NASA Astrophysics Data System (ADS)
Miensopust, Marion P.; Queralt, Pilar; Jones, Alan G.; 3D MT modellers
2013-06-01
Over the last half decade the need for, and importance of, three-dimensional (3-D) modelling of magnetotelluric (MT) data have increased dramatically and various 3-D forward and inversion codes are in use and some have become commonly available. Comparison of forward responses and inversion results is an important step for code testing and validation prior to `production' use. The various codes use different mathematical approximations to the problem (finite differences, finite elements or integral equations), various orientations of the coordinate system, different sign conventions for the time dependence and various inversion strategies. Additionally, the obtained results are dependent on data analysis, selection and correction as well as on the chosen mesh, inversion parameters and regularization adopted, and therefore, a careful and knowledge-based use of the codes is essential. In 2008 and 2011, during two workshops at the Dublin Institute for Advanced Studies over 40 people from academia (scientists and students) and industry from around the world met to discuss 3-D MT inversion. These workshops brought together a mix of code writers as well as code users to assess the current status of 3-D modelling, to compare the results of different codes, and to discuss and think about future improvements and new aims in 3-D modelling. To test the numerical forward solutions, two 3-D models were designed to compare the responses obtained by different codes and/or users. Furthermore, inversion results of these two data sets and two additional data sets obtained from unknown models (secret models) were also compared. In this manuscript the test models and data sets are described (supplementary files are available) and comparisons of the results are shown. Details regarding the used data, forward and inversion parameters as well as computational power are summarized for each case, and the main discussion points of the workshops are reviewed. In general, the responses
High resolution 3D nonlinear integrated inversion
NASA Astrophysics Data System (ADS)
Li, Yong; Wang, Xuben; Li, Zhirong; Li, Qiong; Li, Zhengwen
2009-06-01
The high resolution 3D nonlinear integrated inversion method is based on nonlinear theory. Under layer control, the log data from several wells (or all wells) in the study area and seismic trace data adjacent to the wells are input to a network with multiple inputs and outputs and are integratedly trained to obtain an adaptive weight function of the entire study area. Integrated nonlinear mapping relationships are built and updated by the lateral and vertical geologic variations of the reservoirs. Therefore, the inversion process and its inversion results can be constrained and controlled and a stable seismic inversion section with high resolution with velocity inversion, impedance inversion, and density inversion sections, can be gained. Good geologic effects have been obtained in model computation tests and real data processing, which verified that this method has high precision, good practicality, and can be used for quantitative reservoir analysis.
3D Electromagnetic inversion using conjugate gradients
Newman, G.A.; Alumbaugh, D.L.
1997-06-01
In large scale 3D EM inverse problems it may not be possible to directly invert a full least-squares system matrix involving model sensitivity elements. Thus iterative methods must be employed. For the inverse problem, we favor either a linear or non-linear (NL) CG scheme, depending on the application. In a NL CG scheme, the gradient of the objective function is required at each relaxation step along with a univariate line search needed to determine the optimum model update. Solution examples based on both approaches will be presented.
3D stochastic inversion of magnetic data
NASA Astrophysics Data System (ADS)
Shamsipour, Pejman; Chouteau, Michel; Marcotte, Denis
2011-04-01
A stochastic inversion method based on a geostatistical approach is presented to recover 3D susceptibility models from magnetic data. The aim of applying geostatistics is to provide quantitative descriptions of natural variables distributed in space or in time and space. Cokriging, the method which is used in this paper, is a method of estimation that minimizes the theoretical estimation error variance by using auto- and cross-correlations of several variables. The covariances for total field, susceptibility and total field-susceptibility are estimated using the observed data. Then, the susceptibility is cokriged or simulated as the primary variable. In order to avoid the natural tendency of the estimated structure to lay near the surface, depth weighting is included in the cokriging system. The algorithm assumes there is no remanent magnetization and the observation data represent only induced magnetization effects. The method is applied on different synthetic models to demonstrate its suitability for 3D inversion of magnetic data. A case study using ground measurements of total field at the Perseverance mine (Quebec, Canada) is presented. The recovered 3D susceptibility model provides beneficial information that can be used to analyze the geology of massive sulfide for the domain under study.
3D geophysical inversion for contact surfaces
NASA Astrophysics Data System (ADS)
Lelièvre, Peter; Farquharson, Colin
2014-05-01
Geologists' interpretations about the Earth typically involve distinct rock units with contacts (interfaces) between them. In contrast, standard minimum-structure volumetric inversions (performed on meshes of space-filling cells) recover smooth models inconsistent with such interpretations. There are several approaches through which geophysical inversion can help recover models with the desired characteristics. Some authors have developed iterative strategies in which several volumetric inversions are performed with regularization parameters changing to achieve sharper interfaces at automatically determined locations. Another approach is to redesign the regularization to be consistent with the desired model characteristics, e.g. L1-like norms or compactness measures. A few researchers have taken approaches that limit the recovered values to lie within particular ranges, resulting in sharp discontinuities; these include binary inversion, level set methods and clustering strategies. In most of the approaches mentioned above, the model parameterization considers the physical properties in each of the many space-filling cells within the volume of interest. The exception are level set methods, in which a higher dimensional function is parameterized and the contact surface is determined from the zero-level of that function. However, even level-set methods rely on an underlying volumetric mesh. We are researching a fundamentally different type of inversion that parameterizes the Earth in terms of the contact surfaces between rock units. 3D geological Earth models typically comprise wireframe surfaces of tessellated triangles or other polygonal planar facets. This wireframe representation allows for flexible and efficient generation of complicated geological structures. Therefore, a natural approach for representing a geophysical model in an inversion is to parameterize the wireframe contact surfaces as the coordinates of the nodes (facet vertices). The geological and
TACO3D. 3-D Finite Element Heat Transfer Code
Mason, W.E.
1992-03-04
TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.
The novel high-performance 3-D MT inverse solver
NASA Astrophysics Data System (ADS)
Kruglyakov, Mikhail; Geraskin, Alexey; Kuvshinov, Alexey
2016-04-01
We present novel, robust, scalable, and fast 3-D magnetotelluric (MT) inverse solver. The solver is written in multi-language paradigm to make it as efficient, readable and maintainable as possible. Separation of concerns and single responsibility concepts go through implementation of the solver. As a forward modelling engine a modern scalable solver extrEMe, based on contracting integral equation approach, is used. Iterative gradient-type (quasi-Newton) optimization scheme is invoked to search for (regularized) inverse problem solution, and adjoint source approach is used to calculate efficiently the gradient of the misfit. The inverse solver is able to deal with highly detailed and contrasting models, allows for working (separately or jointly) with any type of MT responses, and supports massive parallelization. Moreover, different parallelization strategies implemented in the code allow optimal usage of available computational resources for a given problem statement. To parameterize an inverse domain the so-called mask parameterization is implemented, which means that one can merge any subset of forward modelling cells in order to account for (usually) irregular distribution of observation sites. We report results of 3-D numerical experiments aimed at analysing the robustness, performance and scalability of the code. In particular, our computational experiments carried out at different platforms ranging from modern laptops to HPC Piz Daint (6th supercomputer in the world) demonstrate practically linear scalability of the code up to thousands of nodes.
DYNA3D Code Practices and Developments
Lin, L.; Zywicz, E.; Raboin, P.
2000-04-21
DYNA3D is an explicit, finite element code developed to solve high rate dynamic simulations for problems of interest to the engineering mechanics community. The DYNA3D code has been under continuous development since 1976[1] by the Methods Development Group in the Mechanical Engineering Department of Lawrence Livermore National Laboratory. The pace of code development activities has substantially increased in the past five years, growing from one to between four and six code developers. This has necessitated the use of software tools such as CVS (Concurrent Versions System) to help manage multiple version updates. While on-line documentation with an Adobe PDF manual helps to communicate software developments, periodically a summary document describing recent changes and improvements in DYNA3D software is needed. The first part of this report describes issues surrounding software versions and source control. The remainder of this report details the major capability improvements since the last publicly released version of DYNA3D in 1996. Not included here are the many hundreds of bug corrections and minor enhancements, nor the development in DYNA3D between the manual release in 1993[2] and the public code release in 1996.
Parallel CARLOS-3D code development
Putnam, J.M.; Kotulski, J.D.
1996-02-01
CARLOS-3D is a three-dimensional scattering code which was developed under the sponsorship of the Electromagnetic Code Consortium, and is currently used by over 80 aerospace companies and government agencies. The code has been extensively validated and runs on both serial workstations and parallel super computers such as the Intel Paragon. CARLOS-3D is a three-dimensional surface integral equation scattering code based on a Galerkin method of moments formulation employing Rao- Wilton-Glisson roof-top basis for triangular faceted surfaces. Fully arbitrary 3D geometries composed of multiple conducting and homogeneous bulk dielectric materials can be modeled. This presentation describes some of the extensions to the CARLOS-3D code, and how the operator structure of the code facilitated these improvements. Body of revolution (BOR) and two-dimensional geometries were incorporated by simply including new input routines, and the appropriate Galerkin matrix operator routines. Some additional modifications were required in the combined field integral equation matrix generation routine due to the symmetric nature of the BOR and 2D operators. Quadrilateral patched surfaces with linear roof-top basis functions were also implemented in the same manner. Quadrilateral facets and triangular facets can be used in combination to more efficiently model geometries with both large smooth surfaces and surfaces with fine detail such as gaps and cracks. Since the parallel implementation in CARLOS-3D is at high level, these changes were independent of the computer platform being used. This approach minimizes code maintenance, while providing capabilities with little additional effort. Results are presented showing the performance and accuracy of the code for some large scattering problems. Comparisons between triangular faceted and quadrilateral faceted geometry representations will be shown for some complex scatterers.
3D Multigroup Sn Neutron Transport Code
2001-02-14
ATTILA is a 3D multigroup transport code with arbitrary order ansotropic scatter. The transport equation is solved in first order form using a tri-linear discontinuous spatial differencing on an arbitrary tetrahedral mesh. The overall solution technique is source iteration with DSA acceleration of the scattering source. Anisotropic boundary and internal sources may be entered in the form of spherical harmonics moments. Alpha and k eigenvalue problems are allowed, as well as fixed source problems. Forwardmore » and adjoint solutions are available. Reflective, vacumn, and source boundary conditions are available. ATTILA can perform charged particle transport calculations using slowing down (CSD) terms. ATTILA can also be used to peform infra-red steady-state calculations for radiative transfer purposes.« less
3D Elastic Seismic Wave Propagation Code
1998-09-23
E3D is capable of simulating seismic wave propagation in a 3D heterogeneous earth. Seismic waves are initiated by earthquake, explosive, and/or other sources. These waves propagate through a 3D geologic model, and are simulated as synthetic seismograms or other graphical output.
On the Inverse Problem of Binocular 3D Motion Perception
Lages, Martin; Heron, Suzanne
2010-01-01
It is shown that existing processing schemes of 3D motion perception such as interocular velocity difference, changing disparity over time, as well as joint encoding of motion and disparity, do not offer a general solution to the inverse optics problem of local binocular 3D motion. Instead we suggest that local velocity constraints in combination with binocular disparity and other depth cues provide a more flexible framework for the solution of the inverse problem. In the context of the aperture problem we derive predictions from two plausible default strategies: (1) the vector normal prefers slow motion in 3D whereas (2) the cyclopean average is based on slow motion in 2D. Predicting perceived motion directions for ambiguous line motion provides an opportunity to distinguish between these strategies of 3D motion processing. Our theoretical results suggest that velocity constraints and disparity from feature tracking are needed to solve the inverse problem of 3D motion perception. It seems plausible that motion and disparity input is processed in parallel and integrated late in the visual processing hierarchy. PMID:21124957
3D stochastic geophysical inversion for contact surface geometry
NASA Astrophysics Data System (ADS)
Lelièvre, Peter; Farquharson, Colin; Bijani, Rodrigo
2015-04-01
Geologists' interpretations about the Earth typically involve distinct rock units with contacts (interfaces) between them. As such, 3D geological Earth models typically comprise wireframe contact surfaces of tessellated triangles or other polygonal planar facets. In contrast, standard minimum-structure geophysical inversions are performed on meshes of space-filling cells (typically prisms or tetrahedra) and recover smoothly varying physical property distributions that are inconsistent with typical geological interpretations. There are several approaches through which mesh-based geophysical inversion can help recover models with some of the desired characteristics. However, a more effective strategy is to consider a fundamentally different type of inversion that works directly with models that comprise surfaces representing contacts between rock units. We are researching such an approach, our goal being to perform geophysical forward and inverse modelling directly with 3D geological models of any complexity. Geological and geophysical models should be specified using the same parameterization such that they are, in essence, the same Earth model. We parameterize the wireframe contact surfaces in a 3D model as the coordinates of the nodes (facet vertices). The physical properties of each rock unit in a model remain fixed while the geophysical inversion controls the position of the contact surfaces via the control nodes, perturbing the surfaces as required to fit the geophysical data responses. This is essentially a "geometry inversion", which can be used to recover the unknown geometry of a target body or to investigate the viability of a proposed Earth model. We apply global optimization strategies to solve the inverse problem, including stochastic sampling to obtain statistical information regarding the likelihood of particular features in the model, helping to assess the viability of a proposed model. Jointly inverting multiple types of geophysical data is simple
3D magnetotelluric inversion with full distortion matrix
NASA Astrophysics Data System (ADS)
Gribenko, A. V.; Zhdanov, M. S.
2014-12-01
Distortion of regional electric fields by local structures represent one of the major problems facing three-dimensional magnetotelluric (MT) interpretation. Effect of 3D local inhomogenities on MT data can be described by a real 2x2 distortion matrix. In this project we develop a method of simultaneous inversion of the full MT impedance data for 3D conductivity distribution and for the distortion matrix. Tikhonov regularization is employed to solve the resulting inverse problem. Integral equations method is used to compute MT responses. Minimization of the cost functional is achieved via conjugate gradient method. The inversion algorithm is tested on the synthetic data from Dublin Secret Model II (DSM 2) for which multiple inversion solutions are available for comparison. Inclusion of the distortion matrix provides faster convergence and allows coarser discretization of the near-surface while achievingsimilar or better data fits as inversion for the conductivity only with finely discretized shallow regions. As a field data example we chose a subset of the EarthScope MT dataset covering Great Basin and adjacent areas of the Western United States. Great Basin data inversion identified several prominent conductive zones which correlate well with areas of tectonic and geothermal activity.
Direct inversion of digital 3D Fraunhofer holography maps
NASA Astrophysics Data System (ADS)
Podorov, Sergei G.; Förster, Eckhart
2016-01-01
The Differential Fourier Holography (DFH) gives an exact mathematical solution of the inverse problem of diffraction in the Fraunhofer regime. After the first publication [1] the Differential Fourier Holography was successfully applied in many experiments to obtain amplitude and phase information about two-dimensional (2D) images. In this article we demonstrate numerically the possibility to apply the DFH also for investigation of unknown 3D Objects. The first simulation is made for a double-spiral structure plus a line as a reference object.
3D magnetic inversion by planting anomalous densities
NASA Astrophysics Data System (ADS)
Uieda, L.; Barbosa, V. C.
2013-05-01
We present a new 3D magnetic inversion algorithm based on the computationally efficient method of planting anomalous densities. The algorithm consists of an iterative growth of the anomalous bodies around prismatic elements called "seeds". These seeds are user-specified and have known magnetizations. Thus, the seeds provide a way for the interpreter to specify the desired skeleton of the anomalous bodies. The inversion algorithm is computationally efficient due to various optimizations made possible by the iterative nature of the growth process. The control provided by the use of seeds allows one to test different hypothesis about the geometry and magnetization of targeted anomalous bodies. To demonstrate this capability, we applied our inversion method to the Morro do Engenho (ME) and A2 magnetic anomalies, central Brazil (Figure 1a). ME is an outcropping alkaline intrusion formed by dunites, peridotites and pyroxenites with known magnetization. A2 is a magnetic anomaly to the Northeast of ME and is thought to be a similar intrusion that is not outcropping. Therefore, a plausible hypothesis is that A2 has the same magnetization as ME. We tested this hypothesis by performing an inversion using a single seed for each body. Both seeds had the same magnetization. Figure 1b shows that the inversion produced residuals up to 2000 nT over A2 (i.e., a poor fit) and less than 400 nT over ME (i.e., an acceptable fit). Figure 1c shows that ME is a compact outcropping body with bottom at approximately 5 km, which is in agreement with previous interpretations. However, the estimate produced by the inversion for A2 is outcropping and is not compact. In summary, the estimate for A2 provides a poor fit to the observations and is not in accordance with the geologic information. This leads to the conclusion that A2 does not have the same magnetization as ME. These results indicate the usefulness and capabilities of the inversion method here proposed.; a) total field magnetic anomaly
Inverse Tomo-Lithography for Making Microscopic 3D Parts
NASA Technical Reports Server (NTRS)
White, Victor; Wiberg, Dean
2003-01-01
According to a proposal, basic x-ray lithography would be extended to incorporate a technique, called inverse tomography, that would enable the fabrication of microscopic three-dimensional (3D) objects. The proposed inverse tomo-lithographic process would make it possible to produce complex shaped, submillimeter-sized parts that would be difficult or impossible to make in any other way. Examples of such shapes or parts include tapered helices, paraboloids with axes of different lengths, and even Archimedean screws that could serve as rotors in microturbines. The proposed inverse tomo-lithographic process would be based partly on a prior microfabrication process known by the German acronym LIGA (lithographie, galvanoformung, abformung, which means lithography, electroforming, molding). In LIGA, one generates a precise, high-aspect ratio pattern by exposing a thick, x-ray-sensitive resist material to an x-ray beam through a mask that contains the pattern. One can electrodeposit metal into the developed resist pattern to form a precise metal part, then dissolve the resist to free the metal. Aspect ratios of 100:1 and patterns into resist thicknesses of several millimeters are possible.
Multitasking the code ARC3D. [for computational fluid dynamics
NASA Technical Reports Server (NTRS)
Barton, John T.; Hsiung, Christopher C.
1986-01-01
The CRAY multitasking system was developed in order to utilize all four processors and sharply reduce the wall clock run time. This paper describes the techniques used to modify the computational fluid dynamics code ARC3D for this run and analyzes the achieved speedup. The ARC3D code solves either the Euler or thin-layer N-S equations using an implicit approximate factorization scheme. Results indicate that multitask processing can be used to achieve wall clock speedup factors of over three times, depending on the nature of the program code being used. Multitasking appears to be particularly advantageous for large-memory problems running on multiple CPU computers.
Inverse rendering of faces with a 3D morphable model.
Aldrian, Oswald; Smith, William A P
2013-05-01
In this paper, we present a complete framework to inverse render faces with a 3D Morphable Model (3DMM). By decomposing the image formation process into geometric and photometric parts, we are able to state the problem as a multilinear system which can be solved accurately and efficiently. As we treat each contribution as independent, the objective function is convex in the parameters and a global solution is guaranteed. We start by recovering 3D shape using a novel algorithm which incorporates generalization error of the model obtained from empirical measurements. We then describe two methods to recover facial texture, diffuse lighting, specular reflectance, and camera properties from a single image. The methods make increasingly weak assumptions and can be solved in a linear fashion. We evaluate our findings on a publicly available database, where we are able to outperform an existing state-of-the-art algorithm. We demonstrate the usability of the recovered parameters in a recognition experiment conducted on the CMU-PIE database. PMID:23520253
Interface requirements to couple thermal-hydraulic codes to 3D neutronic codes
Langenbuch, S.; Austregesilo, H.; Velkov, K.
1997-07-01
The present situation of thermalhydraulics codes and 3D neutronics codes is briefly described and general considerations for coupling of these codes are discussed. Two different basic approaches of coupling are identified and their relative advantages and disadvantages are discussed. The implementation of the coupling for 3D neutronics codes in the system ATHLET is presented. Meanwhile, this interface is used for coupling three different 3D neutronics codes.
MOM3D/EM-ANIMATE - MOM3D WITH ANIMATION CODE
NASA Technical Reports Server (NTRS)
Shaeffer, J. F.
1994-01-01
MOM3D (LAR-15074) is a FORTRAN method-of-moments electromagnetic analysis algorithm for open or closed 3-D perfectly conducting or resistive surfaces. Radar cross section with plane wave illumination is the prime analysis emphasis; however, provision is also included for local port excitation for computing antenna gain patterns and input impedances. The Electric Field Integral Equation form of Maxwell's equations is solved using local triangle couple basis and testing functions with a resultant system impedance matrix. The analysis emphasis is not only for routine RCS pattern predictions, but also for phenomenological diagnostics: bistatic imaging, currents, and near scattered/total electric fields. The images, currents, and near fields are output in form suitable for animation. MOM3D computes the full backscatter and bistatic radar cross section polarization scattering matrix (amplitude and phase), body currents and near scattered and total fields for plane wave illumination. MOM3D also incorporates a new bistatic k space imaging algorithm for computing down range and down/cross range diagnostic images using only one matrix inversion. MOM3D has been made memory and cpu time efficient by using symmetric matrices, symmetric geometry, and partitioned fixed and variable geometries suitable for design iteration studies. MOM3D may be run interactively or in batch mode on 486 IBM PCs and compatibles, UNIX workstations or larger computers. A 486 PC with 16 megabytes of memory has the potential to solve a 30 square wavelength (containing 3000 unknowns) symmetric configuration. Geometries are described using a triangular mesh input in the form of a list of spatial vertex points and a triangle join connection list. The EM-ANIMATE (LAR-15075) program is a specialized visualization program that displays and animates the near-field and surface-current solutions obtained from an electromagnetics program, in particular, that from MOM3D. The EM-ANIMATE program is windows based and
Solution accelerators for large scale 3D electromagnetic inverse problems
Newman, Gregory A.; Boggs, Paul T.
2004-04-05
We provide a framework for preconditioning nonlinear 3D electromagnetic inverse scattering problems using nonlinear conjugate gradient (NLCG) and limited memory (LM) quasi-Newton methods. Key to our approach is the use of an approximate adjoint method that allows for an economical approximation of the Hessian that is updated at each inversion iteration. Using this approximate Hessian as a preconditoner, we show that the preconditioned NLCG iteration converges significantly faster than the non-preconditioned iteration, as well as converging to a data misfit level below that observed for the non-preconditioned method. Similar conclusions are also observed for the LM iteration; preconditioned with the approximate Hessian, the LM iteration converges faster than the non-preconditioned version. At this time, however, we see little difference between the convergence performance of the preconditioned LM scheme and the preconditioned NLCG scheme. A possible reason for this outcome is the behavior of the line search within the LM iteration. It was anticipated that, near convergence, a step size of one would be approached, but what was observed, instead, were step lengths that were nowhere near one. We provide some insights into the reasons for this behavior and suggest further research that may improve the performance of the LM methods.
Recent update of the RPLUS2D/3D codes
NASA Technical Reports Server (NTRS)
Tsai, Y.-L. Peter
1991-01-01
The development of the RPLUS2D/3D codes is summarized. These codes utilize LU algorithms to solve chemical non-equilibrium flows in a body-fitted coordinate system. The motivation behind the development of these codes is the need to numerically predict chemical non-equilibrium flows for the National AeroSpace Plane Program. Recent improvements include vectorization method, blocking algorithms for geometric flexibility, out-of-core storage for large-size problems, and an LU-SW/UP combination for CPU-time efficiency and solution quality.
RELAP5-3D Code Validation for RBMK Phenomena
Fisher, James Ebberly
1999-09-01
The RELAP5-3D thermal-hydraulic code was assessed against Japanese Safety Experiment Loop (SEL) and Heat Transfer Loop (HTL) tests. These tests were chosen because the phenomena present are applicable to analyses of Russian RBMK reactor designs. The assessment cases included parallel channel flow fluctuation tests at reduced and normal water levels, a channel inlet pipe rupture test, and a high power, density wave oscillation test. The results showed that RELAP5-3D has the capability to adequately represent these RBMK-related phenomena.
RELAP5-3D code validation for RBMK phenomena
Fisher, J.E.
1999-09-01
The RELAP5-3D thermal-hydraulic code was assessed against Japanese Safety Experiment Loop (SEL) and Heat Transfer Loop (HTL) tests. These tests were chosen because the phenomena present are applicable to analyses of Russian RBMK reactor designs. The assessment cases included parallel channel flow fluctuation tests at reduced and normal water levels, a channel inlet pipe rupture test, and a high power, density wave oscillation test. The results showed that RELAP5-3D has the capability to adequately represent these RBMK-related phenomena.
Finite-Source Inversion for the 2004 Parkfield Earthquake using 3D Velocity Model Green's Functions
NASA Astrophysics Data System (ADS)
Kim, A.; Dreger, D.; Larsen, S.
2008-12-01
.25 Hz but that the velocity model is fast at stations located very close to the fault. In this near-fault zone the model also underpredicts the amplitudes. This implies the need to include an additional low velocity zone in the fault zone to fit the data. For the finite fault modeling we use the same stations as in our previous study (Kim and Dreger 2008), and compare the results to investigate the effect of 3D Green's functions on kinematic source inversions. References: Brocher, T. M., (2005), Empirical relations between elastic wavespeeds and density in the Earth's crust, Bull. Seism. Soc. Am., 95, No. 6, 2081-2092. Eberhart-Phillips, D., and A.J. Michael, (1993), Three-dimensional velocity structure and seismicity in the Parkfield region, central California, J. Geophys. Res., 98, 15,737-15,758. Kim A., D. S. Dreger (2008), Rupture process of the 2004 Parkfield earthquake from near-fault seismic waveform and geodetic records, J. Geophys. Res., 113, B07308. Thurber, C., H. Zhang, F. Waldhauser, J. Hardebeck, A. Michaels, and D. Eberhart-Phillips (2006), Three- dimensional compressional wavespeed model, earthquake relocations, and focal mechanisms for the Parkfield, California, region, Bull. Seism. Soc. Am., 96, S38-S49. Larsen, S., and C. A. Schultz (1995), ELAS3D: 2D/3D elastic finite-difference wave propagation code, Technical Report No. UCRL-MA-121792, 19pp. Liu, P., and R. J. Archuleta (2004), A new nonlinear finite fault inversion with three-dimensional Green's functions: Application to the 1989 Loma Prieta, California, earthquake, J. Geophys. Res., 109, B02318.
VISRAD, 3-D Target Design and Radiation Simulation Code
NASA Astrophysics Data System (ADS)
Golovkina, Viktoriya; Macfarlane, Joseph; Golovkin, Igor; Kulkarni, Subodh
2014-10-01
The 3-D view factor code VISRAD is widely used in designing HEDP experiments at major laser and pulsed-power facilities, including NIF, OMEGA, OMEGA-EP, ORION, LMJ, Z, and PLX. It simulates target designs by generating a 3-D grid of surface elements, utilizing a variety of 3-D primitives and surface removal algorithms, and can be used to compute the radiation flux throughout the surface element grid by computing element-to-element view factors and solving power balance equations. Target set-up and beam pointing are facilitated by allowing users to specify positions and angular orientations using a variety of coordinates systems (e.g., that of any laser beam, target component, or diagnostic port). Analytic modeling for laser beam spatial profiles for OMEGA DPPs and NIF CPPs is used to compute laser intensity profiles throughout the grid of surface elements. We will discuss recent improvements to the software package and plans for future developments.
VISRAD, 3-D Target Design and Radiation Simulation Code
NASA Astrophysics Data System (ADS)
Li, Yingjie; Macfarlane, Joseph; Golovkin, Igor
2015-11-01
The 3-D view factor code VISRAD is widely used in designing HEDP experiments at major laser and pulsed-power facilities, including NIF, OMEGA, OMEGA-EP, ORION, LMJ, Z, and PLX. It simulates target designs by generating a 3-D grid of surface elements, utilizing a variety of 3-D primitives and surface removal algorithms, and can be used to compute the radiation flux throughout the surface element grid by computing element-to-element view factors and solving power balance equations. Target set-up and beam pointing are facilitated by allowing users to specify positions and angular orientations using a variety of coordinates systems (e.g., that of any laser beam, target component, or diagnostic port). Analytic modeling for laser beam spatial profiles for OMEGA DPPs and NIF CPPs is used to compute laser intensity profiles throughout the grid of surface elements. We will discuss recent improvements to the software package and plans for future developments.
3D Data Assimilation using VERB Diffusion Code
NASA Astrophysics Data System (ADS)
Shprits, Y.; Kondrashov, D. A.; Kellerman, A. C.; Subbotin, D.
2012-12-01
Significant progress has been done in recent years in application of the data assimilation tools to the radiation belt research. Previous studies concentrated on the analysis of radial profiles of phase space density using multi-satellite measurements and radial transport models. In this study we present analysis of the 3D phase space density using the VERB-3D code blended with CRRES observations by means of operator-splitting Kalman filtering. Assimilation electron fluxes at various energies and pitch-angles into the model allows us to utilize a vast amount of data including information on pitch-angle distributions and radial energy spectra. 3D data assimilation of the radiation belts allows us to differentiate between various acceleration and loss mechanisms. We present reanalysis of the radiation belts and find tell-tale signatures of various physical processes.
NASA Astrophysics Data System (ADS)
Usui, Yoshiya
2015-08-01
A 3-D magnetotelluric (MT) inversion code using unstructured tetrahedral elements has been developed in order to correct the topographic effect by directly incorporating it into computational grids. The electromagnetic field and response functions get distorted at the observation sites of MT surveys because of the undulating surface topography, and without correcting this distortion, the subsurface structure can be misinterpreted. Of the two methods proposed to correct the topographic effect, the method incorporating topography explicitly in the inversion is applicable to a wider range of surveys. For forward problems, it has been shown that the finite element method using unstructured tetrahedral elements is useful for the incorporation of topography. Therefore, this paper shows the applicability of unstructured tetrahedral elements in MT inversion using the newly developed code. The inversion code is capable of using the impedance tensor, the vertical magnetic transfer function (VMTF), and the phase tensor as observational data, and it estimates the subsurface resistivity values and the distortion tensor of each observation site. The forward part of the code was verified using two test models, one incorporating topographic effect and one without, and the verifications showed that the results were almost the same as those of previous works. The developed inversion code was then applied to synthetic data from a MT survey, and was verified as being able to recover the resistivity structure as well as other inversion codes. Finally, to confirm its applicability to the data affected by topography, inversion was performed using the synthetic data of the model that included two overlapping mountains. In each of the cases using the impedance tensor, the VMTF and the phase tensor, by including the topography in the mesh, the subsurface resistivity was determined more proficiently than in the case using the flat-surface mesh. Although the locations of the anomalies were
NASA Astrophysics Data System (ADS)
Ullmann, A.; Scheunert, M.; Afanasjew, M.; Börner, R.-U.; Siemon, B.; Spitzer, K.
2016-07-01
As a standard procedure, multi-frequency helicopter-borne electromagnetic (HEM) data are inverted to conductivity-depth models using 1-D inversion methods, which may, however, fail in areas of strong lateral conductivity contrasts (so-called induction anomalies). Such areas require more realistic multi-dimensional modelling. Since the full 3-D inversion of an entire HEM data set is still extremely time consuming, our idea is to combine fast 1-D and accurate but numerically expensive 3-D inversion of HEM data in such a way that the full 3-D inversion is only carried out for those parts of a HEM survey which are affected by induction anomalies. For all other parts, a 1-D inversion method is sufficient. We present a newly developed algorithm for identification, selection, and extraction of induction anomalies in HEM data sets and show how the 3-D inversion model of the anomalous area is re-integrated into the quasi-1-D background. Our proposed method is demonstrated to work properly on a synthetic and a field HEM data set from the Cuxhaven tunnel valley in Germany. We show that our 1-D/3-D approach yields better results compared to 1-D inversions in areas where 3-D effects occur.
3D Laplace-domain full waveform inversion using a single GPU card
NASA Astrophysics Data System (ADS)
Shin, Jungkyun; Ha, Wansoo; Jun, Hyunggu; Min, Dong-Joo; Shin, Changsoo
2014-06-01
The Laplace-domain full waveform inversion is an efficient long-wavelength velocity estimation method for seismic datasets lacking low-frequency components. However, to invert a 3D velocity model, a large cluster of CPU cores have commonly been required to overcome the extremely long computing time caused by a large impedance matrix and a number of source positions. In this study, a workstation with a single GPU card (NVIDIA GTX 580) is successfully used for the 3D Laplace-domain full waveform inversion rather than a large cluster of CPU cores. To exploit a GPU for our inversion algorithm, the routine for the iterative matrix solver is ported to the CUDA programming language for forward and backward modeling parts with minimized modification of the remaining parts, which were originally written in Fortran 90. Using a uniformly structured grid set, nonzero values in the sparse impedance matrix can be arranged according to certain rules, which efficiently parallelize the preconditioned conjugate gradient method for a number of threads contained in the GPU card. We perform a numerical experiment to verify the accuracy of a floating point operation performed by a GPU to calculate the Laplace-domain wavefield. We also measure the efficiencies of the original CPU and modified GPU programs using a cluster of CPU cores and a workstation with a GPU card, respectively. Through the analysis, the parallelized inversion code for a GPU achieves the speedup of 14.7-24.6x compared to a CPU-based serial code depending on the degrees of freedom of the impedance matrix. Finally, the practicality of the proposed algorithm is examined by inverting a 3D long-wavelength velocity model using wide azimuth real datasets in 3.7 days.
Beam Optics Analysis - An Advanced 3D Trajectory Code
Ives, R. Lawrence; Bui, Thuc; Vogler, William; Neilson, Jeff; Read, Mike; Shephard, Mark; Bauer, Andrew; Datta, Dibyendu; Beal, Mark
2006-01-03
Calabazas Creek Research, Inc. has completed initial development of an advanced, 3D program for modeling electron trajectories in electromagnetic fields. The code is being used to design complex guns and collectors. Beam Optics Analysis (BOA) is a fully relativistic, charged particle code using adaptive, finite element meshing. Geometrical input is imported from CAD programs generating ACIS-formatted files. Parametric data is inputted using an intuitive, graphical user interface (GUI), which also provides control of convergence, accuracy, and post processing. The program includes a magnetic field solver, and magnetic information can be imported from Maxwell 2D/3D and other programs. The program supports thermionic emission and injected beams. Secondary electron emission is also supported, including multiple generations. Work on field emission is in progress as well as implementation of computer optimization of both the geometry and operating parameters. The principle features of the program and its capabilities are presented.
Beam Optics Analysis — An Advanced 3D Trajectory Code
NASA Astrophysics Data System (ADS)
Ives, R. Lawrence; Bui, Thuc; Vogler, William; Neilson, Jeff; Read, Mike; Shephard, Mark; Bauer, Andrew; Datta, Dibyendu; Beal, Mark
2006-01-01
Calabazas Creek Research, Inc. has completed initial development of an advanced, 3D program for modeling electron trajectories in electromagnetic fields. The code is being used to design complex guns and collectors. Beam Optics Analysis (BOA) is a fully relativistic, charged particle code using adaptive, finite element meshing. Geometrical input is imported from CAD programs generating ACIS-formatted files. Parametric data is inputted using an intuitive, graphical user interface (GUI), which also provides control of convergence, accuracy, and post processing. The program includes a magnetic field solver, and magnetic information can be imported from Maxwell 2D/3D and other programs. The program supports thermionic emission and injected beams. Secondary electron emission is also supported, including multiple generations. Work on field emission is in progress as well as implementation of computer optimization of both the geometry and operating parameters. The principle features of the program and its capabilities are presented.
NASA Astrophysics Data System (ADS)
Liu, B.; Li, S. C.; Nie, L. C.; Wang, J.; L, X.; Zhang, Q. S.
2012-12-01
Traditional inversion method is the most commonly used procedure for three-dimensional (3D) resistivity inversion, which usually takes the linearization of the problem and accomplish it by iterations. However, its accuracy is often dependent on the initial model, which can make the inversion trapped in local optima, even cause a bad result. Non-linear method is a feasible way to eliminate the dependence on the initial model. However, for large problems such as 3D resistivity inversion with inversion parameters exceeding a thousand, main challenges of non-linear method are premature and quite low search efficiency. To deal with these problems, we present an improved Genetic Algorithm (GA) method. In the improved GA method, smooth constraint and inequality constraint are both applied on the object function, by which the degree of non-uniqueness and ill-conditioning is decreased. Some measures are adopted from others by reference to maintain the diversity and stability of GA, e.g. real-coded method, and the adaptive adjustment of crossover and mutation probabilities. Then a generation method of approximately uniform initial population is proposed in this paper, with which uniformly distributed initial generation can be produced and the dependence on initial model can be eliminated. Further, a mutation direction control method is presented based on the joint algorithm, in which the linearization method is embedded in GA. The update vector produced by linearization method is used as mutation increment to maintain a better search direction compared with the traditional GA with non-controlled mutation operation. By this method, the mutation direction is optimized and the search efficiency is improved greatly. The performance of improved GA is evaluated by comparing with traditional inversion results in synthetic example or with drilling columnar sections in practical example. The synthetic and practical examples illustrate that with the improved GA method we can eliminate
Streamlining of the RELAP5-3D Code
Mesina, George L; Hykes, Joshua; Guillen, Donna Post
2007-11-01
RELAP5-3D is widely used by the nuclear community to simulate general thermal hydraulic systems and has proven to be so versatile that the spectrum of transient two-phase problems that can be analyzed has increased substantially over time. To accommodate the many new types of problems that are analyzed by RELAP5-3D, both the physics and numerical methods of the code have been continuously improved. In the area of computational methods and mathematical techniques, many upgrades and improvements have been made decrease code run time and increase solution accuracy. These include vectorization, parallelization, use of improved equation solvers for thermal hydraulics and neutron kinetics, and incorporation of improved library utilities. In the area of applied nuclear engineering, expanded capabilities include boron and level tracking models, radiation/conduction enclosure model, feedwater heater and compressor components, fluids and corresponding correlations for modeling Generation IV reactor designs, and coupling to computational fluid dynamics solvers. Ongoing and proposed future developments include improvements to the two-phase pump model, conversion to FORTRAN 90, and coupling to more computer programs. This paper summarizes the general improvements made to RELAP5-3D, with an emphasis on streamlining the code infrastructure for improved maintenance and development. With all these past, present and planned developments, it is necessary to modify the code infrastructure to incorporate modifications in a consistent and maintainable manner. Modifying a complex code such as RELAP5-3D to incorporate new models, upgrade numerics, and optimize existing code becomes more difficult as the code grows larger. The difficulty of this as well as the chance of introducing errors is significantly reduced when the code is structured. To streamline the code into a structured program, a commercial restructuring tool, FOR_STRUCT, was applied to the RELAP5-3D source files. The
Towards a 3D Space Radiation Transport Code
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Tripathl, R. K.; Cicomptta, F. A.; Heinbockel, J. H.; Tweed, J.
2002-01-01
High-speed computational procedures for space radiation shielding have relied on asymptotic expansions in terms of the off-axis scatter and replacement of the general geometry problem by a collection of flat plates. This type of solution was derived for application to human rated systems in which the radius of the shielded volume is large compared to the off-axis diffusion limiting leakage at lateral boundaries. Over the decades these computational codes are relatively complete and lateral diffusion effects are now being added. The analysis for developing a practical full 3D space shielding code is presented.
CALTRANS: A parallel, deterministic, 3D neutronics code
Carson, L.; Ferguson, J.; Rogers, J.
1994-04-01
Our efforts to parallelize the deterministic solution of the neutron transport equation has culminated in a new neutronics code CALTRANS, which has full 3D capability. In this article, we describe the layout and algorithms of CALTRANS and present performance measurements of the code on a variety of platforms. Explicit implementation of the parallel algorithms of CALTRANS using both the function calls of the Parallel Virtual Machine software package (PVM 3.2) and the Meiko CS-2 tagged message passing library (based on the Intel NX/2 interface) are provided in appendices.
3 D gravity inversion based on SL0 norm
NASA Astrophysics Data System (ADS)
Meng, Zhaohai; Xu, Xuechun; Zheng, Changqing
2015-04-01
The inversion of three-dimensional geophysical properties (density, magnetic susceptibility, electrical resistivity) has occupies very important position in geophysical interpretation for geophysical interpreters, combining with the corresponding geological data, it will produce a very good solution to solve the corresponding geological problems, especially, in the separate abnormal body of ore bodies .the method would have produce much more good results. There are mainly three kinds of mainstream geophysical inversion methods in the now geophysical inversion method : 1. The minimum model method, 2. the most gentle model method, 3. The smoothest model. The main solution is the optimal solution by solving mixed set equations to solve the corresponding inverse problem, the main difference of the three methods is the differences of the weighting function mode, and in essence, it is to find the best solution based on regularization principle, finally, the reaction of the convergence are obtained. The methods are based on the minimum volume, such as compression inversion and focusing inversion. The two methods also can get much more clearer and sharper boundaries. This abstract choose of the inversion method is based on the theory of minimum volume method. The selection of weighted function can effectively reduce the inversion of the number of iterations and accelerate the rate of inversion. it can conform to the requirements of the current large-scale airborne gravity. Without reducing the quality of the inversion, at the same time, it can accelerate the rate of inversion. The inversion can get the sharp boundary, spatial location, and density attributes of the abnormal body. it needs the quality of the computer performance and geophysical data. Therefore it requests to reduce the random and random noise as far as possible. According to a lot of model tests, It proves that the choice of the weighting function can get very good inversion result. In the inversion
3D Finite Element Trajectory Code with Adaptive Meshing
NASA Astrophysics Data System (ADS)
Ives, Lawrence; Bui, Thuc; Vogler, William; Bauer, Andy; Shephard, Mark; Beal, Mark; Tran, Hien
2004-11-01
Beam Optics Analysis, a new, 3D charged particle program is available and in use for the design of complex, 3D electron guns and charged particle devices. The code reads files directly from most CAD and solid modeling programs, includes an intuitive Graphical User Interface (GUI), and a robust mesh generator that is fully automatic. Complex problems can be set up, and analysis initiated in minutes. The program includes a user-friendly post processor for displaying field and trajectory data using 3D plots and images. The electrostatic solver is based on the standard nodal finite element method. The magnetostatic field solver is based on the vector finite element method and is also called during the trajectory simulation process to solve for self magnetic fields. The user imports the geometry from essentially any commercial CAD program and uses the GUI to assign parameters (voltages, currents, dielectric constant) and designate emitters (including work function, emitter temperature, and number of trajectories). The the mesh is generated automatically and analysis is performed, including mesh adaptation to improve accuracy and optimize computational resources. This presentation will provide information on the basic structure of the code, its operation, and it's capabilities.
Implementation of a kappa-epsilon turbulence model to RPLUS3D code
NASA Technical Reports Server (NTRS)
Chitsomboon, Tawit
1992-01-01
The RPLUS3D code has been developed at the NASA Lewis Research Center to support the National Aerospace Plane (NASP) project. The code has the ability to solve three dimensional flowfields with finite rate combustion of hydrogen and air. The combustion process of the hydrogen-air system are simulated by an 18 reaction path, 8 species chemical kinetic mechanism. The code uses a Lower-Upper (LU) decomposition numerical algorithm as its basis, making it a very efficient and robust code. Except for the Jacobian matrix for the implicit chemistry source terms, there is no inversion of a matrix even though a fully implicit numerical algorithm is used. A k-epsilon turbulence model has recently been incorporated into the code. Initial validations have been conducted for a flow over a flat plate. Results of the validation studies are shown. Some difficulties in implementing the k-epsilon equations to the code are also discussed.
Code portability and data management considerations in the SAS3D LMFBR accident-analysis code
Dunn, F.E.
1981-01-01
The SAS3D code was produced from a predecessor in order to reduce or eliminate interrelated problems in the areas of code portability, the large size of the code, inflexibility in the use of memory and the size of cases that can be run, code maintenance, and running speed. Many conventional solutions, such as variable dimensioning, disk storage, virtual memory, and existing code-maintenance utilities were not feasible or did not help in this case. A new data management scheme was developed, coding standards and procedures were adopted, special machine-dependent routines were written, and a portable source code processing code was written. The resulting code is quite portable, quite flexible in the use of memory and the size of cases that can be run, much easier to maintain, and faster running. SAS3D is still a large, long running code that only runs well if sufficient main memory is available.
3D stochastic inversion and joint inversion of potential fields for multi scale parameters
NASA Astrophysics Data System (ADS)
Shamsipour, Pejman
In this thesis we present the development of new techniques for the interpretation of potential field (gravity and magnetic data), which are the most widespread economic geophysical methods used for oil and mineral exploration. These new techniques help to address the long-standing issue with the interpretation of potential fields, namely the intrinsic non-uniqueness inversion of these types of data. The thesis takes the form of three papers (four including Appendix), which have been published, or soon to be published, in respected international journals. The purpose of the thesis is to introduce new methods based on 3D stochastical approaches for: 1) Inversion of potential field data (magnetic), 2) Multiscale Inversion using surface and borehole data and 3) Joint inversion of geophysical potential field data. We first present a stochastic inversion method based on a geostatistical approach to recover 3D susceptibility models from magnetic data. The aim of applying geostatistics is to provide quantitative descriptions of natural variables distributed in space or in time and space. We evaluate the uncertainty on the parameter model by using geostatistical unconditional simulations. The realizations are post-conditioned by cokriging to observation data. In order to avoid the natural tendency of the estimated structure to lay near the surface, depth weighting is included in the cokriging system. Then, we introduce algorithm for multiscale inversion, the presented algorithm has the capability of inverting data on multiple supports. The method involves four main steps: i. upscaling of borehole parameters (It could be density or susceptibility) to block parameters, ii. selection of block to use as constraints based on a threshold on kriging variance, iii. inversion of observation data with selected block densities as constraints, and iv. downscaling of inverted parameters to small prisms. Two modes of application are presented: estimation and simulation. Finally, a novel
FARGO3D: A New GPU-oriented MHD Code
NASA Astrophysics Data System (ADS)
Benítez-Llambay, Pablo; Masset, Frédéric S.
2016-03-01
We present the FARGO3D code, recently publicly released. It is a magnetohydrodynamics code developed with special emphasis on the physics of protoplanetary disks and planet-disk interactions, and parallelized with MPI. The hydrodynamics algorithms are based on finite-difference upwind, dimensionally split methods. The magnetohydrodynamics algorithms consist of the constrained transport method to preserve the divergence-free property of the magnetic field to machine accuracy, coupled to a method of characteristics for the evaluation of electromotive forces and Lorentz forces. Orbital advection is implemented, and an N-body solver is included to simulate planets or stars interacting with the gas. We present our implementation in detail and present a number of widely known tests for comparison purposes. One strength of FARGO3D is that it can run on either graphical processing units (GPUs) or central processing units (CPUs), achieving large speed-up with respect to CPU cores. We describe our implementation choices, which allow a user with no prior knowledge of GPU programming to develop new routines for CPUs, and have them translated automatically for GPUs.
New 3D parallel SGILD modeling and inversion
Xie, G.; Li, J.; Majer, E.
1998-09-01
In this paper, a new parallel modeling and inversion algorithm using a Stochastic Global Integral and Local Differential equation (SGILD) is presented. The authors derived new acoustic integral equations and differential equation for statistical moments of the parameters and field. The new statistical moments integral equation on the boundary and local differential equations in domain will be used together to obtain mean wave field and its moments in the modeling. The new moments global Jacobian volume integral equation and the local Jacobian differential equations in domain will be used together to update the mean parameters and their moments in the inversion. A new parallel multiple hierarchy substructure direct algorithm or direct-iteration hybrid algorithm will be used to solve the sparse matrices and one smaller full matrix from domain to the boundary, in parallel. The SGILD modeling and imaging algorithm has many advantages over the conventional imaging approaches. The SGILD algorithm can be used for the stochastic acoustic, electromagnetic, and flow modeling and inversion, and are important for the prediction of oil, gas, coal, and geothermal energy reservoirs in geophysical exploration.
Inverse modeling of InSAR and ground leveling data for 3D volumetric strain distribution
NASA Astrophysics Data System (ADS)
Gallardo, L. A.; Glowacka, E.; Sarychikhina, O.
2015-12-01
Wide availability of modern Interferometric Synthetic aperture Radar (InSAR) data have made possible the extensive observation of differential surface displacements and are becoming an efficient tool for the detailed monitoring of terrain subsidence associated to reservoir dynamics, volcanic deformation and active tectonism. Unfortunately, this increasing popularity has not been matched by the availability of automated codes to estimate underground deformation, since many of them still rely on trial-error subsurface model building strategies. We posit that an efficient algorithm for the volumetric modeling of differential surface displacements should match the availability of current leveling and InSAR data and have developed an algorithm for the joint inversion of ground leveling and dInSAR data in 3D. We assume the ground displacements are originated by a stress free-volume strain distribution in a homogeneous elastic media and determined the displacement field associated to an ensemble of rectangular prisms. This formulation is then used to develop a 3D conjugate gradient inversion code that searches for the three-dimensional distribution of the volumetric strains that predict InSAR and leveling surface displacements simultaneously. The algorithm is regularized applying discontinuos first and zero order Thikonov constraints. For efficiency, the resulting computational code takes advantage of the resulting convolution integral associated to the deformation field and some basic tools for multithreading parallelization. We extensively test our algorithm on leveling and InSAR test and field data of the Northwest of Mexico and compare to some feasible geological scenarios of underground deformation.
RHALE: A 3-D MMALE code for unstructured grids
Peery, J.S.; Budge, K.G.; Wong, M.K.W.; Trucano, T.G.
1993-08-01
This paper describes RHALE, a multi-material arbitrary Lagrangian-Eulerian (MMALE) shock physics code. RHALE is the successor to CTH, Sandia`s 3-D Eulerian shock physics code, and will be capable of solving problems that CTH cannot adequately address. We discuss the Lagrangian solid mechanics capabilities of RHALE, which include arbitrary mesh connectivity, superior artificial viscosity, and improved material models. We discuss the MMALE algorithms that have been extended for arbitrary grids in both two- and three-dimensions. The MMALE addition to RHALE provides the accuracy of a Lagrangian code while allowing a calculation to proceed under very large material distortions. Coupling an arbitrary quadrilateral or hexahedral grid to the MMALE solution facilitates modeling of complex shapes with a greatly reduced number of computational cells. RHALE allows regions of a problem to be modeled with Lagrangian, Eulerian or ALE meshes. In addition, regions can switch from Lagrangian to ALE to Eulerian based on user input or mesh distortion. For ALE meshes, new node locations are determined with a variety of element based equipotential schemes. Element quantities are advected with donor, van Leer, or Super-B algorithms. Nodal quantities are advected with the second order SHALE or HIS algorithms. Material interfaces are determined with a modified Young`s high resolution interface tracker or the SLIC algorithm. RHALE has been used to model many problems of interest to the mechanics, hypervelocity impact, and shock physics communities. Results of a sampling of these problems are presented in this paper.
