Science.gov

Sample records for 3d imaging sensor

  1. Tactile-optical 3D sensor applying image processing

    NASA Astrophysics Data System (ADS)

    Neuschaefer-Rube, Ulrich; Wissmann, Mark

    2009-01-01

    The tactile-optical probe (so-called fiber probe) is a well-known probe in micro-coordinate metrology. It consists of an optical fiber with a probing element at its end. This probing element is adjusted in the imaging plane of the optical system of an optical coordinate measuring machine (CMM). It can be illuminated through the fiber by a LED. The position of the probe is directly detected by image processing algorithms available in every modern optical CMM and not by deflections at the fixation of the probing shaft. Therefore, the probing shaft can be very thin and flexible. This facilitates the measurement with very small probing forces and the realization of very small probing elements (diameter: down to 10 μm). A limitation of this method is that at present the probe does not have full 3D measurement capability. At the Physikalisch-Technische Bundesanstalt (PTB), several arrangements and measurement principles for a full 3D tactile-optical probe have been implemented and tested successfully in cooperation with Werth-Messtechnik, Giessen, Germany. This contribution provides an overview of the results of these activities.

  2. Simulation of a new 3D imaging sensor for identifying difficult military targets

    NASA Astrophysics Data System (ADS)

    Harvey, Christophe; Wood, Jonathan; Randall, Peter; Watson, Graham; Smith, Gordon

    2008-04-01

    This paper reports the successful application of automatic target recognition and identification (ATR/I) algorithms to simulated 3D imagery of 'difficult' military targets. QinetiQ and Selex S&AS are engaged in a joint programme to build a new 3D laser imaging sensor for UK MOD. The sensor is a 3D flash system giving an image containing range and intensity information suitable for targeting operations from fast jet platforms, and is currently being integrated with an ATR/I suite for demonstration and testing. The sensor has been extensively modelled and a set of high fidelity simulated imagery has been generated using the CAMEO-SIM scene generation software tool. These include a variety of different scenarios (varying range, platform altitude, target orientation and environments), and some 'difficult' targets such as concealed military vehicles. The ATR/I algorithms have been tested on this image set and their performance compared to 2D passive imagery from the airborne trials using a Wescam MX-15 infrared sensor and real-time ATR/I suite. This paper outlines the principles behind the sensor model and the methodology of 3D scene simulation. An overview of the 3D ATR/I programme and algorithms is presented, and the relative performance of the ATR/I against the simulated image set is reported. Comparisons are made to the performance of typical 2D sensors, confirming the benefits of 3D imaging for targeting applications.

  3. A full-spectrum 3D noise-based infrared imaging sensor model

    NASA Astrophysics Data System (ADS)

    Richwine, Robert; Sood, Ashok; Puri, Yash; Heckathorn, Harry; Wilson, Larry; Goldspiel, Jules

    2006-08-01

    This model was developed in matlab with I/O links to excel spreadsheets to add realistic and accurate sensor effects to scene generator or actual sensor/camera images. The model imports scene generator or sensor images, converts these radiance images into electron maps and digital count maps, and modifies these images in accordance with user-defined sensor characteristics such as the response map, the detector dark current map, defective pixel maps, and 3-D noise (temporal and spatial noise). The model provides realistic line-of-sight motion and accurate and dynamic PSF blurring of the images. The sensor model allows for the import of raw nonuniformities in dark current and photoresponse, performs a user-defined two-point nonuniformity correction to calculate gain and offset terms and applies these terms to subsequent scene images. Some of the model's capabilities include the ability to fluctuate or ramp FPA and optics temperatures, or modify the PSF on a frame-by-frame basis. The model also functions as an FPA/sensor performance predictor and an FPA data analysis tool as FPA data frames can be input into the 3-D noise evaluation section of the model. The model was developed to produce realistic infrared images for IR sensors.

  4. Recent development of 3D imaging laser sensor in Mitsubishi Electric Corporation

    NASA Astrophysics Data System (ADS)

    Imaki, M.; Kotake, N.; Tsuji, H.; Hirai, A.; Kameyama, S.

    2013-09-01

    We have been developing 3-D imaging laser sensors for several years, because they can acquire the additional information of the scene, i.e. the range data. It enhances the potential to detect unwanted people and objects, the sensors can be utilized for applications such as safety control and security surveillance, and so forth. In this paper, we focus on two types of our sensors, which are high-frame-rate type and compact-type. To realize the high-frame-rate type system, we have developed two key devices: the linear array receiver which has 256 single InAlAs-APD detectors and the read-out IC (ROIC) array which is fabricated in SiGe-BiCMOS process, and they are connected electrically to each other. Each ROIC measures not only the intensity, but also the distance to the scene by high-speed analog signal processing. In addition, by scanning the mirror mechanically in perpendicular direction to the linear image receiver, we have realized the high speed operation, in which the frame rate is over 30 Hz and the number of pixels is 256 x 256. In the compact-type 3-D imaging laser sensor development, we have succeeded in downsizing the transmitter by scanning only the laser beam with a two-dimensional MEMS scanner. To obtain wide fieldof- view image, as well as the angle of the MEMS scanner, the receiving optical system and the large area receiver are needed. We have developed the large detecting area receiver that consists of 32 rectangular detectors, where the output signals of each detector are summed up. In this phase, our original circuit evaluates each signal level, removes the low-level signals, and sums them, in order to improve the signalto- noise ratio. In the following paper, we describe the system configurations and the recent experimental results of the two types of our 3-D imaging laser sensors.

  5. The Performance Evaluation of Multi-Image 3d Reconstruction Software with Different Sensors

    NASA Astrophysics Data System (ADS)

    Mousavi, V.; Khosravi, M.; Ahmadi, M.; Noori, N.; Naveh, A. Hosseini; Varshosaz, M.

    2015-12-01

    Today, multi-image 3D reconstruction is an active research field and generating three dimensional model of the objects is one the most discussed issues in Photogrammetry and Computer Vision that can be accomplished using range-based or image-based methods. Very accurate and dense point clouds generated by range-based methods such as structured light systems and laser scanners has introduced them as reliable tools in the industry. Image-based 3D digitization methodologies offer the option of reconstructing an object by a set of unordered images that depict it from different viewpoints. As their hardware requirements are narrowed down to a digital camera and a computer system, they compose an attractive 3D digitization approach, consequently, although range-based methods are generally very accurate, image-based methods are low-cost and can be easily used by non-professional users. One of the factors affecting the accuracy of the obtained model in image-based methods is the software and algorithm used to generate three dimensional model. These algorithms are provided in the form of commercial software, open source and web-based services. Another important factor in the accuracy of the obtained model is the type of sensor used. Due to availability of mobile sensors to the public, popularity of professional sensors and the advent of stereo sensors, a comparison of these three sensors plays an effective role in evaluating and finding the optimized method to generate three-dimensional models. Lots of research has been accomplished to identify a suitable software and algorithm to achieve an accurate and complete model, however little attention is paid to the type of sensors used and its effects on the quality of the final model. The purpose of this paper is deliberation and the introduction of an appropriate combination of a sensor and software to provide a complete model with the highest accuracy. To do this, different software, used in previous studies, were compared and

  6. 3D imaging of translucent media with a plenoptic sensor based on phase space optics

    NASA Astrophysics Data System (ADS)

    Zhang, Xuanzhe; Shu, Bohong; Du, Shaojun

    2015-05-01

    Traditional stereo imaging technology is not working for dynamical translucent media, because there are no obvious characteristic patterns on it and it's not allowed using multi-cameras in most cases, while phase space optics can solve the problem, extracting depth information directly from "space-spatial frequency" distribution of the target obtained by plenoptic sensor with single lens. This paper discussed the presentation of depth information in phase space data, and calculating algorithms with different transparency. A 3D imaging example of waterfall was given at last.

  7. Development of scanning laser sensor for underwater 3D imaging with the coaxial optics

    NASA Astrophysics Data System (ADS)

    Ochimizu, Hideaki; Imaki, Masaharu; Kameyama, Shumpei; Saito, Takashi; Ishibashi, Shoujirou; Yoshida, Hiroshi

    2014-06-01

    We have developed the scanning laser sensor for underwater 3-D imaging which has the wide scanning angle of 120º (Horizontal) x 30º (Vertical) with the compact size of 25 cm diameter and 60 cm long. Our system has a dome lens and a coaxial optics to realize both the wide scanning angle and the compactness. The system also has the feature in the sensitivity time control (STC) circuit, in which the receiving gain is increased according to the time of flight. The STC circuit contributes to detect a small signal by suppressing the unwanted signals backscattered by marine snows. We demonstrated the system performance in the pool, and confirmed the 3-D imaging with the distance of 20 m. Furthermore, the system was mounted on the autonomous underwater vehicle (AUV), and demonstrated the seafloor mapping at the depth of 100 m in the ocean.

  8. State-of-The-Art and Applications of 3D Imaging Sensors in Industry, Cultural Heritage, Medicine, and Criminal Investigation

    PubMed Central

    Sansoni, Giovanna; Trebeschi, Marco; Docchio, Franco

    2009-01-01

    3D imaging sensors for the acquisition of three dimensional (3D) shapes have created, in recent years, a considerable degree of interest for a number of applications. The miniaturization and integration of the optical and electronic components used to build them have played a crucial role in the achievement of compactness, robustness and flexibility of the sensors. Today, several 3D sensors are available on the market, even in combination with other sensors in a “sensor fusion” approach. An importance equal to that of physical miniaturization has the portability of the measurements, via suitable interfaces, into software environments designed for their elaboration, e.g., CAD-CAM systems, virtual renders, and rapid prototyping tools. In this paper, following an overview of the state-of-art of 3D imaging sensors, a number of significant examples of their use are presented, with particular reference to industry, heritage, medicine, and criminal investigation applications. PMID:22389618

  9. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  10. 3D imaging for ballistics analysis using chromatic white light sensor

    NASA Astrophysics Data System (ADS)

    Makrushin, Andrey; Hildebrandt, Mario; Dittmann, Jana; Clausing, Eric; Fischer, Robert; Vielhauer, Claus

    2012-03-01

    The novel application of sensing technology, based on chromatic white light (CWL), gives a new insight into ballistic analysis of cartridge cases. The CWL sensor uses a beam of white light to acquire highly detailed topography and luminance data simultaneously. The proposed 3D imaging system combines advantages of 3D and 2D image processing algorithms in order to automate the extraction of firearm specific toolmarks shaped on fired specimens. The most important characteristics of a fired cartridge case are the type of the breech face marking as well as size, shape and location of extractor, ejector and firing pin marks. The feature extraction algorithm normalizes the casing surface and consistently searches for the appropriate distortions on the rim and on the primer. The location of the firing pin mark in relation to the lateral scratches on the rim provides unique rotation invariant characteristics of the firearm mechanisms. Additional characteristics are the volume and shape of the firing pin mark. The experimental evaluation relies on the data set of 15 cartridge cases fired from three 9mm firearms of different manufacturers. The results show very high potential of 3D imaging systems for casing-based computer-aided firearm identification, which is prospectively going to support human expertise.

  11. Image synchronization for 3D application using the NanEye sensor

    NASA Astrophysics Data System (ADS)

    Sousa, Ricardo M.; Wäny, Martin; Santos, Pedro; Dias, Morgado

    2015-03-01

    Based on Awaiba's NanEye CMOS image sensor family and a FPGA platform with USB3 interface, the aim of this paper is to demonstrate a novel technique to perfectly synchronize up to 8 individual self-timed cameras. Minimal form factor self-timed camera modules of 1 mm x 1 mm or smaller do not generally allow external synchronization. However, for stereo vision or 3D reconstruction with multiple cameras as well as for applications requiring pulsed illumination it is required to synchronize multiple cameras. In this work, the challenge to synchronize multiple self-timed cameras with only 4 wire interface has been solved by adaptively regulating the power supply for each of the cameras to synchronize their frame rate and frame phase. To that effect, a control core was created to constantly monitor the operating frequency of each camera by measuring the line period in each frame based on a well-defined sampling signal. The frequency is adjusted by varying the voltage level applied to the sensor based on the error between the measured line period and the desired line period. To ensure phase synchronization between frames of multiple cameras, a Master-Slave interface was implemented. A single camera is defined as the Master entity, with its operating frequency being controlled directly through a PC based interface. The remaining cameras are setup in Slave mode and are interfaced directly with the Master camera control module. This enables the remaining cameras to monitor its line and frame period and adjust their own to achieve phase and frequency synchronization. The result of this work will allow the realization of smaller than 3mm diameter 3D stereo vision equipment in medical endoscopic context, such as endoscopic surgical robotic or micro invasive surgery.

  12. Autofocus for 3D imaging

    NASA Astrophysics Data System (ADS)

    Lee-Elkin, Forest

    2008-04-01

    Three dimensional (3D) autofocus remains a significant challenge for the development of practical 3D multipass radar imaging. The current 2D radar autofocus methods are not readily extendable across sensor passes. We propose a general framework that allows a class of data adaptive solutions for 3D auto-focus across passes with minimal constraints on the scene contents. The key enabling assumption is that portions of the scene are sparse in elevation which reduces the number of free variables and results in a system that is simultaneously solved for scatterer heights and autofocus parameters. The proposed method extends 2-pass interferometric synthetic aperture radar (IFSAR) methods to an arbitrary number of passes allowing the consideration of scattering from multiple height locations. A specific case from the proposed autofocus framework is solved and demonstrates autofocus and coherent multipass 3D estimation across the 8 passes of the "Gotcha Volumetric SAR Data Set" X-Band radar data.

  13. Real-time processor for 3-D information extraction from image sequences by a moving area sensor

    NASA Astrophysics Data System (ADS)

    Hattori, Tetsuo; Nakada, Makoto; Kubo, Katsumi

    1990-11-01

    This paper presents a real time image processor for obtaining threedimensional( 3-D) distance information from image sequence caused by a moving area sensor. The processor has been developed for an automated visual inspection robot system (pilot system) with an autonomous vehicle which moves around avoiding obstacles in a power plant and checks whether there are defects or abnormal phenomena such as steam leakage from valves. The processor detects the distance between objects in the input image and the area sensor deciding corresponding points(pixels) between the first input image and the last one by tracing the loci of edges through the sequence of sixteen images. The hardware which plays an important role is two kinds of boards: mapping boards which can transform X-coordinate (horizontal direction) and Y-coordinate (vertical direction) for each horizontal row of images and a regional labelling board which extracts the connected loci of edges through image sequence. This paper also shows the whole processing flow of the distance detection algorithm. Since the processor can continuously process images ( 512x512x8 [pixels*bits per frame] ) at the NTSC video rate it takes about O. 7[sec] to measure the 3D distance by sixteen input images. The error rate of the measurement is maximum 10 percent when the area sensor laterally moves the range of 20 [centimeters] and when the measured scene including complicated background is at a distance of 4 [meters] from

  14. Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration

    PubMed Central

    Soto, Marcelo A.; Ramírez, Jaime A.; Thévenaz, Luc

    2016-01-01

    Distributed optical fibre sensors possess the unique capability of measuring the spatial and temporal map of environmental quantities that can be of great interest for several field applications. Although existing methods for performance enhancement have enabled important progresses in the field, they do not take full advantage of all information present in the measured data, still giving room for substantial improvement over the state-of-the-art. Here we propose and experimentally demonstrate an approach for performance enhancement that exploits the high level of similitude and redundancy contained on the multidimensional information measured by distributed fibre sensors. Exploiting conventional image and video processing, an unprecedented boost in signal-to-noise ratio and measurement contrast is experimentally demonstrated. The method can be applied to any white-noise-limited distributed fibre sensor and can remarkably provide a 100-fold improvement in the sensor performance with no hardware modification. PMID:26927698

  15. Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration

    NASA Astrophysics Data System (ADS)

    Soto, Marcelo A.; Ramírez, Jaime A.; Thévenaz, Luc

    2016-03-01

    Distributed optical fibre sensors possess the unique capability of measuring the spatial and temporal map of environmental quantities that can be of great interest for several field applications. Although existing methods for performance enhancement have enabled important progresses in the field, they do not take full advantage of all information present in the measured data, still giving room for substantial improvement over the state-of-the-art. Here we propose and experimentally demonstrate an approach for performance enhancement that exploits the high level of similitude and redundancy contained on the multidimensional information measured by distributed fibre sensors. Exploiting conventional image and video processing, an unprecedented boost in signal-to-noise ratio and measurement contrast is experimentally demonstrated. The method can be applied to any white-noise-limited distributed fibre sensor and can remarkably provide a 100-fold improvement in the sensor performance with no hardware modification.

  16. A model and simulation to predict the performance of angle-angle-range 3D flash LADAR imaging sensor systems

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.; Odhner, Jefferson E.; Russo, Leonard E.; McDaniel, Robert V.

    2005-10-01

    BAE SYSTEMS reports on a program to develop a high-fidelity model and simulation to predict the performance of angle-angle-range 3D flash LADAR Imaging Sensor systems. 3D Flash LADAR is the latest evolution of laser radar systems and provides unique capability in its ability to provide high-resolution LADAR imagery upon a single laser pulse; rather than constructing an image from multiple pulses as with conventional scanning LADAR systems. However, accurate methods to model and simulate performance from these 3D LADAR systems have been lacking, relying upon either single pixel LADAR performance or extrapolating from passive detection FPA performance. The model and simulation developed and reported here is expressly for 3D angle-angle-range imaging LADAR systems. To represent an accurate "real world" type environment, this model and simulation accounts for: 1) laser pulse shape; 2) detector array size; 3) atmospheric transmission; 4) atmospheric backscatter; 5) atmospheric turbulence; 6) obscurants, and; 7) obscurant path length. The angle-angle-range 3D flash LADAR model and simulation accounts for all pixels in the detector array by modeling and accounting for the non-uniformity of each individual pixel in the array. Here, noise sources are modeled based upon their pixel-to-pixel statistical variation. A cumulative probability function is determined by integrating the normal distribution with respect to detector gain, and, for each pixel, a random number is compared with the cumulative probability function resulting in a different gain for each pixel within the array. In this manner very accurate performance is determined pixel-by-pixel. Model outputs are in the form of 3D images of the far-field distribution across the array as intercepted by the target, gain distribution, power distribution, average signal-to-noise, and probability of detection across the array. Other outputs include power distribution from a target, signal-to-noise vs. range, probability of

  17. A model and simulation to predict the performance of angle-angle-range 3D flash ladar imaging sensor systems

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.; Odhner, Jefferson E.; Russo, Leonard E.; McDaniel, Robert V.

    2004-11-01

    BAE SYSTEMS reports on a program to develop a high-fidelity model and simulation to predict the performance of angle-angle-range 3D flash LADAR Imaging Sensor systems. 3D Flash LADAR is the latest evolution of laser radar systems and provides unique capability in its ability to provide high-resolution LADAR imagery upon a single laser pulse; rather than constructing an image from multiple pulses as with conventional scanning LADAR systems. However, accurate methods to model and simulate performance from these 3D LADAR systems have been lacking, relying upon either single pixel LADAR performance or extrapolating from passive detection FPA performance. The model and simulation developed and reported here is expressly for 3D angle-angle-range imaging LADAR systems. To represent an accurate "real world" type environment, this model and simulation accounts for: 1) laser pulse shape; 2) detector array size; 3) atmospheric transmission; 4) atmospheric backscatter; 5) atmospheric turbulence; 6) obscurants, and; 7) obscurant path length. The angle-angle-range 3D flash LADAR model and simulation accounts for all pixels in the detector array by modeling and accounting for the non-uniformity of each individual pixel in the array. Here, noise sources are modeled based upon their pixel-to-pixel statistical variation. A cumulative probability function is determined by integrating the normal distribution with respect to detector gain, and, for each pixel, a random number is compared with the cumulative probability function resulting in a different gain for each pixel within the array. In this manner very accurate performance is determined pixel-by-pixel. Model outputs are in the form of 3D images of the far-field distribution across the array as intercepted by the target, gain distribution, power distribution, average signal-to-noise, and probability of detection across the array. Other outputs include power distribution from a target, signal-to-noise vs. range, probability of

  18. Multi-sensor super-resolution for hybrid range imaging with application to 3-D endoscopy and open surgery.

    PubMed

    Köhler, Thomas; Haase, Sven; Bauer, Sebastian; Wasza, Jakob; Kilgus, Thomas; Maier-Hein, Lena; Stock, Christian; Hornegger, Joachim; Feußner, Hubertus

    2015-08-01

    In this paper, we propose a multi-sensor super-resolution framework for hybrid imaging to super-resolve data from one modality by taking advantage of additional guidance images of a complementary modality. This concept is applied to hybrid 3-D range imaging in image-guided surgery, where high-quality photometric data is exploited to enhance range images of low spatial resolution. We formulate super-resolution based on the maximum a-posteriori (MAP) principle and reconstruct high-resolution range data from multiple low-resolution frames and complementary photometric information. Robust motion estimation as required for super-resolution is performed on photometric data to derive displacement fields of subpixel accuracy for the associated range images. For improved reconstruction of depth discontinuities, a novel adaptive regularizer exploiting correlations between both modalities is embedded to MAP estimation. We evaluated our method on synthetic data as well as ex-vivo images in open surgery and endoscopy. The proposed multi-sensor framework improves the peak signal-to-noise ratio by 2 dB and structural similarity by 0.03 on average compared to conventional single-sensor approaches. In ex-vivo experiments on porcine organs, our method achieves substantial improvements in terms of depth discontinuity reconstruction.

  19. A model and simulation to predict 3D imaging LADAR sensor systems performance in real-world type environments

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.; Dippel, George F.; Russo, Leonard E.

    2006-08-01

    BAE SYSTEMS reports on a program to develop a high-fidelity model and simulation to predict the performance of angle-angle-range 3D flash LADAR Imaging Sensor systems. Accurate methods to model and simulate performance from 3D LADAR systems have been lacking, relying upon either single pixel LADAR performance or extrapolating from passive detection FPA performance. The model and simulation here is developed expressly for 3D angle-angle-range imaging LADAR systems. To represent an accurate "real world" type environment this model and simulation accounts for: 1) laser pulse shape; 2) detector array size; 3) detector noise figure; 4) detector gain; 5) target attributes; 6) atmospheric transmission; 7) atmospheric backscatter; 8) atmospheric turbulence; 9) obscurants; 10) obscurant path length, and; 11) platform motion. The angle-angle-range 3D flash LADAR model and simulation accounts for all pixels in the detector array by modeling and accounting for the non-uniformity of each individual pixel. Here, noise sources and gain are modeled based upon their pixel-to-pixel statistical variation. A cumulative probability function is determined by integrating the normal distribution with respect to detector gain, and, for each pixel, a random number is compared with the cumulative probability function resulting in a different gain for each pixel within the array. In this manner very accurate performance is determined pixel-by-pixel for the entire array. Model outputs are 3D images of the far-field distribution across the array as intercepted by the target, gain distribution, power distribution, average signal-to-noise, and probability of detection across the array.

  20. Sensors for 3D Imaging: Metric Evaluation and Calibration of a CCD/CMOS Time-of-Flight Camera.

    PubMed

    Chiabrando, Filiberto; Chiabrando, Roberto; Piatti, Dario; Rinaudo, Fulvio

    2009-01-01

    3D imaging with Time-of-Flight (ToF) cameras is a promising recent technique which allows 3D point clouds to be acquired at video frame rates. However, the distance measurements of these devices are often affected by some systematic errors which decrease the quality of the acquired data. In order to evaluate these errors, some experimental tests on a CCD/CMOS ToF camera sensor, the SwissRanger (SR)-4000 camera, were performed and reported in this paper. In particular, two main aspects are treated: the calibration of the distance measurements of the SR-4000 camera, which deals with evaluation of the camera warm up time period, the distance measurement error evaluation and a study of the influence on distance measurements of the camera orientation with respect to the observed object; the second aspect concerns the photogrammetric calibration of the amplitude images delivered by the camera using a purpose-built multi-resolution field made of high contrast targets.

  1. 3D goes digital: from stereoscopy to modern 3D imaging techniques

    NASA Astrophysics Data System (ADS)

    Kerwien, N.

    2014-11-01

    In the 19th century, English physicist Charles Wheatstone discovered stereopsis, the basis for 3D perception. His construction of the first stereoscope established the foundation for stereoscopic 3D imaging. Since then, many optical instruments were influenced by these basic ideas. In recent decades, the advent of digital technologies revolutionized 3D imaging. Powerful readily available sensors and displays combined with efficient pre- or post-processing enable new methods for 3D imaging and applications. This paper draws an arc from basic concepts of 3D imaging to modern digital implementations, highlighting instructive examples from its 175 years of history.

  2. On non-invasive 2D and 3D Chromatic White Light image sensors for age determination of latent fingerprints.

    PubMed

    Merkel, Ronny; Gruhn, Stefan; Dittmann, Jana; Vielhauer, Claus; Bräutigam, Anja

    2012-10-10

    The feasibility of 2D-intensity and 3D-topography images from a non-invasive Chromatic White Light (CWL) sensor for the age determination of latent fingerprints is investigated. The proposed method might provide the means to solve the so far unresolved issue of determining a fingerprints age in forensics. Conducting numerous experiments for an indoor crime scene using selected surfaces, different influences on the aging of fingerprints are investigated and the resulting aging variability is determined in terms of inter-person, intra-person, inter-finger and intra-finger variation. Main influence factors are shown to be the sweat composition, temperature, humidity, wind, UV-radiation, surface type, contamination of the finger with water-containing substances, resolution and measured area size, whereas contact time, contact pressure and smearing of the print seem to be of minor importance. Such influences lead to a certain experimental variability in inter-person and intra-person variation, which is higher than the inter-finger and intra-finger variation. Comparing the aging behavior of 17 different features using 1490 time series with a total of 41,520 fingerprint images, the great potential of the CWL technique in combination with the binary pixel feature from prior work is shown. Performing three different experiments for the classification of fingerprints into the two time classes [0, 5 h] and [5, 24 h], a maximum classification performance of 79.29% (kappa=0.46) is achieved for a general case, which is further improved for special cases. The statistical significance of the two best-performing features (both binary pixel versions based on 2D-intensity images) is manually shown and a feature fusion is performed, highlighting the strong dependency of the features on each other. It is concluded that such method might be combined with additional capturing devices, such as microscopes or spectroscopes, to a very promising age estimation scheme. PMID:22658793

  3. On non-invasive 2D and 3D Chromatic White Light image sensors for age determination of latent fingerprints.

    PubMed

    Merkel, Ronny; Gruhn, Stefan; Dittmann, Jana; Vielhauer, Claus; Bräutigam, Anja

    2012-10-10

    The feasibility of 2D-intensity and 3D-topography images from a non-invasive Chromatic White Light (CWL) sensor for the age determination of latent fingerprints is investigated. The proposed method might provide the means to solve the so far unresolved issue of determining a fingerprints age in forensics. Conducting numerous experiments for an indoor crime scene using selected surfaces, different influences on the aging of fingerprints are investigated and the resulting aging variability is determined in terms of inter-person, intra-person, inter-finger and intra-finger variation. Main influence factors are shown to be the sweat composition, temperature, humidity, wind, UV-radiation, surface type, contamination of the finger with water-containing substances, resolution and measured area size, whereas contact time, contact pressure and smearing of the print seem to be of minor importance. Such influences lead to a certain experimental variability in inter-person and intra-person variation, which is higher than the inter-finger and intra-finger variation. Comparing the aging behavior of 17 different features using 1490 time series with a total of 41,520 fingerprint images, the great potential of the CWL technique in combination with the binary pixel feature from prior work is shown. Performing three different experiments for the classification of fingerprints into the two time classes [0, 5 h] and [5, 24 h], a maximum classification performance of 79.29% (kappa=0.46) is achieved for a general case, which is further improved for special cases. The statistical significance of the two best-performing features (both binary pixel versions based on 2D-intensity images) is manually shown and a feature fusion is performed, highlighting the strong dependency of the features on each other. It is concluded that such method might be combined with additional capturing devices, such as microscopes or spectroscopes, to a very promising age estimation scheme.

  4. Fabrication of 3D Silicon Sensors

    SciTech Connect

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; Kenney, C.; Hasi, J.; Da Via, C.; Parker, S.I.; /Hawaii U.

    2012-06-06

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  5. Future trends of 3D silicon sensors

    NASA Astrophysics Data System (ADS)

    Da Vià, Cinzia; Boscardin, Maurizio; Dalla Betta, Gian-Franco; Haughton, Iain; Grenier, Philippe; Grinstein, Sebastian; Hansen, Thor-Erik; Hasi, Jasmine; Kenney, Christopher; Kok, Angela; Parker, Sherwood; Pellegrini, Giulio; Povoli, Marco; Tzhnevyi, Vladislav; Watts, Stephen J.

    2013-12-01

    Vertex detectors for the next LHC experiments upgrades will need to have low mass while at the same time be radiation hard and with sufficient granularity to fulfil the physics challenges of the next decade. Based on the gained experience with 3D silicon sensors for the ATLAS IBL project and the on-going developments on light materials, interconnectivity and cooling, this paper will discuss possible solutions to these requirements.

  6. 3D ultrafast ultrasound imaging in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra--and inter-observer variability.

  7. 3D ultrafast ultrasound imaging in vivo

    NASA Astrophysics Data System (ADS)

    Provost, Jean; Papadacci, Clement; Esteban Arango, Juan; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra—and inter-observer variability.

  8. 3D ultrafast ultrasound imaging in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra--and inter-observer variability. PMID:25207828

  9. 3D Backscatter Imaging System

    NASA Technical Reports Server (NTRS)

    Turner, D. Clark (Inventor); Whitaker, Ross (Inventor)

    2016-01-01

    Systems and methods for imaging an object using backscattered radiation are described. The imaging system comprises both a radiation source for irradiating an object that is rotationally movable about the object, and a detector for detecting backscattered radiation from the object that can be disposed on substantially the same side of the object as the source and which can be rotationally movable about the object. The detector can be separated into multiple detector segments with each segment having a single line of sight projection through the object and so detects radiation along that line of sight. Thus, each detector segment can isolate the desired component of the backscattered radiation. By moving independently of each other about the object, the source and detector can collect multiple images of the object at different angles of rotation and generate a three dimensional reconstruction of the object. Other embodiments are described.

  10. 3D Ultrafast Ultrasound Imaging In Vivo

    PubMed Central

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-01-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative real-time imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in three dimensions based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32×32 matrix-array probe. Its capability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3-D Shear-Wave Imaging, 3-D Ultrafast Doppler Imaging and finally 3D Ultrafast combined Tissue and Flow Doppler. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3-D Ultrafast Doppler was used to obtain 3-D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, for the first time, the complex 3-D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, and the 3-D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3-D Ultrafast Ultrasound Imaging for the 3-D real-time mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra- and inter-observer variability. PMID:25207828

  11. Perception of detail in 3D images

    NASA Astrophysics Data System (ADS)

    Heynderickx, Ingrid; Kaptein, Ronald

    2009-01-01

    A lot of current 3D displays suffer from the fact that their spatial resolution is lower compared to their 2D counterparts. One reason for this is that the multiple views needed to generate 3D are often spatially multiplexed. Besides this, imperfect separation of the left- and right-eye view leads to blurring or ghosting, and therefore to a decrease in perceived sharpness. However, people watching stereoscopic videos have reported that the 3D scene contained more details, compared to the 2D scene with identical spatial resolution. This is an interesting notion, that has never been tested in a systematic and quantitative way. To investigate this effect, we had people compare the amount of detail ("detailedness") in pairs of 2D and 3D images. A blur filter was applied to one of the two images, and the blur level was varied using an adaptive staircase procedure. In this way, the blur threshold for which the 2D and 3D image contained perceptually the same amount of detail could be found. Our results show that the 3D image needed to be blurred more than the 2D image. This confirms the earlier qualitative findings that 3D images contain perceptually more details than 2D images with the same spatial resolution.

  12. Evaluation of 3D imaging.

    PubMed

    Vannier, M W

    2000-10-01

    Interactive computer-based simulation is gaining acceptance for craniofacial surgical planning. Subjective visualization without objective measurement capability, however, severely limits the value of simulation since spatial accuracy must be maintained. This study investigated the error sources involved in one method of surgical simulation evaluation. Linear and angular measurement errors were found to be within +/- 1 mm and 1 degree. Surface match of scanned objects was slightly less accurate, with errors up to 3 voxels and 4 degrees, and Boolean subtraction methods were 93 to 99% accurate. Once validated, these testing methods were applied to objectively compare craniofacial surgical simulations to post-operative outcomes, and verified that the form of simulation used in this study yields accurate depictions of surgical outcome. However, to fully evaluate surgical simulation, future work is still required to test the new methods in sufficient numbers of patients to achieve statistically significant results. Once completely validated, simulation cannot only be used in pre-operative surgical planning, but also as a post-operative descriptor of surgical and traumatic physical changes. Validated image comparison methods can also show discrepancy of surgical outcome to surgical plan, thus allowing evaluation of surgical technique. PMID:11098409

  13. 3D holoscopic video imaging system

    NASA Astrophysics Data System (ADS)

    Steurer, Johannes H.; Pesch, Matthias; Hahne, Christopher

    2012-03-01

    Since many years, integral imaging has been discussed as a technique to overcome the limitations of standard still photography imaging systems where a three-dimensional scene is irrevocably projected onto two dimensions. With the success of 3D stereoscopic movies, a huge interest in capturing three-dimensional motion picture scenes has been generated. In this paper, we present a test bench integral imaging camera system aiming to tailor the methods of light field imaging towards capturing integral 3D motion picture content. We estimate the hardware requirements needed to generate high quality 3D holoscopic images and show a prototype camera setup that allows us to study these requirements using existing technology. The necessary steps that are involved in the calibration of the system as well as the technique of generating human readable holoscopic images from the recorded data are discussed.

  14. Nonlaser-based 3D surface imaging

    SciTech Connect

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J.

    1994-11-15

    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  15. Phase Sensitive Cueing for 3D Objects in Overhead Images

    SciTech Connect

    Paglieroni, D

    2005-02-04

    Locating specific 3D objects in overhead images is an important problem in many remote sensing applications. 3D objects may contain either one connected component or multiple disconnected components. Solutions must accommodate images acquired with diverse sensors at various times of the day, in various seasons of the year, or under various weather conditions. Moreover, the physical manifestation of a 3D object with fixed physical dimensions in an overhead image is highly dependent on object physical dimensions, object position/orientation, image spatial resolution, and imaging geometry (e.g., obliqueness). This paper describes a two-stage computer-assisted approach for locating 3D objects in overhead images. In the matching stage, the computer matches models of 3D objects to overhead images. The strongest degree of match over all object orientations is computed at each pixel. Unambiguous local maxima in the degree of match as a function of pixel location are then found. In the cueing stage, the computer sorts image thumbnails in descending order of figure-of-merit and presents them to human analysts for visual inspection and interpretation. The figure-of-merit associated with an image thumbnail is computed from the degrees of match to a 3D object model associated with unambiguous local maxima that lie within the thumbnail. This form of computer assistance is invaluable when most of the relevant thumbnails are highly ranked, and the amount of inspection time needed is much less for the highly ranked thumbnails than for images as a whole.

  16. Miniaturized 3D microscope imaging system

    NASA Astrophysics Data System (ADS)

    Lan, Yung-Sung; Chang, Chir-Weei; Sung, Hsin-Yueh; Wang, Yen-Chang; Chang, Cheng-Yi

    2015-05-01

    We designed and assembled a portable 3-D miniature microscopic image system with the size of 35x35x105 mm3 . By integrating a microlens array (MLA) into the optical train of a handheld microscope, the biological specimen's image will be captured for ease of use in a single shot. With the light field raw data and program, the focal plane can be changed digitally and the 3-D image can be reconstructed after the image was taken. To localize an object in a 3-D volume, an automated data analysis algorithm to precisely distinguish profundity position is needed. The ability to create focal stacks from a single image allows moving or specimens to be recorded. Applying light field microscope algorithm to these focal stacks, a set of cross sections will be produced, which can be visualized using 3-D rendering. Furthermore, we have developed a series of design rules in order to enhance the pixel using efficiency and reduce the crosstalk between each microlens for obtain good image quality. In this paper, we demonstrate a handheld light field microscope (HLFM) to distinguish two different color fluorescence particles separated by a cover glass in a 600um range, show its focal stacks, and 3-D position.

  17. Structured light field 3D imaging.

    PubMed

    Cai, Zewei; Liu, Xiaoli; Peng, Xiang; Yin, Yongkai; Li, Ameng; Wu, Jiachen; Gao, Bruce Z

    2016-09-01

    In this paper, we propose a method by means of light field imaging under structured illumination to deal with high dynamic range 3D imaging. Fringe patterns are projected onto a scene and modulated by the scene depth then a structured light field is detected using light field recording devices. The structured light field contains information about ray direction and phase-encoded depth, via which the scene depth can be estimated from different directions. The multidirectional depth estimation can achieve high dynamic 3D imaging effectively. We analyzed and derived the phase-depth mapping in the structured light field and then proposed a flexible ray-based calibration approach to determine the independent mapping coefficients for each ray. Experimental results demonstrated the validity of the proposed method to perform high-quality 3D imaging for highly and lowly reflective surfaces. PMID:27607639

  18. Faster, higher quality volume visualization for 3D medical imaging

    NASA Astrophysics Data System (ADS)

    Kalvin, Alan D.; Laine, Andrew F.; Song, Ting

    2008-03-01

    The two major volume visualization methods used in biomedical applications are Maximum Intensity Projection (MIP) and Volume Rendering (VR), both of which involve the process of creating sets of 2D projections from 3D images. We have developed a new method for very fast, high-quality volume visualization of 3D biomedical images, based on the fact that the inverse of this process (transforming 2D projections into a 3D image) is essentially equivalent to tomographic image reconstruction. This new method uses the 2D projections acquired by the scanner, thereby obviating the need for the two computationally expensive steps currently required in the complete process of biomedical visualization, that is, (i) reconstructing the 3D image from 2D projection data, and (ii) computing the set of 2D projections from the reconstructed 3D image As well as improvements in computation speed, this method also results in improvements in visualization quality, and in the case of x-ray CT we can exploit this quality improvement to reduce radiation dosage. In this paper, demonstrate the benefits of developing biomedical visualization techniques by directly processing the sensor data acquired by body scanners, rather than by processing the image data reconstructed from the sensor data. We show results of using this approach for volume visualization for tomographic modalities, like x-ray CT, and as well as for MRI.

  19. ICER-3D Hyperspectral Image Compression Software

    NASA Technical Reports Server (NTRS)

    Xie, Hua; Kiely, Aaron; Klimesh, matthew; Aranki, Nazeeh

    2010-01-01

    Software has been developed to implement the ICER-3D algorithm. ICER-3D effects progressive, three-dimensional (3D), wavelet-based compression of hyperspectral images. If a compressed data stream is truncated, the progressive nature of the algorithm enables reconstruction of hyperspectral data at fidelity commensurate with the given data volume. The ICER-3D software is capable of providing either lossless or lossy compression, and incorporates an error-containment scheme to limit the effects of data loss during transmission. The compression algorithm, which was derived from the ICER image compression algorithm, includes wavelet-transform, context-modeling, and entropy coding subalgorithms. The 3D wavelet decomposition structure used by ICER-3D exploits correlations in all three dimensions of sets of hyperspectral image data, while facilitating elimination of spectral ringing artifacts, using a technique summarized in "Improving 3D Wavelet-Based Compression of Spectral Images" (NPO-41381), NASA Tech Briefs, Vol. 33, No. 3 (March 2009), page 7a. Correlation is further exploited by a context-modeling subalgorithm, which exploits spectral dependencies in the wavelet-transformed hyperspectral data, using an algorithm that is summarized in "Context Modeler for Wavelet Compression of Hyperspectral Images" (NPO-43239), which follows this article. An important feature of ICER-3D is a scheme for limiting the adverse effects of loss of data during transmission. In this scheme, as in the similar scheme used by ICER, the spatial-frequency domain is partitioned into rectangular error-containment regions. In ICER-3D, the partitions extend through all the wavelength bands. The data in each partition are compressed independently of those in the other partitions, so that loss or corruption of data from any partition does not affect the other partitions. Furthermore, because compression is progressive within each partition, when data are lost, any data from that partition received

  20. Acquisition and applications of 3D images

    NASA Astrophysics Data System (ADS)

    Sterian, Paul; Mocanu, Elena

    2007-08-01

    The moiré fringes method and their analysis up to medical and entertainment applications are discussed in this paper. We describe the procedure of capturing 3D images with an Inspeck Camera that is a real-time 3D shape acquisition system based on structured light techniques. The method is a high-resolution one. After processing the images, using computer, we can use the data for creating laser fashionable objects by engraving them with a Q-switched Nd:YAG. In medical field we mention the plastic surgery and the replacement of X-Ray especially in pediatric use.

  1. An omnidirectional 3D sensor with line laser scanning

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Gao, Bingtuan; Liu, Chuande; Wang, Peng; Gao, Shuanglei

    2016-09-01

    An active omnidirectional vision owns the advantages of the wide field of view (FOV) imaging, resulting in an entire 3D environment scene, which is promising in the field of robot navigation. However, the existing omnidirectional vision sensors based on line laser can measure points only located on the optical plane of the line laser beam, resulting in the low-resolution reconstruction. Whereas, to improve resolution, some other omnidirectional vision sensors with the capability of projecting 2D encode pattern from projector and curved mirror. However, the astigmatism property of curve mirror causes the low-accuracy reconstruction. To solve the above problems, a rotating polygon scanning mirror is used to scan the object in the vertical direction so that an entire profile of the observed scene can be obtained at high accuracy, without of astigmatism phenomenon. Then, the proposed method is calibrated by a conventional 2D checkerboard plate. The experimental results show that the measurement error of the 3D omnidirectional sensor is approximately 1 mm. Moreover, the reconstruction of objects with different shapes based on the developed sensor is also verified.

  2. 3D printing of a multifunctional nanocomposite helical liquid sensor

    NASA Astrophysics Data System (ADS)

    Guo, Shuang-Zhuang; Yang, Xuelu; Heuzey, Marie-Claude; Therriault, Daniel

    2015-04-01

    A multifunctional 3D liquid sensor made of a PLA/MWCNT nanocomposite and shaped as a freeform helical structure was fabricated by solvent-cast 3D printing. The 3D liquid sensor featured a relatively high electrical conductivity, the functionality of liquid trapping due to its helical configuration, and an excellent sensitivity and selectivity even for a short immersion into solvents.A multifunctional 3D liquid sensor made of a PLA/MWCNT nanocomposite and shaped as a freeform helical structure was fabricated by solvent-cast 3D printing. The 3D liquid sensor featured a relatively high electrical conductivity, the functionality of liquid trapping due to its helical configuration, and an excellent sensitivity and selectivity even for a short immersion into solvents. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00278h

  3. Automating Shallow 3D Seismic Imaging

    SciTech Connect

    Steeples, Don; Tsoflias, George

    2009-01-15

    Our efforts since 1997 have been directed toward developing ultra-shallow seismic imaging as a cost-effective method applicable to DOE facilities. This report covers the final year of grant-funded research to refine 3D shallow seismic imaging, which built on a previous 7-year grant (FG07-97ER14826) that refined and demonstrated the use of an automated method of conducting shallow seismic surveys; this represents a significant departure from conventional seismic-survey field procedures. The primary objective of this final project was to develop an automated three-dimensional (3D) shallow-seismic reflection imaging capability. This is a natural progression from our previous published work and is conceptually parallel to the innovative imaging methods used in the petroleum industry.

  4. Walker Ranch 3D seismic images

    DOE Data Explorer

    Robert J. Mellors

    2016-03-01

    Amplitude images (both vertical and depth slices) extracted from 3D seismic reflection survey over area of Walker Ranch area (adjacent to Raft River). Crossline spacing of 660 feet and inline of 165 feet using a Vibroseis source. Processing included depth migration. Micro-earthquake hypocenters on images. Stratigraphic information and nearby well tracks added to images. Images are embedded in a Microsoft Word document with additional information. Exact location and depth restricted for proprietary reasons. Data collection and processing funded by Agua Caliente. Original data remains property of Agua Caliente.

  5. Metrological characterization of 3D imaging devices

    NASA Astrophysics Data System (ADS)

    Guidi, G.

    2013-04-01

    Manufacturers often express the performance of a 3D imaging device in various non-uniform ways for the lack of internationally recognized standard requirements for metrological parameters able to identify the capability of capturing a real scene. For this reason several national and international organizations in the last ten years have been developing protocols for verifying such performance. Ranging from VDI/VDE 2634, published by the Association of German Engineers and oriented to the world of mechanical 3D measurements (triangulation-based devices), to the ASTM technical committee E57, working also on laser systems based on direct range detection (TOF, Phase Shift, FM-CW, flash LADAR), this paper shows the state of the art about the characterization of active range devices, with special emphasis on measurement uncertainty, accuracy and resolution. Most of these protocols are based on special objects whose shape and size are certified with a known level of accuracy. By capturing the 3D shape of such objects with a range device, a comparison between the measured points and the theoretical shape they should represent is possible. The actual deviations can be directly analyzed or some derived parameters can be obtained (e.g. angles between planes, distances between barycenters of spheres rigidly connected, frequency domain parameters, etc.). This paper shows theoretical aspects and experimental results of some novel characterization methods applied to different categories of active 3D imaging devices based on both principles of triangulation and direct range detection.

  6. 3D MR imaging in real time

    NASA Astrophysics Data System (ADS)

    Guttman, Michael A.; McVeigh, Elliot R.

    2001-05-01

    A system has been developed to produce live 3D volume renderings from an MR scanner. Whereas real-time 2D MR imaging has been demonstrated by several groups, 3D volumes are currently rendered off-line to gain greater understanding of anatomical structures. For example, surgical planning is sometimes performed by viewing 2D images or 3D renderings from previously acquired image data. A disadvantage of this approach is misregistration which could occur if the anatomy changes due to normal muscle contractions or surgical manipulation. The ability to produce volume renderings in real-time and present them in the magnet room could eliminate this problem, and enable or benefit other types of interventional procedures. The system uses the data stream generated by a fast 2D multi- slice pulse sequence to update a volume rendering immediately after a new slice is available. We demonstrate some basic types of user interaction with the rendering during imaging at a rate of up to 20 frames per second.

  7. Linear tracking for 3-D medical ultrasound imaging.

    PubMed

    Huang, Qing-Hua; Yang, Zhao; Hu, Wei; Jin, Lian-Wen; Wei, Gang; Li, Xuelong

    2013-12-01

    As the clinical application grows, there is a rapid technical development of 3-D ultrasound imaging. Compared with 2-D ultrasound imaging, 3-D ultrasound imaging can provide improved qualitative and quantitative information for various clinical applications. In this paper, we proposed a novel tracking method for a freehand 3-D ultrasound imaging system with improved portability, reduced degree of freedom, and cost. We designed a sliding track with a linear position sensor attached, and it transmitted positional data via a wireless communication module based on Bluetooth, resulting in a wireless spatial tracking modality. A traditional 2-D ultrasound probe fixed to the position sensor on the sliding track was used to obtain real-time B-scans, and the positions of the B-scans were simultaneously acquired when moving the probe along the track in a freehand manner. In the experiments, the proposed method was applied to ultrasound phantoms and real human tissues. The results demonstrated that the new system outperformed a previously developed freehand system based on a traditional six-degree-of-freedom spatial sensor in phantom and in vivo studies, indicating its merit in clinical applications for human tissues and organs. PMID:23757592

  8. Teat Morphology Characterization With 3D Imaging.

    PubMed

    Vesterinen, Heidi M; Corfe, Ian J; Sinkkonen, Ville; Iivanainen, Antti; Jernvall, Jukka; Laakkonen, Juha

    2015-07-01

    The objective of this study was to visualize, in a novel way, the morphological characteristics of bovine teats to gain a better understanding of the detailed teat morphology. We applied silicone casting and 3D digital imaging in order to obtain a more detailed image of the teat structures than that seen in previous studies. Teat samples from 65 dairy cows over 12 months of age were obtained from cows slaughtered at an abattoir. The teats were classified according to the teat condition scoring used in Finland and the lengths of the teat canals were measured. Silicone molds were made from the external teat surface surrounding the teat orifice and from the internal surface of the teat consisting of the papillary duct, Fürstenberg's rosette, and distal part of the teat cistern. The external and internal surface molds of 35 cows were scanned with a 3D laser scanner. The molds and the digital 3D models were used to evaluate internal and external teat surface morphology. A number of measurements were taken from the silicone molds. The 3D models reproduced the morphology of the teats accurately with high repeatability. Breed didn't correlate with the teat classification score. The rosette was found to have significant variation in its size and number of mucosal folds. The internal surface morphology of the rosette did not correlate with the external surface morphology of the teat implying that it is relatively independent of milking parameters that may impact the teat canal and the external surface of the teat. PMID:25382725

  9. Composite model of a 3-D image

    NASA Technical Reports Server (NTRS)

    Dukhovich, I. J.

    1980-01-01

    This paper presents a composite model of a moving (3-D) image especially useful for the sequential image processing and encoding. A non-linear predictor based on the composite model is described. The performance of this predictor is used as a measure of the validity of the model for a real image source. The minimization of a total mean square prediction error provides an inequality which determines a condition for the profitable use of the composite model and can serve as a decision device for the selection of the number of subsources within the model. The paper also describes statistical properties of the prediction error and contains results of computer simulation of two non-linear predictors in the case of perfect classification between subsources.

  10. Application of an optical 3D sensor for automated disassembling

    NASA Astrophysics Data System (ADS)

    Knackfuss, Peter; Schmidt, Achim

    1996-08-01

    The application of an active vision 3D sensor is described for the development and control of an autonomous intelligent robot cell for the disassembling of end-of-life-vehicle components. The research and development work was done concurrently by three European development teams at different locations. During this phase, the virtual environment was distributed on the local development platforms of these teams. Intermediate development results and 3D sensor data were exchanged through network communication to be mutually tested and verified. The physical environment of the disassembling cell demonstrator and its sensor systems is currently being integrated at the BIBA institute.

  11. [3D interactive clipping technology in medical image processing].

    PubMed

    Sun, Shaoping; Yang, Kaitai; Li, Bin; Li, Yuanjun; Liang, Jing

    2013-09-01

    The aim of this paper is to study the methods of 3D visualization and the 3D interactive clipping of CT/MRI image sequence in arbitrary orientation based on the Visualization Toolkit (VTK). A new method for 3D CT/MRI reconstructed image clipping is presented, which can clip 3D object and 3D space of medical image sequence to observe the inner structure using 3D widget for manipulating an infinite plane. Experiment results show that the proposed method can implement 3D interactive clipping of medical image effectively and get satisfied results with good quality in short time.

  12. Photogrammetric 3D reconstruction using mobile imaging

    NASA Astrophysics Data System (ADS)

    Fritsch, Dieter; Syll, Miguel

    2015-03-01

    In our paper we demonstrate the development of an Android Application (AndroidSfM) for photogrammetric 3D reconstruction that works on smartphones and tablets likewise. The photos are taken with mobile devices, and can thereafter directly be calibrated using standard calibration algorithms of photogrammetry and computer vision, on that device. Due to still limited computing resources on mobile devices, a client-server handshake using Dropbox transfers the photos to the sever to run AndroidSfM for the pose estimation of all photos by Structure-from-Motion and, thereafter, uses the oriented bunch of photos for dense point cloud estimation by dense image matching algorithms. The result is transferred back to the mobile device for visualization and ad-hoc on-screen measurements.

  13. First Experiences with Kinect v2 Sensor for Close Range 3d Modelling

    NASA Astrophysics Data System (ADS)

    Lachat, E.; Macher, H.; Mittet, M.-A.; Landes, T.; Grussenmeyer, P.

    2015-02-01

    RGB-D cameras, also known as range imaging cameras, are a recent generation of sensors. As they are suitable for measuring distances to objects at high frame rate, such sensors are increasingly used for 3D acquisitions, and more generally for applications in robotics or computer vision. This kind of sensors became popular especially since the Kinect v1 (Microsoft) arrived on the market in November 2010. In July 2014, Windows has released a new sensor, the Kinect for Windows v2 sensor, based on another technology as its first device. However, due to its initial development for video games, the quality assessment of this new device for 3D modelling represents a major investigation axis. In this paper first experiences with Kinect v2 sensor are related, and the ability of close range 3D modelling is investigated. For this purpose, error sources on output data as well as a calibration approach are presented.

  14. Imaging a Sustainable Future in 3D

    NASA Astrophysics Data System (ADS)

    Schuhr, W.; Lee, J. D.; Kanngieser, E.

    2012-07-01

    It is the intention of this paper, to contribute to a sustainable future by providing objective object information based on 3D photography as well as promoting 3D photography not only for scientists, but also for amateurs. Due to the presentation of this article by CIPA Task Group 3 on "3D Photographs in Cultural Heritage", the presented samples are masterpieces of historic as well as of current 3D photography concentrating on cultural heritage. In addition to a report on exemplarily access to international archives of 3D photographs, samples for new 3D photographs taken with modern 3D cameras, as well as by means of a ground based high resolution XLITE staff camera and also 3D photographs taken from a captive balloon and the use of civil drone platforms are dealt with. To advise on optimum suited 3D methodology, as well as to catch new trends in 3D, an updated synoptic overview of the 3D visualization technology, even claiming completeness, has been carried out as a result of a systematic survey. In this respect, e.g., today's lasered crystals might be "early bird" products in 3D, which, due to lack in resolution, contrast and color, remember to the stage of the invention of photography.

  15. Ames Lab 101: Real-Time 3D Imaging

    ScienceCinema

    Zhang, Song

    2016-07-12

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  16. Ames Lab 101: Real-Time 3D Imaging

    SciTech Connect

    Zhang, Song

    2010-01-01

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  17. Optical Sensors and Methods for Underwater 3D Reconstruction

    PubMed Central

    Massot-Campos, Miquel; Oliver-Codina, Gabriel

    2015-01-01

    This paper presents a survey on optical sensors and methods for 3D reconstruction in underwater environments. The techniques to obtain range data have been listed and explained, together with the different sensor hardware that makes them possible. The literature has been reviewed, and a classification has been proposed for the existing solutions. New developments, commercial solutions and previous reviews in this topic have also been gathered and considered. PMID:26694389

  18. 3-D rigid body tracking using vision and depth sensors.

    PubMed

    Gedik, O Serdar; Alatan, A Aydn

    2013-10-01

    In robotics and augmented reality applications, model-based 3-D tracking of rigid objects is generally required. With the help of accurate pose estimates, it is required to increase reliability and decrease jitter in total. Among many solutions of pose estimation in the literature, pure vision-based 3-D trackers require either manual initializations or offline training stages. On the other hand, trackers relying on pure depth sensors are not suitable for AR applications. An automated 3-D tracking algorithm, which is based on fusion of vision and depth sensors via extended Kalman filter, is proposed in this paper. A novel measurement-tracking scheme, which is based on estimation of optical flow using intensity and shape index map data of 3-D point cloud, increases 2-D, as well as 3-D, tracking performance significantly. The proposed method requires neither manual initialization of pose nor offline training, while enabling highly accurate 3-D tracking. The accuracy of the proposed method is tested against a number of conventional techniques, and a superior performance is clearly observed in terms of both objectively via error metrics and subjectively for the rendered scenes. PMID:23955795

  19. 3-D rigid body tracking using vision and depth sensors.

    PubMed

    Gedik, O Serdar; Alatan, A Aydn

    2013-10-01

    In robotics and augmented reality applications, model-based 3-D tracking of rigid objects is generally required. With the help of accurate pose estimates, it is required to increase reliability and decrease jitter in total. Among many solutions of pose estimation in the literature, pure vision-based 3-D trackers require either manual initializations or offline training stages. On the other hand, trackers relying on pure depth sensors are not suitable for AR applications. An automated 3-D tracking algorithm, which is based on fusion of vision and depth sensors via extended Kalman filter, is proposed in this paper. A novel measurement-tracking scheme, which is based on estimation of optical flow using intensity and shape index map data of 3-D point cloud, increases 2-D, as well as 3-D, tracking performance significantly. The proposed method requires neither manual initialization of pose nor offline training, while enabling highly accurate 3-D tracking. The accuracy of the proposed method is tested against a number of conventional techniques, and a superior performance is clearly observed in terms of both objectively via error metrics and subjectively for the rendered scenes.

  20. Increased Speed: 3D Silicon Sensors. Fast Current Amplifiers

    SciTech Connect

    Parker, Sherwood; Kok, Angela; Kenney, Christopher; Jarron, Pierre; Hasi, Jasmine; Despeisse, Matthieu; Da Via, Cinzia; Anelli, Giovanni; /CERN

    2012-05-07

    The authors describe techniques to make fast, sub-nanosecond time resolution solid-state detector systems using sensors with 3D electrodes, current amplifiers, constant-fraction comparators or fast wave-form recorders, and some of the next steps to reach still faster results.

  1. Progress in 3D imaging and display by integral imaging

    NASA Astrophysics Data System (ADS)

    Martinez-Cuenca, R.; Saavedra, G.; Martinez-Corral, M.; Pons, A.; Javidi, B.

    2009-05-01

    Three-dimensionality is currently considered an important added value in imaging devices, and therefore the search for an optimum 3D imaging and display technique is a hot topic that is attracting important research efforts. As main value, 3D monitors should provide the observers with different perspectives of a 3D scene by simply varying the head position. Three-dimensional imaging techniques have the potential to establish a future mass-market in the fields of entertainment and communications. Integral imaging (InI), which can capture true 3D color images, has been seen as the right technology to 3D viewing to audiences of more than one person. Due to the advanced degree of development, InI technology could be ready for commercialization in the coming years. This development is the result of a strong research effort performed along the past few years by many groups. Since Integral Imaging is still an emerging technology, the first aim of the "3D Imaging and Display Laboratory" at the University of Valencia, has been the realization of a thorough study of the principles that govern its operation. Is remarkable that some of these principles have been recognized and characterized by our group. Other contributions of our research have been addressed to overcome some of the classical limitations of InI systems, like the limited depth of field (in pickup and in display), the poor axial and lateral resolution, the pseudoscopic-to-orthoscopic conversion, the production of 3D images with continuous relief, or the limited range of viewing angles of InI monitors.

  2. 3D imaging: how to achieve highest accuracy

    NASA Astrophysics Data System (ADS)

    Luhmann, Thomas

    2011-07-01

    The generation of 3D information from images is a key technology in many different areas, e.g. in 3D modeling and representation of architectural or heritage objects, in human body motion tracking and scanning, in 3D scene analysis of traffic scenes, in industrial applications and many more. The basic concepts rely on mathematical representations of central perspective viewing as they are widely known from photogrammetry or computer vision approaches. The objectives of these methods differ, more or less, from high precision and well-structured measurements in (industrial) photogrammetry to fully-automated non-structured applications in computer vision. Accuracy and precision is a critical issue for the 3D measurement of industrial, engineering or medical objects. As state of the art, photogrammetric multi-view measurements achieve relative precisions in the order of 1:100000 to 1:200000, and relative accuracies with respect to retraceable lengths in the order of 1:50000 to 1:100000 of the largest object diameter. In order to obtain these figures a number of influencing parameters have to be optimized. These are, besides others: physical representation of object surface (targets, texture), illumination and light sources, imaging sensors, cameras and lenses, calibration strategies (camera model), orientation strategies (bundle adjustment), image processing of homologue features (target measurement, stereo and multi-image matching), representation of object or workpiece coordinate systems and object scale. The paper discusses the above mentioned parameters and offers strategies for obtaining highest accuracy in object space. Practical examples of high-quality stereo camera measurements and multi-image applications are used to prove the relevance of high accuracy in different applications, ranging from medical navigation to static and dynamic industrial measurements. In addition, standards for accuracy verifications are presented and demonstrated by practical examples

  3. Phase Sensitive Cueing for 3D Objects in Overhead Images

    SciTech Connect

    Paglieroni, D W; Eppler, W G; Poland, D N

    2005-02-18

    A 3D solid model-aided object cueing method that matches phase angles of directional derivative vectors at image pixels to phase angles of vectors normal to projected model edges is described. It is intended for finding specific types of objects at arbitrary position and orientation in overhead images, independent of spatial resolution, obliqueness, acquisition conditions, and type of imaging sensor. It is shown that the phase similarity measure can be efficiently evaluated over all combinations of model position and orientation using the FFT. The highest degree of similarity over all model orientations is captured in a match surface of similarity values vs. model position. Unambiguous peaks in this surface are sorted in descending order of similarity value, and the small image thumbnails that contain them are presented to human analysts for inspection in sorted order.

  4. Super deep 3D images from a 3D omnifocus video camera.

    PubMed

    Iizuka, Keigo

    2012-02-20

    When using stereographic image pairs to create three-dimensional (3D) images, a deep depth of field in the original scene enhances the depth perception in the 3D image. The omnifocus video camera has no depth of field limitations and produces images that are in focus throughout. By installing an attachment on the omnifocus video camera, real-time super deep stereoscopic pairs of video images were obtained. The deeper depth of field creates a larger perspective image shift, which makes greater demands on the binocular fusion of human vision. A means of reducing the perspective shift without harming the depth of field was found.

  5. Sparse aperture 3D passive image sensing and recognition

    NASA Astrophysics Data System (ADS)

    Daneshpanah, Mehdi

    The way we perceive, capture, store, communicate and visualize the world has greatly changed in the past century Novel three dimensional (3D) imaging and display systems are being pursued both in academic and industrial settings. In many cases, these systems have revolutionized traditional approaches and/or enabled new technologies in other disciplines including medical imaging and diagnostics, industrial metrology, entertainment, robotics as well as defense and security. In this dissertation, we focus on novel aspects of sparse aperture multi-view imaging systems and their application in quantum-limited object recognition in two separate parts. In the first part, two concepts are proposed. First a solution is presented that involves a generalized framework for 3D imaging using randomly distributed sparse apertures. Second, a method is suggested to extract the profile of objects in the scene through statistical properties of the reconstructed light field. In both cases, experimental results are presented that demonstrate the feasibility of the techniques. In the second part, the application of 3D imaging systems in sensing and recognition of objects is addressed. In particular, we focus on the scenario in which only 10s of photons reach the sensor from the object of interest, as opposed to hundreds of billions of photons in normal imaging conditions. At this level, the quantum limited behavior of light will dominate and traditional object recognition practices may fail. We suggest a likelihood based object recognition framework that incorporates the physics of sensing at quantum-limited conditions. Sensor dark noise has been modeled and taken into account. This framework is applied to 3D sensing of thermal objects using visible spectrum detectors. Thermal objects as cold as 250K are shown to provide enough signature photons to be sensed and recognized within background and dark noise with mature, visible band, image forming optics and detector arrays. The results

  6. Automatic structural matching of 3D image data

    NASA Astrophysics Data System (ADS)

    Ponomarev, Svjatoslav; Lutsiv, Vadim; Malyshev, Igor

    2015-10-01

    A new image matching technique is described. It is implemented as an object-independent hierarchical structural juxtaposition algorithm based on an alphabet of simple object-independent contour structural elements. The structural matching applied implements an optimized method of walking through a truncated tree of all possible juxtapositions of two sets of structural elements. The algorithm was initially developed for dealing with 2D images such as the aerospace photographs, and it turned out to be sufficiently robust and reliable for matching successfully the pictures of natural landscapes taken in differing seasons from differing aspect angles by differing sensors (the visible optical, IR, and SAR pictures, as well as the depth maps and geographical vector-type maps). At present (in the reported version), the algorithm is enhanced based on additional use of information on third spatial coordinates of observed points of object surfaces. Thus, it is now capable of matching the images of 3D scenes in the tasks of automatic navigation of extremely low flying unmanned vehicles or autonomous terrestrial robots. The basic principles of 3D structural description and matching of images are described, and the examples of image matching are presented.

  7. 3D spatial resolution and spectral resolution of interferometric 3D imaging spectrometry.

    PubMed

    Obara, Masaki; Yoshimori, Kyu

    2016-04-01

    Recently developed interferometric 3D imaging spectrometry (J. Opt. Soc. Am A18, 765 [2001]1084-7529JOAOD610.1364/JOSAA.18.000765) enables obtainment of the spectral information and 3D spatial information for incoherently illuminated or self-luminous object simultaneously. Using this method, we can obtain multispectral components of complex holograms, which correspond directly to the phase distribution of the wavefronts propagated from the polychromatic object. This paper focuses on the analysis of spectral resolution and 3D spatial resolution in interferometric 3D imaging spectrometry. Our analysis is based on a novel analytical impulse response function defined over four-dimensional space. We found that the experimental results agree well with the theoretical prediction. This work also suggests a new criterion and estimate method regarding 3D spatial resolution of digital holography. PMID:27139648

  8. Radiation hardness tests of highly irradiated full-3D sensors

    NASA Astrophysics Data System (ADS)

    Haughton, Iain; DaVia, Cinzia; Watts, Stephen

    2016-01-01

    Several full-3D silicon sensors (with column electrodes going fully through the bulk) were irradiated up to a fluence of (2.14±0.18)×1016 neq cm-2. An infra-red laser was used to induce a homogeneous signal within each sensor's bulk. The signal degradation, measured as a signal efficiency (signal after irradiation normalised to its value before irradiation) was determined for each fluence. The experimental set-up allowed for monitoring of the beam spot diameter, position and reflection intensity on the sensor's surface. Corrections, dependent on the measured reflection intensity, were made when calculating the signal efficiency. The sensor irradiated to the highest fluence showed a signal efficiency of (50 ± 5) %.

