Science.gov

Sample records for 3d integration technology

  1. Integrated Avionics System (IAS), Integrating 3-D Technology On A Spacecraft Panel

    NASA Technical Reports Server (NTRS)

    Hunter, Don J.; Halpert, Gerald

    1999-01-01

    As spacecraft designs converge toward miniaturization, and with the volumetric and mass challenges placed on avionics, programs will continue to advance the "state of the art" in spacecraft system development with new challenges to reduce power, mass and volume. Traditionally, the trend is to focus on high-density 3-D packaging technologies. Industry has made significant progress in 3-D technologies, and other related internal and external interconnection schemes. Although new technologies have improved packaging densities, a system packaging architecture is required that not only reduces spacecraft volume and mass budgets, but increase integration efficiencies, provide modularity and flexibility to accommodate multiple missions while maintaining a low recurring cost. With these challenges in mind, a novel system packaging approach incorporates solutions that provide broader environmental applications, more flexible system interconnectivity, scalability, and simplified assembly test and integration schemes. The Integrated Avionics System (IAS) provides for a low-mass, modular distributed or centralized packaging architecture which combines ridged-flex technologies, high-density COTS hardware and a new 3-D mechanical packaging approach, Horizontal Mounted Cube (HMC). This paper will describe the fundamental elements of the IAS, HMC hardware design, system integration and environmental test results.

  2. Three-Dimensional Integrated Circuit (3D IC) Key Technology: Through-Silicon Via (TSV).

    PubMed

    Shen, Wen-Wei; Chen, Kuan-Neng

    2017-12-01

    3D integration with through-silicon via (TSV) is a promising candidate to perform system-level integration with smaller package size, higher interconnection density, and better performance. TSV fabrication is the key technology to permit communications between various strata of the 3D integration system. TSV fabrication steps, such as etching, isolation, metallization processes, and related failure modes, as well as other characterizations are discussed in this invited review paper.

  3. Three-Dimensional Integrated Circuit (3D IC) Key Technology: Through-Silicon Via (TSV)

    NASA Astrophysics Data System (ADS)

    Shen, Wen-Wei; Chen, Kuan-Neng

    2017-01-01

    3D integration with through-silicon via (TSV) is a promising candidate to perform system-level integration with smaller package size, higher interconnection density, and better performance. TSV fabrication is the key technology to permit communications between various strata of the 3D integration system. TSV fabrication steps, such as etching, isolation, metallization processes, and related failure modes, as well as other characterizations are discussed in this invited review paper.

  4. New Dimensions in Microarchitecture Harnessing 3D Integration Technologies (BRIEFING CHARTS)

    DTIC Science & Technology

    2007-03-06

    New Dimensions in Microarchitecture Harnessing 3D Integration Technologies Kerry Bernstein IBM T.J. Watson Research Center Yorktown Heights, NY...e m o r y H i e r a r c h y L1 Size limited by Cycle time Components of Processor Performance From ISCA ’06 Keynote address by Phil Emma , IBM Delay...From ISCA ’06 Keynote address by Phil Emma , IBM 6 March, 2007 New Dimensions in Microarchitecture 8 What Is Bandwidth Used For? Miss Penalty

  5. New 3D structuring process for non-integrated circuit related technologies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nouri, Lamia; Possémé, Nicolas; Landis, Stéfan; Milesi, Frédéric; Gaillard, Frédéric-Xavier

    2017-04-01

    Fabrication processes that microelectronic developed for Integrated circuit (IC) technologies for decades, do not meet the new emerging structuration's requirements, in particular non-IC related technologies one, such as MEMS/NEMS, Micro-Fluidics, photovoltaics, lenses. Actually complex 3D structuration requires complex lithography patterning approaches such as gray-scale electron beam lithography, laser ablation, focused ion beam lithography, two photon polymerization. It is now challenging to find cheaper and easiest technique to achieve 3D structures. In this work, we propose a straightforward process to realize 3D structuration, intended for silicon based materials (Si, SiN, SiOCH). This structuration technique is based on nano-imprint lithography (NIL), ion implantation and selective wet etching. In a first step a pattern is performed by lithography on a substrate, then ion implantation is realized through a resist mask in order to create localized modifications in the material, thus the pattern is transferred into the subjacent layer. Finally, after the resist stripping, a selective wet etching is carried out to remove selectively the modified material regarding the non-modified one. In this paper, we will first present results achieved with simple 2D line array pattern processed either on Silicon or SiOCH samples. This step have been carried out to demonstrate the feasibility of this new structuration process. SEM pictures reveals that "infinite" selectivity between the implanted areas versus the non-implanted one could be achieved. We will show that a key combination between the type of implanted ion species and wet etching chemistries is required to obtain such results. The mechanisms understanding involved during both implantation and wet etching processes will also be presented through fine characterizations with Photoluminescence, Raman and Secondary Ion Mass Spectrometry (SIMS) for silicon samples, and ellipso-porosimetry and Fourier Transform Infra

  6. 3D Integration of MEMS and IC: Design, Technology and Simulations

    NASA Astrophysics Data System (ADS)

    Taklo, Maaike M. V.; Schjølberg-Henriksen, Kari; Lietaer, Nicolas; Prainsack, Josef; Elfving, Anders; Weber, Josef; Klein, Matthias; Schneider, Peter; Reitz, Sven

    A 3D integrated silicon stack consisting of two MEMS devices and two IC devices is presented. The MEMS devices are a pressure sensor and a bulk acoustic resonator (BAR). The stack was constructed for a tire pressure monitoring system (TPMS) which was one out of three demonstrators for an EU funded project called e-CUBES. Thermal simulations were performed to check the level of thermo-mechanical stresses induced on the pressure sensor membrane during extreme environmental conditions. Additional simulations were made to calculate the exact temperature on the BAR device during operation as this was important for the operational frequency. This paper presents and discusses the technology choices made for the stacking of the pressure sensor and the BAR. Results are given from simulations, initial short-loop experiments and for the final stacking.

  7. Integrating technologies for comparing 3D gene expression domains in the developing chick limb

    PubMed Central

    Fisher, Malcolm E.; Clelland, Allyson K.; Bain, Andrew; Baldock, Richard A.; Murphy, Paula; Downie, Helen; Tickle, Cheryll; Davidson, Duncan R.; Buckland, Richard A.

    2008-01-01

    Chick embryos are good models for vertebrate development due to their accessibility and manipulability. Recent large increases in available genomic data from both whole genome sequencing and EST projects provide opportunities for identifying many new developmentally important chicken genes. Traditional methods of documenting when and where specific genes are expressed in embryos using wholemount and section in-situ hybridisation do not readily allow appreciation of 3-dimensional (3D) patterns of expression, but this can be accomplished by the recently developed microscopy technique, Optical Projection Tomography (OPT). Here we show that OPT data on the developing chick wing from different labs can be reliably integrated into a common database, that OPT is efficient in capturing 3D gene expression domains and that such domains can be meaningfully compared. Novel protocols are used to compare 3D expression domains of 7 genes known to be involved in chick wing development. This reveals previously unappreciated relationships and demonstrates the potential, using modern genomic resources, for building a large scale 3D atlas of gene expression. Such an atlas could be extended to include other types of data, such as fate maps, and the approach is also more generally applicable to embryos, organs and tissues. PMID:18355805

  8. 3D Scan Systems Integration

    DTIC Science & Technology

    2007-11-02

    AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 5 Feb 98 4. TITLE AND SUBTITLE 3D Scan Systems Integration REPORT TYPE AND DATES COVERED...2-89) Prescribed by ANSI Std. Z39-1 298-102 [ EDO QUALITY W3PECTEDI DLA-ARN Final Report for US Defense Logistics Agency on DDFG-T2/P3: 3D...SCAN SYSTEMS INTEGRATION Contract Number SPO100-95-D-1014 Contractor Ohio University Delivery Order # 0001 Delivery Order Title 3D Scan Systems

  9. Integration of Petrophysical Methods and 3D Printing Technology to Replicate Reservoir Pore Systems

    NASA Astrophysics Data System (ADS)

    Ishutov, S.; Hasiuk, F.; Gray, J.; Harding, C.

    2014-12-01

    Pore-scale imaging and modeling are becoming routine geoscience techniques of reservoir analysis and simulation in oil and gas industry. Three-dimensional printing may facilitate the transformation of pore-space imagery into rock models, which can be compared to traditional laboratory methods and literature data. Although current methodologies for rapid rock modeling and printing obscure many details of grain geometry, computed tomography data is one route to refine pore networks and experimentally test hypotheses related to rock properties, such as porosity and permeability. This study uses three-dimensional printing as a novel way of interacting with x-ray computed tomography data from reservoir core plugs based on digital modeling of pore systems in coarse-grained sandstones and limestones. The advantages of using artificial rocks as a proxy are to better understand the contributions of pore system characteristics at various scales to petrophysical properties in oil and gas reservoirs. Pore radii of reservoir sandstones used in this study range from 1 to 100s of microns, whereas the pore radii for limestones vary from 0.01 to 10s of microns. The resolution of computed tomography imaging is ~10 microns; the resolution of 3D digital printing used in the study varies from 2.5 to 300 microns. For this technology to be useful, loss of pore network information must be minimized in the course of data acquisition, modeling, and production as well as verified against core-scale measurements. The ultimate goal of this study is to develop a reservoir rock "photocopier" that couples 3D scanning and modeling with 3D printing to reproduce a) petrophyscially accurate copies of reservoir pore systems and b) digitally modified pore systems for testing hypotheses about reservoir flow. By allowing us to build porous media with known properties (porosity, permeability, surface area), technology will also advance our understanding of the tools used to measure these quantities (e

  10. Surgical Navigation Technology Based on Augmented Reality and Integrated 3D Intraoperative Imaging

    PubMed Central

    Elmi-Terander, Adrian; Skulason, Halldor; Söderman, Michael; Racadio, John; Homan, Robert; Babic, Drazenko; van der Vaart, Nijs; Nachabe, Rami

    2016-01-01

    Study Design. A cadaveric laboratory study. Objective. The aim of this study was to assess the feasibility and accuracy of thoracic pedicle screw placement using augmented reality surgical navigation (ARSN). Summary of Background Data. Recent advances in spinal navigation have shown improved accuracy in lumbosacral pedicle screw placement but limited benefits in the thoracic spine. 3D intraoperative imaging and instrument navigation may allow improved accuracy in pedicle screw placement, without the use of x-ray fluoroscopy, and thus opens the route to image-guided minimally invasive therapy in the thoracic spine. Methods. ARSN encompasses a surgical table, a motorized flat detector C-arm with intraoperative 2D/3D capabilities, integrated optical cameras for augmented reality navigation, and noninvasive patient motion tracking. Two neurosurgeons placed 94 pedicle screws in the thoracic spine of four cadavers using ARSN on one side of the spine (47 screws) and free-hand technique on the contralateral side. X-ray fluoroscopy was not used for either technique. Four independent reviewers assessed the postoperative scans, using the Gertzbein grading. Morphometric measurements of the pedicles axial and sagittal widths and angles, as well as the vertebrae axial and sagittal rotations were performed to identify risk factors for breaches. Results. ARSN was feasible and superior to free-hand technique with respect to overall accuracy (85% vs. 64%, P < 0.05), specifically significant increases of perfectly placed screws (51% vs. 30%, P < 0.05) and reductions in breaches beyond 4 mm (2% vs. 25%, P < 0.05). All morphometric dimensions, except for vertebral body axial rotation, were risk factors for larger breaches when performed with the free-hand method. Conclusion. ARSN without fluoroscopy was feasible and demonstrated higher accuracy than free-hand technique for thoracic pedicle screw placement. Level of Evidence: N/A PMID:27513166

  11. Integration of real-time 3D image acquisition and multiview 3D display

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Li, Wei; Wang, Jingyi; Liu, Yongchun

    2014-03-01

    Seamless integration of 3D acquisition and 3D display systems offers enhanced experience in 3D visualization of the real world objects or scenes. The vivid representation of captured 3D objects displayed on a glasses-free 3D display screen could bring the realistic viewing experience to viewers as if they are viewing real-world scene. Although the technologies in 3D acquisition and 3D display have advanced rapidly in recent years, effort is lacking in studying the seamless integration of these two different aspects of 3D technologies. In this paper, we describe our recent progress on integrating a light-field 3D acquisition system and an autostereoscopic multiview 3D display for real-time light field capture and display. This paper focuses on both the architecture design and the implementation of the hardware and the software of this integrated 3D system. A prototype of the integrated 3D system is built to demonstrate the real-time 3D acquisition and 3D display capability of our proposed system.

  12. Integration of GIS, Geostatistics, and 3-D Technology to Assess the Spatial Distribution of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Betts, M.; Tsegaye, T.; Tadesse, W.; Coleman, T. L.; Fahsi, A.

    1998-01-01

    The spatial and temporal distribution of near surface soil moisture is of fundamental importance to many physical, biological, biogeochemical, and hydrological processes. However, knowledge of these space-time dynamics and the processes which control them remains unclear. The integration of geographic information systems (GIS) and geostatistics together promise a simple mechanism to evaluate and display the spatial and temporal distribution of this vital hydrologic and physical variable. Therefore, this research demonstrates the use of geostatistics and GIS to predict and display soil moisture distribution under vegetated and non-vegetated plots. The research was conducted at the Winfred Thomas Agricultural Experiment Station (WTAES), Hazel Green, Alabama. Soil moisture measurement were done on a 10 by 10 m grid from tall fescue grass (GR), alfalfa (AA), bare rough (BR), and bare smooth (BS) plots. Results indicated that variance associated with soil moisture was higher for vegetated plots than non-vegetated plots. The presence of vegetation in general contributed to the spatial variability of soil moisture. Integration of geostatistics and GIS can improve the productivity of farm lands and the precision of farming.

  13. Integration of GIS, Geostatistics, and 3-D Technology to Assess the Spatial Distribution of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Betts, M.; Tsegaye, T.; Tadesse, W.; Coleman, T. L.; Fahsi, A.

    1998-01-01

    The spatial and temporal distribution of near surface soil moisture is of fundamental importance to many physical, biological, biogeochemical, and hydrological processes. However, knowledge of these space-time dynamics and the processes which control them remains unclear. The integration of geographic information systems (GIS) and geostatistics together promise a simple mechanism to evaluate and display the spatial and temporal distribution of this vital hydrologic and physical variable. Therefore, this research demonstrates the use of geostatistics and GIS to predict and display soil moisture distribution under vegetated and non-vegetated plots. The research was conducted at the Winfred Thomas Agricultural Experiment Station (WTAES), Hazel Green, Alabama. Soil moisture measurement were done on a 10 by 10 m grid from tall fescue grass (GR), alfalfa (AA), bare rough (BR), and bare smooth (BS) plots. Results indicated that variance associated with soil moisture was higher for vegetated plots than non-vegetated plots. The presence of vegetation in general contributed to the spatial variability of soil moisture. Integration of geostatistics and GIS can improve the productivity of farm lands and the precision of farming.

  14. Experience with 3D integration technologies in the framework of the ATLAS pixel detector upgrade for the HL-LHC

    NASA Astrophysics Data System (ADS)

    Aruntinov, D.; Barbero, M.; Gonella, L.; Hemperek, T.; Hügging, F.; Krüger, H.; Wermes, N.; Breugnon, P.; Chantepie, B.; Clemens, J. C.; Fei, R.; Fougeron, D.; Godiot, S.; Pangaud, P.; Rozanov, A.; Garcia-Sciveres, M.; Mekkaoui, A.

    2013-12-01

    3D technologies are investigated for the upgrade of the ATLAS pixel detector at the HL-LHC. R&D focuses on both, IC design in 3D, as well as on post-processing 3D technologies such as Through Silicon Via (TSV). The first one uses a so-called via first technology, featuring the insertion of small aspect ratio TSV at the pixel level. As discussed in the paper, this technology can still present technical challenges for the industrial partners. The second one consists of etching the TSV via last. This technology is investigated to enable 4-side abuttable module concepts, using today's pixel detector technology. Both approaches are presented in this paper and results from first available prototypes are discussed.

  15. 3D integral imaging with optical processing

    NASA Astrophysics Data System (ADS)

    Martínez-Corral, Manuel; Martínez-Cuenca, Raúl; Saavedra, Genaro; Javidi, Bahram

    2008-04-01

    Integral imaging (InI) systems are imaging devices that provide auto-stereoscopic images of 3D intensity objects. Since the birth of this new technology, InI systems have faced satisfactorily many of their initial drawbacks. Basically, two kind of procedures have been used: digital and optical procedures. The "3D Imaging and Display Group" at the University of Valencia, with the essential collaboration of Prof. Javidi, has centered its efforts in the 3D InI with optical processing. Among other achievements, our Group has proposed the annular amplitude modulation for enlargement of the depth of field, dynamic focusing for reduction of the facet-braiding effect, or the TRES and MATRES devices to enlarge the viewing angle.

  16. Development of 3D integrated circuits for HEP

    SciTech Connect

    Yarema, R.; /Fermilab

    2006-09-01

    Three dimensional integrated circuits are well suited to improving circuit bandwidth and increasing effective circuit density. Recent advances in industry have made 3D integrated circuits an option for HEP. The 3D technology is discussed in this paper and several examples are shown. Design of a 3D demonstrator chip for the ILC is presented.

  17. 3D Integration for Wireless Multimedia

    NASA Astrophysics Data System (ADS)

    Kimmich, Georg

    The convergence of mobile phone, internet, mapping, gaming and office automation tools with high quality video and still imaging capture capability is becoming a strong market trend for portable devices. High-density video encode and decode, 3D graphics for gaming, increased application-software complexity and ultra-high-bandwidth 4G modem technologies are driving the CPU performance and memory bandwidth requirements close to the PC segment. These portable multimedia devices are battery operated, which requires the deployment of new low-power-optimized silicon process technologies and ultra-low-power design techniques at system, architecture and device level. Mobile devices also need to comply with stringent silicon-area and package-volume constraints. As for all consumer devices, low production cost and fast time-to-volume production is key for success. This chapter shows how 3D architectures can bring a possible breakthrough to meet the conflicting power, performance and area constraints. Multiple 3D die-stacking partitioning strategies are described and analyzed on their potential to improve the overall system power, performance and cost for specific application scenarios. Requirements and maturity of the basic process-technology bricks including through-silicon via (TSV) and die-to-die attachment techniques are reviewed. Finally, we highlight new challenges which will arise with 3D stacking and an outlook on how they may be addressed: Higher power density will require thermal design considerations, new EDA tools will need to be developed to cope with the integration of heterogeneous technologies and to guarantee signal and power integrity across the die stack. The silicon/wafer test strategies have to be adapted to handle high-density IO arrays, ultra-thin wafers and provide built-in self-test of attached memories. New standards and business models have to be developed to allow cost-efficient assembly and testing of devices from different silicon and technology

  18. Self assembled structures for 3D integration

    NASA Astrophysics Data System (ADS)

    Rao, Madhav

    Three dimensional (3D) micro-scale structures attached to a silicon substrate have various applications in microelectronics. However, formation of 3D structures using conventional micro-fabrication techniques are not efficient and require precise control of processing parameters. Self assembly is a method for creating 3D structures that takes advantage of surface area minimization phenomena. Solder based self assembly (SBSA), the subject of this dissertation, uses solder as a facilitator in the formation of 3D structures from 2D patterns. Etching a sacrificial layer underneath a portion of the 2D pattern allows the solder reflow step to pull those areas out of the substrate plane resulting in a folded 3D structure. Initial studies using the SBSA method demonstrated low yields in the formation of five different polyhedra. The failures in folding were primarily attributed to nonuniform solder deposition on the underlying metal pads. The dip soldering method was analyzed and subsequently refined. A modified dip soldering process provided improved yield among the polyhedra. Solder bridging referred as joining of solder deposited on different metal patterns in an entity influenced the folding mechanism. In general, design parameters such as small gap-spacings and thick metal pads were found to favor solder bridging for all patterns studied. Two types of soldering: face and edge soldering were analyzed. Face soldering refers to the application of solder on the entire metal face. Edge soldering indicates application of solder only on the edges of the metal face. Mechanical grinding showed that face soldered SBSA structures were void free and robust in nature. In addition, the face soldered 3D structures provide a consistent heat resistant solder standoff height that serve as attachments in the integration of dissimilar electronic technologies. Face soldered 3D structures were developed on the underlying conducting channel to determine the thermo-electric reliability of

  19. 3D Technology for intelligent trackers

    SciTech Connect

    Lipton, Ronald; /Fermilab

    2010-09-01

    At Super-LHC luminosity it is expected that the standard suite of level 1 triggers for CMS will saturate. Information from the tracker will be needed to reduce trigger rates to satisfy the level 1 bandwidth. Tracking trigger modules which correlate information from closely-spaced sensor layers to form an on-detector momentum filter are being developed by several groups. We report on a trigger module design which utilizes three dimensional integrated circuit technology incorporating chips which are connected both to the top and bottom sensor, providing the ability to filter information locally. A demonstration chip, the VICTR, has been submitted to the Chartered/Tezzaron two-tier 3D run coordinated by Fermilab. We report on the 3D design concept, the status of the VICTR chip and associated sensor integration utilizing oxide bonding.

  20. Application of Integration of HBIM and VR Technology to 3D Immersive Digital Management—Take Han Type Traditional Architecture as an Example

    NASA Astrophysics Data System (ADS)

    Lin, Y.-C.

    2017-08-01

    HBIM technology makes great contributions to 3D digital preservation and management of the existing traditional architectures, and VR technology has also been gradually emphasized by 3D users in recent years, especially 3D immersive situation makes users more likely to experience the real space field. Taking Han type traditional architecture with relatively complex geometrical structure as an example, this research carries out digital preservation through HBIM technology and tries to switch to VR platform to allow users to enter 3D immersive scene for management and display. It is shown in the research results that the application of integration of HBIM and VR technology to Han type traditional architecture needs to consider 3D digital model of the architecture, and the number of polygon shall be controlled below about 2 million, which can make the operation in VR environment more smooth; the integration of two technologies can achieve the purpose of 3D immersive digital management, which can provide the humanized application close to the real experience for the display of subsequent management of ancient relics and architectural aesthetics.

  1. Ship-in-a-bottle integration by hybrid femtosecond laser technology for fabrication of true 3D biochips

    NASA Astrophysics Data System (ADS)

    Sima, Felix; Wu, Dong; Xu, Jian; Midorikawa, Katsumi; Sugioka, Koji

    2015-03-01

    We propose herein the "ship-in-a-bottle" integration of three-dimensional (3D) polymeric sinusoidal ridges inside photosensitive glass microfluidic channel by a hybrid subtractive - additive femtosecond laser processing method. It consists of Femtosecond Laser Assisted Wet Etching (FLAE) of a photosensitive Foturan glass followed by Two-Photon Polymerization (TPP) of a SU-8 negative epoxy-resin. Both subtractive and additive processes are carried out using the same set-up with the change of laser focusing objective only. A 522 nm wavelength of the second harmonic generation from an amplified femtosecond Yb-fiber laser (FCPA µJewel D-400, IMRA America, 1045 nm; pulse width 360 fs, repetition rate 200 kHz) was employed for irradiation. The new method allows lowering the size limit of 3D objects created inside channels to smaller details down to the dimensions of a cell, and improve the structure stability. Sinusoidal periodic patterns and ridges are of great use as base scaffolds for building up new structures on their top or for modulating cell migration, guidance and orientation while created interspaces can be exploited for microfluidic applications. The glass microchannel offers robustness and appropriate dynamic flow conditions for cellular studies while the integrated patterns are reducing the size of structure to the level of cells responsiveness. Taking advantage of the ability to directly fabricate 3D complex shapes, both glass channels and polymeric integrated patterns enable us to 3D spatially design biochips for specific applications.

  2. Teaching Geography with 3-D Visualization Technology

    ERIC Educational Resources Information Center

    Anthamatten, Peter; Ziegler, Susy S.

    2006-01-01

    Technology that helps students view images in three dimensions (3-D) can support a broad range of learning styles. "Geo-Wall systems" are visualization tools that allow scientists, teachers, and students to project stereographic images and view them in 3-D. We developed and presented 3-D visualization exercises in several undergraduate courses.…

  3. Teaching Geography with 3-D Visualization Technology

    ERIC Educational Resources Information Center

    Anthamatten, Peter; Ziegler, Susy S.

    2006-01-01

    Technology that helps students view images in three dimensions (3-D) can support a broad range of learning styles. "Geo-Wall systems" are visualization tools that allow scientists, teachers, and students to project stereographic images and view them in 3-D. We developed and presented 3-D visualization exercises in several undergraduate courses.…

  4. 3-D Technology Approaches for Biological Ecologies

    NASA Astrophysics Data System (ADS)

    Liu, Liyu; Austin, Robert; U. S-China Physical-Oncology Sciences Alliance (PS-OA) Team

    Constructing three dimensional (3-D) landscapes is an inevitable issue in deep study of biological ecologies, because in whatever scales in nature, all of the ecosystems are composed by complex 3-D environments and biological behaviors. Just imagine if a 3-D technology could help complex ecosystems be built easily and mimic in vivo microenvironment realistically with flexible environmental controls, it will be a fantastic and powerful thrust to assist researchers for explorations. For years, we have been utilizing and developing different technologies for constructing 3-D micro landscapes for biophysics studies in in vitro. Here, I will review our past efforts, including probing cancer cell invasiveness with 3-D silicon based Tepuis, constructing 3-D microenvironment for cell invasion and metastasis through polydimethylsiloxane (PDMS) soft lithography, as well as explorations of optimized stenting positions for coronary bifurcation disease with 3-D wax printing and the latest home designed 3-D bio-printer. Although 3-D technologies is currently considered not mature enough for arbitrary 3-D micro-ecological models with easy design and fabrication, I hope through my talk, the audiences will be able to sense its significance and predictable breakthroughs in the near future. This work was supported by the State Key Development Program for Basic Research of China (Grant No. 2013CB837200), the National Natural Science Foundation of China (Grant No. 11474345) and the Beijing Natural Science Foundation (Grant No. 7154221).

  5. Biomaterials for integration with 3-D bioprinting.

    PubMed

    Skardal, Aleksander; Atala, Anthony

    2015-03-01

    Bioprinting has emerged in recent years as an attractive method for creating 3-D tissues and organs in the laboratory, and therefore is a promising technology in a number of regenerative medicine applications. It has the potential to (i) create fully functional replacements for damaged tissues in patients, and (ii) rapidly fabricate small-sized human-based tissue models, or organoids, for diagnostics, pathology modeling, and drug development. A number of bioprinting modalities have been explored, including cellular inkjet printing, extrusion-based technologies, soft lithography, and laser-induced forward transfer. Despite the innovation of each of these technologies, successful implementation of bioprinting relies heavily on integration with compatible biomaterials that are responsible for supporting the cellular components during and after biofabrication, and that are compatible with the bioprinting device requirements. In this review, we will evaluate a variety of biomaterials, such as curable synthetic polymers, synthetic gels, and naturally derived hydrogels. Specifically we will describe how they are integrated with the bioprinting technologies above to generate bioprinted constructs with practical application in medicine.

  6. Partial integrability of 3d Bohmian trajectories

    NASA Astrophysics Data System (ADS)

    Contopoulos, G.; Tzemos, A. C.; Efthymiopoulos, C.

    2017-05-01

    In this paper we study the integrability of 3d Bohmian trajectories of a system of quantum harmonic oscillators. We show that the initial choice of quantum numbers is responsible for the existence (or not) of an integral of motion which confines the trajectories on certain invariant surfaces. We give a few examples of orbits in cases where there is or there is not an integral and make some comments on the impact of partial integrability in Bohmian Mechanics. Finally, we make a connection between our present results for the integrability in the 3d case and analogous results found in the 2d and 4d cases.

  7. DNA biosensing with 3D printing technology.

    PubMed

    Loo, Adeline Huiling; Chua, Chun Kiang; Pumera, Martin

    2017-01-16

    3D printing, an upcoming technology, has vast potential to transform conventional fabrication processes due to the numerous improvements it can offer to the current methods. To date, the employment of 3D printing technology has been examined for applications in the fields of engineering, manufacturing and biological sciences. In this study, we examined the potential of adopting 3D printing technology for a novel application, electrochemical DNA biosensing. Metal 3D printing was utilized to construct helical-shaped stainless steel electrodes which functioned as a transducing platform for the detection of DNA hybridization. The ability of electroactive methylene blue to intercalate into the double helix structure of double-stranded DNA was then exploited to monitor the DNA hybridization process, with its inherent reduction peak serving as an analytical signal. The designed biosensing approach was found to demonstrate superior selectivity against a non-complementary DNA target, with a detection range of 1-1000 nM.

  8. Surviving sepsis--a 3D integrative educational simulator.

    PubMed

    Ježek, Filip; Tribula, Martin; Kulhánek, Tomáš; Mateják, Marek; Privitzer, Pavol; Šilar, Jan; Kofránek, Jiří; Lhotská, Lenka

    2015-08-01

    Computer technology offers greater educational possibilities, notably simulation and virtual reality. This paper presents a technology which serves to integrate multiple modalities, namely 3D virtual reality, node-based simulator, Physiomodel explorer and explanatory physiological simulators employing Modelica language and Unity3D platform. This emerging tool chain should allow the authors to concentrate more on educational content instead of application development. The technology is demonstrated through Surviving sepsis educational scenario, targeted on Microsoft Windows Store platform.

  9. Surgical Navigation Technology Based on Augmented Reality and Integrated 3D Intraoperative Imaging: A Spine Cadaveric Feasibility and Accuracy Study.

    PubMed

    Elmi-Terander, Adrian; Skulason, Halldor; Söderman, Michael; Racadio, John; Homan, Robert; Babic, Drazenko; van der Vaart, Nijs; Nachabe, Rami

    2016-11-01

    A cadaveric laboratory study. The aim of this study was to assess the feasibility and accuracy of thoracic pedicle screw placement using augmented reality surgical navigation (ARSN). Recent advances in spinal navigation have shown improved accuracy in lumbosacral pedicle screw placement but limited benefits in the thoracic spine. 3D intraoperative imaging and instrument navigation may allow improved accuracy in pedicle screw placement, without the use of x-ray fluoroscopy, and thus opens the route to image-guided minimally invasive therapy in the thoracic spine. ARSN encompasses a surgical table, a motorized flat detector C-arm with intraoperative 2D/3D capabilities, integrated optical cameras for augmented reality navigation, and noninvasive patient motion tracking. Two neurosurgeons placed 94 pedicle screws in the thoracic spine of four cadavers using ARSN on one side of the spine (47 screws) and free-hand technique on the contralateral side. X-ray fluoroscopy was not used for either technique. Four independent reviewers assessed the postoperative scans, using the Gertzbein grading. Morphometric measurements of the pedicles axial and sagittal widths and angles, as well as the vertebrae axial and sagittal rotations were performed to identify risk factors for breaches. ARSN was feasible and superior to free-hand technique with respect to overall accuracy (85% vs. 64%, P < 0.05), specifically significant increases of perfectly placed screws (51% vs. 30%, P < 0.05) and reductions in breaches beyond 4 mm (2% vs. 25%, P < 0.05). All morphometric dimensions, except for vertebral body axial rotation, were risk factors for larger breaches when performed with the free-hand method. ARSN without fluoroscopy was feasible and demonstrated higher accuracy than free-hand technique for thoracic pedicle screw placement. N/A.

  10. 3D packaging for integrated circuit systems

    SciTech Connect

    Chu, D.; Palmer, D.W.

    1996-11-01

    A goal was set for high density, high performance microelectronics pursued through a dense 3D packing of integrated circuits. A {open_quotes}tool set{close_quotes} of assembly processes have been developed that enable 3D system designs: 3D thermal analysis, silicon electrical through vias, IC thinning, mounting wells in silicon, adhesives for silicon stacking, pretesting of IC chips before commitment to stacks, and bond pad bumping. Validation of these process developments occurred through both Sandia prototypes and subsequent commercial examples.

  11. 3D-LSI technology for image sensor

    NASA Astrophysics Data System (ADS)

    Motoyoshi, Makoto; Koyanagi, Mitsumasa

    2009-03-01

    Recently, the development of three-dimensional large-scale integration (3D-LSI) technologies has accelerated and has advanced from the research level or the limited production level to the investigation level, which might lead to mass production. By separating 3D-LSI technology into elementary technologies such as (1) through silicon via (TSV) formation, (2) bump formation, (3) wafer thinning, (4) chip/wafer alignment, and (5) chip/wafer stacking and reconstructing the entire process and structure, many methods to realize 3D-LSI devices can be developed. However, by considering a specific application, the supply chain of base wafers, and the purpose of 3D integration, a few suitable combinations can be identified. In this paper, we focus on the application of 3D-LSI technologies to image sensors. We describe the process and structure of the chip size package (CSP), developed on the basis of current and advanced 3D-LSI technologies, to be used in CMOS image sensors. Using the current LSI technologies, CSPs for 1.3 M, 2 M, and 5 M pixel CMOS image sensors were successfully fabricated without any performance degradation. 3D-LSI devices can be potentially employed in high-performance focal-plane-array image sensors. We propose a high-speed image sensor with an optical fill factor of 100% to be developed using next-generation 3D-LSI technology and fabricated using micro(μ)-bumps and micro(μ)-TSVs.

  12. Wafer-Level 3D Integration for ULSI Interconnects

    NASA Astrophysics Data System (ADS)

    Gutmann, Ronald J.; Lu, Jian-Qiang

    Three-dimensional (3D) integration in a system-in-a-package (SiP) implementation (packaging-based 3D) is becoming increasingly used in consumer, computer, and communication applications where form factor is critical. In particular, the hand-held market for a growing myriad of voice, data, messaging, and imaging products is enabled by packaging-based 3D integration (i.e., stacking and connecting individual chips). The key drivers are for increased memory capacity and for heterogeneous integration of different IC technologies and functions.

  13. 2D and 3D heterogeneous photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Yoo, S. J. Ben

    2014-03-01

    Exponential increases in the amount of data that need to be sensed, communicated, and processed are continuing to drive the complexity of our computing, networking, and sensing systems. High degrees of integration is essential in scalable, practical, and cost-effective microsystems. In electronics, high-density 2D integration has naturally evolved towards 3D integration by stacking of memory and processor chips with through-silicon-vias. In photonics, too, we anticipate highdegrees of 3D integration of photonic components to become a prevailing method in realizing future microsystems for information and communication technologies. However, compared to electronics, photonic 3D integration face a number of challenges. This paper will review two methods of 3D photonic integration --- fs laser inscription and layer stacking, and discuss applications and future prospects.

  14. 3D optical measuring technologies and systems

    NASA Astrophysics Data System (ADS)

    Chugui, Yuri V.

    2005-02-01

    The results of the R & D activity of TDI SIE SB RAS in the field of the 3D optical measuring technologies and systems for noncontact 3D optical dimensional inspection applied to atomic and railway industry safety problems are presented. This activity includes investigations of diffraction phenomena on some 3D objects, using the original constructive calculation method. The efficient algorithms for precise determining the transverse and longitudinal sizes of 3D objects of constant thickness by diffraction method, peculiarities on formation of the shadow and images of the typical elements of the extended objects were suggested. Ensuring the safety of nuclear reactors and running trains as well as their high exploitation reliability requires a 100% noncontact precise inspection of geometrical parameters of their components. To solve this problem we have developed methods and produced the technical vision measuring systems LMM, CONTROL, PROFIL, and technologies for noncontact 3D dimensional inspection of grid spacers and fuel elements for the nuclear reactor VVER-1000 and VVER-440, as well as automatic laser diagnostic COMPLEX for noncontact inspection of geometric parameters of running freight car wheel pairs. The performances of these systems and the results of industrial testing are presented and discussed. The created devices are in pilot operation at Atomic and Railway Companies.

  15. Reduction of Fluoroscopic Exposure Using a New Fluoroscopy Integrating Technology in a 3D-Mapping System During Pulmonary Vein Isolation With a Circular Multipolar Irrigated Catheter.

    PubMed

    Blockhaus, Christian; Schmidt, Jan; Kurt, Muhammed; Clasen, Lukas; Brinkmeyer, Christoph; Katsianos, Efstratios; Müller, Patrick; Gerguri, Shqipe; Kelm, Malte; Shin, Dong-In; Makimoto, Hisaki

    2016-05-25

    Pulmonary vein isolation (PVI) is a cornerstone therapy in patients with atrial fibrillation (AF). With increasing numbers of PVI procedures, demand arises to reduce the cumulative fluoroscopic radiation exposure for both the physician and the patient. New technologies are emerging to address this issue. Here, we report our first experiences with a new fluoroscopy integrating technology in addition to a current 3D-mapping system. The new fluoroscopy integrating system (FIS) with 3D-mapping was used prospectively in 15 patients with AF. Control PVI cases (n = 37) were collected retrospectively as a complete series. Total procedure time (skin to skin), fluoroscopic time, and dose-area-product (DAP) data were analyzed. All PVI procedures were performed by one experienced physician using a commercially available circular multipolar irrigated ablation catheter. All PVI procedures were successfully undertaken without major complications. Baseline characteristics of the two groups showed no significant differences. In the group using the FIS, the fluoroscopic time and DAP were significantly reduced from 571 ± 187 seconds versus 1011 ± 527 seconds (P = 0.0029) and 4342 ± 2073 cGycm(2) versus 6208 ± 3314 cGycm(2) (P = 0.049), respectively. Mean procedure time was not significantly affected and was 114 ± 31 minutes versus 104 ± 24 minutes (P = 0.23) by the FIS.The use of the new FIS with the current 3D-mapping system enables a significant reduction of the total fluoroscopy time and DAP compared to the previous combination of 3D-mapping system plus normal fluoroscopy during PVI utilizing a circular multipolar irrigated ablation catheter. However, the concomitant total procedure time is not affected. Thus, the new system reduces the radiation exposure for both the physicians and patients.

  16. 3D printing technologies for electrochemical energy storage

    DOE PAGES

    Zhang, Feng; Wei, Min; Viswanathan, Vilayanur V.; ...

    2017-08-24

    We present that fabrication and assembly of electrodes and electrolytes play an important role in promoting the performance of electrochemical energy storage (EES) devices such as batteries and supercapacitors. Traditional fabrication techniques have limitations in controlling the geometry and architecture of the electrode and solid-state electrolytes, which would otherwise compromise the performance. 3D printing, a disruptive manufacturing technology, has emerged as an innovative approach to fabricating EES devices from nanoscale to macroscale, providing great opportunities to accurately control device geometry (e.g., dimension, porosity, and morphology) and structure with enhanced specific energy and power densities. Moreover, the “additive” manufacturing nature ofmore » 3D printing provides excellent controllability of the electrode thickness with much simplified process in a cost effective manner. Additionally, with the unique spatial and temporal material manipulation capability, 3D printing can integrate multiple nano-materials in the same print, and multi-functional EES devices (including functional gradient devices) can be fabricated. Herein, we review recent advances in 3D printing of EES devices. We focus on two major 3D printing technologies including direct writing and inkjet printing. The direct material deposition characteristics of these two processes enable them to print on a variety of flat substrates, even a conformal one, well suiting them to applications such as wearable devices and on-chip integrations. Other potential 3D printing techniques such as freeze nano-printing, stereolithography, fused deposition modeling, binder jetting, laminated object manufacturing, and metal 3D printing are also introduced. The advantages and limitations of each 3D printing technology are extensively discussed. More importantly, we provide a perspective on how to integrate the emerging 3D printing with existing technologies to create structures over

  17. 3D Integration for Superconducting Qubits

    NASA Astrophysics Data System (ADS)

    Rosenberg, Danna; Yost, Donna-Ruth; Das, Rabindra; Hover, David; Racz, Livia; Weber, Steven; Yoder, Jonilyn; Kerman, Andrew; Oliver, William

    As the field of superconducting quantum computing advances from the few-qubit stage to large-scale fault-tolerant devices, scalability requirements will necessitate the use of standard 3D packaging and integration processes. While the field of 3D integration is well-developed, relatively little work has been performed to determine the compatibility of the associated processes with superconducting qubits. Qubit coherence time could potentially be affected by required process steps or by the proximity of an interposer that could introduce extra sources of charge or flux noise. As a first step towards a large-scale quantum information processor, we have used a flip-chip process to bond a chip with flux qubits to an interposer containing structures for qubit readout and control. We will present data on the effect of the presence of the interposer on qubit coherence time for various qubit-chip-interposer spacings and discuss the implications for integrated multi-qubit devices. This research was funded by the ODNI and IARPA under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  18. Novel 3D stereoscopic imaging technology

    NASA Astrophysics Data System (ADS)

    Faris, Sadeg M.

    1994-04-01

    Numerous 3-D stereoscopic techniques have been explored. These previous techniques have had shortcomings precluding them from making stereoscopic imaging pervasive in mainstream applications. In the last decade, several enabling technologies have emerged and have become available and affordable. They make it possible now to realize the near-ideal stereoscopic imaging technology that can be made available to the masses making possible the inevitable transition from flat imaging to stereoscopic imaging. The ideal stereoscopic technology must meet four important criteria: (1) high stereoscopic image quality; (2) affordability; (3) compatibility with existing infrastructure, e.g., NTSC video, PC, and other devices; and (4) general purpose characteristics, e.g., the ability to produce electronic displays, hard-copy printing and capturing stereoscopic images on film and stored electronically. In section 2, an overview of prior art technologies is given highlighting their advantages and disadvantages. In section 3, the novel (mu) PolTM stereoscopic technology is described making the case that it meets the four criteria for realizing the inevitable transition from flat to stereoscopic imaging for mass applications.

  19. Progress in 3D imaging and display by integral imaging

    NASA Astrophysics Data System (ADS)

    Martinez-Cuenca, R.; Saavedra, G.; Martinez-Corral, M.; Pons, A.; Javidi, B.

    2009-05-01

    Three-dimensionality is currently considered an important added value in imaging devices, and therefore the search for an optimum 3D imaging and display technique is a hot topic that is attracting important research efforts. As main value, 3D monitors should provide the observers with different perspectives of a 3D scene by simply varying the head position. Three-dimensional imaging techniques have the potential to establish a future mass-market in the fields of entertainment and communications. Integral imaging (InI), which can capture true 3D color images, has been seen as the right technology to 3D viewing to audiences of more than one person. Due to the advanced degree of development, InI technology could be ready for commercialization in the coming years. This development is the result of a strong research effort performed along the past few years by many groups. Since Integral Imaging is still an emerging technology, the first aim of the "3D Imaging and Display Laboratory" at the University of Valencia, has been the realization of a thorough study of the principles that govern its operation. Is remarkable that some of these principles have been recognized and characterized by our group. Other contributions of our research have been addressed to overcome some of the classical limitations of InI systems, like the limited depth of field (in pickup and in display), the poor axial and lateral resolution, the pseudoscopic-to-orthoscopic conversion, the production of 3D images with continuous relief, or the limited range of viewing angles of InI monitors.

  20. Multi-scale simulation flow and multi-scale materials characterization for stress management in 3D through-silicon-via integration technologies - Effect of stress on 3D IC interconnect reliability

    NASA Astrophysics Data System (ADS)

    Sukharev, Valeriy; Zschech, Ehrenfried

    2014-06-01

    The paper addresses the growing need in a simulation-based design verification flow capable to analyze any design of 3D IC stacks and to determine across-layers implications in 3D IC reliability caused by through-silicon-via (TSV) and chip-package interaction (CPI) induced mechanical stresses. The limited characterization/measurement capabilities of 3D IC stacks and a strict "good die" requirement make this type of analysis really critical for the achievement of an acceptable level of functional and parametric yield and reliability. The paper focuses on the development of a design-for-manufacturability (DFM) type of methodology for managing mechanical stresses during a sequence of designs of 3D TSV-based dies, stacks and packages. A set of physics-based compact models for a multi-scale simulation, to assess the mechanical stress across the dies stacked and packaged with the 3D TSV technology, is proposed. As an example the effect of CPI/TSV induced stresses on stress migration (SM) and electromigration (EM) in the back-end-of-line (BEoL) and backside-redistribution-layer (BRDL) interconnect lines is considered. A strategy for a simulation feeding data generation and a respective materials characterization approach are proposed, with the goal to generate a database for multi-scale material parameters of wafer-level and package-level structures. A calibration technique based on fitting the simulation results to measured stress components and electrical characteristics of the test-chip devices is discussed.

  1. Three wafer stacking for 3D integration.

    SciTech Connect

    Greth, K. Douglas; Ford, Christine L.; Lantz, Jeffrey W.; Shinde, Subhash L.; Timon, Robert P.; Bauer, Todd M.; Hetherington, Dale Laird; Sanchez, Carlos Anthony

    2011-11-01

    Vertical wafer stacking will enable a wide variety of new system architectures by enabling the integration of dissimilar technologies in one small form factor package. With this LDRD, we explored the combination of processes and integration techniques required to achieve stacking of three or more layers. The specific topics that we investigated include design and layout of a reticle set for use as a process development vehicle, through silicon via formation, bonding media, wafer thinning, dielectric deposition for via isolation on the wafer backside, and pad formation.

  2. Pathways for Learning from 3D Technology

    ERIC Educational Resources Information Center

    Carrier, L. Mark; Rab, Saira S.; Rosen, Larry D.; Vasquez, Ludivina; Cheever, Nancy A.

    2012-01-01

    The purpose of this study was to find out if 3D stereoscopic presentation of information in a movie format changes a viewer's experience of the movie content. Four possible pathways from 3D presentation to memory and learning were considered: a direct connection based on cognitive neuroscience research; a connection through "immersion"…

  3. Pathways for Learning from 3D Technology

    PubMed Central

    Carrier, L. Mark; Rab, Saira S.; Rosen, Larry D.; Vasquez, Ludivina; Cheever, Nancy A.

    2016-01-01

    The purpose of this study was to find out if 3D stereoscopic presentation of information in a movie format changes a viewer's experience of the movie content. Four possible pathways from 3D presentation to memory and learning were considered: a direct connection based on cognitive neuroscience research; a connection through "immersion" in that 3D presentations could provide additional sensorial cues (e.g., depth cues) that lead to a higher sense of being surrounded by the stimulus; a connection through general interest such that 3D presentation increases a viewer’s interest that leads to greater attention paid to the stimulus (e.g., "involvement"); and a connection through discomfort, with the 3D goggles causing discomfort that interferes with involvement and thus with memory. The memories of 396 participants who viewed two-dimensional (2D) or 3D movies at movie theaters in Southern California were tested. Within three days of viewing a movie, participants filled out an online anonymous questionnaire that queried them about their movie content memories, subjective movie-going experiences (including emotional reactions and "presence") and demographic backgrounds. The responses to the questionnaire were subjected to path analyses in which several different links between 3D presentation to memory (and other variables) were explored. The results showed there were no effects of 3D presentation, either directly or indirectly, upon memory. However, the largest effects of 3D presentation were on emotions and immersion, with 3D presentation leading to reduced positive emotions, increased negative emotions and lowered immersion, compared to 2D presentations. PMID:28078331

  4. 3D Perception Technologies for Surgical Operating Theatres.

    PubMed

    Beyl, T; Schreiter, L; Nicolai, P; Raczkowsky, J; Wörn, H

    2016-01-01

    3D Perception technologies have been explored in various fields. This paper explores the application of such technologies for surgical operating theatres. Clinical applications can be found in workflow detection, tracking and analysis, collision avoidance with medical robots, perception of interaction between participants of the operation, training of the operation room crew, patient calibration and many more. In this paper a complete perception solution for the operating room is shown. The system is based on the ToF technology integrated to the Microsoft Kinect One implements a multi camera approach. Special emphasize is put on the tracking of the personnel and the evaluation of the system performance and accuracy.

  5. The 3D visualization technology research of submarine pipeline based Horde3D GameEngine

    NASA Astrophysics Data System (ADS)

    Yao, Guanghui; Ma, Xiushui; Chen, Genlang; Ye, Lingjian

    2013-10-01

    With the development of 3D display and virtual reality technology, its application gets more and more widespread. This paper applies 3D display technology to the monitoring of submarine pipeline. We reconstruct the submarine pipeline and its surrounding submarine terrain in computer using Horde3D graphics rendering engine on the foundation database "submarine pipeline and relative landforms landscape synthesis database" so as to display the virtual scene of submarine pipeline based virtual reality and show the relevant data collected from the monitoring of submarine pipeline.

  6. Numerical integration of structural elements in NIKE3D and DYNA3D

    NASA Astrophysics Data System (ADS)

    Maker, B. N.; Whirley, R. G.; Engelmann, B. E.

    1992-08-01

    The beam and shell elements found in many linear elastic finite element codes accept integrated cross sectional properties as input, and produce solutions using classical beam and shell theory. These theories are built upon the equation of resultant forces and moments with integrals of assumed stress distributions over the cross section. In contrast, the structural elements in NIKE3D and DYNA3D are formulated to represent nonlinear geometric and material behavior. Thus stress distributions may not necessarily be representable by simple functions of cross section variables. In NIKE3D and DYNA3D, the Hughes-Liu beam element and all shell elements accommodate these more general stress distributions by computing stresses at various points in the cross section. The integration of stresses within each element is then performed numerically, using a variety of methods. This report describes these numerical integration procedures in detail, and highlights their application to engineering problems. Several other features of the structural elements are also described, including force and moment resultants, user-defined reference surfaces, and user-defined integration rules. Finally, the shear correction factor is described in a section which relates results from NIKE3D and DYNA3D to those obtained from classical beam theory.

  7. 3D integration with coaxial through silicon vias

    NASA Astrophysics Data System (ADS)

    Adamshick, Stephen

    3D integration using through-silicon-vias (TSVs) is gaining considerable attention due to its superior packaging efficiency resulting in higher functionality, improved performance and a reduction in power consumption. In order to implement 3D chip designs with TSV technology, robust TSV electrical models are required. Specifically, due to the increase of signal speeds into the gigahertz (GHz) spectrum, a high frequency electrical characterization best describes TSV behavior. This thesis focuses on coaxial TSV technology due to its superior performance compared to the current existing TSV technology at high frequencies. By confining signal propagation within the coaxial TSV shield, power losses to the silicon substrate are eliminated and unintentional signal coupling is avoided. To the best of our knowledge, coaxial TSV technology has only been characterized using finite element modeling. The work presented by this thesis focuses on fabricating coaxial TSVs within the confines of standard poly gate CMOS processing. In addition, we perform a high frequency electrical characterization using s-parameters and a thermal stress characterization using micro-Raman Spectroscopy. Furthermore, we investigate applications in SPICE modeling and antenna on chip (AoC) applications utilizing coaxial TSV technology. Our results indicate the coaxial TSV reduces signal attenuation by 35% and time delay by 25% compared to the standard non-shielded TSV technology. Coaxial TSV is consistent with previous TSV results regarding induced silicon stress. Lastly, we propose a 60 GHz antenna design using the coaxial TSV that significantly improves antenna gain compared to previous literature examples.

  8. Integrating Quality Management Into a 3d Geospatial Server

    NASA Astrophysics Data System (ADS)

    Coors, V.; Krämer, M.

    2011-08-01

    In recent years the technology and workflow for producing and management of large 3D urban models has been established and widely been used. Standards such as CityGML enable the modelling and exchange of semantically enriched multi-purpose 3D urban models for applications like urban planning, public participation, environmental simulation and navigation. However, data quality management is essential to control and enhance the quality of these models in order to be able to meet the needs of the aforementioned applications. Quality management should be performed throughout the whole lifecycle of geospatial datasets - from data acquisition to processing, analysis and visualisation. In this paper, we therefore focus on the integration of a quality management software module into a 3D geospatial data server. First results of a prototype system developed at HFT Stuttgart together with Fraunhofer IGD will be presented in this paper as a starting point for further research into the field of quality management of 3D city models.

  9. 3D printing technology speeds development.

    PubMed

    McGowan, James

    2013-10-01

    James McGowan, R&D product designer for Monodraught, a specialist in 'natural ventilation, natural daylight, and natural cooling systems', discusses the development of Cool-phase, the company's latest innovative application of phase change material (PCM) as a thermal energy store used to actively ventilate and cool buildings. As he explains, when the company decided to re-design an already successful product to further enhance its performance, the use of 3D modelling greatly speeded up prototyping, and helped the design process progress considerably more quickly.

  10. High-Assurance System Support through 3-D Integration

    DTIC Science & Technology

    2007-11-09

    Support through 3-D Integration by Theodore Huffmire, Tim Levin, Cynthia Irvine, Thuy Nguyen, Jonathan Valamehr, Ryan Kastner, and Tim...5. FUNDING 6. AUTHOR(S) Theodore Huffmire, Timothy Levin, Cynthia Irvine, Thuy Nguyen, Jonathan Valamehr, Ryan Kastner, and...Assurance System Support Through 3-D Integration Theodore D. Huffmire, Timothy E. Levin, Cynthia E. Irvine, Thuy D. Nguyen, Jonathan D. Valamehr

  11. 3-D Packaging: A Technology Review

    NASA Technical Reports Server (NTRS)

    Strickland, Mark; Johnson, R. Wayne; Gerke, David

    2005-01-01

    Traditional electronics are assembled as a planar arrangement of components on a printed circuit board (PCB) or other type of substrate. These planar assemblies may then be plugged into a motherboard or card cage creating a volume of electronics. This architecture is common in many military and space electronic systems as well as large computer and telecommunications systems and industrial electronics. The individual PCB assemblies can be replaced if defective or for system upgrade. Some applications are constrained by the volume or the shape of the system and are not compatible with the motherboard or card cage architecture. Examples include missiles, camcorders, and digital cameras. In these systems, planar rigid-flex substrates are folded to create complex 3-D shapes. The flex circuit serves the role of motherboard, providing interconnection between the rigid boards. An example of a planar rigid - flex assembly prior to folding is shown. In both architectures, the interconnection is effectively 2-D.

  12. 3D-GNOME: an integrated web service for structural modeling of the 3D genome.

    PubMed

    Szalaj, Przemyslaw; Michalski, Paul J; Wróblewski, Przemysław; Tang, Zhonghui; Kadlof, Michal; Mazzocco, Giovanni; Ruan, Yijun; Plewczynski, Dariusz

    2016-07-08

    Recent advances in high-throughput chromosome conformation capture (3C) technology, such as Hi-C and ChIA-PET, have demonstrated the importance of 3D genome organization in development, cell differentiation and transcriptional regulation. There is now a widespread need for computational tools to generate and analyze 3D structural models from 3C data. Here we introduce our 3D GeNOme Modeling Engine (3D-GNOME), a web service which generates 3D structures from 3C data and provides tools to visually inspect and annotate the resulting structures, in addition to a variety of statistical plots and heatmaps which characterize the selected genomic region. Users submit a bedpe (paired-end BED format) file containing the locations and strengths of long range contact points, and 3D-GNOME simulates the structure and provides a convenient user interface for further analysis. Alternatively, a user may generate structures using published ChIA-PET data for the GM12878 cell line by simply specifying a genomic region of interest. 3D-GNOME is freely available at http://3dgnome.cent.uw.edu.pl/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. 3D-GNOME: an integrated web service for structural modeling of the 3D genome

    PubMed Central

    Szalaj, Przemyslaw; Michalski, Paul J.; Wróblewski, Przemysław; Tang, Zhonghui; Kadlof, Michal; Mazzocco, Giovanni; Ruan, Yijun; Plewczynski, Dariusz

    2016-01-01

    Recent advances in high-throughput chromosome conformation capture (3C) technology, such as Hi-C and ChIA-PET, have demonstrated the importance of 3D genome organization in development, cell differentiation and transcriptional regulation. There is now a widespread need for computational tools to generate and analyze 3D structural models from 3C data. Here we introduce our 3D GeNOme Modeling Engine (3D-GNOME), a web service which generates 3D structures from 3C data and provides tools to visually inspect and annotate the resulting structures, in addition to a variety of statistical plots and heatmaps which characterize the selected genomic region. Users submit a bedpe (paired-end BED format) file containing the locations and strengths of long range contact points, and 3D-GNOME simulates the structure and provides a convenient user interface for further analysis. Alternatively, a user may generate structures using published ChIA-PET data for the GM12878 cell line by simply specifying a genomic region of interest. 3D-GNOME is freely available at http://3dgnome.cent.uw.edu.pl/. PMID:27185892

  14. Integration of virtual and real scenes within an integral 3D imaging environment

    NASA Astrophysics Data System (ADS)

    Ren, Jinsong; Aggoun, Amar; McCormick, Malcolm

    2002-11-01

    The Imaging Technologies group at De Montfort University has developed an integral 3D imaging system, which is seen as the most likely vehicle for 3D television avoiding psychological effects. To create real fascinating three-dimensional television programs, a virtual studio that performs the task of generating, editing and integrating the 3D contents involving virtual and real scenes is required. The paper presents, for the first time, the procedures, factors and methods of integrating computer-generated virtual scenes with real objects captured using the 3D integral imaging camera system. The method of computer generation of 3D integral images, where the lens array is modelled instead of the physical camera is described. In the model each micro-lens that captures different elemental images of the virtual scene is treated as an extended pinhole camera. An integration process named integrated rendering is illustrated. Detailed discussion and deep investigation are focused on depth extraction from captured integral 3D images. The depth calculation method from the disparity and the multiple baseline method that is used to improve the precision of depth estimation are also presented. The concept of colour SSD and its further improvement in the precision is proposed and verified.

  15. [Digital modeling for the individual mandibular 3D mesh scaffold based on 3D printing technology].

    PubMed

    Yan, Rongzeng; Luo, Danmei; Qin, Xiaoyu; Li, Runxin; Rong, Qiguo; Hu, Min

    2016-05-01

    To investigate an ideal modeling method of designing 3D mesh scaffold substitutes based on tissue engineering to restore mandibular bone defects. By analyzing the theoretical model from titanium scaffolds fabricated by 3D printing, the feasibility and effectiveness of the proposed methodology were verified. Based on the CT scanned data of a subject, the Mimics 15.0 and Geomagic studio 12.0 reverse engineering software were adopted to generate surface model of mandibular bone and the defect area was separated from the 3D model of bone. Then prosthesis was designed via mirror algorithm, in which outer shape was used as the external shape of scaffold. Unigraphics software NX 8.5 was applied on Boolean calculation of subtraction between prosthesis and regular microstructure structure and ANSYS 14.0 software was used to design the inner construction of 3D mesh scaffolds. The topological structure and the geometrical parameters of 3D mesh titanium scaffolds were adjusted according to the aim of optimized structure and maximal strength with minimal weight. The 3D mesh scaffolds solid model through two kinds of computer-aided methods was input into 3D printing equipment to fabricate titanium scaffolds. Individual scaffolds were designed successfully by two modeling methods. The finite element optimization made 10% decrease of the stress peak and volume decrease of 43%, and the porosity increased to 76.32%. This modeling method was validated by 3D printing titanium scaffold to be feasible and effective. 3D printing technology combined with finite element topology optimization to obtain the ideal mandibular 3D mesh scaffold is feasible and effective.

  16. Integration of real-time 3D capture, reconstruction, and light-field display

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Pei, Renjing; Liu, Yongchun; Zhang, Xiao

    2015-03-01

    Effective integration of 3D acquisition, reconstruction (modeling) and display technologies into a seamless systems provides augmented experience of visualizing and analyzing real objects and scenes with realistic 3D sensation. Applications can be found in medical imaging, gaming, virtual or augmented reality and hybrid simulations. Although 3D acquisition, reconstruction, and display technologies have gained significant momentum in recent years, there seems a lack of attention on synergistically combining these components into a "end-to-end" 3D visualization system. We designed, built and tested an integrated 3D visualization system that is able to capture in real-time 3D light-field images, perform 3D reconstruction to build 3D model of the objects, and display the 3D model on a large autostereoscopic screen. In this article, we will present our system architecture and component designs, hardware/software implementations, and experimental results. We will elaborate on our recent progress on sparse camera array light-field 3D acquisition, real-time dense 3D reconstruction, and autostereoscopic multi-view 3D display. A prototype is finally presented with test results to illustrate the effectiveness of our proposed integrated 3D visualization system.

  17. 3D Holographic Technology and Its Educational Potential

    ERIC Educational Resources Information Center

    Lee, Hyangsook

    2013-01-01

    This article discusses a number of significant developments in 3D holographic technology, its potential to revolutionize aspects of teaching and learning, and challenges of implementing the technology in educational settings.

  18. 3D Holographic Technology and Its Educational Potential

    ERIC Educational Resources Information Center

    Lee, Hyangsook

    2013-01-01

    This article discusses a number of significant developments in 3D holographic technology, its potential to revolutionize aspects of teaching and learning, and challenges of implementing the technology in educational settings.

  19. Stereoscopic display technologies for FHD 3D LCD TV

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Sik; Ko, Young-Ji; Park, Sang-Moo; Jung, Jong-Hoon; Shestak, Sergey

    2010-04-01

    Stereoscopic display technologies have been developed as one of advanced displays, and many TV industrials have been trying commercialization of 3D TV. We have been developing 3D TV based on LCD with LED BLU (backlight unit) since Samsung launched the world's first 3D TV based on PDP. However, the data scanning of panel and LC's response characteristics of LCD TV cause interference among frames (that is crosstalk), and this makes 3D video quality worse. We propose the method to reduce crosstalk by LCD driving and backlight control of FHD 3D LCD TV.

  20. 3D Laser Scanning in Technology Education.

    ERIC Educational Resources Information Center

    Flowers, Jim

    2000-01-01

    A three-dimensional laser scanner can be used as a tool for design and problem solving in technology education. A hands-on experience can enhance learning by captivating students' interest and empowering them with creative tools. (Author/JOW)

  1. 3D Laser Scanning in Technology Education.

    ERIC Educational Resources Information Center

    Flowers, Jim

    2000-01-01

    A three-dimensional laser scanner can be used as a tool for design and problem solving in technology education. A hands-on experience can enhance learning by captivating students' interest and empowering them with creative tools. (Author/JOW)

  2. Designing Virtual Museum Using Web3D Technology

    NASA Astrophysics Data System (ADS)

    Zhao, Jianghai

    VRT was born to have the potentiality of constructing an effective learning environment due to its 3I characteristics: Interaction, Immersion and Imagination. It is now applied in education in a more profound way along with the development of VRT. Virtual Museum is one of the applications. The Virtual Museum is based on the WEB3D technology and extensibility is the most important factor. Considering the advantage and disadvantage of each WEB3D technology, VRML, CULT3D AND VIEWPOINT technologies are chosen. A web chatroom based on flash and ASP technology is also been created in order to make the Virtual Museum an interactive learning environment.

  3. Augmented reality 3D display based on integral imaging

    NASA Astrophysics Data System (ADS)

    Deng, Huan; Zhang, Han-Le; He, Min-Yang; Wang, Qiong-Hua

    2017-02-01

    Integral imaging (II) is a good candidate for augmented reality (AR) display, since it provides various physiological depth cues so that viewers can freely change the accommodation and convergence between the virtual three-dimensional (3D) images and the real-world scene without feeling any visual discomfort. We propose two AR 3D display systems based on the theory of II. In the first AR system, a micro II display unit reconstructs a micro 3D image, and the mciro-3D image is magnified by a convex lens. The lateral and depth distortions of the magnified 3D image are analyzed and resolved by the pitch scaling and depth scaling. The magnified 3D image and real 3D scene are overlapped by using a half-mirror to realize AR 3D display. The second AR system uses a micro-lens array holographic optical element (HOE) as an image combiner. The HOE is a volume holographic grating which functions as a micro-lens array for the Bragg-matched light, and as a transparent glass for Bragg mismatched light. A reference beam can reproduce a virtual 3D image from one side and a reference beam with conjugated phase can reproduce the second 3D image from other side of the micro-lens array HOE, which presents double-sided 3D display feature.

  4. Integrating visible light 3D scanning into the everyday world

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy

    2015-05-01

    Visible light 3D scanning offers the potential to non-invasively and nearly non-perceptibly incorporate 3D imaging into the everyday world. This paper considers the various possible uses of visible light 3D scanning technology. It discusses multiple possible usage scenarios including in hospitals, security perimeter settings and retail environments. The paper presents a framework for assessing the efficacy of visible light 3D scanning for a given application (and compares this to other scanning approaches such as those using blue light or lasers). It also discusses ethical and legal considerations relevant to real-world use and concludes by presenting a decision making framework.

  5. 3D Bioprinting Technologies for Hard Tissue and Organ Engineering

    PubMed Central

    Wang, Xiaohong; Ao, Qiang; Tian, Xiaohong; Fan, Jun; Wei, Yujun; Hou, Weijian; Tong, Hao; Bai, Shuling

    2016-01-01

    Hard tissues and organs, including the bones, teeth and cartilage, are the most extensively exploited and rapidly developed areas in regenerative medicine field. One prominent character of hard tissues and organs is that their extracellular matrices mineralize to withstand weight and pressure. Over the last two decades, a wide variety of 3D printing technologies have been adapted to hard tissue and organ engineering. These 3D printing technologies have been defined as 3D bioprinting. Especially for hard organ regeneration, a series of new theories, strategies and protocols have been proposed. Some of the technologies have been applied in medical therapies with some successes. Each of the technologies has pros and cons in hard tissue and organ engineering. In this review, we summarize the advantages and disadvantages of the historical available innovative 3D bioprinting technologies for used as special tools for hard tissue and organ engineering. PMID:28773924

  6. 3D Bioprinting Technologies for Hard Tissue and Organ Engineering.

    PubMed

    Wang, Xiaohong; Ao, Qiang; Tian, Xiaohong; Fan, Jun; Wei, Yujun; Hou, Weijian; Tong, Hao; Bai, Shuling

    2016-09-27

    Hard tissues and organs, including the bones, teeth and cartilage, are the most extensively exploited and rapidly developed areas in regenerative medicine field. One prominent character of hard tissues and organs is that their extracellular matrices mineralize to withstand weight and pressure. Over the last two decades, a wide variety of 3D printing technologies have been adapted to hard tissue and organ engineering. These 3D printing technologies have been defined as 3D bioprinting. Especially for hard organ regeneration, a series of new theories, strategies and protocols have been proposed. Some of the technologies have been applied in medical therapies with some successes. Each of the technologies has pros and cons in hard tissue and organ engineering. In this review, we summarize the advantages and disadvantages of the historical available innovative 3D bioprinting technologies for used as special tools for hard tissue and organ engineering.