Variational Symplectic Orbit Code in 3-D Tokamak Geometry
NASA Astrophysics Data System (ADS)
Ellison, Charles; Qin, Hong; Tang, William M.
2011-10-01
Since advanced tokamak experiments - including ITER - are long-pulse systems, it is important to develop accurate numerical methods to track plasma dynamics over an extended temporal period. When attempting to model the motion of individual particles, standard integrators (e.g. 4th order Runge-Kutta) discretize the differential equations of motion - but do not possess desired properties such as energy conservation. The variational symplectic integrator adopts instead a different approach via minimizing the action of the guiding center motion to determine iteration rules. Consequently, the Lagrangian symplectic structure is conserved, and the numerical energy error is bounded by a small number for all time-steps. In previous work, the theoretical basis for this method was introduced, but the implementation was for 2-D geometry. To address realistic experimental scenarios, the variational symplectic integrator has been implemented for 3-D tokamak geometry for the first time. Sample results will be presented and compared with those from standard Runge-Kutta-based 3-D tokamak orbit codes. This work was supported by the DOE contract # DE-AC02-09CH11466 and the DOE FES Fellowship.
Direct inversion of digital 3D Fraunhofer holography maps.
Podorov, Sergei G; Förster, Eckhart
2016-01-20
Differential Fourier holography (DFH) gives an exact mathematical solution of the inverse problem of diffraction in the Fraunhofer regime. After the first publication [Opt. Express15, 9954 (2007)], DFH was successfully applied in many experiments to obtain amplitude and phase information about two-dimensional images. In this paper, we demonstrate numerically the possibility to apply DFH also for investigation of unknown three-dimensional objects. The first simulation is made for a double-spiral structure plus a line as a reference object.
Code System to Simulate 3D Tracer Dispersion in Atmosphere.
2002-01-25
Version 00 SHREDI is a shielding code system which executes removal-diffusion computations for bi-dimensional shields in r-z or x-y geometries. It may also deal with monodimensional problems (infinitely high cylinders or slabs). MESYST can simulate 3D tracer dispersion in the atmosphere. Three programs are part of this system: CRE_TOPO prepares the terrain data for MESYST. NOABL calculates three-dimensional free divergence windfields over complex terrain. PAS computes tracer concentrations and depositions on a given domain. Themore » purpose of this work is to develop a reliable simulation tool for pollutant atmospheric dispersion, which gives a realistic approach and allows one to compute the pollutant concentrations over complex terrains with good accuracy. The factional brownian model, which furnishes more accurate concentration values, is introduced to calculate pollutant atmospheric dispersion. The model was validated on SIESTA international experiments.« less
NASA Astrophysics Data System (ADS)
Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe
2016-04-01
The electrical resistivity tomography (ERT) method, initially developed for environmental and engineering exploration, is now commonly used for geological structures imaging. Such structures can present complex characteristics that conventional 2D inversion processes cannot perfectly integrate. Here we present a new 3D inversion algorithm named EResI, firstly developed for levee investigation, and presently applied to the study of a complex lava dome (the Puy de Dôme volcano, France). EResI algorithm is based on a conventional regularized Gauss-Newton inversion scheme and a 3D non-structured discretization of the model (double grid method based on tetrahedrons). This discretization allows to accurately model the topography of investigated structure (without a mesh deformation procedure) and also permits a precise location of the electrodes. Moreover, we demonstrate that a complete 3D unstructured discretization limits the number of inversion cells and is better adapted to the resolution capacity of tomography than a structured discretization. This study shows that a 3D inversion with a non-structured parametrization has some advantages compared to classical 2D inversions. The first advantage comes from the fact that a 2D inversion leads to artefacts due to 3D effects (3D topography, 3D internal resistivity). The second advantage comes from the fact that the capacity to experimentally align electrodes along an axis (for 2D surveys) depends on the constrains on the field (topography...). In this case, a 2D assumption induced by 2.5D inversion software prevents its capacity to model electrodes outside this axis leading to artefacts in the inversion result. The last limitation comes from the use of mesh deformation techniques used to accurately model the topography in 2D softwares. This technique used for structured discretization (Res2dinv) is prohibed for strong topography (>60 %) and leads to a small computational errors. A wide geophysical survey was carried out
Rodriguez, Brian D.; Sweetkind, Donald S.
2015-01-01
The 3-D inversion was generally able to reproduce the gross resistivity structure of the “known” model, but the simulated conductive volcanic composite unit horizons were often too shallow when compared to the “known” model. Additionally, the chosen computation parameters such as station spacing appear to have resulted in computational artifacts that are difficult to interpret but could potentially be removed with further refinements of the 3-D resistivity inversion modeling technique.
Levander, Alan R.
2004-12-01
Under ER63662, 3-D Seismic Experimentation and Advanced Processing/Inversion Development for Investigations of the Shallow Subsurface, we have completed a number of subprojects associated with the Hill Air Force Base (HAFB) high resolution 3-D reflection/tomography dataset.
3D Convection-pulsation Simulations with the HERACLES Code
NASA Astrophysics Data System (ADS)
Felix, S.; Audit, E.; Dintrans, B.
2015-10-01
We present 3D simulations of the coupling between surface convection and pulsations due to the κ-mechanism in classical Cepheids of the red edge of Hertzsprung-Russell diagram's instability strip. We show that 3D convection is less powerful than 2D convection and does not quench the radiative pulsations, leading to an efficient 3D κ-mechanism. Thus, the 3D instability strip is closer to the observed one than the 1D or 2D were.
Reduced Scan Time 3D FLAIR using Modulated Inversion and Repetition Time
Gai, Neville D.; Butman, John A.
2014-01-01
Purpose To design and evaluate a new reduced scan time 3D FLuid Attenuated Inversion Recovery (FLAIR) sequence. Materials and Methods The 3D FLAIR sequence was modified so that the repetition time was modulated in a predetermined smooth fashion (3D mFLAIR). Inversion times were adjusted accordingly to maintain CSF suppression. Simulations were performed to determine SNR for gray matter (GM), white matter (WM) and CSF. Fourteen volunteers were imaged using the modified and product sequence. SNR measurements were performed in GM, WM and CSF. Mean value and the 95% confidence interval ([CI]) were assessed. Scan time for the 3D FLAIR and 3D mFLAIR sequences was measured. Results There was no statistically significant difference in the SNR measured in GM (P value = 0.5; mean SNR = 42.8 [CI]: 38.2-45.5 vs 42.2 [CI]: 38.3-46.1 for 3D FLAIR and 3D mFLAIR, respectively) and WM (P value = 0.25; mean SNR = 32.1 [CI]: 30.3-33.8 vs 32.9 [CI]: 31.1-34.7). Scan time reduction greater than 30% was achieved for the given parameter set with the 3D mFLAIR sequence. Conclusion Scan time for 3D FLAIR can be effectively reduced by modulating repetition and inversion time in a predetermined fashion while maintaining the SNR and CNR of a constant TR sequence. PMID:24979311
NASA Astrophysics Data System (ADS)
Fadel, I.; van der Meijde, M.; Kerle, N.
2013-12-01
Non-uniqueness of satellite gravity interpretation has been usually reduced by using a priori information from various sources, e.g. seismic tomography models. The reduction in non-uniqueness has been based on velocity-density conversion formulas or user interpretation for 3D subsurface structures (objects) in seismic tomography models. However, these processes introduce additional uncertainty through the conversion relations due to the dependency on the other physical parameters such as temperature and pressure, or through the bias in the interpretation due to user choices and experience. In this research, a new methodology is introduced to extract the 3D subsurface structures from 3D geophysical data using a state-of-art 3D Object Oriented Image Analysis (OOA) technique. 3D OOA is tested using a set of synthetic models that simulate the real situation in the study area of this research. Then, 3D OOA is used to extract 3D subsurface objects from a real 3D seismic tomography model. The extracted 3D objects are used to reconstruct a forward model and its response is compared with the measured satellite gravity. Finally, the result of the forward modelling, based on the extracted 3D objects, is used to constrain the inversion process of satellite gravity data. Through this work, a new object-based approach is introduced to interpret and extract the 3D subsurface objects from 3D geophysical data. This can be used to constrain modelling and inversion of potential field data using the extracted 3D subsurface structures from other methods. In summary, a new approach is introduced to constrain inversion of satellite gravity measurements and enhance interpretation capabilities.
NASA Astrophysics Data System (ADS)
Rezaie, Mohammad; Moradzadeh, Ali; Kalate, Ali Nejati; Aghajani, Hamid
2016-09-01
Inversion of gravity data is one of the important steps in the interpretation of practical data. One of the most interesting geological frameworks for gravity data inversion is the detection of sharp boundaries between orebody and host rocks. The focusing inversion is able to reconstruct a sharp image of the geological target. This technique can be efficiently applied for the quantitative interpretation of gravity data. In this study, a new reweighted regularized method for the 3D focusing inversion technique based on Lanczos bidiagonalization method is developed. The inversion results of synthetic data show that the new method is faster than common reweighted regularized conjugate gradient method to produce an acceptable solution for focusing inverse problem. The new developed inversion scheme is also applied for inversion of the gravity data collected over the San Nicolas Cu-Zn orebody in Zacatecas State, Mexico. The inversion results indicate a remarkable correlation with the true structure of the orebody that is achieved from drilling data.
A research of 3D gravity inversion based on the recovery of sparse underdetermined linear equations
NASA Astrophysics Data System (ADS)
Zhaohai, M.
2014-12-01
Because of the properties of gravity data, it is made difficult to solve the problem of multiple solutions. There are two main types of 3D gravity inversion methods：One of two methods is based on the improvement of the instability of the sensitive matrix, solving the problem of multiple solutions and instability in 3D gravity inversion. Another is to join weight function into the 3D gravity inversion iteration. Through constant iteration, it can renewal density values and weight function to achieve the purpose to solve the multiple solutions and instability of the 3D gravity data inversion. Thanks to the sparse nature of the solutions of 3D gravity data inversions, we can transform it into a sparse equation. Then, through solving the sparse equations, we can get perfect 3D gravity inversion results. The main principle is based on zero norm of sparse matrix solution of the equation. Zero norm is mainly to solve the nonzero solution of the sparse matrix. However, the method of this article adopted is same as the principle of zero norm. But the method is the opposite of zero norm to obtain zero value solution. Through the form of a Gaussian fitting solution of the zero norm, we can find the solution by using regularization principle. Moreover, this method has been proved that it had a certain resistance to random noise in the mathematics, and it was more suitable than zero norm for the solution of the geophysical data. 3D gravity which is adopted in this article can well identify abnormal body density distribution characteristics, and it can also recognize the space position of abnormal distribution very well. We can take advantage of the density of the upper and lower limit penalty function to make each rectangular residual density within a reasonable range. Finally, this 3D gravity inversion is applied to a variety of combination model test, such as a single straight three-dimensional model, the adjacent straight three-dimensional model and Y three
3D CSEM data inversion using Newton and Halley class methods
NASA Astrophysics Data System (ADS)
Amaya, M.; Hansen, K. R.; Morten, J. P.
2016-05-01
For the first time in 3D controlled source electromagnetic data inversion, we explore the use of the Newton and the Halley optimization methods, which may show their potential when the cost function has a complex topology. The inversion is formulated as a constrained nonlinear least-squares problem which is solved by iterative optimization. These methods require the derivatives up to second order of the residuals with respect to model parameters. We show how Green's functions determine the high-order derivatives, and develop a diagrammatical representation of the residual derivatives. The Green's functions are efficiently calculated on-the-fly, making use of a finite-difference frequency-domain forward modelling code based on a multi-frontal sparse direct solver. This allow us to build the second-order derivatives of the residuals keeping the memory cost in the same order as in a Gauss-Newton (GN) scheme. Model updates are computed with a trust-region based conjugate-gradient solver which does not require the computation of a stabilizer. We present inversion results for a synthetic survey and compare the GN, Newton, and super-Halley optimization schemes, and consider two different approaches to set the initial trust-region radius. Our analysis shows that the Newton and super-Halley schemes, using the same regularization configuration, add significant information to the inversion so that the convergence is reached by different paths. In our simple resistivity model examples, the convergence speed of the Newton and the super-Halley schemes are either similar or slightly superior with respect to the convergence speed of the GN scheme, close to the minimum of the cost function. Due to the current noise levels and other measurement inaccuracies in geophysical investigations, this advantageous behaviour is at present of low consequence, but may, with the further improvement of geophysical data acquisition, be an argument for more accurate higher-order methods like those
A new technique of recognition for coded targets in optical 3D measurement
NASA Astrophysics Data System (ADS)
Guo, Changye; Cheng, Xiaosheng; Cui, Haihua; Dai, Ning; Weng, Jinping
2014-11-01
A new technique for coded targets recognition in optical 3D-measurement application is proposed in this paper. Traditionally, point cloud registration is based on homologous features, such as the curvature, which is time-consuming and not reliable. For this, we paste some coded targets onto the surface of the object to be measured to improve the optimum target location and accurate correspondence among multi-source images. Circular coded targets are used, and an algorithm to automatically detecting them is proposed. This algorithm extracts targets with intensive bimodal histogram features from complex background, and filters noise according to their size, shape and intensity. In addition, the coded targets' identification is conducted out by their ring codes. We affine them around the circle inversely, set foreground and background respectively as 1 and 0 to constitute a binary number, and finally shift one bit every time to calculate a decimal one of the binary number to determine a minimum decimal number as its code. In this 3Dmeasurement application, we build a mutual relationship between different viewpoints containing three or more coded targets with different codes. Experiments show that it is of efficiency to obtain global surface data of an object to be measured and is robust to the projection angles and noise.
A fast and low-loss 3-D magnetotelluric inversion method with parallel structure
NASA Astrophysics Data System (ADS)
Zhang, K.; Zhang, L.
2013-12-01
The 2D assumption is valid in some cases of interpretation, the approximation does not work in most cases, especially in areas with complex geo-electrical structure. A number of 3D magentotelluric inversion methods has been proposed, including RRI, CG, QA, NLCG. Each of those methods has its own advantages and disadvantages. However, as the 3D dataset and mesh grid require greater computer memory and calculation time than 2D methods, the efficiency of the inversion scheme become a key concern of 3D inversions. We chose NLCG as the optimization method for inversion. A parameter matrix related with the current resisitivity model and data error is proposed to approximate the Hessian matrix. So four forward calculation can be avoided each iteration. In addition, OPENMP parallel API is utilized to establish an effecient parallel inversion structure based on frequency to reduce computation time. And both synthetic and field data are used to test the efficiency of the inversion and the preconditioning method. The model consists of four square prisms residing in a halfspace. The total computation time of invertion is 706s (use one PC). Fiugre 1 shows the inversion result. The abnormal bodies can be distinguished clearly. Field data from the NIHE dataset in China is used to verify the reliability and efficiency of the 3D inversion method. The total computation time is about 25 minutes after 60 iterations on one PC. Totally, four electrical layers can be corresponded to the four stratum in 3D AMT inversion model, and the faults can be seen clearly. In addition, we can get more information about fault and alteration interface from constrained inversion result. Finally, the inversion method is very fast and low-loss, so it can be used in modern PC (need only one PC) with few hardware constraints. (a): initial model; (b): inversion depth slices (1-4km); (c): fitting error (a): AMT 3D slice; (b): CSAMT 2D model; (c): TEM 1D model; (d): SIP 2D model; (e) AMT 3D constrained
NASA Astrophysics Data System (ADS)
Meléndez, A.; Korenaga, J.; Sallarès, V.; Miniussi, A.; Ranero, C. R.
2015-10-01
We present a new 3-D traveltime tomography code (TOMO3D) for the modelling of active-source seismic data that uses the arrival times of both refracted and reflected seismic phases to derive the velocity distribution and the geometry of reflecting boundaries in the subsurface. This code is based on its popular 2-D version TOMO2D from which it inherited the methods to solve the forward and inverse problems. The traveltime calculations are done using a hybrid ray-tracing technique combining the graph and bending methods. The LSQR algorithm is used to perform the iterative regularized inversion to improve the initial velocity and depth models. In order to cope with an increased computational demand due to the incorporation of the third dimension, the forward problem solver, which takes most of the run time (˜90 per cent in the test presented here), has been parallelized with a combination of multi-processing and message passing interface standards. This parallelization distributes the ray-tracing and traveltime calculations among available computational resources. The code's performance is illustrated with a realistic synthetic example, including a checkerboard anomaly and two reflectors, which simulates the geometry of a subduction zone. The code is designed to invert for a single reflector at a time. A data-driven layer-stripping strategy is proposed for cases involving multiple reflectors, and it is tested for the successive inversion of the two reflectors. Layers are bound by consecutive reflectors, and an initial velocity model for each inversion step incorporates the results from previous steps. This strategy poses simpler inversion problems at each step, allowing the recovery of strong velocity discontinuities that would otherwise be smoothened.
3-D Inversion of MT Data for Imaging Deformation Fronts in NW Poland
NASA Astrophysics Data System (ADS)
Ślęzak, Katarzyna; Jóźwiak, Waldemar; Nowożyński, Krzysztof; Brasse, Heinrich
2016-07-01
The Pomerania region (northwest part of Poland) occupies a significant position, where the largest European tectonic boundary is situated. This is the area of the contact between the East European Craton (EEC) and the Paleozoic Platform (PP) and it is known as the Trans-European Suture Zone (TESZ). The TESZ was formed during Paleozoic time as a consequence of the collision of several crustal units and it extends from the Black Sea in the southeast to the British Isles in the northwest. It is a region of key importance for our understanding of the tectonic history of Europe. Previous magnetotelluric (MT) results, based on 2-D inverse modeling, show that the contact zone is of lithospheric discontinuity character and there are distinct differences in geoelectric structures between the Precambrian EEC, transitional zone (TESZ), and the younger PP. The presence of a significant conductor at mid and lower crustal depths was also shown. Thus, the main aim of the research presented here was to obtain detailed, 3-D images of electrical conductivity in the crust and upper mantle and its regional distribution below the TESZ in the northwest part of Poland. To accomplish this task we applied the latest 3-D inversion codes, which allowed us to get more realistic model geometries. Additionally, to confirm and complement the study, the Horizontal Magnetic Tensor (HMT) analysis was realized. This method gives us an opportunity to efficiently locate the position of well-conducting structures. As a result we obtain a clearer, three-dimensional model of conductivity distribution, where highly conductive rock complexes appear which we tentatively connected to deformation fronts.
Quasi-3D Waveform Inversion for Velocity Structures and Source Process Analyses Using its Results
NASA Astrophysics Data System (ADS)
Hikima, K.; Koketsu, K.
2007-12-01
In this study, we propose an efficient waveform inversion method for 2-D velocity structures and 3-D velocity structures are constructed by interpolating the results of the 2-D inversions. We apply these methods to a source process study of the 2003 Miyagi-ken Hokubu earthquake. We will first construct a velocity model, then determine the source processes of this earthquake sequence using the Green's function calculated with the resultant 3-D velocity model. We formulate the inversion procedure in a 2-D cross section. In a 2-D problem, an earthquake is forced to be a line source. Therefore, we introduce approximate transformation from a line source to a point source (Vidale and Helmberger, 1987). We use the 2-D velocity-stress staggered-grid finite difference scheme, so that the source representation is somewhat different from the original 'source box method' and we apply additional corrections to calculated waveforms. The boundary shapes of layers are expressed by connected nodes and we invert observed waveforms for layer thicknesses at the nodes. We perform 2-D velocity inversions along cross sections which involve a medium-size earthquake and observation points. We assemble the results for many stations and interpolated them to construct the 3-D velocity model. Finally, we calculate waveforms from the target earthquake by the 3-D finite difference method with this velocity model to confirm the validity of the model. We next perform waveform inversions for source processes of the 2003 Miyagi-ken Hokubu earthquake sequence using the resultant 3-D velocity model. We divide the fault plane into northern and southern subplanes, so that the southern subplane includes the hypocenter of the mainshock and the largest foreshock. The strike directions of the northern and southern subplanes were N-S and NE-SW, respectively. The Green's functions for these source inversions are calculated using the reciprocal theorem. We determine the slip models using the 3- D structure and
NASA Astrophysics Data System (ADS)
Meléndez, A.; Korenaga, J.; Sallares, V.; Ranero, C. R.
2012-12-01
We present the development state of tomo3d, a code for three-dimensional refraction and reflection travel-time tomography of wide-angle seismic data based on the previous two-dimensional version of the code, tomo2d. The core of both forward and inverse problems is inherited from the 2-D version. The ray tracing is performed by a hybrid method combining the graph and bending methods. The graph method finds an ordered array of discrete model nodes, which satisfies Fermat's principle, that is, whose corresponding travel time is a global minimum within the space of discrete nodal connections. The bending method is then applied to produce a more accurate ray path by using the nodes as support points for an interpolation with beta-splines. Travel time tomography is formulated as an iterative linearized inversion, and each step is solved using an LSQR algorithm. In order to avoid the singularity of the sensitivity kernel and to reduce the instability of inversion, regularization parameters are introduced in the inversion in the form of smoothing and damping constraints. Velocity models are built as 3-D meshes, and velocity values at intermediate locations are obtained by trilinear interpolation within the corresponding pseudo-cubic cell. Meshes are sheared to account for topographic relief. A floating reflector is represented by a 2-D grid, and depths at intermediate locations are calculated by bilinear interpolation within the corresponding square cell. The trade-off between the resolution of the final model and the associated computational cost is controlled by the relation between the selected forward star for the graph method (i.e. the number of nodes that each node considers as its neighbors) and the refinement of the velocity mesh. Including reflected phases is advantageous because it provides a better coverage and allows us to define the geometry of those geological interfaces with velocity contrasts sharp enough to be observed on record sections. The code also
NASA Astrophysics Data System (ADS)
Simutė, S.; Fichtner, A.
2015-12-01
We present a feasibility study for seismic source inversions using a 3-D velocity model for the Japanese Islands. The approach involves numerically calculating 3-D Green's tensors, which is made efficient by exploiting Green's reciprocity. The rationale for 3-D seismic source inversion has several aspects. For structurally complex regions, such as the Japan area, it is necessary to account for 3-D Earth heterogeneities to prevent unknown structure polluting source solutions. In addition, earthquake source characterisation can serve as a means to delineate existing faults. Source parameters obtained for more realistic Earth models can then facilitate improvements in seismic tomography and early warning systems, which are particularly important for seismically active areas, such as Japan. We have created a database of numerically computed 3-D Green's reciprocals for a 40°× 40°× 600 km size area around the Japanese Archipelago for >150 broadband stations. For this we used a regional 3-D velocity model, recently obtained from full waveform inversion. The model includes attenuation and radial anisotropy and explains seismic waveform data for periods between 10 - 80 s generally well. The aim is to perform source inversions using the database of 3-D Green's tensors. As preliminary steps, we present initial concepts to address issues that are at the basis of our approach. We first investigate to which extent Green's reciprocity works in a discrete domain. Considering substantial amounts of computed Green's tensors we address storage requirements and file formatting. We discuss the importance of the initial source model, as an intelligent choice can substantially reduce the search volume. Possibilities to perform a Bayesian inversion and ways to move to finite source inversion are also explored.
3D neutronic codes coupled with thermal-hydraulic system codes for PWR, and BWR and VVER reactors
Langenbuch, S.; Velkov, K.; Lizorkin, M.
1997-07-01
This paper describes the objectives of code development for coupling 3D neutronics codes with thermal-hydraulic system codes. The present status of coupling ATHLET with three 3D neutronics codes for VVER- and LWR-reactors is presented. After describing the basic features of the 3D neutronic codes BIPR-8 from Kurchatov-Institute, DYN3D from Research Center Rossendorf and QUABOX/CUBBOX from GRS, first applications of coupled codes for different transient and accident scenarios are presented. The need of further investigations is discussed.
3D Airborne Electromagnetic Inversion: A case study from the Musgrave Region, South Australia
NASA Astrophysics Data System (ADS)
Cox, L. H.; Wilson, G. A.; Zhdanov, M. S.; Sunwall, D. A.
2012-12-01
Geophysicists know and accept that geology is inherently 3D, and is resultant from complex, overlapping processes related to genesis, metamorphism, deformation, alteration, weathering, and/or hydrogeology. Yet, the geophysics community has long relied on qualitative analysis, conductivity depth imaging (CDIs), 1D inversion, and/or plate modeling. There are many reasons for this deficiency, not the least of which has been the lack of capacity for historic 3D AEM inversion algorithms to invert entire surveys so as to practically affect exploration decisions. Our recent introduction of a moving sensitivity domain (footprint) methodology has been a paradigm shift in AEM interpretation. The basis of this method is that one needs only to calculate the responses and sensitivities for that part of the 3D earth model that is within the AEM system's sensitivity domain (footprint), and then superimpose all sensitivity domains into a single, sparse sensitivity matrix for the entire 3D earth model which is then updated in a regularized inversion scheme. This has made it practical to rigorously invert entire surveys with thousands of line kilometers of AEM data to mega-cell 3D models in hours using multi-processor workstations. Since 2010, over eighty individual projects have been completed for Aerodat, AEROTEM, DIGHEM, GEOTEM, HELITEM, HoisTEM, MEGATEM, RepTEM, RESOLVE, SkyTEM, SPECTREM, TEMPEST, and VTEM data from Australia, Brazil, Canada, Finland, Ghana, Peru, Tanzania, the US, and Zambia. Examples of 3D AEM inversion have been published for a variety of applications, including mineral exploration, oil sands exploration, salinity, permafrost, and bathymetry mapping. In this paper, we present a comparison of 3D inversions for SkyTEM, SPECTREM, TEMPET and VTEM data acquired over the same area in the Musgrave region of South Australia for exploration under cover.
Lithologic identification & mapping test based on 3D inversion of magnetic and gravity
NASA Astrophysics Data System (ADS)
Yan, Jiayong; Lv, Qingtian; Qi, Guang; Zhao, Jinhua; Zhang, Yongqian
2016-04-01
Though lithologic identification & mapping to achieve ore concentration district transparent within 5km depth is the main way to realize deep fine structures study, to explore deep mineral resources and to reveal metallogenic regularity of large-scale ore district . Owing to the wide covered area, high sampling density and mature three-dimensional inversion algorithm of gravity and magnetic data, so gravity and magnetic inversion become the most likely way to achieve three-dimensional lithologic mapping at the present stage. In this paper, we take Lu-zong(Lujiang county to Zongyang county in Anhui province ,east China) ore district as a case, we proposed lithologic mapping flow based 3D inversion of gravity magnetic and then carry out the lithologic mapping test. Lithologic identification & mapping flow is as follows: 1. Analysis relations between lithology and density and magnetic susceptibility by cross plot. 2.Extracting appropriate residual anomalies from high-precision Bourger gravity and aeromagnetic. 3.Use same mesh, do 3D magnetic and gravity inversion respectively under prior information constrained, and then invert susceptibility and density 3D model. 4. According setp1, construct logical topology operations between density 3D model and susceptibility. 5.Use the logical operations, identify lithogies cell by cell in 3D mesh, and then get 3D lithological model. According this flow, we obtained three-dimensional distribution of five main type lithologies in the Lu-Zong ore district within 5km depth. The result of lithologic mapping not only showed that the shallow characteristics and surface geological mapping are basically Coincide,more importantly ,it reveals the deeper lithologic changes.The lithlogical model make up the insufficient of surface geological mapping. The lithologic mapping test results in Lu-Zong ore concentration district showed that lithological mapping using 3D inversion of gravity and magnetic is a effective method to reveal the
Laplace-domain waveform modeling and inversion for the 3D acoustic-elastic coupled media
NASA Astrophysics Data System (ADS)
Shin, Jungkyun; Shin, Changsoo; Calandra, Henri
2016-06-01
Laplace-domain waveform inversion reconstructs long-wavelength subsurface models by using the zero-frequency component of damped seismic signals. Despite the computational advantages of Laplace-domain waveform inversion over conventional frequency-domain waveform inversion, an acoustic assumption and an iterative matrix solver have been used to invert 3D marine datasets to mitigate the intensive computing cost. In this study, we develop a Laplace-domain waveform modeling and inversion algorithm for 3D acoustic-elastic coupled media by using a parallel sparse direct solver library (MUltifrontal Massively Parallel Solver, MUMPS). We precisely simulate a real marine environment by coupling the 3D acoustic and elastic wave equations with the proper boundary condition at the fluid-solid interface. In addition, we can extract the elastic properties of the Earth below the sea bottom from the recorded acoustic pressure datasets. As a matrix solver, the parallel sparse direct solver is used to factorize the non-symmetric impedance matrix in a distributed memory architecture and rapidly solve the wave field for a number of shots by using the lower and upper matrix factors. Using both synthetic datasets and real datasets obtained by a 3D wide azimuth survey, the long-wavelength component of the P-wave and S-wave velocity models is reconstructed and the proposed modeling and inversion algorithm are verified. A cluster of 80 CPU cores is used for this study.
A Magnetic Diagnostic Code for 3D Fusion Equilibria
Samuel A. Lazerson, S. Sakakibara and Y. Suzuki
2013-03-12
A synthetic magnetic diagnostics code for fusion equilibria is presented. This code calculates the response of various magnetic diagnostics to the equilibria produced by the VMEC and PIES codes. This allows for treatment of equilibria with both good nested flux surfaces and those with stochastic regions. DIAGNO v2.0 builds upon previous codes through the implementation of a virtual casing principle. The code is validated against a vacuum shot on the Large Helical Device (LHD) where the vertical field was ramped. As an exercise of the code, the diagnostic response for various equilibria are calculated on the LHD.
A Magnetic Diagnostic Code for 3D Fusion Equilibria
Samuel Aaron Lazerson
2012-07-27
A synthetic magnetic diagnostics code for fusion equilibria is presented. This code calculates the response of various magnetic diagnostics to the equilibria produced by the VMEC and PIES codes. This allows for treatment of equilibria with both good nested flux surfaces and those with stochastic regions. DIAGNO v2.0 builds upon previous codes through the implementation of a virtual casing principle. The codes is validated against a vacuum shot on the Large Helical Device where the vertical field was ramped. As an exercise of the code, the diagnostic response for various equilibria are calculated on the Large Helical Device (LHD).
Research on Joint Parameter Inversion for an Integrated Underground Displacement 3D Measuring Sensor
Shentu, Nanying; Qiu, Guohua; Li, Qing; Tong, Renyuan; Shentu, Nankai; Wang, Yanjie
2015-01-01
Underground displacement monitoring is a key means to monitor and evaluate geological disasters and geotechnical projects. There exist few practical instruments able to monitor subsurface horizontal and vertical displacements simultaneously due to monitoring invisibility and complexity. A novel underground displacement 3D measuring sensor had been proposed in our previous studies, and great efforts have been taken in the basic theoretical research of underground displacement sensing and measuring characteristics by virtue of modeling, simulation and experiments. This paper presents an innovative underground displacement joint inversion method by mixing a specific forward modeling approach with an approximate optimization inversion procedure. It can realize a joint inversion of underground horizontal displacement and vertical displacement for the proposed 3D sensor. Comparative studies have been conducted between the measured and inversed parameters of underground horizontal and vertical displacements under a variety of experimental and inverse conditions. The results showed that when experimentally measured horizontal displacements and vertical displacements are both varied within 0 ~ 30 mm, horizontal displacement and vertical displacement inversion discrepancies are generally less than 3 mm and 1 mm, respectively, under three kinds of simulated underground displacement monitoring circumstances. This implies that our proposed underground displacement joint inversion method is robust and efficient to predict the measuring values of underground horizontal and vertical displacements for the proposed sensor. PMID:25871714
Shentu, Nanying; Qiu, Guohua; Li, Qing; Tong, Renyuan; Shentu, Nankai; Wang, Yanjie
2015-01-01
Underground displacement monitoring is a key means to monitor and evaluate geological disasters and geotechnical projects. There exist few practical instruments able to monitor subsurface horizontal and vertical displacements simultaneously due to monitoring invisibility and complexity. A novel underground displacement 3D measuring sensor had been proposed in our previous studies, and great efforts have been taken in the basic theoretical research of underground displacement sensing and measuring characteristics by virtue of modeling, simulation and experiments. This paper presents an innovative underground displacement joint inversion method by mixing a specific forward modeling approach with an approximate optimization inversion procedure. It can realize a joint inversion of underground horizontal displacement and vertical displacement for the proposed 3D sensor. Comparative studies have been conducted between the measured and inversed parameters of underground horizontal and vertical displacements under a variety of experimental and inverse conditions. The results showed that when experimentally measured horizontal displacements and vertical displacements are both varied within 0~30 mm, horizontal displacement and vertical displacement inversion discrepancies are generally less than 3 mm and 1 mm, respectively, under three kinds of simulated underground displacement monitoring circumstances. This implies that our proposed underground displacement joint inversion method is robust and efficient to predict the measuring values of underground horizontal and vertical displacements for the proposed sensor. PMID:25871714
Video coding and transmission standards for 3D television — a survey
NASA Astrophysics Data System (ADS)
Buchowicz, A.
2013-03-01
The emerging 3D television systems require effective techniques for transmission and storage of data representing a 3-D scene. The 3-D scene representations based on multiple video sequences or multiple views plus depth maps are especially important since they can be processed with existing video technologies. The review of the video coding and transmission techniques is presented in this paper.
NASA Astrophysics Data System (ADS)
Rosas-Carbajal, M.; Linde, N.; Peacock, J.; Zyserman, F. I.; Kalscheuer, T.; Thiel, S.
2015-12-01
Surface-based monitoring of mass transfer caused by injections and extractions in deep boreholes is crucial to maximize oil, gas and geothermal production. Inductive electromagnetic methods, such as magnetotellurics, are appealing for these applications due to their large penetration depths and sensitivity to changes in fluid conductivity and fracture connectivity. In this work, we propose a 3-D Markov chain Monte Carlo inversion of time-lapse magnetotelluric data to image mass transfer following a saline fluid injection. The inversion estimates the posterior probability density function of the resulting plume, and thereby quantifies model uncertainty. To decrease computation times, we base the parametrization on a reduced Legendre moment decomposition of the plume. A synthetic test shows that our methodology is effective when the electrical resistivity structure prior to the injection is well known. The centre of mass and spread of the plume are well retrieved. We then apply our inversion strategy to an injection experiment in an enhanced geothermal system at Paralana, South Australia, and compare it to a 3-D deterministic time-lapse inversion. The latter retrieves resistivity changes that are more shallow than the actual injection interval, whereas the probabilistic inversion retrieves plumes that are located at the correct depths and oriented in a preferential north-south direction. To explain the time-lapse data, the inversion requires unrealistically large resistivity changes with respect to the base model. We suggest that this is partly explained by unaccounted subsurface heterogeneities in the base model from which time-lapse changes are inferred.
Fast 3D inversion of airborne gravity-gradiometry data using Lanczos bidiagonalization method
NASA Astrophysics Data System (ADS)
Meng, Zhaohai; Li, Fengting; Zhang, Dailei; Xu, Xuechun; Huang, Danian
2016-09-01
We developed a new fast inversion method for to process and interpret airborne gravity gradiometry data, which was based on Lanczos bidiagonalization algorithm. Here, we describe the application of this new 3D gravity gradiometry inversion method to recover a subsurface density distribution model from the airborne measured gravity gradiometry anomalies. For this purpose, the survey area is divided into a large number of rectangular cells with each cell possessing a constant unknown density. It is well known that the solution of large linear gravity gradiometry is an ill-posed problem since using the smoothest inversion method is considerably time consuming. We demonstrate that the Lanczos bidiagonalization method can be an appropriate algorithm to solve a Tikhonov solver time cost function for resolving the large equations within a short time. Lanczos bidiagonalization is designed to make the very large gravity gradiometry forward modeling matrices to become low-rank, which will considerably reduce the running time of the inversion method. We also use a weighted generalized cross validation method to choose the appropriate Tikhonov parameter to improve inversion results. The inversion incorporates a model norm that allows us to attain the smoothing and depth of the solution; in addition, the model norm counteracts the natural decay of the kernels, which concentrate at shallow depths. The method is applied on noise-contaminated synthetic gravity gradiometry data to demonstrate its suitability for large 3D gravity gradiometry data inversion. The airborne gravity gradiometry data from the Vinton Salt Dome, USE, were considered as a case study. The validity of the new method on real data is discussed with reference to the Vinton Dome inversion result. The intermediate density values in the constructed model coincide well with previous results and geological information. This demonstrates the validity of the gravity gradiometry inversion method.
Verification and Validation of the k-kL Turbulence Model in FUN3D and CFL3D Codes
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.; Carlson, Jan-Renee; Rumsey, Christopher L.
2015-01-01
The implementation of the k-kL turbulence model using multiple computational uid dy- namics (CFD) codes is reported herein. The k-kL model is a two-equation turbulence model based on Abdol-Hamid's closure and Menter's modi cation to Rotta's two-equation model. Rotta shows that a reliable transport equation can be formed from the turbulent length scale L, and the turbulent kinetic energy k. Rotta's equation is well suited for term-by-term mod- eling and displays useful features compared to other two-equation models. An important di erence is that this formulation leads to the inclusion of higher-order velocity derivatives in the source terms of the scale equations. This can enhance the ability of the Reynolds- averaged Navier-Stokes (RANS) solvers to simulate unsteady ows. The present report documents the formulation of the model as implemented in the CFD codes Fun3D and CFL3D. Methodology, veri cation and validation examples are shown. Attached and sepa- rated ow cases are documented and compared with experimental data. The results show generally very good comparisons with canonical and experimental data, as well as matching results code-to-code. The results from this formulation are similar or better than results using the SST turbulence model.
NASA Astrophysics Data System (ADS)
Beka, Thomas I.; Smirnov, Maxim; Birkelund, Yngve; Senger, Kim; Bergh, Steffen G.
2016-08-01
Broadband (0.001-1000 s) magnetotelluric (MT) data along a crooked profile collected to investigate the geothermal potential on Spitsbergen could not be fully explained by two-dimensional (2D) models; hence we interpret the data with three-dimensional (3D) inversion herein. To better accommodate 3D features and nearby off profile resistivity structures, the full MT impedance tensor data together with the tipper were inverted. As a model control, a detailed bathymetry is systematically incorporated in the inversion. Our results from testing different inversion settings emphasised that appropriately choosing and tuning the starting model, data error floor and the model regularization together are crucial to obtain optimum benefit from MT field data. Through the 3D inversion, we reproduced out of quadrant impedance components and obtained an overall satisfactory data fit (RMS = 1.05). The final 3D resistivity model displays a complex geology of the near surface region (< 1.5 km), which suggests fractures, localized and regional fault systems and igneous intrusions in the Mesozoic platform cover deposits. The Billefjorden fault zone is revealed as a consistent and deep rooted (> 2 km) conductive anomaly, confirming the regional nature of the fault. The fault zone is positioned between two uplifted basement blocks (> 1000 Ωm) of presumably pre-Devonian (Caledonian) metamorphic rocks, and the fault may have been responsible for deformation in the overlying Paleozoic-Mesozoic unit. Upper crustal conductive anomalies (< 10 Ωm) below the Paleozoic-Mesozoic succession in the western part of the 3D model are interpreted as part of a Devonian basin fill. These conductors are laterally and vertically bounded by resistive rocks, suggesting a conducive environment for deep geothermal heat storage. Having this scenario in an area of a known high heat-flow, deep faults and a thinned lithosphere makes the hypothesis on finding a technologically exploitable geothermal resource
NASA Astrophysics Data System (ADS)
Meléndez, A.; Korenaga, J.; Sallarès, V.; Ranero, C. R.
2012-04-01
We present the development state of tomo3d, a code for three-dimensional refraction and reflection travel-time tomography of wide-angle seismic data based on the previous two-dimensional version of the code, tomo2d. The core of both forward and inverse problems is inherited from the 2-D version. The ray tracing is performed by a hybrid method combining the graph and bending methods. The graph method finds an ordered array of discrete model nodes, which satisfies Fermat's principle, that is, whose corresponding travel time is a global minimum within the space of discrete nodal connections. The bending method is then applied to produce a more accurate ray path by using the nodes as support points for an interpolation with beta-splines. Travel time tomography is formulated as an iterative linearized inversion, and each step is solved using an LSQR algorithm. In order to avoid the singularity of the sensitivity kernel and to reduce the instability of inversion, regularization parameters are introduced in the inversion in the form of smoothing and damping constraints. Velocity models are built as 3-D meshes, and velocity values at intermediate locations are obtained by trilinear interpolation within the corresponding pseudo-cubic cell. Meshes are sheared to account for topographic relief. A floating reflector is represented by a 2-D grid, and depths at intermediate locations are calculated by bilinear interpolation within the corresponding square cell. The trade-off between the resolution of the final model and the associated computational cost is controlled by the relation between the selected forward star for the graph method (i.e. the number of nodes that each node considers as its neighbors) and the refinement of the velocity mesh. Including reflected phases is advantageous because it provides a better coverage and allows us to define the geometry of those geological interfaces with velocity contrasts sharp enough to be observed on record sections. The code also
MOM3D method of moments code theory manual
NASA Technical Reports Server (NTRS)
Shaeffer, John F.
1992-01-01
MOM3D is a FORTRAN algorithm that solves Maxwell's equations as expressed via the electric field integral equation for the electromagnetic response of open or closed three dimensional surfaces modeled with triangle patches. Two joined triangles (couples) form the vector current unknowns for the surface. Boundary conditions are for perfectly conducting or resistive surfaces. The impedance matrix represents the fundamental electromagnetic interaction of the body with itself. A variety of electromagnetic analysis options are possible once the impedance matrix is computed including backscatter radar cross section (RCS), bistatic RCS, antenna pattern prediction for user specified body voltage excitation ports, RCS image projection showing RCS scattering center locations, surface currents excited on the body as induced by specified plane wave excitation, and near field computation for the electric field on or near the body.
3D unstructured-mesh radiation transport codes
Morel, J.
1997-12-31
Three unstructured-mesh radiation transport codes are currently being developed at Los Alamos National Laboratory. The first code is ATTILA, which uses an unstructured tetrahedral mesh in conjunction with standard Sn (discrete-ordinates) angular discretization, standard multigroup energy discretization, and linear-discontinuous spatial differencing. ATTILA solves the standard first-order form of the transport equation using source iteration in conjunction with diffusion-synthetic acceleration of the within-group source iterations. DANTE is designed to run primarily on workstations. The second code is DANTE, which uses a hybrid finite-element mesh consisting of arbitrary combinations of hexahedra, wedges, pyramids, and tetrahedra. DANTE solves several second-order self-adjoint forms of the transport equation including the even-parity equation, the odd-parity equation, and a new equation called the self-adjoint angular flux equation. DANTE also offers three angular discretization options: $S{_}n$ (discrete-ordinates), $P{_}n$ (spherical harmonics), and $SP{_}n$ (simplified spherical harmonics). DANTE is designed to run primarily on massively parallel message-passing machines, such as the ASCI-Blue machines at LANL and LLNL. The third code is PERICLES, which uses the same hybrid finite-element mesh as DANTE, but solves the standard first-order form of the transport equation rather than a second-order self-adjoint form. DANTE uses a standard $S{_}n$ discretization in angle in conjunction with trilinear-discontinuous spatial differencing, and diffusion-synthetic acceleration of the within-group source iterations. PERICLES was initially designed to run on workstations, but a version for massively parallel message-passing machines will be built. The three codes will be described in detail and computational results will be presented.
NASA Astrophysics Data System (ADS)
Bell, R. E.; Morgan, J. V.; Warner, M.
2013-12-01
Our understanding of subduction margin seismogenesis has been revolutionised in the last couple of decades with the discovery that the size of the seismogenic zone may not be controlled simply by temperature and a broad spectrum of seismic behaviour exists from stick-slip to stable sliding. Laboratory and numerical experiments suggest that physical properties, particularly fluid pressure may play an important role in controlling the seismic behaviour of subduction margins. Although drilling can provide information on physical properties along subduction thrust faults at point locations at relatively shallow depths, correlations between physical properties and seismic velocity using rock physics relationships are required to resolve physical properties along the margin and down-dip. Therefore, high resolution seismic velocity models are key to recovering physical property information at subduction plate boundaries away from drill sites. 3D Full waveform inversion (FWI) is a technique pioneered by the oil industry to obtain high-resolution high-fidelity models of physical properties in the sub-surface. 3D FWI involves the inversion of low-frequency (>2 to <7 Hz), early arriving (principally transmitted) seismic data, to recover the macro (intermediate to long-wavelength) velocity structure. Although 2D FWI has been used to improve velocity models of subduction plate boundaries before, 3D FWI has not yet been attempted. 3D inversions have superior convergence and accuracy, as they sample the subsurface with multi-azimuth multiply-crossing wavefields. In this contribution we perform a suite of synthetic tests to investigate if 3D FWI could be used to better resolve physical property information along subduction margin plate boundaries using conventionally collected 3D seismic data. We base our analysis on the Muroto Basin area of the Nankai margin and investigate if the acquisition parameters and geometry of the subduction margin render 3D seismic data collected across
3D visualization for the MARS14 Code
Rzepecki, Jaroslaw P.; Kostin, Mikhail A; Mokhov, Nikolai V.
2003-01-23
A new three-dimensional visualization engine has been developed for the MARS14 code system. It is based on the OPENINVENTOR graphics library and integrated with the MARS built-in two-dimensional Graphical-User Interface, MARS-GUI-SLICE. The integrated package allows thorough checking of complex geometry systems and their fragments, materials, magnetic fields, particle tracks along with a visualization of calculated 2-D histograms. The algorithms and their optimization are described for two geometry classes along with examples in accelerator and detector applications.
ROAR: A 3-D tethered rocket simulation code
York, A.R. II; Ludwigsen, J.S.
1992-04-01
A high-velocity impact testing technique, utilizing a tethered rocket, is being developed at Sandia National Laboratories. The technique involves tethering a rocket assembly to a pivot location and flying it in a semicircular trajectory to deliver the rocket and payload to an impact target location. Integral to developing this testing technique is the parallel development of accurate simulation models. An operational computer code, called ROAR (Rocket-on-a-Rope), has been developed to simulate the three-dimensional transient dynamic behavior of the tether and motor/payload assembly. This report presents a discussion of the parameters modeled, the governing set of equations, the through-time integration scheme, and the input required to set up a model. Also included is a sample problem and a comparison with experimental results.
The interpretation of magnetic anomalies by 3D inversion: A case study from Central Iran
NASA Astrophysics Data System (ADS)
Tavakoli, M.; Nejati Kalateh, A.; Ghomi, S.
2016-03-01
The thick sedimentary units in Central Iran contain structures that form oil traps and are underlain by a basaltic layer which is amenable for study using its magnetic susceptibility. The study and modeling of such sedimentary structures provide valuable exploratory information. In this study, we locate and interpret an underground magnetic susceptibility interface using 3D non-linear inverse modeling of magnetic data to make a better judgment in the context of hydrocarbon existence. The 3D structure is reconstructed by making it equal to a number of side by side rectangular hexahedrons or prisms and calculating their thicknesses such that the bottoms of the prisms are corresponding to the magnetic susceptibility interface. By one of the most important mathematical tool in computational science, Taylor series, the non-linear problem changes to a linear problem near to initial model. In many inverse problems, we often need to invert large size matrices. To find the inverse of these matrices we use Singular Value Decomposition (SVD) method. The algorithm by an iterative method comparing model response with actual data will modify the initial guess of model parameters. The efficiency of the method and subprograms, programmed in MATLAB, has been shown by inverse modeling of free noise and noise-contaminated synthetic data. Finally, we inverted magnetic field data from Garmsar area in Central Iran which the results were acceptable.
NASA Astrophysics Data System (ADS)
Cubuk-Sabuncu, Yesim; Taymaz, Tuncay; Fichtner, Andreas
2016-04-01
We present a 3D radially anisotropic velocity model of the crust and uppermost mantle structure beneath the Sea of Marmara and surroundings based on the full waveform inversion method. The intense seismic activity and crustal deformation are observed in the Northwest Turkey due to transition tectonics between the strike-slip North Anatolian Fault (NAF) and the extensional Aegean region. We have selected and simulated complete waveforms of 62 earthquakes (Mw > 4.0) occurred during 2007-2015, and recorded at (Δ < 10°) distances. Three component earthquake data is obtained from broadband seismic stations of Kandilli Observatory and Earthquake Research Center (KOERI, Turkey), Hellenic Unified Seismic Network (HUSN, Greece) and Earthquake Research Center of Turkey (AFAD-DAD). The spectral-element solver of the wave equation, SES3D algorithm, is used to simulate seismic wave propagation in 3D spherical coordinates (Fichtner, 2009). The Large Scale Seismic Inversion Framework (LASIF) workflow tool is also used to perform full seismic waveform inversion (Krischer et al., 2015). The initial 3D Earth model is implemented from the multi-scale seismic tomography study of Fichtner et al. (2013). Discrepancies between the observed and simulated synthetic waveforms are determined using the time-frequency misfits which allows a separation between phase and amplitude information (Fichtner et al., 2008). The conjugate gradient optimization method is used to iteratively update the initial Earth model when minimizing the misfit. The inversion is terminated after 19 iterations since no further advances are observed in updated models. Our analysis revealed shear wave velocity variations of the shallow and deeper crustal structure beneath western Turkey down to depths of ~35-40 km. Low shear wave velocity anomalies are observed in the upper and mid crustal depths beneath major fault zones located in the study region. Low velocity zones also tend to mark the outline of young volcanic
Kılıç, Emre Eibert, Thomas F.
2015-05-01
An approach combining boundary integral and finite element methods is introduced for the solution of three-dimensional inverse electromagnetic medium scattering problems. Based on the equivalence principle, unknown equivalent electric and magnetic surface current densities on a closed surface are utilized to decompose the inverse medium problem into two parts: a linear radiation problem and a nonlinear cavity problem. The first problem is formulated by a boundary integral equation, the computational burden of which is reduced by employing the multilevel fast multipole method (MLFMM). Reconstructed Cauchy data on the surface allows the utilization of the Lorentz reciprocity and the Poynting's theorems. Exploiting these theorems, the noise level and an initial guess are estimated for the cavity problem. Moreover, it is possible to determine whether the material is lossy or not. In the second problem, the estimated surface currents form inhomogeneous boundary conditions of the cavity problem. The cavity problem is formulated by the finite element technique and solved iteratively by the Gauss–Newton method to reconstruct the properties of the object. Regularization for both the first and the second problems is achieved by a Krylov subspace method. The proposed method is tested against both synthetic and experimental data and promising reconstruction results are obtained.
