measuring liver volumes on MRI. SUBJECTS AND METHODS Our scheme for MRI liver volumetry consisted of three main stages. First, the preprocessing stage was applied to T1-weighted MRI of the liver in the portal venous phase to reduce noise and produce the boundary-enhanced image. This boundary-enhanced image was used as a speed function for a 3D fast-marching algorithm to generate an initial surface that roughly approximated the shape of the liver. A 3D geodesic-active-contour segmentation algorithm refined the initial surface to precisely determine the liver boundaries. The liver volumes determined by our scheme were compared with those manually traced by a radiologist, used as the reference standard. RESULTS The two volumetric methods reached excellent agreement (intraclass correlation coefficient, 0.98) without statistical significance (p = 0.42). The average (± SD) accuracy was 99.4% ± 0.14%, and the average Dice overlap coefficient was 93.6% ± 1.7%. The mean processing time for our automated scheme was 1.03 ± 0.13 minutes, whereas that for manual volumetry was 24.0 ± 4.4 minutes (p < 0.001). CONCLUSION The MRI liver volumetry based on our automated scheme agreed excellently with reference-standard volumetry, and it required substantially less completion time. PMID:24370139

  4. Semi-automatic 3D segmentation of costal cartilage in CT data from Pectus Excavatum patients

    NASA Astrophysics Data System (ADS)

    Barbosa, Daniel; Queirós, Sandro; Rodrigues, Nuno; Correia-Pinto, Jorge; Vilaça, J.

    2015-03-01

    One of the current frontiers in the clinical management of Pectus Excavatum (PE) patients is the prediction of the surgical outcome prior to the intervention. This can be done through computerized simulation of the Nuss procedure, which requires an anatomically correct representation of the costal cartilage. To this end, we take advantage of the costal cartilage tubular structure to detect it through multi-scale vesselness filtering. This information is then used in an interactive 2D initialization procedure which uses anatomical maximum intensity projections of 3D vesselness feature images to efficiently initialize the 3D segmentation process. We identify the cartilage tissue centerlines in these projected 2D images using a livewire approach. We finally refine the 3D cartilage surface through region-based sparse field level-sets. We have tested the proposed algorithm in 6 noncontrast CT datasets from PE patients. A good segmentation performance was found against reference manual contouring, with an average Dice coefficient of 0.75±0.04 and an average mean surface distance of 1.69+/-0.30mm. The proposed method requires roughly 1 minute for the interactive initialization step, which can positively contribute to an extended use of this tool in clinical practice, since current manual delineation of the costal cartilage can take up to an hour.

  5. 3D/2D registration and segmentation of scoliotic vertebrae using statistical models.

    PubMed

    Benameur, Said; Mignotte, Max; Parent, Stefan; Labelle, Hubert; Skalli, Wafa; de Guise, Jacques

    2003-01-01

    We propose a new 3D/2D registration method for vertebrae of the scoliotic spine, using two conventional radiographic views (postero-anterior and lateral), and a priori global knowledge of the geometric structure of each vertebra. This geometric knowledge is efficiently captured by a statistical deformable template integrating a set of admissible deformations, expressed by the first modes of variation in Karhunen-Loeve expansion, of the pathological deformations observed on a representative scoliotic vertebra population. The proposed registration method consists of fitting the projections of this deformable template with the preliminary segmented contours of the corresponding vertebra on the two radiographic views. The 3D/2D registration problem is stated as the minimization of a cost function for each vertebra and solved with a gradient descent technique. Registration of the spine is then done vertebra by vertebra. The proposed method efficiently provides accurate 3D reconstruction of each scoliotic vertebra and, consequently, it also provides accurate knowledge of the 3D structure of the whole scoliotic spine. This registration method has been successfully tested on several biplanar radiographic images and validated on 57 scoliotic vertebrae. The validation results reported in this paper demonstrate that the proposed statistical scheme performs better than other conventional 3D reconstruction methods.

  6. 3D Building Models Segmentation Based on K-Means++ Cluster Analysis

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Mao, B.

    2016-10-01

    3D mesh model segmentation is drawing increasing attentions from digital geometry processing field in recent years. The original 3D mesh model need to be divided into separate meaningful parts or surface patches based on certain standards to support reconstruction, compressing, texture mapping, model retrieval and etc. Therefore, segmentation is a key problem for 3D mesh model segmentation. In this paper, we propose a method to segment Collada (a type of mesh model) 3D building models into meaningful parts using cluster analysis. Common clustering methods segment 3D mesh models by K-means, whose performance heavily depends on randomized initial seed points (i.e., centroid) and different randomized centroid can get quite different results. Therefore, we improved the existing method and used K-means++ clustering algorithm to solve this problem. Our experiments show that K-means++ improves both the speed and the accuracy of K-means, and achieve good and meaningful results.

  7. 3D ultrasound imaging for prosthesis fabrication and diagnostic imaging

    SciTech Connect

    Morimoto, A.K.; Bow, W.J.; Strong, D.S.

    1995-06-01

    The fabrication of a prosthetic socket for a below-the-knee amputee requires knowledge of the underlying bone structure in order to provide pressure relief for sensitive areas and support for load bearing areas. The goal is to enable the residual limb to bear pressure with greater ease and utility. Conventional methods of prosthesis fabrication are based on limited knowledge about the patient`s underlying bone structure. A 3D ultrasound imaging system was developed at Sandia National Laboratories. The imaging system provides information about the location of the bones in the residual limb along with the shape of the skin surface. Computer assisted design (CAD) software can use this data to design prosthetic sockets for amputees. Ultrasound was selected as the imaging modality. A computer model was developed to analyze the effect of the various scanning parameters and to assist in the design of the overall system. The 3D ultrasound imaging system combines off-the-shelf technology for image capturing, custom hardware, and control and image processing software to generate two types of image data -- volumetric and planar. Both volumetric and planar images reveal definition of skin and bone geometry with planar images providing details on muscle fascial planes, muscle/fat interfaces, and blood vessel definition. The 3D ultrasound imaging system was tested on 9 unilateral below-the- knee amputees. Image data was acquired from both the sound limb and the residual limb. The imaging system was operated in both volumetric and planar formats. An x-ray CT (Computed Tomography) scan was performed on each amputee for comparison. Results of the test indicate beneficial use of ultrasound to generate databases for fabrication of prostheses at a lower cost and with better initial fit as compared to manually fabricated prostheses.

  8. Lung lobe segmentation by graph search with 3D shape constraints

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Hoffman, Eric A.; Reinhardt, Joseph M.

    2001-05-01

    The lung lobes are natural units for reporting image-based measurements of the respiratory system. Lobar segmentation can also be used in pulmonary image processing to guide registration and drive additional segmentation. We have developed a 3D shape-constrained lobar segmentation technique for volumetric pulmonary CT images. The method consists of a search engine and shape constraints that work together to detect lobar fissures using gray level information and anatomic shape characteristics in two steps: (1) a coarse localization step, (2) a fine tuning step. An error detecting mechanism using shape constraints is used in our method to correct erroneous search results. Our method has been tested in four subjects, and the results are compared to manually traced results. The average RMS difference between the manual results and shape-constrained segmentation results is 2.23 mm. We further validated our method by evaluating the repeatability of lobar volumes measured from repeat scans of the same subject. We compared lobar air and tissue volume variations to show that most of the lobar volume variations are due to difference in air volume scan to scan.

  9. Research of range-gated 3D imaging technology

    NASA Astrophysics Data System (ADS)

    Yang, Haitao; Zhao, Hongli; Youchen, Fan

    2016-10-01

    Laser image data-based target recognition technology is one of the key technologies of laser active imaging systems. This paper discussed the status quo of 3-D imaging development at home and abroad, analyzed the current technological bottlenecks, and built a prototype of range-gated systems to obtain a set of range-gated slice images, and then constructed the 3-D images of the target by binary method and centroid method, respectively, and by constructing different numbers of slice images explored the relationship between the number of images and the reconstruction accuracy in the 3-D image reconstruction process. The experiment analyzed the impact of two algorithms, binary method and centroid method, on the results of 3-D image reconstruction. In the binary method, a comparative analysis was made on the impact of different threshold values on the results of reconstruction, where 0.1, 0.2, 0.3 and adaptive threshold values were selected for 3-D reconstruction of the slice images. In the centroid method, 15, 10, 6, 3, and 2 images were respectively used to realize 3-D reconstruction. Experimental results showed that with the same number of slice images, the accuracy of centroid method was higher than the binary algorithm, and the binary algorithm had a large dependence on the selection of threshold; with the number of slice images dwindling, the accuracy of images reconstructed by centroid method continued to reduce, and at least three slice images were required in order to obtain one 3-D image.

  10. 3D Imaging by Mass Spectrometry: A New Frontier

    PubMed Central

    Seeley, Erin H.; Caprioli, Richard M.

    2012-01-01

    Summary Imaging mass spectrometry can generate three-dimensional volumes showing molecular distributions in an entire organ or animal through registration and stacking of serial tissue sections. Here we review the current state of 3D imaging mass spectrometry as well as provide insights and perspectives on the process of generating 3D mass spectral data along with a discussion of the process necessary to generate a 3D image volume. PMID:22276611

  11. Reconstruction-based 3D/2D image registration.

    PubMed

    Tomazevic, Dejan; Likar, Bostjan; Pernus, Franjo

    2005-01-01

    In this paper we present a novel 3D/2D registration method, where first, a 3D image is reconstructed from a few 2D X-ray images and next, the preoperative 3D image is brought into the best possible spatial correspondence with the reconstructed image by optimizing a similarity measure. Because the quality of the reconstructed image is generally low, we introduce a novel asymmetric mutual information similarity measure, which is able to cope with low image quality as well as with different imaging modalities. The novel 3D/2D registration method has been evaluated using standardized evaluation methodology and publicly available 3D CT, 3DRX, and MR and 2D X-ray images of two spine phantoms, for which gold standard registrations were known. In terms of robustness, reliability and capture range the proposed method outperformed the gradient-based method and the method based on digitally reconstructed radiographs (DRRs).

  12. Automated three-dimensional choroidal vessel segmentation of 3D 1060 nm OCT retinal data

    PubMed Central

    Kajić, Vedran; Esmaeelpour, Marieh; Glittenberg, Carl; Kraus, Martin F.; Honegger, Joachim; Othara, Richu; Binder, Susanne; Fujimoto, James G.; Drexler, Wolfgang

    2012-01-01

    A fully automated, robust vessel segmentation algorithm has been developed for choroidal OCT, employing multiscale 3D edge filtering and projection of “probability cones” to determine the vessel “core”, even in the tomograms with low signal-to-noise ratio (SNR). Based on the ideal vessel response after registration and multiscale filtering, with computed depth related SNR, the vessel core estimate is dilated to quantify the full vessel diameter. As a consequence, various statistics can be computed using the 3D choroidal vessel information, such as ratios of inner (smaller) to outer (larger) choroidal vessels or the absolute/relative volume of choroid vessels. Choroidal vessel quantification can be displayed in various forms, focused and averaged within a special region of interest, or analyzed as the function of image depth. In this way, the proposed algorithm enables unique visualization of choroidal watershed zones, as well as the vessel size reduction when investigating the choroid from the sclera towards the retinal pigment epithelium (RPE). To the best of our knowledge, this is the first time that an automatic choroidal vessel segmentation algorithm is successfully applied to 1060 nm 3D OCT of healthy and diseased eyes. PMID:23304653

  13. 3D Imaging with Holographic Tomography

    NASA Astrophysics Data System (ADS)

    Sheppard, Colin J. R.; Kou, Shan Shan

    2010-04-01

    There are two main types of tomography that enable the 3D internal structures of objects to be reconstructed from scattered data. The commonly known computerized tomography (CT) give good results in the x-ray wavelength range where the filtered back-projection theorem and Radon transform can be used. These techniques rely on the Fourier projection-slice theorem where rays are considered to propagate straight through the object. Another type of tomography called `diffraction tomography' applies in applications in optics and acoustics where diffraction and scattering effects must be taken into account. The latter proves to be a more difficult problem, as light no longer travels straight through the sample. Holographic tomography is a popular way of performing diffraction tomography and there has been active experimental research on reconstructing complex refractive index data using this approach recently. However, there are two distinct ways of doing tomography: either by rotation of the object or by rotation of the illumination while fixing the detector. The difference between these two setups is intuitive but needs to be quantified. From Fourier optics and information transformation point of view, we use 3D transfer function analysis to quantitatively describe how spatial frequencies of the object are mapped to the Fourier domain. We first employ a paraxial treatment by calculating the Fourier transform of the defocused OTF. The shape of the calculated 3D CTF for tomography, by scanning the illumination in one direction only, takes on a form that we might call a 'peanut,' compared to the case of object rotation, where a diablo is formed, the peanut exhibiting significant differences and non-isotropy. In particular, there is a line singularity along one transverse direction. Under high numerical aperture conditions, the paraxial treatment is not accurate, and so we make use of 3D analytical geometry to calculate the behaviour in the non-paraxial case. This time, we

  14. Optical 3D imaging and visualization of concealed objects

    NASA Astrophysics Data System (ADS)

    Berginc, G.; Bellet, J.-B.; Berechet, I.; Berechet, S.

    2016-09-01

    This paper gives new insights on optical 3D imagery. In this paper we explore the advantages of laser imagery to form a three-dimensional image of the scene. 3D laser imaging can be used for three-dimensional medical imaging and surveillance because of ability to identify tumors or concealed objects. We consider the problem of 3D reconstruction based upon 2D angle-dependent laser images. The objective of this new 3D laser imaging is to provide users a complete 3D reconstruction of objects from available 2D data limited in number. The 2D laser data used in this paper come from simulations that are based on the calculation of the laser interactions with the different meshed objects of the scene of interest or from experimental 2D laser images. We show that combining the Radom transform on 2D laser images with the Maximum Intensity Projection can generate 3D views of the considered scene from which we can extract the 3D concealed object in real time. With different original numerical or experimental examples, we investigate the effects of the input contrasts. We show the robustness and the stability of the method. We have developed a new patented method of 3D laser imaging based on three-dimensional reflective tomographic reconstruction algorithms and an associated visualization method. In this paper we present the global 3D reconstruction and visualization procedures.

  15. Swarm Intelligence Integrated Graph-Cut for Liver Segmentation from 3D-CT Volumes

    PubMed Central

    Eapen, Maya; Korah, Reeba; Geetha, G.

    2015-01-01

    The segmentation of organs in CT volumes is a prerequisite for diagnosis and treatment planning. In this paper, we focus on liver segmentation from contrast-enhanced abdominal CT volumes, a challenging task due to intensity overlapping, blurred edges, large variability in liver shape, and complex background with cluttered features. The algorithm integrates multidiscriminative cues (i.e., prior domain information, intensity model, and regional characteristics of liver in a graph-cut image segmentation framework). The paper proposes a swarm intelligence inspired edge-adaptive weight function for regulating the energy minimization of the traditional graph-cut model. The model is validated both qualitatively (by clinicians and radiologists) and quantitatively on publically available computed tomography (CT) datasets (MICCAI 2007 liver segmentation challenge, 3D-IRCAD). Quantitative evaluation of segmentation results is performed using liver volume calculations and a mean score of 80.8% and 82.5% on MICCAI and IRCAD dataset, respectively, is obtained. The experimental result illustrates the efficiency and effectiveness of the proposed method. PMID:26689833

  16. Surface modeling and segmentation of the 3D airway wall in MSCT

    NASA Astrophysics Data System (ADS)

    Ortner, Margarete; Fetita, Catalin; Brillet, Pierre-Yves; Pr"teux, Françoise; Grenier, Philippe

    2011-03-01

    Airway wall remodeling in asthma and chronic obstructive pulmonary disease (COPD) is a well-known indicator of the pathology. In this context, current clinical studies aim for establishing the relationship between the airway morphological structure and its function. Multislice computed tomography (MSCT) allows morphometric assessment of airways, but requires dedicated segmentation tools for clinical exploitation. While most of the existing tools are limited to cross-section measurements, this paper develops a fully 3D approach for airway wall segmentation. Such approach relies on a deformable model which is built up as a patient-specific surface model at the level of the airway lumen and deformed to reach the outer surface of the airway wall. The deformation dynamics obey a force equilibrium in a Lagrangian framework constrained by a vector field which avoids model self-intersections. The segmentation result allows a dense quantitative investigation of the airway wall thickness with a deeper insight at bronchus subdivisions than classic cross-section methods. The developed approach has been assessed both by visual inspection of 2D cross-sections, performed by two experienced radiologists on clinical data obtained with various protocols, and by using a simulated ground truth (pulmonary CT image model). The results confirmed a robust segmentation in intra-pulmonary regions with an error in the range of the MSCT image resolution and underlined the interest of the volumetric approach versus purely 2D methods.

  17. CellSegm - a MATLAB toolbox for high-throughput 3D cell segmentation.

    PubMed

    Hodneland, Erlend; Kögel, Tanja; Frei, Dominik Michael; Gerdes, Hans-Hermann; Lundervold, Arvid

    2013-08-09

    : The application of fluorescence microscopy in cell biology often generates a huge amount of imaging data. Automated whole cell segmentation of such data enables the detection and analysis of individual cells, where a manual delineation is often time consuming, or practically not feasible. Furthermore, compared to manual analysis, automation normally has a higher degree of reproducibility. CellSegm, the software presented in this work, is a Matlab based command line software toolbox providing an automated whole cell segmentation of images showing surface stained cells, acquired by fluorescence microscopy. It has options for both fully automated and semi-automated cell segmentation. Major algorithmic steps are: (i) smoothing, (ii) Hessian-based ridge enhancement, (iii) marker-controlled watershed segmentation, and (iv) feature-based classfication of cell candidates. Using a wide selection of image recordings and code snippets, we demonstrate that CellSegm has the ability to detect various types of surface stained cells in 3D. After detection and outlining of individual cells, the cell candidates can be subject to software based analysis, specified and programmed by the end-user, or they can be analyzed by other software tools. A segmentation of tissue samples with appropriate characteristics is also shown to be resolvable in CellSegm. The command-line interface of CellSegm facilitates scripting of the separate tools, all implemented in Matlab, offering a high degree of flexibility and tailored workflows for the end-user. The modularity and scripting capabilities of CellSegm enable automated workflows and quantitative analysis of microscopic data, suited for high-throughput image based screening.

  18. Multiscale 3-D shape representation and segmentation using spherical wavelets.

    PubMed

    Nain, Delphine; Haker, Steven; Bobick, Aaron; Tannenbaum, Allen

    2007-04-01

    This paper presents a novel multiscale shape representation and segmentation algorithm based on the spherical wavelet transform. This work is motivated by the need to compactly and accurately encode variations at multiple scales in the shape representation in order to drive the segmentation and shape analysis of deep brain structures, such as the caudate nucleus or the hippocampus. Our proposed shape representation can be optimized to compactly encode shape variations in a population at the needed scale and spatial locations, enabling the construction of more descriptive, nonglobal, nonuniform shape probability priors to be included in the segmentation and shape analysis framework. In particular, this representation addresses the shortcomings of techniques that learn a global shape prior at a single scale of analysis and cannot represent fine, local variations in a population of shapes in the presence of a limited dataset. Specifically, our technique defines a multiscale parametric model of surfaces belonging to the same population using a compact set of spherical wavelets targeted to that population. We further refine the shape representation by separating into groups wavelet coefficients that describe independent global and/or local biological variations in the population, using spectral graph partitioning. We then learn a prior probability distribution induced over each group to explicitly encode these variations at different scales and spatial locations. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior for segmentation. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to two different brain structures, the caudate nucleus and the hippocampus, of interest in the study of schizophrenia. We show: 1) a reconstruction task of a test set to validate the expressiveness of

  19. Autostereoscopic 3D visualization and image processing system for neurosurgery.

    PubMed

    Meyer, Tobias; Kuß, Julia; Uhlemann, Falk; Wagner, Stefan; Kirsch, Matthias; Sobottka, Stephan B; Steinmeier, Ralf; Schackert, Gabriele; Morgenstern, Ute

    2013-06-01

    A demonstrator system for planning neurosurgical procedures was developed based on commercial hardware and software. The system combines an easy-to-use environment for surgical planning with high-end visualization and the opportunity to analyze data sets for research purposes. The demonstrator system is based on the software AMIRA. Specific algorithms for segmentation, elastic registration, and visualization have been implemented and adapted to the clinical workflow. Modules from AMIRA and the image processing library Insight Segmentation and Registration Toolkit (ITK) can be combined to solve various image processing tasks. Customized modules tailored to specific clinical problems can easily be implemented using the AMIRA application programming interface and a self-developed framework for ITK filters. Visualization is done via autostereoscopic displays, which provide a 3D impression without viewing aids. A Spaceball device allows a comfortable, intuitive way of navigation in the data sets. Via an interface to a neurosurgical navigation system, the demonstrator system can be used intraoperatively. The precision, applicability, and benefit of the demonstrator system for planning of neurosurgical interventions and for neurosurgical research were successfully evaluated by neurosurgeons using phantom and patient data sets.

  20. Light field display and 3D image reconstruction

    NASA Astrophysics Data System (ADS)

    Iwane, Toru

    2016-06-01

    Light field optics and its applications become rather popular in these days. With light field optics or light field thesis, real 3D space can be described in 2D plane as 4D data, which we call as light field data. This process can be divided in two procedures. First, real3D scene is optically reduced with imaging lens. Second, this optically reduced 3D image is encoded into light field data. In later procedure we can say that 3D information is encoded onto a plane as 2D data by lens array plate. This transformation is reversible and acquired light field data can be decoded again into 3D image with the arrayed lens plate. "Refocusing" (focusing image on your favorite point after taking a picture), light-field camera's most popular function, is some kind of sectioning process from encoded 3D data (light field data) to 2D image. In this paper at first I show our actual light field camera and our 3D display using acquired and computer-simulated light field data, on which real 3D image is reconstructed. In second I explain our data processing method whose arithmetic operation is performed not in Fourier domain but in real domain. Then our 3D display system is characterized by a few features; reconstructed image is of finer resolutions than density of arrayed lenses and it is not necessary to adjust lens array plate to flat display on which light field data is displayed.

  1. Segmented Domain Decomposition Multigrid For 3-D Turbomachinery Flows

    NASA Technical Reports Server (NTRS)

    Celestina, M. L.; Adamczyk, J. J.; Rubin, S. G.

    2001-01-01

    A Segmented Domain Decomposition Multigrid (SDDMG) procedure was developed for three-dimensional viscous flow problems as they apply to turbomachinery flows. The procedure divides the computational domain into a coarse mesh comprised of uniformly spaced cells. To resolve smaller length scales such as the viscous layer near a surface, segments of the coarse mesh are subdivided into a finer mesh. This is repeated until adequate resolution of the smallest relevant length scale is obtained. Multigrid is used to communicate information between the different grid levels. To test the procedure, simulation results will be presented for a compressor and turbine cascade. These simulations are intended to show the ability of the present method to generate grid independent solutions. Comparisons with data will also be presented. These comparisons will further demonstrate the usefulness of the present work for they allow an estimate of the accuracy of the flow modeling equations independent of error attributed to numerical discretization.

  2. 3D Imaging with Structured Illumination for Advanced Security Applications

    SciTech Connect

    Birch, Gabriel Carisle; Dagel, Amber Lynn; Kast, Brian A.; Smith, Collin S.

    2015-09-01

    Three-dimensional (3D) information in a physical security system is a highly useful dis- criminator. The two-dimensional data from an imaging systems fails to provide target dis- tance and three-dimensional motion vector, which can be used to reduce nuisance alarm rates and increase system effectiveness. However, 3D imaging devices designed primarily for use in physical security systems are uncommon. This report discusses an architecture favorable to physical security systems; an inexpensive snapshot 3D imaging system utilizing a simple illumination system. The method of acquiring 3D data, tests to understand illumination de- sign, and software modifications possible to maximize information gathering capability are discussed.

  3. Analysis and dynamic 3D visualization of cerebral blood flow combining 3D and 4D MR image sequences

    NASA Astrophysics Data System (ADS)

    Forkert, Nils Daniel; Säring, Dennis; Fiehler, Jens; Illies, Till; Möller, Dietmar; Handels, Heinz

    2009-02-01

    In this paper we present a method for the dynamic visualization of cerebral blood flow. Spatio-temporal 4D magnetic resonance angiography (MRA) image datasets and 3D MRA datasets with high spatial resolution were acquired for the analysis of arteriovenous malformations (AVMs). One of the main tasks is the combination of the information of the 3D and 4D MRA image sequences. Initially, in the 3D MRA dataset the vessel system is segmented and a 3D surface model is generated. Then, temporal intensity curves are analyzed voxelwise in the 4D MRA image sequences. A curve fitting of the temporal intensity curves to a patient individual reference curve is used to extract the bolus arrival times in the 4D MRA sequences. After non-linear registration of both MRA datasets the extracted hemodynamic information is transferred to the surface model where the time points of inflow can be visualized color coded dynamically over time. The dynamic visualizations computed using the curve fitting method for the estimation of the bolus arrival times were rated superior compared to those computed using conventional approaches for bolus arrival time estimation. In summary the procedure suggested allows a dynamic visualization of the individual hemodynamic situation and better understanding during the visual evaluation of cerebral vascular diseases.

  4. Volumetric image display for complex 3D data visualization

    NASA Astrophysics Data System (ADS)

    Tsao, Che-Chih; Chen, Jyh Shing

    2000-05-01

    A volumetric image display is a new display technology capable of displaying computer generated 3D images in a volumetric space. Many viewers can walk around the display and see the image from omni-directions simultaneously without wearing any glasses. The image is real and possesses all major elements in both physiological and psychological depth cues. Due to the volumetric nature of its image, the VID can provide the most natural human-machine interface in operations involving 3D data manipulation and 3D targets monitoring. The technology creates volumetric 3D images by projecting a series of profiling images distributed in the space form a volumetric image because of the after-image effect of human eyes. Exemplary applications in biomedical image visualization were tested on a prototype display, using different methods to display a data set from Ct-scans. The features of this display technology make it most suitable for applications that require quick understanding of the 3D relations, need frequent spatial interactions with the 3D images, or involve time-varying 3D data. It can also be useful for group discussion and decision making.

  5. Computer-aided diagnosis of pulmonary nodules on CT scans: segmentation and classification using 3D active contours.

    PubMed

    Way, Ted W; Hadjiiski, Lubomir M; Sahiner, Berkman; Chan, Heang-Ping; Cascade, Philip N; Kazerooni, Ella A; Bogot, Naama; Zhou, Chuan

    2006-07-01

    We are developing a computer-aided diagnosis (CAD) system to classify malignant and benign lung nodules found on CT scans. A fully automated system was designed to segment the nodule from its surrounding structured background in a local volume of interest (VOI) and to extract image features for classification. Image segmentation was performed with a three-dimensional (3D) active contour (AC) method. A data set of 96 lung nodules (44 malignant, 52 benign) from 58 patients was used in this study. The 3D AC model is based on two-dimensional AC with the addition of three new energy components to take advantage of 3D information: (1) 3D gradient, which guides the active contour to seek the object surface, (2) 3D curvature, which imposes a smoothness constraint in the z direction, and (3) mask energy, which penalizes contours that grow beyond the pleura or thoracic wall. The search for the best energy weights in the 3D AC model was guided by a simplex optimization method. Morphological and gray-level features were extracted from the segmented nodule. The rubber band straightening transform (RBST) was applied to the shell of voxels surrounding the nodule. Texture features based on run-length statistics were extracted from the RBST image. A linear discriminant analysis classifier with stepwise feature selection was designed using a second simplex optimization to select the most effective features. Leave-one-case-out resampling was used to train and test the CAD system. The system achieved a test area under the receiver operating characteristic curve (A(z)) of 0.83 +/- 0.04. Our preliminary results indicate that use of the 3D AC model and the 3D texture features surrounding the nodule is a promising approach to the segmentation and classification of lung nodules with CAD. The segmentation performance of the 3D AC model trained with our data set was evaluated with 23 nodules available in the Lung Image Database Consortium (LIDC). The lung nodule volumes segmented by the 3D

  6. Computer-aided diagnosis of pulmonary nodules on CT scans: Segmentation and classification using 3D active contours

    PubMed Central

    Way, Ted W.; Hadjiiski, Lubomir M.; Sahiner, Berkman; Chan, Heang-Ping; Cascade, Philip N.; Kazerooni, Ella A.; Bogot, Naama; Zhou, Chuan

    2009-01-01

    We are developing a computer-aided diagnosis (CAD) system to classify malignant and benign lung nodules found on CT scans. A fully automated system was designed to segment the nodule from its surrounding structured background in a local volume of interest (VOI) and to extract image features for classification. Image segmentation was performed with a three-dimensional (3D) active contour (AC) method. A data set of 96 lung nodules (44 malignant, 52 benign) from 58 patients was used in this study. The 3D AC model is based on two-dimensional AC with the addition of three new energy components to take advantage of 3D information: (1) 3D gradient, which guides the active contour to seek the object surface, (2) 3D curvature, which imposes a smoothness constraint in the z direction, and (3) mask energy, which penalizes contours that grow beyond the pleura or thoracic wall. The search for the best energy weights in the 3D AC model was guided by a simplex optimization method. Morphological and gray-level features were extracted from the segmented nodule. The rubber band straightening transform (RBST) was applied to the shell of voxels surrounding the nodule. Texture features based on run-length statistics were extracted from the RBST image. A linear discriminant analysis classifier with stepwise feature selection was designed using a second simplex optimization to select the most effective features. Leave-one-case-out resampling was used to train and test the CAD system. The system achieved a test area under the receiver operating characteristic curve (Az) of 0.83±0.04. Our preliminary results indicate that use of the 3D AC model and the 3D texture features surrounding the nodule is a promising approach to the segmentation and classification of lung nodules with CAD. The segmentation performance of the 3D AC model trained with our data set was evaluated with 23 nodules available in the Lung Image Database Consortium (LIDC). The lung nodule volumes segmented by the 3D AC

  7. 3D augmented reality with integral imaging display

    NASA Astrophysics Data System (ADS)

    Shen, Xin; Hua, Hong; Javidi, Bahram

    2016-06-01

    In this paper, a three-dimensional (3D) integral imaging display for augmented reality is presented. By implementing the pseudoscopic-to-orthoscopic conversion method, elemental image arrays with different capturing parameters can be transferred into the identical format for 3D display. With the proposed merging algorithm, a new set of elemental images for augmented reality display is generated. The newly generated elemental images contain both the virtual objects and real world scene with desired depth information and transparency parameters. The experimental results indicate the feasibility of the proposed 3D augmented reality with integral imaging.

  8. On Alternative Approaches to 3D Image Perception: Monoscopic 3D Techniques

    NASA Astrophysics Data System (ADS)

    Blundell, Barry G.