  7. 3D Printing in Zero-G ISS Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Werkheiser, Niki; Cooper, Kenneth C.; Edmunson, Jennifer E.; Dunn, Jason; Snyder, Michael

    2013-01-01

    The National Aeronautics and Space Administration (NASA) has a long term strategy to fabricate components and equipment on-demand for manned missions to the Moon, Mars, and beyond. To support this strategy, NASA's Marshall Space Fligth Center (MSFC) and Made in Space, Inc. are developing the 3D Printing In Zero-G payload as a Technology Demonstration for the International Space Station (ISS). The 3D Printing In Zero-G experiment ('3D Print') will be the frst machine to perform 3D printing in space.

  8. 3D augmented reality with integral imaging display

    NASA Astrophysics Data System (ADS)

    Shen, Xin; Hua, Hong; Javidi, Bahram

    2016-06-01

    In this paper, a three-dimensional (3D) integral imaging display for augmented reality is presented. By implementing the pseudoscopic-to-orthoscopic conversion method, elemental image arrays with different capturing parameters can be transferred into the identical format for 3D display. With the proposed merging algorithm, a new set of elemental images for augmented reality display is generated. The newly generated elemental images contain both the virtual objects and real world scene with desired depth information and transparency parameters. The experimental results indicate the feasibility of the proposed 3D augmented reality with integral imaging.

  9. 3D photon counting integral imaging with unknown sensor positions.

    PubMed

    Xiao, Xiao; Javidi, Bahram

    2012-05-01

    Photon counting techniques have been introduced with integral imaging for three-dimensional (3D) imaging applications. The previous reports in this area assumed a priori knowledge of exact sensor positions for 3D image reconstruction, which may be difficult to satisfy in certain applications. In this paper, we extend the photon counting 3D imaging system to situations where sensor positions are unknown. To estimate sensor positions in photon counting integral imaging, scene details of photon counting images are needed for image correspondences matching. Therefore, an iterative method based on the total variation maximum a posteriori expectation maximization (MAP-EM) algorithm is used to restore photon counting images. Experimental results are presented to show the feasibility of the method. To the best of our knowledge, this is the first report on 3D photon counting integral imaging with unknown sensor positions. © 2012 Optical Society of America

  10. Polarimetric 3D integral imaging in photon-starved conditions.

    PubMed

    Carnicer, Artur; Javidi, Bahram

    2015-03-09

    We develop a method for obtaining 3D polarimetric integral images from elemental images recorded in low light illumination conditions. Since photon-counting images are very sparse, calculation of the Stokes parameters and the degree of polarization should be handled carefully. In our approach, polarimetric 3D integral images are generated using the Maximum Likelihood Estimation and subsequently reconstructed by means of a Total Variation Denoising filter. In this way, polarimetric results are comparable to those obtained in conventional illumination conditions. We also show that polarimetric information retrieved from photon starved images can be used in 3D object recognition problems. To the best of our knowledge, this is the first report on 3D polarimetric photon counting integral imaging.

  11. 3D Printing technologies for drug delivery: a review.

    PubMed

    Prasad, Leena Kumari; Smyth, Hugh

    2016-01-01

    With the FDA approval of the first 3D printed tablet, Spritam®, there is now precedence set for the utilization of 3D printing for the preparation of drug delivery systems. The capabilities for dispensing low volumes with accuracy, precise spatial control and layer-by-layer assembly allow for the preparation of complex compositions and geometries. The high degree of flexibility and control with 3D printing enables the preparation of dosage forms with multiple active pharmaceutical ingredients with complex and tailored release profiles. A unique opportunity for this technology for the preparation of personalized doses to address individual patient needs. This review will highlight the 3D printing technologies being utilized for the fabrication of drug delivery systems, as well as the formulation and processing parameters for consideration. This article will also summarize the range of dosage forms that have been prepared using these technologies, specifically over the last 10 years.

  12. Research of range-gated 3D imaging technology

    NASA Astrophysics Data System (ADS)

    Yang, Haitao; Zhao, Hongli; Youchen, Fan

    2016-10-01

    Laser image data-based target recognition technology is one of the key technologies of laser active imaging systems. This paper discussed the status quo of 3-D imaging development at home and abroad, analyzed the current technological bottlenecks, and built a prototype of range-gated systems to obtain a set of range-gated slice images, and then constructed the 3-D images of the target by binary method and centroid method, respectively, and by constructing different numbers of slice images explored the relationship between the number of images and the reconstruction accuracy in the 3-D image reconstruction process. The experiment analyzed the impact of two algorithms, binary method and centroid method, on the results of 3-D image reconstruction. In the binary method, a comparative analysis was made on the impact of different threshold values on the results of reconstruction, where 0.1, 0.2, 0.3 and adaptive threshold values were selected for 3-D reconstruction of the slice images. In the centroid method, 15, 10, 6, 3, and 2 images were respectively used to realize 3-D reconstruction. Experimental results showed that with the same number of slice images, the accuracy of centroid method was higher than the binary algorithm, and the binary algorithm had a large dependence on the selection of threshold; with the number of slice images dwindling, the accuracy of images reconstructed by centroid method continued to reduce, and at least three slice images were required in order to obtain one 3-D image.

  13. Progresses in 3D integral imaging with optical processing

    NASA Astrophysics Data System (ADS)

    Martínez-Corral, Manuel; Martínez-Cuenca, Raúl; Saavedra, Genaro; Navarro, Héctor; Pons, Amparo; Javidi, Bahram

    2008-11-01

    Integral imaging is a promising technique for the acquisition and auto-stereoscopic display of 3D scenes with full parallax and without the need of any additional devices like special glasses. First suggested by Lippmann in the beginning of the 20th century, integral imaging is based in the intersection of ray cones emitted by a collection of 2D elemental images which store the 3D information of the scene. This paper is devoted to the study, from the ray optics point of view, of the optical effects and interaction with the observer of integral imaging systems.

  14. 3D-printing technologies for electrochemical applications.

    PubMed

    Ambrosi, Adriano; Pumera, Martin

    2016-05-21

    Since its conception during the 80s, 3D-printing, also known as additive manufacturing, has been receiving unprecedented levels of attention and interest from industry and research laboratories. This is in addition to end users, who have benefited from the pervasiveness of desktop-size and relatively cheap printing machines available. 3D-printing enables almost infinite possibilities for rapid prototyping. Therefore, it has been considered for applications in numerous research fields, ranging from mechanical engineering, medicine, and materials science to chemistry. Electrochemistry is another branch of science that can certainly benefit from 3D-printing technologies, paving the way for the design and fabrication of cheaper, higher performing, and ubiquitously available electrochemical devices. Here, we aim to provide a general overview of the most commonly available 3D-printing methods along with a review of recent electrochemistry related studies adopting 3D-printing as a possible rapid prototyping fabrication tool.

  15. Developing a Pre-Engineering Curriculum for 3D Printing Skills for High School Technology Education

    ERIC Educational Resources Information Center

    Chien, Yu-Hung

    2017-01-01

    This study developed an integrated-STEM CO[subscript 2] dragster design course using 3D printing technology. After developing a pre-engineering curriculum, we conducted a teaching experiment to assess students' differences in creativity, race forecast accuracy, and learning performance. We compared student performance in both 3D printing and…

  16. Restoring Fort Frontenac in 3D: Effective Usage of 3D Technology for Heritage Visualization

    NASA Astrophysics Data System (ADS)

    Yabe, M.; Goins, E.; Jackson, C.; Halbstein, D.; Foster, S.; Bazely, S.

    2015-02-01

    This paper is composed of three elements: 3D modeling, web design, and heritage visualization. The aim is to use computer graphics design to inform and create an interest in historical visualization by rebuilding Fort Frontenac using 3D modeling and interactive design. The final model will be integr ated into an interactive website to learn more about the fort's historic imp ortance. It is apparent that using computer graphics can save time and money when it comes to historical visualization. Visitors do not have to travel to the actual archaeological buildings. They can simply use the Web in their own home to learn about this information virtually. Meticulously following historical records to create a sophisticated restoration of archaeological buildings will draw viewers into visualizations, such as the historical world of Fort Frontenac. As a result, it allows the viewers to effectively understand the fort's social sy stem, habits, and historical events.

  17. Accommodation response measurements for integral 3D image

    NASA Astrophysics Data System (ADS)

    Hiura, H.; Mishina, T.; Arai, J.; Iwadate, Y.

    2014-03-01

    We measured accommodation responses under integral photography (IP), binocular stereoscopic, and real object display conditions, and viewing conditions of binocular and monocular viewing conditions. The equipment we used was an optometric device and a 3D display. We developed the 3D display for IP and binocular stereoscopic images that comprises a high-resolution liquid crystal display (LCD) and a high-density lens array. The LCD has a resolution of 468 dpi and a diagonal size of 4.8 inches. The high-density lens array comprises 106 x 69 micro lenses that have a focal length of 3 mm and diameter of 1 mm. The lenses are arranged in a honeycomb pattern. The 3D display was positioned 60 cm from an observer under IP and binocular stereoscopic display conditions. The target was presented at eight depth positions relative to the 3D display: 15, 10, and 5 cm in front of the 3D display, on the 3D display panel, and 5, 10, 15 and 30 cm behind the 3D display under the IP and binocular stereoscopic display conditions. Under the real object display condition, the target was displayed on the 3D display panel, and the 3D display was placed at the eight positions. The results suggest that the IP image induced more natural accommodation responses compared to the binocular stereoscopic image. The accommodation responses of the IP image were weaker than those of a real object; however, they showed a similar tendency with those of the real object under the two viewing conditions. Therefore, IP can induce accommodation to the depth positions of 3D images.

  18. Personalized development of human organs using 3D printing technology.

    PubMed

    Radenkovic, Dina; Solouk, Atefeh; Seifalian, Alexander

    2016-02-01

    3D printing is a technique of fabricating physical models from a 3D volumetric digital image. The image is sliced and printed using a specific material into thin layers, and successive layering of the material produces a 3D model. It has already been used for printing surgical models for preoperative planning and in constructing personalized prostheses for patients. The ultimate goal is to achieve the development of functional human organs and tissues, to overcome limitations of organ transplantation created by the lack of organ donors and life-long immunosuppression. We hypothesized a precision medicine approach to human organ fabrication using 3D printed technology, in which the digital volumetric data would be collected by imaging of a patient, i.e. CT or MRI images followed by mathematical modeling to create a digital 3D image. Then a suitable biocompatible material, with an optimal resolution for cells seeding and maintenance of cell viability during the printing process, would be printed with a compatible printer type and finally implanted into the patient. Life-saving operations with 3D printed implants were already performed in patients. However, several issues need to be addressed before translational application of 3D printing into clinical medicine. These are vascularization, innervation, and financial cost of 3D printing and safety of biomaterials used for the construct. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Analysis of Impact of 3D Printing Technology on Traditional Manufacturing Technology

    NASA Astrophysics Data System (ADS)

    Wu, Niyan; Chen, Qi; Liao, Linzhi; Wang, Xin

    With quiet rise of 3D printing technology in automobile, aerospace, industry, medical treatment and other fields, many insiders hold different opinions on its development. This paper objectively analyzes impact of 3D printing technology on mold making technology and puts forward the idea of fusion and complementation of 3D printing technology and mold making technology through comparing advantages and disadvantages of 3D printing mold and traditional mold making technology.

  20. The Boom in 3D-Printed Sensor Technology

    PubMed Central

    Xu, Yuanyuan; Wu, Xiaoyue; Guo, Xiao; Kong, Bin; Zhang, Min; Qian, Xiang; Mi, Shengli; Sun, Wei

    2017-01-01

    Future sensing applications will include high-performance features, such as toxin detection, real-time monitoring of physiological events, advanced diagnostics, and connected feedback. However, such multi-functional sensors require advancements in sensitivity, specificity, and throughput with the simultaneous delivery of multiple detection in a short time. Recent advances in 3D printing and electronics have brought us closer to sensors with multiplex advantages, and additive manufacturing approaches offer a new scope for sensor fabrication. To this end, we review the recent advances in 3D-printed cutting-edge sensors. These achievements demonstrate the successful application of 3D-printing technology in sensor fabrication, and the selected studies deeply explore the potential for creating sensors with higher performance. Further development of multi-process 3D printing is expected to expand future sensor utility and availability. PMID:28534832

  1. The Boom in 3D-Printed Sensor Technology.

    PubMed

    Xu, Yuanyuan; Wu, Xiaoyue; Guo, Xiao; Kong, Bin; Zhang, Min; Qian, Xiang; Mi, Shengli; Sun, Wei

    2017-05-19

    Future sensing applications will include high-performance features, such as toxin detection, real-time monitoring of physiological events, advanced diagnostics, and connected feedback. However, such multi-functional sensors require advancements in sensitivity, specificity, and throughput with the simultaneous delivery of multiple detection in a short time. Recent advances in 3D printing and electronics have brought us closer to sensors with multiplex advantages, and additive manufacturing approaches offer a new scope for sensor fabrication. To this end, we review the recent advances in 3D-printed cutting-edge sensors. These achievements demonstrate the successful application of 3D-printing technology in sensor fabrication, and the selected studies deeply explore the potential for creating sensors with higher performance. Further development of multi-process 3D printing is expected to expand future sensor utility and availability.

  2. 3D Vectorial Time Domain Computational Integrated Photonics

    SciTech Connect

    Kallman, J S; Bond, T C; Koning, J M; Stowell, M L

    2007-02-16

    The design of integrated photonic structures poses considerable challenges. 3D-Time-Domain design tools are fundamental in enabling technologies such as all-optical logic, photonic bandgap sensors, THz imaging, and fast radiation diagnostics. Such technologies are essential to LLNL and WFO sponsors for a broad range of applications: encryption for communications and surveillance sensors (NSA, NAI and IDIV/PAT); high density optical interconnects for high-performance computing (ASCI); high-bandwidth instrumentation for NIF diagnostics; micro-sensor development for weapon miniaturization within the Stockpile Stewardship and DNT programs; and applications within HSO for CBNP detection devices. While there exist a number of photonics simulation tools on the market, they primarily model devices of interest to the communications industry. We saw the need to extend our previous software to match the Laboratory's unique emerging needs. These include modeling novel material effects (such as those of radiation induced carrier concentrations on refractive index) and device configurations (RadTracker bulk optics with radiation induced details, Optical Logic edge emitting lasers with lateral optical inputs). In addition we foresaw significant advantages to expanding our own internal simulation codes: parallel supercomputing could be incorporated from the start, and the simulation source code would be accessible for modification and extension. This work addressed Engineering's Simulation Technology Focus Area, specifically photonics. Problems addressed from the Engineering roadmap of the time included modeling the Auston switch (an important THz source/receiver), modeling Vertical Cavity Surface Emitting Lasers (VCSELs, which had been envisioned as part of fast radiation sensors), and multi-scale modeling of optical systems (for a variety of applications). We proposed to develop novel techniques to numerically solve the 3D multi-scale propagation problem for both the microchip

  3. Photogrammetry for rapid prototyping: development of noncontact 3D reconstruction technologies

    NASA Astrophysics Data System (ADS)

    Knyaz, Vladimir A.

    2002-04-01

    An important stage of rapid prototyping technology is generating computer 3D model of an object to be reproduced. Wide variety of techniques for 3D model generation exists beginning with manual 3D models generation and finishing with full-automated reverse engineering system. The progress in CCD sensors and computers provides the background for integration of photogrammetry as an accurate 3D data source with CAD/CAM. The paper presents the results of developing photogrammetric methods for non-contact spatial coordinates measurements and generation of computer 3D model of real objects. The technology is based on object convergent images processing for calculating its 3D coordinates and surface reconstruction. The hardware used for spatial coordinates measurements is based on PC as central processing unit and video camera as image acquisition device. The original software for Windows 9X realizes the complete technology of 3D reconstruction for rapid input of geometry data in CAD/CAM systems. Technical characteristics of developed systems are given along with the results of applying for various tasks of 3D reconstruction. The paper describes the techniques used for non-contact measurements and the methods providing metric characteristics of reconstructed 3D model. Also the results of system application for 3D reconstruction of complex industrial objects are presented.

  4. Study of capabilities and limitations of 3D printing technology

    NASA Astrophysics Data System (ADS)

    Lemu, H. G.

    2012-04-01

    3D printing is one of the developments in rapid prototyping technology. The inception and development of the technology has highly assisted the product development phase of product design and manufacturing. The technology is particularly important in educating product design and 3D modeling because it helps students to visualize their design idea, to enhance their creative design process and enables them to touch and feel the result of their innovative work. The availability of many 3D printers on the market has created a certain level of challenge for the user. Among others, complexity of part geometry, material type, compatibility with 3D CAD models and other technical aspects still need in-depth study. This paper presents results of the experimental work on the capabilities and limitations of the Z510 3D printer from Z-corporation. Several parameters such as dimensional and geometrical accuracy, surface quality and strength as a function of model size, orientation and file exchange format are closely studied.

  5. A monolithic 3D integrated nanomagnetic co-processing unit

    NASA Astrophysics Data System (ADS)

    Becherer, M.; Breitkreutz-v. Gamm, S.; Eichwald, I.; Žiemys, G.; Kiermaier, J.; Csaba, G.; Schmitt-Landsiedel, D.

    2016-01-01

    As CMOS scaling becomes more and more challenging there is strong impetus for beyond CMOS device research to add new functionality to ICs. In this article, a promising technology with non-volatile ferromagnetic computing states - the so-called Perpendicular Nanomagnetic Logic (pNML) - is reviewed. After introducing the 2D planar implementation of NML with magnetization perpendicular to the surface, the path to monolithically 3D integrated systems is discussed. Instead of CMOS substitution, additional functionality is added by a co-processor architecture as a prospective back-end-of-line (BEOL) process, where the computing elements are clocked by a soft-magnetic on-chip inductor. The unconventional computation in the ferromagnetic domain can lead to highly dense computing structures without leakage currents, attojoule dissipation per bit operation and data-throughputs comparable to state-of-the-art high-performance CMOS CPUs. In appropriate applications and with specialized computing architectures they might even circumvent the bottleneck of time-consuming memory access, as computation is inherently performed with non-volatile computing states.

  6. Map-Reading Skill Development with 3D Technologies

    ERIC Educational Resources Information Center

    Carbonell Carrera, Carlos; Avarvarei, Bogdan Vlad; Chelariu, Elena Liliana; Draghia, Lucia; Avarvarei, Simona Catrinel

    2017-01-01

    Landforms often are represented on maps using abstract cartographic techniques that the reader must interpret for successful three-dimensional terrain visualization. New technologies in 3D landscape representation, both digital and tangible, offer the opportunity to visualize terrain in new ways. The results of a university student workshop, in…

  7. 3D Printing in Technology and Engineering Education

    ERIC Educational Resources Information Center

    Martin, Robert L.; Bowden, Nicholas S.; Merrill, Chris

    2014-01-01

    In the past five years, there has been tremendous growth in the production and use of desktop 3D printers. This growth has been driven by the increasing availability of inexpensive computing and electronics technologies. The ability to rapidly share ideas and intelligence over the Internet has also played a key role in the growth. Growth is also…

  8. 3D Printing in Technology and Engineering Education

    ERIC Educational Resources Information Center

    Martin, Robert L.; Bowden, Nicholas S.; Merrill, Chris

    2014-01-01

    In the past five years, there has been tremendous growth in the production and use of desktop 3D printers. This growth has been driven by the increasing availability of inexpensive computing and electronics technologies. The ability to rapidly share ideas and intelligence over the Internet has also played a key role in the growth. Growth is also…

  9. Development of 3D in Vitro Technology for Medical Applications

    PubMed Central

    Ou, Keng-Liang; Hosseinkhani, Hossein

    2014-01-01

    In the past few years, biomaterials technologies together with significant efforts on developing biology have revolutionized the process of engineered materials. Three dimensional (3D) in vitro technology aims to develop set of tools that are simple, inexpensive, portable and robust that could be commercialized and used in various fields of biomedical sciences such as drug discovery, diagnostic tools, and therapeutic approaches in regenerative medicine. The proliferation of cells in the 3D scaffold needs an oxygen and nutrition supply. 3D scaffold materials should provide such an environment for cells living in close proximity. 3D scaffolds that are able to regenerate or restore tissue and/or organs have begun to revolutionize medicine and biomedical science. Scaffolds have been used to support and promote the regeneration of tissues. Different processing techniques have been developed to design and fabricate three dimensional scaffolds for tissue engineering implants. Throughout the chapters we discuss in this review, we inform the reader about the potential applications of different 3D in vitro systems that can be applied for fabricating a wider range of novel biomaterials for use in tissue engineering. PMID:25299693

  10. 3D Medical Collaboration Technology to Enhance Emergency Healthcare

    PubMed Central

    Welch, Greg; Sonnenwald, Diane H; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Söderholm, Hanna M.; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Ampalam, Manoj; Krishnan, Srinivas; Noel, Vincent; Noland, Michael; Manning, James E.

    2009-01-01

    Two-dimensional (2D) videoconferencing has been explored widely in the past 15–20 years to support collaboration in healthcare. Two issues that arise in most evaluations of 2D videoconferencing in telemedicine are the difficulty obtaining optimal camera views and poor depth perception. To address these problems, we are exploring the use of a small array of cameras to reconstruct dynamic three-dimensional (3D) views of a remote environment and of events taking place within. The 3D views could be sent across wired or wireless networks to remote healthcare professionals equipped with fixed displays or with mobile devices such as personal digital assistants (PDAs). The remote professionals’ viewpoints could be specified manually or automatically (continuously) via user head or PDA tracking, giving the remote viewers head-slaved or hand-slaved virtual cameras for monoscopic or stereoscopic viewing of the dynamic reconstructions. We call this idea remote 3D medical collaboration. In this article we motivate and explain the vision for 3D medical collaboration technology; we describe the relevant computer vision, computer graphics, display, and networking research; we present a proof-of-concept prototype system; and we present evaluation results supporting the general hypothesis that 3D remote medical collaboration technology could offer benefits over conventional 2D videoconferencing in emergency healthcare. PMID:19521951

  11. Development of 3D in vitro technology for medical applications.

    PubMed

    Ou, Keng-Liang; Hosseinkhani, Hossein

    2014-10-08

    In the past few years, biomaterials technologies together with significant efforts on developing biology have revolutionized the process of engineered materials. Three dimensional (3D) in vitro technology aims to develop set of tools that are simple, inexpensive, portable and robust that could be commercialized and used in various fields of biomedical sciences such as drug discovery, diagnostic tools, and therapeutic approaches in regenerative medicine. The proliferation of cells in the 3D scaffold needs an oxygen and nutrition supply. 3D scaffold materials should provide such an environment for cells living in close proximity. 3D scaffolds that are able to regenerate or restore tissue and/or organs have begun to revolutionize medicine and biomedical science. Scaffolds have been used to support and promote the regeneration of tissues. Different processing techniques have been developed to design and fabricate three dimensional scaffolds for tissue engineering implants. Throughout the chapters we discuss in this review, we inform the reader about the potential applications of different 3D in vitro systems that can be applied for fabricating a wider range of novel biomaterials for use in tissue engineering.

  12. Coherence cube technology adds geologic insight to 3-D data

    SciTech Connect

    Morris, D.

    1997-05-01

    Three-dimensional (3-D) seismic technology is now widely applied to assess the risk associated with hydrocarbon trap definition, including faulting, stratigraphic features, and reservoir description. Critical new technologies to exploit the wealth of information contained within 3-D seismic have recently begun to emerge; most notably, coherence cube technology, developed by Amoco Production Research and licensed to Coherence Technology Co. (CTC). Coherence cube processing produces interpretable images of faults and subtle stratigraphic features, such as buried deltas, river channels, and beaches, by quantifying seismic coherence attributes. The technique has important implications for geophysical, geological, and reservoir engineering applications. The paper discusses how coherency works, applications, and an example in delineating southern North Sea faulting.

  13. Output-sensitive 3D line integral convolution.

    PubMed

    Falk, Martin; Weiskopf, Daniel

    2008-01-01

    We propose an output-sensitive visualization method for 3D line integral convolution (LIC) whose rendering speed is largely independent of the data set size and mostly governed by the complexity of the output on the image plane. Our approach of view-dependent visualization tightly links the LIC generation with the volume rendering of the LIC result in order to avoid the computation of unnecessary LIC points: early-ray termination and empty-space leaping techniques are used to skip the computation of the LIC integral in a lazy-evaluation approach; both ray casting and texture slicing can be used as volume-rendering techniques. The input noise is modeled in object space to allow for temporal coherence under object and camera motion. Different noise models are discussed, covering dense representations based on filtered white noise all the way to sparse representations similar to oriented LIC. Aliasing artifacts are avoided by frequency control over the 3D noise and by employing a 3D variant of MIPmapping. A range of illumination models is applied to the LIC streamlines: different codimension-2 lighting models and a novel gradient-based illumination model that relies on precomputed gradients and does not require any direct calculation of gradients after the LIC integral is evaluated. We discuss the issue of proper sampling of the LIC and volume-rendering integrals by employing a frequency-space analysis of the noise model and the precomputed gradients. Finally, we demonstrate that our visualization approach lends itself to a fast graphics processing unit (GPU) implementation that supports both steady and unsteady flow. Therefore, this 3D LIC method allows users to interactively explore 3D flow by means of high-quality, view-dependent, and adaptive LIC volume visualization. Applications to flow visualization in combination with feature extraction and focus-and-context visualization are described, a comparison to previous methods is provided, and a detailed performance

  14. 3D printed microfluidic devices with integrated valves.

    PubMed

    Rogers, Chad I; Qaderi, Kamran; Woolley, Adam T; Nordin, Gregory P

    2015-01-01

    We report the successful fabrication and testing of 3D printed microfluidic devices with integrated membrane-based valves. Fabrication is performed with a low-cost commercially available stereolithographic 3D printer. Horizontal microfluidic channels with designed rectangular cross sectional dimensions as small as 350 μm wide and 250 μm tall are printed with 100% yield, as are cylindrical vertical microfluidic channels with 350 μm designed (210 μm actual) diameters. Based on our previous work [Rogers et al., Anal. Chem. 83, 6418 (2011)], we use a custom resin formulation tailored for low non-specific protein adsorption. Valves are fabricated with a membrane consisting of a single build layer. The fluid pressure required to open a closed valve is the same as the control pressure holding the valve closed. 3D printed valves are successfully demonstrated for up to 800 actuations.

  15. Application of 3D printing technology in aerodynamic study

    NASA Astrophysics Data System (ADS)

    Olasek, K.; Wiklak, P.

    2014-08-01

    3D printing, as an additive process, offers much more than traditional machining techniques in terms of achievable complexity of a model shape. That fact was a motivation to adapt discussed technology as a method for creating objects purposed for aerodynamic testing. The following paper provides an overview of various 3D printing techniques. Four models of a standard NACA0018 aerofoil were manufactured in different materials and methods: MultiJet Modelling (MJM), Selective Laser Sintering (SLS) and Fused Deposition Modeling (FDM). Various parameters of the models have been included in the analysis: surface roughness, strength, details quality, surface imperfections and irregularities as well as thermal properties.

  16. Possible Applications of 3D Printing Technology on Textile Substrates

    NASA Astrophysics Data System (ADS)

    Korger, M.; Bergschneider, J.; Lutz, M.; Mahltig, B.; Finsterbusch, K.; Rabe, M.

    2016-07-01

    3D printing is a rapidly emerging additive manufacturing technology which can offer cost efficiency and flexibility in product development and production. In textile production 3D printing can also serve as an add-on process to apply 3D structures on textiles. In this study the low-cost fused deposition modeling (FDM) technique was applied using different thermoplastic printing materials available on the market with focus on flexible filaments such as thermoplastic elastomers (TPE) or Soft PLA. Since a good adhesion and stability of the 3D printed structures on textiles are essential, separation force and abrasion resistance tests were conducted with different kinds of printed woven fabrics demonstrating that a sufficient adhesion can be achieved. The main influencing factor can be attributed to the topography of the textile surface affected by the weave, roughness and hairiness offering formlocking connections followed by the wettability of the textile surface by the molten polymer, which depends on the textile surface energy and can be specifically controlled by washing (desizing), finishing or plasma treatment of the textile before the print. These basic adhesion mechanisms can also be considered crucial for 3D printing on knitwear.

  17. Implementation of 3D Optical Scanning Technology for Automotive Applications.

    PubMed

    Kuş, Abdil

    2009-01-01

    Reverse engineering (RE) is a powerful tool for generating a CAD model from the 3D scan data of a physical part that lacks documentation or has changed from the original CAD design of the part. The process of digitizing a part and creating a CAD model from 3D scan data is less time consuming and provides greater accuracy than manually measuring the part and designing the part from scratch in CAD. 3D optical scanning technology is one of the measurement methods which have evolved over the last few years and it is used in a wide range of areas from industrial applications to art and cultural heritage. It is also used extensively in the automotive industry for applications such as part inspections, scanning of tools without CAD definition, scanning the casting for definition of the stock (i.e. the amount of material to be removed from the surface of the castings) model for CAM programs and reverse engineering. In this study two scanning experiments of automotive applications are illustrated. The first one examines the processes from scanning to re-manufacturing the damaged sheet metal cutting die, using a 3D scanning technique and the second study compares the scanned point clouds data to 3D CAD data for inspection purposes. Furthermore, the deviations of the part holes are determined by using different lenses and scanning parameters.

  18. Implementation of 3D Optical Scanning Technology for Automotive Applications

    PubMed Central

    Kuş, Abdil

    2009-01-01

    Reverse engineering (RE) is a powerful tool for generating a CAD model from the 3D scan data of a physical part that lacks documentation or has changed from the original CAD design of the part. The process of digitizing a part and creating a CAD model from 3D scan data is less time consuming and provides greater accuracy than manually measuring the part and designing the part from scratch in CAD. 3D optical scanning technology is one of the measurement methods which have evolved over the last few years and it is used in a wide range of areas from industrial applications to art and cultural heritage. It is also used extensively in the automotive industry for applications such as part inspections, scanning of tools without CAD definition, scanning the casting for definition of the stock (i.e. the amount of material to be removed from the surface of the castings) model for CAM programs and reverse engineering. In this study two scanning experiments of automotive applications are illustrated. The first one examines the processes from scanning to re-manufacturing the damaged sheet metal cutting die, using a 3D scanning technique and the second study compares the scanned point clouds data to 3D CAD data for inspection purposes. Furthermore, the deviations of the part holes are determined by using different lenses and scanning parameters. PMID:22573995

  19. Experiment for Integrating Dutch 3d Spatial Planning and Bim for Checking Building Permits

    NASA Astrophysics Data System (ADS)

    van Berlo, L.; Dijkmans, T.; Stoter, J.

    2013-09-01

    This paper presents a research project in The Netherlands in which several SMEs collaborated to create a 3D model of the National spatial planning information. This 2D information system described in the IMRO data standard holds implicit 3D information that can be used to generate an explicit 3D model. The project realized a proof of concept to generate a 3D spatial planning model. The team used the model to integrate it with several 3D Building Information Models (BIMs) described in the open data standard Industry Foundation Classes (IFC). Goal of the project was (1) to generate a 3D BIM model from spatial planning information to be used by the architect during the early design phase, and (2) allow 3D checking of building permits. The team used several technologies like CityGML, BIM clash detection and GeoBIM to explore the potential of this innovation. Within the project a showcase was created with a part of the spatial plan from the city of The Hague. Several BIM models were integrated in the 3D spatial plan of this area. A workflow has been described that demonstrates the benefits of collaboration between the spatial domain and the AEC industry in 3D. The research results in a showcase with conclusions and considerations for both national and international practice.

  20. Radiation Effects in 3D Integrated SOl SRAM Circuits

    DTIC Science & Technology

    2011-08-23

    Comparing Neutrons and Protons Data Monoenergetic neutrons and protons are used to characterize single event effects in electronics circuits, and are...for proton irradiation with energies between 4.8 and 500 MeV. Results are compared with 14-MeV neutron irradiation. Single event upset cross-section...fabricating circuits for space applications. singIe event effects, SOl, fully depleted, 3D integration, neutron , protons, upset cross-section U U U U SAR

  1. 3D optical measuring technologies and systems for industrial applications

    NASA Astrophysics Data System (ADS)

    Chugui, Yu. V.

    2005-06-01

    The results of the R & D activity of TDI SIE SB RAS in the field of the 3D optical measuring technologies and systems for noncontact 3D optical dimensional inspection applied to atomic and railway industry safety problems are presented. This activity includes investigations of diffraction phenomena on some 3D objects, using the original constructive calculation method, development of hole inspection method on the base of diffractive optical elements. Ensuring the safety of nuclear reactors and running trains as well as their high exploitation reliability requires a 100 % noncontact precise inspection of geometrical parameters of their components. To solve this problem we have developed methods and produced the technical vision measuring systems LMM, CONTROL, RADAR, and technologies for noncontact 3D dimensional inspection of grid spacers and fuel elements for the nuclear reactor VVER-1000 and VVER-440, as well as automatic laser diagnostic COMPLEX for noncontact inspection of geometric parameters of running freight car wheel pairs. The performances of these systems and the results of industrial testing are presented and discussed. The created devices are in pilot operation at Atomic and Railway Companies.

  2. 3D optical measuring technologies for dimensional inspection

    NASA Astrophysics Data System (ADS)

    Chugui, Yu V.

    2005-01-01

    The results of the R & D activity of TDI SIE SB RAS in the field of the 3D optical measuring technologies and systems for noncontact 3D optical dimensional inspection applied to atomic and railway industry safety problems are presented. This activity includes investigations of diffraction phenomena on some 3D objects, using the original constructive calculation method, development of hole inspection method on the base of diffractive optical elements. Ensuring the safety of nuclear reactors and running trains as well as their high exploitation reliability takes a noncontact inspection of geometrical parameters of their components. For this tasks we have developed methods and produced the technical vision measuring systems LMM, CONTROL, PROFILE, and technologies for non-contact 3D dimensional inspection of grid spacers and fuel elements for the nuclear reactor VVER-1000 and VVER-440, as well as automatic laser diagnostic system COMPLEX for noncontact inspection of geometrical parameters of running freight car wheel pairs. The performances of these systems and the results of the industrial testing at atomic and railway companies are presented.

  3. Exposing digital image forgeries by 3D reconstruction technology

    NASA Astrophysics Data System (ADS)

    Wang, Yongqiang; Xu, Xiaojing; Li, Zhihui; Liu, Haizhen; Li, Zhigang; Huang, Wei

    2009-11-01

    Digital images are easy to tamper and edit due to availability of powerful image processing and editing software. Especially, forged images by taking from a picture of scene, because of no manipulation was made after taking, usual methods, such as digital watermarks, statistical correlation technology, can hardly detect the traces of image tampering. According to image forgery characteristics, a method, based on 3D reconstruction technology, which detect the forgeries by discriminating the dimensional relationship of each object appeared on image, is presented in this paper. This detection method includes three steps. In the first step, all the parameters of images were calibrated and each crucial object on image was chosen and matched. In the second step, the 3D coordinates of each object were calculated by bundle adjustment. In final step, the dimensional relationship of each object was analyzed. Experiments were designed to test this detection method; the 3D reconstruction and the forged image 3D reconstruction were computed independently. Test results show that the fabricating character in digital forgeries can be identified intuitively by this method.

  4. Enabling quantitative screening in retinal organoids: 3D automated reporter quantification technology (3D-ARQ).

    PubMed

    Vergara, M Natalia; Flores-Bellver, Miguel; Aparicio-Domingo, Silvia; McNally, Minda; Wahlin, Karl J; Saxena, Meera T; Mumm, Jeff S; Canto-Soler, M Valeria

    2017-09-04

    The advent of stem cell-derived retinal organoids has brought forth unprecedented opportunities for developmental and physiological studies, while presenting new therapeutic promise for retinal degenerative diseases. From a translational perspective, organoid systems provide exciting new prospects for drug discovery, offering the possibility to perform compound screening in a 3-dimensional (3D) human tissue context that resembles the native histoarchitecture and cellular interactions. However, inherent variability issues and a general lack of robust quantitative technologies for analyzing organoids in large-scale pose severe limitations for their use in translational applications. To address this need, we have developed a screening platform that enables accurate quantification of fluorescent reporters in complex human iPSC-derived retinal organoids. This platform incorporates a fluorescence microplate reader that allows XYZ-dimensional detection and fine-tuned wavelength selection. We have established optimal parameters for fluorescent reporter signal detection, devised methods to compensate for organoid size variability, evaluated performance and sensitivity parameters, and validated this technology for functional applications. © 2017. Published by The Company of Biologists Ltd.

  5. 3D Printing In Zero-G ISS Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Werkheiser, Niki; Cooper, Kenneth; Edmunson, Jennifer; Dunn, Jason; Snyder, Michael

    2014-01-01

    The National Aeronautics and Space Administration (NASA) has a long term strategy to fabricate components and equipment on-demand for manned missions to the Moon, Mars, and beyond. To support this strategy, NASA and Made in Space, Inc. are developing the 3D Printing In Zero-G payload as a Technology Demonstration for the International Space Station (ISS). The 3D Printing In Zero-G experiment ('3D Print') will be the first machine to perform 3D printing in space. The greater the distance from Earth and the longer the mission duration, the more difficult resupply becomes; this requires a change from the current spares, maintenance, repair, and hardware design model that has been used on the International Space Station (ISS) up until now. Given the extension of the ISS Program, which will inevitably result in replacement parts being required, the ISS is an ideal platform to begin changing the current model for resupply and repair to one that is more suitable for all exploration missions. 3D Printing, more formally known as Additive Manufacturing, is the method of building parts/objects/tools layer-by-layer. The 3D Print experiment will use extrusion-based additive manufacturing, which involves building an object out of plastic deposited by a wire-feed via an extruder head. Parts can be printed from data files loaded on the device at launch, as well as additional files uplinked to the device while on-orbit. The plastic extrusion additive manufacturing process is a low-energy, low-mass solution to many common needs on board the ISS. The 3D Print payload will serve as the ideal first step to proving that process in space. It is unreasonable to expect NASA to launch large blocks of material from which parts or tools can be traditionally machined, and even more unreasonable to fly up multiple drill bits that would be required to machine parts from aerospace-grade materials such as titanium 6-4 alloy and Inconel. The technology to produce parts on demand, in space, offers

  6. Developing novel 3D antennas using advanced additive manufacturing technology

    NASA Astrophysics Data System (ADS)

    Mirzaee, Milad

    In today's world of wireless communication systems, antenna engineering is rapidly advancing as the wireless services continue to expand in support of emerging commercial applications. Antennas play a key role in the performance of advanced transceiver systems where they serve to convert electric power to electromagnetic waves and vice versa. Researchers have held significant interest in developing this crucial component for wireless communication systems by employing a variety of design techniques. In the past few years, demands for electrically small antennas continues to increase, particularly among portable and mobile wireless devices, medical electronics and aerospace systems. This trend toward smaller electronic devices makes the three dimensional (3D) antennas very appealing, since they can be designed in a way to use every available space inside the devise. Additive Manufacturing (AM) method could help to find great solutions for the antennas design for next generation of wireless communication systems. In this thesis, the design and fabrication of 3D printed antennas using AM technology is studied. To demonstrate this application of AM, different types of antennas structures have been designed and fabricated using various manufacturing processes. This thesis studies, for the first time, embedded conductive 3D printed antennas using PolyLactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) for substrate parts and high temperature carbon paste for conductive parts which can be a good candidate to overcome the limitations of direct printing on 3D surfaces that is the most popular method to fabricate conductive parts of the antennas. This thesis also studies, for the first time, the fabrication of antennas with 3D printed conductive parts which can contribute to the new generation of 3D printed antennas.

  7. Demonstration of three gorges archaeological relics based on 3D-visualization technology

    NASA Astrophysics Data System (ADS)

    Xu, Wenli

    2015-12-01

    This paper mainly focuses on the digital demonstration of three gorges archeological relics to exhibit the achievements of the protective measures. A novel and effective method based on 3D-visualization technology, which includes large-scaled landscape reconstruction, virtual studio, and virtual panoramic roaming, etc, is proposed to create a digitized interactive demonstration system. The method contains three stages: pre-processing, 3D modeling and integration. Firstly, abundant archaeological information is classified according to its history and geographical information. Secondly, build up a 3D-model library with the technology of digital images processing and 3D modeling. Thirdly, use virtual reality technology to display the archaeological scenes and cultural relics vividly and realistically. The present work promotes the application of virtual reality to digital projects and enriches the content of digital archaeology.

  8. Metrology and Failure Analysis for 3D IC Integration

    SciTech Connect

    Zschech, Ehrenfried; Diebold, Alain

    2011-11-10

    At the same time as research in 3D TSV technology is advancing quickly, the analytical techniques used in the evaluation of 3D stacks must also advance in capability. Microscopy techniques for which silicon is opaque such as scanning acoustic microscopy (SAM) and confocal infrared (IR) microscopy are capable of inspecting the interface between bonded wafer pairs, while high resolution X-ray computed tomography (XCT) is used to detect voids in TSVs. With nano-XCT, voids in copper TSVs with sub-100 nm size can be visualized. For more detailed failure characterization, a target Focused Ion Beam (FIB) cross-section through the localized region of interest (defect) and subsequent scanning electron microscopy (SEM) imaging is proposed. Currently, the most important requirement is to reduce the so-called time-to-data, e. g. for defect localization using nano-XCT and for cross-section characterization.

  9. 3-D MAPPING TECHNOLOGIES FOR HIGH LEVEL WASTE TANKS

    SciTech Connect

    Marzolf, A.; Folsom, M.

    2010-08-31

    This research investigated four techniques that could be applicable for mapping of solids remaining in radioactive waste tanks at the Savannah River Site: stereo vision, LIDAR, flash LIDAR, and Structure from Motion (SfM). Stereo vision is the least appropriate technique for the solids mapping application. Although the equipment cost is low and repackaging would be fairly simple, the algorithms to create a 3D image from stereo vision would require significant further development and may not even be applicable since stereo vision works by finding disparity in feature point locations from the images taken by the cameras. When minimal variation in visual texture exists for an area of interest, it becomes difficult for the software to detect correspondences for that object. SfM appears to be appropriate for solids mapping in waste tanks. However, equipment development would be required for positioning and movement of the camera in the tank space to enable capturing a sequence of images of the scene. Since SfM requires the identification of distinctive features and associates those features to their corresponding instantiations in the other image frames, mockup testing would be required to determine the applicability of SfM technology for mapping of waste in tanks. There may be too few features to track between image frame sequences to employ the SfM technology since uniform appearance may exist when viewing the remaining solids in the interior of the waste tanks. Although scanning LIDAR appears to be an adequate solution, the expense of the equipment ($80,000-$120,000) and the need for further development to allow tank deployment may prohibit utilizing this technology. The development would include repackaging of equipment to permit deployment through the 4-inch access ports and to keep the equipment relatively uncontaminated to allow use in additional tanks. 3D flash LIDAR has a number of advantages over stereo vision, scanning LIDAR, and SfM, including full frame

  10. 3D Printing in Zero-G ISS Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Johnston, Mallory M.; Werkheiser, Mary J.; Cooper, Kenneth G.; Snyder, Michael P.; Edmunson, Jennifer E.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) has a long term strategy to fabricate components and equipment on-demand for manned missions to the Moon, Mars, and beyond. To support this strategy, NASA and Made in Space, Inc. are developing the 3D Printing In Zero-G payload as a Technology Demonstration for the International Space Station. The 3D Printing In Zero-G experiment will be the first machine to perform 3D printing in space. The greater the distance from Earth and the longer the mission duration, the more difficult resupply becomes; this requires a change from the current spares, maintenance, repair, and hardware design model that has been used on the International Space Station up until now. Given the extension of the ISS Program, which will inevitably result in replacement parts being required, the ISS is an ideal platform to begin changing the current model for resupply and repair to one that is more suitable for all exploration missions. 3D Printing, more formally known as Additive Manufacturing, is the method of building parts/ objects/tools layer-by-layer. The 3D Print experiment will use extrusion-based additive manufacturing, which involves building an object out of plastic deposited by a wire-feed via an extruder head. Parts can be printed from data files loaded on the device at launch, as well as additional files uplinked to the device while on-orbit. The plastic extrusion additive manufacturing process is a low-energy, low-mass solution to many common needs on board the ISS. The 3D Print payload will serve as the ideal first step to proving that process in space. It is unreasonable to expect NASA to launch large blocks of material from which parts or tools can be traditionally machined, and even more unreasonable to fly up specialized manufacturing hardware to perform the entire range of function traditionally machining requires. The technology to produce parts on demand, in space, offers unique design options that are not possible

  11. 3D J-Integral Capability in Grizzly

    SciTech Connect

    Spencer, Benjamin; Backman, Marie; Chakraborty, Pritam; Hoffman, William

    2014-09-01

    This report summarizes work done to develop a capability to evaluate fracture contour J-Integrals in 3D in the Grizzly code. In the current fiscal year, a previously-developed 2D implementation of a J-Integral evaluation capability has been extended to work in 3D, and to include terms due both to mechanically-induced strains and due to gradients in thermal strains. This capability has been verified against a benchmark solution on a model of a curved crack front in 3D. The thermal term in this integral has been verified against a benchmark problem with a thermal gradient. These developments are part of a larger effort to develop Grizzly as a tool that can be used to predict the evolution of aging processes in nuclear power plant systems, structures, and components, and assess their capacity after being subjected to those aging processes. The capabilities described here have been developed to enable evaluations of Mode- stress intensity factors on axis-aligned flaws in reactor pressure vessels. These can be compared with the fracture toughness of the material to determine whether a pre-existing flaw would begin to propagate during a pos- tulated pressurized thermal shock accident. This report includes a demonstration calculation to show how Grizzly is used to perform a deterministic assessment of such a flaw propagation in a degraded reactor pressure vessel under pressurized thermal shock conditions. The stress intensity is calculated from J, and the toughness is computed using the fracture master curve and the degraded ductile to brittle transition temperature.

  12. Customisable 3D printed microfluidics for integrated analysis and optimisation.

    PubMed

    Monaghan, T; Harding, M J; Harris, R A; Friel, R J; Christie, S D R

    2016-08-16

    The formation of smart Lab-on-a-Chip (LOC) devices featuring integrated sensing optics is currently hindered by convoluted and expensive manufacturing procedures. In this work, a series of 3D-printed LOC devices were designed and manufactured via stereolithography (SL) in a matter of hours. The spectroscopic performance of a variety of optical fibre combinations were tested, and the optimum path length for performing Ultraviolet-visible (UV-vis) spectroscopy determined. The information gained in these trials was then used in a reaction optimisation for the formation of carvone semicarbazone. The production of high resolution surface channels (100-500 μm) means that these devices were capable of handling a wide range of concentrations (9 μM-38 mM), and are ideally suited to both analyte detection and process optimisation. This ability to tailor the chip design and its integrated features as a direct result of the reaction being assessed, at such a low time and cost penalty greatly increases the user's ability to optimise both their device and reaction. As a result of the information gained in this investigation, we are able to report the first instance of a 3D-printed LOC device with fully integrated, in-line monitoring capabilities via the use of embedded optical fibres capable of performing UV-vis spectroscopy directly inside micro channels.

  13. Forensic print extraction using 3D technology and its processing

    NASA Astrophysics Data System (ADS)

    Rajeev, Srijith; Shreyas, Kamath K. M.; Panetta, Karen; Agaian, Sos S.

    2017-05-01

    Biometric evidence plays a crucial role in criminal scene analysis. Forensic prints can be extracted from any solid surface such as firearms, doorknobs, carpets and mugs. Prints such as fingerprints, palm prints, footprints and lip-prints can be classified into patent, latent, and three-dimensional plastic prints. Traditionally, law enforcement officers capture these forensic traits using an electronic device or extract them manually, and save the data electronically using special scanners. The reliability and accuracy of the method depends on the ability of the officer or the electronic device to extract and analyze the data. Furthermore, the 2-D acquisition and processing system is laborious and cumbersome. This can lead to the increase in false positive and true negative rates in print matching. In this paper, a method and system to extract forensic prints from any surface, irrespective of its shape, is presented. First, a suitable 3-D camera is used to capture images of the forensic print, and then the 3-D image is processed and unwrapped to obtain 2-D equivalent biometric prints. Computer simulations demonstrate the effectiveness of using 3-D technology for biometric matching of fingerprints, palm prints, and lip-prints. This system can be further extended to other biometric and non-biometric modalities.

  14. Integral imaging based 3D display of holographic data.

    PubMed

    Yöntem, Ali Özgür; Onural, Levent

    2012-10-22

    We propose a method and present applications of this method that converts a diffraction pattern into an elemental image set in order to display them on an integral imaging based display setup. We generate elemental images based on diffraction calculations as an alternative to commonly used ray tracing methods. Ray tracing methods do not accommodate the interference and diffraction phenomena. Our proposed method enables us to obtain elemental images from a holographic recording of a 3D object/scene. The diffraction pattern can be either numerically generated data or digitally acquired optical data. The method shows the connection between a hologram (diffraction pattern) and an elemental image set of the same 3D object. We showed three examples, one of which is the digitally captured optical diffraction tomography data of an epithelium cell. We obtained optical reconstructions with our integral imaging display setup where we used a digital lenslet array. We also obtained numerical reconstructions, again by using the diffraction calculations, for comparison. The digital and optical reconstruction results are in good agreement.

  15. Tunable quantum interference in a 3D integrated circuit

    PubMed Central

    Chaboyer, Zachary; Meany, Thomas; Helt, L. G.; Withford, Michael J.; Steel, M. J.

    2015-01-01

    Integrated photonics promises solutions to questions of stability, complexity, and size in quantum optics. Advances in tunable and non-planar integrated platforms, such as laser-inscribed photonics, continue to bring the realisation of quantum advantages in computation and metrology ever closer, perhaps most easily seen in multi-path interferometry. Here we demonstrate control of two-photon interference in a chip-scale 3D multi-path interferometer, showing a reduced periodicity and enhanced visibility compared to single photon measurements. Observed non-classical visibilities are widely tunable, and explained well by theoretical predictions based on classical measurements. With these predictions we extract Fisher information approaching a theoretical maximum. Our results open a path to quantum enhanced phase measurements. PMID:25915830

  16. Tunable quantum interference in a 3D integrated circuit.

    PubMed

    Chaboyer, Zachary; Meany, Thomas; Helt, L G; Withford, Michael J; Steel, M J

    2015-04-27

    Integrated photonics promises solutions to questions of stability, complexity, and size in quantum optics. Advances in tunable and non-planar integrated platforms, such as laser-inscribed photonics, continue to bring the realisation of quantum advantages in computation and metrology ever closer, perhaps most easily seen in multi-path interferometry. Here we demonstrate control of two-photon interference in a chip-scale 3D multi-path interferometer, showing a reduced periodicity and enhanced visibility compared to single photon measurements. Observed non-classical visibilities are widely tunable, and explained well by theoretical predictions based on classical measurements. With these predictions we extract Fisher information approaching a theoretical maximum. Our results open a path to quantum enhanced phase measurements.

  17. Development of vacuum underfill technology for a 3D chip stack

    NASA Astrophysics Data System (ADS)

    Sakuma, Katsuyuki; Kohara, Sayuri; Sueoka, Kuniaki; Orii, Yasumitsu; Kawakami, Mikio; Asai, Kazuo; Hirayama, Yoshikazu; Knickerbocker, John U.

    2011-03-01

    We developed a vacuum underfill technology for 3D chip stacks and for flip chips in high performance system integration. We fabricated a 3D prototype chip stack using the vacuum underfill technology to apply the adhesive. The underfill was injected into each 6 µm gaps in a 3-layer chip stack and no voids were detected in acoustic microscopy images. Electrical tests and thermal reliability tests were used to measure the resistance of the vertical interconnections and the impact of the underfill. The results showed there was minimal difference in the average interconnection resistance of the chip stack with and without underfill.

  18. 3D plasmonic nanoantennas integrated with MEA biosensors.

    PubMed

    Dipalo, Michele; Messina, Gabriele C; Amin, Hayder; La Rocca, Rosanna; Shalabaeva, Victoria; Simi, Alessandro; Maccione, Alessandro; Zilio, Pierfrancesco; Berdondini, Luca; De Angelis, Francesco

    2015-02-28

    Neuronal signaling in brain circuits occurs at multiple scales ranging from molecules and cells to large neuronal assemblies. However, current sensing neurotechnologies are not designed for parallel access of signals at multiple scales. With the aim of combining nanoscale molecular sensing with electrical neural activity recordings within large neuronal assemblies, in this work three-dimensional (3D) plasmonic nanoantennas are integrated with multielectrode arrays (MEA). Nanoantennas are fabricated by fast ion beam milling on optical resist; gold is deposited on the nanoantennas in order to connect them electrically to the MEA microelectrodes and to obtain plasmonic behavior. The optical properties of these 3D nanostructures are studied through finite elements method (FEM) simulations that show a high electromagnetic field enhancement. This plasmonic enhancement is confirmed by surface enhancement Raman spectroscopy of a dye performed in liquid, which presents an enhancement of almost 100 times the incident field amplitude at resonant excitation. Finally, the reported MEA devices are tested on cultured rat hippocampal neurons. Neurons develop by extending branches on the nanostructured electrodes and extracellular action potentials are recorded over multiple days in vitro. Raman spectra of living neurons cultured on the nanoantennas are also acquired. These results highlight that these nanostructures could be potential candidates for combining electrophysiological measures of large networks with simultaneous spectroscopic investigations at the molecular level.

  19. The 3-D vision system integrated dexterous hand

    NASA Technical Reports Server (NTRS)

    Luo, Ren C.; Han, Youn-Sik

    1989-01-01

    Most multifingered hands use a tendon mechanism to minimize the size and weight of the hand. Such tendon mechanisms suffer from the problems of striction and friction of the tendons resulting in a reduction of control accuracy. A design for a 3-D vision system integrated dexterous hand with motor control is described which overcomes these problems. The proposed hand is composed of three three-jointed grasping fingers with tactile sensors on their tips, a two-jointed eye finger with a cross-shaped laser beam emitting diode in its distal part. The two non-grasping fingers allow 3-D vision capability and can rotate around the hand to see and measure the sides of grasped objects and the task environment. An algorithm that determines the range and local orientation of the contact surface using a cross-shaped laser beam is introduced along with some potential applications. An efficient method for finger force calculation is presented which uses the measured contact surface normals of an object.

  20. 3D Printing-Based Integrated Water Quality Sensing System.

    PubMed

    Banna, Muinul; Bera, Kaustav; Sochol, Ryan; Lin, Liwei; Najjaran, Homayoun; Sadiq, Rehan; Hoorfar, Mina

    2017-06-08

    The online and accurate monitoring of drinking water supply networks is critically in demand to rapidly detect the accidental or deliberate contamination of drinking water. At present, miniaturized water quality monitoring sensors developed in the laboratories are usually tested under ambient pressure and steady-state flow conditions; however, in Water Distribution Systems (WDS), both the pressure and the flowrate fluctuate. In this paper, an interface is designed and fabricated using additive manufacturing or 3D printing technology-material extrusion (Trade Name: fused deposition modeling, FDM) and material jetting-to provide a conduit for miniaturized sensors for continuous online water quality monitoring. The interface is designed to meet two main criteria: low pressure at the inlet of the sensors and a low flowrate to minimize the water bled (i.e., leakage), despite varying pressure from WDS. To meet the above criteria, a two-dimensional computational fluid dynamics model was used to optimize the geometry of the channel. The 3D printed interface, with the embedded miniaturized pH and conductivity sensors, was then tested at different temperatures and flowrates. The results show that the response of the pH sensor is independent of the flowrate and temperature. As for the conductivity sensor, the flowrate and temperature affect only the readings at a very low conductivity (4 µS/cm) and high flowrates (30 mL/min), and a very high conductivity (460 µS/cm), respectively.

  1. Initiator-integrated 3D printing enables the formation of complex metallic architectures.

    PubMed

    Wang, Xiaolong; Guo, Qiuquan; Cai, Xiaobing; Zhou, Shaolin; Kobe, Brad; Yang, Jun

    2014-02-26

    Three-dimensional printing was used to fabricate various metallic structures by directly integrating a Br-containing vinyl-terminated initiator into the 3D resin followed by surface-initiated atomic-transfer radical polymerization (ATRP) and subsequent electroless plating. Cu- and Ni-coated complex structures, such as microlattices, hollow balls, and even Eiffel towers, were prepared. Moreover, the method is also capable of fabricating ultralight cellular metals with desired structures by simply etching the polymer template away. By combining the merits of 3D printing in structure design with those of ATRP in surface modification and polymer-assisted ELP of metals, this universal, robust, and cost-effective approach has largely extended the capability of 3D printing and will make 3D printing technology more practical in areas of electronics, acoustic absorption, thermal insulation, catalyst supports, and others.

  2. A multiply-add engine with monolithically integrated 3D memristor crossbar/CMOS hybrid circuit

    NASA Astrophysics Data System (ADS)

    Chakrabarti, B.; Lastras-Montaño, M. A.; Adam, G.; Prezioso, M.; Hoskins, B.; Cheng, K.-T.; Strukov, D. B.

    2017-02-01

    Silicon (Si) based complementary metal-oxide semiconductor (CMOS) technology has been the driving force of the information-technology revolution. However, scaling of CMOS technology as per Moore’s law has reached a serious bottleneck. Among the emerging technologies memristive devices can be promising for both memory as well as computing applications. Hybrid CMOS/memristor circuits with CMOL (CMOS + “Molecular”) architecture have been proposed to combine the extremely high density of the memristive devices with the robustness of CMOS technology, leading to terabit-scale memory and extremely efficient computing paradigm. In this work, we demonstrate a hybrid 3D CMOL circuit with 2 layers of memristive crossbars monolithically integrated on a pre-fabricated CMOS substrate. The integrated crossbars can be fully operated through the underlying CMOS circuitry. The memristive devices in both layers exhibit analog switching behavior with controlled tunability and stable multi-level operation. We perform dot-product operations with the 2D and 3D memristive crossbars to demonstrate the applicability of such 3D CMOL hybrid circuits as a multiply-add engine. To the best of our knowledge this is the first demonstration of a functional 3D CMOL hybrid circuit.

  3. A multiply-add engine with monolithically integrated 3D memristor crossbar/CMOS hybrid circuit.

    PubMed

    Chakrabarti, B; Lastras-Montaño, M A; Adam, G; Prezioso, M; Hoskins, B; Payvand, M; Madhavan, A; Ghofrani, A; Theogarajan, L; Cheng, K-T; Strukov, D B

    2017-02-14

    Silicon (Si) based complementary metal-oxide semiconductor (CMOS) technology has been the driving force of the information-technology revolution. However, scaling of CMOS technology as per Moore's law has reached a serious bottleneck. Among the emerging technologies memristive devices can be promising for both memory as well as computing applications. Hybrid CMOS/memristor circuits with CMOL (CMOS + "Molecular") architecture have been proposed to combine the extremely high density of the memristive devices with the robustness of CMOS technology, leading to terabit-scale memory and extremely efficient computing paradigm. In this work, we demonstrate a hybrid 3D CMOL circuit with 2 layers of memristive crossbars monolithically integrated on a pre-fabricated CMOS substrate. The integrated crossbars can be fully operated through the underlying CMOS circuitry. The memristive devices in both layers exhibit analog switching behavior with controlled tunability and stable multi-level operation. We perform dot-product operations with the 2D and 3D memristive crossbars to demonstrate the applicability of such 3D CMOL hybrid circuits as a multiply-add engine. To the best of our knowledge this is the first demonstration of a functional 3D CMOL hybrid circuit.

  4. A multiply-add engine with monolithically integrated 3D memristor crossbar/CMOS hybrid circuit

    PubMed Central

    Chakrabarti, B.; Lastras-Montaño, M. A.; Adam, G.; Prezioso, M.; Hoskins, B.; Cheng, K.-T.; Strukov, D. B.

    2017-01-01

    Silicon (Si) based complementary metal-oxide semiconductor (CMOS) technology has been the driving force of the information-technology revolution. However, scaling of CMOS technology as per Moore’s law has reached a serious bottleneck. Among the emerging technologies memristive devices can be promising for both memory as well as computing applications. Hybrid CMOS/memristor circuits with CMOL (CMOS + “Molecular”) architecture have been proposed to combine the extremely high density of the memristive devices with the robustness of CMOS technology, leading to terabit-scale memory and extremely efficient computing paradigm. In this work, we demonstrate a hybrid 3D CMOL circuit with 2 layers of memristive crossbars monolithically integrated on a pre-fabricated CMOS substrate. The integrated crossbars can be fully operated through the underlying CMOS circuitry. The memristive devices in both layers exhibit analog switching behavior with controlled tunability and stable multi-level operation. We perform dot-product operations with the 2D and 3D memristive crossbars to demonstrate the applicability of such 3D CMOL hybrid circuits as a multiply-add engine. To the best of our knowledge this is the first demonstration of a functional 3D CMOL hybrid circuit. PMID:28195239

  5. Integral Textile Structure for 3-D CMC Turbine Airfoils

    NASA Technical Reports Server (NTRS)

    Marshall, David B. (Inventor); Cox, Brian N. (Inventor); Sudre, Olivier H. (Inventor)

    2017-01-01

    An integral textile structure for 3-D CMC turbine airfoils includes top and bottom walls made from an angle-interlock weave, each of the walls comprising warp and weft fiber tows. The top and bottom walls are merged on a first side parallel to the warp fiber tows into a single wall along a portion of their widths, with the weft fiber tows making up the single wall interlocked through the wall's thickness such that delamination of the wall is inhibited. The single wall suitably forms the trailing edge of an airfoil; the top and bottom walls are preferably joined along a second side opposite the first side and parallel to the radial fiber tows by a continuously curved section in which the weave structure remains continuous with the weave structure in the top and bottom walls, the continuously curved section being the leading edge of the airfoil.

  6. Inertial Motion-Tracking Technology for Virtual 3-D

    NASA Technical Reports Server (NTRS)

    2005-01-01

    In the 1990s, NASA pioneered virtual reality research. The concept was present long before, but, prior to this, the technology did not exist to make a viable virtual reality system. Scientists had theories and ideas they knew that the concept had potential, but the computers of the 1970s and 1980s were not fast enough, sensors were heavy and cumbersome, and people had difficulty blending fluidly with the machines. Scientists at Ames Research Center built upon the research of previous decades and put the necessary technology behind them, making the theories of virtual reality a reality. Virtual reality systems depend on complex motion-tracking sensors to convey information between the user and the computer to give the user the feeling that he is operating in the real world. These motion-tracking sensors measure and report an object s position and orientation as it changes. A simple example of motion tracking would be the cursor on a computer screen moving in correspondence to the shifting of the mouse. Tracking in 3-D, necessary to create virtual reality, however, is much more complex. To be successful, the perspective of the virtual image seen on the computer must be an accurate representation of what is seen in the real world. As the user s head or camera moves, turns, or tilts, the computer-generated environment must change accordingly with no noticeable lag, jitter, or distortion. Historically, the lack of smooth and rapid tracking of the user s motion has thwarted the widespread use of immersive 3-D computer graphics. NASA uses virtual reality technology for a variety of purposes, mostly training of astronauts. The actual missions are costly and dangerous, so any opportunity the crews have to practice their maneuvering in accurate situations before the mission is valuable and instructive. For that purpose, NASA has funded a great deal of virtual reality research, and benefited from the results.

  7. 3D-Printing Technologies for Craniofacial Rehabilitation, Reconstruction, and Regeneration.

    PubMed

    Nyberg, Ethan L; Farris, Ashley L; Hung, Ben P; Dias, Miguel; Garcia, Juan R; Dorafshar, Amir H; Grayson, Warren L

    2017-01-01

    The treatment of craniofacial defects can present many challenges due to the variety of tissue-specific requirements and the complexity of anatomical structures in that region. 3D-printing technologies provide clinicians, engineers and scientists with the ability to create patient-specific solutions for craniofacial defects. Currently, there are three key strategies that utilize these technologies to restore both appearance and function to patients: rehabilitation, reconstruction and regeneration. In rehabilitation, 3D-printing can be used to create prostheses to replace or cover damaged tissues. Reconstruction, through plastic surgery, can also leverage 3D-printing technologies to create custom cutting guides, fixation devices, practice models and implanted medical devices to improve patient outcomes. Regeneration of tissue attempts to replace defects with biological materials. 3D-printing can be used to create either scaffolds or living, cellular constructs to signal tissue-forming cells to regenerate defect regions. By integrating these three approaches, 3D-printing technologies afford the opportunity to develop personalized treatment plans and design-driven manufacturing solutions to improve aesthetic and functional outcomes for patients with craniofacial defects.

  8. 3D micro-optical lens scanner made by multi-wafer bonding technology

    NASA Astrophysics Data System (ADS)

    Bargiel, S.; Gorecki, C.; Barański, M.; Passilly, N.; Wiemer, M.; Jia, C.; Frömel, J.

    2013-03-01

    We present the preliminary design, construction and technology of a microoptical, millimeter-size 3-D microlens scanner, which is a key-component for a number of optical on-chip microscopes with emphasis on the architecture of confocal microscope. The construction of the device relies on the vertical integration of micromachined building blocks: top glass lid, silicon electrostatic comb-drive X-Y and Z microactuators with integrated scanning microlenses, ceramic LTCC spacer, and bottom lid with focusing microlens. All components are connected on the wafer level only by sequential anodic bonding. The technology of through wafer vias is applied to create electrical connections through a stack of wafers. More generally, the presented bonding/connection technologies are also of a great importance for the development of various silicon-based devices based on vertical integration scheme. This approach offers a space-effective integration of complex MOEMS devices and an effective integration of various heterogeneous technologies.

  9. Pipe3D, a pipeline to analyze Integral Field Spectroscopy Data: I. New fitting philosophy of FIT3D

    NASA Astrophysics Data System (ADS)

    Sánchez, S. F.; Pérez, E.; Sánchez-Blázquez, P.; González, J. J.; Rosález-Ortega, F. F.; Cano-Dí az, M.; López-Cobá, C.; Marino, R. A.; Gil de Paz, A.; Mollá, M.; López-Sánchez, A. R.; Ascasibar, Y.; Barrera-Ballesteros, J.