Extending ALE3D, an Arbitrarily Connected hexahedral 3D Code, to Very Large Problem Size (U)
Nichols, A L
2010-12-15
As the number of compute units increases on the ASC computers, the prospect of running previously unimaginably large problems is becoming a reality. In an arbitrarily connected 3D finite element code, like ALE3D, one must provide a unique identification number for every node, element, face, and edge. This is required for a number of reasons, including defining the global connectivity array required for domain decomposition, identifying appropriate communication patterns after domain decomposition, and determining the appropriate load locations for implicit solvers, for example. In most codes, the unique identification number is defined as a 32-bit integer. Thus the maximum value available is 231, or roughly 2.1 billion. For a 3D geometry consisting of arbitrarily connected hexahedral elements, there are approximately 3 faces for every element, and 3 edges for every node. Since the nodes and faces need id numbers, using 32-bit integers puts a hard limit on the number of elements in a problem at roughly 700 million. The first solution to this problem would be to replace 32-bit signed integers with 32-bit unsigned integers. This would increase the maximum size of a problem by a factor of 2. This provides some head room, but almost certainly not one that will last long. Another solution would be to replace all 32-bit int declarations with 64-bit long long declarations. (long is either a 32-bit or a 64-bit integer, depending on the OS). The problem with this approach is that there are only a few arrays that actually need to extended size, and thus this would increase the size of the problem unnecessarily. In a future computing environment where CPUs are abundant but memory relatively scarce, this is probably the wrong approach. Based on these considerations, we have chosen to replace only the global identifiers with the appropriate 64-bit integer. The problem with this approach is finding all the places where data that is specified as a 32-bit integer needs to be
Simultaneous elastic parameter inversion in 2-D/3-D TTI medium combined later arrival times
NASA Astrophysics Data System (ADS)
Bai, Chao-ying; Wang, Tao; Yang, Shang-bei; Li, Xing-wang; Huang, Guo-jiao
2016-04-01
Traditional traveltime inversion for anisotropic medium is, in general, based on a "weak" assumption in the anisotropic property, which simplifies both the forward part (ray tracing is performed once only) and the inversion part (a linear inversion solver is possible). But for some real applications, a general (both "weak" and "strong") anisotropic medium should be considered. In such cases, one has to develop a ray tracing algorithm to handle with the general (including "strong") anisotropic medium and also to design a non-linear inversion solver for later tomography. Meanwhile, it is constructive to investigate how much the tomographic resolution can be improved by introducing the later arrivals. For this motivation, we incorporated our newly developed ray tracing algorithm (multistage irregular shortest-path method) for general anisotropic media with a non-linear inversion solver (a damped minimum norm, constrained least squares problem with a conjugate gradient approach) to formulate a non-linear inversion solver for anisotropic medium. This anisotropic traveltime inversion procedure is able to combine the later (reflected) arrival times. Both 2-D/3-D synthetic inversion experiments and comparison tests show that (1) the proposed anisotropic traveltime inversion scheme is able to recover the high contrast anomalies and (2) it is possible to improve the tomographic resolution by introducing the later (reflected) arrivals, but not as expected in the isotropic medium, because the different velocity (qP, qSV and qSH) sensitivities (or derivatives) respective to the different elastic parameters are not the same but are also dependent on the inclination angle.
3-D full waveform inversion of seismic data; Part I. Theory
Lee, Ki Ha
2003-05-12
Full waveform inversion of seismic data is a challenging subject partly because of the lack of precise knowledge of the source. Since currently available approaches involve some form of approximations to the source, inversion results are subject to the quality and the choice of the source information used. A new full waveform inversion scheme has been introduced (Lee and Kim, 2003) using normalized wavefield for simple two-dimensional (2-D) scalar problems. The method does not require source information, so potential inversion errors due to source estimation may be eliminated. A gather of seismic traces is first Fourier-transformed into the frequency domain and a normalized wavefield is obtained for each trace in the frequency domain. Normalization is done with respect to the frequency response of a reference trace selected from the gather, so the complex-valued normalized wavefield is source-independent and dimensionless. The inversion algorithm minimizes misfits between measured normalized wavefield and numerically computed normalized wavefield. In this paper the full waveform inversion is extended to three-dimensional (3-D) problems.
3D Direct Simulation Monte Carlo Code Which Solves for Geometrics
1998-01-13
Pegasus is a 3D Direct Simulation Monte Carlo Code which solves for geometries which can be represented by bodies of revolution. Included are all the surface chemistry enhancements in the 2D code Icarus as well as a real vacuum pump model. The code includes multiple species transport.
3D Inversion of complex resistivity data: Case study on Mineral Exploration Site.
NASA Astrophysics Data System (ADS)
Son, Jeong-Sul; Kim, Jung-ho; Park, Sam-gyu; Park, My-Kyung
2016-04-01
Complex resistivity (CR) method is a frequency domain induced polarization (IP) method. It is also known as Spectral IP (SIP) method, if wider frequencies are used in data acquisition and interpretation. Although it takes more times than conventional time domain IP method, its data quality is more stable because its data acquisition which measures amplitude and phase is done when the source current is being injected. Our research group has been studying the modeling and inversion algorithms of complex resistivity (CR) method since several years ago and recently applied developed algorithms to various real field application. Due to tough terrain in our country, Profile survey and 2D interpretation were generally used. But to get more precise interpretation, three dimensional modeling and inversion algorithm is required. We developed three dimensional inversion algorithm for this purpose. In the inversion, we adopt the method of adaptive lagraingian multiplier which is automatically set based on the size of error misfit and model regularization norm. It was applied on the real data acquired for mineral exploration sites. CR data was acquired with the Zeta system, manufactured by Zonge Co. In the inversion, only the lower frequency data is used considering its quality and developed 3D inversion algorithm was applied to the acquired data set. Its results were compared to those of time domain IP data conducted at the same site. Resistivity image sections of CR and conventional resistivity method were almost identical. Phase anomalies were well matched with chargeability anomalies and the mining history of the test site. Each anomalies were well discriminated in 3D interpretation than those of 2D. From those experiments, we know that CR method was very effective for the mineral exploration.
Integrated gravity and gravity gradient 3D inversion using the non-linear conjugate gradient
NASA Astrophysics Data System (ADS)
Qin, Pengbo; Huang, Danian; Yuan, Yuan; Geng, Meixia; Liu, Jie
2016-03-01
Gravity data, which are critical in mineral, oil, and gas exploration, are obtained from the vertical component of the gravity field, while gravity gradient data are measured from changes in the gravity field in three directions. However, few studies have sought to improve exploration techniques by integrating gravity and gravity gradient data using inversion methods. In this study, we developed a new method to integrate gravity and gravity gradient data in a 3D density inversion using the non-linear conjugate gradient (NLCG) method and the minimum gradient support (MGS) functional to regularize the 3D inverse problem and to obtain a clear and accurate image of the anomalous body. The NLCG algorithm, which is suitable for solving large-scale nonlinear optimization problems and requires no memory storage, was compared to the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm and the results indicated that the convergence rate of NLCG is slower, but that the storage requirement and computation time is lower. To counteract the decay in kernel function, we introduced a depth weighting function for anomalous bodies at the same depth, with information about anomalous body depth obtained from well log and seismic exploration data. For anomalous bodies at different depths, we introduced a spatial gradient weighting function to incorporate additional information obtained in the inversion. We concluded that the spatial gradient weighting function enhanced the spatial resolution of the recovered model. Furthermore, our results showed that including multiple components for inversion increased the resolution of the recovered model. We validated our model by applying our inversion method to survey data from Vinton salt dome, Louisiana, USA. The results showed good agreement with known geologic information; thus confirming the accuracy of this approach.
Rosas-Carbajal, Marina; Linde, Nicolas; Peacock, Jared R.; Zyserman, F. I.; Kalscheuer, Thomas; Thiel, Stephan
2015-01-01
Surface-based monitoring of mass transfer caused by injections and extractions in deep boreholes is crucial to maximize oil, gas and geothermal production. Inductive electromagnetic methods, such as magnetotellurics, are appealing for these applications due to their large penetration depths and sensitivity to changes in fluid conductivity and fracture connectivity. In this work, we propose a 3-D Markov chain Monte Carlo inversion of time-lapse magnetotelluric data to image mass transfer following a saline fluid injection. The inversion estimates the posterior probability density function of the resulting plume, and thereby quantifies model uncertainty. To decrease computation times, we base the parametrization on a reduced Legendre moment decomposition of the plume. A synthetic test shows that our methodology is effective when the electrical resistivity structure prior to the injection is well known. The centre of mass and spread of the plume are well retrieved.We then apply our inversion strategy to an injection experiment in an enhanced geothermal system at Paralana, South Australia, and compare it to a 3-D deterministic time-lapse inversion. The latter retrieves resistivity changes that are more shallow than the actual injection interval, whereas the probabilistic inversion retrieves plumes that are located at the correct depths and oriented in a preferential north-south direction. To explain the time-lapse data, the inversion requires unrealistically large resistivity changes with respect to the base model. We suggest that this is partly explained by unaccounted subsurface heterogeneities in the base model from which time-lapse changes are inferred.
Wall-touching kink mode calculations with the M3D code
Breslau, J. A. Bhattacharjee, A.
2015-06-15
This paper seeks to address a controversy regarding the applicability of the 3D nonlinear extended MHD code M3D [W. Park et al., Phys. Plasmas 6, 1796 (1999)] and similar codes to calculations of the electromagnetic interaction of a disrupting tokamak plasma with the surrounding vessel structures. M3D is applied to a simple test problem involving an external kink mode in an ideal cylindrical plasma, used also by the Disruption Simulation Code (DSC) as a model case for illustrating the nature of transient vessel currents during a major disruption. While comparison of the results with those of the DSC is complicated by effects arising from the higher dimensionality and complexity of M3D, we verify that M3D is capable of reproducing both the correct saturation behavior of the free boundary kink and the “Hiro” currents arising when the kink interacts with a conducting tile surface interior to the ideal wall.
Earthquake source tensor inversion with the gCAP method and 3D Green's functions
NASA Astrophysics Data System (ADS)
Zheng, J.; Ben-Zion, Y.; Zhu, L.; Ross, Z.
2013-12-01
We develop and apply a method to invert earthquake seismograms for source properties using a general tensor representation and 3D Green's functions. The method employs (i) a general representation of earthquake potency/moment tensors with double couple (DC), compensated linear vector dipole (CLVD), and isotropic (ISO) components, and (ii) a corresponding generalized CAP (gCap) scheme where the continuous wave trains are broken into Pnl and surface waves (Zhu & Ben-Zion, 2013). For comparison, we also use the waveform inversion method of Zheng & Chen (2012) and Ammon et al. (1998). Sets of 3D Green's functions are calculated on a grid of 1 km3 using the 3-D community velocity model CVM-4 (Kohler et al. 2003). A bootstrap technique is adopted to establish robustness of the inversion results using the gCap method (Ross & Ben-Zion, 2013). Synthetic tests with 1-D and 3-D waveform calculations show that the source tensor inversion procedure is reasonably reliable and robust. As initial application, the method is used to investigate source properties of the March 11, 2013, Mw=4.7 earthquake on the San Jacinto fault using recordings of ~45 stations up to ~0.2Hz. Both the best fitting and most probable solutions include ISO component of ~1% and CLVD component of ~0%. The obtained ISO component, while small, is found to be a non-negligible positive value that can have significant implications for the physics of the failure process. Work on using higher frequency data for this and other earthquakes is in progress.
The NYU inverse swept wing code
NASA Technical Reports Server (NTRS)
Bauer, F.; Garabedian, P.; Mcfadden, G.
1983-01-01
An inverse swept wing code is described that is based on the widely used transonic flow program FLO22. The new code incorporates a free boundary algorithm permitting the pressure distribution to be prescribed over a portion of the wing surface. A special routine is included to calculate the wave drag, which can be minimized in its dependence on the pressure distribution. An alternate formulation of the boundary condition at infinity was introduced to enhance the speed and accuracy of the code. A FORTRAN listing of the code and a listing of a sample run are presented. There is also a user's manual as well as glossaries of input and output parameters.
NASA Astrophysics Data System (ADS)
Wilson, G. A.; Cuma, M.; Zhdanov, M. S.; Gribenko, A.; Black, N.
2010-12-01
Three-dimensional (3D) inversion is required for defining 3D geoelectric structures associated with hydrocarbon (HC) deposits from marine controlled-source electromagnetic (CSEM) data. In 3D inversion, regularization is introduced to ensure uniqueness and stability in the inverse model. However, a common misconception is that regularization implies smoothing of the inverse model when in fact regularization and the stabilizing functionals are used to select the class of model from which an inverse solution is sought. Smooth stabilizers represent just one inverse model class from which the minimum norm or first or second derivatives of the 3D resistivity distribution are minimized. Smooth stabilizers have limited physical basis in geological interpretation aimed at exploration for HC reservoirs. Focusing stabilizers on the other hand make it possible to recover subsurface models with sharp resistivity contrasts which are typical for HC reservoirs. Using a synthetic example of the stacked anticlinal structures and reservoir units of the Shtokman gas field in the Barents Sea, we demonstrate that focusing stabilizers not only recover more geologically meaningful models than smooth stabilizers, but they provide better convergence for iterative inversion. This makes it practical to run multiple inversion scenarios based on the suite of a priori models, different data combinations, and various other parameters so as to build confidence in the recovered 3D resistivity model and to discriminate any artifacts that may arise from the interpretation of a single 3D inversion result.
Wang, Dafang; Kirby, Robert M; Johnson, Chris R
2011-06-01
We consider the inverse electrocardiographic problem of computing epicardial potentials from a body-surface potential map. We study how to improve numerical approximation of the inverse problem when the finite-element method is used. Being ill-posed, the inverse problem requires different discretization strategies from its corresponding forward problem. We propose refinement guidelines that specifically address the ill-posedness of the problem. The resulting guidelines necessitate the use of hybrid finite elements composed of tetrahedra and prism elements. Also, in order to maintain consistent numerical quality when the inverse problem is discretized into different scales, we propose a new family of regularizers using the variational principle underlying finite-element methods. These variational-formed regularizers serve as an alternative to the traditional Tikhonov regularizers, but preserves the L(2) norm and thereby achieves consistent regularization in multiscale simulations. The variational formulation also enables a simple construction of the discrete gradient operator over irregular meshes, which is difficult to define in traditional discretization schemes. We validated our hybrid element technique and the variational regularizers by simulations on a realistic 3-D torso/heart model with empirical heart data. Results show that discretization based on our proposed strategies mitigates the ill-conditioning and improves the inverse solution, and that the variational formulation may benefit a broader range of potential-based bioelectric problems.
A method to constrain the configuration of the subsurface structure in 3-D gravity inversion
Hu, Y.; Rabinowitz, P.D.
1996-12-31
A three-dimensional inversion technique is developed to investigate the structure of the oceanic crust, using high quality offshore bathymetry, gravity and seismic data. The gravity signatures associated with variations in the thickness of the oceanic crust are isolated from the observed free-air anomaly by subtracting the gravitational effects of seafloor topography and the upper mantle thermal structure, downward continued to the mean depth of the crust/mantle interface and converted onto the relief on that surface. The thickness of the oceanic crust is then calculated by subtracting sea water depth from the depth of the gravity-inferred crust/mantle interface. Seismic refraction data was introduced directly as a constraint in the construction of the initial model for the configuration of the crust/mantle interface and the iterative process of the 3-D joint inversion to reduce the ambiguity in gravity interpretation. This technique can be easily applied to the offshore areas to interpret bathymetry, gravity and seismic data that have been routinely collected for the purpose of geophysical exploration. Compared to the unconstrained gravity inversion, this technique can predict a 3-D crustal model that fits better both gravity and seismic observation data of the study area.
Standards-based approaches to 3D and multiview video coding
NASA Astrophysics Data System (ADS)
Sullivan, Gary J.
2009-08-01
The extension of video applications to enable 3D perception, which typically is considered to include a stereo viewing experience, is emerging as a mass market phenomenon, as is evident from the recent prevalence of 3D major cinema title releases. For high quality 3D video to become a commonplace user experience beyond limited cinema distribution, adoption of an interoperable coded 3D digital video format will be needed. Stereo-view video can also be studied as a special case of the more general technologies of multiview and "free-viewpoint" video systems. The history of standardization work on this topic is actually richer than people may typically realize. The ISO/IEC Moving Picture Experts Group (MPEG), in particular, has been developing interoperability standards to specify various such coding schemes since the advent of digital video as we know it. More recently, the ITU-T Visual Coding Experts Group (VCEG) has been involved as well in the Joint Video Team (JVT) work on development of 3D features for H.264/14496-10 Advanced Video Coding, including Multiview Video Coding (MVC) extensions. This paper surveys the prior, ongoing, and anticipated future standardization efforts on this subject to provide an overview and historical perspective on feasible approaches to 3D and multiview video coding.
Development of direct-inverse 3-D methods for applied transonic aerodynamic wing design and analysis
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1989-01-01
An inverse wing design method was developed around an existing transonic wing analysis code. The original analysis code, TAWFIVE, has as its core the numerical potential flow solver, FLO30, developed by Jameson and Caughey. Features of the analysis code include a finite-volume formulation; wing and fuselage fitted, curvilinear grid mesh; and a viscous boundary layer correction that also accounts for viscous wake thickness and curvature. The development of the inverse methods as an extension of previous methods existing for design in Cartesian coordinates is presented. Results are shown for inviscid wing design cases in super-critical flow regimes. The test cases selected also demonstrate the versatility of the design method in designing an entire wing or discontinuous sections of a wing.
NASA Astrophysics Data System (ADS)
Kuvshinov, Alexey; Semenov, Alexey
2012-06-01
We present a novel frequency-domain inverse solution to recover the 3-D electrical conductivity distribution in the mantle. The solution is based on analysis of local C-responses. It exploits an iterative gradient-type method - limited-memory quasi-Newton method - for minimizing the penalty function consisting of data misfit and regularization terms. The integral equation code is used as a forward engine to calculate responses and data misfit gradients during inversion. An adjoint approach is implemented to compute misfit gradients efficiently. Further improvements in computational load come from parallelizing the scheme with respect to frequencies, and from setting the most time-consuming part of the forward calculations - calculation of Green's tensors - apart from the inversion loop. Convergence, performance, and accuracy of our 3-D inverse solution are demonstrated with a synthetic numerical example. A companion paper applies the strategy set forth here to real data.
3D Effects in the Formation of Zonal Jets Through Inverse Cascade
NASA Astrophysics Data System (ADS)
Sayanagi, Kunio M.; Showman, A. P.
2006-09-01
The atmospheric zonal jets on Jupiter and Saturn are characterized by the broad, prograde, equatorial jet and the narrower, higher-latitude jets that alternate between prograde and retrograde. The question of what controls the widths and directions of those jets remains a major unsolved problem in geophysical fluid dynamics. Past studies have shown that, in shallow flows on a rotating sphere, small random vortices can undergo inverse cascade to form zonal jets with a characteristic width called the Rhines scale. Most of the studies to date use 2D non-divergent or shallow-water models in studying this zonal jet formation mechanism. However, in the parameter ranges representative of the Jovian conditions, the flows produced by 2D non-divergent models are typically dominated by strong circumpolar jets, and the shallow-water models produce a robust retrograde equatorial jet. These models' apparent inabilities in reproducing some key Jovian jet features may suggest the importance of 3D effects in controlling the jets' large-scale horizontal structures. To date, Kitamura and Matsuda (Fluid Dynamics Research, 34, 33-57, 2004) is the only published study that analyzes the 3D effects in the zonalization of fine-scale random turbulence through the inverse cascade. Their two-layer primitive equation simulations of free-evolving flows resulted in circumpolar jet dominated flows, although slower mid-latitude jets are also present. Our study is a significant extension over that by Kitamura and Matsuda and includes substantially more layers to study the zonalization process to more fully resolve relevant 3D effects in the inverse cascade. We test the flow behavior's dependence on the deformation radius and the resulting vertical structures in both spherical and beta-plane geometries. Our study uses the Explicit Planetary Isentropic Coordinate (EPIC) model (Dowling et al, Icarus, 32, 221-238., 1998). The research is supported by a NASA Planetary Atmospheres grant to APS.
3D Effects in the Formation of Zonal Jets Through Inverse Cascade
NASA Astrophysics Data System (ADS)
Sayanagi, K. M.; Showman, A. P.
2006-12-01
The atmospheric zonal jets on Jupiter and Saturn are characterized by the broad, prograde, equatorial jet and the narrower, higher-latitude jets that alternate between prograde and retrograde. The question of what controls the widths and directions of those jets remains a major unsolved problem in geophysical fluid dynamics. Past studies have shown that, in shallow flows on a rotating sphere, small random vortices can undergo inverse cascade to form zonal jets with a characteristic width called the Rhines scale. Most of the studies to date use 2D non-divergent or shallow-water models in studying this zonal jet formation mechanism. However, in the parameter ranges representative of the Jovian conditions, the flows produced by 2D non- divergent models are typically dominated by strong circumpolar jets, and the shallow-water models produce a robust retrograde equatorial jet. These models' apparent inabilities in reproducing some key Jovian jet features may suggest the importance of 3D effects in controlling the jets' large-scale horizontal structures. To date, Kitamura and Matsuda (Fluid Dynamics Research, 34, 33-57, 2004) is the only published study that analyzes the 3D effects in the zonalization of fine-scale random turbulence through the inverse cascade. Their two-layer primitive equation simulations of free-evolving flows resulted in circumpolar jet dominated flows, although slower mid-latitude jets are also present. Our study is a significant extension over that by Kitamura and Matsuda and includes substantially more layers to study the zonalization process to more fully resolve relevant 3D effects in the inverse cascade. We test the flow behavior's dependence on the deformation radius and the resulting vertical structures in both spherical and beta-plane geometries. Our study uses the Explicit Planetary Isentropic Coordinate (EPIC) model (Dowling et al, Icarus, 32, 221-238., 1998). The research is supported by a NASA Planetary Atmospheres grant to APS.
Efficient 2D and 3D multiparameters frequency-domain full waveform inversion (Invited)
NASA Astrophysics Data System (ADS)
Virieux, J.; Operto, S.; Ribodetti, A.; Ben Hadj Ali, H.; Brossier, R.; Etienne, V.; Gholami, Y.; Hu, G.; Jia, Y.; Pageot, D.; Prieux, V.
2010-12-01
With the tremendous increase of the computational power provided by large-scale distributed-memory platforms and the development of dense 3D multi-component wide-aperture/wide-azimuth surveys, full waveform inversion (FWI) introduced in geophysics by Albert Tarantola has become a re-emerging technique to build high-resolution velocity models of the subsurface. Because of the cost of the forward modeling and the high dimensionality of the model space, full waveform inversion is actually a local optimization problem, the aim of which is the minimization of the misfit between the recorded and modeled seismic wavefields. Among all possible minimization criteria, the L1 norm provides the most robust and easy-to-tune criterion. With such criterion, white noise in all seismograms with outliers does not prevent the convergence to the nearly same minimum as for noise-free data. The frequency formulation of the FWI allows coarse sampling of the frequencies data over few frequencies for the reconstruction of the medium when wide-aperture geometries are considered. A preconditioned quasi-Newton L-BFGS modified algorithm provides scaled gradients of the misfit function for each class of parameters. The gradient is computed by the adjoint-state method where the forward field is stored in the core memory of the computer while computing the backpropagation of residuals for cross-correlation at each point of the medium, thanks to the frequency-domain approach. We are using a sequential multiscale hierarchical inversion algorithm with two nested levels of data preconditioning with respect to frequency and first-arrival time. We are able to reconstruct both Vp and Vs velocity structures in various offshore and onshore environments various configurations of crustal investigation where both body waves (and surface) waves are progressively included in the inversion scheme. Solving the forward problem for 2D geometry could be efficiently performed in frequency by using a direct solver
NASA Astrophysics Data System (ADS)
Scheunert, M.; Ullmann, A.; Afanasjew, M.; Börner, R.-U.; Siemon, B.; Spitzer, K.
2016-06-01
We present an inversion concept for helicopter-borne frequency-domain electromagnetic (HEM) data capable of reconstructing 3-D conductivity structures in the subsurface. Standard interpretation procedures often involve laterally constrained stitched 1-D inversion techniques to create pseudo-3-D models that are largely representative for smoothly varying conductivity distributions in the subsurface. Pronounced lateral conductivity changes may, however, produce significant artifacts that can lead to serious misinterpretation. Still, 3-D inversions of entire survey data sets are numerically very expensive. Our approach is therefore based on a cut-&-paste strategy whereupon the full 3-D inversion needs to be applied only to those parts of the survey where the 1-D inversion actually fails. The introduced 3-D Gauss-Newton inversion scheme exploits information given by a state-of-the-art (laterally constrained) 1-D inversion. For a typical HEM measurement, an explicit representation of the Jacobian matrix is inevitable which is caused by the unique transmitter-receiver relation. We introduce tensor quantities which facilitate the matrix assembly of the forward operator as well as the efficient calculation of the Jacobian. The finite difference forward operator incorporates the displacement currents because they may seriously affect the electromagnetic response at frequencies above 100. Finally, we deliver the proof of concept for the inversion using a synthetic data set with a noise level of up to 5%.
New Advances for a joint 3D inversion of multiple EM methods
NASA Astrophysics Data System (ADS)
Meqbel, N. M.; Ritter, O.
2013-12-01
Electromagnetic (EM) methods are routinely applied to image the subsurface from shallow to regional structures. Individual EM methods differ in their sensitivities towards resistive and conductive structures as well as in their exploration depths. Joint 3D inversion of multiple EM data sets can result in significantly better resolution of subsurface structures than the individual inversions. Proper weighting between different EM data is essential, however. We present a recently developed weighting algorithm to combine magnetotelluric (MT), controlled source EM (CSEM) and DC-geoelectric (DC) data. It is well known that MT data are mostly sensible to regional conductive structures, whereas, CSEM and DC data are more suitable to recover more shallow and resistive structures. Our new scheme is based on weighting individual components of the total data gradient after each model update. Norms of each data residual are used to assess how much weight individual components of the total data gradient must have to achieve an equal contribution of all data sets in the inverse model. A numerically efficient way to search for appropriate weighting factors could be established by applying a bi-diagonalization procedure to the sensitivity matrix. Thereby, the original inverse problem can be projected onto a smaller dimension in which the search of weighting factors is numerically cheap. We demonstrate the efficiency of the proposed weighting schemes and explore the model domain with synthetic data sets.
NASA Astrophysics Data System (ADS)
Zhdanov, M. S.; Gribenko, A.; Wilson, G. A.
2012-12-01
Geophysical monitoring of reservoir fluids and rock properties is relevant to oil and gas production, carbon sequestration, and enhanced geothermal systems. Different geophysical fields provide information about different physical properties of the earth. Multiple geophysical surveys spanning gravity, magnetic, electromagnetic, seismic, and thermal methods are often interpreted to infer geology from models of different physical properties. In many cases, the various geophysical data are complimentary, making it natural to consider a formal mathematical framework for their joint inversion to a shared earth model. We introduce a new approach to the 3D joint inversion of multiple geophysical datasets using Gramian spaces of model parameters and Gramian constraints, computed as determinants of the corresponding Gram matrices of the multimodal model parameters and/or their attributes. The basic underlying idea of this approach is that the Gramian provides a measure of correlation between the model parameters. By imposing an additional requirement of the minimum of the Gramian, we arrive at the solution of the joint multimodal inverse problem with the enhanced correlation between the different model parameters and/or their attributes. We demonstrate that this new approach is a generalized technique that can be applied to the simultaneous joint inversion of any number and combination of geophysical datasets. Our approach includes as special cases those extant methods based on correlations and/or structural constraints of different physical properties. We illustrate this approach by a model study of reservoir monitoring using different geophysical data.
Development of the PARVMEC Code for Rapid Analysis of 3D MHD Equilibrium
NASA Astrophysics Data System (ADS)
Seal, Sudip; Hirshman, Steven; Cianciosa, Mark; Wingen, Andreas; Unterberg, Ezekiel; Wilcox, Robert; ORNL Collaboration
2015-11-01
The VMEC three-dimensional (3D) MHD equilibrium has been used extensively for designing stellarator experiments and analyzing experimental data in such strongly 3D systems. Recent applications of VMEC include 2D systems such as tokamaks (in particular, the D3D experiment), where application of very small (delB/B ~ 10-3) 3D resonant magnetic field perturbations render the underlying assumption of axisymmetry invalid. In order to facilitate the rapid analysis of such equilibria (for example, for reconstruction purposes), we have undertaken the task of parallelizing the VMEC code (PARVMEC) to produce a scalable and temporally rapidly convergent equilibrium code for use on parallel distributed memory platforms. The parallelization task naturally splits into three distinct parts 1) radial surfaces in the fixed-boundary part of the calculation; 2) two 2D angular meshes needed to compute the Green's function integrals over the plasma boundary for the free-boundary part of the code; and 3) block tridiagonal matrix needed to compute the full (3D) pre-conditioner near the final equilibrium state. Preliminary results show that scalability is achieved for tasks 1 and 3, with task 2 still nearing completion. The impact of this work on the rapid reconstruction of D3D plasmas using PARVMEC in the V3FIT code will be discussed. Work supported by U.S. DOE under Contract DE-AC05-00OR22725 with UT-Battelle, LLC.
3D inversion based on multi-grid approach of magnetotelluric data from Northern Scandinavia
NASA Astrophysics Data System (ADS)
Cherevatova, M.; Smirnov, M.; Korja, T. J.; Egbert, G. D.
2012-12-01
In this work we investigate the geoelectrical structure of the cratonic margin of Fennoscandian Shield by means of magnetotelluric (MT) measurements carried out in Northern Norway and Sweden during summer 2011-2012. The project Magnetotellurics in the Scandes (MaSca) focuses on the investigation of the crust, upper mantle and lithospheric structure in a transition zone from a stable Precambrian cratonic interior to a passive continental margin beneath the Caledonian Orogen and the Scandes Mountains in western Fennoscandia. Recent MT profiles in the central and southern Scandes indicated a large contrast in resistivity between Caledonides and Precambrian basement. The alum shales as a highly conductive layers between the resistive Precambrian basement and the overlying Caledonian nappes are revealed from this profiles. Additional measurements in the Northern Scandes were required. All together data from 60 synchronous long period (LMT) and about 200 broad band (BMT) sites were acquired. The array stretches from Lofoten and Bodo (Norway) in the west to Kiruna and Skeleftea (Sweden) in the east covering an area of 500x500 square kilometers. LMT sites were occupied for about two months, while most of the BMT sites were measured during one day. We have used new multi-grid approach for 3D electromagnetic (EM) inversion and modelling. Our approach is based on the OcTree discretization where the spatial domain is represented by rectangular cells, each of which might be subdivided (recursively) into eight sub-cells. In this simplified implementation the grid is refined only in the horizontal direction, uniformly in each vertical layer. Using multi-grid we manage to have a high grid resolution near the surface (for instance, to tackle with galvanic distortions) and lower resolution at greater depth as the EM fields decay in the Earth according to the diffusion equation. We also have a benefit in computational costs as number of unknowns decrease. The multi-grid forward
NASA Astrophysics Data System (ADS)
Windhari, Ayuty; Handayani, Gunawan
2015-04-01
The 3D inversion gravity anomaly to estimate topographical density using a matlab source code from gridded data provided by Parker Oldenburg algorithm based on fast Fourier transform was computed. We extend and improved the source code of 3DINVERT.M invented by Gomez Ortiz and Agarwal (2005) using the relationship between Fourier transform of the gravity anomaly and the sum of the Fourier transform from the topography density. We gave density contrast between the two media to apply the inversion. FFT routine was implemented to construct amplitude spectrum to the given mean depth. The results were presented as new graphics of inverted topography density, the gravity anomaly due to the inverted topography and the difference between the input gravity data and the computed ones. It terminates when the RMS error is lower than pre-assigned value used as convergence criterion or until maximum of iterations is reached. As an example, we used the matlab program on gravity data of Banten region, Indonesia.
New Two-stage Approach For 3d Potential Field Data Inversion
NASA Astrophysics Data System (ADS)
Prutkin, I. L.
From the author's viewpoint the main challenges for a geophysicist dealing with po- tential field data inversion are following: 1) to make really three-dimensional inversion (to avoid the assumption that the object sought is an infinite cylinder); 2) to leave the simplest bodies (prisms, ellipsoids, cylinders of finite length) for the objects of more complex geometry, 3) to take into account the non-uniqueness of the inverse problem. In our investigation we've made an attempt to solve the above-mentioned problems. We take into account the non- uniqueness of the inverse problem in the framework of the equivalence theory developed by A.V. Tsyrulsky. We have reduced 3D grav- ity and magnetic inverse problems to the non-linear integral equations of the 1st kind relative to the function determining geometry of the object sought. They include a physical parameter as a numerical factor. Substituting different values of it, we obtain the opportunity to construct the whole equivalent family of the solutions. New inte- gral equations have been derived, which integrands are algebraic relative the function sought and don't contain its derivatives. The method of local corrections has been suggested, which makes it possible to curtail the time required to solve an inverse problem approximately by an order of magnitude. The parameterization of the solu- tion sought and regularization of an inverse problem were studied. On the base of his equivalence theory A.V. Tsyrulsky had suggested two-stage approach for 2D gravity and magnetic anomalies interpretation. The aim of the first stage is to approximate the observed field by the field of a sum of the simplest sources (point sources, thin layers, etc.) of no geological sense. On the second stage the field of a sum of some sources is regarded as a field of the object sought, we are able to try different variants to unite sources and to construct the equivalent family of solutions. Sole member of the family should be chosen with taking
INS3D: An incompressible Navier-Stokes code in generalized three-dimensional coordinates
NASA Technical Reports Server (NTRS)
Rogers, S. E.; Kwak, D.; Chang, J. L. C.
1987-01-01
The operation of the INS3D code, which computes steady-state solutions to the incompressible Navier-Stokes equations, is described. The flow solver utilizes a pseudocompressibility approach combined with an approximate factorization scheme. This manual describes key operating features to orient new users. This includes the organization of the code, description of the input parameters, description of each subroutine, and sample problems. Details for more extended operations, including possible code modifications, are given in the appendix.
NASA Astrophysics Data System (ADS)
Yang, Pengliang; Brossier, Romain; Métivier, Ludovic; Virieux, Jean
2016-07-01
In this paper we study 3D multiparameter full waveform inversion (FWI) in viscoelastic media based on the generalized Maxwell/Zener body (GMB/GZB) including arbitrary number of attenuation mechanisms. We present a frequency-domain energy analysis to establish the stability condition of a full anisotropic viscoelastic system, according to zero-valued boundary condition and the elastic-viscoelastic correspondence principle: the real-valued stiffness matrix becomes a complex-valued one in Fourier domain when seismic attenuation is taken into account. We develop a least-squares optimization approach to linearly relate the quality factor with the anelastic coefficients by estimating a set of constants which are independent of the spatial coordinates, which supplies an explicit incorporation of the parameter Q in the general viscoelastic wave equation. By introducing the Lagrangian multipliers into the matrix expression of the wave equation with implicit time integration, we build a systematic formulation of multiparameter full waveform inversion for full anisotropic viscoelastic wave equation, while the equivalent form of the state and adjoint equation with explicit time integration is available to be resolved efficiently. In particular, this formulation lays the foundation for the inversion of the parameter Q in the time domain with full anisotropic viscoelastic properties. In the 3D isotropic viscoelastic settings, the anelastic coefficients and the quality factors using bulk and shear moduli parameterization can be related to the counterparts using P- and S- velocity. Gradients with respect to any other parameter of interest can be found by chain rule. Pioneering numerical validations as well as the real applications of this most generic framework will be carried out to disclose the potential of viscoelastic FWI when adequate high performance computing resources and the field data are available.
User's manual for PELE3D: a computer code for three-dimensional incompressible fluid dynamics
McMaster, W H
1982-05-07
The PELE3D code is a three-dimensional semi-implicit Eulerian hydrodynamics computer program for the solution of incompressible fluid flow coupled to a structure. The fluid and coupling algorithms have been adapted from the previously developed two-dimensional code PELE-IC. The PELE3D code is written in both plane and cylindrical coordinates. The coupling algorithm is general enough to handle a variety of structural shapes. The free surface algorithm is able to accommodate a top surface and several independent bubbles. The code is in a developmental status since all the intended options have not been fully implemented and tested. Development of this code ended in 1980 upon termination of the contract with the Nuclear Regulatory Commission.
Lewis inverse design code (LINDES): Users manual
NASA Technical Reports Server (NTRS)
Sanz, Jose M.
1987-01-01
The method of complex characteristics and hodograph transformation for the design of shockless airfoils was introduced by Bauer, Garabedian, and Korn and has been extended by the author to design subcritical and supercritical cascades with high solidities and large inlet angles. This new capability was achieved by introducing a new conformal mapping of the hodograph domain onto an ellipse and expanding the solution in terms of Chebyshev polynomials. A new computer code, the NASA Lewis inverse design code, was developed based on this idea. This new design code is an efficient method for the design of airfoils in cascade. In particular, the design of subcritical cascades of airfoils is a very fast, robust, and versatile process. The inverse design code can be made to interact with a turbulent boundary layer calculation to obtain airfoils with no separated flows at the design condition. This report is intended to serve as a users manual for this design code. Material previously reported by the author is included here for completeness and quick access to the user. The manual contains a description of the method followed by a discussion of the design procedure and examples. The input parameters necessary to run the code are then described and their default values given. Output listings corresponding to six different blade shapes designed with the code are given, as well as the necessary input data to reproduce the computer runs. The examples have been chosen to show that a wide range of applications can be covered with the code, ranging from supercritical propeller sections to wind tunnel turning vanes that can operate with a large inlet flow angle range.
Three-dimensional parallel UNIPIC-3D code for simulations of high-power microwave devices
Wang Jianguo; Chen Zaigao; Wang Yue; Zhang Dianhui; Qiao Hailiang; Fu Meiyan; Yuan Yuan; Liu Chunliang; Li Yongdong; Wang Hongguang
2010-07-15
This paper introduces a self-developed, three-dimensional parallel fully electromagnetic particle simulation code UNIPIC-3D. In this code, the electromagnetic fields are updated using the second-order, finite-difference time-domain method, and the particles are moved using the relativistic Newton-Lorentz force equation. The electromagnetic field and particles are coupled through the current term in Maxwell's equations. Two numerical examples are used to verify the algorithms adopted in this code, numerical results agree well with theoretical ones. This code can be used to simulate the high-power microwave (HPM) devices, such as the relativistic backward wave oscillator, coaxial vircator, and magnetically insulated line oscillator, etc. UNIPIC-3D is written in the object-oriented C++ language and can be run on a variety of platforms including WINDOWS, LINUX, and UNIX. Users can use the graphical user's interface to create the complex geometric structures of the simulated HPM devices, which can be automatically meshed by UNIPIC-3D code. This code has a powerful postprocessor which can display the electric field, magnetic field, current, voltage, power, spectrum, momentum of particles, etc. For the sake of comparison, the results computed by using the two-and-a-half-dimensional UNIPIC code are also provided for the same parameters of HPM devices, the numerical results computed from these two codes agree well with each other.
Data-driven inversion of 3D GPR data for layered media
NASA Astrophysics Data System (ADS)
Slob, E. C.
2013-12-01
The number of GPR applications is large and still increasing. In several applications fixed-offset measurements can be sufficient and many dedicated imaging and inversion methods have been developed. Because there is insufficient amounts of data, these are necessarily model-driven schemes. For problems where quantitative information is needed, usually it is better to record multi-offset and possibly multicomponent data. Even for this data inversion is usually model-driven. This means the inverse problem is formulated as an iterative forward modeling problem and is solved by minimizing the amplitude difference between modeled and measured data. The model is modified such that data computed from the model fits the measured data. The information in the measured data itself is not used, except as a measure of the model data fit. For multi-offset multicomponent data a data-driven scheme is here developed to perform full waveform inversion of 3D ground-penetrating radar reflection data acquired on the surface of a layered medium. For data-driven models to work well, the data has to be properly sampled. The advantage is that no model information is necessary to carry out the inversion. The inversion is carried out in three steps. First the data is decomposed into up- and downgoing wave modes. In a layered earth the two modes are separable and are treated separately. This step provides the reflection response of the layered medium. For 3D waves in a layered medium this requires knowledge of the horizontal electric and magnetic field components. If the data is properly sampled the solution is unique. The second step consists of wave field synthesis, where the reflection response is used to construct a focusing wave field that can focus in a virtual receiver position at any depth level. At this stage of the process the depth level is only known in terms of one-way travel time. This is the intercept time in the slowness domain obtained directly from the data. A virtual
NASA Astrophysics Data System (ADS)
Garcia Juanatey, M. A.; Hübert, J.; Tryggvason, A.; Juhlin, C.; Pedersen, L. B.; Bauer, T. E.; Dehghannejad, M.
2012-12-01
Broadband MT data were acquired in the Skellefte district, an important mining area in northern Sweden, as part of the VINNOVA project "4D modeling of the Skellefte District". The project aims to provide a better understanding of the local and regional processes that took place in the past and, thus, provide a framework for new exploration strategies to target deeper deposits in the area. The new MT data, acquired in the central part of the district, consist of 36 stations along two parallel profiles that follow seismic reflection lines and potential field modeling studies in the area. The dimensionality and quality of the data set were carefully analyzed and 2D and 3D inversions were performed. 2D inversions provided a basis to compare with other MT surveys in the area and to some extent validate 3D inversion results. 3D inversion was deemed necessary given the complexity of the geological setting of the studied area. The algorithms used were the data space based REBOCC and WSINV3DMT methods. For the 2D inversion only the determinant of the impedance tensor was used, while for the 3D inversion all its elements were considered. Prior to 3D inversion, new error floors were calculated using individual 1D inversions of the off-diagonal components of the impedance tensor. The obtained models have an RMS value of ~2, and share the main regional features. A detailed comparison reveals the superiority of the 3D model, both in model structures and data fit. An interpretation of the 3D model is presented using also results from previous geophysical studies. The most interesting features in the model are conductors associated to prominent shear zones (from 1 to 12 km deep) and hydrothermally altered zones within the Skellefte Group rocks (between 250 and 6000 m depth). In addition, it is possible to identify faults associated to the transport of hydrothermal fluids that might be closely related to ore forming processes.
NASA Astrophysics Data System (ADS)
Bignardi, S.; Mantovani, A.; Abu Zeid, N.
2016-08-01
OpenHVSR is a computer program developed in the Matlab environment, designed for the simultaneous modeling and inversion of large Horizontal-to-Vertical Spectral Ratio (HVSR or H/V) datasets in order to construct 2D/3D subsurface models (topography included). The program is designed to provide a high level of interactive experience to the user and still to be of intuitive use. It implements several effective and established tools already present in the code ModelHVSR by Herak (2008), and many novel features such as: -confidence evaluation on lateral heterogeneity -evaluation of frequency dependent single parameter impact on the misfit function -relaxation of Vp/Vs bounds to allow for water table inclusion -a new cost function formulation which include a slope dependent term for fast matching of peaks, which greatly enhances convergence in case of low quality HVSR curves inversion -capability for the user of editing the subsurface model at any time during the inversion and capability to test the changes before acceptance. In what follows, we shall present many features of the program and we shall show its capabilities on both simulated and real data. We aim to supply a powerful tool to the scientific and professional community capable of handling large sets of HSVR curves, to retrieve the most from their microtremor data within a reduced amount of time and allowing the experienced scientist the necessary flexibility to integrate into the model their own geological knowledge of the sites under investigation. This is especially desirable now that microtremor testing has become routinely used. After testing the code over different datasets, both simulated and real, we finally decided to make it available in an open source format. The program is available by contacting the authors.
Levander, Alan Richard; Zelt, Colin A.
2015-03-17
The work plan for this project was to develop and apply advanced seismic reflection and wide-angle processing and inversion techniques to high resolution seismic data for the shallow subsurface to seismically characterize the shallow subsurface at hazardous waste sites as an aid to containment and cleanup activities. We proposed to continue work on seismic data that we had already acquired under a previous DoE grant, as well as to acquire additional new datasets for analysis. The project successfully developed and/or implemented the use of 3D reflection seismology algorithms, waveform tomography and finite-frequency tomography using compressional and shear waves for high resolution characterization of the shallow subsurface at two waste sites. These two sites have markedly different near-surface structures, groundwater flow patterns, and hazardous waste problems. This is documented in the list of refereed documents, conference proceedings, and Rice graduate theses, listed below.
The 3D inversion of airborne gamma-ray spectrometric data
NASA Astrophysics Data System (ADS)
Minty, Brian; Brodie, Ross
2016-07-01
We present a new method for the inversion of airborne gamma-ray spectrometric line data to a regular grid of radioelement concentration estimates on the ground. The method incorporates the height of the aircraft, the 3D terrain within the field of view of the spectrometer, the directional sensitivity of rectangular detectors, and a source model comprising vertical rectangular prisms with the same horizontal dimensions as the required grid cell size. The top of each prism is a plane surface derived from a best-fit plane to the digital elevation model of the earth's surface within each grid cell area. The method is a significant improvement on current methods, and gives superior interpolation between flight lines. It also eliminates terrain effects that would normally remain in the data after the conventional processing of these data assuming a flat-earth model.
Impact of packet losses in scalable 3D holoscopic video coding
NASA Astrophysics Data System (ADS)
Conti, Caroline; Nunes, Paulo; Ducla Soares, Luís.
2014-05-01
Holoscopic imaging became a prospective glassless 3D technology to provide more natural 3D viewing experiences to the end user. Additionally, holoscopic systems also allow new post-production degrees of freedom, such as controlling the plane of focus or the viewing angle presented to the user. However, to successfully introduce this technology into the consumer market, a display scalable coding approach is essential to achieve backward compatibility with legacy 2D and 3D displays. Moreover, to effectively transmit 3D holoscopic content over error-prone networks, e.g., wireless networks or the Internet, error resilience techniques are required to mitigate the impact of data impairments in the user quality perception. Therefore, it is essential to deeply understand the impact of packet losses in terms of decoding video quality for the specific case of 3D holoscopic content, notably when a scalable approach is used. In this context, this paper studies the impact of packet losses when using a three-layer display scalable 3D holoscopic video coding architecture previously proposed, where each layer represents a different level of display scalability (i.e., L0 - 2D, L1 - stereo or multiview, and L2 - full 3D holoscopic). For this, a simple error concealment algorithm is used, which makes use of inter-layer redundancy between multiview and 3D holoscopic content and the inherent correlation of the 3D holoscopic content to estimate lost data. Furthermore, a study of the influence of 2D views generation parameters used in lower layers on the performance of the used error concealment algorithm is also presented.
NASA Astrophysics Data System (ADS)
Yang, Pengliang; Brossier, Romain; Métivier, Ludovic; Virieux, Jean
2016-10-01
In this paper, we study 3-D multiparameter full waveform inversion (FWI) in viscoelastic media based on the generalized Maxwell/Zener body including arbitrary number of attenuation mechanisms. We present a frequency-domain energy analysis to establish the stability condition of a full anisotropic viscoelastic system, according to zero-valued boundary condition and the elastic-viscoelastic correspondence principle: the real-valued stiffness matrix becomes a complex-valued one in Fourier domain when seismic attenuation is taken into account. We develop a least-squares optimization approach to linearly relate the quality factor with the anelastic coefficients by estimating a set of constants which are independent of the spatial coordinates, which supplies an explicit incorporation of the parameter Q in the general viscoelastic wave equation. By introducing the Lagrangian multipliers into the matrix expression of the wave equation with implicit time integration, we build a systematic formulation of multiparameter FWI for full anisotropic viscoelastic wave equation, while the equivalent form of the state and adjoint equation with explicit time integration is available to be resolved efficiently. In particular, this formulation lays the foundation for the inversion of the parameter Q in the time domain with full anisotropic viscoelastic properties. In the 3-D isotropic viscoelastic settings, the anelastic coefficients and the quality factors using bulk and shear moduli parametrization can be related to the counterparts using P and S velocity. Gradients with respect to any other parameter of interest can be found by chain rule. Pioneering numerical validations as well as the real applications of this most generic framework will be carried out to disclose the potential of viscoelastic FWI when adequate high-performance computing resources and the field data are available.
3D elastic full waveform inversion: case study from a land seismic survey
NASA Astrophysics Data System (ADS)
Kormann, Jean; Marti, David; Rodriguez, Juan-Esteban; Marzan, Ignacio; Ferrer, Miguel; Gutierrez, Natalia; Farres, Albert; Hanzich, Mauricio; de la Puente, Josep; Carbonell, Ramon
2016-04-01
Full Waveform Inversion (FWI) is one of the most advanced processing methods that is recently reaching a mature state after years of solving theoretical and technical issues such as the non-uniqueness of the solution and harnessing the huge computational power required by realistic scenarios. BSIT (Barcelona Subsurface Imaging Tools, www.bsc.es/bsit) includes a FWI algorithm that can tackle with very complex problems involving large datasets. We present here the application of this system to a 3D dataset acquired to constrain the shallow subsurface. This is where the wavefield is the most complicated, because most of the wavefield conversions takes place in the shallow region and also because the media is much more laterally heterogeneous. With this in mind, at least isotropic elastic approximation would be suitable as kernel engine for FWI. The current study explores the possibilities to apply elastic isotropic FWI using only the vertical component of the recorded seismograms. The survey covers an area of 500×500 m2, and consists in a receivers grid of 10 m×20 m combined with a 250 kg accelerated weight-drop as source on a displaced grid of 20 m×20 m. One of the main challenges in this case study is the costly 3D modeling that includes topography and substantial free surface effects. FWI is applied to a data subset (shooting lines 4 to 12), and is performed for 3 frequencies ranging from 15 to 25 Hz. The starting models are obtained from travel-time tomography and the all computation is run on 75 nodes of Mare Nostrum supercomputer during 3 days. The resulting models provide a higher resolution of the subsurface structures, and show a good correlation with the available borehole measurements. FWI allows to extend in a reliable way this 1D knowledge (borehole) to 3D.
Multitasking the INS3D-LU code on the Cray Y-MP
NASA Technical Reports Server (NTRS)
Fatoohi, Rod; Yoon, Seokkwan
1991-01-01
This paper presents the results of multitasking the INS3D-LU code on eight processors. The code is a full Navier-Stokes solver for incompressible fluid in three dimensional generalized coordinates using a lower-upper symmetric-Gauss-Seidel implicit scheme. This code has been fully vectorized on oblique planes of sweep and parallelized using autotasking with some directives and minor modifications. The timing results for five grid sizes are presented and analyzed. The code has achieved a processing rate of over one Gflops.