    2015-06-01

    In the eighteenth century, techniques that enabled a strong sense of 3D perception to be experienced without recourse to binocular disparities (arising from the spatial separation of the eyes) underpinned the first significant commercial sales of 3D viewing devices and associated content. However following the advent of stereoscopic techniques in the nineteenth century, 3D image depiction has become inextricably linked to binocular parallax and outside the vision science and arts communities relatively little attention has been directed towards earlier approaches. Here we introduce relevant concepts and terminology and consider a number of techniques and optical devices that enable 3D perception to be experienced on the basis of planar images rendered from a single vantage point. Subsequently we allude to possible mechanisms for non-binocular parallax based 3D perception. Particular attention is given to reviewing areas likely to be thought-provoking to those involved in 3D display development, spatial visualization, HCI, and other related areas of interdisciplinary research.

  9. Elastic model-based segmentation of 3-D neuroradiological data sets.

    PubMed

    Kelemen, A; Székely, G; Gerig, G

    1999-10-01

    This paper presents a new technique for the automatic model-based segmentation of three-dimensional (3-D) objects from volumetric image data. The development closely follows the seminal work of Taylor and Cootes on active shape models, but is based on a hierarchical parametric object description rather than a point distribution model. The segmentation system includes both the building of statistical models and the automatic segmentation of new image data sets via a restricted elastic deformation of shape models. Geometric models are derived from a sample set of image data which have been segmented by experts. The surfaces of these binary objects are converted into parametric surface representations, which are normalized to get an invariant object-centered coordinate system. Surface representations are expanded into series of spherical harmonics which provide parametric descriptions of object shapes. It is shown that invariant object surface parametrization provides a good approximation to automatically determine object homology in terms of sets of corresponding sets of surface points. Gray-level information near object boundaries is represented by 1-D intensity profiles normal to the surface. Considering automatic segmentation of brain structures as our driving application, our choice of coordinates for object alignment was the well-accepted stereotactic coordinate system. Major variation of object shapes around the mean shape, also referred to as shape eigenmodes, are calculated in shape parameter space rather than the feature space of point coordinates. Segmentation makes use of the object shape statistics by restricting possible elastic deformations into the range of the training shapes. The mean shapes are initialized in a new data set by specifying the landmarks of the stereotactic coordinate system. The model elastically deforms, driven by the displacement forces across the object's surface, which are generated by matching local intensity profiles. Elastic

  10. Diffusive smoothing of 3D segmented medical data

    PubMed Central

    Patané, Giuseppe

    2014-01-01

    This paper proposes an accurate, computationally efficient, and spectrum-free formulation of the heat diffusion smoothing on 3D shapes, represented as triangle meshes. The idea behind our approach is to apply a (r,r)-degree Padé–Chebyshev rational approximation to the solution of the heat diffusion equation. The proposed formulation is equivalent to solve r sparse, symmetric linear systems, is free of user-defined parameters, and is robust to surface discretization. We also discuss a simple criterion to select the time parameter that provides the best compromise between approximation accuracy and smoothness of the solution. Finally, our experiments on anatomical data show that the spectrum-free approach greatly reduces the computational cost and guarantees a higher approximation accuracy than previous work. PMID:26257940

  11. 3-D segmentation of retinal blood vessels in spectral-domain OCT volumes of the optic nerve head

    NASA Astrophysics Data System (ADS)

    Lee, Kyungmoo; Abràmoff, Michael D.; Niemeijer, Meindert; Garvin, Mona K.; Sonka, Milan

    2010-03-01

    Segmentation of retinal blood vessels can provide important information for detecting and tracking retinal vascular diseases including diabetic retinopathy, arterial hypertension, arteriosclerosis and retinopathy of prematurity (ROP). Many studies on 2-D segmentation of retinal blood vessels from a variety of medical images have been performed. However, 3-D segmentation of retinal blood vessels from spectral-domain optical coherence tomography (OCT) volumes, which is capable of providing geometrically accurate vessel models, to the best of our knowledge, has not been previously studied. The purpose of this study is to develop and evaluate a method that can automatically detect 3-D retinal blood vessels from spectral-domain OCT scans centered on the optic nerve head (ONH). The proposed method utilized a fast multiscale 3-D graph search to segment retinal surfaces as well as a triangular mesh-based 3-D graph search to detect retinal blood vessels. An experiment on 30 ONH-centered OCT scans (15 right eye scans and 15 left eye scans) from 15 subjects was performed, and the mean unsigned error in 3-D of the computer segmentations compared with the independent standard obtained from a retinal specialist was 3.4 +/- 2.5 voxels (0.10 +/- 0.07 mm).

  12. A 3D Interactive Multi-object Segmentation Tool using Local Robust Statistics Driven Active Contours

    PubMed Central

    Gao, Yi; Kikinis, Ron; Bouix, Sylvain; Shenton, Martha; Tannenbaum, Allen

    2012-01-01

    Extracting anatomical and functional significant structures renders one of the important tasks for both the theoretical study of the medical image analysis, and the clinical and practical community. In the past, much work has been dedicated only to the algorithmic development. Nevertheless, for clinical end users, a well designed algorithm with an interactive software is necessary for an algorithm to be utilized in their daily work. Furthermore, the software would better be open sourced in order to be used and validated by not only the authors but also the entire community. Therefore, the contribution of the present work is twofolds: First, we propose a new robust statistics based conformal metric and the conformal area driven multiple active contour framework, to simultaneously extract multiple targets from MR and CT medical imagery in 3D. Second, an open source graphically interactive 3D segmentation tool based on the aforementioned contour evolution is implemented and is publicly available for end users on multiple platforms. In using this software for the segmentation task, the process is initiated by the user drawn strokes (seeds) in the target region in the image. Then, the local robust statistics are used to describe the object features, and such features are learned adaptively from the seeds under a non-parametric estimation scheme. Subsequently, several active contours evolve simultaneously with their interactions being motivated by the principles of action and reaction — This not only guarantees mutual exclusiveness among the contours, but also no longer relies upon the assumption that the multiple objects fill the entire image domain, which was tacitly or explicitly assumed in many previous works. In doing so, the contours interact and converge to equilibrium at the desired positions of the desired multiple objects. Furthermore, with the aim of not only validating the algorithm and the software, but also demonstrating how the tool is to be used, we

  13. 3D liver segmentation using multiple region appearances and graph cuts

    SciTech Connect

    Peng, Jialin Zhang, Hongbo; Hu, Peijun; Lu, Fang; Kong, Dexing; Peng, Zhiyi

    2015-12-15

    Purpose: Efficient and accurate 3D liver segmentations from contrast-enhanced computed tomography (CT) images play an important role in therapeutic strategies for hepatic diseases. However, inhomogeneous appearances, ambiguous boundaries, and large variance in shape often make it a challenging task. The existence of liver abnormalities poses further difficulty. Despite the significant intensity difference, liver tumors should be segmented as part of the liver. This study aims to address these challenges, especially when the target livers contain subregions with distinct appearances. Methods: The authors propose a novel multiregion-appearance based approach with graph cuts to delineate the liver surface. For livers with multiple subregions, a geodesic distance based appearance selection scheme is introduced to utilize proper appearance constraint for each subregion. A special case of the proposed method, which uses only one appearance constraint to segment the liver, is also presented. The segmentation process is modeled with energy functions incorporating both boundary and region information. Rather than a simple fixed combination, an adaptive balancing weight is introduced and learned from training sets. The proposed method only calls initialization inside the liver surface. No additional constraints from user interaction are utilized. Results: The proposed method was validated on 50 3D CT images from three datasets, i.e., Medical Image Computing and Computer Assisted Intervention (MICCAI) training and testing set, and local dataset. On MICCAI testing set, the proposed method achieved a total score of 83.4 ± 3.1, outperforming nonexpert manual segmentation (average score of 75.0). When applying their method to MICCAI training set and local dataset, it yielded a mean Dice similarity coefficient (DSC) of 97.7% ± 0.5% and 97.5% ± 0.4%, respectively. These results demonstrated the accuracy of the method when applied to different computed tomography (CT) datasets

  14. Fast and memory-efficient LOGISMOS graph search for intraretinal layer segmentation of 3D macular OCT scans

    NASA Astrophysics Data System (ADS)

    Lee, Kyungmoo; Zhang, Li; Abramoff, Michael D.; Sonka, Milan

    2015-03-01

    Image segmentation is important for quantitative analysis of medical image data. Recently, our research group has introduced a 3-D graph search method which can simultaneously segment optimal interacting surfaces with respect to the cost function in volumetric images. Although it provides excellent segmentation accuracy, it is computationally demanding (both CPU and memory) to simultaneously segment multiple surfaces from large volumetric images. Therefore, we propose a new, fast, and memory-efficient graph search method for intraretinal layer segmentation of 3-D macular optical coherence tomograpy (OCT) scans. The key idea is to reduce the size of a graph by combining the nodes with high costs based on the multiscale approach. The new approach requires significantly less memory and achieves significantly faster processing speeds (p < 0.01) with only small segmentation differences compared to the original graph search method. This paper discusses sub-optimality of this approach and assesses trade-off relationships between decreasing processing speed and increasing segmentation differences from that of the original method as a function of employed scale of the underlying graph construction.

  15. Imaging hypoxia using 3D photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Stantz, Keith M.

    2010-02-01

    Purpose: The objective is to develop a multivariate in vivo hemodynamic model of tissue oxygenation (MiHMO2) based on 3D photoacoustic spectroscopy. Introduction: Low oxygen levels, or hypoxia, deprives cancer cells of oxygen and confers resistance to irradiation, some chemotherapeutic drugs, and oxygen-dependent therapies (phototherapy) leading to treatment failure and poor disease-free and overall survival. For example, clinical studies of patients with breast carcinomas, cervical cancer, and head and neck carcinomas (HNC) are more likely to suffer local reoccurrence and metastasis if their tumors are hypoxic. A novel method to non invasively measure tumor hypoxia, identify its type, and monitor its heterogeneity is devised by measuring tumor hemodynamics, MiHMO2. Material and Methods: Simulations are performed to compare tumor pO2 levels and hypoxia based on physiology - perfusion, fractional plasma volume, fractional cellular volume - and its hemoglobin status - oxygen saturation and hemoglobin concentration - based on in vivo measurements of breast, prostate, and ovarian tumors. Simulations of MiHMO2 are performed to assess the influence of scanner resolutions and different mathematic models of oxygen delivery. Results: Sensitivity of pO2 and hypoxic fraction to photoacoustic scanner resolution and dependencies on model complexity will be presented using hemodynamic parameters for different tumors. Conclusions: Photoacoustic CT spectroscopy provides a unique ability to monitor hemodynamic and cellular physiology in tissue, which can be used to longitudinally monitor tumor oxygenation and its response to anti-angiogenic therapies.

  16. Fusion of laser and image sensory data for 3-D modeling of the free navigation space

    NASA Technical Reports Server (NTRS)

    Mass, M.; Moghaddamzadeh, A.; Bourbakis, N.

    1994-01-01

    A fusion technique which combines two different types of sensory data for 3-D modeling of a navigation space is presented. The sensory data is generated by a vision camera and a laser scanner. The problem of different resolutions for these sensory data was solved by reduced image resolution, fusion of different data, and use of a fuzzy image segmentation technique.

  17. Dedicated 3D photoacoustic breast imaging

    PubMed Central

    Kruger, Robert A.; Kuzmiak, Cherie M.; Lam, Richard B.; Reinecke, Daniel R.; Del Rio, Stephen P.; Steed, Doreen

    2013-01-01

    Purpose: To report the design and imaging methodology of a photoacoustic scanner dedicated to imaging hemoglobin distribution throughout a human breast. Methods: The authors developed a dedicated breast photoacoustic mammography (PAM) system using a spherical detector aperture based on our previous photoacoustic tomography scanner. The system uses 512 detectors with rectilinear scanning. The scan shape is a spiral pattern whose radius varies from 24 to 96 mm, thereby allowing a field of view that accommodates a wide range of breast sizes. The authors measured the contrast-to-noise ratio (CNR) using a target comprised of 1-mm dots printed on clear plastic. Each dot absorption coefficient was approximately the same as a 1-mm thickness of whole blood at 756 nm, the output wavelength of the Alexandrite laser used by this imaging system. The target was immersed in varying depths of an 8% solution of stock Liposyn II-20%, which mimics the attenuation of breast tissue (1.1 cm−1). The spatial resolution was measured using a 6 μm-diameter carbon fiber embedded in agar. The breasts of four healthy female volunteers, spanning a range of breast size from a brassiere C cup to a DD cup, were imaged using a 96-mm spiral protocol. Results: The CNR target was clearly visualized to a depth of 53 mm. Spatial resolution, which was estimated from the full width at half-maximum of a profile across the PAM image of a carbon fiber, was 0.42 mm. In the four human volunteers, the vasculature was well visualized throughout the breast tissue, including to the chest wall. Conclusions: CNR, lateral field-of-view and penetration depth of our dedicated PAM scanning system is sufficient to image breasts as large as 1335 mL, which should accommodate up to 90% of the women in the United States. PMID:24320471

  18. 3-D capacitance density imaging system

    DOEpatents

    Fasching, G.E.

    1988-03-18

    A three-dimensional capacitance density imaging of a gasified bed or the like in a containment vessel is achieved using a plurality of electrodes provided circumferentially about the bed in levels and along the bed in channels. The electrodes are individually and selectively excited electrically at each level to produce a plurality of current flux field patterns generated in the bed at each level. The current flux field patterns are suitably sensed and a density pattern of the bed at each level determined. By combining the determined density patterns at each level, a three-dimensional density image of the bed is achieved. 7 figs.

  19. 3-D seismic imaging of complex geologies

    SciTech Connect

    Womble, D.E.; Dosanjh, S.S.; VanDyke, J.P.; Oldfield, R.A.; Greenberg, D.S.

    1995-02-01

    We present three codes for the Intel Paragon that address the problem of three-dimensional seismic imaging of complex geologies. The first code models acoustic wave propagation and can be used to generate data sets to calibrate and validate seismic imaging codes. This code reported the fastest timings for acoustic wave propagation codes at a recent SEG (Society of Exploration Geophysicists) meeting. The second code implements a Kirchhoff method for pre-stack depth migration. Development of this code is almost complete, and preliminary results are presented. The third code implements a wave equation approach to seismic migration and is a Paragon implementation of a code from the ARCO Seismic Benchmark Suite.

  20. Active surface model improvement by energy function optimization for 3D segmentation.

    PubMed

    Azimifar, Zohreh; Mohaddesi, Mahsa

    2015-04-01

    This paper proposes an optimized and efficient active surface model by improving the energy functions, searching method, neighborhood definition and resampling criterion. Extracting an accurate surface of the desired object from a number of 3D images using active surface and deformable models plays an important role in computer vision especially medical image processing. Different powerful segmentation algorithms have been suggested to address the limitations associated with the model initialization, poor convergence to surface concavities and slow convergence rate. This paper proposes a method to improve one of the strongest and recent segmentation algorithms, namely the Decoupled Active Surface (DAS) method. We consider a gradient of wavelet edge extracted image and local phase coherence as external energy to extract more information from images and we use curvature integral as internal energy to focus on high curvature region extraction. Similarly, we use resampling of points and a line search for point selection to improve the accuracy of the algorithm. We further employ an estimation of the desired object as an initialization for the active surface model. A number of tests and experiments have been done and the results show the improvements with regards to the extracted surface accuracy and computational time of the presented algorithm compared with the best and recent active surface models.

  1. Polarimetric 3D integral imaging in photon-starved conditions.

    PubMed

    Carnicer, Artur; Javidi, Bahram

    2015-03-09

    We develop a method for obtaining 3D polarimetric integral images from elemental images recorded in low light illumination conditions. Since photon-counting images are very sparse, calculation of the Stokes parameters and the degree of polarization should be handled carefully. In our approach, polarimetric 3D integral images are generated using the Maximum Likelihood Estimation and subsequently reconstructed by means of a Total Variation Denoising filter. In this way, polarimetric results are comparable to those obtained in conventional illumination conditions. We also show that polarimetric information retrieved from photon starved images can be used in 3D object recognition problems. To the best of our knowledge, this is the first report on 3D polarimetric photon counting integral imaging.

  2. Phase Sensitive Cueing for 3D Objects in Overhead Images

    SciTech Connect

    Paglieroni, D

    2005-02-04

    Locating specific 3D objects in overhead images is an important problem in many remote sensing applications. 3D objects may contain either one connected component or multiple disconnected components. Solutions must accommodate images acquired with diverse sensors at various times of the day, in various seasons of the year, or under various weather conditions. Moreover, the physical manifestation of a 3D object with fixed physical dimensions in an overhead image is highly dependent on object physical dimensions, object position/orientation, image spatial resolution, and imaging geometry (e.g., obliqueness). This paper describes a two-stage computer-assisted approach for locating 3D objects in overhead images. In the matching stage, the computer matches models of 3D objects to overhead images. The strongest degree of match over all object orientations is computed at each pixel. Unambiguous local maxima in the degree of match as a function of pixel location are then found. In the cueing stage, the computer sorts image thumbnails in descending order of figure-of-merit and presents them to human analysts for visual inspection and interpretation. The figure-of-merit associated with an image thumbnail is computed from the degrees of match to a 3D object model associated with unambiguous local maxima that lie within the thumbnail. This form of computer assistance is invaluable when most of the relevant thumbnails are highly ranked, and the amount of inspection time needed is much less for the highly ranked thumbnails than for images as a whole.

  3. 3D laser imaging for concealed object identification

    NASA Astrophysics Data System (ADS)

    Berechet, Ion; Berginc, Gérard; Berechet, Stefan

    2014-09-01

    This paper deals with new optical non-conventional 3D laser imaging. Optical non-conventional imaging explores the advantages of laser imaging to form a three-dimensional image of the scene. 3D laser imaging can be used for threedimensional medical imaging, topography, surveillance, robotic vision because of ability to detect and recognize objects. In this paper, we present a 3D laser imaging for concealed object identification. The objective of this new 3D laser imaging is to provide the user a complete 3D reconstruction of the concealed object from available 2D data limited in number and with low representativeness. The 2D laser data used in this paper come from simulations that are based on the calculation of the laser interactions with the different interfaces of the scene of interest and from experimental results. We show the global 3D reconstruction procedures capable to separate objects from foliage and reconstruct a threedimensional image of the considered object. In this paper, we present examples of reconstruction and completion of three-dimensional images and we analyse the different parameters of the identification process such as resolution, the scenario of camouflage, noise impact and lacunarity degree.

  4. Shape representation for efficient landmark-based segmentation in 3-d.

    PubMed

    Ibragimov, Bulat; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž

    2014-04-01

    In this paper, we propose a novel approach to landmark-based shape representation that is based on transportation theory, where landmarks are considered as sources and destinations, all possible landmark connections as roads, and established landmark connections as goods transported via these roads. Landmark connections, which are selectively established, are identified through their statistical properties describing the shape of the object of interest, and indicate the least costly roads for transporting goods from sources to destinations. From such a perspective, we introduce three novel shape representations that are combined with an existing landmark detection algorithm based on game theory. To reduce computational complexity, which results from the extension from 2-D to 3-D segmentation, landmark detection is augmented by a concept known in game theory as strategy dominance. The novel shape representations, game-theoretic landmark detection and strategy dominance are combined into a segmentation framework that was evaluated on 3-D computed tomography images of lumbar vertebrae and femoral heads. The best shape representation yielded symmetric surface distance of 0.75 mm and 1.11 mm, and Dice coefficient of 93.6% and 96.2% for lumbar vertebrae and femoral heads, respectively. By applying strategy dominance, the computational costs were further reduced for up to three times.

  5. Spline-based deforming ellipsoids for interactive 3D bioimage segmentation.

    PubMed

    Delgado-Gonzalo, Ricard; Chenouard, Nicolas; Unser, Michael

    2013-10-01

    We present a new fast active-contour model (a.k.a. snake) for image segmentation in 3D microscopy. We introduce a parametric design that relies on exponential B-spline bases and allows us to build snakes that are able to reproduce ellipsoids. We design our bases to have the shortest-possible support, subject to some constraints. Thus, computational efficiency is maximized. The proposed 3D snake can approximate blob-like objects with good accuracy and can perfectly reproduce spheres and ellipsoids, irrespective of their position and orientation. The optimization process is remarkably fast due to the use of Gauss' theorem within our energy computation scheme. Our technique yields successful segmentation results, even for challenging data where object contours are not well defined. This is due to our parametric approach that allows one to favor prior shapes. In addition, this paper provides a software that gives full control over the snakes via an intuitive manipulation of few control points.

  6. Critical comparison of 3D imaging approaches

    SciTech Connect

    Bennett, C L

    1999-06-03

    Currently three imaging spectrometer architectures, tunable filter, dispersive, and Fourier transform, are viable for imaging the universe in three dimensions. There are domains of greatest utility for each of these architectures. The optimum choice among the various alternative architectures is dependent on the nature of the desired observations, the maturity of the relevant technology, and the character of the backgrounds. The domain appropriate for each of the alternatives is delineated; both for instruments having ideal performance as well as for instrumentation based on currently available technology. The environment and science objectives for the Next Generation Space Telescope will be used as a specific representative case to provide a basis for comparison of the various alternatives.

  7. 3-D Imaging Based, Radiobiological Dosimetry

    PubMed Central

    Sgouros, George; Frey, Eric; Wahl, Richard; He, Bin; Prideaux, Andrew; Hobbs, Robert

    2008-01-01

    Targeted radionuclide therapy holds promise as a new treatment against cancer. Advances in imaging are making it possible to evaluate the spatial distribution of radioactivity in tumors and normal organs over time. Matched anatomical imaging such as combined SPECT/CT and PET/CT have also made it possible to obtain tissue density information in conjunction with the radioactivity distribution. Coupled with sophisticated iterative reconstruction algorithims, these advances have made it possible to perform highly patient-specific dosimetry that also incorporates radiobiological modeling. Such sophisticated dosimetry techniques are still in the research investigation phase. Given the attendant logistical and financial costs, a demonstrated improvement in patient care will be a prerequisite for the adoption of such highly-patient specific internal dosimetry methods. PMID:18662554

  8. A 3D Level Set Method for Microwave Breast Imaging

    PubMed Central

    Colgan, Timothy J.; Hagness, Susan C.; Van Veen, Barry D.

    2015-01-01

    Objective Conventional inverse-scattering algorithms for microwave breast imaging result in moderate resolution images with blurred boundaries between tissues. Recent 2D numerical microwave imaging studies demonstrate that the use of a level set method preserves dielectric boundaries, resulting in a more accurate, higher resolution reconstruction of the dielectric properties distribution. Previously proposed level set algorithms are computationally expensive and thus impractical in 3D. In this paper we present a computationally tractable 3D microwave imaging algorithm based on level sets. Methods We reduce the computational cost of the level set method using a Jacobian matrix, rather than an adjoint method, to calculate Frechet derivatives. We demonstrate the feasibility of 3D imaging using simulated array measurements from 3D numerical breast phantoms. We evaluate performance by comparing full 3D reconstructions to those from a conventional microwave imaging technique. We also quantitatively assess the efficacy of our algorithm in evaluating breast density. Results Our reconstructions of 3D numerical breast phantoms improve upon those of a conventional microwave imaging technique. The density estimates from our level set algorithm are more accurate than those of conventional microwave imaging, and the accuracy is greater than that reported for mammographic density estimation. Conclusion Our level set method leads to a feasible level of computational complexity for full 3D imaging, and reconstructs the heterogeneous dielectric properties distribution of the breast more accurately than conventional microwave imaging methods. Significance 3D microwave breast imaging using a level set method is a promising low-cost, non-ionizing alternative to current breast imaging techniques. PMID:26011863

  9. Acoustic 3D imaging of dental structures

    SciTech Connect

    Lewis, D.K.; Hume, W.R.; Douglass, G.D.

    1997-02-01

    Our goals for the first year of this three dimensional electodynamic imaging project was to determine how to combine flexible, individual addressable; preprocessing of array source signals; spectral extrapolation or received signals; acoustic tomography codes; and acoustic propagation modeling code. We investigated flexible, individually addressable acoustic array material to find the best match in power, sensitivity and cost and settled on PVDF sheet arrays and 3-1 composite material.

  10. 3D/3D registration of coronary CTA and biplane XA reconstructions for improved image guidance

    SciTech Connect

    Dibildox, Gerardo Baka, Nora; Walsum, Theo van; Punt, Mark; Aben, Jean-Paul; Schultz, Carl; Niessen, Wiro

    2014-09-15

    Purpose: The authors aim to improve image guidance during percutaneous coronary interventions of chronic total occlusions (CTO) by providing information obtained from computed tomography angiography (CTA) to the cardiac interventionist. To this end, the authors investigate a method to register a 3D CTA model to biplane reconstructions. Methods: The authors developed a method for registering preoperative coronary CTA with intraoperative biplane x-ray angiography (XA) images via 3D models of the coronary arteries. The models are extracted from the CTA and biplane XA images, and are temporally aligned based on CTA reconstruction phase and XA ECG signals. Rigid spatial alignment is achieved with a robust probabilistic point set registration approach using Gaussian mixture models (GMMs). This approach is extended by including orientation in the Gaussian mixtures and by weighting bifurcation points. The method is evaluated on retrospectively acquired coronary CTA datasets of 23 CTO patients for which biplane XA images are available. Results: The Gaussian mixture model approach achieved a median registration accuracy of 1.7 mm. The extended GMM approach including orientation was not significantly different (P > 0.1) but did improve robustness with regards to the initialization of the 3D models. Conclusions: The authors demonstrated that the GMM approach can effectively be applied to register CTA to biplane XA images for the purpose of improving image guidance in percutaneous coronary interventions.

  11. 3D CT spine data segmentation and analysis of vertebrae bone lesions.

    PubMed

    Peter, R; Malinsky, M; Ourednicek, P; Jan, J

    2013-01-01

    A method is presented aiming at detecting and classifying bone lesions in 3D CT data of human spine, via Bayesian approach utilizing Markov random fields. A developed algorithm for necessary segmentation of individual possibly heavily distorted vertebrae based on 3D intensity modeling of vertebra types is presented as well.

  12. In Situ 3D Segmentation of Individual Plant Leaves Using a RGB-D Camera for Agricultural Automation

    PubMed Central

    Xia, Chunlei; Wang, Longtan; Chung, Bu-Keun; Lee, Jang-Myung

    2015-01-01

    In this paper, we present a challenging task of 3D segmentation of individual plant leaves from occlusions in the complicated natural scene. Depth data of plant leaves is introduced to improve the robustness of plant leaf segmentation. The low cost RGB-D camera is utilized to capture depth and color image in fields. Mean shift clustering is applied to segment plant leaves in depth image. Plant leaves are extracted from the natural background by examining vegetation of the candidate segments produced by mean shift. Subsequently, individual leaves are segmented from occlusions by active contour models. Automatic initialization of the active contour models is implemented by calculating the center of divergence from the gradient vector field of depth image. The proposed segmentation scheme is tested through experiments under greenhouse conditions. The overall segmentation rate is 87.97% while segmentation rates for single and occluded leaves are 92.10% and 86.67%, respectively. Approximately half of the experimental results show segmentation rates of individual leaves higher than 90%. Nevertheless, the proposed method is able to segment individual leaves from heavy occlusions. PMID:26295395

  13. Volumetric CT-based segmentation of NSCLC using 3D-Slicer

    PubMed Central

    Velazquez, Emmanuel Rios; Parmar, Chintan; Jermoumi, Mohammed; Mak, Raymond H.; van Baardwijk, Angela; Fennessy, Fiona M.; Lewis, John H.; De Ruysscher, Dirk; Kikinis, Ron; Lambin, Philippe; Aerts, Hugo J. W. L.

    2013-01-01

    Accurate volumetric assessment in non-small cell lung cancer (NSCLC) is critical for adequately informing treatments. In this study we assessed the clinical relevance of a semiautomatic computed tomography (CT)-based segmentation method using the competitive region-growing based algorithm, implemented in the free and public available 3D-Slicer software platform. We compared the 3D-Slicer segmented volumes by three independent observers, who segmented the primary tumour of 20 NSCLC patients twice, to manual slice-by-slice delineations of five physicians. Furthermore, we compared all tumour contours to the macroscopic diameter of the tumour in pathology, considered as the “gold standard”. The 3D-Slicer segmented volumes demonstrated high agreement (overlap fractions > 0.90), lower volume variability (p = 0.0003) and smaller uncertainty areas (p = 0.0002), compared to manual slice-by-slice delineations. Furthermore, 3D-Slicer segmentations showed a strong correlation to pathology (r = 0.89, 95%CI, 0.81–0.94). Our results show that semiautomatic 3D-Slicer segmentations can be used for accurate contouring and are more stable than manual delineations. Therefore, 3D-Slicer can be employed as a starting point for treatment decisions or for high-throughput data mining research, such as Radiomics, where manual delineating often represent a time-consuming bottleneck. PMID:24346241

  14. Volumetric CT-based segmentation of NSCLC using 3D-Slicer

    NASA Astrophysics Data System (ADS)

    Velazquez, Emmanuel Rios; Parmar, Chintan; Jermoumi, Mohammed; Mak, Raymond H.; van Baardwijk, Angela; Fennessy, Fiona M.; Lewis, John H.; de Ruysscher, Dirk; Kikinis, Ron; Lambin, Philippe; Aerts, Hugo J. W. L.

    2013-12-01

    Accurate volumetric assessment in non-small cell lung cancer (NSCLC) is critical for adequately informing treatments. In this study we assessed the clinical relevance of a semiautomatic computed tomography (CT)-based segmentation method using the competitive region-growing based algorithm, implemented in the free and public available 3D-Slicer software platform. We compared the 3D-Slicer segmented volumes by three independent observers, who segmented the primary tumour of 20 NSCLC patients twice, to manual slice-by-slice delineations of five physicians. Furthermore, we compared all tumour contours to the macroscopic diameter of the tumour in pathology, considered as the ``gold standard''. The 3D-Slicer segmented volumes demonstrated high agreement (overlap fractions > 0.90), lower volume variability (p = 0.0003) and smaller uncertainty areas (p = 0.0002), compared to manual slice-by-slice delineations. Furthermore, 3D-Slicer segmentations showed a strong correlation to pathology (r = 0.89, 95%CI, 0.81-0.94). Our results show that semiautomatic 3D-Slicer segmentations can be used for accurate contouring and are more stable than manual delineations. Therefore, 3D-Slicer can be employed as a starting point for treatment decisions or for high-throughput data mining research, such as Radiomics, where manual delineating often represent a time-consuming bottleneck.