    2016-04-01

    We present an improved version of FIT3D, a fitting tool for the analysis of the spectroscopic properties of the stellar populations and the ionized gas derived from moderate resolution spectra of galaxies. This tool was developed to analyze integral field spectroscopy data and it is the basis of Pipe3D, a pipeline used in the analysis of CALIFA, MaNGA, and SAMI data. We describe the philosophy and each step of the fitting procedure. We present an extensive set of simulations in order to estimate the precision and accuracy of the derived parameters for the stellar populations and the ionized gas. We report on the results of those simulations. Finally, we compare the results of the analysis using FIT3D with those provided by other widely used packages, and we find that the parameters derived by FIT3D are fully compatible with those derived using these other tools.

  10. Digital 3D Borobudur - Integration of 3D surveying and modeling techniques

    NASA Astrophysics Data System (ADS)

    Suwardhi, D.; Menna, F.; Remondino, F.; Hanke, K.; Akmalia, R.

    2015-08-01

    The Borobudur temple (Indonesia) is one of the greatest Buddhist monuments in the world, now listed as an UNESCO World Heritage Site. The present state of the temple is the result of restorations after being exposed to natural disasters several times. Today there is still a growing rate of deterioration of the building stones whose causes need further researches. Monitoring programs, supported at institutional level, have been effectively executed to observe the problem. The paper presents the latest efforts to digitally document the Borobudur Temple and its surrounding area in 3D with photogrammetric techniques. UAV and terrestrial images were acquired to completely digitize the temple, produce DEM, orthoimages and maps at 1:100 and 1:1000 scale. The results of the project are now employed by the local government organizations to manage the heritage area and plan new policies for the conservation and preservation of the UNESCO site. In order to help data management and policy makers, a web-based information system of the heritage area was also built to visualize and easily access all the data and achieved 3D results.

  11. 3D plasmonic nanoantennas integrated with MEA biosensors

    NASA Astrophysics Data System (ADS)

    Dipalo, Michele; Messina, Gabriele C.; Amin, Hayder; La Rocca, Rosanna; Shalabaeva, Victoria; Simi, Alessandro; Maccione, Alessandro; Zilio, Pierfrancesco; Berdondini, Luca; de Angelis, Francesco

    2015-02-01

    Neuronal signaling in brain circuits occurs at multiple scales ranging from molecules and cells to large neuronal assemblies. However, current sensing neurotechnologies are not designed for parallel access of signals at multiple scales. With the aim of combining nanoscale molecular sensing with electrical neural activity recordings within large neuronal assemblies, in this work three-dimensional (3D) plasmonic nanoantennas are integrated with multielectrode arrays (MEA). Nanoantennas are fabricated by fast ion beam milling on optical resist; gold is deposited on the nanoantennas in order to connect them electrically to the MEA microelectrodes and to obtain plasmonic behavior. The optical properties of these 3D nanostructures are studied through finite elements method (FEM) simulations that show a high electromagnetic field enhancement. This plasmonic enhancement is confirmed by surface enhancement Raman spectroscopy of a dye performed in liquid, which presents an enhancement of almost 100 times the incident field amplitude at resonant excitation. Finally, the reported MEA devices are tested on cultured rat hippocampal neurons. Neurons develop by extending branches on the nanostructured electrodes and extracellular action potentials are recorded over multiple days in vitro. Raman spectra of living neurons cultured on the nanoantennas are also acquired. These results highlight that these nanostructures could be potential candidates for combining electrophysiological measures of large networks with simultaneous spectroscopic investigations at the molecular level.Neuronal signaling in brain circuits occurs at multiple scales ranging from molecules and cells to large neuronal assemblies. However, current sensing neurotechnologies are not designed for parallel access of signals at multiple scales. With the aim of combining nanoscale molecular sensing with electrical neural activity recordings within large neuronal assemblies, in this work three-dimensional (3D) plasmonic

  12. 3D Technology Selection for a Virtual Learning Environment by Blending ISO 9126 Standard and AHP

    ERIC Educational Resources Information Center

    Cetin, Aydin; Guler, Inan

    2011-01-01

    Web3D presents many opportunities for learners in a virtual world or virtual environment over the web. This is a great opportunity for open-distance education institutions to benefit from web3d technologies to create courses with interactive 3d materials. There are many open source and commercial products offering 3d technologies over the web…

  13. 3D Technology Selection for a Virtual Learning Environment by Blending ISO 9126 Standard and AHP

    ERIC Educational Resources Information Center

    Cetin, Aydin; Guler, Inan

    2011-01-01

    Web3D presents many opportunities for learners in a virtual world or virtual environment over the web. This is a great opportunity for open-distance education institutions to benefit from web3d technologies to create courses with interactive 3d materials. There are many open source and commercial products offering 3d technologies over the web…

  14. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems.

    PubMed

    Goyanes, Alvaro; Det-Amornrat, Usanee; Wang, Jie; Basit, Abdul W; Gaisford, Simon

    2016-07-28

    Acne is a multifactorial inflammatory skin disease with high prevalence. In this work, the potential of 3D printing to produce flexible personalised-shape anti-acne drug (salicylic acid) loaded devices was demonstrated by two different 3D printing (3DP) technologies: Fused Deposition Modelling (FDM) and stereolithography (SLA). 3D scanning technology was used to obtain a 3D model of a nose adapted to the morphology of an individual. In FDM 3DP, commercially produced Flex EcoPLA™ (FPLA) and polycaprolactone (PCL) filaments were loaded with salicylic acid by hot melt extrusion (HME) (theoretical drug loading - 2% w/w) and used as feedstock material for 3D printing. Drug loading in the FPLA-salicylic acid and PCL-salicylic acid 3D printed patches was 0.4% w/w and 1.2% w/w respectively, indicating significant thermal degradation of drug during HME and 3D printing. Diffusion testing in Franz cells using a synthetic membrane revealed that the drug loaded printed samples released <187μg/cm(2) within 3h. FPLA-salicylic acid filament was successfully printed as a nose-shape mask by FDM 3DP, but the PCL-salicylic acid filament was not. In the SLA printing process, the drug was dissolved in different mixtures of poly(ethylene glycol) diacrylate (PEGDA) and poly(ethylene glycol) (PEG) that were solidified by the action of a laser beam. SLA printing led to 3D printed devices (nose-shape) with higher resolution and higher drug loading (1.9% w/w) than FDM, with no drug degradation. The results of drug diffusion tests revealed that drug diffusion was faster than with the FDM devices, 229 and 291μg/cm(2) within 3h for the two formulations evaluated. In this study, SLA printing was the more appropriate 3D printing technology to manufacture anti-acne devices with salicylic acid. The combination of 3D scanning and 3D printing has the potential to offer solutions to produce personalised drug loaded devices, adapted in shape and size to individual patients.

  15. Recent development of 3D display technology for new market

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Sik

    2003-11-01

    A multi-view 3D video processor was designed and implemented with several FPGAs for real-time applications and a projection-type 3D display was introduced for low-cost commercialization. One high resolution projection panel and only one projection lens is capable of displaying multiview autostereoscopic images. It can cope with various arrangements of 3D camera systems (or pixel arrays) and resolutions of 3D displays. This system shows high 3-D image quality in terms of resolution, brightness, and contrast so it is well suited for the commercialization in the field of game and advertisement market.

  16. Flatbed-type 3D display systems using integral imaging method

    NASA Astrophysics Data System (ADS)

    Hirayama, Yuzo; Nagatani, Hiroyuki; Saishu, Tatsuo; Fukushima, Rieko; Taira, Kazuki

    2006-10-01

    We have developed prototypes of flatbed-type autostereoscopic display systems using one-dimensional integral imaging method. The integral imaging system reproduces light beams similar of those produced by a real object. Our display architecture is suitable for flatbed configurations because it has a large margin for viewing distance and angle and has continuous motion parallax. We have applied our technology to 15.4-inch displays. We realized horizontal resolution of 480 with 12 parallaxes due to adoption of mosaic pixel arrangement of the display panel. It allows viewers to see high quality autostereoscopic images. Viewing the display from angle allows the viewer to experience 3-D images that stand out several centimeters from the surface of the display. Mixed reality of virtual 3-D objects and real objects are also realized on a flatbed display. In seeking reproduction of natural 3-D images on the flatbed display, we developed proprietary software. The fast playback of the CG movie contents and real-time interaction are realized with the aid of a graphics card. Realization of the safety 3-D images to the human beings is very important. Therefore, we have measured the effects on the visual function and evaluated the biological effects. For example, the accommodation and convergence were measured at the same time. The various biological effects are also measured before and after the task of watching 3-D images. We have found that our displays show better results than those to a conventional stereoscopic display. The new technology opens up new areas of application for 3-D displays, including arcade games, e-learning, simulations of buildings and landscapes, and even 3-D menus in restaurants.

  17. Novel fully integrated computer system for custom footwear: from 3D digitization to manufacturing

    NASA Astrophysics Data System (ADS)

    Houle, Pascal-Simon; Beaulieu, Eric; Liu, Zhaoheng

    1998-03-01

    This paper presents a recently developed custom footwear system, which integrates 3D digitization technology, range image fusion techniques, a 3D graphical environment for corrective actions, parametric curved surface representation and computer numerical control (CNC) machining. In this system, a support designed with the help of biomechanics experts can stabilize the foot in a correct and neutral position. The foot surface is then captured by a 3D camera using active ranging techniques. A software using a library of documented foot pathologies suggests corrective actions on the orthosis. Three kinds of deformations can be achieved. The first method uses previously scanned pad surfaces by our 3D scanner, which can be easily mapped onto the foot surface to locally modify the surface shape. The second kind of deformation is construction of B-Spline surfaces by manipulating control points and modifying knot vectors in a 3D graphical environment to build desired deformation. The last one is a manual electronic 3D pen, which may be of different shapes and sizes, and has an adjustable 'pressure' information. All applied deformations should respect a G1 surface continuity, which ensure that the surface can accustom a foot. Once the surface modification process is completed, the resulting data is sent to manufacturing software for CNC machining.

  18. Integrating 3D Visualization and GIS in Planning Education

    ERIC Educational Resources Information Center

    Yin, Li

    2010-01-01

    Most GIS-related planning practices and education are currently limited to two-dimensional mapping and analysis although 3D GIS is a powerful tool to study the complex urban environment in its full spatial extent. This paper reviews current GIS and 3D visualization uses and development in planning practice and education. Current literature…

  19. Integrating 3D Visualization and GIS in Planning Education

    ERIC Educational Resources Information Center

    Yin, Li

    2010-01-01

    Most GIS-related planning practices and education are currently limited to two-dimensional mapping and analysis although 3D GIS is a powerful tool to study the complex urban environment in its full spatial extent. This paper reviews current GIS and 3D visualization uses and development in planning practice and education. Current literature…

  20. 3D body scanning technology for fashion and apparel industry

    NASA Astrophysics Data System (ADS)

    D'Apuzzo, Nicola

    2007-01-01

    This paper presents an overview of 3D body scanning technologies with applications to the fashion and apparel industry. Complete systems for the digitization of the human body exist since more than fifteen years. One of the main users of this technology with application in the textile field was the military industry. In fact, body scanning technology is being successfully employed since many years in military bases for a fast selection of the correct size of uniforms for the entire staff. Complete solutions were especially developed for this field of application. Many different research projects were issued for the exploitation of the same technology in the commercial field. Experiments were performed and start-up projects are to time running in different parts of the world by installing full body scanning systems in various locations such as shopping malls, boutiques or dedicated scanning centers. Everything is actually ready to be exploited and all the required hardware, software and solutions are available: full body scanning systems, software for the automatic and reliable extraction of body measurements, e-kiosk and web solutions for the presentation of garments, high-end and low-end virtual-try-on systems. However, complete solutions in this area have still not yet found the expected commercial success. Today, with the on-going large cost reduction given by the appearance of new competitors, methods for digitization of the human body becomes more interesting for the fashion and apparel industry. Therefore, a large expansion of these technologies is expected in the near future. To date, different methods are used commercially for the measurement of the human body. These can be divided into three major distinguished groups: laser-scanning, projection of light patterns, combination modeling and image processing. The different solutions have strengths and weaknesses that profile their suitability for specific applications. This paper gives an overview of their

  1. An integrated 3D log processing optimization system for small sawmills in central Appalachia

    Treesearch

    Wenshu Lin; Jingxin. Wang

    2013-01-01

    An integrated 3D log processing optimization system was developed to perform 3D log generation, opening face determination, headrig log sawing simulation, fl itch edging and trimming simulation, cant resawing, and lumber grading. A circular cross-section model, together with 3D modeling techniques, was used to reconstruct 3D virtual logs. Internal log defects (knots)...

  2. A measurement method for micro 3D shape based on grids-processing and stereovision technology

    NASA Astrophysics Data System (ADS)

    Li, Chuanwei; Liu, Zhanwei; Xie, Huimin

    2013-04-01

    An integrated measurement method for micro 3D surface shape by a combination of stereovision technology in a scanning electron microscope (SEM) and grids-processing methodology is proposed. The principle of the proposed method is introduced in detail. By capturing two images of the tested specimen with grids on the surface at different tilt angles in an SEM, the 3D surface shape of the specimen can be obtained. Numerical simulation is applied to analyze the feasibility of the proposed method. A validation experiment is performed here. The surface shape of the metal-wire/polymer-membrane structures with thermal deformation is reconstructed. By processing the surface grids of the specimen, the out-of-plane displacement field of the specimen surface is also obtained. Compared with the measurement results obtained by a 3D digital microscope, the experimental error of the proposed method is discussed

  3. 3D printing technology used in severe hip deformity.

    PubMed

    Wang, Shanshan; Wang, Li; Liu, Yan; Ren, Yongfang; Jiang, Li; Li, Yan; Zhou, Hao; Chen, Jie; Jia, Wenxiao; Li, Hui

    2017-09-01

    This study was designed to assess the use of a 3D printing technique in total hip arthroplasty (THA) for severe hip deformities, where new and improved approaches are needed. THAs were performed from January 2015 to December 2016. Bioprosthesis artificial hip joints were used in both conventional and 3D printing hip arthroplasties. A total of 74 patients (57 cases undergoing conventional hip replacements and 17 undergoing 3D printing hip replacements) were followed-up for an average of 24 months. The average age of the patients was 62.7 years. Clinical data between the patients treated with different approaches were compared. Results showed that the time to postoperative weight bearing and the Harris scores of the patients in the 3D printing group were better than those for patients in the conventional hip replacement group. Unfortunately, the postoperative infection and loosening rates were higher in the 3D printing group. However, there were no significant differences in femoral neck anteversion, neck shaft, acetabular or sharp angles between ipsilateral and contralateral sides in the 3D printing group (P>0.05). The femoral neck anteversion angle was significantly different between the two sides in the conventional hip replacement group (P<0.05). Based on these results, we suggest that the 3D printing approach provides a better short-term curative effect that is more consistent with the physiological structure and anatomical characteristics of the patient, and we anticipate that its use will help improve the lives of many patients.

  4. 3D printing technology using high viscous materials - Synthesis of functional materials and fabrication of 3D metal structure

    NASA Astrophysics Data System (ADS)

    Hong, Seongik

    In the 3D printing technology, the research for using various materials has been performing. In this research work, 3D printable high viscous materials are suggested as one of the solutions for problems in the traditional 3D printing technology. First, Cu-Ag coreshell was synthesized as a functional material. In terms of the reaction rate, reaction rate limiting step was defined as a fundamental research, and then prepared Cu-Ag coreshell was printed and analyzed. Second, the high viscous Cu paste was prepared and then metal 3D printed structure was fabricated by using new printing method. In the synthesis of Cu-Ag coreshell, different sizes of Cu particle, 2μm and 100nm were used, and when 2μm Cu was applied, the reaction rate was limited by film diffusion control. However, when 100nm Cu was applied, reaction rate was controlled by CuO film and the rate of the reaction, which includes removing CuO film in the solution, is limited by chemical reaction control. The shape of Cu-Ag particle is spherical in the 2μm Cu condition and dendrite shape in the 100nm Cu condition respectively. The conductivity of Cu-Ag coreshell paste increased as increasing content of coreshell particle in the paste and sintering temperature. In order to print high viscous metal paste, the high viscous Cu paste was printed by using screw extruder, and the viscosity of Cu paste was measured as a fundamental research. As increasing wt.% of Cu in the paste, the viscosity also increased. In addition, the shrinkage factor was reduced by increasing wt.% of Cu in the paste. An optimized printing condition for the high viscous material was obtained, and by using this condition, 3D metal structure was fabricated. The final product was heat treated and polished. Through these processes, a fine quality of metal 3D structure was printed.

  5. Integration of GPR and Laser Position Sensors for Real-Time 3D Data Fusion

    NASA Astrophysics Data System (ADS)

    Grasmueck, M.; Viggiano, D.

    2005-05-01

    Non-invasive 3D imaging visualizes anatomy and contents inside objects. Such tools are a commodity for medical doctors diagnosing a patient's health without scalpel and airport security staff inspecting the contents of baggage without opening. For geologists, hydrologists, archeologists and engineers wanting to see inside the shallow subsurface, such 3D tools are still a rarity. Theory and practice show that full-resolution 3D Ground Penetrating Radar (GPR) imaging requires unaliased recording of dipping reflections and diffractions. For a heterogeneous subsurface, minimum grid spacing of GPR measurements should be at least quarter wavelength or less in all directions. Consequently, positioning precision needs to be better than eighth wavelength for correct grid point assignment. Until now 3D GPR imaging has not been practical: data acquisition and processing took weeks to months, data analysis required geophysical training with no versatile 3D systems commercially available. We have integrated novel rotary laser positioning technology with GPR into a highly efficient and simple to use 3D imaging system. The laser positioning enables acquisition of centimeter accurate x, y, and z coordinates from multiple small detectors attached to moving GPR antennae. Positions streaming with 20 updates/second from each detector are fused in real-time with the GPR data. We developed software for automated data acquisition and real-time 3D GPR data quality control on slices at selected depths. Standard formatted (SEGY) data cubes and animations are generated within an hour after the last trace has been acquired. Examples can be seen at www.3dgpr.info. Such instant 3D GPR can be used as an on-site imaging tool supporting field work, hypothesis testing, and optimal sample collection. Rotary laser positioning has the flexibility to be integrated with multiple moving GPR antennae and other geophysical sensors enabling simple and efficient high resolution 3D data acquisition at

  6. Visualization of gravitational potential wells using 3D printing technology

    NASA Astrophysics Data System (ADS)

    Su, Jun; Wang, Weiguo; Lu, Meishu; Xu, Xinran; Yan, Qi Fan; Lu, Jianlong

    2016-12-01

    There have been many studies of the dynamics of a ball rolling on different types of surfaces. Most of these studies have been theoretical, with only a few experimental. We have found that 3D printing offers a novel experimental approach to investigating this topic. In this paper, we use a 3D printer to create four different surfaces and experimentally investigate the dynamics of a ball rolling on these surfaces. Our results are then compared to theory.

  7. Generation of Multi-Scale Vascular Network System within 3D Hydrogel using 3D Bio-Printing Technology.

    PubMed

    Lee, Vivian K; Lanzi, Alison M; Haygan, Ngo; Yoo, Seung-Schik; Vincent, Peter A; Dai, Guohao

    2014-09-01

    Although 3D bio-printing technology has great potential in creating complex tissues with multiple cell types and matrices, maintaining the viability of thick tissue construct for tissue growth and maturation after the printing is challenging due to lack of vascular perfusion. Perfused capillary network can be a solution for this issue; however, construction of a complete capillary network at single cell level using the existing technology is nearly impossible due to limitations in time and spatial resolution of the dispensing technology. To address the vascularization issue, we developed a 3D printing method to construct larger (lumen size of ~1mm) fluidic vascular channels and to create adjacent capillary network through a natural maturation process, thus providing a feasible solution to connect the capillary network to the large perfused vascular channels. In our model, microvascular bed was formed in between two large fluidic vessels, and then connected to the vessels by angiogenic sprouting from the large channel edge. Our bio-printing technology has a great potential in engineering vascularized thick tissues and vascular niches, as the vascular channels are simultaneously created while cells and matrices are printed around the channels in desired 3D patterns.

  8. Femtosecond laser 3D nanofabrication in glass: enabling direct write of integrated micro/nanofluidic chips

    NASA Astrophysics Data System (ADS)

    Cheng, Ya; Liao, Yang; Sugioka, Koji

    2014-03-01

    The creation of complex three-dimensional (3D) fluidic systems composed of hollow micro- and nanostructures embedded in transparent substrates has attracted significant attention from both scientific and applied research communities. However, it is by now still a formidable challenge to build 3D micro- and nanofluidic structures with arbitrary configurations using conventional planar lithographic fabrication methods. As a direct and maskless fabrication technique, femtosecond laser micromachining provides a straightforward approach for high-precision spatial-selective modification inside transparent materials through nonlinear optical absorption. Here, we demonstrate rapid fabrication of high-aspect-ratio micro- and/or nanofluidic structures with various 3D configurations in glass substrates by femtosecond laser direct writing. Based on this approach, we demonstrate several functional micro- and nanofluidic devices including a 3D passive microfluidic mixer, a capillary electrophoresis (CE) analysis chip, and an integrated micro-nanofluidic system for single DNA analysis. This technology offers new opportunities to develop novel 3D micro-nanofluidic systems for a variety of lab-on-a-chip applications.

  9. Integration of 3D photogrammetric outcrop models in the reservoir modelling workflow

    NASA Astrophysics Data System (ADS)

    Deschamps, Remy; Joseph, Philippe; Lerat, Olivier; Schmitz, Julien; Doligez, Brigitte; Jardin, Anne

    2014-05-01

    3D technologies are now widely used in geosciences to reconstruct outcrops in 3D. The technology used for the 3D reconstruction is usually based on Lidar, which provides very precise models. Such datasets offer the possibility to build well-constrained outcrop analogue models for reservoir study purposes. The photogrammetry is an alternate methodology which principles are based in determining the geometric properties of an object from photographic pictures taken from different angles. Outcrop data acquisition is easy, and this methodology allows constructing 3D outcrop models with many advantages such as: - light and fast acquisition, - moderate processing time (depending on the size of the area of interest), - integration of field data and 3D outcrops into the reservoir modelling tools. Whatever the method, the advantages of digital outcrop model are numerous as already highlighted by Hodgetts (2013), McCaffrey et al. (2005) and Pringle et al. (2006): collection of data from otherwise inaccessible areas, access to different angles of view, increase of the possible measurements, attributes analysis, fast rate of data collection, and of course training and communication. This paper proposes a workflow where 3D geocellular models are built by integrating all sources of information from outcrops (surface picking, sedimentological sections, structural and sedimentary dips…). The 3D geomodels that are reconstructed can be used at the reservoir scale, in order to compare the outcrop information with subsurface models: the detailed facies models of the outcrops are transferred into petrophysical and acoustic models, which are used to test different scenarios of seismic and fluid flow modelling. The detailed 3D models are also used to test new techniques of static reservoir modelling, based either on geostatistical approaches or on deterministic (process-based) simulation techniques. A modelling workflow has been designed to model reservoir geometries and properties from

  10. 3D hydrodynamic focusing microfluidics for emerging sensing technologies.

    PubMed

    Daniele, Michael A; Boyd, Darryl A; Mott, David R; Ligler, Frances S

    2015-05-15

    While the physics behind laminar flows has been studied for 200 years, understanding of how to use parallel flows to augment the capabilities of microfluidic systems has been a subject of study primarily over the last decade. The use of one flow to focus another within a microfluidic channel has graduated from a two-dimensional to a three-dimensional process and the design principles are only now becoming established. This review explores the underlying principles for hydrodynamic focusing in three dimensions (3D) using miscible fluids and the application of these principles for creation of biosensors, separation of cells and particles for sample manipulation, and fabrication of materials that could be used for biosensors. Where sufficient information is available, the practicality of devices implementing fluid flows directed in 3D is evaluated and the advantages and limitations of 3D hydrodynamic focusing for the particular application are highlighted.

  11. Advanced optical 3D scanners using DMD technology

    NASA Astrophysics Data System (ADS)

    Muenstermann, P.; Godding, R.; Hermstein, M.

    2017-02-01

    Optical 3D measurement techniques are state-of-the-art for highly precise, non-contact surface scanners - not only in industrial development, but also in near-production and even in-line configurations. The need for automated systems with very high accuracy and clear implementation of national precision standards is growing extremely due to expanding international quality guidelines, increasing production transparency and new concepts related to the demands of the fourth industrial revolution. The presentation gives an overview about the present technical concepts for optical 3D scanners and their benefit for customers and various different applications - not only in quality control, but also in design centers or in medical applications. The advantages of DMD-based systems will be discussed and compared to other approaches. Looking at today's 3D scanner market, there is a confusing amount of solutions varying from lowprice solutions to high end systems. Many of them are linked to a very special target group or to special applications. The article will clarify the differences of the approaches and will discuss some key features which are necessary to render optical measurement systems suitable for industrial environments. The paper will be completed by examples for DMDbased systems, e. g. RGB true-color systems with very high accuracy like the StereoScan neo of AICON 3D Systems. Typical applications and the benefits for customers using such systems are described.

  12. Integration of 3D intraoperative ultrasound for enhanced neuronavigation

    NASA Astrophysics Data System (ADS)

    Paulsen, Keith D.; Ji, Songbai; Hartov, Alex; Fan, Xiaoyao; Roberts, David W.

    2012-03-01

    True three-dimensional (3D) volumetric ultrasound (US) acquisitions stand to benefit intraoperative neuronavigation on multiple fronts. While traditional two-dimensional (2D) US and its tracked, hand-swept version have been recognized for many years to advantage significantly image-guided neurosurgery, especially when coregistered with preoperative MR scans, its unregulated and incomplete sampling of the surgical volume of interest have limited certain intraoperative uses of the information that are overcome through direct volume acquisition (i.e., through 2D scan-head transducer arrays). In this paper, we illustrate several of these advantages, including image-based intraoperative registration (and reregistration) and automated, volumetric displacement mapping for intraoperative image updating. These applications of 3D US are enabled by algorithmic advances in US image calibration, and volume rasterization and interpolation for multi-acquisition synthesis that will also be highlighted. We expect to demonstrate that coregistered 3D US is well worth incorporating into the standard neurosurgical navigational environment relative to traditional tracked, hand-swept 2D US.

  13. A 3D integral imaging optical see-through head-mounted display.

    PubMed

    Hua, Hong; Javidi, Bahram

    2014-06-02

    An optical see-through head-mounted display (OST-HMD), which enables optical superposition of digital information onto the direct view of the physical world and maintains see-through vision to the real world, is a vital component in an augmented reality (AR) system. A key limitation of the state-of-the-art OST-HMD technology is the well-known accommodation-convergence mismatch problem caused by the fact that the image source in most of the existing AR displays is a 2D flat surface located at a fixed distance from the eye. In this paper, we present an innovative approach to OST-HMD designs by combining the recent advancement of freeform optical technology and microscopic integral imaging (micro-InI) method. A micro-InI unit creates a 3D image source for HMD viewing optics, instead of a typical 2D display surface, by reconstructing a miniature 3D scene from a large number of perspective images of the scene. By taking advantage of the emerging freeform optical technology, our approach will result in compact, lightweight, goggle-style AR display that is potentially less vulnerable to the accommodation-convergence discrepancy problem and visual fatigue. A proof-of-concept prototype system is demonstrated, which offers a goggle-like compact form factor, non-obstructive see-through field of view, and true 3D virtual display.

  14. Tipping solutions: emerging 3D nano-fabrication/ -imaging technologies

    NASA Astrophysics Data System (ADS)

    Seniutinas, Gediminas; Balčytis, Armandas; Reklaitis, Ignas; Chen, Feng; Davis, Jeffrey; David, Christian; Juodkazis, Saulius

    2017-06-01

    The evolution of optical microscopy from an imaging technique into a tool for materials modification and fabrication is now being repeated with other characterization techniques, including scanning electron microscopy (SEM), focused ion beam (FIB) milling/imaging, and atomic force microscopy (AFM). Fabrication and in situ imaging of materials undergoing a three-dimensional (3D) nano-structuring within a 1-100 nm resolution window is required for future manufacturing of devices. This level of precision is critically in enabling the cross-over between different device platforms (e.g. from electronics to micro-/nano-fluidics and/or photonics) within future devices that will be interfacing with biological and molecular systems in a 3D fashion. Prospective trends in electron, ion, and nano-tip based fabrication techniques are presented.

  15. 3D in vitro technology for drug discovery.

    PubMed

    Hosseinkhani, Hossein

    2012-02-01

    Three-dimensional (3D) in vitro systems that can mimic organ and tissue structure and function in vivo, will be of great benefit for a variety of biological applications from basic biology to toxicity testing and drug discovery. There have been several attempts to generate 3D tissue models but most of these models require costly equipment, and the most serious disadvantage in them is that they are too far from the mature human organs in vivo. Because of these problems, research and development in drug discovery, toxicity testing and biotech industries are highly expensive, and involve sacrifice of countless animals and it takes several years to bring a single drug/product to the market or to find the toxicity or otherwise of chemical entities. Our group has been actively working on several alternative models by merging biomaterials science, nanotechnology and biological principles to generate 3D in vitro living organs, to be called "Human Organs-on-Chip", to mimic natural organ/tissues, in order to reduce animal testing and clinical trials. We have fabricated a novel type of mechanically and biologically bio-mimicking collagen-based hydrogel that would provide for interconnected mini-wells in which 3D cell/organ culture of human samples in a manner similar to human organs with extracellular matrix (ECM) molecules would be possible. These products mimic the physical, chemical, and biological properties of natural organs and tissues at different scales. This paper will review the outcome of our several experiments so far in this direction and the future perspectives.

  16. Mobile 3D laser scanning technology application in the surveying of urban underground rail transit

    NASA Astrophysics Data System (ADS)

    Han, Youmei; Yang, Bogang; Zhen, Yinan

    2016-11-01

    Mobile 3D laser scanning technology is one hot kind of digital earth technology. 3D completion surveying is relative new concept in surveying and mapping. A kind of mobile 3D laser scanning system was developed for the urban underground rail 3D completion surveying. According to the characteristics of underground rail environment and the characters of the mobile laser scanning system, it designed a suitable test scheme to improving the accuracy of this kind of mobile laser scanning system when it worked under no GPS signal environment. Then it completed the application of this technology in the No.15 rail 3D completion surveying. Meanwhile a set of production process was made for the 3D completion surveying based on this kind of mobile 3D laser scanning technology. These products were also proved the efficiency of the new technology in the rail 3D completion surveying. Using mobile 3D laser scanning technology to complete underground rail completion surveying has been the first time in China until now. It can provide a reference for 3D measurement of rail completion surveying or the 3D completion surveying of other areas.

  17. 3D Printing-Based Integrated Water Quality Sensing System

    PubMed Central

    Banna, Muinul; Bera, Kaustav; Sochol, Ryan; Lin, Liwei; Najjaran, Homayoun; Sadiq, Rehan; Hoorfar, Mina

    2017-01-01

    The online and accurate monitoring of drinking water supply networks is critically in demand to rapidly detect the accidental or deliberate contamination of drinking water. At present, miniaturized water quality monitoring sensors developed in the laboratories are usually tested under ambient pressure and steady-state flow conditions; however, in Water Distribution Systems (WDS), both the pressure and the flowrate fluctuate. In this paper, an interface is designed and fabricated using additive manufacturing or 3D printing technology—material extrusion (Trade Name: fused deposition modeling, FDM) and material jetting—to provide a conduit for miniaturized sensors for continuous online water quality monitoring. The interface is designed to meet two main criteria: low pressure at the inlet of the sensors and a low flowrate to minimize the water bled (i.e., leakage), despite varying pressure from WDS. To meet the above criteria, a two-dimensional computational fluid dynamics model was used to optimize the geometry of the channel. The 3D printed interface, with the embedded miniaturized pH and conductivity sensors, was then tested at different temperatures and flowrates. The results show that the response of the pH sensor is independent of the flowrate and temperature. As for the conductivity sensor, the flowrate and temperature affect only the readings at a very low conductivity (4 µS/cm) and high flowrates (30 mL/min), and a very high conductivity (460 µS/cm), respectively. PMID:28594387

  18. 3-D display and transmission technologies for telemedicine applications: a review.

    PubMed

    Liu, Qiang; Sclabassi, Robert J; Favalora, Gregg E; Sun, Mingui

    2008-03-01

    Three-dimensional (3-D) visualization technologies have been widely commercialized. These technologies have great potential in a number of telemedicine applications, such as teleconsultation, telesurgery, and remote patient monitoring. This work presents an overview of the state-of-the-art 3-D display devices and related 3-D image/video transmission technologies with the goal of enhancing their utilization in medical applications.

  19. A 3D Model of the Thermoelectric Microwave Power Sensor by MEMS Technology

    PubMed Central

    Yi, Zhenxiang; Liao, Xiaoping

    2016-01-01

    In this paper, a novel 3D model is proposed to describe the temperature distribution of the thermoelectric microwave power sensor. In this 3D model, the heat flux density decreases from the upper surface to the lower surface of the GaAs substrate while it was supposed to be a constant in the 2D model. The power sensor is fabricated by a GaAs monolithic microwave integrated circuit (MMIC) process and micro-electro-mechanical system (MEMS) technology. The microwave performance experiment shows that the S11 is less than −26 dB over the frequency band of 1–10 GHz. The power response experiment demonstrates that the output voltage increases from 0 mV to 27 mV, while the incident power varies from 1 mW to 100 mW. The measured sensitivity is about 0.27 mV/mW, and the calculated result from the 3D model is 0.28 mV/mW. The relative error has been reduced from 7.5% of the 2D model to 3.7% of the 3D model. PMID:27338395

  20. A 3D Model of the Thermoelectric Microwave Power Sensor by MEMS Technology.

    PubMed

    Yi, Zhenxiang; Liao, Xiaoping

    2016-06-21

    In this paper, a novel 3D model is proposed to describe the temperature distribution of the thermoelectric microwave power sensor. In this 3D model, the heat flux density decreases from the upper surface to the lower surface of the GaAs substrate while it was supposed to be a constant in the 2D model. The power sensor is fabricated by a GaAs monolithic microwave integrated circuit (MMIC) process and micro-electro-mechanical system (MEMS) technology. The microwave performance experiment shows that the S11 is less than -26 dB over the frequency band of 1-10 GHz. The power response experiment demonstrates that the output voltage increases from 0 mV to 27 mV, while the incident power varies from 1 mW to 100 mW. The measured sensitivity is about 0.27 mV/mW, and the calculated result from the 3D model is 0.28 mV/mW. The relative error has been reduced from 7.5% of the 2D model to 3.7% of the 3D model.

  1. Novel through-silicon vias for enhanced signal integrity in 3D integrated systems

    NASA Astrophysics Data System (ADS)

    Runiu, Fang; Xin, Sun; Min, Miao; Yufeng, Jin

    2016-10-01

    In this paper, a new type of through-silicon via (TSV) for via-first process namely bare TSV, is proposed and analyzed with the aim of mitigating noise coupling problems in 3D integrated systems for advanced technology nodes. The bare TSVs have no insulation layers, and are divided into two types: bare signal TSVs and bare ground TSVs. First, by solving Poisson's equation for cylindrical P-N junctions, the bare signal TSVs are shown to be equivalent to conventional signal TSVs according to the simulation results. Then the bare ground TSV is proved to have improved noise-absorption capability when compared with a conventional ground TSV. Also, the proposed bare TSVs offer more advantages to circuits than other noise isolation methods, because the original circuit design, routing and placement can be retained after the application of the bare TSVs. Project supported by the National Basic Research Program of China (No. 2015CB0572), and the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions (No. CIT&TCD20150320), and the National Natural Science Foundation of China (No. 61176102).

  2. Evaluating stereoacuity with 3D shutter glasses technology.

    PubMed

    Wu, Huang; Jin, Han; Sun, Ying; Wang, Yang; Ge, Min; Chen, Yang; Chi, Yunfeng

    2016-04-26

    To determine the stereoacuity threshold with a 3D laptop equipped with 3D shutter glasses, and to evaluate the effect of different shape and size of test symbols and different type of disparities to stereoacuity. Thirty subjects with a visual acuity in each eye of at least 0 logMAR and a stereoacuity of at least 32 arcsec (as assessed in Fly Stereo Acuity Test) were recruited. Three target symbols-tumbling "E", tumbling "C", and "□"-were displayed, each with six different sizes representing a visual acuity ranging from 0.5 to 0 logMAR when tested at 4.1 m, and with both crossed and uncrossed disparities. Two test systems were designed - fixed distance of 4.1 m and one for variable distance. The former has disparities ranging from 10 to 1000 arcsec. Each subject completed 36 trials to investigate the effect of different symbol sizes and shapes, and disparity types on stereoacuity. In the variable distance system, each subject was tested 12 times for the same purposes, both proximally and distally (the point where the 3D effect just appears and where it just disappears respectively), and the mean value was calculated from the mean proximal and distal distances. No significant difference was found among the groups in the fixed distance test system (Kruskal-Wallis test; Chi-square = 29.844, P = 0.715). Similarly, no significant difference was found in the variable distance system (Kruskal-Wallis test; proximal: Chi-square = 5.687, P = 0.338; distal: Chi-square = 5.898, P = 0.316; mean: Chi-square = 6.152, P = 0.292). Evaluating stereoacuity using this measurement system was convenient and effective. Changes in target shape and size and disparity types had no significant effect on stereoacuity. It would be helpful to choose optimal targets according to different purposes using computer-assisted 3D measurements.

  3. Flow integration transform: detecting shapes in matrix-array 3D ultrasound data

    NASA Astrophysics Data System (ADS)

    Stetten, George D.; Caines, Michael; von Ramm, Olaf T.

    1995-03-01

    Matrix-array ultrasound produces real-time 3D images of the heart, by employing a square array of transducers to steer the ultrasound beam in three dimensions electronically with no moving parts. Other 3D modalities such as MR, MUGA, and CT require the use of gated studies, which combine many cardiac cycles to produce a single average cycle. Three- dimensional ultrasound eliminates this restriction, in theory permitting the continuous measurement of cardiac ventricular volume, which we call the volumetricardiogram. Towards implementing the volumetricardiogram, we have developed the flow integration transform (FIT), which operates on a 2D slice within the volumetric ultrasound data. The 3D ultrasound machine's scan converter produces a set of such slices in real time, at any desired location and orientation, to which the FIT may then be applied. Although lacking rotational or scale invariance, the FIT is designed to operate in dedicated hardware where an entire transform could be completed within a few microseconds with present integrated circuit technology. This speed would permit the application of a large battery of test shapes, or the evolution of the test shape to converge on that of the actual target.

  4. 3-D visualization and animation technologies in anatomical imaging

    PubMed Central

    McGhee, John

    2010-01-01

    This paper explores a 3-D computer artist’s approach to the creation of three-dimensional computer-generated imagery (CGI) derived from clinical scan data. Interpretation of scientific imagery, such as magnetic resonance imaging (MRI), is restricted to the eye of the trained medical practitioner in a clinical or scientific context. In the research work described here, MRI data are visualized and interpreted by a 3-D computer artist using the tools of the digital animator to navigate image complexity and widen interaction. In this process, the artefact moves across disciplines; it is no longer tethered to its diagnostic origins. It becomes an object that has visual attributes such as light, texture and composition, and a visual aesthetic of its own. The introduction of these visual attributes provides a platform for improved accessibility by a lay audience. The paper argues that this more artisan approach to clinical data visualization has a potential real-world application as a communicative tool for clinicians and patients during consultation. PMID:20002229

  5. 3-D visualization and animation technologies in anatomical imaging.

    PubMed

    McGhee, John

    2010-02-01

    This paper explores a 3-D computer artist's approach to the creation of three-dimensional computer-generated imagery (CGI) derived from clinical scan data. Interpretation of scientific imagery, such as magnetic resonance imaging (MRI), is restricted to the eye of the trained medical practitioner in a clinical or scientific context. In the research work described here, MRI data are visualized and interpreted by a 3-D computer artist using the tools of the digital animator to navigate image complexity and widen interaction. In this process, the artefact moves across disciplines; it is no longer tethered to its diagnostic origins. It becomes an object that has visual attributes such as light, texture and composition, and a visual aesthetic of its own. The introduction of these visual attributes provides a platform for improved accessibility by a lay audience. The paper argues that this more artisan approach to clinical data visualization has a potential real-world application as a communicative tool for clinicians and patients during consultation.

  6. P-Cable: New High-Resolution 3D Seismic Acquisition Technology

    NASA Astrophysics Data System (ADS)

    Planke, Sverre; Berndt, Christian; Mienert, Jürgen; Bünz, Stefan; Eriksen, Frode N.; Eriksen, Ola K.

    2010-05-01

    We have developed a new cost-efficient technology for acquisition of high-resolution 3D seismic data: the P-Cable system. This technology is very well suited for deep water exploration, site surveys, and studies of shallow gas and fluid migration associated with gas hydrates or leaking reservoirs. It delivers unparalleled 3D seismic images of subsurface sediment architectures. The P-Cable system consists of a seismic cable towed perpendicular to a vessel's steaming direction. This configuration allows us to image an up to 150 m wide swath of the sub-surface for each sail line. Conventional 3D seismic technology relies on several very long streamers (up to 10 km long streamers are common), large sources, and costly operations. In contrast, the P-Cable system is light-weight and fast to deploy from small vessels. Only a small source is required as the system is made for relatively shallow imaging, typically above the first water-bottom multiple. The P-Cable system is particularly useful for acquisition of small 3D cubes, 10-50 km2, in focus areas, rather than extensive mapping of large regions. The rapid deployment and recovery of the system makes it possible to acquire several small cubes (10 to 30 km2) with high-resolution (50-250 Hz) seismic data in during one cruise. The first development of the P-Cable system was a cooperative project achieved by Volcanic Basin Petroleum Research (VBPR), University of Tromsø, National Oceanography Centre, Southampton, and industry partners. Field trials using a 12-streamer system were conducted on sites with active fluid-leakage systems on the Norwegian-Barents-Svalbard margin, the Gulf of Cadiz, and the Mediterranean. The second phase of the development introduced digital streamers. The new P-Cable2 system also includes integrated tow and cross cables for power and data transmission and improved doors to spread the larger cross cable. This digital system has been successfully used during six cruises by the University of Troms

  7. Galerkin Boundary Integral Analysis for the 3D Helmholtz Equation

    SciTech Connect

    Swager, Melissa; Gray, Leonard J; Nintcheu Fata, Sylvain

    2010-01-01

    A linear element Galerkin boundary integral analysis for the three-dimensional Helmholtz equation is presented. The emphasis is on solving acoustic scattering by an open (crack) surface, and to this end both a dual equation formulation and a symmetric hypersingular formulation have been developed. All singular integrals are defined and evaluated via a boundary limit process, facilitating the evaluation of the (finite) hypersingular Galerkin integral. This limit process is also the basis for the algorithm for post-processing of the surface gradient. The analytic integrations required by the limit process are carried out by employing a Taylor series expansion for the exponential factor in the Helmholtz fundamental solutions. For the open surface, the implementations are validated by comparing the numerical results obtained by using the two different methods.

  8. 3D integral imaging using diffractive Fresnel lens arrays.

    PubMed

    Hain, Mathias; von Spiegel, Wolff; Schmiedchen, Marc; Tschudi, Theo; Javidi, Bahram

    2005-01-10

    We present experimental results with binary amplitude Fresnel lens arrays and binary phase Fresnel lens arrays used to implement integral imaging systems. Their optical performance is compared with high quality refractive microlens arrays and pinhole arrays in terms of image quality, color distortion and contrast. Additionally, we show the first experimental results of lens arrays with different focal lengths in integral imaging, and discuss their ability to simultaneously increase both the depth of focus and the field of view.

  9. Integration of a 3D perspective view in the navigation display: featuring pilot's mental model

    NASA Astrophysics Data System (ADS)

    Ebrecht, L.; Schmerwitz, S.

    2015-05-01

    Synthetic vision systems (SVS) appear as spreading technology in the avionic domain. Several studies prove enhanced situational awareness when using synthetic vision. Since the introduction of synthetic vision a steady change and evolution started concerning the primary flight display (PFD) and the navigation display (ND). The main improvements of the ND comprise the representation of colored ground proximity warning systems (EGPWS), weather radar, and TCAS information. Synthetic vision seems to offer high potential to further enhance cockpit display systems. Especially, concerning the current trend having a 3D perspective view in a SVS-PFD while leaving the navigational content as well as methods of interaction unchanged the question arouses if and how the gap between both displays might evolve to a serious problem. This issue becomes important in relation to the transition and combination of strategic and tactical flight guidance. Hence, pros and cons of 2D and 3D views generally as well as the gap between the egocentric perspective 3D view of the PFD and the exocentric 2D top and side view of the ND will be discussed. Further a concept for the integration of a 3D perspective view, i.e., bird's eye view, in synthetic vision ND will be presented. The combination of 2D and 3D views in the ND enables a better correlation of the ND and the PFD. Additionally, this supports the building of pilot's mental model. The authors believe it will improve the situational and spatial awareness. It might prove to further raise the safety margin when operating in mountainous areas.

  10. Calcaneal osteotomy preoperative planning system with 3D full-sized computer-assisted technology.

    PubMed

    Chou, Yi-Jiun; Sun, Shuh-Ping; Liu, Hsin-Hua

    2011-10-01

    In this study, we developed a CT-based computer-assisted pre-operative planning and simulating system for the calcaneal osteotomy by integrating different software's function. This system uses the full-scaled 3D reverse engineering technique in designing and developing preoperative planning modules for the calcaneal osteotomy surgery. The planning system presents a real-sized three-dimensional image of the calcaneus, and provides detailed interior measurements of the calcaneus from various cutting planes. This study applied computer-assisted technology to integrate different software's function to a surgical planning system. These functions include 3-D image model capturing, cutting, moving, rotating and measurement for relevant foot anatomy, and can be integrated as the user's function. Furthermore, the system is computer-based and computer-assisted technology. Surgeons can utilize it as part of preoperative planning to develop efficient operative procedures. This system also has a database that can be updated and extended and will provide the clinical cases to different users for experienced based learning.

  11. 3D probe array integrated with a front-end 100-channel neural recording ASIC

    NASA Astrophysics Data System (ADS)

    Cheng, Ming-Yuan; Yao, Lei; Tan, Kwan Ling; Lim, Ruiqi; Li, Peng; Chen, Weiguo

    2014-12-01

    Brain-machine interface technology can improve the lives of spinal cord injury victims and amputees. A neural interface system, consisting of a 3D probe array and a custom low-power (1 mW) 100-channel (100-ch) neural recording application-specific integrated circuit (ASIC), was designed and implemented to monitor neural activity. In this study, a microassembly 3D probe array method using a novel lead transfer technique was proposed to overcome the bonding plane mismatch encountered during orthogonal assembly. The proposed lead transfer technique can be completed using standard micromachining and packaging processes. The ASIC can be stacking-integrated with the probe array, minimizing the form factor of the assembled module. To minimize trauma to brain cells, the profile of the integrated probe array was controlled within 730 μm. The average impedance of the assembled probe was approximately 0.55 MΩ at 1 kHz. To verify the functionality of the integrated neural probe array, bench-top signal acquisitions were performed and discussed.

  12. 3D modeling of a dolerite intrusion from the photogrammetric and geophysical data integration.

    NASA Astrophysics Data System (ADS)

    Duarte, João; Machadinho, Ana; Figueiredo, Fernando; Mira, Maria

    2015-04-01

    The aims of this study is create a methodology based on the integration of data obtained from various available technologies, which allow a credible and complete evaluation of rock masses. In this particular case of a dolerite intrusion, which deployed an exploration of aggregates and belongs to the Jobasaltos - Extracção e Britagem. S.A.. Dolerite intrusion is situated in the volcanic complex of Serra de Todo-o-Mundo, Casais Gaiola, intruded in Jurassic sandstones. The integration of the surface and subsurface mapping, obtained by technology UAVs (Drone) and geophysical surveys (Electromagnetic Method - TEM 48 FAST), allows the construction of 2D and 3D models of the study local. The combination of the 3D point clouds produced from two distinct processes, modeling of photogrammetric and geophysical data, will be the basis for the construction of a single model of set. The rock masses in an integral perspective being visible their development above the surface and subsurface. The presentation of 2D and 3D models will give a perspective of structures, fracturation, lithology and their spatial correlations contributing to a better local knowledge, as well as its potential for the intended purpose. From these local models it will be possible to characterize and quantify the geological structures. These models will have its importance as a tool to assist in the analysis and drafting of regional models. The qualitative improvement in geological/structural modeling, seeks to reduce the value of characterization/cost ratio, in phase of prospecting, improving the investment/benefit ratio. This methodology helps to assess more accurately the economic viability of the projects.

  13. Dual-view integral imaging 3D display using polarizer parallax barriers.

    PubMed

    Wu, Fei; Wang, Qiong-Hua; Luo, Cheng-Gao; Li, Da-Hai; Deng, Huan

    2014-04-01

    We propose a dual-view integral imaging (DVII) 3D display using polarizer parallax barriers (PPBs). The DVII 3D display consists of a display panel, a microlens array, and two PPBs. The elemental images (EIs) displayed on the left and right half of the display panel are captured from two different 3D scenes, respectively. The lights emitted from two kinds of EIs are modulated by the left and right half of the microlens array to present two different 3D images, respectively. A prototype of the DVII 3D display is developed, and the experimental results agree well with the theory.

  14. Collaboration for the Advancement of Indirect 3D Printing Technology

    SciTech Connect

    Cordero, Zachary; Elliott, Amy M.

    2016-06-14

    Amorphous powders often possess high hardness values and other useful mechanical properties. However, densifying these powders into complex shapes while retaining their unique properties is a challenge with standard processing routes. Pressureless sintering, for example, can densify intricate green parts composed of rapidly-solidified powders. But this process typically involves long exposures to elevated temperatures, during which the non-equilibrium microstructure of the powder can evolve towards lower energy configurations with inferior properties. Pressure-assisted compaction techniques, by contrast, can consolidate green parts with simple shapes while preserving the microstructure and properties of the powder feedstock. But parts made with these processes generally require additional post-processing, including machining, which introduces new challenges due to the high hardness of these materials. One processing route that can potentially avoid these issues is Indirect 3D Printing (I-3DP; aka Binder Jetting) followed by melt infiltration. In I-3DP, an organic binder is used to join powder feedstock, layer-by-layer, into a green part. In melt infiltration, this green preform is densified by placing it in contact with a molten alloy that wets the preform and wicks into the pores as a result of capillary forces. When these processes are paired together, they offer two key advantages for the densification of rapidly-solidified powders. The first advantage is that the timescale associated with melt infiltration is on the order of seconds for parts with cm-scale dimensions. So in many instances, infiltration requires only a brief thermal excursion that does not degrade the feedstock’s microstructure. The second advantage is that the combination of binder-jet 3D printing and melt infiltration gives fully-dense net shape objects, minimizing the need for subsequent post-processing. In this work, fully-dense, net shape objects have been fabricated from an amorphous

  15. Introduction of 3D Printing Technology in the Classroom for Visually Impaired Students

    ERIC Educational Resources Information Center

    Jo, Wonjin; I, Jang Hee; Harianto, Rachel Ananda; So, Ji Hyun; Lee, Hyebin; Lee, Heon Ju; Moon, Myoung-Woon

    2016-01-01

    The authors investigate how 3D printing technology could be utilized for instructional materials that allow visually impaired students to have full access to high-quality instruction in history class. Researchers from the 3D Printing Group of the Korea Institute of Science and Technology (KIST) provided the Seoul National School for the Blind with…

  16. Benefits, limitations, and guidelines for application of stereo 3-D display technology to the cockpit environment

    NASA Technical Reports Server (NTRS)

    Williams, Steven P.; Parrish, Russell V.; Busquets, Anthony M.

    1992-01-01

    A survey of research results from a program initiated by NASA Langley Research Center is presented. The program addresses stereo 3-D pictorial displays from a comprehensive standpoint. Human factors issues, display technology aspects, and flight display applications are also considered. Emphasis is placed on the benefits, limitations, and guidelines for application of stereo 3-D display technology to the cockpit environment.

  17. Improving Assistive Technology Service by Using 3D Printing: Three Case Studies.

    PubMed

    Watanabe, Takashi; Hatakeyama, Takuro; Tomiita, Mitsuru

    2015-01-01

    Assistive technology services are essential for adapting assistive devices to the individual needs of users with disabilities. In this study, we attempted to apply three-dimensional (3D) printing technology to three actual cases, and to study its use, effectiveness, and future applications. We assessed the usefulness of 3D printing technology by categorizing its utilization after reviewing the outcomes of these case studies. In future work, we aim to gather additional case studies and derive information on using 3D printing technology that will enable its effective application in the process of assistive technology services.

  18. The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds.

    PubMed

    Zhao, Lingling; Lee, Vivian K; Yoo, Seung-Schik; Dai, Guohao; Intes, Xavier

    2012-07-01

    Developing methods that provide adequate vascular perfusion is an important step toward engineering large functional tissues. Meanwhile, an imaging modality to assess the three-dimensional (3-D) structures and functions of the vascular channels is lacking for thick matrices (>2 ≈ 3 mm). Herein, we report on an original approach to construct and image 3-D dynamically perfused vascular structures in thick hydrogel scaffolds. In this work, we integrated a robotic 3-D cell printing technology with a mesoscopic fluorescence molecular tomography imaging system, and demonstrated the capability of the platform to construct perfused collagen scaffolds with endothelial lining and to image both the fluid flow and fluorescent-labeled living endothelial cells at high-frame rates, with high sensitivity and accuracy. These results establish the potential of integrating both 3-D cell printing and fluorescence mesoscopic imaging for functional and molecular studies in complex tissue-engineered tissues.

  19. The Integration of 3-D Cell-Printing and Mesoscopic Fluorescence Molecular Tomography of Vascular Constructs within Thick Hydrogel Scaffolds

    PubMed Central

    Zhao, Lingling; Lee, Vivian K.; Yoo, Seung-Schik; Dai, Guohao; Intes, Xavier

    2012-01-01

    Developing methods that provide adequate vascular perfusion is an important step toward engineering large functional tissues. Meanwhile, an imaging modality to assess the three-dimensional (3-D) structures and functions of the vascular channels is lacking for thick matrices (>2~3mm). Herein, we report on an original approach to construct and image 3-D dynamically perfused vascular structures in thick hydrogel scaffolds. In this work, we integrated a robotic 3-D cell-printing technology with a mesoscopic fluorescence molecular tomography imaging system, and demonstrated the capability of the platform to construct perfused collagen scaffolds with endothelial lining and to image both the fluid flow and fluorescent-labeled living endothelial cells at high-frame rates, with high sensitivity and accuracy. These results establish the potential of integrating both 3-D cell-printing and fluorescence mesoscopic imaging for functional and molecular studies in complex tissue engineered tissues. PMID:22531221

  20. 3-D technology used to accurately understand equine ileocolonic aganglionosis.

    PubMed

    Muniz, Eliane; Lobo Ladd, Aliny A B; Lobo Ladd, Fernando V; da Silva, Andrea A P; Kmit, Fernanda V; Borges, Alexandre S; Teixeira, Raffaella; da Mota, Lígia S L S; Belli, Carla B; de Zoppa, André L V; da Silva, Luis C L C; de Melo, Mariana P; Coppi, Antonio A

    2013-01-01

    Ileocolonic aganglionosis (ICA) is the congenital and hereditary absence of neurons that constitute the enteric nervous system and has been described in various species including humans - Hirschsprung's disease - and horses - overo lethal white syndrome (OLWS). Hirschsprung's disease affects circa 1 in 5,000 live births. At best, this disease means an inability to absorb nutrients from food (humans). At worse, in horses, it always means death. Despite our general understanding of the functional mechanisms underlying ICA, there is a paucity of reliable quantitative information about the structure of myenteric and submucosal neurons in healthy horses and there are no studies on horses with ICA. In light of these uncertainties, we have used design-based stereology to describe the 3-D structure - total number and true size - of myenteric and submucosal neurons in the ileum of ICA horses. Our study has shown that ICA affects all submucosal neurons and 99% of myenteric neurons. The remaining myenteric neurons (0.56%) atrophy immensely, i.e. 63.8%. We believe this study forms the basis for further research, assessing which subpopulation of myenteric neurons are affected by ileocolonic aganglionosis, and we would like to propose a new nomenclature to distinguish between a complete absence of neurons - aganglionosis - and a weaker form of the disease which we suggest naming 'hypoganglionosis'. Our results are a step forward in understanding this disease structurally.

  1. On the Implementation of 3D Galerkin Boundary Integral Equations

    SciTech Connect

    Nintcheu Fata, Sylvain; Gray, Leonard J

    2010-01-01

    In this article, a reverse contribution technique is proposed to accelerate the construction of the dense influence matrices associated with a Galerkin approximation of singular and hypersingular boundary integral equations of mixed-type in potential theory. In addition, a general-purpose sparse preconditioner for boundary element methods has also been developed to successfully deal with ill-conditioned linear systems arising from the discretization of mixed boundary-value problems on non-smooth surfaces. The proposed preconditioner, which originates from the precorrected-FFT method, is sparse, easy to generate and apply in a Krylov subspace iterative solution of discretized boundary integral equations. Moreover, an approximate inverse of the preconditioner is implicitly built by employing an incomplete LU factorization. Numerical experiments involving mixed boundary-value problems for the Laplace equation are included to illustrate the performance and validity of the proposed techniques.

  2. An object-oriented 3D integral data model for digital city and digital mine

    NASA Astrophysics Data System (ADS)

    Wu, Lixin; Wang, Yanbing; Che, Defu; Xu, Lei; Chen, Xuexi; Jiang, Yun; Shi, Wenzhong

    2005-10-01

    With the rapid development of urban, city space extended from surface to subsurface. As the important data source for the representation of city spatial information, 3D city spatial data have the characteristics of multi-object, heterogeneity and multi-structure. It could be classified referring to the geo-surface into three kinds: above-surface data, surface data and subsurface data. The current research on 3D city spatial information system is divided naturally into two different branch, 3D City GIS (3D CGIS) and 3D Geological Modeling (3DGM). The former emphasizes on the 3D visualization of buildings and the terrain of city, while the latter emphasizes on the visualization of geological bodies and structures. Although, it is extremely important for city planning and construction to integrate all the city spatial information including above-surface, surface and subsurface objects to conduct integral analysis and spatial manipulation. However, either 3D CGIS or 3DGM is currently difficult to realize the information integration, integral analysis and spatial manipulation. Considering 3D spatial modeling theory and methodologies, an object-oriented 3D integral spatial data model (OO3D-ISDM) is presented and software realized. The model integrates geographical objects, surface buildings and geological objects together seamlessly with TIN being its coupling interface. This paper introduced the conceptual model of OO3D-ISDM, which is comprised of 4 spatial elements, i.e. point, line, face and body, and 4 geometric primitives, i.e. vertex, segment, triangle and generalized tri-prism (GTP). The spatial model represents the geometry of surface buildings and geographical objects with triangles, and geological objects with GTP. Any of the represented objects, no mater surface buildings, terrain or subsurface objects, could be described with the basic geometry element, i.e. triangle. So the 3D spatial objects, surface buildings, terrain and geological objects can be

  3. Research on the key technologies of 3D spatial data organization and management for virtual building environments

    NASA Astrophysics Data System (ADS)

    Gong, Jun; Zhu, Qing

    2006-10-01

    As the special case of VGE in the fields of AEC (architecture, engineering and construction), Virtual Building Environment (VBE) has been broadly concerned. Highly complex, large-scale 3d spatial data is main bottleneck of VBE applications, so 3d spatial data organization and management certainly becomes the core technology for VBE. This paper puts forward 3d spatial data model for VBE, and the performance to implement it is very high. Inherent storage method of CAD data makes data redundant, and doesn't concern efficient visualization, which is a practical bottleneck to integrate CAD model, so An Efficient Method to Integrate CAD Model Data is put forward. Moreover, Since the 3d spatial indices based on R-tree are usually limited by their weakness of low efficiency due to the severe overlap of sibling nodes and the uneven size of nodes, a new node-choosing algorithm of R-tree are proposed.

  4. A 3D Scanning Device for Architectural Relieves Based on Time-Of-Flight Technology

    NASA Astrophysics Data System (ADS)

    Gambino, M. C.; Fontana, R.; Gianfrate, G.; Greco, M.; Marras, L.; Materazzi, M.; Pampaloni, E.; Pezzati, L.

    In this work we present the results of some architectural and archaeological relieves realized by means of a Time-Of-Flight (TOF) laser scanner developed by the Art Diagnostic Group of Istituto Nazionale di Ottica Applicata — INOA (the National Institute of Applied Optics). The instrument is composed of a commercial distance meter mounted on a high precision scanning system, and is equipped with a tripod for total-stations. The device was projected in order to have the following characteristics: reliability, good accuracy and compatibility to other systems. For Cultural Heritage applications it is important to integrate the data acquired with different instruments, but a problem met with many commercial systems is the lack of compatibility with classic survey methodologies. Moreover, superimposition of results from different techniques is possible only if the output is metrically correct. Up to now, the realization of accurate 3D models of buildings was a prerogative of the photogrammetric devices, but the recent progress in opto-electronic technology and 3D software of analysis made possible the production of accurate 3D models. Laser scanning has the main advantage of allowing the acquisition of dense data sampling with high accuracy and high speed.

  5. Research and Technology Development for Construction of 3d Video Scenes

    NASA Astrophysics Data System (ADS)

    Khlebnikova, Tatyana A.

    2016-06-01

    For the last two decades surface information in the form of conventional digital and analogue topographic maps has been being supplemented by new digital geospatial products, also known as 3D models of real objects. It is shown that currently there are no defined standards for 3D scenes construction technologies that could be used by Russian surveying and cartographic enterprises. The issues regarding source data requirements, their capture and transferring to create 3D scenes have not been defined yet. The accuracy issues for 3D video scenes used for measuring purposes can hardly ever be found in publications. Practicability of development, research and implementation of technology for construction of 3D video scenes is substantiated by 3D video scene capability to expand the field of data analysis application for environmental monitoring, urban planning, and managerial decision problems. The technology for construction of 3D video scenes with regard to the specified metric requirements is offered. Technique and methodological background are recommended for this technology used to construct 3D video scenes based on DTM, which were created by satellite and aerial survey data. The results of accuracy estimation of 3D video scenes are presented.

  6. Pixel detectors in 3D technologies for high energy physics

    SciTech Connect

    Deptuch, G.; Demarteau, M.; Hoff, J.; Lipton, R.; Shenai, A.; Yarema, R.; Zimmerman, T.; /Fermilab

    2010-10-01

    This paper reports on the current status of the development of International Linear Collider vertex detector pixel readout chips based on multi-tier vertically integrated electronics. Initial testing results of the VIP2a prototype are presented. The chip is the second embodiment of the prototype data-pushed readout concept developed at Fermilab. The device was fabricated in the MIT-LL 0.15 {micro}m fully depleted SOI process. The prototype is a three-tier design, featuring 30 x 30 {micro}m{sup 2} pixels, laid out in an array of 48 x 48 pixels.

  7. Display of travelling 3D scenes from single integral-imaging capture

    NASA Astrophysics Data System (ADS)

    Martinez-Corral, Manuel; Dorado, Adrian; Hong, Seok-Min; Sola-Pikabea, Jorge; Saavedra, Genaro

    2016-06-01

    Integral imaging (InI) is a 3D auto-stereoscopic technique that captures and displays 3D images. We present a method for easily projecting the information recorded with this technique by transforming the integral image into a plenoptic image, as well as choosing, at will, the field of view (FOV) and the focused plane of the displayed plenoptic image. Furthermore, with this method we can generate a sequence of images that simulates a camera travelling through the scene from a single integral image. The application of this method permits to improve the quality of 3D display images and videos.

  8. An approach for 3D geoscientific data integration in underground planning

    NASA Astrophysics Data System (ADS)

    Zhong, Zheng; Tor, Yam Khoon; Tan, Guoxian

    2008-12-01

    Due to finite space, there is an increasing need to plan and develop strategic underground facilities and infrastructures for various military and non-military applications in Singapore in recent years. The awareness of the underground option among planners, developers, and financiers should be increased so that subsurface planning issues can be better addressed. The lack of adequate and accurate 3D spatial data often makes the design and construction of such underground works difficult. It is necessary to integrate all of the spatial objects for underground planning. Over the past two decades, a number of commercial software systems have been developed for 3D geographic and geological modeling. For example, VGEGIS software allows users to create 3D surface geological maps. 3D GeoModeller, a 3D geological modeling and geophysical inversion package, allows project geologists to build realistic 3D geology models. This paper presents an approach to integrate the geographic and geological models for underground planning. A prototype of 3D Geographic Information System (3DGIS) called "3DRock" has been developed by authors to implement the data integration with 3D GeoModeler. The results so far showed that 3DRock is able to integrate the above-surface, surface, and subsurface information available from maps, sections, terrain models, topographic data, drillholes, etc. for the Banyan Basin in Jurong Island, Singapore, in a case study.

  9. Integration of 3d Models and Diagnostic Analyses Through a Conservation-Oriented Information System

    NASA Astrophysics Data System (ADS)

    Mandelli, A.; Achille, C.; Tommasi, C.; Fassi, F.

    2017-08-01

    In the recent years, mature technologies for producing high quality virtual 3D replicas of Cultural Heritage (CH) artefacts has grown thanks to the progress of Information Technologies (IT) tools. These methods are an efficient way to present digital models that can be used with several scopes: heritage managing, support to conservation, virtual restoration, reconstruction and colouring, art cataloguing and visual communication. The work presented is an emblematic case of study oriented to the preventive conservation through monitoring activities, using different acquisition methods and instruments. It was developed inside a project founded by Lombardy Region, Italy, called "Smart Culture", which was aimed to realise a platform that gave the users the possibility to easily access to the CH artefacts, using as an example a very famous statue. The final product is a 3D reality-based model that contains a lot of information inside it, and that can be consulted through a common web browser. In the end, it was possible to define the general strategies oriented to the maintenance and the valorisation of CH artefacts, which, in this specific case, must consider the integration of different techniques and competencies, to obtain a complete, accurate and continuative monitoring of the statue.