RELAP5-3D Code for Supercritical-Pressure Light-Water-Cooled Reactors
Riemke, Richard Allan; Davis, Cliff Bybee; Schultz, Richard Raphael
2003-04-01
The RELAP5-3D computer program has been improved for analysis of supercritical-pressure, light-water-cooled reactors. Several code modifications were implemented to correct code execution failures. Changes were made to the steam table generation, steam table interpolation, metastable states, interfacial heat transfer coefficients, and transport properties (viscosity and thermal conductivity). The code modifications now allow the code to run slow transients above the critical pressure as well as blowdown transients (modified Edwards pipe and modified existing pressurized water reactor model) that pass near the critical point.
NASA Astrophysics Data System (ADS)
Smirnov, M. Yu.; Korja, T.; Pedersen, L. B.
2009-04-01
Two electromagnetic arrays are used in the EMMA project to study conductivity structure of the Archaean lithosphere in the Fennoscandian Shield. The first array was operated during almost one year, while the second one was running only during the summer time. Twelve 5-components magnetotelluric instruments with fluxgate magnetometers recorded simultaneously time variations of Earth's natural electromagnetic field at the sites separated by c. 30 km. To better control the source field and to obtain galvanic distortion free responses we have applied horizontal spatial gradient (HSG) technique to the data. The study area is highly inhomogeneous, thus classical HSG might give erroneous results. The method was extended to include anomalous field effects by implementing multivariate analysis. The HSG transfer functions were then used to control static shift distortions of apparent resistivities. During the BEAR experiment 1997-2002, the conductance map of entire Fennoscandia was assembled and finally converted into 3D volume resistivity model. We have used the model, refined it to get denser grid around measurement area and calculated MT transfer functions after 3D modeling. We have used trial-and-error method in order to further improve the model. The data set was also inverted using 3D code of Siripunvaraporn (2005). In the first stage we have used homogeneous halfspace as starting model for the inversion. In the next step we have used final 3D forward model as apriori model. The usage of apriori information significantly stabilizes the inverse solution, especially in case of a limited amount of data available. The results show that in the Archaean Domain a conductive layer is found in the upper/middle crust on contrary to previous results from other regions of the Archaean crust in the Fennoscandian Shield. Data also suggest enhanced conductivity at the depth of c. 100 km. Conductivity below the depth of 200-250 km is lower than that of the laboratory based estimates
3D maps of the local ISM from inversion of individual color excess measurements
NASA Astrophysics Data System (ADS)
Lallement, R.; Vergely, J.-L.; Valette, B.; Puspitarini, L.; Eyer, L.; Casagrande, L.
2014-01-01
Aims: Three-dimensional (3D) maps of the Galactic interstellar matter (ISM) are a potential tool of wide use, but accurate and detailed maps are still lacking. One of the ways to construct the maps is to invert individual distance-limited ISM measurements, a method we have applied here to measurements of stellar color excess in the optical. Methods: We assembled color excess data together with the associated parallax or photometric distances to constitute a catalog of ≃23 000 sightlines for stars within 2.5 kpc. The photometric data are taken from Strömgren catalogs, the Geneva photometric database, and the Geneva-Copenhagen survey. We also included extinctions derived towards open clusters. We applied an inversion method based on a regularized Bayesian approach to this color excess dataset, a method previously used for mapping at closer distances. Results: We show the dust spatial distribution resulting from the inversion by means of planar cuts through the differential opacity 3D distribution, and by means of 2D maps of the integrated opacity from the Sun up to various distances. The mapping assigns locations to the nearby dense clouds and represents their distribution at the spatial resolution that is allowed by the dataset properties, i.e. ≃10 pc close to the Sun and increasing to ≃100 pc beyond 1 kpc. Biases toward nearby and/or weakly extincted stars make this dataset particularly appropriate to mapping the local and neighboring cavities and to locating faint, extended nearby clouds, which are both goals that are difficult or impossible with other mapping methods. The new maps reveal a ≃1 kpc wide empty region in the third quadrant in the continuation of the so-called CMa tunnel of the Local Cavity, a cavity that we identify as the Superbubble GSH238+00+09 detected in radio emission maps and that is found to be bounded by the Orion and Vela clouds. The maps also show an extended narrower tunnel in the opposite direction (l ≃ 70°) that also extends
3D-marine tCSEM inversion using model reduction in the Rational Krylov subspace
NASA Astrophysics Data System (ADS)
Sommer, M.; Jegen, M. D.
2014-12-01
Computationally, the most expensive part of a 3D time domain CSEM inversion is the computation of the Jacobian matrix in every Gauss-Newton step. An other problem is its size for large data sets. We use a model reduction method (Zaslavsky et al, 2013), that compresses the Jacobian by projecting it with a Rational Krylov Subspace (RKS). It also reduces the runtime drastically, compared to the most common adjoint approach and was implemented on GPU.It depends on an analytic derivation of the implicit Anzatz function, which solves Maxwell's diffusion equation in the Eigenspace giving a Jacobian dependent on the Eigenpairs and its derivatives of the forward problem. The Eigenpairs are approximated by Ritz-pairs in the Rational Krylov subspace. Determination of the derivived Ritz-pairs is the most time consuming and was fully GPU-optimized. Furthermore, the amount of inversion cells is reduced by using Octree meshes. The gridding allows for the incorporation of complicated survey geometries, as they are encountered in marine CSEM datasets.As a first result, the Jacobian computation is, even on a Desktop, faster than the most common adjoint approach on a super computer for realistic data sets. We will present careful benchmarking and accuracy tests of the new method and show how it can be applied to a real marine scenario.
KOALA: 3-D shape of asteroids from multi-data inversion
NASA Astrophysics Data System (ADS)
Carry, B.; Kaasalainen, M.; Merline, W. J.; Drummond, J. D.; Durech, J.; Berthier, J.; Conrad, A.
2011-10-01
We describe our on-going observing program to determine the physical properties of asteroids from groundbased facilities. We combine disk-resolved images from adaptive optics, optical lightcurves, and stellar occultations to put tighter constraints on the spin, 3-D shape, and size of asteroids. We will discuss the relevance of the determination of physical properties to help understand the asteroid population (e.g., density, composition, and non-gravitational forces). We will then briefly describe our multi-data inversion algorithm KOALA (Carry et al. 2010a, Kaasalainen 2011, see also Kaasalainen et al., same meeting), which allows the determination of certain physical properties of an asteroid from the combination of different techniques of observation. A comparison of results obtained with KOALA on asteroid (21) Lutetia, prior to the ESA Rosetta flyby, with the high spatial resolution images returned from that flyby, will then be presented, showing the high accuracy of KOALA inversion. Finally, we will describe our current development of the algorithm, and focus on examples of other asteroids currently being studied with KOALA.
Inverse cascades sustained by the transfer rate of angular momentum in a 3D turbulent flow
NASA Astrophysics Data System (ADS)
Burguete, Javier; Lopez-Caballero, Miguel
2013-11-01
The existence of energy cascades as signatures of conserved magnitudes is one of the universal characteristics of turbulent flows. In this work we present the evidence of an inverse cascade in a fully developed 3D experimental turbulent flow where the conserved magnitude is the angular momentum. We analyze the behavior of a fluid in a closed cavity where two inhomogeneous and strongly turbulent flows collide in a thin region. The experimental volume is a closed cylinder (diameter of 20 cm) where two impellers rotate in opposite directions. A key characteristic of this setup the high stability of the propellers (the instantaneous fluctuations are below 0 . 1 %). We have performed PIV and LDA measurements of the velocity fields. Typical characteristics of the turbulent flow in this setup are: turbulence intensity 50 % , the Reλ = 900 , the Taylor microscale λT = 1 . 8 mm and the integral scale LI = 15 mm. The analysis of the data series reveal that below the injection scales an inverse cascade can be identified (-1/3 in time, -7/3 in space) that can be explained as the transfer of angular momentum between the diferent fluid layers. A. de la Torre, J. Burguete, Phys Rev Lett 99 (2007) 054101. M. Lopez-Caballero, J. Burguete, Phys Rev Lett 110 (2013) 124501.
An optimal transport approach for seismic tomography: application to 3D full waveform inversion
NASA Astrophysics Data System (ADS)
Métivier, L.; Brossier, R.; Mérigot, Q.; Oudet, E.; Virieux, J.
2016-11-01
the L 2 distance, in 2D and 3D contexts.
Centroid Moment Tensor Inversion in a 3D heterogeneous Earth: Application to the Australasian region
NASA Astrophysics Data System (ADS)
Hejrani, B.; Tkalcic, H.; Fichtner, A.
2015-12-01
radially anisotropic structure: new insights into present and past states of the Australasian upper mantle. Earth Planet. Sci. Lett. 290, 270-280. Hingee, M., Tkalčić, H., Fichtner A., Sambridge, M., 2011. Moment tensor inversion using a 3-D structural model: Applications for the Australian region, Geophys. J. Int., 184(2), 949-964.
VizieR Online Data Catalog: ADAM: 3D asteroid shape reconstruction code (Viikinkoski+, 2015)
NASA Astrophysics Data System (ADS)
Viikinkoski, M.; Kaasalainen, M.; Durech, J.
2015-02-01
About the code: ADAM is a collection of routines for 3D asteroid shape reconstruction from disk-resolved observations. Any combination of lightcurves, adaptive optics images, HST/FGS data, range-Doppler radar images and disk-resolved thermal images may be used as data sources. The routines are implemented in a combination of MATLAB and C. (2 data files).
Turbomachinery Heat Transfer and Loss Modeling for 3D Navier-Stokes Codes
NASA Technical Reports Server (NTRS)
DeWitt, Kenneth; Ameri, Ali
2005-01-01
This report's contents focus on making use of NASA Glenn on-site computational facilities,to develop, validate, and apply models for use in advanced 3D Navier-Stokes Computational Fluid Dynamics (CFD) codes to enhance the capability to compute heat transfer and losses in turbomachiney.
Users manual for the NASA Lewis three-dimensional ice accretion code (LEWICE 3D)
NASA Technical Reports Server (NTRS)
Bidwell, Colin S.; Potapczuk, Mark G.
1993-01-01
A description of the methodology, the algorithms, and the input and output data along with an example case for the NASA Lewis 3D ice accretion code (LEWICE3D) has been produced. The manual has been designed to help the user understand the capabilities, the methodologies, and the use of the code. The LEWICE3D code is a conglomeration of several codes for the purpose of calculating ice shapes on three-dimensional external surfaces. A three-dimensional external flow panel code is incorporated which has the capability of calculating flow about arbitrary 3D lifting and nonlifting bodies with external flow. A fourth order Runge-Kutta integration scheme is used to calculate arbitrary streamlines. An Adams type predictor-corrector trajectory integration scheme has been included to calculate arbitrary trajectories. Schemes for calculating tangent trajectories, collection efficiencies, and concentration factors for arbitrary regions of interest for single droplets or droplet distributions have been incorporated. A LEWICE 2D based heat transfer algorithm can be used to calculate ice accretions along surface streamlines. A geometry modification scheme is incorporated which calculates the new geometry based on the ice accretions generated at each section of interest. The three-dimensional ice accretion calculation is based on the LEWICE 2D calculation. Both codes calculate the flow, pressure distribution, and collection efficiency distribution along surface streamlines. For both codes the heat transfer calculation is divided into two regions, one above the stagnation point and one below the stagnation point, and solved for each region assuming a flat plate with pressure distribution. Water is assumed to follow the surface streamlines, hence starting at the stagnation zone any water that is not frozen out at a control volume is assumed to run back into the next control volume. After the amount of frozen water at each control volume has been calculated the geometry is modified by
NASA Astrophysics Data System (ADS)
Kunyansky, Leonid A.
2004-10-01
The inversion problem for the 3D parallel-beam exponential ray transform is solved through inversion of a set of the 2D exponential Radon transforms with complex-valued angle-dependent attenuation. An inversion formula for the latter 2D transform is derived; it generalizes the known Kuchment-Shneiberg formula valid for real angle-dependent attenuation. We derive an explicit theoretically exact solution of the 3D problem which is valid for arbitrary closed trajectory that does not intersect itself. A simple reconstruction algorithm is described, applicable for certain sets of trajectories satisfying Orlov's condition. In the latter case, our inversion technique is as stable as the Tretiak-Metz inversion formula. Possibilities of further reduction of noise sensitivity are briefly discussed in the paper. The work of our algorithm is illustrated by an example of image reconstruction from two circular orbits.
A new 3-D integral code for computation of accelerator magnets
Turner, L.R.; Kettunen, L.
1991-01-01
For computing accelerator magnets, integral codes have several advantages over finite element codes; far-field boundaries are treated automatically, and computed field in the bore region satisfy Maxwell's equations exactly. A new integral code employing edge elements rather than nodal elements has overcome the difficulties associated with earlier integral codes. By the use of field integrals (potential differences) as solution variables, the number of unknowns is reduced to one less than the number of nodes. Two examples, a hollow iron sphere and the dipole magnet of Advanced Photon Source injector synchrotron, show the capability of the code. The CPU time requirements are comparable to those of three-dimensional (3-D) finite-element codes. Experiments show that in practice it can realize much of the potential CPU time saving that parallel processing makes possible. 8 refs., 4 figs., 1 tab.
NASA Astrophysics Data System (ADS)
Kim, B.; Byun, J.; Seol, S. J.; Jeong, S.; Chung, Y.; Kwon, T.
2015-12-01
For many decades, gas hydrates have been received great attention as a potential source of natural gas. Therefore, the detailed information of structures of buried gas hydrates and their concentrations are prerequisite for the production for the gas hydrate as a reliable source of alternate energy. Recently, for this reason, a lot of gas hydrate assessment methods have been proposed by many researchers. However, it is still necessary to establish as new method for the further improvement of the accuracy of the 3D gas hydrate distribution. In this study, we present a 3D joint inversion method that provides superior quantitative information of gas hydrate distributions using 3D seismic data obtained by ocean-bottom cable (OBC) and marine controlled-source electromagnetic (CSEM) data. To verify our inversion method, we first built the general 3D gas hydrate model containing vertical methane-flow pathways. With the described model, we generated synthetic 3D OBC data and marine CSEM data using finite element modeling algorithms, respectively. In the joint inversion process, to obtain the high-resolution volumetric P-wave velocity structure, we applied the 3D full waveform inversion algorithm to the acquired OBC data. After that, the obtained P-wave velocity model is used as the structure constraint to compute cross-gradients with the updated resistivity model in the EM inversion process. Finally, petrophysical relations were applied to estimate volumetric gas hydrate concentrations. The proposed joint inversion process makes possible to obtain more precise quantitative gas hydrate assessment than inversion processes using only seismic or EM data. This technique can be helpful for accurate decision-making in gas hydrate development as well as in their production monitoring.
Understanding how Fault-bounded Blocks Deform in 3D by Inverse Modelling
NASA Astrophysics Data System (ADS)
Jouen, G.; White, N.
2004-05-01
Normal faults play a crucial role in modifying basin stratigraphy. At the exploration scale, the internal deformation of tilted blocks is governed by the three-dimensional geometry of large-scale faults which bound these blocks. At the reservoir scale, the geometry and growth of normal faulting control the deformation of strata and the compartmentalisation of reservoir intervals. Despite their importance, large-scale normal faults are often difficult to image. The purpose of structural validation is two-fold: to determine the 3D shape of normal faults and to investigate the relationship between fault geometry and deformed stratigraphy including the intra-block faults. We have developed methods for tackling structural validation at a variety of scales in two and three dimensions. The cornerstone of our approach is the use of geophysical inverse theory to calculate optimal fault geometries from deformed strata. This approach allows us to focus on key questions: does a solution exist? Are there several possible solutions or just one unique one? In a complex normal fault system, which part of the fault controls the motion responsible for the deformation in the hanging-wall? Traditional forward modelling cannot answer these fundamental issues. We have applied the inversion on seismic data in particularly complex areas in the northern North Sea. The aims of this project are to determine the geometry of the basin-bounding fault, to assess the likelihood of out-of-plane motion as well as understanding the mode of deformation leading to the complexity of the present structure. Closely spaced inverse models show that the basin-bounding fault on the UK side is steeper and more planar than previously thought. This method also helped us to have a better view of what could have been the cause of the organisation and density of the intra-block faulting where it occurs. The North Cormorant study has shown how inverse modelling can yield important, quantitative, insights. Our
RELAP5-3D Code Includes ATHENA Features and Models
Riemke, Richard A.; Davis, Cliff B.; Schultz, Richard R.
2006-07-01
Version 2.3 of the RELAP5-3D computer program includes all features and models previously available only in the ATHENA version of the code. These include the addition of new working fluids (i.e., ammonia, blood, carbon dioxide, glycerol, helium, hydrogen, lead-bismuth, lithium, lithium-lead, nitrogen, potassium, sodium, and sodium-potassium) and a magnetohydrodynamic model that expands the capability of the code to model many more thermal-hydraulic systems. In addition to the new working fluids along with the standard working fluid water, one or more noncondensable gases (e.g., air, argon, carbon dioxide, carbon monoxide, helium, hydrogen, krypton, nitrogen, oxygen, SF{sub 6}, xenon) can be specified as part of the vapor/gas phase of the working fluid. These noncondensable gases were in previous versions of RELAP5-3D. Recently four molten salts have been added as working fluids to RELAP5-3D Version 2.4, which has had limited release. These molten salts will be in RELAP5-3D Version 2.5, which will have a general release like RELAP5-3D Version 2.3. Applications that use these new features and models are discussed in this paper. (authors)
RELAP5-3D Code Includes Athena Features and Models
Richard A. Riemke; Cliff B. Davis; Richard R. Schultz
2006-07-01
Version 2.3 of the RELAP5-3D computer program includes all features and models previously available only in the ATHENA version of the code. These include the addition of new working fluids (i.e., ammonia, blood, carbon dioxide, glycerol, helium, hydrogen, lead-bismuth, lithium, lithium-lead, nitrogen, potassium, sodium, and sodium-potassium) and a magnetohydrodynamic model that expands the capability of the code to model many more thermal-hydraulic systems. In addition to the new working fluids along with the standard working fluid water, one or more noncondensable gases (e.g., air, argon, carbon dioxide, carbon monoxide, helium, hydrogen, krypton, nitrogen, oxygen, sf6, xenon) can be specified as part of the vapor/gas phase of the working fluid. These noncondensable gases were in previous versions of RELAP5- 3D. Recently four molten salts have been added as working fluids to RELAP5-3D Version 2.4, which has had limited release. These molten salts will be in RELAP5-3D Version 2.5, which will have a general release like RELAP5-3D Version 2.3. Applications that use these new features and models are discussed in this paper.
Edge Transport Modeling using the 3D EMC3-Eirene code on Tokamaks and Stellarators
NASA Astrophysics Data System (ADS)
Lore, J. D.; Ahn, J. W.; Briesemeister, A.; Ferraro, N.; Labombard, B.; McLean, A.; Reinke, M.; Shafer, M.; Terry, J.
2015-11-01
The fluid plasma edge transport code EMC3-Eirene has been applied to aid data interpretation and understanding the results of experiments with 3D effects on several tokamaks. These include applied and intrinsic 3D magnetic fields, 3D plasma facing components, and toroidally and poloidally localized heat and particle sources. On Alcator C-Mod, a series of experiments explored the impact of toroidally and poloidally localized impurity gas injection on core confinement and asymmetries in the divertor fluxes, with the differences between the asymmetry in L-mode and H-mode qualitatively reproduced in the simulations due to changes in the impurity ionization in the private flux region. Modeling of NSTX experiments on the effect of 3D fields on detachment matched the trend of a higher density at which the detachment occurs when 3D fields are applied. On DIII-D, different magnetic field models were used in the simulation and compared against the 2D Thomson scattering diagnostic. In simulating each device different aspects of the code model are tested pointing to areas where the model must be further developed. The application to stellarator experiments will also be discussed. Work supported by U.S. DOE: DE-AC05-00OR22725, DE AC02-09CH11466, DE-FC02-99ER54512, and DE-FC02-04ER54698.
ATHENA 3D: A finite element code for ultrasonic wave propagation
NASA Astrophysics Data System (ADS)
Rose, C.; Rupin, F.; Fouquet, T.; Chassignole, B.
2014-04-01
The understanding of wave propagation phenomena requires use of robust numerical models. 3D finite element (FE) models are generally prohibitively time consuming. However, advances in computing processor speed and memory allow them to be more and more competitive. In this context, EDF R&D developed the 3D version of the well-validated FE code ATHENA2D. The code is dedicated to the simulation of wave propagation in all kinds of elastic media and in particular, heterogeneous and anisotropic materials like welds. It is based on solving elastodynamic equations in the calculation zone expressed in terms of stress and particle velocities. The particularity of the code relies on the fact that the discretization of the calculation domain uses a Cartesian regular 3D mesh while the defect of complex geometry can be described using a separate (2D) mesh using the fictitious domains method. This allows combining the rapidity of regular meshes computation with the capability of modelling arbitrary shaped defects. Furthermore, the calculation domain is discretized with a quasi-explicit time evolution scheme. Thereby only local linear systems of small size have to be solved. The final step to reduce the computation time relies on the fact that ATHENA3D has been parallelized and adapted to the use of HPC resources. In this paper, the validation of the 3D FE model is discussed. A cross-validation of ATHENA 3D and CIVA is proposed for several inspection configurations. The performances in terms of calculation time are also presented in the cases of both local computer and computation cluster use.
Development of Unsteady Aerodynamic and Aeroelastic Reduced-Order Models Using the FUN3D Code
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Vatsa, Veer N.; Biedron, Robert T.
2009-01-01
Recent significant improvements to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) are implemented into the FUN3D unstructured flow solver. These improvements include the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system via a single CFD solution, minimization of the error between the full CFD and the ROM unsteady aero- dynamic solution, and computation of a root locus plot of the aeroelastic ROM. Results are presented for a viscous version of the two-dimensional Benchmark Active Controls Technology (BACT) model and an inviscid version of the AGARD 445.6 aeroelastic wing using the FUN3D code.
Xie, G.; Li, J.; Majer, E.; Zuo, D.
1998-07-01
This paper describes a new 3D parallel GILD electromagnetic (EM) modeling and nonlinear inversion algorithm. The algorithm consists of: (a) a new magnetic integral equation instead of the electric integral equation to solve the electromagnetic forward modeling and inverse problem; (b) a collocation finite element method for solving the magnetic integral and a Galerkin finite element method for the magnetic differential equations; (c) a nonlinear regularizing optimization method to make the inversion stable and of high resolution; and (d) a new parallel 3D modeling and inversion using a global integral and local differential domain decomposition technique (GILD). The new 3D nonlinear electromagnetic inversion has been tested with synthetic data and field data. The authors obtained very good imaging for the synthetic data and reasonable subsurface EM imaging for the field data. The parallel algorithm has high parallel efficiency over 90% and can be a parallel solver for elliptic, parabolic, and hyperbolic modeling and inversion. The parallel GILD algorithm can be extended to develop a high resolution and large scale seismic and hydrology modeling and inversion in the massively parallel computer.
Turbine Internal and Film Cooling Modeling For 3D Navier-Stokes Codes
NASA Technical Reports Server (NTRS)
DeWitt, Kenneth; Garg Vijay; Ameri, Ali
2005-01-01
The aim of this research project is to make use of NASA Glenn on-site computational facilities in order to develop, validate and apply aerodynamic, heat transfer, and turbine cooling models for use in advanced 3D Navier-Stokes Computational Fluid Dynamics (CFD) codes such as the Glenn-" code. Specific areas of effort include: Application of the Glenn-HT code to specific configurations made available under Turbine Based Combined Cycle (TBCC), and Ultra Efficient Engine Technology (UEET) projects. Validating the use of a multi-block code for the time accurate computation of the detailed flow and heat transfer of cooled turbine airfoils. The goal of the current research is to improve the predictive ability of the Glenn-HT code. This will enable one to design more efficient turbine components for both aviation and power generation. The models will be tested against specific configurations provided by NASA Glenn.
Ui, Atsushi; Miyaji, Takamasa
2004-10-15
The best-estimate coupled three-dimensional (3-D) core and thermal-hydraulic code system TRAC-BF1/COS3D has been developed. COS3D, based on a modified one-group neutronic model, is a 3-D core simulator used for licensing analyses and core management of commercial boiling water reactor (BWR) plants in Japan. TRAC-BF1 is a plant simulator based on a two-fluid model. TRAC-BF1/COS3D is a coupled system of both codes, which are connected using a parallel computing tool. This code system was applied to the OECD/NRC BWR Turbine Trip Benchmark. Since the two-group cross-section tables are provided by the benchmark team, COS3D was modified to apply to this specification. Three best-estimate scenarios and four hypothetical scenarios were calculated using this code system. In the best-estimate scenario, the predicted core power with TRAC-BF1/COS3D is slightly underestimated compared with the measured data. The reason seems to be a slight difference in the core boundary conditions, that is, pressure changes and the core inlet flow distribution, because the peak in this analysis is sensitive to them. However, the results of this benchmark analysis show that TRAC-BF1/COS3D gives good precision for the prediction of the actual BWR transient behavior on the whole. Furthermore, the results with the modified one-group model and the two-group model were compared to verify the application of the modified one-group model to this benchmark. This comparison shows that the results of the modified one-group model are appropriate and sufficiently precise.
Vay, J.-L.; Furman, M.A.; Azevedo, A.W.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Stoltz, P.H.
2004-04-19
We have integrated the electron-cloud code POSINST [1] with WARP [2]--a 3-D parallel Particle-In-Cell accelerator code developed for Heavy Ion Inertial Fusion--so that the two can interoperate. Both codes are run in the same process, communicate through a Python interpreter (already used in WARP), and share certain key arrays (so far, particle positions and velocities). Currently, POSINST provides primary and secondary sources of electrons, beam bunch kicks, a particle mover, and diagnostics. WARP provides the field solvers and diagnostics. Secondary emission routines are provided by the Tech-X package CMEE.
NASA Astrophysics Data System (ADS)
Monticello, D. A.; Reiman, A. H.; Watanabe, K. Y.; Nakajima, N.; Okamoto, M.
1997-11-01
The existence of bootstrap currents in both tokamaks and stellarators was confirmed, experimentally, more than ten years ago. Such currents can have significant effects on the equilibrium and stability of these MHD devices. In addition, stellarators, with the notable exception of W7-X, are predicted to have such large bootstrap currents that reliable equilibrium calculations require the self-consistent evaluation of bootstrap currents. Modeling of discharges which contain islands requires an algorithm that does not assume good surfaces. Only one of the two 3-D equilibrium codes that exist, PIES( Reiman, A. H., Greenside, H. S., Compt. Phys. Commun. 43), (1986)., can easily be modified to handle bootstrap current. Here we report on the coupling of the PIES 3-D equilibrium code and NIFS bootstrap code(Watanabe, K., et al., Nuclear Fusion 35) (1995), 335.
Statistical Inverse Ray Tracing for Image-Based 3D Modeling.
Liu, Shubao; Cooper, David B
2014-10-01
This paper proposes a new formulation and solution to image-based 3D modeling (aka "multi-view stereo") based on generative statistical modeling and inference. The proposed new approach, named statistical inverse ray tracing, models and estimates the occlusion relationship accurately through optimizing a physically sound image generation model based on volumetric ray tracing. Together with geometric priors, they are put together into a Bayesian formulation known as Markov random field (MRF) model. This MRF model is different from typical MRFs used in image analysis in the sense that the ray clique, which models the ray-tracing process, consists of thousands of random variables instead of two to dozens. To handle the computational challenges associated with large clique size, an algorithm with linear computational complexity is developed by exploiting, using dynamic programming, the recursive chain structure of the ray clique. We further demonstrate the benefit of exact modeling and accurate estimation of the occlusion relationship by evaluating the proposed algorithm on several challenging data sets.
Wang, G.L.; Chew, W.C.; Cui, T.J.; Aydiner, A.A.; Wright, D.L.; Smith, D.V.
2004-01-01
Three-dimensional (3D) subsurface imaging by using inversion of data obtained from the very early time electromagnetic system (VETEM) was discussed. The study was carried out by using the distorted Born iterative method to match the internal nonlinear property of the 3D inversion problem. The forward solver was based on the total-current formulation bi-conjugate gradient-fast Fourier transform (BCCG-FFT). It was found that the selection of regularization parameter follow a heuristic rule as used in the Levenberg-Marquardt algorithm so that the iteration is stable.
Development of direct-inverse 3-D methods for applied transonic aerodynamic wing design and analysis
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1989-01-01
Progress in the direct-inverse wing design method in curvilinear coordinates has been made. This includes the remedying of a spanwise oscillation problem and the assessment of grid skewness, viscous interaction, and the initial airfoil section on the final design. It was found that, in response to the spanwise oscillation problem that designing at every other spanwise station produced the best results for the cases presented, a smoothly varying grid is especially needed for the accurate design at the wing tip, the boundary layer displacement thicknesses must be included in a successful wing design, the design of high and medium aspect ratio wings is possible with this code, and the final airfoil section designed is fairly independent of the initial section.
Li, Yong Gang; Yang, Yang; Short, Michael P.; Ding, Ze Jun; Zeng, Zhi; Li, Ju
2015-01-01
SRIM-like codes have limitations in describing general 3D geometries, for modeling radiation displacements and damage in nanostructured materials. A universal, computationally efficient and massively parallel 3D Monte Carlo code, IM3D, has been developed with excellent parallel scaling performance. IM3D is based on fast indexing of scattering integrals and the SRIM stopping power database, and allows the user a choice of Constructive Solid Geometry (CSG) or Finite Element Triangle Mesh (FETM) method for constructing 3D shapes and microstructures. For 2D films and multilayers, IM3D perfectly reproduces SRIM results, and can be ∼102 times faster in serial execution and > 104 times faster using parallel computation. For 3D problems, it provides a fast approach for analyzing the spatial distributions of primary displacements and defect generation under ion irradiation. Herein we also provide a detailed discussion of our open-source collision cascade physics engine, revealing the true meaning and limitations of the “Quick Kinchin-Pease” and “Full Cascades” options. The issues of femtosecond to picosecond timescales in defining displacement versus damage, the limitation of the displacements per atom (DPA) unit in quantifying radiation damage (such as inadequacy in quantifying degree of chemical mixing), are discussed. PMID:26658477
Equation-of-State Test Suite for the DYNA3D Code
Benjamin, Russell D.
2015-11-05
This document describes the creation and implementation of a test suite for the Equationof- State models in the DYNA3D code. A customized input deck has been created for each model, as well as a script that extracts the relevant data from the high-speed edit file created by DYNA3D. Each equation-of-state model is broken apart and individual elements of the model are tested, as well as testing the entire model. The input deck for each model is described and the results of the tests are discussed. The intent of this work is to add this test suite to the validation suite presently used for DYNA3D.
Assessing the performance of a parallel MATLAB-based 3D convection code
NASA Astrophysics Data System (ADS)
Kirkpatrick, G. J.; Hasenclever, J.; Phipps Morgan, J.; Shi, C.
2008-12-01
We are currently building 2D and 3D MATLAB-based parallel finite element codes for mantle convection and melting. The codes use the MATLAB implementation of core MPI commands (eg. Send, Receive, Broadcast) for message passing between computational subdomains. We have found that code development and algorithm testing are much faster in MATLAB than in our previous work coding in C or FORTRAN, this code was built from scratch with only 12 man-months of effort. The one extra cost w.r.t. C coding on a Beowulf cluster is the cost of the parallel MATLAB license for a >4core cluster. Here we present some preliminary results on the efficiency of MPI messaging in MATLAB on a small 4 machine, 16core, 32Gb RAM Intel Q6600 processor-based cluster. Our code implements fully parallelized preconditioned conjugate gradients with a multigrid preconditioner. Our parallel viscous flow solver is currently 20% slower for a 1,000,000 DOF problem on a single core in 2D as the direct solve MILAMIN MATLAB viscous flow solver. We have tested both continuous and discontinuous pressure formulations. We test with various configurations of network hardware, CPU speeds, and memory using our own and MATLAB's built in cluster profiler. So far we have only explored relatively small (up to 1.6GB RAM) test problems. We find that with our current code and Intel memory controller bandwidth limitations we can only get ~2.3 times performance out of 4 cores than 1 core per machine. Even for these small problems the code runs faster with message passing between 4 machines with one core each than 1 machine with 4 cores and internal messaging (1.29x slower), or 1 core (2.15x slower). It surprised us that for 2D ~1GB-sized problems with only 3 multigrid levels, the direct- solve on the coarsest mesh consumes comparable time to the iterative solve on the finest mesh - a penalty that is greatly reduced either by using a 4th multigrid level or by using an iterative solve at the coarsest grid level. We plan to
Simulations of implosions with a 3D, parallel, unstructured-grid, radiation-hydrodynamics code
Kaiser, T B; Milovich, J L; Prasad, M K; Rathkopf, J; Shestakov, A I
1998-12-28
An unstructured-grid, radiation-hydrodynamics code is used to simulate implosions. Although most of the problems are spherically symmetric, they are run on 3D, unstructured grids in order to test the code's ability to maintain spherical symmetry of the converging waves. Three problems, of increasing complexity, are presented. In the first, a cold, spherical, ideal gas bubble is imploded by an enclosing high pressure source. For the second, we add non-linear heat conduction and drive the implosion with twelve laser beams centered on the vertices of an icosahedron. In the third problem, a NIF capsule is driven with a Planckian radiation source.
NASA Astrophysics Data System (ADS)
Dong, H.; Kun, Z.; Zhang, L.
2015-12-01
This magnetotelluric (MT) system contains static shift correction and 3D inversion. The correction method is based on the data study on 3D forward modeling and field test. The static shift can be detected by the quantitative analysis of apparent parameters (apparent resistivity and impedance phase) of MT in high frequency range, and completed correction with inversion. The method is an automatic processing technology of computer with zero-cost, and avoids the additional field work and indoor processing with good results shown in Figure 1a-e. Figure 1a shows a normal model (I) without any local heterogeneity. Figure 1b shows a static-shifted model (II) with two local heterogeneous bodies (10 and 1000 ohm.m). Figure 1c is the inversion result (A) for the synthetic data generated from model I. Figure 1d is the inversion result (B) for the static-shifted data generated from model II. Figure 1e is the inversion result (C) for the static-shifted data from model II, but with static shift correction. The results show that the correction method is useful. The 3D inversion algorithm is improved base on the NLCG method of Newman & Alumbaugh (2000) and Rodi & Mackie (2001). For the algorithm, we added the frequency based parallel structure, improved the computational efficiency, reduced the memory of computer, added the topographic and marine factors, and added the constraints of geology and geophysics. So the 3D inversion could even work in PAD with high efficiency and accuracy. The application example of theoretical assessment in oil and gas exploration is shown in Figure 1f-i. The synthetic geophysical model consists of five layers (from top to downwards): shale, limestone, gas, oil, groundwater and limestone overlying a basement rock. Figure 1f-g show the 3D model and central profile. Figure 1h shows the centrel section of 3D inversion, the resultsd show a high degree of reduction in difference on the synthetic model. Figure 1i shows the seismic waveform reflects the
Compact encoding of 3-D voxel surfaces based on pattern code representation.
Kim, Chang-Su; Lee, Sang-Uk
2002-01-01
In this paper, we propose a lossless compression algorithm for three-dimensional (3-D) binary voxel surfaces, based on the pattern code representation (PCR). In PCR, a voxel surface is represented by a series of pattern codes. The pattern of a voxel v is defined as the 3 x 3 x 3 array of voxels, centered on v. Therefore, the pattern code for informs of the local shape of the voxel surface around . The proposed algorithm can achieve the coding gain, since the patterns of adjacent voxels are highly correlated to each other. The performance of the proposed algorithm is evaluated using various voxel surfaces, which are scan-converted from triangular mesh models. It is shown that the proposed algorithm requires only 0.5 approximately 1 bits per black voxel (bpbv) to store or transmit the voxel surfaces.
Lithospheric structure of the Labrador Sea from constrained 3-D gravity inversion
NASA Astrophysics Data System (ADS)
Welford, J. Kim; Hall, Jeremy
2013-11-01
Regional inversions of free air gravity data constrained by bathymetric and sediment thickness information were undertaken over the Labrador Sea and its margins to generate 3-D density anomaly models to investigate broad-scale crustal structural variations across the extinct spreading centre. Benchmarked against independent seismic Moho depth constraints, a density anomaly isosurface within the inverted volumes was selected as a Moho-proxy and regional maps of Moho structure were developed. Inversions using two different sources for depth to basement constraints revealed similar Moho structures with a depth to Moho of 12 km beneath the Labrador Sea which deepens to 20 km and greater towards Davis Strait and beneath the offshore extension of the Grenville Province. Density anomaly slices through the models corresponding to seismic lines show good agreement between the inverted Moho-proxy and the seismic Moho, with the only exceptions occurring where a high velocity lower crustal zone or underplate has been modelled from wide-angle reflection/refraction profiling studies. The inverted depth to Moho estimates were combined with depth to basement constraints to investigate crustal thickness, both for the full crust and for individual crustal layers, revealing that the crust of the Labrador Sea is generally 5-10 km thick but thickens to 20-25 km towards Davis Strait and beneath the offshore extension of the Grenville Province, not taking into account high density underplates or anomalously high density lower crust. Sediment and crustal thickness variations were investigated to compute stretching factors, β, across the Labrador Sea and to identify zones which deviate from local isostatic compensation. Assuming both an initial unstretched crustal thickness of 35 km and using a variable unstretched crustal thickness model, much of the Labrador Sea has experienced 70-90 per cent thinning. The derived β values suggest that embrittlement of the entire crust and
NASA Astrophysics Data System (ADS)
Kelbert, A.; Schultz, A.
2004-12-01
The case for substantial heterogeneity in mantle conductivity has stimulated the development of methods for solving Maxwell's equations in a heterogeneous conducting sphere. A global 3-D frequency domain forward solver has been devised (Uyeshima & Schultz, 2000), accurate and efficient enough to be an attractive kernel of a practical inverse method. The solver employs a staggered-grid finite difference formulation in spherical coordinates. The induced fields are found as a solution to the integral form of Maxwell's equations, while the system is solved using stabilised biconjugate gradient methods. A single, accurate forward solution takes approx. 4 minutes on 5 GFLOP (peak) processor. The aim of our present research is to produce an inverse solver, to be applied to the Fujii & Schultz (2002) data set of globally-distributed EM response functions, which would reconstruct the 3-D electrical conductivity distribution in the upper to mid-mantle. Geophysical inversion is an ill-posed problem, therefore the aim is to apply suitable parameter constraints and a nonlinear search algorithm to identify candidate minima, then to apply local gradient methods around those minima. Our specific target involves designing a fast enough global optimisation routine that would allow us to produce at least one fully 3-D starting model, optimal with respect to the RMS misfit between the data and the forward solutions. A new and very flexible inverse solver has been developed utilizing parallel optimisation routines to obtain a starting model that satisfies the data. 3-D simulations have been run, the parametrization based on a spherical harmonic representation of a chess board model of varying degree and order. The inversion has demonstrated accurate fidelity in reproducing resolvable features of the test model. A study has been made of the reduction in fidelity as the number and distribution of observatory sites on the Earth's surface is degraded. An inversion of the Fujii & Schultz
NASA Astrophysics Data System (ADS)
Prutkin, Ilya; Vajda, Peter; Jentzsch, Gerhard
2016-04-01
wavelengths for the Thuringian Basin have shown, that if we explain negative anomalies with topography of near-surface layers, the obtained solution is not supported by boreholes data. Upper part of a geological section is usually well studied, therefore, it is not always possible, to shift sources upward, because it can contradict to available geological information. For each local anomaly, its interpretation includes several steps. We subtract the model of the regional field (2D harmonic function). Then, we approximate the residuals with 3D line segments, it provides reliable estimates for mass and center of mass coordinates. For the Kolarovo anomaly of 25 mGal, residuals by approximation have RMS = 0.57 mGal. Here we find very few parameters (14 for two segments) according to several thousand observations, which is quite stable. Finally, we transform a chosen set of line segments into a restricted object or a contact surface with the same field (in the situation where a solution of the inverse problem is unique). We have obtained a model for intermediate wavelengths in the Thuringian Basin, which includes three restricted bodies (granitic intrusions) and a density interface with topography below them.
The Transient 3-D Transport Coupled Code TORT-TD/ATTICA3D for High-Fidelity Pebble-Bed HTGR Analyses
NASA Astrophysics Data System (ADS)
Seubert, Armin; Sureda, Antonio; Lapins, Janis; Bader, Johannes; Laurien, Eckart
2012-01-01
This article describes the 3D discrete ordinates-based coupled code system TORT-TD/ATTICA3D that aims at steady state and transient analyses of pebble-bed high-temperature gas cooled reactors. In view of increasing computing power, the application of time-dependent neutron transport methods becomes feasible for best estimate evaluations of safety margins. The calculation capabilities of TORT-TD/ATTICA3D are presented along with the coupling approach, with focus on the time-dependent neutron transport features of TORT-TD. Results obtained for the OECD/NEA/NSC PBMR-400 benchmark demonstrate the transient capabilities of TORT-TD/ATTICA3D.
User Guide for the R5EXEC Coupling Interface in the RELAP5-3D Code
Forsmann, J. Hope; Weaver, Walter L.
2015-04-01
This report describes the R5EXEC coupling interface in the RELAP5-3D computer code from the users perspective. The information in the report is intended for users who want to couple RELAP5-3D to other thermal-hydraulic, neutron kinetics, or control system simulation codes.
Development of a GPU-Accelerated 3-D Full-Wave Code for Reflectometry Simulations
NASA Astrophysics Data System (ADS)
Reuther, K. S.; Kubota, S.; Feibush, E.; Johnson, I.
2013-10-01
1-D and 2-D full-wave codes used as synthetic diagnostics in microwave reflectometry are standard tools for understanding electron density fluctuations in fusion plasmas. The accuracy of the code depends on how well the wave properties along the ignored dimensions can be pre-specified or neglected. In a toroidal magnetic geometry, such assumptions are never strictly correct and ray tracing has shown that beam propagation is inherently a 3-D problem. Previously, we reported on the application of GPGPU's (General-Purpose computing on Graphics Processing Units) to a 2-D FDTD (Finite-Difference Time-Domain) code ported to utilize the parallel processing capabilities of the NVIDIA C870 and C1060. Here, we report on the development of a FDTD code for 3-D problems. Initial tests will use NVIDIA's M2070 GPU and concentrate on the launching and propagation of Gaussian beams in free space. If available, results using a plasma target will also be presented. Performance will be compared with previous generations of GPGPU cards as well as with NVIDIA's newest K20C GPU. Finally, the possibility of utilizing multiple GPGPU cards in a cluster environment or in a single node will also be discussed. Supported by U.S. DoE Grants DE-FG02-99-ER54527 and DE-AC02-09CH11466 and the DoE National Undergraduate Fusion Fellowship.
A 3-D Vortex Code for Parachute Flow Predictions: VIPAR Version 1.0
STRICKLAND, JAMES H.; HOMICZ, GREGORY F.; PORTER, VICKI L.; GOSSLER, ALBERT A.
2002-07-01
This report describes a 3-D fluid mechanics code for predicting flow past bluff bodies whose surfaces can be assumed to be made up of shell elements that are simply connected. Version 1.0 of the VIPAR code (Vortex Inflation PARachute code) is described herein. This version contains several first order algorithms that we are in the process of replacing with higher order ones. These enhancements will appear in the next version of VIPAR. The present code contains a motion generator that can be used to produce a large class of rigid body motions. The present code has also been fully coupled to a structural dynamics code in which the geometry undergoes large time dependent deformations. Initial surface geometry is generated from triangular shell elements using a code such as Patran and is written into an ExodusII database file for subsequent input into VIPAR. Surface and wake variable information is output into two ExodusII files that can be post processed and viewed using software such as EnSight{trademark}.
PRONTO3D users` instructions: A transient dynamic code for nonlinear structural analysis
Attaway, S.W.; Mello, F.J.; Heinstein, M.W.; Swegle, J.W.; Ratner, J.A.; Zadoks, R.I.
1998-06-01
This report provides an updated set of users` instructions for PRONTO3D. PRONTO3D is a three-dimensional, transient, solid dynamics code for analyzing large deformations of highly nonlinear materials subjected to extremely high strain rates. This Lagrangian finite element program uses an explicit time integration operator to integrate the equations of motion. Eight-node, uniform strain, hexahedral elements and four-node, quadrilateral, uniform strain shells are used in the finite element formulation. An adaptive time step control algorithm is used to improve stability and performance in plasticity problems. Hourglass distortions can be eliminated without disturbing the finite element solution using either the Flanagan-Belytschko hourglass control scheme or an assumed strain hourglass control scheme. All constitutive models in PRONTO3D are cast in an unrotated configuration defined using the rotation determined from the polar decomposition of the deformation gradient. A robust contact algorithm allows for the impact and interaction of deforming contact surfaces of quite general geometry. The Smooth Particle Hydrodynamics method has been embedded into PRONTO3D using the contact algorithm to couple it with the finite element method.
Robust 3D face landmark localization based on local coordinate coding.
Song, Mingli; Tao, Dacheng; Sun, Shengpeng; Chen, Chun; Maybank, Stephen J
2014-12-01
In the 3D facial animation and synthesis community, input faces are usually required to be labeled by a set of landmarks for parameterization. Because of the variations in pose, expression and resolution, automatic 3D face landmark localization remains a challenge. In this paper, a novel landmark localization approach is presented. The approach is based on local coordinate coding (LCC) and consists of two stages. In the first stage, we perform nose detection, relying on the fact that the nose shape is usually invariant under the variations in the pose, expression, and resolution. Then, we use the iterative closest points algorithm to find a 3D affine transformation that aligns the input face to a reference face. In the second stage, we perform resampling to build correspondences between the input 3D face and the training faces. Then, an LCC-based localization algorithm is proposed to obtain the positions of the landmarks in the input face. Experimental results show that the proposed method is comparable to state of the art methods in terms of its robustness, flexibility, and accuracy. PMID:25296404
The future of 3D and video coding in mobile and the internet
NASA Astrophysics Data System (ADS)
Bivolarski, Lazar
2013-09-01
The current Internet success has already changed our social and economic world and is still continuing to revolutionize the information exchange. The exponential increase of amount and types of data that is currently exchanged on the Internet represents significant challenge for the design of future architectures and solutions. This paper reviews the current status and trends in the design of solutions and research activities in the future Internet from point of view of managing the growth of bandwidth requirements and complexity of the multimedia that is being created and shared. Outlines the challenges that are present before the video coding and approaches to the design of standardized media formats and protocols while considering the expected convergence of multimedia formats and exchange interfaces. The rapid growth of connected mobile devices adds to the current and the future challenges in combination with the expected, in near future, arrival of multitude of connected devices. The new Internet technologies connecting the Internet of Things with wireless visual sensor networks and 3D virtual worlds requires conceptually new approaches of media content handling from acquisition to presentation in the 3D Media Internet. Accounting for the entire transmission system properties and enabling adaptation in real-time to context and content throughout the media proceeding path will be paramount in enabling the new media architectures as well as the new applications and services. The common video coding formats will need to be conceptually redesigned to allow for the implementation of the necessary 3D Media Internet features.
Spacecraft charging analysis with the implicit particle-in-cell code iPic3D
Deca, J.; Lapenta, G.; Marchand, R.; Markidis, S.
2013-10-15
We present the first results on the analysis of spacecraft charging with the implicit particle-in-cell code iPic3D, designed for running on massively parallel supercomputers. The numerical algorithm is presented, highlighting the implementation of the electrostatic solver and the immersed boundary algorithm; the latter which creates the possibility to handle complex spacecraft geometries. As a first step in the verification process, a comparison is made between the floating potential obtained with iPic3D and with Orbital Motion Limited theory for a spherical particle in a uniform stationary plasma. Second, the numerical model is verified for a CubeSat benchmark by comparing simulation results with those of PTetra for space environment conditions with increasing levels of complexity. In particular, we consider spacecraft charging from plasma particle collection, photoelectron and secondary electron emission. The influence of a background magnetic field on the floating potential profile near the spacecraft is also considered. Although the numerical approaches in iPic3D and PTetra are rather different, good agreement is found between the two models, raising the level of confidence in both codes to predict and evaluate the complex plasma environment around spacecraft.
Burgess, Ian B; Aizenberg, Joanna; Lončar, Marko
2013-12-01
Structural hierarchy and complex 3D architecture are characteristics of biological photonic designs that are challenging to reproduce in synthetic materials. Top-down lithography allows for designer patterning of arbitrary shapes, but is largely restricted to planar 2D structures. Self-assembly techniques facilitate easy fabrication of 3D photonic crystals, but controllable defect-integration is difficult. In this paper we combine the advantages of top-down and bottom-up fabrication, developing two techniques to deposit 2D-lithographically-patterned planar layers on top of or in between inverse-opal 3D photonic crystals and creating hierarchical structures that resemble the architecture of the bright green wing scales of the butterfly, Parides sesostris. These fabrication procedures, combining advantages of both top-down and bottom-up fabrication, may prove useful in the development of omnidirectional coloration elements and 3D-2D photonic crystal devices. PMID:24263010
Burgess, Ian B; Aizenberg, Joanna; Lončar, Marko
2013-12-01
Structural hierarchy and complex 3D architecture are characteristics of biological photonic designs that are challenging to reproduce in synthetic materials. Top-down lithography allows for designer patterning of arbitrary shapes, but is largely restricted to planar 2D structures. Self-assembly techniques facilitate easy fabrication of 3D photonic crystals, but controllable defect-integration is difficult. In this paper we combine the advantages of top-down and bottom-up fabrication, developing two techniques to deposit 2D-lithographically-patterned planar layers on top of or in between inverse-opal 3D photonic crystals and creating hierarchical structures that resemble the architecture of the bright green wing scales of the butterfly, Parides sesostris. These fabrication procedures, combining advantages of both top-down and bottom-up fabrication, may prove useful in the development of omnidirectional coloration elements and 3D-2D photonic crystal devices.
A quasi-3D viscous-inviscid interaction code: Q3UIC
NASA Astrophysics Data System (ADS)
García, N. R.; Sørensen, J. N.; Shen, W. Z.
2014-12-01
A computational model for predicting the aerodynamic behavior of wind turbine airfoils under rotation and subjected to steady and unsteady motions developed in [1] is presented herein. The model is based on a viscous-inviscid interaction technique using strong coupling between the viscous and inviscid parts. The rotational effects generated by centrifugal and Coriolis forces are introduced in Q3UIC via the streamwise and spanwise integral boundary layer momentum equations. A special inviscid version of the code has been developed to cope with massive separation. To check the ability of the code wind turbine airfoils in steady and unsteady conditions for a large range of angles of attack are considered here. Further, the new quasi-3D code Q3UIC is used to perform a parametric study of a wind turbine airfoil under rotation confined to its boundary layer.