  15. 3D MR ventricle segmentation in pre-term infants with post-hemorrhagic ventricle dilation

    NASA Astrophysics Data System (ADS)

    Qiu, Wu; Yuan, Jing; Kishimoto, Jessica; Chen, Yimin; de Ribaupierre, Sandrine; Chiu, Bernard; Fenster, Aaron

    2015-03-01

    Intraventricular hemorrhage (IVH) or bleed within the brain is a common condition among pre-term infants that occurs in very low birth weight preterm neonates. The prognosis is further worsened by the development of progressive ventricular dilatation, i.e., post-hemorrhagic ventricle dilation (PHVD), which occurs in 10-30% of IVH patients. In practice, predicting PHVD accurately and determining if that specific patient with ventricular dilatation requires the ability to measure accurately ventricular volume. While monitoring of PHVD in infants is typically done by repeated US and not MRI, once the patient has been treated, the follow-up over the lifetime of the patient is done by MRI. While manual segmentation is still seen as a gold standard, it is extremely time consuming, and therefore not feasible in a clinical context, and it also has a large inter- and intra-observer variability. This paper proposes a segmentation algorithm to extract the cerebral ventricles from 3D T1- weighted MR images of pre-term infants with PHVD. The proposed segmentation algorithm makes use of the convex optimization technique combined with the learned priors of image intensities and label probabilistic map, which is built from a multi-atlas registration scheme. The leave-one-out cross validation using 7 PHVD patient T1 weighted MR images showed that the proposed method yielded a mean DSC of 89.7% +/- 4.2%, a MAD of 2.6 +/- 1.1 mm, a MAXD of 17.8 +/- 6.2 mm, and a VD of 11.6% +/- 5.9%, suggesting a good agreement with manual segmentations.

  16. Potential Cost Savings with 3D Printing Combined With 3D Imaging and CPLM for Fleet Maintenance and Revitalization

    DTIC Science & Technology

    2014-05-01

    1 Potential Cost Savings with 3D Printing Combined With 3D Imaging and CPLM for Fleet Maintenance and Revitalization David N. Ford...2014 4. TITLE AND SUBTITLE Potential Cost Savings with 3D Printing Combined With 3D Imaging and CPLM for Fleet Maintenance and Revitalization 5a...Manufacturing ( 3D printing ) 2 Research Context Problem: Learning curve savings forecasted in SHIPMAIN maintenance initiative have not materialized

  17. Morphometrics, 3D Imaging, and Craniofacial Development

    PubMed Central

    Hallgrimsson, Benedikt; Percival, Christopher J.; Green, Rebecca; Young, Nathan M.; Mio, Washington; Marcucio, Ralph

    2017-01-01

    Recent studies have shown how volumetric imaging and morphometrics can add significantly to our understanding of morphogenesis, the developmental basis for variation and the etiology of structural birth defects. On the other hand, the complex questions and diverse imaging data in developmental biology present morphometrics with more complex challenges than applications in virtually any other field. Meeting these challenges is necessary in order to understand the mechanistic basis for variation in complex morphologies. This chapter reviews the methods and theory that enable the application of modern landmark-based morphometrics to developmental biology and craniofacial development, in particular. We discuss the theoretical foundations of morphometrics as applied to development and review the basic approaches to the quantification of morphology. Focusing on geometric morphometrics, we discuss the principal statistical methods for quantifying and comparing morphological variation and covariation structure within and among groups. Finally, we discuss the future directions for morphometrics in developmental biology that will be required for approaches that enable quantitative integration across the genotype-phenotype map. PMID:26589938

  18. Visualising, segmenting and analysing heterogenous glacigenic sediments using 3D x-ray CT.

    NASA Astrophysics Data System (ADS)

    Carr, Simon; Diggens, Lucy; Groves, John; O'Sullivan, Catherine; Marsland, Rhona

    2015-04-01

    , especially with regard to using such data to improve understanding of mechanisms of particle motion and fabric development during subglacial strain. In this study, we present detailed investigation of subglacial tills from the UK, Iceland and Poland, to explore the challenges in segmenting these highly variable sediment bodies for 3D microfabric analysis. A calibration study is reported to compare various approaches to CT data segmentation to manually segmented datasets, from which an optimal workflow is developed, using a combination of the WEKA Trainable Segmentation tool within ImageJ to segment the data, followed by object-based analysis using Blob3D. We then demonstrate the value of this analysis through the analysis of true 3D microfabric data from a Last Glacial Maximum till deposit located at Morston, North Norfolk. Seven undisturbed sediment samples were scanned and analysed using high-resolution 3D X-ray computed tomography. Large (~5,000 to ~16,000) populations of individual particles are objectively and systematically segmented and identified. These large datasets are then subject to detailed interrogation using bespoke code for analysing particle fabric within Matlab, including the application of fabric-tensor analysis, by which fabrics can be weighted and scaled by key variables such as size and shape. We will present initial findings from these datasets, focusing particularly on overcoming the methodological challenges of obtaining robust datasets of sediments with highly complex, mixed compositional sediments.

  19. Development of a piecewise linear omnidirectional 3D image registration method.

    PubMed

    Bae, Hyunsoo; Kang, Wonjin; Lee, SukGyu; Kim, Youngwoo

    2016-12-01

    This paper proposes a new piecewise linear omnidirectional image registration method. The proposed method segments an image captured by multiple cameras into 2D segments defined by feature points of the image and then stitches each segment geometrically by considering the inclination of the segment in the 3D space. Depending on the intended use of image registration, the proposed method can be used to improve image registration accuracy or reduce the computation time in image registration because the trade-off between the computation time and image registration accuracy can be controlled for. In general, nonlinear image registration methods have been used in 3D omnidirectional image registration processes to reduce image distortion by camera lenses. The proposed method depends on a linear transformation process for omnidirectional image registration, and therefore it can enhance the effectiveness of the geometry recognition process, increase image registration accuracy by increasing the number of cameras or feature points of each image, increase the image registration speed by reducing the number of cameras or feature points of each image, and provide simultaneous information on shapes and colors of captured objects.

  20. Development of a piecewise linear omnidirectional 3D image registration method

    NASA Astrophysics Data System (ADS)

    Bae, Hyunsoo; Kang, Wonjin; Lee, SukGyu; Kim, Youngwoo

    2016-12-01

    This paper proposes a new piecewise linear omnidirectional image registration method. The proposed method segments an image captured by multiple cameras into 2D segments defined by feature points of the image and then stitches each segment geometrically by considering the inclination of the segment in the 3D space. Depending on the intended use of image registration, the proposed method can be used to improve image registration accuracy or reduce the computation time in image registration because the trade-off between the computation time and image registration accuracy can be controlled for. In general, nonlinear image registration methods have been used in 3D omnidirectional image registration processes to reduce image distortion by camera lenses. The proposed method depends on a linear transformation process for omnidirectional image registration, and therefore it can enhance the effectiveness of the geometry recognition process, increase image registration accuracy by increasing the number of cameras or feature points of each image, increase the image registration speed by reducing the number of cameras or feature points of each image, and provide simultaneous information on shapes and colors of captured objects.

  1. 3D quantitative phase imaging of neural networks using WDT

    NASA Astrophysics Data System (ADS)

    Kim, Taewoo; Liu, S. C.; Iyer, Raj; Gillette, Martha U.; Popescu, Gabriel

    2015-03-01

    White-light diffraction tomography (WDT) is a recently developed 3D imaging technique based on a quantitative phase imaging system called spatial light interference microscopy (SLIM). The technique has achieved a sub-micron resolution in all three directions with high sensitivity granted by the low-coherence of a white-light source. Demonstrations of the technique on single cell imaging have been presented previously; however, imaging on any larger sample, including a cluster of cells, has not been demonstrated using the technique. Neurons in an animal body form a highly complex and spatially organized 3D structure, which can be characterized by neuronal networks or circuits. Currently, the most common method of studying the 3D structure of neuron networks is by using a confocal fluorescence microscope, which requires fluorescence tagging with either transient membrane dyes or after fixation of the cells. Therefore, studies on neurons are often limited to samples that are chemically treated and/or dead. WDT presents a solution for imaging live neuron networks with a high spatial and temporal resolution, because it is a 3D imaging method that is label-free and non-invasive. Using this method, a mouse or rat hippocampal neuron culture and a mouse dorsal root ganglion (DRG) neuron culture have been imaged in order to see the extension of processes between the cells in 3D. Furthermore, the tomogram is compared with a confocal fluorescence image in order to investigate the 3D structure at synapses.

  2. Intra-retinal layer segmentation of 3D optical coherence tomography using coarse grained diffusion map.

    PubMed

    Kafieh, Raheleh; Rabbani, Hossein; Abramoff, Michael D; Sonka, Milan

    2013-12-01

    Optical coherence tomography (OCT) is a powerful and noninvasive method for retinal imaging. In this paper, we introduce a fast segmentation method based on a new variant of spectral graph theory named diffusion maps. The research is performed on spectral domain (SD) OCT images depicting macular and optic nerve head appearance. The presented approach does not require edge-based image information in localizing most of boundaries and relies on regional image texture. Consequently, the proposed method demonstrates robustness in situations of low image contrast or poor layer-to-layer image gradients. Diffusion mapping applied to 2D and 3D OCT datasets is composed of two steps, one for partitioning the data into important and less important sections, and another one for localization of internal layers. In the first step, the pixels/voxels are grouped in rectangular/cubic sets to form a graph node. The weights of the graph are calculated based on geometric distances between pixels/voxels and differences of their mean intensity. The first diffusion map clusters the data into three parts, the second of which is the area of interest. The other two sections are eliminated from the remaining calculations. In the second step, the remaining area is subjected to another diffusion map assessment and the internal layers are localized based on their textural similarities. The proposed method was tested on 23 datasets from two patient groups (glaucoma and normals). The mean unsigned border positioning errors (mean ± SD) was 8.52 ± 3.13 and 7.56 ± 2.95 μm for the 2D and 3D methods, respectively.

  3. Accommodation response measurements for integral 3D image

    NASA Astrophysics Data System (ADS)

    Hiura, H.; Mishina, T.; Arai, J.; Iwadate, Y.

    2014-03-01

    We measured accommodation responses under integral photography (IP), binocular stereoscopic, and real object display conditions, and viewing conditions of binocular and monocular viewing conditions. The equipment we used was an optometric device and a 3D display. We developed the 3D display for IP and binocular stereoscopic images that comprises a high-resolution liquid crystal display (LCD) and a high-density lens array. The LCD has a resolution of 468 dpi and a diagonal size of 4.8 inches. The high-density lens array comprises 106 x 69 micro lenses that have a focal length of 3 mm and diameter of 1 mm. The lenses are arranged in a honeycomb pattern. The 3D display was positioned 60 cm from an observer under IP and binocular stereoscopic display conditions. The target was presented at eight depth positions relative to the 3D display: 15, 10, and 5 cm in front of the 3D display, on the 3D display panel, and 5, 10, 15 and 30 cm behind the 3D display under the IP and binocular stereoscopic display conditions. Under the real object display condition, the target was displayed on the 3D display panel, and the 3D display was placed at the eight positions. The results suggest that the IP image induced more natural accommodation responses compared to the binocular stereoscopic image. The accommodation responses of the IP image were weaker than those of a real object; however, they showed a similar tendency with those of the real object under the two viewing conditions. Therefore, IP can induce accommodation to the depth positions of 3D images.

  4. Automatic 3D segmentation of spinal cord MRI using propagated deformable models

    NASA Astrophysics Data System (ADS)

    De Leener, B.; Cohen-Adad, J.; Kadoury, S.

    2014-03-01

    Spinal cord diseases or injuries can cause dysfunction of the sensory and locomotor systems. Segmentation of the spinal cord provides measures of atrophy and allows group analysis of multi-parametric MRI via inter-subject registration to a template. All these measures were shown to improve diagnostic and surgical intervention. We developed a framework to automatically segment the spinal cord on T2-weighted MR images, based on the propagation of a deformable model. The algorithm is divided into three parts: first, an initialization step detects the spinal cord position and orientation by using the elliptical Hough transform on multiple adjacent axial slices to produce an initial tubular mesh. Second, a low-resolution deformable model is iteratively propagated along the spinal cord. To deal with highly variable contrast levels between the spinal cord and the cerebrospinal fluid, the deformation is coupled with a contrast adaptation at each iteration. Third, a refinement process and a global deformation are applied on the low-resolution mesh to provide an accurate segmentation of the spinal cord. Our method was evaluated against a semi-automatic edge-based snake method implemented in ITK-SNAP (with heavy manual adjustment) by computing the 3D Dice coefficient, mean and maximum distance errors. Accuracy and robustness were assessed from 8 healthy subjects. Each subject had two volumes: one at the cervical and one at the thoracolumbar region. Results show a precision of 0.30 +/- 0.05 mm (mean absolute distance error) in the cervical region and 0.27 +/- 0.06 mm in the thoracolumbar region. The 3D Dice coefficient was of 0.93 for both regions.

  5. 3D modeling of geological anomalies based on segmentation of multiattribute fusion

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-Ning; Song, Cheng-Yun; Li, Zhi-Yong; Cai, Han-Peng; Yao, Xing-Miao; Hu, Guang-Min

    2016-09-01

    3D modeling of geological bodies based on 3D seismic data is used to define the shape and volume of the bodies, which then can be directly applied to reservoir prediction, reserve estimation, and exploration. However, multiattributes are not effectively used in 3D modeling. To solve this problem, we propose a novel method for building of 3D model of geological anomalies based on the segmentation of multiattribute fusion. First, we divide the seismic attributes into edge- and region-based seismic attributes. Then, the segmentation model incorporating the edge- and region-based models is constructed within the levelset-based framework. Finally, the marching cubes algorithm is adopted to extract the zero level set based on the segmentation results and build the 3D model of the geological anomaly. Combining the edge-and region-based attributes to build the segmentation model, we satisfy the independence requirement and avoid the problem of insufficient data of single seismic attribute in capturing the boundaries of geological anomalies. We apply the proposed method to seismic data from the Sichuan Basin in southwestern China and obtain 3D models of caves and channels. Compared with 3D models obtained based on single seismic attributes, the results are better agreement with reality.

  6. Evaluation of Methods for Coregistration and Fusion of Rpas-Based 3d Point Clouds and Thermal Infrared Images

    NASA Astrophysics Data System (ADS)

    Hoegner, L.; Tuttas, S.; Xu, Y.; Eder, K.; Stilla, U.

    2016-06-01

    This paper discusses the automatic coregistration and fusion of 3d point clouds generated from aerial image sequences and corresponding thermal infrared (TIR) images. Both RGB and TIR images have been taken from a RPAS platform with a predefined flight path where every RGB image has a corresponding TIR image taken from the same position and with the same orientation with respect to the accuracy of the RPAS system and the inertial measurement unit. To remove remaining differences in the exterior orientation, different strategies for coregistering RGB and TIR images are discussed: (i) coregistration based on 2D line segments for every single TIR image and the corresponding RGB image. This method implies a mainly planar scene to avoid mismatches; (ii) coregistration of both the dense 3D point clouds from RGB images and from TIR images by coregistering 2D image projections of both point clouds; (iii) coregistration based on 2D line segments in every single TIR image and 3D line segments extracted from intersections of planes fitted in the segmented dense 3D point cloud; (iv) coregistration of both the dense 3D point clouds from RGB images and from TIR images using both ICP and an adapted version based on corresponding segmented planes; (v) coregistration of both image sets based on point features. The quality is measured by comparing the differences of the back projection of homologous points in both corrected RGB and TIR images.

  7. 3D Whole Heart Imaging for Congenital Heart Disease

    PubMed Central

    Greil, Gerald; Tandon, Animesh (Aashoo); Silva Vieira, Miguel; Hussain, Tarique

    2017-01-01

    Three-dimensional (3D) whole heart techniques form a cornerstone in cardiovascular magnetic resonance imaging of congenital heart disease (CHD). It offers significant advantages over other CHD imaging modalities and techniques: no ionizing radiation; ability to be run free-breathing; ECG-gated dual-phase imaging for accurate measurements and tissue properties estimation; and higher signal-to-noise ratio and isotropic voxel resolution for multiplanar reformatting assessment. However, there are limitations, such as potentially long acquisition times with image quality degradation. Recent advances in and current applications of 3D whole heart imaging in CHD are detailed, as well as future directions. PMID:28289674

  8. Image based 3D city modeling : Comparative study

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-06-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing rapidly for various engineering and non-engineering applications. Generally four main image based approaches were used for virtual 3D city models generation. In first approach, researchers were used Sketch based modeling, second method is Procedural grammar based modeling, third approach is Close range photogrammetry based modeling and fourth approach is mainly based on Computer Vision techniques. SketchUp, CityEngine, Photomodeler and Agisoft Photoscan are the main softwares to represent these approaches respectively. These softwares have different approaches & methods suitable for image based 3D city modeling. Literature study shows that till date, there is no complete such type of comparative study available to create complete 3D city model by using images. This paper gives a comparative assessment of these four image based 3D modeling approaches. This comparative study is mainly based on data acquisition methods, data processing techniques and output 3D model products. For this research work, study area is the campus of civil engineering department, Indian Institute of Technology, Roorkee (India). This 3D campus acts as a prototype for city. This study also explains various governing parameters, factors and work experiences. This research work also gives a brief introduction, strengths and weakness of these four image based techniques. Some personal comment is also given as what can do or what can't do from these softwares. At the last, this study shows; it concluded that, each and every software has some advantages and limitations. Choice of software depends on user requirements of 3D project. For normal visualization project, SketchUp software is a good option. For 3D documentation record, Photomodeler gives good result. For Large city

  9. A colour image reproduction framework for 3D colour printing

    NASA Astrophysics Data System (ADS)

    Xiao, Kaida; Sohiab, Ali; Sun, Pei-li; Yates, Julian M.; Li, Changjun; Wuerger, Sophie

    2016-10-01

    In this paper, the current technologies in full colour 3D printing technology were introduced. A framework of colour image reproduction process for 3D colour printing is proposed. A special focus was put on colour management for 3D printed objects. Two approaches, colorimetric colour reproduction and spectral based colour reproduction are proposed in order to faithfully reproduce colours in 3D objects. Two key studies, colour reproduction for soft tissue prostheses and colour uniformity correction across different orientations are described subsequently. Results are clear shown that applying proposed colour image reproduction framework, performance of colour reproduction can be significantly enhanced. With post colour corrections, a further improvement in colour process are achieved for 3D printed objects.

  10. 3D automatic anatomy segmentation based on iterative graph-cut-ASM

    SciTech Connect

    Chen, Xinjian; Bagci, Ulas

    2011-08-15

    Purpose: This paper studies the feasibility of developing an automatic anatomy segmentation (AAS) system in clinical radiology and demonstrates its operation on clinical 3D images. Methods: The AAS system, the authors are developing consists of two main parts: object recognition and object delineation. As for recognition, a hierarchical 3D scale-based multiobject method is used for the multiobject recognition task, which incorporates intensity weighted ball-scale (b-scale) information into the active shape model (ASM). For object delineation, an iterative graph-cut-ASM (IGCASM) algorithm is proposed, which effectively combines the rich statistical shape information embodied in ASM with the globally optimal delineation capability of the GC method. The presented IGCASM algorithm is a 3D generalization of the 2D GC-ASM method that they proposed previously in Chen et al.[Proc. SPIE, 7259, 72590C1-72590C-8 (2009)]. The proposed methods are tested on two datasets comprised of images obtained from 20 patients (10 male and 10 female) of clinical abdominal CT scans, and 11 foot magnetic resonance imaging (MRI) scans. The test is for four organs (liver, left and right kidneys, and spleen) segmentation, five foot bones (calcaneus, tibia, cuboid, talus, and navicular). The recognition and delineation accuracies were evaluated separately. The recognition accuracy was evaluated in terms of translation, rotation, and scale (size) error. The delineation accuracy was evaluated in terms of true and false positive volume fractions (TPVF, FPVF). The efficiency of the delineation method was also evaluated on an Intel Pentium IV PC with a 3.4 GHZ CPU machine. Results: The recognition accuracies in terms of translation, rotation, and scale error over all organs are about 8 mm, 10 deg. and 0.03, and over all foot bones are about 3.5709 mm, 0.35 deg. and 0.025, respectively. The accuracy of delineation over all organs for all subjects as expressed in TPVF and FPVF is 93.01% and 0.22%, and

  11. Automated localization of implanted seeds in 3D TRUS images used for prostate brachytherapy

    SciTech Connect

    Wei Zhouping; Gardi, Lori; Downey, Donal B.; Fenster, Aaron

    2006-07-15

    An algorithm has been developed in this paper to localize implanted radioactive seeds in 3D ultrasound images for a dynamic intraoperative brachytherapy procedure. Segmentation of the seeds is difficult, due to their small size in relatively low quality of transrectal ultrasound (TRUS) images. In this paper, intraoperative seed segmentation in 3D TRUS images is achieved by performing a subtraction of the image before the needle has been inserted, and the image after the seeds have been implanted. The seeds are searched in a 'local' space determined by the needle position and orientation information, which are obtained from a needle segmentation algorithm. To test this approach, 3D TRUS images of the agar and chicken tissue phantoms were obtained. Within these phantoms, dummy seeds were implanted. The seed locations determined by the seed segmentation algorithm were compared with those obtained from a volumetric cone-beam flat-panel micro-CT scanner and human observers. Evaluation of the algorithm showed that the rms error in determining the seed locations using the seed segmentation algorithm was 0.98 mm in agar phantoms and 1.02 mm in chicken phantoms.

  12. Digital holography and 3D imaging: introduction to feature issue.

    PubMed

    Kim, Myung K; Hayasaki, Yoshio; Picart, Pascal; Rosen, Joseph

    2013-01-01

    This feature issue of Applied Optics on Digital Holography and 3D Imaging is the sixth of an approximately annual series. Forty-seven papers are presented, covering a wide range of topics in phase-shifting methods, low coherence methods, particle analysis, biomedical imaging, computer-generated holograms, integral imaging, and many others.

  13. Soft computing approach to 3D lung nodule segmentation in CT.

    PubMed

    Badura, P; Pietka, E

    2014-10-01

    This paper presents a novel, multilevel approach to the segmentation of various types of pulmonary nodules in computed tomography studies. It is based on two branches of computational intelligence: the fuzzy connectedness (FC) and the evolutionary computation. First, the image and auxiliary data are prepared for the 3D FC analysis during the first stage of an algorithm - the masks generation. Its main goal is to process some specific types of nodules connected to the pleura or vessels. It consists of some basic image processing operations as well as dedicated routines for the specific cases of nodules. The evolutionary computation is performed on the image and seed points in order to shorten the FC analysis and improve its accuracy. After the FC application, the remaining vessels are removed during the postprocessing stage. The method has been validated using the first dataset of studies acquired and described by the Lung Image Database Consortium (LIDC) and by its latest release - the LIDC-IDRI (Image Database Resource Initiative) database.

  14. Optical 3D watermark based digital image watermarking for telemedicine

    NASA Astrophysics Data System (ADS)

    Li, Xiao Wei; Kim, Seok Tae

    2013-12-01

    Region of interest (ROI) of a medical image is an area including important diagnostic information and must be stored without any distortion. This algorithm for application of watermarking technique for non-ROI of the medical image preserving ROI. The paper presents a 3D watermark based medical image watermarking scheme. In this paper, a 3D watermark object is first decomposed into 2D elemental image array (EIA) by a lenslet array, and then the 2D elemental image array data is embedded into the host image. The watermark extraction process is an inverse process of embedding. The extracted EIA through the computational integral imaging reconstruction (CIIR) technique, the 3D watermark can be reconstructed. Because the EIA is composed of a number of elemental images possesses their own perspectives of a 3D watermark object. Even though the embedded watermark data badly damaged, the 3D virtual watermark can be successfully reconstructed. Furthermore, using CAT with various rule number parameters, it is possible to get many channels for embedding. So our method can recover the weak point having only one transform plane in traditional watermarking methods. The effectiveness of the proposed watermarking scheme is demonstrated with the aid of experimental results.

  15. Scorpion image segmentation system

    NASA Astrophysics Data System (ADS)

    Joseph, E.; Aibinu, A. M.; Sadiq, B. A.; Bello Salau, H.; Salami, M. J. E.

    2013-12-01

    Death as a result of scorpion sting has been a major public health problem in developing countries. Despite the high rate of death as a result of scorpion sting, little report exists in literature of intelligent device and system for automatic detection of scorpion. This paper proposed a digital image processing approach based on the floresencing characteristics of Scorpion under Ultra-violet (UV) light for automatic detection and identification of scorpion. The acquired UV-based images undergo pre-processing to equalize uneven illumination and colour space channel separation. The extracted channels are then segmented into two non-overlapping classes. It has been observed that simple thresholding of the green channel of the acquired RGB UV-based image is sufficient for segmenting Scorpion from other background components in the acquired image. Two approaches to image segmentation have also been proposed in this work, namely, the simple average segmentation technique and K-means image segmentation. The proposed algorithm has been tested on over 40 UV scorpion images obtained from different part of the world and results obtained show an average accuracy of 97.7% in correctly classifying the pixel into two non-overlapping clusters. The proposed 1system will eliminate the problem associated with some of the existing manual approaches presently in use for scorpion detection.

  16. The agreement between 3D, standard 2D and triplane 2D speckle tracking: effects of image quality and 3D volume rate.

    PubMed

    Trache, Tudor; Stöbe, Stephan; Tarr, Adrienn; Pfeiffer, Dietrich; Hagendorff, Andreas

    2014-12-01

    Comparison of 3D and 2D speckle tracking performed on standard 2D and triplane 2D datasets of normal and pathological left ventricular (LV) wall-motion patterns with a focus on the effect that 3D volume rate (3DVR), image quality and tracking artifacts have on the agreement between 2D and 3D speckle tracking. 37 patients with normal LV function and 18 patients with ischaemic wall-motion abnormalities underwent 2D and 3D echocardiography, followed by offline speckle tracking measurements. The values of 3D global, regional and segmental strain were compared with the standard 2D and triplane 2D strain values. Correlation analysis with the LV ejection fraction (LVEF) was also performed. The 3D and 2D global strain values correlated good in both normally and abnormally contracting hearts, though systematic differences between the two methods were observed. Of the 3D strain parameters, the area strain showed the best correlation with the LVEF. The numerical agreement of 3D and 2D analyses varied significantly with the volume rate and image quality of the 3D datasets. The highest correlation between 2D and 3D peak systolic strain values was found between 3D area and standard 2D longitudinal strain. Regional wall-motion abnormalities were similarly detected by 2D and 3D speckle tracking. 2DST of triplane datasets showed similar results to those of conventional 2D datasets. 2D and 3D speckle tracking similarly detect normal and pathological wall-motion patterns. Limited image quality has a significant impact on the agreement between 3D and 2D numerical strain values.

  17. Progresses in 3D integral imaging with optical processing

    NASA Astrophysics Data System (ADS)

    Martínez-Corral, Manuel; Martínez-Cuenca, Raúl; Saavedra, Genaro; Navarro, Héctor; Pons, Amparo; Javidi, Bahram

    2008-11-01

    Integral imaging is a promising technique for the acquisition and auto-stereoscopic display of 3D scenes with full parallax and without the need of any additional devices like special glasses. First suggested by Lippmann in the beginning of the 20th century, integral imaging is based in the intersection of ray cones emitted by a collection of 2D elemental images which store the 3D information of the scene. This paper is devoted to the study, from the ray optics point of view, of the optical effects and interaction with the observer of integral imaging systems.

  18. DCT and DST Based Image Compression for 3D Reconstruction

    NASA Astrophysics Data System (ADS)

    Siddeq, Mohammed M.; Rodrigues, Marcos A.

    2017-03-01

    This paper introduces a new method for 2D image compression whose quality is demonstrated through accurate 3D reconstruction using structured light techniques and 3D reconstruction from multiple viewpoints. The method is based on two discrete transforms: (1) A one-dimensional Discrete Cosine Transform (DCT) is applied to each row of the image. (2) The output from the previous step is transformed again by a one-dimensional Discrete Sine Transform (DST), which is applied to each column of data generating new sets of high-frequency components followed by quantization of the higher frequencies. The output is then divided into two parts where the low-frequency components are compressed by arithmetic coding and the high frequency ones by an efficient minimization encoding algorithm. At decompression stage, a binary search algorithm is used to recover the original high frequency components. The technique is demonstrated by compressing 2D images up to 99% compression ratio. The decompressed images, which include images with structured light patterns for 3D reconstruction and from multiple viewpoints, are of high perceptual quality yielding accurate 3D reconstruction. Perceptual assessment and objective quality of compression are compared with JPEG and JPEG2000 through 2D and 3D RMSE. Results show that the proposed compression method is superior to both JPEG and JPEG2000 concerning 3D reconstruction, and with equivalent perceptual quality to JPEG2000.

  19. 3D Subharmonic Ultrasound Imaging In Vitro and In Vivo

    PubMed Central

    Eisenbrey, John R.; Sridharan, Anush; Machado, Priscilla; Zhao, Hongjia; Halldorsdottir, Valgerdur G.; Dave, Jaydev K.; Liu, Ji-Bin; Park, Suhyun; Dianis, Scott; Wallace, Kirk; Thomenius, Kai E.; Forsberg, F.

    2012-01-01

    Rationale and Objectives While contrast-enhanced ultrasound imaging techniques such as harmonic imaging (HI) have evolved to reduce tissue signals using the nonlinear properties of the contrast agent, levels of background suppression have been mixed. Subharmonic imaging (SHI) offers near-complete tissue suppression by centering the receive bandwidth at half the transmitting frequency. In this work we demonstrate the feasibility of 3D SHI and compare it to 3D HI. Materials and Methods 3D HI and SHI were implemented on a Logiq 9 ultrasound scanner (GE Healthcare, Milwaukee, Wisconsin) with a 4D10L probe. Four-cycle SHI was implemented to transmit at 5.8 MHz and receive at 2.9 MHz, while 2-cycle HI was implemented to transmit at 5 MHz and receive at 10 MHz. The ultrasound contrast agent Definity (Lantheus Medical Imaging, North Billerica, MA) was imaged within a flow phantom and the lower pole of two canine kidneys in both HI and SHI modes. Contrast to tissue ratios (CTR) and rendered images were compared offline. Results SHI resulted in significant improvement in CTR levels relative to HI both in vitro (12.11±0.52 vs. 2.67±0.77, p<0.001) and in vivo (5.74±1.92 vs. 2.40±0.48, p=0.04). Rendered 3D SHI images provided better tissue suppression and a greater overall view of vessels in a flow phantom and canine renal vasculature. Conclusions The successful implementation of SHI in 3D allows imaging of vascular networks over a heterogeneous sample volume and should improve future diagnostic accuracy. Additionally, 3D SHI provides improved CTR values relative to 3D HI. PMID:22464198

  20. Low Dose, Low Energy 3d Image Guidance during Radiotherapy

    NASA Astrophysics Data System (ADS)

    Moore, C. J.; Marchant, T.; Amer, A.; Sharrock, P.; Price, P.; Burton, D.