  9. Automatic 2D-to-3D image conversion using 3D examples from the internet

    NASA Astrophysics Data System (ADS)

    Konrad, J.; Brown, G.; Wang, M.; Ishwar, P.; Wu, C.; Mukherjee, D.

    2012-03-01

    The availability of 3D hardware has so far outpaced the production of 3D content. Although to date many methods have been proposed to convert 2D images to 3D stereopairs, the most successful ones involve human operators and, therefore, are time-consuming and costly, while the fully-automatic ones have not yet achieved the same level of quality. This subpar performance is due to the fact that automatic methods usually rely on assumptions about the captured 3D scene that are often violated in practice. In this paper, we explore a radically different approach inspired by our work on saliency detection in images. Instead of relying on a deterministic scene model for the input 2D image, we propose to "learn" the model from a large dictionary of stereopairs, such as YouTube 3D. Our new approach is built upon a key observation and an assumption. The key observation is that among millions of stereopairs available on-line, there likely exist many stereopairs whose 3D content matches that of the 2D input (query). We assume that two stereopairs whose left images are photometrically similar are likely to have similar disparity fields. Our approach first finds a number of on-line stereopairs whose left image is a close photometric match to the 2D query and then extracts depth information from these stereopairs. Since disparities for the selected stereopairs differ due to differences in underlying image content, level of noise, distortions, etc., we combine them by using the median. We apply the resulting median disparity field to the 2D query to obtain the corresponding right image, while handling occlusions and newly-exposed areas in the usual way. We have applied our method in two scenarios. First, we used YouTube 3D videos in search of the most similar frames. Then, we repeated the experiments on a small, but carefully-selected, dictionary of stereopairs closely matching the query. This, to a degree, emulates the results one would expect from the use of an extremely large 3D

  10. Multi Sensor Data Integration for AN Accurate 3d Model Generation

    NASA Astrophysics Data System (ADS)

    Chhatkuli, S.; Satoh, T.; Tachibana, K.

    2015-05-01

    The aim of this paper is to introduce a novel technique of data integration between two different data sets, i.e. laser scanned RGB point cloud and oblique imageries derived 3D model, to create a 3D model with more details and better accuracy. In general, aerial imageries are used to create a 3D city model. Aerial imageries produce an overall decent 3D city models and generally suit to generate 3D model of building roof and some non-complex terrain. However, the automatically generated 3D model, from aerial imageries, generally suffers from the lack of accuracy in deriving the 3D model of road under the bridges, details under tree canopy, isolated trees, etc. Moreover, the automatically generated 3D model from aerial imageries also suffers from undulated road surfaces, non-conforming building shapes, loss of minute details like street furniture, etc. in many cases. On the other hand, laser scanned data and images taken from mobile vehicle platform can produce more detailed 3D road model, street furniture model, 3D model of details under bridge, etc. However, laser scanned data and images from mobile vehicle are not suitable to acquire detailed 3D model of tall buildings, roof tops, and so forth. Our proposed approach to integrate multi sensor data compensated each other's weakness and helped to create a very detailed 3D model with better accuracy. Moreover, the additional details like isolated trees, street furniture, etc. which were missing in the original 3D model derived from aerial imageries could also be integrated in the final model automatically. During the process, the noise in the laser scanned data for example people, vehicles etc. on the road were also automatically removed. Hence, even though the two dataset were acquired in different time period the integrated data set or the final 3D model was generally noise free and without unnecessary details.

  11. 3D seismic imaging, example of 3D area in the middle of Banat

    NASA Astrophysics Data System (ADS)

    Antic, S.

    2009-04-01

    3D seismic imaging was carried out in the 3D seismic volume situated in the middle of Banat region in Serbia. The 3D area is about 300 km square. The aim of 3D investigation was defining geology structures and techtonics especially in Mesozoik complex. The investigation objects are located in depth from 2000 to 3000 m. There are number of wells in this area but they are not enough deep to help in the interpretation. It was necessary to get better seismic image in deeper area. Acquisition parameters were satisfactory (good quality of input parameters, length of input data was 5 s, fold was up to 4000 %) and preprocessed data was satisfied. GeoDepth is an integrated system for 3D velocity model building and for 3D seismic imaging. Input data for 3D seismic imaging consist of preprocessing data sorted to CMP gathers and RMS stacking velocity functions. Other type of input data are geological information derived from well data, time migrated images and time migrated maps. Workflow for this job was: loading and quality control the input data (CMP gathers and velocity), creating initial RMS Velocity Volume, PSTM, updating the RMS Velocity Volume, PSTM, building the Initial Interval Velocity Model, PSDM, updating the Interval Velocity Model, PSDM. In the first stage the attempt is to derive initial velocity model as simple as possible as.The higher frequency velocity changes are obtained in the updating stage. The next step, after running PSTM, is the time to depth conversion. After the model is built, we generate a 3D interval velocity volume and run 3D pre-stack depth migration. The main method for updating velocities is 3D tomography. The criteria used in velocity model determination are based on the flatness of pre-stack migrated gathers or the quality of the stacked image. The standard processing ended with poststack 3D time migration. Prestack depth migration is one of the powerful tool available to the interpretator to develop an accurate velocity model and get

  12. 3D ultrasound imaging for prosthesis fabrication and diagnostic imaging

    SciTech Connect

    Morimoto, A.K.; Bow, W.J.; Strong, D.S.

    1995-06-01

    The fabrication of a prosthetic socket for a below-the-knee amputee requires knowledge of the underlying bone structure in order to provide pressure relief for sensitive areas and support for load bearing areas. The goal is to enable the residual limb to bear pressure with greater ease and utility. Conventional methods of prosthesis fabrication are based on limited knowledge about the patient`s underlying bone structure. A 3D ultrasound imaging system was developed at Sandia National Laboratories. The imaging system provides information about the location of the bones in the residual limb along with the shape of the skin surface. Computer assisted design (CAD) software can use this data to design prosthetic sockets for amputees. Ultrasound was selected as the imaging modality. A computer model was developed to analyze the effect of the various scanning parameters and to assist in the design of the overall system. The 3D ultrasound imaging system combines off-the-shelf technology for image capturing, custom hardware, and control and image processing software to generate two types of image data -- volumetric and planar. Both volumetric and planar images reveal definition of skin and bone geometry with planar images providing details on muscle fascial planes, muscle/fat interfaces, and blood vessel definition. The 3D ultrasound imaging system was tested on 9 unilateral below-the- knee amputees. Image data was acquired from both the sound limb and the residual limb. The imaging system was operated in both volumetric and planar formats. An x-ray CT (Computed Tomography) scan was performed on each amputee for comparison. Results of the test indicate beneficial use of ultrasound to generate databases for fabrication of prostheses at a lower cost and with better initial fit as compared to manually fabricated prostheses.

  13. 3D Imaging by Mass Spectrometry: A New Frontier

    PubMed Central

    Seeley, Erin H.; Caprioli, Richard M.

    2012-01-01

    Summary Imaging mass spectrometry can generate three-dimensional volumes showing molecular distributions in an entire organ or animal through registration and stacking of serial tissue sections. Here we review the current state of 3D imaging mass spectrometry as well as provide insights and perspectives on the process of generating 3D mass spectral data along with a discussion of the process necessary to generate a 3D image volume. PMID:22276611

  14. A 3D image analysis tool for SPECT imaging

    NASA Astrophysics Data System (ADS)

    Kontos, Despina; Wang, Qiang; Megalooikonomou, Vasileios; Maurer, Alan H.; Knight, Linda C.; Kantor, Steve; Fisher, Robert S.; Simonian, Hrair P.; Parkman, Henry P.

    2005-04-01

    We have developed semi-automated and fully-automated tools for the analysis of 3D single-photon emission computed tomography (SPECT) images. The focus is on the efficient boundary delineation of complex 3D structures that enables accurate measurement of their structural and physiologic properties. We employ intensity based thresholding algorithms for interactive and semi-automated analysis. We also explore fuzzy-connectedness concepts for fully automating the segmentation process. We apply the proposed tools to SPECT image data capturing variation of gastric accommodation and emptying. These image analysis tools were developed within the framework of a noninvasive scintigraphic test to measure simultaneously both gastric emptying and gastric volume after ingestion of a solid or a liquid meal. The clinical focus of the particular analysis was to probe associations between gastric accommodation/emptying and functional dyspepsia. Employing the proposed tools, we outline effectively the complex three dimensional gastric boundaries shown in the 3D SPECT images. We also perform accurate volume calculations in order to quantitatively assess the gastric mass variation. This analysis was performed both with the semi-automated and fully-automated tools. The results were validated against manual segmentation performed by a human expert. We believe that the development of an automated segmentation tool for SPECT imaging of the gastric volume variability will allow for other new applications of SPECT imaging where there is a need to evaluate complex organ function or tumor masses.

  15. 3D-LZ helicopter ladar imaging system

    NASA Astrophysics Data System (ADS)

    Savage, James; Harrington, Walter; McKinley, R. Andrew; Burns, H. N.; Braddom, Steven; Szoboszlay, Zoltan

    2010-04-01

    A joint-service team led by the Air Force Research Laboratory's Munitions and Sensors Directorates completed a successful flight test demonstration of the 3D-LZ Helicopter LADAR Imaging System. This was a milestone demonstration in the development of technology solutions for a problem known as "helicopter brownout", the loss of situational awareness caused by swirling sand during approach and landing. The 3D-LZ LADAR was developed by H.N. Burns Engineering and integrated with the US Army Aeroflightdynamics Directorate's Brown-Out Symbology System aircraft state symbology aboard a US Army EH-60 Black Hawk helicopter. The combination of these systems provided an integrated degraded visual environment landing solution with landing zone situational awareness as well as aircraft guidance and obstacle avoidance information. Pilots from the U.S. Army, Air Force, Navy, and Marine Corps achieved a 77% landing rate in full brownout conditions at a test range at Yuma Proving Ground, Arizona. This paper will focus on the LADAR technology used in 3D-LZ and the results of this milestone demonstration.

  16. Light field display and 3D image reconstruction

    NASA Astrophysics Data System (ADS)

    Iwane, Toru

    2016-06-01

    Light field optics and its applications become rather popular in these days. With light field optics or light field thesis, real 3D space can be described in 2D plane as 4D data, which we call as light field data. This process can be divided in two procedures. First, real3D scene is optically reduced with imaging lens. Second, this optically reduced 3D image is encoded into light field data. In later procedure we can say that 3D information is encoded onto a plane as 2D data by lens array plate. This transformation is reversible and acquired light field data can be decoded again into 3D image with the arrayed lens plate. "Refocusing" (focusing image on your favorite point after taking a picture), light-field camera's most popular function, is some kind of sectioning process from encoded 3D data (light field data) to 2D image. In this paper at first I show our actual light field camera and our 3D display using acquired and computer-simulated light field data, on which real 3D image is reconstructed. In second I explain our data processing method whose arithmetic operation is performed not in Fourier domain but in real domain. Then our 3D display system is characterized by a few features; reconstructed image is of finer resolutions than density of arrayed lenses and it is not necessary to adjust lens array plate to flat display on which light field data is displayed.

  17. Dynamic contrast-enhanced 3D photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Wong, Philip; Kosik, Ivan; Carson, Jeffrey J. L.

    2013-03-01

    Photoacoustic imaging (PAI) is a hybrid imaging modality that integrates the strengths from both optical imaging and acoustic imaging while simultaneously overcoming many of their respective weaknesses. In previous work, we reported on a real-time 3D PAI system comprised of a 32-element hemispherical array of transducers. Using the system, we demonstrated the ability to capture photoacoustic data, reconstruct a 3D photoacoustic image, and display select slices of the 3D image every 1.4 s, where each 3D image resulted from a single laser pulse. The present study aimed to exploit the rapid imaging speed of an upgraded 3D PAI system by evaluating its ability to perform dynamic contrast-enhanced imaging. The contrast dynamics can provide rich datasets that contain insight into perfusion, pharmacokinetics and physiology. We captured a series of 3D PA images of a flow phantom before and during injection of piglet and rabbit blood. Principal component analysis was utilized to classify the data according to its spatiotemporal information. The results suggested that this technique can be used to separate a sequence of 3D PA images into a series of images representative of main features according to spatiotemporal flow dynamics.

  18. Multidimensional measurement by using 3-D PMD sensors

    NASA Astrophysics Data System (ADS)

    Ringbeck, T.; Möller, T.; Hagebeuker, B.

    2007-06-01

    Optical Time-of-Flight measurement gives the possibility to enhance 2-D sensors by adding a third dimension using the PMD principle. Various applications in the automotive (e.g. pedestrian safety), industrial, robotics and multimedia fields require robust three-dimensional data (Schwarte et al., 2000). These applications, however, all have different requirements in terms of resolution, speed, distance and target characteristics. PMDTechnologies has developed 3-D sensors based on standard CMOS processes that can provide an optimized solution for a wide field of applications combined with high integration and cost-effective production. These sensors are realized in various layout formats from single pixel solutions for basic applications to low, middle and high resolution matrices for applications requiring more detailed data. Pixel pitches ranging from 10 micrometer up to a 300 micrometer or larger can be realized and give the opportunity to optimize the sensor chip depending on the application. One aspect of all optical sensors based on a time-of-flight principle is the necessity of handling background illumination. This can be achieved by various techniques, such as optical filters and active circuits on chip. The sensors' usage of the in-pixel so-called SBI-circuitry (suppression of background illumination) makes it even possible to overcome the effects of bright ambient light. This paper focuses on this technical requirement. In Sect. 2 we will roughly describe the basic operation principle of PMD sensors. The technical challenges related to the system characteristics of an active optical ranging technique are described in Sect. 3, technical solutions and measurement results are then presented in Sect. 4. We finish this work with an overview of actual PMD sensors and their key parameters (Sect. 5) and some concluding remarks in Sect. 6.

  19. Fringe projection 3D microscopy with the general imaging model.

    PubMed

    Yin, Yongkai; Wang, Meng; Gao, Bruce Z; Liu, Xiaoli; Peng, Xiang

    2015-03-01

    Three-dimensional (3D) imaging and metrology of microstructures is a critical task for the design, fabrication, and inspection of microelements. Newly developed fringe projection 3D microscopy is presented in this paper. The system is configured according to camera-projector layout and long working distance lenses. The Scheimpflug principle is employed to make full use of the limited depth of field. For such a specific system, the general imaging model is introduced to reach a full 3D reconstruction. A dedicated calibration procedure is developed to realize quantitative 3D imaging. Experiments with a prototype demonstrate the accessibility of the proposed configuration, model, and calibration approach.

  20. 3D Imaging with Structured Illumination for Advanced Security Applications

    SciTech Connect

    Birch, Gabriel Carisle; Dagel, Amber Lynn; Kast, Brian A.; Smith, Collin S.

    2015-09-01

    Three-dimensional (3D) information in a physical security system is a highly useful dis- criminator. The two-dimensional data from an imaging systems fails to provide target dis- tance and three-dimensional motion vector, which can be used to reduce nuisance alarm rates and increase system effectiveness. However, 3D imaging devices designed primarily for use in physical security systems are uncommon. This report discusses an architecture favorable to physical security systems; an inexpensive snapshot 3D imaging system utilizing a simple illumination system. The method of acquiring 3D data, tests to understand illumination de- sign, and software modifications possible to maximize information gathering capability are discussed.

  1. On Alternative Approaches to 3D Image Perception: Monoscopic 3D Techniques

    NASA Astrophysics Data System (ADS)

    Blundell, Barry G.

    2015-06-01

    In the eighteenth century, techniques that enabled a strong sense of 3D perception to be experienced without recourse to binocular disparities (arising from the spatial separation of the eyes) underpinned the first significant commercial sales of 3D viewing devices and associated content. However following the advent of stereoscopic techniques in the nineteenth century, 3D image depiction has become inextricably linked to binocular parallax and outside the vision science and arts communities relatively little attention has been directed towards earlier approaches. Here we introduce relevant concepts and terminology and consider a number of techniques and optical devices that enable 3D perception to be experienced on the basis of planar images rendered from a single vantage point. Subsequently we allude to possible mechanisms for non-binocular parallax based 3D perception. Particular attention is given to reviewing areas likely to be thought-provoking to those involved in 3D display development, spatial visualization, HCI, and other related areas of interdisciplinary research.

  2. 3D augmented reality with integral imaging display

    NASA Astrophysics Data System (ADS)

    Shen, Xin; Hua, Hong; Javidi, Bahram

    2016-06-01

    In this paper, a three-dimensional (3D) integral imaging display for augmented reality is presented. By implementing the pseudoscopic-to-orthoscopic conversion method, elemental image arrays with different capturing parameters can be transferred into the identical format for 3D display. With the proposed merging algorithm, a new set of elemental images for augmented reality display is generated. The newly generated elemental images contain both the virtual objects and real world scene with desired depth information and transparency parameters. The experimental results indicate the feasibility of the proposed 3D augmented reality with integral imaging.

  3. An approach for the calibration of a combined RGB-sensor and 3D-camera device

    NASA Astrophysics Data System (ADS)

    Schulze, M.

    2011-07-01

    The elds of application for 3d cameras are very dierent, because high image frequency and determination of 3d data. Often, 3d cameras are used for mobile robotic. They are used for obstacle detection or object recognition. So they also are interesting for applications in agriculture, in combination with mobile robots. Here, in addition to 3d data, there is often a necessity to get color information for each 3d point. Unfortunately, 3d cameras do not capture any color information. Therefore, an additional sensor is necessary, such as RGB plus possibly NIR. To combine data of two dierent sensors a reference to each other, via calibration, is important. This paper presents several calibration methods and discuss their accuracy potential. Based on a spatial resection, the algorithm determines the translation and rotation between the two sensors and the inner orientation of the used sensor.

  4. Dual-view 3D displays based on integral imaging

    NASA Astrophysics Data System (ADS)

    Wang, Qiong-Hua; Deng, Huan; Wu, Fei

    2016-03-01

    We propose three dual-view integral imaging (DVII) three-dimensional (3D) displays. In the spatial-multiplexed DVII 3D display, each elemental image (EI) is cut into a left and right sub-EIs, and they are refracted to the left and right viewing zones by the corresponding micro-lens array (MLA). Different 3D images are reconstructed in the left and right viewing zones, and the viewing angle is decreased. In the DVII 3D display using polarizer parallax barriers, a polarizer parallax barrier is used in front of both the display panel and the MLA. The polarizer parallax barrier consists of two parts with perpendicular polarization directions. The elemental image array (EIA) is cut to left and right parts. The lights emitted from the left part are modulated by the left MLA and reconstruct a 3D image in the right viewing zone, whereas the lights emitted from the right part reconstruct another 3D image in the left viewing zone. The 3D resolution is decreased. In the time-multiplexed DVII 3D display, an orthogonal polarizer array is attached onto both the display panel and the MLA. The orthogonal polarizer array consists of horizontal and vertical polarizer units and the polarization directions of the adjacent units are orthogonal. In State 1, each EI is reconstructed by its corresponding micro-lens, whereas in State 2, each EI is reconstructed by its adjacent micro-lens. 3D images 1 and 2 are reconstructed alternately with a refresh rate up to 120HZ. The viewing angle and 3D resolution are the same as the conventional II 3D display.

  5. 3D model-based still image object categorization

    NASA Astrophysics Data System (ADS)

    Petre, Raluca-Diana; Zaharia, Titus

    2011-09-01

    This paper proposes a novel recognition scheme algorithm for semantic labeling of 2D object present in still images. The principle consists of matching unknown 2D objects with categorized 3D models in order to infer the semantics of the 3D object to the image. We tested our new recognition framework by using the MPEG-7 and Princeton 3D model databases in order to label unknown images randomly selected from the web. Results obtained show promising performances, with recognition rate up to 84%, which opens interesting perspectives in terms of semantic metadata extraction from still images/videos.

  6. Imaging hypoxia using 3D photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Stantz, Keith M.

    2010-02-01

    Purpose: The objective is to develop a multivariate in vivo hemodynamic model of tissue oxygenation (MiHMO2) based on 3D photoacoustic spectroscopy. Introduction: Low oxygen levels, or hypoxia, deprives cancer cells of oxygen and confers resistance to irradiation, some chemotherapeutic drugs, and oxygen-dependent therapies (phototherapy) leading to treatment failure and poor disease-free and overall survival. For example, clinical studies of patients with breast carcinomas, cervical cancer, and head and neck carcinomas (HNC) are more likely to suffer local reoccurrence and metastasis if their tumors are hypoxic. A novel method to non invasively measure tumor hypoxia, identify its type, and monitor its heterogeneity is devised by measuring tumor hemodynamics, MiHMO2. Material and Methods: Simulations are performed to compare tumor pO2 levels and hypoxia based on physiology - perfusion, fractional plasma volume, fractional cellular volume - and its hemoglobin status - oxygen saturation and hemoglobin concentration - based on in vivo measurements of breast, prostate, and ovarian tumors. Simulations of MiHMO2 are performed to assess the influence of scanner resolutions and different mathematic models of oxygen delivery. Results: Sensitivity of pO2 and hypoxic fraction to photoacoustic scanner resolution and dependencies on model complexity will be presented using hemodynamic parameters for different tumors. Conclusions: Photoacoustic CT spectroscopy provides a unique ability to monitor hemodynamic and cellular physiology in tissue, which can be used to longitudinally monitor tumor oxygenation and its response to anti-angiogenic therapies.

  7. Highway 3D model from image and lidar data

    NASA Astrophysics Data System (ADS)

    Chen, Jinfeng; Chu, Henry; Sun, Xiaoduan

    2014-05-01

    We present a new method of highway 3-D model construction developed based on feature extraction in highway images and LIDAR data. We describe the processing road coordinate data that connect the image frames to the coordinates of the elevation data. Image processing methods are used to extract sky, road, and ground regions as well as significant objects (such as signs and building fronts) in the roadside for the 3D model. LIDAR data are interpolated and processed to extract the road lanes as well as other features such as trees, ditches, and elevated objects to form the 3D model. 3D geometry reasoning is used to match the image features to the 3D model. Results from successive frames are integrated to improve the final model.

  8. 3-D Imaging Systems for Agricultural Applications-A Review.

    PubMed

    Vázquez-Arellano, Manuel; Griepentrog, Hans W; Reiser, David; Paraforos, Dimitris S

    2016-01-01

    Efficiency increase of resources through automation of agriculture requires more information about the production process, as well as process and machinery status. Sensors are necessary for monitoring the status and condition of production by recognizing the surrounding structures such as objects, field structures, natural or artificial markers, and obstacles. Currently, three dimensional (3-D) sensors are economically affordable and technologically advanced to a great extent, so a breakthrough is already possible if enough research projects are commercialized. The aim of this review paper is to investigate the state-of-the-art of 3-D vision systems in agriculture, and the role and value that only 3-D data can have to provide information about environmental structures based on the recent progress in optical 3-D sensors. The structure of this research consists of an overview of the different optical 3-D vision techniques, based on the basic principles. Afterwards, their application in agriculture are reviewed. The main focus lays on vehicle navigation, and crop and animal husbandry. The depth dimension brought by 3-D sensors provides key information that greatly facilitates the implementation of automation and robotics in agriculture.

  9. 3-D Imaging Systems for Agricultural Applications-A Review.

    PubMed

    Vázquez-Arellano, Manuel; Griepentrog, Hans W; Reiser, David; Paraforos, Dimitris S

    2016-01-01

    Efficiency increase of resources through automation of agriculture requires more information about the production process, as well as process and machinery status. Sensors are necessary for monitoring the status and condition of production by recognizing the surrounding structures such as objects, field structures, natural or artificial markers, and obstacles. Currently, three dimensional (3-D) sensors are economically affordable and technologically advanced to a great extent, so a breakthrough is already possible if enough research projects are commercialized. The aim of this review paper is to investigate the state-of-the-art of 3-D vision systems in agriculture, and the role and value that only 3-D data can have to provide information about environmental structures based on the recent progress in optical 3-D sensors. The structure of this research consists of an overview of the different optical 3-D vision techniques, based on the basic principles. Afterwards, their application in agriculture are reviewed. The main focus lays on vehicle navigation, and crop and animal husbandry. The depth dimension brought by 3-D sensors provides key information that greatly facilitates the implementation of automation and robotics in agriculture. PMID:27136560

  10. 3-D Imaging Systems for Agricultural Applications—A Review

    PubMed Central

    Vázquez-Arellano, Manuel; Griepentrog, Hans W.; Reiser, David; Paraforos, Dimitris S.

    2016-01-01

    Efficiency increase of resources through automation of agriculture requires more information about the production process, as well as process and machinery status. Sensors are necessary for monitoring the status and condition of production by recognizing the surrounding structures such as objects, field structures, natural or artificial markers, and obstacles. Currently, three dimensional (3-D) sensors are economically affordable and technologically advanced to a great extent, so a breakthrough is already possible if enough research projects are commercialized. The aim of this review paper is to investigate the state-of-the-art of 3-D vision systems in agriculture, and the role and value that only 3-D data can have to provide information about environmental structures based on the recent progress in optical 3-D sensors. The structure of this research consists of an overview of the different optical 3-D vision techniques, based on the basic principles. Afterwards, their application in agriculture are reviewed. The main focus lays on vehicle navigation, and crop and animal husbandry. The depth dimension brought by 3-D sensors provides key information that greatly facilitates the implementation of automation and robotics in agriculture. PMID:27136560

  11. Diffractive optical element for creating visual 3D images.

    PubMed

    Goncharsky, Alexander; Goncharsky, Anton; Durlevich, Svyatoslav

    2016-05-01

    A method is proposed to compute and synthesize the microrelief of a diffractive optical element to produce a new visual security feature - the vertical 3D/3D switch effect. The security feature consists in the alternation of two 3D color images when the diffractive element is tilted up/down. Optical security elements that produce the new security feature are synthesized using electron-beam technology. Sample optical security elements are manufactured that produce 3D to 3D visual switch effect when illuminated by white light. Photos and video records of the vertical 3D/3D switch effect of real optical elements are presented. The optical elements developed can be replicated using standard equipment employed for manufacturing security holograms. The new optical security feature is easy to control visually, safely protected against counterfeit, and designed to protect banknotes, documents, ID cards, etc. PMID:27137530

  12. 3D UHDTV contents production with 2/3-inch sensor cameras

    NASA Astrophysics Data System (ADS)

    Hamacher, Alaric; Pardeshi, Sunil; Whangboo, Taeg-Keun; Kim, Sang-Il; Lee, Seung-Hyun

    2015-03-01

    Most UHDTV content is presently created using single large CMOS sensor cameras as opposed to 2/3-inch small sensor cameras, which is the standard for HD content. The consequence is a technical incompatibility that does not only affect the lenses and accessories of these cameras, but also the content creation process in 2D and 3D. While UHDTV is generally acclaimed for its superior image quality, the large sensors have introduced new constraints in the filming process. The camera sizes and lens dimensions have also introduced new obstacles for their use in 3D UHDTV production. The recent availability of UHDTV broadcast cameras with traditional 2/3-inch sensors can improve the transition towards UHDTV content creation. The following article will evaluate differences between the large-sensor UHDTV cameras and the 2/3-inch 3 CMOS solution and address 3D-specific considerations, such as possible artifacts like chromatic aberration and diffraction, which can occur when mixing HD and UHD equipment. The article will further present a workflow with solutions for shooting 3D UHDTV content on the basis of the Grass Valley LDX4K compact camera, which is the first available UHDTV camera with 2/3-inch UHDTV broadcast technology.

  13. Dedicated 3D photoacoustic breast imaging

    PubMed Central

    Kruger, Robert A.; Kuzmiak, Cherie M.; Lam, Richard B.; Reinecke, Daniel R.; Del Rio, Stephen P.; Steed, Doreen

    2013-01-01

    Purpose: To report the design and imaging methodology of a photoacoustic scanner dedicated to imaging hemoglobin distribution throughout a human breast. Methods: The authors developed a dedicated breast photoacoustic mammography (PAM) system using a spherical detector aperture based on our previous photoacoustic tomography scanner. The system uses 512 detectors with rectilinear scanning. The scan shape is a spiral pattern whose radius varies from 24 to 96 mm, thereby allowing a field of view that accommodates a wide range of breast sizes. The authors measured the contrast-to-noise ratio (CNR) using a target comprised of 1-mm dots printed on clear plastic. Each dot absorption coefficient was approximately the same as a 1-mm thickness of whole blood at 756 nm, the output wavelength of the Alexandrite laser used by this imaging system. The target was immersed in varying depths of an 8% solution of stock Liposyn II-20%, which mimics the attenuation of breast tissue (1.1 cm−1). The spatial resolution was measured using a 6 μm-diameter carbon fiber embedded in agar. The breasts of four healthy female volunteers, spanning a range of breast size from a brassiere C cup to a DD cup, were imaged using a 96-mm spiral protocol. Results: The CNR target was clearly visualized to a depth of 53 mm. Spatial resolution, which was estimated from the full width at half-maximum of a profile across the PAM image of a carbon fiber, was 0.42 mm. In the four human volunteers, the vasculature was well visualized throughout the breast tissue, including to the chest wall. Conclusions: CNR, lateral field-of-view and penetration depth of our dedicated PAM scanning system is sufficient to image breasts as large as 1335 mL, which should accommodate up to 90% of the women in the United States. PMID:24320471

  14. 3-D capacitance density imaging system

    DOEpatents

    Fasching, G.E.

    1988-03-18

    A three-dimensional capacitance density imaging of a gasified bed or the like in a containment vessel is achieved using a plurality of electrodes provided circumferentially about the bed in levels and along the bed in channels. The electrodes are individually and selectively excited electrically at each level to produce a plurality of current flux field patterns generated in the bed at each level. The current flux field patterns are suitably sensed and a density pattern of the bed at each level determined. By combining the determined density patterns at each level, a three-dimensional density image of the bed is achieved. 7 figs.

  15. 3-D seismic imaging of complex geologies

    SciTech Connect

    Womble, D.E.; Dosanjh, S.S.; VanDyke, J.P.; Oldfield, R.A.; Greenberg, D.S.

    1995-02-01

    We present three codes for the Intel Paragon that address the problem of three-dimensional seismic imaging of complex geologies. The first code models acoustic wave propagation and can be used to generate data sets to calibrate and validate seismic imaging codes. This code reported the fastest timings for acoustic wave propagation codes at a recent SEG (Society of Exploration Geophysicists) meeting. The second code implements a Kirchhoff method for pre-stack depth migration. Development of this code is almost complete, and preliminary results are presented. The third code implements a wave equation approach to seismic migration and is a Paragon implementation of a code from the ARCO Seismic Benchmark Suite.

  16. 3-D seismic imaging of complex geologies

    NASA Astrophysics Data System (ADS)

    Womble, David E.; Dosanjh, Sudip S.; Vandyke, John P.; Oldfield, Ron A.; Greenberg, David S.

    We present three codes for the Intel Paragon that address the problem of three-dimensional seismic imaging of complex geologies. The first code models acoustic wave propagation and can be used to generate data sets to calibrate and validate seismic imaging codes. This code reported the fastest timings for acoustic wave propagation codes at a recent SEG (Society of Exploration Geophysicists) meeting. The second code implements a Kirchhoff method for pre-stack depth migration. Development of this code is almost complete, and preliminary results are presented. The third code implements a wave equation approach to seismic migration and is a Paragon implementation of a code from the ARCO Seismic Benchmark Suite.

  17. Polarimetric 3D integral imaging in photon-starved conditions.

    PubMed

    Carnicer, Artur; Javidi, Bahram

    2015-03-01

    We develop a method for obtaining 3D polarimetric integral images from elemental images recorded in low light illumination conditions. Since photon-counting images are very sparse, calculation of the Stokes parameters and the degree of polarization should be handled carefully. In our approach, polarimetric 3D integral images are generated using the Maximum Likelihood Estimation and subsequently reconstructed by means of a Total Variation Denoising filter. In this way, polarimetric results are comparable to those obtained in conventional illumination conditions. We also show that polarimetric information retrieved from photon starved images can be used in 3D object recognition problems. To the best of our knowledge, this is the first report on 3D polarimetric photon counting integral imaging. PMID:25836861

  18. 3D laser imaging for concealed object identification

    NASA Astrophysics Data System (ADS)

    Berechet, Ion; Berginc, Gérard; Berechet, Stefan

    2014-09-01

    This paper deals with new optical non-conventional 3D laser imaging. Optical non-conventional imaging explores the advantages of laser imaging to form a three-dimensional image of the scene. 3D laser imaging can be used for threedimensional medical imaging, topography, surveillance, robotic vision because of ability to detect and recognize objects. In this paper, we present a 3D laser imaging for concealed object identification. The objective of this new 3D laser imaging is to provide the user a complete 3D reconstruction of the concealed object from available 2D data limited in number and with low representativeness. The 2D laser data used in this paper come from simulations that are based on the calculation of the laser interactions with the different interfaces of the scene of interest and from experimental results. We show the global 3D reconstruction procedures capable to separate objects from foliage and reconstruct a threedimensional image of the considered object. In this paper, we present examples of reconstruction and completion of three-dimensional images and we analyse the different parameters of the identification process such as resolution, the scenario of camouflage, noise impact and lacunarity degree.

  19. Small SWAP 3D imaging flash ladar for small tactical unmanned air systems

    NASA Astrophysics Data System (ADS)

    Bird, Alan; Anderson, Scott A.; Wojcik, Michael; Budge, Scott E.

    2015-05-01

    The Space Dynamics Laboratory (SDL), working with Naval Research Laboratory (NRL) and industry leaders Advanced Scientific Concepts (ASC) and Hood Technology Corporation, has developed a small SWAP (size, weight, and power) 3D imaging flash ladar (LAser Detection And Ranging) sensor system concept design for small tactical unmanned air systems (STUAS). The design utilizes an ASC 3D flash ladar camera and laser in a Hood Technology gyro-stabilized gimbal system. The design is an autonomous, intelligent, geo-aware sensor system that supplies real-time 3D terrain and target images. Flash ladar and visible camera data are processed at the sensor using a custom digitizer/frame grabber with compression. Mounted in the aft housing are power, controls, processing computers, and GPS/INS. The onboard processor controls pointing and handles image data, detection algorithms and queuing. The small SWAP 3D imaging flash ladar sensor system generates georeferenced terrain and target images with a low probability of false return and <10 cm range accuracy through foliage in real-time. The 3D imaging flash ladar is designed for a STUAS with a complete system SWAP estimate of <9 kg, <0.2 m3 and <350 W power. The system is modeled using LadarSIM, a MATLAB® and Simulink®- based ladar system simulator designed and developed by the Center for Advanced Imaging Ladar (CAIL) at Utah State University. We will present the concept design and modeled performance predictions.

  20. 3D/3D registration of coronary CTA and biplane XA reconstructions for improved image guidance

    SciTech Connect

    Dibildox, Gerardo Baka, Nora; Walsum, Theo van; Punt, Mark; Aben, Jean-Paul; Schultz, Carl; Niessen, Wiro

    2014-09-15

    Purpose: The authors aim to improve image guidance during percutaneous coronary interventions of chronic total occlusions (CTO) by providing information obtained from computed tomography angiography (CTA) to the cardiac interventionist. To this end, the authors investigate a method to register a 3D CTA model to biplane reconstructions. Methods: The authors developed a method for registering preoperative coronary CTA with intraoperative biplane x-ray angiography (XA) images via 3D models of the coronary arteries. The models are extracted from the CTA and biplane XA images, and are temporally aligned based on CTA reconstruction phase and XA ECG signals. Rigid spatial alignment is achieved with a robust probabilistic point set registration approach using Gaussian mixture models (GMMs). This approach is extended by including orientation in the Gaussian mixtures and by weighting bifurcation points. The method is evaluated on retrospectively acquired coronary CTA datasets of 23 CTO patients for which biplane XA images are available. Results: The Gaussian mixture model approach achieved a median registration accuracy of 1.7 mm. The extended GMM approach including orientation was not significantly different (P > 0.1) but did improve robustness with regards to the initialization of the 3D models. Conclusions: The authors demonstrated that the GMM approach can effectively be applied to register CTA to biplane XA images for the purpose of improving image guidance in percutaneous coronary interventions.

  1. Critical comparison of 3D imaging approaches

    SciTech Connect

    Bennett, C L

    1999-06-03

    Currently three imaging spectrometer architectures, tunable filter, dispersive, and Fourier transform, are viable for imaging the universe in three dimensions. There are domains of greatest utility for each of these architectures. The optimum choice among the various alternative architectures is dependent on the nature of the desired observations, the maturity of the relevant technology, and the character of the backgrounds. The domain appropriate for each of the alternatives is delineated; both for instruments having ideal performance as well as for instrumentation based on currently available technology. The environment and science objectives for the Next Generation Space Telescope will be used as a specific representative case to provide a basis for comparison of the various alternatives.

  2. Acoustic 3D imaging of dental structures

    SciTech Connect

    Lewis, D.K.; Hume, W.R.; Douglass, G.D.

    1997-02-01

    Our goals for the first year of this three dimensional electodynamic imaging project was to determine how to combine flexible, individual addressable; preprocessing of array source signals; spectral extrapolation or received signals; acoustic tomography codes; and acoustic propagation modeling code. We investigated flexible, individually addressable acoustic array material to find the best match in power, sensitivity and cost and settled on PVDF sheet arrays and 3-1 composite material.

  3. Cordless hand-held optical 3D sensor

    NASA Astrophysics Data System (ADS)

    Munkelt, Christoph; Bräuer-Burchardt, Christian; Kühmstedt, Peter; Schmidt, Ingo; Notni, Gunther

    2007-07-01

    A new mobile optical 3D measurement system using phase correlation based fringe projection technique will be presented. The sensor consist of a digital projection unit and two cameras in a stereo arrangement, whereby both are battery powered. The data transfer to a base station will be done via WLAN. This gives the possibility to use the system in complicate, remote measurement situations, which are typical in archaeology and architecture. In the measurement procedure the sensor will be hand-held by the user, illuminating the object with a sequence of less than 10 fringe patterns, within a time below 200 ms. This short sequence duration was achieved by a new approach, which combines the epipolar constraint with robust phase correlation utilizing a pre-calibrated sensor head, containing two cameras and a digital fringe projector. Furthermore, the system can be utilized to acquire the all around shape of objects by using the phasogrammetric approach with virtual land marks introduced by the authors 1, 2. This way no matching procedures or markers are necessary for the registration of multiple views, which makes the system very flexible in accomplishing different measurement tasks. The realized measurement field is approx. 100 mm up to 400 mm in diameter. The mobile character makes the measurement system useful for a wide range of applications in arts, architecture, archaeology and criminology, which will be shown in the paper.

  4. 3D sensor for indirect ranging with pulsed laser source

    NASA Astrophysics Data System (ADS)

    Bronzi, D.; Bellisai, S.; Villa, F.; Scarcella, C.; Bahgat Shehata, A.; Tosi, A.; Padovini, G.; Zappa, F.; Tisa, S.; Durini, D.; Weyers, S.; Brockherde, W.

    2012-10-01

    The growing interest for fast, compact and cost-effective 3D ranging imagers for automotive applications has prompted to explore many different techniques for 3D imaging and to develop new system for this propose. CMOS imagers that exploit phase-resolved techniques provide accurate 3D ranging with no complex optics and are rugged and costeffective. Phase-resolved techniques indirectly measure the round-trip return of the light emitted by a laser and backscattered from a distant target, computing the phase delay between the modulated light and the detected signal. Singlephoton detectors, with their high sensitivity, allow to actively illuminate the scene with a low power excitation (less than 10W with diffused daylight illumination). We report on a 4x4 array of CMOS SPAD (Single Photon Avalanche Diodes) designed in a high-voltage 0.35 μm CMOS technology, for pulsed modulation, in which each pixel computes the phase difference between the laser and the reflected pulse. Each pixel comprises a high-performance 30 μm diameter SPAD, an analog quenching circuit, two 9 bit up-down counters and memories to store data during the readout. The first counter counts the photons detected by the SPAD in a time window synchronous with the laser pulse and integrates the whole echoed signal. The second counter accumulates the number of photon detected in a window shifted with respect to the laser pulse, and acquires only a portion of the reflected signal. The array is readout with a global shutter architecture, using a 100 MHz clock; the maximal frame rate is 3 Mframe/s.

  5. Spectral ladar: towards active 3D multispectral imaging

    NASA Astrophysics Data System (ADS)

    Powers, Michael A.; Davis, Christopher C.

    2010-04-01

    In this paper we present our Spectral LADAR concept, an augmented implementation of traditional LADAR. This sensor uses a polychromatic source to obtain range-resolved 3D spectral images which are used to identify objects based on combined spatial and spectral features, resolving positions in three dimensions and up to hundreds of meters in distance. We report on a proof-of-concept Spectral LADAR demonstrator that generates spectral point clouds from static scenes. The demonstrator transmits nanosecond supercontinuum pulses generated in a photonic crystal fiber. Currently we use a rapidly tuned receiver with a high-speed InGaAs APD for 25 spectral bands with the future expectation of implementing a linear APD array spectrograph. Each spectral band is independently range resolved with multiple return pulse recognition. This is a critical feature, enabling simultaneous spectral and spatial unmixing of partially obscured objects when not achievable using image fusion of monochromatic LADAR and passive spectral imagers. This enables higher identification confidence in highly cluttered environments such as forested or urban areas (e.g. vehicles behind camouflage or foliage). These environments present challenges for situational awareness and robotic perception which can benefit from the unique attributes of Spectral LADAR. Results from this demonstrator unit are presented for scenes typical of military operations and characterize the operation of the device. The results are discussed here in the context of autonomous vehicle navigation and target recognition.

  6. 3D quantitative phase imaging of neural networks using WDT

    NASA Astrophysics Data System (ADS)

    Kim, Taewoo; Liu, S. C.; Iyer, Raj; Gillette, Martha U.; Popescu, Gabriel

    2015-03-01

    White-light diffraction tomography (WDT) is a recently developed 3D imaging technique based on a quantitative phase imaging system called spatial light interference microscopy (SLIM). The technique has achieved a sub-micron resolution in all three directions with high sensitivity granted by the low-coherence of a white-light source. Demonstrations of the technique on single cell imaging have been presented previously; however, imaging on any larger sample, including a cluster of cells, has not been demonstrated using the technique. Neurons in an animal body form a highly complex and spatially organized 3D structure, which can be characterized by neuronal networks or circuits. Currently, the most common method of studying the 3D structure of neuron networks is by using a confocal fluorescence microscope, which requires fluorescence tagging with either transient membrane dyes or after fixation of the cells. Therefore, studies on neurons are often limited to samples that are chemically treated and/or dead. WDT presents a solution for imaging live neuron networks with a high spatial and temporal resolution, because it is a 3D imaging method that is label-free and non-invasive. Using this method, a mouse or rat hippocampal neuron culture and a mouse dorsal root ganglion (DRG) neuron culture have been imaged in order to see the extension of processes between the cells in 3D. Furthermore, the tomogram is compared with a confocal fluorescence image in order to investigate the 3D structure at synapses.

  7. Accommodation response measurements for integral 3D image

    NASA Astrophysics Data System (ADS)

    Hiura, H.; Mishina, T.; Arai, J.; Iwadate, Y.

    2014-03-01

    We measured accommodation responses under integral photography (IP), binocular stereoscopic, and real object display conditions, and viewing conditions of binocular and monocular viewing conditions. The equipment we used was an optometric device and a 3D display. We developed the 3D display for IP and binocular stereoscopic images that comprises a high-resolution liquid crystal display (LCD) and a high-density lens array. The LCD has a resolution of 468 dpi and a diagonal size of 4.8 inches. The high-density lens array comprises 106 x 69 micro lenses that have a focal length of 3 mm and diameter of 1 mm. The lenses are arranged in a honeycomb pattern. The 3D display was positioned 60 cm from an observer under IP and binocular stereoscopic display conditions. The target was presented at eight depth positions relative to the 3D display: 15, 10, and 5 cm in front of the 3D display, on the 3D display panel, and 5, 10, 15 and 30 cm behind the 3D display under the IP and binocular stereoscopic display conditions. Under the real object display condition, the target was displayed on the 3D display panel, and the 3D display was placed at the eight positions. The results suggest that the IP image induced more natural accommodation responses compared to the binocular stereoscopic image. The accommodation responses of the IP image were weaker than those of a real object; however, they showed a similar tendency with those of the real object under the two viewing conditions. Therefore, IP can induce accommodation to the depth positions of 3D images.

  8. Fast iterative image reconstruction of 3D PET data

    SciTech Connect

    Kinahan, P.E.; Townsend, D.W.; Michel, C.

    1996-12-31

    For count-limited PET imaging protocols, two different approaches to reducing statistical noise are volume, or 3D, imaging to increase sensitivity, and statistical reconstruction methods to reduce noise propagation. These two approaches have largely been developed independently, likely due to the perception of the large computational demands of iterative 3D reconstruction methods. We present results of combining the sensitivity of 3D PET imaging with the noise reduction and reconstruction speed of 2D iterative image reconstruction methods. This combination is made possible by using the recently-developed Fourier rebinning technique (FORE), which accurately and noiselessly rebins 3D PET data into a 2D data set. The resulting 2D sinograms are then reconstructed independently by the ordered-subset EM (OSEM) iterative reconstruction method, although any other 2D reconstruction algorithm could be used. We demonstrate significant improvements in image quality for whole-body 3D PET scans by using the FORE+OSEM approach compared with the standard 3D Reprojection (3DRP) algorithm. In addition, the FORE+OSEM approach involves only 2D reconstruction and it therefore requires considerably less reconstruction time than the 3DRP algorithm, or any fully 3D statistical reconstruction algorithm.

  9. Toward 3D Reconstruction of Outdoor Scenes Using an MMW Radar and a Monocular Vision Sensor

    PubMed Central

    El Natour, Ghina; Ait-Aider, Omar; Rouveure, Raphael; Berry, François; Faure, Patrice

    2015-01-01

    In this paper, we introduce a geometric method for 3D reconstruction of the exterior environment using a panoramic microwave radar and a camera. We rely on the complementarity of these two sensors considering the robustness to the environmental conditions and depth detection ability of the radar, on the one hand, and the high spatial resolution of a vision sensor, on the other. Firstly, geometric modeling of each sensor and of the entire system is presented. Secondly, we address the global calibration problem, which consists of finding the exact transformation between the sensors’ coordinate systems. Two implementation methods are proposed and compared, based on the optimization of a non-linear criterion obtained from a set of radar-to-image target correspondences. Unlike existing methods, no special configuration of the 3D points is required for calibration. This makes the methods flexible and easy to use by a non-expert operator. Finally, we present a very simple, yet robust 3D reconstruction method based on the sensors’ geometry. This method enables one to reconstruct observed features in 3D using one acquisition (static sensor), which is not always met in the state of the art for outdoor scene reconstruction. The proposed methods have been validated with synthetic and real data. PMID:26473874

  10. Sensor Fusion of Cameras and a Laser for City-Scale 3D Reconstruction

    PubMed Central

    Bok, Yunsu; Choi, Dong-Geol; Kweon, In So

    2014-01-01

    This paper presents a sensor fusion system of cameras and a 2D laser sensor for large-scale 3D reconstruction. The proposed system is designed to capture data on a fast-moving ground vehicle. The system consists of six cameras and one 2D laser sensor, and they are synchronized by a hardware trigger. Reconstruction of 3D structures is done by estimating frame-by-frame motion and accumulating vertical laser scans, as in previous works. However, our approach does not assume near 2D motion, but estimates free motion (including absolute scale) in 3D space using both laser data and image features. In order to avoid the degeneration associated with typical three-point algorithms, we present a new algorithm that selects 3D points from two frames captured by multiple cameras. The problem of error accumulation is solved by loop closing, not by GPS. The experimental results show that the estimated path is successfully overlaid on the satellite images, such that the reconstruction result is very accurate. PMID:25375758

  11. Image based 3D city modeling : Comparative study

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-06-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing rapidly for various engineering and non-engineering applications. Generally four main image based approaches were used for virtual 3D city models generation. In first approach, researchers were used Sketch based modeling, second method is Procedural grammar based modeling, third approach is Close range photogrammetry based modeling and fourth approach is mainly based on Computer Vision techniques. SketchUp, CityEngine, Photomodeler and Agisoft Photoscan are the main softwares to represent these approaches respectively. These softwares have different approaches & methods suitable for image based 3D city modeling. Literature study shows that till date, there is no complete such type of comparative study available to create complete 3D city model by using images. This paper gives a comparative assessment of these four image based 3D modeling approaches. This comparative study is mainly based on data acquisition methods, data processing techniques and output 3D model products. For this research work, study area is the campus of civil engineering department, Indian Institute of Technology, Roorkee (India). This 3D campus acts as a prototype for city. This study also explains various governing parameters, factors and work experiences. This research work also gives a brief introduction, strengths and weakness of these four image based techniques. Some personal comment is also given as what can do or what can't do from these softwares. At the last, this study shows; it concluded that, each and every software has some advantages and limitations. Choice of software depends on user requirements of 3D project. For normal visualization project, SketchUp software is a good option. For 3D documentation record, Photomodeler gives good result. For Large city

  12. Imaging and 3D morphological analysis of collagen fibrils.

    PubMed

    Altendorf, H; Decencière, E; Jeulin, D; De sa Peixoto, P; Deniset-Besseau, A; Angelini, E; Mosser, G; Schanne-Klein, M-C

    2012-08-01

    The recent booming of multiphoton imaging of collagen fibrils by means of second harmonic generation microscopy generates the need for the development and automation of quantitative methods for image analysis. Standard approaches sequentially analyse two-dimensional (2D) slices to gain knowledge on the spatial arrangement and dimension of the fibrils, whereas the reconstructed three-dimensional (3D) image yields better information about these characteristics. In this work, a 3D analysis method is proposed for second harmonic generation images of collagen fibrils, based on a recently developed 3D fibre quantification method. This analysis uses operators from mathematical morphology. The fibril structure is scanned with a directional distance transform. Inertia moments of the directional distances yield the main fibre orientation, corresponding to the main inertia axis. The collaboration of directional distances and fibre orientation delivers a geometrical estimate of the fibre radius. The results include local maps as well as global distribution of orientation and radius of the fibrils over the 3D image. They also bring a segmentation of the image into foreground and background, as well as a classification of the foreground pixels into the preferred orientations. This accurate determination of the spatial arrangement of the fibrils within a 3D data set will be most relevant in biomedical applications. It brings the possibility to monitor remodelling of collagen tissues upon a variety of injuries and to guide tissues engineering because biomimetic 3D organizations and density are requested for better integration of implants.

  13. Computational integral-imaging reconstruction-based 3-D volumetric target object recognition by using a 3-D reference object.

    PubMed

    Kim, Seung-Cheol; Park, Seok-Chan; Kim, Eun-Soo

    2009-12-01

    In this paper, we propose a novel computational integral-imaging reconstruction (CIIR)-based three-dimensional (3-D) image correlator system for the recognition of 3-D volumetric objects by employing a 3-D reference object. That is, a number of plane object images (POIs) computationally reconstructed from the 3-D reference object are used for the 3-D volumetric target recognition. In other words, simultaneous 3-D image correlations between two sets of target and reference POIs, which are depth-dependently reconstructed by using the CIIR method, are performed for effective recognition of 3-D volumetric objects in the proposed system. Successful experiments with this CIIR-based 3-D image correlator confirmed the feasibility of the proposed method.

  14. Imaging fault zones using 3D seismic image processing techniques

    NASA Astrophysics Data System (ADS)

    Iacopini, David; Butler, Rob; Purves, Steve

    2013-04-01

    Significant advances in structural analysis of deep water structure, salt tectonic and extensional rift basin come from the descriptions of fault system geometries imaged in 3D seismic data. However, even where seismic data are excellent, in most cases the trajectory of thrust faults is highly conjectural and still significant uncertainty exists as to the patterns of deformation that develop between the main faults segments, and even of the fault architectures themselves. Moreover structural interpretations that conventionally define faults by breaks and apparent offsets of seismic reflectors are commonly conditioned by a narrow range of theoretical models of fault behavior. For example, almost all interpretations of thrust geometries on seismic data rely on theoretical "end-member" behaviors where concepts as strain localization or multilayer mechanics are simply avoided. Yet analogue outcrop studies confirm that such descriptions are commonly unsatisfactory and incomplete. In order to fill these gaps and improve the 3D visualization of deformation in the subsurface, seismic attribute methods are developed here in conjunction with conventional mapping of reflector amplitudes (Marfurt & Chopra, 2007)). These signal processing techniques recently developed and applied especially by the oil industry use variations in the amplitude and phase of the seismic wavelet. These seismic attributes improve the signal interpretation and are calculated and applied to the entire 3D seismic dataset. In this contribution we will show 3D seismic examples of fault structures from gravity-driven deep-water thrust structures and extensional basin systems to indicate how 3D seismic image processing methods can not only build better the geometrical interpretations of the faults but also begin to map both strain and damage through amplitude/phase properties of the seismic signal. This is done by quantifying and delineating the short-range anomalies on the intensity of reflector amplitudes

  15. Integration of GPR and Laser Position Sensors for Real-Time 3D Data Fusion

    NASA Astrophysics Data System (ADS)

    Grasmueck, M.; Viggiano, D.

    2005-05-01

    Non-invasive 3D imaging visualizes anatomy and contents inside objects. Such tools are a commodity for medical doctors diagnosing a patient's health without scalpel and airport security staff inspecting the contents of baggage without opening. For geologists, hydrologists, archeologists and engineers wanting to see inside the shallow subsurface, such 3D tools are still a rarity. Theory and practice show that full-resolution 3D Ground Penetrating Radar (GPR) imaging requires unaliased recording of dipping reflections and diffractions. For a heterogeneous subsurface, minimum grid spacing of GPR measurements should be at least quarter wavelength or less in all directions. Consequently, positioning precision needs to be better than eighth wavelength for correct grid point assignment. Until now 3D GPR imaging has not been practical: data acquisition and processing took weeks to months, data analysis required geophysical training with no versatile 3D systems commercially available. We have integrated novel rotary laser positioning technology with GPR into a highly efficient and simple to use 3D imaging system. The laser positioning enables acquisition of centimeter accurate x, y, and z coordinates from multiple small detectors attached to moving GPR antennae. Positions streaming with 20 updates/second from each detector are fused in real-time with the GPR data. We developed software for automated data acquisition and real-time 3D GPR data quality control on slices at selected depths. Standard formatted (SEGY) data cubes and animations are generated within an hour after the last trace has been acquired. Examples can be seen at www.3dgpr.info. Such instant 3D GPR can be used as an on-site imaging tool supporting field work, hypothesis testing, and optimal sample collection. Rotary laser positioning has the flexibility to be integrated with multiple moving GPR antennae and other geophysical sensors enabling simple and efficient high resolution 3D data acquisition at

  16. 3D elemental sensitive imaging by full-field XFCT.

    PubMed

    Deng, Biao; Du, Guohao; Zhou, Guangzhao; Wang, Yudan; Ren, Yuqi; Chen, Rongchang; Sun, Pengfei; Xie, Honglan; Xiao, Tiqiao

    2015-05-21

    X-ray fluorescence computed tomography (XFCT) is a stimulated emission tomography modality that maps the three-dimensional (3D) distribution of elements. Generally, XFCT is done by scanning a pencil-beam across the sample. This paper presents a feasibility study of full-field XFCT (FF-XFCT) for 3D elemental imaging. The FF-XFCT consists of a pinhole collimator and X-ray imaging detector with no energy resolution. A prototype imaging system was set up at the Shanghai Synchrotron Radiation Facility (SSRF) for imaging the phantom. The first FF-XFCT experimental results are presented. The cadmium (Cd) and iodine (I) distributions were reconstructed. The results demonstrate FF-XFCT is fit for 3D elemental imaging and the sensitivity of FF-XFCT is higher than a conventional CT system.

  17. Automatic 3D lesion segmentation on breast ultrasound images

    NASA Astrophysics Data System (ADS)

    Kuo, Hsien-Chi; Giger, Maryellen L.; Reiser, Ingrid; Drukker, Karen; Edwards, Alexandra; Sennett, Charlene A.

    2013-02-01

    Automatically acquired and reconstructed 3D breast ultrasound images allow radiologists to detect and evaluate breast lesions in 3D. However, assessing potential cancers in 3D ultrasound can be difficult and time consuming. In this study, we evaluate a 3D lesion segmentation method, which we had previously developed for breast CT, and investigate its robustness on lesions on 3D breast ultrasound images. Our dataset includes 98 3D breast ultrasound images obtained on an ABUS system from 55 patients containing 64 cancers. Cancers depicted on 54 US images had been clinically interpreted as negative on screening mammography and 44 had been clinically visible on mammography. All were from women with breast density BI-RADS 3 or 4. Tumor centers and margins were indicated and outlined by radiologists. Initial RGI-eroded contours were automatically calculated and served as input to the active contour segmentation algorithm yielding the final lesion contour. Tumor segmentation was evaluated by determining the overlap ratio (OR) between computer-determined and manually-drawn outlines. Resulting average overlap ratios on coronal, transverse, and sagittal views were 0.60 +/- 0.17, 0.57 +/- 0.18, and 0.58 +/- 0.17, respectively. All OR values were significantly higher the 0.4, which is deemed "acceptable". Within the groups of mammogram-negative and mammogram-positive cancers, the overlap ratios were 0.63 +/- 0.17 and 0.56 +/- 0.16, respectively, on the coronal views; with similar results on the other views. The segmentation performance was not found to be correlated to tumor size. Results indicate robustness of the 3D lesion segmentation technique in multi-modality 3D breast imaging.

  18. GPS 3-D cockpit displays: Sensors, algorithms, and flight testing

    NASA Astrophysics Data System (ADS)

    Barrows, Andrew Kevin

    Tunnel-in-the-Sky 3-D flight displays have been investigated for several decades as a means of enhancing aircraft safety and utility. However, high costs have prevented commercial development and seriously hindered research into their operational benefits. The rapid development of Differential Global Positioning Systems (DGPS), inexpensive computing power, and ruggedized displays is now changing this situation. A low-cost prototype system was built and flight tested to investigate implementation and operational issues. The display provided an "out the window" 3-D perspective view of the world, letting the pilot see the horizon, runway, and desired flight path even in instrument flight conditions. The flight path was depicted as a tunnel through which the pilot flew the airplane, while predictor symbology provided guidance to minimize path-following errors. Positioning data was supplied, by various DGPS sources including the Stanford Wide Area Augmentation System (WAAS) testbed. A combination of GPS and low-cost inertial sensors provided vehicle heading, pitch, and roll information. Architectural and sensor fusion tradeoffs made during system implementation are discussed. Computational algorithms used to provide guidance on curved paths over the earth geoid are outlined along with display system design issues. It was found that current technology enables low-cost Tunnel-in-the-Sky display systems with a target cost of $20,000 for large-scale commercialization. Extensive testing on Piper Dakota and Beechcraft Queen Air aircraft demonstrated enhanced accuracy and operational flexibility on a variety of complex flight trajectories. These included curved and segmented approaches, traffic patterns flown on instruments, and skywriting by instrument reference. Overlays to existing instrument approaches at airports in California and Alaska were flown and compared with current instrument procedures. These overlays demonstrated improved utility and situational awareness for

  19. Determining the 3-D structure and motion of objects using a scanning laser range sensor

    NASA Technical Reports Server (NTRS)

    Nandhakumar, N.; Smith, Philip W.

    1993-01-01

    In order for the EVAHR robot to autonomously track and grasp objects, its vision system must be able to determine the 3-D structure and motion of an object from a sequence of sensory images. This task is accomplished by the use of a laser radar range sensor which provides dense range maps of the scene. Unfortunately, the currently available laser radar range cameras use a sequential scanning approach which complicates image analysis. Although many algorithms have been developed for recognizing objects from range images, none are suited for use with single beam, scanning, time-of-flight sensors because all previous algorithms assume instantaneous acquisition of the entire image. This assumption is invalid since the EVAHR robot is equipped with a sequential scanning laser range sensor. If an object is moving while being imaged by the device, the apparent structure of the object can be significantly distorted due to the significant non-zero delay time between sampling each image pixel. If an estimate of the motion of the object can be determined, this distortion can be eliminated; but, this leads to the motion-structure paradox - most existing algorithms for 3-D motion estimation use the structure of objects to parameterize their motions. The goal of this research is to design a rigid-body motion recovery technique which overcomes this limitation. The method being developed is an iterative, linear, feature-based approach which uses the non-zero image acquisition time constraint to accurately recover the motion parameters from the distorted structure of the 3-D range maps. Once the motion parameters are determined, the structural distortion in the range images is corrected.

  20. 3D thermography imaging standardization technique for inflammation diagnosis

    NASA Astrophysics Data System (ADS)

    Ju, Xiangyang; Nebel, Jean-Christophe; Siebert, J. Paul

    2005-01-01

    We develop a 3D thermography imaging standardization technique to allow quantitative data analysis. Medical Digital Infrared Thermal Imaging is very sensitive and reliable mean of graphically mapping and display skin surface temperature. It allows doctors to visualise in colour and quantify temperature changes in skin surface. The spectrum of colours indicates both hot and cold responses which may co-exist if the pain associate with an inflammatory focus excites an increase in sympathetic activity. However, due to thermograph provides only qualitative diagnosis information, it has not gained acceptance in the medical and veterinary communities as a necessary or effective tool in inflammation and tumor detection. Here, our technique is based on the combination of visual 3D imaging technique and thermal imaging technique, which maps the 2D thermography images on to 3D anatomical model. Then we rectify the 3D thermogram into a view independent thermogram and conform it a standard shape template. The combination of these imaging facilities allows the generation of combined 3D and thermal data from which thermal signatures can be quantified.

  1. 3D stereophotogrammetric image superimposition onto 3D CT scan images: the future of orthognathic surgery. A pilot study.

    PubMed

    Khambay, Balvinder; Nebel, Jean-Christophe; Bowman, Janet; Walker, Fraser; Hadley, Donald M; Ayoub, Ashraf

    2002-01-01

    The aim of this study was to register and assess the accuracy of the superimposition method of a 3-dimensional (3D) soft tissue stereophotogrammetric image (C3D image) and a 3D image of the underlying skeletal tissue acquired by 3D spiral computerized tomography (CT). The study was conducted on a model head, in which an intact human skull was embedded with an overlying latex mask that reproduced anatomic features of a human face. Ten artificial radiopaque landmarks were secured to the surface of the latex mask. A stereophotogrammetric image of the mask and a 3D spiral CT image of the model head were captured. The C3D image and the CT images were registered for superimposition by 3 different methods: Procrustes superimposition using artificial landmarks, Procrustes analysis using anatomic landmarks, and partial Procrustes analysis using anatomic landmarks and then registration completion by HICP (a modified Iterative Closest Point algorithm) using a specified region of both images. The results showed that Procrustes superimposition using the artificial landmarks produced an error of superimposition on the order of 10 mm. Procrustes analysis using anatomic landmarks produced an error in the order of 2 mm. Partial Procrustes analysis using anatomic landmarks followed by HICP produced a superimposition accuracy of between 1.25 and 1.5 mm. It was concluded that a stereophotogrammetric and a 3D spiral CT scan image can be superimposed with an accuracy of between 1.25 and 1.5 mm using partial Procrustes analysis based on anatomic landmarks and then registration completion by HICP.

  2. A 3D surface imaging system for assessing human obesity

    NASA Astrophysics Data System (ADS)

    Xu, B.; Yu, W.; Yao, M.; Yao, X.; Li, Q.; Pepper, M. R.; Freeland-Graves, J. H.

    2009-08-01

    The increasing prevalence of obesity suggests a need to develop a convenient, reliable and economical tool for assessment of this condition. Three-dimensional (3D) body surface imaging has emerged as an exciting technology for estimation of body composition. This paper presents a new 3D body imaging system, which was designed for enhanced portability, affordability, and functionality. In this system, stereo vision technology was used to satisfy the requirements for a simple hardware setup and fast image acquisitions. The portability of the system was created via a two-stand configuration, and the accuracy of body volume measurements was improved by customizing stereo matching and surface reconstruction algorithms that target specific problems in 3D body imaging. Body measurement functions dedicated to body composition assessment also were developed. The overall performance of the system was evaluated in human subjects by comparison to other conventional anthropometric methods, as well as air displacement plethysmography, for body fat assessment.