  10. Laser Scanning Holographic Lithography for Flexible 3D Fabrication of Multi-Scale Integrated Nano-structures and Optical Biosensors.

    PubMed

    Yuan, Liang Leon; Herman, Peter R

    2016-02-29

    Three-dimensional (3D) periodic nanostructures underpin a promising research direction on the frontiers of nanoscience and technology to generate advanced materials for exploiting novel photonic crystal (PC) and nanofluidic functionalities. However, formation of uniform and defect-free 3D periodic structures over large areas that can further integrate into multifunctional devices has remained a major challenge. Here, we introduce a laser scanning holographic method for 3D exposure in thick photoresist that combines the unique advantages of large area 3D holographic interference lithography (HIL) with the flexible patterning of laser direct writing to form both micro- and nano-structures in a single exposure step. Phase mask interference patterns accumulated over multiple overlapping scans are shown to stitch seamlessly and form uniform 3D nanostructure with beam size scaled to small 200 μm diameter. In this way, laser scanning is presented as a facile means to embed 3D PC structure within microfluidic channels for integration into an optofluidic lab-on-chip, demonstrating a new laser HIL writing approach for creating multi-scale integrated microsystems.

  11. Laser Scanning Holographic Lithography for Flexible 3D Fabrication of Multi-Scale Integrated Nano-structures and Optical Biosensors

    NASA Astrophysics Data System (ADS)

    Yuan, Liang (Leon); Herman, Peter R.

    2016-02-01

    Three-dimensional (3D) periodic nanostructures underpin a promising research direction on the frontiers of nanoscience and technology to generate advanced materials for exploiting novel photonic crystal (PC) and nanofluidic functionalities. However, formation of uniform and defect-free 3D periodic structures over large areas that can further integrate into multifunctional devices has remained a major challenge. Here, we introduce a laser scanning holographic method for 3D exposure in thick photoresist that combines the unique advantages of large area 3D holographic interference lithography (HIL) with the flexible patterning of laser direct writing to form both micro- and nano-structures in a single exposure step. Phase mask interference patterns accumulated over multiple overlapping scans are shown to stitch seamlessly and form uniform 3D nanostructure with beam size scaled to small 200 μm diameter. In this way, laser scanning is presented as a facile means to embed 3D PC structure within microfluidic channels for integration into an optofluidic lab-on-chip, demonstrating a new laser HIL writing approach for creating multi-scale integrated microsystems.

  12. Laser Scanning Holographic Lithography for Flexible 3D Fabrication of Multi-Scale Integrated Nano-structures and Optical Biosensors

    PubMed Central

    Yuan, Liang (Leon); Herman, Peter R.

    2016-01-01

    Three-dimensional (3D) periodic nanostructures underpin a promising research direction on the frontiers of nanoscience and technology to generate advanced materials for exploiting novel photonic crystal (PC) and nanofluidic functionalities. However, formation of uniform and defect-free 3D periodic structures over large areas that can further integrate into multifunctional devices has remained a major challenge. Here, we introduce a laser scanning holographic method for 3D exposure in thick photoresist that combines the unique advantages of large area 3D holographic interference lithography (HIL) with the flexible patterning of laser direct writing to form both micro- and nano-structures in a single exposure step. Phase mask interference patterns accumulated over multiple overlapping scans are shown to stitch seamlessly and form uniform 3D nanostructure with beam size scaled to small 200 μm diameter. In this way, laser scanning is presented as a facile means to embed 3D PC structure within microfluidic channels for integration into an optofluidic lab-on-chip, demonstrating a new laser HIL writing approach for creating multi-scale integrated microsystems. PMID:26922872

  13. 3D Microstructural Architectures for Metal and Alloy Components Fabricated by 3D Printing/Additive Manufacturing Technologies

    NASA Astrophysics Data System (ADS)

    Martinez, E.; Murr, L. E.; Amato, K. N.; Hernandez, J.; Shindo, P. W.; Gaytan, S. M.; Ramirez, D. A.; Medina, F.; Wicker, R. B.

    The layer-by-layer building of monolithic, 3D metal components from selectively melted powder layers using laser or electron beams is a novel form of 3D printing or additive manufacturing. Microstructures created in these 3D products can involve novel, directional solidification structures which can include crystallographically oriented grains containing columnar arrays of precipitates characteristic of a microstructural architecture. These microstructural architectures are advantageously rendered in 3D image constructions involving light optical microscopy and scanning and transmission electron microscopy observations. Microstructural evolution can also be effectively examined through 3D image sequences which, along with x-ray diffraction (XRD) analysis in the x-y and x-z planes, can effectively characterize related crystallographic/texture variances. This paper compares 3D microstructural architectures in Co-base and Ni-base superalloys, columnar martensitic grain structures in 17-4 PH alloy, and columnar copper oxides and dislocation arrays in copper.

  14. A multi-scale controlled tissue engineering scaffold prepared by 3D printing and NFES technology

    NASA Astrophysics Data System (ADS)

    Yan, Feifei; Liu, Yuanyuan; Chen, Haiping; Zhang, Fuhua; Zheng, Lulu; Hu, Qingxi

    2014-03-01

    The current focus in the field of life science is the use of tissue engineering scaffolds to repair human organs, which has shown great potential in clinical applications. Extracellular matrix morphology and the performance and internal structure of natural organs are required to meet certain requirements. Therefore, integrating multiple processes can effectively overcome the limitations of the individual processes and can take into account the needs of scaffolds for the material, structure, mechanical properties and many other aspects. This study combined the biological 3D printing technology and the near-field electro-spinning (NFES) process to prepare a multi-scale controlled tissue engineering scaffold. While using 3D printing technology to directly prepare the macro-scaffold, the compositing NFES process to build tissue micro-morphology ultimately formed a tissue engineering scaffold which has the specific extracellular matrix structure. This scaffold not only takes into account the material, structure, performance and many other requirements, but also focuses on resolving the controllability problems in macro- and micro-forming which further aim to induce cell directed differentiation, reproduction and, ultimately, the formation of target tissue organs. It has in-depth immeasurable significance to build ideal scaffolds and further promote the application of tissue engineering.

  15. Novel accurate and scalable 3-D MT forward solver based on a contracting integral equation method

    NASA Astrophysics Data System (ADS)

    Kruglyakov, M.; Geraskin, A.; Kuvshinov, A.

    2016-11-01

    We present a novel, open source 3-D MT forward solver based on a method of integral equations (IE) with contracting kernel. Special attention in the solver is paid to accurate calculations of Green's functions and their integrals which are cornerstones of any IE solution. The solver supports massive parallelization and is able to deal with highly detailed and contrasting models. We report results of a 3-D numerical experiment aimed at analyzing the accuracy and scalability of the code.

  16. Air-touch interaction system for integral imaging 3D display

    NASA Astrophysics Data System (ADS)

    Dong, Han Yuan; Xiang, Lee Ming; Lee, Byung Gook

    2016-07-01

    In this paper, we propose an air-touch interaction system for the tabletop type integral imaging 3D display. This system consists of the real 3D image generation system based on integral imaging technique and the interaction device using a real-time finger detection interface. In this system, we used multi-layer B-spline surface approximation to detect the fingertip and gesture easily in less than 10cm height from the screen via input the hand image. The proposed system can be used in effective human computer interaction method for the tabletop type 3D display.

  17. Dielectric Spectroscopic Detection of Early Failures in 3-D Integrated Circuits.

    PubMed

    Obeng, Yaw; Okoro, C A; Ahn, Jung-Joon; You, Lin; Kopanski, Joseph J

    The commercial introduction of three dimensional integrated circuits (3D-ICs) has been hindered by reliability challenges, such as stress related failures, resistivity changes, and unexplained early failures. In this paper, we discuss a new RF-based metrology, based on dielectric spectroscopy, for detecting and characterizing electrically active defects in fully integrated 3D devices. These defects are traceable to the chemistry of the insolation dielectrics used in the through silicon via (TSV) construction. We show that these defects may be responsible for some of the unexplained early reliability failures observed in TSV enabled 3D devices.

  18. Dielectric Spectroscopic Detection of Early Failures in 3-D Integrated Circuits

    PubMed Central

    Okoro, C. A.; Ahn, Jung-Joon; You, Lin; Kopanski, Joseph J.

    2015-01-01

    The commercial introduction of three dimensional integrated circuits (3D-ICs) has been hindered by reliability challenges, such as stress related failures, resistivity changes, and unexplained early failures. In this paper, we discuss a new RF-based metrology, based on dielectric spectroscopy, for detecting and characterizing electrically active defects in fully integrated 3D devices. These defects are traceable to the chemistry of the insolation dielectrics used in the through silicon via (TSV) construction. We show that these defects may be responsible for some of the unexplained early reliability failures observed in TSV enabled 3D devices. PMID:26664695

  19. 3D Printing technology over a drug delivery for tissue engineering.

    PubMed

    Lee, Jin Woo; Cho, Dong-Woo

    2015-01-01

    Many researchers have attempted to use computer-aided design (CAD) and computer-aided manufacturing (CAM) to realize a scaffold that provides a three-dimensional (3D) environment for regeneration of tissues and organs. As a result, several 3D printing technologies, including stereolithography, deposition modeling, inkjet-based printing and selective laser sintering have been developed. Because these 3D printing technologies use computers for design and fabrication, and they can fabricate 3D scaffolds as designed; as a consequence, they can be standardized. Growth of target tissues and organs requires the presence of appropriate growth factors, so fabrication of 3Dscaffold systems that release these biomolecules has been explored. A drug delivery system (DDS) that administrates a pharmaceutical compound to achieve a therapeutic effect in cells, animals and humans is a key technology that delivers biomolecules without side effects caused by excessive doses. 3D printing technologies and DDSs have been assembled successfully, so new possibilities for improved tissue regeneration have been suggested. If the interaction between cells and scaffold system with biomolecules can be understood and controlled, and if an optimal 3D tissue regenerating environment is realized, 3D printing technologies will become an important aspect of tissue engineering research in the near future.

  20. The application of digital medical 3D printing technology on tumor operation

    NASA Astrophysics Data System (ADS)

    Chen, Jimin; Jiang, Yijian; Li, Yangsheng

    2016-04-01

    Digital medical 3D printing technology is a new hi-tech which combines traditional medical and digital design, computer science, bio technology and 3D print technology. At the present time there are four levels application: The printed 3D model is the first and simple application. The surgery makes use of the model to plan the processing before operation. The second is customized operation tools such as implant guide. It helps doctor to operate with special tools rather than the normal medical tools. The third level application of 3D printing in medical area is to print artificial bones or teeth to implant into human body. The big challenge is the fourth level which is to print organs with 3D printing technology. In this paper we introduced an application of 3D printing technology in tumor operation. We use 3D printing to print guide for invasion operation. Puncture needles were guided by printed guide in face tumors operation. It is concluded that this new type guide is dominantly advantageous.

  1. The OpenEarth Framework (OEF) for the 3D Visualization of Integrated Earth Science Data

    NASA Astrophysics Data System (ADS)

    Nadeau, David; Moreland, John; Baru, Chaitan; Crosby, Chris

    2010-05-01

    Data integration is increasingly important as we strive to combine data from disparate sources and assemble better models of the complex processes operating at the Earth's surface and within its interior. These data are often large, multi-dimensional, and subject to differing conventions for data structures, file formats, coordinate spaces, and units of measure. When visualized, these data require differing, and sometimes conflicting, conventions for visual representations, dimensionality, symbology, and interaction. All of this makes the visualization of integrated Earth science data particularly difficult. The OpenEarth Framework (OEF) is an open-source data integration and visualization suite of applications and libraries being developed by the GEON project at the University of California, San Diego, USA. Funded by the NSF, the project is leveraging virtual globe technology from NASA's WorldWind to create interactive 3D visualization tools that combine and layer data from a wide variety of sources to create a holistic view of features at, above, and beneath the Earth's surface. The OEF architecture is open, cross-platform, modular, and based upon Java. The OEF's modular approach to software architecture yields an array of mix-and-match software components for assembling custom applications. Available modules support file format handling, web service communications, data management, user interaction, and 3D visualization. File parsers handle a variety of formal and de facto standard file formats used in the field. Each one imports data into a general-purpose common data model supporting multidimensional regular and irregular grids, topography, feature geometry, and more. Data within these data models may be manipulated, combined, reprojected, and visualized. The OEF's visualization features support a variety of conventional and new visualization techniques for looking at topography, tomography, point clouds, imagery, maps, and feature geometry. 3D data such as

  2. From 3D Bioprinters to a fully integrated Organ Biofabrication Line

    NASA Astrophysics Data System (ADS)

    Passamai, V. E.; Dernowsek, J. A.; Nogueira, J.; Lara, V.; Vilalba, F.; Mironov, V. A.; Rezende, R. A.; da Silva, J. V.

    2016-04-01

    About 30 years ago, the 3D printing technique appeared. From that time on, engineers in medical science field started to look at 3D printing as a partner. Firstly, biocompatible and biodegradable 3D structures for cell seeding called “scaffolds” were fabricated for in vitro and in vivo animal trials. The advances proved to be of great importance, but, the use of scaffolds faces some limitations, such as low homogeneity and low density of cell aggregates. In the last decade, 3D bioprinting technology emerged as a promising approach to overcome these limitations and as one potential solution to the challenge of organ fabrication, to obtain very similar 3D human tissues, not only for transplantation, but also for drug discovery, disease research and to decrease the usage of animals in laboratory experimentation. 3D bioprinting allowed the fabrication of 3D alive structures with higher and controllable cell density and homogeneity. Other advantage of biofabrication is that the tissue constructs are solid scaffold-free. This paper presents the 3D bioprinting technology; equipment development, stages and components of a complex Organ Bioprinting Line (OBL) and the importance of developing a Virtual OBL.

  3. Estimation of the degree of polarization in low-light 3D integral imaging

    NASA Astrophysics Data System (ADS)

    Carnicer, Artur; Javidi, Bahram

    2016-06-01

    The calculation of the Stokes Parameters and the Degree of Polarization in 3D integral images requires a careful manipulation of the polarimetric elemental images. This fact is particularly important if the scenes are taken in low-light conditions. In this paper, we show that the Degree of Polarization can be effectively estimated even when elemental images are recorded with few photons. The original idea was communicated in [A. Carnicer and B. Javidi, "Polarimetric 3D integral imaging in photon-starved conditions," Opt. Express 23, 6408-6417 (2015)]. First, we use the Maximum Likelihood Estimation approach for generating the 3D integral image. Nevertheless, this method produces very noisy images and thus, the degree of polarization cannot be calculated. We suggest using a Total Variation Denoising filter as a way to improve the quality of the generated 3D images. As a result, noise is suppressed but high frequency information is preserved. Finally, the degree of polarization is obtained successfully.

  4. 3D Systems' Technology Overview and New Applications in Manufacturing, Engineering, Science, and Education.

    PubMed

    Snyder, Trevor J; Andrews, Mike; Weislogel, Mark; Moeck, Peter; Stone-Sundberg, Jennifer; Birkes, Derek; Hoffert, Madeline Paige; Lindeman, Adam; Morrill, Jeff; Fercak, Ondrej; Friedman, Sasha; Gunderson, Jeff; Ha, Anh; McCollister, Jack; Chen, Yongkang; Geile, John; Wollman, Andrew; Attari, Babak; Botnen, Nathan; Vuppuluri, Vasant; Shim, Jennifer; Kaminsky, Werner; Adams, Dustin; Graft, John

    2014-09-01

    Since the inception of 3D printing, an evolutionary process has taken place in which specific user and customer needs have crossed paths with the capabilities of a growing number of machines to create value-added businesses. Even today, over 30 years later, the growth of 3D printing and its utilization for the good of society is often limited by the various users' understanding of the technology for their specific needs. This article presents an overview of current 3D printing technologies and shows numerous examples from a multitude of fields from manufacturing to education.

  5. 3D Systems' Technology Overview and New Applications in Manufacturing, Engineering, Science, and Education

    PubMed Central

    Andrews, Mike; Weislogel, Mark; Moeck, Peter; Stone-Sundberg, Jennifer; Birkes, Derek; Hoffert, Madeline Paige; Lindeman, Adam; Morrill, Jeff; Fercak, Ondrej; Friedman, Sasha; Gunderson, Jeff; Ha, Anh; McCollister, Jack; Chen, Yongkang; Geile, John; Wollman, Andrew; Attari, Babak; Botnen, Nathan; Vuppuluri, Vasant; Shim, Jennifer; Kaminsky, Werner; Adams, Dustin; Graft, John

    2014-01-01

    Abstract Since the inception of 3D printing, an evolutionary process has taken place in which specific user and customer needs have crossed paths with the capabilities of a growing number of machines to create value-added businesses. Even today, over 30 years later, the growth of 3D printing and its utilization for the good of society is often limited by the various users' understanding of the technology for their specific needs. This article presents an overview of current 3D printing technologies and shows numerous examples from a multitude of fields from manufacturing to education. PMID:28473997

  6. [Applications of 3D printing technology in teaching of oromaxillofacial head and neck surgical oncology].

    PubMed

    Ruan, Min; Ji, Tong; Zhang, Chen-Ping

    2016-12-01

    With the increasing maturation of 3D printing technology, as well as its application in various industries, investigation of 3D printing technology into clinic medical education becomes an important task of the current medical education. The teaching content of oromaxillofacial head and neck surgical oncology is complicated and diverse, making lower understanding/memorizing efficiency and insufficient skill training. To overcome the disadvantage of traditional teaching method, it is necessary to introduce 3D printing technique into teaching of oromaxillofacial head and neck surgical oncology, in order to improve the teaching quality and problem solving capabilities, and finally promote cultivation of skilled and innovative talents.

  7. The Use of 3D Printing Technology in the Ilizarov Method Treatment: Pilot Study.

    PubMed

    Burzyńska, Karolina; Morasiewicz, Piotr; Filipiak, Jarosław

    2016-01-01

    Significant developments in additive manufacturing technology have occurred in recent years. 3D printing techniques can also be helpful in the Ilizarov method treatment. The aim of this study was to evaluate the usefulness of 3D printing technology in the Ilizarov method treatment. Physical models of bones used to plan the spatial design of Ilizarov external fixator were manufactured by FDM (Fused Deposition Modeling) spatial printing technology. Bone models were made of poly(L-lactide) (PLA). Printed 3D models of both lower leg bones allow doctors to prepare in advance for the Ilizarov method treatment: detailed consideration of the spatial configuration of the external fixation, experimental assembly of the Ilizarov external fixator onto the physical models of bones prior to surgery, planning individual osteotomy level and Kirschner wires introduction sites. Printed 3D bone models allow for accurate preparation of the Ilizarov apparatus spatially matched to the size of the bones and prospective bone distortion. Employment of the printed 3D models of bone will enable a more precise design of the apparatus, which is especially useful in multiplanar distortion and in the treatment of axis distortion and limb length discrepancy in young children. In the course of planning the use of physical models manufactured with additive technology, attention should be paid to certain technical aspects of model printing that have an impact on the accuracy of mapping of the geometry and physical properties of the model. 3D printing technique is very useful in 3D planning of the Ilizarov method treatment.

  8. Integrated Interventional Devices For Real Time 3D Ultrasound Imaging and Therapy

    NASA Astrophysics Data System (ADS)

    Smith, Stephen W.; Lee, Warren; Gentry, Kenneth L.; Pua, Eric C.; Light, Edward D.

    2006-05-01

    Two recent advances have expanded the potential of medical ultrasound: the introduction of real-time 3-D ultrasound imaging with catheter, transesophageal and laparoscopic probes and the development of interventional ultrasound therapeutic systems for focused ultrasound surgery, ablation and ultrasound enhanced drug delivery. This work describes devices combining both technologies. A series of transducer probes have been designed, fabricated and tested including: 1) a 12 French side scanning catheter incorporating a 64 element matrix array for imaging at 5MHz and a piston ablation transducer operating at 10 MHz. 2) a 14 Fr forward-scanning catheter integrating a 112 element 2-D array for imaging at 5 MHz encircled by an ablation annulus operating at 10 MHz. Finite element modeling was then used to simulate catheter annular and linear phased array transducers for ablation. 3) Linear phased array transducers were built to confirm the finite element analysis at 4 and 8 MHz including a mechanically focused 86 element 9 MHz array which transmits an ISPTA of 29.3 W/cm2 and creates a lesion in 2 minutes. 4) 2-D arrays of 504 channels operating at 5 MHz have been developed for transesophageal and laparascopic 3D imaging as well as therapeutic heating. All the devices image the heart anatomy including atria, valves, septa and en face views of the pulmonary veins.

  9. Scientific Subsurface data for EPOS - integration of 3D and 4D data services

    NASA Astrophysics Data System (ADS)

    Kerschke, Dorit; Hammitzsch, Martin; Wächter, Joachim

    2016-04-01

    The provision of efficient and easy access to scientific subsurface data sets obtained from field studies and scientific observatories or by geological 3D/4D-modeling is an important contribution to modern research infrastructures as they can facilitate the integrated analysis and evaluation as well as the exchange of scientific data. Within the project EPOS - European Plate Observing System, access to 3D and 4D data sets will be provided by 'WP15 - Geological information and modeling' and include structural geology models as well as numerical models, e.g., temperature, aquifers, and velocity. This also includes validated raw data, e.g., seismic profiles, from which the models where derived. All these datasets are of high quality and of unique scientific value as the process of modeling is time and cost intensive. However, these models are currently not easily accessible for the wider scientific community, much less to the public. For the provision of these data sets a data management platform based on common and standardized data models, protocols, and encodings as well as on a predominant use of Free and Open Source Software (FOSS) has been devised. The interoperability for disciplinary and domain applications thus highly depends on the adoption of generally agreed technologies and standards (OGC, ISO…) originating from Spatial Data Infrastructure related efforts (e.g., INSPIRE). However, since not many standards for 3D and 4D geological data exists, this work also includes new approaches for project data management, interfaces for tools used by the researchers, and interfaces for the sharing and reusing of data.

  10. BioMEA: a versatile high-density 3D microelectrode array system using integrated electronics.

    PubMed

    Charvet, Guillaume; Rousseau, Lionel; Billoint, Olivier; Gharbi, Sadok; Rostaing, Jean-Pierre; Joucla, Sébastien; Trevisiol, Michel; Bourgerette, Alain; Chauvet, Philippe; Moulin, Céline; Goy, François; Mercier, Bruno; Colin, Mikael; Spirkovitch, Serge; Fanet, Hervé; Meyrand, Pierre; Guillemaud, Régis; Yvert, Blaise

    2010-04-15

    Microelectrode arrays (MEAs) offer a powerful tool to both record activity and deliver electrical microstimulations to neural networks either in vitro or in vivo. Microelectronics microfabrication technologies now allow building high-density MEAs containing several hundreds of microelectrodes. However, dense arrays of 3D micro-needle electrodes, providing closer contact with the neural tissue than planar electrodes, are not achievable using conventional isotropic etching processes. Moreover, increasing the number of electrodes using conventional electronics is difficult to achieve into compact devices addressing all channels independently for simultaneous recording and stimulation. Here, we present a full modular and versatile 256-channel MEA system based on integrated electronics. First, transparent high-density arrays of 3D-shaped microelectrodes were realized by deep reactive ion etching techniques of a silicon substrate reported on glass. This approach allowed achieving high electrode aspect ratios, and different shapes of tip electrodes. Next, we developed a dedicated analog 64-channel Application Specific Integrated Circuit (ASIC) including one amplification stage and one current generator per channel, and analog output multiplexing. A full modular system, called BIOMEA, has been designed, allowing connecting different types of MEAs (64, 128, or 256 electrodes) to different numbers of ASICs for simultaneous recording and/or stimulation on all channels. Finally, this system has been validated experimentally by recording and electrically eliciting low-amplitude spontaneous rhythmic activity (both LFPs and spikes) in the developing mouse CNS. The availability of high-density MEA systems with integrated electronics will offer new possibilities for both in vitro and in vivo studies of large neural networks.

  11. Stress management for 3D through-silicon-via stacking technologies - The next frontier -

    SciTech Connect

    Radojcic, Riko; Nowak, Matt; Nakamoto, Mark

    2014-06-19

    The status of the development of a Design-for-Stress simulation flow that captures the stress effects in packaged 3D-stacked Si products like integrated circuits (ICs) using advanced via-middle Through Si Via technology is outlined. The next set of challenges required to proliferate the methodology and to deploy it for making and dispositioning real Si product decisions are described here. These include the adoption and support of a Process Design Kit (PDK) that includes the relevant material properties, the development of stress simulation methodologies that operate at higher levels of abstraction in a design flow, and the development and adoption of suitable models required to make real product reliability decisions.

  12. Integration of 3D anatomical data obtained by CT imaging and 3D optical scanning for computer aided implant surgery

    PubMed Central

    2011-01-01

    Background A precise placement of dental implants is a crucial step to optimize both prosthetic aspects and functional constraints. In this context, the use of virtual guiding systems has been recognized as a fundamental tool to control the ideal implant position. In particular, complex periodontal surgeries can be performed using preoperative planning based on CT data. The critical point of the procedure relies on the lack of accuracy in transferring CT planning information to surgical field through custom-made stereo-lithographic surgical guides. Methods In this work, a novel methodology is proposed for monitoring loss of accuracy in transferring CT dental information into periodontal surgical field. The methodology is based on integrating 3D data of anatomical (impression and cast) and preoperative (radiographic template) models, obtained by both CT and optical scanning processes. Results A clinical case, relative to a fully edentulous jaw patient, has been used as test case to assess the accuracy of the various steps concurring in manufacturing surgical guides. In particular, a surgical guide has been designed to place implants in the bone structure of the patient. The analysis of the results has allowed the clinician to monitor all the errors, which have been occurring step by step manufacturing the physical templates. Conclusions The use of an optical scanner, which has a higher resolution and accuracy than CT scanning, has demonstrated to be a valid support to control the precision of the various physical models adopted and to point out possible error sources. A case study regarding a fully edentulous patient has confirmed the feasibility of the proposed methodology. PMID:21338504

  13. Fully 3D-Integrated Pixel Detectors for X-Rays

    DOE PAGES

    Deptuch, Grzegorz W.; Gabriella, Carini; Enquist, Paul; ...

    2016-01-01

    The vertically integrated photon imaging chip (VIPIC1) pixel detector is a stack consisting of a 500-μm-thick silicon sensor, a two-tier 34-μm-thick integrated circuit, and a host printed circuit board (PCB). The integrated circuit tiers were bonded using the direct bonding technology with copper, and each tier features 1-μm-diameter through-silicon vias that were used for connections to the sensor on one side, and to the host PCB on the other side. The 80-μm-pixel-pitch sensor was the direct bonding technology with nickel bonded to the integrated circuit. The stack was mounted on the board using Sn–Pb balls placed on a 320-μm pitch,more » yielding an entirely wire-bond-less structure. The analog front-end features a pulse response peaking at below 250 ns, and the power consumption per pixel is 25 μW. We successful completed the 3-D integration and have reported here. Additionally, all pixels in the matrix of 64 × 64 pixels were responding on well-bonded devices. Correct operation of the sparsified readout, allowing a single 153-ns bunch timing resolution, was confirmed in the tests on a synchrotron beam of 10-keV X-rays. An equivalent noise charge of 36.2 e- rms and a conversion gain of 69.5 μV/e- with 2.6 e- rms and 2.7 μV/e- rms pixel-to-pixel variations, respectively, were measured.« less

  14. Fully 3D-Integrated Pixel Detectors for X-Rays

    SciTech Connect

    Deptuch, Grzegorz W.; Gabriella, Carini; Enquist, Paul; Grybos, Pawel; Holm, Scott; Lipton, Ronald; Maj, Piotr; Patti, Robert; Siddons, David Peter; Szczygiel, Robert; Yarema, Raymond

    2016-01-01

    The vertically integrated photon imaging chip (VIPIC1) pixel detector is a stack consisting of a 500-μm-thick silicon sensor, a two-tier 34-μm-thick integrated circuit, and a host printed circuit board (PCB). The integrated circuit tiers were bonded using the direct bonding technology with copper, and each tier features 1-μm-diameter through-silicon vias that were used for connections to the sensor on one side, and to the host PCB on the other side. The 80-μm-pixel-pitch sensor was the direct bonding technology with nickel bonded to the integrated circuit. The stack was mounted on the board using Sn–Pb balls placed on a 320-μm pitch, yielding an entirely wire-bond-less structure. The analog front-end features a pulse response peaking at below 250 ns, and the power consumption per pixel is 25 μW. We successful completed the 3-D integration and have reported here. Additionally, all pixels in the matrix of 64 × 64 pixels were responding on well-bonded devices. Correct operation of the sparsified readout, allowing a single 153-ns bunch timing resolution, was confirmed in the tests on a synchrotron beam of 10-keV X-rays. An equivalent noise charge of 36.2 e- rms and a conversion gain of 69.5 μV/e- with 2.6 e- rms and 2.7 μV/e- rms pixel-to-pixel variations, respectively, were measured.

  15. Treatment of Die-Punch Fractures with 3D Printing Technology.

    PubMed

    Chen, Chunhui; Cai, Leyi; Zhang, Chuanxu; Wang, Jianshun; Guo, Xiaoshan; Zhou, Yifei

    2017-07-19

    We evaluated the feasibility, accuracy and effectiveness of applying three-dimensional (3D) printing technology for preoperative planning for die-punch fractures. A total of 107 patients who underwent die-punch fracture surgery were enrolled in the study. They were randomly divided into two groups: 52 cases in the 3D model group and 55 cases in the routine group. A 3D digital model of each die-punch fracture was reconstructed in the 3D group. The 3D digital model was imported to a 3D printer to build the full solid model. The operation time, blood loss volume, and the number of intraoperative fluoroscopy were recorded. Follow-up was performed to evaluate the patients' surgical outcomes. Treatment of die-punch fractures using the 3D printing approach reduced the number of intraoperative fluoroscopy, blood loss volume, and operation time, but did not improve wrist function compared to those in the routine group. The patients wanted the doctor to use the 3D model to introduce the condition and operative plan because it was easier for them to understand. The orthopedic surgeons thought that the 3D model was useful for communicating with their patients, but their satisfaction with the preoperative plan was much lower than the benefit of using the 3D model to communicate with their patients. 3D printing technology produced more accurate morphometric information for orthopedists to provide personalized surgical planning and communicate better with their patients. However, it is difficult to use widely in the department of orthopedics.

  16. Integration of Jeddah Historical BIM and 3D GIS for Documentation and Restoration of Historical Monument

    NASA Astrophysics Data System (ADS)

    Baik, A.; Yaagoubi, R.; Boehm, J.

    2015-08-01

    This work outlines a new approach for the integration of 3D Building Information Modelling and the 3D Geographic Information System (GIS) to provide semantically rich models, and to get the benefits from both systems to help document and analyse cultural heritage sites. Our proposed framework is based on the Jeddah Historical Building Information Modelling process (JHBIM). This JHBIM consists of a Hijazi Architectural Objects Library (HAOL) that supports higher level of details (LoD) while decreasing the time of modelling. The Hijazi Architectural Objects Library has been modelled based on the Islamic historical manuscripts and Hijazi architectural pattern books. Moreover, the HAOL is implemented using BIM software called Autodesk Revit. However, it is known that this BIM environment still has some limitations with the non-standard architectural objects. Hence, we propose to integrate the developed 3D JHBIM with 3D GIS for more advanced analysis. To do so, the JHBIM database is exported and semantically enriched with non-architectural information that is necessary for restoration and preservation of historical monuments. After that, this database is integrated with the 3D Model in the 3D GIS solution. At the end of this paper, we'll illustrate our proposed framework by applying it to a Historical Building called Nasif Historical House in Jeddah. First of all, this building is scanned by the use of a Terrestrial Laser Scanner (TLS) and Close Range Photogrammetry. Then, the 3D JHBIM based on the HOAL is designed on Revit Platform. Finally, this model is integrated to a 3D GIS solution through Autodesk InfraWorks. The shown analysis presented in this research highlights the importance of such integration especially for operational decisions and sharing the historical knowledge about Jeddah Historical City. Furthermore, one of the historical buildings in Old Jeddah, Nasif Historical House, was chosen as a test case for the project.

  17. The Impact of 3D Stacking and Technology Scaling on the Power and Area of Stereo Matching Processors

    PubMed Central

    Ok, Seung-Ho; Lee, Yong-Hwan; Shim, Jae Hoon; Lim, Sung Kyu; Moon, Byungin

    2017-01-01

    Recently, stereo matching processors have been adopted in real-time embedded systems such as intelligent robots and autonomous vehicles, which require minimal hardware resources and low power consumption. Meanwhile, thanks to the through-silicon via (TSV), three-dimensional (3D) stacking technology has emerged as a practical solution to achieving the desired requirements of a high-performance circuit. In this paper, we present the benefits of 3D stacking and process technology scaling on stereo matching processors. We implemented 2-tier 3D-stacked stereo matching processors with GlobalFoundries 130-nm and Nangate 45-nm process design kits and compare them with their two-dimensional (2D) counterparts to identify comprehensive design benefits. In addition, we examine the findings from various analyses to identify the power benefits of 3D-stacked integrated circuit (IC) and device technology advancements. From experiments, we observe that the proposed 3D-stacked ICs, compared to their 2D IC counterparts, obtain 43% area, 13% power, and 14% wire length reductions. In addition, we present a logic partitioning method suitable for a pipeline-based hardware architecture that minimizes the use of TSVs. PMID:28241437

  18. The Impact of 3D Stacking and Technology Scaling on the Power and Area of Stereo Matching Processors.

    PubMed

    Ok, Seung-Ho; Lee, Yong-Hwan; Shim, Jae Hoon; Lim, Sung Kyu; Moon, Byungin

    2017-02-22

    Recently, stereo matching processors have been adopted in real-time embedded systems such as intelligent robots and autonomous vehicles, which require minimal hardware resources and low power consumption. Meanwhile, thanks to the through-silicon via (TSV), three-dimensional (3D) stacking technology has emerged as a practical solution to achieving the desired requirements of a high-performance circuit. In this paper, we present the benefits of 3D stacking and process technology scaling on stereo matching processors. We implemented 2-tier 3D-stacked stereo matching processors with GlobalFoundries 130-nm and Nangate 45-nm process design kits and compare them with their two-dimensional (2D) counterparts to identify comprehensive design benefits. In addition, we examine the findings from various analyses to identify the power benefits of 3D-stacked integrated circuit (IC) and device technology advancements. From experiments, we observe that the proposed 3D-stacked ICs, compared to their 2D IC counterparts, obtain 43% area, 13% power, and 14% wire length reductions. In addition, we present a logic partitioning method suitable for a pipeline-based hardware architecture that minimizes the use of TSVs.

  19. An architecture for integrating planar and 3D cQED devices

    SciTech Connect

    Axline, C.; Reagor, M.; Heeres, R.; Reinhold, P.; Wang, C.; Shain, K.; Pfaff, W.; Chu, Y.; Frunzio, L.; Schoelkopf, R. J.

    2016-07-25

    Numerous loss mechanisms can limit coherence and scalability of planar and 3D-based circuit quantum electrodynamics (cQED) devices, particularly due to their packaging. The low loss and natural isolation of 3D enclosures make them good candidates for coherent scaling. We introduce a coaxial transmission line device architecture with coherence similar to traditional 3D cQED systems. Measurements demonstrate well-controlled external and on-chip couplings, a spectrum absent of cross-talk or spurious modes, and excellent resonator and qubit lifetimes. We integrate a resonator-qubit system in this architecture with a seamless 3D cavity, and separately pattern a qubit, readout resonator, Purcell filter, and high-Q stripline resonator on a single chip. Device coherence and its ease of integration make this a promising tool for complex experiments.

  20. Bi-sided integral imaging with 2D/3D convertibility using scattering polarizer.

    PubMed

    Yeom, Jiwoon; Hong, Keehoon; Park, Soon-gi; Hong, Jisoo; Min, Sung-Wook; Lee, Byoungho

    2013-12-16

    We propose a two-dimensional (2D) and three-dimensional (3D) convertible bi-sided integral imaging. The proposed system uses the polarization state of projected light for switching its operation mode between 2D and 3D modes. By using an optical module composed of two scattering polarizers and one linear polarizer, the proposed integral imaging system simultaneously provides 3D images with 2D background images for observers who are located in the front and the rear sides of the system. The occlusion effect between 2D images and 3D images is realized by using a compensation mask for 2D images and the elemental images. The principle of proposed system is experimentally verified.

  1. An architecture for integrating planar and 3D cQED devices

    NASA Astrophysics Data System (ADS)

    Axline, C.; Reagor, M.; Heeres, R.; Reinhold, P.; Wang, C.; Shain, K.; Pfaff, W.; Chu, Y.; Frunzio, L.; Schoelkopf, R. J.

    2016-07-01

    Numerous loss mechanisms can limit coherence and scalability of planar and 3D-based circuit quantum electrodynamics (cQED) devices, particularly due to their packaging. The low loss and natural isolation of 3D enclosures make them good candidates for coherent scaling. We introduce a coaxial transmission line device architecture with coherence similar to traditional 3D cQED systems. Measurements demonstrate well-controlled external and on-chip couplings, a spectrum absent of cross-talk or spurious modes, and excellent resonator and qubit lifetimes. We integrate a resonator-qubit system in this architecture with a seamless 3D cavity, and separately pattern a qubit, readout resonator, Purcell filter, and high-Q stripline resonator on a single chip. Device coherence and its ease of integration make this a promising tool for complex experiments.

  2. Free segmentation in rendered 3D images through synthetic impulse response in integral imaging

    NASA Astrophysics Data System (ADS)

    Martínez-Corral, M.; Llavador, A.; Sánchez-Ortiga, E.; Saavedra, G.; Javidi, B.

    2016-06-01

    Integral Imaging is a technique that has the capability of providing not only the spatial, but also the angular information of three-dimensional (3D) scenes. Some important applications are the 3D display and digital post-processing as for example, depth-reconstruction from integral images. In this contribution we propose a new reconstruction method that takes into account the integral image and a simplified version of the impulse response function (IRF) of the integral imaging (InI) system to perform a two-dimensional (2D) deconvolution. The IRF of an InI system has a periodic structure that depends directly on the axial position of the object. Considering different periods of the IRFs we recover by deconvolution the depth information of the 3D scene. An advantage of our method is that it is possible to obtain nonconventional reconstructions by considering alternative synthetic impulse responses. Our experiments show the feasibility of the proposed method.

  3. Integrative multicellular biological modeling: a case study of 3D epidermal development using GPU algorithms

    PubMed Central

    2010-01-01

    Background Simulation of sophisticated biological models requires considerable computational power. These models typically integrate together numerous biological phenomena such as spatially-explicit heterogeneous cells, cell-cell interactions, cell-environment interactions and intracellular gene networks. The recent advent of programming for graphical processing units (GPU) opens up the possibility of developing more integrative, detailed and predictive biological models while at the same time decreasing the computational cost to simulate those models. Results We construct a 3D model of epidermal development and provide a set of GPU algorithms that executes significantly faster than sequential central processing unit (CPU) code. We provide a parallel implementation of the subcellular element method for individual cells residing in a lattice-free spatial environment. Each cell in our epidermal model includes an internal gene network, which integrates cellular interaction of Notch signaling together with environmental interaction of basement membrane adhesion, to specify cellular state and behaviors such as growth and division. We take a pedagogical approach to describing how modeling methods are efficiently implemented on the GPU including memory layout of data structures and functional decomposition. We discuss various programmatic issues and provide a set of design guidelines for GPU programming that are instructive to avoid common pitfalls as well as to extract performance from the GPU architecture. Conclusions We demonstrate that GPU algorithms represent a significant technological advance for the simulation of complex biological models. We further demonstrate with our epidermal model that the integration of multiple complex modeling methods for heterogeneous multicellular biological processes is both feasible and computationally tractable using this new technology. We hope that the provided algorithms and source code will be a starting point for modelers to

  4. Integrative multicellular biological modeling: a case study of 3D epidermal development using GPU algorithms.

    PubMed

    Christley, Scott; Lee, Briana; Dai, Xing; Nie, Qing

    2010-08-09

    Simulation of sophisticated biological models requires considerable computational power. These models typically integrate together numerous biological phenomena such as spatially-explicit heterogeneous cells, cell-cell interactions, cell-environment interactions and intracellular gene networks. The recent advent of programming for graphical processing units (GPU) opens up the possibility of developing more integrative, detailed and predictive biological models while at the same time decreasing the computational cost to simulate those models. We construct a 3D model of epidermal development and provide a set of GPU algorithms that executes significantly faster than sequential central processing unit (CPU) code. We provide a parallel implementation of the subcellular element method for individual cells residing in a lattice-free spatial environment. Each cell in our epidermal model includes an internal gene network, which integrates cellular interaction of Notch signaling together with environmental interaction of basement membrane adhesion, to specify cellular state and behaviors such as growth and division. We take a pedagogical approach to describing how modeling methods are efficiently implemented on the GPU including memory layout of data structures and functional decomposition. We discuss various programmatic issues and provide a set of design guidelines for GPU programming that are instructive to avoid common pitfalls as well as to extract performance from the GPU architecture. We demonstrate that GPU algorithms represent a significant technological advance for the simulation of complex biological models. We further demonstrate with our epidermal model that the integration of multiple complex modeling methods for heterogeneous multicellular biological processes is both feasible and computationally tractable using this new technology. We hope that the provided algorithms and source code will be a starting point for modelers to develop their own GPU

  5. Integrating 3D Printing into an Early Childhood Teacher Preparation Course: Reflections on Practice

    ERIC Educational Resources Information Center

    Sullivan, Pamela; McCartney, Holly

    2017-01-01

    This reflection on practice describes a case study integrating 3D printing into a creativity course for preservice teachers. The theoretical rationale is discussed, and the steps for integration are outlined. Student responses and reflections on the experience provide the basis for our analysis. Examples and resources are provided, as well as a…

  6. On the integrability of the motion of 3D-Swinging Atwood machine and related problems

    NASA Astrophysics Data System (ADS)

    Elmandouh, A. A.

    2016-03-01

    In the present article, we study the problem of the motion of 3D- Swinging Atwood machine. A new integrable case for this problem is announced. We point out a new integrable case describing the motion of a heavy particle on a titled cone.

  7. Time And Temperature Dependent Micromechanical Properties Of Solder Joints For 3D-Package Integration

    NASA Astrophysics Data System (ADS)

    Roellig, Mike; Meier, Karsten; Metasch, Rene

    2010-11-01

    The recent development of 3D-integrated electronic packages is characterized by the need to increase the diversity of functions and to miniaturize. Currently many 3D-integration concepts are being developed and all of them demand new materials, new designs and new processing technologies. The combination of simulation and experimental investigation becomes increasingly accepted since simulations help to shorten the R&D cycle time and reduce costs. Numerical calculations like the Finite-Element-Method are strong tools to calculate stress conditions in electronic packages resulting from thermal strains due to the manufacturing process and environmental loads. It is essential for the application of numerical calculations that the material data is accurate and describes sufficiently the physical behaviour. The developed machine allows the measurement of time and temperature dependent micromechanical properties of solder joints. Solder joints, which are used to mechanically and electrically connect different packages, are physically measured as they leave the process. This allows accounting for process influences, which may change material properties. Additionally, joint sizes and metallurgical interactions between solder and under bump metallization can be respected by this particular measurement. The measurement allows the determination of material properties within a temperature range of 20° C-200° C. Further, the time dependent creep deformation can be measured within a strain-rate range of 10-31/s-10-81/s. Solder alloys based on Sn-Ag/Sn-Ag-Cu with additionally impurities and joint sizes down to O/ 200 μm were investigated. To finish the material characterization process the material model coefficient were extracted by FEM-Simulation to increase the accuracy of data.

  8. THREE DIMENSIONAL INTEGRATED CHARACTERIZATION AND ARCHIVING SYSTEM (3D-ICAS)

    SciTech Connect

    George Jarvis

    2001-06-18

    The overall objective of this project is to develop an integrated system that remotely characterizes, maps, and archives measurement data of hazardous decontamination and decommissioning (D&D) areas. The system will generate a detailed 3-dimensional topography of the area as well as real-time quantitative measurements of volatile organics and radionuclides. The system will analyze substrate materials consisting of concrete, asbestos, and transite. The system will permanently archive the data measurements for regulatory and data integrity documentation. Exposure limits, rest breaks, and donning and removal of protective garments generate waste in the form of contaminated protective garments and equipment. Survey times are increased and handling and transporting potentially hazardous materials incur additional costs. Off-site laboratory analysis is expensive and time-consuming, often necessitating delay of further activities until results are received. The Three Dimensional Integrated Characterization and Archiving System (3D-ICAS) has been developed to alleviate some of these problems. 3D-ICAS provides a flexible system for physical, chemical and nuclear measurements reduces costs and improves data quality. Operationally, 3D-ICAS performs real-time determinations of hazardous and toxic contamination. A prototype demonstration unit is available for use in early 2000. The tasks in this Phase included: (1) Mobility Platforms: Integrate hardware onto mobility platforms, upgrade surface sensors, develop unit operations and protocol. (2) System Developments: Evaluate metals detection capability using x-ray fluorescence technology. (3) IWOS Upgrades: Upgrade the IWOS software and hardware for compatibility with mobility platform. The system was modified, tested and debugged during 1999 and 2000. The 3D-ICAS was shipped on 11 May 2001 to FIU-HCET for demonstration and validation of the design modifications. These modifications included simplifying the design from a two

  9. A 2D/3D hybrid integral imaging display by using fast switchable hexagonal liquid crystal lens array

    NASA Astrophysics Data System (ADS)

    Lee, Hsin-Hsueh; Huang, Ping-Ju; Wu, Jui-Yi; Hsieh, Po-Yuan; Huang, Yi-Pai

    2017-05-01

    The paper proposes a new display which could switch 2D and 3D images on a monitor, and we call it as Hybrid Display. In 3D display technologies, the reduction of image resolution is still an important issue. The more angle information offer to the observer, the less spatial resolution would offer to image resolution because of the fixed panel resolution. Take it for example, in the integral photography system, the part of image without depth, like background, will reduce its resolution by transform from 2D to 3D image. Therefore, we proposed a method by using liquid crystal component to quickly switch the 2D image and 3D image. Meanwhile, the 2D image is set as a background to compensate the resolution.. In the experiment, hexagonal liquid crystal lens array would be used to take the place of fixed lens array. Moreover, in order to increase lens power of the hexagonal LC lens array, we applied high resistance (Hi-R) layer structure on the electrode. Hi-R layer would make the gradient electric field and affect the lens profile. Also, we use panel with 801 PPI to display the integral image in our system. Hence, the consequence of full resolution 2D background with the 3D depth object forms the Hybrid Display.

  10. Enhancing the Gaming Experience Using 3D Spatial User Interface Technologies.

    PubMed

    Kulshreshth, Arun; Pfeil, Kevin; LaViola, Joseph J

    2017-01-01

    Three-dimensional (3D) spatial user interface technologies have the potential to make games more immersive and engaging and thus provide a better user experience. Although technologies such as stereoscopic 3D display, head tracking, and gesture-based control are available for games, it is still unclear how their use affects gameplay and if there are any user performance benefits. The authors have conducted several experiments on these technologies in game environments to understand how they affect gameplay and how we can use them to optimize the gameplay experience.

  11. Wideband 3 dB/90 deg coupler in multilayer thick-film technology

    NASA Astrophysics Data System (ADS)

    Person, C.; Coupez, J. P.; Toutain, S.; Morvan, M.

    1995-05-01

    A wideband 3dB/90 deg coupler based on multilayer thick-film technology is proposed. With reference to the well known Lange structure, the presented coupler is quite interesting in terms of realisability, and sensitivity with respect to technological limitations. In addition, no external operation, such as wire bonding, is needed, thereby resulting in good reproductibility.

  12. Color Flat Panel Displays: 3D Autostereoscopic Brassboard and Field Sequential Illumination Technology.

    DTIC Science & Technology

    1997-06-01

    DTI has advanced autostereoscopic and field sequential color (FSC) illumination technologies for flat panel displays. Using a patented backlight...technology, DTI has developed prototype 3D flat panel color display that provides stereoscopic viewing without the need for special glasses or other... autostereoscopic viewing. Discussions of system architecture, critical component specifications and resultant display characteristics are provided. Also

  13. Learning from graphically integrated 2D and 3D representations improves retention of neuroanatomy

    NASA Astrophysics Data System (ADS)

    Naaz, Farah

    Visualizations in the form of computer-based learning environments are highly encouraged in science education, especially for teaching spatial material. Some spatial material, such as sectional neuroanatomy, is very challenging to learn. It involves learning the two dimensional (2D) representations that are sampled from the three dimensional (3D) object. In this study, a computer-based learning environment was used to explore the hypothesis that learning sectional neuroanatomy from a graphically integrated 2D and 3D representation will lead to better learning outcomes than learning from a sequential presentation. The integrated representation explicitly demonstrates the 2D-3D transformation and should lead to effective learning. This study was conducted using a computer graphical model of the human brain. There were two learning groups: Whole then Sections, and Integrated 2D3D. Both groups learned whole anatomy (3D neuroanatomy) before learning sectional anatomy (2D neuroanatomy). The Whole then Sections group then learned sectional anatomy using 2D representations only. The Integrated 2D3D group learned sectional anatomy from a graphically integrated 3D and 2D model. A set of tests for generalization of knowledge to interpreting biomedical images was conducted immediately after learning was completed. The order of presentation of the tests of generalization of knowledge was counterbalanced across participants to explore a secondary hypothesis of the study: preparation for future learning. If the computer-based instruction programs used in this study are effective tools for teaching anatomy, the participants should continue learning neuroanatomy with exposure to new representations. A test of long-term retention of sectional anatomy was conducted 4-8 weeks after learning was completed. The Integrated 2D3D group was better than the Whole then Sections

  14. Fabrication of nano-scale Cu bond pads with seal design in 3D integration applications.

    PubMed

    Chen, K N; Tsang, C K; Wu, W W; Lee, S H; Lu, J Q

    2011-04-01

    A method to fabricate nano-scale Cu bond pads for improving bonding quality in 3D integration applications is reported. The effect of Cu bonding quality on inter-level via structural reliability for 3D integration applications is investigated. We developed a Cu nano-scale-height bond pad structure and fabrication process for improved bonding quality by recessing oxides using a combination of SiO2 CMP process and dilute HF wet etching. In addition, in order to achieve improved wafer-level bonding, we introduced a seal design concept that prevents corrosion and provides extra mechanical support. Demonstrations of these concepts and processes provide the feasibility of reliable nano-scale 3D integration applications.

  15. Art-Science-Technology collaboration through immersive, interactive 3D visualization

    NASA Astrophysics Data System (ADS)

    Kellogg, L. H.

    2014-12-01

    At the W. M. Keck Center for Active Visualization in Earth Sciences (KeckCAVES), a group of geoscientists and computer scientists collaborate to develop and use of interactive, immersive, 3D visualization technology to view, manipulate, and interpret data for scientific research. The visual impact of immersion in a CAVE environment can be extremely compelling, and from the outset KeckCAVES scientists have collaborated with artists to bring this technology to creative works, including theater and dance performance, installations, and gamification. The first full-fledged collaboration designed and produced a performance called "Collapse: Suddenly falling down", choreographed by Della Davidson, which investigated the human and cultural response to natural and man-made disasters. Scientific data (lidar scans of disaster sites, such as landslides and mine collapses) were fully integrated into the performance by the Sideshow Physical Theatre. This presentation will discuss both the technological and creative characteristics of, and lessons learned from the collaboration. Many parallels between the artistic and scientific process emerged. We observed that both artists and scientists set out to investigate a topic, solve a problem, or answer a question. Refining that question or problem is an essential part of both the creative and scientific workflow. Both artists and scientists seek understanding (in this case understanding of natural disasters). Differences also emerged; the group noted that the scientists sought clarity (including but not limited to quantitative measurements) as a means to understanding, while the artists embraced ambiguity, also as a means to understanding. Subsequent art-science-technology collaborations have responded to evolving technology for visualization and include gamification as a means to explore data, and use of augmented reality for informal learning in museum settings.

  16. Dual-view integral imaging 3D display by using orthogonal polarizer array and polarization switcher.

    PubMed

    Wang, Qiong-Hua; Ji, Chao-Chao; Li, Lei; Deng, Huan

    2016-01-11

    In this paper, a dual-view integral imaging three-dimensional (3D) display consisting of a display panel, two orthogonal polarizer arrays, a polarization switcher, and a micro-lens array is proposed. Two elemental image arrays for two different 3D images are presented by the display panel alternately, and the polarization switcher controls the polarization direction of the light rays synchronously. The two elemental image arrays are modulated by their corresponding and neighboring micro-lenses of the micro-lens array, and reconstruct two different 3D images in viewing zones 1 and 2, respectively. A prototype of the dual-view II 3D display is developed, and it has good performances.

  17. Strategies for Effectively Visualizing a 3D Flow Using Volume Line Integral Convolution

    NASA Technical Reports Server (NTRS)

    Interrante, Victoria; Grosch, Chester

    1997-01-01

    This paper discusses strategies for effectively portraying 3D flow using volume line integral convolution. Issues include defining an appropriate input texture, clarifying the distinct identities and relative depths of the advected texture elements, and selectively highlighting regions of interest in both the input and output volumes. Apart from offering insights into the greater potential of 3D LIC as a method for effectively representing flow in a volume, a principal contribution of this work is the suggestion of a technique for generating and rendering 3D visibility-impeding 'halos' that can help to intuitively indicate the presence of depth discontinuities between contiguous elements in a projection and thereby clarify the 3D spatial organization of elements in the flow. The proposed techniques are applied to the visualization of a hot, supersonic, laminar jet exiting into a colder, subsonic coflow.

  18. Development and Calibration of New 3-D Vector VSP Imaging Technology: Vinton Salt Dome, LA

    SciTech Connect

    Kurt J. Marfurt; Hua-Wei Zhou; E. Charlotte Sullivan

    2004-09-01

    Vinton salt dome is located in Southwestern Louisiana, in Calcasieu Parish. Tectonically, the piercement dome is within the salt dome minibasin province. The field has been in production since 1901, with most of the production coming from Miocene and Oligocene sands. The goal of our project was to develop and calibrate new processing and interpretation technology to fully exploit the information available from a simultaneous 3-D surface seismic survey and 3-C, 3-D vertical seismic profile (VSP) survey over the dome. More specifically the goal was to better image salt dome flanks and small, reservoir-compartmentalizing faults. This new technology has application to mature salt-related fields across the Gulf Coast. The primary focus of our effort was to develop, apply, and assess the limitations of new 3-C, 3-D wavefield separation and imaging technology that could be used to image aliased, limited-aperture, vector VSP data. Through 2-D and 3-D full elastic modeling, we verified that salt flank reflections exist in the horizontally-traveling portion of the wavefield rather than up- and down-going portions of the wavefield, thereby explaining why many commercial VSP processing flow failed. Since the P-wave reflections from the salt flank are measured primarily on the horizontal components while P-wave reflections from deeper sedimentary horizons are measured primarily on the vertical component, a true vector VSP analysis was needed. We developed an antialiased discrete Radon transform filter to accurately model P- and S-wave data components measured by the vector VSP. On-the-fly polarization filtering embedded in our Kirchhoff imaging algorithm was effective in separating PP from PS wave images. By the novel application of semblance-weighted filters, we were able to suppress many of the migration artifacts associated with low fold, sparse VSP acquisition geometries. To provide a better velocity/depth model, we applied 3-D prestack depth migration to the surface data

  19. Technology Integration

    ERIC Educational Resources Information Center

    T.H.E. Journal, 2004

    2004-01-01

    The use of instructional technology has evolved over the last two decades, initially, instructional technology had two uses: learning about computers and using computers to increase basic skills. Learning about computers morphed into computer literacy, which is typically defined as the history, terminology and background of computing, using…

  20. GPS/Optical/Inertial Integration for 3D Navigation Using Multi-Copter Platforms

    NASA Technical Reports Server (NTRS)

    Dill, Evan T.; Young, Steven D.; Uijt De Haag, Maarten

    2017-01-01

    In concert with the continued advancement of a UAS traffic management system (UTM), the proposed uses of autonomous unmanned aerial systems (UAS) have become more prevalent in both the public and private sectors. To facilitate this anticipated growth, a reliable three-dimensional (3D) positioning, navigation, and mapping (PNM) capability will be required to enable operation of these platforms in challenging environments where global navigation satellite systems (GNSS) may not be available continuously. Especially, when the platform's mission requires maneuvering through different and difficult environments like outdoor opensky, outdoor under foliage, outdoor-urban and indoor, and may include transitions between these environments. There may not be a single method to solve the PNM problem for all environments. The research presented in this paper is a subset of a broader research effort, described in [1]. The research is focused on combining data from dissimilar sensor technologies to create an integrated navigation and mapping method that can enable reliable operation in both an outdoor and structured indoor environment. The integrated navigation and mapping design is utilizes a Global Positioning System (GPS) receiver, an Inertial Measurement Unit (IMU), a monocular digital camera, and three short to medium range laser scanners. This paper describes specifically the techniques necessary to effectively integrate the monocular camera data within the established mechanization. To evaluate the developed algorithms a hexacopter was built, equipped with the discussed sensors, and both hand-carried and flown through representative environments. This paper highlights the effect that the monocular camera has on the aforementioned sensor integration scheme's reliability, accuracy and availability.

  1. NeuroGlasses: a neural sensing healthcare system for 3-D vision technology.

    PubMed

    Gong, Fang; Xu, Wenyao; Lee, Jueh-Yu; He, Lei; Sarrafzadeh, Majid

    2012-03-01

    3-D vision technologies are extensively used in a wide variety of applications. Particularly glasses-based 3-D technology facilities are increasingly becoming affordable to our daily lives. Considering health issues raised by 3-D video technologies, to the best of our knowledge, most of the pilot studies are practiced in a highly-controlled laboratory environment only. In this paper, we present NeuroGlasses, a nonintrusive wearable physiological signal monitoring system to facilitate health analysis and diagnosis of 3-D video watchers. The NeuroGlasses system acquires health-related signals by physiological sensors and provides feedbacks of health-related features. Moreover, the NeuroGlasses system employs signal-specific reconstruction and feature extraction to compensate the distortion of signals caused by variation of the placement of the sensors. We also propose a server-based NeuroGlasses infrastructure where physiological features can be extracted for real-time response or collected on the server side for long term analysis and diagnosis. Through an on-campus pilot study, the experimental results show that NeuroGlasses system can effectively provide physiological information for healthcare purpose. Furthermore, it approves that 3-D vision technology has a significant impact on the physiological signals, such as EEG, which potentially leads to neural diseases. © 2012 IEEE

  2. Status of on-focal-plane signal processing utilizing 3D silicon technology

    NASA Astrophysics Data System (ADS)

    Carson, John C.

    1994-03-01

    3D silicon technology has been under development since 1980, primarily aimed at on-focal- plane signal processing to solve a variety of military sensor systems problems. The thrust has been to bring more and more parallel analog and digital processing into the closest possible proximity to the detector array. At this time on-focal-plane functionality includes preamplification, spatial and temporal matched filtering, nonuniformity correction, neural networks, analog-digital conversion, digital logic, and digital memory. Historically, a custom- built specialty technology constrained by cost in its applicability, 3D silicon has undergone a dual-use conversion to include high-volume, low-cost commercial computer electronics. 3D silicon is on the way to becoming the lowest-cost-per-gate technology available and, because of this, sensor system design and performance will be revolutionized.

  3. Emerging Technologies in the Built Environment: Geographic Information Science (GIS), 3D Printing, and Additive Manufacturing

    SciTech Connect

    New, Joshua Ryan

    2014-01-01

    Abstract 1: Geographic information systems emerged as a computer application in the late 1960s, led in part by projects at ORNL. The concept of a GIS has shifted through time in response to new applications and new technologies, and is now part of a much larger world of geospatial technology. This presentation discusses the relationship of GIS and estimating hourly and seasonal energy consumption profiles in the building sector at spatial scales down to the individual parcel. The method combines annual building energy simulations for city-specific prototypical buildings and commonly available geospatial data in a GIS framework. Abstract 2: This presentation focuses on 3D printing technologies and how they have rapidly evolved over the past couple of years. At a basic level, 3D printing produces physical models quickly and easily from 3D CAD, BIM (Building Information Models), and other digital data. Many AEC firms have adopted 3D printing as part of commercial building design development and project delivery. This presentation includes an overview of 3D printing, discusses its current use in building design, and talks about its future in relation to the HVAC industry. Abstract 3: This presentation discusses additive manufacturing and how it is revolutionizing the design of commercial and residential facilities. Additive manufacturing utilizes a broad range of direct manufacturing technologies, including electron beam melting, ultrasonic, extrusion, and laser metal deposition for rapid prototyping. While there is some overlap with the 3D printing talk, this presentation focuses on the materials aspect of additive manufacturing and also some of the more advanced technologies involved with rapid prototyping. These technologies include design of carbon fiber composites, lightweight metals processing, transient field processing, and more.

  4. A non-disruptive technology for robust 3D tool tracking for ultrasound-guided interventions.

    PubMed

    Mung, Jay; Vignon, Francois; Jain, Ameet

    2011-01-01

    In the past decade ultrasound (US) has become the preferred modality for a number of interventional procedures, offering excellent soft tissue visualization. The main limitation however is limited visualization of surgical tools. A new method is proposed for robust 3D tracking and US image enhancement of surgical tools under US guidance. Small US sensors are mounted on existing surgical tools. As the imager emits acoustic energy, the electrical signal from the sensor is analyzed to reconstruct its 3D coordinates. These coordinates can then be used for 3D surgical navigation, similar to current day tracking systems. A system with real-time 3D tool tracking and image enhancement was implemented on a commercial ultrasound scanner and 3D probe. Extensive water tank experiments with a tracked 0.2mm sensor show robust performance in a wide range of imaging conditions and tool position/orientations. The 3D tracking accuracy was 0.36 +/- 0.16mm throughout the imaging volume of 55 degrees x 27 degrees x 150mm. Additionally, the tool was successfully tracked inside a beating heart phantom. This paper proposes an image enhancement and tool tracking technology with sub-mm accuracy for US-guided interventions. The technology is non-disruptive, both in terms of existing clinical workflow and commercial considerations, showing promise for large scale clinical impact.

  5. 3D Imaging for hand gesture recognition: Exploring the software-hardware interaction of current technologies

    NASA Astrophysics Data System (ADS)

    Periverzov, Frol; Ilieş, Horea T.

    2012-09-01

    Interaction with 3D information is one of the fundamental and most familiar tasks in virtually all areas of engineering and science. Several recent technological advances pave the way for developing hand gesture recognition capabilities available to all, which will lead to more intuitive and efficient 3D user interfaces (3DUI). These developments can unlock new levels of expression and productivity in all activities concerned with the creation and manipulation of virtual 3D shapes and, specifically, in engineering design. Building fully automated systems for tracking and interpreting hand gestures requires robust and efficient 3D imaging techniques as well as potent shape classifiers. We survey and explore current and emerging 3D imaging technologies, and focus, in particular, on those that can be used to build interfaces between the users' hands and the machine. The purpose of this paper is to categorize and highlight the relevant differences between these existing 3D imaging approaches in terms of the nature of the information provided, output data format, as well as the specific conditions under which these approaches yield reliable data. Furthermore we explore the impact of each of these approaches on the computational cost and reliability of the required image processing algorithms. Finally we highlight the main challenges and opportunities in developing natural user interfaces based on hand gestures, and conclude with some promising directions for future research. [Figure not available: see fulltext.

  6. Could the 3D Printing Technology be a Useful Strategy to Obtain Customized Nutrition?

    PubMed

    Severini, Carla; Derossi, Antonio

    Within the concept of personalized nutrition we want to introduce the terms of "customized food formula" which refers to the preparation (at home) or the production (at industrial level) of new food formulations having nutrients and functional compounds necessary to prevent diseases or to reduce the risk for each subject (or subjects category) who exhibit a susceptibility to diseases. Three-dimensional (3D) printing is a group of technologies of growing interest able to produce, slice by slice, materials with any desired shape, dimension, and structure properties. The application of 3D printing in food science, as called "3D food printing," is a pioneering technology that could allow to build personalized foods by depositing nutrients and functional compounds or soft-materials obtained by their mixture. Also by 3D food printing it is expected to obtain personalized food formula having desired shape, dimension, and microstructure. This would be useful for people having swallowing problems. In this paper we analyzed the first examples of 3D food printing available in literature as well as we reported our results focused on the production of 3D printed wheat-based snacks enriched with insect powder (Tenebrio molitor) with the aim to improve the quality and the content of proteins.

  7. BEST3D user's manual: Boundary Element Solution Technology, 3-Dimensional Version 3.0

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The theoretical basis and programming strategy utilized in the construction of the computer program BEST3D (boundary element solution technology - three dimensional) and detailed input instructions are provided for the use of the program. An extensive set of test cases and sample problems is included in the manual and is also available for distribution with the program. The BEST3D program was developed under the 3-D Inelastic Analysis Methods for Hot Section Components contract (NAS3-23697). The overall objective of this program was the development of new computer programs allowing more accurate and efficient three-dimensional thermal and stress analysis of hot section components, i.e., combustor liners, turbine blades, and turbine vanes. The BEST3D program allows both linear and nonlinear analysis of static and quasi-static elastic problems and transient dynamic analysis for elastic problems. Calculation of elastic natural frequencies and mode shapes is also provided.

  8. 3D IC TSV-Based Technology: Stress Assessment For Chip Performance

    NASA Astrophysics Data System (ADS)

    Sukharev, Valeriy; Kteyan, Armen; Khachatryan, Nikolay; Hovsepyan, Henrik; Torres, Juan Andres; Choy, Jun-Ho; Markosian, Ara

    2010-11-01

    Potential challenges with managing mechanical stress distributions and the consequent effects on device performance for advanced 3D through-silicon-via (TSV) based technologies are outlined. A set of physics-based compact models of a multi-scale simulation flow for assessment of the mechanical stress across the device layers in the silicon chips stacked and packaged with the 3D TSV technology is proposed. A calibration technique based on fitting to measured transistor electrical characteristics of a custom designed test-chip is proposed.