    2006-04-01

    Patient kilo-voltage X-ray cone beam volumetric imaging for radiotherapy was first demonstrated on an Elekta Synergy mega-voltage X-ray linear accelerator. Subsequently low dose, reduced profile reconstruction imaging was shown to be practical for 3D geometric setup registration to pre-treatment planning images without compromising registration accuracy. Reconstruction from X-ray profiles gathered between treatment beam deliveries was also introduced. The innovation of zonal cone beam imaging promises significantly reduced doses to patients and improved soft tissue contrast in the tumour target zone. These developments coincided with the first dynamic 3D monitoring of continuous body topology changes in patients, at the moment of irradiation, using a laser interferometer. They signal the arrival of low dose, low energy 3D image guidance during radiotherapy itself.

  1. Artificial intelligence (AI)-based relational matching and multimodal medical image fusion: generalized 3D approaches

    NASA Astrophysics Data System (ADS)

    Vajdic, Stevan M.; Katz, Henry E.; Downing, Andrew R.; Brooks, Michael J.

    1994-09-01

    A 3D relational image matching/fusion algorithm is introduced. It is implemented in the domain of medical imaging and is based on Artificial Intelligence paradigms--in particular, knowledge base representation and tree search. The 2D reference and target images are selected from 3D sets and segmented into non-touching and non-overlapping regions, using iterative thresholding and/or knowledge about the anatomical shapes of human organs. Selected image region attributes are calculated. Region matches are obtained using a tree search, and the error is minimized by evaluating a `goodness' of matching function based on similarities of region attributes. Once the matched regions are found and the spline geometric transform is applied to regional centers of gravity, images are ready for fusion and visualization into a single 3D image of higher clarity.

  2. Accelerated 3D catheter visualization from triplanar MR projection images.

    PubMed

    Schirra, Carsten Oliver; Weiss, Steffen; Krueger, Sascha; Caulfield, Denis; Pedersen, Steen F; Razavi, Reza; Kozerke, Sebastian; Schaeffter, Tobias

    2010-07-01

    One major obstacle for MR-guided catheterizations is long acquisition times associated with visualizing interventional devices. Therefore, most techniques presented hitherto rely on single-plane imaging to visualize the catheter. Recently, accelerated three-dimensional (3D) imaging based on compressed sensing has been proposed to reduce acquisition times. However, frame rates with this technique remain low, and the 3D reconstruction problem yields a considerable computational load. In X-ray angiography, it is well understood that the shape of interventional devices can be derived in 3D space from a limited number of projection images. In this work, this fact is exploited to develop a method for 3D visualization of active catheters from multiplanar two-dimensional (2D) projection MR images. This is favorable to 3D MRI as the overall number of acquired profiles, and consequently the acquisition time, is reduced. To further reduce measurement times, compressed sensing is employed. Furthermore, a novel single-channel catheter design is presented that combines a solenoidal tip coil in series with a single-loop antenna, enabling simultaneous tip tracking and shape visualization. The tracked tip and catheter properties provide constraints for compressed sensing reconstruction and subsequent 2D/3D curve fitting. The feasibility of the method is demonstrated in phantoms and in an in vivo pig experiment.

  3. Prostate Mechanical Imaging: 3-D Image Composition and Feature Calculations

    PubMed Central

    Egorov, Vladimir; Ayrapetyan, Suren; Sarvazyan, Armen P.

    2008-01-01

    We have developed a method and a device entitled prostate mechanical imager (PMI) for the real-time imaging of prostate using a transrectal probe equipped with a pressure sensor array and position tracking sensor. PMI operation is based on measurement of the stress pattern on the rectal wall when the probe is pressed against the prostate. Temporal and spatial changes in the stress pattern provide information on the elastic structure of the gland and allow two-dimensional (2-D) and three-dimensional (3-D) reconstruction of prostate anatomy and assessment of prostate mechanical properties. The data acquired allow the calculation of prostate features such as size, shape, nodularity, consistency/hardness, and mobility. The PMI prototype has been validated in laboratory experiments on prostate phantoms and in a clinical study. The results obtained on model systems and in vivo images from patients prove that PMI has potential to become a diagnostic tool that could largely supplant DRE through its higher sensitivity, quantitative record storage, ease-of-use and inherent low cost. PMID:17024836

  4. Graph-regularized 3D shape reconstruction from highly anisotropic and noisy images

    PubMed Central

    Heinrich, Stephanie; Drewe, Philipp; Lou, Xinghua; Umrania, Shefali; Rätsch, Gunnar

    2014-01-01

    Analysis of microscopy images can provide insight into many biological processes. One particularly challenging problem is cellular nuclear segmentation in highly anisotropic and noisy 3D image data. Manually localizing and segmenting each and every cellular nucleus is very time-consuming, which remains a bottleneck in large-scale biological experiments. In this work, we present a tool for automated segmentation of cellular nuclei from 3D fluorescent microscopic data. Our tool is based on state-of-the-art image processing and machine learning techniques and provides a user-friendly graphical user interface. We show that our tool is as accurate as manual annotation and greatly reduces the time for the registration. PMID:25866587

  5. Combining 2D wavelet edge highlighting and 3D thresholding for lung segmentation in thin-slice CT.

    PubMed

    Korfiatis, P; Skiadopoulos, S; Sakellaropoulos, P; Kalogeropoulou, C; Costaridou, L

    2007-12-01

    The first step in lung analysis by CT is the identification of the lung border. To deal with the increased number of sections per scan in thin-slice multidetector CT, it has been crucial to develop accurate and automated lung segmentation algorithms. In this study, an automated method for lung segmentation of thin-slice CT data is presented. The method exploits the advantages of a two-dimensional wavelet edge-highlighting step in lung border delineation. Lung volume segmentation is achieved with three-dimensional (3D) grey level thresholding, using a minimum error technique. 3D thresholding, combined with the wavelet pre-processing step, successfully deals with lung border segmentation challenges, such as anterior or posterior junction lines and juxtapleural nodules. Finally, to deal with mediastinum border under-segmentation, 3D morphological closing with a spherical structural element is applied. The performance of the proposed method is quantitatively assessed on a dataset originating from the Lung Imaging Database Consortium (LIDC) by comparing automatically derived borders with the manually traced ones. Segmentation performance, averaged over left and right lung volumes, for lung volume overlap is 0.983+/-0.008, whereas for shape differentiation in terms of mean distance it is 0.770+/-0.251 mm (root mean square distance is 0.520+/-0.008 mm; maximum distance is 3.327+/-1.637 mm). The effect of the wavelet pre-processing step was assessed by comparing the proposed method with the 3D thresholding technique (applied on original volume data). This yielded statistically significant differences for all segmentation metrics (p<0.01). Results demonstrate an accurate method that could be used as a first step in computer lung analysis by CT.

  6. Exposing digital image forgeries by 3D reconstruction technology

    NASA Astrophysics Data System (ADS)

    Wang, Yongqiang; Xu, Xiaojing; Li, Zhihui; Liu, Haizhen; Li, Zhigang; Huang, Wei

    2009-11-01

    Digital images are easy to tamper and edit due to availability of powerful image processing and editing software. Especially, forged images by taking from a picture of scene, because of no manipulation was made after taking, usual methods, such as digital watermarks, statistical correlation technology, can hardly detect the traces of image tampering. According to image forgery characteristics, a method, based on 3D reconstruction technology, which detect the forgeries by discriminating the dimensional relationship of each object appeared on image, is presented in this paper. This detection method includes three steps. In the first step, all the parameters of images were calibrated and each crucial object on image was chosen and matched. In the second step, the 3D coordinates of each object were calculated by bundle adjustment. In final step, the dimensional relationship of each object was analyzed. Experiments were designed to test this detection method; the 3D reconstruction and the forged image 3D reconstruction were computed independently. Test results show that the fabricating character in digital forgeries can be identified intuitively by this method.

  7. Building 3D scenes from 2D image sequences

    NASA Astrophysics Data System (ADS)

    Cristea, Paul D.

    2006-05-01

    Sequences of 2D images, taken by a single moving video receptor, can be fused to generate a 3D representation. This dynamic stereopsis exists in birds and reptiles, whereas the static binocular stereopsis is common in mammals, including humans. Most multimedia computer vision systems for stereo image capture, transmission, processing, storage and retrieval are based on the concept of binocularity. As a consequence, their main goal is to acquire, conserve and enhance pairs of 2D images able to generate a 3D visual perception in a human observer. Stereo vision in birds is based on the fusion of images captured by each eye, with previously acquired and memorized images from the same eye. The process goes on simultaneously and conjointly for both eyes and generates an almost complete all-around visual field. As a consequence, the baseline distance is no longer fixed, as in the case of binocular 3D view, but adjustable in accordance with the distance to the object of main interest, allowing a controllable depth effect. Moreover, the synthesized 3D scene can have a better resolution than each individual 2D image in the sequence. Compression of 3D scenes can be achieved, and stereo transmissions with lower bandwidth requirements can be developed.

  8. 3D thermography imaging standardization technique for inflammation diagnosis

    NASA Astrophysics Data System (ADS)

    Ju, Xiangyang; Nebel, Jean-Christophe; Siebert, J. Paul

    2005-01-01

    We develop a 3D thermography imaging standardization technique to allow quantitative data analysis. Medical Digital Infrared Thermal Imaging is very sensitive and reliable mean of graphically mapping and display skin surface temperature. It allows doctors to visualise in colour and quantify temperature changes in skin surface. The spectrum of colours indicates both hot and cold responses which may co-exist if the pain associate with an inflammatory focus excites an increase in sympathetic activity. However, due to thermograph provides only qualitative diagnosis information, it has not gained acceptance in the medical and veterinary communities as a necessary or effective tool in inflammation and tumor detection. Here, our technique is based on the combination of visual 3D imaging technique and thermal imaging technique, which maps the 2D thermography images on to 3D anatomical model. Then we rectify the 3D thermogram into a view independent thermogram and conform it a standard shape template. The combination of these imaging facilities allows the generation of combined 3D and thermal data from which thermal signatures can be quantified.

  9. A 3D surface imaging system for assessing human obesity

    NASA Astrophysics Data System (ADS)

    Xu, B.; Yu, W.; Yao, M.; Yao, X.; Li, Q.; Pepper, M. R.; Freeland-Graves, J. H.

    2009-08-01

    The increasing prevalence of obesity suggests a need to develop a convenient, reliable and economical tool for assessment of this condition. Three-dimensional (3D) body surface imaging has emerged as an exciting technology for estimation of body composition. This paper presents a new 3D body imaging system, which was designed for enhanced portability, affordability, and functionality. In this system, stereo vision technology was used to satisfy the requirements for a simple hardware setup and fast image acquisitions. The portability of the system was created via a two-stand configuration, and the accuracy of body volume measurements was improved by customizing stereo matching and surface reconstruction algorithms that target specific problems in 3D body imaging. Body measurement functions dedicated to body composition assessment also were developed. The overall performance of the system was evaluated in human subjects by comparison to other conventional anthropometric methods, as well as air displacement plethysmography, for body fat assessment.

  10. 3D Image Reconstruction: Determination of Pattern Orientation

    SciTech Connect

    Blankenbecler, Richard

    2003-03-13

    The problem of determining the euler angles of a randomly oriented 3-D object from its 2-D Fraunhofer diffraction patterns is discussed. This problem arises in the reconstruction of a positive semi-definite 3-D object using oversampling techniques. In such a problem, the data consists of a measured set of magnitudes from 2-D tomographic images of the object at several unknown orientations. After the orientation angles are determined, the object itself can then be reconstructed by a variety of methods using oversampling, the magnitude data from the 2-D images, physical constraints on the image and then iteration to determine the phases.

  11. Assessment of DICOM Viewers Capable of Loading Patient-specific 3D Models Obtained by Different Segmentation Platforms in the Operating Room.

    PubMed

    Lo Presti, Giuseppe; Carbone, Marina; Ciriaci, Damiano; Aramini, Daniele; Ferrari, Mauro; Ferrari, Vincenzo

    2015-10-01

    Patient-specific 3D models obtained by the segmentation of volumetric diagnostic images play an increasingly important role in surgical planning. Surgeons use the virtual models reconstructed through segmentation to plan challenging surgeries. Many solutions exist for the different anatomical districts and surgical interventions. The possibility to bring the 3D virtual reconstructions with native radiological images in the operating room is essential for fostering the use of intraoperative planning. To the best of our knowledge, current DICOM viewers are not able to simultaneously connect to the picture archiving and communication system (PACS) and import 3D models generated by external platforms to allow a straight integration in the operating room. A total of 26 DICOM viewers were evaluated: 22 open source and four commercial. Two DICOM viewers can connect to PACS and import segmentations achieved by other applications: Synapse 3D® by Fujifilm and OsiriX by University of Geneva. We developed a software network that converts diffuse visual tool kit (VTK) format 3D model segmentations, obtained by any software platform, to a DICOM format that can be displayed using OsiriX or Synapse 3D. Both OsiriX and Synapse 3D were suitable for our purposes and had comparable performance. Although Synapse 3D loads native images and segmentations faster, the main benefits of OsiriX are its user-friendly loading of elaborated images and it being both free of charge and open source.

  12. Accuracy of 3D Imaging Software in Cephalometric Analysis

    DTIC Science & Technology

    2013-06-21

    Imaging and Communication in Medicine ( DICOM ) files into personal computer-based software to enable 3D reconstruction of the craniofacial skeleton. These...tissue profile. CBCT data can be imported as DICOM files into personal computer–based software to provide 3D reconstruction of the craniofacial...been acquired for the three pig models. The CBCT data were exported into DICOM multi-file format. They will be imported into a proprietary

  13. 3D Image Display Courses for Information Media Students.

    PubMed

    Yanaka, Kazuhisa; Yamanouchi, Toshiaki

    2016-01-01

    Three-dimensional displays are used extensively in movies and games. These displays are also essential in mixed reality, where virtual and real spaces overlap. Therefore, engineers and creators should be trained to master 3D display technologies. For this reason, the Department of Information Media at the Kanagawa Institute of Technology has launched two 3D image display courses specifically designed for students who aim to become information media engineers and creators.

  14. Gastric Contraction Imaging System Using a 3-D Endoscope.

    PubMed

    Yoshimoto, Kayo; Yamada, Kenji; Watabe, Kenji; Takeda, Maki; Nishimura, Takahiro; Kido, Michiko; Nagakura, Toshiaki; Takahashi, Hideya; Nishida, Tsutomu; Iijima, Hideki; Tsujii, Masahiko; Takehara, Tetsuo; Ohno, Yuko

    2014-01-01

    This paper presents a gastric contraction imaging system for assessment of gastric motility using a 3-D endoscope. Gastrointestinal diseases are mainly based on morphological abnormalities. However, gastrointestinal symptoms are sometimes apparent without visible abnormalities. One of the major factors for these diseases is abnormal gastrointestinal motility. For assessment of gastric motility, a gastric motility imaging system is needed. To assess the dynamic motility of the stomach, the proposed system measures 3-D gastric contractions derived from a 3-D profile of the stomach wall obtained with a developed 3-D endoscope. After obtaining contraction waves, their frequency, amplitude, and speed of propagation can be calculated using a Gaussian function. The proposed system was evaluated for 3-D measurements of several objects with known geometries. The results showed that the surface profiles could be obtained with an error of [Formula: see text] of the distance between two different points on images. Subsequently, we evaluated the validity of a prototype system using a wave simulated model. In the experiment, the amplitude and position of waves could be measured with 1-mm accuracy. The present results suggest that the proposed system can measure the speed and amplitude of contractions. This system has low invasiveness and can assess the motility of the stomach wall directly in a 3-D manner. Our method can be used for examination of gastric morphological and functional abnormalities.

  15. 2D/3D Image Registration using Regression Learning

    PubMed Central

    Chou, Chen-Rui; Frederick, Brandon; Mageras, Gig; Chang, Sha; Pizer, Stephen

    2013-01-01

    In computer vision and image analysis, image registration between 2D projections and a 3D image that achieves high accuracy and near real-time computation is challenging. In this paper, we propose a novel method that can rapidly detect an object’s 3D rigid motion or deformation from a 2D projection image or a small set thereof. The method is called CLARET (Correction via Limited-Angle Residues in External Beam Therapy) and consists of two stages: registration preceded by shape space and regression learning. In the registration stage, linear operators are used to iteratively estimate the motion/deformation parameters based on the current intensity residue between the target projec-tion(s) and the digitally reconstructed radiograph(s) (DRRs) of the estimated 3D image. The method determines the linear operators via a two-step learning process. First, it builds a low-order parametric model of the image region’s motion/deformation shape space from its prior 3D images. Second, using learning-time samples produced from the 3D images, it formulates the relationships between the model parameters and the co-varying 2D projection intensity residues by multi-scale linear regressions. The calculated multi-scale regression matrices yield the coarse-to-fine linear operators used in estimating the model parameters from the 2D projection intensity residues in the registration. The method’s application to Image-guided Radiation Therapy (IGRT) requires only a few seconds and yields good results in localizing a tumor under rigid motion in the head and neck and under respiratory deformation in the lung, using one treatment-time imaging 2D projection or a small set thereof. PMID:24058278

  16. Advances in automated 3-D image analyses of cell populations imaged by confocal microscopy.

    PubMed

    Ancin, H; Roysam, B; Dufresne, T E; Chestnut, M M; Ridder, G M; Szarowski, D H; Turner, J N

    1996-11-01

    Automated three-dimensional (3-D) image analysis methods are presented for rapid and effective analysis of populations of fluorescently labeled cells or nuclei in thick tissue sections that have been imaged three dimensionally using a confocal microscope. The methods presented here greatly improve upon our earlier work (Roysam et al.:J Microsc 173: 115-126, 1994). The principal advances reported are: algorithms for efficient data pre-processing and adaptive segmentation, effective handling of image anisotrophy, and fast 3-D morphological algorithms for separating overlapping or connected clusters utilizing image gradient information whenever available. A particular feature of this method is its ability to separate densely packed and connected clusters of cell nuclei. Some of the challenges overcome in this work include the efficient and effective handling of imaging noise, anisotrophy, and large variations in image parameters such as intensity, object size, and shape. The method is able to handle significant inter-cell, intra-cell, inter-image, and intra-image variations. Studies indicate that this method is rapid, robust, and adaptable. Examples were presented to illustrate the applicability of this approach to analyzing images of nuclei from densely packed regions in thick sections of rat liver, and brain that were labeled with a fluorescent Schiff reagent.

  17. Multi-camera sensor system for 3D segmentation and localization of multiple mobile robots.

    PubMed

    Losada, Cristina; Mazo, Manuel; Palazuelos, Sira; Pizarro, Daniel; Marrón, Marta

    2010-01-01

    This paper presents a method for obtaining the motion segmentation and 3D localization of multiple mobile robots in an intelligent space using a multi-camera sensor system. The set of calibrated and synchronized cameras are placed in fixed positions within the environment (intelligent space). The proposed algorithm for motion segmentation and 3D localization is based on the minimization of an objective function. This function includes information from all the cameras, and it does not rely on previous knowledge or invasive landmarks on board the robots. The proposed objective function depends on three groups of variables: the segmentation boundaries, the motion parameters and the depth. For the objective function minimization, we use a greedy iterative algorithm with three steps that, after initialization of segmentation boundaries and depth, are repeated until convergence.

  18. Automatic Texture Reconstruction of 3d City Model from Oblique Images

    NASA Astrophysics Data System (ADS)

    Kang, Junhua; Deng, Fei; Li, Xinwei; Wan, Fang

    2016-06-01

    In recent years, the photorealistic 3D city models are increasingly important in various geospatial applications related to virtual city tourism, 3D GIS, urban planning, real-estate management. Besides the acquisition of high-precision 3D geometric data, texture reconstruction is also a crucial step for generating high-quality and visually realistic 3D models. However, most of the texture reconstruction approaches are probably leading to texture fragmentation and memory inefficiency. In this paper, we introduce an automatic framework of texture reconstruction to generate textures from oblique images for photorealistic visualization. Our approach include three major steps as follows: mesh parameterization, texture atlas generation and texture blending. Firstly, mesh parameterization procedure referring to mesh segmentation and mesh unfolding is performed to reduce geometric distortion in the process of mapping 2D texture to 3D model. Secondly, in the texture atlas generation step, the texture of each segmented region in texture domain is reconstructed from all visible images with exterior orientation and interior orientation parameters. Thirdly, to avoid color discontinuities at boundaries between texture regions, the final texture map is generated by blending texture maps from several corresponding images. We evaluated our texture reconstruction framework on a dataset of a city. The resulting mesh model can get textured by created texture without resampling. Experiment results show that our method can effectively mitigate the occurrence of texture fragmentation. It is demonstrated that the proposed framework is effective and useful for automatic texture reconstruction of 3D city model.

  19. Computerized analysis of pelvic incidence from 3D images

    NASA Astrophysics Data System (ADS)

    Vrtovec, Tomaž; Janssen, Michiel M. A.; Pernuš, Franjo; Castelein, René M.; Viergever, Max A.

    2012-02-01

    The sagittal alignment of the pelvis can be evaluated by the angle of pelvic incidence (PI), which is constant for an arbitrary subject position and orientation and can be therefore compared among subjects in standing, sitting or supine position. In this study, PI was measured from three-dimensional (3D) computed tomography (CT) images of normal subjects that were acquired in supine position. A novel computerized method, based on image processing techniques, was developed to automatically determine the anatomical references required to measure PI, i.e. the centers of the femoral heads in 3D, and the center and inclination of the sacral endplate in 3D. Multiplanar image reformation was applied to obtain perfect sagittal views with all anatomical structures completely in line with the hip axis, from which PI was calculated. The resulting PI (mean+/-standard deviation) was equal to 46.6°+/-9.2° for male subjects (N = 189), 47.6°+/-10.7° for female subjects (N = 181), and 47.1°+/-10.0° for all subjects (N = 370). The obtained measurements of PI from 3D images were not biased by acquisition projection or structure orientation, because all anatomical structures were completely in line with the hip axis. The performed measurements in 3D therefore represent PI according to the actual geometrical relationships among anatomical structures of the sacrum, pelvis and hips, as observed from the perfect sagittal views.

  20. Interactive visualization of multiresolution image stacks in 3D.

    PubMed

    Trotts, Issac; Mikula, Shawn; Jones, Edward G

    2007-04-15

    Conventional microscopy, electron microscopy, and imaging techniques such as MRI and PET commonly generate large stacks of images of the sectioned brain. In other domains, such as neurophysiology, variables such as space or time are also varied along a stack axis. Digital image sizes have been progressively increasing and in virtual microscopy, it is now common to work with individual image sizes that are several hundred megapixels and several gigabytes in size. The interactive visualization of these high-resolution, multiresolution images in 2D has been addressed previously [Sullivan, G., and Baker, R., 1994. Efficient quad-tree coding of images and video. IEEE Trans. Image Process. 3 (3), 327-331]. Here, we describe a method for interactive visualization of multiresolution image stacks in 3D. The method, characterized as quad-tree based multiresolution image stack interactive visualization using a texel projection based criterion, relies on accessing and projecting image tiles from multiresolution image stacks in such a way that, from the observer's perspective, image tiles all appear approximately the same size even though they are accessed from different tiers within the images comprising the stack. This method enables efficient navigation of high-resolution image stacks. We implement this method in a program called StackVis, which is a Windows-based, interactive 3D multiresolution image stack visualization system written in C++ and using OpenGL. It is freely available at http://brainmaps.org.

  1. Episcopic 3D Imaging Methods: Tools for Researching Gene Function

    PubMed Central

    Weninger, Wolfgang J; Geyer, Stefan H

    2008-01-01

    This work aims at describing episcopic 3D imaging methods and at discussing how these methods can contribute to researching the genetic mechanisms driving embryogenesis and tissue remodelling, and the genesis of pathologies. Several episcopic 3D imaging methods exist. The most advanced are capable of generating high-resolution volume data (voxel sizes from 0.5x0.5x1 µm upwards) of small to large embryos of model organisms and tissue samples. Beside anatomy and tissue architecture, gene expression and gene product patterns can be three dimensionally analyzed in their precise anatomical and histological context with the aid of whole mount in situ hybridization or whole mount immunohistochemical staining techniques. Episcopic 3D imaging techniques were and are employed for analyzing the precise morphological phenotype of experimentally malformed, randomly produced, or genetically engineered embryos of biomedical model organisms. It has been shown that episcopic 3D imaging also fits for describing the spatial distribution of genes and gene products during embryogenesis, and that it can be used for analyzing tissue samples of adult model animals and humans. The latter offers the possibility to use episcopic 3D imaging techniques for researching the causality and treatment of pathologies or for staging cancer. Such applications, however, are not yet routine and currently only preliminary results are available. We conclude that, although episcopic 3D imaging is in its very beginnings, it represents an upcoming methodology, which in short terms will become an indispensable tool for researching the genetic regulation of embryo development as well as the genesis of malformations and diseases. PMID:19452045

  2. Automatic 3D kidney segmentation based on shape constrained GC-OAAM

    NASA Astrophysics Data System (ADS)

    Chen, Xinjian; Summers, Ronald M.; Yao, Jianhua

    2011-03-01

    The kidney can be classified into three main tissue types: renal cortex, renal medulla and renal pelvis (or collecting system). Dysfunction of different renal tissue types may cause different kidney diseases. Therefore, accurate and efficient segmentation of kidney into different tissue types plays a very important role in clinical research. In this paper, we propose an automatic 3D kidney segmentation method which segments the kidney into the three different tissue types: renal cortex, medulla and pelvis. The proposed method synergistically combines active appearance model (AAM), live wire (LW) and graph cut (GC) methods, GC-OAAM for short. Our method consists of two main steps. First, a pseudo 3D segmentation method is employed for kidney initialization in which the segmentation is performed slice-by-slice via a multi-object oriented active appearance model (OAAM) method. An improved iterative model refinement algorithm is proposed for the AAM optimization, which synergistically combines the AAM and LW method. Multi-object strategy is applied to help the object initialization. The 3D model constraints are applied to the initialization result. Second, the object shape information generated from the initialization step is integrated into the GC cost computation. A multi-label GC method is used to segment the kidney into cortex, medulla and pelvis. The proposed method was tested on 19 clinical arterial phase CT data sets. The preliminary results showed the feasibility and efficiency of the proposed method.

  3. Proposed traceable structural resolution protocols for 3D imaging systems

    NASA Astrophysics Data System (ADS)

    MacKinnon, David; Beraldin, J.-Angelo; Cournoyer, Luc; Carrier, Benjamin; Blais, François

    2009-08-01

    A protocol for determining structural resolution using a potentially-traceable reference material is proposed. Where possible, terminology was selected to conform to those published in ISO JCGM 200:2008 (VIM) and ASTM E 2544-08 documents. The concepts of resolvability and edge width are introduced to more completely describe the ability of an optical non-contact 3D imaging system to resolve small features. A distinction is made between 3D range cameras, that obtain spatial data from the total field of view at once, and 3D range scanners, that accumulate spatial data for the total field of view over time. The protocol is presented through the evaluation of a 3D laser line range scanner.

  4. Image quality enhancement and computation acceleration of 3D holographic display using a symmetrical 3D GS algorithm.

    PubMed

    Zhou, Pengcheng; Bi, Yong; Sun, Minyuan; Wang, Hao; Li, Fang; Qi, Yan

    2014-09-20

    The 3D Gerchberg-Saxton (GS) algorithm can be used to compute a computer-generated hologram (CGH) to produce a 3D holographic display. But, using the 3D GS method, there exists a serious distortion in reconstructions of binary input images. We have eliminated the distortion and improved the image quality of the reconstructions by a maximum of 486%, using a symmetrical 3D GS algorithm that is developed based on a traditional 3D GS algorithm. In addition, the hologram computation speed has been accelerated by 9.28 times, which is significant for real-time holographic displays.

  5. Synthesis of 3D Model of a Magnetic Field-Influenced Body from a Single Image

    NASA Technical Reports Server (NTRS)

    Wang, Cuilan; Newman, Timothy; Gallagher, Dennis

    2006-01-01

    A method for recovery of a 3D model of a cloud-like structure that is in motion and deforming but approximately governed by magnetic field properties is described. The method allows recovery of the model from a single intensity image in which the structure's silhouette can be observed. The method exploits envelope theory and a magnetic field model. Given one intensity image and the segmented silhouette in the image, the method proceeds without human intervention to produce the 3D model. In addition to allowing 3D model synthesis, the method's capability to yield a very compact description offers further utility. Application of the method to several real-world images is demonstrated.

  6. A new method of 3D scene recognition from still images

    NASA Astrophysics Data System (ADS)

    Zheng, Li-ming; Wang, Xing-song

    2014-04-01

    Most methods of monocular visual three dimensional (3D) scene recognition involve supervised machine learning. However, these methods often rely on prior knowledge. Specifically, they learn the image scene as part of a training dataset. For this reason, when the sampling equipment or scene is changed, monocular visual 3D scene recognition may fail. To cope with this problem, a new method of unsupervised learning for monocular visual 3D scene recognition is here proposed. First, the image is made using superpixel segmentation based on the CIELAB color space values L, a, and b and on the coordinate values x and y of pixels, forming a superpixel image with a specific density. Second, a spectral clustering algorithm based on the superpixels' color characteristics and neighboring relationships was used to reduce the dimensions of the superpixel image. Third, the fuzzy distribution density functions representing sky, ground, and façade are multiplied with the segment pixels, where the expectations of these segments are obtained. A preliminary classification of sky, ground, and façade is generated in this way. Fourth, the most accurate classification images of sky, ground, and façade were extracted through the tier-1 wavelet sampling and Manhattan direction feature. Finally, a depth perception map is generated based on the pinhole imaging model and the linear perspective information of ground surface. Here, 400 images of Make3D Image data from the Cornell University website were used to test the algorithm. The experimental results showed that this unsupervised learning method provides a more effective monocular visual 3D scene recognition model than other methods.

  7. Efficiency analysis for 3D filtering of multichannel images

    NASA Astrophysics Data System (ADS)

    Kozhemiakin, Ruslan A.; Rubel, Oleksii; Abramov, Sergey K.; Lukin, Vladimir V.; Vozel, Benoit; Chehdi, Kacem

    2016-10-01

    Modern remote sensing systems basically acquire images that are multichannel (dual- or multi-polarization, multi- and hyperspectral) where noise, usually with different characteristics, is present in all components. If noise is intensive, it is desirable to remove (suppress) it before applying methods of image classification, interpreting, and information extraction. This can be done using one of two approaches - by component-wise or by vectorial (3D) filtering. The second approach has shown itself to have higher efficiency if there is essential correlation between multichannel image components as this often happens for multichannel remote sensing data of different origin. Within the class of 3D filtering techniques, there are many possibilities and variations. In this paper, we consider filtering based on discrete cosine transform (DCT) and pay attention to two aspects of processing. First, we study in detail what changes in DCT coefficient statistics take place for 3D denoising compared to component-wise processing. Second, we analyze how selection of component images united into 3D data array influences efficiency of filtering and can the observed tendencies be exploited in processing of images with rather large number of channels.