  3. Sensor fusion of cameras and a laser for city-scale 3D reconstruction.

    PubMed

    Bok, Yunsu; Choi, Dong-Geol; Kweon, In So

    2014-01-01

    This paper presents a sensor fusion system of cameras and a 2D laser sensorfor large-scale 3D reconstruction. The proposed system is designed to capture data on afast-moving ground vehicle. The system consists of six cameras and one 2D laser sensor,and they are synchronized by a hardware trigger. Reconstruction of 3D structures is doneby estimating frame-by-frame motion and accumulating vertical laser scans, as in previousworks. However, our approach does not assume near 2D motion, but estimates free motion(including absolute scale) in 3D space using both laser data and image features. In orderto avoid the degeneration associated with typical three-point algorithms, we present a newalgorithm that selects 3D points from two frames captured by multiple cameras. The problemof error accumulation is solved by loop closing, not by GPS. The experimental resultsshow that the estimated path is successfully overlaid on the satellite images, such that thereconstruction result is very accurate. PMID:25375758

  4. Hybrid segmentation framework for 3D medical image analysis

    NASA Astrophysics Data System (ADS)

    Chen, Ting; Metaxas, Dimitri N.

    2003-05-01

    Medical image segmentation is the process that defines the region of interest in the image volume. Classical segmentation methods such as region-based methods and boundary-based methods cannot make full use of the information provided by the image. In this paper we proposed a general hybrid framework for 3D medical image segmentation purposes. In our approach we combine the Gibbs Prior model, and the deformable model. First, Gibbs Prior models are applied onto each slice in a 3D medical image volume and the segmentation results are combined to a 3D binary masks of the object. Then we create a deformable mesh based on this 3D binary mask. The deformable model will be lead to the edge features in the volume with the help of image derived external forces. The deformable model segmentation result can be used to update the parameters for Gibbs Prior models. These methods will then work recursively to reach a global segmentation solution. The hybrid segmentation framework has been applied to images with the objective of lung, heart, colon, jaw, tumor, and brain. The experimental data includes MRI (T1, T2, PD), CT, X-ray, Ultra-Sound images. High quality results are achieved with relatively efficient time cost. We also did validation work using expert manual segmentation as the ground truth. The result shows that the hybrid segmentation may have further clinical use.

  5. 3D image analysis of abdominal aortic aneurysm

    NASA Astrophysics Data System (ADS)

    Subasic, Marko; Loncaric, Sven; Sorantin, Erich

    2001-07-01

    In this paper we propose a technique for 3-D segmentation of abdominal aortic aneurysm (AAA) from computed tomography angiography (CTA) images. Output data (3-D model) form the proposed method can be used for measurement of aortic shape and dimensions. Knowledge of aortic shape and size is very important in planning of minimally invasive procedure that is for selection of appropriate stent graft device for treatment of AAA. The technique is based on a 3-D deformable model and utilizes the level-set algorithm for implementation of the method. The method performs 3-D segmentation of CTA images and extracts a 3-D model of aortic wall. Once the 3-D model of aortic wall is available it is easy to perform all required measurements for appropriate stent graft selection. The method proposed in this paper uses the level-set algorithm for deformable models, instead of the classical snake algorithm. The main advantage of the level set algorithm is that it enables easy segmentation of complex structures, surpassing most of the drawbacks of the classical approach. We have extended the deformable model to incorporate the a priori knowledge about the shape of the AAA. This helps direct the evolution of the deformable model to correctly segment the aorta. The algorithm has been implemented in IDL and C languages. Experiments have been performed using real patient CTA images and have shown good results.

  6. Imaging 3D strain field monitoring during hydraulic fracturing processes

    NASA Astrophysics Data System (ADS)

    Chen, Rongzhang; Zaghloul, Mohamed A. S.; Yan, Aidong; Li, Shuo; Lu, Guanyi; Ames, Brandon C.; Zolfaghari, Navid; Bunger, Andrew P.; Li, Ming-Jun; Chen, Kevin P.

    2016-05-01

    In this paper, we present a distributed fiber optic sensing scheme to study 3D strain fields inside concrete cubes during hydraulic fracturing process. Optical fibers embedded in concrete were used to monitor 3D strain field build-up with external hydraulic pressures. High spatial resolution strain fields were interrogated by the in-fiber Rayleigh backscattering with 1-cm spatial resolution using optical frequency domain reflectometry. The fiber optics sensor scheme presented in this paper provides scientists and engineers a unique laboratory tool to understand the hydraulic fracturing processes in various rock formations and its impacts to environments.

  7. 3-D Terahertz Synthetic-Aperture Imaging and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Henry, Samuel C.

    Terahertz (THz) wavelengths have attracted recent interest in multiple disciplines within engineering and science. Situated between the infrared and the microwave region of the electromagnetic spectrum, THz energy can propagate through non-polar materials such as clothing or packaging layers. Moreover, many chemical compounds, including explosives and many drugs, reveal strong absorption signatures in the THz range. For these reasons, THz wavelengths have great potential for non-destructive evaluation and explosive detection. Three-dimensional (3-D) reflection imaging with considerable depth resolution is also possible using pulsed THz systems. While THz imaging (especially 3-D) systems typically operate in transmission mode, reflection offers the most practical configuration for standoff detection, especially for objects with high water content (like human tissue) which are opaque at THz frequencies. In this research, reflection-based THz synthetic-aperture (SA) imaging is investigated as a potential imaging solution. THz SA imaging results presented in this dissertation are unique in that a 2-D planar synthetic array was used to generate a 3-D image without relying on a narrow time-window for depth isolation cite [Shen 2005]. Novel THz chemical detection techniques are developed and combined with broadband THz SA capabilities to provide concurrent 3-D spectral imaging. All algorithms are tested with various objects and pressed pellets using a pulsed THz time-domain system in the Northwest Electromagnetics and Acoustics Research Laboratory (NEAR-Lab).

  8. Computerized analysis of pelvic incidence from 3D images

    NASA Astrophysics Data System (ADS)

    Vrtovec, Tomaž; Janssen, Michiel M. A.; Pernuš, Franjo; Castelein, René M.; Viergever, Max A.

    2012-02-01

    The sagittal alignment of the pelvis can be evaluated by the angle of pelvic incidence (PI), which is constant for an arbitrary subject position and orientation and can be therefore compared among subjects in standing, sitting or supine position. In this study, PI was measured from three-dimensional (3D) computed tomography (CT) images of normal subjects that were acquired in supine position. A novel computerized method, based on image processing techniques, was developed to automatically determine the anatomical references required to measure PI, i.e. the centers of the femoral heads in 3D, and the center and inclination of the sacral endplate in 3D. Multiplanar image reformation was applied to obtain perfect sagittal views with all anatomical structures completely in line with the hip axis, from which PI was calculated. The resulting PI (mean+/-standard deviation) was equal to 46.6°+/-9.2° for male subjects (N = 189), 47.6°+/-10.7° for female subjects (N = 181), and 47.1°+/-10.0° for all subjects (N = 370). The obtained measurements of PI from 3D images were not biased by acquisition projection or structure orientation, because all anatomical structures were completely in line with the hip axis. The performed measurements in 3D therefore represent PI according to the actual geometrical relationships among anatomical structures of the sacrum, pelvis and hips, as observed from the perfect sagittal views.

  9. 3D image analysis of abdominal aortic aneurysm

    NASA Astrophysics Data System (ADS)

    Subasic, Marko; Loncaric, Sven; Sorantin, Erich

    2002-05-01

    This paper presents a method for 3-D segmentation of abdominal aortic aneurysm from computed tomography angiography images. The proposed method is automatic and requires minimal user assistance. Segmentation is performed in two steps. First inner and then outer aortic border is segmented. Those two steps are different due to different image conditions on two aortic borders. Outputs of these two segmentations give a complete 3-D model of abdominal aorta. Such a 3-D model is used in measurements of aneurysm area. The deformable model is implemented using the level-set algorithm due to its ability to describe complex shapes in natural manner which frequently occur in pathology. In segmentation of outer aortic boundary we introduced some knowledge based preprocessing to enhance and reconstruct low contrast aortic boundary. The method has been implemented in IDL and C languages. Experiments have been performed using real patient CTA images and have shown good results.

  10. MMSE Reconstruction for 3D Freehand Ultrasound Imaging

    PubMed Central

    Huang, Wei; Zheng, Yibin

    2008-01-01

    The reconstruction of 3D ultrasound (US) images from mechanically registered, but otherwise irregularly positioned, B-scan slices is of great interest in image guided therapy procedures. Conventional 3D ultrasound algorithms have low computational complexity, but the reconstructed volume suffers from severe speckle contamination. Furthermore, the current method cannot reconstruct uniform high-resolution data from several low-resolution B-scans. In this paper, the minimum mean-squared error (MMSE) method is applied to 3D ultrasound reconstruction. Data redundancies due to overlapping samples as well as correlation of the target and speckle are naturally accounted for in the MMSE reconstruction algorithm. Thus, the reconstruction process unifies the interpolation and spatial compounding. Simulation results for synthetic US images are presented to demonstrate the excellent reconstruction. PMID:18382623

  11. Single 3D cell segmentation from optical CT microscope images

    NASA Astrophysics Data System (ADS)

    Xie, Yiting; Reeves, Anthony P.

    2014-03-01

    The automated segmentation of the nucleus and cytoplasm regions in 3D optical CT microscope images has been achieved with two methods, a global threshold gradient based approach and a graph-cut approach. For the first method, the first two peaks of a gradient figure of merit curve are selected as the thresholds for cytoplasm and nucleus segmentation. The second method applies a graph-cut segmentation twice: the first identifies the nucleus region and the second identifies the cytoplasm region. Image segmentation of single cells is important for automated disease diagnostic systems. The segmentation methods were evaluated with 200 3D images consisting of 40 samples of 5 different cell types. The cell types consisted of columnar, macrophage, metaplastic and squamous human cells and cultured A549 cancer cells. The segmented cells were compared with both 2D and 3D reference images and the quality of segmentation was determined by the Dice Similarity Coefficient (DSC). In general, the graph-cut method had a superior performance to the gradient-based method. The graph-cut method achieved an average DSC of 86% and 72% for nucleus and cytoplasm segmentations respectively for the 2D reference images and 83% and 75% for the 3D reference images. The gradient method achieved an average DSC of 72% and 51% for nucleus and cytoplasm segmentation for the 2D reference images and 71% and 51% for the 3D reference images. The DSC of cytoplasm segmentation was significantly lower than for the nucleus since the cytoplasm was not differentiated as well by image intensity from the background.

  12. Optimized Bayes variational regularization prior for 3D PET images.

    PubMed

    Rapisarda, Eugenio; Presotto, Luca; De Bernardi, Elisabetta; Gilardi, Maria Carla; Bettinardi, Valentino

    2014-09-01

    A new prior for variational Maximum a Posteriori regularization is proposed to be used in a 3D One-Step-Late (OSL) reconstruction algorithm accounting also for the Point Spread Function (PSF) of the PET system. The new regularization prior strongly smoothes background regions, while preserving transitions. A detectability index is proposed to optimize the prior. The new algorithm has been compared with different reconstruction algorithms such as 3D-OSEM+PSF, 3D-OSEM+PSF+post-filtering and 3D-OSL with a Gauss-Total Variation (GTV) prior. The proposed regularization allows controlling noise, while maintaining good signal recovery; compared to the other algorithms it demonstrates a very good compromise between an improved quantitation and good image quality. PMID:24958594

  13. Laboratory 3D Micro-XRF/Micro-CT Imaging System

    NASA Astrophysics Data System (ADS)

    Bruyndonckx, P.; Sasov, A.; Liu, X.

    2011-09-01

    A prototype micro-XRF laboratory system based on pinhole imaging was developed to produce 3D elemental maps. The fluorescence x-rays are detected by a deep-depleted CCD camera operating in photon-counting mode. A charge-clustering algorithm, together with dynamically adjusted exposure times, ensures a correct energy measurement. The XRF component has a spatial resolution of 70 μm and an energy resolution of 180 eV at 6.4 keV. The system is augmented by a micro-CT imaging modality. This is used for attenuation correction of the XRF images and to co-register features in the 3D XRF images with morphological structures visible in the volumetric CT images of the object.

  14. A miniature high resolution 3-D imaging sonar.

    PubMed

    Josserand, Tim; Wolley, Jason

    2011-04-01

    This paper discusses the design and development of a miniature, high resolution 3-D imaging sonar. The design utilizes frequency steered phased arrays (FSPA) technology. FSPAs present a small, low-power solution to the problem of underwater imaging sonars. The technology provides a method to build sonars with a large number of beams without the proportional power, circuitry and processing complexity. The design differs from previous methods in that the array elements are manufactured from a monolithic material. With this technique the arrays are flat and considerably smaller element dimensions are achievable which allows for higher frequency ranges and smaller array sizes. In the current frequency range, the demonstrated array has ultra high image resolution (1″ range×1° azimuth×1° elevation) and small size (<3″×3″). The design of the FSPA utilizes the phasing-induced frequency-dependent directionality of a linear phased array to produce multiple beams in a forward sector. The FSPA requires only two hardware channels per array and can be arranged in single and multiple array configurations that deliver wide sector 2-D images. 3-D images can be obtained by scanning the array in a direction perpendicular to the 2-D image field and applying suitable image processing to the multiple scanned 2-D images. This paper introduces the 3-D FSPA concept, theory and design methodology. Finally, results from a prototype array are presented and discussed.

  15. 3-D Display Of Magnetic Resonance Imaging Of The Spine

    NASA Astrophysics Data System (ADS)

    Nelson, Alan C.; Kim, Yongmin; Haralick, Robert M.; Anderson, Paul A.; Johnson, Roger H.; DeSoto, Larry A.

    1988-06-01

    The original data is produced through standard magnetic resonance imaging (MRI) procedures with a surface coil applied to the lower back of a normal human subject. The 3-D spine image data consists of twenty-six contiguous slices with 256 x 256 pixels per slice. Two methods for visualization of the 3-D spine are explored. One method utilizes a verifocal mirror system which creates a true 3-D virtual picture of the object. Another method uses a standard high resolution monitor to simultaneously show the three orthogonal sections which intersect at any user-selected point within the object volume. We discuss the application of these systems in assessment of low back pain.

  16. Distortion-free wide-angle 3D imaging and visualization using off-axially distributed image sensing.

    PubMed

    Zhang, Miao; Piao, Yongri; Kim, Nam-Woo; Kim, Eun-Soo

    2014-07-15

    We propose a new off-axially distributed image sensing (ODIS) using a wide-angle lens for reconstructing distortion-free wide-angle slice images computationally. In the proposed system, the wide-angle image sensor captures a wide-angle 3D scene, and thus the collected information of the 3D objects is severely distorted. To correct this distortion, we introduce a new correction process involving a wide-angle lens to the computational reconstruction in ODIS. This enables us to reconstruct distortion-free, wide-angle slice images for visualization of 3D objects. Experimental results are carried out to verify the proposed method. To the best of our knowledge, this is the first time the use of a wide-angle lens in a multiple-perspective 3D imaging system is described.

  17. Wave-CAIPI for Highly Accelerated 3D Imaging

    PubMed Central

    Bilgic, Berkin; Gagoski, Borjan A.; Cauley, Stephen F.; Fan, Audrey P.; Polimeni, Jonathan R.; Grant, P. Ellen; Wald, Lawrence L.; Setsompop, Kawin

    2014-01-01

    Purpose To introduce the Wave-CAIPI (Controlled Aliasing in Parallel Imaging) acquisition and reconstruction technique for highly accelerated 3D imaging with negligible g-factor and artifact penalties. Methods The Wave-CAIPI 3D acquisition involves playing sinusoidal gy and gz gradients during the readout of each kx encoding line, while modifying the 3D phase encoding strategy to incur inter-slice shifts as in 2D-CAIPI acquisitions. The resulting acquisition spreads the aliasing evenly in all spatial directions, thereby taking full advantage of 3D coil sensitivity distribution. By expressing the voxel spreading effect as a convolution in image space, an efficient reconstruction scheme that does not require data gridding is proposed. Rapid acquisition and high quality image reconstruction with Wave-CAIPI is demonstrated for high-resolution magnitude and phase imaging and Quantitative Susceptibility Mapping (QSM). Results Wave-CAIPI enables full-brain gradient echo (GRE) acquisition at 1 mm isotropic voxel size and R=3×3 acceleration with maximum g-factors of 1.08 at 3T, and 1.05 at 7T. Relative to the other advanced Cartesian encoding strategies 2D-CAIPI and Bunched Phase Encoding, Wave-CAIPI yields up to 2-fold reduction in maximum g-factor for 9-fold acceleration at both field strengths. Conclusion Wave-CAIPI allows highly accelerated 3D acquisitions with low artifact and negligible g-factor penalties, and may facilitate clinical application of high-resolution volumetric imaging. PMID:24986223

  18. Reduction of attenuation effects in 3D transrectal ultrasound images

    NASA Astrophysics Data System (ADS)

    Frimmel, Hans; Acosta, Oscar; Fenster, Aaron; Ourselin, Sébastien

    2007-03-01

    Ultrasound (US) is one of the most used imaging modalities today as it is cheap, reliable, safe and widely available. There are a number of issues with US images in general. Besides reflections which is the basis of ultrasonic imaging, other phenomena such as diffraction, refraction, attenuation, dispersion and scattering appear when ultrasound propagates through different tissues. The generated images are therefore corrupted by false boundaries, lack of signal for surface tangential to ultrasound propagation, large amount of noise giving rise to local properties, and anisotropic sampling space complicating image processing tasks. Although 3D Transrectal US (TRUS) probes are not yet widely available, within a few years they will likely be introduced in hospitals. Therefore, the improvement of automatic segmentation from 3D TRUS images, making the process independent of human factor is desirable. We introduce an algorithm for attenuation correction, reducing enhancement/shadowing effects and average attenuation effects in 3D US images, taking into account the physical properties of US. The parameters of acquisition such as logarithmic correction are unknown, therefore no additional information is available to restore the image. As the physical properties are related to the direction of each US ray, the 3D US data set is resampled into cylindrical coordinates using a fully automatic algorithm. Enhancement and shadowing effects, as well as average attenuation effects, are then removed with a rescaling process optimizing simultaneously in and perpendicular to the US ray direction. A set of tests using anisotropic diffusion are performed to illustrate the improvement in image quality, where well defined structures are visible. The evolution of both the entropy and the contrast show that our algorithm is a suitable pre-processing step for segmentation tasks.

  19. Automated curved planar reformation of 3D spine images

    NASA Astrophysics Data System (ADS)

    Vrtovec, Tomaz; Likar, Bostjan; Pernus, Franjo

    2005-10-01

    Traditional techniques for visualizing anatomical structures are based on planar cross-sections from volume images, such as images obtained by computed tomography (CT) or magnetic resonance imaging (MRI). However, planar cross-sections taken in the coordinate system of the 3D image often do not provide sufficient or qualitative enough diagnostic information, because planar cross-sections cannot follow curved anatomical structures (e.g. arteries, colon, spine, etc). Therefore, not all of the important details can be shown simultaneously in any planar cross-section. To overcome this problem, reformatted images in the coordinate system of the inspected structure must be created. This operation is usually referred to as curved planar reformation (CPR). In this paper we propose an automated method for CPR of 3D spine images, which is based on the image transformation from the standard image-based to a novel spine-based coordinate system. The axes of the proposed spine-based coordinate system are determined on the curve that represents the vertebral column, and the rotation of the vertebrae around the spine curve, both of which are described by polynomial models. The optimal polynomial parameters are obtained in an image analysis based optimization framework. The proposed method was qualitatively and quantitatively evaluated on five CT spine images. The method performed well on both normal and pathological cases and was consistent with manually obtained ground truth data. The proposed spine-based CPR benefits from reduced structural complexity in favour of improved feature perception of the spine. The reformatted images are diagnostically valuable and enable easier navigation, manipulation and orientation in 3D space. Moreover, reformatted images may prove useful for segmentation and other image analysis tasks.

  20. Imaging thin-bed reservoirs with 3-D seismic

    SciTech Connect

    Hardage, B.A.

    1996-12-01

    This article explains how a 3-D seismic data volume, a vertical seismic profile (VSP), electric well logs and reservoir pressure data can be used to image closely stacked thin-bed reservoirs. This interpretation focuses on the Oligocene Frio reservoir in South Texas which has multiple thin-beds spanning a vertical interval of about 3,000 ft.

  1. 3D imaging lidar for lunar robotic exploration

    NASA Astrophysics Data System (ADS)

    Hussein, Marwan W.; Tripp, Jeffrey W.

    2009-05-01

    Part of the requirements of the future Constellation program is to optimize lunar surface operations and reduce hazards to astronauts. Toward this end, many robotic platforms, rovers in specific, are being sought to carry out a multitude of missions involving potential EVA sites survey, surface reconnaissance, path planning and obstacle detection and classification. 3D imaging lidar technology provides an enabling capability that allows fast, accurate and detailed collection of three-dimensional information about the rover's environment. The lidar images the region of interest by scanning a laser beam and measuring the pulse time-of-flight and the bearing. The accumulated set of laser ranges and bearings constitutes the threedimensional image. As part of the ongoing NASA Ames research center activities in lunar robotics, the utility of 3D imaging lidar was evaluated by testing Optech's ILRIS-3D lidar on board the K-10 Red rover during the recent Human - Robotics Systems (HRS) field trails in Lake Moses, WA. This paper examines the results of the ILRIS-3D trials, presents the data obtained and discusses its application in lunar surface robotic surveying and scouting.

  2. Practical pseudo-3D registration for large tomographic images

    NASA Astrophysics Data System (ADS)

    Liu, Xuan; Laperre, Kjell; Sasov, Alexander

    2014-09-01

    Image registration is a powerful tool in various tomographic applications. Our main focus is on microCT applications in which samples/animals can be scanned multiple times under different conditions or at different time points. For this purpose, a registration tool capable of handling fairly large volumes has been developed, using a novel pseudo-3D method to achieve fast and interactive registration with simultaneous 3D visualization. To reduce computation complexity in 3D registration, we decompose it into several 2D registrations, which are applied to the orthogonal views (transaxial, sagittal and coronal) sequentially and iteratively. After registration in each view, the next view is retrieved with the new transformation matrix for registration. This reduces the computation complexity significantly. For rigid transform, we only need to search for 3 parameters (2 shifts, 1 rotation) in each of the 3 orthogonal views instead of 6 (3 shifts, 3 rotations) for full 3D volume. In addition, the amount of voxels involved is also significantly reduced. For the proposed pseudo-3D method, image-based registration is employed, with Sum of Square Difference (SSD) as the similarity measure. The searching engine is Powell's conjugate direction method. In this paper, only rigid transform is used. However, it can be extended to affine transform by adding scaling and possibly shearing to the transform model. We have noticed that more information can be used in the 2D registration if Maximum Intensity Projections (MIP) or Parallel Projections (PP) is used instead of the orthogonal views. Also, other similarity measures, such as covariance or mutual information, can be easily incorporated. The initial evaluation on microCT data shows very promising results. Two application examples are shown: dental samples before and after treatment and structural changes in materials before and after compression. Evaluation on registration accuracy between pseudo-3D method and true 3D method has

  3. 3D wavefront image formation for NIITEK GPR

    NASA Astrophysics Data System (ADS)

    Soumekh, Mehrdad; Ton, Tuan; Howard, Pete

    2009-05-01

    The U.S. Department of Defense Humanitarian Demining (HD) Research and Development Program focuses on developing, testing, demonstrating, and validating new technology for immediate use in humanitarian demining operations around the globe. Beginning in the late 1990's, the U.S. Army Countermine Division funded the development of the NIITEK ground penetrating radar (GPR) for detection of anti-tank (AT) landmines. This work is concerned with signal processing algorithms to suppress sources of artifacts in the NIITEK GPR, and formation of three-dimensional (3D) imagery from the resultant data. We first show that the NIITEK GPR data correspond to a 3D Synthetic Aperture Radar (SAR) database. An adaptive filtering method is utilized to suppress ground return and self-induced resonance (SIR) signals that are generated by the interaction of the radar-carrying platform and the transmitted radar signal. We examine signal processing methods to improve the fidelity of imagery for this 3D SAR system using pre-processing methods that suppress Doppler aliasing as well as other side lobe leakage artifacts that are introduced by the radar radiation pattern. The algorithm, known as digital spotlighting, imposes a filtering scheme on the azimuth-compressed SAR data, and manipulates the resultant spectral data to achieve a higher PRF to suppress the Doppler aliasing. We also present the 3D version of the Fourier-based wavefront reconstruction, a computationally-efficient and approximation-free SAR imaging method, for image formation with the NIITEK 3D SAR database.

  4. Optimizing 3D image quality and performance for stereoscopic gaming

    NASA Astrophysics Data System (ADS)

    Flack, Julien; Sanderson, Hugh; Pegg, Steven; Kwok, Simon; Paterson, Daniel

    2009-02-01

    The successful introduction of stereoscopic TV systems, such as Samsung's 3D Ready Plasma, requires high quality 3D content to be commercially available to the consumer. Console and PC games provide the most readily accessible source of high quality 3D content. This paper describes innovative developments in a generic, PC-based game driver architecture that addresses the two key issues affecting 3D gaming: quality and speed. At the heart of the quality issue are the same considerations that studios face producing stereoscopic renders from CG movies: how best to perform the mapping from a geometric CG environment into the stereoscopic display volume. The major difference being that for game drivers this mapping cannot be choreographed by hand but must be automatically calculated in real-time without significant impact on performance. Performance is a critical issue when dealing with gaming. Stereoscopic gaming has traditionally meant rendering the scene twice with the associated performance overhead. An alternative approach is to render the scene from one virtual camera position and use information from the z-buffer to generate a stereo pair using Depth-Image-Based Rendering (DIBR). We analyze this trade-off in more detail and provide some results relating to both 3D image quality and render performance.

  5. 3D Winding Number: Theory and Application to Medical Imaging

    PubMed Central

    Becciu, Alessandro; Fuster, Andrea; Pottek, Mark; van den Heuvel, Bart; ter Haar Romeny, Bart; van Assen, Hans

    2011-01-01

    We develop a new formulation, mathematically elegant, to detect critical points of 3D scalar images. It is based on a topological number, which is the generalization to three dimensions of the 2D winding number. We illustrate our method by considering three different biomedical applications, namely, detection and counting of ovarian follicles and neuronal cells and estimation of cardiac motion from tagged MR images. Qualitative and quantitative evaluation emphasizes the reliability of the results. PMID:21317978

  6. 2D/3D image (facial) comparison using camera matching.

    PubMed

    Goos, Mirelle I M; Alberink, Ivo B; Ruifrok, Arnout C C

    2006-11-10

    A problem in forensic facial comparison of images of perpetrators and suspects is that distances between fixed anatomical points in the face, which form a good starting point for objective, anthropometric comparison, vary strongly according to the position and orientation of the camera. In case of a cooperating suspect, a 3D image may be taken using e.g. a laser scanning device. By projecting the 3D image onto a 2D image with the suspect's head in the same pose as that of the perpetrator, using the same focal length and pixel aspect ratio, numerical comparison of (ratios of) distances between fixed points becomes feasible. An experiment was performed in which, starting from two 3D scans and one 2D image of two colleagues, male and female, and using seven fixed anatomical locations in the face, comparisons were made for the matching and non-matching case. Using this method, the non-matching pair cannot be distinguished from the matching pair of faces. Facial expression and resolution of images were all more or less optimal, and the results of the study are not encouraging for the use of anthropometric arguments in the identification process. More research needs to be done though on larger sets of facial comparisons. PMID:16337353

  7. An automated 3D reconstruction method of UAV images

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Wang, He; Liu, Xiaoyang; Li, Feng; Sun, Guangtong; Song, Ping

    2015-10-01

    In this paper a novel fully automated 3D reconstruction approach based on low-altitude unmanned aerial vehicle system (UAVs) images will be presented, which does not require previous camera calibration or any other external prior knowledge. Dense 3D point clouds are generated by integrating orderly feature extraction, image matching, structure from motion (SfM) and multi-view stereo (MVS) algorithms, overcoming many of the cost, time limitations of rigorous photogrammetry techniques. An image topology analysis strategy is introduced to speed up large scene reconstruction by taking advantage of the flight-control data acquired by UAV. Image topology map can significantly reduce the running time of feature matching by limiting the combination of images. A high-resolution digital surface model of the study area is produced base on UAV point clouds by constructing the triangular irregular network. Experimental results show that the proposed approach is robust and feasible for automatic 3D reconstruction of low-altitude UAV images, and has great potential for the acquisition of spatial information at large scales mapping, especially suitable for rapid response and precise modelling in disaster emergency.

  8. Preliminary comparison of 3D synthetic aperture imaging with Explososcan

    NASA Astrophysics Data System (ADS)

    Rasmussen, Morten Fischer; Hansen, Jens Munk; Férin, Guillaume; Dufait, Rémi; Jensen, Jørgen Arendt

    2012-03-01

    Explososcan is the 'gold standard' for real-time 3D medical ultrasound imaging. In this paper, 3D synthetic aperture imaging is compared to Explososcan by simulation of 3D point spread functions. The simulations mimic a 32×32 element prototype transducer. The transducer mimicked is a dense matrix phased array with a pitch of 300 μm, made by Vermon. For both imaging techniques, 289 emissions are used to image a volume spanning 60° in both the azimuth and elevation direction and 150mm in depth. This results for both techniques in a frame rate of 18 Hz. The implemented synthetic aperture technique reduces the number of transmit channels from 1024 to 256, compared to Explososcan. In terms of FWHM performance, was Explososcan and synthetic aperture found to perform similar. At 90mm depth is Explososcan's FWHM performance 7% better than that of synthetic aperture. Synthetic aperture improved the cystic resolution, which expresses the ability to detect anechoic cysts in a uniform scattering media, at all depths except at Explososcan's focus point. Synthetic aperture reduced the cyst radius, R20dB, at 90mm depth by 48%. Synthetic aperture imaging was shown to reduce the number of transmit channels by four and still, generally, improve the imaging quality.

  9. Refraction Correction in 3D Transcranial Ultrasound Imaging

    PubMed Central

    Lindsey, Brooks D.; Smith, Stephen W.

    2014-01-01

    We present the first correction of refraction in three-dimensional (3D) ultrasound imaging using an iterative approach that traces propagation paths through a two-layer planar tissue model, applying Snell’s law in 3D. This approach is applied to real-time 3D transcranial ultrasound imaging by precomputing delays offline for several skull thicknesses, allowing the user to switch between three sets of delays for phased array imaging at the push of a button. Simulations indicate that refraction correction may be expected to increase sensitivity, reduce beam steering errors, and partially restore lost spatial resolution, with the greatest improvements occurring at the largest steering angles. Distorted images of cylindrical lesions were created by imaging through an acrylic plate in a tissue-mimicking phantom. As a result of correcting for refraction, lesions were restored to 93.6% of their original diameter in the lateral direction and 98.1% of their original shape along the long axis of the cylinders. In imaging two healthy volunteers, the mean brightness increased by 8.3% and showed no spatial dependency. PMID:24275538

  10. Augmented reality navigation with automatic marker-free image registration using 3-D image overlay for dental surgery.

    PubMed

    Wang, Junchen; Suenaga, Hideyuki; Hoshi, Kazuto; Yang, Liangjing; Kobayashi, Etsuko; Sakuma, Ichiro; Liao, Hongen

    2014-04-01

    Computer-assisted oral and maxillofacial surgery (OMS) has been rapidly evolving since the last decade. State-of-the-art surgical navigation in OMS still suffers from bulky tracking sensors, troublesome image registration procedures, patient movement, loss of depth perception in visual guidance, and low navigation accuracy. We present an augmented reality navigation system with automatic marker-free image registration using 3-D image overlay and stereo tracking for dental surgery. A customized stereo camera is designed to track both the patient and instrument. Image registration is performed by patient tracking and real-time 3-D contour matching, without requiring any fiducial and reference markers. Real-time autostereoscopic 3-D imaging is implemented with the help of a consumer-level graphics processing unit. The resulting 3-D image of the patient's anatomy is overlaid on the surgical site by a half-silvered mirror using image registration and IP-camera registration to guide the surgeon by exposing hidden critical structures. The 3-D image of the surgical instrument is also overlaid over the real one for an augmented display. The 3-D images present both stereo and motion parallax from which depth perception can be obtained. Experiments were performed to evaluate various aspects of the system; the overall image overlay error of the proposed system was 0.71 mm.

  11. 3D heterogeneous sensor system on a chip for defense and security applications

    NASA Astrophysics Data System (ADS)

    Bhansali, Shekhar; Chapman, Glenn H.; Friedman, Eby G.; Ismail, Yehea; Mukund, P. R.; Tebbe, Dennis; Jain, Vijay K.

    2004-09-01

    This paper describes a new concept for ultra-small, ultra-compact, unattended multi-phenomenological sensor systems for rapid deployment, with integrated classification-and-decision-information extraction capability from a sensed environment. We discuss a unique approach, namely a 3-D Heterogeneous System on a Chip (HSoC) in order to achieve a minimum 10X reduction in weight, volume, and power and a 10X or greater increase in capability and reliability -- over the alternative planar approaches. These gains will accrue from (a) the avoidance of long on-chip interconnects and chip-to-chip bonding wires, and (b) the cohabitation of sensors, preprocessing analog circuitry, digital logic and signal processing, and RF devices in the same compact volume. A specific scenario is discussed in detail wherein a set of four types of sensors, namely an array of acoustic and seismic sensors, an active pixel sensor array, and an uncooled IR imaging array are placed on a common sensor plane. The other planes include an analog plane consisting of transductors and A/D converters. The digital processing planes provide the necessary processing and intelligence capability. The remaining planes provide for wireless communications/networking capability. When appropriate, this processing and decision-making will be accomplished on a collaborative basis among the distributed sensor nodes through a wireless network.

  12. High-resolution 3D imaging laser radar flight test experiments

    NASA Astrophysics Data System (ADS)

    Marino, Richard M.; Davis, W. R.; Rich, G. C.; McLaughlin, J. L.; Lee, E. I.; Stanley, B. M.; Burnside, J. W.; Rowe, G. S.; Hatch, R. E.; Square, T. E.; Skelly, L. J.; O'Brien, M.; Vasile, A.; Heinrichs, R. M.

    2005-05-01

    Situation awareness and accurate Target Identification (TID) are critical requirements for successful battle management. Ground vehicles can be detected, tracked, and in some cases imaged using airborne or space-borne microwave radar. Obscurants such as camouflage net and/or tree canopy foliage can degrade the performance of such radars. Foliage can be penetrated with long wavelength microwave radar, but generally at the expense of imaging resolution. The goals of the DARPA Jigsaw program include the development and demonstration of high-resolution 3-D imaging laser radar (ladar) ensor technology and systems that can be used from airborne platforms to image and identify military ground vehicles that may be hiding under camouflage or foliage such as tree canopy. With DARPA support, MIT Lincoln Laboratory has developed a rugged and compact 3-D imaging ladar system that has successfully demonstrated the feasibility and utility of this application. The sensor system has been integrated into a UH-1 helicopter for winter and summer flight campaigns. The sensor operates day or night and produces high-resolution 3-D spatial images using short laser pulses and a focal plane array of Geiger-mode avalanche photo-diode (APD) detectors with independent digital time-of-flight counting circuits at each pixel. The sensor technology includes Lincoln Laboratory developments of the microchip laser and novel focal plane arrays. The microchip laser is a passively Q-switched solid-state frequency-doubled Nd:YAG laser transmitting short laser pulses (300 ps FWHM) at 16 kilohertz pulse rate and at 532 nm wavelength. The single photon detection efficiency has been measured to be > 20 % using these 32x32 Silicon Geiger-mode APDs at room temperature. The APD saturates while providing a gain of typically > 106. The pulse out of the detector is used to stop a 500 MHz digital clock register integrated within the focal-plane array at each pixel. Using the detector in this binary response mode

  13. 1024 pixels single photon imaging array for 3D ranging

    NASA Astrophysics Data System (ADS)

    Bellisai, S.; Guerrieri, F.; Tisa, S.; Zappa, F.; Tosi, A.; Giudice, A.

    2011-01-01

    Three dimensions (3D) acquisition systems are driving applications in many research field. Nowadays 3D acquiring systems are used in a lot of applications, such as cinema industry or in automotive (for active security systems). Depending on the application, systems present different features, for example color sensitivity, bi-dimensional image resolution, distance measurement accuracy and acquisition frame rate. The system we developed acquires 3D movie using indirect Time of Flight (iTOF), starting from phase delay measurement of a sinusoidally modulated light. The system acquires live movie with a frame rate up to 50frame/s in a range distance between 10 cm up to 7.5 m.

  14. Optical-CT imaging of complex 3D dose distributions

    NASA Astrophysics Data System (ADS)

    Oldham, Mark; Kim, Leonard; Hugo, Geoffrey

    2005-04-01

    The limitations of conventional dosimeters restrict the comprehensiveness of verification that can be performed for advanced radiation treatments presenting an immediate and substantial problem for clinics attempting to implement these techniques. In essence, the rapid advances in the technology of radiation delivery have not been paralleled by corresponding advances in the ability to verify these treatments. Optical-CT gel-dosimetry is a relatively new technique with potential to address this imbalance by providing high resolution 3D dose maps in polymer and radiochromic gel dosimeters. We have constructed a 1st generation optical-CT scanner capable of high resolution 3D dosimetry and applied it to a number of simple and increasingly complex dose distributions including intensity-modulated-radiation-therapy (IMRT). Prior to application to IMRT, the robustness of optical-CT gel dosimetry was investigated on geometry and variable attenuation phantoms. Physical techniques and image processing methods were developed to minimize deleterious effects of refraction, reflection, and scattered laser light. Here we present results of investigations into achieving accurate high-resolution 3D dosimetry with optical-CT, and show clinical examples of 3D IMRT dosimetry verification. In conclusion, optical-CT gel dosimetry can provide high resolution 3D dose maps that greatly facilitate comprehensive verification of complex 3D radiation treatments. Good agreement was observed at high dose levels (>50%) between planned and measured dose distributions. Some systematic discrepancies were observed however (rms discrepancy 3% at high dose levels) indicating further work is required to eliminate confounding factors presently compromising the accuracy of optical-CT 3D gel-dosimetry.

  15. 3D robust digital image correlation for vibration measurement.

    PubMed

    Chen, Zhong; Zhang, Xianmin; Fatikow, Sergej

    2016-03-01

    Discrepancies of speckle images under dynamic measurement due to the different viewing angles will deteriorate the correspondence in 3D digital image correlation (3D-DIC) for vibration measurement. Facing this kind of bottleneck, this paper presents two types of robust 3D-DIC methods for vibration measurement, SSD-robust and SWD-robust, which use a sum of square difference (SSD) estimator plus a Geman-McClure regulating term and a Welch estimator plus a Geman-McClure regulating term, respectively. Because the regulating term with an adaptive rejecting bound can lessen the influence of the abnormal pixel data in the dynamical measuring process, the robustness of the algorithm is enhanced. The robustness and precision evaluation experiments using a dual-frequency laser interferometer are implemented. The experimental results indicate that the two presented robust estimators can suppress the effects of the abnormality in the speckle images and, meanwhile, keep higher precision in vibration measurement in contrast with the traditional SSD method; thus, the SWD-robust and SSD-robust methods are suitable for weak image noise and strong image noise, respectively. PMID:26974624

  16. 3D Reconstruction of Human Motion from Monocular Image Sequences.

    PubMed

    Wandt, Bastian; Ackermann, Hanno; Rosenhahn, Bodo

    2016-08-01

    This article tackles the problem of estimating non-rigid human 3D shape and motion from image sequences taken by uncalibrated cameras. Similar to other state-of-the-art solutions we factorize 2D observations in camera parameters, base poses and mixing coefficients. Existing methods require sufficient camera motion during the sequence to achieve a correct 3D reconstruction. To obtain convincing 3D reconstructions from arbitrary camera motion, our method is based on a-priorly trained base poses. We show that strong periodic assumptions on the coefficients can be used to define an efficient and accurate algorithm for estimating periodic motion such as walking patterns. For the extension to non-periodic motion we propose a novel regularization term based on temporal bone length constancy. In contrast to other works, the proposed method does not use a predefined skeleton or anthropometric constraints and can handle arbitrary camera motion. We achieve convincing 3D reconstructions, even under the influence of noise and occlusions. Multiple experiments based on a 3D error metric demonstrate the stability of the proposed method. Compared to other state-of-the-art methods our algorithm shows a significant improvement. PMID:27093439

  17. 3D Reconstruction of Human Motion from Monocular Image Sequences.

    PubMed

    Wandt, Bastian; Ackermann, Hanno; Rosenhahn, Bodo

    2016-08-01

    This article tackles the problem of estimating non-rigid human 3D shape and motion from image sequences taken by uncalibrated cameras. Similar to other state-of-the-art solutions we factorize 2D observations in camera parameters, base poses and mixing coefficients. Existing methods require sufficient camera motion during the sequence to achieve a correct 3D reconstruction. To obtain convincing 3D reconstructions from arbitrary camera motion, our method is based on a-priorly trained base poses. We show that strong periodic assumptions on the coefficients can be used to define an efficient and accurate algorithm for estimating periodic motion such as walking patterns. For the extension to non-periodic motion we propose a novel regularization term based on temporal bone length constancy. In contrast to other works, the proposed method does not use a predefined skeleton or anthropometric constraints and can handle arbitrary camera motion. We achieve convincing 3D reconstructions, even under the influence of noise and occlusions. Multiple experiments based on a 3D error metric demonstrate the stability of the proposed method. Compared to other state-of-the-art methods our algorithm shows a significant improvement.

  18. Extraction of 3D information from sonar image sequences.

    PubMed

    Trucco, A; Curletto, S

    2003-01-01

    This paper describes a set of methods that make it possible to estimate the position of a feature inside a three-dimensional (3D) space by starting from a sequence of two-dimensional (2D) acoustic images of the seafloor acquired with a sonar system. Typical sonar imaging systems are able to generate just 2D images, and the acquisition of 3D information involves sharp increases in complexity and costs. The front-scan sonar proposed in this paper is a new equipment devoted to acquiring a 2D image of the seafloor to sail over, and allows one to collect a sequence of images showing a specific feature during the approach of the ship. This fact seems to make it possible to recover the 3D position of a feature by comparing the feature positions along the sequence of images acquired from different (known) ship positions. This opportunity is investigated in the paper, where it is shown that encouraging results have been obtained by a processing chain composed of some blocks devoted to low-level processing, feature extraction and analysis, a Kalman filter for robust feature tracking, and some ad hoc equations for depth estimation and averaging. A statistical error analysis demonstrated the great potential of the proposed system also if some inaccuracies affect the sonar measures and the knowledge of the ship position. This was also confirmed by several tests performed on both simulated and real sequences, obtaining satisfactory results on both the feature tracking and, above all, the estimation of the 3D position.

  19. A Gaussian Mixture Model-Based Continuous Boundary Detection for 3D Sensor Networks

    PubMed Central

    Chen, Jiehui; Salim, Mariam B.; Matsumoto, Mitsuji

    2010-01-01

    This paper proposes a high precision Gaussian Mixture Model-based novel Boundary Detection 3D (BD3D) scheme with reasonable implementation cost for 3D cases by selecting a minimum number of Boundary sensor Nodes (BNs) in continuous moving objects. It shows apparent advantages in that two classes of boundary and non-boundary sensor nodes can be efficiently classified using the model selection techniques for finite mixture models; furthermore, the set of sensor readings within each sensor node’s spatial neighbors is formulated using a Gaussian Mixture Model; different from DECOMO [1] and COBOM [2], we also formatted a BN Array with an additional own sensor reading to benefit selecting Event BNs (EBNs) and non-EBNs from the observations of BNs. In particular, we propose a Thick Section Model (TSM) to solve the problem of transition between 2D and 3D. It is verified by simulations that the BD3D 2D model outperforms DECOMO and COBOM in terms of average residual energy and the number of BNs selected, while the BD3D 3D model demonstrates sound performance even for sensor networks with low densities especially when the value of the sensor transmission range (r) is larger than the value of Section Thickness (d) in TSM. We have also rigorously proved its correctness for continuous geometric domains and full robustness for sensor networks over 3D terrains. PMID:22163619

  20. Interpixel crosstalk in a 3D-integrated active pixel sensor for x-ray detection

    NASA Astrophysics Data System (ADS)

    LaMarr, Beverly; Bautz, Mark; Foster, Rick; Kissel, Steve; Prigozhin, Gregory; Suntharalingam, Vyshnavi

    2010-07-01

    MIT Lincoln Laboratories and MIT Kavli Institute for Astrophysics and Space Research have developed an active pixel sensor for use as a photon counting device for imaging spectroscopy in the soft X-ray band. A silicon-on-insulator (SOI) readout circuit was integrated with a high-resistivity silicon diode detector array using a per-pixel 3D integration technique developed at Lincoln Laboratory. We have tested these devices at 5.9 keV and 1.5 keV. Here we examine the interpixel cross-talk measured with 5.9 keV X-rays.

  1. Interactive 2D to 3D stereoscopic image synthesis

    NASA Astrophysics Data System (ADS)

    Feldman, Mark H.; Lipton, Lenny

    2005-03-01

    Advances in stereoscopic display technologies, graphic card devices, and digital imaging algorithms have opened up new possibilities in synthesizing stereoscopic images. The power of today"s DirectX/OpenGL optimized graphics cards together with adapting new and creative imaging tools found in software products such as Adobe Photoshop, provide a powerful environment for converting planar drawings and photographs into stereoscopic images. The basis for such a creative process is the focus of this paper. This article presents a novel technique, which uses advanced imaging features and custom Windows-based software that utilizes the Direct X 9 API to provide the user with an interactive stereo image synthesizer. By creating an accurate and interactive world scene with moveable and flexible depth map altered textured surfaces, perspective stereoscopic cameras with both visible frustums and zero parallax planes, a user can precisely model a virtual three-dimensional representation of a real-world scene. Current versions of Adobe Photoshop provide a creative user with a rich assortment of tools needed to highlight elements of a 2D image, simulate hidden areas, and creatively shape them for a 3D scene representation. The technique described has been implemented as a Photoshop plug-in and thus allows for a seamless transition of these 2D image elements into 3D surfaces, which are subsequently rendered to create stereoscopic views.

  2. Large distance 3D imaging of hidden objects

    NASA Astrophysics Data System (ADS)

    Rozban, Daniel; Aharon Akram, Avihai; Kopeika, N. S.; Abramovich, A.; Levanon, Assaf

    2014-06-01

    Imaging systems in millimeter waves are required for applications in medicine, communications, homeland security, and space technology. This is because there is no known ionization hazard for biological tissue, and atmospheric attenuation in this range of the spectrum is low compared to that of infrared and optical rays. The lack of an inexpensive room temperature detector makes it difficult to give a suitable real time implement for the above applications. A 3D MMW imaging system based on chirp radar was studied previously using a scanning imaging system of a single detector. The system presented here proposes to employ a chirp radar method with Glow Discharge Detector (GDD) Focal Plane Array (FPA of plasma based detectors) using heterodyne detection. The intensity at each pixel in the GDD FPA yields the usual 2D image. The value of the I-F frequency yields the range information at each pixel. This will enable 3D MMW imaging. In this work we experimentally demonstrate the feasibility of implementing an imaging system based on radar principles and FPA of inexpensive detectors. This imaging system is shown to be capable of imaging objects from distances of at least 10 meters.

  3. 3D imaging of fetus vertebra by synchrotron radiation microtomography

    NASA Astrophysics Data System (ADS)

    Peyrin, Francoise; Pateyron-Salome, Murielle; Denis, Frederic; Braillon, Pierre; Laval-Jeantet, Anne-Marie; Cloetens, Peter

    1997-10-01

    A synchrotron radiation computed microtomography system allowing high resolution 3D imaging of bone samples has been developed at ESRF. The system uses a high resolution 2D detector based on a CCd camera coupled to a fluorescent screen through light optics. The spatial resolution of the device is particularly well adapted to the imaging of bone structure. In view of studying growth, vertebra samples of fetus with differential gestational ages were imaged. The first results show that fetus vertebra is quite different from adult bone both in terms of density and organization.

  4. Advanced 3D imaging lidar concepts for long range sensing

    NASA Astrophysics Data System (ADS)

    Gordon, K. J.; Hiskett, P. A.; Lamb, R. A.

    2014-06-01

    Recent developments in 3D imaging lidar are presented. Long range 3D imaging using photon counting is now a possibility, offering a low-cost approach to integrated remote sensing with step changing advantages in size, weight and power compared to conventional analogue active imaging technology. We report results using a Geiger-mode array for time-of-flight, single photon counting lidar for depth profiling and determination of the shape and size of tree canopies and distributed surface reflections at a range of 9km, with 4μJ pulses with a frame rate of 100kHz using a low-cost fibre laser operating at a wavelength of λ=1.5 μm. The range resolution is less than 4cm providing very high depth resolution for target identification. This specification opens up several additional functionalities for advanced lidar, for example: absolute rangefinding and depth profiling for long range identification, optical communications, turbulence sensing and time-of-flight spectroscopy. Future concepts for 3D time-of-flight polarimetric and multispectral imaging lidar, with optical communications in a single integrated system are also proposed.

  5. Method for extracting the aorta from 3D CT images

    NASA Astrophysics Data System (ADS)

    Taeprasartsit, Pinyo; Higgins, William E.

    2007-03-01

    Bronchoscopic biopsy of the central-chest lymph nodes is vital in the staging of lung cancer. Three-dimensional multi-detector CT (MDCT) images provide vivid anatomical detail for planning bronchoscopy. Unfortunately, many lymph nodes are situated close to the aorta, and an inadvertent needle biopsy could puncture the aorta, causing serious harm. As an eventual aid for more complete planning of lymph-node biopsy, it is important to define the aorta. This paper proposes a method for extracting the aorta from a 3D MDCT chest image. The method has two main phases: (1) Off-line Model Construction, which provides a set of training cases for fitting new images, and (2) On-Line Aorta Construction, which is used for new incoming 3D MDCT images. Off-Line Model Construction is done once using several representative human MDCT images and consists of the following steps: construct a likelihood image, select control points of the medial axis of the aortic arch, and recompute the control points to obtain a constant-interval medial-axis model. On-Line Aorta Construction consists of the following operations: construct a likelihood image, perform global fitting of the precomputed models to the current case's likelihood image to find the best fitting model, perform local fitting to adjust the medial axis to local data variations, and employ a region recovery method to arrive at the complete constructed 3D aorta. The region recovery method consists of two steps: model-based and region-growing steps. This region growing method can recover regions outside the model coverage and non-circular tube structures. In our experiments, we used three models and achieved satisfactory results on twelve of thirteen test cases.

  6. Phantom image results of an optimized full 3D USCT

    NASA Astrophysics Data System (ADS)

    Ruiter, Nicole V.; Zapf, Michael; Hopp, Torsten; Dapp, Robin; Gemmeke, Hartmut

    2012-03-01

    A promising candidate for improved imaging of breast cancer is ultrasound computer tomography (USCT). Current experimental USCT systems are still focused in elevation dimension resulting in a large slice thickness, limited depth of field, loss of out-of-plane reflections, and a large number of movement steps to acquire a stack of images. 3DUSCT emitting and receiving spherical wave fronts overcomes these limitations. We built an optimized 3DUSCT with nearly isotropic 3DPSF, realizing for the first time the full benefits of a 3Dsystem. In this paper results of the 3D point spread function measured with a dedicated phantom and images acquired with a clinical breast phantom are presented. The point spread function could be shown to be nearly isotropic in 3D, to have very low spatial variability and fit the predicted values. The contrast of the phantom images is very satisfactory in spite of imaging with a sparse aperture. The resolution and imaged details of the reflectivity reconstruction are comparable to a 3TeslaMRI volume of the breast phantom. Image quality and resolution is isotropic in all three dimensions, confirming the successful optimization experimentally.

  7. Combined elasticity and 3D imaging of the prostate

    NASA Astrophysics Data System (ADS)

    Li, Yinbo; Hossack, John A.

    2005-04-01

    A method is described for repeatably assessing elasticity and 3D extent of suspected prostate cancers. Elasticity is measured by controlled water inflation of a sheath placed over a modified transrectal ultrasound transducer. The benefit of using fluid inflation is that it should be possible to make repeatable, accurate, measurements of elasticity that are of interest in the serial assessment of prostate cancer progression or remission. The second aspect of the work uses auxiliary tracking arrays placed at each end of the central imaging array that allow the transducer to be rotated while simultaneously collected 'tracking' information thus allowing the position of successive image planes to be located with approximately 11% volumetric accuracy in 3D space. In this way, we present a technique for quantifying volumetric extent of suspected cancer in addition to making measures of elastic anomalies.

  8. 3D reconstruction of concave surfaces using polarisation imaging

    NASA Astrophysics Data System (ADS)

    Sohaib, A.; Farooq, A. R.; Ahmed, J.; Smith, L. N.; Smith, M. L.

    2015-06-01

    This paper presents a novel algorithm for improved shape recovery using polarisation-based photometric stereo. The majority of previous research using photometric stereo involves 3D reconstruction using both the diffuse and specular components of light; however, this paper suggests the use of the specular component only as it is the only form of light that comes directly off the surface without subsurface scattering or interreflections. Experiments were carried out on both real and synthetic surfaces. Real images were obtained using a polarisation-based photometric stereo device while synthetic images were generated using PovRay® software. The results clearly demonstrate that the proposed method can extract three-dimensional (3D) surface information effectively even for concave surfaces with complex texture and surface reflectance.

  9. Getting in touch--3D printing in forensic imaging.

    PubMed

    Ebert, Lars Chr; Thali, Michael J; Ross, Steffen

    2011-09-10

    With the increasing use of medical imaging in forensics, as well as the technological advances in rapid prototyping, we suggest combining these techniques to generate displays of forensic findings. We used computed tomography (CT), CT angiography, magnetic resonance imaging (MRI) and surface scanning with photogrammetry in conjunction with segmentation techniques to generate 3D polygon meshes. Based on these data sets, a 3D printer created colored models of the anatomical structures. Using this technique, we could create models of bone fractures, vessels, cardiac infarctions, ruptured organs as well as bitemark wounds. The final models are anatomically accurate, fully colored representations of bones, vessels and soft tissue, and they demonstrate radiologically visible pathologies. The models are more easily understood by laypersons than volume rendering or 2D reconstructions. Therefore, they are suitable for presentations in courtrooms and for educational purposes. PMID:21602004

  10. 3D scene reconstruction based on 3D laser point cloud combining UAV images

    NASA Astrophysics Data System (ADS)

    Liu, Huiyun; Yan, Yangyang; Zhang, Xitong; Wu, Zhenzhen

    2016-03-01

    It is a big challenge capturing and modeling 3D information of the built environment. A number of techniques and technologies are now in use. These include GPS, and photogrammetric application and also remote sensing applications. The experiment uses multi-source data fusion technology for 3D scene reconstruction based on the principle of 3D laser scanning technology, which uses the laser point cloud data as the basis and Digital Ortho-photo Map as an auxiliary, uses 3DsMAX software as a basic tool for building three-dimensional scene reconstruction. The article includes data acquisition, data preprocessing, 3D scene construction. The results show that the 3D scene has better truthfulness, and the accuracy of the scene meet the need of 3D scene construction.

  11. Automated Recognition of 3D Features in GPIR Images

    NASA Technical Reports Server (NTRS)

    Park, Han; Stough, Timothy; Fijany, Amir

    2007-01-01

    A method of automated recognition of three-dimensional (3D) features in images generated by ground-penetrating imaging radar (GPIR) is undergoing development. GPIR 3D images can be analyzed to detect and identify such subsurface features as pipes and other utility conduits. Until now, much of the analysis of GPIR images has been performed manually by expert operators who must visually identify and track each feature. The present method is intended to satisfy a need for more efficient and accurate analysis by means of algorithms that can automatically identify and track subsurface features, with minimal supervision by human operators. In this method, data from multiple sources (for example, data on different features extracted by different algorithms) are fused together for identifying subsurface objects. The algorithms of this method can be classified in several different ways. In one classification, the algorithms fall into three classes: (1) image-processing algorithms, (2) feature- extraction algorithms, and (3) a multiaxis data-fusion/pattern-recognition algorithm that includes a combination of machine-learning, pattern-recognition, and object-linking algorithms. The image-processing class includes preprocessing algorithms for reducing noise and enhancing target features for pattern recognition. The feature-extraction algorithms operate on preprocessed data to extract such specific features in images as two-dimensional (2D) slices of a pipe. Then the multiaxis data-fusion/ pattern-recognition algorithm identifies, classifies, and reconstructs 3D objects from the extracted features. In this process, multiple 2D features extracted by use of different algorithms and representing views along different directions are used to identify and reconstruct 3D objects. In object linking, which is an essential part of this process, features identified in successive 2D slices and located within a threshold radius of identical features in adjacent slices are linked in a

  12. Dynamic 3D computed tomography scanner for vascular imaging

    NASA Astrophysics Data System (ADS)

    Lee, Mark K.; Holdsworth, David W.; Fenster, Aaron

    2000-04-01

    A 3D dynamic computed-tomography (CT) scanner was developed for imaging objects undergoing periodic motion. The scanner system has high spatial and sufficient temporal resolution to produce quantitative tomographic/volume images of objects such as excised arterial samples perfused under physiological pressure conditions and enables the measurements of the local dynamic elastic modulus (Edyn) of the arteries in the axial and longitudinal directions. The system was comprised of a high resolution modified x-ray image intensifier (XRII) based computed tomographic system and a computer-controlled cardiac flow simulator. A standard NTSC CCD camera with a macro lens was coupled to the electro-optically zoomed XRII to acquire dynamic volumetric images. Through prospective cardiac gating and computer synchronized control, a time-resolved sequence of 20 mm thick high resolution volume images of porcine aortic specimens during one simulated cardiac cycle were obtained. Performance evaluation of the scanners illustrated that tomographic images can be obtained with resolution as high as 3.2 mm-1 with only a 9% decrease in the resolution for objects moving at velocities of 1 cm/s in 2D mode and static spatial resolution of 3.55 mm-1 with only a 14% decrease in the resolution in 3D mode for objects moving at a velocity of 10 cm/s. Application of the system for imaging of intact excised arterial specimens under simulated physiological flow/pressure conditions enabled measurements of the Edyn of the arteries with a precision of +/- kPa for the 3D scanner. Evaluation of the Edyn in the axial and longitudinal direction produced values of 428 +/- 35 kPa and 728 +/- 71 kPa, demonstrating the isotropic and homogeneous viscoelastic nature of the vascular specimens. These values obtained from the Dynamic CT systems were not statistically different (p less than 0.05) from the values obtained by standard uniaxial tensile testing and volumetric measurements.

  13. High-speed 3D imaging by DMD technology

    NASA Astrophysics Data System (ADS)

    Hoefling, Roland

    2004-05-01

    The paper presents an advanced solution for capturing the height of an object in addition to the 2D image as it is frequently desired in machine vision applications. Based upon the active fringe projection methodology, the system takes advantage of a series of patterns projected onto the object surface and observed by a camera to provide reliable, accurate and highly resolved 3D data from any scattering object surface. The paper shows how the recording of a projected image series can be significantly accelerated and improved in quality to overcome current limitations. The key is ALP - a metrology dedicated hardware design using the Discovery 1100 platform for the DMD micromirror device of Texas Instruments Inc. The paper describes how this DMD technology has been combined with latest LED illumination, high-performance optics, and recent digital camera solutions. The ALP based DMD projection can be exactly synchronized with one or multiple cameras so that gray value intensities generated by pulse-width modulation (PWM) are recorded with high linearity. Based upon these components, a novel 3D measuring system with outstanding properties is described. The "z-Snapper" represents a new class of 3D imaging devices, it is fast enough for time demanding in-line testing, and it can be built completely mobile: laptop based, hand-held, and battery powered. The turnkey system provides a "3D image" as simple as an usual b/w picture is grabbed. It can be instantly implemented into future machine vision applications that will benefit from the step into the third dimension.

  14. Discrete Method of Images for 3D Radio Propagation Modeling

    NASA Astrophysics Data System (ADS)

    Novak, Roman

    2016-09-01

    Discretization by rasterization is introduced into the method of images (MI) in the context of 3D deterministic radio propagation modeling as a way to exploit spatial coherence of electromagnetic propagation for fine-grained parallelism. Traditional algebraic treatment of bounding regions and surfaces is replaced by computer graphics rendering of 3D reflections and double refractions while building the image tree. The visibility of reception points and surfaces is also resolved by shader programs. The proposed rasterization is shown to be of comparable run time to that of the fundamentally parallel shooting and bouncing rays. The rasterization does not affect the signal evaluation backtracking step, thus preserving its advantage over the brute force ray-tracing methods in terms of accuracy. Moreover, the rendering resolution may be scaled back for a given level of scenario detail with only marginal impact on the image tree size. This allows selection of scene optimized execution parameters for faster execution, giving the method a competitive edge. The proposed variant of MI can be run on any GPU that supports real-time 3D graphics.

  15. Validation of image processing tools for 3-D fluorescence microscopy.

    PubMed

    Dieterlen, Alain; Xu, Chengqi; Gramain, Marie-Pierre; Haeberlé, Olivier; Colicchio, Bruno; Cudel, Christophe; Jacquey, Serge; Ginglinger, Emanuelle; Jung, Georges; Jeandidier, Eric

    2002-04-01

    3-D optical fluorescent microscopy becomes nowadays an efficient tool for volumic investigation of living biological samples. Using optical sectioning technique, a stack of 2-D images is obtained. However, due to the nature of the system optical transfer function and non-optimal experimental conditions, acquired raw data usually suffer from some distortions. In order to carry out biological analysis, raw data have to be restored by deconvolution. The system identification by the point-spread function is useful to obtain the knowledge of the actual system and experimental parameters, which is necessary to restore raw data. It is furthermore helpful to precise the experimental protocol. In order to facilitate the use of image processing techniques, a multi-platform-compatible software package called VIEW3D has been developed. It integrates a set of tools for the analysis of fluorescence images from 3-D wide-field or confocal microscopy. A number of regularisation parameters for data restoration are determined automatically. Common geometrical measurements and morphological descriptors of fluorescent sites are also implemented to facilitate the characterisation of biological samples. An example of this method concerning cytogenetics is presented.

  16. Automatic 3D ultrasound calibration for image guided therapy using intramodality image registration

    NASA Astrophysics Data System (ADS)

    Schlosser, Jeffrey; Kirmizibayrak, Can; Shamdasani, Vijay; Metz, Steve; Hristov, Dimitre

    2013-11-01

    Many real time ultrasound (US) guided therapies can benefit from management of motion-induced anatomical changes with respect to a previously acquired computerized anatomy model. Spatial calibration is a prerequisite to transforming US image information to the reference frame of the anatomy model. We present a new method for calibrating 3D US volumes using intramodality image registration, derived from the ‘hand-eye’ calibration technique. The method is fully automated by implementing data rejection based on sensor displacements, automatic registration over overlapping image regions, and a self-consistency error metric evaluated continuously during calibration. We also present a novel method for validating US calibrations based on measurement of physical phantom displacements within US images. Both calibration and validation can be performed on arbitrary phantoms. Results indicate that normalized mutual information and localized cross correlation produce the most accurate 3D US registrations for calibration. Volumetric image alignment is more accurate and reproducible than point selection for validating the calibrations, yielding <1.5 mm root mean square error, a significant improvement relative to previously reported hand-eye US calibration results. Comparison of two different phantoms for calibration and for validation revealed significant differences for validation (p = 0.003) but not for calibration (p = 0.795).

  17. Fast 3D fluid registration of brain magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Leporé, Natasha; Chou, Yi-Yu; Lopez, Oscar L.; Aizenstein, Howard J.; Becker, James T.; Toga, Arthur W.; Thompson, Paul M.

    2008-03-01

    Fluid registration is widely used in medical imaging to track anatomical changes, to correct image distortions, and to integrate multi-modality data. Fluid mappings guarantee that the template image deforms smoothly into the target, without tearing or folding, even when large deformations are required for accurate matching. Here we implemented an intensity-based fluid registration algorithm, accelerated by using a filter designed by Bro-Nielsen and Gramkow. We validated the algorithm on 2D and 3D geometric phantoms using the mean square difference between the final registered image and target as a measure of the accuracy of the registration. In tests on phantom images with different levels of overlap, varying amounts of Gaussian noise, and different intensity gradients, the fluid method outperformed a more commonly used elastic registration method, both in terms of accuracy and in avoiding topological errors during deformation. We also studied the effect of varying the viscosity coefficients in the viscous fluid equation, to optimize registration accuracy. Finally, we applied the fluid registration algorithm to a dataset of 2D binary corpus callosum images and 3D volumetric brain MRIs from 14 healthy individuals to assess its accuracy and robustness.

  18. Stereotactic mammography imaging combined with 3D US imaging for image guided breast biopsy

    SciTech Connect

    Surry, K. J. M.; Mills, G. R.; Bevan, K.; Downey, D. B.; Fenster, A.