  9. 3D Printed Microfluidic Device with Integrated Biosensors for Online Analysis of Subcutaneous Human Microdialysate

    PubMed Central

    2015-01-01

    This work presents the design, fabrication, and characterization of a robust 3D printed microfluidic analysis system that integrates with FDA-approved clinical microdialysis probes for continuous monitoring of human tissue metabolite levels. The microfluidic device incorporates removable needle type integrated biosensors for glucose and lactate, which are optimized for high tissue concentrations, housed in novel 3D printed electrode holders. A soft compressible 3D printed elastomer at the base of the holder ensures a good seal with the microfluidic chip. Optimization of the channel size significantly improves the response time of the sensor. As a proof-of-concept study, our microfluidic device was coupled to lab-built wireless potentiostats and used to monitor real-time subcutaneous glucose and lactate levels in cyclists undergoing a training regime. PMID:26070023

  10. Design of mulitlevel OLF approach ("V"-shaped decompressive laminoplasty) based on 3D printing technology.

    PubMed

    Ling, Qinjie; He, Erxing; Ouyang, Hanbin; Guo, Jing; Yin, Zhixun; Huang, Wenhua

    2017-07-27

    To introduce a new surgical approach to the multilevel ossification of the ligamentum flavum (OLF) aided by three-dimensional (3D) printing technology. A multilevel OLF patient (male, 66 years) was scanned using computed tomography (CT). His saved DICOM format data were inputted to the Mimics14.0 3D reconstruction software (Materialise, Belgium). The resulting 3D model was used to observe the anatomical features of the multilevel OLF area and to design the surgical approach. At the base of the spinous process, two channels were created using an osteotomy bilaterally to create a "V" shape to remove the bone ligamentous complex (BLC). The decompressive laminoplasty using mini-plate fixation was simulated with the computer. The physical model was manufactured using 3D printing technology. The patient was subsequently treated using the designed surgery. The operation was completed successfully without any complications. The operative time was 90 min, and blood loss was 200 ml. One month after the operation, neurologic function was recovered well, and the JOA score was improved from 6 preoperatively to 10. Postoperative CT scanning showed that the OLF was totally removed, and the replanted BLC had not subsided. 3D printing technology is an effective, reliable, and minimally invasive method to design operations. The technique can be an option for multilevel OLF surgical treatment. This can provide sufficient decompression with minimum damage to the spine and other intact anatomical structures.

  11. The application of camera calibration in range-gated 3D imaging technology

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-quan; Wang, Xian-wei; Zhou, Yan

    2013-09-01

    Range-gated laser imaging technology was proposed in 1966 by LF Gillespiethe in U.S. Army Night Vision Laboratory(NVL). Using pulse laser and intensified charge-coupled device(ICCD) as light source and detector respectively, range-gated laser imaging technology can realize space-slice imaging while restraining the atmospheric backs-catter, and in turn detect the target effectively, by controlling the delay between the laser pulse and strobe. Owing to the constraints of the development of key components such as narrow pulse laser and gated imaging devices, the research has been progressed slowly in the next few decades. Until the beginning of this century, as the hardware technology continues to mature, this technology has developed rapidly in fields such as night vision, underwater imaging, biomedical imaging, three-dimensional imaging, especially range-gated three-dimensional(3-D) laser imaging field purposing of access to target spatial information. 3-D reconstruction is the processing of restoration of 3-D objects visible surface geometric structure from three-dimensional(2-D) image. Range-gated laser imaging technology can achieve gated imaging of slice space to form a slice image, and in turn provide the distance information corresponding to the slice image. But to inverse the information of 3-D space, we need to obtain the imaging visual field of system, that is, the focal length of the system. Then based on the distance information of the space slice, the spatial information of each unit space corresponding to each pixel can be inversed. Camera calibration is an indispensable step in 3-D reconstruction, including analysis of the internal structure of camera parameters and the external parameters . In order to meet the technical requirements of the range-gated 3-D imaging, this paper intends to study the calibration of the zoom lens system. After summarizing the camera calibration technique comprehensively, a classic calibration method based on line is

  12. Automated Quantification and Integrative Analysis of 2D and 3D Mitochondrial Shape and Network Properties

    PubMed Central

    Nikolaisen, Julie; Nilsson, Linn I. H.; Pettersen, Ina K. N.; Willems, Peter H. G. M.; Lorens, James B.; Koopman, Werner J. H.; Tronstad, Karl J.

    2014-01-01

    imaging and quantification are crucial for proper understanding of mitochondrial shape and topology in non-flat cells. In summary, we here present an integrative method for unbiased 3D quantification of mitochondrial shape and network properties in mammalian cells. PMID:24988307

  13. Large scale 3-D modeling by integration of resistivity models and borehole data through inversion

    NASA Astrophysics Data System (ADS)

    Foged, N.; Marker, P. A.; Christansen, A. V.; Bauer-Gottwein, P.; Jørgensen, F.; Høyer, A.-S.; Auken, E.

    2014-02-01

    We present an automatic method for parameterization of a 3-D model of the subsurface, integrating lithological information from boreholes with resistivity models through an inverse optimization, with the objective of further detailing for geological models or as direct input to groundwater models. The parameter of interest is the clay fraction, expressed as the relative length of clay-units in a depth interval. The clay fraction is obtained from lithological logs and the clay fraction from the resistivity is obtained by establishing a simple petrophysical relationship, a translator function, between resistivity and the clay fraction. Through inversion we use the lithological data and the resistivity data to determine the optimum spatially distributed translator function. Applying the translator function we get a 3-D clay fraction model, which holds information from the resistivity dataset and the borehole dataset in one variable. Finally, we use k means clustering to generate a 3-D model of the subsurface structures. We apply the concept to the Norsminde survey in Denmark integrating approximately 700 boreholes and more than 100 000 resistivity models from an airborne survey in the parameterization of the 3-D model covering 156 km2. The final five-cluster 3-D model differentiates between clay materials and different high resistive materials from information held in resistivity model and borehole observations respectively.

  14. Large-scale 3-D modeling by integration of resistivity models and borehole data through inversion

    NASA Astrophysics Data System (ADS)

    Foged, N.; Marker, P. A.; Christansen, A. V.; Bauer-Gottwein, P.; Jørgensen, F.; Høyer, A.-S.; Auken, E.

    2014-11-01

    We present an automatic method for parameterization of a 3-D model of the subsurface, integrating lithological information from boreholes with resistivity models through an inverse optimization, with the objective of further detailing of geological models, or as direct input into groundwater models. The parameter of interest is the clay fraction, expressed as the relative length of clay units in a depth interval. The clay fraction is obtained from lithological logs and the clay fraction from the resistivity is obtained by establishing a simple petrophysical relationship, a translator function, between resistivity and the clay fraction. Through inversion we use the lithological data and the resistivity data to determine the optimum spatially distributed translator function. Applying the translator function we get a 3-D clay fraction model, which holds information from the resistivity data set and the borehole data set in one variable. Finally, we use k-means clustering to generate a 3-D model of the subsurface structures. We apply the procedure to the Norsminde survey in Denmark, integrating approximately 700 boreholes and more than 100 000 resistivity models from an airborne survey in the parameterization of the 3-D model covering 156 km2. The final five-cluster 3-D model differentiates between clay materials and different high-resistivity materials from information held in the resistivity model and borehole observations, respectively.

  15. Attitudes of Patients Toward Adoption of 3D Technology in Pain Assessment: Qualitative Perspective

    PubMed Central

    2013-01-01

    Background Past research has revealed that insufficient pain assessment could, and often, has negative implications on the provision of quality health care. While current available clinical approaches have proven to be valid interventions, they are expensive and can often fail in providing efficient pain measurements. The increase in the prevalence of pain calls for more intuitive pain assessment solutions. Computerized alternatives have already been proposed both in the literature and in commerce, but may lack essential qualities such as accuracy of the collected clinical information and effective patient-clinician interaction. In response to this concern, 3-dimensional (3D) technology could become the innovative intervention needed to support and improve the pain assessment process. Objective The purpose of this analysis was to describe qualitative findings from a study which was designed to explore patients’ perceptions of adopting 3D technology in the assessment of their pain experience related to important themes that might positively or negatively influence the quality of the pain assessment process. Methods The perceptions of 60 individuals with some form of pain in the area of Greater London were collected through semi-structured interviews. Of the 60 respondents, 24 (43%) produced usable responses and were analyzed for content using principles of the grounded theory approach and thematic analysis, in order to gain insight into the participants’ beliefs and attitudes towards adopting 3D technology in pain assessment. Results The analysis identified 4 high-level core themes that were representative of the participants’ responses. These themes indicated that most respondents valued “the potential of 3D technology to facilitate better assessment of pain” as the most useful outcome of adopting a 3D approach. Respondents also expressed their opinions on the usability of the 3D approach, with no important concerns reported about its perceived ease of

  16. Developement of 3D Vertically Integrated Pattern Recognition Associative Memory (VIPRAM)

    SciTech Connect

    Deputch, G.; Hoff, J.; Lipton, R.; Liu, T.; Olsen, J.; Ramberg, E.; Wu, Jin-Yuan; Yarema, R.; Shochet, M.; Tang, F.; Demarteau, M.; /Argonne /INFN, Padova

    2011-04-13

    Many next-generation physics experiments will be characterized by the collection of large quantities of data, taken in rapid succession, from which scientists will have to unravel the underlying physical processes. In most cases, large backgrounds will overwhelm the physics signal. Since the quantity of data that can be stored for later analysis is limited, real-time event selection is imperative to retain the interesting events while rejecting the background. Scaling of current technologies is unlikely to satisfy the scientific needs of future projects, so investments in transformational new technologies need to be made. For example, future particle physics experiments looking for rare processes will have to address the demanding challenges of fast pattern recognition in triggering as detector hit density becomes significantly higher due to the high luminosity required to produce the rare processes. In this proposal, we intend to develop hardware-based technology that significantly advances the state-of-the-art for fast pattern recognition within and outside HEP using the 3D vertical integration technology that has emerged recently in industry. The ultimate physics reach of the LHC experiments will crucially depend on the tracking trigger's ability to help discriminate between interesting rare events and the background. Hardware-based pattern recognition for fast triggering on particle tracks has been successfully used in high-energy physics experiments for some time. The CDF Silicon Vertex Trigger (SVT) at the Fermilab Tevatron is an excellent example. The method used there, developed in the 1990's, is based on algorithms that use a massively parallel associative memory architecture to identify patterns efficiently at high speed. However, due to much higher occupancy and event rates at the LHC, and the fact that the LHC detectors have a much larger number of channels in their tracking detectors, there is an enormous challenge in implementing pattern recognition

  17. Flexible fabrication of multi-scale integrated 3D periodic nanostructures with phase mask

    NASA Astrophysics Data System (ADS)

    Yuan, Liang Leon

    Top-down fabrication of artificial nanostructures, especially three-dimensional (3D) periodic nanostructures, that forms uniform and defect-free structures over large area with the advantages of high throughput and rapid processing and in a manner that can further monolithically integrate into multi-scale and multi-functional devices is long-desired but remains a considerable challenge. This thesis study advances diffractive optical element (DOE) based 3D laser holographic nanofabrication of 3D periodic nanostructures and develops new kinds of DOEs for advanced diffracted-beam control during the fabrication. Phase masks, as one particular kind of DOE, are a promising direction for simple and rapid fabrication of 3D periodic nanostructures by means of Fresnel diffraction interference lithography. When incident with a coherent beam of light, a suitable phase mask (e.g. with 2D nano-grating) can create multiple diffraction orders that are inherently phase-locked and overlap to form a 3D light interference pattern in the proximity of the DOE. This light pattern is typically recorded in photosensitive materials including photoresist to develop into 3D photonic crystal nanostructure templates. Two kinds of advanced phase masks were developed that enable delicate phase control of multiple diffraction beams. The first exploits femtosecond laser direct writing inside fused silica to assemble multiple (up to nine) orthogonally crossed (2D) grating layers, spaced on Talbot planes to overcome the inherent weak diffraction efficiency otherwise found in low-contrast volume gratings. A systematic offsetting of orthogonal grating layers to establish phase offsets over 0 to pi/2 range provided precise means for controlling the 3D photonic crystal structure symmetry between body centered tetragonal (BCT) and woodpile-like tetragonal (wTTR). The second phase mask consisted of two-layered nanogratings with small sub-wavelength grating periods and phase offset control. That was

  18. Laboratory and in-flight experiments to evaluate 3-D audio display technology

    NASA Technical Reports Server (NTRS)

    Ericson, Mark; Mckinley, Richard; Kibbe, Marion; Francis, Daniel

    1994-01-01

    Laboratory and in-flight experiments were conducted to evaluate 3-D audio display technology for cockpit applications. A 3-D audio display generator was developed which digitally encodes naturally occurring direction information onto any audio signal and presents the binaural sound over headphones. The acoustic image is stabilized for head movement by use of an electromagnetic head-tracking device. In the laboratory, a 3-D audio display generator was used to spatially separate competing speech messages to improve the intelligibility of each message. Up to a 25 percent improvement in intelligibility was measured for spatially separated speech at high ambient noise levels (115 dB SPL). During the in-flight experiments, pilots reported that spatial separation of speech communications provided a noticeable improvement in intelligibility. The use of 3-D audio for target acquisition was also investigated. In the laboratory, 3-D audio enabled the acquisition of visual targets in about two seconds average response time at 17 degrees accuracy. During the in-flight experiments, pilots correctly identified ground targets 50, 75, and 100 percent of the time at separation angles of 12, 20, and 35 degrees, respectively. In general, pilot performance in the field with the 3-D audio display generator was as expected, based on data from laboratory experiments.

  19. New technologies of 2-D and 3-D modeling for analysis and management of natural resources

    NASA Astrophysics Data System (ADS)

    Cheremisina, E. N.; Lyubimova, A. V.; Kirpicheva, E. Yu.

    2016-09-01

    For ensuring technological support of research and administrative activity in the sphere of environmental management a specialized modular program complex was developed. The special attention in developing a program complex is focused to creation of convenient and effective tools for creation and visualization 2d and 3D models providing the solution of tasks of the analysis and management of natural resources.

  20. Desktop Cloud Visualization: the new technology to remote access 3D interactive applications in the Cloud.

    PubMed

    Torterolo, Livia; Ruffino, Francesco

    2012-01-01

    In the proposed demonstration we will present DCV (Desktop Cloud Visualization): a unique technology that allows users to remote access 2D and 3D interactive applications over a standard network. This allows geographically dispersed doctors work collaboratively and to acquire anatomical or pathological images and visualize them for further investigations.

  1. 3D Navigation and Integrated Hazard Display in Advanced Avionics: Workload, Performance, and Situation Awareness

    NASA Technical Reports Server (NTRS)

    Wickens, Christopher D.; Alexander, Amy L.

    2004-01-01

    We examined the ability for pilots to estimate traffic location in an Integrated Hazard Display, and how such estimations should be measured. Twelve pilots viewed static images of traffic scenarios and then estimated the outside world locations of queried traffic represented in one of three display types (2D coplanar, 3D exocentric, and split-screen) and in one of four conditions (display present/blank crossed with outside world present/blank). Overall, the 2D coplanar display best supported both vertical (compared to 3D) and lateral (compared to split-screen) traffic position estimation performance. Costs of the 3D display were associated with perceptual ambiguity. Costs of the split screen display were inferred to result from inappropriate attention allocation. Furthermore, although pilots were faster in estimating traffic locations when relying on memory, accuracy was greatest when the display was available.

  2. Three-Dimensional Integrated Characterization and Archiving System (3D-ICAS). Phase 1

    SciTech Connect

    1994-07-01

    3D-ICAS is being developed to support Decontamination and Decommissioning operations for DOE addressing Research Area 6 (characterization) of the Program Research and Development Announcement. 3D-ICAS provides in-situ 3-dimensional characterization of contaminated DOE facilities. Its multisensor probe contains a GC/MS (gas chromatography/mass spectrometry using noncontact infrared heating) sensor for organics, a molecular vibrational sensor for base material identification, and a radionuclide sensor for radioactive contaminants. It will provide real-time quantitative measurements of volatile organics and radionuclides on bare materials (concrete, asbestos, transite); it will provide 3-D display of the fusion of all measurements; and it will archive the measurements for regulatory documentation. It consists of two robotic mobile platforms that operate in hazardous environments linked to an integrated workstation in a safe environment.

  3. The benefits of enhanced integration capabilities in 3-D reservoir modelling and simulation

    SciTech Connect

    O`Rourke, S.T.; Ikwumonu, A.

    1996-12-31

    The use of proprietary, closely linked 3-D geological and reservoir simulation software has greatly enhanced the reservoir modelling process by enabling complete integration of geological and engineering data in a 3-D manner. The software were used to model and simulate a deltaic sandstone reservoir in the Nigerian Forcados Yokri field in order to describe the reservoir sweep pattern. A simple simulation of the reservoir was first carried out to identify the main controls on the reservoir performance, which in this case were the intra-reservoir shales. As they are the only baffles or barriers to flow, proper modelling of them was critical to achieving a history match. Well logs, 3-D seismic, limited core data and sequence stratigraphic concepts were used to define a three dimensional depositional model which was then used to guide the 3-D reservoir architecture modelling. The reservoir model was evaluated in the 3-D simulator and, when the initial model did not yield a proper match with the historical production data, alternative models were easily generated and simulated until an acceptable match was achieved. The result was a 10% increase in predicted ultimate recovery, a better understanding of the reservoir and an optimized reservoir depletion plan.

  4. 3D shape shearography with integrated structured light projection for strain inspection of curved objects

    NASA Astrophysics Data System (ADS)

    Anisimov, Andrei G.; Groves, Roger M.

    2015-05-01

    Shearography (speckle pattern shearing interferometry) is a non-destructive testing technique that provides full-field surface strain characterization. Although real-life objects especially in aerospace, transport or cultural heritage are not flat (e.g. aircraft leading edges or sculptures), their inspection with shearography is of interest for both hidden defect detection and material characterization. Accurate strain measuring of a highly curved or free form surface needs to be performed by combining inline object shape measuring and processing of shearography data in 3D. Previous research has not provided a general solution. This research is devoted to the practical questions of 3D shape shearography system development for surface strain characterization of curved objects. The complete procedure of calibration and data processing of a 3D shape shearography system with integrated structured light projector is presented. This includes an estimation of the actual shear distance and a sensitivity matrix correction within the system field of view. For the experimental part a 3D shape shearography system prototype was developed. It employs three spatially-distributed shearing cameras, with Michelson interferometers acting as the shearing devices, one illumination laser source and a structured light projector. The developed system performance was evaluated with a previously reported cylinder specimen (length 400 mm, external diameter 190 mmm) loaded by internal pressure. Further steps for the 3D shape shearography prototype and the technique development are also proposed.

  5. Close-range environmental remote sensing with 3D hyperspectral technologies

    NASA Astrophysics Data System (ADS)

    Nevalainen, O.; Honkavaara, E.; Hakala, T.; Kaasalainen, Sanna; Viljanen, N.; Rosnell, T.; Khoramshahi, E.; Näsi, R.

    2016-10-01

    Estimation of the essential climate variables (ECVs), such as photosynthetically active radiation (FAPAR) and the leaf area index (LAI), is largely based on satellite-based remote sensing and the subsequent inversion of radiative transfer (RT) models. In order to build models that accurately describe the radiative transfer within and below the canopy, detailed 3D structural (geometrical) and spectral (radiometrical) information of the canopy is needed. Close-range remote sensing, such as terrestrial remote sensing and UAV-based 3D spectral measurements, offers significant opportunity to improve the RT modelling and ECV estimation of forests. Finnish Geospatial Research Institute (FGI) has been developing active and passive high resolution 3D hyperspectral measurement technologies that provide reflectance, anisotropy and 3D structure information of forests (i.e. hyperspectral point clouds). Technologies include hyperspectral imaging from unmanned airborne vehicle (UAV), terrestrial hyperspectral lidar (HSL) and terrestrial hyperspectral stereoscopic imaging. A measurement campaign to demonstrate these technologies in ECV estimation with uncertainty propagation was carried out in the Wytham Woods, Oxford, UK, in June 2015. Our objective is to develop traceable processing procedures for generating hyperspectral point clouds with geometric and radiometric uncertainty propagation using hyperspectral aerial and terrestrial imaging and hyperspectral terrestrial laser scanning. The article and presentation will present the methodology, instrumentation and first results of our study.

  6. Use of 2.5-D and 3-D technology to evaluate control room upgrades

    SciTech Connect

    Hanes, L. F.; Naser, J.

    2006-07-01

    This paper describes an Electric Power Research Inst. (EPRI) study in which 2.5-D and 3-D visualization technology was applied to evaluate the design of a nuclear power plant control room upgrade. The study involved converting 3-D CAD flies of a planned upgrade into a photo-realistic appearing virtual model, and evaluating the value and usefulness of the model. Nuclear utility and EPRI evaluators viewed and interacted with the control room virtual model with both 2.5-D and 3-D representations. They identified how control room and similar virtual models may be used by utilities for design and evaluation purposes; assessed potential economic and other benefits; and identified limitations, potential problems, and other issues regarding use of visualization technology for this and similar applications. In addition, the Halden CREATE (Control Room Engineering Advanced Tool-kit Environment) Verification Tool was applied to evaluate features of the virtual model against US NRC NUREG 0700 Revision 2 human factors engineering guidelines (NUREG 0700) [1]. The study results are very favorable for applying 2.5-D visualization technology to support upgrading nuclear power plant control rooms and other plant facilities. Results, however, show that today's 3-D immersive viewing systems are difficult to justify based on cost, availability and value of information provided for this application. (authors)

  7. Integrated 3D printing and corona poling process of PVDF piezoelectric films for pressure sensor application

    NASA Astrophysics Data System (ADS)

    Kim, Hoejin; Torres, Fernando; Wu, Yanyu; Villagran, Dino; Lin, Yirong; Tseng, Tzu-Liang(Bill

    2017-08-01

    This paper presents a novel process to fabricate piezoelectric films from polyvinylidene fluoride (PVDF) polymer using integrated fused deposition modeling (FDM) 3D printing and corona poling technique. Corona poling is one of many effective poling processes that has received attention to activate PVDF as a piezoelectric responsive material. The corona poling process occurs when a PVDF polymer is exposed to a high electric field created and controlled through an electrically charged needle and a grid electrode under heating environment. FDM 3D printing has seen extensive progress in fabricating thermoplastic materials and structures, including PVDF. However, post processing techniques such as poling is needed to align the dipoles in order to gain piezoelectric properties. To further simplify the piezoelectric sensors and structures fabrication process, this paper proposes an integrated 3D printing process with corona poling to fabricate piezoelectric PVDF sensors without post poling process. This proposed process, named ‘Integrated 3D Printing and Corona poling process’ (IPC), uses the 3D printer’s nozzle and heating bed as anode and cathode, respectively, to create poling electric fields in a controlled heating environment. The nozzle travels along the programmed path with fixed distance between nozzle tip and sample’s top surface. Simultaneously, the electric field between the nozzle and bottom heating pad promotes the alignment of dipole moment of PVDF molecular chains. The crystalline phase transformation and output current generated by printed samples under different electric fields in this process were characterized by a Fourier transform infrared spectroscopy and through fatigue load frame. It is demonstrated that piezoelectric PVDF films with enhanced β-phase percentage can be fabricated using the IPC process. In addition, mechanical properties of printed PVDF was investigated by tensile testing. It is expected to expand the use of additive

  8. Integrated SFM Techniques Using Data Set from Google Earth 3d Model and from Street Level

    NASA Astrophysics Data System (ADS)

    Inzerillo, L.

    2017-08-01

    Structure from motion (SfM) represents a widespread photogrammetric method that uses the photogrammetric rules to carry out a 3D model from a photo data set collection. Some complex ancient buildings, such as Cathedrals, or Theatres, or Castles, etc. need to implement the data set (realized from street level) with the UAV one in order to have the 3D roof reconstruction. Nevertheless, the use of UAV is strong limited from the government rules. In these last years, Google Earth (GE) has been enriched with the 3D models of the earth sites. For this reason, it seemed convenient to start to test the potentiality offered by GE in order to extract from it a data set that replace the UAV function, to close the aerial building data set, using screen images of high resolution 3D models. Users can take unlimited "aerial photos" of a scene while flying around in GE at any viewing angle and altitude. The challenge is to verify the metric reliability of the SfM model carried out with an integrated data set (the one from street level and the one from GE) aimed at replace the UAV use in urban contest. This model is called integrated GE SfM model (i-GESfM). In this paper will be present a case study: the Cathedral of Palermo.

  9. Integrating Online and Offline 3D Deep Learning for Automated Polyp Detection in Colonoscopy Videos.

    PubMed

    Yu, Lequan; Chen, Hao; Dou, Qi; Qin, Jing; Heng, Pheng Ann

    2016-12-07

    Automated polyp detection in colonoscopy videos has been demonstrated to be a promising way for colorectal cancer (CRC) prevention and diagnosis. Traditional manual screening is time-consuming, operator-dependent and error-prone; hence, automated detection approach is highly demanded in clinical practice. However, automated polyp detection is very challenging due to high intra-class variations in polyp size, color, shape and texture and low inter-class variations between polyps and hard mimics. In this paper, we propose a novel offline and online 3D deep learning integration framework by leveraging the 3D fully convolutional network (3D-FCN) to tackle this challenging problem. Compared with previous methods employing hand-crafted features or 2D-CNNs, the 3D-FCN is capable of learning more representative spatio-temporal features from colonoscopy videos, and hence has more powerful discrimination capability. More importantly, we propose a novel online learning scheme to deal with the problem of limited training data by harnessing the specific information of an input video in the learning process. We integrate offline and online learning to effectively reduce the number of false positives generated by the offline network and further improve the detection performance. Extensive experiments on the dataset of MICCAI 2015 Challenge on Polyp Detection demonstrated the better performance of our method when compared with other competitors.

  10. Development of ceramic-reinforced photopolymers for SLA 3D printing technology

    NASA Astrophysics Data System (ADS)

    Yun, Ji Sun; Park, Tae-Wan; Jeong, Young Hun; Cho, Jeong Ho

    2016-06-01

    Al2O3 ceramic-reinforced photopolymer samples for SLA 3D printing technology were prepared using a silane coupling agent (VTES, vinyltriethoxysilane). Depending on the method used to coat the VTES onto the ceramic surface, the dispersion of ceramic particles in the photopolymer solution was remarkably improved. SEM, TEM and element mapping images showed Al2O3 particles well wrapped with VTES along with well-distributed Al2O3 particles overall on the cross-sectional surfaces of 3D-printed objects. The tensile properties (stress-strain curves) of 3D-printed objects of the ceramic-reinforced photopolymer were investigated as a function of the Al2O3 ceramic content when it ranged from 0 to 20 wt%. The results demonstrate that an Al2O3 ceramic content of 15 wt% resulted in enhanced tensile characteristics.

  11. From Wheatstone to Cameron and beyond: overview in 3-D and 4-D imaging technology

    NASA Astrophysics Data System (ADS)

    Gilbreath, G. Charmaine

    2012-02-01

    This paper reviews three-dimensional (3-D) and four-dimensional (4-D) imaging technology, from Wheatstone through today, with some prognostications for near future applications. This field is rich in variety, subject specialty, and applications. A major trend, multi-view stereoscopy, is moving the field forward to real-time wide-angle 3-D reconstruction as breakthroughs in parallel processing and multi-processor computers enable very fast processing. Real-time holography meets 4-D imaging reconstruction at the goal of achieving real-time, interactive, 3-D imaging. Applications to telesurgery and telemedicine as well as to the needs of the defense and intelligence communities are also discussed.

  12. Integrating protein structural dynamics and evolutionary analysis with Bio3D.

    PubMed

    Skjærven, Lars; Yao, Xin-Qiu; Scarabelli, Guido; Grant, Barry J

    2014-12-10

    Popular bioinformatics approaches for studying protein functional dynamics include comparisons of crystallographic structures, molecular dynamics simulations and normal mode analysis. However, determining how observed displacements and predicted motions from these traditionally separate analyses relate to each other, as well as to the evolution of sequence, structure and function within large protein families, remains a considerable challenge. This is in part due to the general lack of tools that integrate information of molecular structure, dynamics and evolution. Here, we describe the integration of new methodologies for evolutionary sequence, structure and simulation analysis into the Bio3D package. This major update includes unique high-throughput normal mode analysis for examining and contrasting the dynamics of related proteins with non-identical sequences and structures, as well as new methods for quantifying dynamical couplings and their residue-wise dissection from correlation network analysis. These new methodologies are integrated with major biomolecular databases as well as established methods for evolutionary sequence and comparative structural analysis. New functionality for directly comparing results derived from normal modes, molecular dynamics and principal component analysis of heterogeneous experimental structure distributions is also included. We demonstrate these integrated capabilities with example applications to dihydrofolate reductase and heterotrimeric G-protein families along with a discussion of the mechanistic insight provided in each case. The integration of structural dynamics and evolutionary analysis in Bio3D enables researchers to go beyond a prediction of single protein dynamics to investigate dynamical features across large protein families. The Bio3D package is distributed with full source code and extensive documentation as a platform independent R package under a GPL2 license from http://thegrantlab.org/bio3d/ .

  13. Increased sensitivity of 3D-Well enzyme-linked immunosorbent assay (ELISA) for infectious disease detection using 3D-printing fabrication technology.

    PubMed

    Singh, Harpal; Shimojima, Masayuki; Fukushi, Shuetsu; Le Van, An; Sugamata, Masami; Yang, Ming

    2015-01-01

    Enzyme-linked Immunosorbent Assay or ELISA -based diagnostics are considered the gold standard in the demonstration of various immunological reaction including in the measurement of antibody response to infectious diseases and to support pathogen identification with application potential in infectious disease outbreaks and individual patients' treatment and clinical care. The rapid prototyping of ELISA-based diagnostics using available 3D printing technologies provides an opportunity for a further exploration of this platform into immunodetection systems. In this study, a '3D-Well' was designed and fabricated using available 3D printing platforms to have an increased surface area of more than 4 times for protein-surface adsorption compared to those of 96-well plates. The ease and rapidity in designing-product development-feedback cycle offered through 3D printing platforms provided an opportunity for its rapid assessment, in which a chemical etching process was used to make the surface hydrophilic followed by validation through the diagnostic performance of ELISA for infectious disease without modifying current laboratory practices for ELISA. The higher sensitivity of the 3D-Well (3-folds higher) compared to the 96-well ELISA provides a potential for the expansion of this technology towards miniaturization platforms to reduce time, volume of reagents and samples needed for laboratory or field diagnosis of infectious diseases including applications in other disciplines.

  14. From CT scanning to 3-D printing technology for the preoperative planning in laparoscopic splenectomy.

    PubMed

    Pietrabissa, Andrea; Marconi, Stefania; Peri, Andrea; Pugliese, Luigi; Cavazzi, Emma; Vinci, Alessio; Botti, Marta; Auricchio, Ferdinando

    2016-01-01

    Three-dimensional printing technology is rapidly changing the way we produce all sort of objects, having also included medical applications. We embarked in a pilot study to assess the value of patient-specific 3-D physical manufacturing of spleno-pancreatic anatomy in helping during patient's counseling and for preoperative planning. Twelve patients scheduled for a laparoscopic splenectomy underwent contrast CT and subsequent post-processing to create virtual 3-D models of the target anatomy, and 3-D printing of the relative solid objects. The printing process, its cost and encountered problems were monitored and recorded. Patients were asked to rate the value of 3-D objects on a 1-5 scale in facilitating their understanding of the proposed procedure. Also 10 surgical residents were required to evaluate the perceived extra value of 3-D printing in the preoperative planning process. The post-processing analysis required an average of 2; 20 h was needed to physically print each model and 4 additional hours to finalize each object. The cost for the material employed for each object was around 300 euros. Ten patients gave a score of 5, two a score of 4. Six residents gave a score of 5, four a score of 4. Three-dimensional printing is helpful in understanding complex anatomy for educational purposes at all levels. Cost and working time to produce good quality objects are still considerable.

  15. 3D micro-lenses for free space intra-chip coupling in photonic-integrated circuits (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Thomas, Robert; Williams, Gwilym I.; Ladak, Sam; Smowton, Peter M.

    2017-02-01

    The integration of multiple optical elements on a common substrate to create photonic integrated circuits (PIC) has been successfully applied in: fibre-optic communications, photonic computing and optical sensing. The push towards III-Vs on silicon promises a new generation of integrated devices that combine the advantages of both integrated electronics and optics in a single substrate. III-V edge emitting laser diodes offer high efficiency and low threshold currents making them ideal candidates for the optically active elements of the next generation of PICs. Nevertheless, the highly divergent and asymmetric beam shapes intrinsic to these devices limits the efficiency with which optical elements can be free space coupled intra-chip; a capability particularly desirable for optical sensing applications e.g. [1]. Furthermore, the monolithic nature of the integrated approach prohibits the use of macroscopic lenses to improve coupling. However, with the advent of 3D direct laser writing, three dimensional lenses can now be manufactured on a microscopic-scale [2], making the use of micro-lens technology for enhanced free space coupling of integrated optical elements feasible. Here we demonstrate the first use of 3D micro-lenses to improve the coupling efficiency of monolithically integrated lasers. Fabricated from IP-dip photoresist using a Nanoscribe GmbH 3D lithography tool, the lenses are embedded directly onto a structured GaInP/AlGaInP substrate containing arrays of ridge lasers free space coupled to one another via a 200 μm air gap. We compare the coupling efficiency of these lasers with and without micro-lenses through photo-voltage and beam profile measurements and discuss optimisation of lens design.

  16. Integrated Idl Tool For 3d Modeling And Imaging Data Analysis

    NASA Astrophysics Data System (ADS)

    Nita, Gelu M.; Fleishman, G. D.; Gary, D. E.; Kuznetsov, A. A.; Kontar, E. P.

    2012-05-01

    Addressing many key problems in solar physics requires detailed analysis of non-simultaneous imaging data obtained in various wavelength domains with different spatial resolution and their comparison with each other supplied by advanced 3D physical models. To facilitate achieving this goal, we have undertaken a major enhancement and improvements of IDL-based simulation tools developed earlier for modeling microwave and X-ray emission. The greatly enhanced object-based architecture provides interactive graphic user interface that allows the user i) to import photospheric magnetic field maps and perform magnetic field extrapolations to almost instantly generate 3D magnetic field models, ii) to investigate the magnetic topology of these models by interactively creating magnetic field lines and associated magnetic field tubes, iii) to populate them with user-defined nonuniform thermal plasma and anisotropic nonuniform nonthermal electron distributions; and iv) to calculate the spatial and spectral properties of radio and X-ray emission. The application integrates DLL and Shared Libraries containing fast gyrosynchrotron emission codes developed in FORTRAN and C++, soft and hard X-ray codes developed in IDL, and a potential field extrapolation DLL produced based on original FORTRAN code developed by V. Abramenko and V. Yurchishin. The interactive interface allows users to add any user-defined IDL or external callable radiation code, as well as user-defined magnetic field extrapolation routines. To illustrate the tool capabilities, we present a step-by-step live computation of microwave and X-ray images from realistic magnetic structures obtained from a magnetic field extrapolation preceding a real event, and compare them with the actual imaging data produced by NORH and RHESSI instruments. This work was supported in part by NSF grants AGS-0961867, AST-0908344, AGS-0969761, and NASA grants NNX10AF27G and NNX11AB49G to New Jersey Institute of Technology, by a UK STFC

  17. Transport analysis in toroidal helical plasmas using the integrated code: TASK3D

    NASA Astrophysics Data System (ADS)

    Wakasa, A.; Fukuyama, A.; Murakami, S.; Beidler, C. D.; Maassberg, H.; Yokoyama, M.; Sato, M.

    2009-11-01

    The integrated simulation code in helical plasmas, TASK3D, is being developed on the basis of an integrated modeling code for tokamak plasma, TASK. In helical systems, the neoclassical transport is one of the important issues in addition to the anomalous transport, because of strong temperature dependence of heat conductivity and an important role in determining the radial electric field. We have already constructed the neoclassical transport database in LHD, DGN/LHD. The mono-energetic diffusion coefficients are evaluated based on the Monte Carlo method by DCOM code and the mono-energetic diffusion coefficients database is constructed using a neural network technique. Also we apply GSRAKE code, which solves the ripple-averaged drift kinetic equation, to obtain transport coefficients in highly collisionless regime. We have newly incorporated the DGN/LHD module into TASK3D. We will present several results of transport simulation in typical LHD plasmas.

  18. 3D Metal Printing - Additive Manufacturing Technologies for Frameworks of Implant-Borne Fixed Dental Prosthesis.

    PubMed

    Revilla León, M; Klemm, I M; García-Arranz, J; Özcan, M

    2017-09-01

    An edentulous patient was rehabilitated with maxillary metal-ceramic and mandibular metal-resin implant-supported fixed dental prosthesis (FDP). Metal frameworks of the FDPs were fabricated using 3D additive manufacturing technologies utilizing selective laser melting (SLM) and electron beam melting (EBM) processes. Both SLM and EBM technologies were employed in combination with computer numerical control (CNC) post-machining at the implant interface. This report highlights the technical and clinical protocol for fabrication of FDPs using SLM and EBM additive technologies. Copyright© 2017 Dennis Barber Ltd.

  19. Creating perfused functional vascular channels using 3D bio-printing technology.

    PubMed

    Lee, Vivian K; Kim, Diana Y; Ngo, Haygan; Lee, Young; Seo, Lan; Yoo, Seung-Schik; Vincent, Peter A; Dai, Guohao

    2014-09-01

    We developed a methodology using 3D bio-printing technology to create a functional in vitro vascular channel with perfused open lumen using only cells and biological matrices. The fabricated vasculature has a tight, confluent endothelium lining, presenting barrier function for both plasma protein and high-molecular weight dextran molecule. The fluidic vascular channel is capable of supporting the viability of tissue up to 5 mm in distance at 5 million cells/mL density under the physiological flow condition. In static-cultured vascular channels, active angiogenic sprouting from the vessel surface was observed whereas physiological flow strongly suppressed this process. Gene expression analysis was reported in this study to show the potential of this vessel model in vascular biology research. The methods have great potential in vascularized tissue fabrication using 3D bio-printing technology as the vascular channel is simultaneously created while cells and matrix are printed around the channel in desired 3D patterns. It can also serve as a unique experimental tool for investigating fundamental mechanisms of vascular remodeling with extracellular matrix and maturation process under 3D flow condition.

  20. Experimental validation of novel mask technology to reduce mask 3D effects

    NASA Astrophysics Data System (ADS)

    Van Look, Lieve; Philipsen, Vicky; Hendrickx, Eric; Davydova, Natalia; Wittebrood, Friso; de Kruif, Robert; van Oosten, Anton; Miyazaki, Junji; Fliervoet, Timon; van Schoot, Jan; Neumann, Jens Timo

    2015-10-01

    Traditional EUV masks, with absorber on top of the multi-layer (ML) mirror, generally suffer from mask 3D effects: H/V shadowing, best focus shifts through pitch and pattern shifts through focus. These effects reduce the overlapping process window, complicate optical proximity correction and generate overlay errors. With further pitch scaling, these mask 3D effects are expected to become stronger, increasing the need for a compensation strategy. In this study, we have proven by simulations and experiments that alternative mask technologies can lower mask 3D effects and therefore have the potential to improve the imaging of critical EUV layers. We have performed an experimental imaging study of a prototype etched ML mask, which has recently become available. This prototype alternative mask has only half the ML mirror thickness (20 Mo/Si pairs) and contains no absorber material at all. Instead, the ML mirror is etched away to the substrate at the location of the dark features. For this etched ML mask, we have compared the imaging performance for mask 3D related effects to that of a standard EUV mask, using wafer exposures at 0.33 NA. Experimental data are compared to the simulated predictions and the benefits and drawbacks of such an alternative mask are shown. Besides the imaging performance, we will also discuss the manufacturability challenges related to the etched ML mask technology.

  1. Alternative EUV mask technology to compensate for mask 3D effects

    NASA Astrophysics Data System (ADS)

    Van Look, Lieve; Philipsen, Vicky; Hendrickx, Eric; Vandenberghe, Geert; Davydova, Natalia; Wittebrood, Friso; de Kruif, Robert; van Oosten, Anton; Miyazaki, Junji; Fliervoet, Timon; van Schoot, Jan; Neumann, Jens Timo

    2015-07-01

    Traditional EUV masks, with absorber on top of the multi-layer (ML) mirror, generally suffer from mask 3D effects: H/V shadowing, best focus shifts through pitch and pattern shifts through focus. These effects reduce the overlapping process window, complicate optical proximity correction and generate overlay errors. With further pitch scaling, these mask 3D effects are expected to become stronger, increasing the need for a compensation strategy. In this study, we have proven by simulations and experiments that alternative mask technologies can lower mask 3D effects and therefore have the potential to improve the imaging of critical EUV layers. We have performed an experimental imaging study of a prototype Etched ML mask, which has recently become available. This prototype alternative mask has only half the ML mirror thickness (20 Mo/Si pairs) and contains no absorber material at all. Instead, the ML mirror is etched away to the substrate at the location of the dark features. For this Etched ML mask, we have compared the imaging performance for mask 3D related effects to that of a standard EUV mask, using wafer exposures at 0.33 NA. Experimental data are compared to the simulated predictions and the benefits and drawbacks of such an alternative mask are shown. Besides the imaging performance, we will also discuss the manufacturability challenges related to the etched ML mask technology.

  2. Experimental validation of novel EUV mask technology to reduce mask 3D effects

    NASA Astrophysics Data System (ADS)

    Van Look, Lieve; Philipsen, Vicky; Hendrickx, Eric; Davydova, Natalia; Wittebrood, Friso; de Kruif, Robert; van Oosten, Anton; Miyazaki, Junji; Fliervoet, Timon; van Schoot, Jan; Neumann, Jens Timo

    2015-09-01

    Traditional EUV masks, with absorber on top of the multi-layer (ML) mirror, generally suffer from mask 3D effects: H/V shadowing, best focus shifts through pitch and pattern shifts through focus. These effects reduce the overlapping process window, complicate optical proximity correction and generate overlay errors. With further pitch scaling, these mask 3D effects are expected to become stronger, increasing the need for a compensation strategy. In this study, we have proven by simulations and experiments that alternative mask technologies can lower mask 3D effects and therefore have the potential to improve the imaging of critical EUV layers. We have performed an experimental imaging study of a prototype etched ML mask, which has recently become available. This prototype alternative mask has only half the ML mirror thickness (20 Mo/Si pairs) and contains no absorber material at all. Instead, the ML mirror is etched away to the substrate at the location of the dark features. For this etched ML mask, we have compared the imaging performance for mask 3D related effects to that of a standard EUV mask, using wafer exposures at 0.33 NA. Experimental data are compared to the simulated predictions and the benefits and drawbacks of such an alternative mask are shown. Besides the imaging performance, we will also discuss the manufacturability challenges related to the etched ML mask technology.

  3. 3D camera technology trade-off and breadboard demonstration for space applications

    NASA Astrophysics Data System (ADS)

    Christy, Julien; Bohn, Preben; Schumann-Olsen, Henrik; Biggio, Andrea; Kowaltschek, Steeve

    2015-06-01

    In previous decades, the vision-based navigation problem based on 2D imaging has been largely studied and applied in space, for rendezvous and docking, as well as rover navigation, or entry, descent and landing. By providing measurement of the third dimension (range), 3D camera technology looks a promising alternative for many applications. Stereoscopic camera is one option to measure the third coordinate, but relies on significant CPU capabilities, which are generally not available for space applications. Scanning LIDAR (LIght detection and ranging) is also an existing solution, but it is relatively large and heavy and the refresh rate, lifetime and reliability are mainly determined by moving parts. 3D time-of-flight (TOF) technology (including flash LIDARs) offers a reliable alternative. By illuminating a whole scene at a time and thus providing a whole array image, there is no need for complex processing nor moving mechanisms, which clearly appears as an advantage for space applications. This paper presents the ongoing study conducted under ESA contract in the field of 3D TOF technology. Its goal is to evaluate the suitability of a 3D TOF camera for space applications, to derive requirements and a preliminary design, and finally to create and test a breadboard model. Performance budget, cost, and a development plan of a versatile spatialized 3D TOF camera are also outputs of the study, in addition to a high-fidelity simulator, allowing further studies by generating representative images and depth maps. To fulfill this project, a European team has been created, gathering Thales Alenia Space, Terma and SINTEF.

  4. 3D-printed concentrators for tracking-integrated CPV modules

    NASA Astrophysics Data System (ADS)

    Apostoleris, Harry; Leland, Julian; Chiesa, Matteo; Stefancich, Marco

    2016-09-01

    We demonstrate 3D-printed nonimaging concentrators and propose a tracking integration scheme to reduce the external tracking requirements of CPV modules. In the proposed system, internal sun tracking is achieved by rotation of the mini-concentrators inside the module by small motors. We discuss the design principles employed in the development of the system, experimentally evaluate the performance of the concentrator prototypes, and propose practical modifications that may be made to improve on-site performance of the devices.

  5. Integration of Robotics and 3D Visualization to Modernize the Expeditionary Warfare Demonstrator (EWD)

    DTIC Science & Technology

    2009-09-01

    continually provided explanation and guidance on the tactical use of 3D holograms to help me complete this work. Thank you to Dennis Lenahan for his...continual support. Dennis spent many hours compiling historical data on the facility and his inputs are seen throughout this thesis. Dennis is truly...benefits for tactical visualization. Finally, methods to integrate holography into the EWD are recommended. B. A BRIEF HISTORY OF HOLOGRAPHY Dennis

  6. Proposal for the development of 3D Vertically Integrated Pattern Recognition Associative Memory (VIPRAM)

    SciTech Connect

    Deptuch, Gregory; Hoff, Jim; Kwan, Simon; Lipton, Ron; Liu, Ted; Ramberg, Erik; Todri, Aida; Yarema, Ray; Demarteua, Marcel,; Drake, Gary; Weerts, Harry; /Argonne /Chicago U. /Padua U. /INFN, Padua

    2010-10-01

    Future particle physics experiments looking for rare processes will have no choice but to address the demanding challenges of fast pattern recognition in triggering as detector hit density becomes significantly higher due to the high luminosity required to produce the rare process. The authors propose to develop a 3D Vertically Integrated Pattern Recognition Associative Memory (VIPRAM) chip for HEP applications, to advance the state-of-the-art for pattern recognition and track reconstruction for fast triggering.

  7. A Pipeline for 3D Multimodality Image Integration and Computer-assisted Planning in Epilepsy Surgery.

    PubMed

    Nowell, Mark; Rodionov, Roman; Zombori, Gergely; Sparks, Rachel; Rizzi, Michele; Ourselin, Sebastien; Miserocchi, Anna; McEvoy, Andrew; Duncan, John

    2016-05-20

    Epilepsy surgery is challenging and the use of 3D multimodality image integration (3DMMI) to aid presurgical planning is well-established. Multimodality image integration can be technically demanding, and is underutilised in clinical practice. We have developed a single software platform for image integration, 3D visualization and surgical planning. Here, our pipeline is described in step-by-step fashion, starting with image acquisition, proceeding through image co-registration, manual segmentation, brain and vessel extraction, 3D visualization and manual planning of stereoEEG (SEEG) implantations. With dissemination of the software this pipeline can be reproduced in other centres, allowing other groups to benefit from 3DMMI. We also describe the use of an automated, multi-trajectory planner to generate stereoEEG implantation plans. Preliminary studies suggest this is a rapid, safe and efficacious adjunct for planning SEEG implantations. Finally, a simple solution for the export of plans and models to commercial neuronavigation systems for implementation of plans in the operating theater is described. This software is a valuable tool that can support clinical decision making throughout the epilepsy surgery pathway.

  8. A Pipeline for 3D Multimodality Image Integration and Computer-assisted Planning in Epilepsy Surgery

    PubMed Central

    Nowell, Mark; Rodionov, Roman; Zombori, Gergely; Sparks, Rachel; Rizzi, Michele; Ourselin, Sebastien; Miserocchi, Anna; McEvoy, Andrew; Duncan, John

    2016-01-01

    Epilepsy surgery is challenging and the use of 3D multimodality image integration (3DMMI) to aid presurgical planning is well-established. Multimodality image integration can be technically demanding, and is underutilised in clinical practice. We have developed a single software platform for image integration, 3D visualization and surgical planning. Here, our pipeline is described in step-by-step fashion, starting with image acquisition, proceeding through image co-registration, manual segmentation, brain and vessel extraction, 3D visualization and manual planning of stereoEEG (SEEG) implantations. With dissemination of the software this pipeline can be reproduced in other centres, allowing other groups to benefit from 3DMMI. We also describe the use of an automated, multi-trajectory planner to generate stereoEEG implantation plans. Preliminary studies suggest this is a rapid, safe and efficacious adjunct for planning SEEG implantations. Finally, a simple solution for the export of plans and models to commercial neuronavigation systems for implementation of plans in the operating theater is described. This software is a valuable tool that can support clinical decision making throughout the epilepsy surgery pathway. PMID:27286266

  9. Approaches to integrating indicators into 3D landscape visualisations and their benefits for participative planning situations.

    PubMed

    Wissen, Ulrike; Schroth, Olaf; Lange, Eckart; Schmid, Willy A

    2008-11-01

    In discussing issues of landscape change, the complex relationships in the landscape have to be assessed. In participative planning processes, 3D visualisations have a high potential as an aid in understanding and communicating characteristics of landscape conditions by integrating visual and non-visual landscape information. Unclear is, which design and how much interactivity is required for an indicator visualisation that would suit stakeholders best in workshop situations. This paper describes the preparation and application of three different types of integrated 3D visualisations in workshops conducted in the Entlebuch UNESCO Biosphere Reserve (CH). The results reveal that simple representations of a complex issue created by draping thematic maps on the 3D model can make problematic developments visible at a glance; that diagrams linked to the spatial context can help draw attention to problematic relationships not considered beforehand; and that the size of species as indicators of conditions of the landscape's production and biotope function seems to provide a common language for stakeholders with different perspectives. Overall, the of the indicators the functions required to assist in information processing. Further research should focus on testing the effectiveness of the integrated visualisation tools in participative processes for the general public.

  10. Perceptual integration for qualitatively different 3-D cues in the human brain.

    PubMed

    Dövencioğlu, Dicle; Ban, Hiroshi; Schofield, Andrew J; Welchman, Andrew E

    2013-09-01

    The visual system's flexibility in estimating depth is remarkable: We readily perceive 3-D structure under diverse conditions from the seemingly random dots of a "magic eye" stereogram to the aesthetically beautiful, but obviously flat, canvasses of the Old Masters. Yet, 3-D perception is often enhanced when different cues specify the same depth. This perceptual process is understood as Bayesian inference that improves sensory estimates. Despite considerable behavioral support for this theory, insights into the cortical circuits involved are limited. Moreover, extant work tested quantitatively similar cues, reducing some of the challenges associated with integrating computationally and qualitatively different signals. Here we address this challenge by measuring fMRI responses to depth structures defined by shading, binocular disparity, and their combination. We quantified information about depth configurations (convex "bumps" vs. concave "dimples") in different visual cortical areas using pattern classification analysis. We found that fMRI responses in dorsal visual area V3B/KO were more discriminable when disparity and shading concurrently signaled depth, in line with the predictions of cue integration. Importantly, by relating fMRI and psychophysical tests of integration, we observed a close association between depth judgments and activity in this area. Finally, using a cross-cue transfer test, we found that fMRI responses evoked by one cue afford classification of responses evoked by the other. This reveals a generalized depth representation in dorsal visual cortex that combines qualitatively different information in line with 3-D perception.

  11. Multispectral photon counting integral imaging system for color visualization of photon limited 3D scenes

    NASA Astrophysics Data System (ADS)

    Moon, Inkyu

    2014-06-01

    This paper provides an overview of a colorful photon-counting integral imaging system using Bayer elemental images for 3D visualization of photon limited scenes. The color image sensor with a format of Bayer color filter array, i.e., a red, a green, or a blue filter in a repeating pattern, captures elemental image set of a photon limited three-dimensional (3D) scene. It is assumed that the observed photon count in each channel (red, green or blue) follows Poisson statistics. The reconstruction of 3D scene with a format of Bayer is obtained by applying computational geometrical ray back propagation algorithm and parametric maximum likelihood estimator to the photon-limited Bayer elemental images. Finally, several standard demosaicing algorithms are applied in order to convert the 3D reconstruction with a Bayer format into a RGB per pixel format. Experimental results demonstrate that the gradient corrected linear interpolation technique achieves better performance in regard with acceptable PSNR and less computational complexity.

  12. Integrated 3D-printed reactionware for chemical synthesis and analysis.

    PubMed

    Symes, Mark D; Kitson, Philip J; Yan, Jun; Richmond, Craig J; Cooper, Geoffrey J T; Bowman, Richard W; Vilbrandt, Turlif; Cronin, Leroy

    2012-04-15

    Three-dimensional (3D) printing has the potential to transform science and technology by creating bespoke, low-cost appliances that previously required dedicated facilities to make. An attractive, but unexplored, application is to use a 3D printer to initiate chemical reactions by printing the reagents directly into a 3D reactionware matrix, and so put reactionware design, construction and operation under digital control. Here, using a low-cost 3D printer and open-source design software we produced reactionware for organic and inorganic synthesis, which included printed-in catalysts and other architectures with printed-in components for electrochemical and spectroscopic analysis. This enabled reactions to be monitored in situ so that different reactionware architectures could be screened for their efficacy for a given process, with a digital feedback mechanism for device optimization. Furthermore, solely by modifying reactionware architecture, reaction outcomes can be altered. Taken together, this approach constitutes a relatively cheap, automated and reconfigurable chemical discovery platform that makes techniques from chemical engineering accessible to typical synthetic laboratories.

  13. Integrated 3D-printed reactionware for chemical synthesis and analysis

    NASA Astrophysics Data System (ADS)

    Symes, Mark D.; Kitson, Philip J.; Yan, Jun; Richmond, Craig J.; Cooper, Geoffrey J. T.; Bowman, Richard W.; Vilbrandt, Turlif; Cronin, Leroy

    2012-05-01

    Three-dimensional (3D) printing has the potential to transform science and technology by creating bespoke, low-cost appliances that previously required dedicated facilities to make. An attractive, but unexplored, application is to use a 3D printer to initiate chemical reactions by printing the reagents directly into a 3D reactionware matrix, and so put reactionware design, construction and operation under digital control. Here, using a low-cost 3D printer and open-source design software we produced reactionware for organic and inorganic synthesis, which included printed-in catalysts and other architectures with printed-in components for electrochemical and spectroscopic analysis. This enabled reactions to be monitored in situ so that different reactionware architectures could be screened for their efficacy for a given process, with a digital feedback mechanism for device optimization. Furthermore, solely by modifying reactionware architecture, reaction outcomes can be altered. Taken together, this approach constitutes a relatively cheap, automated and reconfigurable chemical discovery platform that makes techniques from chemical engineering accessible to typical synthetic laboratories.

  14. 3D integral imaging display by smart pseudoscopic-to-orthoscopic conversion (SPOC).

    PubMed

    Navarro, H; Martínez-Cuenca, R; Saavedra, G; Martínez-Corral, M; Javidi, B

    2010-12-06

    Previously, we reported a digital technique for formation of real, non-distorted, orthoscopic integral images by direct pickup. However the technique was constrained to the case of symmetric image capture and display systems. Here, we report a more general algorithm which allows the pseudoscopic to orthoscopic transformation with full control over the display parameters so that one can generate a set of synthetic elemental images that suits the characteristics of the Integral-Imaging monitor and permits control over the depth and size of the reconstructed 3D scene.

  15. Distributed network, wireless and cloud computing enabled 3-D ultrasound; a new medical technology paradigm.

    PubMed

    Meir, Arie; Rubinsky, Boris

    2009-11-19

    Medical technologies are indispensable to modern medicine. However, they have become exceedingly expensive and complex and are not available to the economically disadvantaged majority of the world population in underdeveloped as well as developed parts of the world. For example, according to the World Health Organization about two thirds of the world population does not have access to medical imaging. In this paper we introduce a new medical technology paradigm centered on wireless technology and cloud computing that was designed to overcome the problems of increasing health technology costs. We demonstrate the value of the concept with an example; the design of a wireless, distributed network and central (cloud) computing enabled three-dimensional (3-D) ultrasound system. Specifically, we demonstrate the feasibility of producing a 3-D high end ultrasound scan at a central computing facility using the raw data acquired at the remote patient site with an inexpensive low end ultrasound transducer designed for 2-D, through a mobile device and wireless connection link between them. Producing high-end 3D ultrasound images with simple low-end transducers reduces the cost of imaging by orders of magnitude. It also removes the requirement of having a highly trained imaging expert at the patient site, since the need for hand-eye coordination and the ability to reconstruct a 3-D mental image from 2-D scans, which is a necessity for high quality ultrasound imaging, is eliminated. This could enable relatively untrained medical workers in developing nations to administer imaging and a more accurate diagnosis, effectively saving the lives of people.

  16. Characterization of ABS specimens produced via the 3D printing technology for drone structural components

    NASA Astrophysics Data System (ADS)

    Ferro, Carlo Giovanni; Brischetto, Salvatore; Torre, Roberto; Maggiore, Paolo

    2016-07-01

    The Fused Deposition Modelling (FDM) technology is widely used in rapid prototyping. 3D printers for home desktop applications are usually employed to make non-structural objects. When the mechanical stresses are not excessive, this technology can also be successfully employed to produce structural objects, not only in prototyping stage but also in the realization of series pieces. The innovative idea of the present work is the application of this technology, implemented in a desktop 3D printer, to the realization of components for aeronautical use, especially for unmanned aerial systems. For this purpose, the paper is devoted to the statistical study of the performance of a desktop 3D printer to understand how the process performs and which are the boundary limits of acceptance. Mechanical and geometrical properties of ABS (Acrylonitrile Butadiene Styrene) specimens, such as tensile strength and stiffness, have been evaluated. ASTM638 type specimens have been used. A capability analysis has been applied for both mechanical and dimensional performances. Statistically stable limits have been determined using experimentally collected data.

  17. Proof Of Concept of Integrated Load Measurement in 3D Printed Structures

    DOE PAGES

    Hinderdael, Michael; Strantza, Maria; De Baere, Dieter; ...

    2017-02-09

    Currently, research on structural health monitoring systems is focused on direct integration of the system into a component or structure. The latter results in a so-called smart structure. One example of a smart structure is a component with integrated strain sensing for continuous load monitoring. Additive manufacturing, or 3D printing, now also enables such integration of functions inside components. As a proof-of-concept, the Fused Deposition Modeling (FDM) technique was used to integrate a strain sensing element inside polymer (ABS) tensile test samples. The strain sensing element consisted of a closed capillary filled with a fluid and connected to an externallymore » mounted pressure sensor. The volumetric deformation of the integrated capillary resulted in pressure changes in the fluid. The obtained pressure measurements during tensile testing are reported in this paper and compared to state-of-the-art extensometer measurements. The sensitivity of the 3D printed pressure-based strain sensor is primarily a function of the compressibility of the capillary fluid. Air- and watertightness are of critical importance for the proper functioning of the 3D printed pressure-based strain sensor. Therefore, the best after-treatment procedure was selected on basis of a comparative analysis. The obtained pressure measurements are linear with respect to the extensometer readings, and the uncertainty on the strain measurement of a capillary filled with water (incompressible fluid) is ±3.1 µstrain, which is approximately three times less sensitive than conventional strain gauges (±1 µstrain), but 32 times more sensitive than the same sensor based on air (compressible fluid) (±101 µstrain).« less

  18. Proof of Concept of Integrated Load Measurement in 3D Printed Structures.

    PubMed

    Hinderdael, Michaël; Jardon, Zoé; Lison, Margot; De Baere, Dieter; Devesse, Wim; Strantza, Maria; Guillaume, Patrick

    2017-02-09

    Currently, research on structural health monitoring systems is focused on direct integration of the system into a component or structure. The latter results in a so-called smart structure. One example of a smart structure is a component with integrated strain sensing for continuous load monitoring. Additive manufacturing, or 3D printing, now also enables such integration of functions inside components. As a proof-of-concept, the Fused Deposition Modeling (FDM) technique was used to integrate a strain sensing element inside polymer (ABS) tensile test samples. The strain sensing element consisted of a closed capillary filled with a fluid and connected to an externally mounted pressure sensor. The volumetric deformation of the integrated capillary resulted in pressure changes in the fluid. The obtained pressure measurements during tensile testing are reported in this paper and compared to state-of-the-art extensometer measurements. The sensitivity of the 3D printed pressure-based strain sensor is primarily a function of the compressibility of the capillary fluid. Air- and watertightness are of critical importance for the proper functioning of the 3D printed pressure-based strain sensor. Therefore, the best after-treatment procedure was selected on basis of a comparative analysis. The obtained pressure measurements are linear with respect to the extensometer readings, and the uncertainty on the strain measurement of a capillary filled with water (incompressible fluid) is ±3.1 µstrain, which is approximately three times less sensitive than conventional strain gauges (±1 µstrain), but 32 times more sensitive than the same sensor based on air (compressible fluid) (±101 µstrain).

  19. Proof of Concept of Integrated Load Measurement in 3D Printed Structures

    PubMed Central

    Hinderdael, Michaël; Jardon, Zoé; Lison, Margot; De Baere, Dieter; Devesse, Wim; Strantza, Maria; Guillaume, Patrick

    2017-01-01

    Currently, research on structural health monitoring systems is focused on direct integration of the system into a component or structure. The latter results in a so-called smart structure. One example of a smart structure is a component with integrated strain sensing for continuous load monitoring. Additive manufacturing, or 3D printing, now also enables such integration of functions inside components. As a proof-of-concept, the Fused Deposition Modeling (FDM) technique was used to integrate a strain sensing element inside polymer (ABS) tensile test samples. The strain sensing element consisted of a closed capillary filled with a fluid and connected to an externally mounted pressure sensor. The volumetric deformation of the integrated capillary resulted in pressure changes in the fluid. The obtained pressure measurements during tensile testing are reported in this paper and compared to state-of-the-art extensometer measurements. The sensitivity of the 3D printed pressure-based strain sensor is primarily a function of the compressibility of the capillary fluid. Air- and watertightness are of critical importance for the proper functioning of the 3D printed pressure-based strain sensor. Therefore, the best after-treatment procedure was selected on basis of a comparative analysis. The obtained pressure measurements are linear with respect to the extensometer readings, and the uncertainty on the strain measurement of a capillary filled with water (incompressible fluid) is ±3.1 µstrain, which is approximately three times less sensitive than conventional strain gauges (±1 µstrain), but 32 times more sensitive than the same sensor based on air (compressible fluid) (±101 µstrain). PMID:28208779

  20. Application of 3D-computed tomography angiography technology in large meningioma resection.

    PubMed

    Chen, Jian-Qiang; Guan, Yin; Li, Gang; Li, Xiao-Hua; Zhan, Yue-Fu; Li, Xiang-Yin; Nie, Liu; Han, Xiang-Jun

    2012-07-01

    To discuss the role of 3D-computed tomography angiography (3D-CTA) technology in reducing injuries of large meningioma surgery. 3D-CTA preoperative examinations were done in 473 patients with large meningioma (simulated group). The images were analyzed by 3D post-processing workstation. By observing the major intracranial blood vessels, venous sinus, and the compression and invasion pattern in the nerve region, assessing risk level of the surgery, simulating the surgical procedures, the surgical removal plan, surgical routes and tumor blood-supplying artery embolisation plan were performed. Two hundred and fifty seven large meningioma patients who didn't underwent 3D-CTA preoperative examination served as control group. The incidence of postoperative complications, intraoperative blood transfusion and the operation time were compared between these two groups. Compared with the control group, the Simpson's grade I and II resection rate was 80.3% (380/473), similar with that of the control (81.3%, 209/257). The incidence of postoperative complications in 3D-CTA simulated group was 37.0% which was significantly lower than that (48.2%) of the control (P<0.01). The intraoperative blood supply for simulated group and the control was (523.4±208.1) mL and (592.0±263.3) mL, respectively, with significant difference between two groups (P<0.01). And the operation time [(314.8±106.3)] min was significantly lower in simulated group than that in the control [(358.4±147.9) min] (P<0.01). Application of 3D-CTA imaging technology in risk level assessment before large-scaled meningioma resection could assist in the rational planning of tumor resectin, surgical routes, and is helpful in reducing injuries and complications and enhancing the prognosis of the patients. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  1. Polymer optical fibers integrated directly into 3D orthogonal woven composites for sensing

    NASA Astrophysics Data System (ADS)

    Hamouda, Tamer; Seyam, Abdel-Fattah M.; Peters, Kara

    2015-02-01

    This study demonstrates that standard polymer optical fibers (POF) can be directly integrated into composites from 3D orthogonal woven preforms during the weaving process and then serve as in-situ sensors to detect damage due to bending or impact loads. Different composite samples with embedded POF were fabricated of 3D orthogonal woven composites with different parameters namely number of y-/x-layers and x-yarn density. The signal of POF was not affected significantly by the preform structure. During application of resin using VARTM technique, significant drop in backscattering level was observed due to pressure caused by vacuum on the embedded POF. Measurements of POF signal while in the final composites after resin cure indicated that the backscattering level almost returned to the original level of un-embedded POF. The POF responded to application of bending and impact loads to the composite with a reduction in the backscattering level. The backscattering level almost returned back to its original level after removing the bending load until damage was present in the composite. Similar behavior occurred due to impact events. As the POF itself is used as the sensor and can be integrated throughout the composite, large sections of future 3D woven composite structures could be monitored without the need for specialized sensors or complex instrumentation.