GPU-accelerated 3D neutron diffusion code based on finite difference method
Xu, Q.; Yu, G.; Wang, K.
2012-07-01
Finite difference method, as a traditional numerical solution to neutron diffusion equation, although considered simpler and more precise than the coarse mesh nodal methods, has a bottle neck to be widely applied caused by the huge memory and unendurable computation time it requires. In recent years, the concept of General-Purpose computation on GPUs has provided us with a powerful computational engine for scientific research. In this study, a GPU-Accelerated multi-group 3D neutron diffusion code based on finite difference method was developed. First, a clean-sheet neutron diffusion code (3DFD-CPU) was written in C++ on the CPU architecture, and later ported to GPUs under NVIDIA's CUDA platform (3DFD-GPU). The IAEA 3D PWR benchmark problem was calculated in the numerical test, where three different codes, including the original CPU-based sequential code, the HYPRE (High Performance Pre-conditioners)-based diffusion code and CITATION, were used as counterpoints to test the efficiency and accuracy of the GPU-based program. The results demonstrate both high efficiency and adequate accuracy of the GPU implementation for neutron diffusion equation. A speedup factor of about 46 times was obtained, using NVIDIA's Geforce GTX470 GPU card against a 2.50 GHz Intel Quad Q9300 CPU processor. Compared with the HYPRE-based code performing in parallel on an 8-core tower server, the speedup of about 2 still could be observed. More encouragingly, without any mathematical acceleration technology, the GPU implementation ran about 5 times faster than CITATION which was speeded up by using the SOR method and Chebyshev extrapolation technique. (authors)
A novel sensor system for 3D face scanning based on infrared coded light
NASA Astrophysics Data System (ADS)
Modrow, Daniel; Laloni, Claudio; Doemens, Guenter; Rigoll, Gerhard
2008-02-01
In this paper we present a novel sensor system for three-dimensional face scanning applications. Its operating principle is based on active triangulation with a color coded light approach. As it is implemented in the near infrared band, the used light is invisible for human perception. Though the proposed sensor is primarily designed for face scanning and biometric applications, its performance characteristics are beneficial for technical applications as well. The acquisition of 3d data is real-time capable, provides accurate and high resolution depthmaps and shows high robustness against ambient light. Hence most of the limiting factors of other sensors for 3d and face scanning applications are eliminated, such as blinding and annoying light patterns, motion constraints and highly restricted scenarios due to ambient light constraints.
FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces
Ahluwalia, R.K.; Im, K.H.
1992-08-01
A computer code FURN3D has been developed for assessing the impact of burning different coals on heat absorption pattern in pulverized coal furnaces. The code is unique in its ability to conduct detailed spectral calculations of radiation transport in furnaces fully accounting for the size distributions of char, soot and ash particles, ash content, and ash composition. The code uses a hybrid technique of solving the three-dimensional radiation transport equation for absorbing, emitting and anisotropically scattering media. The technique achieves an optimal mix of computational speed and accuracy by combining the discrete ordinate method (S[sub 4]), modified differential approximation (MDA) and P, approximation in different range of optical thicknesses. The code uses spectroscopic data for estimating the absorption coefficients of participating gases C0[sub 2], H[sub 2]0 and CO. It invokes Mie theory for determining the extinction and scattering coefficients of combustion particulates. The optical constants of char, soot and ash are obtained from dispersion relations derived from reflectivity, transmissivity and extinction measurements. A control-volume formulation is adopted for determining the temperature field inside the furnace. A simple char burnout model is employed for estimating heat release and evolution of particle size distribution. The code is written in Fortran 77, has modular form, and is machine-independent. The computer memory required by the code depends upon the number of grid points specified and whether the transport calculations are performed on spectral or gray basis.
FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces
Ahluwalia, R.K.; Im, K.H.
1992-08-01
A computer code FURN3D has been developed for assessing the impact of burning different coals on heat absorption pattern in pulverized coal furnaces. The code is unique in its ability to conduct detailed spectral calculations of radiation transport in furnaces fully accounting for the size distributions of char, soot and ash particles, ash content, and ash composition. The code uses a hybrid technique of solving the three-dimensional radiation transport equation for absorbing, emitting and anisotropically scattering media. The technique achieves an optimal mix of computational speed and accuracy by combining the discrete ordinate method (S{sub 4}), modified differential approximation (MDA) and P, approximation in different range of optical thicknesses. The code uses spectroscopic data for estimating the absorption coefficients of participating gases C0{sub 2}, H{sub 2}0 and CO. It invokes Mie theory for determining the extinction and scattering coefficients of combustion particulates. The optical constants of char, soot and ash are obtained from dispersion relations derived from reflectivity, transmissivity and extinction measurements. A control-volume formulation is adopted for determining the temperature field inside the furnace. A simple char burnout model is employed for estimating heat release and evolution of particle size distribution. The code is written in Fortran 77, has modular form, and is machine-independent. The computer memory required by the code depends upon the number of grid points specified and whether the transport calculations are performed on spectral or gray basis.
NASA Astrophysics Data System (ADS)
Barnoud, Anne; Bouligand, Claire; Coutant, Olivier
2015-04-01
We linearly invert magnetic data for 3D magnetization distribution using a Bayesian methodology with a grid discretization of the space. The Bayesian approach introduces covariance matrices to regularize the ill-posed problem and overcome the non-uniqueness of the solution (Tarantola & Valette, 1982). The use of spatial covariance matrices and grid discretization leads to smooth and compact models. The algorithm provides 3D magnetization models along with resolution parameters extracted from the resolution matrix. The direct computation of the magnetic field includes the surface topography and assumes a linear relationship between rock magnetization and the magnetic field they produce. The methodology is applied to aeromagnetic data from the volcanic island of Basse-Terre in Guadeloupe, Lesser Antilles (Le Borgne & Le Mouël 1976, Le Mouël et al., 1979). Low magnetizations (a few A/m) allow linear inversion that takes into account polarity inversions of the geomagnetic field that occurred across the volcanic history of the island. Inverted magnetizations are consistent with paleomagnetic measurements on surface samples (Carlut et al., 2000 ; Samper et al., 2007). The resulting 3D model is validated against a 2D inversion performed in the Fourier domain (Parker & Huestis, 1974; Bouligand et al., 2014). The 3D distribution of magnetization helps identifying the different volcanic edifices that build the island both at the surface and up to 3 km depth.
A new model of the Arctic crustal thickness from 3D gravity inversion
NASA Astrophysics Data System (ADS)
Lebedeva-Ivanova, N. N.; Gaina, C.; Minakov, A.; Kashubin, S.
2015-12-01
The remarkable increase of new data collections and compilations for the Arctic region during the last decade motivate for a re-evaluation of our knowledge about the crustal structure and the tectonic evolution of the Arctic basins. 3D forward and inverse gravity modelling methods in the spectral domain (Minakov et al. 2012); lithosphere thermal gravity anomaly correction (Alvey et al., 2008); a vertical density variation for the sedimentary layer and lateral crustal variation density are integrated in the algorithm for derive the crustal thickness of the High Arctic region. Recently updated grids of bathymetry (Jakobsson et al., 2012), gravity anomaly (Gaina et al, 2011) and dynamic topography (Spasojevic & Gurnis, 2012) were used as input data for the algorithm. TeMAr sedimentary thickness grid (Petrov et al., 2015) was modified according to the most recent published seismic data, and was re-gridded and utilized as input data. Other input parameters for the algorithm were calibrated using seismic crustal scale profiles. Derived crustal thickness and Moho depth grids cover the area northward from 66° N and fit within a few kilometres with seismic crustal models for the most parts of the High Arctic region. Greater misfit in Moho depth between our results and seismic study (Chain & Lebedeva-Ivanova, 2015) under the northern Canada Basin suggest exceptional property of crust or/and mantel in this part of the Basin. Assumed mantle density of 3.25 kg/cm3provide the best fit for the region; it may indicate pervasive subcontinental lithospheric mantle (Goldstein et al., 2008) under the whole Arctic region. New results show a possible crustal connection between the Alpha and the Lomonosov ridges near the Canadian margin. The deepest Moho depth of c.34 km for Alpha-Mendeleev Ridge System is observed under the southern Mendeleev Ridge. The derived crustal thickness and Moho depth show a substantial improvement from the publicly available grids (CRUST1 (Laske et al., 2013
The PIES2012 Code for Calculating 3D Equilibria with Islands and Stochastic Regions
NASA Astrophysics Data System (ADS)
Monticello, Donald; Reiman, Allan; Raburn, Daniel
2013-10-01
We have made major modifications to the PIES 3D equilibrium code to produce a new version, PIES2012. The new version uses an adaptive radial grid for calculating equilibrium currents. A subset of the flux surfaces conform closely to island separatrices, providing an accurate treatment of the effects driving the neoclassical tearing mode. There is now a set of grid surfaces that conform to the flux surfaces in the interiors of the islands, allowing the proper treatment of the current profiles in the islands, which play an important role in tearing phenomena. We have verified that we can introduce appropriate current profiles in the islands to suppress their growth, allowing us to simulate situations where islands are allowed to grow at some rational surfaces but not others. Placement of grid surfaces between islands is guided by the locations of high order fixed points, allowing us to avoid spectral polution and providing a more robust, and smoother convergence of the code. The code now has an option for turning on a vertical magnetic field to fix the position of the magnetic axis, which models the horizontal feedback positioning of a tokamak plasma. The code has a new option for using a Jacobian-Free Newton Krylov scheme for convergence. The code now also contains a model that properly handles stochastic regions with nonzero pressure gradients. Work supported by DOE contract DE-AC02-09CH11466.
3-D localization of gamma ray sources with coded apertures for medical applications
NASA Astrophysics Data System (ADS)
Kaissas, I.; Papadimitropoulos, C.; Karafasoulis, K.; Potiriadis, C.; Lambropoulos, C. P.
2015-09-01
Several small gamma cameras for radioguided surgery using CdTe or CdZnTe have parallel or pinhole collimators. Coded aperture imaging is a well-known method for gamma ray source directional identification, applied in astrophysics mainly. The increase in efficiency due to the substitution of the collimators by the coded masks renders the method attractive for gamma probes used in radioguided surgery. We have constructed and operationally verified a setup consisting of two CdTe gamma cameras with Modified Uniform Redundant Array (MURA) coded aperture masks of rank 7 and 19 and a video camera. The 3-D position of point-like radioactive sources is estimated via triangulation using decoded images acquired by the gamma cameras. We have also developed code for both fast and detailed simulations and we have verified the agreement between experimental results and simulations. In this paper we present a simulation study for the spatial localization of two point sources using coded aperture masks with rank 7 and 19.
Implementation of the 3D edge plasma code EMC3-EIRENE on NSTX
Lore, J. D.; Canik, J. M.; Feng, Y.; Ahn, J. -W.; Maingi, R.; Soukhanovskii, V.
2012-05-09
The 3D edge transport code EMC3-EIRENE has been applied for the first time to the NSTX spherical tokamak. A new disconnected double null grid has been developed to allow the simulation of plasma where the radial separation of the inner and outer separatrix is less than characteristic widths (e.g. heat flux width) at the midplane. Modelling results are presented for both an axisymmetric case and a case where 3D magnetic field is applied in an n = 3 configuration. In the vacuum approximation, the perturbed field consists of a wide region of destroyed flux surfaces and helical lobes which are a mixture of long and short connection length field lines formed by the separatrix manifolds. This structure is reflected in coupled 3D plasma fluid (EMC3) and kinetic neutral particle (EIRENE) simulations. The helical lobes extending inside of the unperturbed separatrix are filled in by hot plasma from the core. The intersection of the lobes with the divertor results in a striated flux footprint pattern on the target plates. As a result, profiles of divertor heat and particle fluxes are compared with experimental data, and possible sources of discrepancy are discussed.
Implementation of the 3D edge plasma code EMC3-EIRENE on NSTX
Lore, J. D.; Canik, J. M.; Feng, Y.; Ahn, J. -W.; Maingi, R.; Soukhanovskii, V.
2012-05-09
The 3D edge transport code EMC3-EIRENE has been applied for the first time to the NSTX spherical tokamak. A new disconnected double null grid has been developed to allow the simulation of plasma where the radial separation of the inner and outer separatrix is less than characteristic widths (e.g. heat flux width) at the midplane. Modelling results are presented for both an axisymmetric case and a case where 3D magnetic field is applied in an n = 3 configuration. In the vacuum approximation, the perturbed field consists of a wide region of destroyed flux surfaces and helical lobes which aremore » a mixture of long and short connection length field lines formed by the separatrix manifolds. This structure is reflected in coupled 3D plasma fluid (EMC3) and kinetic neutral particle (EIRENE) simulations. The helical lobes extending inside of the unperturbed separatrix are filled in by hot plasma from the core. The intersection of the lobes with the divertor results in a striated flux footprint pattern on the target plates. As a result, profiles of divertor heat and particle fluxes are compared with experimental data, and possible sources of discrepancy are discussed.« less
Newly-Developed 3D GRMHD Code and its Application to Jet Formation
NASA Technical Reports Server (NTRS)
Mizuno, Y.; Nishikawa, K.-I.; Koide, S.; Hardee, P.; Fishman, G. J.
2006-01-01
We have developed a new three-dimensional general relativistic magnetohydrodynamic code by using a conservative, high-resolution shock-capturing scheme. The numerical fluxes are calculated using the HLL approximate Riemann solver scheme. The flux-interpolated constrained transport scheme is used to maintain a divergence-free magnetic field. We have performed various 1-dimensional test problems in both special and general relativity by using several reconstruction methods and found that the new 3D GRMHD code shows substantial improvements over our previous model. The . preliminary results show the jet formations from a geometrically thin accretion disk near a non-rotating and a rotating black hole. We will discuss the jet properties depended on the rotation of a black hole and the magnetic field strength.
NASA Astrophysics Data System (ADS)
Petrov, P.; Newman, G. A.
2010-12-01
-Fourier domain we had developed 3D code for full-wave field simulation in the elastic media which take into account nonlinearity introduced by free-surface effects. Our approach is based on the velocity-stress formulation. In the contrast to conventional formulation we defined the material properties such as density and Lame constants not at nodal points but within cells. This second order finite differences method formulated in the cell-based grid, generate numerical solutions compatible with analytical ones within the range errors determinate by dispersion analysis. Our simulator will be embedded in an inversion scheme for joint seismic- electromagnetic imaging. It also offers possibilities for preconditioning the seismic wave propagation problems in the frequency domain. References. Shin, C. & Cha, Y. (2009), Waveform inversion in the Laplace-Fourier domain, Geophys. J. Int. 177(3), 1067- 1079. Shin, C. & Cha, Y. H. (2008), Waveform inversion in the Laplace domain, Geophys. J. Int. 173(3), 922-931. Commer, M. & Newman, G. (2008), New advances in three-dimensional controlled-source electromagnetic inversion, Geophys. J. Int. 172(2), 513-535. Newman, G. A., Commer, M. & Carazzone, J. J. (2010), Imaging CSEM data in the presence of electrical anisotropy, Geophysics, in press.
3-D model-based frame interpolation for distributed video coding of static scenes.
Maitre, Matthieu; Guillemot, Christine; Morin, Luce
2007-05-01
This paper addresses the problem of side information extraction for distributed coding of videos captured by a camera moving in a 3-D static environment. Examples of targeted applications are augmented reality, remote-controlled robots operating in hazardous environments, or remote exploration by drones. It explores the benefits of the structure-from-motion paradigm for distributed coding of this type of video content. Two interpolation methods constrained by the scene geometry, based either on block matching along epipolar lines or on 3-D mesh fitting, are first developed. These techniques are based on a robust algorithm for sub-pel matching of feature points, which leads to semi-dense correspondences between key frames. However, their rate-distortion (RD) performances are limited by misalignments between the side information and the actual Wyner-Ziv (WZ) frames due to the assumption of linear motion between key frames. To cope with this problem, two feature point tracking techniques are introduced, which recover the camera parameters of the WZ frames. A first technique, in which the frames remain encoded separately, performs tracking at the decoder and leads to significant RD performance gains. A second technique further improves the RD performances by allowing a limited tracking at the encoder. As an additional benefit, statistics on tracks allow the encoder to adapt the key frame frequency to the video motion content.
Radiation Coupling with the FUN3D Unstructured-Grid CFD Code
NASA Technical Reports Server (NTRS)
Wood, William A.
2012-01-01
The HARA radiation code is fully-coupled to the FUN3D unstructured-grid CFD code for the purpose of simulating high-energy hypersonic flows. The radiation energy source terms and surface heat transfer, under the tangent slab approximation, are included within the fluid dynamic ow solver. The Fire II flight test, at the Mach-31 1643-second trajectory point, is used as a demonstration case. Comparisons are made with an existing structured-grid capability, the LAURA/HARA coupling. The radiative surface heat transfer rates from the present approach match the benchmark values within 6%. Although radiation coupling is the focus of the present work, convective surface heat transfer rates are also reported, and are seen to vary depending upon the choice of mesh connectivity and FUN3D ux reconstruction algorithm. On a tetrahedral-element mesh the convective heating matches the benchmark at the stagnation point, but under-predicts by 15% on the Fire II shoulder. Conversely, on a mixed-element mesh the convective heating over-predicts at the stagnation point by 20%, but matches the benchmark away from the stagnation region.
NASA Astrophysics Data System (ADS)
Inogamov, Nail A.; Zhakhovsky, Vasily V.
2016-02-01
There are many important applications in which the ultrashort diffraction-limited and therefore tightly focused laser pulses irradiates metal films mounted on dielectric substrate. Here we present the detailed picture of laser peeling and 3D structure formation of the thin (relative to a depth of a heat affected zone in the bulk targets) gold films on glass substrate. The underlying physics of such diffraction-limited laser peeling was not well understood previously. Our approach is based on a physical model which takes into consideration the new calculations of the two-temperature (2T) equation of state (2T EoS) and the two-temperature transport coefficients together with the coupling parameter between electron and ion subsystems. The usage of the 2T EoS and the kinetic coefficients is required because absorption of an ultrashort pulse with duration of 10-1000 fs excites electron subsystem of metal and transfers substance into the 2T state with hot electrons (typical electron temperatures 1-3 eV) and much colder ions. It is shown that formation of submicrometer-sized 3D structures is a result of the electron-ion energy transfer, melting, and delamination of film from substrate under combined action of electron and ion pressures, capillary deceleration of the delaminated liquid metal or semiconductor, and ultrafast freezing of molten material. We found that the freezing is going in non-equilibrium regime with strongly overcooled liquid phase. In this case the Stefan approximation is non-applicable because the solidification front speed is limited by the diffusion rate of atoms in the molten material. To solve the problem we have developed the 2T Lagrangian code including all this reach physics in. We also used the high-performance combined Monte- Carlo and molecular dynamics code for simulation of surface 3D nanostructuring at later times after completion of electron-ion relaxation.
Conclusions of the M3D/NIMROD Cross-Code Benchmark
NASA Astrophysics Data System (ADS)
Breslau, J.; Park, W.; Jardin, S.; Strauss, H.; Schnack, D.; Pankin, A.
2004-11-01
Cross-validation of the nonlinear M3D [1] and NIMROD [2] codes in the resistive MHD regime in tokamaks has been brought to a successful conclusion. The small but well-diagnosed CDX-U device was selected for the benchmark because its low temperature (S < 10^5) is readily handled by the two codes. The test problem consisted of determining the growth rates, eigenfunctions, and nonlinear evolution of resistive internal kink modes from a base equilibrium with q_0≈ 0.92. Good agreement between the codes is observed in all three predictions. However, there is an unexpected lack of agreement between these predictions and experimental observations: whereas the 1,1 sawtooth crash in the device is a repeating phenomenon consistent with the survival of the discharge, both codes predict a spectrum of unstable resistive ballooning modes whose growth rate increases with toroidal mode number n>1, occurring near the plasma boundary and present even when q_0>1. These findings call into question the applicability of the resistive MHD model even to low temperature tokamak plasmas and suggest the need for the addition of two-fluid terms or other new physics to make accurate predictions of their behavior. [1] W. Park, et al., Phys. Plasmas 6, 1796 (1999). [2] C.R. Sovinec, et al., Phys. Plasmas 10, 1727 (2003).
Comparison of algorithms for non-linear inverse 3D electrical tomography reconstruction.
Molinari, Marc; Cox, Simon J; Blott, Barry H; Daniell, Geoffrey J
2002-02-01
Non-linear electrical impedance tomography reconstruction algorithms usually employ the Newton-Raphson iteration scheme to image the conductivity distribution inside the body. For complex 3D problems, the application of this method is not feasible any more due to the large matrices involved and their high storage requirements. In this paper we demonstrate the suitability of an alternative conjugate gradient reconstruction algorithm for 3D tomographic imaging incorporating adaptive mesh refinement and requiring less storage space than the Newton-Raphson scheme. We compare the reconstruction efficiency of both algorithms for a simple 3D head model. The results show that an increase in speed of about 30% is achievable with the conjugate gradient-based method without loss of accuracy.
Simulation of a Synthetic Jet in Quiescent Air Using TLNS3D Flow Code
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Turkel, Eli
2007-01-01
Although the actuator geometry is highly three-dimensional, the outer flowfield is nominally two-dimensional because of the high aspect ratio of the rectangular slot. For the present study, this configuration is modeled as a two-dimensional problem. A multi-block structured grid available at the CFDVAL2004 website is used as a baseline grid. The periodic motion of the diaphragm is simulated by specifying a sinusoidal velocity at the diaphragm surface with a frequency of 450 Hz, corresponding to the experimental setup. The amplitude is chosen so that the maximum Mach number at the jet exit is approximately 0.1, to replicate the experimental conditions. At the solid walls zero slip, zero injection, adiabatic temperature and zero pressure gradient conditions are imposed. In the external region, symmetry conditions are imposed on the side (vertical) boundaries and far-field conditions are imposed on the top boundary. A nominal free-stream Mach number of 0.001 is imposed in the free stream to simulate incompressible flow conditions in the TLNS3D code, which solves compressible flow equations. The code was run in unsteady (URANS) mode until the periodicity was established. The time-mean quantities were obtained by running the code for at least another 15 periods and averaging the flow quantities over these periods. The phase-locked average of flow quantities were assumed to be coincident with their values during the last full time period.
A 3D Parallel Beam Dynamics Code for Modeling High Brightness Beams in Photoinjectors
Qiang, Ji; Lidia, S.; Ryne, R.D.; Limborg, C.; /SLAC
2006-02-13
In this paper we report on IMPACT-T, a 3D beam dynamics code for modeling high brightness beams in photoinjectors and rf linacs. IMPACT-T is one of the few codes used in the photoinjector community that has a parallel implementation, making it very useful for high statistics simulations of beam halos and beam diagnostics. It has a comprehensive set of beamline elements, and furthermore allows arbitrary overlap of their fields. It is unique in its use of space-charge solvers based on an integrated Green function to efficiently and accurately treat beams with large aspect ratio, and a shifted Green function to efficiently treat image charge effects of a cathode. It is also unique in its inclusion of energy binning in the space-charge calculation to model beams with large energy spread. Together, all these features make IMPACT-T a powerful and versatile tool for modeling beams in photoinjectors and other systems. In this paper we describe the code features and present results of IMPACT-T simulations of the LCLS photoinjectors. We also include a comparison of IMPACT-T and PARMELA results.
A 3d Parallel Beam Dynamics Code for Modeling High BrightnessBeams in Photoinjectors
Qiang, J.; Lidia, S.; Ryne, R.; Limborg, C.
2005-05-16
In this paper we report on IMPACT-T, a 3D beam dynamics code for modeling high brightness beams in photoinjectors and rf linacs. IMPACT-T is one of the few codes used in the photoinjector community that has a parallel implementation, making it very useful for high statistics simulations of beam halos and beam diagnostics. It has a comprehensive set of beamline elements, and furthermore allows arbitrary overlap of their fields. It is unique in its use of space-charge solvers based on an integrated Green function to efficiently and accurately treat beams with large aspect ratio, and a shifted Green function to efficiently treat image charge effects of a cathode. It is also unique in its inclusion of energy binning in the space-charge calculation to model beams with large energy spread. Together, all these features make IMPACT-T a powerful and versatile tool for modeling beams in photoinjectors and other systems. In this paper we describe the code features and present results of IMPACT-T simulations of the LCLS photoinjectors. We also include a comparison of IMPACT-T and PARMELA results.
Code verification for unsteady 3-D fluid-solid interaction problems
NASA Astrophysics Data System (ADS)
Yu, Kintak Raymond; Étienne, Stéphane; Hay, Alexander; Pelletier, Dominique
2015-12-01
This paper describes a procedure to synthesize Manufactured Solutions for Code Verification of an important class of Fluid-Structure Interaction (FSI) problems whose behaviors can be modeled as rigid body vibrations in incompressible fluids. We refer this class of FSI problems as Fluid-Solid Interaction problems, which can be found in many practical engineering applications. The methodology can be utilized to develop Manufactured Solutions for both 2-D and 3-D cases. We demonstrate the procedure with our numerical code. We present details of the formulation and methodology. We also provide the reasonings behind our proposed approach. Results from grid and time step refinement studies confirm the verification of our solver and demonstrate the versatility of the simple synthesis procedure. In addition, the results also demonstrate that the modified decoupled approach to verify flow problems with high-order time-stepping schemes can be employed equally well to verify code for multi-physics problems (here, those of the Fluid-Solid Interaction) when the numerical discretization is based on the Method of Lines.
Long-term radiation belt simulation with the VERB 3-D code: Comparison with CRRES observations
NASA Astrophysics Data System (ADS)
Subbotin, D. A.; Shprits, Y. Y.; Ni, B.
2011-12-01
Highly energetic electrons in the Earth’s radiation belts are hazardous for satellite equipment. Fluxes of relativistic electrons can vary by orders of magnitude during geomagnetic storms. The evolution of relativistic electron fluxes in the radiation belts is described by the 3-D Fokker-Planck equation in terms of the radial distance, energy, and equatorial pitch angle. To better understand the mechanisms that control radiation belt acceleration and loss and particle flux dynamics, we present a long-term radiation belt simulation for 100 days from 29 July to 6 November 1990 with the 3-D Versatile Electron Radiation Belt (VERB) code and compare the results with the electron fluxes observed by the Combined Release and Radiation Effects Satellite (CRRES). We also perform a comparison of Phase Space Density with a multisatellite reanalysis obtained by using Kalman filtering of observations from CRRES, Geosynchronous (GEO), GPS, and Akebono satellites. VERB 3-D simulations include radial, energy, and pitch angle diffusion and mixed energy and pitch angle diffusion driven by electromagnetic waves inside the magnetosphere with losses to the atmosphere. Boundary conditions account for the convective source of electrons and loss to the magnetopause. The results of the simulation that include all of the above processes show a good agreement with the data. The agreement implies that these processes are important for the radiation belt electron dynamics and therefore should be accounted for in outer radiation belt simulations. We also show that the results are very sensitive to the assumed wave model. Our simulations are driven only by the variation of the Kp index and variations of the seed electron population around geosynchronous orbit, which allows the model to be used for forecasting and nowcasting.
Liner Optimization Studies Using the Ducted Fan Noise Prediction Code TBIEM3D
NASA Technical Reports Server (NTRS)
Dunn, M. H.; Farassat, F.
1998-01-01
In this paper we demonstrate the usefulness of the ducted fan noise prediction code TBIEM3D as a liner optimization design tool. Boundary conditions on the interior duct wall allow for hard walls or a locally reacting liner with axially segmented, circumferentially uniform impedance. Two liner optimization studies are considered in which farfield noise attenuation due to the presence of a liner is maximized by adjusting the liner impedance. In the first example, the dependence of optimal liner impedance on frequency and liner length is examined. Results show that both the optimal impedance and attenuation levels are significantly influenced by liner length and frequency. In the second example, TBIEM3D is used to compare radiated sound pressure levels between optimal and non-optimal liner cases at conditions designed to simulate take-off. It is shown that significant noise reduction is achieved for most of the sound field by selecting the optimal or near optimal liner impedance. Our results also indicate that there is relatively large region of the impedance plane over which optimal or near optimal liner behavior is attainable. This is an important conclusion for the designer since there are variations in liner characteristics due to manufacturing imprecisions.
GATOR: A 3-D time-dependent simulation code for helix TWTs
Zaidman, E.G.; Freund, H.P.
1996-12-31
A 3D nonlinear analysis of helix TWTs is presented. The analysis and simulation code is based upon a spectral decomposition using the vacuum sheath helix modes. The field equations are integrated on a grid and advanced in time using a MacCormack predictor-corrector scheme, and the electron orbit equations are integrated using a fourth order Runge-Kutta algorithm. Charge is accumulated on the grid and the field is interpolated to the particle location by a linear map. The effect of dielectric liners on the vacuum sheath helix dispersion is included in the analysis. Several numerical cases are considered. Simulation of the injection of a DC beam and a signal at a single frequency is compared with a linear field theory of the helix TWT interaction, and good agreement is found.
Laplace-domain wave-equation modeling and full waveform inversion in 3D isotropic elastic media
NASA Astrophysics Data System (ADS)
Son, Woohyun; Pyun, Sukjoon; Shin, Changsoo; Kim, Han-Joon
2014-06-01
The 3D elastic problem has not been widely studied because of the computational burden. Over the past few years, 3D elastic full waveform inversion (FWI) techniques in the time and frequency domains have been proposed by some researchers based on developments in computer science. However, these techniques still have the non-uniqueness and high nonlinearity problems. In this paper, we propose a 3D elastic FWI algorithm in the Laplace domain that can mitigate these problems. To efficiently solve the impedance matrix, we adopt a first-order absorbing boundary condition that results in a symmetric system. A conjugate gradient (CG) solver can be used because the Laplace-domain wave equation is naturally positive definite. We apply the Jacobi preconditioner to increase the convergence speed. We identify the permissible range of Laplace damping constants through dispersion analysis and accuracy tests. We perform the Laplace-domain FWI based on a logarithmic objective function, and the inversion examples are designed for a land setting, which means that the source is vertically excited and multi-component data are considered. The inversion results indicate that the inversion that uses only the vertical component performs slightly better than the multi-component inversion. This unexpected result is obtained partly because we use a vertically polarized source. We analyze the residuals and Frechet derivatives for each component to examine the characteristics of the Laplace-domain multi-component FWI. The results indicate that the residuals and Frechet derivatives for the horizontal component have a singularity problem. The numerical examples demonstrate that the singularity problem is related to the directivity of the displacement and to taking the logarithm of Laplace-domain wave fields. To avoid this singularity problem, we use a simple method that excludes the data near the singular region. Although we can use either simultaneous or sequential strategies to invert the
Electromagnetic Response Inversion for a 3D Distribution of Conductivity/Dielect
2001-10-24
NLCGCS inverts electromagnetic responses for a 3D distribution of electrical conductivity and dielectric permittivity within the earth for geophysical applications using single processor computers. The software comes bundled with a graphical user interface to aid in model construction and analysis and viewing of earth images. The solution employs both dipole and finite size source configurations for harmonic oscillatory sources. A new nonlinear preconditioner is included in the solution to speed up solution convergence.
NASA Astrophysics Data System (ADS)
Santhanam, Anand P.; Min, Yugang; Mudur, Sudhir P.; Rastogi, Abhinav; Ruddy, Bari H.; Shah, Amish; Divo, Eduardo; Kassab, Alain; Rolland, Jannick P.; Kupelian, Patrick
2010-07-01
A method to estimate the deformation operator for the 3D volumetric lung dynamics of human subjects is described in this paper. For known values of air flow and volumetric displacement, the deformation operator and subsequently the elastic properties of the lung are estimated in terms of a Green's function. A Hyper-Spherical Harmonic (HSH) transformation is employed to compute the deformation operator. The hyper-spherical coordinate transformation method discussed in this paper facilitates accounting for the heterogeneity of the deformation operator using a finite number of frequency coefficients. Spirometry measurements are used to provide values for the airflow inside the lung. Using a 3D optical flow-based method, the 3D volumetric displacement of the left and right lungs, which represents the local anatomy and deformation of a human subject, was estimated from 4D-CT dataset. Results from an implementation of the method show the estimation of the deformation operator for the left and right lungs of a human subject with non-small cell lung cancer. Validation of the proposed method shows that we can estimate the Young's modulus of each voxel within a 2% error level.
2D and 3D separate and joint inversion of airborne ZTEM and ground AMT data: Synthetic model studies
NASA Astrophysics Data System (ADS)
Sasaki, Yutaka; Yi, Myeong-Jong; Choi, Jihyang
2014-05-01
The ZTEM (Z-axis Tipper Electromagnetic) method measures naturally occurring audio-frequency magnetic fields and obtains the tipper function that defines the relationship among the three components of the magnetic field. Since the anomalous tipper responses are caused by the presence of lateral resistivity variations, the ZTEM survey is most suited for detecting and delineating conductive bodies extending to considerable depths, such as graphitic dykes encountered in the exploration of unconformity type uranium deposit. Our simulations shows that inversion of ZTEM data can detect reasonably well multiple conductive dykes placed 1 km apart. One important issue regarding ZTEM inversion is the effect of the initial model, because homogeneous half-space and (1D) layered structures produce no responses. For the 2D model with multiple conductive dykes, the inversion results were useful for locating the dykes even when the initial model was not close to the true background resistivity. For general 3D structures, however, the resolution of the conductive bodies can be reduced considerably depending on the initial model. This is because the tipper magnitudes from 3D conductors are smaller due to boundary charges than the 2D responses. To alleviate this disadvantage of ZTEM surveys, we combined ZTEM and audio-frequency magnetotelluric (AMT) data. Inversion of sparse AMT data was shown to be effective in providing a good initial model for ZTEM inversion. Moreover, simultaneously inverting both data sets led to better results than the sequential approach by enabling to identify structural features that were difficult to resolve from the individual data sets.
NASA Astrophysics Data System (ADS)
Hara, Tatsuhiko
2004-08-01
We implement the Direct Solution Method (DSM) on a vector-parallel supercomputer and show that it is possible to significantly improve its computational efficiency through parallel computing. We apply the parallel DSM calculation to waveform inversion of long period (250-500 s) surface wave data for three-dimensional (3-D) S-wave velocity structure in the upper and uppermost lower mantle. We use a spherical harmonic expansion to represent lateral variation with the maximum angular degree 16. We find significant low velocities under south Pacific hot spots in the transition zone. This is consistent with other seismological studies conducted in the Superplume project, which suggests deep roots of these hot spots. We also perform simultaneous waveform inversion for 3-D S-wave velocity and Q structure. Since resolution for Q is not good, we develop a new technique in which power spectra are used as data for inversion. We find good correlation between long wavelength patterns of Vs and Q in the transition zone such as high Vs and high Q under the western Pacific.
NASA Astrophysics Data System (ADS)
Timur, Emre
2016-04-01
There are numerous geophysical methods used to investigate geothermal areas. The major purpose of this magnetic survey is to locate the boudaries of active hydrothermal system in the South of Gediz Graben in Salihli (Manisa/Turkey). The presence of the hydrothermal system had already been inferred from surface evidence of hydrothermal activity and drillings. Firstly, 3-D prismatic models were theoretically investigated and edge detection methods were utilized with an iterative inversion method to define the boundaries and the parameters of the structure. In the first step of the application, it was necessary to convert the total field anomaly into a pseudo-gravity anomaly map. Then the geometric boudaries of the structures were determined by applying a MATLAB based software with 3 different edge detection algorithms. The exact location of the structures were obtained by using these boundary coordinates as initial geometric parameters in the inversion process. In addition to these methods, reduction to pole and horizontal gradient methods were applied to the data to achieve more information about the location and shape of the possible reservoir. As a result, the edge detection methods were found to be successful, both in the field and as theoretical data sets for delineating the boundaries of the possible geothermal reservoir structure. The depth of the geothermal reservoir was determined as 2,4 km from 3-D inversion and 2,1 km from power spectrum methods.
2013-06-24
Version 07 TART2012 is a coupled neutron-photon Monte Carlo transport code designed to use three-dimensional (3-D) combinatorial geometry. Neutron and/or photon sources as well as neutron induced photon production can be tracked. It is a complete system to assist you with input preparation, running Monte Carlo calculations, and analysis of output results. TART2012 is also incredibly FAST; if you have used similar codes, you will be amazed at how fast this code is compared tomore » other similar codes. Use of the entire system can save you a great deal of time and energy. TART2012 extends the general utility of the code to even more areas of application than available in previous releases by concentrating on improving the physics, particularly with regard to improved treatment of neutron fission, resonance self-shielding, molecular binding, and extending input options used by the code. Several utilities are included for creating input files and displaying TART results and data. TART2012 uses the latest ENDF/B-VI, Release 8, data. New for TART2012 is the use of continuous energy neutron cross sections, in addition to its traditional multigroup cross sections. For neutron interaction, the data are derived using ENDF-ENDL2005 and include both continuous energy cross sections and 700 group neutron data derived using a combination of ENDF/B-VI, Release 8, and ENDL data. The 700 group structure extends from 10-5 eV up to 1 GeV. Presently nuclear data are only available up to 20 MeV, so that only 616 of the groups are currently used. For photon interaction, 701 point photon data were derived using the Livermore EPDL97 file. The new 701 point structure extends from 100 eV up to 1 GeV, and is currently used over this entire energy range. TART2012 completely supersedes all older versions of TART, and it is strongly recommended that one use only the most recent version of TART2012 and its data files. Check authors homepage for related information: http
NASA Astrophysics Data System (ADS)
Petrov, P.; Newman, G. A.
2014-12-01
An application of the 3D elastic full-waveform inversion (FWI) to wide-aperture seismic data obtained for a complex geological setting is presented. Imaging is implemented in the Fourier domain, exploiting damped wave fields. The modeling part is solved with a finite-difference method. The non-linear conjugate gradient method is used for the inverse problem solution. The nonlinearity of FWI leads to the presence of local and multiple minima in the least-squares error functional especially for large offset problems. That leads to the shutdown of the inverse problem convergence and uncertainty in the solution. An accurate starting velocity model can avoid this problem, but in many cases may not be available. Hence other strategies are necessary to address the problem. We propose a robust inversion process for an arbitrary starting velocity model, which allows avoiding local minima and obtaining acceptable images of the deep seated structures defined by large offset data. We proceed from the assumption that decreasing data offset reduces local minima problems but decreases the depth of the recovered image. So, the inversion process is realized sequentially from small to large offsets, allowing recovery of geological structures over the entire depth range of interest from the near surface to deeper depths sensed only by large aperture offsets. Increasing of data offset is first performed at the lowest frequency and then proceeding with treatment of all data offsets from low to high frequencies. A reverse loop is also implemented in the laddering of frequencies, where after the inversion at high frequencies and all offsets we return to the lower frequencies data to continue the IP. Returning to lower frequency data provides helping to ameliorate multiple minima encountered in the inversion. The inversion then concludes by sweeping over higher frequency data, at all offsets. We demonstrate our strategies for treating wide aperture offset data on the Marmousi model, using
Validation of Heat Transfer and Film Cooling Capabilities of the 3-D RANS Code TURBO
NASA Technical Reports Server (NTRS)
Shyam, Vikram; Ameri, Ali; Chen, Jen-Ping
2010-01-01
The capabilities of the 3-D unsteady RANS code TURBO have been extended to include heat transfer and film cooling applications. The results of simulations performed with the modified code are compared to experiment and to theory, where applicable. Wilcox s k-turbulence model has been implemented to close the RANS equations. Two simulations are conducted: (1) flow over a flat plate and (2) flow over an adiabatic flat plate cooled by one hole inclined at 35 to the free stream. For (1) agreement with theory is found to be excellent for heat transfer, represented by local Nusselt number, and quite good for momentum, as represented by the local skin friction coefficient. This report compares the local skin friction coefficients and Nusselt numbers on a flat plate obtained using Wilcox's k-model with the theory of Blasius. The study looks at laminar and turbulent flows over an adiabatic flat plate and over an isothermal flat plate for two different wall temperatures. It is shown that TURBO is able to accurately predict heat transfer on a flat plate. For (2) TURBO shows good qualitative agreement with film cooling experiments performed on a flat plate with one cooling hole. Quantitatively, film effectiveness is under predicted downstream of the hole.
Status and future of the 3D MAFIA group of codes
Ebeling, F.; Klatt, R.; Krawzcyk, F.; Lawinsky, E.; Weiland, T.; Wipf, S.G.; Steffen, B.; Barts, T.; Browman, J.; Cooper, R.K.; and others
1988-12-01
The group of fully three dimensional computer codes for solving Maxwell's equations for a wide range of applications, MAFIA, is already well established. Extensive comparisons with measurements have demonstrated the accuracy of the computations. A large numer of components have been designed for accelerators, such as kicker magnets, non cyclindrical cavities, ferrite loaded cavities, vacuum chambers with slots and transitions, etc. The latest additions to the system include a new static solver that can calculate 3D magneto- and electrostatic fields, and a self consistent version of the 2D-BCI that solves the field equations and the equations of motion in parallel. Work on new eddy current modules has started, which will allow treatment of laminated and/or solid iron cores excited by low frequency currents. Based on our experience with the present releases 1 and 2, we have started a complete revision of the whole user interface and data structure, which will make the codes even more user-friendly and flexible.
Optimizing Antenna Layout for ITER Low Field Side Reflectometer using 3D Ray Tracing Code
NASA Astrophysics Data System (ADS)
Newbury, Sarah; Zolfaghari, Ali
2014-10-01
The ITER Low Field Side Reflectometer (LFSR) is being designed to provide electron density profile measurements for both the core and edge plasma through the launching of millimeter waves into the plasma and the detection of the signal of the reflected wave by a receive antenna. Because the detection of the received signal is integral to the determination of the density profile, an important goal in designing the LFSR is to optimize the coupling between launch and receive antennas. This project investigates this subject by using Genray, a 3D ray tracing code, to simulate the propagation of millimeter waves launched into and reflected by the plasma for a typical ITER case. Based upon the results of the code, beam footprints will be estimated for different cases in which both the height and toroidal angle of the launch antenna are varied. The footprints will be compared, allowing conclusions to be drawn about the optimal antenna layout for the LFSR. This method will be carried out for various frequencies of both O-mode and X-mode waves, and the effect of the scrape-off layer of the plasma will also be considered.
FERM3D: A finite element R-matrix electron molecule scattering code
NASA Astrophysics Data System (ADS)
Tonzani, Stefano
2007-01-01
FERM3D is a three-dimensional finite element program, for the elastic scattering of a low energy electron from a general polyatomic molecule, which is converted to a potential scattering problem. The code is based on tricubic polynomials in spherical coordinates. The electron-molecule interaction is treated as a sum of three terms: electrostatic, exchange, and polarization. The electrostatic term can be extracted directly from ab initio codes ( GAUSSIAN 98 in the work described here), while the exchange term is approximated using a local density functional. A local polarization potential based on density functional theory [C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785] describes the long range attraction to the molecular target induced by the scattering electron. Photoionization calculations are also possible and illustrated in the present work. The generality and simplicity of the approach is important in extending electron-scattering calculations to more complex targets than it is possible with other methods. Program summaryTitle of program:FERM3D Catalogue identifier:ADYL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYL_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested:Intel Xeon, AMD Opteron 64 bit, Compaq Alpha Operating systems or monitors under which the program has been tested:HP Tru64 Unix v5.1, Red Hat Linux Enterprise 3 Programming language used:Fortran 90 Memory required to execute with typical data:900 MB (neutral CO 2), 2.3 GB (ionic CO 2), 1.4 GB (benzene) No. of bits in a word:32 No. of processors used:1 Has the code been vectorized?:No No. of lines in distributed program, including test data, etc.:58 383 No. of bytes in distributed program, including test data, etc.:561 653 Distribution format:tar.gzip file CPC Program library subprograms used:ADDA, ACDP Nature of physical problem:Scattering of an
NASA Astrophysics Data System (ADS)
Zhang, Yujia; Yilmaz, Alper
2016-06-01
Surface reconstruction using coded structured light is considered one of the most reliable techniques for high-quality 3D scanning. With a calibrated projector-camera stereo system, a light pattern is projected onto the scene and imaged by the camera. Correspondences between projected and recovered patterns are computed in the decoding process, which is used to generate 3D point cloud of the surface. However, the indirect illumination effects on the surface, such as subsurface scattering and interreflections, will raise the difficulties in reconstruction. In this paper, we apply maximum min-SW gray code to reduce the indirect illumination effects of the specular surface. We also analysis the errors when comparing the maximum min-SW gray code and the conventional gray code, which justifies that the maximum min-SW gray code has significant superiority to reduce the indirect illumination effects. To achieve sub-pixel accuracy, we project high frequency sinusoidal patterns onto the scene simultaneously. But for specular surface, the high frequency patterns are susceptible to decoding errors. Incorrect decoding of high frequency patterns will result in a loss of depth resolution. Our method to resolve this problem is combining the low frequency maximum min-SW gray code and the high frequency phase shifting code, which achieves dense 3D reconstruction for specular surface. Our contributions include: (i) A complete setup of the structured light based 3D scanning system; (ii) A novel combination technique of the maximum min-SW gray code and phase shifting code. First, phase shifting decoding with sub-pixel accuracy. Then, the maximum min-SW gray code is used to resolve the ambiguity resolution. According to the experimental results and data analysis, our structured light based 3D scanning system enables high quality dense reconstruction of scenes with a small number of images. Qualitative and quantitative comparisons are performed to extract the advantages of our new
NASA Astrophysics Data System (ADS)
Skála, J.; Baruffa, F.; Büchner, J.; Rampp, M.
2015-08-01
Context. The numerical simulation of turbulence and flows in almost ideal astrophysical plasmas with large Reynolds numbers motivates the implementation of magnetohydrodynamical (MHD) computer codes with low resistivity. They need to be computationally efficient and scale well with large numbers of CPU cores, allow obtaining a high grid resolution over large simulation domains, and be easily and modularly extensible, for instance, to new initial and boundary conditions. Aims: Our aims are the implementation, optimization, and verification of a computationally efficient, highly scalable, and easily extensible low-dissipative MHD simulation code for the numerical investigation of the dynamics of astrophysical plasmas with large Reynolds numbers in three dimensions (3D). Methods: The new GOEMHD3 code discretizes the ideal part of the MHD equations using a fast and efficient leap-frog scheme that is second-order accurate in space and time and whose initial and boundary conditions can easily be modified. For the investigation of diffusive and dissipative processes the corresponding terms are discretized by a DuFort-Frankel scheme. To always fulfill the Courant-Friedrichs-Lewy stability criterion, the time step of the code is adapted dynamically. Numerically induced local oscillations are suppressed by explicit, externally controlled diffusion terms. Non-equidistant grids are implemented, which enhance the spatial resolution, where needed. GOEMHD3 is parallelized based on the hybrid MPI-OpenMP programing paradigm, adopting a standard two-dimensional domain-decomposition approach. Results: The ideal part of the equation solver is verified by performing numerical tests of the evolution of the well-understood Kelvin-Helmholtz instability and of Orszag-Tang vortices. The accuracy of solving the (resistive) induction equation is tested by simulating the decay of a cylindrical current column. Furthermore, we show that the computational performance of the code scales very
Description of FEL3D: A three dimensional simulation code for TOK and FEL
Dutt, S.; Friedman, A.; Gover, A.
1988-10-20
FEL3D is a three dimensional simulation code, written for the purpose of calculating the parameters of coherent radiation emitted by electrons in an undulator. The program was written predominantly for simulating the coherent super-radiant harmonic frequency emission of electrons which are being bunched by an external laser beam while propagating in an undulator magnet. This super-radiant emission is to be studied in the TOK (transverse optical klystron) experiment, which is under construction in the NSLS department at Brookhaven National Laboratory. The program can also calculate the stimulated emission radiometric properties of a free electron laser (FEL) taking into account three dimensional effects. While this application is presently limited to the small gain operation regime of FEL's, extension to the high gain regime is expected to be relatively easy. The code is based on a semi-analytical concept. Instead of a full numerical solution of the Maxwell-Lorentz equations, the trajectories of the electron in the wiggler field are calculated analytically, and the radiation fields are expanded in terms of free space eigen-modes. This approach permits efficient computation, with a computation time of about 0.1 sec/electron on the BNL IBM 3090. The code reflects the important three dimensional features of the electron beam, the modulating laser beam, and the emitted radiation field. The statistical approach is based on averaging over the electron initial conditions according to a given distribution function in phase space, rather than via Monte-Carlo simulation. The present version of the program is written for uniform periodic wiggler field, but extension to nonuniform fields is straightforward. 4 figs., 5 tabs.
Anderson, D.V.; Cohen, R.H.; Ferguson, J.R.; Johnston, B.M.; Sharp, C.B.; Willmann, P.A.
1981-06-30
The single particle orbit code, TIBRO, has been modified extensively to improve the interpolation methods used and to allow use of vector potential fields in the simulation of charged particle orbits on a 3D domain. A 3D cubic B-spline algorithm is used to generate spline coefficients used in the interpolation. Smooth and accurate field representations are obtained. When vector potential fields are used, the 3D cubic spline interpolation formula analytically generates the magnetic field used to push the particles. This field has del.BETA = 0 to computer roundoff. When magnetic induction is used the interpolation allows del.BETA does not equal 0, which can lead to significant nonphysical results. Presently the code assumes quadrupole symmetry, but this is not an essential feature of the code and could be easily removed for other applications. Many details pertaining to this code are given on microfiche accompanying this report.
Aydmer, A.A.; Chew, W.C.; Cui, T.J.; Wright, D.L.; Smith, D.V.; Abraham, J.D.
2001-01-01
A simple and efficient method for large scale three-dimensional (3-D) subsurface imaging of inhomogeneous background is presented. One-dimensional (1-D) multifrequency distorted Born iterative method (DBIM) is employed in the inversion. Simulation results utilizing synthetic scattering data are given. Calibration of the very early time electromagnetic (VETEM) experimental waveforms is detailed along with major problems encountered in practice and their solutions. This discussion is followed by the results of a large scale application of the method to the experimental data provided by the VETEM system of the U.S. Geological Survey. The method is shown to have a computational complexity that is promising for on-site inversion.