    2007-11-15

    Stereotactic X-ray mammography (SM) and ultrasound (US) guidance are both commonly used for breast biopsy. While SM provides three-dimensional (3D) targeting information and US provides real-time guidance, both have limitations. SM is a long and uncomfortable procedure and the US guided procedure is inherently two dimensional (2D), requiring a skilled physician for both safety and accuracy. The authors developed a 3D US-guided biopsy system to be integrated with, and to supplement SM imaging. Their goal is to be able to biopsy a larger percentage of suspicious masses using US, by clarifying ambiguous structures with SM imaging. Features from SM and US guided biopsy were combined, including breast stabilization, a confined needle trajectory, and dual modality imaging. The 3D US guided biopsy system uses a 7.5 MHz breast probe and is mounted on an upright SM machine for preprocedural imaging. Intraprocedural targeting and guidance was achieved with real-time 2D and near real-time 3D US imaging. Postbiopsy 3D US imaging allowed for confirmation that the needle was penetrating the target. The authors evaluated 3D US-guided biopsy accuracy of their system using test phantoms. To use mammographic imaging information, they registered the SM and 3D US coordinate systems. The 3D positions of targets identified in the SM images were determined with a target localization error (TLE) of 0.49 mm. The z component (x-ray tube to image) of the TLE dominated with a TLE{sub z} of 0.47 mm. The SM system was then registered to 3D US, with a fiducial registration error (FRE) and target registration error (TRE) of 0.82 and 0.92 mm, respectively. Analysis of the FRE and TRE components showed that these errors were dominated by inaccuracies in the z component with a FRE{sub z} of 0.76 mm and a TRE{sub z} of 0.85 mm. A stereotactic mammography and 3D US guided breast biopsy system should include breast compression for stability and safety and dual modality imaging for target localization

  19. Femoroacetabular impingement with chronic acetabular rim fracture - 3D computed tomography, 3D magnetic resonance imaging and arthroscopic correlation

    PubMed Central

    Chhabra, Avneesh; Nordeck, Shaun; Wadhwa, Vibhor; Madhavapeddi, Sai; Robertson, William J

    2015-01-01

    Femoroacetabular impingement is uncommonly associated with a large rim fragment of bone along the superolateral acetabulum. We report an unusual case of femoroacetabular impingement (FAI) with chronic acetabular rim fracture. Radiographic, 3D computed tomography, 3D magnetic resonance imaging and arthroscopy correlation is presented with discussion of relative advantages and disadvantages of various modalities in the context of FAI. PMID:26191497

  20. 3D fiber probe for multi sensor coordinate measurement

    NASA Astrophysics Data System (ADS)

    Ettemeyer, A.

    2011-12-01

    Increasing manufacturing accuracy requirements enforce the development of innovative and highly sensitive measuring tools. Especially for measurement with sub micrometer accuracy, the sensor principle has to be chosen appropriately for each measurement surface. Modern multi sensor coordinate measurements systems allow automatic selection of different sensor heads to measure different areas or properties of a sample. As example, different types of optical sensors as well as tactile sensors can be used with the same machine. In this paper we describe different principles of optical sensors used in multi sensor coordinate measurement systems as well as a new approach for tactile measurement with sub micrometer accuracy. A special fiber probe has been developed. The tip of the fiber probe is formed as a sphere. The lateral position of this sphere is observed by a microscope optics and can be determined to a fraction of a micrometer. Additionally, a novel optical set-up now even allows the determination of the z-position of the fiber tip with sub micrometer accuracy. For this purpose we use an interferometric set-up. The light of laser is coupled into the optical fiber. The light, exiting the fiber tip is collected by a microscope optics and superposed with a reference wave, generated directly from the laser. The result is an interferometric signal which is recorded by the camera and processed by a computer. With this set-up, the zdisplacement of the fiber sphere can be measured with an accuracy of a fraction of the used laser wavelength.

  1. Pavement cracking measurements using 3D laser-scan images

    NASA Astrophysics Data System (ADS)

    Ouyang, W.; Xu, B.

    2013-10-01

    Pavement condition surveying is vital for pavement maintenance programs that ensure ride quality and traffic safety. This paper first introduces an automated pavement inspection system which uses a three-dimensional (3D) camera and a structured laser light to acquire dense transverse profiles of a pavement lane surface when it carries a moving vehicle. After the calibration, the 3D system can yield a depth resolution of 0.5 mm and a transverse resolution of 1.56 mm pixel-1 at 1.4 m camera height from the ground. The scanning rate of the camera can be set to its maximum at 5000 lines s-1, allowing the density of scanned profiles to vary with the vehicle's speed. The paper then illustrates the algorithms that utilize 3D information to detect pavement distress, such as transverse, longitudinal and alligator cracking, and presents the field tests on the system's repeatability when scanning a sample pavement in multiple runs at the same vehicle speed, at different vehicle speeds and under different weather conditions. The results show that this dedicated 3D system can capture accurate pavement images that detail surface distress, and obtain consistent crack measurements in repeated tests and under different driving and lighting conditions.

  2. Objective breast symmetry evaluation using 3-D surface imaging.

    PubMed

    Eder, Maximilian; Waldenfels, Fee V; Swobodnik, Alexandra; Klöppel, Markus; Pape, Ann-Kathrin; Schuster, Tibor; Raith, Stefan; Kitzler, Elena; Papadopulos, Nikolaos A; Machens, Hans-Günther; Kovacs, Laszlo

    2012-04-01

    This study develops an objective breast symmetry evaluation using 3-D surface imaging (Konica-Minolta V910(®) scanner) by superimposing the mirrored left breast over the right and objectively determining the mean 3-D contour difference between the 2 breast surfaces. 3 observers analyzed the evaluation protocol precision using 2 dummy models (n = 60), 10 test subjects (n = 300), clinically tested it on 30 patients (n = 900) and compared it to established 2-D measurements on 23 breast reconstructive patients using the BCCT.core software (n = 690). Mean 3-D evaluation precision, expressed as the coefficient of variation (VC), was 3.54 ± 0.18 for all human subjects without significant intra- and inter-observer differences (p > 0.05). The 3-D breast symmetry evaluation is observer independent, significantly more precise (p < 0.001) than the BCCT.core software (VC = 6.92 ± 0.88) and may play a part in an objective surgical outcome analysis after incorporation into clinical practice.

  3. 3D thermal medical image visualization tool: Integration between MRI and thermographic images.

    PubMed

    Abreu de Souza, Mauren; Chagas Paz, André Augusto; Sanches, Ionildo Jóse; Nohama, Percy; Gamba, Humberto Remigio

    2014-01-01

    Three-dimensional medical image reconstruction using different images modalities require registration techniques that are, in general, based on the stacking of 2D MRI/CT images slices. In this way, the integration of two different imaging modalities: anatomical (MRI/CT) and physiological information (infrared image), to generate a 3D thermal model, is a new methodology still under development. This paper presents a 3D THERMO interface that provides flexibility for the 3D visualization: it incorporates the DICOM parameters; different color scale palettes at the final 3D model; 3D visualization at different planes of sections; and a filtering option that provides better image visualization. To summarize, the 3D thermographc medical image visualization provides a realistic and precise medical tool. The merging of two different imaging modalities allows better quality and more fidelity, especially for medical applications in which the temperature changes are clinically significant.

  4. 3D imaging of soil pore network: two different approaches

    NASA Astrophysics Data System (ADS)

    Matrecano, M.; Di Matteo, B.; Mele, G.; Terribile, F.

    2009-04-01

    Pore geometry imaging and its quantitative description is a key factor for advances in the knowledge of physical, chemical and biological soil processes. For many years photos from flattened surfaces of undisturbed soil samples impregnated with fluorescent resin and from soil thin sections under microscope have been the only way available for exploring pore architecture at different scales. Earlier 3D representations of the internal structure of the soil based on not destructive methods have been obtained using medical tomographic systems (NMR and X-ray CT). However, images provided using such equipments, show strong limitations in terms of spatial resolution. In the last decade very good results have then been obtained using imaging from very expensive systems based on synchrotron radiation. More recently, X-ray Micro-Tomography has resulted the most widely applied being the technique showing the best compromise between costs, resolution and size of the images. Conversely, the conceptually simpler but destructive method of "serial sectioning" has been progressively neglected for technical problems in sample preparation and time consumption needed to obtain an adequate number of serial sections for correct 3D reconstruction of soil pore geometry. In this work a comparison between the two methods above has been carried out in order to define advantages, shortcomings and to point out their different potential. A cylindrical undisturbed soil sample 6.5cm in diameter and 6.5cm height of an Ap horizon of an alluvial soil showing vertic characteristics, has been reconstructed using both a desktop X-ray micro-tomograph Skyscan 1172 and the new automatic serial sectioning system SSAT (Sequential Section Automatic Tomography) set up at CNR ISAFOM in Ercolano (Italy) with the aim to overcome most of the typical limitations of such a technique. Image best resolution of 7.5 µm per voxel resulted using X-ray Micro CT while 20 µm was the best value using the serial sectioning

  5. Test Beam Results of 3D Silicon Pixel Sensors for the ATLAS upgrade

    SciTech Connect

    Grenier, P.; Alimonti, G.; Barbero, M.; Bates, R.; Bolle, E.; Borri, M.; Boscardin, M.; Buttar, C.; Capua, M.; Cavalli-Sforza, M.; Cobal, M.; Cristofoli, A.; Dalla Betta, G.F.; Darbo, G.; Da Via, C.; Devetak, E.; DeWilde, B.; Di Girolamo, B.; Dobos, D.; Einsweiler, K.; Esseni, D.; /Udine U. /INFN, Udine /Calabria U. /INFN, Cosenza /Barcelona, Inst. Microelectron. /Manchester U. /CERN /LBL, Berkeley /INFN, Genoa /INFN, Genoa /Udine U. /INFN, Udine /Oslo U. /ICREA, Barcelona /Barcelona, IFAE /SINTEF, Oslo /SINTEF, Oslo /SLAC /SLAC /Bergen U. /New Mexico U. /Bonn U. /SLAC /Freiburg U. /VTT Electronics, Espoo /Bonn U. /SLAC /Freiburg U. /SLAC /SINTEF, Oslo /Manchester U. /Barcelona, IFAE /Bonn U. /Bonn U. /CERN /Manchester U. /SINTEF, Oslo /Barcelona, Inst. Microelectron. /Calabria U. /INFN, Cosenza /Udine U. /INFN, Udine /Manchester U. /VTT Electronics, Espoo /Glasgow U. /Barcelona, IFAE /Udine U. /INFN, Udine /Hawaii U. /Freiburg U. /Manchester U. /Barcelona, Inst. Microelectron. /CERN /Fond. Bruno Kessler, Povo /Prague, Tech. U. /Trento U. /INFN, Trento /CERN /Oslo U. /Fond. Bruno Kessler, Povo /INFN, Genoa /INFN, Genoa /Bergen U. /New Mexico U. /Udine U. /INFN, Udine /SLAC /Oslo U. /Prague, Tech. U. /Oslo U. /Bergen U. /SUNY, Stony Brook /SLAC /Calabria U. /INFN, Cosenza /Manchester U. /Bonn U. /SUNY, Stony Brook /Manchester U. /Bonn U. /SLAC /Fond. Bruno Kessler, Povo

    2011-08-19

    Results on beam tests of 3D silicon pixel sensors aimed at the ATLAS Insertable-B-Layer and High Luminosity LHC (HL-LHC) upgrades are presented. Measurements include charge collection, tracking efficiency and charge sharing between pixel cells, as a function of track incident angle, and were performed with and without a 1.6 T magnetic field oriented as the ATLAS Inner Detector solenoid field. Sensors were bump bonded to the front-end chip currently used in the ATLAS pixel detector. Full 3D sensors, with electrodes penetrating through the entire wafer thickness and active edge, and double-sided 3D sensors with partially overlapping bias and read-out electrodes were tested and showed comparable performance. Full and partial 3D pixel detectors have been tested, with and without a 1.6T magnetic field, in high energy pion beams at the CERN SPS North Area in 2009. Sensors characteristics have been measured as a function of the beam incident angle and compared to a regular planar pixel device. Overall full and partial 3D devices have similar behavior. Magnetic field has no sizeable effect on 3D performances. Due to electrode inefficiency 3D devices exhibit some loss of tracking efficiency for normal incident tracks but recover full efficiency with tilted tracks. As expected due to the electric field configuration 3D sensors have little charge sharing between cells.

  6. Multiplexed 3D FRET imaging in deep tissue of live embryos

    PubMed Central

    Zhao, Ming; Wan, Xiaoyang; Li, Yu; Zhou, Weibin; Peng, Leilei

    2015-01-01

    Current deep tissue microscopy techniques are mostly restricted to intensity mapping of fluorophores, which significantly limit their applications in investigating biochemical processes in vivo. We present a deep tissue multiplexed functional imaging method that probes multiple Förster resonant energy transfer (FRET) sensors in live embryos with high spatial resolution. The method simultaneously images fluorescence lifetimes in 3D with multiple excitation lasers. Through quantitative analysis of triple-channel intensity and lifetime images, we demonstrated that Ca2+ and cAMP levels of live embryos expressing dual FRET sensors can be monitored simultaneously at microscopic resolution. The method is compatible with a broad range of FRET sensors currently available for probing various cellular biochemical functions. It opens the door to imaging complex cellular circuitries in whole live organisms. PMID:26387920

  7. 3D, Flash, Induced Current Readout for Silicon Sensors

    SciTech Connect

    Parker, Sherwood I.

    2014-06-07

    A new method for silicon microstrip and pixel detector readout using (1) 65 nm-technology current amplifers which can, for the first time with silicon microstrop and pixel detectors, have response times far shorter than the charge collection time (2) 3D trench electrodes large enough to subtend a reasonable solid angle at most track locations and so have adequate sensitivity over a substantial volume of pixel, (3) induced signals in addition to, or in place of, collected charge

  8. Underwater 3d Modeling: Image Enhancement and Point Cloud Filtering

    NASA Astrophysics Data System (ADS)

    Sarakinou, I.; Papadimitriou, K.; Georgoula, O.; Patias, P.

    2016-06-01

    This paper examines the results of image enhancement and point cloud filtering on the visual and geometric quality of 3D models for the representation of underwater features. Specifically it evaluates the combination of effects from the manual editing of images' radiometry (captured at shallow depths) and the selection of parameters for point cloud definition and mesh building (processed in 3D modeling software). Such datasets, are usually collected by divers, handled by scientists and used for geovisualization purposes. In the presented study, have been created 3D models from three sets of images (seafloor, part of a wreck and a small boat's wreck) captured at three different depths (3.5m, 10m and 14m respectively). Four models have been created from the first dataset (seafloor) in order to evaluate the results from the application of image enhancement techniques and point cloud filtering. The main process for this preliminary study included a) the definition of parameters for the point cloud filtering and the creation of a reference model, b) the radiometric editing of images, followed by the creation of three improved models and c) the assessment of results by comparing the visual and the geometric quality of improved models versus the reference one. Finally, the selected technique is tested on two other data sets in order to examine its appropriateness for different depths (at 10m and 14m) and different objects (part of a wreck and a small boat's wreck) in the context of an ongoing research in the Laboratory of Photogrammetry and Remote Sensing.

  9. 3D Vision by Using Calibration Pattern with Inertial Sensor and RBF Neural Networks.

    PubMed

    Beṣdok, Erkan

    2009-01-01

    Camera calibration is a crucial prerequisite for the retrieval of metric information from images. The problem of camera calibration is the computation of camera intrinsic parameters (i.e., coefficients of geometric distortions, principle distance and principle point) and extrinsic parameters (i.e., 3D spatial orientations: ω, ϕ, κ, and 3D spatial translations: t(x), t(y), t(z)). The intrinsic camera calibration (i.e., interior orientation) models the imaging system of camera optics, while the extrinsic camera calibration (i.e., exterior orientation) indicates the translation and the orientation of the camera with respect to the global coordinate system. Traditional camera calibration techniques require a predefined mathematical-camera model and they use prior knowledge of many parameters. Definition of a realistic camera model is quite difficult and computation of camera calibration parameters are error-prone. In this paper, a novel implicit camera calibration method based on Radial Basis Functions Neural Networks is proposed. The proposed method requires neither an exactly defined camera model nor any prior knowledge about the imaging-setup or classical camera calibration parameters. The proposed method uses a calibration grid-pattern rotated around a static-fixed axis. The rotations of the calibration grid-pattern have been acquired by using an Xsens MTi-9 inertial sensor and in order to evaluate the success of the proposed method, 3D reconstruction performance of the proposed method has been compared with the performance of a traditional camera calibration method, Modified Direct Linear Transformation (MDLT). Extensive simulation results show that the proposed method achieves a better performance than MDLT aspect of 3D reconstruction. PMID:22408542

  10. Feature detection on 3D images of dental imprints

    NASA Astrophysics Data System (ADS)

    Mokhtari, Marielle; Laurendeau, Denis

    1994-09-01

    A computer vision approach for the extraction of feature points on 3D images of dental imprints is presented. The position of feature points are needed for the measurement of a set of parameters for automatic diagnosis of malocclusion problems in orthodontics. The system for the acquisition of the 3D profile of the imprint, the procedure for the detection of the interstices between teeth, and the approach for the identification of the type of tooth are described, as well as the algorithm for the reconstruction of the surface of each type of tooth. A new approach for the detection of feature points, called the watershed algorithm, is described in detail. The algorithm is a two-stage procedure which tracks the position of local minima at four different scales and produces a final map of the position of the minima. Experimental results of the application of the watershed algorithm on actual 3D images of dental imprints are presented for molars, premolars and canines. The segmentation approach for the analysis of the shape of incisors is also described in detail.

  11. Performance prediction for 3D filtering of multichannel images

    NASA Astrophysics Data System (ADS)

    Rubel, Oleksii; Kozhemiakin, Ruslan A.; Abramov, Sergey K.; Lukin, Vladimir V.; Vozel, Benoit; Chehdi, Kacem

    2015-10-01

    Performance of denoising based on discrete cosine transform applied to multichannel remote sensing images corrupted by additive white Gaussian noise is analyzed. Images obtained by satellite Earth Observing-1 (EO-1) mission using hyperspectral imager instrument (Hyperion) that have high input SNR are taken as test images. Denoising performance is characterized by improvement of PSNR. For hard-thresholding 3D DCT-based denoising, simple statistics (probabilities to be less than a certain threshold) are used to predict denoising efficiency using curves fitted into scatterplots. It is shown that the obtained curves (approximations) provide prediction of denoising efficiency with high accuracy. Analysis is carried out for different numbers of channels processed jointly. Universality of prediction for different number of channels is proven.

  12. 3D Lunar Terrain Reconstruction from Apollo Images

    NASA Technical Reports Server (NTRS)

    Broxton, Michael J.; Nefian, Ara V.; Moratto, Zachary; Kim, Taemin; Lundy, Michael; Segal, Alkeksandr V.

    2009-01-01

    Generating accurate three dimensional planetary models is becoming increasingly important as NASA plans manned missions to return to the Moon in the next decade. This paper describes a 3D surface reconstruction system called the Ames Stereo Pipeline that is designed to produce such models automatically by processing orbital stereo imagery. We discuss two important core aspects of this system: (1) refinement of satellite station positions and pose estimates through least squares bundle adjustment; and (2) a stochastic plane fitting algorithm that generalizes the Lucas-Kanade method for optimal matching between stereo pair images.. These techniques allow us to automatically produce seamless, highly accurate digital elevation models from multiple stereo image pairs while significantly reducing the influence of image noise. Our technique is demonstrated on a set of 71 high resolution scanned images from the Apollo 15 mission

  13. 3D super-resolution imaging with blinking quantum dots.

    PubMed

    Wang, Yong; Fruhwirth, Gilbert; Cai, En; Ng, Tony; Selvin, Paul R

    2013-11-13

    Quantum dots are promising candidates for single molecule imaging due to their exceptional photophysical properties, including their intense brightness and resistance to photobleaching. They are also notorious for their blinking. Here we report a novel way to take advantage of quantum dot blinking to develop an imaging technique in three-dimensions with nanometric resolution. We first applied this method to simulated images of quantum dots and then to quantum dots immobilized on microspheres. We achieved imaging resolutions (fwhm) of 8-17 nm in the x-y plane and 58 nm (on coverslip) or 81 nm (deep in solution) in the z-direction, approximately 3-7 times better than what has been achieved previously with quantum dots. This approach was applied to resolve the 3D distribution of epidermal growth factor receptor (EGFR) molecules at, and inside of, the plasma membrane of resting basal breast cancer cells.

  14. Scattering robust 3D reconstruction via polarized transient imaging.

    PubMed

    Wu, Rihui; Suo, Jinli; Dai, Feng; Zhang, Yongdong; Dai, Qionghai

    2016-09-01

    Reconstructing 3D structure of scenes in the scattering medium is a challenging task with great research value. Existing techniques often impose strong assumptions on the scattering behaviors and are of limited performance. Recently, a low-cost transient imaging system has provided a feasible way to resolve the scene depth, by detecting the reflection instant on the time profile of a surface point. However, in cases with scattering medium, the rays are both reflected and scattered during transmission, and the depth calculated from the time profile largely deviates from the true value. To handle this problem, we used the different polarization behaviors of the reflection and scattering components, and introduced active polarization to separate the reflection component to estimate the scattering robust depth. Our experiments have demonstrated that our approach can accurately reconstruct the 3D structure underlying the scattering medium. PMID:27607944

  15. The 3D model control of image processing

    NASA Technical Reports Server (NTRS)

    Nguyen, An H.; Stark, Lawrence

    1989-01-01

    Telerobotics studies remote control of distant robots by a human operator using supervisory or direct control. Even if the robot manipulators has vision or other senses, problems arise involving control, communications, and delay. The communication delays that may be expected with telerobots working in space stations while being controlled from an Earth lab have led to a number of experiments attempting to circumvent the problem. This delay in communication is a main motivating factor in moving from well understood instantaneous hands-on manual control to less well understood supervisory control; the ultimate step would be the realization of a fully autonomous robot. The 3-D model control plays a crucial role in resolving many conflicting image processing problems that are inherent in resolving in the bottom-up approach of most current machine vision processes. The 3-D model control approach is also capable of providing the necessary visual feedback information for both the control algorithms and for the human operator.

  16. 3D Imaging of the OH mesospheric emissive layer

    NASA Astrophysics Data System (ADS)

    Kouahla, M. N.; Moreels, G.; Faivre, M.; Clairemidi, J.; Meriwether, J. W.; Lehmacher, G. A.; Vidal, E.; Veliz, O.

    2010-01-01

    A new and original stereo imaging method is introduced to measure the altitude of the OH nightglow layer and provide a 3D perspective map of the altitude of the layer centroid. Near-IR photographs of the OH layer are taken at two sites separated by a 645 km distance. Each photograph is processed in order to provide a satellite view of the layer. When superposed, the two views present a common diamond-shaped area. Pairs of matched points that correspond to a physical emissive point in the common area are identified in calculating a normalized cross-correlation coefficient (NCC). This method is suitable for obtaining 3D representations in the case of low-contrast objects. An observational campaign was conducted in July 2006 in Peru. The images were taken simultaneously at Cerro Cosmos (12°09‧08.2″ S, 75°33‧49.3″ W, altitude 4630 m) close to Huancayo and Cerro Verde Tellolo (16°33‧17.6″ S, 71°39‧59.4″ W, altitude 2272 m) close to Arequipa. 3D maps of the layer surface were retrieved and compared with pseudo-relief intensity maps of the same region. The mean altitude of the emission barycenter is located at 86.3 km on July 26. Comparable relief wavy features appear in the 3D and intensity maps. It is shown that the vertical amplitude of the wave system varies as exp (Δz/2H) within the altitude range Δz = 83.5-88.0 km, H being the scale height. The oscillatory kinetic energy at the altitude of the OH layer is comprised between 3 × 10-4 and 5.4 × 10-4 J/m3, which is 2-3 times smaller than the values derived from partial radio wave at 52°N latitude.

  17. 3D range scan enhancement using image-based methods

    NASA Astrophysics Data System (ADS)

    Herbort, Steffen; Gerken, Britta; Schugk, Daniel; Wöhler, Christian

    2013-10-01

    This paper addresses the problem of 3D surface scan refinement, which is desirable due to noise, outliers, and missing measurements being present in the 3D surfaces obtained with a laser scanner. We present a novel algorithm for the fusion of absolute laser scanner depth profiles and photometrically estimated surface normal data, which yields a noise-reduced and highly detailed depth profile with large scale shape robustness. In contrast to other approaches published in the literature, the presented algorithm (1) regards non-Lambertian surfaces, (2) simultaneously computes surface reflectance (i.e. BRDF) parameters required for 3D reconstruction, (3) models pixelwise incident light and viewing directions, and (4) accounts for interreflections. The algorithm as such relies on the minimization of a three-component error term, which penalizes intensity deviations, integrability deviations, and deviations from the known large-scale surface shape. The solution of the error minimization is obtained iteratively based on a calculus of variations. BRDF parameters are estimated by initially reducing and then iteratively refining the optical resolution, which provides the required robust data basis. The 3D reconstruction of concave surface regions affected by interreflections is improved by compensating global illumination in the image data. The algorithm is evaluated based on eight objects with varying albedos and reflectance behaviors (diffuse, specular, metallic). The qualitative evaluation shows a removal of outliers and a strong reduction of noise, while the large scale shape is preserved. Fine surface details Which are previously not contained in the surface scans, are incorporated through using image data. The algorithm is evaluated with respect to its absolute accuracy using two caliper objects of known shape, and based on synthetically generated data. The beneficial effect of interreflection compensation on the reconstruction accuracy is evaluated quantitatively in a

  18. 3D subcellular SIMS imaging in cryogenically prepared single cells

    NASA Astrophysics Data System (ADS)

    Chandra, Subhash

    2004-06-01

    The analysis of a cell with dynamic SIMS ion microscopy depends on the gradual erosion (sputtering) of the cell surface for obtaining spatially resolved chemical information in the X-, Y-, and Z-dimensions. This ideal feature of ion microscopy is rarely explored in probing microfeatures hidden beneath the cell surface. In this study, this capability is explored for the analysis of cells undergoing cell division. The mitotic cells required 3D SIMS imaging in order to study the chemical composition of specialized subcellular regions, like the mitotic spindle, hidden beneath the cell surface. Human glioblastoma T98G cells were grown on silicon chips and cryogenically prepared with a sandwich freeze-fracture method. The fractured freeze-dried cells were used for SIMS analysis with the microscope mode of the CAMECA IMS-3f, which is capable of producing 500 nm lateral image resolution. SIMS analysis of calcium in the spindle region of metaphase cells required sequential recording of as many as 10 images. The T98G human glioblastoma tumor cells revealed an unusual depletion/lack of calcium store in the metaphase spindle, which is in contrast to the accumulation of calcium stores generally observed in normal cells. This study shows the feasibility of the microscope mode imaging in resolving subcellular microfeatures in 3D and opens new avenues of research in spatially resolved chemical analysis of dividing cells.

  19. Multiple 2D video/3D medical image registration algorithm

    NASA Astrophysics Data System (ADS)

    Clarkson, Matthew J.; Rueckert, Daniel; Hill, Derek L.; Hawkes, David J.

    2000-06-01

    In this paper we propose a novel method to register at least two vide images to a 3D surface model. The potential applications of such a registration method could be in image guided surgery, high precision radiotherapy, robotics or computer vision. Registration is performed by optimizing a similarity measure with respect to the pose parameters. The similarity measure is based on 'photo-consistency' and computes for each surface point, how consistent the corresponding video image information in each view is with a lighting model. We took four video views of a volunteer's face, and used an independent method to reconstruct a surface that was intrinsically registered to the four views. In addition, we extracted a skin surface from the volunteer's MR scan. The surfaces were misregistered from a gold standard pose and our algorithm was used to register both types of surfaces to the video images. For the reconstructed surface, the mean 3D error was 1.53 mm. For the MR surface, the standard deviation of the pose parameters after registration ranged from 0.12 to 0.70 mm and degrees. The performance of the algorithm is accurate, precise and robust.

  20. 3D seismic imaging on massively parallel computers

    SciTech Connect

    Womble, D.E.; Ober, C.C.; Oldfield, R.

    1997-02-01

    The ability to image complex geologies such as salt domes in the Gulf of Mexico and thrusts in mountainous regions is a key to reducing the risk and cost associated with oil and gas exploration. Imaging these structures, however, is computationally expensive. Datasets can be terabytes in size, and the processing time required for the multiple iterations needed to produce a velocity model can take months, even with the massively parallel computers available today. Some algorithms, such as 3D, finite-difference, prestack, depth migration remain beyond the capacity of production seismic processing. Massively parallel processors (MPPs) and algorithms research are the tools that will enable this project to provide new seismic processing capabilities to the oil and gas industry. The goals of this work are to (1) develop finite-difference algorithms for 3D, prestack, depth migration; (2) develop efficient computational approaches for seismic imaging and for processing terabyte datasets on massively parallel computers; and (3) develop a modular, portable, seismic imaging code.

  1. Improving 3D Wavelet-Based Compression of Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Klimesh, Matthew; Kiely, Aaron; Xie, Hua; Aranki, Nazeeh

    2009-01-01

    Two methods of increasing the effectiveness of three-dimensional (3D) wavelet-based compression of hyperspectral images have been developed. (As used here, images signifies both images and digital data representing images.) The methods are oriented toward reducing or eliminating detrimental effects of a phenomenon, referred to as spectral ringing, that is described below. In 3D wavelet-based compression, an image is represented by a multiresolution wavelet decomposition consisting of several subbands obtained by applying wavelet transforms in the two spatial dimensions corresponding to the two spatial coordinate axes of the image plane, and by applying wavelet transforms in the spectral dimension. Spectral ringing is named after the more familiar spatial ringing (spurious spatial oscillations) that can be seen parallel to and near edges in ordinary images reconstructed from compressed data. These ringing phenomena are attributable to effects of quantization. In hyperspectral data, the individual spectral bands play the role of edges, causing spurious oscillations to occur in the spectral dimension. In the absence of such corrective measures as the present two methods, spectral ringing can manifest itself as systematic biases in some reconstructed spectral bands and can reduce the effectiveness of compression of spatially-low-pass subbands. One of the two methods is denoted mean subtraction. The basic idea of this method is to subtract mean values from spatial planes of spatially low-pass subbands prior to encoding, because (a) such spatial planes often have mean values that are far from zero and (b) zero-mean data are better suited for compression by methods that are effective for subbands of two-dimensional (2D) images. In this method, after the 3D wavelet decomposition is performed, mean values are computed for and subtracted from each spatial plane of each spatially-low-pass subband. The resulting data are converted to sign-magnitude form and compressed in a

  2. Development of 3D microwave imaging reflectometry in LHD (invited).

    PubMed

    Nagayama, Y; Kuwahara, D; Yoshinaga, T; Hamada, Y; Kogi, Y; Mase, A; Tsuchiya, H; Tsuji-Iio, S; Yamaguchi, S

    2012-10-01

    Three-dimensional (3D) microwave imaging reflectometry has been developed in the large helical device to visualize fluctuating reflection surface which is caused by the density fluctuations. The plasma is illuminated by the probe wave with four frequencies, which correspond to four radial positions. The imaging optics makes the image of cut-off surface onto the 2D (7 × 7 channels) horn antenna mixer arrays. Multi-channel receivers have been also developed using micro-strip-line technology to handle many channels at reasonable cost. This system is first applied to observe the edge harmonic oscillation (EHO), which is an MHD mode with many harmonics that appears in the edge plasma. A narrow structure along field lines is observed during EHO.

  3. Density-tapered spiral arrays for ultrasound 3-D imaging.

    PubMed

    Ramalli, Alessandro; Boni, Enrico; Savoia, Alessandro Stuart; Tortoli, Piero

    2015-08-01

    The current high interest in 3-D ultrasound imaging is pushing the development of 2-D probes with a challenging number of active elements. The most popular approach to limit this number is the sparse array technique, which designs the array layout by means of complex optimization algorithms. These algorithms are typically constrained by a few steering conditions, and, as such, cannot guarantee uniform side-lobe performance at all angles. The performance may be improved by the ungridded extensions of the sparse array technique, but this result is achieved at the expense of a further complication of the optimization process. In this paper, a method to design the layout of large circular arrays with a limited number of elements according to Fermat's spiral seeds and spatial density modulation is proposed and shown to be suitable for application to 3-D ultrasound imaging. This deterministic, aperiodic, and balanced positioning procedure attempts to guarantee uniform performance over a wide range of steering angles. The capabilities of the method are demonstrated by simulating and comparing the performance of spiral and dense arrays. A good trade-off for small vessel imaging is found, e.g., in the 60λ spiral array with 1.0λ elements and Blackman density tapering window. Here, the grating lobe level is -16 dB, the lateral resolution is lower than 6λ the depth of field is 120λ and, the average contrast is 10.3 dB, while the sensitivity remains in a 5 dB range for a wide selection of steering angles. The simulation results may represent a reference guide to the design of spiral sparse array probes for different application fields. PMID:26285181

  4. Quality Assessment of 3d Reconstruction Using Fisheye and Perspective Sensors

    NASA Astrophysics Data System (ADS)

    Strecha, C.; Zoller, R.; Rutishauser, S.; Brot, B.; Schneider-Zapp, K.; Chovancova, V.; Krull, M.; Glassey, L.

    2015-03-01

    Recent mathematical advances, growing alongside the use of unmanned aerial vehicles, have not only overcome the restriction of roll and pitch angles during flight but also enabled us to apply non-metric cameras in photogrammetric method, providing more flexibility for sensor selection. Fisheye cameras, for example, advantageously provide images with wide coverage; however, these images are extremely distorted and their non-uniform resolutions make them more difficult to use for mapping or terrestrial 3D modelling. In this paper, we compare the usability of different camera-lens combinations, using the complete workflow implemented in Pix4Dmapper to achieve the final terrestrial reconstruction result of a well-known historical site in Switzerland: the Chillon Castle. We assess the accuracy of the outcome acquired by consumer cameras with perspective and fisheye lenses, comparing the results to a laser scanner point cloud.

  5. Ultra-realistic 3-D imaging based on colour holography

    NASA Astrophysics Data System (ADS)

    Bjelkhagen, H. I.

    2013-02-01

    A review of recent progress in colour holography is provided with new applications. Colour holography recording techniques in silver-halide emulsions are discussed. Both analogue, mainly Denisyuk colour holograms, and digitally-printed colour holograms are described and their recent improvements. An alternative to silver-halide materials are the panchromatic photopolymer materials such as the DuPont and Bayer photopolymers which are covered. The light sources used to illuminate the recorded holograms are very important to obtain ultra-realistic 3-D images. In particular the new light sources based on RGB LEDs are described. They show improved image quality over today's commonly used halogen lights. Recent work in colour holography by holographers and companies in different countries around the world are included. To record and display ultra-realistic 3-D images with perfect colour rendering are highly dependent on the correct recording technique using the optimal recording laser wavelengths, the availability of improved panchromatic recording materials and combined with new display light sources.

  6. Image segmentation and 3D visualization for MRI mammography

    NASA Astrophysics Data System (ADS)

    Li, Lihua; Chu, Yong; Salem, Angela F.; Clark, Robert A.

    2002-05-01

    MRI mammography has a number of advantages, including the tomographic, and therefore three-dimensional (3-D) nature, of the images. It allows the application of MRI mammography to breasts with dense tissue, post operative scarring, and silicon implants. However, due to the vast quantity of images and subtlety of difference in MR sequence, there is a need for reliable computer diagnosis to reduce the radiologist's workload. The purpose of this work was to develop automatic breast/tissue segmentation and visualization algorithms to aid physicians in detecting and observing abnormalities in breast. Two segmentation algorithms were developed: one for breast segmentation, the other for glandular tissue segmentation. In breast segmentation, the MRI image is first segmented using an adaptive growing clustering method. Two tracing algorithms were then developed to refine the breast air and chest wall boundaries of breast. The glandular tissue segmentation was performed using an adaptive thresholding method, in which the threshold value was spatially adaptive using a sliding window. The 3D visualization of the segmented 2D slices of MRI mammography was implemented under IDL environment. The breast and glandular tissue rendering, slicing and animation were displayed.

  7. Precise 3D image alignment in micro-axial tomography.

    PubMed

    Matula, P; Kozubek, M; Staier, F; Hausmann, M

    2003-02-01

    Micro (micro-) axial tomography is a challenging technique in microscopy which improves quantitative imaging especially in cytogenetic applications by means of defined sample rotation under the microscope objective. The advantage of micro-axial tomography is an effective improvement of the precision of distance measurements between point-like objects. Under certain circumstances, the effective (3D) resolution can be improved by optimized acquisition depending on subsequent, multi-perspective image recording of the same objects followed by reconstruction methods. This requires, however, a very precise alignment of the tilted views. We present a novel feature-based image alignment method with a precision better than the full width at half maximum of the point spread function. The features are the positions (centres of gravity) of all fluorescent objects observed in the images (e.g. cell nuclei, fluorescent signals inside cell nuclei, fluorescent beads, etc.). Thus, real alignment precision depends on the localization precision of these objects. The method automatically determines the corresponding objects in subsequently tilted perspectives using a weighted bipartite graph. The optimum transformation function is computed in a least squares manner based on the coordinates of the centres of gravity of the matched objects. The theoretically feasible precision of the method was calculated using computer-generated data and confirmed by tests on real image series obtained from data sets of 200 nm fluorescent nano-particles. The advantages of the proposed algorithm are its speed and accuracy, which means that if enough objects are included, the real alignment precision is better than the axial localization precision of a single object. The alignment precision can be assessed directly from the algorithm's output. Thus, the method can be applied not only for image alignment and object matching in tilted view series in order to reconstruct (3D) images, but also to validate the

  8. 3D Multispectral Light Propagation Model For Subcutaneous Veins Imaging

    SciTech Connect

    Paquit, Vincent C; Price, Jeffery R; Meriaudeau, Fabrice; Tobin Jr, Kenneth William

    2008-01-01

    In this paper, we describe a new 3D light propagation model aimed at understanding the effects of various physiological properties on subcutaneous vein imaging. In particular, we build upon the well known MCML (Monte Carlo Multi Layer) code and present a tissue model that improves upon the current state-of-the-art by: incorporating physiological variation, such as melanin concentration, fat content, and layer thickness; including veins of varying depth and diameter; using curved surfaces from real arm shapes; and modeling the vessel wall interface. We describe our model, present results from the Monte Carlo modeling, and compare these results with those obtained with other Monte Carlo methods.

  9. 3D laser optoacoustic ultrasonic imaging system for preclinical research

    NASA Astrophysics Data System (ADS)

    Ermilov, Sergey A.; Conjusteau, André; Hernandez, Travis; Su, Richard; Nadvoretskiy, Vyacheslav; Tsyboulski, Dmitri; Anis, Fatima; Anastasio, Mark A.; Oraevsky, Alexander A.

    2013-03-01

    In this work, we introduce a novel three-dimensional imaging system for in vivo high-resolution anatomical and functional whole-body visualization of small animal models developed for preclinical or other type of biomedical research. The system (LOUIS-3DM) combines a multi-wavelength optoacoustic and ultrawide-band laser ultrasound tomographies to obtain coregistered maps of tissue optical absorption and acoustic properties, displayed within the skin outline of the studied animal. The most promising applications of the LOUIS-3DM include 3D angiography, cancer research, and longitudinal studies of biological distribution of optoacoustic contrast agents (carbon nanotubes, metal plasmonic nanoparticles, etc.).

  10. 3D imaging of neutron tracks using confocal microscopy

    NASA Astrophysics Data System (ADS)

    Gillmore, Gavin; Wertheim, David; Flowers, Alan

    2016-04-01

    Neutron detection and neutron flux assessment are important aspects in monitoring nuclear energy production. Neutron flux measurements can also provide information on potential biological damage from exposure. In addition to the applications for neutron measurement in nuclear energy, neutron detection has been proposed as a method of enhancing neutrino detectors and cosmic ray flux has also been assessed using ground-level neutron detectors. Solid State Nuclear Track Detectors (or SSNTDs) have been used extensively to examine cosmic rays, long-lived radioactive elements, radon concentrations in buildings and the age of geological samples. Passive SSNTDs consisting of a CR-39 plastic are commonly used to measure radon because they respond to incident charged particles such as alpha particles from radon gas in air. They have a large dynamic range and a linear flux response. We have previously applied confocal microscopy to obtain 3D images of alpha particle tracks in SSNTDs from radon track monitoring (1). As a charged particle traverses through the polymer it creates an ionisation trail along its path. The trail or track is normally enhanced by chemical etching to better expose radiation damage, as the damaged area is more sensitive to the etchant than the bulk material. Particle tracks in CR-39 are usually assessed using 2D optical microscopy. In this study 6 detectors were examined using an Olympus OLS4100 LEXT 3D laser scanning confocal microscope (Olympus Corporation, Japan). The detectors had been etched for 2 hours 50 minutes at 85 °C in 6.25M NaOH. Post etch the plastics had been treated with a 10 minute immersion in a 2% acetic acid stop bath, followed by rinsing in deionised water. The detectors examined had been irradiated with a 2mSv neutron dose from an Am(Be) neutron source (producing roughly 20 tracks per mm2). We were able to successfully acquire 3D images of neutron tracks in the detectors studied. The range of track diameter observed was between 4

  11. Fast 3D modeling in complex environments using a single Kinect sensor

    NASA Astrophysics Data System (ADS)

    Yue, Haosong; Chen, Weihai; Wu, Xingming; Liu, Jingmeng

    2014-02-01

    Three-dimensional (3D) modeling technology has been widely used in inverse engineering, urban planning, robot navigation, and many other applications. How to build a dense model of the environment with limited processing resources is still a challenging topic. A fast 3D modeling algorithm that only uses a single Kinect sensor is proposed in this paper. For every color image captured by Kinect, corner feature extraction is carried out first. Then a spiral search strategy is utilized to select the region of interest (ROI) that contains enough feature corners. Next, the iterative closest point (ICP) method is applied to the points in the ROI to align consecutive data frames. Finally, the analysis of which areas can be walked through by human beings is presented. Comparative experiments with the well-known KinectFusion algorithm have been done and the results demonstrate that the accuracy of the proposed algorithm is the same as KinectFusion but the computing speed is nearly twice of KinectFusion. 3D modeling of two scenes of a public garden and traversable areas analysis in these regions further verified the feasibility of our algorithm.

  12. Using a wireless motion controller for 3D medical image catheter interactions

    NASA Astrophysics Data System (ADS)

    Vitanovski, Dime; Hahn, Dieter; Daum, Volker; Hornegger, Joachim

    2009-02-01

    State-of-the-art morphological imaging techniques usually provide high resolution 3D images with a huge number of slices. In clinical practice, however, 2D slice-based examinations are still the method of choice even for these large amounts of data. Providing intuitive interaction methods for specific 3D medical visualization applications is therefore a critical feature for clinical imaging applications. For the domain of catheter navigation and surgery planning, it is crucial to assist the physician with appropriate visualization techniques, such as 3D segmentation maps, fly-through cameras or virtual interaction approaches. There has been an ongoing development and improvement for controllers that help to interact with 3D environments in the domain of computer games. These controllers are based on both motion and infrared sensors and are typically used to detect 3D position and orientation. We have investigated how a state-of-the-art wireless motion sensor controller (Wiimote), developed by Nintendo, can be used for catheter navigation and planning purposes. By default the Wiimote controller only measure rough acceleration over a range of +/- 3g with 10% sensitivity and orientation. Therefore, a pose estimation algorithm was developed for computing accurate position and orientation in 3D space regarding 4 Infrared LEDs. Current results show that for the translation it is possible to obtain a mean error of (0.38cm, 0.41cm, 4.94cm) and for the rotation (0.16, 0.28) respectively. Within this paper we introduce a clinical prototype that allows steering of a virtual fly-through camera attached to the catheter tip by the Wii controller on basis of a segmented vessel tree.

  13. Quantitative 3D Optical Imaging: Applications in Dosimetry and Biophysics

    NASA Astrophysics Data System (ADS)

    Thomas, Andrew Stephen

    Optical-CT has been shown to be a potentially useful imaging tool for the two very different spheres of biologists and radiation therapy physicists, but it has yet to live up to that potential. In radiation therapy, researchers have used optical-CT for the readout of 3D dosimeters, but it is yet to be a clinically relevant tool as the technology is too slow to be considered practical. Biologists have used the technique for structural imaging, but have struggled with emission tomography as the reality of photon attenuation for both excitation and emission have made the images quantitatively irrelevant. Dosimetry. The DLOS (Duke Large field of view Optical-CT Scanner) was designed and constructed to make 3D dosimetry utilizing optical-CT a fast and practical tool while maintaining the accuracy of readout of the previous, slower readout technologies. Upon construction/optimization/implementation of several components including a diffuser, band pass filter, registration mount & fluid filtration system the dosimetry system provides high quality data comparable to or exceeding that of commercial products. In addition, a stray light correction algorithm was tested and implemented. The DLOS in combination with the 3D dosimeter it was designed for, PREAGETM, then underwent rigorous commissioning and benchmarking tests validating its performance against gold standard data including a set of 6 irradiations. DLOS commissioning tests resulted in sub-mm isotropic spatial resolution (MTF >0.5 for frequencies of 1.5lp/mm) and a dynamic range of ˜60dB. Flood field uniformity was 10% and stable after 45minutes. Stray light proved to be small, due to telecentricity, but even the residual can be removed through deconvolution. Benchmarking tests showed the mean 3D passing gamma rate (3%, 3mm, 5% dose threshold) over the 6 benchmark data sets was 97.3% +/- 0.6% (range 96%-98%) scans totaling ˜10 minutes, indicating excellent ability to perform 3D dosimetry while improving the speed of

  14. Adaptive optofluidic lens(es) for switchable 2D and 3D imaging

    NASA Astrophysics Data System (ADS)

    Huang, Hanyang; Wei, Kang; Zhao, Yi

    2016-03-01

    The stereoscopic image is often captured using dual cameras arranged side-by-side and optical path switching systems such as two separate solid lenses or biprism/mirrors. The miniaturization of the overall size of current stereoscopic devices down to several millimeters is at a sacrifice of further device size shrinkage. The limited light entry worsens the final image resolution and brightness. It is known that optofluidics offer good re-configurability for imaging systems. Leveraging this technique, we report a reconfigurable optofluidic system whose optical layout can be swapped between a singlet lens with 10 mm in diameter and a pair of binocular lenses with each lens of 3 mm in diameter for switchable two-dimensional (2D) and three-dimensional (3D) imaging. The singlet and the binoculars share the same optical path and the same imaging sensor. The singlet acquires a 3D image with better resolution and brightness, while the binoculars capture stereoscopic image pairs for 3D vision and depth perception. The focusing power tuning capability of the singlet and the binoculars enable image acquisition at varied object planes by adjusting the hydrostatic pressure across the lens membrane. The vari-focal singlet and binoculars thus work interchangeably and complementarily. The device is thus expected to have applications in robotic vision, stereoscopy, laparoendoscopy and miniaturized zoom lens system.

  15. Recent progress in 3-D imaging of sea freight containers

    SciTech Connect

    Fuchs, Theobald Schön, Tobias Sukowski, Frank; Dittmann, Jonas; Hanke, Randolf

    2015-03-31

    The inspection of very large objects like sea freight containers with X-ray Computed Tomography (CT) is an emerging technology. A complete 3-D CT scan of a see-freight container takes several hours. Of course, this is too slow to apply it to a large number of containers. However, the benefits of a 3-D CT for sealed freight are obvious: detection of potential threats or illicit cargo without being confronted with legal complications or high time consumption and risks for the security personnel during a manual inspection. Recently distinct progress was made in the field of reconstruction of projections with only a relatively low number of angular positions. Instead of today’s 500 to 1000 rotational steps, as needed for conventional CT reconstruction techniques, this new class of algorithms provides the potential to reduce the number of projection angles approximately by a factor of 10. The main drawback of these advanced iterative methods is the high consumption for numerical processing. But as computational power is getting steadily cheaper, there will be practical applications of these complex algorithms in a foreseeable future. In this paper, we discuss the properties of iterative image reconstruction algorithms and show results of their application to CT of extremely large objects scanning a sea-freight container. A specific test specimen is used to quantitatively evaluate the image quality in terms of spatial and contrast resolution and depending on different number of projections.

  16. Recent progress in 3-D imaging of sea freight containers

    NASA Astrophysics Data System (ADS)

    Fuchs, Theobald; Schön, Tobias; Dittmann, Jonas; Sukowski, Frank; Hanke, Randolf

    2015-03-01

    The inspection of very large objects like sea freight containers with X-ray Computed Tomography (CT) is an emerging technology. A complete 3-D CT scan of a see-freight container takes several hours. Of course, this is too slow to apply it to a large number of containers. However, the benefits of a 3-D CT for sealed freight are obvious: detection of potential threats or illicit cargo without being confronted with legal complications or high time consumption and risks for the security personnel during a manual inspection. Recently distinct progress was made in the field of reconstruction of projections with only a relatively low number of angular positions. Instead of today's 500 to 1000 rotational steps, as needed for conventional CT reconstruction techniques, this new class of algorithms provides the potential to reduce the number of projection angles approximately by a factor of 10. The main drawback of these advanced iterative methods is the high consumption for numerical processing. But as computational power is getting steadily cheaper, there will be practical applications of these complex algorithms in a foreseeable future. In this paper, we discuss the properties of iterative image reconstruction algorithms and show results of their application to CT of extremely large objects scanning a sea-freight container. A specific test specimen is used to quantitatively evaluate the image quality in terms of spatial and contrast resolution and depending on different number of projections.

  17. 3D surface scan of biological samples with a Push-broom Imaging Spectrometer

    NASA Astrophysics Data System (ADS)

    Yao, Haibo; Kincaid, Russell; Hruska, Zuzana; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.

    2013-08-01

    The food industry is always on the lookout for sensing technologies for rapid and nondestructive inspection of food products. Hyperspectral imaging technology integrates both imaging and spectroscopy into unique imaging sensors. Its application for food safety and quality inspection has made significant progress in recent years. Specifically, hyperspectral imaging has shown its potential for surface contamination detection in many food related applications. Most existing hyperspectral imaging systems use pushbroom scanning which is generally used for flat surface inspection. In some applications it is desirable to be able to acquire hyperspectral images on circular objects such as corn ears, apples, and cucumbers. Past research describes inspection systems that examine all surfaces of individual objects. Most of these systems did not employ hyperspectral imaging. These systems typically utilized a roller to rotate an object, such as an apple. During apple rotation, the camera took multiple images in order to cover the complete surface of the apple. The acquired image data lacked the spectral component present in a hyperspectral image. This paper discusses the development of a hyperspectral imaging system for a 3-D surface scan of biological samples. The new instrument is based on a pushbroom hyperspectral line scanner using a rotational stage to turn the sample. The system is suitable for whole surface hyperspectral imaging of circular objects. In addition to its value to the food industry, the system could be useful for other applications involving 3-D surface inspection.

  18. 3D range image resampling using B-spline surface fitting

    NASA Astrophysics Data System (ADS)

    Li, Songtao; Zhao, Dongming

    2000-05-01

    Many optical range sensors use an Equal Angle Increment (EAI) sampling. This type of sensors uses rotating mirrors with constant angular velocity for radar and triangulation techniques, where the sensor sends and receives modulated coherent light through the mirror. Such an EAI model generates data for surface geometrical description that has to be converted, in many applications, into data which meet the desired Equal Distance Increment orthographic projection model. For an accurate analysis in 3D images, an interpolation scheme is needed to resample the range data into spatially equally-distance sampling data that emulate the Cartesian orthographic projection model. In this paper, a resampling approach using a B-Spline surface fitting is proposed. The first step is to select a new scale for all X, Y, Z directions based on the 3D Cartesian coordinates of range data obtained from the sensor parameters. The size of the new range image and the new coordinates of each point are then computed. The new range value is obtained using a B-Spline surface fitting based on the new Cartesian coordinates. The experiments show that this resampling approach provides a geometrically accurate solution for many industrial applications which deploy the EAI sampling sensors.

  19. Quantitative validation of 3D image registration techniques

    NASA Astrophysics Data System (ADS)

    Holton Tainter, Kerrie S.; Taneja, Udita; Robb, Richard A.

    1995-05-01

    Multimodality images obtained from different medical imaging systems such as magnetic resonance (MR), computed tomography (CT), ultrasound (US), positron emission tomography (PET), single photon emission computed tomography (SPECT) provide largely complementary characteristic or diagnostic information. Therefore, it is an important research objective to `fuse' or combine this complementary data into a composite form which would provide synergistic information about the objects under examination. An important first step in the use of complementary fused images is 3D image registration, where multi-modality images are brought into spatial alignment so that the point-to-point correspondence between image data sets is known. Current research in the field of multimodality image registration has resulted in the development and implementation of several different registration algorithms, each with its own set of requirements and parameters. Our research has focused on the development of a general paradigm for measuring, evaluating and comparing the performance of different registration algorithms. Rather than evaluating the results of one algorithm under a specific set of conditions, we suggest a general approach to validation using simulation experiments, where the exact spatial relationship between data sets is known, along with phantom data, to characterize the behavior of an algorithm via a set of quantitative image measurements. This behavior may then be related to the algorithm's performance with real patient data, where the exact spatial relationship between multimodality images is unknown. Current results indicate that our approach is general enough to apply to several different registration algorithms. Our methods are useful for understanding the different sources of registration error and for comparing the results between different algorithms.

  20. Active and interactive floating image display using holographic 3D images

    NASA Astrophysics Data System (ADS)

    Morii, Tsutomu; Sakamoto, Kunio

    2006-08-01

    We developed a prototype tabletop holographic display system. This system consists of the object recognition system and the spatial imaging system. In this paper, we describe the recognition system using an RFID tag and the 3D display system using a holographic technology. A 3D display system is useful technology for virtual reality, mixed reality and augmented reality. We have researched spatial imaging and interaction system. We have ever proposed 3D displays using the slit as a parallax barrier, the lenticular screen and the holographic optical elements(HOEs) for displaying active image 1,2,3. The purpose of this paper is to propose the interactive system using these 3D imaging technologies. In this paper, the authors describe the interactive tabletop 3D display system. The observer can view virtual images when the user puts the special object on the display table. The key technologies of this system are the object recognition system and the spatial imaging display.

  1. High Resolution 3D Radar Imaging of Comet Interiors

    NASA Astrophysics Data System (ADS)

    Asphaug, E. I.; Gim, Y.; Belton, M.; Brophy, J.; Weissman, P. R.; Heggy, E.

    2012-12-01

    Knowing the interiors of comets and other primitive bodies is fundamental to our understanding of how planets formed. We have developed a Discovery-class mission formulation, Comet Radar Explorer (CORE), based on the use of previously flown planetary radar sounding techniques, with the goal of obtaining high resolution 3D images of the interior of a small primitive body. We focus on the Jupiter-Family Comets (JFCs) as these are among the most primitive bodies reachable by spacecraft. Scattered in from far beyond Neptune, they are ultimate targets of a cryogenic sample return mission according to the Decadal Survey. Other suitable targets include primitive NEOs, Main Belt Comets, and Jupiter Trojans. The approach is optimal for small icy bodies ~3-20 km diameter with spin periods faster than about 12 hours, since (a) navigation is relatively easy, (b) radar penetration is global for decameter wavelengths, and (c) repeated overlapping ground tracks are obtained. The science mission can be as short as ~1 month for a fast-rotating JFC. Bodies smaller than ~1 km can be globally imaged, but the navigation solutions are less accurate and the relative resolution is coarse. Larger comets are more interesting, but radar signal is unlikely to be reflected from depths greater than ~10 km. So, JFCs are excellent targets for a variety of reasons. We furthermore focus on the use of Solar Electric Propulsion (SEP) to rendezvous shortly after the comet's perihelion. This approach leaves us with ample power for science operations under dormant conditions beyond ~2-3 AU. This leads to a natural mission approach of distant observation, followed by closer inspection, terminated by a dedicated radar mapping orbit. Radar reflections are obtained from a polar orbit about the icy nucleus, which spins underneath. Echoes are obtained from a sounder operating at dual frequencies 5 and 15 MHz, with 1 and 10 MHz bandwidths respectively. The dense network of echoes is used to obtain global 3D

  2. Compensation of log-compressed images for 3-D ultrasound.

    PubMed

    Sanches, João M; Marques, Jorge S

    2003-02-01

    In this study, a Bayesian approach was used for 3-D reconstruction in the presence of multiplicative noise and nonlinear compression of the ultrasound (US) data. Ultrasound images are often considered as being corrupted by multiplicative noise (speckle). Several statistical models have been developed to represent the US data. However, commercial US equipment performs a nonlinear image compression that reduces the dynamic range of the US signal for visualization purposes. This operation changes the distribution of the image pixels, preventing a straightforward application of the models. In this paper, the nonlinear compression is explicitly modeled and considered in the reconstruction process, where the speckle noise present in the radio frequency (RF) US data is modeled with a Rayleigh distribution. The results obtained by considering the compression of the US data are then compared with those obtained assuming no compression. It is shown that the estimation performed using the nonlinear log-compression model leads to better results than those obtained with the Rayleigh reconstruction method. The proposed algorithm is tested with synthetic and real data and the results are discussed. The results have shown an improvement in the reconstruction results when the compression operation is included in the image formation model, leading to sharper images with enhanced anatomical details.

  3. Object Segmentation and Ground Truth in 3D Embryonic Imaging.

    PubMed

    Rajasekaran, Bhavna; Uriu, Koichiro; Valentin, Guillaume; Tinevez, Jean-Yves; Oates, Andrew C

    2016-01-01

    Many questions in developmental biology depend on measuring the position and movement of individual cells within developing embryos. Yet, tools that provide this data are often challenged by high cell density and their accuracy is difficult to measure. Here, we present a three-step procedure to address this problem. Step one is a novel segmentation algorithm based on image derivatives that, in combination with selective post-processing, reliably and automatically segments cell nuclei from images of densely packed tissue. Step two is a quantitative validation using synthetic images to ascertain the efficiency of the algorithm with respect to signal-to-noise ratio and object density. Finally, we propose an original method to generate reliable and experimentally faithful ground truth datasets: Sparse-dense dual-labeled embryo chimeras are used to unambiguously measure segmentation errors within experimental data. Together, the three steps outlined here establish a robust, iterative procedure to fine-tune image analysis algorithms and microscopy settings associated with embryonic 3D image data sets. PMID:27332860

  4. Object Segmentation and Ground Truth in 3D Embryonic Imaging

    PubMed Central

    Rajasekaran, Bhavna; Uriu, Koichiro; Valentin, Guillaume; Tinevez, Jean-Yves; Oates, Andrew C.

    2016-01-01

    Many questions in developmental biology depend on measuring the position and movement of individual cells within developing embryos. Yet, tools that provide this data are often challenged by high cell density and their accuracy is difficult to measure. Here, we present a three-step procedure to address this problem. Step one is a novel segmentation algorithm based on image derivatives that, in combination with selective post-processing, reliably and automatically segments cell nuclei from images of densely packed tissue. Step two is a quantitative validation using synthetic images to ascertain the efficiency of the algorithm with respect to signal-to-noise ratio and object density. Finally, we propose an original method to generate reliable and experimentally faithful ground truth datasets: Sparse-dense dual-labeled embryo chimeras are used to unambiguously measure segmentation errors within experimental data. Together, the three steps outlined here establish a robust, iterative procedure to fine-tune image analysis algorithms and microscopy settings associated with embryonic 3D image data sets. PMID:27332860

  5. Multiresolution 3-D reconstruction from side-scan sonar images.

    PubMed

    Coiras, Enrique; Petillot, Yvan; Lane, David M

    2007-02-01

    In this paper, a new method for the estimation of seabed elevation maps from side-scan sonar images is presented. The side-scan image formation process is represented by a Lambertian diffuse model, which is then inverted by a multiresolution optimization procedure inspired by expectation-maximization to account for the characteristics of the imaged seafloor region. On convergence of the model, approximations for seabed reflectivity, side-scan beam pattern, and seabed altitude are obtained. The performance of the system is evaluated against a real structure of known dimensions. Reconstruction results for images acquired by different sonar sensors are presented. Applications to augmented reality for the simulation of targets in sonar imagery are also discussed.

  6. Real-time cylindrical curvilinear 3-D ultrasound imaging.

    PubMed

    Pua, E C; Yen, J T; Smith, S W

    2003-07-01

    In patients who are obese or exhibit signs of pulmonary disease, standard transthoracic scanning may yield poor quality cardiac images. For these conditions, two-dimensional transesophageal echocardiography (TEE) is established as an essential diagnostic tool. Current techniques in transesophageal scanning, though, are limited by incomplete visualization of cardiac structures in close proximity to the transducer. Thus, we propose a 2D curvilinear array for 3D transesophageal echocardiography in order to widen the field of view and increase visualization close to the transducer face. In this project, a 440 channel 5 MHz two-dimensional array with a 12.6 mm aperture diameter on a flexible interconnect circuit has been molded to a 4 mm radius of curvature. A 75% element yield was achieved during fabrication and an average -6dB bandwidth of 30% was observed in pulse-echo tests. Using this transducer in conjunction with modifications to the beam former delay software and scan converter display software of the our 3D scanner, we obtained cylindrical real-time curvilinear volumetric scans of tissue phantoms, including a field of view of greater than 120 degrees in the curved, azimuth direction and 65 degrees phased array sector scans in the elevation direction. These images were achieved using a stepped subaperture across the cylindrical curvilinear direction of the transducer face and phased array sector scanning in the noncurved plane. In addition, real-time volume rendered images of a tissue mimicking phantom with holes ranging from 1 cm to less than 4 mm have been obtained. 3D color flow Doppler results have also been acquired. This configuration can theoretically achieve volumes displaying 180 degrees by 120 degrees. The transducer is also capable of obtaining images through a curvilinear stepped subaperture in azimuth in conjunction with a rectilinear stepped subaperture in elevation, further increasing the field of view close to the transducer face. Future work

  7. Real-time 3D visualization of volumetric video motion sensor data

    SciTech Connect

    Carlson, J.; Stansfield, S.; Shawver, D.; Flachs, G.M.; Jordan, J.B.; Bao, Z.

    1996-11-01

    This paper addresses the problem of improving detection, assessment, and response capabilities of security systems. Our approach combines two state-of-the-art technologies: volumetric video motion detection (VVMD) and virtual reality (VR). This work capitalizes on the ability of VVMD technology to provide three-dimensional (3D) information about the position, shape, and size of intruders within a protected volume. The 3D information is obtained by fusing motion detection data from multiple video sensors. The second component involves the application of VR technology to display information relating to the sensors and the sensor environment. VR technology enables an operator, or security guard, to be immersed in a 3D graphical representation of the remote site. VVMD data is transmitted from the remote site via ordinary telephone lines. There are several benefits to displaying VVMD information in this way. Because the VVMD system provides 3D information and because the sensor environment is a physical 3D space, it seems natural to display this information in 3D. Also, the 3D graphical representation depicts essential details within and around the protected volume in a natural way for human perception. Sensor information can also be more easily interpreted when the operator can `move` through the virtual environment and explore the relationships between the sensor data, objects and other visual cues present in the virtual environment. By exploiting the powerful ability of humans to understand and interpret 3D information, we expect to improve the means for visualizing and interpreting sensor information, allow a human operator to assess a potential threat more quickly and accurately, and enable a more effective response. This paper will detail both the VVMD and VR technologies and will discuss a prototype system based upon their integration.

  8. Design Principles for Rapid Prototyping Forces Sensors using 3D Printing.

    PubMed

    Kesner, Samuel B; Howe, Robert D

    2011-07-21

    Force sensors provide critical information for robot manipulators, manufacturing processes, and haptic interfaces. Commercial force sensors, however, are generally not adapted to specific system requirements, resulting in sensors with excess size, cost, and fragility. To overcome these issues, 3D printers can be used to create components for the quick and inexpensive development of force sensors. Limitations of this rapid prototyping technology, however, require specialized design principles. In this paper, we discuss techniques for rapidly developing simple force sensors, including selecting and attaching metal flexures, using inexpensive and simple displacement transducers, and 3D printing features to aid in assembly. These design methods are illustrated through the design and fabrication of a miniature force sensor for the tip of a robotic catheter system. The resulting force sensor prototype can measure forces with an accuracy of as low as 2% of the 10 N measurement range.

  9. Design Principles for Rapid Prototyping Forces Sensors using 3D Printing

    PubMed Central

    Kesner, Samuel B.; Howe, Robert D.

    2011-01-01

    Force sensors provide critical information for robot manipulators, manufacturing processes, and haptic interfaces. Commercial force sensors, however, are generally not adapted to specific system requirements, resulting in sensors with excess size, cost, and fragility. To overcome these issues, 3D printers can be used to create components for the quick and inexpensive development of force sensors. Limitations of this rapid prototyping technology, however, require specialized design principles. In this paper, we discuss techniques for rapidly developing simple force sensors, including selecting and attaching metal flexures, using inexpensive and simple displacement transducers, and 3D printing features to aid in assembly. These design methods are illustrated through the design and fabrication of a miniature force sensor for the tip of a robotic catheter system. The resulting force sensor prototype can measure forces with an accuracy of as low as 2% of the 10 N measurement range. PMID:21874102

  10. Fusion of 3D laser scanner and depth images for obstacle recognition in mobile applications

    NASA Astrophysics Data System (ADS)

    Budzan, Sebastian; Kasprzyk, Jerzy

    2016-02-01

    The problem of obstacle detection and recognition or, generally, scene mapping is one of the most investigated problems in computer vision, especially in mobile applications. In this paper a fused optical system using depth information with color images gathered from the Microsoft Kinect sensor and 3D laser range scanner data is proposed for obstacle detection and ground estimation in real-time mobile systems. The algorithm consists of feature extraction in the laser range images, processing of the depth information from the Kinect sensor, fusion of the sensor information, and classification of the data into two separate categories: road and obstacle. Exemplary results are presented and it is shown that fusion of information gathered from different sources increases the effectiveness of the obstacle detection in different scenarios, and it can be used successfully for road surface mapping.