  2. Autostereoscopic 3D Display with Long Visualization Depth Using Referential Viewing Area-Based Integral Photography.

    PubMed

    Hongen Liao; Dohi, Takeyoshi; Nomura, Keisuke

    2011-11-01

    We developed an autostereoscopic display for distant viewing of 3D computer graphics (CG) images without using special viewing glasses or tracking devices. The images are created by employing referential viewing area-based CG image generation and pixel distribution algorithm for integral photography (IP) and integral videography (IV) imaging. CG image rendering is used to generate IP/IV elemental images. The images can be viewed from each viewpoint within a referential viewing area and the elemental images are reconstructed from rendered CG images by pixel redistribution and compensation method. The elemental images are projected onto a screen that is placed at the same referential viewing distance from the lens array as in the image rendering. Photographic film is used to record the elemental images through each lens. The method enables 3D images with a long visualization depth to be viewed from relatively long distances without any apparent influence from deviated or distorted lenses in the array. We succeeded in creating an actual autostereoscopic images with an image depth of several meters in front of and behind the display that appear to have 3D even when viewed from a distance.

  3. Integrating Data Clustering and Visualization for the Analysis of 3D Gene Expression Data

    SciTech Connect

    Data Analysis and Visualization and the Department of Computer Science, University of California, Davis, One Shields Avenue, Davis CA 95616, USA,; nternational Research Training Group ``Visualization of Large and Unstructured Data Sets,'' University of Kaiserslautern, Germany; Computational Research Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA; Genomics Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA; Life Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA,; Computer Science Division,University of California, Berkeley, CA, USA,; Computer Science Department, University of California, Irvine, CA, USA,; All authors are with the Berkeley Drosophila Transcription Network Project, Lawrence Berkeley National Laboratory,; Rubel, Oliver; Weber, Gunther H.; Huang, Min-Yu; Bethel, E. Wes; Biggin, Mark D.; Fowlkes, Charless C.; Hendriks, Cris L. Luengo; Keranen, Soile V. E.; Eisen, Michael B.; Knowles, David W.; Malik, Jitendra; Hagen, Hans; Hamann, Bernd

    2008-05-12

    The recent development of methods for extracting precise measurements of spatial gene expression patterns from three-dimensional (3D) image data opens the way for new analyses of the complex gene regulatory networks controlling animal development. We present an integrated visualization and analysis framework that supports user-guided data clustering to aid exploration of these new complex datasets. The interplay of data visualization and clustering-based data classification leads to improved visualization and enables a more detailed analysis than previously possible. We discuss (i) integration of data clustering and visualization into one framework; (ii) application of data clustering to 3D gene expression data; (iii) evaluation of the number of clusters k in the context of 3D gene expression clustering; and (iv) improvement of overall analysis quality via dedicated post-processing of clustering results based on visualization. We discuss the use of this framework to objectively define spatial pattern boundaries and temporal profiles of genes and to analyze how mRNA patterns are controlled by their regulatory transcription factors.

  4. Integrated 3-D quality control of geological interpretation through the use of simple methods and programs

    SciTech Connect

    Chatellier, J.Y.; Gustavo, F.; Magaly, Q.

    1996-12-31

    Integrating different petroleum geology disciplines gives insight and help in analyzing data and in checking the quality of different interpretations. Simple approaches and affordable programs allow rapid visualization of data in 3-D. Displaying geological data from stratigraphy, diagenesis, and structural geology together, allows identification of anomalies (i.e. development targets) and often gives clues of the controlling processes. Four case studies from world class fields are used to illustrate the vital need to integrate quality control of interpretation across disciplines. Distribution of diagenetic alterations is revealed by visualizing diagenetic and petrographic data against faults in a 3-D statistical program. Faults are transferred from 3-D seismic into such a program and then analyzed against other data. Fault intersections wrongly correlated are also easily picked. Other powerful tools include a modified use of the Bischke Plots that allow the identification of missing sections previously identified as fault cut-outs. The quality of interpretation has sometimes been assessed from the presence of stacked anomalies of various expression. In other cases repeated unexpected isopach trends revealed subtle faults such as riedels sealing and compartmentizing the reservoirs. Occasionally the timing of fault reactivation was assessed precisely whereas all other techniques failed even to identify these hidden features. Unrecognized porosity-depth trends were identified after filtering data for stratigraphy or sedimentology and studying it in its geographical and tectonic context. Three dimensional visualization was needed in cases of quartz overgrowth where grain size, depth, stratigraphy and location with respect to faults were all important.

  5. Integrated 3-D quality control of geological interpretation through the use of simple methods and programs

    SciTech Connect

    Chatellier, J.Y.; Gustavo, F.; Magaly, Q. )

    1996-01-01

    Integrating different petroleum geology disciplines gives insight and help in analyzing data and in checking the quality of different interpretations. Simple approaches and affordable programs allow rapid visualization of data in 3-D. Displaying geological data from stratigraphy, diagenesis, and structural geology together, allows identification of anomalies (i.e. development targets) and often gives clues of the controlling processes. Four case studies from world class fields are used to illustrate the vital need to integrate quality control of interpretation across disciplines. Distribution of diagenetic alterations is revealed by visualizing diagenetic and petrographic data against faults in a 3-D statistical program. Faults are transferred from 3-D seismic into such a program and then analyzed against other data. Fault intersections wrongly correlated are also easily picked. Other powerful tools include a modified use of the Bischke Plots that allow the identification of missing sections previously identified as fault cut-outs. The quality of interpretation has sometimes been assessed from the presence of stacked anomalies of various expression. In other cases repeated unexpected isopach trends revealed subtle faults such as riedels sealing and compartmentizing the reservoirs. Occasionally the timing of fault reactivation was assessed precisely whereas all other techniques failed even to identify these hidden features. Unrecognized porosity-depth trends were identified after filtering data for stratigraphy or sedimentology and studying it in its geographical and tectonic context. Three dimensional visualization was needed in cases of quartz overgrowth where grain size, depth, stratigraphy and location with respect to faults were all important.

  6. Microscale technologies for imaging endogenous gene expression in individual cells within 3D tissues

    NASA Astrophysics Data System (ADS)

    Ye, Ting; Luo, Zhen; Ma, Yunzhe; Gill, Harvinder Singh; Nitin, N.

    2013-05-01

    The goal of this study was to develop an innovative approach to image gene expression in intact 3D tissues. Imaging gene expression of individual cells in 3D tissues is expected to have a significant impact on both clinical diagnostic applications and fundamental biological science and engineering applications in a laboratory setting. To achieve this goal, we have developed an integrated approach that combines: 1) microneedle-based minimally invasive intra-tissue delivery of oligonucleotide probes and Streptolysin O (SLO) or CPP; 2) SLO as a pore forming permeation enhancer to enable intracellular delivery of oligonucleotide probes and CPP peptides can also transport conjugated cargo in cells; and 3) fluorescence resonance energy transfer (FRET) pair of ON probes to improve specificity and sensitivity of RNA detection in tissue models. The results of this study demonstrate uniform coating and rapid release of ON probes from microneedles in a tissue environment. Microneedle assisted delivery of ON probes in 3D tissue does not result in cell damage and the ON probes are uniformly delivered in the tissue. The results also demonstrate the feasibility of FRET imaging of ON probes in 3D tissue and highlight the potential for imaging 28-s rRNA in individual living cells.

  7. The 3-D CFD modeling of gas turbine combustor-integral bleed flow interaction

    NASA Technical Reports Server (NTRS)

    Chen, D. Y.; Reynolds, R. S.

    1993-01-01

    An advanced 3-D Computational Fluid Dynamics (CFD) model was developed to analyze the flow interaction between a gas turbine combustor and an integral bleed plenum. In this model, the elliptic governing equations of continuity, momentum and the k-e turbulence model were solved on a boundary-fitted, curvilinear, orthogonal grid system. The model was first validated against test data from public literature and then applied to a gas turbine combustor with integral bleed. The model predictions agreed well with data from combustor rig testing. The model predictions also indicated strong flow interaction between the combustor and the integral bleed. Integral bleed flow distribution was found to have a great effect on the pressure distribution around the gas turbine combustor.

  8. Uniform integration of gold nanoparticles in PDMS microfluidics with 3D micromixing

    NASA Astrophysics Data System (ADS)

    SadAbadi, H.; Packirisamy, M.; Wuthrich, R.

    2015-09-01

    The integration of gold nanoparticles (AuNPs) on the surface of polydimethylsiloxane (PDMS) microfluidics for biosensing applications is a challenging task. In this paper we address this issue by integration of pre-synthesized AuNPs (in a microreactor) into a microfluidic system. This method explored the affinity of AuNPs toward the PDMS surface so that the pre-synthesized particles will be adsorbed onto the channel walls. AuNPs were synthesized inside a microreactor before integration. In order to improve the size uniformity of the synthesized AuNPs and also to provide full mixing of reactants, a 3D-micromixer was designed, fabricated and then integrated with the microreactor in a single platform. SEM and UV/Vis spectroscopy were used to characterize the AuNPs on the PDMS surface.

  9. A new 3-D integral code for computation of accelerator magnets

    SciTech Connect

    Turner, L.R.; Kettunen, L.

    1991-01-01

    For computing accelerator magnets, integral codes have several advantages over finite element codes; far-field boundaries are treated automatically, and computed field in the bore region satisfy Maxwell's equations exactly. A new integral code employing edge elements rather than nodal elements has overcome the difficulties associated with earlier integral codes. By the use of field integrals (potential differences) as solution variables, the number of unknowns is reduced to one less than the number of nodes. Two examples, a hollow iron sphere and the dipole magnet of Advanced Photon Source injector synchrotron, show the capability of the code. The CPU time requirements are comparable to those of three-dimensional (3-D) finite-element codes. Experiments show that in practice it can realize much of the potential CPU time saving that parallel processing makes possible. 8 refs., 4 figs., 1 tab.

  10. Fiber optic vibration sensor for high-power electric machines realized using 3D printing technology

    NASA Astrophysics Data System (ADS)

    Igrec, Bojan; Bosiljevac, Marko; Sipus, Zvonimir; Babic, Dubravko; Rudan, Smiljko

    2016-03-01

    The objective of this work was to demonstrate a lightweight and inexpensive fiber-optic vibration sensor, built using 3D printing technology, for high-power electric machines and similar applications. The working principle is based on modulating the light intensity using a blade attached to a bendable membrane. The sensor prototype was manufactured using PolyJet Matrix technology with DM 8515 Grey 35 Polymer. The sensor shows linear response, expected bandwidth (< 150 Hz), and from our measurements we estimated the damping ratio for used polymer to be ζ ≍ 0.019. The developed prototype is simple to assemble, adjust, calibrate and repair.

  11. Integration of multiple view plus depth data for free viewpoint 3D display

    NASA Astrophysics Data System (ADS)

    Suzuki, Kazuyoshi; Yoshida, Yuko; Kawamoto, Tetsuya; Fujii, Toshiaki; Mase, Kenji

    2014-03-01

    This paper proposes a method for constructing a reasonable scale of end-to-end free-viewpoint video system that captures multiple view and depth data, reconstructs three-dimensional polygon models of objects, and display them on virtual 3D CG spaces. This system consists of a desktop PC and four Kinect sensors. First, multiple view plus depth data at four viewpoints are captured by Kinect sensors simultaneously. Then, the captured data are integrated to point cloud data by using camera parameters. The obtained point cloud data are sampled to volume data that consists of voxels. Since volume data that are generated from point cloud data are sparse, those data are made dense by using global optimization algorithm. Final step is to reconstruct surfaces on dense volume data by discrete marching cubes method. Since accuracy of depth maps affects to the quality of 3D polygon model, a simple inpainting method for improving depth maps is also presented.

  12. 3D Porosity Estimation of the Nankai Trough Sediments from Core-log-seismic Integration

    NASA Astrophysics Data System (ADS)

    Park, J. O.

    2015-12-01

    The Nankai Trough off southwest Japan is one of the best subduction-zone to study megathrust earthquake fault. Historic, great megathrust earthquakes with a recurrence interval of 100-200 yr have generated strong motion and large tsunamis along the Nankai Trough subduction zone. At the Nankai Trough margin, the Philippine Sea Plate (PSP) is being subducted beneath the Eurasian Plate to the northwest at a convergence rate ~4 cm/yr. The Shikoku Basin, the northern part of the PSP, is estimated to have opened between 25 and 15 Ma by backarc spreading of the Izu-Bonin arc. The >100-km-wide Nankai accretionary wedge, which has developed landward of the trench since the Miocene, mainly consists of offscraped and underplated materials from the trough-fill turbidites and the Shikoku Basin hemipelagic sediments. Particularly, physical properties of the incoming hemipelagic sediments may be critical for seismogenic behavior of the megathrust fault. We have carried out core-log-seismic integration (CLSI) to estimate 3D acoustic impedance and porosity for the incoming sediments in the Nankai Trough. For the CLSI, we used 3D seismic reflection data, P-wave velocity and density data obtained during IODP (Integrated Ocean Drilling Program) Expeditions 322 and 333. We computed acoustic impedance depth profiles for the IODP drilling sites from P-wave velocity and density data. We constructed seismic convolution models with the acoustic impedance profiles and a source wavelet which is extracted from the seismic data, adjusting the seismic models to observed seismic traces with inversion method. As a result, we obtained 3D acoustic impedance volume and then converted it to 3D porosity volume. In general, the 3D porosities show decrease with depth. We found a porosity anomaly zone with alteration of high and low porosities seaward of the trough axis. In this talk, we will show detailed 3D porosity of the incoming sediments, and present implications of the porosity anomaly zone for the

  13. Three-dimensional (3D) monolithically integrated photodetector and WDM receiver based on bulk silicon wafer.

    PubMed

    Song, Junfeng; Luo, Xianshu; Tu, Xiaoguang; Jia, Lianxi; Fang, Qing; Liow, Tsung-Yang; Yu, Mingbin; Lo, Guo-Qiang

    2014-08-11

    We propose a novel three-dimensional (3D) monolithic optoelectronic integration platform. Such platform integrates both electrical and photonic devices in a bulk silicon wafer, which eliminates the high-cost silicon-on-insulator (SOI) wafer and is more suitable for process requirements of electronic and photonic integrated circuits (ICs). For proof-of-concept, we demonstrate a three-dimensional photodetector and WDM receiver system. The Ge is grown on a 8-inch bulk silicon wafer while the optical waveguide is defined in a SiN layer which is deposited on top of it, with ~4 µm oxide sandwiched in between. The light is directed to the Ge photodetector from the SiN waveguide vertically by using grating coupler with a Aluminum mirror on top of it. The measured photodetector responsivity is ~0.2 A/W and the 3-dB bandwidth is ~2 GHz. Using such vertical-coupled photodetector, we demonstrated an 8-channel receiver by integrating a 1 × 8 arrayed waveguide grating (AWG). High-quality optical signal detection with up to 10 Gbit/s data rate is demonstrated, suggesting a 80 Gbit/s throughput. Such receiver can be applied to on-chip optical interconnect, DRAM interface, and telecommunication systems.

  14. Potential of 3D printing technologies for fabrication of electron bolus and proton compensators.

    PubMed

    Zou, Wei; Fisher, Ted; Zhang, Miao; Kim, Leonard; Chen, Ting; Narra, Venkat; Swann, Beth; Singh, Rachana; Siderit, Richard; Yin, Lingshu; Teo, Boon-Keng Kevin; McKenna, Michael; McDonough, James; Ning, Yue J

    2015-05-08

    In electron and proton radiotherapy, applications of patient-specific electron bolus or proton compensators during radiation treatments are often necessary to accommodate patient body surface irregularities, tissue inhomogeneity, and variations in PTV depths to achieve desired dose distributions. Emerging 3D printing technologies provide alternative fabrication methods for these bolus and compensators. This study investigated the potential of utilizing 3D printing technologies for the fabrication of the electron bolus and proton compensators. Two printing technologies, fused deposition modeling (FDM) and selective laser sintering (SLS), and two printing materials, PLA and polyamide, were investigated. Samples were printed and characterized with CT scan and under electron and proton beams. In addition, a software package was developed to convert electron bolus and proton compensator designs to printable Standard Tessellation Language file format. A phantom scalp electron bolus was printed with FDM technology with PLA material. The HU of the printed electron bolus was 106.5 ± 15.2. A prostate patient proton compensator was printed with SLS technology and polyamide material with -70.1 ± 8.1 HU. The profiles of the electron bolus and proton compensator were compared with the original designs. The average over all the CT slices of the largest Euclidean distance between the design and the fabricated bolus on each CT slice was found to be 0.84 ± 0.45 mm and for the compensator to be 0.40 ± 0.42 mm. It is recommended that the properties of specific 3D printed objects are understood before being applied to radiotherapy treatments.

  15. An Overview of the Past, Present, and Future of 3D Printing Technology with an Emphasis on the Present

    ERIC Educational Resources Information Center

    Snyder, Robin M.

    2014-01-01

    Just as the cost of high quality laser printing started in the tens of thousands of dollar and can now be purchased for under $100, so too has 3D printing technology started in the tens of thousands of dollars and is now in the thousand dollar range. Current 3D printing technology takes 2D printing into a third dimension. Many 3D printers are…

  16. 220GHz wideband 3D imaging radar for concealed object detection technology development and phenomenology studies

    NASA Astrophysics Data System (ADS)

    Robertson, Duncan A.; Macfarlane, David G.; Bryllert, Tomas

    2016-05-01

    We present a 220 GHz 3D imaging `Pathfinder' radar developed within the EU FP7 project CONSORTIS (Concealed Object Stand-Off Real-Time Imaging for Security) which has been built to address two objectives: (i) to de-risk the radar hardware development and (ii) to enable the collection of phenomenology data with ~1 cm3 volumetric resolution. The radar combines a DDS-based chirp generator and self-mixing multiplier technology to achieve a 30 GHz bandwidth chirp with such high linearity that the raw point response is close to ideal and only requires minor nonlinearity compensation. The single transceiver is focused with a 30 cm lens mounted on a gimbal to acquire 3D volumetric images of static test targets and materials.

  17. Active and Passive 3d Imaging Technologies Applied to Waterlogged Wooden Artifacts from Shipwrecks

    NASA Astrophysics Data System (ADS)

    Bandiera, A.; Alfonso, C.; Auriemma, R.

    2015-04-01

    The fragility of organic artefacts in presence of water and their volumetric variation caused by the marine life on or surrounding them dictate that their physical dimensions be measured soon after their extraction from the seabed. In an ideal context, it would be appropriate to preserve and restore all the archaeological elements, rapidly and with the latest methods. Unfortunately however, the large number of artefacts makes the cost of such an operation prohibitive for a public institution. For this reason, digital technologies for documentation, restoration, display and conservation are being considered by many institutions working with limited budgets. In this paper, we illustrate the experience of the University of Salento in 3D imaging technology for waterlogged wooden artefacts from shipwrecks. The interest originates from the need to develop a protocol for documentation and digital restoration of archaeological finds discovered along the coast of Torre S. Sabina (BR) Italy. This work has allowed us to explore recent technologies for 3D acquisitions, both underwater and in the laboratory, as well as methods for data processing. These technologies have permitted us to start defining a protocol to follow for all waterlogged wooden artefacts requiring documentation and restoration.

  18. Development of 3D modeling technology for manufacturing finned ribbons from heat-resistant steels

    NASA Astrophysics Data System (ADS)

    Lyashkov, A. A.; Vasil'ev, E. V.; Popov, A. Y.

    2017-06-01

    The process of shaping a workpiece by a tool using the rolling method is, from the geometric point of view, a process of interaction of two conjugate surfaces. The technology of rolling finned stainless steel ribbons is close to the technology of shaping details by cutting. However, the problems of its practical implementation in the well-known papers analyzing this issue are practically not considered. As a result of the analysis of conjugate surfaces profiling methods in relation to the problem, it was concluded that it seems urgent to develop a methodology for the formation of corrugated ribbon based on 3D modeling use. The implementation of this methodology includes the creation of solid models of the product and the tool, as well as computer simulation of their shaping processes using rolling method. So, at the first stage, a 3D model of finned ribbon was developed, which was then used to produce a profile of a rolling tool. The modeling of this profile was carried out on the basis of the proposed software package in the CAD environment. The created theoretical model of the tool profile was replaced from the technological point of view by a rectilinear profile. To carry out the analysis of the obtained results, the inverse shaping problem was solved - according to the corrected profile of the tool, real profile of the corrugated ribbon is obtained. Computer modeling of extruded volumes in the process of shaping was performed. The analysis of qualitative and quantitative parameters of the extruded volumes made it possible to give recommendations on setting the increment of the tool motion parameter. Based on the results of the studies, profile parameters of the roller are assigned for its practical implementation. The proposed methodology, based on 3D-modeling, allowed to develop a technology for manufacturing finned ribbons from heat-resistant steels by rolling with high productivity, accuracy and stability of the sizes obtained.

  19. Perceptual integration for qualitatively different 3D cues in the human brain

    PubMed Central

    Dövencioğlu, Dicle; Ban, Hiroshi; Schofield, Andrew J; Welchman, Andrew E

    2013-01-01

    The visual system’s flexibility in estimating depth is remarkable: we readily perceive three-dimensional (3D) structure under diverse conditions from the seemingly random dots of a ‘magic eye’ stereogram to the aesthetically beautiful, but obviously flat, canvasses of the Old Masters. Yet, 3D perception is often enhanced when different cues specify the same depth. This perceptual process is understood as Bayesian inference that improves sensory estimates. Despite considerable behavioral support for this theory, insights into the cortical circuits involved are limited. Moreover, extant work tested quantitatively similar cues, reducing some of the challenges associated with integrating computationally and qualitatively different signals. Here we address this challenge by measuring functional MRI responses to depth structures defined by shading, binocular disparity and their combination. We quantified information about depth configurations (convex ‘bumps’ vs. concave ‘dimples’) in different visual cortical areas using pattern-classification analysis. We found that fMRI responses in dorsal visual area V3B/KO were more discriminable when disparity and shading concurrently signaled depth, in line with the predictions of cue integration. Importantly, by relating fMRI and psychophysical tests of integration, we observed a close association between depth judgments and activity in this area. Finally, using a cross-cue transfer test, we found that fMRI responses evoked by one cue afford classification of responses evoked by the other. This reveals a generalized depth representation in dorsal visual cortex that combines qualitatively different information in line with 3D perception. PMID:23647559

  20. Intracranial Catheter for Integrated 3D Ultrasound Imaging & Hyperthermia: Feasibility Study

    NASA Astrophysics Data System (ADS)

    Herickhoff, Carl D.; Light, Edward D.; Bing, Kristin Frinkley; Mukundan, Srinivasan; Grant, Gerald A.; Wolf, Patrick D.; Dixon-Tulloch, Ellen; Shih, Timothy; Hsu, Stephen J.; Smith, Stephen W.

    2009-04-01

    In this study, we investigated the feasibility of an intracranial catheter transducer capable of real-time 3D (RT3D) imaging and ultrasound hyperthermia, for application in the visualization and treatment of tumors in the brain. We designed and constructed a 12 Fr, integrated matrix and linear array catheter transducer prototype for combined RT3D imaging and heating capability. This dual-mode catheter incorporated 153 matrix array elements and 11 linear array elements, on a 0.2 mm pitch, with a total aperture size of 8.4 mm×2.3 mm. This array achieved a 3.5° C in vitro temperature rise at a 2 cm focal distance in tissue-mimicking material. The dual-mode catheter prototype was compared with a Siemens 10 Fr AcuNav™ catheter as a gold standard in experiments assessing image quality and therapeutic potential, and both probes were used in a canine brain model to image anatomical structures and color Doppler blood flow and to attempt in vivo heating.

  1. Application of CART3D to Complex Propulsion-Airframe Integration with Vehicle Sketch Pad

    NASA Technical Reports Server (NTRS)

    Hahn, Andrew S.

    2012-01-01

    Vehicle Sketch Pad (VSP) is an easy-to-use modeler used to generate aircraft geometries for use in conceptual design and analysis. It has been used in the past to generate metageometries for aerodynamic analyses ranging from handbook methods to Navier-Stokes computational fluid dynamics (CFD). As desirable as it is to bring high order analyses, such as CFD, into the conceptual design process, this has been difficult and time consuming in practice due to the manual nature of both surface and volume grid generation. Over the last couple of years, VSP has had a major upgrade of its surface triangulation and export capability. This has enhanced its ability to work with Cart3D, an inviscid, three dimensional fluid flow toolset. The combination of VSP and Cart3D allows performing inviscid CFD on complex geometries with relatively high productivity. This paper will illustrate the use of VSP with Cart3D through an example case of a complex propulsion-airframe integration (PAI) of an over-wing nacelle (OWN) airliner configuration.

  2. Integration of 3D Structure from Disparity into Biological Motion Perception Independent of Depth Awareness

    PubMed Central

    Wang, Ying; Jiang, Yi

    2014-01-01

    Images projected onto the retinas of our two eyes come from slightly different directions in the real world, constituting binocular disparity that serves as an important source for depth perception - the ability to see the world in three dimensions. It remains unclear whether the integration of disparity cues into visual perception depends on the conscious representation of stereoscopic depth. Here we report evidence that, even without inducing discernible perceptual representations, the disparity-defined depth information could still modulate the visual processing of 3D objects in depth-irrelevant aspects. Specifically, observers who could not discriminate disparity-defined in-depth facing orientations of biological motions (i.e., approaching vs. receding) due to an excessive perceptual bias nevertheless exhibited a robust perceptual asymmetry in response to the indistinguishable facing orientations, similar to those who could consciously discriminate such 3D information. These results clearly demonstrate that the visual processing of biological motion engages the disparity cues independent of observers’ depth awareness. The extraction and utilization of binocular depth signals thus can be dissociable from the conscious representation of 3D structure in high-level visual perception. PMID:24586622

  3. Integration of 3D structure from disparity into biological motion perception independent of depth awareness.

    PubMed

    Wang, Ying; Jiang, Yi

    2014-01-01

    Images projected onto the retinas of our two eyes come from slightly different directions in the real world, constituting binocular disparity that serves as an important source for depth perception - the ability to see the world in three dimensions. It remains unclear whether the integration of disparity cues into visual perception depends on the conscious representation of stereoscopic depth. Here we report evidence that, even without inducing discernible perceptual representations, the disparity-defined depth information could still modulate the visual processing of 3D objects in depth-irrelevant aspects. Specifically, observers who could not discriminate disparity-defined in-depth facing orientations of biological motions (i.e., approaching vs. receding) due to an excessive perceptual bias nevertheless exhibited a robust perceptual asymmetry in response to the indistinguishable facing orientations, similar to those who could consciously discriminate such 3D information. These results clearly demonstrate that the visual processing of biological motion engages the disparity cues independent of observers' depth awareness. The extraction and utilization of binocular depth signals thus can be dissociable from the conscious representation of 3D structure in high-level visual perception.

  4. Integration of regional to outcrop digital data: 3D visualisation of multi-scale geological models

    NASA Astrophysics Data System (ADS)

    Jones, R. R.; McCaffrey, K. J. W.; Clegg, P.; Wilson, R. W.; Holliman, N. S.; Holdsworth, R. E.; Imber, J.; Waggott, S.

    2009-01-01

    Multi-scale geological models contain three-dimensional, spatially referenced data, typically spanning at least six orders of magnitude from outcrop to regional scale. A large number of different geological and geophysical data sources can be combined into a single model. Established 3D visualisation methods that are widely used in hydrocarbon exploration and production for sub-surface data have been adapted for onshore surface geology through a combination of methods for digital data acquisition, 3D visualisation, and geospatial analysis. The integration of georeferenced data across a wider than normal range in scale helps to address several of the existing limitations that are inherent in traditional methods of map production and publishing. The primary advantage of a multi-scale approach is that spatial precision and dimensionality (which are generally degraded when data are displayed in 2D at a single scale) can be preserved at all scales. Real-time, immersive, interactive software, based on a "3D geospatial" graphical user interface (GUI), allows complex geological architectures to be depicted, and is more inherently intuitive than software based on a standard "desktop" GUI metaphor. The continuing convergence of different kinds of geo-modelling, GIS, and visualisation software, as well as industry acceptance of standardised middleware, has helped to make multi-scale geological models a practical reality. This is illustrated with two case studies from NE England and NW Scotland.

  5. Efficient data exchange: Integrating a vector GIS with an object-oriented, 3-D visualization system

    SciTech Connect

    Kuiper, J.; Ayers, A.; Johnson, R.; Tolbert-Smith, M.

    1996-03-01

    A common problem encountered in Geographic Information System (GIS) modeling is the exchange of data between different software packages to best utilize the unique features of each package. This paper describes a project to integrate two systems through efficient data exchange. The first is a widely used GIS based on a relational data model. This system has a broad set of data input, processing, and output capabilities, but lacks three-dimensional (3-D) visualization and certain modeling functions. The second system is a specialized object-oriented package designed for 3-D visualization and modeling. Although this second system is useful for subsurface modeling and hazardous waste site characterization, it does not provide many of the, capabilities of a complete GIS. The system-integration project resulted in an easy-to-use program to transfer information between the systems, making many of the more complex conversion issues transparent to the user. The strengths of both systems are accessible, allowing the scientist more time to focus on analysis. This paper details the capabilities of the two systems, explains the technical issues associated with data exchange and how they were solved, and outlines an example analysis project that used the integrated systems.

  6. Fully analytical integration over the 3D volume bounded by the β sphere in topological atoms.

    PubMed

    Popelier, Paul L A

    2011-11-17

    Atomic properties of a topological atom are obtained by 3D integration over the volume of its atomic basin. Algorithms that compute atomic properties typically integrate over two subspaces: the volume bounded by the so-called β sphere, which is centered at the nucleus and completely contained within the atomic basin, and the volume of the remaining part of the basin. Here we show how the usual quadrature over the β sphere volume can be replaced by a fully analytical 3D integration leading to the atomic charge (monopole moment) for s, p, and d functions. Spherical tensor multipole moments have also been implemented and tested up to hexadecupole for s functions only, and up to quadrupole for s and p functions. The new algorithm is illustrated by operating on capped glycine (HF/6-31G, 35 molecular orbitals (MOs), 322 Gaussian primitives, 19 nuclei), the protein crambin (HF/3-21G, 1260 MOs, 5922 primitives and 642 nuclei), and tin (Z = 50) in Sn(2)(CH(3))(2) (B3LYP/cc-pVTZ and LANL2DZ, 59 MOs, 1352 primitives).

  7. Design, modeling and testing of integrated ring extractor for high resolution electrohydrodynamic (EHD) 3D printing

    NASA Astrophysics Data System (ADS)

    Han, Yiwei; Dong, Jingyan

    2017-03-01

    This paper presents an integrated ring extractor design in electrohydrodynamic (EHD) printing, which can overcome the standoff height limitation in the EHD printing process, and improve printing capability for 3D structures. Standoff height in the EHD printing will affect printing processes and limit the height of the printed structure when the ground electrode is placed under the substrate. In this work, we designed and integrated a ring electrode with the printing nozzle to achieve a self-working printer head, which can start and maintain the printing process without the involvement of the substrate. We applied a FEA method to model the electric field potential distribution and strength to direct the ring extractor design, which provides a similar printing capability with the system using substrate as the ground electrode. We verified the ring electrode design by experiments, and those results from the experiments demonstrated a good match with results from the FEA simulation. We have characterized the printing processes using the integrated ring extractor, and successfully applied this newly designed ring extractor to print polycaprolactone (PCL) 3D structures.

  8. ARN Integrated Retail Module (IRM) & 3D Whole Body Scanner System at Fort Carson, Colorado

    DTIC Science & Technology

    2006-12-01

    DCU yes 02164 COAT CAMO ABDU DSRT no 02362 PARKA W/W (RAINSUIT) yes 02363 TROUSER W/W (RAINSUIT) yes 02637 PARKA ECWCS DSRT yes 02665 SHIRT C/W BLK...implementation of the VITUS/Smart 3D Whole Body Scanner and its integration with ARN-IRM at the CIF, Ft. Carson using techniques that were successful at the...Row1=M R,60 [Garments\\PGC 02164 COAT CAMO ABDU DSRT] Name=PGC 02164 COAT CAMO ABDU DSRT Table=PGC 02164 COAT CAMO ABDU DSRT Gender=m

  9. 3D printed LED based on-capillary detector housing with integrated slit.

    PubMed

    Cecil, Farhan; Zhang, Min; Guijt, Rosanne M; Henderson, Alan; Nesterenko, Pavel N; Paull, Brett; Breadmore, Michael C; Macka, Mirek

    2017-05-01

    A 3D printed photometric detector body with integrated slit was fabricated to position a LED and photodiode either side of capillary tubing using a fused deposition modelling (FDM) printer. To make this approach suitable for capillaries down to 50 μm i.d. the dimension of the in-built slit is the critical element of the printed housing. The spatial orientation of the model for printing was found to significantly impact on the resolution of the structures and voids that can be printed. By designing a housing with a slit positioned in the XY plane in parallel with the print direction, the narrowest void (slit) that could be printed was 70 μm. The potential use of the 3D printed slit for photometric detection was characterised using tubing and capillary from 500 down to 50 μm i.d, demonstrating a linear response from 632 to 40 mAU. The effective pathlength and stray light varied from 383 to 22 μm and 3.8% - 50% for 500- 50 μm i.d tubing and capillary. The use of a V-shaped alignment feature allowed for easy and reliable positioning of the tubing inside the detector, as demonstrated by a RSD of 1.9% (n = 10) in peak height when repositioning the tubing between measurements using flow injection analysis (FIA). The performance of the 3D printed housing and 70 μm slit was benchmarked against a commercially available interface using the CE separation of Zn(2+) and Cu(2+) complexes with PAR. The limit of detection with the 3D printed slit was 6.8 and 4.5 μM and is 2.8 and 1.6 μM with the commercial interface.

  10. DYNA3D, INGRID, and TAURUS: an integrated, interactive software system for crashworthiness engineering

    SciTech Connect

    Benson, D.J.; Hallquist, J.O.; Stillman, D.W.

    1985-04-01

    Crashworthiness engineering has always been a high priority at Lawrence Livermore National Laboratory because of its role in the safe transport of radioactive material for the nuclear power industry and military. As a result, the authors have developed an integrated, interactive set of finite element programs for crashworthiness analysis. The heart of the system is DYNA3D, an explicit, fully vectorized, large deformation structural dynamics code. DYNA3D has the following four capabilities that are critical for the efficient and accurate analysis of crashes: (1) fully nonlinear solid, shell, and beam elements for representing a structure, (2) a broad range of constitutive models for representing the materials, (3) sophisticated contact algorithms for the impact interactions, and (4) a rigid body capability to represent the bodies away from the impact zones at a greatly reduced cost without sacrificing any accuracy in the momentum calculations. To generate the large and complex data files for DYNA3D, INGRID, a general purpose mesh generator, is used. It runs on everything from IBM PCs to CRAYS, and can generate 1000 nodes/minute on a PC. With its efficient hidden line algorithms and many options for specifying geometry, INGRID also doubles as a geometric modeller. TAURUS, an interactive post processor, is used to display DYNA3D output. In addition to the standard monochrome hidden line display, time history plotting, and contouring, TAURUS generates interactive color displays on 8 color video screens by plotting color bands superimposed on the mesh which indicate the value of the state variables. For higher quality color output, graphic output files may be sent to the DICOMED film recorders. We have found that color is every bit as important as hidden line removal in aiding the analyst in understanding his results. In this paper the basic methodologies of the programs are presented along with several crashworthiness calculations.

  11. Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds.

    PubMed

    Castro, Nathan J; O'Brien, Joseph; Zhang, Lijie Grace

    2015-09-07

    The osteochondral interface of an arthritic joint is notoriously difficult to regenerate due to its extremely poor regenerative capacity and complex stratified architecture. Native osteochondral tissue extracellular matrix is composed of numerous nanoscale organic and inorganic constituents. Although various tissue engineering strategies exist in addressing osteochondral defects, limitations persist with regards to tissue scaffolding which exhibit biomimetic cues at the nano to micro scale. In an effort to address this, the current work focused on 3D printing biomimetic nanocomposite scaffolds for improved osteochondral tissue regeneration. For this purpose, two biologically-inspired nanomaterials have been synthesized consisting of (1) osteoconductive nanocrystalline hydroxyapatite (nHA) (primary inorganic component of bone) and (2) core-shell poly(lactic-co-glycolic) acid (PLGA) nanospheres encapsulated with chondrogenic transforming growth-factor β1 (TGF-β1) for sustained delivery. Then, a novel table-top stereolithography 3D printer and the nano-ink (i.e., nHA + nanosphere + hydrogel) were employed to fabricate a porous and highly interconnected osteochondral scaffold with hierarchical nano-to-micro structure and spatiotemporal bioactive factor gradients. Our results showed that human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and osteochondral differentiation were greatly improved in the biomimetic graded 3D printed osteochondral construct in vitro. The current work served to illustrate the efficacy of the nano-ink and current 3D printing technology for efficient fabrication of a novel nanocomposite hydrogel scaffold. In addition, tissue-specific growth factors illustrated a synergistic effect leading to increased cell adhesion and directed stem cell differentiation.

  12. Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds

    NASA Astrophysics Data System (ADS)

    Castro, Nathan J.; O'Brien, Joseph; Zhang, Lijie Grace

    2015-08-01

    The osteochondral interface of an arthritic joint is notoriously difficult to regenerate due to its extremely poor regenerative capacity and complex stratified architecture. Native osteochondral tissue extracellular matrix is composed of numerous nanoscale organic and inorganic constituents. Although various tissue engineering strategies exist in addressing osteochondral defects, limitations persist with regards to tissue scaffolding which exhibit biomimetic cues at the nano to micro scale. In an effort to address this, the current work focused on 3D printing biomimetic nanocomposite scaffolds for improved osteochondral tissue regeneration. For this purpose, two biologically-inspired nanomaterials have been synthesized consisting of (1) osteoconductive nanocrystalline hydroxyapatite (nHA) (primary inorganic component of bone) and (2) core-shell poly(lactic-co-glycolic) acid (PLGA) nanospheres encapsulated with chondrogenic transforming growth-factor β1 (TGF-β1) for sustained delivery. Then, a novel table-top stereolithography 3D printer and the nano-ink (i.e., nHA + nanosphere + hydrogel) were employed to fabricate a porous and highly interconnected osteochondral scaffold with hierarchical nano-to-micro structure and spatiotemporal bioactive factor gradients. Our results showed that human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and osteochondral differentiation were greatly improved in the biomimetic graded 3D printed osteochondral construct in vitro. The current work served to illustrate the efficacy of the nano-ink and current 3D printing technology for efficient fabrication of a novel nanocomposite hydrogel scaffold. In addition, tissue-specific growth factors illustrated a synergistic effect leading to increased cell adhesion and directed stem cell differentiation.

  13. Assessment of image quality in real time three-dimensional dobutamine stress echocardiography: an integrated 2D/3D approach.

    PubMed

    Johri, Amer M; Chitty, David W; Hua, Lanqi; Marincheva, Gergana; Picard, Michael H

    2015-03-01

    Three-dimensional (3D) stress echocardiography is a relatively new technique offering the potential to acquire images of the entire left ventricle from 1 or 2 transducer positions in a time-efficient manner. Relative to two-dimensional (2D) imaging, the ability to quickly acquire full volume images during peak stress with 3D echocardiography can eliminate left ventricular (LV) foreshortening while reducing inter-operator variability. Our objectives were to (1) determine the practicality of a novel integrated 2D/3D stress protocol in incorporating 3D imaging into a standard 2D stress echocardiogram and (2) to determine whether the quality of imaging using the novel 2D/3D protocol was sufficient for interpretation. Twenty-five patients referred for stress echocardiography underwent an integrated 2D/3D image acquisition protocol. LV segments were scored from 0 (absent or no clear endocardial visualization) to 3 (excellent/full visualization of endocardial border) with each modality. 2D segment quality scoring was compared with 3D. An integrated score was compared with either 2D or 3D imaging alone. Two-dimensional and 3D imaging were optimal for differing segments and the integrated protocol was superior to either modality alone. 3D imaging was superior in visualizing the anterior and anterolateral region of the base segments, compared to 2D imaging. 3D imaging was less useful for the base, the mid-inferior, and the inferoseptal segments, thus emphasizing the need to retain 2D imaging in stress echocardiography at this time. The integrated 2D/3D protocol approach to stress echocardiography is technically feasible and maximizes image quality of dobutamine stress echocardiography, improving patient assessment. © 2014, Wiley Periodicals, Inc.

  14. Public engagement in 3D flood modelling through integrating crowd sourced imagery with UAV photogrammetry to create a 3D flood hydrograph.

    NASA Astrophysics Data System (ADS)

    Bond, C. E.; Howell, J.; Butler, R.

    2016-12-01

    With an increase in flood and storm events affecting infrastructure the role of weather systems, in a changing climate, and their impact is of increasing interest. Here we present a new workflow integrating crowd sourced imagery from the public with UAV photogrammetry to create, the first 3D hydrograph of a major flooding event. On December 30th 2015, Storm Frank resulted in high magnitude rainfall, within the Dee catchment in Aberdeenshire, resulting in the highest ever-recorded river level for the Dee, with significant impact on infrastructure and river morphology. The worst of the flooding occurred during daylight hours and was digitally captured by the public on smart phones and cameras. After the flood event a UAV was used to shoot photogrammetry to create a textured elevation model of the area around Aboyne Bridge on the River Dee. A media campaign aided crowd sourced digital imagery from the public, resulting in over 1,000 images submitted by the public. EXIF data captured by the imagery of the time, date were used to sort the images into a time series. Markers such as signs, walls, fences and roads within the images were used to determine river level height through the flood, and matched onto the elevation model to contour the change in river level. The resulting 3D hydrograph shows the build up of water on the up-stream side of the Bridge that resulted in significant scouring and under-mining in the flood. We have created the first known data based 3D hydrograph for a river section, from a UAV photogrammetric model and crowd sourced imagery. For future flood warning and infrastructure management a solution that allows a realtime hydrograph to be created utilising augmented reality to integrate the river level information in crowd sourced imagery directly onto a 3D model, would significantly improve management planning and infrastructure resilience assessment.

  15. Optimizing Computer Technology Integration

    ERIC Educational Resources Information Center

    Dillon-Marable, Elizabeth; Valentine, Thomas

    2006-01-01

    The purpose of this study was to better understand what optimal computer technology integration looks like in adult basic skills education (ABSE). One question guided the research: How is computer technology integration best conceptualized and measured? The study used the Delphi method to map the construct of computer technology integration and…

  16. Touch Interaction with 3D Geographical Visualization on Web: Selected Technological and User Issues

    NASA Astrophysics Data System (ADS)

    Herman, L.; Stachoň, Z.; Stuchlík, R.; Hladík, J.; Kubíček, P.

    2016-10-01

    The use of both 3D visualization and devices with touch displays is increasing. In this paper, we focused on the Web technologies for 3D visualization of spatial data and its interaction via touch screen gestures. At the first stage, we compared the support of touch interaction in selected JavaScript libraries on different hardware (desktop PCs with touch screens, tablets, and smartphones) and software platforms. Afterward, we realized simple empiric test (within-subject design, 6 participants, 2 simple tasks, LCD touch monitor Acer and digital terrain models as stimuli) focusing on the ability of users to solve simple spatial tasks via touch screens. An in-house testing web tool was developed and used based on JavaScript, PHP, and X3DOM languages and Hammer.js libraries. The correctness of answers, speed of users' performances, used gestures, and a simple gesture metric was recorded and analysed. Preliminary results revealed that the pan gesture is most frequently used by test participants and it is also supported by the majority of 3D libraries. Possible gesture metrics and future developments including the interpersonal differences are discussed in the conclusion.

  17. On Integral Invariants for Effective 3-D Motion Trajectory Matching and Recognition.

    PubMed

    Shao, Zhanpeng; Li, Youfu

    2016-02-01

    Motion trajectories tracked from the motions of human, robots, and moving objects can provide an important clue for motion analysis, classification, and recognition. This paper defines some new integral invariants for a 3-D motion trajectory. Based on two typical kernel functions, we design two integral invariants, the distance and area integral invariants. The area integral invariants are estimated based on the blurred segment of noisy discrete curve to avoid the computation of high-order derivatives. Such integral invariants for a motion trajectory enjoy some desirable properties, such as computational locality, uniqueness of representation, and noise insensitivity. Moreover, our formulation allows the analysis of motion trajectories at a range of scales by varying the scale of kernel function. The features of motion trajectories can thus be perceived at multiscale levels in a coarse-to-fine manner. Finally, we define a distance function to measure the trajectory similarity to find similar trajectories. Through the experiments, we examine the robustness and effectiveness of the proposed integral invariants and find that they can capture the motion cues in trajectory matching and sign recognition satisfactorily.

  18. A 3D scanning device for architectural survey based on time-of-flight technology

    NASA Astrophysics Data System (ADS)

    Fontana, Raffaella; Gambino, Maria Chiara; Gianfrate, Gabriella; Greco, Marinella; Pampaloni, Enrico; Pezzati, Luca

    2004-09-01

    This work is intended to show the results of a few architectural and archaeological surveys realized by means of a 3D scanning device, based on TOF (Time-Of-Flight) technology. The instrument was set up by the Art Diagnostic Group of the National Institute for Applied Optics (INOA) and it is composed by a high precision scanning system equipped with a commercial low-cost distance-meter. This device was projected in order to provide the following characteristics: reliability, good accuracy and compatibility with other systems and it is devoted to applications in Cultural Heritage field.

  19. Large core plastic planar optical splitter fabricated by 3D printing technology

    NASA Astrophysics Data System (ADS)

    Prajzler, Václav; Kulha, Pavel; Knietel, Marian; Enser, Herbert

    2017-10-01

    We report on the design, fabrication and optical properties of large core multimode optical polymer splitter fabricated using fill up core polymer in substrate that was made by 3D printing technology. The splitter was designed by the beam propagation method intended for assembling large core waveguide fibers with 735 μm diameter. Waveguide core layers were made of optically clear liquid adhesive, and Veroclear polymer was used as substrate and cover layers. Measurement of optical losses proved that the insertion optical loss was lower than 6.8 dB in the visible spectrum.

  20. Comparing and integrating multiple data source for 3D surface reconstruction of Alpine Glaciers

    NASA Astrophysics Data System (ADS)

    Scaioni, Marco; Fugazza, Davide; Diolaiuti, Guglielmina Adele; Cernuschi, Massimo; Corti, Manuel

    2017-04-01

    obtained (about 102 pts/m2). The presence of vertical and sub-vertical surfaces has motivated the use of terrestrial sensors. The integration of sensors from ground and from drones has allowed to better describe some local physical processes (i.e., opening of crevasses, ice tunnelling, local collapses) that are giving an impressive contribution to the loss of ice bulk. This processes require a detail 3D modelling to be investigated, calling for the use of sensors able to reconstruct also the vertical and sub-vertical faces, thus using a ground-based standpoint. To this purpose, the adoption of SfM-Photogrammetry has yielded results comparable to the ones achieved using a long-range TLS Riegl LMS-Z420i, which can be assumed as benchmarking for accuracy assessment, but being more cumbersome and difficult to be operated in the glacier area. The measurement of GCPs for the terrestrial photogrammetric project reveal to be a complex task, involving the need of a total station. For this reason, the integration of GNSS and cameras will be developed for the future measurement sessions. The effect of block geometry on the final output has also been investigated for SfM-Photogrammetry, considering the severe limitations implied in the Alpine environment.

  1. Shear Behavior of 3D Woven Hollow Integrated Sandwich Composites: Experimental, Theoretical and Numerical Study

    NASA Astrophysics Data System (ADS)

    Zhou, Guangming; Liu, Chang; Cai, Deng'an; Li, Wenlong; Wang, Xiaopei

    2016-11-01

    An experimental, theoretical and numerical investigation on the shear behavior of 3D woven hollow integrated sandwich composites was presented in this paper. The microstructure of the composites was studied, then the shear modulus and load-deflection curves were obtained by double lap shear tests on the specimens in two principal directions of the sandwich panels, called warp and weft. The experimental results showed that the shear modulus of the warp was higher than that of the weft and the failure occurred in the roots of piles. A finite element model was established to predict the shear behavior of the composites. The simulated results agreed well with the experimental data. Simultaneously, a theoretical method was developed to predict the shear modulus. By comparing with the experimental data, the accuracy of the theoretical method was verified. The influence of structural parameters on shear modulus was also discussed. The higher yarn number, yarn density and dip angle of the piles could all improve the shear modulus of 3D woven hollow integrated sandwich composites at different levels, while the increasing height would decrease the shear modulus.

  2. Integrating 3D seismic curvature and curvature gradient attributes for fracture characterization: Methodologies and interpretational implications

    SciTech Connect

    Gao, Dengliang

    2013-03-01

    In 3D seismic interpretation, curvature is a popular attribute that depicts the geometry of seismic reflectors and has been widely used to detect faults in the subsurface; however, it provides only part of the solutions to subsurface structure analysis. This study extends the curvature algorithm to a new curvature gradient algorithm, and integrates both algorithms for fracture detection using a 3D seismic test data set over Teapot Dome (Wyoming). In fractured reservoirs at Teapot Dome known to be formed by tectonic folding and faulting, curvature helps define the crestal portion of the reservoirs that is associated with strong seismic amplitude and high oil productivity. In contrast, curvature gradient helps better define the regional northwest-trending and the cross-regional northeast-trending lineaments that are associated with weak seismic amplitude and low oil productivity. In concert with previous reports from image logs, cores, and outcrops, the current study based on an integrated seismic curvature and curvature gradient analysis suggests that curvature might help define areas of enhanced potential to form tensile fractures, whereas curvature gradient might help define zones of enhanced potential to develop shear fractures. In certain fractured reservoirs such as at Teapot Dome where faulting and fault-related folding contribute dominantly to the formation and evolution of fractures, curvature and curvature gradient attributes can be potentially applied to differentiate fracture mode, to predict fracture intensity and orientation, to detect fracture volume and connectivity, and to model fracture networks.

  3. Integrated Modeling of Time Evolving 3D Kinetic MHD Equilibria and NTV Torque

    NASA Astrophysics Data System (ADS)

    Logan, N. C.; Park, J.-K.; Grierson, B. A.; Haskey, S. R.; Nazikian, R.; Cui, L.; Smith, S. P.; Meneghini, O.

    2016-10-01

    New analysis tools and integrated modeling of plasma dynamics developed in the OMFIT framework are used to study kinetic MHD equilibria evolution on the transport time scale. The experimentally observed profile dynamics following the application of 3D error fields are described using a new OMFITprofiles workflow that directly addresses the need for rapid and comprehensive analysis of dynamic equilibria for next-step theory validation. The workflow treats all diagnostic data as fundamentally time dependent, provides physics-based manipulations such as ELM phase data selection, and is consistent across multiple machines - including DIII-D and NSTX-U. The seamless integration of tokamak data and simulation is demonstrated by using the self-consistent kinetic EFIT equilibria and profiles as input into 2D particle, momentum and energy transport calculations using TRANSP as well as 3D kinetic MHD equilibrium stability and neoclassical transport modeling using General Perturbed Equilibrium Code (GPEC). The result is a smooth kinetic stability and NTV torque evolution over transport time scales. Work supported by DE-AC02-09CH11466.

  4. Electrode Degradation Study of Vertically Aligned Carbon Nanotubes on a 3D Integrated Current Collector

    SciTech Connect

    Schroeder, Marshall A.; Pearse, Alexander J.; Kozen, Alexander C.; Lee, Sang Bok; Rubloff, Gary W.; Noked, Malachi

    2015-01-01

    Assembling nanostructured materials into rationally designed mesoscale arrays for use as electrodes in electrochemical systems is anticipated to reveal new challenges, particularly concerning new synthesis modes, architecture-related performance limitations, and degradation mechanisms. In this work, we focus on characterizing the degradation of densely packed vertically aligned carbon nanotubes (VACNTs) grown directly on a metallic foam to form a self-supporting, hierarchically porous 3D electrode architecture with an integrated current collector. The degradation pathways of this electrode, observed with microscopy and semi in-situ XPS after cycling as a redox scaffold in aprotic Li—O2 and Li—S batteries, shed new light on important design, performance, and degradation considerations for integrated mesoscale electrode architectures.

  5. CISUS: an integrated 3D ultrasound system for IGT using a modular tracking API

    NASA Astrophysics Data System (ADS)

    Boctor, Emad M.; Viswanathan, Anand; Pieper, Steve; Choti, Michael A.; Taylor, Russell H.; Kikinis, Ron; Fichtinger, Gabor

    2004-05-01

    Ultrasound has become popular in clinical/surgical applications, both as the primary image guidance modality and also in conjunction with other modalities like CT or MRI. Three dimensional ultrasound (3DUS) systems have also demonstrated usefulness in image-guided therapy (IGT). At the same time, however, current lack of open-source and open-architecture multi-modal medical visualization systems prevents 3DUS from fulfilling its potential. Several stand-alone 3DUS systems, like Stradx or In-Vivo exist today. Although these systems have been found to be useful in real clinical setting, it is difficult to augment their functionality and integrate them in versatile IGT systems. To address these limitations, a robotic/freehand 3DUS open environment (CISUS) is being integrated into the 3D Slicer, an open-source research tool developed for medical image analysis and surgical planning. In addition, the system capitalizes on generic application programming interfaces (APIs) for tracking devices and robotic control. The resulting platform-independent open-source system may serve as a valuable tool to the image guided surgery community. Other researchers could straightforwardly integrate the generic CISUS system along with other functionalities (i.e. dual view visualization, registration, real-time tracking, segmentation, etc) to rapidly create their medical/surgical applications. Our current driving clinical application is robotically assisted and freehand 3DUS-guided liver ablation, which is fully being integrated under the CISUS-3D Slicer. Initial functionality and pre-clinical feasibility are demonstrated on phantom and ex-vivo animal models.

  6. Comparative analysis of video processing and 3D rendering for cloud video games using different virtualization technologies

    NASA Astrophysics Data System (ADS)

    Bada, Adedayo; Alcaraz-Calero, Jose M.; Wang, Qi; Grecos, Christos

    2014-05-01

    This paper describes a comprehensive empirical performance evaluation of 3D video processing employing the physical/virtual architecture implemented in a cloud environment. Different virtualization technologies, virtual video cards and various 3D benchmarks tools have been utilized in order to analyse the optimal performance in the context of 3D online gaming applications. This study highlights 3D video rendering performance under each type of hypervisors, and other factors including network I/O, disk I/O and memory usage. Comparisons of these factors under well-known virtual display technologies such as VNC, Spice and Virtual 3D adaptors reveal the strengths and weaknesses of the various hypervisors with respect to 3D video rendering and streaming.

  7. Avionics systems integration technology

    NASA Technical Reports Server (NTRS)

    Stech, George; Williams, James R.

    1988-01-01

    A very dramatic and continuing explosion in digital electronics technology has been taking place in the last decade. The prudent and timely application of this technology will provide Army aviation the capability to prevail against a numerically superior enemy threat. The Army and NASA have exploited this technology explosion in the development and application of avionics systems integration technology for new and future aviation systems. A few selected Army avionics integration technology base efforts are discussed. Also discussed is the Avionics Integration Research Laboratory (AIRLAB) that NASA has established at Langley for research into the integration and validation of avionics systems, and evaluation of advanced technology in a total systems context.

  8. Helicopter flight test of 3D imaging flash LIDAR technology for safe, autonomous, and precise planetary landing

    NASA Astrophysics Data System (ADS)

    Roback, Vincent; Bulyshev, Alexander; Amzajerdian, Farzin; Reisse, Robert

    2013-05-01

    Two flash lidars, integrated from a number of cutting-edge components from industry and NASA, are lab characterized and flight tested for determination of maximum operational range under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project (in its fourth development and field test cycle) which is seeking to develop a guidance, navigation, and control (GNC) and sensing system based on lidar technology capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The flash lidars incorporate pioneering 3-D imaging cameras based on Indium-Gallium-Arsenide Avalanche Photo Diode (InGaAs APD) and novel micro-electronic technology for a 128 x 128 pixel array operating at 30 Hz, high pulse-energy 1.06 μm Nd:YAG lasers, and high performance transmitter and receiver fixed and zoom optics. The two flash lidars are characterized on the NASA-Langley Research Center (LaRC) Sensor Test Range, integrated with other portions of the ALHAT GNC system from partner organizations into an instrument pod at NASA-JPL, integrated onto an Erickson Aircrane Helicopter at NASA-Dryden, and flight tested at the Edwards AFB Rogers dry lakebed over a field of humanmade geometric hazards during the summer of 2010. Results show that the maximum operational range goal of 1 km is met and exceeded up to a value of 1.2 km. In addition, calibrated 3-D images of several hazards are acquired in realtime for later reconstruction into Digital Elevation Maps (DEM's).

  9. Helicopter Flight Test of 3-D Imaging Flash LIDAR Technology for Safe, Autonomous, and Precise Planetary Landing

    NASA Technical Reports Server (NTRS)

    Roback, Vincent; Bulyshev, Alexander; Amzajerdian, Farzin; Reisse, Robert

    2013-01-01

    Two flash lidars, integrated from a number of cutting-edge components from industry and NASA, are lab characterized and flight tested for determination of maximum operational range under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project (in its fourth development and field test cycle) which is seeking to develop a guidance, navigation, and control (GN&C) and sensing system based on lidar technology capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The flash lidars incorporate pioneering 3-D imaging cameras based on Indium-Gallium-Arsenide Avalanche Photo Diode (InGaAs APD) and novel micro-electronic technology for a 128 x 128 pixel array operating at 30 Hz, high pulse-energy 1.06 micrometer Nd:YAG lasers, and high performance transmitter and receiver fixed and zoom optics. The two flash lidars are characterized on the NASA-Langley Research Center (LaRC) Sensor Test Range, integrated with other portions of the ALHAT GN&C system from partner organizations into an instrument pod at NASA-JPL, integrated onto an Erickson Aircrane Helicopter at NASA-Dryden, and flight tested at the Edwards AFB Rogers dry lakebed over a field of human-made geometric hazards during the summer of 2010. Results show that the maximum operational range goal of 1 km is met and exceeded up to a value of 1.2 km. In addition, calibrated 3-D images of several hazards are acquired in real-time for later reconstruction into Digital Elevation Maps (DEM's).

  10. 77 FR 4982 - Solicitation of Input From Stakeholders Regarding the Smith-Lever 3(d) Extension Integrated Pest...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-01

    ...-Lever 3(d) Extension Integrated Pest Management Competitive Grants Program AGENCY: National Institute of...(d) of the Smith-Lever Act (7 U.S.C. 343(d)) to provide the ] opportunity for 1862 and 1890 Land... agency, CSREES, on October 6, 2008 and March 26, 2009 about the restructuring of the Smith-Lever 3(d) IPM...

  11. A wellness platform for stereoscopic 3D video systems using EEG-based visual discomfort evaluation technology.

    PubMed

    Kang, Min-Koo; Cho, Hohyun; Park, Han-Mu; Jun, Sung Chan; Yoon, Kuk-Jin

    2017-07-01

    Recent advances in three-dimensional (3D) video technology have extended the range of our experience while providing various 3D applications to our everyday life. Nevertheless, the so-called visual discomfort (VD) problem inevitably degrades the quality of experience in stereoscopic 3D (S3D) displays. Meanwhile, electroencephalography (EEG) has been regarded as one of the most promising brain imaging modalities in the field of cognitive neuroscience. In an effort to facilitate comfort with S3D displays, we propose a new wellness platform using EEG. We first reveal features in EEG signals that are applicable to practical S3D video systems as an index for VD perception. We then develop a framework that can automatically determine severe perception of VD based on the EEG features during S3D video viewing by capitalizing on machine-learning-based braincomputer interface technology. The proposed platform can cooperate with advanced S3D video systems whose stereo baseline is adjustable. Thus, the optimal S3D content can be reconstructed according to a viewer's sensation of VD. Applications of the proposed platform to various S3D industries are suggested, and further technical challenges are discussed for follow-up research.

  12. Low cost 3D-printing used in an undergraduate project: an integrating sphere for measurement of photoluminescence quantum yield

    NASA Astrophysics Data System (ADS)

    Tomes, John J.; Finlayson, Chris E.

    2016-09-01

    We report upon the exploitation of the latest 3D printing technologies to provide low-cost instrumentation solutions, for use in an undergraduate level final-year project. The project addresses prescient research issues in optoelectronics, which would otherwise be inaccessible to such undergraduate student projects. The experimental use of an integrating sphere in conjunction with a desktop spectrometer presents opportunities to use easily handled, low cost materials as a means to illustrate many areas of physics such as spectroscopy, lasers, optics, simple circuits, black body radiation and data gathering. Presented here is a 3rd year undergraduate physics project which developed a low cost (£25) method to manufacture an experimentally accurate integrating sphere by 3D printing. Details are given of both a homemade internal reflectance coating formulated from readily available materials, and a robust instrument calibration method using a tungsten bulb. The instrument is demonstrated to give accurate and reproducible experimental measurements of luminescence quantum yield of various semiconducting fluorophores, in excellent agreement with literature values.

  13. High-temperature compatible 3D-integration processes for a vacuum-sealed CNT-based NEMS

    NASA Astrophysics Data System (ADS)

    Gueye, R.; Lee, S. W.; Akiyama, T.; Briand, D.; Roman, C.; Hierold, C.; de Rooij, N. F.

    2013-03-01

    A System-in-Package (SiP) concept for the 3D-integration of a Single Wall Carbon Nanotube (SWCNT) resonator with its CMOS driving electronics is presented. The key element of this advanced SiP is the monolithic 3D-integration of the MEMS with the CMOS electronics using Through Silicon Vias (TSVs) on an SOI wafer. This SiP includes: A glass cap vacuum-sealed to the main wafer using an eutectic bonding process: a low leak rate of 2.7 10-9 mbar•l/s was obtained; Platinum-TSVs, compatible with the SWCNT growth and release process; The TSVs were developed in a "via first" process and characterized at high-temperature — up to 850 °C. An ohmic contact between the Pt-metallization and the SOI silicon device layer was obtained; The driving CMOS electronic device is assembled to the MEMS using an Au stud bump technology. Keywords: System-in-Package (SiP), vacuum packaging, eutectic bonding, "via-first" TSVs, high-temperature platinum interconnects, ohmic contacts, Au-stud bumps assembly, CMOS electronics.

  14. 3D Printing Technology in Planning Thumb Reconstructions with Second Toe Transplant.

    PubMed

    Zang, Cheng-Wu; Zhang, Jian-Lei; Meng, Ze-Zu; Liu, Lin-Feng; Zhang, Wen-Zhi; Chen, Yong-Xiang; Cong, Rui

    2017-05-01

    To report preoperative planning using 3D printing to plan thumb reconstructions with second toe transplant. Between December 2013 and October 2015, the thumbs of five patients with grade 3 thumb defects were reconstructed using a wrap-around flap and second toe transplant aided by 3D printing technology. CT scans of hands and feet were analyzed using Boholo surgical simulator software (www.boholo.com). This allowed for the creation of a mirror image of the healthy thumb using the uninjured thumb. Using 3D images of the reconstructed thumb, a model of the big toe and the second toe was created to understand the dimensions of the donor site. This model was also used to repair the donor site defect by designing appropriate iliac bone and superficial circumflex iliac artery flaps. The polylactic acid model of the donor toes and reconstructed thumb was produced using 3D printing. Surgically, the wrap-around flap of the first dorsal metatarsal artery and vein combined with the joint and bone of the second toe was based upon the model donor site. Sensation was reconstructed by anastomosing the dorsal nerve of the foot and the plantar digital nerve of the great toe. Patients commenced exercises 2 weeks after surgery. All reconstructed thumbs survived, although partial flap necrosis occurred in one case. This was managed with regular dressing changes. Patients were followed up for 3-15 months. The lengths of the reconstructed thumbs are 34-49 mm. The widths of the thumb nail beds are 16-19 mm, and the thickness of the digital pulp is 16-20 mm. The thumb opposition function was 0-1.5 cm; the extension angle was 5°-20° (mean, 16°), and the angle of flexion was 38°-55° (mean, 47°). Two-point discrimination was 9-11 mm (mean, 9.6 mm). The reconstructed thumbs had good appearance, function and sensation. Based on the criteria set forth by the Standard on Approval of Reconstructed Thumb and Finger Functional Assessment of the Chinese Medical Association, the results were

  15. Illustrating Surface Shape in Volume Data via Principal Direction-Driven 3D Line Integral Convolution

    NASA Technical Reports Server (NTRS)

    Interrante, Victoria

    1997-01-01

    The three-dimensional shape and relative depth of a smoothly curving layered transparent surface may be communicated particularly effectively when the surface is artistically enhanced with sparsely distributed opaque detail. This paper describes how the set of principal directions and principal curvatures specified by local geometric operators can be understood to define a natural 'flow' over the surface of an object, and can be used to guide the placement of the lines of a stroke texture that seeks to represent 3D shape information in a perceptually intuitive way. The driving application for this work is the visualization of layered isovalue surfaces in volume data, where the particular identity of an individual surface is not generally known a priori and observers will typically wish to view a variety of different level surfaces from the same distribution, superimposed over underlying opaque structures. By advecting an evenly distributed set of tiny opaque particles, and the empty space between them, via 3D line integral convolution through the vector field defined by the principal directions and principal curvatures of the level surfaces passing through each gridpoint of a 3D volume, it is possible to generate a single scan-converted solid stroke texture that may intuitively represent the essential shape information of any level surface in the volume. To generate longer strokes over more highly curved areas, where the directional information is both most stable and most relevant, and to simultaneously downplay the visual impact of directional information in the flatter regions, one may dynamically redefine the length of the filter kernel according to the magnitude of the maximum principal curvature of the level surface at the point around which it is applied.

  16. The Avignon Bridge: a 3d Reconstruction Project Integrating Archaeological, Historical and Gemorphological Issues

    NASA Astrophysics Data System (ADS)

    Berthelot, M.; Nony, N.; Gugi, L.; Bishop, A.; De Luca, L.