  8. Dynamic 3D MR Visualization and Detection of Upper Airway Obstruction during Sleep using Region Growing Segmentation

    PubMed Central

    Kim, Yoon-Chul; Khoo, Michael C.K.; Davidson Ward, Sally L.; Nayak, Krishna S.

    2016-01-01

    Goal We demonstrate a novel and robust approach for visualization of upper airway dynamics and detection of obstructive events from dynamic 3D magnetic resonance imaging (MRI) scans of the pharyngeal airway. Methods This approach uses 3D region growing, where the operator selects a region of interest that includes the pharyngeal airway, places two seeds in the patent airway, and determines a threshold for the first frame. Results This approach required 5 sec/frame of CPU time compared to 10 min/frame of operator time for manual segmentation. It compared well with manual segmentation, resulting in Dice Coefficients of 0.84 to 0.94, whereas the Dice Coefficients for two manual segmentations by the same observer were 0.89 to 0.97. It was also able to automatically detect 83% of collapse events. Conclusion Use of this simple semi-automated segmentation approach improves the workflow of novel dynamic MRI studies of the pharyngeal airway and enables visualization and detection of obstructive events. Significance Obstructive sleep apnea is a significant public health issue affecting 4-9% of adults and 2% of children. Recently, 3D dynamic MRI of the upper airway has been demonstrated during natural sleep, with sufficient spatio-temporal resolution to non-invasively study patterns of airway obstruction in young adults with OSA. This work makes it practical to analyze these long scans and visualize important factors in an MRI sleep study, such as the time, site, and extent of airway collapse. PMID:26258929

  9. Segmentation and tracking of adherens junctions in 3D for the analysis of epithelial tissue morphogenesis.

    PubMed

    Cilla, Rodrigo; Mechery, Vinodh; Hernandez de Madrid, Beatriz; Del Signore, Steven; Dotu, Ivan; Hatini, Victor

    2015-04-01

    Epithelial morphogenesis generates the shape of tissues, organs and embryos and is fundamental for their proper function. It is a dynamic process that occurs at multiple spatial scales from macromolecular dynamics, to cell deformations, mitosis and apoptosis, to coordinated cell rearrangements that lead to global changes of tissue shape. Using time lapse imaging, it is possible to observe these events at a system level. However, to investigate morphogenetic events it is necessary to develop computational tools to extract quantitative information from the time lapse data. Toward this goal, we developed an image-based computational pipeline to preprocess, segment and track epithelial cells in 4D confocal microscopy data. The computational pipeline we developed, for the first time, detects the adherens junctions of epithelial cells in 3D, without the need to first detect cell nuclei. We accentuate and detect cell outlines in a series of steps, symbolically describe the cells and their connectivity, and employ this information to track the cells. We validated the performance of the pipeline for its ability to detect vertices and cell-cell contacts, track cells, and identify mitosis and apoptosis in surface epithelia of Drosophila imaginal discs. We demonstrate the utility of the pipeline to extract key quantitative features of cell behavior with which to elucidate the dynamics and biomechanical control of epithelial tissue morphogenesis. We have made our methods and data available as an open-source multiplatform software tool called TTT (http://github.com/morganrcu/TTT).

  10. Segmentation and Tracking of Adherens Junctions in 3D for the Analysis of Epithelial Tissue Morphogenesis

    PubMed Central

    Cilla, Rodrigo; Mechery, Vinodh; Hernandez de Madrid, Beatriz; Del Signore, Steven; Dotu, Ivan; Hatini, Victor

    2015-01-01

    Epithelial morphogenesis generates the shape of tissues, organs and embryos and is fundamental for their proper function. It is a dynamic process that occurs at multiple spatial scales from macromolecular dynamics, to cell deformations, mitosis and apoptosis, to coordinated cell rearrangements that lead to global changes of tissue shape. Using time lapse imaging, it is possible to observe these events at a system level. However, to investigate morphogenetic events it is necessary to develop computational tools to extract quantitative information from the time lapse data. Toward this goal, we developed an image-based computational pipeline to preprocess, segment and track epithelial cells in 4D confocal microscopy data. The computational pipeline we developed, for the first time, detects the adherens junctions of epithelial cells in 3D, without the need to first detect cell nuclei. We accentuate and detect cell outlines in a series of steps, symbolically describe the cells and their connectivity, and employ this information to track the cells. We validated the performance of the pipeline for its ability to detect vertices and cell-cell contacts, track cells, and identify mitosis and apoptosis in surface epithelia of Drosophila imaginal discs. We demonstrate the utility of the pipeline to extract key quantitative features of cell behavior with which to elucidate the dynamics and biomechanical control of epithelial tissue morphogenesis. We have made our methods and data available as an open-source multiplatform software tool called TTT (http://github.com/morganrcu/TTT) PMID:25884654

  11. 3D EFT imaging with planar electrode array: Numerical simulation

    NASA Astrophysics Data System (ADS)

    Tuykin, T.; Korjenevsky, A.

    2010-04-01

    Electric field tomography (EFT) is the new modality of the quasistatic electromagnetic sounding of conductive media recently investigated theoretically and realized experimentally. The demonstrated results pertain to 2D imaging with circular or linear arrays of electrodes (and the linear array provides quite poor quality of imaging). In many applications 3D imaging is essential or can increase value of the investigation significantly. In this report we present the first results of numerical simulation of the EFT imaging system with planar array of electrodes which allows 3D visualization of the subsurface conductivity distribution. The geometry of the system is similar to the geometry of our EIT breast imaging system providing 3D conductivity imaging in form of cross-sections set with different depth from the surface. The EFT principle of operation and reconstruction approach differs from the EIT system significantly. So the results of numerical simulation are important to estimate if comparable quality of imaging is possible with the new contactless method. The EFT forward problem is solved using finite difference time domain (FDTD) method for the 8×8 square electrodes array. The calculated results of measurements are used then to reconstruct conductivity distributions by the filtered backprojections along electric field lines. The reconstructed images of the simple test objects are presented.

  12. 3-D Display Of Magnetic Resonance Imaging Of The Spine

    NASA Astrophysics Data System (ADS)

    Nelson, Alan C.; Kim, Yongmin; Haralick, Robert M.; Anderson, Paul A.; Johnson, Roger H.; DeSoto, Larry A.

    1988-06-01

    The original data is produced through standard magnetic resonance imaging (MRI) procedures with a surface coil applied to the lower back of a normal human subject. The 3-D spine image data consists of twenty-six contiguous slices with 256 x 256 pixels per slice. Two methods for visualization of the 3-D spine are explored. One method utilizes a verifocal mirror system which creates a true 3-D virtual picture of the object. Another method uses a standard high resolution monitor to simultaneously show the three orthogonal sections which intersect at any user-selected point within the object volume. We discuss the application of these systems in assessment of low back pain.

  13. Adaptive fuzzy segmentation of magnetic resonance images.

    PubMed

    Pham, D L; Prince, J L

    1999-09-01

    An algorithm is presented for the fuzzy segmentation of two-dimensional (2-D) and three-dimensional (3-D) multispectral magnetic resonance (MR) images that have been corrupted by intensity inhomogeneities, also known as shading artifacts. The algorithm is an extension of the 2-D adaptive fuzzy C-means algorithm (2-D AFCM) presented in previous work by the authors. This algorithm models the intensity inhomogeneities as a gain field that causes image intensities to smoothly and slowly vary through the image space. It iteratively adapts to the intensity inhomogeneities and is completely automated. In this paper, we fully generalize 2-D AFCM to three-dimensional (3-D) multispectral images. Because of the potential size of 3-D image data, we also describe a new faster multigrid-based algorithm for its implementation. We show, using simulated MR data, that 3-D AFCM yields lower error rates than both the standard fuzzy C-means (FCM) algorithm and two other competing methods, when segmenting corrupted images. Its efficacy is further demonstrated using real 3-D scalar and multispectral MR brain images.

  14. Sloped Terrain Segmentation for Autonomous Drive Using Sparse 3D Point Cloud

    PubMed Central

    Cho, Seoungjae; Kim, Jonghyun; Ikram, Warda; Cho, Kyungeun; Sim, Sungdae

    2014-01-01

    A ubiquitous environment for road travel that uses wireless networks requires the minimization of data exchange between vehicles. An algorithm that can segment the ground in real time is necessary to obtain location data between vehicles simultaneously executing autonomous drive. This paper proposes a framework for segmenting the ground in real time using a sparse three-dimensional (3D) point cloud acquired from undulating terrain. A sparse 3D point cloud can be acquired by scanning the geography using light detection and ranging (LiDAR) sensors. For efficient ground segmentation, 3D point clouds are quantized in units of volume pixels (voxels) and overlapping data is eliminated. We reduce nonoverlapping voxels to two dimensions by implementing a lowermost heightmap. The ground area is determined on the basis of the number of voxels in each voxel group. We execute ground segmentation in real time by proposing an approach to minimize the comparison between neighboring voxels. Furthermore, we experimentally verify that ground segmentation can be executed at about 19.31 ms per frame. PMID:25093204

  15. 3D imaging lidar for lunar robotic exploration

    NASA Astrophysics Data System (ADS)

    Hussein, Marwan W.; Tripp, Jeffrey W.

    2009-05-01

    Part of the requirements of the future Constellation program is to optimize lunar surface operations and reduce hazards to astronauts. Toward this end, many robotic platforms, rovers in specific, are being sought to carry out a multitude of missions involving potential EVA sites survey, surface reconnaissance, path planning and obstacle detection and classification. 3D imaging lidar technology provides an enabling capability that allows fast, accurate and detailed collection of three-dimensional information about the rover's environment. The lidar images the region of interest by scanning a laser beam and measuring the pulse time-of-flight and the bearing. The accumulated set of laser ranges and bearings constitutes the threedimensional image. As part of the ongoing NASA Ames research center activities in lunar robotics, the utility of 3D imaging lidar was evaluated by testing Optech's ILRIS-3D lidar on board the K-10 Red rover during the recent Human - Robotics Systems (HRS) field trails in Lake Moses, WA. This paper examines the results of the ILRIS-3D trials, presents the data obtained and discusses its application in lunar surface robotic surveying and scouting.

  16. 3D FaceCam: a fast and accurate 3D facial imaging device for biometrics applications

    NASA Astrophysics Data System (ADS)

    Geng, Jason; Zhuang, Ping; May, Patrick; Yi, Steven; Tunnell, David

    2004-08-01

    Human faces are fundamentally three-dimensional (3D) objects, and each face has its unique 3D geometric profile. The 3D geometric features of a human face can be used, together with its 2D texture, for rapid and accurate face recognition purposes. Due to the lack of low-cost and robust 3D sensors and effective 3D facial recognition (FR) algorithms, almost all existing FR systems use 2D face images. Genex has developed 3D solutions that overcome the inherent problems in 2D while also addressing limitations in other 3D alternatives. One important aspect of our solution is a unique 3D camera (the 3D FaceCam) that combines multiple imaging sensors within a single compact device to provide instantaneous, ear-to-ear coverage of a human face. This 3D camera uses three high-resolution CCD sensors and a color encoded pattern projection system. The RGB color information from each pixel is used to compute the range data and generate an accurate 3D surface map. The imaging system uses no moving parts and combines multiple 3D views to provide detailed and complete 3D coverage of the entire face. Images are captured within a fraction of a second and full-frame 3D data is produced within a few seconds. This described method provides much better data coverage and accuracy in feature areas with sharp features or details (such as the nose and eyes). Using this 3D data, we have been able to demonstrate that a 3D approach can significantly improve the performance of facial recognition. We have conducted tests in which we have varied the lighting conditions and angle of image acquisition in the "field." These tests have shown that the matching results are significantly improved when enrolling a 3D image rather than a single 2D image. With its 3D solutions, Genex is working toward unlocking the promise of powerful 3D FR and transferring FR from a lab technology into a real-world biometric solution.

  17. Systolic and diastolic assessment by 3D-ASM segmentation of gated-SPECT Studies: a comparison with MRI

    NASA Astrophysics Data System (ADS)

    Tobon-Gomez, C.; Bijnens, B. H.; Huguet, M.; Sukno, F.; Moragas, G.; Frangi, A. F.

    2009-02-01

    Gated single photon emission tomography (gSPECT) is a well-established technique used routinely in clinical practice. It can be employed to evaluate global left ventricular (LV) function of a patient. The purpose of this study is to assess LV systolic and diastolic function from gSPECT datasets in comparison with cardiac magnetic resonance imaging (CMR) measurements. This is achieved by applying our recently implemented 3D active shape model (3D-ASM) segmentation approach for gSPECT studies. This methodology allows for generation of 3D LV meshes for all cardiac phases, providing volume time curves and filling rate curves. Both systolic and diastolic functional parameters can be derived from these curves for an assessment of patient condition even at early stages of LV dysfunction. Agreement of functional parameters, with respect to CMR measurements, were analyzed by means of Bland-Altman plots. The analysis included subjects presenting either LV hypertrophy, dilation or myocardial infarction.

  18. Integration of real-time 3D image acquisition and multiview 3D display

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Li, Wei; Wang, Jingyi; Liu, Yongchun

    2014-03-01

    Seamless integration of 3D acquisition and 3D display systems offers enhanced experience in 3D visualization of the real world objects or scenes. The vivid representation of captured 3D objects displayed on a glasses-free 3D display screen could bring the realistic viewing experience to viewers as if they are viewing real-world scene. Although the technologies in 3D acquisition and 3D display have advanced rapidly in recent years, effort is lacking in studying the seamless integration of these two different aspects of 3D technologies. In this paper, we describe our recent progress on integrating a light-field 3D acquisition system and an autostereoscopic multiview 3D display for real-time light field capture and display. This paper focuses on both the architecture design and the implementation of the hardware and the software of this integrated 3D system. A prototype of the integrated 3D system is built to demonstrate the real-time 3D acquisition and 3D display capability of our proposed system.

  19. Practical pseudo-3D registration for large tomographic images

    NASA Astrophysics Data System (ADS)

    Liu, Xuan; Laperre, Kjell; Sasov, Alexander

    2014-09-01

    Image registration is a powerful tool in various tomographic applications. Our main focus is on microCT applications in which samples/animals can be scanned multiple times under different conditions or at different time points. For this purpose, a registration tool capable of handling fairly large volumes has been developed, using a novel pseudo-3D method to achieve fast and interactive registration with simultaneous 3D visualization. To reduce computation complexity in 3D registration, we decompose it into several 2D registrations, which are applied to the orthogonal views (transaxial, sagittal and coronal) sequentially and iteratively. After registration in each view, the next view is retrieved with the new transformation matrix for registration. This reduces the computation complexity significantly. For rigid transform, we only need to search for 3 parameters (2 shifts, 1 rotation) in each of the 3 orthogonal views instead of 6 (3 shifts, 3 rotations) for full 3D volume. In addition, the amount of voxels involved is also significantly reduced. For the proposed pseudo-3D method, image-based registration is employed, with Sum of Square Difference (SSD) as the similarity measure. The searching engine is Powell's conjugate direction method. In this paper, only rigid transform is used. However, it can be extended to affine transform by adding scaling and possibly shearing to the transform model. We have noticed that more information can be used in the 2D registration if Maximum Intensity Projections (MIP) or Parallel Projections (PP) is used instead of the orthogonal views. Also, other similarity measures, such as covariance or mutual information, can be easily incorporated. The initial evaluation on microCT data shows very promising results. Two application examples are shown: dental samples before and after treatment and structural changes in materials before and after compression. Evaluation on registration accuracy between pseudo-3D method and true 3D method has

  20. Optimizing 3D image quality and performance for stereoscopic gaming

    NASA Astrophysics Data System (ADS)

    Flack, Julien; Sanderson, Hugh; Pegg, Steven; Kwok, Simon; Paterson, Daniel

    2009-02-01

    The successful introduction of stereoscopic TV systems, such as Samsung's 3D Ready Plasma, requires high quality 3D content to be commercially available to the consumer. Console and PC games provide the most readily accessible source of high quality 3D content. This paper describes innovative developments in a generic, PC-based game driver architecture that addresses the two key issues affecting 3D gaming: quality and speed. At the heart of the quality issue are the same considerations that studios face producing stereoscopic renders from CG movies: how best to perform the mapping from a geometric CG environment into the stereoscopic display volume. The major difference being that for game drivers this mapping cannot be choreographed by hand but must be automatically calculated in real-time without significant impact on performance. Performance is a critical issue when dealing with gaming. Stereoscopic gaming has traditionally meant rendering the scene twice with the associated performance overhead. An alternative approach is to render the scene from one virtual camera position and use information from the z-buffer to generate a stereo pair using Depth-Image-Based Rendering (DIBR). We analyze this trade-off in more detail and provide some results relating to both 3D image quality and render performance.

  1. 3D-3D registration of partial capitate bones using spin-images

    NASA Astrophysics Data System (ADS)

    Breighner, Ryan; Holmes, David R.; Leng, Shuai; An, Kai-Nan; McCollough, Cynthia; Zhao, Kristin

    2013-03-01

    It is often necessary to register partial objects in medical imaging. Due to limited field of view (FOV), the entirety of an object cannot always be imaged. This study presents a novel application of an existing registration algorithm to this problem. The spin-image algorithm [1] creates pose-invariant representations of global shape with respect to individual mesh vertices. These `spin-images,' are then compared for two different poses of the same object to establish correspondences and subsequently determine relative orientation of the poses. In this study, the spin-image algorithm is applied to 4DCT-derived capitate bone surfaces to assess the relative accuracy of registration with various amounts of geometry excluded. The limited longitudinal coverage under the 4DCT technique (38.4mm, [2]), results in partial views of the capitate when imaging wrist motions. This study assesses the ability of the spin-image algorithm to register partial bone surfaces by artificially restricting the capitate geometry available for registration. Under IRB approval, standard static CT and 4DCT scans were obtained on a patient. The capitate was segmented from the static CT and one phase of 4DCT in which the whole bone was available. Spin-image registration was performed between the static and 4DCT. Distal portions of the 4DCT capitate (10-70%) were then progressively removed and registration was repeated. Registration accuracy was evaluated by angular errors and the percentage of sub-resolution fitting. It was determined that 60% of the distal capitate could be omitted without appreciable effect on registration accuracy using the spin-image algorithm (angular error < 1.5 degree, sub-resolution fitting < 98.4%).

  2. Clinical Application of Solid Model Based on Trabecular Tibia Bone CT Images Created by 3D Printer

    PubMed Central

    Cho, Jaemo; Park, Chan-Soo; Kim, Yeoun-Jae

    2015-01-01

    Objectives The aim of this work is to use a 3D solid model to predict the mechanical loads of human bone fracture risk associated with bone disease conditions according to biomechanical engineering parameters. Methods We used special image processing tools for image segmentation and three-dimensional (3D) reconstruction to generate meshes, which are necessary for the production of a solid model with a 3D printer from computed tomography (CT) images of the human tibia's trabecular and cortical bones. We examined the defects of the mechanism for the tibia's trabecular bones. Results Image processing tools and segmentation techniques were used to analyze bone structures and produce a solid model with a 3D printer. Conclusions These days, bio-imaging (CT and magnetic resonance imaging) devices are able to display and reconstruct 3D anatomical details, and diagnostics are becoming increasingly vital to the quality of patient treatment planning and clinical treatment. Furthermore, radiographic images are being used to study biomechanical systems with several aims, namely, to describe and simulate the mechanical behavior of certain anatomical systems, to analyze pathological bone conditions, to study tissues structure and properties, and to create a solid model using a 3D printer to support surgical planning and reduce experimental costs. These days, research using image processing tools and segmentation techniques to analyze bone structures to produce a solid model with a 3D printer is rapidly becoming very important. PMID:26279958

  3. 2D and 3D MALDI-imaging: conceptual strategies for visualization and data mining.

    PubMed

    Thiele, Herbert; Heldmann, Stefan; Trede, Dennis; Strehlow, Jan; Wirtz, Stefan; Dreher, Wolfgang; Berger, Judith; Oetjen, Janina; Kobarg, Jan Hendrik; Fischer, Bernd; Maass, Peter

    2014-01-01

    3D imaging has a significant impact on many challenges in life sciences, because biology is a 3-dimensional phenomenon. Current 3D imaging-technologies (various types MRI, PET, SPECT) are labeled, i.e. they trace the localization of a specific compound in the body. In contrast, 3D MALDI mass spectrometry-imaging (MALDI-MSI) is a label-free method imaging the spatial distribution of molecular compounds. It complements 3D imaging labeled methods, immunohistochemistry, and genetics-based methods. However, 3D MALDI-MSI cannot tap its full potential due to the lack of statistical methods for analysis and interpretation of large and complex 3D datasets. To overcome this, we established a complete and robust 3D MALDI-MSI pipeline combined with efficient computational data analysis methods for 3D edge preserving image denoising, 3D spatial segmentation as well as finding colocalized m/z values, which will be reviewed here in detail. Furthermore, we explain, why the integration and correlation of the MALDI imaging data with other imaging modalities allows to enhance the interpretation of the molecular data and provides visualization of molecular patterns that may otherwise not be apparent. Therefore, a 3D data acquisition workflow is described generating a set of 3 different dimensional images representing the same anatomies. First, an in-vitro MRI measurement is performed which results in a three-dimensional image modality representing the 3D structure of the measured object. After sectioning the 3D object into N consecutive slices, all N slices are scanned using an optical digital scanner, enabling for performing the MS measurements. Scanning the individual sections results into low-resolution images, which define the base coordinate system for the whole pipeline. The scanned images conclude the information from the spatial (MRI) and the mass spectrometric (MALDI-MSI) dimension and are used for the spatial three-dimensional reconstruction of the object performed by image

  4. 3-D object-oriented image analysis of geophysical data

    NASA Astrophysics Data System (ADS)

    Fadel, I.; Kerle, N.; van der Meijde, M.

    2014-07-01

    Geophysical data are the main source of information about the subsurface. Geophysical techniques are, however, highly non-unique in determining specific physical parameters and boundaries of subsurface objects. To obtain actual physical information, an inversion process is often applied, in which measurements at or above the Earth surface are inverted into a 2- or 3-D subsurface spatial distribution of the physical property. Interpreting these models into structural objects, related to physical processes, requires a priori knowledge and expert analysis which is susceptible to subjective choices and is therefore often non-repeatable. In this research, we implemented a recently introduced object-based approach to interpret the 3-D inversion results of a single geophysical technique using the available a priori information and the physical and geometrical characteristics of the interpreted objects. The introduced methodology is semi-automatic and repeatable, and allows the extraction of subsurface structures using 3-D object-oriented image analysis (3-D OOA) in an objective knowledge-based classification scheme. The approach allows for a semi-objective setting of thresholds that can be tested and, if necessary, changed in a very fast and efficient way. These changes require only changing the thresholds used in a so-called ruleset, which is composed of algorithms that extract objects from a 3-D data cube. The approach is tested on a synthetic model, which is based on a priori knowledge on objects present in the study area (Tanzania). Object characteristics and thresholds were well defined in a 3-D histogram of velocity versus depth, and objects were fully retrieved. The real model results showed how 3-D OOA can deal with realistic 3-D subsurface conditions in which the boundaries become fuzzy, the object extensions become unclear and the model characteristics vary with depth due to the different physical conditions. As expected, the 3-D histogram of the real data was

  5. Noninvasive computational imaging of cardiac electrophysiology for 3-D infarct.

    PubMed

    Wang, Linwei; Wong, Ken C L; Zhang, Heye; Liu, Huafeng; Shi, Pengcheng

    2011-04-01

    Myocardial infarction (MI) creates electrophysiologically altered substrates that are responsible for ventricular arrhythmias, such as tachycardia and fibrillation. The presence, size, location, and composition of infarct scar bear significant prognostic and therapeutic implications for individual subjects. We have developed a statistical physiological model-constrained framework that uses noninvasive body-surface-potential data and tomographic images to estimate subject-specific transmembrane-potential (TMP) dynamics inside the 3-D myocardium. In this paper, we adapt this framework for the purpose of noninvasive imaging, detection, and quantification of 3-D scar mass for postMI patients: the framework requires no prior knowledge of MI and converges to final subject-specific TMP estimates after several passes of estimation with intermediate feedback; based on the primary features of the estimated spatiotemporal TMP dynamics, we provide 3-D imaging of scar tissue and quantitative evaluation of scar location and extent. Phantom experiments were performed on a computational model of realistic heart-torso geometry, considering 87 transmural infarct scars of different sizes and locations inside the myocardium, and 12 compact infarct scars (extent between 10% and 30%) at different transmural depths. Real-data experiments were carried out on BSP and magnetic resonance imaging (MRI) data from four postMI patients, validated by gold standards and existing results. This framework shows unique advantage of noninvasive, quantitative, computational imaging of subject-specific TMP dynamics and infarct mass of the 3-D myocardium, with the potential to reflect details in the spatial structure and tissue composition/heterogeneity of 3-D infarct scar.

  6. Refraction Correction in 3D Transcranial Ultrasound Imaging

    PubMed Central

    Lindsey, Brooks D.; Smith, Stephen W.

    2014-01-01

    We present the first correction of refraction in three-dimensional (3D) ultrasound imaging using an iterative approach that traces propagation paths through a two-layer planar tissue model, applying Snell’s law in 3D. This approach is applied to real-time 3D transcranial ultrasound imaging by precomputing delays offline for several skull thicknesses, allowing the user to switch between three sets of delays for phased array imaging at the push of a button. Simulations indicate that refraction correction may be expected to increase sensitivity, reduce beam steering errors, and partially restore lost spatial resolution, with the greatest improvements occurring at the largest steering angles. Distorted images of cylindrical lesions were created by imaging through an acrylic plate in a tissue-mimicking phantom. As a result of correcting for refraction, lesions were restored to 93.6% of their original diameter in the lateral direction and 98.1% of their original shape along the long axis of the cylinders. In imaging two healthy volunteers, the mean brightness increased by 8.3% and showed no spatial dependency. PMID:24275538

  7. 3D Imaging of Density Gradients Using Plenoptic BOS

    NASA Astrophysics Data System (ADS)

    Klemkowsky, Jenna; Clifford, Chris; Fahringer, Timothy; Thurow, Brian

    2016-11-01

    The combination of background oriented schlieren (BOS) and a plenoptic camera, termed Plenoptic BOS, is explored through two proof-of-concept experiments. The motivation of this work is to provide a 3D technique capable of observing density disturbances. BOS uses the relationship between density and refractive index gradients to observe an apparent shift in a patterned background through image comparison. Conventional BOS systems acquire a single line-of-sight measurement, and require complex configurations to obtain 3D measurements, which are not always conducive to experimental facilities. Plenoptic BOS exploits the plenoptic camera's ability to generate multiple perspective views and refocused images from a single raw plenoptic image during post processing. Using such capabilities, with regards to BOS, provides multiple line-of-sight measurements of density disturbances, which can be collectively used to generate refocused BOS images. Such refocused images allow the position of density disturbances to be qualitatively and quantitatively determined. The image that provides the sharpest density gradient signature corresponds to a specific depth. These results offer motivation to advance Plenoptic BOS with an ultimate goal of reconstructing a 3D density field.

  8. An automated 3D reconstruction method of UAV images

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Wang, He; Liu, Xiaoyang; Li, Feng; Sun, Guangtong; Song, Ping

    2015-10-01

    In this paper a novel fully automated 3D reconstruction approach based on low-altitude unmanned aerial vehicle system (UAVs) images will be presented, which does not require previous camera calibration or any other external prior knowledge. Dense 3D point clouds are generated by integrating orderly feature extraction, image matching, structure from motion (SfM) and multi-view stereo (MVS) algorithms, overcoming many of the cost, time limitations of rigorous photogrammetry techniques. An image topology analysis strategy is introduced to speed up large scene reconstruction by taking advantage of the flight-control data acquired by UAV. Image topology map can significantly reduce the running time of feature matching by limiting the combination of images. A high-resolution digital surface model of the study area is produced base on UAV point clouds by constructing the triangular irregular network. Experimental results show that the proposed approach is robust and feasible for automatic 3D reconstruction of low-altitude UAV images, and has great potential for the acquisition of spatial information at large scales mapping, especially suitable for rapid response and precise modelling in disaster emergency.

  9. Cooperative processes in image segmentation

    NASA Technical Reports Server (NTRS)

    Davis, L. S.

    1982-01-01

    Research into the role of cooperative, or relaxation, processes in image segmentation is surveyed. Cooperative processes can be employed at several levels of the segmentation process as a preprocessing enhancement step, during supervised or unsupervised pixel classification and, finally, for the interpretation of image segments based on segment properties and relations.

  10. Pore detection in Computed Tomography (CT) soil 3D images using singularity map analysis

    NASA Astrophysics Data System (ADS)

    Sotoca, Juan J. Martin; Tarquis, Ana M.; Saa Requejo, Antonio; Grau, Juan B.

    2016-04-01

    X-ray Computed Tomography (CT) images have significantly helped the study of the internal soil structure. This technique has two main advantages: 1) it is a non-invasive technique, i.e., it doesńt modify the internal soil structure, and 2) it provides a good resolution. The major disadvantage is that these images are sometimes low-contrast in the solid/pore interface. One of the main problems in analyzing soil structure through CT images is to segment them in solid/pore space. To do so, we have different segmentation techniques at our disposal that are mainly based on thresholding methods in which global or local thresholds are calculated to separate pore space from solid space. The aim of this presentation is to develop the fractal approach to soil structure using "singularity maps" and the "Concentration-Area (CA) method". We will establish an analogy between mineralization processes in ore deposits and morphogenesis processes in soils. Resulting from this analogy a new 3D segmentation method is proposed, the "3D Singularity-CA" method. A comparison with traditional 3D segmentation methods will be performed to show the main differences among them.

  11. 3D X-ray imaging methods in support catheter ablations of cardiac arrhythmias.