  11. Beam test results of 3D silicon pixel sensors for future upgrades

    NASA Astrophysics Data System (ADS)

    Nellist, C.; Gligorova, A.; Huse, T.; Pacifico, N.; Sandaker, H.

    2013-12-01

    3D silicon has undergone an intensive beam test programme which has resulted in the successful qualification for the ATLAS Insertable B-Layer (IBL) upgrade project to be installed in 2013-2014. This paper presents selected results from this study with a focus on the final IBL test beam of 2012 where IBL prototype sensors were investigated. 3D devices were studied with 4 GeV positrons at DESY and 120 GeV pions at the SPS at CERN. Measurements include tracking efficiency, charge sharing, time over threshold and cluster size distributions as a function of incident angle for IBL 3D design sensors. Studies of 3D silicon sensors in an anti-proton beam test for the AEgIS experiment are also presented.

  12. Fast 3D subsurface imaging with stepped-frequency GPR

    NASA Astrophysics Data System (ADS)

    Masarik, Matthew P.; Burns, Joseph; Thelen, Brian T.; Sutter, Lena

    2015-05-01

    This paper investigates an algorithm for forming 3D images of the subsurface using stepped-frequency GPR data. The algorithm is specifically designed for a handheld GPR and therefore accounts for the irregular sampling pattern in the data and the spatially-variant air-ground interface by estimating an effective "ground-plane" and then registering the data to the plane. The algorithm efficiently solves the 4th-order polynomial for the Snell reflection points using a fully vectorized iterative scheme. The forward operator is implemented efficiently using an accelerated nonuniform FFT (Greengard and Lee, 2004); the adjoint operator is implemented efficiently using an interpolation step coupled with an upsampled FFT. The imaging is done as a linearized version of the full inverse problem, which is regularized using a sparsity constraint to reduce sidelobes and therefore improve image localization. Applying an appropriate sparsity constraint, the algorithm is able to eliminate most the surrounding clutter and sidelobes, while still rendering valuable image properties such as shape and size. The algorithm is applied to simulated data, controlled experimental data (made available by Dr. Waymond Scott, Georgia Institute of Technology), and government-provided data with irregular sampling and air-ground interface.

  13. 3D lung image retrieval using localized features

    NASA Astrophysics Data System (ADS)

    Depeursinge, Adrien; Zrimec, Tatjana; Busayarat, Sata; Müller, Henning

    2011-03-01

    The interpretation of high-resolution computed tomography (HRCT) images of the chest showing disorders of the lung tissue associated with interstitial lung diseases (ILDs) is time-consuming and requires experience. Whereas automatic detection and quantification of the lung tissue patterns showed promising results in several studies, its aid for the clinicians is limited to the challenge of image interpretation, letting the radiologists with the problem of the final histological diagnosis. Complementary to lung tissue categorization, providing visually similar cases using content-based image retrieval (CBIR) is in line with the clinical workflow of the radiologists. In a preliminary study, a Euclidean distance based on volume percentages of five lung tissue types was used as inter-case distance for CBIR. The latter showed the feasibility of retrieving similar histological diagnoses of ILD based on visual content, although no localization information was used for CBIR. However, to retrieve and show similar images with pathology appearing at a particular lung position was not possible. In this work, a 3D localization system based on lung anatomy is used to localize low-level features used for CBIR. When compared to our previous study, the introduction of localization features allows improving early precision for some histological diagnoses, especially when the region of appearance of lung tissue disorders is important.

  14. Research of Fast 3D Imaging Based on Multiple Mode

    NASA Astrophysics Data System (ADS)

    Chen, Shibing; Yan, Huimin; Ni, Xuxiang; Zhang, Xiuda; Wang, Yu

    2016-02-01

    Three-dimensional (3D) imaging has received increasingly extensive attention and has been widely used currently. Lots of efforts have been put on three-dimensional imaging method and system study, in order to meet fast and high accurate requirement. In this article, we realize a fast and high quality stereo matching algorithm on field programmable gate array (FPGA) using the combination of time-of-flight (TOF) camera and binocular camera. Images captured from the two cameras own a same spatial resolution, letting us use the depth maps taken by the TOF camera to figure initial disparity. Under the constraint of the depth map as the stereo pairs when comes to stereo matching, expected disparity of each pixel is limited within a narrow search range. In the meanwhile, using field programmable gate array (FPGA, altera cyclone IV series) concurrent computing we can configure multi core image matching system, thus doing stereo matching on embedded system. The simulation results demonstrate that it can speed up the process of stereo matching and increase matching reliability and stability, realize embedded calculation, expand application range.

  15. Brain surface maps from 3-D medical images

    NASA Astrophysics Data System (ADS)

    Lu, Jiuhuai; Hansen, Eric W.; Gazzaniga, Michael S.

    1991-06-01

    The anatomic and functional localization of brain lesions for neurologic diagnosis and brain surgery is facilitated by labeling the cortical surface in 3D images. This paper presents a method which extracts cortical contours from magnetic resonance (MR) image series and then produces a planar surface map which preserves important anatomic features. The resultant map may be used for manual anatomic localization as well as for further automatic labeling. Outer contours are determined on MR cross-sectional images by following the clear boundaries between gray matter and cerebral-spinal fluid, skipping over sulci. Carrying this contour below the surface by shrinking it along its normal produces an inner contour that alternately intercepts gray matter (sulci) and white matter along its length. This procedure is applied to every section in the set, and the image (grayscale) values along the inner contours are radially projected and interpolated onto a semi-cylindrical surface with axis normal to the slices and large enough to cover the whole brain. A planar map of the cortical surface results by flattening this cylindrical surface. The projection from inner contour to cylindrical surface is unique in the sense that different points on the inner contour correspond to different points on the cylindrical surface. As the outer contours are readily obtained by automatic segmentation, cortical maps can be made directly from an MR series.

  16. MIMO based 3D imaging system at 360 GHz

    NASA Astrophysics Data System (ADS)

    Herschel, R.; Nowok, S.; Zimmermann, R.; Lang, S. A.; Pohl, N.

    2016-05-01

    A MIMO radar imaging system at 360 GHz is presented as a part of the comprehensive approach of the European FP7 project TeraSCREEN, using multiple frequency bands for active and passive imaging. The MIMO system consists of 16 transmitter and 16 receiver antennas within one single array. Using a bandwidth of 30 GHz, a range resolution up to 5 mm is obtained. With the 16×16 MIMO system 256 different azimuth bins can be distinguished. Mechanical beam steering is used to measure 130 different elevation angles where the angular resolution is obtained by a focusing elliptical mirror. With this system a high resolution 3D image can be generated with 4 frames per second, each containing 16 million points. The principle of the system is presented starting from the functional structure, covering the hardware design and including the digital image generation. This is supported by simulated data and discussed using experimental results from a preliminary 90 GHz system underlining the feasibility of the approach.

  17. Fast 3-D Tomographic Microwave Imaging for Breast Cancer Detection

    PubMed Central

    Meaney, Paul M.; Kaufman, Peter A.; diFlorio-Alexander, Roberta M.; Paulsen, Keith D.

    2013-01-01

    Microwave breast imaging (using electromagnetic waves of frequencies around 1 GHz) has mostly remained at the research level for the past decade, gaining little clinical acceptance. The major hurdles limiting patient use are both at the hardware level (challenges in collecting accurate and noncorrupted data) and software level (often plagued by unrealistic reconstruction times in the tens of hours). In this paper we report improvements that address both issues. First, the hardware is able to measure signals down to levels compatible with sub-centimeter image resolution while keeping an exam time under 2 min. Second, the software overcomes the enormous time burden and produces similarly accurate images in less than 20 min. The combination of the new hardware and software allows us to produce and report here the first clinical 3-D microwave tomographic images of the breast. Two clinical examples are selected out of 400+ exams conducted at the Dartmouth Hitchcock Medical Center (Lebanon, NH). The first example demonstrates the potential usefulness of our system for breast cancer screening while the second example focuses on therapy monitoring. PMID:22562726

  18. 3D Chemical and Elemental Imaging by STXM Spectrotomography

    NASA Astrophysics Data System (ADS)

    Wang, J.; Hitchcock, A. P.; Karunakaran, C.; Prange, A.; Franz, B.; Harkness, T.; Lu, Y.; Obst, M.; Hormes, J.

    2011-09-01

    Spectrotomography based on the scanning transmission x-ray microscope (STXM) at the 10ID-1 spectromicroscopy beamline of the Canadian Light Source was used to study two selected unicellular microorganisms. Spatial distributions of sulphur globules, calcium, protein, and polysaccharide in sulphur-metabolizing bacteria (Allochromatium vinosum) were determined at the S 2p, C 1s, and Ca 2p edges. 3D chemical mapping showed that the sulphur globules are located inside the bacteria with a strong spatial correlation with calcium ions (it is most probably calcium carbonate from the medium; however, with STXM the distribution and localization in the cell can be made visible, which is very interesting for a biologist) and polysaccharide-rich polymers, suggesting an influence of the organic components on the formation of the sulphur and calcium deposits. A second study investigated copper accumulating in yeast cells (Saccharomyces cerevisiae) treated with copper sulphate. 3D elemental imaging at the Cu 2p edge showed that Cu(II) is reduced to Cu(I) on the yeast cell wall. A novel needle-like wet cell sample holder for STXM spectrotomography studies of fully hydrated samples is discussed.

  19. 3D Chemical and Elemental Imaging by STXM Spectrotomography

    SciTech Connect

    Wang, J.; Karunakaran, C.; Lu, Y.; Hormes, J.; Hitchcock, A. P.; Prange, A.; Franz, B.; Harkness, T.; Obst, M.

    2011-09-09

    Spectrotomography based on the scanning transmission x-ray microscope (STXM) at the 10ID-1 spectromicroscopy beamline of the Canadian Light Source was used to study two selected unicellular microorganisms. Spatial distributions of sulphur globules, calcium, protein, and polysaccharide in sulphur-metabolizing bacteria (Allochromatium vinosum) were determined at the S 2p, C 1s, and Ca 2p edges. 3D chemical mapping showed that the sulphur globules are located inside the bacteria with a strong spatial correlation with calcium ions (it is most probably calcium carbonate from the medium; however, with STXM the distribution and localization in the cell can be made visible, which is very interesting for a biologist) and polysaccharide-rich polymers, suggesting an influence of the organic components on the formation of the sulphur and calcium deposits. A second study investigated copper accumulating in yeast cells (Saccharomyces cerevisiae) treated with copper sulphate. 3D elemental imaging at the Cu 2p edge showed that Cu(II) is reduced to Cu(I) on the yeast cell wall. A novel needle-like wet cell sample holder for STXM spectrotomography studies of fully hydrated samples is discussed.

  20. 3D Radiative Transfer Effects in Multi-Angle/Multi-Spectral Radio-Polarimetric Signals from a Mixture of Clouds and Aerosols Viewed by a Non-Imaging Sensor

    NASA Technical Reports Server (NTRS)

    Davis, Anthony B.; Garay, Michael J.; Xu, Feng; Qu, Zheng; Emde, Claudia

    2013-01-01

    When observing a spatially complex mix of aerosols and clouds in a single relatively large field-of-view, nature entangles their signals non-linearly through polarized radiation transport processes that unfold in the 3D position and direction spaces. In contrast, any practical forward model in a retrieval algorithm will use only 1D vector radiative transfer (vRT) in a linear mixing technique. We assess the difference between the observed and predicted signals using synthetic data from a high-fidelity 3D vRT model with clouds generated using a Large Eddy Simulation model and an aerosol climatology. We find that this difference is signal--not noise--for the Aerosol Polarimetry Sensor (APS), an instrument developed by NASA. Moreover, the worst case scenario is also the most interesting case, namely, when the aerosol burden is large, hence hase the most impact on the cloud microphysics and dynamics. Based on our findings, we formulate a mitigation strategy for these unresolved cloud adjacency effects assuming that some spatial information is available about the structure of the clouds at higher resolution from "context" cameras, as was planned for NASA's ill-fated Glory mission that was to carry the APS but failed to reach orbit. Application to POLDER (POLarization and Directionality of Earth Reflectances) data from the period when PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) was in the A-train is briefly discussed.

  1. 3D reconstruction and restoration monitoring of sculptural artworks by a multi-sensor framework.

    PubMed

    Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano

    2012-01-01

    Nowadays, optical sensors are used to digitize sculptural artworks by exploiting various contactless technologies. Cultural Heritage applications may concern 3D reconstructions of sculptural shapes distinguished by small details distributed over large surfaces. These applications require robust multi-view procedures based on aligning several high resolution 3D measurements. In this paper, the integration of a 3D structured light scanner and a stereo photogrammetric sensor is proposed with the aim of reliably reconstructing large free form artworks. The structured light scanner provides high resolution range maps captured from different views. The stereo photogrammetric sensor measures the spatial location of each view by tracking a marker frame integral to the optical scanner. This procedure allows the computation of the rotation-translation matrix to transpose the range maps from local view coordinate systems to a unique global reference system defined by the stereo photogrammetric sensor. The artwork reconstructions can be further augmented by referring metadata related to restoration processes. In this paper, a methodology has been developed to map metadata to 3D models by capturing spatial references using a passive stereo-photogrammetric sensor. The multi-sensor framework has been experienced through the 3D reconstruction of a Statue of Hope located at the English Cemetery in Florence. This sculptural artwork has been a severe test due to the non-cooperative environment and the complex shape features distributed over a large surface. PMID:23223079

  2. An Efficient 3D Imaging using Structured Light Systems

    NASA Astrophysics Data System (ADS)

    Lee, Deokwoo

    Structured light 3D surface imaging has been crucial in the fields of image processing and computer vision, particularly in reconstruction, recognition and others. In this dissertation, we propose the approaches to development of an efficient 3D surface imaging system using structured light patterns including reconstruction, recognition and sampling criterion. To achieve an efficient reconstruction system, we address the problem in its many dimensions. In the first, we extract geometric 3D coordinates of an object which is illuminated by a set of concentric circular patterns and reflected to a 2D image plane. The relationship between the original and the deformed shape of the light patterns due to a surface shape provides sufficient 3D coordinates information. In the second, we consider system efficiency. The efficiency, which can be quantified by the size of data, is improved by reducing the number of circular patterns to be projected onto an object of interest. Akin to the Shannon-Nyquist Sampling Theorem, we derive the minimum number of circular patterns which sufficiently represents the target object with no considerable information loss. Specific geometric information (e.g. the highest curvature) of an object is key to deriving the minimum sampling density. In the third, the object, represented using the minimum number of patterns, has incomplete color information (i.e. color information is given a priori along with the curves). An interpolation is carried out to complete the photometric reconstruction. The results can be approximately reconstructed because the minimum number of the patterns may not exactly reconstruct the original object. But the result does not show considerable information loss, and the performance of an approximate reconstruction is evaluated by performing recognition or classification. In an object recognition, we use facial curves which are deformed circular curves (patterns) on a target object. We simply carry out comparison between the

  3. 3D imaging of semiconductor components by discrete laminography

    SciTech Connect

    Batenburg, K. J.; Palenstijn, W. J.; Sijbers, J.

    2014-06-19

    X-ray laminography is a powerful technique for quality control of semiconductor components. Despite the advantages of nondestructive 3D imaging over 2D techniques based on sectioning, the acquisition time is still a major obstacle for practical use of the technique. In this paper, we consider the application of Discrete Tomography to laminography data, which can potentially reduce the scanning time while still maintaining a high reconstruction quality. By incorporating prior knowledge in the reconstruction algorithm about the materials present in the scanned object, far more accurate reconstructions can be obtained from the same measured data compared to classical reconstruction methods. We present a series of simulation experiments that illustrate the potential of the approach.

  4. Near field 3D scene simulation for passive microwave imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Wu, Ji

    2006-10-01

    Scene simulation is a necessary work in near field passive microwave remote sensing. A 3-D scene simulation model of microwave radiometric imaging based on ray tracing method is present in this paper. The essential influencing factors and general requirements are considered in this model such as the rough surface radiation, the sky radiation witch act as the uppermost illuminator in out door circumstance, the polarization rotation of the temperature rays caused by multiple reflections, and the antenna point spread function witch determines the resolution of the model final outputs. Using this model we simulate a virtual scene and analyzed the appeared microwave radiometric phenomenology, at last two real scenes of building and airstrip were simulated for validating the model. The comparison between the simulation and field measurements indicates that this model is completely feasible in practice. Furthermore, we analyzed the signatures of model outputs, and achieved some underlying phenomenology of microwave radiation witch is deferent with that in optical and infrared bands.

  5. Needle placement for piriformis injection using 3-D imaging.

    PubMed

    Clendenen, Steven R; Candler, Shawn A; Osborne, Michael D; Palmer, Scott C; Duench, Stephanie; Glynn, Laura; Ghazi, Salim M

    2013-01-01

    Piriformis syndrome is a pain syndrome originating in the buttock and is attributed to 6% - 8% of patients referred for the treatment of back and leg pain. The treatment for piriformis syndrome using fluoroscopy, computed tomography (CT), electromyography (EMG), and ultrasound (US) has become standard practice. The treatment of Piriformis Syndrome has evolved to include fluoroscopy and EMG with CT guidance. We present a case study of 5 successful piriformis injections using 3-D computer-assisted electromagnet needle tracking coupled with ultrasound. A 6-degree of freedom electromagnetic position tracker was attached to the ultrasound probe that allowed the system to detect the position and orientation of the probe in the magnetic field. The tracked ultrasound probe was used to find the posterior superior iliac spine. Subsequently, 3 points were captured to register the ultrasound image with the CT or magnetic resonance image scan. Moreover, after the registration was obtained, the navigation system visualized the tracked needle relative to the CT scan in real-time using 2 orthogonal multi-planar reconstructions centered at the tracked needle tip. Conversely, a recent study revealed that fluoroscopically guided injections had 30% accuracy compared to ultrasound guided injections, which tripled the accuracy percentage. This novel technique exhibited an accurate needle guidance injection precision of 98% while advancing to the piriformis muscle and avoiding the sciatic nerve. The mean (± SD) procedure time was 19.08 (± 4.9) minutes. This technique allows for electromagnetic instrument tip tracking with real-time 3-D guidance to the selected target. As with any new technique, a learning curve is expected; however, this technique could offer an alternative, minimizing radiation exposure. PMID:23703429

  6. Novel 3-D laparoscopic magnetic ultrasound image guidance for lesion targeting

    PubMed Central

    Sindram, David; McKillop, Iain H; Martinie, John B; Iannitti, David A

    2010-01-01

    Objectives: Accurate laparoscopic liver lesion targeting for biopsy or ablation depends on the ability to merge laparoscopic and ultrasound images with proprioceptive instrument positioning, a skill that can be acquired only through extensive experience. The aim of this study was to determine whether using magnetic positional tracking to provide three-dimensional, real-time guidance improves accuracy during laparoscopic needle placement. Methods: Magnetic sensors were embedded into a needle and laparoscopic ultrasound transducer. These sensors interrupted the magnetic fields produced by an electromagnetic field generator, allowing for real-time, 3-D guidance on a stereoscopic monitor. Targets measuring 5 mm were embedded 3–5 cm deep in agar and placed inside a laparoscopic trainer box. Two novices (a college student and an intern) and two experts (hepatopancreatobiliary surgeons) targeted the lesions out of the ultrasound plane using either traditional or 3-D guidance. Results: Each subject targeted 22 lesions, 11 with traditional and 11 with the novel guidance (n = 88). Hit rates of 32% (14/44) and 100% (44/44) were observed with the traditional approach and the 3-D magnetic guidance approach, respectively. The novices were essentially unable to hit the targets using the traditional approach, but did not miss using the novel system. The hit rate of experts improved from 59% (13/22) to 100% (22/22) (P < 0.0001). Conclusions: The novel magnetic 3-D laparoscopic ultrasound guidance results in perfect targeting of 5-mm lesions, even by surgical novices. PMID:21083797

  7. 3D spectral imaging system for anterior chamber metrology

    NASA Astrophysics Data System (ADS)

    Anderson, Trevor; Segref, Armin; Frisken, Grant; Frisken, Steven

    2015-03-01

    Accurate metrology of the anterior chamber of the eye is useful for a number of diagnostic and clinical applications. In particular, accurate corneal topography and corneal thickness data is desirable for fitting contact lenses, screening for diseases and monitoring corneal changes. Anterior OCT systems can be used to measure anterior chamber surfaces, however accurate curvature measurements for single point scanning systems are known to be very sensitive to patient movement. To overcome this problem we have developed a parallel 3D spectral metrology system that captures simultaneous A-scans on a 2D lateral grid. This approach enables estimates of the elevation and curvature of anterior and posterior corneal surfaces that are robust to sample movement. Furthermore, multiple simultaneous surface measurements greatly improve the ability to register consecutive frames and enable aggregate measurements over a finer lateral grid. A key element of our approach has been to exploit standard low cost optical components including lenslet arrays and a 2D sensor to provide a path towards low cost implementation. We demonstrate first prototypes based on 6 Mpixel sensor using a 250 μm pitch lenslet array with 300 sample beams to achieve an RMS elevation accuracy of 1μm with 95 dB sensitivity and a 7.0 mm range. Initial tests on Porcine eyes, model eyes and calibration spheres demonstrate the validity of the concept. With the next iteration of designs we expect to be able to achieve over 1000 simultaneous A-scans in excess of 75 frames per second.

  8. GPU-accelerated denoising of 3D magnetic resonance images

    SciTech Connect

    Howison, Mark; Wes Bethel, E.

    2014-05-29

    The raw computational power of GPU accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. In practice, applying these filtering operations requires setting multiple parameters. This study was designed to provide better guidance to practitioners for choosing the most appropriate parameters by answering two questions: what parameters yield the best denoising results in practice? And what tuning is necessary to achieve optimal performance on a modern GPU? To answer the first question, we use two different metrics, mean squared error (MSE) and mean structural similarity (MSSIM), to compare denoising quality against a reference image. Surprisingly, the best improvement in structural similarity with the bilateral filter is achieved with a small stencil size that lies within the range of real-time execution on an NVIDIA Tesla M2050 GPU. Moreover, inappropriate choices for parameters, especially scaling parameters, can yield very poor denoising performance. To answer the second question, we perform an autotuning study to empirically determine optimal memory tiling on the GPU. The variation in these results suggests that such tuning is an essential step in achieving real-time performance. These results have important implications for the real-time application of denoising to MR images in clinical settings that require fast turn-around times.

  9. Performance assessment of 3D surface imaging technique for medical imaging applications

    NASA Astrophysics Data System (ADS)

    Li, Tuotuo; Geng, Jason; Li, Shidong

    2013-03-01

    Recent development in optical 3D surface imaging technologies provide better ways to digitalize the 3D surface and its motion in real-time. The non-invasive 3D surface imaging approach has great potential for many medical imaging applications, such as motion monitoring of radiotherapy, pre/post evaluation of plastic surgery and dermatology, to name a few. Various commercial 3D surface imaging systems have appeared on the market with different dimension, speed and accuracy. For clinical applications, the accuracy, reproducibility and robustness across the widely heterogeneous skin color, tone, texture, shape properties, and ambient lighting is very crucial. Till now, a systematic approach for evaluating the performance of different 3D surface imaging systems still yet exist. In this paper, we present a systematic performance assessment approach to 3D surface imaging system assessment for medical applications. We use this assessment approach to exam a new real-time surface imaging system we developed, dubbed "Neo3D Camera", for image-guided radiotherapy (IGRT). The assessments include accuracy, field of view, coverage, repeatability, speed and sensitivity to environment, texture and color.

  10. High resolution 3D imaging of synchrotron generated microbeams

    SciTech Connect

    Gagliardi, Frank M.; Cornelius, Iwan; Blencowe, Anton; Franich, Rick D.; Geso, Moshi

    2015-12-15

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery.

  11. Contactless operating table control based on 3D image processing.

    PubMed

    Schröder, Stephan; Loftfield, Nina; Langmann, Benjamin; Frank, Klaus; Reithmeier, Eduard

    2014-01-01

    Interaction with mobile consumer devices leads to a higher acceptance and affinity of persons to natural user interfaces and perceptional interaction possibilities. New interaction modalities become accessible and are capable to improve human machine interaction even in complex and high risk environments, like the operation room. Here, manifold medical disciplines cause a great variety of procedures and thus staff and equipment. One universal challenge is to meet the sterility requirements, for which common contact-afflicted remote interfaces always pose a potential risk causing a hazard for the process. The proposed operating table control system overcomes this process risk and thus improves the system usability significantly. The 3D sensor system, the Microsoft Kinect, captures the motion of the user, allowing a touchless manipulation of an operating table. Three gestures enable the user to select, activate and manipulate all segments of the motorised system in a safe and intuitive way. The gesture dynamics are synchronised with the table movement. In a usability study, 15 participants evaluated the system with a system usability score by Broke of 79. This states a high potential for implementation and acceptance in interventional environments. In the near future, even processes with higher risks could be controlled with the proposed interface, while interfaces become safer and more direct.

  12. Contactless operating table control based on 3D image processing.

    PubMed

    Schröder, Stephan; Loftfield, Nina; Langmann, Benjamin; Frank, Klaus; Reithmeier, Eduard

    2014-01-01

    Interaction with mobile consumer devices leads to a higher acceptance and affinity of persons to natural user interfaces and perceptional interaction possibilities. New interaction modalities become accessible and are capable to improve human machine interaction even in complex and high risk environments, like the operation room. Here, manifold medical disciplines cause a great variety of procedures and thus staff and equipment. One universal challenge is to meet the sterility requirements, for which common contact-afflicted remote interfaces always pose a potential risk causing a hazard for the process. The proposed operating table control system overcomes this process risk and thus improves the system usability significantly. The 3D sensor system, the Microsoft Kinect, captures the motion of the user, allowing a touchless manipulation of an operating table. Three gestures enable the user to select, activate and manipulate all segments of the motorised system in a safe and intuitive way. The gesture dynamics are synchronised with the table movement. In a usability study, 15 participants evaluated the system with a system usability score by Broke of 79. This states a high potential for implementation and acceptance in interventional environments. In the near future, even processes with higher risks could be controlled with the proposed interface, while interfaces become safer and more direct. PMID:25569978

  13. 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network

    PubMed Central

    Fedorov, Andriy; Beichel, Reinhard; Kalpathy-Cramer, Jayashree; Finet, Julien; Fillion-Robin, Jean-Christophe; Pujol, Sonia; Bauer, Christian; Jennings, Dominique; Fennessy, Fiona; Sonka, Milan; Buatti, John; Aylward, Stephen; Miller, James V.; Pieper, Steve; Kikinis, Ron

    2012-01-01

    Quantitative analysis has tremendous but mostly unrealized potential in healthcare to support objective and accurate interpretation of the clinical imaging. In 2008, the National Cancer Institute began building the Quantitative Imaging Network (QIN) initiative with the goal of advancing quantitative imaging in the context of personalized therapy and evaluation of treatment response. Computerized analysis is an important component contributing to reproducibility and efficiency of the quantitative imaging techniques. The success of quantitative imaging is contingent on robust analysis methods and software tools to bring these methods from bench to bedside. 3D Slicer is a free open source software application for medical image computing. As a clinical research tool, 3D Slicer is similar to a radiology workstation that supports versatile visualizations but also provides advanced functionality such as automated segmentation and registration for a variety of application domains. Unlike a typical radiology workstation, 3D Slicer is free and is not tied to specific hardware. As a programming platform, 3D Slicer facilitates translation and evaluation of the new quantitative methods by allowing the biomedical researcher to focus on the implementation of the algorithm, and providing abstractions for the common tasks of data communication, visualization and user interface development. Compared to other tools that provide aspects of this functionality, 3D Slicer is fully open source and can be readily extended and redistributed. In addition, 3D Slicer is designed to facilitate the development of new functionality in the form of 3D Slicer extensions. In this paper, we present an overview of 3D Slicer as a platform for prototyping, development and evaluation of image analysis tools for clinical research applications. To illustrate the utility of the platform in the scope of QIN, we discuss several use cases of 3D Slicer by the existing QIN teams, and we elaborate on the future

  14. Region-Based 3d Surface Reconstruction Using Images Acquired by Low-Cost Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Lari, Z.; Al-Rawabdeh, A.; He, F.; Habib, A.; El-Sheimy, N.

    2015-08-01

    Accurate 3D surface reconstruction of our environment has become essential for an unlimited number of emerging applications. In the past few years, Unmanned Aerial Systems (UAS) are evolving as low-cost and flexible platforms for geospatial data collection that could meet the needs of aforementioned application and overcome limitations of traditional airborne and terrestrial mobile mapping systems. Due to their payload restrictions, these systems usually include consumer-grade imaging and positioning sensor which will negatively impact the quality of the collected geospatial data and reconstructed surfaces. Therefore, new surface reconstruction surfaces are needed to mitigate the impact of using low-cost sensors on the final products. To date, different approaches have been proposed to for 3D surface construction using overlapping images collected by imaging sensor mounted on moving platforms. In these approaches, 3D surfaces are mainly reconstructed based on dense matching techniques. However, generated 3D point clouds might not accurately represent the scanned surfaces due to point density variations and edge preservation problems. In order to resolve these problems, a new region-based 3D surface renostruction trchnique is introduced in this paper. This approach aims to generate a 3D photo-realistic model of individually scanned surfaces within the captured images. This approach is initiated by a Semi-Global dense Matching procedure is carried out to generate a 3D point cloud from the scanned area within the collected images. The generated point cloud is then segmented to extract individual planar surfaces. Finally, a novel region-based texturing technique is implemented for photorealistic reconstruction of the extracted planar surfaces. Experimental results using images collected by a camera mounted on a low-cost UAS demonstrate the feasibility of the proposed approach for photorealistic 3D surface reconstruction.

  15. ROIC for gated 3D imaging LADAR receiver

    NASA Astrophysics Data System (ADS)

    Chen, Guoqiang; Zhang, Junling; Wang, Pan; Zhou, Jie; Gao, Lei; Ding, Ruijun

    2013-09-01

    Time of flight laser range finding, deep space communications and scanning video imaging are three applications requiring very low noise optical receivers to achieve detection of fast and weak optical signal. HgCdTe electrons initiated avalanche photodiodes (e-APDs) in linear multiplication mode is the detector of choice thanks to its high quantum efficiency, high gain at low bias, high bandwidth and low noise factor. In this project, a readout integrated circuit of hybrid e-APD focal plane array (FPA) with 100um pitch for 3D-LADAR was designed for gated optical receiver. The ROIC works at 77K, including unit cell circuit, column-level circuit, timing control, bias circuit and output driver. The unit cell circuit is a key component, which consists of preamplifier, correlated double Sampling (CDS), bias circuit and timing control module. Specially, the preamplifier used the capacitor feedback transimpedance amplifier (CTIA) structure which has two capacitors to offer switchable capacitance for passive/active dual mode imaging. The main circuit of column-level circuit is a precision Multiply-by-Two circuit which is implemented by switched-capacitor circuit. Switched-capacitor circuit is quite suitable for the signal processing of readout integrated circuit (ROIC) due to the working characteristics. The output driver uses a simply unity-gain buffer. Because the signal is amplified in column-level circuit, the amplifier in unity-gain buffer uses a rail-rail amplifier. In active imaging mode, the integration time is 80ns. Integrating current from 200nA to 4uA, this circuit shows the nonlinearity is less than 1%. In passive imaging mode, the integration time is 150ns. Integrating current from 1nA to 20nA shows the nonlinearity less than 1%.

  16. Deformable M-Reps for 3D Medical Image Segmentation.

    PubMed

    Pizer, Stephen M; Fletcher, P Thomas; Joshi, Sarang; Thall, Andrew; Chen, James Z; Fridman, Yonatan; Fritsch, Daniel S; Gash, Graham; Glotzer, John M; Jiroutek, Michael R; Lu, Conglin; Muller, Keith E; Tracton, Gregg; Yushkevich, Paul; Chaney, Edward L

    2003-11-01

    M-reps (formerly called DSLs) are a multiscale medial means for modeling and rendering 3D solid geometry. They are particularly well suited to model anatomic objects and in particular to capture prior geometric information effectively in deformable models segmentation approaches. The representation is based on figural models, which define objects at coarse scale by a hierarchy of figures - each figure generally a slab representing a solid region and its boundary simultaneously. This paper focuses on the use of single figure models to segment objects of relatively simple structure. A single figure is a sheet of medial atoms, which is interpolated from the model formed by a net, i.e., a mesh or chain, of medial atoms (hence the name m-reps), each atom modeling a solid region via not only a position and a width but also a local figural frame giving figural directions and an object angle between opposing, corresponding positions on the boundary implied by the m-rep. The special capability of an m-rep is to provide spatial and orientational correspondence between an object in two different states of deformation. This ability is central to effective measurement of both geometric typicality and geometry to image match, the two terms of the objective function optimized in segmentation by deformable models. The other ability of m-reps central to effective segmentation is their ability to support segmentation at multiple levels of scale, with successively finer precision. Objects modeled by single figures are segmented first by a similarity transform augmented by object elongation, then by adjustment of each medial atom, and finally by displacing a dense sampling of the m-rep implied boundary. While these models and approaches also exist in 2D, we focus on 3D objects. The segmentation of the kidney from CT and the hippocampus from MRI serve as the major examples in this paper. The accuracy of segmentation as compared to manual, slice-by-slice segmentation is reported.

  17. 3D imaging of enzymes working in situ.

    PubMed

    Jamme, F; Bourquin, D; Tawil, G; Viksø-Nielsen, A; Buléon, A; Réfrégiers, M

    2014-06-01

    Today, development of slowly digestible food with positive health impact and production of biofuels is a matter of intense research. The latter is achieved via enzymatic hydrolysis of starch or biomass such as lignocellulose. Free label imaging, using UV autofluorescence, provides a great tool to follow one single enzyme when acting on a non-UV-fluorescent substrate. In this article, we report synchrotron DUV fluorescence in 3-dimensional imaging to visualize in situ the diffusion of enzymes on solid substrate. The degradation pathway of single starch granules by two amylases optimized for biofuel production and industrial starch hydrolysis was followed by tryptophan autofluorescence (excitation at 280 nm, emission filter at 350 nm). The new setup has been specially designed and developed for a 3D representation of the enzyme-substrate interaction during hydrolysis. Thus, this tool is particularly effective for improving knowledge and understanding of enzymatic hydrolysis of solid substrates such as starch and lignocellulosic biomass. It could open up the way to new routes in the field of green chemistry and sustainable development, that is, in biotechnology, biorefining, or biofuels. PMID:24796213

  18. Complex adaptation-based LDR image rendering for 3D image reconstruction

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Hak; Kwon, Hyuk-Ju; Sohng, Kyu-Ik

    2014-07-01

    A low-dynamic tone-compression technique is developed for realistic image rendering that can make three-dimensional (3D) images similar to realistic scenes by overcoming brightness dimming in the 3D display mode. The 3D surround provides varying conditions for image quality, illuminant adaptation, contrast, gamma, color, sharpness, and so on. In general, gain/offset adjustment, gamma compensation, and histogram equalization have performed well in contrast compression; however, as a result of signal saturation and clipping effects, image details are removed and information is lost on bright and dark areas. Thus, an enhanced image mapping technique is proposed based on space-varying image compression. The performance of contrast compression is enhanced with complex adaptation in a 3D viewing surround combining global and local adaptation. Evaluating local image rendering in view of tone and color expression, noise reduction, and edge compensation confirms that the proposed 3D image-mapping model can compensate for the loss of image quality in the 3D mode.

  19. A simple, low-cost conductive composite material for 3D printing of electronic sensors.

    PubMed

    Leigh, Simon J; Bradley, Robert J; Purssell, Christopher P; Billson, Duncan R; Hutchins, David A

    2012-01-01

    3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes ('rapid prototyping') before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term 'carbomorph' and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes. PMID:23185319

  20. A simple, low-cost conductive composite material for 3D printing of electronic sensors.

    PubMed

    Leigh, Simon J; Bradley, Robert J; Purssell, Christopher P; Billson, Duncan R; Hutchins, David A

    2012-01-01

    3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes ('rapid prototyping') before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term 'carbomorph' and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes.

  1. A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors

    PubMed Central

    Leigh, Simon J.; Bradley, Robert J.; Purssell, Christopher P.; Billson, Duncan R.; Hutchins, David A.

    2012-01-01

    3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes (‘rapid prototyping’) before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term ‘carbomorph’ and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes. PMID:23185319

  2. Analysis and dynamic 3D visualization of cerebral blood flow combining 3D and 4D MR image sequences

    NASA Astrophysics Data System (ADS)

    Forkert, Nils Daniel; Säring, Dennis; Fiehler, Jens; Illies, Till; Möller, Dietmar; Handels, Heinz

    2009-02-01

    In this paper we present a method for the dynamic visualization of cerebral blood flow. Spatio-temporal 4D magnetic resonance angiography (MRA) image datasets and 3D MRA datasets with high spatial resolution were acquired for the analysis of arteriovenous malformations (AVMs). One of the main tasks is the combination of the information of the 3D and 4D MRA image sequences. Initially, in the 3D MRA dataset the vessel system is segmented and a 3D surface model is generated. Then, temporal intensity curves are analyzed voxelwise in the 4D MRA image sequences. A curve fitting of the temporal intensity curves to a patient individual reference curve is used to extract the bolus arrival times in the 4D MRA sequences. After non-linear registration of both MRA datasets the extracted hemodynamic information is transferred to the surface model where the time points of inflow can be visualized color coded dynamically over time. The dynamic visualizations computed using the curve fitting method for the estimation of the bolus arrival times were rated superior compared to those computed using conventional approaches for bolus arrival time estimation. In summary the procedure suggested allows a dynamic visualization of the individual hemodynamic situation and better understanding during the visual evaluation of cerebral vascular diseases.

  3. Improvements of 3-D image quality in integral display by reducing distortion errors

    NASA Astrophysics Data System (ADS)

    Kawakita, Masahiro; Sasaki, Hisayuki; Arai, Jun; Okano, Fumio; Suehiro, Koya; Haino, Yasuyuki; Yoshimura, Makoto; Sato, Masahito

    2008-02-01

    An integral three-dimensional (3-D) system based on the principle of integral photography can display natural 3-D images. We studied ways of improving the resolution and viewing angle of 3-D images by using extremely highresolution (EHR) video in an integral 3-D video system. One of the problems with the EHR projection-type integral 3-D system is that positional errors appear between the elemental image and the elemental lens when there is geometric distortion in the projected image. We analyzed the relationships between the geometric distortion in the elemental images caused by the projection lens and the spatial distortion of the reconstructed 3-D image. As a result, we clarified that 3-D images reconstructed far from the lens array were greatly affected by the distortion of the elemental images, and that the 3-D images were significantly distorted in the depth direction at the corners of the displayed images. Moreover, we developed a video signal processor that electrically compensated the distortion in the elemental images for an EHR projection-type integral 3-D system. Therefore, the distortion in the displayed 3-D image was removed, and the viewing angle of the 3-D image was expanded to nearly double that obtained with the previous prototype system.

  4. 3D image analysis of a volcanic deposit

    NASA Astrophysics Data System (ADS)

    de Witte, Y.; Vlassenbroeck, J.; Vandeputte, K.; Dewanckele, J.; Cnudde, V.; van Hoorebeke, L.; Ernst, G.; Jacobs, P.

    2009-04-01

    During the last decades, X-ray micro CT has become a well established technique for non-destructive testing in a wide variety of research fields. Using a series of X-ray transmission images of the sample at different projection angles, a stack of 2D cross-sections is reconstructed, resulting in a 3D volume representing the X-ray attenuation coefficients of the sample. Since the attenuation coefficient of a material depends on its density and atomic number, this volume provides valuable information about the internal structure and composition of the sample. Although much qualitative information can be derived directly from this 3D volume, researchers usually require more quantitative results to be able to provide a full characterization of the sample under investigation. This type of information needs to be retrieved using specialized image processing software. For most samples, it is imperative that this processing is performed on the 3D volume as a whole, since a sequence of 2D cross sections usually forms an inadequate approximation of the actual structure. The complete processing of a volume consists of three sequential steps. First, the volume is segmented into a set of objects. What these objects represent depends on what property of the sample needs to be analysed. The objects can be for instance concavities, dense inclusions or the matrix of the sample. When dealing with noisy data, it might be necessary to filter the data before applying the segmentation. The second step is the separation of connected objects into a set of smaller objects. This is necessary when objects appear to be connected because of the limited resolution and contrast of the scan. Separation can also be useful when the sample contains a network structure and one wants to study the individual cells of the network. The third and last step consists of the actual analysis of the various objects to derive the different parameters of interest. While some parameters require extensive

  5. Investigation of leakage current and breakdown voltage in irradiated double-sided 3D silicon sensors

    NASA Astrophysics Data System (ADS)

    Dalla Betta, G.-F.; Ayllon, N.; Boscardin, M.; Hoeferkamp, M.; Mattiazzo, S.; McDuff, H.; Mendicino, R.; Povoli, M.; Seidel, S.; Sultan, D. M. S.; Zorzi, N.

    2016-09-01

    We report on an experimental study aimed at gaining deeper insight into the leakage current and breakdown voltage of irradiated double-sided 3D silicon sensors from FBK, so as to improve both the design and the fabrication technology for use at future hadron colliders such as the High Luminosity LHC. Several 3D diode samples of different technologies and layout are considered, as well as several irradiations with different particle types. While the leakage current follows the expected linear trend with radiation fluence, the breakdown voltage is found to depend on both the bulk damage and the surface damage, and its values can vary significantly with sensor geometry and process details.

  6. 3-D ultrasonic strain imaging based on a linear scanning system.

    PubMed

    Huang, Qinghua; Xie, Bo; Ye, Pengfei; Chen, Zhaohong

    2015-02-01

    This paper introduces a 3-D strain imaging method based on a freehand linear scanning mode. We designed a linear sliding track with a position sensor and a height-adjustable holder to constrain the movement of an ultrasound probe in a freehand manner. When moving the probe along the sliding track, the corresponding positional measures for the probe are transmitted via a wireless communication module based on Bluetooth in real time. In a single examination, the probe is scanned in two sweeps in which the height of the probe is adjusted by the holder to collect the pre- and postcompression radio-frequency echoes, respectively. To generate a 3-D strain image, a volume cubic in which the voxels denote relative strains for tissues is defined according to the range of the two sweeps. With respect to the post-compression frames, several slices in the volume are determined and the pre-compression frames are re-sampled to precisely correspond to the post-compression frames. Thereby, a strain estimation method based on minimizing a cost function using dynamic programming is used to obtain the 2-D strain image for each pair of frames from the re-sampled pre-compression sweep and the post-compression sweep, respectively. A software system is developed for volume reconstruction, visualization, and measurement of the 3-D strain images. The experimental results show that high-quality 3-D strain images of phantom and human tissues can be generated by the proposed method, indicating that the proposed system can be applied for real clinical applications (e.g., musculoskeletal assessments).

  7. 3D imaging of nanomaterials by discrete tomography.

    PubMed

    Batenburg, K J; Bals, S; Sijbers, J; Kübel, C; Midgley, P A; Hernandez, J C; Kaiser, U; Encina, E R; Coronado, E A; Van Tendeloo, G

    2009-05-01

    The field of discrete tomography focuses on the reconstruction of samples that consist of only a few different materials. Ideally, a three-dimensional (3D) reconstruction of such a sample should contain only one grey level for each of the compositions in the sample. By exploiting this property in the reconstruction algorithm, either the quality of the reconstruction can be improved significantly, or the number of required projection images can be reduced. The discrete reconstruction typically contains fewer artifacts and does not have to be segmented, as it already contains one grey level for each composition. Recently, a new algorithm, called discrete algebraic reconstruction technique (DART), has been proposed that can be used effectively on experimental electron tomography datasets. In this paper, we propose discrete tomography as a general reconstruction method for electron tomography in materials science. We describe the basic principles of DART and show that it can be applied successfully to three different types of samples, consisting of embedded ErSi(2) nanocrystals, a carbon nanotube grown from a catalyst particle and a single gold nanoparticle, respectively. PMID:19269094

  8. 3D Soil Images Structure Quantification using Relative Entropy

    NASA Astrophysics Data System (ADS)

    Tarquis, A. M.; Gonzalez-Nieto, P. L.; Bird, N. R. A.

    2012-04-01

    Soil voids manifest the cumulative effect of local pedogenic processes and ultimately influence soil behavior - especially as it pertains to aeration and hydrophysical properties. Because of the relatively weak attenuation of X-rays by air, compared with liquids or solids, non-disruptive CT scanning has become a very attractive tool for generating three-dimensional imagery of soil voids. One of the main steps involved in this analysis is the thresholding required to transform the original (greyscale) images into the type of binary representation (e.g., pores in white, solids in black) needed for fractal analysis or simulation with Lattice-Boltzmann models (Baveye et al., 2010). The objective of the current work is to apply an innovative approach to quantifying soil voids and pore networks in original X-ray CT imagery using Relative Entropy (Bird et al., 2006; Tarquis et al., 2008). These will be illustrated using typical imagery representing contrasting soil structures. Particular attention will be given to the need to consider the full 3D context of the CT imagery, as well as scaling issues, in the application and interpretation of this index.

  9. Inertial Sensor-Based Touch and Shake Metaphor for Expressive Control of 3D Virtual Avatars

    PubMed Central

    Patil, Shashidhar; Chintalapalli, Harinadha Reddy; Kim, Dubeom; Chai, Youngho

    2015-01-01

    In this paper, we present an inertial sensor-based touch and shake metaphor for expressive control of a 3D virtual avatar in a virtual environment. An intuitive six degrees-of-freedom wireless inertial motion sensor is used as a gesture and motion control input device with a sensor fusion algorithm. The algorithm enables user hand motions to be tracked in 3D space via magnetic, angular rate, and gravity sensors. A quaternion-based complementary filter is implemented to reduce noise and drift. An algorithm based on dynamic time-warping is developed for efficient recognition of dynamic hand gestures with real-time automatic hand gesture segmentation. Our approach enables the recognition of gestures and estimates gesture variations for continuous interaction. We demonstrate the gesture expressivity using an interactive flexible gesture mapping interface for authoring and controlling a 3D virtual avatar and its motion by tracking user dynamic hand gestures. This synthesizes stylistic variations in a 3D virtual avatar, producing motions that are not present in the motion database using hand gesture sequences from a single inertial motion sensor. PMID:26094629

  10. Inertial Sensor-Based Touch and Shake Metaphor for Expressive Control of 3D Virtual Avatars.

    PubMed

    Patil, Shashidhar; Chintalapalli, Harinadha Reddy; Kim, Dubeom; Chai, Youngho

    2015-01-01

    In this paper, we present an inertial sensor-based touch and shake metaphor for expressive control of a 3D virtual avatar in a virtual environment. An intuitive six degrees-of-freedom wireless inertial motion sensor is used as a gesture and motion control input device with a sensor fusion algorithm. The algorithm enables user hand motions to be tracked in 3D space via magnetic, angular rate, and gravity sensors. A quaternion-based complementary filter is implemented to reduce noise and drift. An algorithm based on dynamic time-warping is developed for efficient recognition of dynamic hand gestures with real-time automatic hand gesture segmentation. Our approach enables the recognition of gestures and estimates gesture variations for continuous interaction. We demonstrate the gesture expressivity using an interactive flexible gesture mapping interface for authoring and controlling a 3D virtual avatar and its motion by tracking user dynamic hand gestures. This synthesizes stylistic variations in a 3D virtual avatar, producing motions that are not present in the motion database using hand gesture sequences from a single inertial motion sensor. PMID:26094629

  11. Automated 3D renal segmentation based on image partitioning

    NASA Astrophysics Data System (ADS)

    Yeghiazaryan, Varduhi; Voiculescu, Irina D.

    2016-03-01

    Despite several decades of research into segmentation techniques, automated medical image segmentation is barely usable in a clinical context, and still at vast user time expense. This paper illustrates unsupervised organ segmentation through the use of a novel automated labelling approximation algorithm followed by a hypersurface front propagation method. The approximation stage relies on a pre-computed image partition forest obtained directly from CT scan data. We have implemented all procedures to operate directly on 3D volumes, rather than slice-by-slice, because our algorithms are dimensionality-independent. The results picture segmentations which identify kidneys, but can easily be extrapolated to other body parts. Quantitative analysis of our automated segmentation compared against hand-segmented gold standards indicates an average Dice similarity coefficient of 90%. Results were obtained over volumes of CT data with 9 kidneys, computing both volume-based similarity measures (such as the Dice and Jaccard coefficients, true positive volume fraction) and size-based measures (such as the relative volume difference). The analysis considered both healthy and diseased kidneys, although extreme pathological cases were excluded from the overall count. Such cases are difficult to segment both manually and automatically due to the large amplitude of Hounsfield unit distribution in the scan, and the wide spread of the tumorous tissue inside the abdomen. In the case of kidneys that have maintained their shape, the similarity range lies around the values obtained for inter-operator variability. Whilst the procedure is fully automated, our tools also provide a light level of manual editing.

  12. Deformable M-Reps for 3D Medical Image Segmentation

    PubMed Central

    Pizer, Stephen M.; Fletcher, P. Thomas; Joshi, Sarang; Thall, Andrew; Chen, James Z.; Fridman, Yonatan; Fritsch, Daniel S.; Gash, Graham; Glotzer, John M.; Jiroutek, Michael R.; Lu, Conglin; Muller, Keith E.; Tracton, Gregg; Yushkevich, Paul; Chaney, Edward L.

    2013-01-01

    M-reps (formerly called DSLs) are a multiscale medial means for modeling and rendering 3D solid geometry. They are particularly well suited to model anatomic objects and in particular to capture prior geometric information effectively in deformable models segmentation approaches. The representation is based on figural models, which define objects at coarse scale by a hierarchy of figures – each figure generally a slab representing a solid region and its boundary simultaneously. This paper focuses on the use of single figure models to segment objects of relatively simple structure. A single figure is a sheet of medial atoms, which is interpolated from the model formed by a net, i.e., a mesh or chain, of medial atoms (hence the name m-reps), each atom modeling a solid region via not only a position and a width but also a local figural frame giving figural directions and an object angle between opposing, corresponding positions on the boundary implied by the m-rep. The special capability of an m-rep is to provide spatial and orientational correspondence between an object in two different states of deformation. This ability is central to effective measurement of both geometric typicality and geometry to image match, the two terms of the objective function optimized in segmentation by deformable models. The other ability of m-reps central to effective segmentation is their ability to support segmentation at multiple levels of scale, with successively finer precision. Objects modeled by single figures are segmented first by a similarity transform augmented by object elongation, then by adjustment of each medial atom, and finally by displacing a dense sampling of the m-rep implied boundary. While these models and approaches also exist in 2D, we focus on 3D objects. The segmentation of the kidney from CT and the hippocampus from MRI serve as the major examples in this paper. The accuracy of segmentation as compared to manual, slice-by-slice segmentation is reported. PMID

  13. Assessing 3D tunnel position in ACL reconstruction using a novel single image 3D-2D registration

    NASA Astrophysics Data System (ADS)

    Kang, X.; Yau, W. P.; Otake, Y.; Cheung, P. Y. S.; Hu, Y.; Taylor, R. H.

    2012-02-01

    The routinely used procedure for evaluating tunnel positions following anterior cruciate ligament (ACL) reconstructions based on standard X-ray images is known to pose difficulties in terms of obtaining accurate measures, especially in providing three-dimensional tunnel positions. This is largely due to the variability in individual knee joint pose relative to X-ray plates. Accurate results were reported using postoperative CT. However, its extensive usage in clinical routine is hampered by its major requirement of having CT scans of individual patients, which is not available for most ACL reconstructions. These difficulties are addressed through the proposed method, which aligns a knee model to X-ray images using our novel single-image 3D-2D registration method and then estimates the 3D tunnel position. In the proposed method, the alignment is achieved by using a novel contour-based 3D-2D registration method wherein image contours are treated as a set of oriented points. However, instead of using some form of orientation weighting function and multiplying it with a distance function, we formulate the 3D-2D registration as a probability density estimation using a mixture of von Mises-Fisher-Gaussian (vMFG) distributions and solve it through an expectation maximization (EM) algorithm. Compared with the ground-truth established from postoperative CT, our registration method in an experiment using a plastic phantom showed accurate results with errors of (-0.43°+/-1.19°, 0.45°+/-2.17°, 0.23°+/-1.05°) and (0.03+/-0.55, -0.03+/-0.54, -2.73+/-1.64) mm. As for the entry point of the ACL tunnel, one of the key measurements, it was obtained with high accuracy of 0.53+/-0.30 mm distance errors.

  14. 3-D Adaptive Sparsity Based Image Compression with Applications to Optical Coherence Tomography

    PubMed Central

    Fang, Leyuan; Li, Shutao; Kang, Xudong; Izatt, Joseph A.; Farsiu, Sina

    2015-01-01

    We present a novel general-purpose compression method for tomographic images, termed 3D adaptive sparse representation based compression (3D-ASRC). In this paper, we focus on applications of 3D-ASRC for the compression of ophthalmic 3D optical coherence tomography (OCT) images. The 3D-ASRC algorithm exploits correlations among adjacent OCT images to improve compression performance, yet is sensitive to preserving their differences. Due to the inherent denoising mechanism of the sparsity based 3D-ASRC, the quality of the compressed images are often better than the raw images they are based on. Experiments on clinical-grade retinal OCT images demonstrate the superiority of the proposed 3D-ASRC over other well-known compression methods. PMID:25561591

  15. Characterizing the influence of surface roughness and inclination on 3D vision sensor performance

    NASA Astrophysics Data System (ADS)

    Hodgson, John R.; Kinnell, Peter; Justham, Laura; Jackson, Michael R.

    2015-12-01

    This paper reports a methodology to evaluate the performance of 3D scanners, focusing on the influence of surface roughness and inclination on the number of acquired data points and measurement noise. Point clouds were captured of samples mounted on a robotic pan-tilt stage using an Ensenso active stereo 3D scanner. The samples have isotropic texture and range in surface roughness (Ra) from 0.09 to 0.46 μm. By extracting the point cloud quality indicators, point density and standard deviation, at a multitude of inclinations, maps of scanner performance are created. These maps highlight the performance envelopes of the sensor, the aim being to predict and compare scanner performance on real-world surfaces, rather than idealistic artifacts. The results highlight the need to characterize 3D vision sensors by their measurement limits as well as best-case performance, determined either by theoretical calculation or measurements in ideal circumstances.

  16. Fusing inertial sensor data in an extended Kalman filter for 3D camera tracking.

    PubMed

    Erdem, Arif Tanju; Ercan, Ali Özer

    2015-02-01

    In a setup where camera measurements are used to estimate 3D egomotion in an extended Kalman filter (EKF) framework, it is well-known that inertial sensors (i.e., accelerometers and gyroscopes) are especially useful when the camera undergoes fast motion. Inertial sensor data can be fused at the EKF with the camera measurements in either the correction stage (as measurement inputs) or the prediction stage (as control inputs). In general, only one type of inertial sensor is employed in the EKF in the literature, or when both are employed they are both fused in the same stage. In this paper, we provide an extensive performance comparison of every possible combination of fusing accelerometer and gyroscope data as control or measurement inputs using the same data set collected at different motion speeds. In particular, we compare the performances of different approaches based on 3D pose errors, in addition to camera reprojection errors commonly found in the literature, which provides further insight into the strengths and weaknesses of different approaches. We show using both simulated and real data that it is always better to fuse both sensors in the measurement stage and that in particular, accelerometer helps more with the 3D position tracking accuracy, whereas gyroscope helps more with the 3D orientation tracking accuracy. We also propose a simulated data generation method, which is beneficial for the design and validation of tracking algorithms involving both camera and inertial measurement unit measurements in general.

  17. 3D-FBK Pixel Sensors: Recent Beam Tests Results with Irradiated Devices

    SciTech Connect

    Micelli, A.; Helle, K.; Sandaker, H.; Stugu, B.; Barbero, M.; Hugging, F.; Karagounis, M.; Kostyukhin, V.; Kruger, H.; Tsung, J.W.; Wermes, N.; Capua, M.; Fazio, S.; Mastroberardino, A.; Susinno, G.; Gallrapp, C.; Di Girolamo, B.; Dobos, D.; La Rosa, A.; Pernegger, H.; Roe, S.; /CERN /Prague, Tech. U. /Prague, Tech. U. /Freiburg U. /Freiburg U. /Freiburg U. /INFN, Genoa /Genoa U. /INFN, Genoa /Genoa U. /INFN, Genoa /Genoa U. /INFN, Genoa /Genoa U. /INFN, Genoa /Genoa U. /Glasgow U. /Glasgow U. /Glasgow U. /Hawaii U. /Barcelona, IFAE /Barcelona, IFAE /LBL, Berkeley /Barcelona, IFAE /LBL, Berkeley /LBL, Berkeley /Manchester U. /Manchester U. /Manchester U. /Manchester U. /Manchester U. /Manchester U. /Manchester U. /Manchester U. /Manchester U. /New Mexico U. /New Mexico U. /Oslo U. /Oslo U. /Oslo U. /Oslo U. /Oslo U. /SLAC /SLAC /SLAC /SLAC /SLAC /SLAC /SLAC /SLAC /SLAC /SUNY, Stony Brook /SUNY, Stony Brook /SUNY, Stony Brook /INFN, Trento /Trento U. /INFN, Trento /Trento U. /INFN, Trento /Trento U. /INFN, Trieste /Udine U. /INFN, Trieste /Udine U. /INFN, Trieste /Udine U. /INFN, Trieste /Udine U. /INFN, Trieste /Udine U. /INFN, Trieste /Udine U. /Barcelona, Inst. Microelectron. /Barcelona, Inst. Microelectron. /Barcelona, Inst. Microelectron. /Fond. Bruno Kessler, Trento /Fond. Bruno Kessler, Trento /Fond. Bruno Kessler, Trento /Fond. Bruno Kessler, Trento /Fond. Bruno Kessler, Trento /SINTEF, Oslo /SINTEF, Oslo /SINTEF, Oslo /SINTEF, Oslo /VTT Electronics, Espoo /VTT Electronics, Espoo

    2012-04-30

    The Pixel Detector is the innermost part of the ATLAS experiment tracking device at the Large Hadron Collider, and plays a key role in the reconstruction of the primary vertices from the collisions and secondary vertices produced by short-lived particles. To cope with the high level of radiation produced during the collider operation, it is planned to add to the present three layers of silicon pixel sensors which constitute the Pixel Detector, an additional layer (Insertable B-Layer, or IBL) of sensors. 3D silicon sensors are one of the technologies which are under study for the IBL. 3D silicon technology is an innovative combination of very-large-scale integration and Micro-Electro-Mechanical-Systems where electrodes are fabricated inside the silicon bulk instead of being implanted on the wafer surfaces. 3D sensors, with electrodes fully or partially penetrating the silicon substrate, are currently fabricated at different processing facilities in Europe and USA. This paper reports on the 2010 June beam test results for irradiated 3D devices produced at FBK (Trento, Italy). The performance of these devices, all bump-bonded with the ATLAS pixel FE-I3 read-out chip, is compared to that observed before irradiation in a previous beam test.

  18. A volumetric sensor for real-time 3D mapping and robot navigation

    NASA Astrophysics Data System (ADS)

    Fournier, Jonathan; Ricard, Benoit; Laurendeau, Denis

    2006-05-01

    The use of robots for (semi-) autonomous operations in complex terrains such as urban environments poses difficult mobility, mapping, and perception challenges. To be able to work efficiently, a robot should be provided with sensors and software such that it can perceive and analyze the world in 3D. Real-time 3D sensing and perception in this operational context are paramount. To address these challenges, DRDC Valcartier has developed over the past years a compact sensor that combines a wide baseline stereo camera and a laser scanner with a full 360 degree azimuth and 55 degree elevation field of view allowing the robot to view and manage overhang obstacles as well as obstacles at ground level. Sensing in 3D is common but to efficiently navigate and work in complex terrain, the robot should also perceive, decide and act in three dimensions. Therefore, 3D information should be preserved and exploited in all steps of the process. To achieve this, we use a multiresolution octree to store the acquired data, allowing mapping of large environments while keeping the representation compact and memory efficient. Ray tracing is used to build and update the 3D occupancy model. This model is used, via a temporary 2.5D map, for navigation, obstacle avoidance and efficient frontier-based exploration. This paper describes the volumetric sensor concept, describes its design features and presents an overview of the 3D software framework that allows 3D information persistency through all computation steps. Simulation and real-world experiments are presented at the end of the paper to demonstrate the key elements of our approach.

  19. Dense 3d Point Cloud Generation from Uav Images from Image Matching and Global Optimazation

    NASA Astrophysics Data System (ADS)

    Rhee, S.; Kim, T.

    2016-06-01

    3D spatial information from unmanned aerial vehicles (UAV) images is usually provided in the form of 3D point clouds. For various UAV applications, it is important to generate dense 3D point clouds automatically from over the entire extent of UAV images. In this paper, we aim to apply image matching for generation of local point clouds over a pair or group of images and global optimization to combine local point clouds over the whole region of interest. We tried to apply two types of image matching, an object space-based matching technique and an image space-based matching technique, and to compare the performance of the two techniques. The object space-based matching used here sets a list of candidate height values for a fixed horizontal position in the object space. For each height, its corresponding image point is calculated and similarity is measured by grey-level correlation. The image space-based matching used here is a modified relaxation matching. We devised a global optimization scheme for finding optimal pairs (or groups) to apply image matching, defining local match region in image- or object- space, and merging local point clouds into a global one. For optimal pair selection, tiepoints among images were extracted and stereo coverage network was defined by forming a maximum spanning tree using the tiepoints. From experiments, we confirmed that through image matching and global optimization, 3D point clouds were generated successfully. However, results also revealed some limitations. In case of image-based matching results, we observed some blanks in 3D point clouds. In case of object space-based matching results, we observed more blunders than image-based matching ones and noisy local height variations. We suspect these might be due to inaccurate orientation parameters. The work in this paper is still ongoing. We will further test our approach with more precise orientation parameters.

  20. Segmented images and 3D images for studying the anatomical structures in MRIs

    NASA Astrophysics Data System (ADS)

    Lee, Yong Sook; Chung, Min Suk; Cho, Jae Hyun

    2004-05-01

    For identifying the pathological findings in MRIs, the anatomical structures in MRIs should be identified in advance. For studying the anatomical structures in MRIs, an education al tool that includes the horizontal, coronal, sagittal MRIs of entire body, corresponding segmented images, 3D images, and browsing software is necessary. Such an educational tool, however, is hard to obtain. Therefore, in this research, such an educational tool which helps medical students and doctors study the anatomical structures in MRIs was made as follows. A healthy, young Korean male adult with standard body shape was selected. Six hundred thirteen horizontal MRIs of the entire body were scanned and inputted to the personal computer. Sixty anatomical structures in the horizontal MRIs were segmented to make horizontal segmented images. Coronal, sagittal MRIs and coronal, sagittal segmented images were made. 3D images of anatomical structures in the segmented images were reconstructed by surface rendering method. Browsing software of the MRIs, segmented images, and 3D images was composed. This educational tool that includes horizontal, coronal, sagittal MRIs of entire body, corresponding segmented images, 3D images, and browsing software is expected to help medical students and doctors study anatomical structures in MRIs.

  1. 3-D Reconstruction From 2-D Radiographic Images and Its Application to Clinical Veterinary Medicine

    NASA Astrophysics Data System (ADS)

    Hamamoto, Kazuhiko; Sato, Motoyoshi

    3D imaging technique is very important and indispensable in diagnosis. The main stream of the technique is one in which 3D image is reconstructed from a set of slice images, such as X-ray CT and MRI. However, these systems require large space and high costs. On the other hand, a low cost and small size 3D imaging system is needed in clinical veterinary medicine, for example, in the case of diagnosis in X-ray car or pasture area. We propose a novel 3D imaging technique using 2-D X-ray radiographic images. This system can be realized by cheaper system than X-ray CT and enables to get 3D image in X-ray car or portable X-ray equipment. In this paper, a 3D visualization technique from 2-D radiographic images is proposed and several reconstructions are shown. These reconstructions are evaluated by veterinarians.

  2. Automatic 3d Building Reconstruction from a Dense Image Matching Dataset

    NASA Astrophysics Data System (ADS)

    McClune, Andrew P.; Mills, Jon P.; Miller, Pauline E.; Holland, David A.