Bhattacharya, Jishnu; Wolverton, C
2013-05-01
Spinel oxides represent an important class of cathode materials for Li-ion batteries. Two major variants of the spinel crystal structure are normal and inverse. The relative stability of normal and inverse ordering at different stages of lithiation has important consequences in lithium diffusivity, voltage, capacity retention and battery life. In this paper, we investigate the relative structural stability of normal and inverse structures of the 3d transition metal oxide spinels with first-principles DFT calculations. We have considered ternary spinel oxides LixM2O4 with M = Ti, V, Cr, Mn, Fe, Co and Ni in both lithiated (x = 1) and delithiated (x = 0) conditions. We find that for all lithiated spinels, the normal structure is preferred regardless of the metal. We observe that the normal structure for all these oxides has a lower size mismatch between octahedral cations compared to the inverse structure. With delithiation, many of the oxides undergo a change in stability with vanadium in particular, showing a tendency to occupy tetrahedral sites. We find that in the delithiated oxide, only vanadium ions can access a +5 oxidation state which prefers tetrahedral coordination. We have also calculated the average voltage of lithiation for these spinels. The calculated voltages agree well with the previously measured and calculated values, wherever available. For the yet to be characterized spinels, our calculation provides voltage values which can motivate further experimental attention. Lastly, we observe that all the normal spinel oxides of the 3d transition metal series have a driving force for a transformation to the non-spinel structure upon delithiation.
3D Inversion of a Self-Potential Dataset for Contaminant Detection and Mapping
NASA Astrophysics Data System (ADS)
Minsley, B. J.; Sogade, J.; Briggs, V.; Lambert, M.; Reppert, P.; Coles, D.; Morgan, F.; Rossabi, J.; Riha, B.; Shi, W.
2003-12-01
Due to the complicated nature of subsurface contaminant migration, it is difficult to determine the spatial extent and severity of contamination, which can provide essential information for efficient remediation efforts. Self-potential (SP) geophysics is employed to provide a minimally invasive, fast, and inexpensive method for remote in-situ detection and three-dimensional mapping of subsurface DNAPL (Dense Non-Aqueous Phase Liquid) in conjunction with inverse methods. The self-potential method is commonly used to detect a variety of phenomena that are typically related to thermoelectric, electrochemical, or electrokinetic coupling processes. Surface self-potential surveys have been documented to show anomalies over areas known to be contaminated, but interpretation of these datasets is often mostly qualitative, and can be plagued with problems of non-uniqueness. In this study, oxidation-reduction (redox) reactions, one of the mechanisms associated with the attenuation of chemicals released into the environment, provide an electrochemical source for the SP signal. Electrochemical potentials associated with subsurface zones of redox activity are analogous to localized 'batteries' buried within native earth materials, and produce an electric field that is remotely detected using electrodes placed at the surface and in nearby boreholes. Three-dimensional inversion of the self-potential data incorporating resistivity information is the necessary step in characterizing the source parameters, which are directly related to the redox activity, and therefore to the contaminant itself. Surface and borehole SP data are collected in order to help constrain the solution in depth, and resistivity information is taken from an induced polarization survey performed over the same area during this field excursion. Inversion results are correlated with contaminant concentration data sampled from a series of ground-truth boreholes within the region of interest.
Barlebo, H.C.; Rosbjerg, D.; Hill, M.C.
1996-01-01
An extensive amount of data including hydraulic heads, hydraulic conductivities and concentrations of several solutes from controlled injections have been collected during the MADE 1 and MADE 2 experiments at a heterogeneous site near Columbus, Mississippi. In this paper the use of three-dimensional inverse groundwater models including simultaneous estimation of flow and transport parameters is proposed to help identify the dominant characteristics at the site. Simulations show that using a hydraulic conductivity distribution obtained from 2187 borehole flowmeter tests directly in the model produces poor matches to the measured hydraulic heads and tritium concentrations. Alternatively, time averaged hydraulic head maps are used to define zones of constant hydraulic conductivity to be estimated. Preliminary simulations suggest that in the case of conservative transport many, but not all, of the major plume characteristics can be explained by large-scale heterogeneity in recharge and hydraulic conductivity.
Brosten, T.R.; Day-Lewis, F. D.; Schultz, G.M.; Curtis, G.P.; Lane, J.W.
2011-01-01
Electromagnetic induction (EMI) instruments provide rapid, noninvasive, and spatially dense data for characterization of soil and groundwater properties. Data from multi-frequency EMI tools can be inverted to provide quantitative electrical conductivity estimates as a function of depth. In this study, multi-frequency EMI data collected across an abandoned uranium mill site near Naturita, Colorado, USA, are inverted to produce vertical distribution of electrical conductivity (EC) across the site. The relation between measured apparent electrical conductivity (ECa) and hydraulic conductivity (K) is weak (correlation coefficient of 0.20), whereas the correlation between the depth dependent EC obtained from the inversions, and K is sufficiently strong to be used for hydrologic estimation (correlation coefficient of -0.62). Depth-specific EC values were correlated with co-located K measurements to develop a site-specific ln(EC)-ln(K) relation. This petrophysical relation was applied to produce a spatially detailed map of K across the study area. A synthetic example based on ECa values at the site was used to assess model resolution and correlation loss given variations in depth and/or measurement error. Results from synthetic modeling indicate that optimum correlation with K occurs at ~0.5m followed by a gradual correlation loss of 90% at 2.3m. These results are consistent with an analysis of depth of investigation (DOI) given the range of frequencies, transmitter-receiver separation, and measurement errors for the field data. DOIs were estimated at 2.0??0.5m depending on the soil conductivities. A 4-layer model, with varying thicknesses, was used to invert the ECa to maximize available information within the aquifer region for improved correlations with K. Results show improved correlation between K and the corresponding inverted EC at similar depths, underscoring the importance of inversion in using multi-frequency EMI data for hydrologic estimation. ?? 2011.
LOTOS code for local earthquake tomographic inversion: benchmarks for testing tomographic algorithms
NASA Astrophysics Data System (ADS)
Koulakov, I. Yu.
2009-04-01
We present the LOTOS-07 code for performing local earthquake tomographic (LET) inversion, which is freely available at www.ivan-art.com/science/LOTOS_07. The initial data for the code are the arrival times from local seismicity and coordinates of the stations. It does not require any information about the sources. The calculations start from absolute location of sources and estimates of an optimal 1D velocity model. Then the sources are relocated simultaneously with the 3D velocity distribution during iterative coupled tomographic inversions. The code allows results to be compared based on node or cell parameterizations. Both Vp-Vs and Vp - Vp/Vs inversion schemes can be performed by the LOTOS code. The working ability of the LOTOS code is illustrated with different real and synthetic datasets. Some of the tests are used to disprove existing stereotypes of LET schemes such as using trade-off curves for evaluation of damping parameters and GAP criterion for selection of events. We also present a series of synthetic datasets with unknown sources and velocity models (www.ivan-art.com/science/benchmark) that can be used as blind benchmarks for testing different tomographic algorithms. We encourage other users of tomography algorithms to join the program on creating benchmarks that can be used to check existing codes. The program codes and testing datasets will be freely distributed during the poster presentation.
Coordinate transformation method for the solution of inverse problem in 2D and 3D scatterometry
NASA Astrophysics Data System (ADS)
Ponnusamy, Sekar
2005-05-01
For scatterometry applications, diffraction analysis of gratings is carried out by using Rigorous Coupled Wave Analysis (RCWA). Though RCWA method is originally developed for lamellar gratings, arbitrary profiles can be analyzed using staircase approximation with S-Matrix propagation of field components. For improved accuracy, more number of Fourier waves need to be included in Floquet-Bloch expansion of the field components and also more number of slices are to be made in staircase approximation. These requirements increase the time required for the analysis. A coordinate transformation method (CTM) developed by Chandezon et. al renders the arbitrary grating profile into a plane surface in the new coordinate system and hence it does not require slicing. This method is extended to 3D structures by several authors notably, by Harris et al for non-orthogonal unit cells and by Granet for correct Fourier expansion. Also extended is to handle sharp-edged gratings through adaptive spatial resolution. In this paper, an attempt is made to employ CTM with correct Fourier expansion in conjunction with adaptive spatial resolution, for scatterometry applications. A MATLAB program is developed, and thereby, demonstrated that CTM can be used for diffraction analysis of trapezoidal profiles that are typically encountered in scatterometry applications.
Validation Studies of the Finite Orbit Width version of the CQL3D code
NASA Astrophysics Data System (ADS)
Petrov, Yu. V.; Harvey, R. W.
2014-10-01
The Finite-Orbit-Width (FOW) version of the CQL3D bounce-averaged Fokker-Planck (FP) code has been further developed and tested. The neoclassical radial transport appears naturally in this version by averaging the local collision coefficients along guiding center orbits, with a proper transformation matrix from local (R,Z) coordinates to the midplane computational coordinates, where the FP equation is solved. In a similar way, the local quasilinear rf diffusion terms give rise to additional radial transport of orbits. The main challenge is the internal boundary conditions (IBC) which add many elements into the matrix of coefficients for the solution of FPE on the computational grid, effectively making it a non-banded matrix (but still sparse). Steady state runs have been achieved at NERSC supercomputers in typically 10 time steps. Validation tests are performed for NSTX conditions, but using different scaling factors of equilibrium magnetic field, from 0.5 to 8.0. The bootstrap current calculations for ions show a reasonable agreement of current density profiles with Sauter et al. model equations which are based on 1st order expansion, although the magnitudes of currents may differ by up to 30%. Supported by USDOE grants SC0006614, ER54744, and ER44649.
LINFLUX-AE: A Turbomachinery Aeroelastic Code Based on a 3-D Linearized Euler Solver
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Bakhle, M. A.; Trudell, J. J.; Mehmed, O.; Stefko, G. L.
2004-01-01
This report describes the development and validation of LINFLUX-AE, a turbomachinery aeroelastic code based on the linearized unsteady 3-D Euler solver, LINFLUX. A helical fan with flat plate geometry is selected as the test case for numerical validation. The steady solution required by LINFLUX is obtained from the nonlinear Euler/Navier Stokes solver TURBO-AE. The report briefly describes the salient features of LINFLUX and the details of the aeroelastic extension. The aeroelastic formulation is based on a modal approach. An eigenvalue formulation is used for flutter analysis. The unsteady aerodynamic forces required for flutter are obtained by running LINFLUX for each mode, interblade phase angle and frequency of interest. The unsteady aerodynamic forces for forced response analysis are obtained from LINFLUX for the prescribed excitation, interblade phase angle, and frequency. The forced response amplitude is calculated from the modal summation of the generalized displacements. The unsteady pressures, work done per cycle, eigenvalues and forced response amplitudes obtained from LINFLUX are compared with those obtained from LINSUB, TURBO-AE, ASTROP2, and ANSYS.
Simulation on a photocathode-based microtron using a 3D PIC code
NASA Astrophysics Data System (ADS)
Park, Sunjeong; Jeong, Young Uk; Park, Seong Hee; Jang, Kyu-Ha; Vinokurov, Nikolay A.; Kim, Eun-San
2015-02-01
The Korea Atomic Energy Research Institute (KAERI) has used a microtron accelerator based on a thermionic cathode for operating a compact terahertz (THz) FEL, where the electrons are emitted and accelerated automatically during the radio-frequency (RF) macro-pulse over threshold power for their emission. Usually a thermionic cathode is embedded inside the microtron cavity for electron-beam emission, and at the same time acceleration is due to the input RF source. In this case, the accelerator scheme is simple, but just a fraction of the emitted electrons are accelerated, and the electron bunch length is uncontrollable due to the RF phase condition for acceleration. In this paper, a photocathode-based microtron which is able to produce high peak (˜100 A) and ultrashort (˜1 ps) electron bunch is studied to adapt it for an electron injector of a THz generator. Especially, we analyzed the electron beam dynamics along the accelerating trajectory with a 3D PIC-code to find the optimized RF phase and laser input time.
NASA Astrophysics Data System (ADS)
Ross, Z.; Ben-Zion, Y.; Zhu, L.; Graves, R. W.
2015-12-01
We perform a full source tensor inversion of several M > 4 earthquakes that occurred in the San Jacinto fault zone in southern California, with an emphasis on resolving signatures of volumetric source changes. A previous study on these events with Green's functions based on a 1D velocity model identified statistically significant explosive isotropic components (Ross et al. 2015). Here we use the SCEC 3D Community Velocity Model to derive Green's functions with source-receiver reciprocity and finite-difference calculations based on the code of Graves (1996). About 50 stations are used at epicentral distances of up to 55 km. The inversions are performed using the 'generalized Cut and Paste' method, which includes CLVD and isotropic components (Zhu and Ben-Zion 2013). The derived source tensors are compared to the results of the previous study based on the simplified 1D velocity model. The results are analyzed with bootstrap analysis to estimate uncertainties involved. Additional tests are performed using synthetic waveforms to study the effects of neglecting various features on the source inversions.
Implementation of wall boundary conditions for transpiration in F3D thin-layer Navier-Stokes code
NASA Technical Reports Server (NTRS)
Kandula, M.; Martin, F. W., Jr.
1991-01-01
Numerical boundary conditions for mass injection/suction at the wall are incorporated in the thin-layer Navier-Stokes code, F3D. The accuracy of the boundary conditions and the code is assessed by a detailed comparison of the predictions of velocity distributions and skin-friction coefficients with exact similarity solutions for laminar flow over a flat plate with variable blowing/suction, and measurements for turbulent flow past a flat plate with uniform blowing. In laminar flow, F3D predictions for friction coefficient compare well with exact similarity solution with and without suction, but produces large errors at moderate-to-large values of blowing. A slight Mach number dependence of skin-friction coefficient due to blowing in turbulent flow is computed by F3D code. Predicted surface pressures for turbulent flow past an airfoil with mass injection are in qualitative agreement with measurements for a flat plate.
Crustal Structure of the Flood Basalt Province of Ethiopia from Constrained 3-D Gravity Inversion
NASA Astrophysics Data System (ADS)
Mammo, Tilahun
2013-12-01
The Oligocene Afar mantle plume resulted in the eruption of a large volume of basaltic magma, including major sequences of rhyolitic ignimbrites, in a short span of time across Ethiopia. In order to assess the impact of these magmatic processes on the crust and to investigate the general crustal configuration beneath the Ethiopian plateau, northern part of the Main Ethiopian Rift and the Afar depression, analysis and modeling of the gravity field have been conducted. The Bouguer gravity map is dominated by long-wavelength anomalies that primarily arise from the isostatic compensation of the topography. Consequently, anomalies within the crust/upper mantle are masked and quantitative interpretation becomes difficult. The long-wavelength anomalies are approximated using admittance technique and subsequently removed from the Bouguer anomalies to obtain the residual isostatic anomalies. The residual map contains both short- and intermediate-wavelength anomalies related to geologic and tectonic features. The long-wavelength regional isostatic field is used to map the crust-mantle interface and the results are in good agreement with those determined by other geophysical methods. Seismic constrained gravity inversion was performed on the isostatic residual field and series of three-dimensional models have been constructed for the structures of the crust and upper mantle beneath the uplifted and rifted flood basalt province of northern Ethiopia. The inversion results have shown that the NW plateau has thick crust that rests on normal lithospheric mantle. Afar, On the other hand, is marked by thin stretched crust resting on a low-density upper mantle indicating a hotter thermal regime and partial melt. No lithospheric mantle is observed beneath Afar. The models further indicate the presence of an extensive sub-crustal thick (~12 km on average) and high-density (~3.06 gm/cc) mafic accreted igneous layer of fractionated cumulate (magmatic underplating) beneath the NW plateau
NASA Astrophysics Data System (ADS)
Jesús Moral García, Francisco; Rebollo Castillo, Francisco Javier; Monteiro Santos, Fernando
2016-04-01
Maps of apparent electrical conductivity of the soil are commonly used in precision agriculture to indirectly characterize some important properties like salinity, water, and clay content. Traditionally, these studies are made through an empirical relationship between apparent electrical conductivity and properties measured in soil samples collected at a few locations in the experimental area and at a few selected depths. Recently, some authors have used not the apparent conductivity values but the soil bulk conductivity (in 2D or 3D) calculated from measured apparent electrical conductivity through the application of an inversion method. All the published works used data collected with electromagnetic (EM) instruments. We present a new software to invert the apparent electrical conductivity data collected with VERIS 3100 and 3150 (or the more recent version with three pairs of electrodes) using the 1D spatially constrained inversion method (1D SCI). The software allows the calculation of the distribution of the bulk electrical conductivity in the survey area till a depth of 1 m. The algorithm is applied to experimental data and correlations with clay and water content have been established using soil samples collected at some boreholes. Keywords: Digital soil mapping; inversion modelling; VERIS; soil apparent electrical conductivity.
NASA Astrophysics Data System (ADS)
Oh, Ju-Won; Alkhalifah, Tariq
2016-07-01
Multi-parameter full waveform inversion (FWI) applied to an elastic orthorhombic model description of the subsurface requires in theory a nine-parameter representation of each pixel of the model. Even with optimal acquisition on the Earth surface that includes large offsets, full azimuth, and multi component sensors, the potential for tradeoff between the elastic orthorhombic parameters are large. The first step to understanding such trade-off is analysing the scattering potential of each parameter, and specifically, its scattering radiation patterns. We investigate such radiation patterns for diffraction and for scattering from a horizontal reflector considering a background isotropic model. The radiation patterns show considerable potential for trade-off between the parameters and the potentially limited resolution in their recovery. The radiation patterns of C11, C22 and C33 are well separated so that we expect to recover these parameters with limited trade-offs. However, the resolution of their recovery represented by recovered range of model wavenumbers varies between these parameters. We can only invert for the short wavelength components (reflection) of C33 while we can mainly invert for the long wavelength components (transmission) of the elastic coefficients C11 and C22 if we have large enough offsets. The elastic coefficients C13, C23 and C12 suffer from strong trade-offs with C55, C44 and C66, respectively. The trade-offs between C13 and C55, as well as C23 and C44, can be partially mitigated if we acquire P-SV and SV-SV waves. However, to reduce the trade-offs between C12 and C66, we require credible SH-SH waves. The analytical radiation patterns of the elastic constants are supported by numerical gradients of these parameters.
NASA Astrophysics Data System (ADS)
Oh, Ju-Won; Alkhalifah, Tariq
2016-09-01
Multiparameter full waveform inversion (FWI) applied to an elastic orthorhombic model description of the subsurface requires in theory a nine-parameter representation of each pixel of the model. Even with optimal acquisition on the Earth surface that includes large offsets, full azimuth, and multicomponent sensors, the potential for trade-off between the elastic orthorhombic parameters are large. The first step to understanding such trade-off is analysing the scattering potential of each parameter, and specifically, its scattering radiation patterns. We investigate such radiation patterns for diffraction and for scattering from a horizontal reflector considering a background isotropic model. The radiation patterns show considerable potential for trade-off between the parameters and the potentially limited resolution in their recovery. The radiation patterns of C11, C22, and C33 are well separated so that we expect to recover these parameters with limited trade-offs. However, the resolution of their recovery represented by recovered range of model wavenumbers varies between these parameters. We can only invert for the short wavelength components (reflection) of C33 while we can mainly invert for the long wavelength components (transmission) of the elastic coefficients C11 and C22 if we have large enough offsets. The elastic coefficients C13, C23, and C12 suffer from strong trade-offs with C55, C44, and C66, respectively. The trade-offs between C13 and C55, as well as C23 and C44, can be partially mitigated if we acquire P-SV and SV-SV waves. However, to reduce the trade-offs between C12 and C66, we require credible SH-SH waves. The analytical radiation patterns of the elastic constants are supported by numerical gradients of these parameters.
Unequal-period combination approach of gray code and phase-shifting for 3-D visual measurement
NASA Astrophysics Data System (ADS)
Yu, Shuang; Zhang, Jing; Yu, Xiaoyang; Sun, Xiaoming; Wu, Haibin
2016-09-01
Combination of Gray code and phase-shifting is the most practical and advanced approach for the structured light 3-D measurement so far, which is able to measure objects with complex and discontinuous surface. However, for the traditional combination of the Gray code and phase-shifting, the captured Gray code images are not always sharp cut-off in the black-white conversion boundaries, which may lead to wrong decoding analog code orders. Moreover, during the actual measurement, there also exists local decoding error for the wrapped analog code obtained with the phase-shifting approach. Therefore, for the traditional approach, the wrong analog code orders and the local decoding errors will consequently introduce the errors which are equivalent to a fringe period when the analog code is unwrapped. In order to avoid one-fringe period errors, we propose an approach which combines Gray code with phase-shifting according to unequal period. With theoretical analysis, we build the measurement model of the proposed approach, determine the applicable condition and optimize the Gray code encoding period and phase-shifting fringe period. The experimental results verify that the proposed approach can offer a reliable unwrapped analog code, which can be used in 3-D shape measurement.
NASA Astrophysics Data System (ADS)
Meqbel, N. M.; Egbert, G. D.; Kelbert, A.
2010-12-01
Long period (10-20,000 s) magnetotelluric (MT) data are being acquired in a series of temporary arrays deployed across the continental United States through EMScope, a component of EarthScope, a multidisciplinary decade-long project to study the structure and evolution of the North American Continent. MT deployments in 2006-2010 have so far acquired data at 237 sites on an approximately regular grid, with the same nominal spacing as the USArray broadband seismic transportable array (~70 km), covering the Northwestern US, from the Oregon-Washington coast across the Rocky Mountains, into Montana and Wyoming. Preliminary 3-D inversion results (Patro and Egbert; 2008), based on data from the 110 westernmost “Cascadia” sites collected in the first two years, revealed extensive areas of high conductivity in the lower crust beneath the Northwest Basin and Range (NBR), inferred to result from fluids (including possibly partial melt at depth) associated with magmatic underplating, and beneath the Cascade Mountains, probably due to fluids released by the subducting Juan de Fuca slab. Here we extend this study, refining and further testing the preliminary results from Cascadia, and extending the inversion domain to the East, to include all of the EarthScope data. Although site spacing is very broad, distinct regional structures are clearly evident even in simple maps of apparent resistivity, phase and induction vectors. For the 3-D inversion we are using the parallelized version of our recently developed Modular Code (ModEM), which supports Non-Linear Conjugate Gradient and several Gauss-Newton type schemes. Our initial 3-D inversion results using 212 MT sites, fitting impedances and vertical field transfer functions (together and separately) suggest several conductive and resistive structures which appear to be stable and required by the measured data. These include: - A conductive structure elongated in the N-S direction underneath the volcanic arc of the Cascadia
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2012-01-01
This paper presents the implementation of gust modeling capability in the CFD code FUN3D. The gust capability is verified by computing the response of an airfoil to a sharp edged gust. This result is compared with the theoretical result. The present simulations will be compared with other CFD gust simulations. This paper also serves as a users manual for FUN3D gust analyses using a variety of gust profiles. Finally, the development of an Auto-Regressive Moving-Average (ARMA) reduced order gust model using a gust with a Gaussian profile in the FUN3D code is presented. ARMA simulated results of a sequence of one-minus-cosine gusts is shown to compare well with the same gust profile computed with FUN3D. Proper Orthogonal Decomposition (POD) is combined with the ARMA modeling technique to predict the time varying pressure coefficient increment distribution due to a novel gust profile. The aeroelastic response of a pitch/plunge airfoil to a gust environment is computed with a reduced order model, and compared with a direct simulation of the system in the FUN3D code. The two results are found to agree very well.
NASA Astrophysics Data System (ADS)
Macquet, M.; Paul, A.; Pedersen, H.
2013-12-01
Barmin et al. (2001). The last step of our tomography is the inversion of local group velocity dispersion curves for the 3-D Vs structure. For this step, we carried out a combination of full non-linear inversion and linearized inversion. This combination is motivated by the strong lateral variation in seismic structure beneath the array, ranging from deep sedimentary basins to the Pyrenees mountain range. During the first step, we fully explore a ~2 700 000 models library averaging the 200 best fitting models to build an input model. We then use this average as input for a linearized inversion using the program package of Herrnann and Ammon (2002). This method makes it possibly to automatically and consistently build a 3-D Vs model in spite of the lateral variations of seismic structure.
1D nanorod-planted 3D inverse opal structures for use in dye-sensitized solar cells.
Park, Yesle; Lee, Jung Woo; Ha, Su-Jin; Moon, Jun Hyuk
2014-03-21
The effectiveness of the 1D nanorod (NR)-planted 3D inverse opal (IO) structure as an electrode for dye-sensitized solar cells (DSSCs) is demonstrated here. The NRs were grown on the surface of a macroporous IO structure and their longitudinal growth increased the surface area of the structure proportional to the growth duration. NR/IO electrodes with various NR growth times were compared. A remarkable JSC was obtained for the DSSCs utilizing a NR/IO electrode. The improvement of the JSC was analyzed in terms of its efficiency in light harvesting and electron transport. The growth of the NRs improved the dye adsorption density and scattering property of the electrode, resulting in an improvement in the light harvesting efficiency. Electrochemical impedance analysis revealed that the NRs also improved its electron transport properties. Further growth of the NRs tended to limit the increase of the JSC, which could be attributed to an overlap between them. PMID:24356878
NASA Technical Reports Server (NTRS)
Meyer, Harold D.
1999-01-01
This second volume of Acoustic Scattering by Three-Dimensional Stators and Rotors Using the SOURCE3D Code provides the scattering plots referenced by Volume 1. There are 648 plots. Half are for the 8750 rpm "high speed" operating condition and the other half are for the 7031 rpm "mid speed" operating condition.
Horie, Tomohiko; Kawakata, Mami; Kajihara, Nao; Takano, Hayato; Honda, Masatoshi; Muro, Isao; Ogino, Tetsuo
2011-01-01
The purpose of this study was to improve the visualization of long-axis black-blood imaging of the carotid arteries. We experimented on phantom and in-vivo study of 3 dimension (3D) inversion recovery T(1) turbo field echo combined with phase sensitive inversion recovery (PSIR-3D IR-T(1)TFE) at 3.0 Tesla. As a result, the contrast has been improved by calculated images of PSIR-3D IR-T(1)TFE set to inversion time (TI) 350 ms that is shorter than null point of blood. This displays that the contrast between blood and tissues can be improved when the longitudinal magnetization of blood is a negative. Therefore, the visualization of long-axis black-blood imaging of the carotid arteries has been improved by the calculated images of PSIR-3D IR-T(1)TFE set to TI that is shorter than null point of blood.
Shot level parallelization of a seismic inversion code using PVM
Versteeg, R.J.; Gockenback, M.; Symes, W.W.; Kern, M.
1994-12-31
This paper presents experience with parallelization using PVM of DSO, a seismic inversion code developed in The Rice Inversion Project. It focuses on one aspect: trying to run efficiently on a cluster of 4 workstations. The authors use a coarse grain parallelism in which they dynamically distribute the shots over the available machines in the cluster. The modeling and migration of their code is parallelized very effectively by this strategy; they have reached a overall performance of 104 Mflops using a configuration of one manager with 3 workers, a speedup of 2.4 versus the serial version, which according to Amdahl`s law is optimal given the current design of their code. Further speedup is currently limited by the non parallelized part of their code optimization, linear algebra and i(o).
Modeling and Analysis of a Lunar Space Reactor with the Computer Code RELAP5-3D/ATHENA
Carbajo, Juan J; Qualls, A L
2008-01-01
The transient analysis 3-dimensional (3-D) computer code RELAP5-3D/ATHENA has been employed to model and analyze a space reactor of 180 kW(thermal), 40 kW (net, electrical) with eight Stirling engines (SEs). Each SE will generate over 6 kWe; the excess power will be needed for the pumps and other power management devices. The reactor will be cooled by NaK (a eutectic mixture of sodium and potassium which is liquid at ambient temperature). This space reactor is intended to be deployed over the surface of the Moon or Mars. The reactor operating life will be 8 to 10 years. The RELAP5-3D/ATHENA code is being developed and maintained by Idaho National Laboratory. The code can employ a variety of coolants in addition to water, the original coolant employed with early versions of the code. The code can also use 3-D volumes and 3-D junctions, thus allowing for more realistic representation of complex geometries. A combination of 3-D and 1-D volumes is employed in this study. The space reactor model consists of a primary loop and two secondary loops connected by two heat exchangers (HXs). Each secondary loop provides heat to four SEs. The primary loop includes the nuclear reactor with the lower and upper plena, the core with 85 fuel pins, and two vertical heat exchangers (HX). The maximum coolant temperature of the primary loop is 900 K. The secondary loops also employ NaK as a coolant at a maximum temperature of 877 K. The SEs heads are at a temperature of 800 K and the cold sinks are at a temperature of ~400 K. Two radiators will be employed to remove heat from the SEs. The SE HXs surrounding the SE heads are of annular design and have been modeled using 3-D volumes. These 3-D models have been used to improve the HX design by optimizing the flows of coolant and maximizing the heat transferred to the SE heads. The transients analyzed include failure of one or more Stirling engines, trip of the reactor pump, and trips of the secondary loop pumps feeding the HXs of the
NASA Astrophysics Data System (ADS)
Choi, S.; Kim, C.; Kim, H. R.; Park, C.; Park, H. Y.
2015-12-01
We performed the marine magnetic and the bathymetry survey in the Lau basin for finding the submarine hydrothermal deposits in October 2009. We acquired magnetic and bathymetry datasets by using Overhouser Proton Magnetometer SeaSPY(Marine Magnetics Co.) and Multi-Beam Echo Sounder EM120(Kongsberg Co.). We conducted the data processing to obtain detailed seabed topography, magnetic anomaly and reduction to the pole(RTP). The Lau basin is one of the youngest back-arc basins in the Southwest Pacific. This region was a lot of hydrothermal activities and hydrothermal deposits. In particular, Tofua Arc(TA) in the Lau basin consists of various and complex stratovolcanos(from Massoth et al., 2007).), We calculated the magnetic susceptibility distribution of the TA19-1 seamount(longitude:176°23.5'W, latitude: 22°42.5'W)area using the RTP data by 3-D magnetic inversion from Jung's previous study(2013). Based on 2D 'compact gravity inversion' by Last & Kubik(1983), we expend it to the 3D algorithm using iterative reweighted least squares method with some weight matrices. The used weight matrices are two types: 1) the minimum gradient support(MGS) that controls the spatial distribution of the solution from Porniaguine and Zhdanov(1999); 2) the depth weight that are used according to the shape of subsurface structures. From the modeling, we derived the appropriate scale factor for the use of depth weight and setting magnetic susceptibility. Furthermore, we have to enter a very small error value to control the computation of the singular point of the inversion model that was able to be easily calculated for modeling. In addition, we applied separately weighted value for the correct shape and depth of the magnetic source. We selected the best results model by change to converge of RMS. Compared between the final modeled result and RTP values in this study, they are generally similar to the each other. But the input values and the modeled values have slightly little difference
Updegraff, C.D. ); Lee, C.E. ); Gallegos, D.P. )
1991-02-01
This report constitutes the user's manual for DCM3D. DCM3D is a computer code for solving three-dimensional, ground-water flow problems in variably saturated, fractured porous media. The code is based on a dual-continuum model with porous media comprising one continuum and fractures comprising the other. The continua are connected by a transfer term that depends on the unsaturated permeability of the porous medium. An integrated finite-difference scheme is used to discretize the governing equations in space. The time-dependent term is allowed to remain continuous. The resulting set of ordinary differential equations (ODE's) is solved with a general ODE solver, LSODES. The code is capable of handling transient, spatially dependent source terms and boundary conditions. The boundary conditions can either prescribed head or prescribed flux. 24 refs., 22 figs., 5 tabs.
Qi, Jin; Yang, Zhiyong
2014-01-01
Real-time human activity recognition is essential for human-robot interactions for assisted healthy independent living. Most previous work in this area is performed on traditional two-dimensional (2D) videos and both global and local methods have been used. Since 2D videos are sensitive to changes of lighting condition, view angle, and scale, researchers begun to explore applications of 3D information in human activity understanding in recently years. Unfortunately, features that work well on 2D videos usually don't perform well on 3D videos and there is no consensus on what 3D features should be used. Here we propose a model of human activity recognition based on 3D movements of body joints. Our method has three steps, learning dictionaries of sparse codes of 3D movements of joints, sparse coding, and classification. In the first step, space-time volumes of 3D movements of body joints are obtained via dense sampling and independent component analysis is then performed to construct a dictionary of sparse codes for each activity. In the second step, the space-time volumes are projected to the dictionaries and a set of sparse histograms of the projection coefficients are constructed as feature representations of the activities. Finally, the sparse histograms are used as inputs to a support vector machine to recognize human activities. We tested this model on three databases of human activities and found that it outperforms the state-of-the-art algorithms. Thus, this model can be used for real-time human activity recognition in many applications. PMID:25473850
J. D. Hales; D. M. Perez; R. L. Williamson; S. R. Novascone; B. W. Spencer
2013-03-01
BISON is a modern finite-element based nuclear fuel performance code that has been under development at the Idaho National Laboratory (USA) since 2009. The code is applicable to both steady and transient fuel behaviour and is used to analyse either 2D axisymmetric or 3D geometries. BISON has been applied to a variety of fuel forms including LWR fuel rods, TRISO-coated fuel particles, and metallic fuel in both rod and plate geometries. Code validation is currently in progress, principally by comparison to instrumented LWR fuel rods. Halden IFA experiments constitute a large percentage of the current BISON validation base. The validation emphasis here is centreline temperatures at the beginning of fuel life, with comparisons made to seven rods from the IFA-431 and 432 assemblies. The principal focus is IFA-431 Rod 4, which included concentric and eccentrically located fuel pellets. This experiment provides an opportunity to explore 3D thermomechanical behaviour and assess the 3D simulation capabilities of BISON. Analysis results agree with experimental results showing lower fuel centreline temperatures for eccentric fuel with the peak temperature shifted from the centreline. The comparison confirms with modern 3D analysis tools that the measured temperature difference between concentric and eccentric pellets is not an artefact and provides a quantitative explanation for the difference.
NASA Astrophysics Data System (ADS)
Borisov, Dmitry; Singh, Satish C.; Fuji, Nobuaki
2015-09-01
Seismic full waveform inversion is an objective method to estimate elastic properties of the subsurface and is an important area of research, particularly in seismic exploration community. It is a data-fitting approach, where the difference between observed and synthetic data is minimized iteratively. Due to a very high computational cost, the practical implementation of waveform inversion has so far been restricted to a 2-D geometry with different levels of physics incorporated in it (e.g. elasticity/viscoelasticity) or to a 3-D geometry but using an acoustic approximation. However, the earth is three-dimensional, elastic and heterogeneous and therefore a full 3-D elastic inversion is required in order to obtain more accurate and valuable models of the subsurface. Despite the recent increase in computing power, the application of 3-D elastic full waveform inversion to real-scale problems remains quite challenging on the current computer architecture. Here, we present an efficient method to perform 3-D elastic full waveform inversion for time-lapse seismic data using a finite-difference injection method. In this method, the wavefield is computed in the whole model and is stored on a surface above a finite volume where the model is perturbed and localized inversion is performed. Comparison of the final results using the 3-D finite-difference injection method and conventional 3-D inversion performed within the whole volume shows that our new method provides significant reductions in computational time and memory requirements without any notable loss in accuracy. Our approach shows a big potential for efficient reservoir monitoring in real time-lapse experiments.
Modeling Coastal Salinity in Quasi 2D and 3D Using a DUALEM-421 and Inversion Software.
Davies, Gareth; Huang, Jingyi; Monteiro Santos, Fernando Acacio; Triantafilis, John
2015-01-01
Rising sea levels, owing to climate change, are a threat to fresh water coastal aquifers. This is because saline intrusions are caused by increases and intensification of medium-large scale influences including sea level rise, wave climate, tidal cycles, and shifts in beach morphology. Methods are therefore required to understand the dynamics of these interactions. While traditional borehole and galvanic contact resistivity (GCR) techniques have been successful they are time-consuming. Alternatively, frequency-domain electromagnetic (FEM) induction is potentially useful as physical contact with the ground is not required. A DUALEM-421 and EM4Soil inversion software package are used to develop a quasi two- (2D) and quasi three-dimensional (3D) electromagnetic conductivity images (EMCI) across Long Reef Beach located north of Sydney Harbour, New South Wales, Australia. The quasi 2D models discern: the dry sand (<10 mS/m) associated with the incipient dune; sand with fresh water (10 to 20 mS/m); mixing of fresh and saline water (20 to 500 mS/m), and; saline sand of varying moisture (more than 500 mS/m). The quasi 3D EMCIs generated for low and high tides suggest that daily tidal cycles do not have a significant effect on local groundwater salinity. Instead, the saline intrusion is most likely influenced by medium-large scale drivers including local wave climate and morphology along this wave-dominated beach. Further research is required to elucidate the influence of spring-neap tidal cycles, contrasting beach morphological states and sea level rise.
Modeling Coastal Salinity in Quasi 2D and 3D Using a DUALEM-421 and Inversion Software.
Davies, Gareth; Huang, Jingyi; Monteiro Santos, Fernando Acacio; Triantafilis, John
2015-01-01
Rising sea levels, owing to climate change, are a threat to fresh water coastal aquifers. This is because saline intrusions are caused by increases and intensification of medium-large scale influences including sea level rise, wave climate, tidal cycles, and shifts in beach morphology. Methods are therefore required to understand the dynamics of these interactions. While traditional borehole and galvanic contact resistivity (GCR) techniques have been successful they are time-consuming. Alternatively, frequency-domain electromagnetic (FEM) induction is potentially useful as physical contact with the ground is not required. A DUALEM-421 and EM4Soil inversion software package are used to develop a quasi two- (2D) and quasi three-dimensional (3D) electromagnetic conductivity images (EMCI) across Long Reef Beach located north of Sydney Harbour, New South Wales, Australia. The quasi 2D models discern: the dry sand (<10 mS/m) associated with the incipient dune; sand with fresh water (10 to 20 mS/m); mixing of fresh and saline water (20 to 500 mS/m), and; saline sand of varying moisture (more than 500 mS/m). The quasi 3D EMCIs generated for low and high tides suggest that daily tidal cycles do not have a significant effect on local groundwater salinity. Instead, the saline intrusion is most likely influenced by medium-large scale drivers including local wave climate and morphology along this wave-dominated beach. Further research is required to elucidate the influence of spring-neap tidal cycles, contrasting beach morphological states and sea level rise. PMID:25053423
NASA Astrophysics Data System (ADS)
Kordy, M.; Wannamaker, P.; Maris, V.; Cherkaev, E.; Hill, G.
2016-01-01
We have developed an algorithm, which we call HexMT, for 3-D simulation and inversion of magnetotelluric (MT) responses using deformable hexahedral finite elements that permit incorporation of topography. Direct solvers parallelized on symmetric multiprocessor (SMP), single-chassis workstations with large RAM are used throughout, including the forward solution, parameter Jacobians and model parameter update. In Part I, the forward simulator and Jacobian calculations are presented. We use first-order edge elements to represent the secondary electric field (E), yielding accuracy O(h) for E and its curl (magnetic field). For very low frequencies or small material admittivities, the E-field requires divergence correction. With the help of Hodge decomposition, the correction may be applied in one step after the forward solution is calculated. This allows accurate E-field solutions in dielectric air. The system matrix factorization and source vector solutions are computed using the MKL PARDISO library, which shows good scalability through 24 processor cores. The factorized matrix is used to calculate the forward response as well as the Jacobians of electromagnetic (EM) field and MT responses using the reciprocity theorem. Comparison with other codes demonstrates accuracy of our forward calculations. We consider a popular conductive/resistive double brick structure, several synthetic topographic models and the natural topography of Mount Erebus in Antarctica. In particular, the ability of finite elements to represent smooth topographic slopes permits accurate simulation of refraction of EM waves normal to the slopes at high frequencies. Run-time tests of the parallelized algorithm indicate that for meshes as large as 176 × 176 × 70 elements, MT forward responses and Jacobians can be calculated in ˜1.5 hr per frequency. Together with an efficient inversion parameter step described in Part II, MT inversion problems of 200-300 stations are computable with total run times
Recent Hydrodynamics Improvements to the RELAP5-3D Code
Richard A. Riemke; Cliff B. Davis; Richard.R. Schultz
2009-07-01
The hydrodynamics section of the RELAP5-3D computer program has been recently improved. Changes were made as follows: (1) improved turbine model, (2) spray model for the pressurizer model, (3) feedwater heater model, (4) radiological transport model, (5) improved pump model, and (6) compressor model.
Finite Element Code For 3D-Hydraulic Fracture Propagation Equations (3-layer).
1992-03-24
HYFRACP3D is a finite element program for simulation of a pseudo three-dimensional fracture geometries with a two-dimensional planar solution. The model predicts the height, width and winglength over time for a hydraulic fracture propagating in a three-layered system of rocks with variable rock mechanics properties.
Reactor Dosimetry Applications Using RAPTOR-M3G:. a New Parallel 3-D Radiation Transport Code
NASA Astrophysics Data System (ADS)
Longoni, Gianluca; Anderson, Stanwood L.
2009-08-01
The numerical solution of the Linearized Boltzmann Equation (LBE) via the Discrete Ordinates method (SN) requires extensive computational resources for large 3-D neutron and gamma transport applications due to the concurrent discretization of the angular, spatial, and energy domains. This paper will discuss the development RAPTOR-M3G (RApid Parallel Transport Of Radiation - Multiple 3D Geometries), a new 3-D parallel radiation transport code, and its application to the calculation of ex-vessel neutron dosimetry responses in the cavity of a commercial 2-loop Pressurized Water Reactor (PWR). RAPTOR-M3G is based domain decomposition algorithms, where the spatial and angular domains are allocated and processed on multi-processor computer architectures. As compared to traditional single-processor applications, this approach reduces the computational load as well as the memory requirement per processor, yielding an efficient solution methodology for large 3-D problems. Measured neutron dosimetry responses in the reactor cavity air gap will be compared to the RAPTOR-M3G predictions. This paper is organized as follows: Section 1 discusses the RAPTOR-M3G methodology; Section 2 describes the 2-loop PWR model and the numerical results obtained. Section 3 addresses the parallel performance of the code, and Section 4 concludes this paper with final remarks and future work.
Preliminary Results from the Application of Automated Adjoint Code Generation to CFL3D
NASA Technical Reports Server (NTRS)
Carle, Alan; Fagan, Mike; Green, Lawrence L.
1998-01-01
This report describes preliminary results obtained using an automated adjoint code generator for Fortran to augment a widely-used computational fluid dynamics flow solver to compute derivatives. These preliminary results with this augmented code suggest that, even in its infancy, the automated adjoint code generator can accurately and efficiently deliver derivatives for use in transonic Euler-based aerodynamic shape optimization problems with hundreds to thousands of independent design variables.
Huang, Junhui; Xue, Qi; Wang, Zhao; Gao, Jianmin
2016-01-01
While color-coding methods have improved the measuring efficiency of a structured light three-dimensional (3D) measurement system, they decreased the measuring accuracy significantly due to lateral chromatic aberration (LCA). In this study, the LCA in a structured light measurement system is analyzed, and a method is proposed to compensate the error caused by the LCA. Firstly, based on the projective transformation, a 3D error map of LCA is constructed in the projector images by using a flat board and comparing the image coordinates of red, green and blue circles with the coordinates of white circles at preselected sample points within the measurement volume. The 3D map consists of the errors, which are the equivalent errors caused by LCA of the camera and projector. Then in measurements, error values of LCA are calculated and compensated to correct the projector image coordinates through the 3D error map and a tri-linear interpolation method. Eventually, 3D coordinates with higher accuracy are re-calculated according to the compensated image coordinates. The effectiveness of the proposed method is verified in the following experiments. PMID:27598174
Huang, Junhui; Xue, Qi; Wang, Zhao; Gao, Jianmin
2016-01-01
While color-coding methods have improved the measuring efficiency of a structured light three-dimensional (3D) measurement system, they decreased the measuring accuracy significantly due to lateral chromatic aberration (LCA). In this study, the LCA in a structured light measurement system is analyzed, and a method is proposed to compensate the error caused by the LCA. Firstly, based on the projective transformation, a 3D error map of LCA is constructed in the projector images by using a flat board and comparing the image coordinates of red, green and blue circles with the coordinates of white circles at preselected sample points within the measurement volume. The 3D map consists of the errors, which are the equivalent errors caused by LCA of the camera and projector. Then in measurements, error values of LCA are calculated and compensated to correct the projector image coordinates through the 3D error map and a tri-linear interpolation method. Eventually, 3D coordinates with higher accuracy are re-calculated according to the compensated image coordinates. The effectiveness of the proposed method is verified in the following experiments. PMID:27598174
Implementation of a 3D mixing layer code on parallel computers
NASA Technical Reports Server (NTRS)
Roe, K.; Thakur, R.; Dang, T.; Bogucz, E.
1995-01-01
This paper summarizes our progress and experience in the development of a Computational-Fluid-Dynamics code on parallel computers to simulate three-dimensional spatially-developing mixing layers. In this initial study, the three-dimensional time-dependent Euler equations are solved using a finite-volume explicit time-marching algorithm. The code was first programmed in Fortran 77 for sequential computers. The code was then converted for use on parallel computers using the conventional message-passing technique, while we have not been able to compile the code with the present version of HPF compilers.
NASA Astrophysics Data System (ADS)
Medley, S. S.; Liu, D.; Gorelenkova, M. V.; Heidbrink, W. W.; Stagner, L.
2016-02-01
A 3D halo neutral code developed at the Princeton Plasma Physics Laboratory and implemented for analysis using the TRANSP code is applied to projected National Spherical Torus eXperiment-Upgrade (NSTX-U plasmas). The legacy TRANSP code did not handle halo neutrals properly since they were distributed over the plasma volume rather than remaining in the vicinity of the neutral beam footprint as is actually the case. The 3D halo neutral code uses a ‘beam-in-a-box’ model that encompasses both injected beam neutrals and resulting halo neutrals. Upon deposition by charge exchange, a subset of the full, one-half and one-third beam energy components produce first generation halo neutrals that are tracked through successive generations until an ionization event occurs or the descendant halos exit the box. The 3D halo neutral model and neutral particle analyzer (NPA) simulator in the TRANSP code have been benchmarked with the Fast-Ion D-Alpha simulation (FIDAsim) code, which provides Monte Carlo simulations of beam neutral injection, attenuation, halo generation, halo spatial diffusion, and photoemission processes. When using the same atomic physics database, TRANSP and FIDAsim simulations achieve excellent agreement on the spatial profile and magnitude of beam and halo neutral densities and the NPA energy spectrum. The simulations show that the halo neutral density can be comparable to the beam neutral density. These halo neutrals can double the NPA flux, but they have minor effects on the NPA energy spectrum shape. The TRANSP and FIDAsim simulations also suggest that the magnitudes of beam and halo neutral densities are relatively sensitive to the choice of the atomic physics databases.
Gagner, Renata; Lafitte, Helene; Dormeau, Pascal; Stoudt, Roger H.
2004-07-01
Anticipated Transients Without Scram (ATWS) accident analyses make part of the Safety Analysis Report of the European Pressurized water Reactor (EPR), covering Risk Reduction Category A (Core Melt Prevention) events. This paper deals with three of the most penalizing RRC-A sequences of ATWS caused by mechanical blockage of the control/shutdown rods, regarding their consequences on the Reactor Coolant System (RCS) and core integrity. A new 3D code internal coupling calculation method has been introduced. (authors)
3D structural cartography based on magnetic and gravity data inversion - Case of South-West Algeria
NASA Astrophysics Data System (ADS)
Hichem, Boubekri; Mohamed, Hamoudi; Abderrahmane, Bendaoud; Ivan, Priezzhev; Karim, Allek
2015-12-01
This article presents the results of 3D aeromagnetic and gravity data inversion across the West African Craton (WAC) in South West Algeria. Although the used data have different origins and resolutions, the performed manual and automatic interpretation for each dataset shows a good correlation with some earlier geological studies of the region, major structural aspects of the locality, as well as other new structural features. Many curved faults parallel to the suture zone indicate the presence of terranes or the metacratonization of the WAC and a related fault network of great importance with NE-SW and NW-SE directions. The mega shear zones from north to south, which are visible at the surface in the Hoggar, are also observed along the Saharan Platform. The fact that these faults are observed since the Cambro-Ordovician in all crust (including the Saharan Basins) indicates that this area, which is situated on the border of the WAC, remained active during the entire period of time.
Full 3D visualization tool-kit for Monte Carlo and deterministic transport codes
Frambati, S.; Frignani, M.
2012-07-01
We propose a package of tools capable of translating the geometric inputs and outputs of many Monte Carlo and deterministic radiation transport codes into open source file formats. These tools are aimed at bridging the gap between trusted, widely-used radiation analysis codes and very powerful, more recent and commonly used visualization software, thus supporting the design process and helping with shielding optimization. Three main lines of development were followed: mesh-based analysis of Monte Carlo codes, mesh-based analysis of deterministic codes and Monte Carlo surface meshing. The developed kit is considered a powerful and cost-effective tool in the computer-aided design for radiation transport code users of the nuclear world, and in particular in the fields of core design and radiation analysis. (authors)
ERIC Educational Resources Information Center
Sack, Jacqueline J.
2013-01-01
This article explicates the development of top-view numeric coding of 3-D cube structures within a design research project focused on 3-D visualization skills for elementary grades children. It describes children's conceptual development of 3-D cube structures using concrete models, conventional 2-D pictures and abstract top-view numeric…
Development of a 3-D upwind PNS code for chemically reacting hypersonic flowfields
NASA Technical Reports Server (NTRS)
Tannehill, J. C.; Wadawadigi, G.
1992-01-01
Two new parabolized Navier-Stokes (PNS) codes were developed to compute the three-dimensional, viscous, chemically reacting flow of air around hypersonic vehicles such as the National Aero-Space Plane (NASP). The first code (TONIC) solves the gas dynamic and species conservation equations in a fully coupled manner using an implicit, approximately-factored, central-difference algorithm. This code was upgraded to include shock fitting and the capability of computing the flow around complex body shapes. The revised TONIC code was validated by computing the chemically-reacting (M(sub infinity) = 25.3) flow around a 10 deg half-angle cone at various angles of attack and the Ames All-Body model at 0 deg angle of attack. The results of these calculations were in good agreement with the results from the UPS code. One of the major drawbacks of the TONIC code is that the central-differencing of fluxes across interior flowfield discontinuities tends to introduce errors into the solution in the form of local flow property oscillations. The second code (UPS), originally developed for a perfect gas, has been extended to permit either perfect gas, equilibrium air, or nonequilibrium air computations. The code solves the PNS equations using a finite-volume, upwind TVD method based on Roe's approximate Riemann solver that was modified to account for real gas effects. The dissipation term associated with this algorithm is sufficiently adaptive to flow conditions that, even when attempting to capture very strong shock waves, no additional smoothing is required. For nonequilibrium calculations, the code solves the fluid dynamic and species continuity equations in a loosely-coupled manner. This code was used to calculate the hypersonic, laminar flow of chemically reacting air over cones at various angles of attack. In addition, the flow around the McDonnel Douglas generic option blended-wing-body was computed and comparisons were made between the perfect gas, equilibrium air, and the
A 3D-CFD code for accurate prediction of fluid flows and fluid forces in seals
NASA Technical Reports Server (NTRS)
Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.