    2015-02-01

    The history and identity of the Avignon's bridge is inseparable from that of the Rhône river. Therefore, in order to share the history and memory of the Rhône, it is essential to get to know this bridge and especially to identify and make visible the traces of its past, its construction, its interaction with the river dynamics, which greatly influenced his life. These are the objectives of the PAVAGE project that focuses on digitally surveying, modelling and re-visiting a heritage site of primary importance with the aim of virtually restoring the link between the two sides which, after the disappearance of the Roman bridge of Arles, constituted for a long time the only connection between Lyon or Vienna and the sea. Therefore, this project has an important geo-historical dimension for which geo-morphological and paleoenvironmental studies were implemented in connection with the latest digital simulation methods exploiting geographic information systems. By integrating knowledge and reflections of archaeologists, historians, geomorphologists, environmentalists, architects, engineers and computer scientists, the result of this project (which involved 5 laboratories during 4 years) is a 3D digital model covering an extension of 50 km2 achieved by integrating satellite imagery, UAV-based acquisitions, terrestrial laser scanning and photogrammetry, etc. Beyond the actions of scientific valorisation concerning the historical and geomorphological dimensions of the project, the results of this work of this interdisciplinary investigation and interpretation of this site are today integrated within a location-based augmented reality application allowing tourists to exploring the virtual reconstruction of the bridge and its environment through tablets inside the portion of territory covered by this project (between Avignon and Villeneuve-lez-Avignon). This paper presents the main aspects of the 3D virtual reconstruction approach.

  17. 3D tract-specific local and global analysis of white matter integrity in Alzheimer's disease.

    PubMed

    Jin, Yan; Huang, Chao; Daianu, Madelaine; Zhan, Liang; Dennis, Emily L; Reid, Robert I; Jack, Clifford R; Zhu, Hongtu; Thompson, Paul M

    2017-03-01

    Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by progressive decline in memory and other aspects of cognitive function. Diffusion-weighted imaging (DWI) offers a non-invasive approach to delineate the effects of AD on white matter (WM) integrity. Previous studies calculated either some summary statistics over regions of interest (ROI analysis) or some statistics along mean skeleton lines (Tract Based Spatial Statistic [TBSS]), so they cannot quantify subtle local WM alterations along major tracts. Here, a comprehensive WM analysis framework to map disease effects on 3D tracts both locally and globally, based on a study of 200 subjects: 49 healthy elderly normal controls, 110 with mild cognitive impairment, and 41 AD patients has been presented. 18 major WM tracts were extracted with our automated clustering algorithm-autoMATE (automated Multi-Atlas Tract Extraction); we then extracted multiple DWI-derived parameters of WM integrity along the WM tracts across all subjects. A novel statistical functional analysis method-FADTTS (Functional Analysis for Diffusion Tensor Tract Statistics) was applied to quantify degenerative patterns along WM tracts across different stages of AD. Gradually increasing WM alterations were found in all tracts in successive stages of AD. Among all 18 WM tracts, the fornix was most adversely affected. Among all the parameters, mean diffusivity (MD) was the most sensitive to WM alterations in AD. This study provides a systematic workflow to examine WM integrity across automatically computed 3D tracts in AD and may be useful in studying other neurological and psychiatric disorders. Hum Brain Mapp 38:1191-1207, 2017. © 2016 Wiley Periodicals, Inc.

  18. 3D tract‐specific local and global analysis of white matter integrity in Alzheimer's disease

    PubMed Central

    Jin, Yan; Huang, Chao; Daianu, Madelaine; Zhan, Liang; Dennis, Emily L.; Reid, Robert I.; Jack, Clifford R.; Zhu, Hongtu

    2016-01-01

    Abstract Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by progressive decline in memory and other aspects of cognitive function. Diffusion‐weighted imaging (DWI) offers a non‐invasive approach to delineate the effects of AD on white matter (WM) integrity. Previous studies calculated either some summary statistics over regions of interest (ROI analysis) or some statistics along mean skeleton lines (Tract Based Spatial Statistic [TBSS]), so they cannot quantify subtle local WM alterations along major tracts. Here, a comprehensive WM analysis framework to map disease effects on 3D tracts both locally and globally, based on a study of 200 subjects: 49 healthy elderly normal controls, 110 with mild cognitive impairment, and 41 AD patients has been presented. 18 major WM tracts were extracted with our automated clustering algorithm—autoMATE (automated Multi‐Atlas Tract Extraction); we then extracted multiple DWI‐derived parameters of WM integrity along the WM tracts across all subjects. A novel statistical functional analysis method—FADTTS (Functional Analysis for Diffusion Tensor Tract Statistics) was applied to quantify degenerative patterns along WM tracts across different stages of AD. Gradually increasing WM alterations were found in all tracts in successive stages of AD. Among all 18 WM tracts, the fornix was most adversely affected. Among all the parameters, mean diffusivity (MD) was the most sensitive to WM alterations in AD. This study provides a systematic workflow to examine WM integrity across automatically computed 3D tracts in AD and may be useful in studying other neurological and psychiatric disorders. Hum Brain Mapp 38:1191–1207, 2017. © 2016 Wiley Periodicals, Inc. PMID:27883250

  19. First Steps Towards AN Integrated Citygml-Based 3d Model of Vienna

    NASA Astrophysics Data System (ADS)

    Agugiaro, G.

    2016-06-01

    This paper presents and discusses the results regarding the initial steps (selection, analysis, preparation and eventual integration of a number of datasets) for the creation of an integrated, semantic, three-dimensional, and CityGML-based virtual model of the city of Vienna. CityGML is an international standard conceived specifically as information and data model for semantic city models at urban and territorial scale. It is being adopted by more and more cities all over the world. The work described in this paper is embedded within the European Marie-Curie ITN project "Ci-nergy, Smart cities with sustainable energy systems", which aims, among the rest, at developing urban decision making and operational optimisation software tools to minimise non-renewable energy use in cities. Given the scope and scale of the project, it is therefore vital to set up a common, unique and spatio-semantically coherent urban model to be used as information hub for all applications being developed. This paper reports about the experiences done so far, it describes the test area and the available data sources, it shows and exemplifies the data integration issues, the strategies developed to solve them in order to obtain the integrated 3D city model. The first results as well as some comments about their quality and limitations are presented, together with the discussion regarding the next steps and some planned improvements.

  20. Using virtual reality technology and hand tracking technology to create software for training surgical skills in 3D game

    NASA Astrophysics Data System (ADS)

    Zakirova, A. A.; Ganiev, B. A.; Mullin, R. I.

    2015-11-01

    The lack of visible and approachable ways of training surgical skills is one of the main problems in medical education. Existing simulation training devices are not designed to teach students, and are not available due to the high cost of the equipment. Using modern technologies such as virtual reality and hands movements fixation technology we want to create innovative method of learning the technics of conducting operations in 3D game format, which can make education process interesting and effective. Creating of 3D format virtual simulator will allow to solve several conceptual problems at once: opportunity of practical skills improvement unlimited by the time without the risk for patient, high realism of environment in operational and anatomic body structures, using of game mechanics for information perception relief and memorization of methods acceleration, accessibility of this program.

  1. Human Microtumors Generated in 3D: Novel Tools for Integrated In Situ Studies of Cancer Immunotherapies.

    PubMed

    Hambach, Lothar; Buser, Andreas; Vermeij, Marcel; Pouw, Nadine; van der Kwast, Theo; Goulmy, Els

    2016-01-01

    Cellular immunotherapy targeting human tumor antigens is a promising strategy to treat solid tumors. Yet clinical results of cellular immunotherapy are disappointing. Moreover, the currently available in vitro human tumor models are not designed to study the optimization of T-cell therapies of solid tumors. Here, we describe a novel assay for multiparametric in situ analysis of therapeutic effects on individual human three-dimensional (3D) tumors. In this assay, tumors of several millimeter diameter are generated from human cancer cell lines of different tumor entities in a collagen type I microenvironment. A newly developed approach for efficient morphological analysis reveals that these in vitro tumors resemble many characteristics of the corresponding clinical cancers such as histological features, immunohistochemical staining patterns, distinct tumor growth compartments and heterogeneous protein expression. To assess the response to therapy with tumor antigen specific T-cells, standardized protocols are described to determine T-cell infiltration and tumor destruction by monitoring soluble factors and tumor growth. Human tumors engineered in 3D collagen scaffolds are excellent in vitro surrogates for avascular tumor stages allowing integrated analyses of the antitumor efficacy of cancer specific immunotherapy in situ.

  2. Thin-dielectric-layer engineering for 3D nanostructure integration using an innovative planarization approach.

    PubMed

    Guerfi, Y; Doucet, J B; Larrieu, G

    2015-10-23

    Three-dimensional (3D) nanostructures are emerging as promising building blocks for a large spectrum of applications. One critical issue in integration regards mastering the thin, flat, and chemically stable insulating layer that must be implemented on the nanostructure network in order to build striking nano-architectures. In this letter, we report an innovative method for nanoscale planarization on 3D nanostructures by using hydrogen silesquioxane as a spin-on-glass (SOG) dielectric material. To decouple the thickness of the final layer from the height of the nanostructure, we propose to embed the nanowire network in the insulator layer by exploiting the planarizing properties of the SOG approach. To achieve the desired dielectric thickness, the structure is chemically etched back with a highly diluted solution to control the etch rate precisely. The roughness of the top surface was less than 2 nm. There were no surface defects and the planarity was excellent, even in the vicinity of the nanowires. This newly developed process was used to realize a multilevel stack architecture with sub-deca-nanometer-range layer thickness.

  3. The cross-correlation between 3D cosmic shear and the integrated Sachs-Wolfe effect

    NASA Astrophysics Data System (ADS)

    Zieser, Britta; Merkel, Philipp M.

    2016-06-01

    We present the first calculation of the cross-correlation between 3D cosmic shear and the integrated Sachs-Wolfe (iSW) effect. Both signals are combined in a single formalism, which permits the computation of the full covariance matrix. In order to avoid the uncertainties presented by the non-linear evolution of the matter power spectrum and intrinsic alignments of galaxies, our analysis is restricted to large scales, i.e. multipoles below ℓ = 1000. We demonstrate in a Fisher analysis that this reduction compared to other studies of 3D weak lensing extending to smaller scales is compensated by the information that is gained if the additional iSW signal and in particular its cross-correlation with lensing data are considered. Given the observational standards of upcoming weak-lensing surveys like Euclid, marginal errors on cosmological parameters decrease by 10 per cent compared to a cosmic shear experiment if both types of information are combined without a cosmic wave background (CMB) prior. Once the constraining power of CMB data is added, the improvement becomes marginal.

  4. CATIA-V 3D Modeling for Design Integration of the Ignitor Machine Load Assembly^*

    NASA Astrophysics Data System (ADS)

    Bianchi, A.; Parodi, B.; Gardella, F.; Coppi, B.

    2007-11-01

    In the framework of the ANSALDO industrial contribution to the Ignitor engineering design, the detailed design of all components of the machine core (Load Assembly) has been completed. The machine Central Post, Central Solenoid, and Poloidal Field Coil systems, the Plasma Chamber and First Wall system, the surrounding mechanical structures, the Vacuum Cryostat and the polyethylene boron sheets attached to it for neutron shielding, have all been analyzed to confirm that they can withstand both normal and off-normal operating loads, as well as the Plasma Chamber and First Wall baking operations, with proper safety margins, for the maximum plasma parameters scenario at 13 T/11 MA, for the reduced scenarios at 9 T/7 MA (limiter) and at 9 T/6 MA (double nul). Both 3D and 2D drawings of each individual component have been produced using the Dassault Systems CATIA-V software. After they have been all integrated into a single 3D CATIA model of the Load Assembly, the electro-fluidic and fluidic lines which supply electrical currents and helium cooling gas to the coils have been added and mechanically incorporated with the components listed above. A global seismic analysis of the Load Assembly with SSE/OBE response spectra has also been performed to verify that it is able to withstand such external events. ^*Work supported in part by ENEA of italy and by the US D.O.E.

  5. Multiple-mode Lamb wave scattering simulations using 3D elastodynamic finite integration technique.

    PubMed

    Leckey, Cara A C; Rogge, Matthew D; Miller, Corey A; Hinders, Mark K

    2012-02-01

    We have implemented three-dimensional (3D) elastodynamic finite integration technique (EFIT) simulations to model Lamb wave scattering for two flaw-types in an aircraft-grade aluminum plate, a rounded rectangle flat-bottom hole and a disbond of the same shape. The plate thickness and flaws explored in this work include frequency-thickness regions where several Lamb wave modes exist and sometimes overlap in phase and/or group velocity. For the case of the flat-bottom hole the depth was incrementally increased to explore progressive changes in multiple-mode Lamb wave scattering due to the damage. The flat-bottom hole simulation results have been compared to experimental data and are shown to provide key insight for this well-defined experimental case by explaining unexpected results in experimental waveforms. For the rounded rectangle disbond flaw, which would be difficult to implement experimentally, we found that Lamb wave behavior differed significantly from the flat-bottom hole flaw. Most of the literature in this field is restricted to low frequency-thickness regions due to difficulties in interpreting data when multiple modes exist. We found that benchmarked 3D EFIT simulations can yield an understanding of scattering behavior for these higher frequency-thickness regions and in cases that would be difficult to set up experimentally. Additionally, our results show that 2D simulations would not have been sufficient for modeling the complicated scattering that occurred. Published by Elsevier B.V.

  6. Thin-dielectric-layer engineering for 3D nanostructure integration using an innovative planarization approach

    NASA Astrophysics Data System (ADS)

    Guerfi, Y.; Doucet, J. B.; Larrieu, G.

    2015-10-01

    Three-dimensional (3D) nanostructures are emerging as promising building blocks for a large spectrum of applications. One critical issue in integration regards mastering the thin, flat, and chemically stable insulating layer that must be implemented on the nanostructure network in order to build striking nano-architectures. In this letter, we report an innovative method for nanoscale planarization on 3D nanostructures by using hydrogen silesquioxane as a spin-on-glass (SOG) dielectric material. To decouple the thickness of the final layer from the height of the nanostructure, we propose to embed the nanowire network in the insulator layer by exploiting the planarizing properties of the SOG approach. To achieve the desired dielectric thickness, the structure is chemically etched back with a highly diluted solution to control the etch rate precisely. The roughness of the top surface was less than 2 nm. There were no surface defects and the planarity was excellent, even in the vicinity of the nanowires. This newly developed process was used to realize a multilevel stack architecture with sub-deca-nanometer-range layer thickness.

  7. Quick, Accurate, Smart: 3D Computer Vision Technology Helps Assessing Confined Animals’ Behaviour

    PubMed Central

    Calderara, Simone; Pistocchi, Simone; Cucchiara, Rita; Podaliri-Vulpiani, Michele; Messori, Stefano; Ferri, Nicola

    2016-01-01

    Mankind directly controls the environment and lifestyles of several domestic species for purposes ranging from production and research to conservation and companionship. These environments and lifestyles may not offer these animals the best quality of life. Behaviour is a direct reflection of how the animal is coping with its environment. Behavioural indicators are thus among the preferred parameters to assess welfare. However, behavioural recording (usually from video) can be very time consuming and the accuracy and reliability of the output rely on the experience and background of the observers. The outburst of new video technology and computer image processing gives the basis for promising solutions. In this pilot study, we present a new prototype software able to automatically infer the behaviour of dogs housed in kennels from 3D visual data and through structured machine learning frameworks. Depth information acquired through 3D features, body part detection and training are the key elements that allow the machine to recognise postures, trajectories inside the kennel and patterns of movement that can be later labelled at convenience. The main innovation of the software is its ability to automatically cluster frequently observed temporal patterns of movement without any pre-set ethogram. Conversely, when common patterns are defined through training, a deviation from normal behaviour in time or between individuals could be assessed. The software accuracy in correctly detecting the dogs’ behaviour was checked through a validation process. An automatic behaviour recognition system, independent from human subjectivity, could add scientific knowledge on animals’ quality of life in confinement as well as saving time and resources. This 3D framework was designed to be invariant to the dog’s shape and size and could be extended to farm, laboratory and zoo quadrupeds in artificial housing. The computer vision technique applied to this software is innovative in non

  8. Quick, Accurate, Smart: 3D Computer Vision Technology Helps Assessing Confined Animals' Behaviour.

    PubMed

    Barnard, Shanis; Calderara, Simone; Pistocchi, Simone; Cucchiara, Rita; Podaliri-Vulpiani, Michele; Messori, Stefano; Ferri, Nicola

    2016-01-01

    Mankind directly controls the environment and lifestyles of several domestic species for purposes ranging from production and research to conservation and companionship. These environments and lifestyles may not offer these animals the best quality of life. Behaviour is a direct reflection of how the animal is coping with its environment. Behavioural indicators are thus among the preferred parameters to assess welfare. However, behavioural recording (usually from video) can be very time consuming and the accuracy and reliability of the output rely on the experience and background of the observers. The outburst of new video technology and computer image processing gives the basis for promising solutions. In this pilot study, we present a new prototype software able to automatically infer the behaviour of dogs housed in kennels from 3D visual data and through structured machine learning frameworks. Depth information acquired through 3D features, body part detection and training are the key elements that allow the machine to recognise postures, trajectories inside the kennel and patterns of movement that can be later labelled at convenience. The main innovation of the software is its ability to automatically cluster frequently observed temporal patterns of movement without any pre-set ethogram. Conversely, when common patterns are defined through training, a deviation from normal behaviour in time or between individuals could be assessed. The software accuracy in correctly detecting the dogs' behaviour was checked through a validation process. An automatic behaviour recognition system, independent from human subjectivity, could add scientific knowledge on animals' quality of life in confinement as well as saving time and resources. This 3D framework was designed to be invariant to the dog's shape and size and could be extended to farm, laboratory and zoo quadrupeds in artificial housing. The computer vision technique applied to this software is innovative in non

  9. 3Disease Browser: A Web server for integrating 3D genome and disease-associated chromosome rearrangement data

    PubMed Central

    Li, Ruifeng; Liu, Yifang; Li, Tingting; Li, Cheng

    2016-01-01

    Chromosomal rearrangement (CR) events have been implicated in many tumor and non-tumor human diseases. CR events lead to their associated diseases by disrupting gene and protein structures. Also, they can lead to diseases through changes in chromosomal 3D structure and gene expression. In this study, we search for CR-associated diseases potentially caused by chromosomal 3D structure alteration by integrating Hi-C and ChIP-seq data. Our algorithm rediscovers experimentally verified disease-associated CRs (polydactyly diseases) that alter gene expression by disrupting chromosome 3D structure. Interestingly, we find that intellectual disability may be a candidate disease caused by 3D chromosome structure alteration. We also develop a Web server (3Disease Browser, http://3dgb.cbi.pku.edu.cn/disease/) for integrating and visualizing disease-associated CR events and chromosomal 3D structure. PMID:27734896

  10. 3D-NTT: a versatile integral field spectro-imager for the NTT

    NASA Astrophysics Data System (ADS)

    Marcelin, M.; Amram, P.; Balard, P.; Balkowski, C.; Boissin, O.; Boulesteix, J.; Carignan, C.; Daigle, O.; de Denus Baillargeon, M.-M.; Epinat, B.; Gach, J.-L.; Hernandez, O.; Rigaud, F.; Vallée, P.

    2008-07-01

    The 3D-NTT is a visible integral field spectro-imager offering two modes. A low resolution mode (R ~ 300 to 6 000) with a large field of view Tunable Filter (17'x17') and a high resolution mode (R ~ 10 000 to 40 000) with a scanning Fabry-Perot (7'x7'). It will be operated as a visitor instrument on the NTT from 2009. Two large programmes will be led: "Characterizing the interstellar medium of nearby galaxies with 2D maps of extinction and abundances" (PI M. Marcelin) and "Gas accretion and radiative feedback in the early universe" (PI J. Bland Hawthorn). Both will be mainly based on the Tunable Filter mode. This instrument is being built as a collaborative effort between LAM (Marseille), GEPI (Paris) and LAE (Montreal). The website adress of the instrument is : http://www.astro.umontreal.ca/3DNTT

  11. Tensile Properties and Failure Mechanism of 3D Woven Hollow Integrated Sandwich Composites

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Cai, Deng'an; Zhou, Guangming; Lu, Fangzhou

    2017-01-01

    Tensile properties and failure mechanism of 3D woven hollow integrated sandwich composites are investigated experimentally, theoretically and numerically in this paper. Firstly, the tensile properties are obtained by quasi-static tensile tests on the specimens in two principal directions of the sandwich panels, called warp and weft. The experimental results shows that the tensile performances of the warp are better than that of the weft. By observing the broken specimens, it is found that the touch parts between yarns are the main failure regions under tension. Then, a theoretical method is developed to predict the tensile properties. By comparing with the experimental data, the accuracy of the theoretical method is verified. Simultaneously, a finite element model is established to predict the tensile behavior of the composites. The numerical results agree well with the experimental data. Moreover, the simulated progressive damages show that the contact regions in the warp and weft tension are both the initial failure areas.

  12. Anisotropic heat transport in integrable and chaotic 3-D magnetic fields

    SciTech Connect

    Del-Castillo-Negrete, Diego B; Blazevski, D.; Chacon, Luis

    2012-01-01

    A study of anisotropic heat transport in 3-D chaotic magnetic fields is presented. The approach is based on the recently proposed Lagrangian-Green s function (LG) method in Ref. [1] that allows an efficient and accurate integration of the parallel transport equation applicable to general magnetic fields with local or non-local parallel flux closures. We focus on reversed shear magnetic field configurations known to exhibit separatrix reconnection and shearless transport barriers. The role of reconnection and magnetic field line chaos on temperature transport is studied. Numerical results are presented on the anomalous relaxation of radial temperature gradients in the presence of shearless Cantori partial barri- ers. Also, numerical evidence of non-local effective radial temperature transport in chaotic fields is presented. Going beyond purely parallel transport, the LG method is generalized to include finite perpendicular diffusivity, and the problem of temperature flattening inside a magnetic island is studied.

  13. Integration of the virtual 3D model of a control system with the virtual controller

    NASA Astrophysics Data System (ADS)

    Herbuś, K.; Ociepka, P.

    2015-11-01

    Nowadays the design process includes simulation analysis of different components of a constructed object. It involves the need for integration of different virtual object to simulate the whole investigated technical system. The paper presents the issues related to the integration of a virtual 3D model of a chosen control system of with a virtual controller. The goal of integration is to verify the operation of an adopted object of in accordance with the established control program. The object of the simulation work is the drive system of a tunneling machine for trenchless work. In the first stage of work was created an interactive visualization of functioning of the 3D virtual model of a tunneling machine. For this purpose, the software of the VR (Virtual Reality) class was applied. In the elaborated interactive application were created adequate procedures allowing controlling the drive system of a translatory motion, a rotary motion and the drive system of a manipulator. Additionally was created the procedure of turning on and off the output crushing head, mounted on the last element of the manipulator. In the elaborated interactive application have been established procedures for receiving input data from external software, on the basis of the dynamic data exchange (DDE), which allow controlling actuators of particular control systems of the considered machine. In the next stage of work, the program on a virtual driver, in the ladder diagram (LD) language, was created. The control program was developed on the basis of the adopted work cycle of the tunneling machine. The element integrating the virtual model of the tunneling machine for trenchless work with the virtual controller is the application written in a high level language (Visual Basic). In the developed application was created procedures responsible for collecting data from the running, in a simulation mode, virtual controller and transferring them to the interactive application, in which is verified the

  14. 3D integration of microcomponents in a single glass chip by femtosecond laser direct writing for biochemical analysis

    NASA Astrophysics Data System (ADS)

    Sugioka, Koji; Hanada, Yasutaka; Midorikawa, Katsumi

    2007-05-01

    3D integration of microcomponents in a single glass chip by femtosecond laser direct writing followed by post annealing and successive wet etching is described for application to biochemical analysis. Integration of microfluidics and microoptics realized some functional microdevices like a μ-fluidic dye laser and a biosensor. As one of practical applications, we demonstrate inspection of living microorganisms using the microchip with 3D microfluidic structures fabricated by the present technique.

  15. Integrated gravity and gravity gradient 3D inversion using the non-linear conjugate gradient

    NASA Astrophysics Data System (ADS)

    Qin, Pengbo; Huang, Danian; Yuan, Yuan; Geng, Meixia; Liu, Jie

    2016-03-01

    Gravity data, which are critical in mineral, oil, and gas exploration, are obtained from the vertical component of the gravity field, while gravity gradient data are measured from changes in the gravity field in three directions. However, few studies have sought to improve exploration techniques by integrating gravity and gravity gradient data using inversion methods. In this study, we developed a new method to integrate gravity and gravity gradient data in a 3D density inversion using the non-linear conjugate gradient (NLCG) method and the minimum gradient support (MGS) functional to regularize the 3D inverse problem and to obtain a clear and accurate image of the anomalous body. The NLCG algorithm, which is suitable for solving large-scale nonlinear optimization problems and requires no memory storage, was compared to the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm and the results indicated that the convergence rate of NLCG is slower, but that the storage requirement and computation time is lower. To counteract the decay in kernel function, we introduced a depth weighting function for anomalous bodies at the same depth, with information about anomalous body depth obtained from well log and seismic exploration data. For anomalous bodies at different depths, we introduced a spatial gradient weighting function to incorporate additional information obtained in the inversion. We concluded that the spatial gradient weighting function enhanced the spatial resolution of the recovered model. Furthermore, our results showed that including multiple components for inversion increased the resolution of the recovered model. We validated our model by applying our inversion method to survey data from Vinton salt dome, Louisiana, USA. The results showed good agreement with known geologic information; thus confirming the accuracy of this approach.

  16. Real-time computer-generated integral imaging and 3D image calibration for augmented reality surgical navigation.

    PubMed

    Wang, Junchen; Suenaga, Hideyuki; Liao, Hongen; Hoshi, Kazuto; Yang, Liangjing; Kobayashi, Etsuko; Sakuma, Ichiro

    2015-03-01

    Autostereoscopic 3D image overlay for augmented reality (AR) based surgical navigation has been studied and reported many times. For the purpose of surgical overlay, the 3D image is expected to have the same geometric shape as the original organ, and can be transformed to a specified location for image overlay. However, how to generate a 3D image with high geometric fidelity and quantitative evaluation of 3D image's geometric accuracy have not been addressed. This paper proposes a graphics processing unit (GPU) based computer-generated integral imaging pipeline for real-time autostereoscopic 3D display, and an automatic closed-loop 3D image calibration paradigm for displaying undistorted 3D images. Based on the proposed methods, a novel AR device for 3D image surgical overlay is presented, which mainly consists of a 3D display, an AR window, a stereo camera for 3D measurement, and a workstation for information processing. The evaluation on the 3D image rendering performance with 2560×1600 elemental image resolution shows the rendering speeds of 50-60 frames per second (fps) for surface models, and 5-8 fps for large medical volumes. The evaluation of the undistorted 3D image after the calibration yields sub-millimeter geometric accuracy. A phantom experiment simulating oral and maxillofacial surgery was also performed to evaluate the proposed AR overlay device in terms of the image registration accuracy, 3D image overlay accuracy, and the visual effects of the overlay. The experimental results show satisfactory image registration and image overlay accuracy, and confirm the system usability.

  17. Utilization of 3D imaging flash lidar technology for autonomous safe landing on planetary bodies

    NASA Astrophysics Data System (ADS)

    Amzajerdian, Farzin; Vanek, Michael; Petway, Larry; Pierrottet, Diego; Busch, George; Bulyshev, Alexander

    2010-01-01

    NASA considers Flash Lidar a critical technology for enabling autonomous safe landing of future large robotic and crewed vehicles on the surface of the Moon and Mars. Flash Lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes during the final stages of descent and landing. The onboard flight comptuer can use the 3-D map of terain to guide the vehicle to a safe site. The capabilities of Flash Lidar technology were evaluated through a series of static tests using a calibrated target and through dynamic tests aboard a helicopter and a fixed wing airctarft. The aircraft flight tests were perfomed over Moonlike terrain in the California and Nevada deserts. This paper briefly describes the Flash Lidar static and aircraft flight test results. These test results are analyzed against the landing application requirements to identify the areas of technology improvement. The ongoing technology advancement activities are then explained and their goals are described.

  18. Utilization of 3-D Imaging Flash Lidar Technology for Autonomous Safe Landing on Planetary Bodies

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Vanek, Michael; Petway, Larry; Pierrotter, Diego; Busch, George; Bulyshev, Alexander

    2010-01-01

    NASA considers Flash Lidar a critical technology for enabling autonomous safe landing of future large robotic and crewed vehicles on the surface of the Moon and Mars. Flash Lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes during the final stages of descent and landing. The onboard flight computer can use the 3-D map of terrain to guide the vehicle to a safe site. The capabilities of Flash Lidar technology were evaluated through a series of static tests using a calibrated target and through dynamic tests aboard a helicopter and a fixed wing aircraft. The aircraft flight tests were performed over Moon-like terrain in the California and Nevada deserts. This paper briefly describes the Flash Lidar static and aircraft flight test results. These test results are analyzed against the landing application requirements to identify the areas of technology improvement. The ongoing technology advancement activities are then explained and their goals are described.

  19. Laser 3D imaging technology based on digital micromirror device and the performance analysis

    NASA Astrophysics Data System (ADS)

    Han, Xiaochun; Deng, Zheng-fang; Xue, Ya-lan; Wang, Yuan-qing; Cao, Li-qun; Han, Lei; Zhou, Bi-ye; Li, Ming-gao

    2014-11-01

    Current research on scannerless three dimensional imaging LiDAR mainly focus on the phase scannerless imaging LiDAR, the multiple-slit streak tube imaging lidar and the flash LiDAR. But there are the disadvantages, such as short detection range, the complicated structure of vacuum unit and lacking the grayscale images corresponding to the three kinds of LiDAR listed above. In this paper we develop a novel 3D imaging LiDAR that works in the way of pushbroom. It converts the time of flight (TOF) into the space with digital mirror device (DMD). When pulse arrives at the DMD, the micromirrors are shifting from a status to another. Because the TOFs of pulses hit on different targets are different, there will be the streak on the focal plane array (FPA) of the sensor, which shows the relative position. The relative position of the streak can be used to reconstruct the range profile of the target. Compared with other three dimensional imaging method, this new method has the advantages of high rate imaging, large field of view, simple structure and small size. First, this article introduces the theory of digital micromirror laser 3D imaging LiDAR, and then it analyses the technical indicator of the core component. At last, it gives the process of computing the detection range, theoretically demonstrating the feasibility of this technology.

  20. Microfluidic EBG Sensor Based on Phase-Shift Method Realized Using 3D Printing Technology.

    PubMed

    Radonić, Vasa; Birgermajer, Slobodan; Kitić, Goran

    2017-04-18

    In this article, we propose a novel microfluidic microstrip electromagnetic band gap (EBG) sensor realized using cost-effective 3D printing technology. Microstrip sensor allows monitoring of the fluid properties flowing in the microchannel embedded between the microstrip line and ground plane. The sensor's operating principle is based on the phase-shift method, which allows the characterization at a single operating frequency of 6 GHz. The defected electromagnetic band gap (EBG) structure is realized as a pattern in the microstrip ground plane to improve sensor sensitivity. The designed microfluidic channel is fabricated using a fused deposition modelling (FDM) 3D printing process without additional supporting layers, while the conductive layers are realized using sticky aluminium tape. The measurement results show that the change of permittivity of the fluid in the microfluidic channel from 1 to 80 results in the phase-shift difference of almost 90°. The potential application is demonstrated through the implementation of a proposed sensor for the detection of toluene concentration in toluene-methanol mixture where various concentrations of toluene were analysed.

  1. Microfluidic EBG Sensor Based on Phase-Shift Method Realized Using 3D Printing Technology

    PubMed Central

    Radonić, Vasa; Birgermajer, Slobodan; Kitić, Goran

    2017-01-01

    In this article, we propose a novel microfluidic microstrip electromagnetic band gap (EBG) sensor realized using cost-effective 3D printing technology. Microstrip sensor allows monitoring of the fluid properties flowing in the microchannel embedded between the microstrip line and ground plane. The sensor’s operating principle is based on the phase-shift method, which allows the characterization at a single operating frequency of 6 GHz. The defected electromagnetic band gap (EBG) structure is realized as a pattern in the microstrip ground plane to improve sensor sensitivity. The designed microfluidic channel is fabricated using a fused deposition modelling (FDM) 3D printing process without additional supporting layers, while the conductive layers are realized using sticky aluminium tape. The measurement results show that the change of permittivity of the fluid in the microfluidic channel from 1 to 80 results in the phase-shift difference of almost 90°. The potential application is demonstrated through the implementation of a proposed sensor for the detection of toluene concentration in toluene–methanol mixture where various concentrations of toluene were analysed. PMID:28420217

  2. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity.

    PubMed

    Kang, Hyun-Wook; Lee, Sang Jin; Ko, In Kap; Kengla, Carlos; Yoo, James J; Atala, Anthony

    2016-03-01

    A challenge for tissue engineering is producing three-dimensional (3D), vascularized cellular constructs of clinically relevant size, shape and structural integrity. We present an integrated tissue-organ printer (ITOP) that can fabricate stable, human-scale tissue constructs of any shape. Mechanical stability is achieved by printing cell-laden hydrogels together with biodegradable polymers in integrated patterns and anchored on sacrificial hydrogels. The correct shape of the tissue construct is achieved by representing clinical imaging data as a computer model of the anatomical defect and translating the model into a program that controls the motions of the printer nozzles, which dispense cells to discrete locations. The incorporation of microchannels into the tissue constructs facilitates diffusion of nutrients to printed cells, thereby overcoming the diffusion limit of 100-200 μm for cell survival in engineered tissues. We demonstrate capabilities of the ITOP by fabricating mandible and calvarial bone, cartilage and skeletal muscle. Future development of the ITOP is being directed to the production of tissues for human applications and to the building of more complex tissues and solid organs.

  3. [3D-TECHNOLOGIES AS A CORE ELEMENT OF PLANNING AND IMPLEMENTATION OF VIRTUAL AND ACTUAL RENAL SURGERY].

    PubMed

    Glybochko, P V; Aljaev, Ju G; Bezrukov, E A; Sirota, E S; Proskura, A V

    2015-01-01

    The purpose of this article is to demonstrate the role of modern computer technologies in performing virtual and actual renal tumor surgery. Currently 3D modeling makes it possible to clearly define strategy and tactics of an individual patient treatment.

  4. Assessing the Applicability of 3D Holographic Technology as an Enhanced Technology for Distance Learning

    ERIC Educational Resources Information Center

    Kalansooriya, Pradeep; Marasinghe, Ashu; Bandara, K. M. D. N.

    2015-01-01

    Distance learning has provided an excellent platform for students in geographically remote locations while enabling them to learn at their own pace and convenience. A number of technologies are currently being utilized to conceptualize, design, enhance and foster distance learning. Teleconferences, electronic field trips, podcasts, webinars, video…

  5. Multimodal, 3D pathology-mimicking bladder phantom for evaluation of cystoscopic technologies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Smith, Gennifer T.; Lurie, Kristen L.; Zlatev, Dimitar V.; Liao, Joseph C.; Ellerbee, Audrey K.

    2016-02-01

    Optical coherence tomography (OCT) and blue light cystoscopy (BLC) have shown significant potential as complementary technologies to traditional white light cystoscopy (WLC) for early bladder cancer detection. Three-dimensional (3D) organ-mimicking phantoms provide realistic imaging environments for testing new technology designs, the diagnostic potential of systems, and novel image processing algorithms prior to validation in real tissue. Importantly, the phantom should mimic features of healthy and diseased tissue as they appear under WLC, BLC, and OCT, which are sensitive to tissue color and structure, fluorescent contrast, and optical scattering of subsurface layers, respectively. We present a phantom posing the hollow shape of the bladder and fabricated using a combination of 3D-printing and spray-coating with Dragon Skin (DS) (Smooth-On Inc.), a highly elastic polymer to mimic the layered structure of the bladder. Optical scattering of DS was tuned by addition of titanium dioxide, resulting in scattering coefficients sufficient to cover the human bladder range (0.49 to 2.0 mm^-1). Mucosal vasculature and tissue coloration were mimicked with elastic cord and red dye, respectively. Urethral access was provided through a small hole excised from the base of the phantom. Inserted features of bladder pathology included altered tissue color (WLC), fluorescence emission (BLC), and variations in layered structure (OCT). The phantom surface and underlying material were assessed on the basis of elasticity, optical scattering, layer thicknesses, and qualitative image appearance. WLC, BLC, and OCT images of normal and cancerous features in the phantom qualitatively matched corresponding images from human bladders.

  6. 3D Printing in Zero G Technology Demonstration Mission: Summary of On-Orbit Operations, Material Testing, and Future Work

    NASA Technical Reports Server (NTRS)

    Prater, Tracie; Bean, Quincy; Werkheiser, Niki; Ordonez, Erick; Ledbetter, Frank; Ryan, Richard; Newton, Steve

    2016-01-01

    Human space exploration to date has been limited to low Earth orbit and the moon. The International Space Station (ISS), an orbiting laboratory 200 miles above the earth, provides a unique and incredible opportunity for researchers to prove out the technologies that will enable humans to safely live and work in space for longer periods of time and venture farther into the solar system. The ability to manufacture parts in-space rather than launch them from earth represents a fundamental shift in the current risk and logistics paradigm for human spaceflight. In particularly, additive manufacturing (or 3D printing) techniques can potentially be deployed in the space environment to enhance crew safety (by providing an on-demand part replacement capability) and decrease launch mass by reducing the number of spare components that must be launched for missions where cargo resupply is not a near-term option. In September 2014, NASA launched the 3D Printing in Zero G technology demonstration mission to the ISS to explore the potential of additive manufacturing for in-space applications and demonstrate the capability to manufacture parts and tools on-orbit. The printer for this mission was designed and operated by the company Made In Space under a NASA SBIR (Small Business Innovation Research) phase III contract. The overarching objectives of the 3D print mission were to use ISS as a testbed to further maturation of enhancing technologies needed for long duration human exploration missions, introduce new materials and methods to fabricate structure in space, enable cost-effective manufacturing for structures and mechanisms made in low-unit production, and enable physical components to be manufactured in space on long duration missions if necessary. The 3D print unit for fused deposition modeling (FDM) of acrylonitrile butadiene styrene (ABS) was integrated into the ISS Microgravity Science Glovebox (MSG) in November 2014 and phase I printing operations took place from

  7. An integrated statistical model for enhanced murine cardiomyocyte differentiation via optimized engagement of 3D extracellular matrices

    PubMed Central

    Jung, Jangwook P.; Hu, Dongjian; Domian, Ibrahim J.; Ogle, Brenda M.

    2015-01-01

    The extracellular matrix (ECM) impacts stem cell differentiation, but identifying formulations supportive of differentiation is challenging in 3D models. Prior efforts involving combinatorial ECM arrays seemed intuitively advantageous. We propose an alternative that suggests reducing sample size and technological burden can be beneficial and accessible when coupled to design of experiments approaches. We predict optimized ECM formulations could augment differentiation of cardiomyocytes derived in vitro. We employed native chemical ligation to polymerize 3D poly (ethylene glycol) hydrogels under mild conditions while entrapping various combinations of ECM and murine induced pluripotent stem cells. Systematic optimization for cardiomyocyte differentiation yielded a predicted solution of 61%, 24%, and 15% of collagen type I, laminin-111, and fibronectin, respectively. This solution was confirmed by increased numbers of cardiac troponin T, α-myosin heavy chain and α-sarcomeric actinin-expressing cells relative to suboptimum solutions. Cardiomyocytes of composites exhibited connexin43 expression, appropriate contractile kinetics and intracellular calcium handling. Further, adding a modulator of adhesion, thrombospondin-1, abrogated cardiomyocyte differentiation. Thus, the integrated biomaterial platform statistically identified an ECM formulation best supportive of cardiomyocyte differentiation. In future, this formulation could be coupled with biochemical stimulation to improve functional maturation of cardiomyocytes derived in vitro or transplanted in vivo. PMID:26687770

  8. Towards a high performance vertex detector based on 3D integration of deep N-well MAPS

    NASA Astrophysics Data System (ADS)

    Re, V.

    2010-06-01

    The development of deep N-Well (DNW) CMOS active pixel sensors was driven by the ambitious goal of designing a monolithic device with similar functionalities as in hybrid pixel readout chips, such as pixel-level sparsification and time stamping. The implementation of the DNW MAPS concept in a 3D vertical integration process naturally leads the designer towards putting more intelligence in the chip and in the pixels themselves, achieving novel device structures based on the interconnection of two or more layers fabricated in the same technology. These devices are read out with a data-push scheme that makes it possible to use pixel data for the generation of a flexible level 1 track trigger, based on associative memories, with short latency and high efficiency. This paper gives an update of the present status of DNW MAPS design in both 2D and 3D versions, and presents a discussion of the architectures that are being devised for the Layer 0 of the SuperB Silicon Vertex Tracker.

  9. Integrating Dynamic Data and Sensors with Semantic 3D City Models in the Context of Smart Cities

    NASA Astrophysics Data System (ADS)

    Chaturvedi, K.; Kolbe, T. H.

    2016-10-01

    Smart cities provide effective integration of human, physical and digital systems operating in the built environment. The advancements in city and landscape models, sensor web technologies, and simulation methods play a significant role in city analyses and improving quality of life of citizens and governance of cities. Semantic 3D city models can provide substantial benefits and can become a central information backbone for smart city infrastructures. However, current generation semantic 3D city models are static in nature and do not support dynamic properties and sensor observations. In this paper, we propose a new concept called Dynamizer allowing to represent highly dynamic data and providing a method for injecting dynamic variations of city object properties into the static representation. The approach also provides direct capability to model complex patterns based on statistics and general rules and also, real-time sensor observations. The concept is implemented as an Application Domain Extension for the CityGML standard. However, it could also be applied to other GML-based application schemas including the European INSPIRE data themes and national standards for topography and cadasters like the British Ordnance Survey Mastermap or the German cadaster standard ALKIS.

  10. Amplitude-modulated laser range-finder for 3D imaging with multi-sensor data integration capabilities

    NASA Astrophysics Data System (ADS)

    Bartolini, L.; Ferri de Collibus, M.; Fornetti, G.; Guarneri, M.; Paglia, E.; Poggi, C.; Ricci, R.

    2005-06-01

    A high performance Amplitude Modulated Laser Rangefinder (AM-LR) is presented, aimed at accurately reconstructing 3D digital models of real targets, either single objects or complex scenes. The scanning system enables to sweep the sounding beam either linearly across the object or circularly around it, by placing the object on a controlled rotating platform. Both phase shift and amplitude of the modulating wave of back-scattered light are collected and processed, resulting respectively in an accurate range image and a shade-free, high resolution, photographic-like intensity image. The best performances obtained in terms of range resolution are ~100 μm. Resolution itself can be made to depend mainly on the laser modulation frequency, provided that the power of the backscattered light reaching the detector is at least a few nW. 3D models are reconstructed from sampled points by using specifically developed software tools, optimized so as to take advantage of the system peculiarities. Special procedures have also been implemented to perform precise matching of data acquired independently with different sensors (LIF laser sensors, thermographic cameras, etc.) onto the 3D models generated using the AM-LR. The system has been used to scan different types of real surfaces (stone, wood, alloys, bones) and ca be applied in various fields, ranging from industrial machining to medical diagnostics, vision in hostile environments cultural heritage conservation and restoration. The relevance of this technology in cultural heritage applications is discussed in special detail, by providing results obtained in different campaigns with an emphasis on the system's multi-sensor data integration capabilities.

  11. 3D Printed Microfluidic Devices with Integrated Versatile and Reusable Electrodes

    PubMed Central

    Erkal, Jayda L.; Selimovic, Asmira; Gross, Bethany C.; Lockwood, Sarah Y.; Walton, Eric L.; McNamara, Stephen; Martin, R. Scott; Spence, Dana M.

    2014-01-01

    We report two 3D printed devices that can be used for electrochemical detection. In both cases, the electrode is housed in commercially available, polymer-based fittings so that the various electrode materials (platinum, platinum black, carbon, gold, silver) can be easily added to a threaded receiving port printed on the device; this enables a module-like approach to the experimental design, where the electrodes are removable and can be easily repolished for reuse after exposure to biological samples. The first printed device represents a microfluidic platform with a 500 × 500 μm channel and a threaded receiving port to allow integration of either polyetheretherketone (PEEK) nut-encased glassy carbon or platinum black (Pt-black) electrodes for dopamine and nitric oxide (NO) detection, respectively. The embedded 1 mm glassy carbon electrode had a limit of detection (LOD) of 500 nM for dopamine and a linear response (R2= 0.99) for concentrations between 25-500 μM. When the glassy carbon electrode was coated with 0.05% Nafion, significant exclusion of nitrite was observed when compared to signal obtained from equimolar injections of dopamine. When using flow injection analysis with a Pt/Pt-black electrode and standards derived from NO gas, a linear correlation (R2 = 0.99) over a wide range of concentrations (7.6 - 190 μM) was obtained, with the LOD for NO being 1 μM. The second application showcases a 3D printed fluidic device that allows collection of the biologically relevant analyte adenosine triphosphate (ATP) while simultaneously measuring the release stimulus (reduced oxygen concentration). The hypoxic sample (4.76 ± 0.53 ppm oxygen) released 2.37 ± 0.37 times more ATP than the normoxic sample (8.22 ± 0.60 ppm oxygen). Importantly, the results reported here verify the reproducible and transferable nature of using 3D printing as a fabrication technique, as devices and electrodes were moved between labs multiple times during completion of the study. PMID

  12. Make or Buy: Cost Impacts of Additive Manufacturing, 3D Laser Scanning Technology, and Collaborative Product Lifecycle Management on Ship Maintenance and Modernization

    DTIC Science & Technology

    2015-05-01

    1 Make or Buy: Cost Impacts of Additive Manufacturing , 3D Laser Scanning Technology, and Collaborative Product Lifecycle Management on Ship...DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Make or Buy: Cost Impacts of Additive Manufacturing , 3D Laser Scanning Technology...management during operations 4 Potential Technology 3: Additive Manufacturing (“3D Printing”) 5 • 3D design/image (e.g. from 3D LS) of final part

  13. Superresolution of 3-D computational integral imaging based on moving least square method.

    PubMed

    Kim, Hyein; Lee, Sukho; Ryu, Taekyung; Yoon, Jungho

    2014-11-17

    In this paper, we propose an edge directive moving least square (ED-MLS) based superresolution method for computational integral imaging reconstruction(CIIR). Due to the low resolution of the elemental images and the alignment error of the microlenses, it is not easy to obtain an accurate registration result in integral imaging, which makes it difficult to apply superresolution to the CIIR application. To overcome this problem, we propose the edge directive moving least square (ED-MLS) based superresolution method which utilizes the properties of the moving least square. The proposed ED-MLS based superresolution takes the direction of the edge into account in the moving least square reconstruction to deal with the abrupt brightness changes in the edge regions, and is less sensitive to the registration error. Furthermore, we propose a framework which shows how the data have to be collected for the superresolution problem in the CIIR application. Experimental results verify that the resolution of the elemental images is enhanced, and that a high resolution reconstructed 3-D image can be obtained with the proposed method.

  14. Fully integrated system-on-chip for pixel-based 3D depth and scene mapping

    NASA Astrophysics Data System (ADS)

    Popp, Martin; De Coi, Beat; Thalmann, Markus; Gancarz, Radoslav; Ferrat, Pascal; Dürmüller, Martin; Britt, Florian; Annese, Marco; Ledergerber, Markus; Catregn, Gion-Pol

    2012-03-01

    We present for the first time a fully integrated system-on-chip (SoC) for pixel-based 3D range detection suited for commercial applications. It is based on the time-of-flight (ToF) principle, i.e. measuring the phase difference of a reflected pulse train. The product epc600 is fabricated using a dedicated process flow, called Espros Photonic CMOS. This integration makes it possible to achieve a Quantum Efficiency (QE) of >80% in the full wavelength band from 520nm up to 900nm as well as very high timing precision in the sub-ns range which is needed for exact detection of the phase delay. The SoC features 8x8 pixels and includes all necessary sub-components such as ToF pixel array, voltage generation and regulation, non-volatile memory for configuration, LED driver for active illumination, digital SPI interface for easy communication, column based 12bit ADC converters, PLL and digital data processing with temporary data storage. The system can be operated at up to 100 frames per second.

  15. Role of 3D photo-resist simulation for advanced technology nodes

    NASA Astrophysics Data System (ADS)

    Narayana Samy, Aravind; Seltmann, Rolf; Kahlenberg, Frank; Schramm, Jessy; Küchler, Bernd; Klostermann, Ulrich

    2013-04-01

    3D Resist Models are gaining significant interest for advanced technology node development. Correct prediction of resist profiles, resist top-loss and top-rounding are acquiring higher importance in ORC hotspot verification due to impact on etch resistance and post etch results. We would like to highlight the specific calibration procedure to calibrate a rigorous 3D model. Special focus is on the importance of high quality metrology data for both a successful calibration and for allowing a reduction of the number of data points used for calibration [1]. In a productive application the calibration could be performed using a subset of 20 features measured through dose and focus and model validation was done with 500 features through dose and focus. This data reduction minimized the actual calibration effort of the 3D resist model and enabled calibration run times of less than one hour. The successful validation with the complete data set showed that the data reduction did not cause over- fitting of the model. The model is applied and verified at hotspots showing defects such as bottom bridging or top loss that would not be visible in a 2D resist model. The model performance is also evaluated with a conventional CD error metric where CD at Bottom of simulation and measurement are compared. We could achieve excellent results for both metrics using SEM CD, SEM images, AFM measurements and wafer cross sections. Additional modeling criterion is resist model portability. A prerequisite is the separability of resist model and optical model, i.e. the resist model shall characterize the resist only and should not lump characteristics from the optical model. This is a requirement to port the resist model to different optical setups such as another illumination source without the need of re-calibration. Resist model portability is shown by validation and application of the model to a second process with significantly different optical settings. The resist model can predict hot

  16. NFkB disrupts tissue polarity in 3D by preventing integration of microenvironmental signals

    PubMed Central

    Xiong, Gaofeng; Furuta, Saori; Han, Ju; Kuhn, Irene; Akavia, Uri-David; Pe'er, Dana; Bissell, Mina J

    2013-01-01

    The microenvironment of cells controls their phenotype, and thereby the architecture of the emerging multicellular structure or tissue. We have reported more than a dozen microenvironmental factors whose signaling must be integrated in order to effect an organized, functional tissue morphology. However, the factors that prevent integration of signaling pathways that merge form and function are still largely unknown. We have identified nuclear factor kappa B (NFkB) as a transcriptional regulator that disrupts important microenvironmental cues necessary for tissue organization. We compared the gene expression of organized and disorganized epithelial cells of the HMT-3522 breast cancer progression series: the non-malignant S1 cells that form polarized spheres (‘acini’), the malignant T4-2 cells that form large tumor-like clusters, and the ‘phenotypically reverted’ T4-2 cells that polarize as a result of correction of the microenvironmental signaling. We identified 180 genes that display an increased expression in disorganized compared to polarized structures. Network, GSEA and transcription factor binding site analyses suggested that NFkB is a common activator for the 180 genes. NFkB was found to be activated in disorganized breast cancer cells, and inhibition of microenvironmental signaling via EGFR, beta1 integrin, MMPs, or their downstream signals suppressed its activation. The postulated role of NFkB was experimentally verified: Blocking the NFkB pathway with a specific chemical inhibitor or shRNA induced polarization and inhibited invasion of breast cancer cells in 3D cultures. These results may explain why NFkB holds promise as a target for therapeutic intervention: Its inhibition can reverse the oncogenic signaling involved in breast cancer progression and integrate the essential microenvironmental control of tissue architecture. PMID:24243820

  17. NFkB disrupts tissue polarity in 3D by preventing integration of microenvironmental signals.

    PubMed

    Becker-Weimann, Sabine; Xiong, Gaofeng; Furuta, Saori; Han, Ju; Kuhn, Irene; Akavia, Uri-David; Pe'er, Dana; Bissell, Mina J; Xu, Ren

    2013-11-01

    The microenvironment of cells controls their phenotype, and thereby the architecture of the emerging multicellular structure or tissue. We have reported more than a dozen microenvironmental factors whose signaling must be integrated in order to effect an organized, functional tissue morphology. However, the factors that prevent integration of signaling pathways that merge form and function are still largely unknown. We have identified nuclear factor kappa B (NFkB) as a transcriptional regulator that disrupts important microenvironmental cues necessary for tissue organization. We compared the gene expression of organized and disorganized epithelial cells of the HMT-3522 breast cancer progression series: the non-malignant S1 cells that form polarized spheres ('acini'), the malignant T4-2 cells that form large tumor-like clusters, and the 'phenotypically reverted' T4-2 cells that polarize as a result of correction of the microenvironmental signaling. We identified 180 genes that display an increased expression in disorganized compared to polarized structures. Network, GSEA and transcription factor binding site analyses suggested that NFkB is a common activator for the 180 genes. NFkB was found to be activated in disorganized breast cancer cells, and inhibition of microenvironmental signaling via EGFR, beta1 integrin, MMPs, or their downstream signals suppressed its activation. The postulated role of NFkB was experimentally verified: Blocking the NFkB pathway with a specific chemical inhibitor or shRNA induced polarization and inhibited invasion of breast cancer cells in 3D cultures. These results may explain why NFkB holds promise as a target for therapeutic intervention: Its inhibition can reverse the oncogenic signaling involved in breast cancer progression and integrate the essential microenvironmental control of tissue architecture.

  18. 3D printing technology as innovative tool for math and geometry teaching applications

    NASA Astrophysics Data System (ADS)

    Huleihil, M.

    2017-01-01

    The industrial revolution and automation of production processes have changed the face of the world. Three dimensional (3D) printing has the potential to revolutionize manufacturing and further change methods of production toward allowing in increasing number of people to produce products at home. According to a recent OECD (see Backer [1]) publication, “…tapping into the next industrial revolution requires actions on many levels and in many different areas. In particular, unlocking the potential of emerging and enabling technologies requires policy development along a number of fronts, from commercialization to regulation and the supply of skills through education.” In this paper we discuss the role of schools and their responsibility to act as quickly as possible to design a plan of action that will prepare the future citizens to deal with this new reality. This requires planning of action in different directions and on different planes, such as labs, teachers, and curricula. 3D printing requires higher levels of thinking, innovation and creativity. It has the power to develop human imagination and give students the opportunity to visualize numbers, two- dimensional shapes, and three-dimensional objects. The combination of thinking, design, and production has immense power to increase motivation and satisfaction, with a highly probable increase in a student’s math and geometry achievements. The CAD system includes a measure tool which enables and alternative way for calculating properties of the objects under consideration and allows development of reflection and critical thinking. The research method was based on comparison between a reference group and a test group; it was found that intervention significantly improved the reflection abilities of 6th grade students in mathematics.

  19. Integrating 3D geological information with a national physically-based hydrological modelling system

    NASA Astrophysics Data System (ADS)

    Lewis, Elizabeth; Parkin, Geoff; Kessler, Holger; Whiteman, Mark

    2016-04-01

    Robust numerical models are an essential tool for informing flood and water management and policy around the world. Physically-based hydrological models have traditionally not been used for such applications due to prohibitively large data, time and computational resource requirements. Given recent advances in computing power and data availability, a robust, physically-based hydrological modelling system for Great Britain using the SHETRAN model and national datasets has been created. Such a model has several advantages over less complex systems. Firstly, compared with conceptual models, a national physically-based model is more readily applicable to ungauged catchments, in which hydrological predictions are also required. Secondly, the results of a physically-based system may be more robust under changing conditions such as climate and land cover, as physical processes and relationships are explicitly accounted for. Finally, a fully integrated surface and subsurface model such as SHETRAN offers a wider range of applications compared with simpler schemes, such as assessments of groundwater resources, sediment and nutrient transport and flooding from multiple sources. As such, SHETRAN provides a robust means of simulating numerous terrestrial system processes which will add physical realism when coupled to the JULES land surface model. 306 catchments spanning Great Britain have been modelled using this system. The standard configuration of this system performs satisfactorily (NSE > 0.5) for 72% of catchments and well (NSE > 0.7) for 48%. Many of the remaining 28% of catchments that performed relatively poorly (NSE < 0.5) are located in the chalk in the south east of England. As such, the British Geological Survey 3D geology model for Great Britain (GB3D) has been incorporated, for the first time in any hydrological model, to pave the way for improvements to be made to simulations of catchments with important groundwater regimes. This coupling has involved

  20. Performance of almost edgeless silicon detectors in CTS and 3D-planar technologies

    NASA Astrophysics Data System (ADS)

    Alagoz, E.; Anelli, G.; Antchev, G.; Avati, V.; Bassetti, V.; Berardi, V.; Boccone, V.; Bozzo, M.; Brücken, E.; Buzzo, A.; Catanesi, M. G.; Cuneo, S.; Da Vià, C.; Deile, M.; Dinapoli, R.; Eggert, K.; Eremin, V.; Ferro, F.; Hasi, J.; Haug, F.; Heino, J.; Jarron, P.; Kalliopuska, J.; Kašpar, J.; Kenney, C.; Kok, A.; Kundrát, V.; Kurvinen, K.; Lauhakangas, R.; Lippmaa, E.; Lokajíček, M.; Luntama, T.; Macina, D.; Macrí, M.; Minutoli, S.; Mirabito, L.; Niewiadomski, H.; Noschis, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Österberg, K.; Parker, S.; Perrot, A.-L.; Radermacher, E.; Radicioni, E.; Ruggiero, G.; Saarikko, H.; Santroni, A.; Sette, G.; Siegrist, P.; Smotlacha, J.; Snoeys, W.; Taylor, C.; Watts, S.; Whitmore, J.

    2013-06-01

    The physics programme of the TOTEM experiment requires the detection of very forward protons scattered by only a few microradians out of the LHC beams. For this purpose, stacks of planar Silicon detectors have been mounted in moveable near-beam telescopes (Roman Pots) located along the beamline on both sides of the interaction point. In order to maximise the proton acceptance close to the beams, the dead space at the detector edge had to be minimised. During the detector prototyping phase, different sensor technologies and designs have been explored. A reduction of the dead space to less than 50 μm has been accomplished with two novel silicon detector technologies: one with the Current Terminating Structure (CTS) design and one based on the 3D edge manufacturing. This paper describes performance studies on prototypes of these detectors, carried out in 2004 in a fixed-target muon beam at CERN's SPS accelerator. In particular, the efficiency and accuracy in the vicinity of the beam-facing edges are discussed.

  1. Simulation study of a novel 3D SPAD pixel in an advanced FD-SOI technology

    NASA Astrophysics Data System (ADS)

    Vignetti, M. M.; Calmon, F.; Lesieur, P.; Savoy-Navarro, A.

    2017-02-01

    In this paper, a novel SPAD architecture implemented in a Fully-Depleted Silicon-On-Insulator (SOI) CMOS technology is presented. Thanks to its intrinsic vertical 3D structure, the proposed solution is expected to allow further scaling of the pixel size while ensuring high fill factors. Moreover the pixel and the detector electronics can benefit of the well-known advantages brought by SOI technology with respect to bulk CMOS, such as higher speed and lower power consumption. TCAD simulations based on realistic process parameters and dedicated post-processing analysis are carried out in order to optimize and validate the avalanche diode architecture for an optimal electric field distribution in the device but also to extract the main parameters of the SPAD, such as the breakdown voltage, the avalanche triggering probability, the dark count rate and the photon detection probability. A comparison between the efficiency in back-side and front-side approaches is carried out with a particular focus on time-of-flight applications.

  2. Balanced PIN-TIA photoreceiver with integrated 3 dB fiber coupler for distributed fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Datta, Shubhashish; Rajagopalan, Sruti; Lemke, Shaun; Joshi, Abhay

    2014-06-01

    We report a balanced PIN-TIA photoreceiver integrated with a 3 dB fiber coupler for distributed fiber optic sensors. This detector demonstrates -3 dB bandwidth >15 GHz and coupled conversion gain >65 V/W per photodiode through either input port of the 3 dB coupler, and can be operated at local oscillator power of +17 dBm. The combined common mode rejection of the balanced photoreceiver and the integrated 3 dB coupler is >20 dB. We also present measurement results with various optical stimuli, namely impulses, sinusoids, and pseudo-random sequences, which are relevant for time domain reflectometry, frequency domain reflectometry, and code correlation sensors, respectively.

  3. Bright 3D display, native and integrated on-chip or system-level

    NASA Astrophysics Data System (ADS)

    Ellwood, Sutherland C., Jr.

    2011-06-01

    Photonica, Inc. has pioneered the use of magneto-optics and hybrid technologies in visual display systems to create arrays addressing hi-speed, solid-state modulators up to 1K times faster that DMD/DLP, yielding high frame-rate and extremely high net native resolution allowing for full-duplication of right eye and left eye modulators at 1080p, DCI 2K, 4K and other specified resolution requirements. The technology enables high-transmission (brightness) per frame. In one version, each integrated image-engine assembly processes binocular frames simultaneously, employing simultaneous right eye/left eye channels, either polarization-based or "Infitec" color-band based channels, as well as pixel-vector based systems. In another version, a multi-chip, massively parallel signal-processing architecture integrates pixel-signal channels to yield simultaneous binocular frames. This may be combined with on-chip integration. Channels are integrated either through optics elements on-chip or through fiber network or both.

  4. Vegetation Influence on Regional Climate Change: A 3D Integrated Atmospheric-Surface-Subsurface Analysis

    NASA Astrophysics Data System (ADS)

    Davison, J. H.; Hwang, H.; Sudicky, E. A.; Lin, J. C.

    2013-12-01

    Human induced land-use change has been shown to be one of the major contributing factors to anthropogenic regional climate change. The transition from densely vegetated forests with deep root zones to shallow rooted agricultural ecosystems drastically limits the natural buffering capacity of deep groundwater during severe drought conditions. In order to quantify the magnitude of climate change from altered ecosystems, we employed the 3D model HydroGeoSphere, an integrated variably-saturated subsurface/surface flow and heat transport model, coupled with a simplified zero-dimensional atmospheric boundary layer model to simulate an extended seasonal drought period. It is found that during drought conditions, trees with deep root zones are capable of maintaining higher evapotranspiration rates, higher latent heat fluxes, and a damped atmospheric temperature response. In contrast, grasses with shallow root zones have minimal evapotranspiration rates, lower latent heat fluxes, and a rapid and sharp atmospheric temperature response. On the whole, converting a naturally wooded ecosystem to a farmland or pasture effectively decreases the available water in the subsurface for transpiration subsequently amplifying the atmospheric response to severe weather.

  5. Liquid immersion thermal crosslinking of 3D polymer nanopatterns for direct carbonisation with high structural integrity

    PubMed Central

    Kang, Da-Young; Kim, Cheolho; Park, Gyurim; Moon, Jun Hyuk

    2015-01-01

    The direct pyrolytic carbonisation of polymer patterns has attracted interest for its use in obtaining carbon materials. In the case of carbonisation of nanopatterned polymers, the polymer flow and subsequent pattern change may occur in order to relieve their high surface energies. Here, we demonstrated that liquid immersion thermal crosslinking of polymer nanopatterns effectively enhanced the thermal resistance and maintained the structure integrity during the heat treatment. We employed the liquid immersion thermal crosslinking for 3D porous SU8 photoresist nanopatterns and successfully converted them to carbon nanopatterns while maintaining their porous features. The thermal crosslinking reaction and carbonisation of SU8 nanopatterns were characterised. The micro-crystallinity of the SU8-derived carbon nanopatterns was also characterised. The liquid immersion heat treatment can be extended to the carbonisation of various polymer or photoresist nanopatterns and also provide a facile way to control the surface energy of polymer nanopatterns for various purposes, for example, to block copolymer or surfactant self-assemblies. PMID:26677949

  6. The RCSB protein data bank: integrative view of protein, gene and 3D structural information.

    PubMed

    Rose, Peter W; Prlić, Andreas; Altunkaya, Ali; Bi, Chunxiao; Bradley, Anthony R; Christie, Cole H; Costanzo, Luigi Di; Duarte, Jose M; Dutta, Shuchismita; Feng, Zukang; Green, Rachel Kramer; Goodsell, David S; Hudson, Brian; Kalro, Tara; Lowe, Robert; Peisach, Ezra; Randle, Christopher; Rose, Alexander S; Shao, Chenghua; Tao, Yi-Ping; Valasatava, Yana; Voigt, Maria; Westbrook, John D; Woo, Jesse; Yang, Huangwang; Young, Jasmine Y; Zardecki, Christine; Berman, Helen M; Burley, Stephen K

    2017-01-04

    The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB, http://rcsb.org), the US data center for the global PDB archive, makes PDB data freely available to all users, from structural biologists to computational biologists and beyond. New tools and resources have been added to the RCSB PDB web portal in support of a 'Structural View of Biology.' Recent developments have improved the User experience, including the high-speed NGL Viewer that provides 3D molecular visualization in any web browser, improved support for data file download and enhanced organization of website pages for query, reporting and individual structure exploration. Structure validation information is now visible for all archival entries. PDB data have been integrated with external biological resources, including chromosomal position within the human genome; protein modifications; and metabolic pathways. PDB-101 educational materials have been reorganized into a searchable website and expanded to include new features such as the Geis Digital Archive. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. The RCSB protein data bank: integrative view of protein, gene and 3D structural information

    PubMed Central

    Rose, Peter W.; Prlić, Andreas; Altunkaya, Ali; Bi, Chunxiao; Bradley, Anthony R.; Christie, Cole H.; Costanzo, Luigi Di; Duarte, Jose M.; Dutta, Shuchismita; Feng, Zukang; Green, Rachel Kramer; Goodsell, David S.; Hudson, Brian; Kalro, Tara; Lowe, Robert; Peisach, Ezra; Randle, Christopher; Rose, Alexander S.; Shao, Chenghua; Tao, Yi-Ping; Valasatava, Yana; Voigt, Maria; Westbrook, John D.; Woo, Jesse; Yang, Huangwang; Young, Jasmine Y.; Zardecki, Christine; Berman, Helen M.; Burley, Stephen K.