    2016-06-01

    Over the last 20 years the demand for three dimensional (3D) building models has resulted in a vast amount of research being conducted in attempts to automate the extraction and reconstruction of models from airborne sensors. Recent results have shown that current methods tend to favour planar fitting procedures from lidar data, which are able to successfully reconstruct simple roof structures automatically but fail to reconstruct more complex structures or roofs with small artefacts. Current methods have also not fully explored the potential of recent developments in digital photogrammetry. Large format digital aerial cameras can now capture imagery with increased overlap and a higher spatial resolution, increasing the number of pixel correspondences between images. Every pixel in each stereo pair can also now be matched using per-pixel algorithms, which has given rise to the approach known as dense image matching. This paper presents an approach to 3D building reconstruction to try and overcome some of the limitations of planar fitting procedures. Roof vertices, extracted from true-orthophotos using edge detection, are refined and converted to roof corner points. By determining the connection between extracted corner points, a roof plane can be defined as a closed-cycle of points. Presented results demonstrate the potential of this method for the reconstruction of complex 3D building models at CityGML LoD2 specification.

  3. 3-D readout-electronics packaging for high-bandwidth massively paralleled imager

    DOEpatents

    Kwiatkowski, Kris; Lyke, James

    2007-12-18

    Dense, massively parallel signal processing electronics are co-packaged behind associated sensor pixels. Microchips containing a linear or bilinear arrangement of photo-sensors, together with associated complex electronics, are integrated into a simple 3-D structure (a "mirror cube"). An array of photo-sensitive cells are disposed on a stacked CMOS chip's surface at a 45.degree. angle from light reflecting mirror surfaces formed on a neighboring CMOS chip surface. Image processing electronics are held within the stacked CMOS chip layers. Electrical connections couple each of said stacked CMOS chip layers and a distribution grid, the connections for distributing power and signals to components associated with each stacked CSMO chip layer.

  4. Fiber optic vibration sensor for high-power electric machines realized using 3D printing technology

    NASA Astrophysics Data System (ADS)

    Igrec, Bojan; Bosiljevac, Marko; Sipus, Zvonimir; Babic, Dubravko; Rudan, Smiljko

    2016-03-01

    The objective of this work was to demonstrate a lightweight and inexpensive fiber-optic vibration sensor, built using 3D printing technology, for high-power electric machines and similar applications. The working principle is based on modulating the light intensity using a blade attached to a bendable membrane. The sensor prototype was manufactured using PolyJet Matrix technology with DM 8515 Grey 35 Polymer. The sensor shows linear response, expected bandwidth (< 150 Hz), and from our measurements we estimated the damping ratio for used polymer to be ζ ≍ 0.019. The developed prototype is simple to assemble, adjust, calibrate and repair.

  5. A novel sensor system for 3D face scanning based on infrared coded light

    NASA Astrophysics Data System (ADS)

    Modrow, Daniel; Laloni, Claudio; Doemens, Guenter; Rigoll, Gerhard

    2008-02-01

    In this paper we present a novel sensor system for three-dimensional face scanning applications. Its operating principle is based on active triangulation with a color coded light approach. As it is implemented in the near infrared band, the used light is invisible for human perception. Though the proposed sensor is primarily designed for face scanning and biometric applications, its performance characteristics are beneficial for technical applications as well. The acquisition of 3d data is real-time capable, provides accurate and high resolution depthmaps and shows high robustness against ambient light. Hence most of the limiting factors of other sensors for 3d and face scanning applications are eliminated, such as blinding and annoying light patterns, motion constraints and highly restricted scenarios due to ambient light constraints.

  6. 3D silicon sensors with variable electrode depth for radiation hard high resolution particle tracking

    NASA Astrophysics Data System (ADS)

    Da Vià, C.; Borri, M.; Dalla Betta, G.; Haughton, I.; Hasi, J.; Kenney, C.; Povoli, M.; Mendicino, R.

    2015-04-01

    3D sensors, with electrodes micro-processed inside the silicon bulk using Micro-Electro-Mechanical System (MEMS) technology, were industrialized in 2012 and were installed in the first detector upgrade at the LHC, the ATLAS IBL in 2014. They are the radiation hardest sensors ever made. A new idea is now being explored to enhance the three-dimensional nature of 3D sensors by processing collecting electrodes at different depths inside the silicon bulk. This technique uses the electric field strength to suppress the charge collection effectiveness of the regions outside the p-n electrodes' overlap. Evidence of this property is supported by test beam data of irradiated and non-irradiated devices bump-bonded with pixel readout electronics and simulations. Applications include High-Luminosity Tracking in the high multiplicity LHC forward regions. This paper will describe the technical advantages of this idea and the tracking application rationale.

  7. Traceable profilometry with a 3D nanopositioning unit and zero indicating sensors in compensation method

    NASA Astrophysics Data System (ADS)

    Hoffmann, J.; Weckenmann, A.

    2005-01-01

    Conventional 3D profilers suffer in their traceability and accuracy from nonlinearities of the 1D sensor (optical or tactile) and different measuring principles in the scanning plane compared to the sensor axis. These problems can be overcome using a traceable calibrated 3D positioning device combined with a probing system of negligible measuring range in compensation method. Drawback: reduced dynamics, because of the necessity of accelerated movement of the object to be measured in z-direction for compensating its varying height. Sensors with negligible measuring range to be used for this approach are an optical fixed focus sensor (SIOS GmbH, Germany) and a self-made scanning tunneling sensor without piezo scanner. The integration into the nanopositioning device is made according to a multisensor CMM with fixed and known positions of the sensors with respect to the machine coordinate system giving the possibility of using one sensor's data for navigating the other one. Main applications can be seen in measurement tasks where outstanding accuracy outrivals the need of high measurement speed, e.g. the calibration of step height and pitch standards for profilometry and also for SPM.

  8. Dual-view integral imaging 3D display using polarizer parallax barriers.

    PubMed

    Wu, Fei; Wang, Qiong-Hua; Luo, Cheng-Gao; Li, Da-Hai; Deng, Huan

    2014-04-01

    We propose a dual-view integral imaging (DVII) 3D display using polarizer parallax barriers (PPBs). The DVII 3D display consists of a display panel, a microlens array, and two PPBs. The elemental images (EIs) displayed on the left and right half of the display panel are captured from two different 3D scenes, respectively. The lights emitted from two kinds of EIs are modulated by the left and right half of the microlens array to present two different 3D images, respectively. A prototype of the DVII 3D display is developed, and the experimental results agree well with the theory.

  9. Free segmentation in rendered 3D images through synthetic impulse response in integral imaging

    NASA Astrophysics Data System (ADS)

    Martínez-Corral, M.; Llavador, A.; Sánchez-Ortiga, E.; Saavedra, G.; Javidi, B.

    2016-06-01

    Integral Imaging is a technique that has the capability of providing not only the spatial, but also the angular information of three-dimensional (3D) scenes. Some important applications are the 3D display and digital post-processing as for example, depth-reconstruction from integral images. In this contribution we propose a new reconstruction method that takes into account the integral image and a simplified version of the impulse response function (IRF) of the integral imaging (InI) system to perform a two-dimensional (2D) deconvolution. The IRF of an InI system has a periodic structure that depends directly on the axial position of the object. Considering different periods of the IRFs we recover by deconvolution the depth information of the 3D scene. An advantage of our method is that it is possible to obtain nonconventional reconstructions by considering alternative synthetic impulse responses. Our experiments show the feasibility of the proposed method.

  10. Implementation of wireless 3D stereo image capture system and 3D exaggeration algorithm for the region of interest

    NASA Astrophysics Data System (ADS)

    Ham, Woonchul; Song, Chulgyu; Lee, Kangsan; Badarch, Luubaatar

    2015-05-01

    In this paper, we introduce the mobile embedded system implemented for capturing stereo image based on two CMOS camera module. We use WinCE as an operating system and capture the stereo image by using device driver for CMOS camera interface and Direct Draw API functions. We aslo comments on the GPU hardware and CUDA programming for implementation of 3D exaggeraion algorithm for ROI by adjusting and synthesizing the disparity value of ROI (region of interest) in real time. We comment on the pattern of aperture for deblurring of CMOS camera module based on the Kirchhoff diffraction formula and clarify the reason why we can get more sharp and clear image by blocking some portion of aperture or geometric sampling. Synthesized stereo image is real time monitored on the shutter glass type three-dimensional LCD monitor and disparity values of each segment are analyzed to prove the validness of emphasizing effect of ROI.

  11. Quantitative 3-D imaging topogrammetry for telemedicine applications

    NASA Technical Reports Server (NTRS)

    Altschuler, Bruce R.

    1994-01-01

    The technology to reliably transmit high-resolution visual imagery over short to medium distances in real time has led to the serious considerations of the use of telemedicine, telepresence, and telerobotics in the delivery of health care. These concepts may involve, and evolve toward: consultation from remote expert teaching centers; diagnosis; triage; real-time remote advice to the surgeon; and real-time remote surgical instrument manipulation (telerobotics with virtual reality). Further extrapolation leads to teledesign and telereplication of spare surgical parts through quantitative teleimaging of 3-D surfaces tied to CAD/CAM devices and an artificially intelligent archival data base of 'normal' shapes. The ability to generate 'topogrames' or 3-D surface numerical tables of coordinate values capable of creating computer-generated virtual holographic-like displays, machine part replication, and statistical diagnostic shape assessment is critical to the progression of telemedicine. Any virtual reality simulation will remain in 'video-game' realm until realistic dimensional and spatial relational inputs from real measurements in vivo during surgeries are added to an ever-growing statistical data archive. The challenges of managing and interpreting this 3-D data base, which would include radiographic and surface quantitative data, are considerable. As technology drives toward dynamic and continuous 3-D surface measurements, presenting millions of X, Y, Z data points per second of flexing, stretching, moving human organs, the knowledge base and interpretive capabilities of 'brilliant robots' to work as a surgeon's tireless assistants becomes imaginable. The brilliant robot would 'see' what the surgeon sees--and more, for the robot could quantify its 3-D sensing and would 'see' in a wider spectral range than humans, and could zoom its 'eyes' from the macro world to long-distance microscopy. Unerring robot hands could rapidly perform machine-aided suturing with

  12. 3D mapping of buried underworld infrastructure using dynamic Bayesian network based multi-sensory image data fusion

    NASA Astrophysics Data System (ADS)

    Dutta, Ritaban; Cohn, Anthony G.; Muggleton, Jen M.

    2013-05-01

    The successful operation of buried infrastructure within urban environments is fundamental to the conservation of modern living standards. In this paper a novel multi-sensor image fusion framework has been proposed and investigated using dynamic Bayesian network for automatic detection of buried underworld infrastructure. Experimental multi-sensors images were acquired for a known buried plastic water pipe using Vibro-acoustic sensor based location methods and Ground Penetrating Radar imaging system. Computationally intelligent conventional image processing techniques were used to process three types of sensory images. Independently extracted depth and location information from different images regarding the target pipe were fused together using dynamic Bayesian network to predict the maximum probable location and depth of the pipe. The outcome from this study was very encouraging as it was able to detect the target pipe with high accuracy compared with the currently existing pipe survey map. The approach was also applied successfully to produce a best probable 3D buried asset map.

  13. 3D fingerprint imaging system based on full-field fringe projection profilometry

    NASA Astrophysics Data System (ADS)

    Huang, Shujun; Zhang, Zonghua; Zhao, Yan; Dai, Jie; Chen, Chao; Xu, Yongjia; Zhang, E.; Xie, Lili

    2014-01-01

    As an unique, unchangeable and easily acquired biometrics, fingerprint has been widely studied in academics and applied in many fields over the years. The traditional fingerprint recognition methods are based on the obtained 2D feature of fingerprint. However, fingerprint is a 3D biological characteristic. The mapping from 3D to 2D loses 1D information and causes nonlinear distortion of the captured fingerprint. Therefore, it is becoming more and more important to obtain 3D fingerprint information for recognition. In this paper, a novel 3D fingerprint imaging system is presented based on fringe projection technique to obtain 3D features and the corresponding color texture information. A series of color sinusoidal fringe patterns with optimum three-fringe numbers are projected onto a finger surface. From another viewpoint, the fringe patterns are deformed by the finger surface and captured by a CCD camera. 3D shape data of the finger can be obtained from the captured fringe pattern images. This paper studies the prototype of the 3D fingerprint imaging system, including principle of 3D fingerprint acquisition, hardware design of the 3D imaging system, 3D calibration of the system, and software development. Some experiments are carried out by acquiring several 3D fingerprint data. The experimental results demonstrate the feasibility of the proposed 3D fingerprint imaging system.

  14. A multi-resolution approach for an automated fusion of different low-cost 3D sensors.

    PubMed

    Dupuis, Jan; Paulus, Stefan; Behmann, Jan; Plümer, Lutz; Kuhlmann, Heiner

    2014-01-01

    The 3D acquisition of object structures has become a common technique in many fields of work, e.g., industrial quality management, cultural heritage or crime scene documentation. The requirements on the measuring devices are versatile, because spacious scenes have to be imaged with a high level of detail for selected objects. Thus, the used measuring systems are expensive and require an experienced operator. With the rise of low-cost 3D imaging systems, their integration into the digital documentation process is possible. However, common low-cost sensors have the limitation of a trade-off between range and accuracy, providing either a low resolution of single objects or a limited imaging field. Therefore, the use of multiple sensors is desirable. We show the combined use of two low-cost sensors, the Microsoft Kinect and the David laserscanning system, to achieve low-resolved scans of the whole scene and a high level of detail for selected objects, respectively. Afterwards, the high-resolved David objects are automatically assigned to their corresponding Kinect object by the use of surface feature histograms and SVM-classification. The corresponding objects are fitted using an ICP-implementation to produce a multi-resolution map. The applicability is shown for a fictional crime scene and the reconstruction of a ballistic trajectory. PMID:24763255

  15. A multi-resolution approach for an automated fusion of different low-cost 3D sensors.

    PubMed

    Dupuis, Jan; Paulus, Stefan; Behmann, Jan; Plümer, Lutz; Kuhlmann, Heiner

    2014-01-01

    The 3D acquisition of object structures has become a common technique in many fields of work, e.g., industrial quality management, cultural heritage or crime scene documentation. The requirements on the measuring devices are versatile, because spacious scenes have to be imaged with a high level of detail for selected objects. Thus, the used measuring systems are expensive and require an experienced operator. With the rise of low-cost 3D imaging systems, their integration into the digital documentation process is possible. However, common low-cost sensors have the limitation of a trade-off between range and accuracy, providing either a low resolution of single objects or a limited imaging field. Therefore, the use of multiple sensors is desirable. We show the combined use of two low-cost sensors, the Microsoft Kinect and the David laserscanning system, to achieve low-resolved scans of the whole scene and a high level of detail for selected objects, respectively. Afterwards, the high-resolved David objects are automatically assigned to their corresponding Kinect object by the use of surface feature histograms and SVM-classification. The corresponding objects are fitted using an ICP-implementation to produce a multi-resolution map. The applicability is shown for a fictional crime scene and the reconstruction of a ballistic trajectory.

  16. A Multi-Resolution Approach for an Automated Fusion of Different Low-Cost 3D Sensors

    PubMed Central

    Dupuis, Jan; Paulus, Stefan; Behmann, Jan; Plümer, Lutz; Kuhlmann, Heiner

    2014-01-01

    The 3D acquisition of object structures has become a common technique in many fields of work, e.g., industrial quality management, cultural heritage or crime scene documentation. The requirements on the measuring devices are versatile, because spacious scenes have to be imaged with a high level of detail for selected objects. Thus, the used measuring systems are expensive and require an experienced operator. With the rise of low-cost 3D imaging systems, their integration into the digital documentation process is possible. However, common low-cost sensors have the limitation of a trade-off between range and accuracy, providing either a low resolution of single objects or a limited imaging field. Therefore, the use of multiple sensors is desirable. We show the combined use of two low-cost sensors, the Microsoft Kinect and the David laserscanning system, to achieve low-resolved scans of the whole scene and a high level of detail for selected objects, respectively. Afterwards, the high-resolved David objects are automatically assigned to their corresponding Kinect object by the use of surface feature histograms and SVM-classification. The corresponding objects are fitted using an ICP-implementation to produce a multi-resolution map. The applicability is shown for a fictional crime scene and the reconstruction of a ballistic trajectory. PMID:24763255

  17. Image-based RSA: Roentgen stereophotogrammetric analysis based on 2D-3D image registration.

    PubMed

    de Bruin, P W; Kaptein, B L; Stoel, B C; Reiber, J H C; Rozing, P M; Valstar, E R

    2008-01-01

    Image-based Roentgen stereophotogrammetric analysis (IBRSA) integrates 2D-3D image registration and conventional RSA. Instead of radiopaque RSA bone markers, IBRSA uses 3D CT data, from which digitally reconstructed radiographs (DRRs) are generated. Using 2D-3D image registration, the 3D pose of the CT is iteratively adjusted such that the generated DRRs resemble the 2D RSA images as closely as possible, according to an image matching metric. Effectively, by registering all 2D follow-up moments to the same 3D CT, the CT volume functions as common ground. In two experiments, using RSA and using a micromanipulator as gold standard, IBRSA has been validated on cadaveric and sawbone scapula radiographs, and good matching results have been achieved. The accuracy was: |mu |< 0.083 mm for translations and |mu| < 0.023 degrees for rotations. The precision sigma in x-, y-, and z-direction was 0.090, 0.077, and 0.220 mm for translations and 0.155 degrees , 0.243 degrees , and 0.074 degrees for rotations. Our results show that the accuracy and precision of in vitro IBRSA, performed under ideal laboratory conditions, are lower than in vitro standard RSA but higher than in vivo standard RSA. Because IBRSA does not require radiopaque markers, it adds functionality to the RSA method by opening new directions and possibilities for research, such as dynamic analyses using fluoroscopy on subjects without markers and computer navigation applications.

  18. 3D high-density localization microscopy using hybrid astigmatic/ biplane imaging and sparse image reconstruction.

    PubMed

    Min, Junhong; Holden, Seamus J; Carlini, Lina; Unser, Michael; Manley, Suliana; Ye, Jong Chul

    2014-11-01

    Localization microscopy achieves nanoscale spatial resolution by iterative localization of sparsely activated molecules, which generally leads to a long acquisition time. By implementing advanced algorithms to treat overlapping point spread functions (PSFs), imaging of densely activated molecules can improve the limited temporal resolution, as has been well demonstrated in two-dimensional imaging. However, three-dimensional (3D) localization of high-density data remains challenging since PSFs are far more similar along the axial dimension than the lateral dimensions. Here, we present a new, high-density 3D imaging system and algorithm. The hybrid system is implemented by combining astigmatic and biplane imaging. The proposed 3D reconstruction algorithm is extended from our state-of-the art 2D high-density localization algorithm. Using mutual coherence analysis of model PSFs, we validated that the hybrid system is more suitable than astigmatic or biplane imaging alone for 3D localization of high-density data. The efficacy of the proposed method was confirmed via simulation and real data of microtubules. Furthermore, we also successfully demonstrated fluorescent-protein-based live cell 3D localization microscopy with a temporal resolution of just 3 seconds, capturing fast dynamics of the endoplasmic recticulum.

  19. Display of travelling 3D scenes from single integral-imaging capture

    NASA Astrophysics Data System (ADS)

    Martinez-Corral, Manuel; Dorado, Adrian; Hong, Seok-Min; Sola-Pikabea, Jorge; Saavedra, Genaro

    2016-06-01

    Integral imaging (InI) is a 3D auto-stereoscopic technique that captures and displays 3D images. We present a method for easily projecting the information recorded with this technique by transforming the integral image into a plenoptic image, as well as choosing, at will, the field of view (FOV) and the focused plane of the displayed plenoptic image. Furthermore, with this method we can generate a sequence of images that simulates a camera travelling through the scene from a single integral image. The application of this method permits to improve the quality of 3D display images and videos.

  20. A sensor skid for precise 3D modeling of production lines

    NASA Astrophysics Data System (ADS)

    Elseberg, J.; Borrmann, D.; Schauer, J.; Nüchter, A.; Koriath, D.; Rautenberg, U.

    2014-05-01

    Motivated by the increasing need of rapid characterization of environments in 3D, we designed and built a sensor skid that automates the work of an operator of terrestrial laser scanners. The system combines terrestrial laser scanning with kinematic laser scanning and uses a novel semi-rigid SLAMmethod. It enables us to digitize factory environments without the need to stop production. The acquired 3D point clouds are precise and suitable to detect objects that collide with items moved along the production line.

  1. Lensfree diffractive tomography for the imaging of 3D cell cultures

    PubMed Central

    Momey, F.; Berdeu, A.; Bordy, T.; Dinten, J.-M.; Marcel, F. Kermarrec; Picollet-D’hahan, N.; Gidrol, X.; Allier, C.

    2016-01-01

    New microscopes are needed to help realize the full potential of 3D organoid culture studies. In order to image large volumes of 3D organoid cultures while preserving the ability to catch every single cell, we propose a new imaging platform based on lensfree microscopy. We have built a lensfree diffractive tomography setup performing multi-angle acquisitions of 3D organoid culture embedded in Matrigel and developed a dedicated 3D holographic reconstruction algorithm based on the Fourier diffraction theorem. With this new imaging platform, we have been able to reconstruct a 3D volume as large as 21.5 mm3 of a 3D organoid culture of prostatic RWPE1 cells showing the ability of these cells to assemble in 3D intricate cellular network at the mesoscopic scale. Importantly, comparisons with 2D images show that it is possible to resolve single cells isolated from the main cellular structure with our lensfree diffractive tomography setup. PMID:27231600

  2. Lensfree diffractive tomography for the imaging of 3D cell cultures.

    PubMed

    Momey, F; Berdeu, A; Bordy, T; Dinten, J-M; Marcel, F Kermarrec; Picollet-D'hahan, N; Gidrol, X; Allier, C

    2016-03-01

    New microscopes are needed to help realize the full potential of 3D organoid culture studies. In order to image large volumes of 3D organoid cultures while preserving the ability to catch every single cell, we propose a new imaging platform based on lensfree microscopy. We have built a lensfree diffractive tomography setup performing multi-angle acquisitions of 3D organoid culture embedded in Matrigel and developed a dedicated 3D holographic reconstruction algorithm based on the Fourier diffraction theorem. With this new imaging platform, we have been able to reconstruct a 3D volume as large as 21.5 mm (3) of a 3D organoid culture of prostatic RWPE1 cells showing the ability of these cells to assemble in 3D intricate cellular network at the mesoscopic scale. Importantly, comparisons with 2D images show that it is possible to resolve single cells isolated from the main cellular structure with our lensfree diffractive tomography setup. PMID:27231600

  3. Estimating Density Gradients and Drivers from 3D Ionospheric Imaging

    NASA Astrophysics Data System (ADS)

    Datta-Barua, S.; Bust, G. S.; Curtis, N.; Reynolds, A.; Crowley, G.

    2009-12-01

    The transition regions at the edges of the ionospheric storm-enhanced density (SED) are important for a detailed understanding of the mid-latitude physical processes occurring during major magnetic storms. At the boundary, the density gradients are evidence of the drivers that link the larger processes of the SED, with its connection to the plasmasphere and prompt-penetration electric fields, to the smaller irregularities that result in scintillations. For this reason, we present our estimates of both the plasma variation with horizontal and vertical spatial scale of 10 - 100 km and the plasma motion within and along the edges of the SED. To estimate the density gradients, we use Ionospheric Data Assimilation Four-Dimensional (IDA4D), a mature data assimilation algorithm that has been developed over several years and applied to investigations of polar cap patches and space weather storms [Bust and Crowley, 2007; Bust et al., 2007]. We use the density specification produced by IDA4D with a new tool for deducing ionospheric drivers from 3D time-evolving electron density maps, called Estimating Model Parameters from Ionospheric Reverse Engineering (EMPIRE). The EMPIRE technique has been tested on simulated data from TIMEGCM-ASPEN and on IDA4D-based density estimates with ongoing validation from Arecibo ISR measurements [Datta-Barua et al., 2009a; 2009b]. We investigate the SED that formed during the geomagnetic super storm of November 20, 2003. We run IDA4D at low-resolution continent-wide, and then re-run it at high (~10 km horizontal and ~5-20 km vertical) resolution locally along the boundary of the SED, where density gradients are expected to be highest. We input the high-resolution estimates of electron density to EMPIRE to estimate the ExB drifts and field-aligned plasma velocities along the boundaries of the SED. We expect that these drivers contribute to the density structuring observed along the SED during the storm. Bust, G. S. and G. Crowley (2007

  4. Monopulse radar 3-D imaging and application in terminal guidance radar

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Qin, Guodong; Zhang, Lina

    2007-11-01

    Monopulse radar 3-D imaging integrates ISAR, monopulse angle measurement and 3-D imaging processing to obtain the 3-D image which can reflect the real size of a target, which means any two of the three measurement parameters, namely azimuth difference beam elevation difference beam and radial range, can be used to form 3-D image of 3-D object. The basic principles of Monopulse radar 3-D imaging are briefly introduced, the effect of target carriage changes(including yaw, pitch, roll and movement of target itself) on 3-D imaging and 3-D moving compensation based on the chirp rate μ and Doppler frequency f d are analyzed, and the application of monopulse radar 3-D imaging to terminal guidance radars is forecasted. The computer simulation results show that monopulse radar 3-D imaging has apparent advantages in distinguishing a target from overside interference and precise assault on vital part of a target, and has great importance in terminal guidance radars.

  5. Recognition Accuracy Using 3D Endoscopic Images for Superficial Gastrointestinal Cancer: A Crossover Study

    PubMed Central

    Kaise, Mitsuru; Kikuchi, Daisuke; Iizuka, Toshiro; Fukuma, Yumiko; Kuribayashi, Yasutaka; Tanaka, Masami; Toba, Takahito; Furuhata, Tsukasa; Yamashita, Satoshi; Matsui, Akira; Mitani, Toshifumi; Hoteya, Shu

    2016-01-01

    Aim. To determine whether 3D endoscopic images improved recognition accuracy for superficial gastrointestinal cancer compared with 2D images. Methods. We created an image catalog using 2D and 3D images of 20 specimens resected by endoscopic submucosal dissection. The twelve participants were allocated into two groups. Group 1 evaluated only 2D images at first, group 2 evaluated 3D images, and, after an interval of 2 weeks, group 1 next evaluated 3D and group 2 evaluated 2D images. The evaluation items were as follows: (1) diagnostic accuracy of the tumor extent and (2) confidence levels in assessing (a) tumor extent, (b) morphology, (c) microsurface structure, and (d) comprehensive recognition. Results. The use of 3D images resulted in an improvement in diagnostic accuracy in both group 1 (2D: 76.9%, 3D: 78.6%) and group 2 (2D: 79.9%, 3D: 83.6%), with no statistically significant difference. The confidence levels were higher for all items ((a) to (d)) when 3D images were used. With respect to experience, the degree of the improvement showed the following trend: novices > trainees > experts. Conclusions. By conversion into 3D images, there was a significant improvement in the diagnostic confidence level for superficial tumors, and the improvement was greater in individuals with lower endoscopic expertise. PMID:27597863

  6. Recognition Accuracy Using 3D Endoscopic Images for Superficial Gastrointestinal Cancer: A Crossover Study

    PubMed Central

    Kaise, Mitsuru; Kikuchi, Daisuke; Iizuka, Toshiro; Fukuma, Yumiko; Kuribayashi, Yasutaka; Tanaka, Masami; Toba, Takahito; Furuhata, Tsukasa; Yamashita, Satoshi; Matsui, Akira; Mitani, Toshifumi; Hoteya, Shu

    2016-01-01

    Aim. To determine whether 3D endoscopic images improved recognition accuracy for superficial gastrointestinal cancer compared with 2D images. Methods. We created an image catalog using 2D and 3D images of 20 specimens resected by endoscopic submucosal dissection. The twelve participants were allocated into two groups. Group 1 evaluated only 2D images at first, group 2 evaluated 3D images, and, after an interval of 2 weeks, group 1 next evaluated 3D and group 2 evaluated 2D images. The evaluation items were as follows: (1) diagnostic accuracy of the tumor extent and (2) confidence levels in assessing (a) tumor extent, (b) morphology, (c) microsurface structure, and (d) comprehensive recognition. Results. The use of 3D images resulted in an improvement in diagnostic accuracy in both group 1 (2D: 76.9%, 3D: 78.6%) and group 2 (2D: 79.9%, 3D: 83.6%), with no statistically significant difference. The confidence levels were higher for all items ((a) to (d)) when 3D images were used. With respect to experience, the degree of the improvement showed the following trend: novices > trainees > experts. Conclusions. By conversion into 3D images, there was a significant improvement in the diagnostic confidence level for superficial tumors, and the improvement was greater in individuals with lower endoscopic expertise.

  7. Recognition Accuracy Using 3D Endoscopic Images for Superficial Gastrointestinal Cancer: A Crossover Study.

    PubMed

    Nomura, Kosuke; Kaise, Mitsuru; Kikuchi, Daisuke; Iizuka, Toshiro; Fukuma, Yumiko; Kuribayashi, Yasutaka; Tanaka, Masami; Toba, Takahito; Furuhata, Tsukasa; Yamashita, Satoshi; Matsui, Akira; Mitani, Toshifumi; Hoteya, Shu

    2016-01-01

    Aim. To determine whether 3D endoscopic images improved recognition accuracy for superficial gastrointestinal cancer compared with 2D images. Methods. We created an image catalog using 2D and 3D images of 20 specimens resected by endoscopic submucosal dissection. The twelve participants were allocated into two groups. Group 1 evaluated only 2D images at first, group 2 evaluated 3D images, and, after an interval of 2 weeks, group 1 next evaluated 3D and group 2 evaluated 2D images. The evaluation items were as follows: (1) diagnostic accuracy of the tumor extent and (2) confidence levels in assessing (a) tumor extent, (b) morphology, (c) microsurface structure, and (d) comprehensive recognition. Results. The use of 3D images resulted in an improvement in diagnostic accuracy in both group 1 (2D: 76.9%, 3D: 78.6%) and group 2 (2D: 79.9%, 3D: 83.6%), with no statistically significant difference. The confidence levels were higher for all items ((a) to (d)) when 3D images were used. With respect to experience, the degree of the improvement showed the following trend: novices > trainees > experts. Conclusions. By conversion into 3D images, there was a significant improvement in the diagnostic confidence level for superficial tumors, and the improvement was greater in individuals with lower endoscopic expertise.

  8. Recognition Accuracy Using 3D Endoscopic Images for Superficial Gastrointestinal Cancer: A Crossover Study.

    PubMed

    Nomura, Kosuke; Kaise, Mitsuru; Kikuchi, Daisuke; Iizuka, Toshiro; Fukuma, Yumiko; Kuribayashi, Yasutaka; Tanaka, Masami; Toba, Takahito; Furuhata, Tsukasa; Yamashita, Satoshi; Matsui, Akira; Mitani, Toshifumi; Hoteya, Shu

    2016-01-01

    Aim. To determine whether 3D endoscopic images improved recognition accuracy for superficial gastrointestinal cancer compared with 2D images. Methods. We created an image catalog using 2D and 3D images of 20 specimens resected by endoscopic submucosal dissection. The twelve participants were allocated into two groups. Group 1 evaluated only 2D images at first, group 2 evaluated 3D images, and, after an interval of 2 weeks, group 1 next evaluated 3D and group 2 evaluated 2D images. The evaluation items were as follows: (1) diagnostic accuracy of the tumor extent and (2) confidence levels in assessing (a) tumor extent, (b) morphology, (c) microsurface structure, and (d) comprehensive recognition. Results. The use of 3D images resulted in an improvement in diagnostic accuracy in both group 1 (2D: 76.9%, 3D: 78.6%) and group 2 (2D: 79.9%, 3D: 83.6%), with no statistically significant difference. The confidence levels were higher for all items ((a) to (d)) when 3D images were used. With respect to experience, the degree of the improvement showed the following trend: novices > trainees > experts. Conclusions. By conversion into 3D images, there was a significant improvement in the diagnostic confidence level for superficial tumors, and the improvement was greater in individuals with lower endoscopic expertise. PMID:27597863

  9. Hand/eye calibration of a robot arm with a 3D visual sensor

    NASA Astrophysics Data System (ADS)

    Kim, Min-Young; Cho, Hyungsuck; Kim, Jae H.

    2001-10-01

    Hand/eye calibration is useful in many industrial applications, for instance, grasping objects or reconstructing 3D scenes. The calibration of robot systems with a visual sensor is essentially the calibration of a robot, a sensor, and hand-to-eye relation. This paper describes a new technique for computing 3D position and orientation of a 3D visual sensor system relative to the end effector of a robot manipulator in an eye-on-hand robot configuration. When the position of feature points on a calibration target in sensor coordinates viewed at each robot movement, and the position of these points in world coordinates and the relative robot movement between two robot motions are known, a homogeneous equation of the form AX equals XB can be derived. To obtain the unique solution of X, it is necessary to make two relative robot arm movements and to form a system of two equations of the form: A1X equals XB1 and A2X equals XB2. In this paper, a closed-form solution of this calibration system is derived, and the constraints for existence of a unique solution are described in detail. Test results obtained through a series of simulation show that this technique is a simple, efficient, and accurate method for hand/eye calibration.

  10. 360 degree realistic 3D image display and image processing from real objects

    NASA Astrophysics Data System (ADS)

    Luo, Xin; Chen, Yue; Huang, Yong; Tan, Xiaodi; Horimai, Hideyoshi

    2016-09-01

    A 360-degree realistic 3D image display system based on direct light scanning method, so-called Holo-Table has been introduced in this paper. High-density directional continuous 3D motion images can be displayed easily with only one spatial light modulator. Using the holographic screen as the beam deflector, 360-degree full horizontal viewing angle was achieved. As an accompany part of the system, CMOS camera based image acquisition platform was built to feed the display engine, which can take a full 360-degree continuous imaging of the sample at the center. Customized image processing techniques such as scaling, rotation, format transformation were also developed and embedded into the system control software platform. In the end several samples were imaged to demonstrate the capability of our system.

  11. Accuracy of volume measurement using 3D ultrasound and development of CT-3D US image fusion algorithm for prostate cancer radiotherapy

    SciTech Connect

    Baek, Jihye; Huh, Jangyoung; Hyun An, So; Oh, Yoonjin; Kim, Myungsoo; Kim, DongYoung; Chung, Kwangzoo; Cho, Sungho; Lee, Rena

    2013-02-15

    Purpose: To evaluate the accuracy of measuring volumes using three-dimensional ultrasound (3D US), and to verify the feasibility of the replacement of CT-MR fusion images with CT-3D US in radiotherapy treatment planning. Methods: Phantoms, consisting of water, contrast agent, and agarose, were manufactured. The volume was measured using 3D US, CT, and MR devices. A CT-3D US and MR-3D US image fusion software was developed using the Insight Toolkit library in order to acquire three-dimensional fusion images. The quality of the image fusion was evaluated using metric value and fusion images. Results: Volume measurement, using 3D US, shows a 2.8 {+-} 1.5% error, 4.4 {+-} 3.0% error for CT, and 3.1 {+-} 2.0% error for MR. The results imply that volume measurement using the 3D US devices has a similar accuracy level to that of CT and MR. Three-dimensional image fusion of CT-3D US and MR-3D US was successfully performed using phantom images. Moreover, MR-3D US image fusion was performed using human bladder images. Conclusions: 3D US could be used in the volume measurement of human bladders and prostates. CT-3D US image fusion could be used in monitoring the target position in each fraction of external beam radiation therapy. Moreover, the feasibility of replacing the CT-MR image fusion to the CT-3D US in radiotherapy treatment planning was verified.

  12. Image enhancement and segmentation of fluid-filled structures in 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Chalana, Vikram; Dudycha, Stephen; McMorrow, Gerald

    2003-05-01

    Segmentation of fluid-filled structures, such as the urinary bladder, from three-dimensional ultrasound images is necessary for measuring their volume. This paper describes a system for image enhancement, segmentation and volume measurement of fluid-filled structures on 3D ultrasound images. The system was applied for the measurement of urinary bladder volume. Results show an average error of less than 10% in the estimation of the total bladder volume.

  13. Wide-field hyperspectral 3D imaging of functionalized gold nanoparticles targeting cancer cells by reflected light microscopy.

    PubMed

    Patskovsky, Sergiy; Bergeron, Eric; Rioux, David; Meunier, Michel

    2015-05-01

    We present a new hyperspectral reflected light microscopy system with a scanned broadband supercontinuum light source. This wide-field and low phototoxic hyperspectral imaging system has been successful for performing spectral three-dimensional (3D) localization and spectroscopic identification of CD44-targeted PEGylated AuNPs in fixed cell preparations. Such spatial and spectral information is essential for the improvement of nanoplasmonic-based imaging, disease detection and treatment in complex biological environment. The presented system can be used for real-time 3D NP tracking as spectral sensors, thus providing new avenues in the spatio-temporal characterization and detection of bioanalytes. 3D image of the distribution of functionalized AuNPs attached to CD44-expressing MDA-MB-231 human cancer cells. PMID:24961507

  14. 3D Image Reconstructions and the Nyquist-Shannon Theorem

    NASA Astrophysics Data System (ADS)

    Ficker, T.; Martišek, D.

    2015-09-01

    Fracture surfaces are occasionally modelled by Fourier's two-dimensional series that can be converted into digital 3D reliefs mapping the morphology of solid surfaces. Such digital replicas may suffer from various artefacts when processed inconveniently. Spatial aliasing is one of those artefacts that may devalue Fourier's replicas. According to the Nyquist-Shannon sampling theorem the spatial aliasing occurs when Fourier's frequencies exceed the Nyquist critical frequency. In the present paper it is shown that the Nyquist frequency is not the only critical limit determining aliasing artefacts but there are some other frequencies that intensify aliasing phenomena and form an infinite set of points at which numerical results abruptly and dramatically change their values. This unusual type of spatial aliasing is explored and some consequences for 3D computer reconstructions are presented.

  15. Computation of optimized arrays for 3-D electrical imaging surveys

    NASA Astrophysics Data System (ADS)

    Loke, M. H.; Wilkinson, P. B.; Uhlemann, S. S.; Chambers, J. E.; Oxby, L. S.

    2014-12-01

    3-D electrical resistivity surveys and inversion models are required to accurately resolve structures in areas with very complex geology where 2-D models might suffer from artefacts. Many 3-D surveys use a grid where the number of electrodes along one direction (x) is much greater than in the perpendicular direction (y). Frequently, due to limitations in the number of independent electrodes in the multi-electrode system, the surveys use a roll-along system with a small number of parallel survey lines aligned along the x-direction. The `Compare R' array optimization method previously used for 2-D surveys is adapted for such 3-D surveys. Offset versions of the inline arrays used in 2-D surveys are included in the number of possible arrays (the comprehensive data set) to improve the sensitivity to structures in between the lines. The array geometric factor and its relative error are used to filter out potentially unstable arrays in the construction of the comprehensive data set. Comparisons of the conventional (consisting of dipole-dipole and Wenner-Schlumberger arrays) and optimized arrays are made using a synthetic model and experimental measurements in a tank. The tests show that structures located between the lines are better resolved with the optimized arrays. The optimized arrays also have significantly better depth resolution compared to the conventional arrays.

  16. Structured-Light Sensor Using Two Laser Stripes for 3D Reconstruction without Vibrations

    PubMed Central

    Usamentiaga, Rubén; Molleda, Julio; Garcia, Daniel F.

    2014-01-01

    3D reconstruction based on laser light projection is a well-known method that generally provides accurate results. However, when this method is used for inspection in uncontrolled environments, it is greatly affected by vibrations. This paper presents a structured-light sensor based on two laser stripes that provides a 3D reconstruction without vibrations. Using more than one laser stripe provides redundant information than is used to compensate for the vibrations. This work also proposes an accurate calibration process for the sensor based on standard calibration plates. A series of experiments are performed to evaluate the proposed method using a mechanical device that simulates vibrations. Results show excellent performance, with very good accuracy. PMID:25347586

  17. Angle extended linear MEMS scanning system for 3D laser vision sensor

    NASA Astrophysics Data System (ADS)

    Pang, Yajun; Zhang, Yinxin; Yang, Huaidong; Zhu, Pan; Gai, Ye; Zhao, Jian; Huang, Zhanhua

    2016-09-01

    Scanning system is often considered as the most important part for 3D laser vision sensor. In this paper, we propose a method for the optical system design of angle extended linear MEMS scanning system, which has features of huge scanning degree, small beam divergence angle and small spot size for 3D laser vision sensor. The principle of design and theoretical formulas are derived strictly. With the help of software ZEMAX, a linear scanning optical system based on MEMS has been designed. Results show that the designed system can extend scanning angle from ±8° to ±26.5° with a divergence angle small than 3.5 mr, and the spot size is reduced for 4.545 times.

  18. Design and verification of diffractive optical elements for speckle generation of 3-D range sensors

    NASA Astrophysics Data System (ADS)

    Du, Pei-Qin; Shih, Hsi-Fu; Chen, Jenq-Shyong; Wang, Yi-Shiang

    2016-09-01

    The optical projection using speckles is one of the structured light methods that have been applied to three-dimensional (3-D) range sensors. This paper investigates the design and fabrication of diffractive optical elements (DOEs) for generating the light field with uniformly distributed speckles. Based on the principles of computer generated holograms, the iterative Fourier transform algorithm was adopted for the DOE design. It was used to calculate the phase map for diffracting the incident laser beam into a goal pattern with distributed speckles. Four patterns were designed in the study. Their phase maps were first examined by a spatial light modulator and then fabricated on glass substrates by microfabrication processes. Finally, the diffraction characteristics of the fabricated devices were verified. The experimental results show that the proposed methods are applicable to the DOE design of 3-D range sensors. Furthermore, any expected diffraction area and speckle density could be possibly achieved according to the relations presented in the paper.

  19. 3D monolithically stacked CMOS Active Pixel Sensors for particle position and direction measurements

    NASA Astrophysics Data System (ADS)

    Servoli, L.; Passeri, D.; Morozzi, A.; Magalotti, D.; Piperku, L.

    2015-01-01

    In this work we propose a 3D monolithically stacked, multi-layer detectors based on CMOS Active Pixel Sensors (APS) layers which allows at the same time accurate estimation of the impact point and of the incidence angle an ionizing particle. The whole system features two fully-functional CMOS APS matrix detectors, including both sensing area and control/signal elaboration circuitry, stacked in a monolithic device by means of Through Silicon Via (TSV) connections thanks to the capabilities of the CMOS vertical scale integration (3D-IC) 130 nm Chartered/Tezzaron technology. In order to evaluate the suitability of the two layer monolithic active pixel sensor system to reconstruct particle tracks, tests with proton beams have been carried out at the INFN LABEC laboratories in Florence (Italy) with 3 MeV proton beam.

  20. Nodes Localization in 3D Wireless Sensor Networks Based on Multidimensional Scaling Algorithm

    PubMed Central

    2014-01-01

    In the recent years, there has been a huge advancement in wireless sensor computing technology. Today, wireless sensor network (WSN) has become a key technology for different types of smart environment. Nodes localization in WSN has arisen as a very challenging problem in the research community. Most of the applications for WSN are not useful without a priory known nodes positions. Adding GPS receivers to each node is an expensive solution and inapplicable for indoor environments. In this paper, we implemented and evaluated an algorithm based on multidimensional scaling (MDS) technique for three-dimensional (3D) nodes localization in WSN using improved heuristic method for distance calculation. Using extensive simulations we investigated our approach regarding various network parameters. We compared the results from the simulations with other approaches for 3D-WSN localization and showed that our approach outperforms other techniques in terms of accuracy. PMID:27437480

  1. Pseudo-3D Imaging With The DICOM-8

    NASA Astrophysics Data System (ADS)

    Shalev, S.; Arenson, J.; Kettner, B.

    1985-09-01

    We have developed the DICOM.-8 digital imaging computer for video image acquisition, processing and display. It is a low-cost mobile systems based on a Z80 microcomputer which controls access to two 512 x 512 x 8-bit image planes through a real-time video arithmetic unit. Image presentation capabilities include orthographic images, isometric plots with hidden-line suppression, real-time mask subtraction, binocular red/green stereo, and volumetric imaging with both geometrical and density windows under operator interactive control. Examples are shown for multiplane series of CT images.

  2. A 3D Model of the Thermoelectric Microwave Power Sensor by MEMS Technology.

    PubMed

    Yi, Zhenxiang; Liao, Xiaoping

    2016-01-01

    In this paper, a novel 3D model is proposed to describe the temperature distribution of the thermoelectric microwave power sensor. In this 3D model, the heat flux density decreases from the upper surface to the lower surface of the GaAs substrate while it was supposed to be a constant in the 2D model. The power sensor is fabricated by a GaAs monolithic microwave integrated circuit (MMIC) process and micro-electro-mechanical system (MEMS) technology. The microwave performance experiment shows that the S11 is less than -26 dB over the frequency band of 1-10 GHz. The power response experiment demonstrates that the output voltage increases from 0 mV to 27 mV, while the incident power varies from 1 mW to 100 mW. The measured sensitivity is about 0.27 mV/mW, and the calculated result from the 3D model is 0.28 mV/mW. The relative error has been reduced from 7.5% of the 2D model to 3.7% of the 3D model. PMID:27338395

  3. A 3D Model of the Thermoelectric Microwave Power Sensor by MEMS Technology.

    PubMed

    Yi, Zhenxiang; Liao, Xiaoping

    2016-01-01

    In this paper, a novel 3D model is proposed to describe the temperature distribution of the thermoelectric microwave power sensor. In this 3D model, the heat flux density decreases from the upper surface to the lower surface of the GaAs substrate while it was supposed to be a constant in the 2D model. The power sensor is fabricated by a GaAs monolithic microwave integrated circuit (MMIC) process and micro-electro-mechanical system (MEMS) technology. The microwave performance experiment shows that the S11 is less than -26 dB over the frequency band of 1-10 GHz. The power response experiment demonstrates that the output voltage increases from 0 mV to 27 mV, while the incident power varies from 1 mW to 100 mW. The measured sensitivity is about 0.27 mV/mW, and the calculated result from the 3D model is 0.28 mV/mW. The relative error has been reduced from 7.5% of the 2D model to 3.7% of the 3D model.

  4. A 3D Model of the Thermoelectric Microwave Power Sensor by MEMS Technology

    PubMed Central

    Yi, Zhenxiang; Liao, Xiaoping

    2016-01-01

    In this paper, a novel 3D model is proposed to describe the temperature distribution of the thermoelectric microwave power sensor. In this 3D model, the heat flux density decreases from the upper surface to the lower surface of the GaAs substrate while it was supposed to be a constant in the 2D model. The power sensor is fabricated by a GaAs monolithic microwave integrated circuit (MMIC) process and micro-electro-mechanical system (MEMS) technology. The microwave performance experiment shows that the S11 is less than −26 dB over the frequency band of 1–10 GHz. The power response experiment demonstrates that the output voltage increases from 0 mV to 27 mV, while the incident power varies from 1 mW to 100 mW. The measured sensitivity is about 0.27 mV/mW, and the calculated result from the 3D model is 0.28 mV/mW. The relative error has been reduced from 7.5% of the 2D model to 3.7% of the 3D model. PMID:27338395

  5. Beam imaging sensor

    DOEpatents

    McAninch, Michael D.; Root, Jeffrey J.

    2016-07-05

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  6. Design of 3D measurement system based on multi-sensor data fusion technique

    NASA Astrophysics Data System (ADS)

    Zhang, Weiguang; Han, Jun; Yu, Xun

    2009-05-01

    With the rapid development of shape measurement technique, multi-sensor approach becomes one of valid way to improve the accuracy, to expend measuring range, to reduce occlusion, to realize multi-resolution measurement, and to increase measuring speed simultaneously. Sensors in multi-sensor system can have different system parameters, and they may have different measuring range and different precision. Light sectioning method is one of useful measurement technique for 3D profile measurement. It is insensitive to the surface optical property of 3D object, has scarcely any demand on surrounding. A multi-sensor system scheme, which uses light sectioning method and multi-sensor data fusion techniques, is presented for blade of aviation engine and spiral bevel gear measurement. The system model is developed to build the relationship between measuring range & precision and system parameters. The system parameters were set according to system error analysis, measuring range and precision. The result shows that the system is more universal than it's ancestor, and that the accuracy of the system is about 0.05mm for the 60× 60mm2 measuring range, and that the system is successful for the aero-dynamical data curve of blade of aviation engine and tooth profile of spiral bevel gear measurement with 3600 multi-resolution measuring character.

  7. Comparison of simulated and experimental 3D laser images using a GmAPD array: application to long range detection

    NASA Astrophysics Data System (ADS)

    Coyac, Antoine; Riviere, Nicolas; Hespel, Laurent; Briottet, Xavier

    2016-05-01

    In this paper, we show the feasibility and the benefit to use a Geiger-mode Avalanche Photo-Diode (GmAPD) array for long range detection, up to several kilometers. A simulation of a Geiger detection sensor is described, which is a part of our end-to-end laser simulator, to generate simulated 3D laser images from synthetic scenes. Resulting 3D point clouds have been compared to experimental acquisitions, performed with our GmAPD 3D camera on similar scenarios. An operational case of long range detection is presented: a copper cable outstretched above the ground, 1 kilometer away the experimental system and with a horizontal line-of-sight (LOS). The detection of such a small object from long distance observation strongly suggests that GmAPD focal plane arrays could be easily used for real-time 3D mapping or surveillance applications from airborne platforms, with good spatial and temporal resolutions.

  8. 3D Prostate Segmentation of Ultrasound Images Combining Longitudinal Image Registration and Machine Learning

    PubMed Central

    Yang, Xiaofeng; Fei, Baowei

    2012-01-01

    We developed a three-dimensional (3D) segmentation method for transrectal ultrasound (TRUS) images, which is based on longitudinal image registration and machine learning. Using longitudinal images of each individual patient, we register previously acquired images to the new images of the same subject. Three orthogonal Gabor filter banks were used to extract texture features from each registered image. Patient-specific Gabor features from the registered images are used to train kernel support vector machines (KSVMs) and then to segment the newly acquired prostate image. The segmentation method was tested in TRUS data from five patients. The average surface distance between our and manual segmentation is 1.18 ± 0.31 mm, indicating that our automatic segmentation method based on longitudinal image registration is feasible for segmenting the prostate in TRUS images. PMID:24027622

  9. Increasing the depth of field in Multiview 3D images

    NASA Astrophysics Data System (ADS)

    Lee, Beom-Ryeol; Son, Jung-Young; Yano, Sumio; Jung, Ilkwon

    2016-06-01

    A super-multiview condition simulator which can project up to four different view images to each eye is introduced. This simulator with the image having both disparity and perspective informs that the depth of field (DOF) will be extended to more than the default DOF values as the number of simultaneously but separately projected different view images to each eye increase. The DOF range can be extended to near 2 diopters with the four simultaneous view images. However, the DOF value increments are not prominent as the image with both disparity and perspective with the image with disparity only.

  10. D3D augmented reality imaging system: proof of concept in mammography

    PubMed Central

    Douglas, David B; Petricoin, Emanuel F; Liotta, Lance; Wilson, Eugene

    2016-01-01

    Purpose The purpose of this article is to present images from simulated breast microcalcifications and assess the pattern of the microcalcifications with a technical development called “depth 3-dimensional (D3D) augmented reality”. Materials and methods A computer, head display unit, joystick, D3D augmented reality software, and an in-house script of simulated data of breast microcalcifications in a ductal distribution were used. No patient data was used and no statistical analysis was performed. Results The D3D augmented reality system demonstrated stereoscopic depth perception by presenting a unique image to each eye, focal point convergence, head position tracking, 3D cursor, and joystick fly-through. Conclusion The D3D augmented reality imaging system offers image viewing with depth perception and focal point convergence. The D3D augmented reality system should be tested to determine its utility in clinical practice. PMID:27563261

  11. Flash trajectory imaging of target 3D motion

    NASA Astrophysics Data System (ADS)

    Wang, Xinwei; Zhou, Yan; Fan, Songtao; He, Jun; Liu, Yuliang

    2011-03-01

    We present a flash trajectory imaging technique which can directly obtain target trajectory and realize non-contact measurement of motion parameters by range-gated imaging and time delay integration. Range-gated imaging gives the range of targets and realizes silhouette detection which can directly extract targets from complex background and decrease the complexity of moving target image processing. Time delay integration increases information of one single frame of image so that one can directly gain the moving trajectory. In this paper, we have studied the algorithm about flash trajectory imaging and performed initial experiments which successfully obtained the trajectory of a falling badminton. Our research demonstrates that flash trajectory imaging is an effective approach to imaging target trajectory and can give motion parameters of moving targets.

  12. Dual-color 3D superresolution microscopy by combined spectral-demixing and biplane imaging.

    PubMed

    Winterflood, Christian M; Platonova, Evgenia; Albrecht, David; Ewers, Helge

    2015-07-01

    Multicolor three-dimensional (3D) superresolution techniques allow important insight into the relative organization of cellular structures. While a number of innovative solutions have emerged, multicolor 3D techniques still face significant technical challenges. In this Letter we provide a straightforward approach to single-molecule localization microscopy imaging in three dimensions and two colors. We combine biplane imaging and spectral-demixing, which eliminates a number of problems, including color cross-talk, chromatic aberration effects, and problems with color registration. We present 3D dual-color images of nanoscopic structures in hippocampal neurons with a 3D compound resolution routinely achieved only in a single color.

  13. [3D Super-resolution Reconstruction and Visualization of Pulmonary Nodules from CT Image].

    PubMed

    Wang, Bing; Fan, Xing; Yang, Ying; Tian, Xuedong; Gu, Lixu

    2015-08-01

    The aim of this study was to propose an algorithm for three-dimensional projection onto convex sets (3D POCS) to achieve super resolution reconstruction of 3D lung computer tomography (CT) images, and to introduce multi-resolution mixed display mode to make 3D visualization of pulmonary nodules. Firstly, we built the low resolution 3D images which have spatial displacement in sub pixel level between each other and generate the reference image. Then, we mapped the low resolution images into the high resolution reference image using 3D motion estimation and revised the reference image based on the consistency constraint convex sets to reconstruct the 3D high resolution images iteratively. Finally, we displayed the different resolution images simultaneously. We then estimated the performance of provided method on 5 image sets and compared them with those of 3 interpolation reconstruction methods. The experiments showed that the performance of 3D POCS algorithm was better than that of 3 interpolation reconstruction methods in two aspects, i.e., subjective and objective aspects, and mixed display mode is suitable to the 3D visualization of high resolution of pulmonary nodules.

  14. Advanced 2D-3D registration for endovascular aortic interventions: addressing dissimilarity in images

    NASA Astrophysics Data System (ADS)

    Demirci, Stefanie; Kutter, Oliver; Manstad-Hulaas, Frode; Bauernschmitt, Robert; Navab, Nassir

    2008-03-01

    In the current clinical workflow of minimally invasive aortic procedures navigation tasks are performed under 2D or 3D angiographic imaging. Many solutions for navigation enhancement suggest an integration of the preoperatively acquired computed tomography angiography (CTA) in order to provide the physician with more image information and reduce contrast injection and radiation exposure. This requires exact registration algorithms that align the CTA volume to the intraoperative 2D or 3D images. Additional to the real-time constraint, the registration accuracy should be independent of image dissimilarities due to varying presence of medical instruments and contrast agent. In this paper, we propose efficient solutions for image-based 2D-3D and 3D-3D registration that reduce the dissimilarities by image preprocessing, e.g. implicit detection and segmentation, and adaptive weights introduced into the registration procedure. Experiments and evaluations are conducted on real patient data.

  15. 3D image display of fetal ultrasonic images by thin shell

    NASA Astrophysics Data System (ADS)

    Wang, Shyh-Roei; Sun, Yung-Nien; Chang, Fong-Ming; Jiang, Ching-Fen

    1999-05-01

    Due to the properties of convenience and non-invasion, ultrasound has become an essential tool for diagnosis of fetal abnormality during women pregnancy in obstetrics. However, the 'noisy and blurry' nature of ultrasound data makes the rendering of the data a challenge in comparison with MRI and CT images. In spite of the speckle noise, the unwanted objects usually occlude the target to be observed. In this paper, we proposed a new system that can effectively depress the speckle noise, extract the target object, and clearly render the 3D fetal image in almost real-time from 3D ultrasound image data. The system is based on a deformable model that detects contours of the object according to the local image feature of ultrasound. Besides, in order to accelerate rendering speed, a thin shell is defined to separate the observed organ from unrelated structures depending on those detected contours. In this way, we can support quick 3D display of ultrasound, and the efficient visualization of 3D fetal ultrasound thus becomes possible.

  16. 3D image reconstruction algorithms for cryo-electron-microscopy images of virus particles

    NASA Astrophysics Data System (ADS)

    Doerschuk, Peter C.; Johnson, John E.

    2000-11-01

    A statistical model for the object and the complete image formation process in cryo electron microscopy of viruses is presented. Using this model, maximum likelihood reconstructions of the 3D structure of viruses are computed using the expectation maximization algorithm and an example based on Cowpea mosaic virus is provided.

  17. Infrared imaging of the polymer 3D-printing process

    NASA Astrophysics Data System (ADS)

    Dinwiddie, Ralph B.; Kunc, Vlastimil; Lindal, John M.; Post, Brian; Smith, Rachel J.; Love, Lonnie; Duty, Chad E.

    2014-05-01

    Both mid-wave and long-wave IR cameras are used to measure various temperature profiles in thermoplastic parts as they are printed. Two significantly different 3D-printers are used in this study. The first is a small scale commercially available Solidoodle 3 printer, which prints parts with layer thicknesses on the order of 125μm. The second printer used is a "Big Area Additive Manufacturing" (BAAM) 3D-printer developed at Oak Ridge National Laboratory. The BAAM prints parts with a layer thicknesses of 4.06 mm. Of particular interest is the temperature of the previously deposited layer as the new hot layer is about to be extruded onto it. The two layers are expected have a stronger bond if the temperature of the substrate layer is above the glass transition temperature. This paper describes the measurement technique and results for a study of temperature decay and substrate layer temperature for ABS thermoplastic with and without the addition of chopped carbon fibers.

  18. 3D breast image registration--a review.

    PubMed

    Sivaramakrishna, Radhika

    2005-02-01

    Image registration is an important problem in breast imaging. It is used in a wide variety of applications that include better visualization of lesions on pre- and post-contrast breast MRI images, speckle tracking and image compounding in breast ultrasound images, alignment of positron emission, and standard mammography images on hybrid machines et cetera. It is a prerequisite to align images taken at different times to isolate small interval lesions. Image registration also has useful applications in monitoring cancer therapy. The field of breast image registration has gained considerable interest in recent years. While the primary focus of interest continues to be the registration of pre- and post-contrast breast MRI images, other areas like breast ultrasound registration have gained more attention in recent years. The focus of registration algorithms has also shifted from control point based semi-automated techniques, to more sophisticated voxel based automated techniques that use mutual information as a similarity measure. This paper visits the problem of breast image registration and provides an overview of the current state-of-the-art in this area. PMID:15649086

  19. 3D fluorescence anisotropy imaging using selective plane illumination microscopy

    PubMed Central

    Hedde, Per Niklas; Ranjit, Suman; Gratton, Enrico

    2015-01-01

    Fluorescence anisotropy imaging is a popular method to visualize changes in organization and conformation of biomolecules within cells and tissues. In such an experiment, depolarization effects resulting from differences in orientation, proximity and rotational mobility of fluorescently labeled molecules are probed with high spatial resolution. Fluorescence anisotropy is typically imaged using laser scanning and epifluorescence-based approaches. Unfortunately, those techniques are limited in either axial resolution, image acquisition speed, or by photobleaching. In the last decade, however, selective plane illumination microscopy has emerged as the preferred choice for three-dimensional time lapse imaging combining axial sectioning capability with fast, camera-based image acquisition, and minimal light exposure. We demonstrate how selective plane illumination microscopy can be utilized for three-dimensional fluorescence anisotropy imaging of live cells. We further examined the formation of focal adhesions by three-dimensional time lapse anisotropy imaging of CHO-K1 cells expressing an EGFP-paxillin fusion protein. PMID:26368202

  20. V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets.

    PubMed

    Peng, Hanchuan; Ruan, Zongcai; Long, Fuhui; Simpson, Julie H; Myers, Eugene W

    2010-04-01

    The V3D system provides three-dimensional (3D) visualization of gigabyte-sized microscopy image stacks in real time on current laptops and desktops. V3D streamlines the online analysis, measurement and proofreading of complicated image patterns by combining ergonomic functions for selecting a location in an image directly in 3D space and for displaying biological measurements, such as from fluorescent probes, using the overlaid surface objects. V3D runs on all major computer platforms and can be enhanced by software plug-ins to address specific biological problems. To demonstrate this extensibility, we built a V3D-based application, V3D-Neuron, to reconstruct complex 3D neuronal structures from high-resolution brain images. V3D-Neuron can precisely digitize the morphology of a single neuron in a fruitfly brain in minutes, with about a 17-fold improvement in reliability and tenfold savings in time compared with other neuron reconstruction tools. Using V3D-Neuron, we demonstrate the feasibility of building a 3D digital atlas of neurite tracts in the fruitfly brain. PMID:20231818

  1. Dynamic 3-D chemical agent cloud mapping using a sensor constellation deployed on mobile platforms

    NASA Astrophysics Data System (ADS)

    Cosofret, Bogdan R.; Konno, Daisei; Rossi, David; Marinelli, William J.; Seem, Pete

    2014-05-01

    The need for standoff detection technology to provide early Chem-Bio (CB) threat warning is well documented. Much of the information obtained by a single passive sensor is limited to bearing and angular extent of the threat cloud. In order to obtain absolute geo-location, range to threat, 3-D extent and detailed composition of the chemical threat, fusion of information from multiple passive sensors is needed. A capability that provides on-the-move chemical cloud characterization is key to the development of real-time Battlespace Awareness. We have developed, implemented and tested algorithms and hardware to perform the fusion of information obtained from two mobile LWIR passive hyperspectral sensors. The implementation of the capability is driven by current Nuclear, Biological and Chemical Reconnaissance Vehicle operational tactics and represents a mission focused alternative of the already demonstrated 5-sensor static Range Test Validation System (RTVS).1 The new capability consists of hardware for sensor pointing and attitude information which is made available for streaming and aggregation as part of the data fusion process for threat characterization. Cloud information is generated using 2-sensor data ingested into a suite of triangulation and tomographic reconstruction algorithms. The approaches are amenable to using a limited number of viewing projections and unfavorable sensor geometries resulting from mobile operation. In this paper we describe the system architecture and present an analysis of results obtained during the initial testing of the system at Dugway Proving Ground during BioWeek 2013.

  2. Real-time computer-generated integral imaging and 3D image calibration for augmented reality surgical navigation.

    PubMed

    Wang, Junchen; Suenaga, Hideyuki; Liao, Hongen; Hoshi, Kazuto; Yang, Liangjing; Kobayashi, Etsuko; Sakuma, Ichiro

    2015-03-01

    Autostereoscopic 3D image overlay for augmented reality (AR) based surgical navigation has been studied and reported many times. For the purpose of surgical overlay, the 3D image is expected to have the same geometric shape as the original organ, and can be transformed to a specified location for image overlay. However, how to generate a 3D image with high geometric fidelity and quantitative evaluation of 3D image's geometric accuracy have not been addressed. This paper proposes a graphics processing unit (GPU) based computer-generated integral imaging pipeline for real-time autostereoscopic 3D display, and an automatic closed-loop 3D image calibration paradigm for displaying undistorted 3D images. Based on the proposed methods, a novel AR device for 3D image surgical overlay is presented, which mainly consists of a 3D display, an AR window, a stereo camera for 3D measurement, and a workstation for information processing. The evaluation on the 3D image rendering performance with 2560×1600 elemental image resolution shows the rendering speeds of 50-60 frames per second (fps) for surface models, and 5-8 fps for large medical volumes. The evaluation of the undistorted 3D image after the calibration yields sub-millimeter geometric accuracy. A phantom experiment simulating oral and maxillofacial surgery was also performed to evaluate the proposed AR overlay device in terms of the image registration accuracy, 3D image overlay accuracy, and the visual effects of the overlay. The experimental results show satisfactory image registration and image overlay accuracy, and confirm the system usability.

  3. Future Imaging Sensor Capabilities

    NASA Technical Reports Server (NTRS)

    Carver, K. R.; Ando, K. J.

    1983-01-01

    Advanced imaging sensor technologies that are being developed for future NASA earth observation missions are discussed. These include the multilinear array, the Shuttle imaging spectrometer, and the Shuttle imaging radar. The principal specifications and functional descriptions of the instruments are presented, and it is shown that the advanced technologies will enable a synergistic approach to the use of VIS/IR and microwave imaging sensors for remote sensing research and applications. The key problems posed by these future imaging sensor technologies are discussed, with particular attention given to data rates, power consumption, and data processing.

  4. 3D Measurement of Forearm and Upper Arm during Throwing Motion using Body Mounted Sensor

    NASA Astrophysics Data System (ADS)

    Koda, Hideharu; Sagawa, Koichi; Kuroshima, Kouta; Tsukamoto, Toshiaki; Urita, Kazutaka; Ishibashi, Yasuyuki

    The aim of this study is to propose the measurement method of three-dimensional (3D) movement of forearm and upper arm during pitching motion of baseball using inertial sensors without serious consideration of sensor installation. Although high accuracy measurement of sports motion is achieved by using optical motion capture system at present, it has some disadvantages such as the calibration of cameras and limitation of measurement place. Whereas the proposed method for 3D measurement of pitching motion using body mounted sensors provides trajectory and orientation of upper arm by the integration of acceleration and angular velocity measured on upper limb. The trajectory of forearm is derived so that the elbow joint axis of forearm corresponds to that of upper arm. Spatial relation between upper limb and sensor system is obtained by performing predetermined movements of upper limb and utilizing angular velocity and gravitational acceleration. The integration error is modified so that the estimated final position, velocity and posture of upper limb agree with the actual ones. The experimental results of the measurement of pitching motion show that trajectories of shoulder, elbow and wrist estimated by the proposed method are highly correlated to those from the motion capture system within the estimation error of about 10 [%].