1994-01-01
Current and future turbomachinery requires advanced seal configurations to control leakage, inhibit mixing of incompatible fluids and to control the rotodynamic response. In recognition of a deficiency in the existing predictive methodology for seals, a seven year effort was established in 1990 by NASA's Office of Aeronautics Exploration and Technology, under the Earth-to-Orbit Propulsion program, to develop validated Computational Fluid Dynamics (CFD) concepts, codes and analyses for seals. The effort will provide NASA and the U.S. Aerospace Industry with advanced CFD scientific codes and industrial codes for analyzing and designing turbomachinery seals. An advanced 3D CFD cylindrical seal code has been developed, incorporating state-of-the-art computational methodology for flow analysis in straight, tapered and stepped seals. Relevant computational features of the code include: stationary/rotating coordinates, cylindrical and general Body Fitted Coordinates (BFC) systems, high order differencing schemes, colocated variable arrangement, advanced turbulence models, incompressible/compressible flows, and moving grids. This paper presents the current status of code development, code demonstration for predicting rotordynamic coefficients, numerical parametric study of entrance loss coefficients for generic annular seals, and plans for code extensions to labyrinth, damping, and other seal configurations.
A Coupled Neutron-Photon 3-D Combinatorial Geometry Monte Carlo Transport Code
1998-06-12
TART97 is a coupled neutron-photon, 3 dimensional, combinatorial geometry, time dependent Monte Carlo transport code. This code can run on any modern computer. It is a complete system to assist you with input preparation, running Monte Carlo calculations, and analysis of output results. TART97 is also incredibly fast: if you have used similar codes, you will be amazed at how fast this code is compared to other similar codes. Use of the entire system canmore » save you a great deal of time and energy. TART 97 is distributed on CD. This CD contains on-line documentation for all codes included in the system, the codes configured to run on a variety of computers, and many example problems that you can use to familiarize yourself with the system. TART97 completely supersedes all older versions of TART, and it is strongly recommended that users only use the most recent version of TART97 and ist data files.« less
3D high-efficiency video coding for multi-view video and depth data.
Muller, Karsten; Schwarz, Heiko; Marpe, Detlev; Bartnik, Christian; Bosse, Sebastian; Brust, Heribert; Hinz, Tobias; Lakshman, Haricharan; Merkle, Philipp; Rhee, Franz Hunn; Tech, Gerhard; Winken, Martin; Wiegand, Thomas
2013-09-01
This paper describes an extension of the high efficiency video coding (HEVC) standard for coding of multi-view video and depth data. In addition to the known concept of disparity-compensated prediction, inter-view motion parameter, and inter-view residual prediction for coding of the dependent video views are developed and integrated. Furthermore, for depth coding, new intra coding modes, a modified motion compensation and motion vector coding as well as the concept of motion parameter inheritance are part of the HEVC extension. A novel encoder control uses view synthesis optimization, which guarantees that high quality intermediate views can be generated based on the decoded data. The bitstream format supports the extraction of partial bitstreams, so that conventional 2D video, stereo video, and the full multi-view video plus depth format can be decoded from a single bitstream. Objective and subjective results are presented, demonstrating that the proposed approach provides 50% bit rate savings in comparison with HEVC simulcast and 20% in comparison with a straightforward multi-view extension of HEVC without the newly developed coding tools. PMID:23715605
3D high-efficiency video coding for multi-view video and depth data.
Muller, Karsten; Schwarz, Heiko; Marpe, Detlev; Bartnik, Christian; Bosse, Sebastian; Brust, Heribert; Hinz, Tobias; Lakshman, Haricharan; Merkle, Philipp; Rhee, Franz Hunn; Tech, Gerhard; Winken, Martin; Wiegand, Thomas
2013-09-01
This paper describes an extension of the high efficiency video coding (HEVC) standard for coding of multi-view video and depth data. In addition to the known concept of disparity-compensated prediction, inter-view motion parameter, and inter-view residual prediction for coding of the dependent video views are developed and integrated. Furthermore, for depth coding, new intra coding modes, a modified motion compensation and motion vector coding as well as the concept of motion parameter inheritance are part of the HEVC extension. A novel encoder control uses view synthesis optimization, which guarantees that high quality intermediate views can be generated based on the decoded data. The bitstream format supports the extraction of partial bitstreams, so that conventional 2D video, stereo video, and the full multi-view video plus depth format can be decoded from a single bitstream. Objective and subjective results are presented, demonstrating that the proposed approach provides 50% bit rate savings in comparison with HEVC simulcast and 20% in comparison with a straightforward multi-view extension of HEVC without the newly developed coding tools.
Users manual for CAFE-3D : a computational fluid dynamics fire code.
Khalil, Imane; Lopez, Carlos; Suo-Anttila, Ahti Jorma
2005-03-01
The Container Analysis Fire Environment (CAFE) computer code has been developed to model all relevant fire physics for predicting the thermal response of massive objects engulfed in large fires. It provides realistic fire thermal boundary conditions for use in design of radioactive material packages and in risk-based transportation studies. The CAFE code can be coupled to commercial finite-element codes such as MSC PATRAN/THERMAL and ANSYS. This coupled system of codes can be used to determine the internal thermal response of finite element models of packages to a range of fire environments. This document is a user manual describing how to use the three-dimensional version of CAFE, as well as a description of CAFE input and output parameters. Since this is a user manual, only a brief theoretical description of the equations and physical models is included.
Fast wave current drive modeling using the combined RANT3D and PICES Codes
NASA Astrophysics Data System (ADS)
Jaeger, E. F.; Murakami, M.; Stallings, D. C.; Carter, M. D.; Wang, C. Y.; Galambos, J. D.; Batchelor, D. B.; Baity, F. W.; Bell, G. L.; Wilgen, J. B.; Chiu, S. C.; DeGrassie, J. S.; Forest, C. B.; Kupfer, K.; Petty, C. C.; Pinsker, R. T.; Prater, R.; Lohr, J.; Lee, K. M.
1996-02-01
Two numerical codes are combined to give a theoretical estimate of the current drive and direct electron heating by fast waves launched from phased antenna arrays on the DIII-D tokamak. Results are compared with experiment.
Version 3.0 of code Java for 3D simulation of the CCA model
NASA Astrophysics Data System (ADS)
Zhang, Kebo; Zuo, Junsen; Dou, Yifeng; Li, Chao; Xiong, Hailing
2016-10-01
In this paper we provide a new version of program for replacing the previous version. The frequency of traversing the clusters-list was reduced, and some code blocks were optimized properly; in addition, we appended and revised the comments of the source code for some methods or attributes. The compared experimental results show that new version has better time efficiency than the previous version.
Weng Cho Chew
2004-10-27
The project aim was the improvement, evaluation, and application of one dimensional (1D) inversion and development and application of three dimensional (3D) inversion to processing of data collected at waste pits at the Idaho National Engineering and Environmental Laboratory. The inversion methods were intended mainly for the Very Early Time Electromagnetic (VETEM) system which was designed to improve the state-of-the-art of electromagnetic imaging of the shallow (0 to about 5m) subsurface through electrically conductive soils.
Unsteady Analysis of Inlet-Compressor Acoustic Interactions Using Coupled 3-D and 1-D CFD Codes
NASA Technical Reports Server (NTRS)
Suresh, A.; Cole, G. L.
2000-01-01
It is well known that the dynamic response of a mixed compression supersonic inlet is very sensitive to the boundary condition imposed at the subsonic exit (engine face) of the inlet. In previous work, a 3-D computational fluid dynamics (CFD) inlet code (NPARC) was coupled at the engine face to a 3-D turbomachinery code (ADPAC) simulating an isolated rotor and the coupled simulation used to study the unsteady response of the inlet. The main problem with this approach is that the high fidelity turbomachinery simulation becomes prohibitively expensive as more stages are included in the simulation. In this paper, an alternative approach is explored, wherein the inlet code is coupled to a lesser fidelity 1-D transient compressor code (DYNTECC) which simulates the whole compressor. The specific application chosen for this evaluation is the collapsing bump experiment performed at the University of Cincinnati, wherein reflections of a large-amplitude acoustic pulse from a compressor were measured. The metrics for comparison are the pulse strength (time integral of the pulse amplitude) and wave form (shape). When the compressor is modeled by stage characteristics the computed strength is about ten percent greater than that for the experiment, but the wave shapes are in poor agreement. An alternate approach that uses a fixed rise in duct total pressure and temperature (so-called 'lossy' duct) to simulate a compressor gives good pulse shapes but the strength is about 30 percent low.
Comparison of a 3-D GPU-Assisted Maxwell Code and Ray Tracing for Reflectometry on ITER
NASA Astrophysics Data System (ADS)
Gady, Sarah; Kubota, Shigeyuki; Johnson, Irena
2015-11-01
Electromagnetic wave propagation and scattering in magnetized plasmas are important diagnostics for high temperature plasmas. 1-D and 2-D full-wave codes are standard tools for measurements of the electron density profile and fluctuations; however, ray tracing results have shown that beam propagation in tokamak plasmas is inherently a 3-D problem. The GPU-Assisted Maxwell Code utilizes the FDTD (Finite-Difference Time-Domain) method for solving the Maxwell equations with the cold plasma approximation in a 3-D geometry. Parallel processing with GPGPU (General-Purpose computing on Graphics Processing Units) is used to accelerate the computation. Previously, we reported on initial comparisons of the code results to 1-D numerical and analytical solutions, where the size of the computational grid was limited by the on-board memory of the GPU. In the current study, this limitation is overcome by using domain decomposition and an additional GPU. As a practical application, this code is used to study the current design of the ITER Low Field Side Reflectometer (LSFR) for the Equatorial Port Plug 11 (EPP11). A detailed examination of Gaussian beam propagation in the ITER edge plasma will be presented, as well as comparisons with ray tracing. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No.DE-AC02-09CH11466 and DE-FG02-99-ER54527.
NASA Astrophysics Data System (ADS)
Velioǧlu, Deniz; Cevdet Yalçıner, Ahmet; Zaytsev, Andrey
2016-04-01
Tsunamis are huge waves with long wave periods and wave lengths that can cause great devastation and loss of life when they strike a coast. The interest in experimental and numerical modeling of tsunami propagation and inundation increased considerably after the 2011 Great East Japan earthquake. In this study, two numerical codes, FLOW 3D and NAMI DANCE, that analyze tsunami propagation and inundation patterns are considered. Flow 3D simulates linear and nonlinear propagating surface waves as well as long waves by solving three-dimensional Navier-Stokes (3D-NS) equations. NAMI DANCE uses finite difference computational method to solve 2D depth-averaged linear and nonlinear forms of shallow water equations (NSWE) in long wave problems, specifically tsunamis. In order to validate these two codes and analyze the differences between 3D-NS and 2D depth-averaged NSWE equations, two benchmark problems are applied. One benchmark problem investigates the runup of long waves over a complex 3D beach. The experimental setup is a 1:400 scale model of Monai Valley located on the west coast of Okushiri Island, Japan. Other benchmark problem is discussed in 2015 National Tsunami Hazard Mitigation Program (NTHMP) Annual meeting in Portland, USA. It is a field dataset, recording the Japan 2011 tsunami in Hilo Harbor, Hawaii. The computed water surface elevation and velocity data are compared with the measured data. The comparisons showed that both codes are in fairly good agreement with each other and benchmark data. The differences between 3D-NS and 2D depth-averaged NSWE equations are highlighted. All results are presented with discussions and comparisons. Acknowledgements: Partial support by Japan-Turkey Joint Research Project by JICA on earthquakes and tsunamis in Marmara Region (JICA SATREPS - MarDiM Project), 603839 ASTARTE Project of EU, UDAP-C-12-14 project of AFAD Turkey, 108Y227, 113M556 and 213M534 projects of TUBITAK Turkey, RAPSODI (CONCERT_Dis-021) of CONCERT
NASA Technical Reports Server (NTRS)
Meyer, Harold D.
1999-01-01
This report provides a study of rotor and stator scattering using the SOURCE3D Rotor Wake/Stator Interaction Code. SOURCE3D is a quasi-three-dimensional computer program that uses three-dimensional acoustics and two-dimensional cascade load response theory to calculate rotor and stator modal reflection and transmission (scattering) coefficients. SOURCE3D is at the core of the TFaNS (Theoretical Fan Noise Design/Prediction System), developed for NASA, which provides complete fully coupled (inlet, rotor, stator, exit) noise solutions for turbofan engines. The reason for studying scattering is that we must first understand the behavior of the individual scattering coefficients provided by SOURCE3D, before eventually understanding the more complicated predictions from TFaNS. To study scattering, we have derived a large number of scattering curves for vane and blade rows. The curves are plots of output wave power divided by input wave power (in dB units) versus vane/blade ratio. Some of these plots are shown in this report. All of the plots are provided in a separate volume. To assist in understanding the plots, formulas have been derived for special vane/blade ratios for which wavefronts are either parallel or normal to rotor or stator chords. From the plots, we have found that, for the most part, there was strong transmission and weak reflection over most of the vane/blade ratio range for the stator. For the rotor, there was little transmission loss.
Numerical simulation of jet aerodynamics using the three-dimensional Navier-Stokes code PAB3D
NASA Technical Reports Server (NTRS)
Pao, S. Paul; Abdol-Hamid, Khaled S.
1996-01-01
This report presents a unified method for subsonic and supersonic jet analysis using the three-dimensional Navier-Stokes code PAB3D. The Navier-Stokes code was used to obtain solutions for axisymmetric jets with on-design operating conditions at Mach numbers ranging from 0.6 to 3.0, supersonic jets containing weak shocks and Mach disks, and supersonic jets with nonaxisymmetric nozzle exit geometries. This report discusses computational methods, code implementation, computed results, and comparisons with available experimental data. Very good agreement is shown between the numerical solutions and available experimental data over a wide range of operating conditions. The Navier-Stokes method using the standard Jones-Launder two-equation kappa-epsilon turbulence model can accurately predict jet flow, and such predictions are made without any modification to the published constants for the turbulence model.
Parallel 3-D Electromagnetic Particle Code Using High Performance FORTRAN: Parallel TRISTAN
NASA Astrophysics Data System (ADS)
Cai, D.; Li, Y.; Nishikawa, K.-I.; et al.
A three-dimensional full electromagnetic particle-in-cell (PIC ) code, TRISTAN (Tridimensional Stanford) code, has been parallelized using High Performance Fortran (HPF) as a RPM (Real Parallel Machine). In the parallelized HPF code, the simulation domain is decomposed in one-dimension, and both the particle and field data located in each domain that we call the sub-domain are distributed on each processor. Both the particle and field data on a sub-domain are needed by the neighbor sub-domains and thus communications between the sub-domains are inevitable. Our simulation results using HPF exhibit the promising applicability of the HPF communications to a large scale scientific computing such as solar wind-magnetosphere interactions.
A 3D-PNS computer code for the calculation of supersonic combusting flows
NASA Technical Reports Server (NTRS)
Chitsomboon, Tawit; Northam, G. Burton
1988-01-01
A computer code has been developed based on the three-dimensional parabolized Navier-Stokes (PNS) equations which govern the supersonic combusting flow of the hydrogen-air system. The finite difference algorithm employed was a hybrid of the Schiff-Steger algorithm and the Vigneron, et al., algorithm which is fully implicit and fully coupled. The combustion of hydrogen and air was modeled by the finite-rate two-step combustion model of Rogers-Chinitz. A new dependent variable vector was introduced to simplify the numerical algorithm. Robustness of the algorithm was considerably enhanced by introducing an adjustable parameter. The computer code was used to solve a premixed shock-induced combustion problem and the results were compared with those of a full Navier-Stokes code. Reasonably good agreement was obtained at a fraction of the cost of the full Navier-Stokes procedure.
3-D kinetics simulations of the NRU reactor using the DONJON code
Leung, T. C.; Atfield, M. D.; Koclas, J.
2006-07-01
The NRU reactor is highly heterogeneous, heavy-water cooled and moderated, with online refuelling capability. It is licensed to operate at a maximum power of 135 MW, with a peak thermal flux of approximately 4.0 x 10{sup 18} n.m{sup -2} . s{sup -1}. In support of the safe operation of NRU, three-dimensional kinetics calculations for reactor transients have been performed using the DONJON code. The code was initially designed to perform space-time kinetics calculations for the CANDU{sup R} power reactors. This paper describes how the DONJON code can be applied to perform neutronic simulations for the analysis of reactor transients in NRU, and presents calculation results for some transients. (authors)
Solar wind-magnetosphere interaction as simulated by a 3D, EM particle code
NASA Technical Reports Server (NTRS)
Buneman, O.; Nishikawa, Ken-Ichi; Neubert, T.
1993-01-01
The results of simulating the solar wind-magnetosphere interaction with a three dimensional, electromagnetic (EM) particle code are presented. Hitherto such global simulations were done with magnetohydrodynamic (MHD) codes while lower dimensional particle or hybrid codes served to account for microscopic processes and such transport parameters as have to be introduced ad hoc in MHD. The kinetic model combines macroscopic and microscopic tasks. It relies only on the Maxwell curl equations and the Lorentz equation for particles. The preliminary results are for an unmagnetized solar wind plasma streaming past a dipolar magnetic field. The results show the formation of a bow shock and a magnetotail, the penetration of energetic particles into cusp and radiation belt regions, and dawn to dusk asymmetries.
Solar wind-magnetosphere interaction as simulated by a 3-D EM particle code
NASA Technical Reports Server (NTRS)
Buneman, Oscar; Neubert, Torsten; Nishikawa, Ken-Ichi
1992-01-01
We present here our first results of simulating the solar wind-magnetosphere interaction with a new three-dimensional electromagnetic particle code. Hitherto such global simulations were done with MHD codes while lower-dimensional particle or hybrid codes served to account for microscopic processes and such transport parameters as have to be introduced ad hoc in MHD. Our kinetic model attempts to combine the macroscopic and microscopic tasks. It relies only on the Maxwell curl equation and the Lorentz equation for particles, which are ideally suited for computers. The preliminary results shown here are for an unmagnetized solar wind plasma streaming past a dipolar magnetic field. The results show the formation of a bow shock and a magnetotail, the penetration of energetic particles into cusp and radiation belt regions, and dawn-dusk asymmetries.
Code System for 2-Group, 3D Neutronic Kinetics Calculations Coupled to Core Thermal Hydraulics.
2000-05-12
Version 00 QUARK is a combined computer program comprising a revised version of the QUANDRY three-dimensional, two-group neutron kinetics code and an upgraded version of the COBRA transient core analysis code (COBRA-EN). Starting from either a critical steady-state (k-effective or critical dilute Boron problem) or a subcritical steady-state (fixed source problem) in a PWR plant, the code allows one to simulate the neutronic and thermal-hydraulic core transient response to reactivity accidents initiated both inside themore » vessel (such as a control rod ejection) and outside the vessel (such as the sudden change of the Boron concentration in the coolant). QUARK output can be used as input to PSR-470/NORMA-FP to perform a subchannel analysis from converged coarse-mesh nodal solutions.« less
NASA Astrophysics Data System (ADS)
Barth, Andreas
2016-04-01
On January 6, 2016 the Democratic People's Republic of Korea (DPRK) carried out an announced nuclear test, which was the fourth after tests conducted in 2006, 2009, and 2013. An important task in discriminating a man-made explosion and a natural tectonic earthquake is the analysis of seismic waveforms. To determine the isotropic and non-isotropic characteristics of the detonation source, I invert long-period seismic data for the full seismic moment tensor to match the observed seismic signals by synthetic waveforms based on a 3D earth model. Here, I show that the inversion of long-period seismic data of the 2016 test reveals a clear explosive (isotropic) component combined with a significant release of shear energy by the double-couple part of the moment tensor. The short- and long-period waveforms of the recent test are very similar to the previous ones. First data show that the energy release of the recent event on long periods greater than 10 s is enlarged by 20-30% compared to the nuclear test in 2013. As shown previously, the double-couple part of the 2009 event was lower by a factor of 0.55 compared to the explosion in 2013, while the isotropic parts of the nuclear tests in 2009 and 2013 were similar (Barth, 2014). However, the recent test again shows a rather small double-couple part, indicating a lower amount of shear-energy radiation than in 2013. This highlights the importance of considering the release of shear energy in understanding near source damaging effects and the containment of nuclear explosions.
Far field 3D localization of radioactive hot spots using a coded aperture camera.
Shifeng, Sun; Zhiming, Zhang; Lei, Shuai; Daowu, Li; Yingjie, Wang; Yantao, Liu; Xianchao, Huang; Haohui, Tang; Ting, Li; Pei, Chai; Yiwen, Zhang; Wei, Zhou; Mingjie, Yang; Cunfeng, Wei; Chuangxin, Ma; Long, Wei
2016-01-01
This paper presents a coded aperture method to remotely estimate the radioactivity of a source. The activity is estimated from the detected counts and the estimated source location, which is extracted by factoring the effect of aperture magnification. A 6mm thick tungsten-copper alloy coded aperture mask is used to modulate the incoming gamma-rays. The location of point and line sources in all three dimensions was estimated with an accuracy of less than 10% when the source-camera distance was about 4 m. The estimated activities were 17.6% smaller and 50.4% larger than the actual activities for the point and line sources, respectively.
NASA Astrophysics Data System (ADS)
Bazarov, Ivan V.; Dunham, Bruce M.; Gulliford, Colwyn; Li, Yulin; Liu, Xianghong; Sinclair, Charles K.; Soong, Ken; Hannon, Fay
2008-10-01
We present a comparison between space charge calculations and direct measurements of the transverse phase space of space charge dominated electron bunches from a high voltage dc photoemission gun followed by an emittance compensation solenoid magnet. The measurements were performed using a double-slit emittance measurement system over a range of bunch charge and solenoid current values. The data are compared with detailed simulations using the 3D space charge codes GPT and Parmela3D. The initial particle distributions were generated from measured transverse and temporal laser beam profiles at the photocathode. The beam brightness as a function of beam fraction is calculated for the measured phase space maps and found to approach within a factor of 2 the theoretical maximum set by the thermal energy and the accelerating field at the photocathode.
A Methodology to Validate 3-D Arbitrary Lagrangian Eulerian Codes with Applications to Alegra
Chhabildas, L.C.; Duggins, B.D.; Konrad, C.H.; Mosher, D.A.; Perry, J.S.; Reinhart, W.D.; Summers, R.M.; Trucano, T.G.
1998-11-04
In this study we provided an experimental test bed for validating features of the Arbitrary Lagrangian Eulerian Grid for Research Applications (ALEGRA) code over a broad range of strain rates with overlapping diagnostics that encompass the multiple responses. A unique feature of the ALEGRA code is that it allows simultaneous computational treatment, within one code, of a wide range of strain-rates varying from hydrodynamic to structural conditions. This range encompasses strain rates characteristic of shock-wave propagation (107/s) and those characteristics of structural response (102/s). Most previous code validation experimental &udies, however, have been restricted to simulating or investigating a single strain-rate regime. What is new and different in this investigation is that we have performed well-controlled and well-instrumented experiments, which capture features relevant to both hydrodynamic and structural response in a single experiment. Aluminum was chosen for use in this study because it is a well-characterized material. The current experiments span strain rate regimes of over 107/s to less than 102/s in a single experiment. The input conditions were extremely well defined. Velocity interferometers were used to record the high' strain-rate response, while low strain rate data were collected using strain gauges. Although the current tests were conducted at a nominal velocity of - 1.5 km/s, it is the test methodology that is being emphasized herein. Results of a three-dimensional experiment are also presented.
Commer, Michael; Helwig, Stefan, L.; Hordt, Andreas; Scholl,Carsten; Tezkan, Bulent
2006-06-14
Three long-offset transient electromagnetic (LOTEM) surveyswerecarried out at the active volcano Merapi in Central Java (Indonesia)during the years 1998, 2000, and 2001. The measurements focused on thegeneral resistivity structure of the volcanic edifice at depths of 0.5-2km and the further investigation of a southside anomaly. The measurementswere insufficient for a full 3D inversion scheme, which could enable theimaging of finely discretized resistivity distributions. Therefore, astable, damped least-squares joint-inversion approach is used to optimize3D models with a limited number of parameters. The mode ls feature therealistic simulation of topography, a layered background structure, andadditional coarse 3D blocks representing conductivity anomalies.Twenty-eight LOTEM transients, comprising both horizontal and verticalcomponents of the magnetic induction time derivative, were analyzed. Inview of the few unknowns, we were able to achieve reasonable data fits.The inversion results indicate an upwelling conductor below the summit,suggesting hydrothermal activity in the central volcanic complex. Ashallow conductor due to a magma-filled chamber, at depths down to 1 kmbelow the summit, suggested by earlier seismic studies, is not indicatedby the inversion results. In conjunction with an anomalous-density model,derived from arecent gravity study, our inversion results provideinformation about the southern geological structure resulting from amajor sector collapse during the Middle Merapi period. The density modelallows to assess a porosity range andthus an estimated vertical salinityprofile to explain the high conductivities on a larger scale, extendingbeyond the foothills of Merapi.
NASA Astrophysics Data System (ADS)
Barnoud, A.; Coutant, O.; Bouligand, C.
2013-12-01
We propose to use a Bayesian methodology combined with a grid node discretization to invert linearly for 3D density distributions. The inversion and the forward modeling are derived from seismological travel-time inversion techniques in order to facilitate joint inversion or interpretation of density and seismic velocity models. The Bayesian method (Tarantola, 2005) introduces covariance matrices to regularize this ill-posed problem and reduce the non-uniqueness of the solution. Spatial covariances and grid discretization favor smooth and compact solutions that compare to usual seismic tomographic results. Compared to similar approaches our development includes i) the computation of the gravity field for linear vertical gradients and layers, including surface topography, a standard model description in seismology, ii) an explicit formulation of the a-priori covariance matrix. This last point allows to easily modify the spatial a-priori covariance (or scale, or wavelength) and hence, to perform successive linear inversions at different wavelengths. A series of synthetic tests is performed for validation, and used to show the advantage and limitation of this methodology. The method is appropriate for crustal and volcanological area studies, and allows a natural coupling with seismological inversions (Coutant et al., 2012). We present here two case studies for 3D gravity inversions. First, the inversion is performed in a crustal alpine context, the area of the well studied Ivrea Body in Italy. Secondly, we apply the inversion to gravity data from the volcanic island of Basse-Terre whose internal structure is badly constrained. We use data from previous studies supplemented with new high quality data acquired in 2012 within the frame of the Domoscan project. A 3D density model of the island of Basse-Terre is derived for the first time.
Drug-laden 3D biodegradable label using QR code for anti-counterfeiting of drugs.
Fei, Jie; Liu, Ran
2016-06-01
Wiping out counterfeit drugs is a great task for public health care around the world. The boost of these drugs makes treatment to become potentially harmful or even lethal. In this paper, biodegradable drug-laden QR code label for anti-counterfeiting of drugs is proposed that can provide the non-fluorescence recognition and high capacity. It is fabricated by the laser cutting to achieve the roughness over different surface which causes the difference in the gray levels on the translucent material the QR code pattern, and the micro mold process to obtain the drug-laden biodegradable label. We screened biomaterials presenting the relevant conditions and further requirements of the package. The drug-laden microlabel is on the surface of the troches or the bottom of the capsule and can be read by a simple smartphone QR code reader application. Labeling the pill directly and decoding the information successfully means more convenient and simple operation with non-fluorescence and high capacity in contrast to the traditional methods. PMID:27040262
Introduction and guide to LLNL's relativistic 3-D nuclear hydrodynamics code
Zingman, J.A.; McAbee, T.L.; Alonso, C.T.; Wilson, J.R.
1987-11-01
We have constructed a relativistic hydrodynamic model to investigate Bevalac and higher energy, heavy-ion collisions. The basis of the model is a finite-difference solution to covariant hydrodynamics, which will be described in the rest of this paper. This paper also contains: a brief review of the equations and numerical methods we have employed in the solution to the hydrodynamic equations, a detailed description of several of the most important subroutines, and a numerical test on the code. 30 refs., 8 figs., 1 tab.
NASA Astrophysics Data System (ADS)
Meqbel, Naser M.; Egbert, Gary D.; Wannamaker, Philip E.; Kelbert, Anna; Schultz, Adam
2014-09-01
Long period (10-20,000 s) magnetotelluric (MT) data are being acquired across the continental USA on a quasi-regular grid of ˜70 km spacing as an electromagnetic component of the National Science Foundation EarthScope/USArray Program. These data are sensitive to fluids, melts, and other orogenic indicators, and thus provide a valuable complement to other components of EarthScope. We present and interpret results of 3-D MT data inversion from 325 sites acquired from 2006-2011 to provide a regional scale view of electrical resistivity from the middle crust to nearly the mantle transition zone, covering an area from NW Washington to NW Colorado. Beneath the active extensional subprovinces in the south-central region, on average we see a resistive upper crust, and then extensive areas of low resistivity in the lower crust and uppermost mantle. Further below, much of the upper half of the upper mantle appears moderately resistive, then subsequently the lower upper mantle becomes moderately conductive. This column suggests a dynamic process of moderately hydrated and fertile deeper upper mantle upwelling during extension, intersection of that material with the damp solidus causing dehydration and melting, and upward exodus of generated mafic melts to pond and exsolve saline fluids near Moho levels. Lithosphere here is very thin. To the east and northeast, thick sections of resistive lithosphere are imaged under the Wyoming and Medicine Hat Cratons. These are punctuated with numerous electrically conductive sutures presumably containing graphitic or sulfide-bearing meta-sediments deeply underthrust and emplaced during ancient collisions. Below Cascadia, the subducting Juan de Fuca and Gorda lithosphere appears highly resistive. Suspected oceanic lithosphere relicts in the central NW part of the model domain also are resistive, including the accreted “Siletzia” terrane beneath the Coast Ranges and Columbia Embayment, and the seismically fast “slab curtain” beneath
CFD Code Calibration and Inlet-Fairing Effects On a 3D Hypersonic Powered-Simulation Model
NASA Technical Reports Server (NTRS)
Huebner, Lawrence D.; Tatum, Kenneth E.
1993-01-01
A three-dimensional (3D) computational study has been performed addressing issues related to the wind tunnel testing of a hypersonic powered-simulation model. The study consisted of three objectives. The first objective was to calibrate a state-of-the-art computational fluid dynamics (CFD) code in its ability to predict hypersonic powered-simulation flows by comparing CFD solutions with experimental surface pressure data. Aftbody lower surface pressures were well predicted, but lower surface wing pressures were less accurately predicted. The second objective was to determine the 3D effects on the aftbody created by fairing over the inlet; this was accomplished by comparing the CFD solutions of two closed-inlet powered configurations with a flowing- inlet powered configuration. Although results at four freestream Mach numbers indicate that the exhaust plume tends to isolate the aftbody surface from most forebody flow- field differences, a smooth inlet fairing provides the least aftbody force and moment variation compared to a flowing inlet. The final objective was to predict and understand the 3D characteristics of exhaust plume development at selected points on a representative flight path. Results showed a dramatic effect of plume expansion onto the wings as the freestream Mach number and corresponding nozzle pressure ratio are increased.
Validation of a Node-Centered Wall Function Model for the Unstructured Flow Code FUN3D
NASA Technical Reports Server (NTRS)
Carlson, Jan-Renee; Vasta, Veer N.; White, Jeffery
2015-01-01
In this paper, the implementation of two wall function models in the Reynolds averaged Navier-Stokes (RANS) computational uid dynamics (CFD) code FUN3D is described. FUN3D is a node centered method for solving the three-dimensional Navier-Stokes equations on unstructured computational grids. The first wall function model, based on the work of Knopp et al., is used in conjunction with the one-equation turbulence model of Spalart-Allmaras. The second wall function model, also based on the work of Knopp, is used in conjunction with the two-equation k-! turbulence model of Menter. The wall function models compute the wall momentum and energy flux, which are used to weakly enforce the wall velocity and pressure flux boundary conditions in the mean flow momentum and energy equations. These wall conditions are implemented in an implicit form where the contribution of the wall function model to the Jacobian are also included. The boundary conditions of the turbulence transport equations are enforced explicitly (strongly) on all solid boundaries. The use of the wall function models is demonstrated on four test cases: a at plate boundary layer, a subsonic di user, a 2D airfoil, and a 3D semi-span wing. Where possible, different near-wall viscous spacing tactics are examined. Iterative residual convergence was obtained in most cases. Solution results are compared with theoretical and experimental data for several variations of grid spacing. In general, very good comparisons with data were achieved.
Dong, Xiaoqing; Fang, Yiliang; Wang, Kejing; Zhu, Lijuan; Wang, Ke; Huang, Tao
2016-01-01
With the development of new technologies in transcriptome and epigenetics, RNAs have been identified to play more and more important roles in life processes. Consequently, various methods have been proposed to assess the biological functions of RNAs and thus classify them functionally, among which comparative study of RNA structures is perhaps the most important one. To measure the structural similarity of RNAs and classify them, we propose a novel three dimensional (3D) graphical representation of RNA secondary structure, in which an RNA secondary structure is first transformed into a characteristic sequence based on chemical property of nucleic acids; a dynamic 3D graph is then constructed for the characteristic sequence; and lastly a numerical characterization of the 3D graph is used to represent the RNA secondary structure. We tested our algorithm on three datasets: (1) Dataset I consisting of nine RNA secondary structures of viruses, (2) Dataset II consisting of complex RNA secondary structures including pseudo-knots, and (3) Dataset III consisting of 18 non-coding RNA families. We also compare our method with other nine existing methods using Dataset II and III. The results demonstrate that our method is better than other methods in similarity measurement and classification of RNA secondary structures. PMID:27213271
Predictions of bubbly flows in vertical pipes using two-fluid models in CFDS-FLOW3D code
Banas, A.O.; Carver, M.B.; Unrau, D.
1995-09-01
This paper reports the results of a preliminary study exploring the performance of two sets of two-fluid closure relationships applied to the simulation of turbulent air-water bubbly upflows through vertical pipes. Predictions obtained with the default CFDS-FLOW3D model for dispersed flows were compared with the predictions of a new model (based on the work of Lee), and with the experimental data of Liu. The new model, implemented in the CFDS-FLOW3D code, included additional source terms in the {open_quotes}standard{close_quotes} {kappa}-{epsilon} transport equations for the liquid phase, as well as modified model coefficients and wall functions. All simulations were carried out in a 2-D axisymmetric format, collapsing the general multifluid framework of CFDS-FLOW3D to the two-fluid (air-water) case. The newly implemented model consistently improved predictions of radial-velocity profiles of both phases, but failed to accurately reproduce the experimental phase-distribution data. This shortcoming was traced to the neglect of anisotropic effects in the modelling of liquid-phase turbulence. In this sense, the present investigation should be considered as the first step toward the ultimate goal of developing a theoretically sound and universal CFD-type two-fluid model for bubbly flows in channels.
Interpretation of 3D void measurements with Tripoli4.6/JEFF3.1.1 Monte Carlo code
Blaise, P.; Colomba, A.
2012-07-01
The present work details the first analysis of the 3D void phase conducted during the EPICURE/UM17x17/7% mixed UOX/MOX configuration. This configuration is composed of a homogeneous central 17x17 MOX-7% assembly, surrounded by portions of 17x17 1102 assemblies with guide-tubes. The void bubble is modelled by a small waterproof 5x5 fuel pin parallelepiped box of 11 cm height, placed in the centre of the MOX assembly. This bubble, initially placed at the core mid-plane, is then moved in different axial positions to study the evolution in the core of the axial perturbation. Then, to simulate the growing of this bubble in order to understand the effects of increased void fraction along the fuel pin, 3 and 5 bubbles have been stacked axially, from the core mid-plane. The C/E comparison obtained with the Monte Carlo code Tripoli4 for both radial and axial fission rate distributions, and in particular the reproduction of the very important flux gradients at the void/water interfaces, changing as the bubble is displaced along the z-axis are very satisfactory. It demonstrates both the capability of the code and its library to reproduce this kind of situation, as the very good quality of the experimental results, confirming the UM-17x17 as an excellent experimental benchmark for 3D code validation. This work has been performed within the frame of the V and V program for the future APOLL03 deterministic code of CEA starting in 2012, and its V and V benchmarking database. (authors)
Code and Solution Verification of 3D Numerical Modeling of Flow in the Gust Erosion Chamber
NASA Astrophysics Data System (ADS)
Yuen, A.; Bombardelli, F. A.
2014-12-01
Erosion microcosms are devices commonly used to investigate the erosion and transport characteristics of sediments at the bed of rivers, lakes, or estuaries. In order to understand the results these devices provide, the bed shear stress and flow field need to be accurately described. In this research, the UMCES Gust Erosion Microcosm System (U-GEMS) is numerically modeled using Finite Volume Method. The primary aims are to simulate the bed shear stress distribution at the surface of the sediment core/bottom of the microcosm, and to validate the U-GEMS produces uniform bed shear stress at the bottom of the microcosm. The mathematical model equations are solved by on a Cartesian non-uniform grid. Multiple numerical runs were developed with different input conditions and configurations. Prior to developing the U-GEMS model, the General Moving Objects (GMO) model and different momentum algorithms in the code were verified. Code verification of these solvers was done via simulating the flow inside the top wall driven square cavity on different mesh sizes to obtain order of convergence. The GMO model was used to simulate the top wall in the top wall driven square cavity as well as the rotating disk in the U-GEMS. Components simulated with the GMO model were rigid bodies that could have any type of motion. In addition cross-verification was conducted as results were compared with numerical results by Ghia et al. (1982), and good agreement was found. Next, CFD results were validated by simulating the flow within the conventional microcosm system without suction and injection. Good agreement was found when the experimental results by Khalili et al. (2008) were compared. After the ability of the CFD solver was proved through the above code verification steps. The model was utilized to simulate the U-GEMS. The solution was verified via classic mesh convergence study on four consecutive mesh sizes, in addition to that Grid Convergence Index (GCI) was calculated and based on
DISCO: A 3D Moving-mesh Magnetohydrodynamics Code Designed for the Study of Astrophysical Disks
NASA Astrophysics Data System (ADS)
Duffell, Paul C.
2016-09-01
This work presents the publicly available moving-mesh magnetohydrodynamics (MHD) code DISCO. DISCO is efficient and accurate at evolving orbital fluid motion in two and three dimensions, especially at high Mach numbers. DISCO employs a moving-mesh approach utilizing a dynamic cylindrical mesh that can shear azimuthally to follow the orbital motion of the gas. The moving mesh removes diffusive advection errors and allows for longer time-steps than a static grid. MHD is implemented in DISCO using an HLLD Riemann solver and a novel constrained transport (CT) scheme that is compatible with the mesh motion. DISCO is tested against a wide variety of problems, which are designed to test its stability, accuracy, and scalability. In addition, several MHD tests are performed which demonstrate the accuracy and stability of the new CT approach, including two tests of the magneto-rotational instability, one testing the linear growth rate and the other following the instability into the fully turbulent regime.
Vdovin V.L.
2005-08-15
In this report we describe theory and 3D full wave code description for the wave excitation, propagation and absorption in 3-dimensional (3D) stellarator equilibrium high beta plasma in ion cyclotron frequency range (ICRF). This theory forms a basis for a 3D code creation, urgently needed for the ICRF heating scenarios development for the operated LHD, constructed W7-X, NCSX and projected CSX3 stellarators, as well for re evaluation of ICRF scenarios in operated tokamaks and in the ITER . The theory solves the 3D Maxwell-Vlasov antenna-plasma-conducting shell boundary value problem in the non-orthogonal flux coordinates ({Psi}, {theta}, {var_phi}), {Psi} being magnetic flux function, {theta} and {var_phi} being the poloidal and toroidal angles, respectively. All basic physics, like wave refraction, reflection and diffraction are self consistently included, along with the fundamental ion and ion minority cyclotron resonances, two ion hybrid resonance, electron Landau and TTMP absorption. Antenna reactive impedance and loading resistance are also calculated and urgently needed for an antenna -generator matching. This is accomplished in a real confining magnetic field being varying in a plasma major radius direction, in toroidal and poloidal directions, through making use of the hot dense plasma wave induced currents with account to the finite Larmor radius effects. We expand the solution in Fourier series over the toroidal ({var_phi}) and poloidal ({theta}) angles and solve resulting ordinary differential equations in a radial like {Psi}-coordinate by finite difference method. The constructed discretization scheme is divergent-free one, thus retaining the basic properties of original equations. The Fourier expansion over the angle coordinates has given to us the possibility to correctly construct the ''parallel'' wave number k{sub //}, and thereby to correctly describe the ICRF waves absorption by a hot plasma. The toroidal harmonics are tightly coupled with each
Parametric Analysis of a Turbine Trip Event in a BWR Using a 3D Nodal Code
Gorzel, A.
2006-07-01
Two essential thermal hydraulics safety criteria concerning the reactor core are that even during operational transients there is no fuel melting and not-permissible cladding temperatures are avoided. A common concept for boiling water reactors is to establish a minimum critical power ratio (MCPR) for steady state operation. For this MCPR it is shown that only a very small number of fuel rods suffers a short-term dryout during the transient. It is known from experience that the limiting transient for the determination of the MCPR is the turbine trip with blocked bypass system. This fast transient was simulated for a German BWR by use of the three-dimensional reactor analysis transient code SIMULATE-3K. The transient behaviour of the hot channels was used as input for the dryout calculation with the transient thermal hydraulics code FRANCESCA. By this way the maximum reduction of the CPR during the transient could be calculated. The fast increase in reactor power due to the pressure increase and to an increased core inlet flow is limited mainly by the Doppler effect, but automatically triggered operational measures also can contribute to the mitigation of the turbine trip. One very important method is the short-term fast reduction of the recirculation pump speed which is initiated e. g. by a pressure increase in front of the turbine. The large impacts of the starting time and of the rate of the pump speed reduction on the power progression and hence on the deterioration of CPR is presented. Another important procedure to limit the effects of the transient is the fast shutdown of the reactor that is caused when the reactor power reaches the limit value. It is shown that the SCRAM is not fast enough to reduce the first power maximum, but is able to prevent the appearance of a second - much smaller - maximum that would occur around one second after the first one in the absence of a SCRAM. (author)
Kim, Hye-Na; Yoo, Haemin; Moon, Jun Hyuk
2013-05-21
We demonstrated the preparation of graphene-embedded 3D inverse opal electrodes for use in DSSCs. The graphene was incorporated locally into the top layers of the inverse opal structures and was embedded into the TiO2 matrix via post-treatment of the TiO2 precursors. DSSCs comprising the bare and 1-5 wt% graphene-incorporated TiO2 inverse opal electrodes were compared. We observed that the local arrangement of graphene sheets effectively enhanced electron transport without significantly reducing light harvesting by the dye molecules. A high efficiency of 7.5% was achieved in DSSCs prepared with the 3 wt% graphene-incorporated TiO2 inverse opal electrodes, constituting a 50% increase over the efficiencies of DSSCs prepared without graphene. The increase in efficiency was mainly attributed to an increase in J(SC), as determined by the photovoltaic parameters and the electrochemical impedance spectroscopy analysis. PMID:23536037
Kim, Hye-Na; Yoo, Haemin; Moon, Jun Hyuk
2013-05-21
We demonstrated the preparation of graphene-embedded 3D inverse opal electrodes for use in DSSCs. The graphene was incorporated locally into the top layers of the inverse opal structures and was embedded into the TiO2 matrix via post-treatment of the TiO2 precursors. DSSCs comprising the bare and 1-5 wt% graphene-incorporated TiO2 inverse opal electrodes were compared. We observed that the local arrangement of graphene sheets effectively enhanced electron transport without significantly reducing light harvesting by the dye molecules. A high efficiency of 7.5% was achieved in DSSCs prepared with the 3 wt% graphene-incorporated TiO2 inverse opal electrodes, constituting a 50% increase over the efficiencies of DSSCs prepared without graphene. The increase in efficiency was mainly attributed to an increase in J(SC), as determined by the photovoltaic parameters and the electrochemical impedance spectroscopy analysis.
3D relaxation MHD modeling with FOI-PERFECT code for electromagnetically driven HED systems
NASA Astrophysics Data System (ADS)
Wang, Ganghua; Duan, Shuchao; Xie, Weiping; Kan, Mingxian; Institute of Fluid Physics Collaboration
2015-11-01
One of the challenges in numerical simulations of electromagnetically driven high energy density (HED) systems is the existence of vacuum region. The electromagnetic part of the conventional model adopts the magnetic diffusion approximation (magnetic induction model). The vacuum region is approximated by artificially increasing the resistivity. On one hand the phase/group velocity is superluminal and hence non-physical in the vacuum region, on the other hand a diffusion equation with large diffusion coefficient can only be solved by implicit scheme. Implicit method is usually difficult to parallelize and converge. A better alternative is to solve the full electromagnetic equations for the electromagnetic part. Maxwell's equations coupled with the constitutive equation, generalized Ohm's law, constitute a relaxation model. The dispersion relation is given to show its transition from electromagnetic propagation in vacuum to resistive MHD in plasma in a natural way. The phase and group velocities are finite for this system. A better time stepping is adopted to give a 3rd full order convergence in time domain without the stiff relaxation term restriction. Therefore it is convenient for explicit & parallel computations. Some numerical results of FOI-PERFECT code are also given. Project supported by the National Natural Science Foundation of China (Grant No. 11172277,11205145).
Anthropomorphic Coding of Speech and Audio: A Model Inversion Approach
NASA Astrophysics Data System (ADS)
Feldbauer, Christian; Kubin, Gernot; Kleijn, W. Bastiaan
2005-12-01
Auditory modeling is a well-established methodology that provides insight into human perception and that facilitates the extraction of signal features that are most relevant to the listener. The aim of this paper is to provide a tutorial on perceptual speech and audio coding using an invertible auditory model. In this approach, the audio signal is converted into an auditory representation using an invertible auditory model. The auditory representation is quantized and coded. Upon decoding, it is then transformed back into the acoustic domain. This transformation converts a complex distortion criterion into a simple one, thus facilitating quantization with low complexity. We briefly review past work on auditory models and describe in more detail the components of our invertible model and its inversion procedure, that is, the method to reconstruct the signal from the output of the auditory model. We summarize attempts to use the auditory representation for low-bit-rate coding. Our approach also allows the exploitation of the inherent redundancy of the human auditory system for the purpose of multiple description (joint source-channel) coding.
NASA Astrophysics Data System (ADS)
Meqbel, N. M.; Egbert, G. D.; Wannamaker, P. E.; Kelbert, A.; Schultz, A.
2013-12-01
Long period (10-20,000 s) magnetotelluric (MT) data are being acquired across the continental USA on a quasi-regular grid of ~70 km spacing as an electromagnetic component of the National Science Foundation EarthScope/USArray Program. These data are sensitive to fluids, melts, and other orogenic indicators, and thus provide a valuable complement to other components of EarthScope. We present and interpret results of 3-D MT data inversion from 325 sites acquired from 2006-2011 to provide a regional scale view of electrical resistivity from the middle crust to nearly the mantle transition zone, covering an area from NW Washington to NW Colorado. Extensive areas of low resistivity are imaged in the lower crust and uppermost mantle beneath the extensional provinces, most plausibly explained by underplated, hybridized magmas and associated exsolved highly saline fluids. These pervasive low resistivities show aligned or 'streaky' textures roughly parallel to seismic fast-axes, possibly reflecting widespread flow induced alignment of melt in this area. Thick sections of resistive lithosphere imaged in the eastern and northeastern part of the domain coincide spatially with the Wyoming and Medicine Hat Cratons. Sutures bounding these cratonic blocks are electrically conductive most likely due to meta-sediments emplaced during ancient collisions. Below the Cascadia forearc, the subducting Juan de Fuca and Gorda lithosphere appears highly resistive. Other resistive zones in the NW part of the domain may denote relict oceanic lithosphere: the accreted 'Siletzia' terrane beneath the Coast Ranges and Columbia Embayment, and the seismically fast 'slab curtain' beneath eastern Idaho interpreted by others as stranded Farallon lithosphere. Quasi-horizontal patches of low resistivity in the deep crust beneath the Cascade volcanic arc and fore-arc likely represent fluids evolved from breakdown of hydrous minerals in the down-going slab. In the backarc, low resistivities concentrate in
Bao Yidong; Hu Sibo; Lang Zhikui; Hu Ping
2005-08-05
A fast simulation scheme for 3D curved binder flanging and blank shape prediction of sheet metal based on one-step inverse finite element method is proposed, in which the total plasticity theory and proportional loading assumption are used. The scheme can be actually used to simulate 3D flanging with complex curve binder shape, and suitable for simulating any type of flanging model by numerically determining the flanging height and flanging lines. Compared with other methods such as analytic algorithm and blank sheet-cut return method, the prominent advantage of the present scheme is that it can directly predict the location of the 3D flanging lines when simulating the flanging process. Therefore, the prediction time of flanging lines will be obviously decreased. Two typical 3D curve binder flanging including stretch and shrink characters are simulated in the same time by using the present scheme and incremental FE non-inverse algorithm based on incremental plasticity theory, which show the validity and high efficiency of the present scheme.
NASA Astrophysics Data System (ADS)
Morgan, Joanna; Warner, Michael; Arnoux, Gillean; Hooft, Emilie; Toomey, Douglas; VanderBeek, Brandon; Wilcock, William
2016-02-01
3-D full-waveform inversion (FWI) is an advanced seismic imaging technique that has been widely adopted by the oil and gas industry to obtain high-fidelity models of P-wave velocity that lead to improvements in migrated images of the reservoir. Most industrial applications of 3-D FWI model the acoustic wavefield, often account for the kinematic effect of anisotropy, and focus on matching the low-frequency component of the early arriving refractions that are most sensitive to P-wave velocity structure. Here, we have adopted the same approach in an application of 3-D acoustic, anisotropic FWI to an ocean-bottom-seismometer (OBS) field data set acquired across the Endeavour oceanic spreading centre in the northeastern Pacific. Starting models for P-wave velocity and anisotropy were obtained from traveltime tomography; during FWI, velocity is updated whereas anisotropy is kept fixed. We demonstrate that, for the Endeavour field data set, 3-D FWI is able to recover fine-scale velocity structure with a resolution that is 2-4 times better than conventional traveltime tomography. Quality assurance procedures have been employed to monitor each step of the workflow; these are time consuming but critical to the development of a successful inversion strategy. Finally, a suite of checkerboard tests has been performed which shows that the full potential resolution of FWI can be obtained if we acquire a 3-D survey with a slightly denser shot and receiver spacing than is usual for an academic experiment. We anticipate that this exciting development will encourage future seismic investigations of earth science targets that would benefit from the superior resolution offered by 3-D FWI.