    2017-01-01

    The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB, http://rcsb.org), the US data center for the global PDB archive, makes PDB data freely available to all users, from structural biologists to computational biologists and beyond. New tools and resources have been added to the RCSB PDB web portal in support of a ‘Structural View of Biology.’ Recent developments have improved the User experience, including the high-speed NGL Viewer that provides 3D molecular visualization in any web browser, improved support for data file download and enhanced organization of website pages for query, reporting and individual structure exploration. Structure validation information is now visible for all archival entries. PDB data have been integrated with external biological resources, including chromosomal position within the human genome; protein modifications; and metabolic pathways. PDB-101 educational materials have been reorganized into a searchable website and expanded to include new features such as the Geis Digital Archive. PMID:27794042

  8. Liquid immersion thermal crosslinking of 3D polymer nanopatterns for direct carbonisation with high structural integrity.

    PubMed

    Kang, Da-Young; Kim, Cheolho; Park, Gyurim; Moon, Jun Hyuk

    2015-12-18

    The direct pyrolytic carbonisation of polymer patterns has attracted interest for its use in obtaining carbon materials. In the case of carbonisation of nanopatterned polymers, the polymer flow and subsequent pattern change may occur in order to relieve their high surface energies. Here, we demonstrated that liquid immersion thermal crosslinking of polymer nanopatterns effectively enhanced the thermal resistance and maintained the structure integrity during the heat treatment. We employed the liquid immersion thermal crosslinking for 3D porous SU8 photoresist nanopatterns and successfully converted them to carbon nanopatterns while maintaining their porous features. The thermal crosslinking reaction and carbonisation of SU8 nanopatterns were characterised. The micro-crystallinity of the SU8-derived carbon nanopatterns was also characterised. The liquid immersion heat treatment can be extended to the carbonisation of various polymer or photoresist nanopatterns and also provide a facile way to control the surface energy of polymer nanopatterns for various purposes, for example, to block copolymer or surfactant self-assemblies.

  9. Liquid immersion thermal crosslinking of 3D polymer nanopatterns for direct carbonisation with high structural integrity

    NASA Astrophysics Data System (ADS)

    Kang, Da-Young; Kim, Cheolho; Park, Gyurim; Moon, Jun Hyuk

    2015-12-01

    The direct pyrolytic carbonisation of polymer patterns has attracted interest for its use in obtaining carbon materials. In the case of carbonisation of nanopatterned polymers, the polymer flow and subsequent pattern change may occur in order to relieve their high surface energies. Here, we demonstrated that liquid immersion thermal crosslinking of polymer nanopatterns effectively enhanced the thermal resistance and maintained the structure integrity during the heat treatment. We employed the liquid immersion thermal crosslinking for 3D porous SU8 photoresist nanopatterns and successfully converted them to carbon nanopatterns while maintaining their porous features. The thermal crosslinking reaction and carbonisation of SU8 nanopatterns were characterised. The micro-crystallinity of the SU8-derived carbon nanopatterns was also characterised. The liquid immersion heat treatment can be extended to the carbonisation of various polymer or photoresist nanopatterns and also provide a facile way to control the surface energy of polymer nanopatterns for various purposes, for example, to block copolymer or surfactant self-assemblies.

  10. Swarm Intelligence Integrated Graph-Cut for Liver Segmentation from 3D-CT Volumes

    PubMed Central

    Eapen, Maya; Korah, Reeba; Geetha, G.

    2015-01-01

    The segmentation of organs in CT volumes is a prerequisite for diagnosis and treatment planning. In this paper, we focus on liver segmentation from contrast-enhanced abdominal CT volumes, a challenging task due to intensity overlapping, blurred edges, large variability in liver shape, and complex background with cluttered features. The algorithm integrates multidiscriminative cues (i.e., prior domain information, intensity model, and regional characteristics of liver in a graph-cut image segmentation framework). The paper proposes a swarm intelligence inspired edge-adaptive weight function for regulating the energy minimization of the traditional graph-cut model. The model is validated both qualitatively (by clinicians and radiologists) and quantitatively on publically available computed tomography (CT) datasets (MICCAI 2007 liver segmentation challenge, 3D-IRCAD). Quantitative evaluation of segmentation results is performed using liver volume calculations and a mean score of 80.8% and 82.5% on MICCAI and IRCAD dataset, respectively, is obtained. The experimental result illustrates the efficiency and effectiveness of the proposed method. PMID:26689833

  11. 3D integration of photonic crystal devices: vertical coupling with a silicon waveguide.

    PubMed

    Ferrier, L; Romeo, P Rojo; Letartre, X; Drouard, E; Viktorovitch, P

    2010-07-19

    Two integrated devices based on the vertical coupling between a photonic crystal microcavity and a silicon (Si) ridge waveguide are presented in this paper. When the resonator is coupled to a single waveguide, light can be spectrally extracted from the waveguide to free space through the far field emission of the resonator. When the resonator is vertically coupled to two waveguides, a vertical add-drop filter can be realized. The dropping efficiency of these devices relies on a careful design of the resonator. In this paper, we use a Fabry-Perot (FP) microcavity composed of two photonic crystal (PhC) slab mirrors. Thanks to the unique dispersion properties of slow Bloch modes (SBM) at the flat extreme of the dispersion curve, it is possible to design a FP cavity exhibiting two quasi-degenerate modes. This specific configuration allows for a coupling efficiency that can theoretically achieve 100%. Using 3D FDTD calculations, we discuss the design of such devices and show that high dropping efficiency can be achieved between the Si waveguides and the PhC microcavity.

  12. Integrated calibration of a 3D attitude sensor in large-scale metrology

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Lin, Jiarui; Yang, Linghui; Muelaner, Jody; Keogh, Patrick; Zhu, Jigui

    2017-07-01

    A novel calibration method is presented for a multi-sensor fusion system in large-scale metrology, which improves the calibration efficiency and reliability. The attitude sensor is composed of a pinhole prism, a converging lens, an area-array camera and a biaxial inclinometer. A mathematical model is established to determine its 3D attitude relative to a cooperative total station by using two vector observations from the imaging system and the inclinometer. There are two areas of unknown parameters in the measurement model that should be calibrated: the intrinsic parameters of the imaging model, and the transformation matrix between the camera and the inclinometer. An integrated calibration method using a three-axis rotary table and a total station is proposed. A single mounting position of the attitude sensor on the rotary table is sufficient to solve for all parameters of the measurement model. A correction technique for the reference laser beam of the total station is also presented to remove the need for accurate positioning of the sensor on the rotary table. Experimental verification has proved the practicality and accuracy of this calibration method. Results show that the mean deviations of attitude angles using the proposed method are less than 0.01°.

  13. Acoustic backing in 3-D integration of CMUT with front-end electronics.

    PubMed

    Berg, Sigrid; Rønnekleiv, Arne

    2012-07-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have shown promising qualities for medical imaging. However, there are still some problems to be investigated, and some challenges to overcome. Acoustic backing is necessary to prevent SAWs excited in the surface of the silicon substrate from affecting the transmit pattern from the array. In addition, echoes resulting from bulk waves in the substrate must be removed. There is growing interest in integrating electronic circuits to do some of the beamforming directly below the transducer array. This may be easier to achieve for CMUTs than for traditional piezoelectric transducers. We will present simulations showing that the thickness of the silicon substrate and thicknesses and acoustic properties of the bonding material must be considered, especially when designing highfrequency transducers. Through simulations, we compare the acoustic properties of 3-D stacks bonded with three different bonding techniques; solid-liquid interdiffusion (SLID) bonding, direct fusion bonding, and anisotropic conductive adhesives (ACA). We look at a CMUT array with a center frequency of 30 MHz and three silicon wafers underneath, having a total silicon thickness of 100 μm. We find that fusion bonding is most beneficial if we want to prevent surface waves from damaging the array response, but SLID and ACA are also promising if bonding layer thicknesses can be reduced.

  14. Mercury Lightcraft Project Update: 3-D Modeling, Systems Analysis and Integration

    NASA Astrophysics Data System (ADS)

    Buckton, Thomas W.; Myrabo, Leik N.

    2005-04-01

    This paper is a progress report on the laser-propelled Mercury Lightcraft Project at Rensselaer Polytechnic Institute. The laser-propelled, 1-person craft has a diameter of 252-cm, height of 217-cm, internal volume of 3 m3, `dry' mass of 700 kg, and gross liftoff mass of 1 metric ton. Expendable liquids including 70 kg of liquid hydrogen, and an equivalent mass (at least) of de-ionized water serves as open-cycle coolants for the 520 MWe laser/electric power conversion system. Its hyper-energetic airbreathing engine can easily accelerate the vehicle at 10 Gs or more. The tractor-beam lightcraft is intended as a prototype for use in a future global aerospace transportation system based on a constellation of satellite solar power stations in geostationary orbit, with laser relay stations in low Earth orbit. Using SolidWorks® 3-D modeling software, several important features were successfully integrated into the Mercury lightcraft model - principally: a rotating shroud (for spin stabilization) simple actuation system for a new variable-geometry air inlet; refined optical train for the laser-heated H2 plasma generators; pneumatically deployed, robotic quadra-pod landing gear; ejection seat/pod/hatch system; and a more detailed airframe structural concept. The CAD effort has brought the Mercury Lightcraft concept one significant step closer to reality.

  15. A polymer-based Fabry-Perot filter integrated with 3-D MEMS structures

    NASA Astrophysics Data System (ADS)

    Zhang, Ping (Cerina); Le, Kevin; Malalur-Nagaraja-Rao, Smitha; Hsu, Lun-Chen; Chiao, J.-C.

    2006-01-01

    Polymers have been considered as one of the most versatile materials in making optical devices for communication and sensor applications. They provide good optical transparency to form filters, lenses and many optical components with ease of fabrication. They are scalable and compatible in dimensions with requirements in optics and can be fabricated on inorganic substrates, such as silicon and quartz. Recent polymer synthesis also made great progresses on conductive and nonlinear polymers, opening opportunities for new applications. In this paper, we discussed hybrid-material integration of polymers on silicon-based microelectromechanical system (MEMS) devices. The motivation is to combine the advantages of demonstrated silicon-based MEMS actuators and excellent optical performance of polymers. We demonstrated the idea with a polymer-based out-of-plane Fabry-Perot filter that can be self-assembled by scratch drive actuators. We utilized a fabrication foundry service, MUMPS (Multi-User MEMS Process), to demonstrate the feasibility and flexibility of integration. The polysilicon, used as the structural material for construction of 3-D framework and actuators, has high absorption in the visible and near infrared ranges. Therefore, previous efforts using a polysilicon layer as optical interfaces suffer from high losses. We applied the organic compound materials on the silicon-based framework within the optical signal propagation path to form the optical interfaces. In this paper, we have shown low losses in the optical signal processing and feasibility of building a thin-film Fabry-Perot filter. We discussed the optical filter designs, mechanical design, actuation mechanism, fabrication issues, optical measurements, and results.

  16. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery.

    PubMed

    Xing, Jin-Feng; Zheng, Mei-Ling; Duan, Xuan-Ming

    2015-08-07

    3D printing technology has attracted much attention due to its high potential in scientific and industrial applications. As an outstanding 3D printing technology, two-photon polymerization (TPP) microfabrication has been applied in the fields of micro/nanophotonics, micro-electromechanical systems, microfluidics, biomedical implants and microdevices. In particular, TPP microfabrication is very useful in tissue engineering and drug delivery due to its powerful fabrication capability for precise microstructures with high spatial resolution on both the microscopic and the nanometric scale. The design and fabrication of 3D hydrogels widely used in tissue engineering and drug delivery has been an important research area of TPP microfabrication. The resolution is a key parameter for 3D hydrogels to simulate the native 3D environment in which the cells reside and the drug is controlled to release with optimal temporal and spatial distribution in vitro and in vivo. The resolution of 3D hydrogels largely depends on the efficiency of TPP initiators. In this paper, we will review the widely used photoresists, the development of TPP photoinitiators, the strategies for improving the resolution and the microfabrication of 3D hydrogels.

  17. Characteristics of neurovascular compression in facial neuralgia patients by 3D high-resolution MRI and fusion technology.

    PubMed

    Guo, Zi-Yi; Chen, Jing; Yang, Guang; Tang, Qian-Yu; Chen, Cai-Xiang; Fu, Shui-Xi; Yu, Dan

    2012-12-01

    To evaluate the anatomical characteristics and patterns of neurovascular compression in patients suffering trigeminal neuralgia, using 3D high-resolution magnetic resonance imaging methods and fusion technologies. The analysis of the anatomy of the facial nerve, brain stem and the vascular structures related to this nerve was made in 100 consecutive patients for TN. 3D high resolution MRI studies (3D SPGR, T1 enhanced 3D MP-RAGE and T2/T1 3D FIESTA) simultaneous visualization were used to assessed using the software 3D DOCTOR. In 93 patients (93%), there were one or several locals of neurovascular compression (NVC). The superior cerebellar artery was involved in 71 cases (76%), the other vessels including the antero-inferior cerebellar artery, the basilar artery, the vertebral artery, and some venous structures. The mean distance between NVC and nerve origin site in the brainstem was (3.76 ± 2.90) mm). In 39 patients (42%), the vascular compression was located proximally and in 42 (45%) the compression was located distally. Nerve dislocation or distortion by the vessel was observed in 30 cases (32%). This 3D high resolution MRI and image fusion technology could be useful for diagnostic and therapeutic decisions in TN. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  18. Integration of multiple-baseline color stereo vision with focus and defocus analysis for 3D shape measurement

    NASA Astrophysics Data System (ADS)

    Yuan, Ta; Subbarao, Murali

    1998-12-01

    A 3D vision system named SVIS is developed for 3D shape measurement that integrates three methods: (i) multiple- baseline, multiple-resolution Stereo Image Analysis (SIA) that uses colore image data, (ii) Image Defocus Analysis (IDA), and (iii) Image Focus Analysis (IFA). IDA and IFA are less accurate than stereo but they do not suffer from the correspondence problem associated with stereo. A rough 3D shape is first obtained using IDA and then IFA is used to obtain an improved estimate. The result is then used in SIA to solve the correspondence problem and obtain an accurate measurement of 3D shape. SIA is implemented using color images recorded at multiple-baselines. Color images provide more information than monochrome images for stereo matching. Therefore matching errors are reduced and accuracy of 3D shape is improved. Further improvements are obtained through multiple-baseline stereo analysis. First short baseline images are analyzed to obtain an initial estimate of 3D shape. In this step, stereo matching errors are low and computation is fast since a shorter baseline result in lower disparities. The initial estimate of 3D shape is used to match longer baseline stereo images. This yields more accurate estimation of 3D shape. The stereo matching step is implemented using a multiple-resolution matching approach to reduce computation. First lower resolution images are matched and the result are used in matching higher resolution images. This paper presented the algorithms and the experimental result of 3D shape measurements on SVIS for several objects. These results suggest a practical vision system for 3D shape measurement.

  19. Thyroid gland visualization with 3D/4D ultrasound: integrated hands-on imaging in anatomical dissection laboratory.

    PubMed

    Carter, John L; Patel, Ankura; Hocum, Gabriel; Benninger, Brion

    2017-05-01

    In teaching anatomy, clinical imaging has been utilized to supplement the traditional dissection laboratory promoting education through visualization of spatial relationships of anatomical structures. Viewing the thyroid gland using 3D/4D ultrasound can be valuable to physicians as well as students learning anatomy. The objective of this study was to investigate the perceptions of first-year medical students regarding the integration of 3D/4D ultrasound visualization of spatial anatomy during anatomical education. 108 first-year medical students were introduced to 3D/4D ultrasound imaging of the thyroid gland through a detailed 20-min tutorial taught in small group format. Students then practiced 3D/4D ultrasound imaging on volunteers and donor cadavers before assessment through acquisition and identification of thyroid gland on at least three instructor-verified images. A post-training survey was administered assessing student impression. All students visualized the thyroid gland using 3D/4D ultrasound. Students revealed 88.0% strongly agreed or agreed 3D/4D ultrasound is useful revealing the thyroid gland and surrounding structures and 87.0% rated the experience "Very Easy" or "Easy", demonstrating benefits and ease of use including 3D/4D ultrasound in anatomy courses. When asked, students felt 3D/4D ultrasound is useful in teaching the structure and surrounding anatomy of the thyroid gland, they overwhelmingly responded "Strongly Agree" or "Agree" (90.2%). This study revealed that 3D/4D ultrasound was successfully used and preferred over 2D ultrasound by medical students during anatomy dissection courses to accurately identify the thyroid gland. In addition, 3D/4D ultrasound may nurture and further reinforce stereostructural spatial relationships of the thyroid gland taught during anatomy dissection.

  20. [Prosthetic rehabilitation of patients with parodontitis based upon the use of 3D-technologies--clinical case example].

    PubMed

    Riakhovskiĭ, A N

    2011-01-01

    Clinical case of prosthetic rehabilitation of patient (female) with generalized parodontitis complicated by defects and deformations of dentitions was offered. Using 3D-technologies position of teeth was corrected with the help of a series of temporary transparent splints-modifiers with subsequent guy splintage and esthetic 3D-planning of front teeth forms. Teeth forms correction was made by composite using preliminary prepared templet.

  1. Application of Cutting-Edge 3D Seismic Attribute Technology to the Assessment of Geological Reservoirs for CO2 Sequestration

    SciTech Connect

    Christopher Liner; Jianjun Zeng; Po Geng Heather King Jintan Li; Jennifer Califf; John Seales

    2010-03-31

    The goals of this project were to develop innovative 3D seismic attribute technologies and workflows to assess the structural integrity and heterogeneity of subsurface reservoirs with potential for CO{sub 2} sequestration. Our specific objectives were to apply advanced seismic attributes to aide in quantifying reservoir properies and lateral continuity of CO{sub 2} sequestration targets. Our study area is the Dickman field in Ness County, Kansas, a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontent to Indiana and beyond. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. Geological and seismic data were integrated to create a geological property model and a flow simulation grid. We systematically tested over a dozen seismic attributes, finding that curvature, SPICE, and ANT were particularly useful for mapping discontinuities in the data that likely indicated fracture trends. Our simulation results in the deep saline aquifer indicate two effective ways of reducing free CO{sub 2}: (a) injecting CO{sub 2} with brine water, and (b) horizontal well injection. A tuned combination of these methods can reduce the amount of free CO{sub 2} in the aquifer from over 50% to less than 10%.

  2. Dynamic analysis of angiogenesis in transgenic zebrafish embryos using a 3D multilayer chip-based technology

    NASA Astrophysics Data System (ADS)

    Akagi, Jin; Zhu, Feng; Hall, Chris J.; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh; Mitchell, Arnan; Crosier, Kathryn E.; Crosier, Philip S.; Wlodkowic, Donald

    2013-03-01

    Transgenic zebrafish (Danio rerio) models of human diseases have recently emerged as innovative experimental systems in drug discovery and molecular pathology. None of the currently available technologies, however, allow for automated immobilization and treatment of large numbers of spatially encoded transgenic embryos during real-time developmental analysis. This work describes the proof-of-concept design and validation of an integrated 3D microfluidic chip-based system fabricated directly in the poly(methyl methacrylate) transparent thermoplastic using infrared laser micromachining. At its core, the device utilizes an array of 3D micro-mechanical traps to actively capture and immobilize single embryos using a low-pressure suction. It also features built-in piezoelectric microdiaphragm pumps, embryo trapping suction manifold, drug delivery manifold and optically transparent indium tin oxide (ITO) heating element to provide optimal temperature during embryo development. Furthermore, we present design of the proof-of-concept off-chip electronic interface equipped with robotic servo actuator driven stage, innovative servomotor-actuated pinch valves and miniaturized fluorescent USB microscope. Our results show that the innovative device has 100% embryo trapping efficiency while supporting normal embryo development for up to 72 hours in a confined microfluidic environment. We also present data that this microfluidic system can be readily applied to kinetic analysis of a panel of investigational anti-angiogenic agents in transgenic zebrafish Tg(fli1a:EGFP) line. The optical transparency and embryo immobilization allow for convenient visualization of developing vasculature patterns in response to drug treatment without the need for specimen re-positioning. The integrated electronic interfaces bring the Lab-on-a-Chip systems a step closer to realization of complete analytical automation.

  3. 3D Simulation Technology as an Effective Instructional Tool for Enhancing Spatial Visualization Skills in Apparel Design

    ERIC Educational Resources Information Center

    Park, Juyeon; Kim, Dong-Eun; Sohn, MyungHee

    2011-01-01

    The purpose of this study is to explore the effectiveness of 3D simulation technology for enhancing spatial visualization skills in apparel design education and further to suggest an innovative teaching approach using the technology. Apparel design majors in an introductory patternmaking course, at a large Midwestern University in the United…

  4. Integrated optics technology study

    NASA Technical Reports Server (NTRS)

    Chen, B.

    1982-01-01

    The materials and processes available for the fabrication of single mode integrated electrooptical components are described. Issues included in the study are: (1) host material and orientation, (2) waveguide formation, (3) optical loss mechanisms, (4) wavelength selection, (5) polarization effects and control, (6) laser to integrated optics coupling,(7) fiber optic waveguides to integrated optics coupling, (8) souces, (9) detectors. The best materials, technology and processes for fabrication of integrated optical components for communications and fiber gyro applications are recommended.

  5. Integrated optics technology study

    NASA Technical Reports Server (NTRS)

    Chen, B.; Findakly, T.; Innarella, R.

    1982-01-01

    The status and near term potential of materials and processes available for the fabrication of single mode integrated electro-optical components are discussed. Issues discussed are host material and orientation, waveguide formation, optical loss mechanisms, wavelength selection, polarization effects and control, laser to integrated optics coupling fiber optic waveguides to integrated optics coupling, sources, and detectors. Recommendations of the best materials, technology, and processes for fabrication of integrated optical components for communications and fiber gyro applications are given.

  6. Full parallax viewing-angle enhanced computer-generated holographic 3D display system using integral lens array.

    PubMed

    Choi, Kyongsik; Kim, Joohwan; Lim, Yongjun; Lee, Byoungho

    2005-12-26

    A novel full parallax and viewing-angle enhanced computer-generated holographic (CGH) three-dimensional (3D) display system is proposed and implemented by combining an integral lens array and colorized synthetic phase holograms displayed on a phase-type spatial light modulator. For analyzing the viewing-angle limitations of our CGH 3D display system, we provide some theoretical background and introduce a simple ray-tracing method for 3D image reconstruction. From our method we can get continuously varying full parallax 3D images with the viewing angle about +/-6 degrees . To design the colorized phase holograms, we used a modified iterative Fourier transform algorithm and we could obtain a high diffraction efficiency (~92.5%) and a large signal-to-noise ratio (~11dB) from our simulation results. Finally we show some experimental results that verify our concept and demonstrate the full parallax viewing-angle enhanced color CGH display system.

  7. Interferometry based multispectral photon-limited 2D and 3D integral image encryption employing the Hartley transform.

    PubMed

    Muniraj, Inbarasan; Guo, Changliang; Lee, Byung-Geun; Sheridan, John T

    2015-06-15

    We present a method of securing multispectral 3D photon-counted integral imaging (PCII) using classical Hartley Transform (HT) based encryption by employing optical interferometry. This method has the simultaneous advantages of minimizing complexity by eliminating the need for holography recording and addresses the phase sensitivity problem encountered when using digital cameras. These together with single-channel multispectral 3D data compactness, the inherent properties of the classical photon counting detection model, i.e. sparse sensing and the capability for nonlinear transformation, permits better authentication of the retrieved 3D scene at various depth cues. Furthermore, the proposed technique works for both spatially and temporally incoherent illumination. To validate the proposed technique simulations were carried out for both the 2D and 3D cases. Experimental data is processed and the results support the feasibility of the encryption method.

  8. Integrated Flywheel Technology, 1983

    NASA Technical Reports Server (NTRS)

    Keckler, C. R. (Editor); Rodriguez, G. E. (Editor); Groom, N. J. (Editor)

    1983-01-01

    Topics of discussion included: technology assessment of the integrated flywheel systems, potential of system concepts, identification of critical areas needing development and, to scope and define an appropriate program for coordinated activity.

  9. Parallel robot for micro assembly with integrated innovative optical 3D-sensor

    NASA Astrophysics Data System (ADS)

    Hesselbach, Juergen; Ispas, Diana; Pokar, Gero; Soetebier, Sven; Tutsch, Rainer

    2002-10-01

    Recent advances in the fields of MEMS and MOEMS often require precise assembly of very small parts with an accuracy of a few microns. In order to meet this demand, a new approach using a robot based on parallel mechanisms in combination with a novel 3D-vision system has been chosen. The planar parallel robot structure with 2 DOF provides a high resolution in the XY-plane. It carries two additional serial axes for linear and rotational movement in/about z direction. In order to achieve high precision as well as good dynamic capabilities, the drive concept for the parallel (main) axes incorporates air bearings in combination with a linear electric servo motors. High accuracy position feedback is provided by optical encoders with a resolution of 0.1 μm. To allow for visualization and visual control of assembly processes, a camera module fits into the hollow tool head. It consists of a miniature CCD camera and a light source. In addition a modular gripper support is integrated into the tool head. To increase the accuracy a control loop based on an optoelectronic sensor will be implemented. As a result of an in-depth analysis of different approaches a photogrammetric system using one single camera and special beam-splitting optics was chosen. A pattern of elliptical marks is applied to the surfaces of workpiece and gripper. Using a model-based recognition algorithm the image processing software identifies the gripper and the workpiece and determines their relative position. A deviation vector is calculated and fed into the robot control to guide the gripper.

  10. The Integration of GPR, GIS, and GPS for 3D Soil Morphologic Models

    NASA Astrophysics Data System (ADS)

    Tischler, M.; Collins, M. E.

    2005-05-01

    Ground-Penetrating Radar (GPR) has become a useful and efficient instrument for gathering information about subsurface diagnostic horizons in Florida soils. Geographic Information Systems (GIS) are a popular and valuable tool for spatial data analysis of real world features in a digital environment. Ground-Penetrating Radar can be linked to GIS by using Global Positioning Systems (GPS). By combining GPR, GPS, and GIS technologies, a more detailed geophysical survey can be completed for an area of interest by integratinghydrologic, pedologic, and geologic data. Thus, the objectives of this research were to identify subsurface soil layers using GPR and their geographic position with a highly accurate GPS; to develop a procedure to import GPR data into a popular software package, such as ArcGIS, and; to create 3D subsurface models based on the imported GPR data. The site for this study was the Plant Science Research and Education Center in Marion County, Florida. The soils are characterized by Recent-Pleistocene-age sand over the clayey, marine deposited Plio-Miocene-age Hawthorn Formation which drapes the Eocene-age Ocala Limestone. Consequently, soils in the research area vary from deep quartz sands (Typic Quartzipsamments) to shallow outcrops of the Hawthorn Formation (Arenic Hapludalfs). A GPR survey was performed on a 160 m x 320 m grid to gather data for processing. Four subsurface models estimating the depth to argillic horizon were created using a variety of specialized GPR data filters and geostatistical data analyses. The models were compared with ground-truth points that measured the depth to argillic horizon to validate each model and calculate error metrics. These models may assist research station personnel to determine best management practices (including experimental plot placement, irrigation management, fertilizer treatment, and pesticide applications). In addition, the developed methodology exploits the potential of combining GPR and GIS.

  11. Integrating a High Resolution Optically Pumped Magnetometer with a Multi-Rotor UAV towards 3-D Magnetic Gradiometry

    NASA Astrophysics Data System (ADS)

    Braun, A.; Walter, C. A.; Parvar, K.

    2016-12-01

    The current platforms for collecting magnetic data include dense coverage, but low resolution traditional airborne surveys, and high resolution, but low coverage terrestrial surveys. Both platforms leave a critical observation gap between the ground surface and approximately 100m above ground elevation, which can be navigated efficiently by new technologies, such as Unmanned Aerial Vehicles (UAVs). Specifically, multi rotor UAV platforms provide the ability to sense the magnetic field in a full 3-D tensor, which increases the quality of data collected over other current platform types. Payload requirements and target requirements must be balanced to fully exploit the 3-D magnetic tensor. This study outlines the integration of a GEM Systems Cesium Vapour UAV Magnetometer, a Lightware SF-11 Laser Altimeter and a uBlox EVK-7P GPS module with a DJI s900 Multi Rotor UAV. The Cesium Magnetometer is suspended beneath the UAV platform by a cable of varying length. A set of surveys was carried out to optimize the sensor orientation, sensor cable length beneath the UAV and data collection methods of the GEM Systems Cesium Vapour UAV Magnetometer when mounted on the DJI s900. The target for these surveys is a 12 inch steam pipeline located approximately 2 feet below the ground surface. A systematic variation of cable length, sensor orientation and inclination was conducted. The data collected from the UAV magnetometer was compared to a terrestrial survey conducted with the GEM GST-19 Proton Procession Magnetometer at the same elevation, which also served a reference station. This allowed for a cross examination between the UAV system and a proven industry standard for magnetic field data collection. The surveys resulted in optimizing the above parameters based on minimizing instrument error and ensuring reliable data acquisition. The results demonstrate that optimizing the UAV magnetometer survey can yield to industry standard measurements.

  12. Evaluation of AN Integrated Gis-Based Crime Analysis & 3d Modelling for Izmir-Konak Municipality

    NASA Astrophysics Data System (ADS)

    Tarhan, C.; Deniz, D.

    2011-08-01

    GIS integrated 3D modelling is crucial for the city planning and design processes because urban modelling is a tool used in virtual environments, and provides convenience to work. Although, the creation and display of 3D city models for large regions is difficult it is vital for planning and designing safer cities, as well as public places. Today, crime is a significant problem in Turkey. When it was compared by years of crime rates, population growth and urbanization rate, an increasing more than in parallel has been observed. This paper aims to discuss GIS integrated 3D modelling affects in urban planning and design, explaining Turkish planning processes with GIS and 3D modelling. To do that, it presents a case study for Izmir Konak Municipality about GIS integrated crime analysis and 3D models of the crime scenes. Izmir crime records has been obtained from Izmir Police Department belonging to 2003-2004 and 2005 (D. Deniz, 2007) are used for districts' crime map. In the light of these data, the highest rate crime district, Konak, is analyzed between 2001 and 2005 data.

  13. MO-H-19A-03: Patient Specific Bolus with 3D Printing Technology for Electron Radiotherapy

    SciTech Connect

    Zou, W; Swann, B; Siderits, R; McKenna, M; Khan, A; Yue, N; Zhang, M; Fisher, T

    2014-06-15

    Purpose: Bolus is widely used in electron radiotherapy to achieve desired dose distribution. 3D printing technologies provide clinicians with easy access to fabricate patient specific bolus accommodating patient body surface irregularities and tissue inhomogeneity. This study presents the design and the clinical workflow of 3D printed bolus for patient electron therapy in our clinic. Methods: Patient simulation CT images free of bolus were exported from treatment planning system (TPS) to an in-house developed software package. Bolus with known material properties was designed in the software package and then exported back to the TPS as a structure. Dose calculation was carried out to examine the coverage of the target. After satisfying dose distribution was achieved, the bolus structure was transferred in Standard Tessellation Language (STL) file format for the 3D printer to generate the machine codes for printing. Upon receiving printed bolus, a quick quality assurance was performed with patient resimulated with bolus in place to verify the bolus dosimetric property before treatment started. Results: A patient specific bolus for electron radiotherapy was designed and fabricated in Form 1 3D printer with methacrylate photopolymer resin. Satisfying dose distribution was achieved in patient with bolus setup. Treatment was successfully finished for one patient with the 3D printed bolus. Conclusion: The electron bolus fabrication with 3D printing technology was successfully implemented in clinic practice.

  14. Applying 3D-printing technology in planning operations of cancer patients

    NASA Astrophysics Data System (ADS)

    Kashapov, L. N.; N, A. N. Rudyk A.; Kashapov, R. N.

    2014-12-01

    The purpose of this work was creation 3D model of the front part of the skull of the patient and evaluates the effectiveness of its use in the planning of the operation. To achieve this goal was chosen an operation to remove a tumor of the right eyelid, germinate in the zygomatic bone. 3D printing was performed at different peripheral devices using the method of layering creating physical objects by a digital 3D model as well as the recovery model of the skull with the entire right malar bone for fixation on her titanium frame to maintain the eyeball in a fixed state.

  15. An integral equation approach to smooth 3D Navier-Stokes solution

    NASA Astrophysics Data System (ADS)

    Costin, O.; Luo, G.; Tanveer, S.

    2008-12-01

    We summarize a recently developed integral equation (IE) approach to tackling the long-time existence problem for smooth solution v(x, t) to the 3D Navier-Stokes (NS) equation in the context of a periodic box problem with smooth time independent forcing and initial condition v0. Using an inverse-Laplace transform of {\\skew5\\hat v} (k, t) - {\\skew5\\hat v}_0 in 1/t, we arrive at an IE for {\\skew5\\hat U} (k, p) , where p is inverse-Laplace dual to 1/t and k is the Fourier variable dual to x. The advantage of this formulation is that the solution {\\skew5\\hat U} to the IE is known to exist a priori for p \\in \\mathbb{R}^+ and the solution is integrable and exponentially bounded at ∞. Global existence of NS solution in this formulation is reduced to an asymptotics question. If \\parallel\\!{\\skew5\\hat U} (\\cdot, p)\\!\\parallel_{{l^{1} (\\mathbb{Z}^3)}} has subexponential bounds as p→∞, then global existence to NS follows. Moreover, if f=0, then the converse is also true in the following sense: if NS has global solution, then there exists n>=1 for which the inverse-Laplace transform of {\\skew5\\hat v} (k, t) - {\\skew5\\hat v}_0 in 1/tn necessarily decays as q→∞, where q is the inverse-Laplace dual to 1/tn. We also present refined estimates of the exponential growth when the solution {\\skew5\\hat U} is known on a finite interval [0, p0]. We also show that for analytic v[0] and f, with finitely many nonzero Fourier-coefficients, the series for {\\skew5\\hat U} (k, p) in powers of p has a radius of convergence independent of initial condition and forcing; indeed the radius gets bigger for smaller viscosity. We also show that the IE can be solved numerically with controlled errors. Preliminary numerical calculations for Kida (1985 J. Phys. Soc. Japan 54 2132) initial conditions, though far from being optimized, and performed on a modest interval in the accelerated variable q show decay in q.

  16. An integrated system for 3D hip joint reconstruction from 2D X-rays: a preliminary validation study.

    PubMed

    Schumann, Steffen; Liu, Li; Tannast, Moritz; Bergmann, Mathias; Nolte, Lutz-P; Zheng, Guoyan

    2013-10-01

    The acquisition of conventional X-ray radiographs remains the standard imaging procedure for the diagnosis of hip-related problems. However, recent studies demonstrated the benefit of using three-dimensional (3D) surface models in the clinical routine. 3D surface models of the hip joint are useful for assessing the dynamic range of motion in order to identify possible pathologies such as femoroacetabular impingement. In this paper, we present an integrated system which consists of X-ray radiograph calibration and subsequent 2D/3D hip joint reconstruction for diagnosis and planning of hip-related problems. A mobile phantom with two different sizes of fiducials was developed for X-ray radiograph calibration, which can be robustly detected within the images. On the basis of the calibrated X-ray images, a 3D reconstruction method of the acetabulum was developed and applied together with existing techniques to reconstruct a 3D surface model of the hip joint. X-ray radiographs of dry cadaveric hip bones and one cadaveric specimen with soft tissue were used to prove the robustness of the developed fiducial detection algorithm. Computed tomography scans of the cadaveric bones were used to validate the accuracy of the integrated system. The fiducial detection sensitivity was in the same range for both sizes of fiducials. While the detection sensitivity was 97.96% for the large fiducials, it was 97.62% for the small fiducials. The acetabulum and the proximal femur were reconstructed with a mean surface distance error of 1.06 and 1.01 mm, respectively. The results for fiducial detection sensitivity and 3D surface reconstruction demonstrated the capability of the integrated system for 3D hip joint reconstruction from 2D calibrated X-ray radiographs.

  17. Educational Technology: Integration?

    ERIC Educational Resources Information Center

    Christensen, Dean L.; Tennyson, Robert D.

    This paper presents a perspective of the current state of technology-assisted instruction integrating computer language, artificial intelligence (AI), and a review of cognitive science applied to instruction. The following topics are briefly discussed: (1) the language of instructional technology, i.e., programming languages, including authoring…

  18. Integrating genomic information with protein sequence and 3D atomic level structure at the RCSB protein data bank.

    PubMed

    Prlic, Andreas; Kalro, Tara; Bhattacharya, Roshni; Christie, Cole; Burley, Stephen K; Rose, Peter W

    2016-12-15

    The Protein Data Bank (PDB) now contains more than 120,000 three-dimensional (3D) structures of biological macromolecules. To allow an interpretation of how PDB data relates to other publicly available annotations, we developed a novel data integration platform that maps 3D structural information across various datasets. This integration bridges from the human genome across protein sequence to 3D structure space. We developed novel software solutions for data management and visualization, while incorporating new libraries for web-based visualization using SVG graphics. The new views are available from http://www.rcsb.org and software is available from https://github.com/rcsb/. andreas.prlic@rcsb.orgSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  19. Integrating genomic information with protein sequence and 3D atomic level structure at the RCSB protein data bank

    PubMed Central

    Prlić, Andreas; Kalro, Tara; Bhattacharya, Roshni; Christie, Cole; Burley, Stephen K.; Rose, Peter W.

    2016-01-01

    Summary: The Protein Data Bank (PDB) now contains more than 120,000 three-dimensional (3D) structures of biological macromolecules. To allow an interpretation of how PDB data relates to other publicly available annotations, we developed a novel data integration platform that maps 3D structural information across various datasets. This integration bridges from the human genome across protein sequence to 3D structure space. We developed novel software solutions for data management and visualization, while incorporating new libraries for web-based visualization using SVG graphics. Availability and Implementation: The new views are available from http://www.rcsb.org and software is available from https://github.com/rcsb/. Contact: andreas.prlic@rcsb.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27551105

  20. Fruit bruise detection based on 3D meshes and machine learning technologies

    NASA Astrophysics Data System (ADS)

    Hu, Zilong; Tang, Jinshan; Zhang, Ping

    2016-05-01

    This paper studies bruise detection in apples using 3-D imaging. Bruise detection based on 3-D imaging overcomes many limitations of bruise detection based on 2-D imaging, such as low accuracy, sensitive to light condition, and so on. In this paper, apple bruise detection is divided into two parts: feature extraction and classification. For feature extraction, we use a framework that can directly extract local binary patterns from mesh data. For classification, we studies support vector machine. Bruise detection using 3-D imaging is compared with bruise detection using 2-D imaging. 10-fold cross validation is used to evaluate the performance of the two systems. Experimental results show that bruise detection using 3-D imaging can achieve better classification accuracy than bruise detection based on 2-D imaging.

  1. Enabling Technologies for Entrepreneurial Opportunities in 3D printing of SmallSats

    NASA Technical Reports Server (NTRS)

    Kwas, Andrew; MacDonald, Eric; Muse, Dan; Wicker, Ryan; Kief, Craig; Aarestad, Jim; Zemba, Mike; Marshall, Bill; Tolbert, Carol; Connor, Brett

    2014-01-01

    A consortium of innovative experts in additive manufacturing (AM) comprising Northrup Grumman Technical Services, University of Texas at El Paso (UTEP), Configurable Space Microsystems Innovations & Applications Center (COSMIAC), NASA Glenn Research Center (GRC), and Youngstown State University, have made significant breakthroughs in the goal of creating the first complete 3D printed small satellite. Since AM machines are relatively inexpensive, this should lead to many entrepreneurial opportunities for the small satellite community. Our technology advancements are focused on the challenges of embedding key components within the structure of the article. We have demonstrated, using advanced fused deposition modeling techniques, complex geometric shapes which optimize the spacecraft design. The UTEP Keck Center has developed a method that interrupts the printing process to insert components into specific cavities, resulting in a spacecraft that has minimal internal space allocated for what traditionally were functional purposes. This allows us to increase experiment and instrument capability by provided added volume in a confined small satellite space. Leveraging initial progress made on a NASA contract, the team investigated the potential of new materials that exploit the AM process, producing candidate compositions that exceed the capabilities of traditional materials. These "new materials" being produced and tested include some that have improved radiation shielding, increased permeability, enhanced thermal properties, better conductive properties, and increased structural performance. The team also investigated materials that were previously not possible to be made. Our testing included standard mechanical tests such as vibration, tensile, thermal cycling, and impact resistance as well as radiation and electromagnetic tests. The initial results of these products and their performance will be presented and compared with standard properties. The new materials with

  2. Estimation of uncertainties in geological 3D raster layer models as integral part of modelling procedures

    NASA Astrophysics Data System (ADS)

    Maljers, Denise; den Dulk, Maryke; ten Veen, Johan; Hummelman, Jan; Gunnink, Jan; van Gessel, Serge

    2016-04-01

    applied for DGM Deep proves to be an effective way to (graphically) represent the reliability of the DGM Deep model, although the relative contribution of the various error sources needs further attention. For the DGM Shallow model a cross-validation procedure in a moving window environment has been used to calculate mean deviations and standard errors on a sub-regional scale. Subsequently, these cross validation standard errors have been rescaled to account for local data configuration and clustering. This resulted in standard deviations expressing both regional and local uncertainties. Both workflows are state-of-the-art, form an integral part of the geological modelling and result in reproducible uncertainty values. They can be considered a good starting point for incorporating other errors that contribute to uncertainties of geological 3D raster layer models. For example, the mis-positioning of data used or the error underlying mis-ties at well locations. An additional, perhaps more easy-to-read, parameter that can be calculated to visualize these uncertainties would be the information entropy, as proposed by Wellmann & Regenauer-Lieb (2012). Where a value of 0 means there is no uncertainty, and a value of 1 means there is a high uncertainty. At the moment depth uncertainty information is disseminated through our webportals (www.dinoloket.nl and www.nlog.nl) in an on-line map viewer and as downloadable GIS products.

  3. Genome3D: A viewer-model framework for integrating and visualizing multi-scale epigenomic information within a three-dimensional genome

    PubMed Central

    2010-01-01

    Background New technologies are enabling the measurement of many types of genomic and epigenomic information at scales ranging from the atomic to nuclear. Much of this new data is increasingly structural in nature, and is often difficult to coordinate with other data sets. There is a legitimate need for integrating and visualizing these disparate data sets to reveal structural relationships not apparent when looking at these data in isolation. Results We have applied object-oriented technology to develop a downloadable visualization tool, Genome3D, for integrating and displaying epigenomic data within a prescribed three-dimensional physical model of the human genome. In order to integrate and visualize large volume of data, novel statistical and mathematical approaches have been developed to reduce the size of the data. To our knowledge, this is the first such tool developed that can visualize human genome in three-dimension. We describe here the major features of Genome3D and discuss our multi-scale data framework using a representative basic physical model. We then demonstrate many of the issues and benefits of multi-resolution data integration. Conclusions Genome3D is a software visualization tool that explores a wide range of structural genomic and epigenetic data. Data from various sources of differing scales can be integrated within a hierarchical framework that is easily adapted to new developments concerning the structure of the physical genome. In addition, our tool has a simple annotation mechanism to incorporate non-structural information. Genome3D is unique is its ability to manipulate large amounts of multi-resolution data from diverse sources to uncover complex and new structural relationships within the genome. PMID:20813045

  4. Multi-Scale Modeling of an Integrated 3D Braided Composite with Applications to Helicopter Arm

    NASA Astrophysics Data System (ADS)

    Zhang, Diantang; Chen, Li; Sun, Ying; Zhang, Yifan; Qian, Kun

    2017-01-01

    A study is conducted with the aim of developing multi-scale analytical method for designing the composite helicopter arm with three-dimensional (3D) five-directional braided structure. Based on the analysis of 3D braided microstructure, the multi-scale finite element modeling is developed. Finite element analysis on the load capacity of 3D five-directional braided composites helicopter arm is carried out using the software ABAQUS/Standard. The influences of the braiding angle and loading condition on the stress and strain distribution of the helicopter arm are simulated. The results show that the proposed multi-scale method is capable of accurately predicting the mechanical properties of 3D braided composites, validated by the comparison the stress-strain curves of meso-scale RVCs. Furthermore, it is found that the braiding angle is an important factor affecting the mechanical properties of 3D five-directional braided composite helicopter arm. Based on the optimized structure parameters, the nearly net-shaped composite helicopter arm is fabricated using a novel resin transfer mould (RTM) process.

  5. Comparing and visualizing titanium implant integration in rat bone using 2D and 3D techniques.

    PubMed

    Arvidsson, Anna; Sarve, Hamid; Johansson, Carina B

    2015-01-01

    The aim was to compare the osseointegration of grit-blasted implants with and without a hydrogen fluoride treatment in rat tibia and femur, and to visualize bone formation using state-of-the-art 3D visualization techniques. Grit-blasted implants were inserted in femur and tibia of 10 Sprague-Dawley rats (4 implants/rat). Four weeks after insertion, bone implant samples were retrieved. Selected samples were imaged in 3D using Synchrotron Radiation-based μCT (SRμCT). The 3D data was quantified and visualized using two novel visualization techniques, thread fly-through and 2D unfolding. All samples were processed to cut and ground sections and 2D histomorphometrical comparisons of bone implant contact (BIC), bone area (BA), and mirror image area (MI) were performed. BA values were statistically significantly higher for test implants than controls (p < 0.05), but BIC and MI data did not differ significantly. Thus, the results partly indicate improved bone formation at blasted and hydrogen fluoride treated implants, compared to blasted implants. The 3D analysis was a valuable complement to 2D analysis, facilitating improved visualization. However, further studies are required to evaluate aspects of 3D quantitative techniques, with relation to light microscopy that traditionally is used for osseointegration studies.

  6. Comparison of the Conventional Surgery and the Surgery Assisted by 3d Printing Technology in the Treatment of Calcaneal Fractures.

    PubMed

    Zheng, Wenhao; Tao, Zhenyu; Lou, Yiting; Feng, Zhenhua; Li, Hang; Cheng, Liang; Zhang, Hui; Wang, Jianshun; Guo, Xiaoshan; Chen, Hua

    2017-09-19

    This study was aimed to compare conventional surgery and surgery assisted by 3D printing technology in the treatment of calcaneal fractures. In addition, we also investigated the effect of 3D printing technology on the communication between doctors and patients. we enrolled 75 patients with calcaneal fracture from April 2014 to August 2016. They were divided randomly into two groups: 35 cases of 3D printing group, 40 cases of conventional group. The individual models were used to simulate the surgical procedures and carry out the surgery according to plan in 3D printing group. Operation duration, blood loss volume during the surgery, number of intraoperative fluoroscopy and fracture union time were recorded. The radiographic outcomes Böhler angle, Gissane angle, calcaneal width and calcaneal height and final functional outcomes including VAS and AOFAS score as well as the complications were also evaluated. Besides, we made a simple questionnaire to verify the effectiveness of the 3D-printed model for both doctors and patients. The operation duration, blood loss volume and number of intraoperative fluoroscopy for 3D printing group was 71.4 ± 6.8 minutes, 226.1 ± 22.6 ml and 5.6 ± 1.9 times, and for conventional group was 91.3 ± 11.2 minutes, 288.7 ± 34.8 ml and 8.6 ± 2.7 times respectively. There was statistically significant difference between the conventional group and 3D printing group (p < 0.05). Additionally, 3D printing group achieved significantly better radiographic results than conventional group both postoperatively and at the final follow-up (p < 0.05). However, No significant difference was noted in the final functional outcomes between the two groups. As for complications, there was no significant difference between the two groups. Furthermore, the questionnaire showed that both doctors and patients exhibited high scores of overall satisfaction with the use of a 3D printing model. This study suggested the clinical feasibility of 3D printing

  7. An Alignment Method for the Integration of Underwater 3D Data Captured by a Stereovision System and an Acoustic Camera.

    PubMed

    Lagudi, Antonio; Bianco, Gianfranco; Muzzupappa, Maurizio; Bruno, Fabio

    2016-04-14

    The integration of underwater 3D data captured by acoustic and optical systems is a promising technique in various applications such as mapping or vehicle navigation. It allows for compensating the drawbacks of the low resolution of acoustic sensors and the limitations of optical sensors in bad visibility conditions. Aligning these data is a challenging problem, as it is hard to make a point-to-point correspondence. This paper presents a multi-sensor registration for the automatic integration of 3D data acquired from a stereovision system and a 3D acoustic camera in close-range acquisition. An appropriate rig has been used in the laboratory tests to determine the relative position between the two sensor frames. The experimental results show that our alignment approach, based on the acquisition of a rig in several poses, can be adopted to estimate the rigid transformation between the two heterogeneous sensors. A first estimation of the unknown geometric transformation is obtained by a registration of the two 3D point clouds, but it ends up to be strongly affected by noise and data dispersion. A robust and optimal estimation is obtained by a statistical processing of the transformations computed for each pose. The effectiveness of the method has been demonstrated in this first experimentation of the proposed 3D opto-acoustic camera.

  8. An Alignment Method for the Integration of Underwater 3D Data Captured by a Stereovision System and an Acoustic Camera

    PubMed Central

    Lagudi, Antonio; Bianco, Gianfranco; Muzzupappa, Maurizio; Bruno, Fabio

    2016-01-01

    The integration of underwater 3D data captured by acoustic and optical systems is a promising technique in various applications such as mapping or vehicle navigation. It allows for compensating the drawbacks of the low resolution of acoustic sensors and the limitations of optical sensors in bad visibility conditions. Aligning these data is a challenging problem, as it is hard to make a point-to-point correspondence. This paper presents a multi-sensor registration for the automatic integration of 3D data acquired from a stereovision system and a 3D acoustic camera in close-range acquisition. An appropriate rig has been used in the laboratory tests to determine the relative position between the two sensor frames. The experimental results show that our alignment approach, based on the acquisition of a rig in several poses, can be adopted to estimate the rigid transformation between the two heterogeneous sensors. A first estimation of the unknown geometric transformation is obtained by a registration of the two 3D point clouds, but it ends up to be strongly affected by noise and data dispersion. A robust and optimal estimation is obtained by a statistical processing of the transformations computed for each pose. The effectiveness of the method has been demonstrated in this first experimentation of the proposed 3D opto-acoustic camera. PMID:27089344

  9. A novel 3D integrated platform for the high-resolution study of cell migration plasticity.

    PubMed

    Schneider, Julian; Bachmann, Tobias; Franco, Davide; Richner, Patrizia; Galliker, Patrick; Tiwari, Manish K; Ferrari, Aldo; Poulikakos, Dimos

    2013-08-01

    Understanding the mechanisms of interstitial cancer migration is of great scientific and medical interest. Creating 3D platforms, conducive to optical microscopy and mimicking the physical parameters (in plane and out of plane) involved in interstitial migration, is a major step forward in this direction. Here, a novel approach is used to directly print free-form, 3D micropores on basal scaffolds containing microgratings optimized for contact guidance. The platforms so formed are validated by monitoring cancer cell migration and micropore penetration with high-resolution optical microscopy. The shapes, sizes and deformability of the micropores are controllable, paving the way to decipher their role in interstitial migration.

  10. Fusion of current technologies with real-time 3D MEMS ladar for novel security and defense applications

    NASA Astrophysics Data System (ADS)

    Siepmann, James P.

    2006-05-01

    Through the utilization of scanning MEMS mirrors in ladar devices, a whole new range of potential military, Homeland Security, law enforcement, and civilian applications is now possible. Currently, ladar devices are typically large (>15,000 cc), heavy (>15 kg), and expensive (>$100,000) while current MEMS ladar designs are more than a magnitude less, opening up a myriad of potential new applications. One such application with current technology is a GPS integrated MEMS ladar unit, which could be used for real-time border monitoring or the creation of virtual 3D battlefields after being dropped or propelled into hostile territory. Another current technology that can be integrated into a MEMS ladar unit is digital video that can give high resolution and true color to a picture that is then enhanced with range information in a real-time display format that is easier for the user to understand and assimilate than typical gray-scale or false color images. The problem with using 2-axis MEMS mirrors in ladar devices is that in order to have a resonance frequency capable of practical real-time scanning, they must either be quite small and/or have a low maximum tilt angle. Typically, this value has been less than (< or = to 10 mg-mm2-kHz2)-degrees. We have been able to solve this problem by using angle amplification techniques that utilize a series of MEMS mirrors and/or a specialized set of optics to achieve a broad field of view. These techniques and some of their novel applications mentioned will be explained and discussed herein.

  11. The capture and dissemination of integrated 3D geospatial knowledge at the British Geological Survey using GSI3D software and methodology

    NASA Astrophysics Data System (ADS)

    Kessler, Holger; Mathers, Steve; Sobisch, Hans-Georg

    2009-06-01

    The Geological Surveying and Investigation in 3 Dimensions (GSI3D) software tool and methodology has been developed over the last 15 years. Since 2001 this has been in cooperation with the British Geological Survey (BGS). To-date over a hundred BGS geologists have learned to use the software that is now routinely deployed in building systematic and commercial 3D geological models. The success of the GSI3D methodology and software is based on its intuitive design and the fact that it utilises exactly the same data and methods, albeit in digital forms, that geologists have been using for two centuries in order to make geological maps and cross-sections. The geologist constructs models based on a career of observation of geological phenomena, thereby incorporating tacit knowledge into the model. This knowledge capture is a key element to the GSI3D approach. In BGS GSI3D is part of a much wider set of systems and work processes that together make up the cyberinfrastructure of a modern geological survey. The GSI3D software is not yet designed to cope with bedrock structures in which individual stratigraphic surfaces are repeated or inverted, but the software is currently being extended by BGS to encompass these more complex geological scenarios. A further challenge for BGS is to enable its 3D geological models to become part of the semantic Web using GML application schema like GeoSciML. The biggest benefits of widely available systematic geological models will be an enhanced public understanding of the sub-surface in 3D, and the teaching of geoscience students.

  12. An Examination of the Effects of Collaborative Scientific Visualization via Model-based Reasoning on Science, Technology, Engineering, and Mathematics (STEM) Learning Within an Immersive 3D World

    NASA Astrophysics Data System (ADS)

    Soleimani, Ali

    Immersive 3D worlds can be designed to effectively engage students in peer-to-peer collaborative learning activities, supported by scientific visualization, to help with understanding complex concepts associated with learning science, technology, engineering, and mathematics (STEM). Previous research studies have shown STEM learning benefits associated with the use of scientific visualization tools involving model-based reasoning (MBR). Little is known, however, about collaborative use of scientific visualization, via MBR, within an immersive 3D-world learning environment for helping to improve perceived value of STEM learning and knowledge acquisition in a targeted domain such as geothermal energy. Geothermal energy was selected as the study's STEM focus, because understanding in the domain is highly dependent on successfully integrating science and mathematics concepts. This study used a 2x2 Mixed ANOVA, with repeated measures, design to analyze collaborative usage of a geothermal energy MBR model and its effects on learning within an immersive 3D world. The immersive 3D world used for the study is supported by the Open Simulator platform. Findings from this study can suggest ways to improve STEM learning and inform the design of MBR activities when conducted within an immersive 3D world.

  13. Fabrication techniques for multiscale 3D-MEMS with vertical metal micro- and nanowire integration

    NASA Astrophysics Data System (ADS)

    Greiner, F.; Quednau, S.; Dassinger, F.; Sarwar, R.; Schlaak, H. F.; Guttmann, M.; Meyer, P.

    2013-02-01

    This paper presents different low-temperature and high-throughput LIGA-like processes for the batch fabrication of metal micro systems that use long nano- or microwires perpendicularly rising from a substrate. First, circuit paths and seed layers are fabricated applying standard UV lithography and PVD. Second, three lithography techniques are used, namely ion track lithography, enhanced UV lithography and aligned x-ray lithography, to structure 20-400 µm thick polymer films. Ion track lithography is only used to fabricate extremely high aspect ratio cylindrical pores with 0.1-1 µm diameter and 20-100 µm length. The aligned UV and x-ray lithographies are employed to structure templates for various micro system components. Third, these polymer templates are filled using low-temperature electroplating processes transferring the polymer openings into metal structures. Finally, the polymer is dry etched to release all metal structures. These structures are applicable in future accelerometers and gas flow sensors. Using five configurations to define five different functional structures, we demonstrate fabrication processes applying the three different types of lithography. The main aspects concern the combination of both standard lithography techniques and especially developed lithography techniques. Furthermore, these aspects comprise the use of structures created by lithography for high aspect ratio polymer templates and multilayer electroplating with varying aspect ratios. The growth in place of nanowire arrays and micropillars along with surrounding structures is the key feature for low-temperature large-scale micro-nano integration technology without harmful transfer technologies.

  14. Scientometric and patentometric analyses to determine the knowledge landscape in innovative technologies: The case of 3D bioprinting

    PubMed Central

    2017-01-01

    This research proposes an innovative data model to determine the landscape of emerging technologies. It is based on a competitive technology intelligence methodology that incorporates the assessment of scientific publications and patent analysis production, and is further supported by experts’ feedback. It enables the definition of the growth rate of scientific and technological output in terms of the top countries, institutions and journals producing knowledge within the field as well as the identification of main areas of research and development by analyzing the International Patent Classification codes including keyword clusterization and co-occurrence of patent assignees and patent codes. This model was applied to the evolving domain of 3D bioprinting. Scientific documents from the Scopus and Web of Science databases, along with patents from 27 authorities and 140 countries, were retrieved. In total, 4782 scientific publications and 706 patents were identified from 2000 to mid-2016. The number of scientific documents published and patents in the last five years showed an annual average growth of 20% and 40%, respectively. Results indicate that the most prolific nations and institutions publishing on 3D bioprinting are the USA and China, including the Massachusetts Institute of Technology (USA), Nanyang Technological University (Singapore) and Tsinghua University (China), respectively. Biomaterials and Biofabrication are the predominant journals. The most prolific patenting countries are China and the USA; while Organovo Holdings Inc. (USA) and Tsinghua University (China) are the institutions leading. International Patent Classification codes reveal that most 3D bioprinting inventions intended for medical purposes apply porous or cellular materials or biologically active materials. Knowledge clusters and expert drivers indicate that there is a research focus on tissue engineering including the fabrication of organs, bioinks and new 3D bioprinting systems. Our

  15. Scientometric and patentometric analyses to determine the knowledge landscape in innovative technologies: The case of 3D bioprinting.

    PubMed

    Rodríguez-Salvador, Marisela; Rio-Belver, Rosa María; Garechana-Anacabe, Gaizka

    2017-01-01

    This research proposes an innovative data model to determine the landscape of emerging technologies. It is based on a competitive technology intelligence methodology that incorporates the assessment of scientific publications and patent analysis production, and is further supported by experts' feedback. It enables the definition of the growth rate of scientific and technological output in terms of the top countries, institutions and journals producing knowledge within the field as well as the identification of main areas of research and development by analyzing the International Patent Classification codes including keyword clusterization and co-occurrence of patent assignees and patent codes. This model was applied to the evolving domain of 3D bioprinting. Scientific documents from the Scopus and Web of Science databases, along with patents from 27 authorities and 140 countries, were retrieved. In total, 4782 scientific publications and 706 patents were identified from 2000 to mid-2016. The number of scientific documents published and patents in the last five years showed an annual average growth of 20% and 40%, respectively. Results indicate that the most prolific nations and institutions publishing on 3D bioprinting are the USA and China, including the Massachusetts Institute of Technology (USA), Nanyang Technological University (Singapore) and Tsinghua University (China), respectively. Biomaterials and Biofabrication are the predominant journals. The most prolific patenting countries are China and the USA; while Organovo Holdings Inc. (USA) and Tsinghua University (China) are the institutions leading. International Patent Classification codes reveal that most 3D bioprinting inventions intended for medical purposes apply porous or cellular materials or biologically active materials. Knowledge clusters and expert drivers indicate that there is a research focus on tissue engineering including the fabrication of organs, bioinks and new 3D bioprinting systems. Our

  16. High-κ Al2O3 material in low temperature wafer-level bonding for 3D integration application

    NASA Astrophysics Data System (ADS)

    Fan, J.; Tu, L. C.; Tan, C. S.

    2014-03-01

    This work systematically investigated a high-κ Al2O3 material for low temperature wafer-level bonding for potential applications in 3D microsystems. A clean Si wafer with an Al2O3 layer thickness of 50 nm was applied as our experimental approach. Bonding was initiated in a clean room ambient after surface activation, followed by annealing under inert ambient conditions at 300 °C for 3 h. The investigation consisted of three parts: a mechanical support study using the four-point bending method, hermeticity measurements using the helium bomb test, and thermal conductivity analysis for potential heterogeneous bonding. Compared with samples bonded using a conventional oxide bonding material (SiO2), a higher interfacial adhesion energy (˜11.93 J/m2) and a lower helium leak rate (˜6.84 × 10-10 atm.cm3/sec) were detected for samples bonded using Al2O3. More importantly, due to the excellent thermal conductivity performance of Al2O3, this technology can be used in heterogeneous direct bonding, which has potential applications for enhancing the performance of Si photonic integrated devices.

  17. DLP-based 3D metrology by structured light or projected fringe technology for life sciences and industrial metrology

    NASA Astrophysics Data System (ADS)

    Frankowski, G.; Hainich, R.

    2009-02-01

    Since the mid-eighties, a fundamental idea for achieving measuring accuracy in projected fringe technology was to consider the projected fringe pattern as an interferogram and evaluate it on the basis of advanced algorithms widely used for phase measuring in real-time interferometry. A fundamental requirement for obtaining a sufficiently high degree of measuring accuracy with this so-called "phase measuring projected fringe technology" is that the projected fringes, analogous to interference fringes, must have a cos2-shaped intensity distribution. Until the mid-nineties, this requirement for the projected fringe pattern measurement technology presented a basic handicap for its wide application in 3D metrology. This situation changed abruptly, when in the nineties Texas Instruments introduced to the market advanced digital light projection on the basis of micro mirror based projection systems, socalled DLP technology, which also facilitated the generation and projection of cos2-shaped intensity and/or fringe patterns. With this DLP technology, which from its original approach was actually oriented towards completely different applications such as multimedia projection, Texas Instruments boosted phase-measuring fringe projection in optical 3D metrology to a worldwide breakthrough both for medical as well as industrial applications. A subject matter of the lecture will be to present the fundamental principles and the resulting advantages of optical 3D metrology based on phase-measuring fringe projection using DLP technology. Further will be presented and discussed applications of the measurement technology in medical engineering and industrial metrology.

  18. A 3D profile function suitable for integration of neutron time-of-flight single crystal diffraction peaks

    NASA Astrophysics Data System (ADS)

    Gutmann, Matthias J.

    2017-03-01

    A 3D profile function is presented suitable to integrate reflections arising in time-of-flight (TOF) single crystal neutron diffraction experiments. In order to account for the large asymmetry of the peak shape in the TOF direction, a 3D Gaussian ellipsoid in the pixel (x, z) and time-of-flight coordinates is convoluted with a rising and falling exponential along the time-of-flight direction. An analytic expression is derived, making it suitable for least-squares fitting. The application of this function in detector space or reciprocal space is straightforward.

  19. An Integrated RELAP5-3D and Multiphase CFD Code System Utilizing a Semi Implicit Coupling Technique

    SciTech Connect

    D.L. Aumiller; E.T. Tomlinson; W.L. Weaver

    2001-06-21

    An integrated code system consisting of RELAP5-3D and a multiphase CFD program has been created through the use of a generic semi-implicit coupling algorithm. Unlike previous CFD coupling work, this coupling scheme is numerically stable provided the material Courant limit is not violated in RELAP5-3D or at the coupling locations. The basis for the coupling scheme and details regarding the unique features associated with the application of this technique to a four-field CFD program are presented. Finally, the results of a verification problem are presented. The coupled code system is shown to yield accurate and numerically stable results.

  20. Integrated Data Capturing Requirements for 3d Semantic Modelling of Cultural Heritage: the Inception Protocol

    NASA Astrophysics Data System (ADS)

    Di Giulio, R.; Maietti, F.; Piaia, E.; Medici, M.; Ferrari, F.; Turillazzi, B.

    2017-02-01

    The generation of high quality 3D models can be still very time-consuming and expensive, and the outcome of digital reconstructions is frequently provided in formats that are not interoperable, and therefore cannot be easily accessed. This challenge is even more crucial for complex architectures and large heritage sites, which involve a large amount of data to be acquired, managed and enriched by metadata. In this framework, the ongoing EU funded project INCEPTION - Inclusive Cultural Heritage in Europe through 3D semantic modelling proposes a workflow aimed at the achievements of efficient 3D digitization methods, post-processing tools for an enriched semantic modelling, web-based solutions and applications to ensure a wide access to experts and non-experts. In order to face these challenges and to start solving the issue of the large amount of captured data and time-consuming processes in the production of 3D digital models, an Optimized Data Acquisition Protocol (DAP) has been set up. The purpose is to guide the processes of digitization of cultural heritage, respecting needs, requirements and specificities of cultural assets.

  1. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology.

    PubMed

    Zhao, Yu; Li, Yang; Mao, Shuangshuang; Sun, Wei; Yao, Rui

    2015-11-02

    Three-dimensional (3D) cell printing technology has provided a versatile methodology to fabricate cell-laden tissue-like constructs and in vitro tissue/pathological models for tissue engineering, drug testing and screening applications. However, it still remains a challenge to print bioinks with high viscoelasticity to achieve long-term stable structure and maintain high cell survival rate after printing at the same time. In this study, we systematically investigated the influence of 3D cell printing parameters, i.e. composition and concentration of bioink, holding temperature and holding time, on the printability and cell survival rate in microextrusion-based 3D cell printing technology. Rheological measurements were utilized to characterize the viscoelasticity of gelatin-based bioinks. Results demonstrated that the bioink viscoelasticity was increased when increasing the bioink concentration, increasing holding time and decreasing holding temperature below gelation temperature. The decline of cell survival rate after 3D cell printing process was observed when increasing the viscoelasticity of the gelatin-based bioinks. However, different process parameter combinations would result in the similar rheological characteristics and thus showed similar cell survival rate after 3D bioprinting process. On the other hand, bioink viscoelasticity should also reach a certain point to ensure good printability and shape fidelity. At last, we proposed a protocol for 3D bioprinting of temperature-sensitive gelatin-based hydr