  5. 3-D Target Location from Stereoscopic SAR Images

    SciTech Connect

    DOERRY,ARMIN W.

    1999-10-01

    SAR range-Doppler images are inherently 2-dimensional. Targets with a height offset lay over onto offset range and azimuth locations. Just which image locations are laid upon depends on the imaging geometry, including depression angle, squint angle, and target bearing. This is the well known layover phenomenon. Images formed with different aperture geometries will exhibit different layover characteristics. These differences can be exploited to ascertain target height information, in a stereoscopic manner. Depending on the imaging geometries, height accuracy can be on the order of horizontal position accuracies, thereby rivaling the best IFSAR capabilities in fine resolution SAR images. All that is required for this to work are two distinct passes with suitably different geometries from any plain old SAR.

  6. 3-D visualization and identification of biological microorganisms using partially temporal incoherent light in-line computational holographic imaging.

    PubMed

    Moon, Inkyu; Javidi, Bahram

    2008-12-01

    We present a new method for three-dimensional (3-D) visualization and identification of biological microorganisms using partially temporal incoherent light in-line (PTILI) computational holographic imaging and multivariate statistical methods. For 3-D data acquisition of biological microorganisms, the band-pass filtered white light is used to illuminate a biological sample. The transversely and longitudinally diffracted pattern of the biological sample is magnified by microscope objective (MO) and is optically recorded with an image sensor array interfaced with a computer. Three-dimensional reconstruction of the biological sample from the diffraction pattern is accomplished by using computational Fresnel propagation method. Principal components analysis and nonparametric inference algorithms are applied to the 3-D complex amplitude biological sample for identification purposes. Experiments indicate that the proposed system can be useful for identifying biological microorganisms. To the best of our knowledge, this is the first report on using PTILI computational holographic microscopy for identification of biological microorganisms.

  7. Thin client performance for remote 3-D image display.

    PubMed

    Lai, Albert; Nieh, Jason; Laine, Andrew; Starren, Justin

    2003-01-01

    Several trends in biomedical computing are converging in a way that will require new approaches to telehealth image display. Image viewing is becoming an "anytime, anywhere" activity. In addition, organizations are beginning to recognize that healthcare providers are highly mobile and optimal care requires providing information wherever the provider and patient are. Thin-client computing is one way to support image viewing this complex environment. However little is known about the behavior of thin client systems in supporting image transfer in modern heterogeneous networks. Our results show that using thin-clients can deliver acceptable performance over conditions commonly seen in wireless networks if newer protocols optimized for these conditions are used.

  8. Pragmatic fully 3D image reconstruction for the MiCES mouse imaging PET scanner

    NASA Astrophysics Data System (ADS)

    Lee, Kisung; Kinahan, Paul E.; Fessler, Jeffrey A.; Miyaoka, Robert S.; Janes, Marie; Lewellen, Tom K.

    2004-10-01

    We present a pragmatic approach to image reconstruction for data from the micro crystal elements system (MiCES) fully 3D mouse imaging positron emission tomography (PET) scanner under construction at the University of Washington. Our approach is modelled on fully 3D image reconstruction used in clinical PET scanners, which is based on Fourier rebinning (FORE) followed by 2D iterative image reconstruction using ordered-subsets expectation-maximization (OSEM). The use of iterative methods allows modelling of physical effects (e.g., statistical noise, detector blurring, attenuation, etc), while FORE accelerates the reconstruction process by reducing the fully 3D data to a stacked set of independent 2D sinograms. Previous investigations have indicated that non-stationary detector point-spread response effects, which are typically ignored for clinical imaging, significantly impact image quality for the MiCES scanner geometry. To model the effect of non-stationary detector blurring (DB) in the FORE+OSEM(DB) algorithm, we have added a factorized system matrix to the ASPIRE reconstruction library. Initial results indicate that the proposed approach produces an improvement in resolution without an undue increase in noise and without a significant increase in the computational burden. The impact on task performance, however, remains to be evaluated.

  9. 3-D ultrafast Doppler imaging applied to the noninvasive mapping of blood vessels in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Demene, Charlie; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2015-08-01

    Ultrafast Doppler imaging was introduced as a technique to quantify blood flow in an entire 2-D field of view, expanding the field of application of ultrasound imaging to the highly sensitive anatomical and functional mapping of blood vessels. We have recently developed 3-D ultrafast ultrasound imaging, a technique that can produce thousands of ultrasound volumes per second, based on a 3-D plane and diverging wave emissions, and demonstrated its clinical feasibility in human subjects in vivo. In this study, we show that noninvasive 3-D ultrafast power Doppler, pulsed Doppler, and color Doppler imaging can be used to perform imaging of blood vessels in humans when using coherent compounding of 3-D tilted plane waves. A customized, programmable, 1024-channel ultrasound system was designed to perform 3-D ultrafast imaging. Using a 32 × 32, 3-MHz matrix phased array (Vermon, Tours, France), volumes were beamformed by coherently compounding successive tilted plane wave emissions. Doppler processing was then applied in a voxel-wise fashion. The proof of principle of 3-D ultrafast power Doppler imaging was first performed by imaging Tygon tubes of various diameters, and in vivo feasibility was demonstrated by imaging small vessels in the human thyroid. Simultaneous 3-D color and pulsed Doppler imaging using compounded emissions were also applied in the carotid artery and the jugular vein in one healthy volunteer.

  10. 3-D ultrafast Doppler imaging applied to the noninvasive mapping of blood vessels in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Demene, Charlie; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2015-08-01

    Ultrafast Doppler imaging was introduced as a technique to quantify blood flow in an entire 2-D field of view, expanding the field of application of ultrasound imaging to the highly sensitive anatomical and functional mapping of blood vessels. We have recently developed 3-D ultrafast ultrasound imaging, a technique that can produce thousands of ultrasound volumes per second, based on a 3-D plane and diverging wave emissions, and demonstrated its clinical feasibility in human subjects in vivo. In this study, we show that noninvasive 3-D ultrafast power Doppler, pulsed Doppler, and color Doppler imaging can be used to perform imaging of blood vessels in humans when using coherent compounding of 3-D tilted plane waves. A customized, programmable, 1024-channel ultrasound system was designed to perform 3-D ultrafast imaging. Using a 32 × 32, 3-MHz matrix phased array (Vermon, Tours, France), volumes were beamformed by coherently compounding successive tilted plane wave emissions. Doppler processing was then applied in a voxel-wise fashion. The proof of principle of 3-D ultrafast power Doppler imaging was first performed by imaging Tygon tubes of various diameters, and in vivo feasibility was demonstrated by imaging small vessels in the human thyroid. Simultaneous 3-D color and pulsed Doppler imaging using compounded emissions were also applied in the carotid artery and the jugular vein in one healthy volunteer. PMID:26276956

  11. Review of three-dimensional (3D) surface imaging for oncoplastic, reconstructive and aesthetic breast surgery.

    PubMed

    O'Connell, Rachel L; Stevens, Roger J G; Harris, Paul A; Rusby, Jennifer E

    2015-08-01

    Three-dimensional surface imaging (3D-SI) is being marketed as a tool in aesthetic breast surgery. It has recently also been studied in the objective evaluation of cosmetic outcome of oncological procedures. The aim of this review is to summarise the use of 3D-SI in oncoplastic, reconstructive and aesthetic breast surgery. An extensive literature review was undertaken to identify published studies. Two reviewers independently screened all abstracts and selected relevant articles using specific inclusion criteria. Seventy two articles relating to 3D-SI for breast surgery were identified. These covered endpoints such as image acquisition, calculations and data obtainable, comparison of 3D and 2D imaging and clinical research applications of 3D-SI. The literature provides a favourable view of 3D-SI. However, evidence of its superiority over current methods of clinical decision making, surgical planning, communication and evaluation of outcome is required before it can be accepted into mainstream practice.

  12. Computation of tooth axes of existent and missing teeth from 3D CT images.

    PubMed

    Wang, Yang; Wu, Lin; Guo, Huayan; Qiu, Tiantian; Huang, Yuanliang; Lin, Bin; Wang, Lisheng

    2015-12-01

    Orientations of tooth axes are important quantitative information used in dental diagnosis and surgery planning. However, their computation is a complex problem, and the existing methods have respective limitations. This paper proposes new methods to compute 3D tooth axes from 3D CT images for existent teeth with single root or multiple roots and to estimate 3D tooth axes from 3D CT images for missing teeth. The tooth axis of a single-root tooth will be determined by segmenting the pulp cavity of the tooth and computing the principal direction of the pulp cavity, and the estimation of tooth axes of the missing teeth is modeled as an interpolation problem of some quaternions along a 3D curve. The proposed methods can either avoid the difficult teeth segmentation problem or improve the limitations of existing methods. Their effectiveness and practicality are demonstrated by experimental results of different 3D CT images from the clinic.

  13. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy

    NASA Astrophysics Data System (ADS)

    Zhang, E. Z.; Laufer, J. G.; Pedley, R. B.; Beard, P. C.

    2009-02-01

    The application of a photoacoustic imaging instrument based upon a Fabry-Perot polymer film ultrasound sensor to imaging the superficial vasculature is described. This approach provides a backward mode-sensing configuration that has the potential to overcome the limitations of current piezoelectric based detection systems used in superficial photoacoustic imaging. The system has been evaluated by obtaining non-invasive images of the vasculature in human and mouse skin as well as mouse models of human colorectal tumours. These studies showed that the system can provide high-resolution 3D images of vascular structures to depths of up to 5 mm. It is considered that this type of instrument may find a role in the clinical assessment of conditions characterized by changes in the vasculature such as skin tumours and superficial soft tissue damage due to burns, wounds or ulceration. It may also find application in the characterization of small animal cancer models where it is important to follow the tumour vasculature over time in order to study its development and/or response to therapy.

  14. Distributed network of integrated 3D sensors for transportation security applications

    NASA Astrophysics Data System (ADS)

    Hejmadi, Vic; Garcia, Fred

    2009-05-01

    The US Port Security Agency has strongly emphasized the needs for tighter control at transportation hubs. Distributed arrays of miniature CMOS cameras are providing some solutions today. However, due to the high bandwidth required and the low valued content of such cameras (simple video feed), large computing power and analysis algorithms as well as control software are needed, which makes such an architecture cumbersome, heavy, slow and expensive. We present a novel technique by integrating cheap and mass replicable stealth 3D sensing micro-devices in a distributed network. These micro-sensors are based on conventional structures illumination via successive fringe patterns on the object to be sensed. The communication bandwidth between each sensor remains very small, but is of very high valued content. Key technologies to integrate such a sensor are digital optics and structured laser illumination.

  15. Nonthreshold-based event detection for 3d environment monitoring in sensor networks

    SciTech Connect

    Li, M.; Liu, Y.H.; Chen, L.

    2008-12-15

    Event detection is a crucial task for wireless sensor network applications, especially environment monitoring. Existing approaches for event detection are mainly based on some predefined threshold values and, thus, are often inaccurate and incapable of capturing complex events. For example, in coal mine monitoring scenarios, gas leakage or water osmosis can hardly be described by the overrun of specified attribute thresholds but some complex pattern in the full-scale view of the environmental data. To address this issue, we propose a nonthreshold-based approach for the real 3D sensor monitoring environment. We employ energy-efficient methods to collect a time series of data maps from the sensor network and detect complex events through matching the gathered data to spatiotemporal data patterns. Finally, we conduct trace-driven simulations to prove the efficacy and efficiency of this approach on detecting events of complex phenomena from real-life records.

  16. Package analysis of 3D-printed piezoresistive strain gauge sensors

    NASA Astrophysics Data System (ADS)

    Das, Sumit Kumar; Baptist, Joshua R.; Sahasrabuddhe, Ritvij; Lee, Woo H.; Popa, Dan O.

    2016-05-01

    Poly(3,4-ethyle- nedioxythiophene)-poly(styrenesulfonate) or PEDOT:PSS is a flexible polymer which exhibits piezo-resistive properties when subjected to structural deformation. PEDOT:PSS has a high conductivity and thermal stability which makes it an ideal candidate for use as a pressure sensor. Applications of this technology includes whole body robot skin that can increase the safety and physical collaboration of robots in close proximity to humans. In this paper, we present a finite element model of strain gauge touch sensors which have been 3D-printed onto Kapton and silicone substrates using Electro-Hydro-Dynamic ink-jetting. Simulations of the piezoresistive and structural model for the entire packaged sensor was carried out using COMSOLR , and compared with experimental results for validation. The model will be useful in designing future robot skin with predictable performances.

  17. Light sheet adaptive optics microscope for 3D live imaging

    NASA Astrophysics Data System (ADS)

    Bourgenot, C.; Taylor, J. M.; Saunter, C. D.; Girkin, J. M.; Love, G. D.

    2013-02-01

    We report on the incorporation of adaptive optics (AO) into the imaging arm of a selective plane illumination microscope (SPIM). SPIM has recently emerged as an important tool for life science research due to its ability to deliver high-speed, optically sectioned, time-lapse microscope images from deep within in vivo selected samples. SPIM provides a very interesting system for the incorporation of AO as the illumination and imaging paths are decoupled and AO may be useful in both paths. In this paper, we will report the use of AO applied to the imaging path of a SPIM, demonstrating significant improvement in image quality of a live GFP-labeled transgenic zebrafish embryo heart using a modal, wavefront sensorless approach and a heart synchronization method. These experimental results are linked to a computational model showing that significant aberrations are produced by the tube holding the sample in addition to the aberration from the biological sample itself.

  18. Knowledge-based system for computer-aided process planning of laser sensor 3D digitizing

    NASA Astrophysics Data System (ADS)

    Bernard, Alain; Davillerd, Stephane; Sidot, Benoit

    1999-11-01

    This paper introduces some results of a research work carried out on the automation of digitizing process of complex part using a precision 3D-laser sensor. Indeed, most of the operations are generally still manual to perform digitalization. In fact, redundancies, lacks or forgetting in point acquisition are possible. Moreover, digitization time of a part, i.e. immobilization of the machine, is thus not optimized overall. So, it is important, for time- compression during product development, to minimize time consuming of reverse engineering step. A new way to scan automatically a complex 3D part is presented to order to measure and to compare the acquired data with the reference CAD model. After introducing digitization, the environment used for the experiments is presented, based on a CMM machine and a plane laser sensor. Then the proposed strategy is introduced for the adaptation of this environment to a robotic CAD software in order to be able to simulate and validate 3D-laser-scanning paths. The CAPP (Computer Aided Process Planning) system used for the automatic generation of the laser scanning process is also presented.

  19. Quality assessment of stereoscopic 3D image compression by binocular integration behaviors.

    PubMed

    Lin, Yu-Hsun; Wu, Ja-Ling

    2014-04-01

    The objective approaches of 3D image quality assessment play a key role for the development of compression standards and various 3D multimedia applications. The quality assessment of 3D images faces more new challenges, such as asymmetric stereo compression, depth perception, and virtual view synthesis, than its 2D counterparts. In addition, the widely used 2D image quality metrics (e.g., PSNR and SSIM) cannot be directly applied to deal with these newly introduced challenges. This statement can be verified by the low correlation between the computed objective measures and the subjectively measured mean opinion scores (MOSs), when 3D images are the tested targets. In order to meet these newly introduced challenges, in this paper, besides traditional 2D image metrics, the binocular integration behaviors-the binocular combination and the binocular frequency integration, are utilized as the bases for measuring the quality of stereoscopic 3D images. The effectiveness of the proposed metrics is verified by conducting subjective evaluations on publicly available stereoscopic image databases. Experimental results show that significant consistency could be reached between the measured MOS and the proposed metrics, in which the correlation coefficient between them can go up to 0.88. Furthermore, we found that the proposed metrics can also address the quality assessment of the synthesized color-plus-depth 3D images well. Therefore, it is our belief that the binocular integration behaviors are important factors in the development of objective quality assessment for 3D images.

  20. Estimation of the degree of polarization in low-light 3D integral imaging

    NASA Astrophysics Data System (ADS)

    Carnicer, Artur; Javidi, Bahram

    2016-06-01

    The calculation of the Stokes Parameters and the Degree of Polarization in 3D integral images requires a careful manipulation of the polarimetric elemental images. This fact is particularly important if the scenes are taken in low-light conditions. In this paper, we show that the Degree of Polarization can be effectively estimated even when elemental images are recorded with few photons. The original idea was communicated in [A. Carnicer and B. Javidi, "Polarimetric 3D integral imaging in photon-starved conditions," Opt. Express 23, 6408-6417 (2015)]. First, we use the Maximum Likelihood Estimation approach for generating the 3D integral image. Nevertheless, this method produces very noisy images and thus, the degree of polarization cannot be calculated. We suggest using a Total Variation Denoising filter as a way to improve the quality of the generated 3D images. As a result, noise is suppressed but high frequency information is preserved. Finally, the degree of polarization is obtained successfully.

  1. Advances in Image Pre-Processing to Improve Automated 3d Reconstruction

    NASA Astrophysics Data System (ADS)

    Ballabeni, A.; Apollonio, F. I.; Gaiani, M.; Remondino, F.

    2015-02-01

    Tools and algorithms for automated image processing and 3D reconstruction purposes have become more and more available, giving the possibility to process any dataset of unoriented and markerless images. Typically, dense 3D point clouds (or texture 3D polygonal models) are produced at reasonable processing time. In this paper, we evaluate how the radiometric pre-processing of image datasets (particularly in RAW format) can help in improving the performances of state-of-the-art automated image processing tools. Beside a review of common pre-processing methods, an efficient pipeline based on color enhancement, image denoising, RGB to Gray conversion and image content enrichment is presented. The performed tests, partly reported for sake of space, demonstrate how an effective image pre-processing, which considers the entire dataset in analysis, can improve the automated orientation procedure and dense 3D point cloud reconstruction, even in case of poor texture scenarios.

  2. Computer-generated hologram for 3D scene from multi-view images

    NASA Astrophysics Data System (ADS)

    Chang, Eun-Young; Kang, Yun-Suk; Moon, KyungAe; Ho, Yo-Sung; Kim, Jinwoong

    2013-05-01

    Recently, the computer generated hologram (CGH) calculated from real existing objects is more actively investigated to support holographic video and TV applications. In this paper, we propose a method of generating a hologram of the natural 3-D scene from multi-view images in order to provide motion parallax viewing with a suitable navigation range. After a unified 3-D point source set describing the captured 3-D scene is obtained from multi-view images, a hologram pattern supporting motion-parallax is calculated from the set using a point-based CGH method. We confirmed that 3-D scenes are faithfully reconstructed using numerical reconstruction.

  3. ICER-3D: A Progressive Wavelet-Based Compressor for Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Kiely, A.; Klimesh, M.; Xie, H.; Aranki, N.

    2005-01-01

    ICER-3D is a progressive, wavelet-based compressor for hyperspectral images. ICER-3D is derived from the ICER image compressor. ICER-3D can provide lossless and lossy compression, and incorporates an error-containment scheme to limit the effects of data loss during transmission. The three-dimensional wavelet decomposition structure used by ICER-3D exploits correlations in all three dimensions of hyperspectral data sets, while facilitating elimination of spectral ringing artifacts. Correlation is further exploited by a context modeler that effectively exploits spectral dependencies in the wavelet-transformed hyperspectral data. Performance results illustrating the benefits of these features are presented.

  4. Real-time auto-stereoscopic visualization of 3D medical images

    NASA Astrophysics Data System (ADS)

    Portoni, Luisa; Patak, Alexandre; Noirard, Pierre; Grossetie, Jean-Claude; van Berkel, Cees

    2000-04-01

    The work here described regards multi-viewer auto- stereoscopic visualization of 3D models of anatomical structures and organs of the human body. High-quality 3D models of more than 1600 anatomical structures have been reconstructed using the Visualization Toolkit, a freely available C++ class library for 3D graphics and visualization. 2D images used for 3D reconstruction comes from the Visible Human Data Set. Auto-stereoscopic 3D image visualization is obtained using a prototype monitor developed at Philips Research Labs, UK. This special multiview 3D-LCD screen has been connected directly to a SGI workstation, where 3D reconstruction and medical imaging applications are executed. Dedicated software has been developed to implement multiview capability. A number of static or animated contemporary views of the same object can simultaneously be seen on the 3D-LCD screen by several observers, having a real 3D perception of the visualized scene without the use of extra media as dedicated glasses or head-mounted displays. Developed software applications allow real-time interaction with visualized 3D models, didactical animations and movies have been realized as well.

  5. Online reconstruction of 3D magnetic particle imaging data

    NASA Astrophysics Data System (ADS)

    Knopp, T.; Hofmann, M.

    2016-06-01

    Magnetic particle imaging is a quantitative functional imaging technique that allows imaging of the spatial distribution of super-paramagnetic iron oxide particles at high temporal resolution. The raw data acquisition can be performed at frame rates of more than 40 volumes s‑1. However, to date image reconstruction is performed in an offline step and thus no direct feedback is available during the experiment. Considering potential interventional applications such direct feedback would be mandatory. In this work, an online reconstruction framework is implemented that allows direct visualization of the particle distribution on the screen of the acquisition computer with a latency of about 2 s. The reconstruction process is adaptive and performs block-averaging in order to optimize the signal quality for a given amount of reconstruction time.

  6. Online reconstruction of 3D magnetic particle imaging data

    NASA Astrophysics Data System (ADS)

    Knopp, T.; Hofmann, M.

    2016-06-01

    Magnetic particle imaging is a quantitative functional imaging technique that allows imaging of the spatial distribution of super-paramagnetic iron oxide particles at high temporal resolution. The raw data acquisition can be performed at frame rates of more than 40 volumes s-1. However, to date image reconstruction is performed in an offline step and thus no direct feedback is available during the experiment. Considering potential interventional applications such direct feedback would be mandatory. In this work, an online reconstruction framework is implemented that allows direct visualization of the particle distribution on the screen of the acquisition computer with a latency of about 2 s. The reconstruction process is adaptive and performs block-averaging in order to optimize the signal quality for a given amount of reconstruction time.

  7. Geiger-mode APD camera system for single-photon 3D LADAR imaging

    NASA Astrophysics Data System (ADS)

    Entwistle, Mark; Itzler, Mark A.; Chen, Jim; Owens, Mark; Patel, Ketan; Jiang, Xudong; Slomkowski, Krystyna; Rangwala, Sabbir

    2012-06-01

    The unparalleled sensitivity of 3D LADAR imaging sensors based on single photon detection provides substantial benefits for imaging at long stand-off distances and minimizing laser pulse energy requirements. To obtain 3D LADAR images with single photon sensitivity, we have demonstrated focal plane arrays (FPAs) based on InGaAsP Geiger-mode avalanche photodiodes (GmAPDs) optimized for use at either 1.06 μm or 1.55 μm. These state-of-the-art FPAs exhibit excellent pixel-level performance and the capability for 100% pixel yield on a 32 x 32 format. To realize the full potential of these FPAs, we have recently developed an integrated camera system providing turnkey operation based on FPGA control. This system implementation enables the extremely high frame-rate capability of the GmAPD FPA, and frame rates in excess of 250 kHz (for 0.4 μs range gates) can be accommodated using an industry-standard CameraLink interface in full configuration. Real-time data streaming for continuous acquisition of 2 μs range gate point cloud data with 13-bit time-stamp resolution at 186 kHz frame rates has been established using multiple solid-state storage drives. Range gate durations spanning 4 ns to 10 μs provide broad operational flexibility. The camera also provides real-time signal processing in the form of multi-frame gray-scale contrast images and single-frame time-stamp histograms, and automated bias control has been implemented to maintain a constant photon detection efficiency in the presence of ambient temperature changes. A comprehensive graphical user interface has been developed to provide complete camera control using a simple serial command set, and this command set supports highly flexible end-user customization.

  8. SHAPES - Spatial, High-Accuracy, Position-Encoding Sensor for multi-point, 3-D position measurement of large flexible structures

    NASA Technical Reports Server (NTRS)

    Nerheim, N. M

    1987-01-01

    An electro-optical position sensor for precise simultaneous measurement of the 3-D positions of multiple points on large space structures is described. The sensor data rate is sufficient for most control purposes. Range is determined by time-of-flight correlation of short laser pulses returned from retroreflector targets using a streak tube/CCD detector. Angular position is determined from target image locations on a second CCD. Experimental verification of dynamic ranging to multiple targets is discussed.

  9. Interferometric synthetic aperture radar detection and estimation based 3D image reconstruction

    NASA Astrophysics Data System (ADS)

    Austin, Christian D.; Moses, Randolph L.

    2006-05-01

    This paper explores three-dimensional (3D) interferometric synthetic aperture radar (IFSAR) image reconstruction when multiple scattering centers and noise are present in a radar resolution cell. We introduce an IFSAR scattering model that accounts for both multiple scattering centers and noise. The problem of 3D image reconstruction is then posed as a multiple hypothesis detection and estimation problem; resolution cells containing a single scattering center are detected and the 3D location of these cells' pixels are estimated; all other pixels are rejected from the image. Detection and estimation statistics are derived using the multiple scattering center IFSAR model. A 3D image reconstruction algorithm using these statistics is then presented, and its performance is evaluated for a 3D reconstruction of a backhoe from noisy IFSAR data.

  10. Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy

    PubMed Central

    Gualda, Emilio J.; Simão, Daniel; Pinto, Catarina; Alves, Paula M.; Brito, Catarina

    2014-01-01

    The development of three dimensional (3D) cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex 3D matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy (LSFM) is becoming an excellent tool for fast imaging of such 3D biological structures. We demonstrate the potential of this technique for the imaging of human differentiated 3D neural aggregates in fixed and live samples, namely calcium imaging and cell death processes, showing the power of imaging modality compared with traditional microscopy. The combination of light sheet microscopy and 3D neural cultures will open the door to more challenging experiments involving drug testing at large scale as well as a better understanding of relevant biological processes in a more realistic environment. PMID:25161607

  11. Opti-acoustic stereo imaging: on system calibration and 3-D target reconstruction.

    PubMed

    Negahdaripour, Shahriar; Sekkati, Hicham; Pirsiavash, Hamed

    2009-06-01

    Utilization of an acoustic camera for range measurements is a key advantage for 3-D shape recovery of underwater targets by opti-acoustic stereo imaging, where the associated epipolar geometry of optical and acoustic image correspondences can be described in terms of conic sections. In this paper, we propose methods for system calibration and 3-D scene reconstruction by maximum likelihood estimation from noisy image measurements. The recursive 3-D reconstruction method utilized as initial condition a closed-form solution that integrates the advantages of two other closed-form solutions, referred to as the range and azimuth solutions. Synthetic data tests are given to provide insight into the merits of the new target imaging and 3-D reconstruction paradigm, while experiments with real data confirm the findings based on computer simulations, and demonstrate the merits of this novel 3-D reconstruction paradigm.

  12. Opti-acoustic stereo imaging: on system calibration and 3-D target reconstruction.

    PubMed

    Negahdaripour, Shahriar; Sekkati, Hicham; Pirsiavash, Hamed

    2009-06-01

    Utilization of an acoustic camera for range measurements is a key advantage for 3-D shape recovery of underwater targets by opti-acoustic stereo imaging, where the associated epipolar geometry of optical and acoustic image correspondences can be described in terms of conic sections. In this paper, we propose methods for system calibration and 3-D scene reconstruction by maximum likelihood estimation from noisy image measurements. The recursive 3-D reconstruction method utilized as initial condition a closed-form solution that integrates the advantages of two other closed-form solutions, referred to as the range and azimuth solutions. Synthetic data tests are given to provide insight into the merits of the new target imaging and 3-D reconstruction paradigm, while experiments with real data confirm the findings based on computer simulations, and demonstrate the merits of this novel 3-D reconstruction paradigm. PMID:19380272

  13. Image quality of a cone beam O-arm 3D imaging system

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Weir, Victor; Lin, Jingying; Hsiung, Hsiang; Ritenour, E. Russell

    2009-02-01

    The O-arm is a cone beam imaging system designed primarily to support orthopedic surgery and is also used for image-guided and vascular surgery. Using a gantry that can be opened or closed, the O-arm can function as a 2-dimensional (2D) fluoroscopy device or collect 3-dimensional (3D) volumetric imaging data like a CT system. Clinical applications of the O-arm in spine surgical procedures, assessment of pedicle screw position, and kyphoplasty procedures show that the O-arm 3D mode provides enhanced imaging information compared to radiographs or fluoroscopy alone. In this study, the image quality of an O-arm system was quantitatively evaluated. A 20 cm diameter CATPHAN 424 phantom was scanned using the pre-programmed head protocols: small/medium (120 kVp, 100 mAs), large (120 kVp, 128 mAs), and extra-large (120 kVp, 160 mAs) in 3D mode. High resolution reconstruction mode (512×512×0.83 mm) was used to reconstruct images for the analysis of low and high contrast resolution, and noise power spectrum. MTF was measured using the point spread function. The results show that the O-arm image is uniform but with a noise pattern which cannot be removed by simply increasing the mAs. The high contrast resolution of the O-arm system was approximately 9 lp/cm. The system has a 10% MTF at 0.45 mm. The low-contrast resolution cannot be decided due to the noise pattern. For surgery where locations of a structure are emphasized over a survey of all image details, the image quality of the O-arm is well accepted clinically.

  14. Multi-camera sensor system for 3D segmentation and localization of multiple mobile robots.

    PubMed

    Losada, Cristina; Mazo, Manuel; Palazuelos, Sira; Pizarro, Daniel; Marrón, Marta

    2010-01-01

    This paper presents a method for obtaining the motion segmentation and 3D localization of multiple mobile robots in an intelligent space using a multi-camera sensor system. The set of calibrated and synchronized cameras are placed in fixed positions within the environment (intelligent space). The proposed algorithm for motion segmentation and 3D localization is based on the minimization of an objective function. This function includes information from all the cameras, and it does not rely on previous knowledge or invasive landmarks on board the robots. The proposed objective function depends on three groups of variables: the segmentation boundaries, the motion parameters and the depth. For the objective function minimization, we use a greedy iterative algorithm with three steps that, after initialization of segmentation boundaries and depth, are repeated until convergence.

  15. Multi-Camera Sensor System for 3D Segmentation and Localization of Multiple Mobile Robots

    PubMed Central

    Losada, Cristina; Mazo, Manuel; Palazuelos, Sira; Pizarro, Daniel; Marrón, Marta

    2010-01-01

    This paper presents a method for obtaining the motion segmentation and 3D localization of multiple mobile robots in an intelligent space using a multi-camera sensor system. The set of calibrated and synchronized cameras are placed in fixed positions within the environment (intelligent space). The proposed algorithm for motion segmentation and 3D localization is based on the minimization of an objective function. This function includes information from all the cameras, and it does not rely on previous knowledge or invasive landmarks on board the robots. The proposed objective function depends on three groups of variables: the segmentation boundaries, the motion parameters and the depth. For the objective function minimization, we use a greedy iterative algorithm with three steps that, after initialization of segmentation boundaries and depth, are repeated until convergence. PMID:22319297

  16. Space Radar Image Isla Isabela in 3-D

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a three-dimensional view of Isabela, one of the Galapagos Islands located off the western coast of Ecuador, South America. This view was constructed by overlaying a Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) image on a digital elevation map produced by TOPSAR, a prototype airborne interferometric radar which produces simultaneous image and elevation data. The vertical scale in this image is exaggerated by a factor of 1.87. The SIR-C/X-SAR image was taken on the 40th orbit of space shuttle Endeavour. The image is centered at about 0.5 degree south latitude and 91 degrees west longitude and covers an area of 75 by 60 kilometers (47 by 37 miles). The radar incidence angle at the center of the image is about 20 degrees. The western Galapagos Islands, which lie about 1,200 kilometers (750 miles)west of Ecuador in the eastern Pacific, have six active volcanoes similar to the volcanoes found in Hawaii and reflect the volcanic processes that occur where the ocean floor is created. Since the time of Charles Darwin's visit to the area in 1835, there have been more than 60 recorded eruptions on these volcanoes. This SIR-C/X-SAR image of Alcedo and Sierra Negra volcanoes shows the rougher lava flows as bright features, while ash deposits and smooth pahoehoe lava flows appear dark. Vertical exaggeration of relief is a common tool scientists use to detect relationships between structure (for example, faults, and fractures) and topography. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data

  17. Radar Imaging of Spheres in 3D using MUSIC

    SciTech Connect

    Chambers, D H; Berryman, J G

    2003-01-21

    We have shown that multiple spheres can be imaged by linear and planar EM arrays using only one component of polarization. The imaging approach involves calculating the SVD of the scattering response matrix, selecting a subset of singular values that represents noise, and evaluating the MUSIC functional. The noise threshold applied to the spectrum of singular values for optimal performance is typically around 1%. The resulting signal subspace includes more than one singular value per sphere. The presence of reflections from the ground improves height localization, even for a linear array parallel to the ground. However, the interference between direct and reflected energy modulates the field, creating periodic nulls that can obscure targets in typical images. These nulls are largely eliminated by normalizing the MUSIC functional with the broadside beam pattern of the array. The resulting images show excellent localization for 1 and 2 spheres. The performance for the 3 sphere configurations are complicated by shadowing effects and the greater range of the 3rd sphere in case 2. Two of the three spheres are easily located by MUSIC but the third is difficult to distinguish from other local maxima of the complex imaging functional. Improvement is seen when the linear array is replace with a planar array, which increases the effective aperture height. Further analysis of the singular values and their relationship to modes of scattering from the spheres, as well as better ways to exploit polarization, should improve performance. Work along these lines is currently being pursued by the authors.

  18. 3D shape measurements with a single interferometric sensor for in-situ lathe monitoring

    NASA Astrophysics Data System (ADS)

    Kuschmierz, R.; Huang, Y.; Czarske, J.; Metschke, S.; Löffler, F.; Fischer, A.

    2015-05-01

    Temperature drifts, tool deterioration, unknown vibrations as well as spindle play are major effects which decrease the achievable precision of computerized numerically controlled (CNC) lathes and lead to shape deviations between the processed work pieces. Since currently no measurement system exist for fast, precise and in-situ 3d shape monitoring with keyhole access, much effort has to be made to simulate and compensate these effects. Therefore we introduce an optical interferometric sensor for absolute 3d shape measurements, which was integrated into a working lathe. According to the spindle rotational speed, a measurement rate of 2,500 Hz was achieved. In-situ absolute shape, surface profile and vibration measurements are presented. While thermal drifts of the sensor led to errors of several mµm for the absolute shape, reference measurements with a coordinate machine show, that the surface profile could be measured with an uncertainty below one micron. Additionally, the spindle play of 0.8 µm was measured with the sensor.

  19. Research on Joint Parameter Inversion for an Integrated Underground Displacement 3D Measuring Sensor

    PubMed Central

    Shentu, Nanying; Qiu, Guohua; Li, Qing; Tong, Renyuan; Shentu, Nankai; Wang, Yanjie

    2015-01-01

    Underground displacement monitoring is a key means to monitor and evaluate geological disasters and geotechnical projects. There exist few practical instruments able to monitor subsurface horizontal and vertical displacements simultaneously due to monitoring invisibility and complexity. A novel underground displacement 3D measuring sensor had been proposed in our previous studies, and great efforts have been taken in the basic theoretical research of underground displacement sensing and measuring characteristics by virtue of modeling, simulation and experiments. This paper presents an innovative underground displacement joint inversion method by mixing a specific forward modeling approach with an approximate optimization inversion procedure. It can realize a joint inversion of underground horizontal displacement and vertical displacement for the proposed 3D sensor. Comparative studies have been conducted between the measured and inversed parameters of underground horizontal and vertical displacements under a variety of experimental and inverse conditions. The results showed that when experimentally measured horizontal displacements and vertical displacements are both varied within 0 ~ 30 mm, horizontal displacement and vertical displacement inversion discrepancies are generally less than 3 mm and 1 mm, respectively, under three kinds of simulated underground displacement monitoring circumstances. This implies that our proposed underground displacement joint inversion method is robust and efficient to predict the measuring values of underground horizontal and vertical displacements for the proposed sensor. PMID:25871714

  20. Research on joint parameter inversion for an integrated underground displacement 3D measuring sensor.

    PubMed

    Shentu, Nanying; Qiu, Guohua; Li, Qing; Tong, Renyuan; Shentu, Nankai; Wang, Yanjie

    2015-01-01

    Underground displacement monitoring is a key means to monitor and evaluate geological disasters and geotechnical projects. There exist few practical instruments able to monitor subsurface horizontal and vertical displacements simultaneously due to monitoring invisibility and complexity. A novel underground displacement 3D measuring sensor had been proposed in our previous studies, and great efforts have been taken in the basic theoretical research of underground displacement sensing and measuring characteristics by virtue of modeling, simulation and experiments. This paper presents an innovative underground displacement joint inversion method by mixing a specific forward modeling approach with an approximate optimization inversion procedure. It can realize a joint inversion of underground horizontal displacement and vertical displacement for the proposed 3D sensor. Comparative studies have been conducted between the measured and inversed parameters of underground horizontal and vertical displacements under a variety of experimental and inverse conditions. The results showed that when experimentally measured horizontal displacements and vertical displacements are both varied within 0~30 mm, horizontal displacement and vertical displacement inversion discrepancies are generally less than 3 mm and 1 mm, respectively, under three kinds of simulated underground displacement monitoring circumstances. This implies that our proposed underground displacement joint inversion method is robust and efficient to predict the measuring values of underground horizontal and vertical displacements for the proposed sensor. PMID:25871714

  1. Beam test studies of 3D pixel sensors irradiated non-uniformly for the ATLAS forward physics detector

    NASA Astrophysics Data System (ADS)

    Grinstein, S.; Baselga, M.; Boscardin, M.; Christophersen, M.; Da Via, C.; Dalla Betta, G.-F.; Darbo, G.; Fadeyev, V.; Fleta, C.; Gemme, C.; Grenier, P.; Jimenez, A.; Lopez, I.; Micelli, A.; Nelist, C.; Parker, S.; Pellegrini, G.; Phlips, B.; Pohl, D.-L.; Sadrozinski, H. F.-W.; Sicho, P.; Tsiskaridze, S.

    2013-12-01

    Pixel detectors with cylindrical electrodes that penetrate the silicon substrate (so called 3D detectors) offer advantages over standard planar sensors in terms of radiation hardness, since the electrode distance is decoupled from the bulk thickness. In recent years significant progress has been made in the development of 3D sensors, which culminated in the sensor production for the ATLAS Insertable B-Layer (IBL) upgrade carried out at CNM (Barcelona, Spain) and FBK (Trento, Italy). Based on this success, the ATLAS Forward Physics (AFP) experiment has selected the 3D pixel sensor technology for the tracking detector. The AFP project presents a new challenge due to the need for a reduced dead area with respect to IBL, and the in-homogeneous nature of the radiation dose distribution in the sensor. Electrical characterization of the first AFP prototypes and beam test studies of 3D pixel devices irradiated non-uniformly are presented in this paper.

  2. Geometrical Calibration of X-Ray Imaging With RGB Cameras for 3D Reconstruction.

    PubMed

    Albiol, Francisco; Corbi, Alberto; Albiol, Alberto

    2016-08-01

    We present a methodology to recover the geometrical calibration of conventional X-ray settings with the help of an ordinary video camera and visible fiducials that are present in the scene. After calibration, equivalent points of interest can be easily identifiable with the help of the epipolar geometry. The same procedure also allows the measurement of real anatomic lengths and angles and obtains accurate 3D locations from image points. Our approach completely eliminates the need for X-ray-opaque reference marks (and necessary supporting frames) which can sometimes be invasive for the patient, occlude the radiographic picture, and end up projected outside the imaging sensor area in oblique protocols. Two possible frameworks are envisioned: a spatially shifting X-ray anode around the patient/object and a moving patient that moves/rotates while the imaging system remains fixed. As a proof of concept, experiences with a device under test (DUT), an anthropomorphic phantom and a real brachytherapy session have been carried out. The results show that it is possible to identify common points with a proper level of accuracy and retrieve three-dimensional locations, lengths and shapes with a millimetric level of precision. The presented approach is simple and compatible with both current and legacy widespread diagnostic X-ray imaging deployments and it can represent a good and inexpensive alternative to other radiological modalities like CT. PMID:26978665

  3. 3D density imaging with muons flux measurements from underground galleries

    NASA Astrophysics Data System (ADS)

    Lesparre, Nolwenn; Cabrera, Justo; Marteau, Jacques

    2016-04-01

    Atmospheric muons flux measurements provide information on sub-surface density distribution, giving insights on the medium structure. We measured the muons flux from the underground galleries of the Tournemire experimental platform to image the medium between the galleries and the surface. The experiment aimed at evaluating the capacity of the method to detect the presence of discontinuities produced either by secondary strike-slip faults that present small vertical displacements or by a karstic network may be present at the level of an upper aquifer. Measurements were performed from three different sites so the trajectories of detected muons paths intersect in the medium. Such a configuration provided complementary information on the density distribution, offering the possibility to seek density variations at different depths. A specific calibration method was applied in order to interpolate the data acquired at different times with the same muons sensor. Muons flux measurements variations were then processed through a non-linear inversion, producing a 3D image of the density together with an evaluation of the different distinguished targets reliability. The density distribution showed the presence of a very low density region at the level of the upper aquifer, suggesting the presence of a karstic network hosting locally cavities. The trace of secondary strike-slip faults did not appear clearly on the image as the density contrast they produce might be too low compared to the signal to noise ratio present in the muons flux data. We propose different strategies to improve the density image accuracy.

  4. Realization of an aerial 3D image that occludes the background scenery.

    PubMed

    Kakeya, Hideki; Ishizuka, Shuta; Sato, Yuya

    2014-10-01

    In this paper we describe an aerial 3D image that occludes far background scenery based on coarse integral volumetric imaging (CIVI) technology. There have been many volumetric display devices that present floating 3D images, most of which have not reproduced the visual occlusion. CIVI is a kind of multilayered integral imaging and realizes an aerial volumetric image with visual occlusion by combining multiview and volumetric display technologies. The conventional CIVI, however, cannot show a deep space, for the number of layered panels is limited because of the low transmittance of each panel. To overcome this problem, we propose a novel optical design to attain an aerial 3D image that occludes far background scenery. In the proposed system, a translucent display panel with 120 Hz refresh rate is located between the CIVI system and the aerial 3D image. The system modulates between the aerial image mode and the background image mode. In the aerial image mode, the elemental images are shown on the CIVI display and the inserted translucent display is uniformly translucent. In the background image mode, the black shadows of the elemental images in a white background are shown on the CIVI display and the background scenery is displayed on the inserted translucent panel. By alternation of these two modes at 120 Hz, an aerial 3D image that visually occludes the far background scenery is perceived by the viewer.

  5. Multithreaded real-time 3D image processing software architecture and implementation

    NASA Astrophysics Data System (ADS)

    Ramachandra, Vikas; Atanassov, Kalin; Aleksic, Milivoje; Goma, Sergio R.

    2011-03-01

    Recently, 3D displays and videos have generated a lot of interest in the consumer electronics industry. To make 3D capture and playback popular and practical, a user friendly playback interface is desirable. Towards this end, we built a real time software 3D video player. The 3D video player displays user captured 3D videos, provides for various 3D specific image processing functions and ensures a pleasant viewing experience. Moreover, the player enables user interactivity by providing digital zoom and pan functionalities. This real time 3D player was implemented on the GPU using CUDA and OpenGL. The player provides user interactive 3D video playback. Stereo images are first read by the player from a fast drive and rectified. Further processing of the images determines the optimal convergence point in the 3D scene to reduce eye strain. The rationale for this convergence point selection takes into account scene depth and display geometry. The first step in this processing chain is identifying keypoints by detecting vertical edges within the left image. Regions surrounding reliable keypoints are then located on the right image through the use of block matching. The difference in the positions between the corresponding regions in the left and right images are then used to calculate disparity. The extrema of the disparity histogram gives the scene disparity range. The left and right images are shifted based upon the calculated range, in order to place the desired region of the 3D scene at convergence. All the above computations are performed on one CPU thread which calls CUDA functions. Image upsampling and shifting is performed in response to user zoom and pan. The player also consists of a CPU display thread, which uses OpenGL rendering (quad buffers). This also gathers user input for digital zoom and pan and sends them to the processing thread.

  6. 3-D capacitance density imaging of fluidized bed

    DOEpatents

    Fasching, George E.

    1990-01-01

    A three-dimensional capacitance density imaging of a gasified bed or the like in a containment vessel is achieved using a plurality of electrodes provided circumferentially about the bed in levels and along the bed in channels. The electrodes are individually and selectively excited electrically at each level to produce a plurality of current flux field patterns generated in the bed at each level. The current flux field patterns are suitably sensed and a density pattern of the bed at each level determined. By combining the determined density patterns at each level, a three-dimensional density image of the bed is achieved.

  7. The agreement between 3D, standard 2D and triplane 2D speckle tracking: effects of image quality and 3D volume rate

    PubMed Central

    Stöbe, Stephan; Tarr, Adrienn; Pfeiffer, Dietrich; Hagendorff, Andreas

    2014-01-01

    Comparison of 3D and 2D speckle tracking performed on standard 2D and triplane 2D datasets of normal and pathological left ventricular (LV) wall-motion patterns with a focus on the effect that 3D volume rate (3DVR), image quality and tracking artifacts have on the agreement between 2D and 3D speckle tracking. 37 patients with normal LV function and 18 patients with ischaemic wall-motion abnormalities underwent 2D and 3D echocardiography, followed by offline speckle tracking measurements. The values of 3D global, regional and segmental strain were compared with the standard 2D and triplane 2D strain values. Correlation analysis with the LV ejection fraction (LVEF) was also performed. The 3D and 2D global strain values correlated good in both normally and abnormally contracting hearts, though systematic differences between the two methods were observed. Of the 3D strain parameters, the area strain showed the best correlation with the LVEF. The numerical agreement of 3D and 2D analyses varied significantly with the volume rate and image quality of the 3D datasets. The highest correlation between 2D and 3D peak systolic strain values was found between 3D area and standard 2D longitudinal strain. Regional wall-motion abnormalities were similarly detected by 2D and 3D speckle tracking. 2DST of triplane datasets showed similar results to those of conventional 2D datasets. 2D and 3D speckle tracking similarly detect normal and pathological wall-motion patterns. Limited image quality has a significant impact on the agreement between 3D and 2D numerical strain values. PMID:26693303

  8. 3D Modeling from Multi-views Images for Cultural Heritage in Wat-Pho, Thailand

    NASA Astrophysics Data System (ADS)

    Soontranon, N.; Srestasathiern, P.; Lawawirojwong, S.

    2015-08-01

    In Thailand, there are several types of (tangible) cultural heritages. This work focuses on 3D modeling of the heritage objects from multi-views images. The images are acquired by using a DSLR camera which costs around 1,500 (camera and lens). Comparing with a 3D laser scanner, the camera is cheaper and lighter than the 3D scanner. Hence, the camera is available for public users and convenient for accessing narrow areas. The acquired images consist of various sculptures and architectures in Wat-Pho which is a Buddhist temple located behind the Grand Palace (Bangkok, Thailand). Wat-Pho is known as temple of the reclining Buddha and the birthplace of traditional Thai massage. To compute the 3D models, a diagram is separated into following steps; Data acquisition, Image matching, Image calibration and orientation, Dense matching and Point cloud processing. For the initial work, small heritages less than 3 meters height are considered for the experimental results. A set of multi-views images of an interested object is used as input data for 3D modeling. In our experiments, 3D models are obtained from MICMAC (open source) software developed by IGN, France. The output of 3D models will be represented by using standard formats of 3D point clouds and triangulated surfaces such as .ply, .off, .obj, etc. To compute for the efficient 3D models, post-processing techniques are required for the final results e.g. noise reduction, surface simplification and reconstruction. The reconstructed 3D models can be provided for public access such as website, DVD, printed materials. The high accurate 3D models can also be used as reference data of the heritage objects that must be restored due to deterioration of a lifetime, natural disasters, etc.

  9. Deriving 3d Point Clouds from Terrestrial Photographs - Comparison of Different Sensors and Software

    NASA Astrophysics Data System (ADS)

    Niederheiser, Robert; Mokroš, Martin; Lange, Julia; Petschko, Helene; Prasicek, Günther; Oude Elberink, Sander

    2016-06-01

    Terrestrial photogrammetry nowadays offers a reasonably cheap, intuitive and effective approach to 3D-modelling. However, the important choice, which sensor and which software to use is not straight forward and needs consideration as the choice will have effects on the resulting 3D point cloud and its derivatives. We compare five different sensors as well as four different state-of-the-art software packages for a single application, the modelling of a vegetated rock face. The five sensors represent different resolutions, sensor sizes and price segments of the cameras. The software packages used are: (1) Agisoft PhotoScan Pro (1.16), (2) Pix4D (2.0.89), (3) a combination of Visual SFM (V0.5.22) and SURE (1.2.0.286), and (4) MicMac (1.0). We took photos of a vegetated rock face from identical positions with all sensors. Then we compared the results of the different software packages regarding the ease of the workflow, visual appeal, similarity and quality of the point cloud. While PhotoScan and Pix4D offer the user-friendliest workflows, they are also "black-box" programmes giving only little insight into their processing. Unsatisfying results may only be changed by modifying settings within a module. The combined workflow of Visual SFM, SURE and CloudCompare is just as simple but requires more user interaction. MicMac turned out to be the most challenging software as it is less user-friendly. However, MicMac offers the most possibilities to influence the processing workflow. The resulting point-clouds of PhotoScan and MicMac are the most appealing.

  10. A Two-Stage Framework for 3D Face Reconstruction from RGBD Images.

    PubMed

    Wang, Kangkan; Wang, Xianwang; Pan, Zhigeng; Liu, Kai

    2014-08-01

    This paper proposes a new approach for 3D face reconstruction with RGBD images from an inexpensive commodity sensor. The challenges we face are: 1) substantial random noise and corruption are present in low-resolution depth maps; and 2) there is high degree of variability in pose and face expression. We develop a novel two-stage algorithm that effectively maps low-quality depth maps to realistic face models. Each stage is targeted toward a certain type of noise. The first stage extracts sparse errors from depth patches through the data-driven local sparse coding, while the second stage smooths noise on the boundaries between patches and reconstructs the global shape by combining local shapes using our template-based surface refinement. Our approach does not require any markers or user interaction. We perform quantitative and qualitative evaluations on both synthetic and real test sets. Experimental results show that the proposed approach is able to produce high-resolution 3D face models with high accuracy, even if inputs are of low quality, and have large variations in viewpoint and face expression.

  11. A Featureless Approach to 3D Polyhedral Building Modeling from Aerial Images

    PubMed Central

    Hammoudi, Karim; Dornaika, Fadi

    2011-01-01

    This paper presents a model-based approach for reconstructing 3D polyhedral building models from aerial images. The proposed approach exploits some geometric and photometric properties resulting from the perspective projection of planar structures. Data are provided by calibrated aerial images. The novelty of the approach lies in its featurelessness and in its use of direct optimization based on image rawbrightness. The proposed framework avoids feature extraction and matching. The 3D polyhedral model is directly estimated by optimizing an objective function that combines an image-based dissimilarity measure and a gradient score over several aerial images. The optimization process is carried out by the Differential Evolution algorithm. The proposed approach is intended to provide more accurate 3D reconstruction than feature-based approaches. Fast 3D model rectification and updating can take advantage of the proposed method. Several results and evaluations of performance from real and synthetic images show the feasibility and robustness of the proposed approach. PMID:22346575

  12. A featureless approach to 3D polyhedral building modeling from aerial images.

    PubMed

    Hammoudi, Karim; Dornaika, Fadi

    2011-01-01

    This paper presents a model-based approach for reconstructing 3D polyhedral building models from aerial images. The proposed approach exploits some geometric and photometric properties resulting from the perspective projection of planar structures. Data are provided by calibrated aerial images. The novelty of the approach lies in its featurelessness and in its use of direct optimization based on image rawbrightness. The proposed framework avoids feature extraction and matching. The 3D polyhedral model is directly estimated by optimizing an objective function that combines an image-based dissimilarity measure and a gradient score over several aerial images. The optimization process is carried out by the Differential Evolution algorithm. The proposed approach is intended to provide more accurate 3D reconstruction than feature-based approaches. Fast 3D model rectification and updating can take advantage of the proposed method. Several results and evaluations of performance from real and synthetic images show the feasibility and robustness of the proposed approach. PMID:22346575

  13. Boundary estimation method for ultrasonic 3D imaging

    NASA Astrophysics Data System (ADS)

    Ohashi, Gosuke; Ohya, Akihisa; Natori, Michiya; Nakajima, Masato

    1993-09-01

    The authors developed a new method for automatically and efficiently estimating the boundaries of soft tissue and amniotic fluid and to obtain a fine three dimensional image of the fetus from information given by ultrasonic echo images. The aim of this boundary estimation is to provide clear three dimensional images by shading the surface of the fetus and uterine wall using Lambert shading method. Normally there appears a random granular pattern called 'speckle' on an ultrasonic echo image. Therefore, it is difficult to estimate the soft tissue boundary satisfactorily via a simple method such as threshold value processing. Accordingly, the authors devised a method for classifying attributes into three categories using the neural network: soft tissue, amniotic and boundary. The shape of the grey level histogram was the standard for judgment, made by referring to the peripheral region of the voxel. Its application to the clinical data has shown a fine estimation of the boundary between the fetus or the uterine wall and the amniotic, enabling the details of the three dimensional structure to be observed.

  14. Registration and 3D visualization of large microscopy images

    NASA Astrophysics Data System (ADS)

    Mosaliganti, Kishore; Pan, Tony; Sharp, Richard; Ridgway, Randall; Iyengar, Srivathsan; Gulacy, Alexandra; Wenzel, Pamela; de Bruin, Alain; Machiraju, Raghu; Huang, Kun; Leone, Gustavo; Saltz, Joel

    2006-03-01

    Inactivation of the retinoblastoma gene in mouse embryos causes tissue infiltrations into critical sections of the placenta, which has been shown to affect fetal survivability. Our collaborators in cancer genetics are extremely interested in examining the three dimensional nature of these infiltrations given a stack of two dimensional light microscopy images. Three sets of wildtype and mutant placentas was sectioned serially and digitized using a commercial light microscopy scanner. Each individual placenta dataset consisted of approximately 1000 images totaling 700 GB in size, which were registered into a volumetric dataset using National Library of Medicine's (NIH/NLM) Insight Segmentation and Registration Toolkit (ITK). This paper describes our method for image registration to aid in volume visualization of tissue level intermixing for both wildtype and Rb - specimens. The registration process faces many challenges arising from the large image sizes, damages during sectioning, staining gradients both within and across sections, and background noise. These issues limit the direct application of standard registration techniques due to frequent convergence to local solutions. In this work, we develop a mixture of automated and semi-automated enhancements with ground-truth validation for the mutual information-based registration algorithm. Our final volume renderings clearly show tissue intermixing differences between both wildtype and Rb - specimens which are not obvious prior to registration.

  15. Space Radar Image of Kilauea, Hawaii in 3-D

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a three-dimensional perspective view of a false-color image of the eastern part of the Big Island of Hawaii. It was produced using all three radar frequencies -- X-band, C-band and L-band -- from the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) flying on the space shuttle Endeavour, overlaid on a U.S. Geological Survey digital elevation map. Visible in the center of the image in blue are the summit crater (Kilauea Caldera) which contains the smaller Halemaumau Crater, and the line of collapse craters below them that form the Chain of Craters Road. The image was acquired on April 12, 1994 during orbit 52 of the space shuttle. The area shown is approximately 34 by 57 kilometers (21 by 35 miles) with the top of the image pointing toward northwest. The image is centered at about 155.25 degrees west longitude and 19.5 degrees north latitude. The false colors are created by displaying three radar channels of different frequency. Red areas correspond to high backscatter at L-HV polarization, while green areas exhibit high backscatter at C-HV polarization. Finally, blue shows high return at X-VV polarization. Using this color scheme, the rain forest appears bright on the image, while the green areas correspond to lower vegetation. The lava flows have different colors depending on their types and are easily recognizable due to their shapes. The flows at the top of the image originated from the Mauna Loa volcano. Kilauea volcano has been almost continuously active for more than the last 11 years. Field teams that were on the ground specifically to support these radar observations report that there was vigorous surface activity about 400 meters (one-quartermile) inland from the coast. A moving lava flow about 200 meters (650 feet) in length was observed at the time of the shuttle overflight, raising the possibility that subsequent images taken during this mission will show changes in the landscape. Currently, most of the lava that is

  16. Space Radar Image of Kilauea, Hawaii in 3-D

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a three-dimensional perspective view of a false-color image of the eastern part of the Big Island of Hawaii. It was produced using all three radar frequencies -- X-band, C-band and L-band -- from the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) flying on the space shuttle Endeavour, overlaid on a U.S. Geological Survey digital elevation map. Visible in the center of the image in blue are the summit crater (Kilauea Caldera) which contains the smaller Halemaumau Crater, and the line of collapse craters below them that form the Chain of Craters Road. The image was acquired on April 12, 1994 during orbit 52 of the space shuttle. The area shown is approximately 34 by 57 kilometers (21 by 35 miles) with the top of the image pointing toward northwest. The image is centered at about 155.25 degrees west longitude and 19.5 degrees north latitude. The false colors are created by displaying three radar channels of different frequency. Red areas correspond to high backscatter at L-HV polarization, while green areas exhibit high backscatter at C-HV polarization. Finally, blue shows high return at X-VV polarization. Using this color scheme, the rain forest appears bright on the image, while the green areas correspond to lower vegetation. The lava flows have different colors depending on their types and are easily recognizable due to their shapes. The flows at the top of the image originated from the Mauna Loa volcano. Kilauea volcano has been almost continuously active for more than the last 11 years. Field teams that were on the ground specifically to support these radar observations report that there was vigorous surface activity about 400 meters (one-quartermile) inland from the coast. A moving lava flow about 200 meters (650 feet) in length was observed at the time of the shuttle overflight, raising the possibility that subsequent images taken during this mission will show changes in the landscape. Currently, most of the lava that is

  17. Determining 3-D motion and structure from image sequences

    NASA Technical Reports Server (NTRS)

    Huang, T. S.

    1982-01-01

    A method of determining three-dimensional motion and structure from two image frames is presented. The method requires eight point correspondences between the two frames, from which motion and structure parameters are determined by solving a set of eight linear equations and a singular value decomposition of a 3x3 matrix. It is shown that the solution thus obtained is unique.

  18. Synthesis of image sequences for Korean sign language using 3D shape model

    NASA Astrophysics Data System (ADS)

    Hong, Mun-Ho; Choi, Chang-Seok; Kim, Chang-Seok; Jeon, Joon-Hyeon

    1995-05-01

    This paper proposes a method for offering information and realizing communication to the deaf-mute. The deaf-mute communicates with another person by means of sign language, but most people are unfamiliar with it. This method enables to convert text data into the corresponding image sequences for Korean sign language (KSL). Using a general 3D shape model of the upper body leads to generating the 3D motions of KSL. It is necessary to construct the general 3D shape model considering the anatomical structure of the human body. To obtain a personal 3D shape model, this general model is to adjust to the personal base images. Image synthesis for KSL consists of deforming a personal 3D shape model and texture-mapping the personal images onto the deformed model. The 3D motions for KSL have the facial expressions and the 3D movements of the head, trunk, arms and hands and are parameterized for easily deforming the model. These motion parameters of the upper body are extracted from a skilled signer's motion for each KSL and are stored to the database. Editing the parameters according to the inputs of text data yields to generate the image sequences of 3D motions.

  19. 3D lidar imaging for detecting and understanding plant responses and canopy structure.

    PubMed

    Omasa, Kenji; Hosoi, Fumiki; Konishi, Atsumi

    2007-01-01

    Understanding and diagnosing plant responses to stress will benefit greatly from three-dimensional (3D) measurement and analysis of plant properties because plant responses are strongly related to their 3D structures. Light detection and ranging (lidar) has recently emerged as a powerful tool for direct 3D measurement of plant structure. Here the use of 3D lidar imaging to estimate plant properties such as canopy height, canopy structure, carbon stock, and species is demonstrated, and plant growth and shape responses are assessed by reviewing the development of lidar systems and their applications from the leaf level to canopy remote sensing. In addition, the recent creation of accurate 3D lidar images combined with natural colour, chlorophyll fluorescence, photochemical reflectance index, and leaf temperature images is demonstrated, thereby providing information on responses of pigments, photosynthesis, transpiration, stomatal opening, and shape to environmental stresses; these data can be integrated with 3D images of the plants using computer graphics techniques. Future lidar applications that provide more accurate dynamic estimation of various plant properties should improve our understanding of plant responses to stress and of interactions between plants and their environment. Moreover, combining 3D lidar with other passive and active imaging techniques will potentially improve the accuracy of airborne and satellite remote sensing, and make it possible to analyse 3D information on ecophysiological responses and levels of various substances in agricultural and ecological applications and in observations of the global biosphere. PMID:17030540

  20. FGG-NUFFT-Based Method for Near-Field 3-D Imaging Using Millimeter Waves

    PubMed Central

    Kan, Yingzhi; Zhu, Yongfeng; Tang, Liang; Fu, Qiang; Pei, Hucheng

    2016-01-01

    In this paper, to deal with the concealed target detection problem, an accurate and efficient algorithm for near-field millimeter wave three-dimensional (3-D) imaging is proposed that uses a two-dimensional (2-D) plane antenna array. First, a two-dimensional fast Fourier transform (FFT) is performed on the scattered data along the antenna array plane. Then, a phase shift is performed to compensate for the spherical wave effect. Finally, fast Gaussian gridding based nonuniform FFT (FGG-NUFFT) combined with 2-D inverse FFT (IFFT) is performed on the nonuniform 3-D spatial spectrum in the frequency wavenumber domain to achieve 3-D imaging. The conventional method for near-field 3-D imaging uses Stolt interpolation to obtain uniform spatial spectrum samples and performs 3-D IFFT to reconstruct a 3-D image. Compared with the conventional method, our FGG-NUFFT based method is comparable in both efficiency and accuracy in the full sampled case and can obtain more accurate images with less clutter and fewer noisy artifacts in the down-sampled case, which are good properties for practical applications. Both simulation and experimental results demonstrate that the FGG-NUFFT-based near-field 3-D imaging algorithm can have better imaging performance than the conventional method for down-sampled measurements. PMID:27657066

  1. Space Radar Image of Mammoth, California in 3-D

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a three-dimensional perspective of Mammoth Mountain, California. This view was constructed by overlaying a Spaceborne Imaging Radar-C (SIR-C) radar image on a U.S. Geological Survey digital elevation map. Vertical exaggeration is 1.87 times. The image is centered at 37.6 degrees north, 119.0 degrees west. It was acquired from the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard space shuttle Endeavour on its 67th orbit on April 13, 1994. In this color representation, red is C-band HV-polarization, green is C-band VV-polarization and blue is the ratio of C-band VV to C-band HV. Blue areas are smooth, and yellow areas are rock out-crops with varying amounts of snow and vegetation. Crowley Lake is in the foreground, and Highway 395 crosses in the middle of the image. Mammoth Mountain is shown in the upper right. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).