    PubMed

    Stárek, Zdeněk; Lehar, František; Jež, Jiří; Wolf, Jiří; Novák, Miroslav

    2014-10-01

    Cardiac arrhythmias are a very frequent illness. Pharmacotherapy is not very effective in persistent arrhythmias and brings along a number of risks. Catheter ablation has became an effective and curative treatment method over the past 20 years. To support complex arrhythmia ablations, the 3D X-ray cardiac cavities imaging is used, most frequently the 3D reconstruction of CT images. The 3D cardiac rotational angiography (3DRA) represents a modern method enabling to create CT like 3D images on a standard X-ray machine equipped with special software. Its advantage lies in the possibility to obtain images during the procedure, decreased radiation dose and reduction of amount of the contrast agent. The left atrium model is the one most frequently used for complex atrial arrhythmia ablations, particularly for atrial fibrillation. CT data allow for creation and segmentation of 3D models of all cardiac cavities. Recently, a research has been made proving the use of 3DRA to create 3D models of other cardiac (right ventricle, left ventricle, aorta) and non-cardiac structures (oesophagus). They can be used during catheter ablation of complex arrhythmias to improve orientation during the construction of 3D electroanatomic maps, directly fused with 3D electroanatomic systems and/or fused with fluoroscopy. An intensive development in the 3D model creation and use has taken place over the past years and they became routinely used during catheter ablations of arrhythmias, mainly atrial fibrillation ablation procedures. Further development may be anticipated in the future in both the creation and use of these models.

  12. Subject-specific body segment parameter estimation using 3D photogrammetry with multiple cameras

    PubMed Central

    Morris, Mark; Sellers, William I.

    2015-01-01

    Inertial properties of body segments, such as mass, centre of mass or moments of inertia, are important parameters when studying movements of the human body. However, these quantities are not directly measurable. Current approaches include using regression models which have limited accuracy: geometric models with lengthy measuring procedures or acquiring and post-processing MRI scans of participants. We propose a geometric methodology based on 3D photogrammetry using multiple cameras to provide subject-specific body segment parameters while minimizing the interaction time with the participants. A low-cost body scanner was built using multiple cameras and 3D point cloud data generated using structure from motion photogrammetric reconstruction algorithms. The point cloud was manually separated into body segments, and convex hulling applied to each segment to produce the required geometric outlines. The accuracy of the method can be adjusted by choosing the number of subdivisions of the body segments. The body segment parameters of six participants (four male and two female) are presented using the proposed method. The multi-camera photogrammetric approach is expected to be particularly suited for studies including populations for which regression models are not available in literature and where other geometric techniques or MRI scanning are not applicable due to time or ethical constraints. PMID:25780778

  13. 3D geometric split-merge segmentation of brain MRI datasets.

    PubMed

    Marras, Ioannis; Nikolaidis, Nikolaos; Pitas, Ioannis

    2014-05-01

    In this paper, a novel method for MRI volume segmentation based on region adaptive splitting and merging is proposed. The method, called Adaptive Geometric Split Merge (AGSM) segmentation, aims at finding complex geometrical shapes that consist of homogeneous geometrical 3D regions. In each volume splitting step, several splitting strategies are examined and the most appropriate is activated. A way to find the maximal homogeneity axis of the volume is also introduced. Along this axis, the volume splitting technique divides the entire volume in a number of large homogeneous 3D regions, while at the same time, it defines more clearly small homogeneous regions within the volume in such a way that they have greater probabilities of survival at the subsequent merging step. Region merging criteria are proposed to this end. The presented segmentation method has been applied to brain MRI medical datasets to provide segmentation results when each voxel is composed of one tissue type (hard segmentation). The volume splitting procedure does not require training data, while it demonstrates improved segmentation performance in noisy brain MRI datasets, when compared to the state of the art methods.

  14. Applications of magnetic resonance image segmentation in neurology

    NASA Astrophysics Data System (ADS)

    Heinonen, Tomi; Lahtinen, Antti J.; Dastidar, Prasun; Ryymin, Pertti; Laarne, Paeivi; Malmivuo, Jaakko; Laasonen, Erkki; Frey, Harry; Eskola, Hannu

    1999-05-01

    After the introduction of digital imagin devices in medicine computerized tissue recognition and classification have become important in research and clinical applications. Segmented data can be applied among numerous research fields including volumetric analysis of particular tissues and structures, construction of anatomical modes, 3D visualization, and multimodal visualization, hence making segmentation essential in modern image analysis. In this research project several PC based software were developed in order to segment medical images, to visualize raw and segmented images in 3D, and to produce EEG brain maps in which MR images and EEG signals were integrated. The software package was tested and validated in numerous clinical research projects in hospital environment.

  15. Bone image segmentation.

    PubMed

    Liu, Z Q; Liew, H L; Clement, J G; Thomas, C D

    1999-05-01

    Characteristics of microscopic structures in bone cross sections carry essential clues in age determination in forensic science and in the study of age-related bone developments and bone diseases. Analysis of bone cross sections represents a major area of research in bone biology. However, traditional approaches in bone biology have relied primarily on manual processes with very limited number of bone samples. As a consequence, it is difficult to reach reliable and consistent conclusions. In this paper we present an image processing system that uses microstructural and relational knowledge present in the bone cross section for bone image segmentation. This system automates the bone image analysis process and is able to produce reliable results based on quantitative measurements from a large number of bone images. As a result, using large databases of bone images to study the correlation between bone structural features and age-related bone developments becomes feasible.

  16. 1024 pixels single photon imaging array for 3D ranging

    NASA Astrophysics Data System (ADS)

    Bellisai, S.; Guerrieri, F.; Tisa, S.; Zappa, F.; Tosi, A.; Giudice, A.

    2011-01-01

    Three dimensions (3D) acquisition systems are driving applications in many research field. Nowadays 3D acquiring systems are used in a lot of applications, such as cinema industry or in automotive (for active security systems). Depending on the application, systems present different features, for example color sensitivity, bi-dimensional image resolution, distance measurement accuracy and acquisition frame rate. The system we developed acquires 3D movie using indirect Time of Flight (iTOF), starting from phase delay measurement of a sinusoidally modulated light. The system acquires live movie with a frame rate up to 50frame/s in a range distance between 10 cm up to 7.5 m.

  17. Automated segmentation of 3-D spectral OCT retinal blood vessels by neural canal opening false positive suppression.

    PubMed

    Hu, Zhihong; Niemeijer, Meindert; Abràmoft, Michael D; Lee, Kyungmoo; Garvin, Mona K

    2010-01-01

    We present a method for automatically segmenting the blood vessels in optic nerve head (ONH) centered spectral-domain optical coherence tomography (SD-OCT) volumes, with a focus on the ability to segment the vessels in the region near the neural canal opening (NCO). The algorithm first pre-segments the NCO using a graph-theoretic approach. Oriented Gabor wavelets rotated around the center of the NCO are applied to extract features in a 2-D vessel-aimed projection image. Corresponding oriented NCO-based templates are utilized to help suppress the false positive tendency near the NCO boundary. The vessels are identified in a vessel-aimed projection image using a pixel classification algorithm. Based on the 2-D vessel profiles, 3-D vessel segmentation is performed by a triangular-mesh-based graph search approach in the SD-OCT volume. The segmentation method is trained on 5 and is tested on 10 randomly chosen independent ONH-centered SD-OCT volumes from 15 subjects with glaucoma. Using ROC analysis, for the 2-D vessel segmentation, we demonstrate an improvement over the closest previous work with an area under the curve (AUC) of 0.81 (0.72 for previously reported approach) for the region around the NCO and 0.84 for the region outside the NCO (0.81 for previously reported approach).

  18. 3D modeling of patient-specific geometries of portal veins using MR images.

    PubMed

    Yang, Yan; George, Stephanie; Martin, Diego R; Tannenbaum, Allen R; Giddens, Don P

    2006-01-01

    In this note, we present an approach for developing patient-specific 3D models of portal veins to provide geometric boundary conditions for computational fluid dynamics (CFD) simulations of the blood flow inside portal veins. The study is based on MRI liver images of individual patients to which we apply image registration and segmentation techniques and inlet and outlet velocity profiles acquired using PC-MRI in the same imaging session. The portal vein and its connected veins are then extracted and visualized in 3D as surfaces. Image registration is performed to align shifted images between each breath-hold when the MRI images are acquired. The image segmentation method first labels each voxel in the 3D volume of interest by using a Bayesian probability approach, and then isolates the portal veins via active surfaces initialized inside the vessel. The method was tested with two healthy volunteers. In both cases, the main portal vein and its connected veins were successfully modeled and visualized.

  19. Large distance 3D imaging of hidden objects

    NASA Astrophysics Data System (ADS)

    Rozban, Daniel; Aharon Akram, Avihai; Kopeika, N. S.; Abramovich, A.; Levanon, Assaf

    2014-06-01

    Imaging systems in millimeter waves are required for applications in medicine, communications, homeland security, and space technology. This is because there is no known ionization hazard for biological tissue, and atmospheric attenuation in this range of the spectrum is low compared to that of infrared and optical rays. The lack of an inexpensive room temperature detector makes it difficult to give a suitable real time implement for the above applications. A 3D MMW imaging system based on chirp radar was studied previously using a scanning imaging system of a single detector. The system presented here proposes to employ a chirp radar method with Glow Discharge Detector (GDD) Focal Plane Array (FPA of plasma based detectors) using heterodyne detection. The intensity at each pixel in the GDD FPA yields the usual 2D image. The value of the I-F frequency yields the range information at each pixel. This will enable 3D MMW imaging. In this work we experimentally demonstrate the feasibility of implementing an imaging system based on radar principles and FPA of inexpensive detectors. This imaging system is shown to be capable of imaging objects from distances of at least 10 meters.

  20. Interactive 2D to 3D stereoscopic image synthesis

    NASA Astrophysics Data System (ADS)

    Feldman, Mark H.; Lipton, Lenny

    2005-03-01

    Advances in stereoscopic display technologies, graphic card devices, and digital imaging algorithms have opened up new possibilities in synthesizing stereoscopic images. The power of today"s DirectX/OpenGL optimized graphics cards together with adapting new and creative imaging tools found in software products such as Adobe Photoshop, provide a powerful environment for converting planar drawings and photographs into stereoscopic images. The basis for such a creative process is the focus of this paper. This article presents a novel technique, which uses advanced imaging features and custom Windows-based software that utilizes the Direct X 9 API to provide the user with an interactive stereo image synthesizer. By creating an accurate and interactive world scene with moveable and flexible depth map altered textured surfaces, perspective stereoscopic cameras with both visible frustums and zero parallax planes, a user can precisely model a virtual three-dimensional representation of a real-world scene. Current versions of Adobe Photoshop provide a creative user with a rich assortment of tools needed to highlight elements of a 2D image, simulate hidden areas, and creatively shape them for a 3D scene representation. The technique described has been implemented as a Photoshop plug-in and thus allows for a seamless transition of these 2D image elements into 3D surfaces, which are subsequently rendered to create stereoscopic views.

  1. Automated reconstruction of 3D scenes from sequences of images

    NASA Astrophysics Data System (ADS)

    Pollefeys, M.; Koch, R.; Vergauwen, M.; Van Gool, L.

    Modelling of 3D objects from image sequences is a challenging problem and has been an important research topic in the areas of photogrammetry and computer vision for many years. In this paper, a system is presented which automatically extracts a textured 3D surface model from a sequence of images of a scene. The system can deal with unknown camera settings. In addition, the parameters of this camera are allowed to change during acquisition (e.g., by zooming or focusing). No prior knowledge about the scene is necessary to build the 3D models. Therefore, this system offers a high degree of flexibility. The system is based on state-of-the-art algorithms recently developed in computer vision. The 3D modelling task is decomposed into a number of successive steps. Gradually, more knowledge of the scene and the camera setup is retrieved. At this point, the obtained accuracy is not yet at the level required for most metrology applications, but the visual quality is very convincing. This system has been applied to a number of applications in archaeology. The Roman site of Sagalassos (southwest Turkey) was used as a test case to illustrate the potential of this new approach.

  2. 3D imaging of the mesospheric emissive layer

    NASA Astrophysics Data System (ADS)

    Nadjib Kouahla, Mohamed; Faivre, Michael; Moreels, Guy; Clairemidi, Jacques; Mougin-Sisini, Davy; Meriwether, John W.; Lehmacher, Gerald A.; Vidal, Erick; Veliz, Oskar

    A new and original stereo-imaging method is introduced to measure the altitude of the OH airglow layer and provide a 3D map of the altitude of the layer centroid. Near-IR photographs of the layer are taken at two sites distant of 645 km. Each photograph is processed in order to invert the perspective effect and provide a satellite-type view of the layer. When superposed, the two views present a common diamond-shaped area. Pairs of matched points that correspond to a physical emissive point in the common area are identified in calculating a normalized crosscorrelation coefficient. This method is suitable for obtaining 3D representations in the case of low-contrast objects. An observational campaign was conducted in July 2006 in Peru. The images were taken simultaneously at Cerro Cosmos (12° 09' 08.2" S, 75° 33' 49.3" W, altitude 4630 m) close to Huancayo and Cerro Verde Tellolo (16° 33' 17.6" S, 71° 39' 59.4" W, altitude 2330 m) close to Arequipa. 3D maps of the layer surface are retrieved. They are compared with pseudo-relief intensity maps of the same region. The mean altitude of the emission barycenter is located at 87.1 km on July 26 and 89.5 km on July 28. Comparable relief wavy features appear in the 3D and intensity maps.

  3. From Voxels to Knowledge: A Practical Guide to the Segmentation of Complex Electron Microscopy 3D-Data

    PubMed Central

    Tsai, Wen-Ting; Hassan, Ahmed; Sarkar, Purbasha; Correa, Joaquin; Metlagel, Zoltan; Jorgens, Danielle M.; Auer, Manfred

    2014-01-01

    Modern 3D electron microscopy approaches have recently allowed unprecedented insight into the 3D ultrastructural organization of cells and tissues, enabling the visualization of large macromolecular machines, such as adhesion complexes, as well as higher-order structures, such as the cytoskeleton and cellular organelles in their respective cell and tissue context. Given the inherent complexity of cellular volumes, it is essential to first extract the features of interest in order to allow visualization, quantification, and therefore comprehension of their 3D organization. Each data set is defined by distinct characteristics, e.g., signal-to-noise ratio, crispness (sharpness) of the data, heterogeneity of its features, crowdedness of features, presence or absence of characteristic shapes that allow for easy identification, and the percentage of the entire volume that a specific region of interest occupies. All these characteristics need to be considered when deciding on which approach to take for segmentation. The six different 3D ultrastructural data sets presented were obtained by three different imaging approaches: resin embedded stained electron tomography, focused ion beam- and serial block face- scanning electron microscopy (FIB-SEM, SBF-SEM) of mildly stained and heavily stained samples, respectively. For these data sets, four different segmentation approaches have been applied: (1) fully manual model building followed solely by visualization of the model, (2) manual tracing segmentation of the data followed by surface rendering, (3) semi-automated approaches followed by surface rendering, or (4) automated custom-designed segmentation algorithms followed by surface rendering and quantitative analysis. Depending on the combination of data set characteristics, it was found that typically one of these four categorical approaches outperforms the others, but depending on the exact sequence of criteria, more than one approach may be successful. Based on these data

  4. Combined registration of 3D tibia and femur implant models in 3D magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Englmeier, Karl-Hans; Siebert, Markus; von Eisenhart-Rothe, Ruediger; Graichen, Heiko

    2008-03-01

    The most frequent reasons for revision of total knee arthroplasty are loosening and abnormal axial alignment leading to an unphysiological kinematic of the knee implant. To get an idea about the postoperative kinematic of the implant, it is essential to determine the position and orientation of the tibial and femoral prosthesis. Therefore we developed a registration method for fitting 3D CAD-models of knee joint prostheses into an 3D MR image. This rigid registration is the basis for a quantitative analysis of the kinematics of knee implants. Firstly the surface data of the prostheses models are converted into a voxel representation; a recursive algorithm determines all boundary voxels of the original triangular surface data. Secondly an initial preconfiguration of the implants by the user is still necessary for the following step: The user has to perform a rough preconfiguration of both remaining prostheses models, so that the fine matching process gets a reasonable starting point. After that an automated gradient-based fine matching process determines the best absolute position and orientation: This iterative process changes all 6 parameters (3 rotational- and 3 translational parameters) of a model by a minimal amount until a maximum value of the matching function is reached. To examine the spread of the final solutions of the registration, the interobserver variability was measured in a group of testers. This variability, calculated by the relative standard deviation, improved from about 50% (pure manual registration) to 0.5% (rough manual preconfiguration and subsequent fine registration with the automatic fine matching process).

  5. Linear tracking for 3-D medical ultrasound imaging.

    PubMed

    Huang, Qing-Hua; Yang, Zhao; Hu, Wei; Jin, Lian-Wen; Wei, Gang; Li, Xuelong

    2013-12-01

    As the clinical application grows, there is a rapid technical development of 3-D ultrasound imaging. Compared with 2-D ultrasound imaging, 3-D ultrasound imaging can provide improved qualitative and quantitative information for various clinical applications. In this paper, we proposed a novel tracking method for a freehand 3-D ultrasound imaging system with improved portability, reduced degree of freedom, and cost. We designed a sliding track with a linear position sensor attached, and it transmitted positional data via a wireless communication module based on Bluetooth, resulting in a wireless spatial tracking modality. A traditional 2-D ultrasound probe fixed to the position sensor on the sliding track was used to obtain real-time B-scans, and the positions of the B-scans were simultaneously acquired when moving the probe along the track in a freehand manner. In the experiments, the proposed method was applied to ultrasound phantoms and real human tissues. The results demonstrated that the new system outperformed a previously developed freehand system based on a traditional six-degree-of-freedom spatial sensor in phantom and in vivo studies, indicating its merit in clinical applications for human tissues and organs.

  6. 3D imaging: how to achieve highest accuracy

    NASA Astrophysics Data System (ADS)

    Luhmann, Thomas

    2011-07-01

    The generation of 3D information from images is a key technology in many different areas, e.g. in 3D modeling and representation of architectural or heritage objects, in human body motion tracking and scanning, in 3D scene analysis of traffic scenes, in industrial applications and many more. The basic concepts rely on mathematical representations of central perspective viewing as they are widely known from photogrammetry or computer vision approaches. The objectives of these methods differ, more or less, from high precision and well-structured measurements in (industrial) photogrammetry to fully-automated non-structured applications in computer vision. Accuracy and precision is a critical issue for the 3D measurement of industrial, engineering or medical objects. As state of the art, photogrammetric multi-view measurements achieve relative precisions in the order of 1:100000 to 1:200000, and relative accuracies with respect to retraceable lengths in the order of 1:50000 to 1:100000 of the largest object diameter. In order to obtain these figures a number of influencing parameters have to be optimized. These are, besides others: physical representation of object surface (targets, texture), illumination and light sources, imaging sensors, cameras and lenses, calibration strategies (camera model), orientation strategies (bundle adjustment), image processing of homologue features (target measurement, stereo and multi-image matching), representation of object or workpiece coordinate systems and object scale. The paper discusses the above mentioned parameters and offers strategies for obtaining highest accuracy in object space. Practical examples of high-quality stereo camera measurements and multi-image applications are used to prove the relevance of high accuracy in different applications, ranging from medical navigation to static and dynamic industrial measurements. In addition, standards for accuracy verifications are presented and demonstrated by practical examples

  7. F3D Image Processing and Analysis for Many - and Multi-core Platforms

    SciTech Connect

    2014-10-01

    F3D is written in OpenCL, so it achieve[sic] platform-portable parallelism on modern mutli-core CPUs and many-core GPUs. The interface and mechanims to access F3D core are written in Java as a plugin for Fiji/ImageJ to deliver several key image-processing algorithms necessary to remove artifacts from micro-tomography data. The algorithms consist of data parallel aware filters that can efficiently utilizes[sic] resources and can work on out of core datasets and scale efficiently across multiple accelerators. Optimizing for data parallel filters, streaming out of core datasets, and efficient resource and memory and data managements over complex execution sequence of filters greatly expedites any scientific workflow with image processing requirements. F3D performs several different types of 3D image processing operations, such as non-linear filtering using bilateral filtering and/or median filtering and/or morphological operators (MM). F3D gray-level MM operators are one-pass constant time methods that can perform morphological transformations with a line-structuring element oriented in discrete directions. Additionally, MM operators can be applied to gray-scale images, and consist of two parts: (a) a reference shape or structuring element, which is translated over the image, and (b) a mechanism, or operation, that defines the comparisons to be performed between the image and the structuring element. This tool provides a critical component within many complex pipelines such as those for performing automated segmentation of image stacks. F3D is also called a "descendent" of Quant-CT, another software we developed in the past. These two modules are to be integrated in a next version. Further details were reported in: D.M. Ushizima, T. Perciano, H. Krishnan, B. Loring, H. Bale, D. Parkinson, and J. Sethian. Structure recognition from high-resolution images of ceramic composites. IEEE International Conference on Big Data, October 2014.

  8. Image Appraisal for 2D and 3D Electromagnetic Inversion

    SciTech Connect

    Alumbaugh, D.L.; Newman, G.A.

    1999-01-28

    Linearized methods are presented for appraising image resolution and parameter accuracy in images generated with two and three dimensional non-linear electromagnetic inversion schemes. When direct matrix inversion is employed, the model resolution and posterior model covariance matrices can be directly calculated. A method to examine how the horizontal and vertical resolution varies spatially within the electromagnetic property image is developed by examining the columns of the model resolution matrix. Plotting the square root of the diagonal of the model covariance matrix yields an estimate of how errors in the inversion process such as data noise and incorrect a priori assumptions about the imaged model map into parameter error. This type of image is shown to be useful in analyzing spatial variations in the image sensitivity to the data. A method is analyzed for statistically estimating the model covariance matrix when the conjugate gradient method is employed rather than a direct inversion technique (for example in 3D inversion). A method for calculating individual columns of the model resolution matrix using the conjugate gradient method is also developed. Examples of the image analysis techniques are provided on 2D and 3D synthetic cross well EM data sets, as well as a field data set collected at the Lost Hills Oil Field in Central California.

  9. Validation of 3D ultrasound: CT registration of prostate images

    NASA Astrophysics Data System (ADS)

    Firle, Evelyn A.; Wesarg, Stefan; Karangelis, Grigoris; Dold, Christian

    2003-05-01

    All over the world 20% of men are expected to develop prostate cancer sometime in his life. In addition to surgery - being the traditional treatment for cancer - the radiation treatment is getting more popular. The most interesting radiation treatment regarding prostate cancer is Brachytherapy radiation procedure. For the safe delivery of that therapy imaging is critically important. In several cases where a CT device is available a combination of the information provided by CT and 3D Ultrasound (U/S) images offers advantages in recognizing the borders of the lesion and delineating the region of treatment. For these applications the CT and U/S scans should be registered and fused in a multi-modal dataset. Purpose of the present development is a registration tool (registration, fusion and validation) for available CT volumes with 3D U/S images of the same anatomical region, i.e. the prostate. The combination of these two imaging modalities interlinks the advantages of the high-resolution CT imaging and low cost real-time U/S imaging and offers a multi-modality imaging environment for further target and anatomy delineation. This tool has been integrated into the visualization software "InViVo" which has been developed over several years in Fraunhofer IGD in Darmstadt.

  10. Production of 3D consistent image representation of outdoor scenery for multimedia ambiance communication from multiviewpoint range data measured with a 3D laser scanner

    NASA Astrophysics Data System (ADS)

    Saito, Takahiro; Imamura, Hiroshi; Sunaga, Shin-ichi; Komatsu, Takashi

    2002-03-01

    Toward future 3D image communication, we have started studying the Multimedia Ambiance Communication, a kind of shared-space communication, and adopted an approach to design the 3D-image space using actual images of outdoor scenery, by introducing the concept of the three-layer model of long-, mid- and short-range views. The long- and mid-range views do not require precise representation of their 3D structure, and hence we employ the setting representation like stage settings to approximate their 3D structure according to the slanting-plane-model. We deal with an approach to produce the consistent setting representation for describing long- and mid-range views from range and texture data measured with a laser scanner and a digital camera located at multiple viewpoints. The production of such a representation requires the development of several techniques: nonlinear smoothing of raw range data, plane segmentation of range data, registration of multi-viewpoint range data, integration of multi-viewpoint setting representations and texture mapping onto each setting plane. In this paper, we concentrate on the plane segmentation and the multi-viewpoint data registration. Our plane segmentation method is based on the concept of the region competition, and can precisely extract fitting planes from the range data. Our registration method uses the equations of the segmented planes corresponding between two different viewpoints to determine the 3D Euclidean transformation between them. A unifying consistent setting representation can be constructed by integrating multiple setting representations for multiple viewpoints.

  11. Automated Recognition of 3D Features in GPIR Images

    NASA Technical Reports Server (NTRS)

    Park, Han; Stough, Timothy; Fijany, Amir

    2007-01-01

    A method of automated recognition of three-dimensional (3D) features in images generated by ground-penetrating imaging radar (GPIR) is undergoing development. GPIR 3D images can be analyzed to detect and identify such subsurface features as pipes and other utility conduits. Until now, much of the analysis of GPIR images has been performed manually by expert operators who must visually identify and track each feature. The present method is intended to satisfy a need for more efficient and accurate analysis by means of algorithms that can automatically identify and track subsurface features, with minimal supervision by human operators. In this method, data from multiple sources (for example, data on different features extracted by different algorithms) are fused together for identifying subsurface objects. The algorithms of this method can be classified in several different ways. In one classification, the algorithms fall into three classes: (1) image-processing algorithms, (2) feature- extraction algorithms, and (3) a multiaxis data-fusion/pattern-recognition algorithm that includes a combination of machine-learning, pattern-recognition, and object-linking algorithms. The image-processing class includes preprocessing algorithms for reducing noise and enhancing target features for pattern recognition. The feature-extraction algorithms operate on preprocessed data to extract such specific features in images as two-dimensional (2D) slices of a pipe. Then the multiaxis data-fusion/ pattern-recognition algorithm identifies, classifies, and reconstructs 3D objects from the extracted features. In this process, multiple 2D features extracted by use of different algorithms and representing views along different directions are used to identify and reconstruct 3D objects. In object linking, which is an essential part of this process, features identified in successive 2D slices and located within a threshold radius of identical features in adjacent slices are linked in a

  12. Fully automated prostate segmentation in 3D MR based on normalized gradient fields cross-correlation initialization and LOGISMOS refinement

    NASA Astrophysics Data System (ADS)

    Yin, Yin; Fotin, Sergei V.; Periaswamy, Senthil; Kunz, Justin; Haldankar, Hrishikesh; Muradyan, Naira; Cornud, François; Turkbey, Baris; Choyke, Peter

    2012-02-01

    Manual delineation of the prostate is a challenging task for a clinician due to its complex and irregular shape. Furthermore, the need for precisely targeting the prostate boundary continues to grow. Planning for radiation therapy, MR-ultrasound fusion for image-guided biopsy, multi-parametric MRI tissue characterization, and context-based organ retrieval are examples where accurate prostate delineation can play a critical role in a successful patient outcome. Therefore, a robust automated full prostate segmentation system is desired. In this paper, we present an automated prostate segmentation system for 3D MR images. In this system, the prostate is segmented in two steps: the prostate displacement and size are first detected, and then the boundary is refined by a shape model. The detection approach is based on normalized gradient fields cross-correlation. This approach is fast, robust to intensity variation and provides good accuracy to initialize a prostate mean shape model. The refinement model is based on a graph-search based framework, which contains both shape and topology information during deformation. We generated the graph cost using trained classifiers and used coarse-to-fine search and region-specific classifier training. The proposed algorithm was developed using 261 training images and tested on another 290 cases. The segmentation performance using mean DSC ranging from 0.89 to 0.91 depending on the evaluation subset demonstrates state of the art performance. Running time for the system is about 20 to 40 seconds depending on image size and resolution.

  13. 3D Reconstruction of the Retinal Arterial Tree Using Subject-Specific Fundus Images

    NASA Astrophysics Data System (ADS)

    Liu, D.; Wood, N. B.; Xu, X. Y.; Witt, N.; Hughes, A. D.; Samcg, Thom

    Systemic diseases, such as hypertension and diabetes, are associated with changes in the retinal microvasculature. Although a number of studies have been performed on the quantitative assessment of the geometrical patterns of the retinal vasculature, previous work has been confined to 2 dimensional (2D) analyses. In this paper, we present an approach to obtain a 3D reconstruction of the retinal arteries from a pair of 2D retinal images acquired in vivo. A simple essential matrix based self-calibration approach was employed for the "fundus camera-eye" system. Vessel segmentation was performed using a semi-automatic approach and correspondence between points from different images was calculated. The results of 3D reconstruction show the centreline of retinal vessels and their 3D curvature clearly. Three-dimensional reconstruction of the retinal vessels is feasible and may be useful in future studies of the retinal vasculature in disease.

  14. 3D scene reconstruction based on 3D laser point cloud combining UAV images

    NASA Astrophysics Data System (ADS)

    Liu, Huiyun; Yan, Yangyang; Zhang, Xitong; Wu, Zhenzhen

    2016-03-01

    It is a big challenge capturing and modeling 3D information of the built environment. A number of techniques and technologies are now in use. These include GPS, and photogrammetric application and also remote sensing applications. The experiment uses multi-source data fusion technology for 3D scene reconstruction based on the principle of 3D laser scanning technology, which uses the laser point cloud data as the basis and Digital Ortho-photo Map as an auxiliary, uses 3DsMAX software as a basic tool for building three-dimensional scene reconstruction. The article includes data acquisition, data preprocessing, 3D scene construction. The results show that the 3D scene has better truthfulness, and the accuracy of the scene meet the need of 3D scene construction.

  15. Joint calibration of 3D resist image and CDSEM

    NASA Astrophysics Data System (ADS)

    Chou, C. S.; He, Y. Y.; Tang, Y. P.; Chang, Y. T.; Huang, W. C.; Liu, R. G.; Gau, T. S.

    2013-04-01

    Traditionally, an optical proximity correction model is to evaluate the resist image at a specific depth within the photoresist and then extract the resist contours from the image. Calibration is generally implemented by comparing resist contours with the critical dimensions (CD). The wafer CD is usually collected by a scanning electron microscope (SEM), which evaluates the CD based on some criterion that is a function of gray level, differential signal, threshold or other parameters set by the SEM. However, the criterion does not reveal which depth the CD is obtained at. This depth inconsistency between modeling and SEM makes the model calibration difficult for low k1 images. In this paper, the vertical resist profile is obtained by modifying the model from planar (2D) to quasi-3D approach and comparing the CD from this new model with SEM CD. For this quasi-3D model, the photoresist diffusion along the depth of the resist is considered and the 3D photoresist contours are evaluated. The performance of this new model is studied and is better than the 2D model.

  16. 3D tongue motion from tagged and cine MR images.

    PubMed

    Xing, Fangxu; Woo, Jonghye; Murano, Emi Z; Lee, Junghoon; Stone, Maureen; Prince, Jerry L

    2013-01-01

    Understanding the deformation of the tongue during human speech is important for head and neck surgeons and speech and language scientists. Tagged magnetic resonance (MR) imaging can be used to image 2D motion, and data from multiple image planes can be combined via post-processing to yield estimates of 3D motion. However, lacking boundary information, this approach suffers from inaccurate estimates near the tongue surface. This paper describes a method that combines two sources of information to yield improved estimation of 3D tongue motion. The method uses the harmonic phase (HARP) algorithm to extract motion from tags and diffeomorphic demons to provide surface deformation. It then uses an incompressible deformation estimation algorithm to incorporate both sources of displacement information to form an estimate of the 3D whole tongue motion. Experimental results show that use of combined information improves motion estimation near the tongue surface, a problem that has previously been reported as problematic in HARP analysis, while preserving accurate internal motion estimates. Results on both normal and abnormal tongue motions are shown.

  17. Discrete Method of Images for 3D Radio Propagation Modeling

    NASA Astrophysics Data System (ADS)

    Novak, Roman

    2016-09-01

    Discretization by rasterization is introduced into the method of images (MI) in the context of 3D deterministic radio propagation modeling as a way to exploit spatial coherence of electromagnetic propagation for fine-grained parallelism. Traditional algebraic treatment of bounding regions and surfaces is replaced by computer graphics rendering of 3D reflections and double refractions while building the image tree. The visibility of reception points and surfaces is also resolved by shader programs. The proposed rasterization is shown to be of comparable run time to that of the fundamentally parallel shooting and bouncing rays. The rasterization does not affect the signal evaluation backtracking step, thus preserving its advantage over the brute force ray-tracing methods in terms of accuracy. Moreover, the rendering resolution may be scaled back for a given level of scenario detail with only marginal impact on the image tree size. This allows selection of scene optimized execution parameters for faster execution, giving the method a competitive edge. The proposed variant of MI can be run on any GPU that supports real-time 3D graphics.

  18. Validation of image processing tools for 3-D fluorescence microscopy.

    PubMed

    Dieterlen, Alain; Xu, Chengqi; Gramain, Marie-Pierre; Haeberlé, Olivier; Colicchio, Bruno; Cudel, Christophe; Jacquey, Serge; Ginglinger, Emanuelle; Jung, Georges; Jeandidier, Eric

    2002-04-01

    3-D optical fluorescent microscopy becomes nowadays an efficient tool for volumic investigation of living biological samples. Using optical sectioning technique, a stack of 2-D images is obtained. However, due to the nature of the system optical transfer function and non-optimal experimental conditions, acquired raw data usually suffer from some distortions. In order to carry out biological analysis, raw data have to be restored by deconvolution. The system identification by the point-spread function is useful to obtain the knowledge of the actual system and experimental parameters, which is necessary to restore raw data. It is furthermore helpful to precise the experimental protocol. In order to facilitate the use of image processing techniques, a multi-platform-compatible software package called VIEW3D has been developed. It integrates a set of tools for the analysis of fluorescence images from 3-D wide-field or confocal microscopy. A number of regularisation parameters for data restoration are determined automatically. Common geometrical measurements and morphological descriptors of fluorescent sites are also implemented to facilitate the characterisation of biological samples. An example of this method concerning cytogenetics is presented.

  19. Automated spatial alignment of 3D torso images.

    PubMed

    Bose, Arijit; Shah, Shishir K; Reece, Gregory P; Crosby, Melissa A; Beahm, Elisabeth K; Fingeret, Michelle C; Markey, Mia K; Merchant, Fatima A

    2011-01-01

    This paper describes an algorithm for automated spatial alignment of three-dimensional (3D) surface images in order to achieve a pre-defined orientation. Surface images of the torso are acquired from breast cancer patients undergoing reconstructive surgery to facilitate objective evaluation of breast morphology pre-operatively (for treatment planning) and/or post-operatively (for outcome assessment). Based on the viewing angle of the multiple cameras used for stereophotography, the orientation of the acquired torso in the images may vary from the normal upright position. Consequently, when translating this data into a standard 3D framework for visualization and analysis, the co-ordinate geometry differs from the upright position making robust and standardized comparison of images impractical. Moreover, manual manipulation and navigation of images to the desired upright position is subject to user bias. Automating the process of alignment and orientation removes operator bias and permits robust and repeatable adjustment of surface images to a pre-defined or desired spatial geometry.

  20. Fast 3D fluid registration of brain magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Leporé, Natasha; Chou, Yi-Yu; Lopez, Oscar L.; Aizenstein, Howard J.; Becker, James T.; Toga, Arthur W.; Thompson, Paul M.

    2008-03-01

    Fluid registration is widely used in medical imaging to track anatomical changes, to correct image distortions, and to integrate multi-modality data. Fluid mappings guarantee that the template image deforms smoothly into the target, without tearing or folding, even when large deformations are required for accurate matching. Here we implemented an intensity-based fluid registration algorithm, accelerated by using a filter designed by Bro-Nielsen and Gramkow. We validated the algorithm on 2D and 3D geometric phantoms using the mean square difference between the final registered image and target as a measure of the accuracy of the registration. In tests on phantom images with different levels of overlap, varying amounts of Gaussian noise, and different intensity gradients, the fluid method outperformed a more commonly used elastic registration method, both in terms of accuracy and in avoiding topological errors during deformation. We also studied the effect of varying the viscosity coefficients in the viscous fluid equation, to optimize registration accuracy. Finally, we applied the fluid registration algorithm to a dataset of 2D binary corpus callosum images and 3D volumetric brain MRIs from 14 healthy individuals to assess its accuracy and robustness.

  1. Integral imaging based 3D display of holographic data.

    PubMed

    Yöntem, Ali Özgür; Onural, Levent

    2012-10-22

    We propose a method and present applications of this method that converts a diffraction pattern into an elemental image set in order to display them on an integral imaging based display setup. We generate elemental images based on diffraction calculations as an alternative to commonly used ray tracing methods. Ray tracing methods do not accommodate the interference and diffraction phenomena. Our proposed method enables us to obtain elemental images from a holographic recording of a 3D object/scene. The diffraction pattern can be either numerically generated data or digitally acquired optical data. The method shows the connection between a hologram (diffraction pattern) and an elemental image set of the same 3D object. We showed three examples, one of which is the digitally captured optical diffraction tomography data of an epithelium cell. We obtained optical reconstructions with our integral imaging display setup where we used a digital lenslet array. We also obtained numerical reconstructions, again by using the diffraction calculations, for comparison. The digital and optical reconstruction results are in good agreement.

  2. 3D deformable image matching: a hierarchical approach over nested subspaces

    NASA Astrophysics Data System (ADS)

    Musse, Olivier; Heitz, Fabrice; Armspach, Jean-Paul

    2000-06-01

    This paper presents a fast hierarchical method to perform dense deformable inter-subject matching of 3D MR Images of the brain. To recover the complex morphological variations in neuroanatomy, a hierarchy of 3D deformations fields is estimated, by minimizing a global energy function over a sequence of nested subspaces. The nested subspaces, generated from a single scaling function, consist of deformation fields constrained at different scales. The highly non linear energy function, describing the interactions between the target and the source images, is minimized using a coarse-to-fine continuation strategy over this hierarchy. The resulting deformable matching method shows low sensitivity to local minima and is able to track large non-linear deformations, with moderate computational load. The performances of the approach are assessed both on simulated 3D transformations and on a real data base of 3D brain MR Images from different individuals. The method has shown efficient in putting into correspondence the principle anatomical structures of the brain. An application to atlas-based MRI segmentation, by transporting a labeled segmentation map on patient data, is also presented.

  3. Pavement cracking measurements using 3D laser-scan images

    NASA Astrophysics Data System (ADS)

    Ouyang, W.; Xu, B.

    2013-10-01

    Pavement condition surveying is vital for pavement maintenance programs that ensure ride quality and traffic safety. This paper first introduces an automated pavement inspection system which uses a three-dimensional (3D) camera and a structured laser light to acquire dense transverse profiles of a pavement lane surface when it carries a moving vehicle. After the calibration, the 3D system can yield a depth resolution of 0.5 mm and a transverse resolution of 1.56 mm pixel-1 at 1.4 m camera height from the ground. The scanning rate of the camera can be set to its maximum at 5000 lines s-1, allowing the density of scanned profiles to vary with the vehicle's speed. The paper then illustrates the algorithms that utilize 3D information to detect pavement distress, such as transverse, longitudinal and alligator cracking, and presents the field tests on the system's repeatability when scanning a sample pavement in multiple runs at the same vehicle speed, at different vehicle speeds and under different weather conditions. The results show that this dedicated 3D system can capture accurate pavement images that detail surface distress, and obtain consistent crack measurements in repeated tests and under different driving and lighting conditions.

  4. Objective breast symmetry evaluation using 3-D surface imaging.

    PubMed

    Eder, Maximilian; Waldenfels, Fee V; Swobodnik, Alexandra; Klöppel, Markus; Pape, Ann-Kathrin; Schuster, Tibor; Raith, Stefan; Kitzler, Elena; Papadopulos, Nikolaos A; Machens, Hans-Günther; Kovacs, Laszlo

    2012-04-01

    This study develops an objective breast symmetry evaluation using 3-D surface imaging (Konica-Minolta V910(®) scanner) by superimposing the mirrored left breast over the right and objectively determining the mean 3-D contour difference between the 2 breast surfaces. 3 observers analyzed the evaluation protocol precision using 2 dummy models (n = 60), 10 test subjects (n = 300), clinically tested it on 30 patients (n = 900) and compared it to established 2-D measurements on 23 breast reconstructive patients using the BCCT.core software (n = 690). Mean 3-D evaluation precision, expressed as the coefficient of variation (VC), was 3.54 ± 0.18 for all human subjects without significant intra- and inter-observer differences (p > 0.05). The 3-D breast symmetry evaluation is observer independent, significantly more precise (p < 0.001) than the BCCT.core software (VC = 6.92 ± 0.88) and may play a part in an objective surgical outcome analysis after incorporation into clinical practice.

  5. Image-based reconstruction of 3D myocardial infarct geometry for patient specific applications

    NASA Astrophysics Data System (ADS)

    Ukwatta, Eranga; Rajchl, Martin; White, James; Pashakhanloo, Farhad; Herzka, Daniel A.; McVeigh, Elliot; Lardo, Albert C.; Trayanova, Natalia; Vadakkumpadan, Fijoy

    2015-03-01

    Accurate reconstruction of the three-dimensional (3D) geometry of a myocardial infarct from two-dimensional (2D) multi-slice image sequences has important applications in the clinical evaluation and treatment of patients with ischemic cardiomyopathy. However, this reconstruction is challenging because the resolution of common clinical scans used to acquire infarct structure, such as short-axis, late-gadolinium enhanced cardiac magnetic resonance (LGE-CMR) images, is low, especially in the out-of-plane direction. In this study, we propose a novel technique to reconstruct the 3D infarct geometry from low resolution clinical images. Our methodology is based on a function called logarithm of odds (LogOdds), which allows the broader class of linear combinations in the LogOdds vector space as opposed to being limited to only a convex combination in the binary label space. To assess the efficacy of the method, we used high-resolution LGE-CMR images of 36 human hearts in vivo, and 3 canine hearts ex vivo. The infarct was manually segmented in each slice of the acquired images, and the manually segmented data were downsampled to clinical resolution. The developed method was then applied to the downsampled image slices, and the resulting reconstructions were compared with the manually segmented data. Several existing reconstruction techniques were also implemented, and compared with the proposed method. The results show that the LogOdds method significantly outperforms all the other tested methods in terms of region overlap.

  6. Virtual image display as a backlight for 3D.

    PubMed

    Travis, Adrian; MacCrann, Niall; Emerton, Neil; Kollin, Joel; Georgiou, Andreas; Lanier, Jaron; Bathiche, Stephen

    2013-07-29

    We describe a device which has the potential to be used both as a virtual image display and as a backlight. The pupil of the emitted light fills the device approximately to its periphery and the collimated emission can be scanned both horizontally and vertically in the manner needed to illuminate an eye in any position. The aim is to reduce the power needed to illuminate a liquid crystal panel but also to enable a smooth transition from 3D to a virtual image as the user nears the screen.

  7. Model-based 3D/2D deformable registration of MR images.

    PubMed

    Marami, Bahram; Sirouspour, Shahin; Capson, David W

    2011-01-01

    A method is proposed for automatic registration of 3D preoperative magnetic resonance images of deformable tissue to a sequence of its 2D intraoperative images. The algorithm employs a dynamic continuum mechanics model of the deformation and similarity (distance) measures such as correlation ratio, mutual information or sum of squared differences for registration. The registration is solely based on information present in the 3D preoperative and 2D intraoperative images and does not require fiducial markers, feature extraction or image segmentation. Results of experiments with a biopsy training breast phantom show that the proposed method can perform well in the presence of large deformations. This is particularly useful for clinical applications such as MR-based breast biopsy where large tissue deformations occur.

  8. Automatic structural matching of 3D image data

    NASA Astrophysics Data System (ADS)

    Ponomarev, Svjatoslav; Lutsiv, Vadim; Malyshev, Igor

    2015-10-01

    A new image matching technique is described. It is implemented as an object-independent hierarchical structural juxtaposition algorithm based on an alphabet of simple object-independent contour structural elements. The structural matching applied implements an optimized method of walking through a truncated tree of all possible juxtapositions of two sets of structural elements. The algorithm was initially developed for dealing with 2D images such as the aerospace photographs, and it turned out to be sufficiently robust and reliable for matching successfully the pictures of natural landscapes taken in differing seasons from differing aspect angles by differing sensors (the visible optical, IR, and SAR pictures, as well as the depth maps and geographical vector-type maps). At present (in the reported version), the algorithm is enhanced based on additional use of information on third spatial coordinates of observed points of object surfaces. Thus, it is now capable of matching the images of 3D scenes in the tasks of automatic navigation of extremely low flying unmanned vehicles or autonomous terrestrial robots. The basic principles of 3D structural description and matching of images are described, and the examples of image matching are presented.

  9. Underwater 3d Modeling: Image Enhancement and Point Cloud Filtering

    NASA Astrophysics Data System (ADS)

    Sarakinou, I.; Papadimitriou, K.; Georgoula, O.; Patias, P.

    2016-06-01

    This paper examines the results of image enhancement and point cloud filtering on the visual and geometric quality of 3D models for the representation of underwater features. Specifically it evaluates the combination of effects from the manual editing of images' radiometry (captured at shallow depths) and the selection of parameters for point cloud definition and mesh building (processed in 3D modeling software). Such datasets, are usually collected by divers, handled by scientists and used for geovisualization purposes. In the presented study, have been created 3D models from three sets of images (seafloor, part of a wreck and a small boat's wreck) captured at three different depths (3.5m, 10m and 14m respectively). Four models have been created from the first dataset (seafloor) in order to evaluate the results from the application of image enhancement techniques and point cloud filtering. The main process for this preliminary study included a) the definition of parameters for the point cloud filtering and the creation of a reference model, b) the radiometric editing of images, followed by the creation of three improved models and c) the assessment of results by comparing the visual and the geometric quality of improved models versus the reference one. Finally, the selected technique is tested on two other data sets in order to examine its appropriateness for different depths (at 10m and 14m) and different objects (part of a wreck and a small boat's wreck) in the context of an ongoing research in the Laboratory of Photogrammetry and Remote Sensing.

  10. 3D imaging of biological specimen using MS.

    PubMed

    Fletcher, John S

    2015-01-01

    Imaging MS can provide unique information about the distribution of native and non-native compounds in biological specimen. MALDI MS and secondary ion MS are the two most commonly applied imaging MS techniques and can provide complementary information about a sample. MALDI offers access to high mass species such as proteins while secondary ion MS can operate at higher spatial resolution and provide information about lower mass species including elemental signals. Imaging MS is not limited to two dimensions and different approaches have been developed that allow 3D molecular images to be generated of chemicals in whole organs down to single cells. Resolution in the z-dimension is often higher than in x and y, so such analysis offers the potential for probing the distribution of drug molecules and studying drug action by MS with a much higher precision - possibly even organelle level.

  11. Performance prediction for 3D filtering of multichannel images

    NASA Astrophysics Data System (ADS)

    Rubel, Oleksii; Kozhemiakin, Ruslan A.; Abramov, Sergey K.; Lukin, Vladimir V.; Vozel, Benoit; Chehdi, Kacem

    2015-10-01

    Performance of denoising based on discrete cosine transform applied to multichannel remote sensing images corrupted by additive white Gaussian noise is analyzed. Images obtained by satellite Earth Observing-1 (EO-1) mission using hyperspectral imager instrument (Hyperion) that have high input SNR are taken as test images. Denoising performance is characterized by improvement of PSNR. For hard-thresholding 3D DCT-based denoising, simple statistics (probabilities to be less than a certain threshold) are used to predict denoising efficiency using curves fitted into scatterplots. It is shown that the obtained curves (approximations) provide prediction of denoising efficiency with high accuracy. Analysis is carried out for different numbers of channels processed jointly. Universality of prediction for different number of channels is proven.

  12. 3D Lunar Terrain Reconstruction from Apollo Images

    NASA Technical Reports Server (NTRS)

    Broxton, Michael J.; Nefian, Ara V.; Moratto, Zachary; Kim, Taemin; Lundy, Michael; Segal, Alkeksandr V.

    2009-01-01

    Generating accurate three dimensional planetary models is becoming increasingly important as NASA plans manned missions to return to the Moon in the next decade. This paper describes a 3D surface reconstruction system called the Ames Stereo Pipeline that is designed to produce such models automatically by processing orbital stereo imagery. We discuss two important core aspects of this system: (1) refinement of satellite station positions and pose estimates through least squares bundle adjustment; and (2) a stochastic plane fitting algorithm that generalizes the Lucas-Kanade method for optimal matching between stereo pair images.. These techniques allow us to automatically produce seamless, highly accurate digital elevation models from multiple stereo image pairs while significantly reducing the influence of image noise. Our technique is demonstrated on a set of 71 high resolution scanned images from the Apollo 15 mission

  13. Phase Sensitive Cueing for 3D Objects in Overhead Images

    SciTech Connect

    Paglieroni, D W; Eppler, W G; Poland, D N

    2005-02-18

    A 3D solid model-aided object cueing method that matches phase angles of directional derivative vectors at image pixels to phase angles of vectors normal to projected model edges is described. It is intended for finding specific types of objects at arbitrary position and orientation in overhead images, independent of spatial resolution, obliqueness, acquisition conditions, and type of imaging sensor. It is shown that the phase similarity measure can be efficiently evaluated over all combinations of model position and orientation using the FFT. The highest degree of similarity over all model orientations is captured in a match surface of similarity values vs. model position. Unambiguous peaks in this surface are sorted in descending order of similarity value, and the small image thumbnails that contain them are presented to human analysts for inspection in sorted order.

  14. The effect of pose variability and repeated reliability of segmental centres of mass acquisition when using 3D photonic scanning.

    PubMed

    Chiu, Chuang-Yuan; Pease, David L; Sanders, Ross H

    2016-12-01

    Three-dimensional (3D) photonic scanning is an emerging technique to acquire accurate body segment parameter data. This study established the repeated reliability of segmental centres of mass when using 3D photonic scanning (3DPS). Seventeen male participants were scanned twice by a 3D whole-body laser scanner. The same operators conducted the reconstruction and segmentation processes to obtain segmental meshes for calculating the segmental centres of mass. The segmental centres of mass obtained from repeated 3DPS were compared by relative technical error of measurement (TEM). Hypothesis tests were conducted to determine the size of change required for each segment to be determined a true variation. The relative TEMs for all segments were less than 5%. The relative changes in centres of mass at ±1.5% for most segments can be detected (p < 0.05). The arm segments which are difficult to keep in the same scanning pose generated more error than other segments. Practitioner Summary: Three-dimensional photonic scanning is an emerging technique to acquire body segment parameter data. This study established the repeated reliability of segmental centres of mass when using 3D photonic scanning and emphasised that the error for arm segments need to be considered while using this technique to acquire centres of mass.

  15. Evaluation of Kinect 3D Sensor for Healthcare Imaging.

    PubMed

    Pöhlmann, Stefanie T L; Harkness, Elaine F; Taylor, Christopher J; Astley, Susan M

    2016-01-01

    Microsoft Kinect is a three-dimensional (3D) sensor originally designed for gaming that has received growing interest as a cost-effective and safe device for healthcare imaging. Recent applications of Kinect in health monitoring, screening, rehabilitation, assistance systems, and intervention support are reviewed here. The suitability of available technologies for healthcare imaging applications is assessed. The performance of Kinect I, based on structured light technology, is compared with that of the more recent Kinect II, which uses time-of-flight measurement, under conditions relevant to healthcare applications. The accuracy, precision, and resolution of 3D images generated with Kinect I and Kinect II are evaluated using flat cardboard models representing different skin colors (pale, medium, and dark) at distances ranging from 0.5 to 1.2 m and measurement angles of up to 75°. Both sensors demonstrated high accuracy (majority of measurements <2 mm) and precision (mean point to plane error <2 mm) at an average resolution of at least 390 points per cm(2). Kinect I is capable of imaging at shorter measurement distances, but Kinect II enables structures angled at over 60° to be evaluated. Kinect II showed significantly higher precision and Kinect I showed significantly higher resolution (both p < 0.001). The choice of object color can influence measurement range and precision. Although Kinect is not a medical imaging device, both sensor generations show performance adequate for a range of healthcare imaging applications. Kinect I is more appropriate for short-range imaging and Kinect II is more appropriate for imaging highly curved surfaces such as the face or breast.

  16. The 3D model control of image processing

    NASA Technical Reports Server (NTRS)

    Nguyen, An H.; Stark, Lawrence

    1989-01-01

    Telerobotics studies remote control of distant robots by a human operator using supervisory or direct control. Even if the robot manipulators has vision or other senses, problems arise involving control, communications, and delay. The communication delays that may be expected with telerobots working in space stations while being controlled from an Earth lab have led to a number of experiments attempting to circumvent the problem. This delay in communication is a main motivating factor in moving from well understood instantaneous hands-on manual control to less well understood supervisory control; the ultimate step would be the realization of a fully autonomous robot. The 3-D model control plays a crucial role in resolving many conflicting image processing problems that are inherent in resolving in the bottom-up approach of most current machine vision processes. The 3-D model control approach is also capable of providing the necessary visual feedback information for both the control algorithms and for the human operator.

  17. Finite element 3D reconstruction of the pulmonary acinus imaged by synchrotron X-ray tomography

    PubMed Central

    Tsuda, A.; Filipovic, N.; Haberthür, D.; Dickie, R.; Matsui, Y.; Stampanoni, M.; Schittny, J. C.

    2008-01-01

    The alveolated structure of the pulmonary acinus plays a vital role in gas exchange function. Three-dimensional (3D) analysis of the parenchymal region is fundamental to understanding this structure-function relationship, but only a limited number of attempts have been conducted in the past because of technical limitations. In this study, we developed a new image processing methodology based on finite element (FE) analysis for accurate 3D structural reconstruction of the gas exchange regions of the lung. Stereologically well characterized rat lung samples (Pediatr Res 53: 72–80, 2003) were imaged using high-resolution synchrotron radiation-based X-ray tomographic microscopy. A stack of 1,024 images (each slice: 1024 × 1024 pixels) with resolution of 1.4 μm3 per voxel were generated. For the development of FE algorithm, regions of interest (ROI), containing ∼7.5 million voxels, were further extracted as a working subunit. 3D FEs were created overlaying the voxel map using a grid-based hexahedral algorithm. A proper threshold value for appropriate segmentation was iteratively determined to match the calculated volume density of tissue to the stereologically determined value (Pediatr Res 53: 72–80, 2003). The resulting 3D FEs are ready to be used for 3D structural analysis as well as for subsequent FE computational analyses like fluid dynamics and skeletonization. PMID:18583378

  18. 3D Imaging of the OH mesospheric emissive layer

    NASA Astrophysics Data System (ADS)

    Kouahla, M. N.; Moreels, G.; Faivre, M.; Clairemidi, J.; Meriwether, J. W.; Lehmacher, G. A.; Vidal, E.; Veliz, O.

    2010-01-01

    A new and original stereo imaging method is introduced to measure the altitude of the OH nightglow layer and provide a 3D perspective map of the altitude of the layer centroid. Near-IR photographs of the OH layer are taken at two sites separated by a 645 km distance. Each photograph is processed in order to provide a satellite view of the layer. When superposed, the two views present a common diamond-shaped area. Pairs of matched points that correspond to a physical emissive point in the common area are identified in calculating a normalized cross-correlation coefficient (NCC). This method is suitable for obtaining 3D representations in the case of low-contrast objects. An observational campaign was conducted in July 2006 in Peru. The images were taken simultaneously at Cerro Cosmos (12°09‧08.2″ S, 75°33‧49.3″ W, altitude 4630 m) close to Huancayo and Cerro Verde Tellolo (16°33‧17.6″ S, 71°39‧59.4″ W, altitude 2272 m) close to Arequipa. 3D maps of the layer surface were retrieved and compared with pseudo-relief intensity maps of the same region. The mean altitude of the emission barycenter is located at 86.3 km on July 26. Comparable relief wavy features appear in the 3D and intensity maps. It is shown that the vertical amplitude of the wave system varies as exp (Δz/2H) within the altitude range Δz = 83.5-88.0 km, H being the scale height. The oscillatory kinetic energy at the altitude of the OH layer is comprised between 3 × 10-4 and 5.4 × 10-4 J/m3, which is 2-3 times smaller than the values derived from partial radio wave at 52°N latitude.

  19. 3D seismic imaging on massively parallel computers

    SciTech Connect

    Womble, D.E.; Ober, C.C.; Oldfield, R.

    1997-02-01

    The ability to image complex geologies such as salt domes in the Gulf of Mexico and thrusts in mountainous regions is a key to reducing the risk and cost associated with oil and gas exploration. Imaging these structures, however, is computationally expensive. Datasets can be terabytes in size, and the processing time required for the multiple iterations needed to produce a velocity model can take months, even with the massively parallel computers available today. Some algorithms, such as 3D, finite-difference, prestack, depth migration remain beyond the capacity of production seismic processing. Massively parallel processors (MPPs) and algorithms research are the tools that will enable this project to provide new seismic processing capabilities to the oil and gas industry. The goals of this work are to (1) develop finite-difference algorithms for 3D, prestack, depth migration; (2) develop efficient computational approaches for seismic imaging and for processing terabyte datasets on massively parallel computers; and (3) develop a modular, portable, seismic imaging code.

  20. Improving 3D Wavelet-Based Compression of Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Klimesh, Matthew; Kiely, Aaron; Xie, Hua; Aranki, Nazeeh

    2009-01-01

    Two methods of increasing the effectiveness of three-dimensional (3D) wavelet-based compression of hyperspectral images have been developed. (As used here, images signifies both images and digital data representing images.) The methods are oriented toward reducing or eliminating detrimental effects of a phenomenon, referred to as spectral ringing, that is described below. In 3D wavelet-based compression, an image is represented by a multiresolution wavelet decomposition consisting of several subbands obtained by applying wavelet transforms in the two spatial dimensions corresponding to the two spatial coordinate axes of the image plane, and by applying wavelet transforms in the spectral dimension. Spectral ringing is named after the more familiar spatial ringing (spurious spatial oscillations) that can be seen parallel to and near edges in ordinary images reconstructed from compressed data. These ringing phenomena are attributable to effects of quantization. In hyperspectral data, the individual spectral bands play the role of edges, causing spurious oscillations to occur in the spectral dimension. In the absence of such corrective measures as the present two methods, spectral ringing can manifest itself as systematic biases in some reconstructed spectral bands and can reduce the effectiveness of compression of spatially-low-pass subbands. One of the two methods is denoted mean subtraction. The basic idea of this method is to subtract mean values from spatial planes of spatially low-pass subbands prior to encoding, because (a) such spatial planes often have mean values that are far from zero and (b) zero-mean data are better suited for compression by methods that are effective for subbands of two-dimensional (2D) images. In this method, after the 3D wavelet decomposition is performed, mean values are computed for and subtracted from each spatial plane of each spatially-low-pass subband. The resulting data are converted to sign-magnitude form and compressed in a

  1. 3D geometry-based quantification of colocalizations in multichannel 3D microscopy images of human soft tissue tumors.

    PubMed

    Wörz, Stefan; Sander, Petra; Pfannmöller, Martin; Rieker, Ralf J; Joos, Stefan; Mechtersheimer, Gunhild; Boukamp, Petra; Lichter, Peter; Rohr, Karl

    2010-08-01

    We introduce a new model-based approach for automatic quantification of colocalizations in multichannel 3D microscopy images. The approach uses different 3D parametric intensity models in conjunction with a model fitting scheme to localize and quantify subcellular structures with high accuracy. The central idea is to determine colocalizations between different channels based on the estimated geometry of the subcellular structures as well as to differentiate between different types of colocalizations. A statistical analysis was performed to assess the significance of the determined colocalizations. This approach was used to successfully analyze about 500 three-channel 3D microscopy images of human soft tissue tumors and controls.

  2. Automatic Detection, Segmentation and Classification of Retinal Horizontal Neurons in Large-scale 3D Confocal Imagery

    SciTech Connect

    Karakaya, Mahmut; Kerekes, Ryan A; Gleason, Shaun Scott; Martins, Rodrigo; Dyer, Michael

    2011-01-01

    Automatic analysis of neuronal structure from wide-field-of-view 3D image stacks of retinal neurons is essential for statistically characterizing neuronal abnormalities that may be causally related to neural malfunctions or may be early indicators for a variety of neuropathies. In this paper, we study classification of neuron fields in large-scale 3D confocal image stacks, a challenging neurobiological problem because of the low spatial resolution imagery and presence of intertwined dendrites from different neurons. We present a fully automated, four-step processing approach for neuron classification with respect to the morphological structure of their dendrites. In our approach, we first localize each individual soma in the image by using morphological operators and active contours. By using each soma position as a seed point, we automatically determine an appropriate threshold to segment dendrites of each neuron. We then use skeletonization and network analysis to generate the morphological structures of segmented dendrites, and shape-based features are extracted from network representations of each neuron to characterize the neuron. Based on qualitative results and quantitative comparisons, we show that we are able to automatically compute relevant features that clearly distinguish between normal and abnormal cases for postnatal day 6 (P6) horizontal neurons.

  3. Miniature stereoscopic video system provides real-time 3D registration and image fusion for minimally invasive surgery

    NASA Astrophysics Data System (ADS)

    Yaron, Avi; Bar-Zohar, Meir; Horesh, Nadav

    2007-02-01

    Sophisticated surgeries require the integration of several medical imaging modalities, like MRI and CT, which are three-dimensional. Many efforts are invested in providing the surgeon with this information in an intuitive & easy to use manner. A notable development, made by Visionsense, enables the surgeon to visualize the scene in 3D using a miniature stereoscopic camera. It also provides real-time 3D measurements that allow registration of navigation systems as well as 3D imaging modalities, overlaying these images on the stereoscopic video image in real-time. The real-time MIS 'see through tissue' fusion solutions enable the development of new MIS procedures in various surgical segments, such as spine, abdomen, cardio-thoracic and brain. This paper describes 3D surface reconstruction and registration methods using Visionsense camera, as a step toward fully automated multi-modality 3D registration.