  2. Space Radar Image of Missoula, Montana in 3-D

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a three-dimensional perspective view of Missoula, Montana, created by combining two spaceborne radar images using a technique known as interferometry. Visualizations like this are useful because they show scientists the shapes of the topographic features such as mountains and valleys. This technique helps to clarify the relationships of the different types of materials on the surface detected by the radar. The view is looking north-northeast. The blue circular area at the lower left corner is a bend of the Bitterroot River just before it joins the Clark Fork, which runs through the city. Crossing the Bitterroot River is the bridge of U.S. Highway 93. Highest mountains in this image are at elevations of 2,200 meters (7,200 feet). The city is about 975 meters (3,200 feet) above sea level. The bright yellow areas are urban and suburban zones, dark brown and blue-green areas are grasslands, bright green areas are farms, light brown and purple areas are scrub and forest, and bright white and blue areas are steep rocky slopes. The two radar images were taken on successive days by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour in October 1994. The digital elevation map was produced using radar interferometry, a process in which radar data are acquired on different passes of the space shuttle. The two data passes are compared to obtain elevation information. Radar image data are draped over the topography to provide the color with the following assignments: red is L-band vertically transmitted, vertically received; green is C-band vertically transmitted, vertically received; and blue are differences seen in the L-band data between the two days. This image is centered near 46.9 degrees north latitude and 114.1 degrees west longitude. No vertical exaggeration factor has been applied to the data. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA

  3. Space Radar Image of Long Valley, California - 3D view

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a three-dimensional perspective view of Long Valley, California by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar on board the space shuttle Endeavour. This view was constructed by overlaying a color composite SIR-C image on a digital elevation map. The digital elevation map was produced using radar interferometry, a process by which radar data are acquired on different passes of the space shuttle and, which then, are compared to obtain elevation information. The data were acquired on April 13, 1994 and on October 3, 1994, during the first and second flights of the SIR-C/X-SAR radar instrument. The color composite radar image was produced by assigning red to the C-band (horizontally transmitted and vertically received) polarization; green to the C-band (vertically transmitted and received) polarization; and blue to the ratio of the two data sets. Blue areas in the image are smooth and yellow areas are rock outcrops with varying amounts of snow and vegetation. The view is looking north along the northeastern edge of the Long Valley caldera, a volcanic collapse feature created 750,000 years ago and the site of continued subsurface activity. Crowley Lake is off the image to the left. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory

  4. Space Radar Image of Long Valley, California in 3-D

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This three-dimensional perspective view of Long Valley, California was created from data taken by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar on board the space shuttle Endeavour. This image was constructed by overlaying a color composite SIR-C radar image on a digital elevation map. The digital elevation map was produced using radar interferometry, a process by which radar data are acquired on different passes of the space shuttle. The two data passes are compared to obtain elevation information. The interferometry data were acquired on April 13,1994 and on October 3, 1994, during the first and second flights of the SIR-C/X-SAR instrument. The color composite radar image was taken in October and was produced by assigning red to the C-band (horizontally transmitted and vertically received) polarization; green to the C-band (vertically transmitted and received) polarization; and blue to the ratio of the two data sets. Blue areas in the image are smooth and yellow areas are rock outcrops with varying amounts of snow and vegetation. The view is looking north along the northeastern edge of the Long Valley caldera, a volcanic collapse feature created 750,000 years ago and the site of continued subsurface activity. Crowley Lake is the large dark feature in the foreground. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are

  5. Space Radar Image of Karakax Valley, China 3-D

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This three-dimensional perspective of the remote Karakax Valley in the northern Tibetan Plateau of western China was created by combining two spaceborne radar images using a technique known as interferometry. Visualizations like this are helpful to scientists because they reveal where the slopes of the valley are cut by erosion, as well as the accumulations of gravel deposits at the base of the mountains. These gravel deposits, called alluvial fans, are a common landform in desert regions that scientists are mapping in order to learn more about Earth's past climate changes. Higher up the valley side is a clear break in the slope, running straight, just below the ridge line. This is the trace of the Altyn Tagh fault, which is much longer than California's San Andreas fault. Geophysicists are studying this fault for clues it may be able to give them about large faults. Elevations range from 4000 m (13,100 ft) in the valley to over 6000 m (19,700 ft) at the peaks of the glaciated Kun Lun mountains running from the front right towards the back. Scale varies in this perspective view, but the area is about 20 km (12 miles) wide in the middle of the image, and there is no vertical exaggeration. The two radar images were acquired on separate days during the second flight of the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour in October 1994. The interferometry technique provides elevation measurements of all points in the scene. The resulting digital topographic map was used to create this view, looking northwest from high over the valley. Variations in the colors can be related to gravel, sand and rock outcrops. This image is centered at 36.1 degrees north latitude, 79.2 degrees east longitude. Radar image data are draped over the topography to provide the color with the following assignments: Red is L-band vertically transmitted, vertically received; green is the average of L-band vertically transmitted

  6. Design of a 3D-IC multi-resolution digital pixel sensor

    NASA Astrophysics Data System (ADS)

    Brochard, N.; Nebhen, J.; Dubois, J.; Ginhac, D.

    2016-04-01

    This paper presents a digital pixel sensor (DPS) integrating a sigma-delta analog-to-digital converter (ADC) at pixel level. The digital pixel includes a photodiode, a delta-sigma modulation and a digital decimation filter. It features adaptive dynamic range and multiple resolutions (up to 10-bit) with a high linearity. A specific row decoder and column decoder are also designed to permit to read a specific pixel chosen in the matrix and its neighborhood of 4 x 4. Finally, a complete design with the CMOS 130 nm 3D-IC FaStack Tezzaron technology is also described, revealing a high fill-factor of about 80%.

  7. How Accurate Are the Fusion of Cone-Beam CT and 3-D Stereophotographic Images?

    PubMed Central

    Jayaratne, Yasas S. N.; McGrath, Colman P. J.; Zwahlen, Roger A.

    2012-01-01

    Background Cone-beam Computed Tomography (CBCT) and stereophotography are two of the latest imaging modalities available for three-dimensional (3-D) visualization of craniofacial structures. However, CBCT provides only limited information on surface texture. This can be overcome by combining the bone images derived from CBCT with 3-D photographs. The objectives of this study were 1) to evaluate the feasibility of integrating 3-D Photos and CBCT images 2) to assess degree of error that may occur during the above processes and 3) to identify facial regions that would be most appropriate for 3-D image registration. Methodology CBCT scans and stereophotographic images from 29 patients were used for this study. Two 3-D images corresponding to the skin and bone were extracted from the CBCT data. The 3-D photo was superimposed on the CBCT skin image using relatively immobile areas of the face as a reference. 3-D colour maps were used to assess the accuracy of superimposition were distance differences between the CBCT and 3-D photo were recorded as the signed average and the Root Mean Square (RMS) error. Principal Findings: The signed average and RMS of the distance differences between the registered surfaces were −0.018 (±0.129) mm and 0.739 (±0.239) mm respectively. The most errors were found in areas surrounding the lips and the eyes, while minimal errors were noted in the forehead, root of the nose and zygoma. Conclusions CBCT and 3-D photographic data can be successfully fused with minimal errors. When compared to RMS, the signed average was found to under-represent the registration error. The virtual 3-D composite craniofacial models permit concurrent assessment of bone and soft tissues during diagnosis and treatment planning. PMID:23185372

  8. A new approach towards image based virtual 3D city modeling by using close range photogrammetry

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-05-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing day to day for various engineering and non-engineering applications. Generally three main image based approaches are using for virtual 3D city models generation. In first approach, researchers used Sketch based modeling, second method is Procedural grammar based modeling and third approach is Close range photogrammetry based modeling. Literature study shows that till date, there is no complete solution available to create complete 3D city model by using images. These image based methods also have limitations This paper gives a new approach towards image based virtual 3D city modeling by using close range photogrammetry. This approach is divided into three sections. First, data acquisition process, second is 3D data processing, and third is data combination process. In data acquisition process, a multi-camera setup developed and used for video recording of an area. Image frames created from video data. Minimum required and suitable video image frame selected for 3D processing. In second section, based on close range photogrammetric principles and computer vision techniques, 3D model of area created. In third section, this 3D model exported to adding and merging of other pieces of large area. Scaling and alignment of 3D model was done. After applying the texturing and rendering on this model, a final photo-realistic textured 3D model created. This 3D model transferred into walk-through model or in movie form. Most of the processing steps are automatic. So this method is cost effective and less laborious. Accuracy of this model is good. For this research work, study area is the campus of department of civil engineering, Indian Institute of Technology, Roorkee. This campus acts as a prototype for city. Aerial photography is restricted in many country

  9. Recovering 3D tumor locations from 2D bioluminescence images and registration with CT images

    NASA Astrophysics Data System (ADS)

    Huang, Xiaolei; Metaxas, Dimitris N.; Menon, Lata G.; Mayer-Kuckuk, Philipp; Bertino, Joseph R.; Banerjee, Debabrata

    2006-02-01

    In this paper, we introduce a novel and efficient algorithm for reconstructing the 3D locations of tumor sites from a set of 2D bioluminescence images which are taken by a same camera but after continually rotating the object by a small angle. Our approach requires a much simpler set up than those using multiple cameras, and the algorithmic steps in our framework are efficient and robust enough to facilitate its use in analyzing the repeated imaging of a same animal transplanted with gene marked cells. In order to visualize in 3D the structure of the tumor, we also co-register the BLI-reconstructed crude structure with detailed anatomical structure extracted from high-resolution microCT on a single platform. We present our method using both phantom studies and real studies on small animals.

  10. Snapshot 3D optical coherence tomography system using image mappingspectrometry

    PubMed Central

    Nguyen, Thuc-Uyen; Pierce, Mark C; Higgins, Laura; Tkaczyk, Tomasz S

    2013-01-01

    A snapshot 3-Dimensional Optical Coherence Tomography system was developed using Image MappingSpectrometry. This system can give depth information (Z) at different spatial positions (XY) withinone camera integration time to potentially reduce motion artifact and enhance throughput. Thecurrent (x,y,λ) datacube of (85×356×117) provides a 3Dvisualization of sample with 400 μm depth and 13.4μm in transverse resolution. Axial resolution of 16.0μm can also be achieved in this proof-of-concept system. We present ananalysis of the theoretical constraints which will guide development of future systems withincreased imaging depth and improved axial and lateral resolutions. PMID:23736629

  11. Determining 3D flow fields via multi-camera light field imaging.

    PubMed

    Truscott, Tadd T; Belden, Jesse; Nielson, Joseph R; Daily, David J; Thomson, Scott L

    2013-03-06

    In the field of fluid mechanics, the resolution of computational schemes has outpaced experimental methods and widened the gap between predicted and observed phenomena in fluid flows. Thus, a need exists for an accessible method capable of resolving three-dimensional (3D) data sets for a range of problems. We present a novel technique for performing quantitative 3D imaging of many types of flow fields. The 3D technique enables investigation of complicated velocity fields and bubbly flows. Measurements of these types present a variety of challenges to the instrument. For instance, optically dense bubbly multiphase flows cannot be readily imaged by traditional, non-invasive flow measurement techniques due to the bubbles occluding optical access to the interior regions of the volume of interest. By using Light Field Imaging we are able to reparameterize images captured by an array of cameras to reconstruct a 3D volumetric map for every time instance, despite partial occlusions in the volume. The technique makes use of an algorithm known as synthetic aperture (SA) refocusing, whereby a 3D focal stack is generated by combining images from several cameras post-capture (1). Light Field Imaging allows for the capture of angular as well as spatial information about the light rays, and hence enables 3D scene reconstruction. Quantitative information can then be extracted from the 3D reconstructions using a variety of processing algorithms. In particular, we have developed measurement methods based on Light Field Imaging for performing 3D particle image velocimetry (PIV), extracting bubbles in a 3D field and tracking the boundary of a flickering flame. We present the fundamentals of the Light Field Imaging methodology in the context of our setup for performing 3DPIV of the airflow passing over a set of synthetic vocal folds, and show representative results from application of the technique to a bubble-entraining plunging jet.

  12. Determining 3D Flow Fields via Multi-camera Light Field Imaging

    PubMed Central

    Truscott, Tadd T.; Belden, Jesse; Nielson, Joseph R.; Daily, David J.; Thomson, Scott L.

    2013-01-01

    In the field of fluid mechanics, the resolution of computational schemes has outpaced experimental methods and widened the gap between predicted and observed phenomena in fluid flows. Thus, a need exists for an accessible method capable of resolving three-dimensional (3D) data sets for a range of problems. We present a novel technique for performing quantitative 3D imaging of many types of flow fields. The 3D technique enables investigation of complicated velocity fields and bubbly flows. Measurements of these types present a variety of challenges to the instrument. For instance, optically dense bubbly multiphase flows cannot be readily imaged by traditional, non-invasive flow measurement techniques due to the bubbles occluding optical access to the interior regions of the volume of interest. By using Light Field Imaging we are able to reparameterize images captured by an array of cameras to reconstruct a 3D volumetric map for every time instance, despite partial occlusions in the volume. The technique makes use of an algorithm known as synthetic aperture (SA) refocusing, whereby a 3D focal stack is generated by combining images from several cameras post-capture 1. Light Field Imaging allows for the capture of angular as well as spatial information about the light rays, and hence enables 3D scene reconstruction. Quantitative information can then be extracted from the 3D reconstructions using a variety of processing algorithms. In particular, we have developed measurement methods based on Light Field Imaging for performing 3D particle image velocimetry (PIV), extracting bubbles in a 3D field and tracking the boundary of a flickering flame. We present the fundamentals of the Light Field Imaging methodology in the context of our setup for performing 3DPIV of the airflow passing over a set of synthetic vocal folds, and show representative results from application of the technique to a bubble-entraining plunging jet. PMID:23486112

  13. A Workstation for Interactive Display and Quantitative Analysis of 3-D and 4-D Biomedical Images

    PubMed Central

    Robb, R.A.; Heffeman, P.B.; Camp, J.J.; Hanson, D.P.

    1986-01-01

    The capability to extract objective and quantitatively accurate information from 3-D radiographic biomedical images has not kept pace with the capabilities to produce the images themselves. This is rather an ironic paradox, since on the one hand the new 3-D and 4-D imaging capabilities promise significant potential for providing greater specificity and sensitivity (i.e., precise objective discrimination and accurate quantitative measurement of body tissue characteristics and function) in clinical diagnostic and basic investigative imaging procedures than ever possible before, but on the other hand, the momentous advances in computer and associated electronic imaging technology which have made these 3-D imaging capabilities possible have not been concomitantly developed for full exploitation of these capabilities. Therefore, we have developed a powerful new microcomputer-based system which permits detailed investigations and evaluation of 3-D and 4-D (dynamic 3-D) biomedical images. The system comprises a special workstation to which all the information in a large 3-D image data base is accessible for rapid display, manipulation, and measurement. The system provides important capabilities for simultaneously representing and analyzing both structural and functional data and their relationships in various organs of the body. This paper provides a detailed description of this system, as well as some of the rationale, background, theoretical concepts, and practical considerations related to system implementation. ImagesFigure 5Figure 7Figure 8Figure 9Figure 10Figure 11Figure 12Figure 13Figure 14Figure 15Figure 16

  14. 3D/2D convertible projection-type integral imaging using concave half mirror array.

    PubMed

    Hong, Jisoo; Kim, Youngmin; Park, Soon-gi; Hong, Jong-Ho; Min, Sung-Wook; Lee, Sin-Doo; Lee, Byoungho

    2010-09-27

    We propose a new method for implementing 3D/2D convertible feature in the projection-type integral imaging by using concave half mirror array. The concave half mirror array has the partially reflective characteristic to the incident light. And the reflected term is modulated by the concave mirror array structure, while the transmitted term is unaffected. With such unique characteristic, 3D/2D conversion or even the simultaneous display of 3D and 2D images is also possible. The prototype was fabricated by the aluminum coating and the polydimethylsiloxane molding process. We could experimentally verify the 3D/2D conversion and the display of 3D image on 2D background with the fabricated prototype.

  15. Quantification of the aortic arch morphology in 3D CTA images for endovascular aortic repair (EVAR)

    NASA Astrophysics Data System (ADS)

    Wörz, S.; von Tengg-Kobligk, H.; Henninger, V.; Böckler, D.; Kauczor, H.-U.; Rohr, K.

    2008-03-01

    We introduce a new model-based approach for the segmentation and quantification of the aortic arch morphology in 3D CTA images for endovascular aortic repair (EVAR). The approach is based on a 3D analytic intensity model for thick vessels, which is directly fitted to the image. Based on the fitting results we compute the (local) 3D vessel curvature and torsion as well as the relevant lengths not only along the 3D centerline but particularly along the inner and outer contour. These measurements are important for pre-operative planning in EVAR applications. We have successfully applied our approach using ten 3D CTA images and have compared the results with ground truth obtained by a radiologist. It turned out that our approach yields accurate estimation results. We have also performed a comparison with a commercial vascular analysis software.

  16. Automated 3D whole-breast ultrasound imaging: results of a clinical pilot study

    NASA Astrophysics Data System (ADS)

    Leproux, Anaïs; van Beek, Michiel; de Vries, Ute; Wasser, Martin; Bakker, Leon; Cuisenaire, Olivier; van der Mark, Martin; Entrekin, Rob

    2010-03-01

    We present the first clinical results of a novel fully automated 3D breast ultrasound system. This system was designed to match a Philips diffuse optical mammography system to enable straightforward coregistration of optical and ultrasound images. During a measurement, three 3D transducers scan the breast at 4 different views. The resulting 12 datasets are registered together into a single volume using spatial compounding. In a pilot study, benign and malignant masses could be identified in the 3D images, however lesion visibility is less compared to conventional breast ultrasound. Clear breast shape visualization suggests that ultrasound could support the reconstruction and interpretation of diffuse optical tomography images.

  17. Algorithm of pulmonary emphysema extraction using thoracic 3D CT images

    NASA Astrophysics Data System (ADS)

    Saita, Shinsuke; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Nakano, Yasutaka; Ohmatsu, Hironobu; Tominaga, Keigo; Eguchi, Kenji; Moriyama, Noriyuki

    2007-03-01

    Recently, due to aging and smoking, emphysema patients are increasing. The restoration of alveolus which was destroyed by emphysema is not possible, thus early detection of emphysema is desired. We describe a quantitative algorithm for extracting emphysematous lesions and quantitatively evaluate their distribution patterns using low dose thoracic 3-D CT images. The algorithm identified lung anatomies, and extracted low attenuation area (LAA) as emphysematous lesion candidates. Applying the algorithm to thoracic 3-D CT images and then by follow-up 3-D CT images, we demonstrate its potential effectiveness to assist radiologists and physicians to quantitatively evaluate the emphysematous lesions distribution and their evolution in time interval changes.

  18. Astigmatic multifocus microscopy enables deep 3D super-resolved imaging

    PubMed Central

    Oudjedi, Laura; Fiche, Jean-Bernard; Abrahamsson, Sara; Mazenq, Laurent; Lecestre, Aurélie; Calmon, Pierre-François; Cerf, Aline; Nöllmann, Marcelo

    2016-01-01

    We have developed a 3D super-resolution microscopy method that enables deep imaging in cells. This technique relies on the effective combination of multifocus microscopy and astigmatic 3D single-molecule localization microscopy. We describe the optical system and the fabrication process of its key element, the multifocus grating. Then, two strategies for localizing emitters with our imaging method are presented and compared with a previously described deep 3D localization algorithm. Finally, we demonstrate the performance of the method by imaging the nuclear envelope of eukaryotic cells reaching a depth of field of ~4µm. PMID:27375935

  19. Astigmatic multifocus microscopy enables deep 3D super-resolved imaging.

    PubMed

    Oudjedi, Laura; Fiche, Jean-Bernard; Abrahamsson, Sara; Mazenq, Laurent; Lecestre, Aurélie; Calmon, Pierre-François; Cerf, Aline; Nöllmann, Marcelo

    2016-06-01

    We have developed a 3D super-resolution microscopy method that enables deep imaging in cells. This technique relies on the effective combination of multifocus microscopy and astigmatic 3D single-molecule localization microscopy. We describe the optical system and the fabrication process of its key element, the multifocus grating. Then, two strategies for localizing emitters with our imaging method are presented and compared with a previously described deep 3D localization algorithm. Finally, we demonstrate the performance of the method by imaging the nuclear envelope of eukaryotic cells reaching a depth of field of ~4µm.

  20. Sensor Spatial Distortion, Visual Latency, and Update Rate Effects on 3D Tracking in Virtual Environments

    NASA Technical Reports Server (NTRS)

    Ellis, S. R.; Adelstein, B. D.; Baumeler, S.; Jense, G. J.; Jacoby, R. H.; Trejo, Leonard (Technical Monitor)

    1998-01-01

    Several common defects that we have sought to minimize in immersing virtual environments are: static sensor spatial distortion, visual latency, and low update rates. Human performance within our environments during large amplitude 3D tracking was assessed by objective and subjective methods in the presence and absence of these defects. Results show that 1) removal of our relatively small spatial sensor distortion had minor effects on the tracking activity, 2) an Adapted Cooper-Harper controllability scale proved the most sensitive subjective indicator of the degradation of dynamic fidelity caused by increasing latency and decreasing frame rates, and 3) performance, as measured by normalized RMS tracking error or subjective impressions, was more markedly influenced by changing visual latency than by update rate.

  1. Dual-view integral imaging 3D display by using orthogonal polarizer array and polarization switcher.

    PubMed

    Wang, Qiong-Hua; Ji, Chao-Chao; Li, Lei; Deng, Huan

    2016-01-11

    In this paper, a dual-view integral imaging three-dimensional (3D) display consisting of a display panel, two orthogonal polarizer arrays, a polarization switcher, and a micro-lens array is proposed. Two elemental image arrays for two different 3D images are presented by the display panel alternately, and the polarization switcher controls the polarization direction of the light rays synchronously. The two elemental image arrays are modulated by their corresponding and neighboring micro-lenses of the micro-lens array, and reconstruct two different 3D images in viewing zones 1 and 2, respectively. A prototype of the dual-view II 3D display is developed, and it has good performances.

  2. Dual wavelength digital holography for 3D particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Grare, S.; Coëtmellec, S.,; Allano, D.; Grehan, G.; Brunel, M.; Lebrun, D.

    2015-02-01

    A multi-exposure digital in-line hologram of a moving particle field is recorded by two different wavelengths and at different times. As a result, during the reconstruction step, each hologram can be independently and accurately reconstructed for each wavelength. This procedure enables avoiding the superimposition of particles images that may be close to each other in multi-exposure holography. The feasibility is demonstrated by using a standard particle sizing reticle and shows the potential of this method for particle velocity measurement.

  3. Anesthesiology training using 3D imaging and virtual reality

    NASA Astrophysics Data System (ADS)

    Blezek, Daniel J.; Robb, Richard A.; Camp, Jon J.; Nauss, Lee A.

    1996-04-01

    Current training for regional nerve block procedures by anesthesiology residents requires expert supervision and the use of cadavers; both of which are relatively expensive commodities in today's cost-conscious medical environment. We are developing methods to augment and eventually replace these training procedures with real-time and realistic computer visualizations and manipulations of the anatomical structures involved in anesthesiology procedures, such as nerve plexus injections (e.g., celiac blocks). The initial work is focused on visualizations: both static images and rotational renderings. From the initial results, a coherent paradigm for virtual patient and scene representation will be developed.

  4. 3D Synchrotron Imaging of a Directionally Solidified Ternary Eutectic

    NASA Astrophysics Data System (ADS)

    Dennstedt, Anne; Helfen, Lukas; Steinmetz, Philipp; Nestler, Britta; Ratke, Lorenz

    2016-03-01

    For the first time, the microstructure of directionally solidified ternary eutectics is visualized in three dimensions, using a high-resolution technique of X-ray tomography at the ESRF. The microstructure characterization is conducted with a photon energy, allowing to clearly discriminate the three phases Ag2Al, Al2Cu, and α-Aluminum solid solution. The reconstructed images illustrate the three-dimensional arrangement of the phases. The Ag2Al lamellae perform splitting and merging as well as nucleation and disappearing events during directional solidification.

  5. 3D CARS image reconstruction and pattern recognition on SHG images

    NASA Astrophysics Data System (ADS)

    Medyukhina, Anna; Vogler, Nadine; Latka, Ines; Dietzek, Benjamin; Cicchi, Riccardo; Pavone, Francesco S.; Popp, Jürgen

    2012-06-01

    Nonlinear optical imaging techniques based e.g. on coherent anti-Stokes Raman scattering (CARS) or second-harmonic generation (SHG) show great potential for in-vivo investigations of tissue. While the microspectroscopic imaging tools are established, automized data evaluation, i.e. image pattern recognition and automized image classification, of nonlinear optical images still bares great possibilities for future developments towards an objective clinical diagnosis. This contribution details the capability of nonlinear microscopy for both 3D visualization of human tissues and automated discrimination between healthy and diseased patterns using ex-vivo human skin samples. By means of CARS image alignment we show how to obtain a quasi-3D model of a skin biopsy, which allows us to trace the tissue structure in different projections. Furthermore, the potential of automated pattern and organization recognition to distinguish between healthy and keloidal skin tissue is discussed. A first classification algorithm employs the intrinsic geometrical features of collagen, which can be efficiently visualized by SHG microscopy. The shape of the collagen pattern allows conclusions about the physiological state of the skin, as the typical wavy collagen structure of healthy skin is disturbed e.g. in keloid formation. Based on the different collagen patterns a quantitative score characterizing the collagen waviness - and hence reflecting the physiological state of the tissue - is obtained. Further, two additional scoring methods for collagen organization, respectively based on a statistical analysis of the mutual organization of fibers and on FFT, are presented.

  6. Mutual information as a measure of image quality for 3D dynamic lung imaging with EIT

    PubMed Central

    Crabb, M G; Davidson, J L; Little, R; Wright, P; Morgan, A R; Miller, C A; Naish, J H; Parker, G J M; Kikinis, R; McCann, H; Lionheart, W R B

    2014-01-01

    We report on a pilot study of dynamic lung electrical impedance tomography (EIT) at the University of Manchester. Low-noise EIT data at 100 frames per second (fps) were obtained from healthy male subjects during controlled breathing, followed by magnetic resonance imaging (MRI) subsequently used for spatial validation of the EIT reconstruction. The torso surface in the MR image and electrode positions obtained using MRI fiducial markers informed the construction of a 3D finite element model extruded along the caudal-distal axis of the subject. Small changes in the boundary that occur during respiration were accounted for by incorporating the sensitivity with respect to boundary shape into a robust temporal difference reconstruction algorithm. EIT and MRI images were co-registered using the open source medical imaging software, 3D Slicer. A quantitative comparison of quality of different EIT reconstructions was achieved through calculation of the mutual information with a lung-segmented MR image. EIT reconstructions using a linear shape correction algorithm reduced boundary image artefacts, yielding better contrast of the lungs, and had 10% greater mutual information compared with a standard linear EIT reconstruction. PMID:24710978

  7. Image guidance using 3D-ultrasound (3D-US) for daily positioning of lumpectomy cavity for boost irradiation

    PubMed Central

    2011-01-01

    Purpose The goal of this study was to evaluate the use of 3D ultrasound (3DUS) breast IGRT for electron and photon lumpectomy site boost treatments. Materials and methods 20 patients with a prescribed photon or electron boost were enrolled in this study. 3DUS images were acquired both at time of simulation, to form a coregistered CT/3DUS dataset, and at the time of daily treatment delivery. Intrafractional motion between treatment and simulation 3DUS datasets were calculated to determine IGRT shifts. Photon shifts were evaluated isocentrically, while electron shifts were evaluated in the beam's-eye-view. Volume differences between simulation and first boost fraction were calculated. Further, to control for the effect of change in seroma/cavity volume due to time lapse between the 2 sets of images, interfraction IGRT shifts using the first boost fraction as reference for all subsequent treatment fractions were also calculated. Results For photon boosts, IGRT shifts were 1.1 ± 0.5 cm and 50% of fractions required a shift >1.0 cm. Volume change between simulation and boost was 49 ± 31%. Shifts when using the first boost fraction as reference were 0.8 ± 0.4 cm and 24% required a shift >1.0 cm. For electron boosts, shifts were 1.0 ± 0.5 cm and 52% fell outside the dosimetric penumbra. Interfraction analysis relative to the first fraction noted the shifts to be 0.8 ± 0.4 cm and 36% fell outside the penumbra. Conclusion The lumpectomy cavity can shift significantly during fractionated radiation therapy. 3DUS can be used to image the cavity and correct for interfractional motion. Further studies to better define the protocol for clinical application of IGRT in breast cancer is needed. PMID:21554697

  8. Terahertz Lasers Reveal Information for 3D Images

    NASA Technical Reports Server (NTRS)

    2013-01-01

    After taking off her shoes and jacket, she places them in a bin. She then takes her laptop out of its case and places it in a separate bin. As the items move through the x-ray machine, the woman waits for a sign from security personnel to pass through the metal detector. Today, she was lucky; she did not encounter any delays. The man behind her, however, was asked to step inside a large circular tube, raise his hands above his head, and have his whole body scanned. If you have ever witnessed a full-body scan at the airport, you may have witnessed terahertz imaging. Terahertz wavelengths are located between microwave and infrared on the electromagnetic spectrum. When exposed to these wavelengths, certain materials such as clothing, thin metal, sheet rock, and insulation become transparent. At airports, terahertz radiation can illuminate guns, knives, or explosives hidden underneath a passenger s clothing. At NASA s Kennedy Space Center, terahertz wavelengths have assisted in the inspection of materials like insulating foam on the external tanks of the now-retired space shuttle. "The foam we used on the external tank was a little denser than Styrofoam, but not much," says Robert Youngquist, a physicist at Kennedy. The problem, he explains, was that "we lost a space shuttle by having a chunk of foam fall off from the external fuel tank and hit the orbiter." To uncover any potential defects in the foam covering, such as voids or air pockets, that could keep the material from staying in place, NASA employed terahertz imaging to see through the foam. For many years, the technique ensured the integrity of the material on the external tanks.

  9. Display of real-time 3D sensor data in a DVE system

    NASA Astrophysics Data System (ADS)

    Völschow, Philipp; Münsterer, Thomas; Strobel, Michael; Kuhn, Michael

    2016-05-01

    This paper describes the implementation of displaying real-time processed LiDAR 3D data in a DVE pilot assistance system. The goal is to display to the pilot a comprehensive image of the surrounding world without misleading or cluttering information. 3D data which can be attributed, i.e. classified, to terrain or predefined obstacle classes is depicted differently from data belonging to elevated objects which could not be classified. Display techniques may be different for head-down and head-up displays to avoid cluttering of the outside view in the latter case. While terrain is shown as shaded surfaces with grid structures or as grid structures alone, respectively, classified obstacles are typically displayed with obstacle symbols only. Data from objects elevated above ground are displayed as shaded 3D points in space. In addition the displayed 3D points are accumulated over a certain time frame allowing on the one hand side a cohesive structure being displayed and on the other hand displaying moving objects correctly. In addition color coding or texturing can be applied based on known terrain features like land use.

  10. 2D and 3D MALDI-imaging: conceptual strategies for visualization and data mining.

    PubMed

    Thiele, Herbert; Heldmann, Stefan; Trede, Dennis; Strehlow, Jan; Wirtz, Stefan; Dreher, Wolfgang; Berger, Judith; Oetjen, Janina; Kobarg, Jan Hendrik; Fischer, Bernd; Maass, Peter

    2014-01-01

    3D imaging has a significant impact on many challenges in life sciences, because biology is a 3-dimensional phenomenon. Current 3D imaging-technologies (various types MRI, PET, SPECT) are labeled, i.e. they trace the localization of a specific compound in the body. In contrast, 3D MALDI mass spectrometry-imaging (MALDI-MSI) is a label-free method imaging the spatial distribution of molecular compounds. It complements 3D imaging labeled methods, immunohistochemistry, and genetics-based methods. However, 3D MALDI-MSI cannot tap its full potential due to the lack of statistical methods for analysis and interpretation of large and complex 3D datasets. To overcome this, we established a complete and robust 3D MALDI-MSI pipeline combined with efficient computational data analysis methods for 3D edge preserving image denoising, 3D spatial segmentation as well as finding colocalized m/z values, which will be reviewed here in detail. Furthermore, we explain, why the integration and correlation of the MALDI imaging data with other imaging modalities allows to enhance the interpretation of the molecular data and provides visualization of molecular patterns that may otherwise not be apparent. Therefore, a 3D data acquisition workflow is described generating a set of 3 different dimensional images representing the same anatomies. First, an in-vitro MRI measurement is performed which results in a three-dimensional image modality representing the 3D structure of the measured object. After sectioning the 3D object into N consecutive slices, all N slices are scanned using an optical digital scanner, enabling for performing the MS measurements. Scanning the individual sections results into low-resolution images, which define the base coordinate system for the whole pipeline. The scanned images conclude the information from the spatial (MRI) and the mass spectrometric (MALDI-MSI) dimension and are used for the spatial three-dimensional reconstruction of the object performed by image

  11. 3D active edge silicon sensors with different electrode configurations: Radiation hardness and noise performance

    NASA Astrophysics Data System (ADS)

    Da Viá, C.; Bolle, E.; Einsweiler, K.; Garcia-Sciveres, M.; Hasi, J.; Kenney, C.; Linhart, V.; Parker, Sherwood; Pospisil, S.; Rohne, O.; Slavicek, T.; Watts, S.; Wermes, N.

    2009-06-01

    3D detectors, with electrodes penetrating the entire silicon wafer and active edges, were fabricated at the Stanford Nano Fabrication Facility (SNF), California, USA, with different electrode configurations. After irradiation with neutrons up to a fluence of 8.8×10 15 n eq cm -2, they were characterised using an infrared laser tuned to inject ˜2 minimum ionising particles showing signal efficiencies as high as 66% for the configuration with the shortest (56 μm) inter-electrode spacing. Sensors from the same wafer were also bump-bonded to the ATLAS FE-I3 pixel readout chip and their noise characterised. Most probable signal-to-noise ratios were calculated before and after irradiation to be as good as 38:1 after the highest irradiation level with a substrate thickness of 210 μm. These devices are promising candidates for application at the LHC such as the very forward detectors at ATLAS and CMS, the ATLAS B-Layer replacement and the general pixel upgrade. Moreover, 3D sensors could play a role in applications where high speed, high-resolution detectors are required, such as the vertex locators at the proposed Compact Linear Collider (CLIC) at CERN.

  12. [Depiction of the cranial nerves around the cavernous sinus by 3D reversed FISP with diffusion weighted imaging (3D PSIF-DWI)].

    PubMed

    Ishida, Go; Oishi, Makoto; Jinguji, Shinya; Yoneoka, Yuichiro; Sato, Mitsuya; Fujii, Yukihiko

    2011-10-01

    To evaluate the anatomy of cranial nerves running in and around the cavernous sinus, we employed three-dimensional reversed fast imaging with steady-state precession (FISP) with diffusion weighted imaging (3D PSIF-DWI) on 3-T magnetic resonance (MR) system. After determining the proper parameters to obtain sufficient resolution of 3D PSIF-DWI, we collected imaging data of 20-side cavernous regions in 10 normal subjects. 3D PSIF-DWI provided high contrast between the cranial nerves and other soft tissues, fluid, and blood in all subjects. We also created volume-rendered images of 3D PSIF-DWI and anatomically evaluated the reliability of visualizing optic, oculomotor, trochlear, trigeminal, and abducens nerves on 3D PSIF-DWI. All 20 sets of cranial nerves were visualized and 12 trochlear nerves and 6 abducens nerves were partially identified. We also presented preliminary clinical experiences in two cases with pituitary adenomas. The anatomical relationship between the tumor and cranial nerves running in and around the cavernous sinus could be three-dimensionally comprehended by 3D PSIF-DWI and the volume-rendered images. In conclusion, 3D PSIF-DWI has great potential to provide high resolution "cranial nerve imaging", which visualizes the whole length of the cranial nerves including the parts in the blood flow as in the cavernous sinus region.

  13. Space Radar Image of Death Valley in 3-D

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This picture is a three-dimensional perspective view of Death Valley, California. This view was constructed by overlaying a SIR-C radar image on a U.S. Geological Survey digital elevation map. The SIR-C image is centered at 36.629 degrees north latitude and 117.069 degrees west longitude. We are looking at Stove Pipe Wells, which is the bright rectangle located in the center of the picture frame. Our vantage point is located atop a large alluvial fan centered at the mouth of Cottonwood Canyon. In the foreground on the left, we can see the sand dunes near Stove Pipe Wells. In the background on the left, the Valley floor gradually falls in elevation toward Badwater, the lowest spot in the United States. In the background on the right we can see Tucki Mountain. This SIR-C/X-SAR supersite is an area of extensive field investigations and has been visited by both Space Radar Lab astronaut crews. Elevations in the Valley range from 70 meters (230 feet) below sea level, the lowest in the United States, to more than 3,300 meters (10,800 feet) above sea level. Scientists are using SIR-C/X-SAR data from Death Valley to help the answer a number of different questions about Earth's geology. One question concerns how alluvial fans are formed and change through time under the influence of climatic changes and earthquakes. Alluvial fans are gravel deposits that wash down from the mountains over time. They are visible in the image as circular, fan-shaped bright areas extending into the darker valley floor from the mountains. Information about the alluvial fans helps scientists study Earth's ancient climate. Scientists know the fans are built up through climatic and tectonic processes and they will use the SIR-C/X-SAR data to understand the nature and rates of weathering processes on the fans, soil formation and the transport of sand and dust by the wind. SIR-C/X-SAR's sensitivity to centimeter-scale (inch-scale) roughness provides detailed maps of surface texture. Such information

  14. Space Radar Image of Death Valley in 3-D

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This picture is a three-dimensional perspective view of Death Valley, California. This view was constructed by overlaying a SIR-C radar image on a U.S. Geological Survey digital elevation map. The SIR-C image is centered at 36.629 degrees north latitude and 117.069 degrees west longitude. We are looking at Stove Pipe Wells, which is the bright rectangle located in the center of the picture frame. Our vantage point is located atop a large alluvial fan centered at the mouth of Cottonwood Canyon. In the foreground on the left, we can see the sand dunes near Stove Pipe Wells. In the background on the left, the Valley floor gradually falls in elevation toward Badwater, the lowest spot in the United States. In the background on the right we can see Tucki Mountain. This SIR-C/X-SAR supersite is an area of extensive field investigations and has been visited by both Space Radar Lab astronaut crews. Elevations in the Valley range from 70 meters (230 feet) below sea level, the lowest in the United States, to more than 3,300 meters (10,800 feet) above sea level. Scientists are using SIR-C/X-SAR data from Death Valley to help the answer a number of different questions about Earth's geology. One question concerns how alluvial fans are formed and change through time under the influence of climatic changes and earthquakes. Alluvial fans are gravel deposits that wash down from the mountains over time. They are visible in the image as circular, fan-shaped bright areas extending into the darker valley floor from the mountains. Information about the alluvial fans helps scientists study Earth's ancient climate. Scientists know the fans are built up through climatic and tectonic processes and they will use the SIR-C/X-SAR data to understand the nature and rates of weathering processes on the fans, soil formation and the transport of sand and dust by the wind. SIR-C/X-SAR's sensitivity to centimeter-scale (inch-scale) roughness provides detailed maps of surface texture. Such information

  15. OVERALL PROCEDURES PROTOCOL AND PATIENT ENROLLMENT PROTOCOL: TESTING FEASIBILITY OF 3D ULTRASOUND DATA ACQUISITION AND RELIABILITY OF DATA RETRIEVAL FROM STORED 3D IMAGES

    EPA Science Inventory

    The purpose of this study is to examine the feasibility of collecting, transmitting,

    and analyzing 3-D ultrasound data in the context of a multi-center study of pregnant

    women. The study will also examine the reliability of measurements obtained from 3-D

    imag
    ...

  16. Software for browsing sectioned images of a dog body and generating a 3D model.

    PubMed

    Park, Jin Seo; Jung, Yong Wook

    2016-01-01

    The goals of this study were (1) to provide accessible and instructive browsing software for sectioned images and a portable document format (PDF) file that includes three-dimensional (3D) models of an entire dog body and (2) to develop techniques for segmentation and 3D modeling that would enable an investigator to perform these tasks without the aid of a computer engineer. To achieve these goals, relatively important or large structures in the sectioned images were outlined to generate segmented images. The sectioned and segmented images were then packaged into browsing software. In this software, structures in the sectioned images are shown in detail and in real color. After 3D models were made from the segmented images, the 3D models were exported into a PDF file. In this format, the 3D models could be manipulated freely. The browsing software and PDF file are available for study by students, for lecture for teachers, and for training for clinicians. These files will be helpful for anatomical study by and clinical training of veterinary students and clinicians. Furthermore, these techniques will be useful for researchers who study two-dimensional images and 3D models.

  17. Hands-on guide for 3D image creation for geological purposes

    NASA Astrophysics Data System (ADS)

    Frehner, Marcel; Tisato, Nicola

    2013-04-01

    Geological structures in outcrops or hand specimens are inherently three dimensional (3D), and therefore better understandable if viewed in 3D. While 3D models can easily be created, manipulated, and looked at from all sides on the computer screen (e.g., using photogrammetry or laser scanning data), 3D visualizations for publications or conference posters are much more challenging as they have to live in a 2D-world (i.e., on a sheet of paper). Perspective 2D visualizations of 3D models do not fully transmit the "feeling and depth of the third dimension" to the audience; but this feeling is desirable for a better examination and understanding in 3D of the structure under consideration. One of the very few possibilities to generate real 3D images, which work on a 2D display, is by using so-called stereoscopic images. Stereoscopic images are two images of the same object recorded from two slightly offset viewpoints. Special glasses and techniques have to be used to make sure that one image is seen only by one eye, and the other image is seen by the other eye, which together lead to the "3D effect". Geoscientists are often familiar with such 3D images. For example, geomorphologists traditionally view stereographic orthophotos by employing a mirror-steroscope. Nowadays, petroleum-geoscientists examine high-resolution 3D seismic data sets in special 3D visualization rooms. One of the methods for generating and viewing a stereoscopic image, which does not require a high-tech viewing device, is to create a so-called anaglyph. The principle is to overlay two images saturated in red and cyan, respectively. The two images are then viewed through red-cyan-stereoscopic glasses. This method is simple and cost-effective, but has some drawbacks in preserving colors accurately. A similar method is used in 3D movies, where polarized light or shuttering techniques are used to separate the left from the right image, which allows preserving the original colors. The advantage of red

  18. A shortcut to align 3D images captured from multiple views

    NASA Astrophysics Data System (ADS)

    Heng, Wei; Wang, Hao

    2008-11-01

    In order to get whole shape of an object, lots of parts of 3D images need to be captured from multiple views and aligned into a same 3D coordinate. That usually involves in both complex software process and expensive hardware system. In this paper, a shortcut approach is proposed to align 3D images captured from multiple views. Employing only a calibrated turntable, a single-view 3D camera can capture a sequence of 3D images of an object from different view angle one by one, then align them quickly and automatically. The alignment doesn't need any help from the operator. It can achieve good performances such as high accuracy, robust, rapidly capturing and low cost. The turntable calibration can be easily implemented by the single-view 3D camera. Fixed with the turntable, single-view 3D camera can calibrate the revolving-axis of the turntable just by measuring the positions of a little calibration-ball revolving with the turntable at several angles. Then system can get the coordinate transformation formula between multiple views of different revolving angle by a LMS algorithm. The formulae for calibration and alignment are given with the precision analysis. Experiments were performed and showed effective result to recover 3D objects.

  19. A real-time noise filtering strategy for photon counting 3D imaging lidar.

    PubMed

    Zhang, Zijing; Zhao, Yuan; Zhang, Yong; Wu, Long; Su, Jianzhong

    2013-04-22

    For a direct-detection 3D imaging lidar, the use of Geiger mode avalanche photodiode (Gm-APD) could greatly enhance the detection sensitivity of the lidar system since each range measurement requires a single detected photon. Furthermore, Gm-APD offers significant advantages in reducing the size, mass, power and complexity of the system. However the inevitable noise, including the background noise, the dark count noise and so on, remains a significant challenge to obtain a clear 3D image of the target of interest. This paper presents a smart strategy, which can filter out false alarms in the stage of acquisition of raw time of flight (TOF) data and obtain a clear 3D image in real time. As a result, a clear 3D image is taken from the experimental system despite the background noise of the sunny day.

  20. A real-time noise filtering strategy for photon counting 3D imaging lidar.

    PubMed

    Zhang, Zijing; Zhao, Yuan; Zhang, Yong; Wu, Long; Su, Jianzhong

    2013-04-22

    For a direct-detection 3D imaging lidar, the use of Geiger mode avalanche photodiode (Gm-APD) could greatly enhance the detection sensitivity of the lidar system since each range measurement requires a single detected photon. Furthermore, Gm-APD offers significant advantages in reducing the size, mass, power and complexity of the system. However the inevitable noise, including the background noise, the dark count noise and so on, remains a significant challenge to obtain a clear 3D image of the target of interest. This paper presents a smart strategy, which can filter out false alarms in the stage of acquisition of raw time of flight (TOF) data and obtain a clear 3D image in real time. As a result, a clear 3D image is taken from the experimental system despite the background noise of the sunny day. PMID:23609635

  1. 3D object recognition using kernel construction of phase wrapped images

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Su, Hongjun

    2011-06-01

    Kernel methods are effective machine learning techniques for many image based pattern recognition problems. Incorporating 3D information is useful in such applications. The optical profilometries and interforometric techniques provide 3D information in an implicit form. Typically phase unwrapping process, which is often hindered by the presence of noises, spots of low intensity modulation, and instability of the solutions, is applied to retrieve the proper depth information. In certain applications such as pattern recognition problems, the goal is to classify the 3D objects in the image, rather than to simply display or reconstruct them. In this paper we present a technique for constructing kernels on the measured data directly without explicit phase unwrapping. Such a kernel will naturally incorporate the 3D depth information and can be used to improve the systems involving 3D object analysis and classification.

  2. Reducing Non-Uniqueness in Satellite Gravity Inversion using 3D Object Oriented Image Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Fadel, I.; van der Meijde, M.; Kerle, N.

    2013-12-01

    Non-uniqueness of satellite gravity interpretation has been usually reduced by using a priori information from various sources, e.g. seismic tomography models. The reduction in non-uniqueness has been based on velocity-density conversion formulas or user interpretation for 3D subsurface structures (objects) in seismic tomography models. However, these processes introduce additional uncertainty through the conversion relations due to the dependency on the other physical parameters such as temperature and pressure, or through the bias in the interpretation due to user choices and experience. In this research, a new methodology is introduced to extract the 3D subsurface structures from 3D geophysical data using a state-of-art 3D Object Oriented Image Analysis (OOA) technique. 3D OOA is tested using a set of synthetic models that simulate the real situation in the study area of this research. Then, 3D OOA is used to extract 3D subsurface objects from a real 3D seismic tomography model. The extracted 3D objects are used to reconstruct a forward model and its response is compared with the measured satellite gravity. Finally, the result of the forward modelling, based on the extracted 3D objects, is used to constrain the inversion process of satellite gravity data. Through this work, a new object-based approach is introduced to interpret and extract the 3D subsurface objects from 3D geophysical data. This can be used to constrain modelling and inversion of potential field data using the extracted 3D subsurface structures from other methods. In summary, a new approach is introduced to constrain inversion of satellite gravity measurements and enhance interpretation capabilities.

  3. An image encryption algorithm based on 3D cellular automata and chaotic maps

    NASA Astrophysics Data System (ADS)

    Del Rey, A. Martín; Sánchez, G. Rodríguez

    2015-05-01

    A novel encryption algorithm to cipher digital images is presented in this work. The digital image is rendering into a three-dimensional (3D) lattice and the protocol consists of two phases: the confusion phase where 24 chaotic Cat maps are applied and the diffusion phase where a 3D cellular automata is evolved. The encryption method is shown to be secure against the most important cryptanalytic attacks.

  4. Real Time Quantitative 3-D Imaging of Diffusion Flame Species

    NASA Technical Reports Server (NTRS)

    Kane, Daniel J.; Silver, Joel A.

    1997-01-01

    A low-gravity environment, in space or ground-based facilities such as drop towers, provides a unique setting for study of combustion mechanisms. Understanding the physical phenomena controlling the ignition and spread of flames in microgravity has importance for space safety as well as better characterization of dynamical and chemical combustion processes which are normally masked by buoyancy and other gravity-related effects. Even the use of so-called 'limiting cases' or the construction of 1-D or 2-D models and experiments fail to make the analysis of combustion simultaneously simple and accurate. Ideally, to bridge the gap between chemistry and fluid mechanics in microgravity combustion, species concentrations and temperature profiles are needed throughout the flame. However, restrictions associated with performing measurements in reduced gravity, especially size and weight considerations, have generally limited microgravity combustion studies to the capture of flame emissions on film or video laser Schlieren imaging and (intrusive) temperature measurements using thermocouples. Given the development of detailed theoretical models, more sophisticated studies are needed to provide the kind of quantitative data necessary to characterize the properties of microgravity combustion processes as well as provide accurate feedback to improve the predictive capabilities of the computational models. While there have been a myriad of fluid mechanical visualization studies in microgravity combustion, little experimental work has been completed to obtain reactant and product concentrations within a microgravity flame. This is largely due to the fact that traditional sampling methods (quenching microprobes using GC and/or mass spec analysis) are too heavy, slow, and cumbersome for microgravity experiments. Non-intrusive optical spectroscopic techniques have - up until now - also required excessively bulky, power hungry equipment. However, with the advent of near-IR diode

  5. Moving-Article X-Ray Imaging System and Method for 3-D Image Generation

    NASA Technical Reports Server (NTRS)

    Fernandez, Kenneth R. (Inventor)

    2012-01-01

    An x-ray imaging system and method for a moving article are provided for an article moved along a linear direction of travel while the article is exposed to non-overlapping x-ray beams. A plurality of parallel linear sensor arrays are disposed in the x-ray beams after they pass through the article. More specifically, a first half of the plurality are disposed in a first of the x-ray beams while a second half of the plurality are disposed in a second of the x-ray beams. Each of the parallel linear sensor arrays is oriented perpendicular to the linear direction of travel. Each of the parallel linear sensor arrays in the first half is matched to a corresponding one of the parallel linear sensor arrays in the second half in terms of an angular position in the first of the x-ray beams and the second of the x-ray beams, respectively.

  6. Fish body surface data measurement based on 3D digital image correlation

    NASA Astrophysics Data System (ADS)

    Jiang, Ming; Qian, Chen; Yang, Wenkai

    2016-01-01

    To film the moving fish in the glass tank, light will be bent at the interface of air and glass, glass and water. Based on binocular stereo vision and refraction principle, we establish a mathematical model of 3D image correlation to reconstruct the 3D coordinates of samples in the water. Marking speckle in fish surface, a series of real-time speckle images of swimming fish will be obtained by two high-speed cameras, and instantaneous 3D shape, strain, displacement etc. of fish will be reconstructed.

  7. Integration of virtual and real scenes within an integral 3D imaging environment

    NASA Astrophysics Data System (ADS)

    Ren, Jinsong; Aggoun, Amar; McCormick, Malcolm

    2002-11-01

    The Imaging Technologies group at De Montfort University has developed an integral 3D imaging system, which is seen as the most likely vehicle for 3D television avoiding psychological effects. To create real fascinating three-dimensional television programs, a virtual studio that performs the task of generating, editing and integrating the 3D contents involving virtual and real scenes is required. The paper presents, for the first time, the procedures, factors and methods of integrating computer-generated virtual scenes with real objects captured using the 3D integral imaging camera system. The method of computer generation of 3D integral images, where the lens array is modelled instead of the physical camera is described. In the model each micro-lens that captures different elemental images of the virtual scene is treated as an extended pinhole camera. An integration process named integrated rendering is illustrated. Detailed discussion and deep investigation are focused on depth extraction from captured integral 3D images. The depth calculation method from the disparity and the multiple baseline method that is used to improve the precision of depth estimation are also presented. The concept of colour SSD and its further improvement in the precision is proposed and verified.

  8. 3D reconstructions with pixel-based images are made possible by digitally clearing plant and animal tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reconstruction of 3D images from a series of 2D images has been restricted by the limited capacity to decrease the opacity of surrounding tissue. Commercial software that allows color-keying and manipulation of 2D images in true 3D space allowed us to produce 3D reconstructions from pixel based imag...

  9. FPGA-based real-time anisotropic diffusion filtering of 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Castro-Pareja, Carlos R.; Dandekar, Omkar S.; Shekhar, Raj

    2005-02-01

    Three-dimensional ultrasonic imaging, especially the emerging real-time version of it, is particularly valuable in medical applications such as echocardiography, obstetrics and surgical navigation. A known problem with ultrasound images is their high level of speckle noise. Anisotropic diffusion filtering has been shown to be effective in enhancing the visual quality of 3D ultrasound images and as preprocessing prior to advanced image processing. However, due to its arithmetic complexity and the sheer size of 3D ultrasound images, it is not possible to perform online, real-time anisotropic diffusion filtering using standard software implementations. We present an FPGA-based architecture that allows performing anisotropic diffusion filtering of 3D images at acquisition rates, thus enabling the use of this filtering technique in real-time applications, such as visualization, registration and volume rendering.

  10. 3D interconnect architecture for high-bandwidth massively paralleled imager

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, K.; Lyke, J. C.; Wojnarowski, R. J.; Beche, J.-F.; Fillion, R.; Kapusta, C.; Millaud, J.; Saia, R.; Wilke, M. D.

    2003-08-01

    The proton radiography group at LANL is developing a fast (5×10 6 frames/s or 5 megaframe/s) multi-frame imager for use in dynamic radiographic experiments with high-energy protons. The mega-pixel imager will acquire and process a burst of 32 frames captured at inter-frame time ˜200 ns. Real time signal processing and storage requirements for entire frames, of rapidly acquired pixels impose severe demands on the space available for the electronics in a standard monolithic approach. As such, a 3D arrangement of detector and circuit elements is under development. In this scheme, the readout integrated circuits (ROICs) are stacked vertically (like playing cards) into a cube configuration. Another die, a fully depleted pixel photo-diode focal plane array (FPA), is bump bonded to one of the edge surfaces formed by the resulting ROIC cube. Recently, an assembly of the proof-of-principle test cube and sensor has been completed.

  11. A High-Resolution 3D Weather Radar, MSG, and Lightning Sensor Observation Composite

    NASA Astrophysics Data System (ADS)

    Diederich, Malte; Senf, Fabian; Wapler, Kathrin; Simmer, Clemens

    2013-04-01

    Within the research group 'Object-based Analysis and SEamless prediction' (OASE) of the Hans Ertel Centre for Weather Research programme (HerZ), a data composite containing weather radar, lightning sensor, and Meteosat Second Generation observations is being developed for the use in object-based weather analysis and nowcasting. At present, a 3D merging scheme combines measurements of the Bonn and Jülich dual polarimetric weather radar systems (data provided by the TR32 and TERENO projects) into a 3-dimensional polar-stereographic volume grid, with 500 meters horizontal, and 250 meters vertical resolution. The merging takes into account and compensates for various observational error sources, such as attenuation through hydrometeors, beam blockage through topography and buildings, minimum detectable signal as a function of noise threshold, non-hydrometeor echos like insects, and interference from other radar systems. In addition to this, the effect of convection during the radar 5-minute volume scan pattern is mitigated through calculation of advection vectors from subsequent scans and their use for advection correction when projecting the measurements into space for any desired timestamp. The Meteosat Second Generation rapid scan service provides a scan in 12 spectral visual and infrared wavelengths every 5 minutes over Germany and Europe. These scans, together with the derived microphysical cloud parameters, are projected into the same polar stereographic grid used for the radar data. Lightning counts from the LINET lightning sensor network are also provided for every 2D grid pixel. The combined 3D radar and 2D MSG/LINET data is stored in a fully documented netCDF file for every 5 minute interval, and is made ready for tracking and object based weather analysis. At the moment, the 3D data only covers the Bonn and Jülich area, but the algorithms are planed to be adapted to the newly conceived DWD polarimetric C-Band 5 minute interval volume scan strategy. An

  12. Applications of Panoramic Images: from 720° Panorama to Interior 3d Models of Augmented Reality

    NASA Astrophysics Data System (ADS)

    Lee, I.-C.; Tsai, F.

    2015-05-01

    A series of panoramic images are usually used to generate a 720° panorama image. Although panoramic images are typically used for establishing tour guiding systems, in this research, we demonstrate the potential of using panoramic images acquired from multiple sites to create not only 720° panorama, but also three-dimensional (3D) point clouds and 3D indoor models. Since 3D modeling is one of the goals of this research, the location of the panoramic sites needed to be carefully planned in order to maintain a robust result for close-range photogrammetry. After the images are acquired, panoramic images are processed into 720° panoramas, and these panoramas which can be used directly as panorama guiding systems or other applications. In addition to these straightforward applications, interior orientation parameters can also be estimated while generating 720° panorama. These parameters are focal length, principle point, and lens radial distortion. The panoramic images can then be processed with closerange photogrammetry procedures to extract the exterior orientation parameters and generate 3D point clouds. In this research, VisaulSFM, a structure from motion software is used to estimate the exterior orientation, and CMVS toolkit is used to generate 3D point clouds. Next, the 3D point clouds are used as references to create building interior models. In this research, Trimble Sketchup was used to build the model, and the 3D point cloud was added to the determining of locations of building objects using plane finding procedure. In the texturing process, the panorama images are used as the data source for creating model textures. This 3D indoor model was used as an Augmented Reality model replacing a guide map or a floor plan commonly used in an on-line touring guide system. The 3D indoor model generating procedure has been utilized in two research projects: a cultural heritage site at Kinmen, and Taipei Main Station pedestrian zone guidance and navigation system. The

  13. A Molecular Image-directed, 3D Ultrasound-guided Biopsy System for the Prostate

    PubMed Central

    Fei, Baowei; Schuster, David M.; Master, Viraj; Akbari, Hamed; Fenster, Aaron; Nieh, Peter

    2012-01-01

    Systematic transrectal ultrasound (TRUS)-guided biopsy is the standard method for a definitive diagnosis of prostate cancer. However, this biopsy approach uses two-dimensional (2D) ultrasound images to guide biopsy and can miss up to 30% of prostate cancers. We are developing a molecular image-directed, three-dimensional (3D) ultrasound image-guided biopsy system for improved detection of prostate cancer. The system consists of a 3D mechanical localization system and software workstation for image segmentation, registration, and biopsy planning. In order to plan biopsy in a 3D prostate, we developed an automatic segmentation method based wavelet transform. In order to incorporate PET/CT images into ultrasound-guided biopsy, we developed image registration methods to fuse TRUS and PET/CT images. The segmentation method was tested in ten patients with a DICE overlap ratio of 92.4% ± 1.1 %. The registration method has been tested in phantoms. The biopsy system was tested in prostate phantoms and 3D ultrasound images were acquired from two human patients. We are integrating the system for PET/CT directed, 3D ultrasound-guided, targeted biopsy in human patients. PMID:22708023

  14. 3D reconstruction of SEM images by use of optical photogrammetry software.

    PubMed

    Eulitz, Mona; Reiss, Gebhard

    2015-08-01

    Reconstruction of the three-dimensional (3D) surface of an object to be examined is widely used for structure analysis in science and many biological questions require information about their true 3D structure. For Scanning Electron Microscopy (SEM) there has been no efficient non-destructive solution for reconstruction of the surface morphology to date. The well-known method of recording stereo pair images generates a 3D stereoscope reconstruction of a section, but not of the complete sample surface. We present a simple and non-destructive method of 3D surface reconstruction from SEM samples based on the principles of optical close range photogrammetry. In optical close range photogrammetry a series of overlapping photos is used to generate a 3D model of the surface of an object. We adapted this method to the special SEM requirements. Instead of moving a detector around the object, the object itself was rotated. A series of overlapping photos was stitched and converted into a 3D model using the software commonly used for optical photogrammetry. A rabbit kidney glomerulus was used to demonstrate the workflow of this adaption. The reconstruction produced a realistic and high-resolution 3D mesh model of the glomerular surface. The study showed that SEM micrographs are suitable for 3D reconstruction by optical photogrammetry. This new approach is a simple and useful method of 3D surface reconstruction and suitable for various applications in research and teaching.

  15. Intelligent speckle reducing anisotropic diffusion algorithm for automated 3-D ultrasound images.

    PubMed

    Wu, Jun; Wang, Yuanyuan; Yu, Jinhua; Shi, Xinling; Zhang, Junhua; Chen, Yue; Pang, Yun

    2015-02-01

    A novel 3-D filtering method is presented for speckle reduction and detail preservation in automated 3-D ultrasound images. First, texture features of an image are analyzed by using the improved quadtree (QT) decomposition. Then, the optimal homogeneous and the obvious heterogeneous regions are selected from QT decomposition results. Finally, diffusion parameters and diffusion process are automatically decided based on the properties of these two selected regions. The computing time needed for 2-D speckle reduction is very short. However, the computing time required for 3-D speckle reduction is often hundreds of times longer than 2-D speckle reduction. This may limit its potential application in practice. Because this new filter can adaptively adjust the time step of iteration, the computation time is reduced effectively. Both synthetic and real 3-D ultrasound images are used to evaluate the proposed filter. It is shown that this filter is superior to other methods in both practicality and efficiency. PMID:26366596

  16. Augmented Reality Imaging System: 3D Viewing of a Breast Cancer

    PubMed Central

    Douglas, David B.; Boone, John M.; Petricoin, Emanuel; Liotta, Lance; Wilson, Eugene

    2016-01-01

    Objective To display images of breast cancer from a dedicated breast CT using Depth 3-Dimensional (D3D) augmented reality. Methods A case of breast cancer imaged using contrast-enhanced breast CT (Computed Tomography) was viewed with the augmented reality imaging, which uses a head display unit (HDU) and joystick control interface. Results The augmented reality system demonstrated 3D viewing of the breast mass with head position tracking, stereoscopic depth perception, focal point convergence and the use of a 3D cursor and joy-stick enabled fly through with visualization of the spiculations extending from the breast cancer. Conclusion The augmented reality system provided 3D visualization of the breast cancer with depth perception and visualization of the mass's spiculations. The augmented reality system should be further researched to determine the utility in clinical practice. PMID:27774517

  17. Mixed reality orthognathic surgical simulation by entity model manipulation and 3D-image display

    NASA Astrophysics Data System (ADS)

    Shimonagayoshi, Tatsunari; Aoki, Yoshimitsu; Fushima, Kenji; Kobayashi, Masaru

    2005-12-01

    In orthognathic surgery, the framing of 3D-surgical planning that considers the balance between the front and back positions and the symmetry of the jawbone, as well as the dental occlusion of teeth, is essential. In this study, a support system for orthodontic surgery to visualize the changes in the mandible and the occlusal condition and to determine the optimum position in mandibular osteotomy has been developed. By integrating the operating portion of a tooth model that is to determine the optimum occlusal position by manipulating the entity tooth model and the 3D-CT skeletal images (3D image display portion) that are simultaneously displayed in real-time, the determination of the mandibular position and posture in which the improvement of skeletal morphology and occlusal condition is considered, is possible. The realistic operation of the entity model and the virtual 3D image display enabled the construction of a surgical simulation system that involves augmented reality.

  18. Multi-pulse time delay integration method for flexible 3D super-resolution range-gated imaging.

    PubMed

    Xinwei, Wang; Youfu, Li; Yan, Zhou

    2015-03-23

    Constructing flexible regular-shaped range-intensity profiles by the convolution of illuminator laser pulse and sensor gate pulse is crucial for 3D super-resolution range-gated imaging. However, ns-scale rectangular-shaped laser pulse with tunable pulse width is difficult to be obtained, especially for pulsed solid-stated lasers. In this paper we propose a multi-pulse time delay integration (MPTDI) method to reshape range-intensity profiles (RIP) free from the above limitation of pulsed lasers. An equivalent laser pulse temporal shaping model is established to evaluate and optimize the MPTDI method. By using MPTDI, the RIP shape and depth of viewing can both be flexibly changed as desired. Here typical triangular and trapezoidal RIPs are established for 3D imaging under triangular and trapezoidal range-intensity correlation algorithms. In addition, a prototype experiment is demonstrated to prove the feasibility of MPTDI.

  19. Fully automatic and robust 3D registration of serial-section microscopic images.

    PubMed

    Wang, Ching-Wei; Budiman Gosno, Eric; Li, Yen-Sheng

    2015-01-01

    Robust and fully automatic 3D registration of serial-section microscopic images is critical for detailed anatomical reconstruction of large biological specimens, such as reconstructions of dense neuronal tissues or 3D histology reconstruction to gain new structural insights. However, robust and fully automatic 3D image registration for biological data is difficult due to complex deformations, unbalanced staining and variations on data appearance. This study presents a fully automatic and robust 3D registration technique for microscopic image reconstruction, and we demonstrate our method on two ssTEM datasets of drosophila brain neural tissues, serial confocal laser scanning microscopic images of a drosophila brain, serial histopathological images of renal cortical tissues and a synthetic test case. The results show that the presented fully automatic method is promising to reassemble continuous volumes and minimize artificial deformations for all data and outperforms four state-of-the-art 3D registration techniques to consistently produce solid 3D reconstructed anatomies with less discontinuities and deformations. PMID:26449756

  20. Segmentation of vertebral bodies in CT and MR images based on 3D deterministic models

    NASA Astrophysics Data System (ADS)

    Štern, Darko; Vrtovec, Tomaž; Pernuš, Franjo; Likar, Boštjan

    2011-03-01

    The evaluation of vertebral deformations is of great importance in clinical diagnostics and therapy of pathological conditions affecting the spine. Although modern clinical practice is oriented towards the computed tomography (CT) and magnetic resonance (MR) imaging techniques, as they can provide a detailed 3D representation of vertebrae, the established methods for the evaluation of vertebral deformations still provide only a two-dimensional (2D) geometrical description. Segmentation of vertebrae in 3D may therefore not only improve their visualization, but also provide reliable and accurate 3D measurements of vertebral deformations. In this paper we propose a method for 3D segmentation of individual vertebral bodies that can be performed in CT and MR images. Initialized with a single point inside the vertebral body, the segmentation is performed by optimizing the parameters of a 3D deterministic model of the vertebral body to achieve the best match of the model to the vertebral body in the image. The performance of the proposed method was evaluated on five CT (40 vertebrae) and five T2-weighted MR (40 vertebrae) spine images, among them five are normal and five are pathological. The results show that the proposed method can be used for