  4. In vivo validation of cardiac output assessment in non-standard 3D echocardiographic images

    NASA Astrophysics Data System (ADS)

    Nillesen, M. M.; Lopata, R. G. P.; de Boode, W. P.; Gerrits, I. H.; Huisman, H. J.; Thijssen, J. M.; Kapusta, L.; de Korte, C. L.

    2009-04-01

    Automatic segmentation of the endocardial surface in three-dimensional (3D) echocardiographic images is an important tool to assess left ventricular (LV) geometry and cardiac output (CO). The presence of speckle noise as well as the nonisotropic characteristics of the myocardium impose strong demands on the segmentation algorithm. In the analysis of normal heart geometries of standardized (apical) views, it is advantageous to incorporate a priori knowledge about the shape and appearance of the heart. In contrast, when analyzing abnormal heart geometries, for example in children with congenital malformations, this a priori knowledge about the shape and anatomy of the LV might induce erroneous segmentation results. This study describes a fully automated segmentation method for the analysis of non-standard echocardiographic images, without making strong assumptions on the shape and appearance of the heart. The method was validated in vivo in a piglet model. Real-time 3D echocardiographic image sequences of five piglets were acquired in radiofrequency (rf) format. These ECG-gated full volume images were acquired intra-operatively in a non-standard view. Cardiac blood flow was measured simultaneously by an ultrasound transit time flow probe positioned around the common pulmonary artery. Three-dimensional adaptive filtering using the characteristics of speckle was performed on the demodulated rf data to reduce the influence of speckle noise and to optimize the distinction between blood and myocardium. A gradient-based 3D deformable simplex mesh was then used to segment the endocardial surface. A gradient and a speed force were included as external forces of the model. To balance data fitting and mesh regularity, one fixed set of weighting parameters of internal, gradient and speed forces was used for all data sets. End-diastolic and end-systolic volumes were computed from the segmented endocardial surface. The cardiac output derived from this automatic segmentation was

  5. 3D-DXA: Assessing the Femoral Shape, the Trabecular Macrostructure and the Cortex in 3D from DXA images.

    PubMed

    Humbert, Ludovic; Martelli, Yves; Fonolla, Roger; Steghofer, Martin; Di Gregorio, Silvana; Malouf, Jorge; Romera, Jordi; Barquero, Luis Miguel Del Rio

    2017-01-01

    The 3D distribution of the cortical and trabecular bone mass in the proximal femur is a critical component in determining fracture resistance that is not taken into account in clinical routine Dual-energy X-ray Absorptiometry (DXA) examination. In this paper, a statistical shape and appearance model together with a 3D-2D registration approach are used to model the femoral shape and bone density distribution in 3D from an anteroposterior DXA projection. A model-based algorithm is subsequently used to segment the cortex and build a 3D map of the cortical thickness and density. Measurements characterising the geometry and density distribution were computed for various regions of interest in both cortical and trabecular compartments. Models and measurements provided by the "3D-DXA" software algorithm were evaluated using a database of 157 study subjects, by comparing 3D-DXA analyses (using DXA scanners from three manufacturers) with measurements performed by Quantitative Computed Tomography (QCT). The mean point-to-surface distance between 3D-DXA and QCT femoral shapes was 0.93 mm. The mean absolute error between cortical thickness and density estimates measured by 3D-DXA and QCT was 0.33 mm and 72 mg/cm(3). Correlation coefficients (R) between the 3D-DXA and QCT measurements were 0.86, 0.93, and 0.95 for the volumetric bone mineral density at the trabecular, cortical, and integral compartments respectively, and 0.91 for the mean cortical thickness. 3D-DXA provides a detailed analysis of the proximal femur, including a separate assessment of the cortical layer and trabecular macrostructure, which could potentially improve osteoporosis management while maintaining DXA as the standard routine modality.

  6. Automated medical image segmentation techniques

    PubMed Central

    Sharma, Neeraj; Aggarwal, Lalit M.

    2010-01-01

    Accurate segmentation of medical images is a key step in contouring during radiotherapy planning. Computed topography (CT) and Magnetic resonance (MR) imaging are the most widely used radiographic techniques in diagnosis, clinical studies and treatment planning. This review provides details of automated segmentation methods, specifically discussed in the context of CT and MR images. The motive is to discuss the problems encountered in segmentation of CT and MR images, and the relative merits and limitations of methods currently available for segmentation of medical images. PMID:20177565

  7. The Diagnostic Radiological Utilization Of 3-D Display Images

    NASA Astrophysics Data System (ADS)

    Cook, Larry T.; Dwyer, Samuel J.; Preston, David F.; Batnitzky, Solomon; Lee, Kyo R.

    1984-10-01

    In the practice of radiology, computer graphics systems have become an integral part of the use of computed tomography (CT), nuclear medicine (NM), magnetic resonance imaging (MRI), digital subtraction angiography (DSA) and ultrasound. Gray scale computerized display systems are used to display, manipulate, and record scans in all of these modalities. As the use of these imaging systems has spread, various applications involving digital image manipulation have also been widely accepted in the radiological community. We discuss one of the more esoteric of such applications, namely, the reconstruction of 3-D structures from plane section data, such as CT scans. Our technique is based on the acquisition of contour data from successive sections, the definition of the implicit surface defined by such contours, and the application of the appropriate computer graphics hardware and software to present reasonably pleasing pictures.

  8. Density-tapered spiral arrays for ultrasound 3-D imaging.

    PubMed

    Ramalli, Alessandro; Boni, Enrico; Savoia, Alessandro Stuart; Tortoli, Piero

    2015-08-01

    The current high interest in 3-D ultrasound imaging is pushing the development of 2-D probes with a challenging number of active elements. The most popular approach to limit this number is the sparse array technique, which designs the array layout by means of complex optimization algorithms. These algorithms are typically constrained by a few steering conditions, and, as such, cannot guarantee uniform side-lobe performance at all angles. The performance may be improved by the ungridded extensions of the sparse array technique, but this result is achieved at the expense of a further complication of the optimization process. In this paper, a method to design the layout of large circular arrays with a limited number of elements according to Fermat's spiral seeds and spatial density modulation is proposed and shown to be suitable for application to 3-D ultrasound imaging. This deterministic, aperiodic, and balanced positioning procedure attempts to guarantee uniform performance over a wide range of steering angles. The capabilities of the method are demonstrated by simulating and comparing the performance of spiral and dense arrays. A good trade-off for small vessel imaging is found, e.g., in the 60λ spiral array with 1.0λ elements and Blackman density tapering window. Here, the grating lobe level is -16 dB, the lateral resolution is lower than 6λ the depth of field is 120λ and, the average contrast is 10.3 dB, while the sensitivity remains in a 5 dB range for a wide selection of steering angles. The simulation results may represent a reference guide to the design of spiral sparse array probes for different application fields.

  9. Low cost 3D scanning process using digital image processing

    NASA Astrophysics Data System (ADS)

    Aguilar, David; Romero, Carlos; Martínez, Fernando

    2017-02-01

    This paper shows the design and building of a low cost 3D scanner, able to digitize solid objects through contactless data acquisition, using active object reflection. 3D scanners are used in different applications such as: science, engineering, entertainment, etc; these are classified in: contact scanners and contactless ones, where the last ones are often the most used but they are expensive. This low-cost prototype is done through a vertical scanning of the object using a fixed camera and a mobile horizontal laser light, which is deformed depending on the 3-dimensional surface of the solid. Using digital image processing an analysis of the deformation detected by the camera was done; it allows determining the 3D coordinates using triangulation. The obtained information is processed by a Matlab script, which gives to the user a point cloud corresponding to each horizontal scanning done. The obtained results show an acceptable quality and significant details of digitalized objects, making this prototype (built on LEGO Mindstorms NXT kit) a versatile and cheap tool, which can be used for many applications, mainly by engineering students.

  10. 3-D imaging and illustration of mouse intestinal neurovascular complex.

    PubMed

    Fu, Ya-Yuan; Peng, Shih-Jung; Lin, Hsin-Yao; Pasricha, Pankaj J; Tang, Shiue-Cheng

    2013-01-01

    Because of the dispersed nature of nerves and blood vessels, standard histology cannot provide a global and associated observation of the enteric nervous system (ENS) and vascular network. We prepared transparent mouse intestine and combined vessel painting and three-dimensional (3-D) neurohistology for joint visualization of the ENS and vasculature. Cardiac perfusion of the fluorescent wheat germ agglutinin (vessel painting) was used to label the ileal blood vessels. The pan-neuronal marker PGP9.5, sympathetic neuronal marker tyrosine hydroxylase (TH), serotonin, and glial markers S100B and GFAP were used as the immunostaining targets of neural tissues. The fluorescently labeled specimens were immersed in the optical clearing solution to improve photon penetration for 3-D confocal microscopy. Notably, we simultaneously revealed the ileal microstructure, vasculature, and innervation with micrometer-level resolution. Four examples are given: 1) the morphology of the TH-labeled sympathetic nerves: sparse in epithelium, perivascular at the submucosa, and intraganglionic at myenteric plexus; 2) distinct patterns of the extrinsic perivascular and intrinsic pericryptic innervation at the submucosal-mucosal interface; 3) different associations of serotonin cells with the mucosal neurovascular elements in the villi and crypts; and 4) the periganglionic capillary network at the myenteric plexus and its contact with glial fibers. Our 3-D imaging approach provides a useful tool to simultaneously reveal the nerves and blood vessels in a space continuum for panoramic illustration and analysis of the neurovascular complex to better understand the intestinal physiology and diseases.

  11. Effective classification of 3D image data using partitioning methods

    NASA Astrophysics Data System (ADS)

    Megalooikonomou, Vasileios; Pokrajac, Dragoljub; Lazarevic, Aleksandar; Obradovic, Zoran

    2002-03-01

    We propose partitioning-based methods to facilitate the classification of 3-D binary image data sets of regions of interest (ROIs) with highly non-uniform distributions. The first method is based on recursive dynamic partitioning of a 3-D volume into a number of 3-D hyper-rectangles. For each hyper-rectangle, we consider, as a potential attribute, the number of voxels (volume elements) that belong to ROIs. A hyper-rectangle is partitioned only if the corresponding attribute does not have high discriminative power, determined by statistical tests, but it is still sufficiently large for further splitting. The final discriminative hyper-rectangles form new attributes that are further employed in neural network classification models. The second method is based on maximum likelihood employing non-spatial (k-means) and spatial DBSCAN clustering algorithms to estimate the parameters of the underlying distributions. The proposed methods were experimentally evaluated on mixtures of Gaussian distributions, on realistic lesion-deficit data generated by a simulator conforming to a clinical study, and on synthetic fractal data. Both proposed methods have provided good classification on Gaussian mixtures and on realistic data. However, the experimental results on fractal data indicated that the clustering-based methods were only slightly better than random guess, while the recursive partitioning provided significantly better classification accuracy.

  12. 3D-LZ helicopter ladar imaging system

    NASA Astrophysics Data System (ADS)

    Savage, James; Harrington, Walter; McKinley, R. Andrew; Burns, H. N.; Braddom, Steven; Szoboszlay, Zoltan

    2010-04-01

    A joint-service team led by the Air Force Research Laboratory's Munitions and Sensors Directorates completed a successful flight test demonstration of the 3D-LZ Helicopter LADAR Imaging System. This was a milestone demonstration in the development of technology solutions for a problem known as "helicopter brownout", the loss of situational awareness caused by swirling sand during approach and landing. The 3D-LZ LADAR was developed by H.N. Burns Engineering and integrated with the US Army Aeroflightdynamics Directorate's Brown-Out Symbology System aircraft state symbology aboard a US Army EH-60 Black Hawk helicopter. The combination of these systems provided an integrated degraded visual environment landing solution with landing zone situational awareness as well as aircraft guidance and obstacle avoidance information. Pilots from the U.S. Army, Air Force, Navy, and Marine Corps achieved a 77% landing rate in full brownout conditions at a test range at Yuma Proving Ground, Arizona. This paper will focus on the LADAR technology used in 3D-LZ and the results of this milestone demonstration.

  13. 3D imaging reconstruction and impacted third molars: case reports

    PubMed Central

    Tuzi, Andrea; Di Bari, Roberto; Cicconetti, Andrea

    2012-01-01

    Summary There is a debate in the literature about the need for Computed Tomagraphy (CT) before removing third molars, even if positive radiographic signs are present. In few cases, the third molar is so close to the inferior alveolar nerve that its extraction might expose patients to the risk of post-operative neuro-sensitive alterations of the skin and the mucosa of the homolateral lower lip and chin. Thus, the injury of the inferior alveolar nerve may represent a serious, though infrequent, neurologic complication in the surgery of the third molars rendering necessary a careful pre-operative evaluation of their anatomical relationship with the inferior alveolar nerve by means of radiographic imaging techniques. This contribution presents two case reports showing positive radiographic signs, which are the hallmarks of a possible close relationship between the inferior alveolar nerve and the third molars. We aim at better defining the relationship between third molars and the mandibular canal using Dental CT Scan, DICOM image acquisition and 3D reconstruction with a dedicated software. By our study we deduce that 3D images are not indispensable, but they can provide a very agreeable assistance in the most complicated cases. PMID:23386934

  14. Precise 3D image alignment in micro-axial tomography.

    PubMed

    Matula, P; Kozubek, M; Staier, F; Hausmann, M

    2003-02-01

    Micro (micro-) axial tomography is a challenging technique in microscopy which improves quantitative imaging especially in cytogenetic applications by means of defined sample rotation under the microscope objective. The advantage of micro-axial tomography is an effective improvement of the precision of distance measurements between point-like objects. Under certain circumstances, the effective (3D) resolution can be improved by optimized acquisition depending on subsequent, multi-perspective image recording of the same objects followed by reconstruction methods. This requires, however, a very precise alignment of the tilted views. We present a novel feature-based image alignment method with a precision better than the full width at half maximum of the point spread function. The features are the positions (centres of gravity) of all fluorescent objects observed in the images (e.g. cell nuclei, fluorescent signals inside cell nuclei, fluorescent beads, etc.). Thus, real alignment precision depends on the localization precision of these objects. The method automatically determines the corresponding objects in subsequently tilted perspectives using a weighted bipartite graph. The optimum transformation function is computed in a least squares manner based on the coordinates of the centres of gravity of the matched objects. The theoretically feasible precision of the method was calculated using computer-generated data and confirmed by tests on real image series obtained from data sets of 200 nm fluorescent nano-particles. The advantages of the proposed algorithm are its speed and accuracy, which means that if enough objects are included, the real alignment precision is better than the axial localization precision of a single object. The alignment precision can be assessed directly from the algorithm's output. Thus, the method can be applied not only for image alignment and object matching in tilted view series in order to reconstruct (3D) images, but also to validate the

  15. 3D laser optoacoustic ultrasonic imaging system for preclinical research

    NASA Astrophysics Data System (ADS)

    Ermilov, Sergey A.; Conjusteau, André; Hernandez, Travis; Su, Richard; Nadvoretskiy, Vyacheslav; Tsyboulski, Dmitri; Anis, Fatima; Anastasio, Mark A.; Oraevsky, Alexander A.

    2013-03-01

    In this work, we introduce a novel three-dimensional imaging system for in vivo high-resolution anatomical and functional whole-body visualization of small animal models developed for preclinical or other type of biomedical research. The system (LOUIS-3DM) combines a multi-wavelength optoacoustic and ultrawide-band laser ultrasound tomographies to obtain coregistered maps of tissue optical absorption and acoustic properties, displayed within the skin outline of the studied animal. The most promising applications of the LOUIS-3DM include 3D angiography, cancer research, and longitudinal studies of biological distribution of optoacoustic contrast agents (carbon nanotubes, metal plasmonic nanoparticles, etc.).

  16. 3D Multispectral Light Propagation Model For Subcutaneous Veins Imaging

    SciTech Connect

    Paquit, Vincent C; Price, Jeffery R; Meriaudeau, Fabrice; Tobin Jr, Kenneth William

    2008-01-01

    In this paper, we describe a new 3D light propagation model aimed at understanding the effects of various physiological properties on subcutaneous vein imaging. In particular, we build upon the well known MCML (Monte Carlo Multi Layer) code and present a tissue model that improves upon the current state-of-the-art by: incorporating physiological variation, such as melanin concentration, fat content, and layer thickness; including veins of varying depth and diameter; using curved surfaces from real arm shapes; and modeling the vessel wall interface. We describe our model, present results from the Monte Carlo modeling, and compare these results with those obtained with other Monte Carlo methods.

  17. 3D imaging of neutron tracks using confocal microscopy

    NASA Astrophysics Data System (ADS)

    Gillmore, Gavin; Wertheim, David; Flowers, Alan

    2016-04-01

    Neutron detection and neutron flux assessment are important aspects in monitoring nuclear energy production. Neutron flux measurements can also provide information on potential biological damage from exposure. In addition to the applications for neutron measurement in nuclear energy, neutron detection has been proposed as a method of enhancing neutrino detectors and cosmic ray flux has also been assessed using ground-level neutron detectors. Solid State Nuclear Track Detectors (or SSNTDs) have been used extensively to examine cosmic rays, long-lived radioactive elements, radon concentrations in buildings and the age of geological samples. Passive SSNTDs consisting of a CR-39 plastic are commonly used to measure radon because they respond to incident charged particles such as alpha particles from radon gas in air. They have a large dynamic range and a linear flux response. We have previously applied confocal microscopy to obtain 3D images of alpha particle tracks in SSNTDs from radon track monitoring (1). As a charged particle traverses through the polymer it creates an ionisation trail along its path. The trail or track is normally enhanced by chemical etching to better expose radiation damage, as the damaged area is more sensitive to the etchant than the bulk material. Particle tracks in CR-39 are usually assessed using 2D optical microscopy. In this study 6 detectors were examined using an Olympus OLS4100 LEXT 3D laser scanning confocal microscope (Olympus Corporation, Japan). The detectors had been etched for 2 hours 50 minutes at 85 °C in 6.25M NaOH. Post etch the plastics had been treated with a 10 minute immersion in a 2% acetic acid stop bath, followed by rinsing in deionised water. The detectors examined had been irradiated with a 2mSv neutron dose from an Am(Be) neutron source (producing roughly 20 tracks per mm2). We were able to successfully acquire 3D images of neutron tracks in the detectors studied. The range of track diameter observed was between 4

  18. 3-D Imaging of Partly Concealed Targets by Laser Radar

    DTIC Science & Technology

    2005-10-01

    laser in the green wavelength region was used for illumination. 3-D Imaging of Partly Concealed Targets by Laser Radar 11 - 8 RTO-MP-SET-094...acknowledge Marie Carlsson and Ann Charlotte Gustavsson for their assistance in some of the experiments. 7.0 REFERENCES [1] U. Söderman, S. Ahlberg...SPIE Vol. 3707, pp. 432-448, USA, 1999. [14] D. Letalick, H. Larsson, M. Carlsson, and A.-C. Gustavsson , “Laser sensors for urban warfare,” FOI

  19. A modular segmented-flow platform for 3D cell cultivation.

    PubMed

    Lemke, Karen; Förster, Tobias; Römer, Robert; Quade, Mandy; Wiedemeier, Stefan; Grodrian, Andreas; Gastrock, Gunter

    2015-07-10

    In vitro 3D cell cultivation is promised to equate tissue in vivo more realistically than 2D cell cultivation corresponding to cell-cell and cell-matrix interactions. Therefore, a scalable 3D cultivation platform was developed. This platform, called pipe-based bioreactors (pbb), is based on the segmented-flow technology: aqueous droplets are embedded in a water-immiscible carrier fluid. The droplet volumes range from 60 nL to 20 μL and are used as bioreactors lined up in a tubing like pearls on a string. The modular automated platform basically consists of several modules like a fluid management for a high throughput droplet generation for self-assembly or scaffold-based 3D cell cultivation, a storage module for incubation and storage, and an analysis module for monitoring cell aggregation and proliferation basing on microscopy or photometry. In this report, the self-assembly of murine embryonic stem cells (mESCs) to uniformly sized embryoid bodies (EBs), the cell proliferation, the cell viability as well as the influence on the cell differentiation to cardiomyocytes are described. The integration of a dosage module for medium exchange or agent addition will enable pbb as long-term 3D cell cultivation system for studying stem cell differentiation, e.g. cardiac myogenesis or for diagnostic and therapeutic testing in personalized medicine.

  20. Quantitative 3D Optical Imaging: Applications in Dosimetry and Biophysics

    NASA Astrophysics Data System (ADS)

    Thomas, Andrew Stephen

    Optical-CT has been shown to be a potentially useful imaging tool for the two very different spheres of biologists and radiation therapy physicists, but it has yet to live up to that potential. In radiation therapy, researchers have used optical-CT for the readout of 3D dosimeters, but it is yet to be a clinically relevant tool as the technology is too slow to be considered practical. Biologists have used the technique for structural imaging, but have struggled with emission tomography as the reality of photon attenuation for both excitation and emission have made the images quantitatively irrelevant. Dosimetry. The DLOS (Duke Large field of view Optical-CT Scanner) was designed and constructed to make 3D dosimetry utilizing optical-CT a fast and practical tool while maintaining the accuracy of readout of the previous, slower readout technologies. Upon construction/optimization/implementation of several components including a diffuser, band pass filter, registration mount & fluid filtration system the dosimetry system provides high quality data comparable to or exceeding that of commercial products. In addition, a stray light correction algorithm was tested and implemented. The DLOS in combination with the 3D dosimeter it was designed for, PREAGETM, then underwent rigorous commissioning and benchmarking tests validating its performance against gold standard data including a set of 6 irradiations. DLOS commissioning tests resulted in sub-mm isotropic spatial resolution (MTF >0.5 for frequencies of 1.5lp/mm) and a dynamic range of ˜60dB. Flood field uniformity was 10% and stable after 45minutes. Stray light proved to be small, due to telecentricity, but even the residual can be removed through deconvolution. Benchmarking tests showed the mean 3D passing gamma rate (3%, 3mm, 5% dose threshold) over the 6 benchmark data sets was 97.3% +/- 0.6% (range 96%-98%) scans totaling ˜10 minutes, indicating excellent ability to perform 3D dosimetry while improving the speed of

  1. Semantic segmentation of 3D textured meshes for urban scene analysis

    NASA Astrophysics Data System (ADS)

    Rouhani, Mohammad; Lafarge, Florent; Alliez, Pierre

    2017-01-01

    Classifying 3D measurement data has become a core problem in photogrammetry and 3D computer vision, since the rise of modern multiview geometry techniques, combined with affordable range sensors. We introduce a Markov Random Field-based approach for segmenting textured meshes generated via multi-view stereo into urban classes of interest. The input mesh is first partitioned into small clusters, referred to as superfacets, from which geometric and photometric features are computed. A random forest is then trained to predict the class of each superfacet as well as its similarity with the neighboring superfacets. Similarity is used to assign the weights of the Markov Random Field pairwise-potential and to account for contextual information between the classes. The experimental results illustrate the efficacy and accuracy of the proposed framework.

  2. Analysis of 3-D images of dental imprints using computer vision

    NASA Astrophysics Data System (ADS)

    Aubin, Michele; Cote, Jean; Laurendeau, Denis; Poussart, Denis

    1992-05-01

    This paper addressed two important aspects of dental analysis: (1) location and (2) identification of the types of teeth by means of 3-D image acquisition and segmentation. The 3-D images of both maxillaries are acquired using a wax wafer as support. The interstices between teeth are detected by non-linear filtering of the 3-D and grey-level data. Two operators are presented: one for the detection of the interstices between incisors, canines, and premolars and one for those between molars. Teeth are then identified by mapping the imprint under analysis on the computer model of an 'ideal' imprint. For the mapping to be valid, a set of three reference points is detected on the imprint. Then, the points are put in correspondence with similar points on the model. Two such points are chosen based on a least-squares fit of a second-order polynomial of the 3-D data in the area of canines. This area is of particular interest since the canines show a very characteristic shape and are easily detected on the imprint. The mapping technique is described in detail in the paper as well as pre-processing of the 3-D profiles. Experimental results are presented for different imprints.

  3. 3D painting documentation: evaluation of conservation conditions with 3D imaging and ranging techniques

    NASA Astrophysics Data System (ADS)

    Abate, D.; Menna, F.; Remondino, F.; Gattari, M. G.

    2014-06-01

    The monitoring of paintings, both on canvas and wooden support, is a crucial issue for the preservation and conservation of this kind of artworks. Many environmental factors (e.g. humidity, temperature, illumination, etc.), as well as bad conservation practices (e.g. wrong restorations, inappropriate locations, etc.), can compromise the material conditions over time and deteriorate an artwork. The article presents an on-going project realized by a multidisciplinary team composed by the ENEA UTICT 3D GraphLab, the 3D Optical Metrology Unit of the Bruno Kessler Foundation and the Soprintendenza per i Beni Storico Artistici ed Etnoantropologici of Bologna (Italy). The goal of the project is the multi-temporal 3D documentation and monitoring of paintings - at the moment in bad conservation's situation - and the provision of some metrics to quantify the deformations and damages.

  4. Fully automatic cardiac segmentation from 3D CTA data: a multi-atlas based approach

    NASA Astrophysics Data System (ADS)

    Kirisli, Hortense A.; Schaap, Michiel; Klein, Stefan; Neefjes, Lisan A.; Weustink, Annick C.; Van Walsum, Theo; Niessen, Wiro J.

    2010-03-01

    Computed tomography angiography (CTA), a non-invasive imaging technique, is becoming increasingly popular for cardiac examination, mainly due to its superior spatial resolution compared to MRI. This imaging modality is currently widely used for the diagnosis of coronary artery disease (CAD) but it is not commonly used for the diagnosis of ventricular and atrial function. In this paper, we present a fully automatic method for segmenting the whole heart (i.e. the outer surface of the myocardium) and cardiac chambers from CTA datasets. Cardiac chamber segmentation is particularly valuable for the extraction of ventricular and atrial functional information, such as stroke volume and ejection fraction. With our approach, we aim to improve the diagnosis of CAD by providing functional information extracted from the same CTA data, thus not requiring additional scanning. In addition, the whole heart segmentation method we propose can be used for visualization of the coronary arteries and for obtaining a region of interest for subsequent segmentation of the coronaries, ventricles and atria. Our approach is based on multi-atlas segmentation, and performed within a non-rigid registration framework. A leave-one-out quantitative validation was carried out on 8 images. The method showed a high accuracy, which is reflected in both a mean segmentation error of 1.05+/-1.30 mm and an average Dice coefficient of 0.93. The robustness of the method is demonstrated by successfully applying the method to 243 additional datasets, without any significant failure.

  5. A 3-D Computational Study of a Variable Camber Continuous Trailing Edge Flap (VCCTEF) Spanwise Segment

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K.; Nguyen, Nhan T.

    2015-01-01

    Results of a computational study carried out to explore the effects of various elastomer configurations joining spanwise contiguous Variable Camber Continuous Trailing Edge Flap (VCCTEF) segments are reported here. This research is carried out as a proof-of-concept study that will seek to push the flight envelope in cruise with drag optimization as the objective. The cruise conditions can be well off design such as caused by environmental conditions, maneuvering, etc. To handle these off-design conditions, flap deflection is used so when the flap is deflected in a given direction, the aircraft angle of attack changes accordingly to maintain a given lift. The angle of attack is also a design parameter along with the flap deflection. In a previous 2D study,1 the effect of camber was investigated and the results revealed some insight into the relative merit of various camber settings of the VCCTEF. The present state of the art has not advanced sufficiently to do a full 3-D viscous analysis of the whole NASA Generic Transport Model (GTM) wing with VCCTEF deployed with elastomers. Therefore, this study seeks to explore the local effects of three contiguous flap segments on lift and drag of a model devised here to determine possible trades among various flap deflections to achieve desired lift and drag results. Although this approach is an approximation, it provides new insights into the "local" effects of the relative deflections of the contiguous spanwise flap systems and various elastomer segment configurations. The present study is a natural extension of the 2-D study to assess these local 3-D effects. Design cruise condition at 36,000 feet at free stream Mach number of 0.797 and a mean aerodynamic chord (MAC) based Reynolds number of 30.734x10(exp 6) is simulated for an angle of attack (AoA) range of 0 to 6 deg. In the previous 2-D study, the calculations revealed that the parabolic arc camber (1x2x3) and circular arc camber (VCCTEF222) offered the best L

  6. A Segmentation Algorithm for X-ray 3D Angiography and Vessel Catheterization

    SciTech Connect

    Franchi, Danilo; Rosa, Luigi; Placidi, Giuseppe

    2008-11-06

    Vessel Catheterization is a clinical procedure usually performed by a specialist by means of X-ray fluoroscopic guide with contrast-media. In the present paper, we present a simple and efficient algorithm for vessel segmentation which allows vessel separation and extraction from the background (noise and signal coming from other organs). This would reduce the number of projections (X-ray scans) to reconstruct a complete and accurate 3D vascular model and the radiological risk, in particular for the patient. In what follows, the algorithm is described and some preliminary experimental results are reported illustrating the behaviour of the proposed method.

  7. Recent progress in 3-D imaging of sea freight containers

    SciTech Connect

    Fuchs, Theobald Schön, Tobias Sukowski, Frank; Dittmann, Jonas; Hanke, Randolf

    2015-03-31

    The inspection of very large objects like sea freight containers with X-ray Computed Tomography (CT) is an emerging technology. A complete 3-D CT scan of a see-freight container takes several hours. Of course, this is too slow to apply it to a large number of containers. However, the benefits of a 3-D CT for sealed freight are obvious: detection of potential threats or illicit cargo without being confronted with legal complications or high time consumption and risks for the security personnel during a manual inspection. Recently distinct progress was made in the field of reconstruction of projections with only a relatively low number of angular positions. Instead of today’s 500 to 1000 rotational steps, as needed for conventional CT reconstruction techniques, this new class of algorithms provides the potential to reduce the number of projection angles approximately by a factor of 10. The main drawback of these advanced iterative methods is the high consumption for numerical processing. But as computational power is getting steadily cheaper, there will be practical applications of these complex algorithms in a foreseeable future. In this paper, we discuss the properties of iterative image reconstruction algorithms and show results of their application to CT of extremely large objects scanning a sea-freight container. A specific test specimen is used to quantitatively evaluate the image quality in terms of spatial and contrast resolution and depending on different number of projections.

  8. Imaging Shallow Salt With 3D Refraction Migration