Li, Shengtai; Li, Hui
2012-06-14
We develop a 3D simulation code for interaction between the proto-planetary disk and embedded proto-planets. The protoplanetary disk is treated as a three-dimensional (3D), self-gravitating gas whose motion is described by the locally isothermal Navier-Stokes equations in a spherical coordinate centered on the star. The differential equations for the disk are similar to those given in Kley et al. (2009) with a different gravitational potential that is defined in Nelson et al. (2000). The equations are solved by directional split Godunov method for the inviscid Euler equations plus operator-split method for the viscous source terms. We use a sub-cycling technique for the azimuthal sweep to alleviate the time step restriction. We also extend the FARGO scheme of Masset (2000) and modified in Li et al. (2001) to our 3D code to accelerate the transport in the azimuthal direction. Furthermore, we have implemented a reduced 2D (r, {theta}) and a fully 3D self-gravity solver on our uniform disk grid, which extends our 2D method (Li, Buoni, & Li 2008) to 3D. This solver uses a mode cut-off strategy and combines FFT in the azimuthal direction and direct summation in the radial and meridional direction. An initial axis-symmetric equilibrium disk is generated via iteration between the disk density profile and the 2D disk-self-gravity. We do not need any softening in the disk self-gravity calculation as we have used a shifted grid method (Li et al. 2008) to calculate the potential. The motion of the planet is limited on the mid-plane and the equations are the same as given in D'Angelo et al. (2005), which we adapted to the polar coordinates with a fourth-order Runge-Kutta solver. The disk gravitational force on the planet is assumed to evolve linearly with time between two hydrodynamics time steps. The Planetary potential acting on the disk is calculated accurately with a small softening given by a cubic-spline form (Kley et al. 2009). Since the torque is extremely sensitive to
NASA Astrophysics Data System (ADS)
Yan, X.; Cai, D.; Nishikawa, K.; Lembege, B.
2004-12-01
We made our efforts to parallelize the global 3D HPF Electromagnetic particle model (EMPM) for several years and have also reported our meaningful simulation results that revealed the essential physics involved in interaction of the solar wind with the Earth's magnetosphere using this EMPM (Nishikawa et al., 1995; Nishikawa, 1997, 1998a, b, 2001, 2002) in our PC cluster and supercomputer(D.S. Cai et al., 2001, 2003). Sash patterns and related phenomena have been observed and reported in some satellite observations (Fujumoto et al. 1997; Maynard, 2001), and have motivated 3D MHD simulations (White and al., 1998). We also investigated it with our global 3D parallelized HPF EMPM with dawnward IMF By (K.-I. Nishikawa, 1998) and recently new simulation with dusk-ward IMF By was accomplished in the new VPP5000 supercomputer. In the new simulations performed on the new VPP5000 supercomputer of Tsukuba University, we used larger domain size, 305×205×205, smaller grid size (Δ ), 0.5R E(the radium of the Earth), more total particle number, 220,000,000 (about 8 pairs per cell). At first, we run this code until we get the so-called quasi-stationary status; After the quasi-stationary status was established, we applied a northward IMF (B z=0.2), and then wait until the IMF arrives around the magnetopuase. After the arrival of IMF, we begin to change the IMF from northward to duskward (IMF B y=-0.2). The results revealed that the groove structure at the day-side magnetopause, that causes particle entry into inner magnetosphere and the cross structure or S-structure at near magneto-tail are formed. Moreover, in contrast with MHD simulations, kinetic characteristic of this event is also analyzed self-consistently with this simulation. The new simulation provides new and more detailed insights for the observed sash event.
New aspects of whistler waves driven by an electron beam studied by a 3-D electromagnetic code
NASA Technical Reports Server (NTRS)
Nishikawa, Ken-Ichi; Buneman, Oscar; Neubert, Torsten
1994-01-01
We have restudied electron beam driven whistler waves with a 3-D electromagnetic particle code. The simulation results show electromagnetic whistler wave emissions and electrostatic beam modes like those observed in the Spacelab 2 electron beam experiment. It has been suggested in the past that the spatial bunching of beam electrons associated with the beam mode may directly generate whistler waves. However, the simulation results indicate several inconsistencies with this picture: (1) whistler waves continue to be generated even after the beam mode space charge modulation looses its coherence, (2) the parallel (to the background magnetic field) wavelength of the whistler wave is longer than that of the beam instability, and (3) the parallel phase velocity of the whistler wave is smaller than that of the beam mode. The complex structure of the whistler waves in the vicinity of the beam suggest that the transverse motion (gyration) of the beam and background electrons is also involved in the generation of whistler waves.
NASA Astrophysics Data System (ADS)
Gao, J.; Zhang, H.
2015-12-01
Near surface geophysical exploration for the purpose of engineering design or construction For this reason, geophysical imaging demands a higher resolution and a better quantitative interpretation. Seismic travel time tomography and direct current resistivity tomography are two main methods for the near surface survey. Because of the limited coverage of observation system and the complex physical relationship between physical parameters and observations, individual geophysical method suffers issues of non-uniqueness and resolution limitation to some degree. We have developed a joint inversion method to combine seismic travel time tomography and full channel resistivity tomography. For the full channel resistivity survey, it uses two electrodes for power supply and all the other electrodes for recording. Compared with the traditional resistivity method, it collects more data and has a better model converge. Our joint inversion strategy relies on the structure constraint enforced through minimizing cross gradients between seismic velocity and resistivity models (Gallardo, 2003). For resistivity tomography, sensitivity kernels are obtained through the adjoint method by solving the electrostatic field equation with the finite-difference method. For seismic travel time tomography, ray paths and travel times are calculated using the fast marching method. We have tested our joint inversion method for a 2D cross-hole problem where two small zones with high and low velocity/resistivity anomalies. Seismic/electrical sources/receivers are installed in two boreholes. For separate seismic inversion, the smearing effect is evident and two anomaly zones are distorted and misplaced. For separate electric resistivity inversion, although two anomaly zones are positioned correctly their values are not accurate. By joint inversion, two velocity anomaly zones are clearly imaged and the smearing effect is greatly reduced. In comparison, for the resistivity model, the two anomaly zones
del Fernández-Alonso, María Carmen; Cañada, Javier; Jiménez-Barbero, Jesús; Cuevas, Gabriel
2005-04-01
Although the potential energy surface of highly symmetric cyclohexane has been extensively reviewed, no attention has been paid to the study of the effect of substitution of a methylene group by a heteroatom. The substitution may cause changes in molecular symmetry as well as the dipole moment, and the unshared electron pairs associated with the heteroatom may also introduce changes in molecular reactivity. However, these phenomena are not yet completely understood. To address these issues, a rigorous description of the inversion-topomerization process of methylcyclohexane and a revision of the conformational potential energy of oxane and thiane are presented. Moreover, the usefulness of providing a three-dimensional representation of these processes is discussed. In the case of methylcyclohexane, calculations show that three transition states are associated with inversion and four more with topomerization. In contrast, for oxane and thiane, only two transition states are involved with inversion and two with topomerization. Two fundamental conclusions can be drawn from this study. The first is that the inversion process occurs through elementary, stages that we have denoted "conformational elemental stages", which is an analogous term to that used for reaction mechanism description (minima-transition state-minima) where several elemental steps take place. The second conclusion is that two independent processes, inversion and topomerization, are connected by some common conformers. The inversion process controls the ring interchange, while topomerization allows exchange between skewed boats.
Koniges, A; Eder, E; Liu, W; Barnard, J; Friedman, A; Logan, G; Fisher, A; Masers, N; Bertozzi, A
2011-11-04
The Neutralized Drift Compression Experiment II (NDCX II) is an induction accelerator planned for initial commissioning in 2012. The final design calls for a 3 MeV, Li+ ion beam, delivered in a bunch with characteristic pulse duration of 1 ns, and transverse dimension of order 1 mm. The NDCX II will be used in studies of material in the warm dense matter (WDM) regime, and ion beam/hydrodynamic coupling experiments relevant to heavy ion based inertial fusion energy. We discuss recent efforts to adapt the 3D ALE-AMR code to model WDM experiments on NDCX II. The code, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR), has physics models that include ion deposition, radiation hydrodynamics, thermal diffusion, anisotropic material strength with material time history, and advanced models for fragmentation. Experiments at NDCX-II will explore the process of bubble and droplet formation (two-phase expansion) of superheated metal solids using ion beams. Experiments at higher temperatures will explore equation of state and heavy ion fusion beam-to-target energy coupling efficiency. Ion beams allow precise control of local beam energy deposition providing uniform volumetric heating on a timescale shorter than that of hydrodynamic expansion. The ALE-AMR code does not have any export control restrictions and is currently running at the National Energy Research Scientific Computing Center (NERSC) at LBNL and has been shown to scale well to thousands of CPUs. New surface tension models that are being implemented and applied to WDM experiments. Some of the approaches use a diffuse interface surface tension model that is based on the advective Cahn-Hilliard equations, which allows for droplet breakup in divergent velocity fields without the need for imposed perturbations. Other methods require seeding or other methods for droplet breakup. We also briefly discuss the effects of the move to exascale computing and related
A study of the earth radiation budget using a 3D Monte-Carlo radiative transer code
NASA Astrophysics Data System (ADS)
Okata, M.; Nakajima, T.; Sato, Y.; Inoue, T.; Donovan, D. P.
2013-12-01
The purpose of this study is to evaluate the earth's radiation budget when data are available from satellite-borne active sensors, i.e. cloud profiling radar (CPR) and lidar, and a multi-spectral imager (MSI) in the project of the Earth Explorer/EarthCARE mission. For this purpose, we first developed forward and backward 3D Monte Carlo radiative transfer codes that can treat a broadband solar flux calculation including thermal infrared emission calculation by k-distribution parameters of Sekiguchi and Nakajima (2008). In order to construct the 3D cloud field, we tried the following three methods: 1) stochastic cloud generated by randomized optical thickness each layer distribution and regularly-distributed tilted clouds, 2) numerical simulations by a non-hydrostatic model with bin cloud microphysics model and 3) Minimum cloud Information Deviation Profiling Method (MIDPM) as explained later. As for the method-2 (numerical modeling method), we employed numerical simulation results of Californian summer stratus clouds simulated by a non-hydrostatic atmospheric model with a bin-type cloud microphysics model based on the JMA NHM model (Iguchi et al., 2008; Sato et al., 2009, 2012) with horizontal (vertical) grid spacing of 100m (20m) and 300m (20m) in a domain of 30km (x), 30km (y), 1.5km (z) and with a horizontally periodic lateral boundary condition. Two different cell systems were simulated depending on the cloud condensation nuclei (CCN) concentration. In the case of horizontal resolution of 100m, regionally averaged cloud optical thickness,
Holford, D.J.
1994-01-01
This document is a user`s manual for the Rn3D finite element code. Rn3D was developed to simulate gas flow and radon transport in variably saturated, nonisothermal porous media. The Rn3D model is applicable to a wide range of problems involving radon transport in soil because it can simulate either steady-state or transient flow and transport in one-, two- or three-dimensions (including radially symmetric two-dimensional problems). The porous materials may be heterogeneous and anisotropic. This manual describes all pertinent mathematics related to the governing, boundary, and constitutive equations of the model, as well as the development of the finite element equations used in the code. Instructions are given for constructing Rn3D input files and executing the code, as well as a description of all output files generated by the code. Five verification problems are given that test various aspects of code operation, complete with example input files, FORTRAN programs for the respective analytical solutions, and plots of model results. An example simulation is presented to illustrate the type of problem Rn3D is designed to solve. Finally, instructions are given on how to convert Rn3D to simulate systems other than radon, air, and water.
Design optimization of axial flow hydraulic turbine runner: Part I - an improved Q3D inverse method
NASA Astrophysics Data System (ADS)
Peng, Guoyi; Cao, Shuliang; Ishizuka, Masaru; Hayama, Shinji
2002-06-01
With the aim of constructing a comprehensive design optimization procedure of axial flow hydraulic turbine, an improved quasi-three-dimensional inverse method has been proposed from the viewpoint of system and a set of rotational flow governing equations as well as a blade geometry design equation has been derived. The computation domain is firstly taken from the inlet of guide vane to the far outlet of runner blade in the inverse method and flows in different regions are solved simultaneously. So the influence of wicket gate parameters on the runner blade design can be considered and the difficulty to define the flow condition at the runner blade inlet is surmounted. As a pre-computation of initial blade design on S2m surface is newly adopted, the iteration of S1 and S2m surfaces has been reduced greatly and the convergence of inverse computation has been improved. The present model has been applied to the inverse computation of a Kaplan turbine runner. Experimental results and the direct flow analysis have proved the validation of inverse computation. Numerical investigations show that a proper enlargement of guide vane distribution diameter is advantageous to improve the performance of axial hydraulic turbine runner. Copyright
NASA Astrophysics Data System (ADS)
Schumacher, F.; Friederich, W.
2015-12-01
We present the modularized software package ASKI which is a flexible and extendable toolbox for seismic full waveform inversion (FWI) as well as sensitivity or resolution analysis operating on the sensitivity matrix. It utilizes established wave propagation codes for solving the forward problem and offers an alternative to the monolithic, unflexible and hard-to-modify codes that have typically been written for solving inverse problems. It is available under the GPL at www.rub.de/aski. The Gauss-Newton FWI method for 3D-heterogeneous elastic earth models is based on waveform sensitivity kernels and can be applied to inverse problems at various spatial scales in both Cartesian and spherical geometries. The kernels are derived in the frequency domain from Born scattering theory as the Fréchet derivatives of linearized full waveform data functionals, quantifying the influence of elastic earth model parameters on the particular waveform data values. As an important innovation, we keep two independent spatial descriptions of the earth model - one for solving the forward problem and one representing the inverted model updates. Thereby we account for the independent needs of spatial model resolution of forward and inverse problem, respectively. Due to pre-integration of the kernels over the (in general much coarser) inversion grid, storage requirements for the sensitivity kernels are dramatically reduced.ASKI can be flexibly extended to other forward codes by providing it with specific interface routines that contain knowledge about forward code-specific file formats and auxiliary information provided by the new forward code. In order to sustain flexibility, the ASKI tools must communicate via file output/input, thus large storage capacities need to be accessible in a convenient way. Storing the complete sensitivity matrix to file, however, permits the scientist full manual control over each step in a customized procedure of sensitivity/resolution analysis and full
Numerical modeling of the Linac4 negative ion source extraction region by 3D PIC-MCC code ONIX
NASA Astrophysics Data System (ADS)
Mochalskyy, S.; Lettry, J.; Minea, T.; Lifschitz, A. F.; Schmitzer, C.; Midttun, O.; Steyaert, D.
2013-02-01
At CERN, a high performance negative ion (NI) source is required for the 160 MeV H- linear accelerator Linac4. The source is planned to produce 80 mA of H- with an emittance of 0.25 mm mradN-RMS which is technically and scientifically very challenging. The optimization of the NI source requires a deep understanding of the underling physics concerning the production and extraction of the negative ions. The extraction mechanism from the negative ion source is complex involving a magnetic filter in order to cool down electrons' temperature. The ONIX (Orsay Negative Ion eXtraction) code is used to address this problem. The ONIX is a selfconsistent 3D electrostatic code using Particles-in-Cell Monte Carlo Collisions (PIC-MCC) approach. It was written to handle the complex boundary conditions between plasma, source walls, and beam formation at the extraction hole. Both, the positive extraction potential (25kV) and the magnetic field map are taken from the experimental set-up, in construction at CERN. This contribution focuses on the modeling of two different extractors (IS01, IS02) of the Linac4 ion sources. The most efficient extraction system is analyzed via numerical parametric studies. The influence of aperture's geometry and the strength of the magnetic filter field on the extracted electron and NI current will be discussed. The NI production of sources based on volume extraction and cesiated surface are also compared.
NASA Astrophysics Data System (ADS)
Kelbert, A.; Schultz, A.; Egbert, G.
2006-12-01
We address the non-linear ill-posed inverse problem of reconstructing the global three-dimensional distribution of electrical conductivity in Earth's mantle. The authors have developed a numerical regularized least-squares inverse solution based on the non-linear conjugate gradients approach. We apply this methodology to the most current low-frequency global observatory data set by Fujii &Schultz (2002), that includes c- and d-responses. We obtain 4-8 layer models satisfying the data. We then describe the features common to all these models and discuss the resolution of our method.
NASA Astrophysics Data System (ADS)
Nguyen, Nhu; Nguyen, Thi
2013-04-01
The Moho depth, crustal thickness and fault systems of the East Vietnam Sea (EVS) are determined by 3D interpretation of satellite gravity. The Moho depth is calculated by 3D Parker inversion from residual gravity anomaly that is obtained by removing the gravity effects of seafloor and Pre-Cenozoic sediment basement topographies from the free air anomaly. The 3D inversion solution is constrained by power density spectrum of gravity anomaly and seismic data. The calculated Moho depths in the EVS vary from 30-31 km near the coast to 9 km in the Central Basin. A map of the lithosphere extension factor in the Cenozoic is constructed from Moho and Pre-Cenozoic sediment basement depths. The fault systems constructed by the maximum horizontal gradient approach include NE-SW, NW-SE, and N-S oriented faults. Based on the interpretation results, the EVS is sub-divided into five structural zones which demonstrated the different characteristics of the crustal structure.
NASA Astrophysics Data System (ADS)
Sosa, Anibal; Thompson, Lennox; Velasco, Aaron A.; Romero, Rodrigo; Herrmann, Robert B.
2014-09-01
The Southern terminus of the Rio Grande Rift region has been poorly defined in the geologic record, with few seismic studies that provide information on the deeper Rift structure. In consequence, important questions related to tectonic and lithospheric activity of the Rio Grande Rift remain unresolved. To address some of these geological questions, we collect and analyze seismic data from 147 EarthScope Transportable Array (USArray) and other seismic stations in the region, to develop a 3-D crust and upper mantle velocity model. We apply a constrained optimization approach for joint inversion of surface wave and receiver functions using seismic S wave velocities as a model parameter. In particular, we compute receiver functions stacks based on ray parameter, and invert them jointly with collected surface wave group velocity dispersion observations. The inversions estimate 1-D seismic S-wave velocity profiles to 300 km depth, which are then interpolated to a 3-D velocity model using a Bayesian kriging scheme. Our 3-D models show a thin lower velocity crust anomaly along the southeastern Rio Grande Rift, a persistent low velocity anomaly underneath the Colorado Plateau and Basin and Range province, and another one at depth beneath the Jemez lineament, and the southern RGR.
NASA Astrophysics Data System (ADS)
Zhang, Ying-Ying; Liu, De-Jun; Ai, Qing-Hui; Qin, Min-Jun
2014-10-01
Electrical resistivity tomography using a steel cased borehole as a long electrode is an advanced technique for geoelectrical survey based on the conventional mise-à-la-masse measurement. In most previous works, the steel casing is simplified as a transmission line current source with an infinitely small radius and constant current density. However, in practical stratified formations with different resistivity values, the current density along the casing cannot be constant. In this study, the steel casing is modeled by a conductive physical volume that the casing occupies in the finite element mesh. The current supply point is set on the center of the top surface of the physical volume. Synthetic modeling, using both a homogenous and layered formation, demonstrates reasonability of the forward modeling method proposed herein. Based on this forward modeling method, the inversion procedure can be implemented by using a freeware R3t (Lancaster University, UK). Inversion results of synthetic modeling data match fairly well with the defined target location and validate that the method works on the inversion of the casing-surface electrical resistivity data. Finally, a field example of Changqing oil field in China is carried out using the inversion method to image water flooding results and to discover wells with great potential to enhance residual oil recovery.
NASA Astrophysics Data System (ADS)
Tsujimura, T., Ii; Kubo, S.; Takahashi, H.; Makino, R.; Seki, R.; Yoshimura, Y.; Igami, H.; Shimozuma, T.; Ida, K.; Suzuki, C.; Emoto, M.; Yokoyama, M.; Kobayashi, T.; Moon, C.; Nagaoka, K.; Osakabe, M.; Kobayashi, S.; Ito, S.; Mizuno, Y.; Okada, K.; Ejiri, A.; Mutoh, T.
2015-11-01
The central electron temperature has successfully reached up to 7.5 keV in large helical device (LHD) plasmas with a central high-ion temperature of 5 keV and a central electron density of 1.3× {{10}19} m-3. This result was obtained by heating with a newly-installed 154 GHz gyrotron and also the optimisation of injection geometry in electron cyclotron heating (ECH). The optimisation was carried out by using the ray-tracing code ‘LHDGauss’, which was upgraded to include the rapid post-processing three-dimensional (3D) equilibrium mapping obtained from experiments. For ray-tracing calculations, LHDGauss can automatically read the relevant data registered in the LHD database after a discharge, such as ECH injection settings (e.g. Gaussian beam parameters, target positions, polarisation and ECH power) and Thomson scattering diagnostic data along with the 3D equilibrium mapping data. The equilibrium map of the electron density and temperature profiles are then extrapolated into the region outside the last closed flux surface. Mode purity, or the ratio between the ordinary mode and the extraordinary mode, is obtained by calculating the 1D full-wave equation along the direction of the rays from the antenna to the absorption target point. Using the virtual magnetic flux surfaces, the effects of the modelled density profiles and the magnetic shear at the peripheral region with a given polarisation are taken into account. Power deposition profiles calculated for each Thomson scattering measurement timing are registered in the LHD database. The adjustment of the injection settings for the desired deposition profile from the feedback provided on a shot-by-shot basis resulted in an effective experimental procedure.
Kansa, E.J.
1989-01-01
The original scope of this task was to simulate the stresses and displacements of a hard rock tunnel experimental design using a suitable three-dimensional finite element code. NIKE3D was selected as a suitable code for performing these primarily approximate linearly elastic 3D analyses, but it required modifications to include initial stress, shear traction boundary condition and excavation options. During the summer of 1988, such capabilities were installed in a special version of NIKE3D. Subsequently, we verified both the LLNL's commonly used version of NIKE3D and our private modified version against the analytic solution for a spherical cavity in an elastic material deforming under a far-field uniaxial stress. We find the results produced by the unmodified and modified versions of NIKE3D to be in good agreement with the analytic solutions, except near the cavity, where the errors in the stress field are large. As can be expected from a code based on a displacement finite element formulation, the displacements are much more accurate than the stresses calculated from the 8-noded brick elements. To reduce these errors to acceptable levels, the grid must be refined further near the cavity wall. The level of grid refinement required to simulate accurately tunneling problems that do not have spatial symmetry in three dimensions using the current NIKE3D code is likely to exceed the memory capacity of the largest CRAY 1 computers at LLNL. 8 refs., 121 figs.
Wemhoff, A P; Burnham, A K
2006-04-05
Cross-comparison of the results of two computer codes for the same problem provides a mutual validation of their computational methods. This cross-validation exercise was performed for LLNL's ALE3D code and AKTS's Thermal Safety code, using the thermal ignition of HMX in two standard LLNL cookoff experiments: the One-Dimensional Time to Explosion (ODTX) test and the Scaled Thermal Explosion (STEX) test. The chemical kinetics model used in both codes was the extended Prout-Tompkins model, a relatively new addition to ALE3D. This model was applied using ALE3D's new pseudospecies feature. In addition, an advanced isoconversional kinetic approach was used in the AKTS code. The mathematical constants in the Prout-Tompkins code were calibrated using DSC data from hermetically sealed vessels and the LLNL optimization code Kinetics05. The isoconversional kinetic parameters were optimized using the AKTS Thermokinetics code. We found that the Prout-Tompkins model calculations agree fairly well between the two codes, and the isoconversional kinetic model gives very similar results as the Prout-Tompkins model. We also found that an autocatalytic approach in the beta-delta phase transition model does affect the times to explosion for some conditions, especially STEX-like simulations at ramp rates above 100 C/hr, and further exploration of that effect is warranted.
NASA Astrophysics Data System (ADS)
Cai, D.; Yan, X.; Lembege, B.; Nishikawa, K.
2003-12-01
We report a new progress in the long-term effort to represent the global interaction of the solar wind with the Earth's magnetosphere using a three-dimensional electromagnetic particle code with the improved resolutions using the HPF Tristan code. After a quasi-steady state is established with an unmagnetized solar wind we gradually switch on a northward interplanetary magnetic field (IMF), which causes a magnetic reconnection at the nightside cusps and the magnetosphere to be depolarized. In the case that the northward IMF is switched gradually to dawnward, there is no signature of reconnection in the near-Earth magnetotail as in the case with the southward turning. On the contrary analysis of magnetic fields in the magnetopause confirms a signature of magnetic reconnection at both the dawnside and duskside. And the plasma sheet in the near-Earth magnetotail clearly thins as in the case of southward turning. Arrival of dawnward IMF to the magnetopause creates a reconnection groove which cause particle entry into the deep region of the magnetosphere via field lines that go near the magnetopause. This deep connection is more fully recognized tailward of Earth. The flank weak-field fan joins onto the plasma sheet and the current sheet to form a geometrical feature called the cross-tail S that structurally integrates the magnetopause and the tail interior. This structure contributes to direct plasma entry between the magnetosheath to the inner magnetosphere and plasma sheet, in which the entry process heats the magnetosheath plasma to plasma sheet temperatures. These phenomena have been found by Cluster observations. Further investigation with Cluster observations will provide new insights for unsolved problems such as hot flow anomalies (HFAs), substorms, and storm-substorm relationship. 3-D movies with sash structure will be presented at the meeting.
NASA Astrophysics Data System (ADS)
Heincke, B.; Moorkamp, M.; Jegen, M.; Hobbs, R. W.
2012-12-01
Imaging of sub-basalt sediments with reflection seismic techniques is limited due to absorption, scattering and transmission effects and the presence of peg-leg multiples. Although many of the difficulties facing conventional seismic profiles can be overcome by recording long offset data resolution of sub-basalt sediments in seismic sections is typically still largely restricted. Therefore multi-parametric approaches in general and joint inversion strategies in particular (e.g. Colombo et al., 2008, Jordan et al., 2012) are considered as alternative to gain additional information from sub-basalt structures. Here, we combine in a 3-D joint inversion first-arrival time tomography, FTG gravity and MT data to identify the base basalt and resolve potential sediments underneath. For sub-basalt exploration the three methods complement each other such that the null space is reduced and significantly better resolved models can be obtained than would be possible by the individual methods: The seismic data gives a robust model for the supra-basalt sediments whilst the gravity field is dominated by the high density basalt and basement features. The MT on the other hand is sensitive to the conductivity in both the supra- and sub-basalt sediments. We will present preliminary individual and joint inversion result for a FTG, seismic and MT data set located in the Faroe-Shetland basin. Because the investigated area is rather large (~75 x 40 km) and the individual data sets are relatively huge, we use a joint inversion framework (see Moorkamp et al., 2011) which is designed to handle large amount of data/model parameters. This program has moreover the options to link the individual parameter models either petrophysically using fixed parameter relationships or structurally using the cross-gradient approach. The seismic data set consists of a pattern of 8 intersecting wide-angle seismic profiles with maximum offsets of up to ~24 km. The 3-D gravity data set (size :~ 30 x 30 km) is
Mahe, Charly; Chabal, Caroline
2013-07-01
The CEA has developed many compact characterization tools to follow sensitive operations in a nuclear environment. Usually, these devices are made to carry out radiological inventories, to prepare nuclear interventions or to supervise some special operations. These in situ measurement techniques mainly take place at different stages of clean-up operations and decommissioning projects, but they are also in use to supervise sensitive operations when the nuclear plant is still operating. In addition to this, such tools are often associated with robots to access very highly radioactive areas, and thus can be used in accident situations. Last but not least, the radiological data collected can be entered in 3D calculation codes used to simulate the doses absorbed by workers in real time during operations in a nuclear environment. Faced with these ever-greater needs, nuclear measurement instrumentation always has to involve on-going improvement processes. Firstly, this paper will describe the latest developments and results obtained in both gamma and alpha imaging techniques. The gamma camera has been used by the CEA since the 1990's and several changes have made this device more sensitive, more compact and more competitive for nuclear plant operations. It is used to quickly identify hot spots, locating irradiating sources from 50 keV to 1500 keV. Several examples from a wide field of applications will be presented, together with the very latest developments. The alpha camera is a new camera used to see invisible alpha contamination on several kinds of surfaces. The latest results obtained allow real time supervision of a glove box cleaning operation (for {sup 241}Am contamination). The detection principle as well as the main trials and results obtained will be presented. Secondly, this paper will focus on in situ gamma spectrometry methods developed by the CEA with compact gamma spectrometry probes (CdZnTe, LaBr{sub 3}, NaI, etc.). The radiological data collected is used
NASA Astrophysics Data System (ADS)
Davis, A. B.; Cahalan, R. F.
2001-05-01
The Intercomparison of 3D Radiation Codes (I3RC) is an on-going initiative involving an international group of over 30 researchers engaged in the numerical modeling of three-dimensional radiative transfer as applied to clouds. Because of their strong variability and extreme opacity, clouds are indeed a major source of uncertainty in the Earth's local radiation budget (at GCM grid scales). Also 3D effects (at satellite pixel scales) invalidate the standard plane-parallel assumption made in the routine of cloud-property remote sensing at NASA and NOAA. Accordingly, the test-cases used in I3RC are based on inputs and outputs which relate to cloud effects in atmospheric heating rates and in real-world remote sensing geometries. The main objectives of I3RC are to (1) enable participants to improve their models, (2) publish results as a community, (3) archive source code, and (4) educate. We will survey the status of I3RC and its plans for the near future with a special emphasis on the mathematical models and computational approaches. We will also describe some of the prime applications of I3RC's efforts in climate models, cloud-resolving models, and remote-sensing observations of clouds, or that of the surface in their presence. In all these application areas, computational efficiency is the main concern and not accuracy. One of I3RC's main goals is to document the performance of as wide a variety as possible of three-dimensional radiative transfer models for a small but representative number of ``cases.'' However, it is dominated by modelers working at the level of linear transport theory (i.e., they solve the radiative transfer equation) and an overwhelming majority of these participants use slow-but-robust Monte Carlo techniques. This means that only a small portion of the efficiency vs. accuracy vs. flexibility domain is currently populated by I3RC participants. To balance this natural clustering the present authors have organized a systematic outreach towards
Application of the Finite Orbit Width Version of the CQL3D Code to NBI +RF Heating of NSTX Plasma
NASA Astrophysics Data System (ADS)
Petrov, Yu. V.; Harvey, R. W.
2015-11-01
The CQL3D bounce-averaged Fokker-Planck (FP) code has been upgraded to include Finite-Orbit-Width (FOW) effects. The calculations can be done either with a fast Hybrid-FOW option or with a slower but neoclassically complete full-FOW option. The banana regime neoclassical radial transport appears naturally in the full-FOW version by averaging the local collision coefficients along guiding center orbits, with a proper transformation matrix from local (R, Z) coordinates to the midplane computational coordinates, where the FP equation is solved. In a similar way, the local quasilinear rf diffusion terms give rise to additional radial transport of orbits. The full-FOW version is applied to simulation of ion heating in NSTX plasma. It is demonstrated that it can describe the physics of transport phenomena in plasma with auxiliary heating, in particular, the enhancement of the radial transport of ions by RF heating and the occurrence of the bootstrap current. Because of the bounce-averaging on the FPE, the results are obtained in a relatively short computational time. A typical full-FOW run time is 30 min using 140 MPI cores. Due to an implicit solver, calculations with a large time step (tested up to dt = 0.5 sec) remain stable. Supported by USDOE grants SC0006614, ER54744, and ER44649.
NASA Astrophysics Data System (ADS)
Ballard, S.; Begnaud, M. L.; Hipp, J. R.; Chael, E. P.; Encarnacao, A.; Maceira, M.; Yang, X.; Young, C. J.; Phillips, W.
2013-12-01
SALSA3D is a global 3D P wave velocity model of the Earth's crust and mantle developed specifically to provide seismic event locations that are more accurate and more precise than are locations from 1D and 2.5D models. In this paper, we present the most recent version of our model, for the first time jointly derived from multiple types of data: body wave travel times, surface wave group velocities, and gravity. The latter two are added to provide information in areas with poor body wave coverage, and are down-weighted in areas where body wave coverage is good. To constrain the inversions, we invoked empirical relations among the density, S velocity, and P velocity. We demonstrate the ability of the new SALSA3D model to reduce mislocations and generate statistically robust uncertainty estimates for a large set of realizations derived from a carefully chosen set of globally-distributed ground truth events. We obtain path-dependent travel time prediction uncertainties for our model by computing the full 3D model covariance matrix of our tomographic system and integrating the model slowness variance and covariance along paths of interest. This approach yields very low travel time prediction uncertainties for well-sampled paths through the Earth and higher uncertainties for paths that are poorly represented in the data set used to develop the model. While the calculation of path-dependent prediction uncertainties with this approach is computationally expensive, uncertainties can be pre-computed for a network of stations and stored in 3D lookup tables that can be quickly and efficiently interrogated using GeoTess software.
Whirley, R.G.; Engelmann, B.E.
1993-11-01
This report is the User Manual for the 1993 version of DYNA3D, and also serves as a User Guide. DYNA3D is a nonlinear, explicit, finite element code for analyzing the transient dynamic response of three-dimensional solids and structures. The code is fully vectorized and is available on several computer platforms. DYNA3D includes solid, shell, beam, and truss elements to allow maximum flexibility in modeling physical problems. Many material models are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects, and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding and single surface contact. Rigid materials provide added modeling flexibility. A material model driver with interactive graphics display is incorporated into DYNA3D to permit accurate modeling of complex material response based on experimental data. Along with the DYNA3D Example Problem Manual, this document provides the information necessary to apply DYNA3D to solve a wide range of engineering analysis problems.
Feher, L.; Link, G.; Thumm, M.
1996-12-31
Precise knowledge of millimeter-wave oven properties and design studies have to be obtained by 3D numerical field calculations. A simulation code solving the electromagnetic field problem based on a covariant raytracing scheme (MiRa-Code) has been developed. Time dependent electromagnetic field-material interactions during sintering as well as the heat transfer processes within the samples has been investigated. A numerical code solving the nonlinear heat transfer problem due to millimeter-wave heating has been developed (THESIS3D-Code). For a self consistent sintering simulation, a zip interface between both codes exchanging the time advancing fields and material parameters is implemented. Recent results and progress on calculations of field distributions in large overmoded resonators as well as results on modeling heating of materials with millimeter waves are presented in this paper. The calculations are compared to experiments.
NASA Astrophysics Data System (ADS)
Martin, Roland; Monteiller, Vadim; Chevrot, Sébastien; Wang, Yi; Komatitsch, Dimitri; Dufréchou, Grégory
2015-04-01
We describe here a method of inversion applied to seismic data sets constrained by gravity data at the regional scale. This will allow us to obtain robust models of P and S wave velocities but also of density, providing key constraints on the composition and thermal state of the lithosphere. Our approach relies on teleseimic waves, which illuminate the medium from below. We have developped a hybrid method in which a wave propagation method at the global scale (DSM/Direct solution method) is coupled with a spectral element method at the regional scale (Monteiller et al. 2013). With the spectral element method, we are able to model the 3D wave propagation effects in a computational domain of 400km long x 400km wide and 200 km deep, for an incident teleseismic wavefront introduced at the boundaries of this domain with periods as short as 2 s. The DSM global method allows to compute this incident field for a spherical Earth model. We use a multi-scale joint inversion of both gravity and seismic waveform data, accounting for the long wavelengths of the gravity field taken from a global model. In terms of inversion technique, we have validated an adjoint method for the inversion of seismic waveforms. An optimized BFGS inversion technique is used to minimize the difference between observed and computed full waveforms. The gradient of the misfit function gives the direction over which the model must be perturbed to minimize this difference. At each step of the inversion procedure we choose an optimal step length that accelerates the minimization. This is the crucial ingredient that allows us to build an efficient iterative full waveform inversion. We have extended this method by incorporating gravity data provided by the BGI/Bureau Gravimétrique International into the inversion. If the waveforms allow us to constrain the seismic velocities, they are less sensitive to the structure in density, which gives independent and crucial information to constrain the nature of rocks
Speidel, M; Hatt, C; Tomkowiak, M; Raval, A; Funk, T
2014-06-15
Purpose: To develop a method for the fusion of 3D echocardiography and Scanning-Beam Digital X-ray (SBDX) fluoroscopy to assist with catheter device and soft tissue visualization during interventional procedures. Methods: SBDX is a technology for low-dose inverse geometry x-ray fluoroscopy that performs digital tomosynthesis at multiple planes in real time. In this study, transesophageal echocardiography (TEE) images were fused with SBDX images by estimating the 3D position and orientation (the “pose”) of the TEE probe within the x-ray coordinate system and then spatially transforming the TEE image data to match this pose. An initial pose estimate was obtained through tomosynthesis-based 3D localization of points along the probe perimeter. Position and angle estimates were then iteratively refined by comparing simulated projections of a 3D probe model against SBDX x-ray images. Algorithm performance was quantified by imaging a TEE probe in different known orientations and locations within the x-ray field (0-30 degree tilt angle, up to 50 mm translation). Fused 3D TEE/SBDX imaging was demonstrated by imaging a tissue-mimicking polyvinyl alcohol cylindrical cavity as a catheter was navigated along the cavity axis. Results: Detected changes in probe tilt angle agreed with the known changes to within 1.2 degrees. For a 50 mm translation along the source-detector axis, the detected translation was 50.3 mm. Errors for in-plane translations ranged from 0.1 to 0.9 mm. In a fused 3D TEE/SBDX display, the catheter device was well visualized and coincident with the device shadow in the TEE images. The TEE images portrayed phantom boundaries that were not evident under x-ray. Conclusion: Registration of soft tissue anatomy derived from TEE imaging and device imaging from SBDX x-ray fluoroscopy is feasible. The simultaneous 3D visualization of these two modalities may be useful in interventional procedures involving the navigation of devices to soft tissue anatomy.
3D Lithospheric Imaging by Time-Domain Full-Waveform Inversion of Teleseismic Body-Waves
NASA Astrophysics Data System (ADS)
Beller, S.; Monteiller, V.; Operto, S.; Nolet, G.; Combe, L.; Metivier, L.; Virieux, J.; Nissen-Meyer, T.; Paul, A.
2014-12-01
With the deployment of dense seismic arrays and the continuous growth of computing facilities, full-waveform inversion (FWI) of teleseismic data has become a method of choice for high-resolution lithospheric imaging. FWI can be recast as a local optimization problem that seeks to estimate Earth's elastic properties by iteratively minimizing the misfit function between observed and modeled seismograms.In passive teleseismic configurations, the seismic source no longer corresponds to a point source embedded in the targeted medium but rather corresponds to a wavefront incoming from the outside of the model. We develop a 3-dimensional time-domain full-waveform inversion program that is more designed for this configuration. The gradient of the misfit function is efficiently computed with the adjoint-state method. A velocity-stress finite-difference time-domain modeling engine, which is interfaced with the so-called total-field/scattered-field method, is used to propagate in the targeted medium the incident wavefield inferred from a global Earth simulation (AxiSEM). Such interfacing is required to account for the multiple arrivals in the incoming wavefield and the sphericity of the Earth. Despite the limited number of nearly plane-wave sources, the interaction of the incident wavefield with the topography (P-Sv conversions and P-P reflections acting as secondary sources) provides a suitable framework to record both transmitted wavefields and reflected wavefields from lithospheric reflectors. These recordings of both transmitted and reflected waves makes FWI amenable to a broadband-wavenumber (i.e., high resolution) reconstruction of the lithosphere.Feasibility of the method is assessed with a realistic synthetic model representative of the Western Alps. One key issue is the estimation of the temporal source excitation, as there might be some trade-off between the source estimation and the subsurface update. To avoid being trapped in a local minimum, we follow a
NASA Astrophysics Data System (ADS)
Voznyuk, I.; Litman, A.; Tortel, H.
2015-08-01
A Quasi-Newton method for reconstructing the constitutive parameters of three-dimensional (3D) penetrable scatterers from scattered field measurements is presented. This method is adapted for handling large-scale electromagnetic problems while keeping the memory requirement and the time flexibility as low as possible. The forward scattering problem is solved by applying the finite-element tearing and interconnecting full-dual-primal (FETI-FDP2) method which shares the same spirit as the domain decomposition methods for finite element methods. The idea is to split the computational domain into smaller non-overlapping sub-domains in order to simultaneously solve local sub-problems. Various strategies are proposed in order to efficiently couple the inversion algorithm with the FETI-FDP2 method: a separation into permanent and non-permanent subdomains is performed, iterative solvers are favorized for resolving the interface problem and a marching-on-in-anything initial guess selection further accelerates the process. The computational burden is also reduced by applying the adjoint state vector methodology. Finally, the inversion algorithm is confronted to measurements extracted from the 3D Fresnel database.
NASA Astrophysics Data System (ADS)
Uzkeda, Hodei; Bulnes, Mayte; Poblet, Josep; García-Ramos, José Carlos; Piñuela, Laura
2016-09-01
We constructed a geological map, a 3D model and cross-sections, carried out a structural analysis, determined the stress fields and tectonic transport vectors, restored a cross section and performed a subsidence analysis to unravel the kinematic evolution of the NE emerged portion of the Asturian Basin (NW Iberian Peninsula), where Jurassic rocks crop out. The major folds run NW-SE, normal faults exhibit three dominant orientations: NW-SE, NE-SW and E-W, and thrusts display E-W strikes. After Upper Triassic-Lower Jurassic thermal subsidence, Middle Jurassic doming occurred, accompanied by normal faulting, high heat flow and basin uplift, followed by Upper Jurassic high-rate basin subsidence. Another extensional event, possibly during Late Jurassic-Early Cretaceous, caused an increment in the normal faults displacement. A contractional event, probably of Cenozoic age, led to selective and irregularly distributed buttressing and fault reactivation as reverse or strike-slip faults, and folding and/or offset of some previous faults by new generation folds and thrusts. The Middle Jurassic event could be a precursor of the Bay of Biscay and North Atlantic opening that occurred from Late Jurassic to Early Cretaceous, whereas the Cenozoic event would be responsible for the Pyrenean and Cantabrian ranges and the partial closure of the Bay of Biscay.
NASA Technical Reports Server (NTRS)
Topol, David A.
1999-01-01
TFaNS is the Tone Fan Noise Design/Prediction System developed by Pratt & Whitney under contract to NASA Lewis (presently NASA Glenn). The purpose of this system is to predict tone noise emanating from a fan stage including the effects of reflection and transmission by the rotor and stator and by the duct inlet and nozzle. These effects have been added to an existing annular duct/isolated stator noise prediction capability. TFaNS consists of: The codes that compute the acoustic properties (reflection and transmission coefficients) of the various elements and write them to files. Cup3D: Fan Noise Coupling Code that reads these files, solves the coupling problem, and outputs the desired noise predictions. AWAKEN: CFD/Measured Wake Postprocessor which reformats CFD wake predictions and/or measured wake data so it can be used by the system. This volume of the report provides technical background for TFaNS including the organization of the system and CUP3D technical documentation. This document also provides information for code developers who must write Acoustic Property Files in the CUP3D format. This report is divided into three volumes: Volume I: System Description, CUP3D Technical Documentation, and Manual for Code Developers; Volume II: User's Manual, TFaNS Vers. 1.4; Volume III: Evaluation of System Codes.
Shim3d Helmholtz Solution Package
2009-01-29
This suite of codes solves the Helmholtz Equation for the steady-state propagation of single-frequency electromagnetic radiation in an arbitrary 2D or 3D dielectric medium. Materials can be either transparent or absorptive (including metals) and are described entirely by their shape and complex dielectric constant. Dielectric boundaries are assumed to always fall on grid boundaries and the material within a single grid cell is considered to be uniform. Input to the problem is in the formmore » of a Dirichlet boundary condition on a single boundary, and may be either analytic (Gaussian) in shape, or a mode shape computed using a separate code (such as the included eigenmode solver vwave20), and written to a file. Solution is via the finite difference method using Jacobi iteration for 3D problems or direct matrix inversion for 2D problems. Note that 3D problems that include metals will require different iteration parameters than described in the above reference. For structures with curved boundaries not easily modeled on a rectangular grid, the auxillary codes helmholtz11(2D), helm3d (semivectoral), and helmv3d (full vectoral) are provided. For these codes the finite difference equations are specified on a topological regular triangular grid and solved using Jacobi iteration or direct matrix inversion as before. An automatic grid generator is supplied.« less
Test Problems for Reactive Flow HE Model in the ALE3D Code and Limited Sensitivity Study
Gerassimenko, M.
2000-03-01
We document quick running test problems for a reactive flow model of HE initiation incorporated into ALE3D. A quarter percent change in projectile velocity changes the outcome from detonation to HE burn that dies down. We study the sensitivity of calculated HE behavior to several parameters of practical interest where modeling HE initiation with ALE3D.
Camargo-Junior, Franklin; Ackermann, Marko; Loss, Jefferson F; Sacco, Isabel C N
2013-12-01
The aim of this study was to investigate the effect of errors in the location of the center of pressure (5 and 10 mm) on lower limb joint moment uncertainties at different gait velocities (1.0, 1.5, and 2.0 m/s). Our hypotheses were that the absolute joint moment uncertainties would be gradually reduced from distal to proximal joints and from higher to lower velocities. Joint moments of five healthy young adults were calculated by inverse dynamics using the bottom-up approach, depending on which estimate the uncertainty propagated. Results indicated that there is a linear relationship between errors in center of pressure and joint moment uncertainties. The absolute moment peak uncertainties expressed on the anatomic reference frames decreased from distal to proximal joints, confirming our first hypothesis, except for the abduction moments. There was an increase in moment uncertainty (up to 0.04 N m/kg for the 10 mm error in the center of pressure) from the lower to higher gait velocity, confirming our second hypothesis, although, once again, not for hip or knee abduction. Finally, depending on the plane of movement and the joint, relative uncertainties experienced variation (between 5 and 31%), and the knee joint moments were the most affected.
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.
1990-01-01
The development and applications of multiblock/multizone and adaptive grid methodologies for solving the three-dimensional simplified Navier-Stokes equations are described. Adaptive grid and multiblock/multizone approaches are introduced and applied to external and internal flow problems. These new implementations increase the capabilities and flexibility of the PAB3D code in solving flow problems associated with complex geometry.
Numerical model of water flow and solute accumulation in vertisols using HYDRUS 2D/3D code
NASA Astrophysics Data System (ADS)
Weiss, Tomáš; Dahan, Ofer; Turkeltub, Tuvia
2015-04-01
boundary to the wall of the crack (so that the solute can accumulate due to evaporation on the crack block wall, and infiltrating fresh water can push the solute further down) - in order to do so, HYDRUS 2D/3D code had to be modified by its developers. Unconventionally, the main fitting parameters were: parameter a and n in the soil water retention curve and saturated hydraulic conductivity. The amount of infiltrated water (within a reasonable range), the infiltration function in the crack and the actual evaporation from the crack were also used as secondary fitting parameters. The model supports the previous findings that significant amount (~90%) of water from rain events must infiltrate through the crack. It was also noted that infiltration from the crack has to be increasing with depth and that the highest infiltration rate should be somewhere between 1-3m. This paper suggests a new way how to model vertisols in semi-arid regions. It also supports the previous findings about vertisols: especially, the utmost importance of soil cracks as preferential pathways for water and contaminants and soil cracks as deep evaporators.
Oldenburg, Amy L.; Yu, Xiao; Gilliss, Thomas; Alabi, Oluwafemi; Taylor, Russell M.; Troester, Melissa A.
2015-01-01
The progression of breast cancer is known to be affected by stromal cells within the local microenvironment. Here we study the effect of stromal fibroblasts on the in-place motions (motility) of mammary epithelial cells within organoids in 3D co-culture, inferred from the speckle fluctuation spectrum using optical coherence tomography (OCT). In contrast to Brownian motion, mammary cell motions exhibit an inverse power-law fluctuation spectrum. We introduce two complementary metrics for quantifying fluctuation spectra: the power-law exponent and a novel definition of the motility amplitude, both of which are signal- and position-independent. We find that the power-law exponent and motility amplitude are positively (p<0.001) and negatively (p<0.01) correlated with the density of stromal cells in 3D co-culture, respectively. We also show how the hyperspectral data can be visualized using these metrics to observe heterogeneity within organoids. This constitutes a simple and powerful tool for detecting and imaging cellular functional changes with OCT. PMID:26973862
Wang, Aijun; Liu, Wenfang; Tang, Junjie; Chen, Sheng-Li; Dong, Peng
2014-04-15
A photonic bandgap (PBG) extension of surface-disordered 3D photonic crystals (PCs) based on the TiO2 inverse opal (TiO2-IO) architecture has been demonstrated. By using a liquid phase deposition (LPD) process based on the controlled hydrolysis of ammonium hexafluorotitanate and boric acid, an extra layer of TiO2 nanoparticles were deposited onto the internal surface of the air voids in the TiO2-IOs to increase their surface roughness, thereby introducing surface disorder in the 3D order structures. The PBG relative width of surface-disordered TiO2-IOs has been broadened significantly, and, compared to the original TiO2-IO, its largest rate of increase (27%) has been obtained. It was found that the PBG relative width increased rapidly at first and then to a much slower rate of change with increase of the duration of the LPD time. A possible cause for this finding is discussed in this Letter. PMID:24978999
NASA Astrophysics Data System (ADS)
Brasse, Heinrich; Schäfer, Anja; Díaz, Daniel; Alvarado, Guillermo E.; Muñoz, Angélica; Mütschard, Lutz
2015-11-01
A long-period magnetotelluric (MT) experiment was conducted in early 2009 in western Nicaragua to study the electrical resistivity and thus fluid/melt distribution at the Central American continental margin where the Cocos plate subducts beneath the Caribbean plate. Strike analysis yields a preference direction perpendicular to the profile, with moderate deviation from two-dimensionality, however. Two-dimensional modeling maps the sediments of the Nicaraguan Depression and a high-conductivity zone in the mid-crust, slightly offset from the arc. Further conductors are modeled in the backarc. However, these features are probably artifacts when a 2-D program is applied to data which show moderate 3-D characteristics. 3-D inversion clarifies the situation, and the major remaining conductive structure is now quasi directly beneath the volcanic chain and interpreted as a deep-seated magma deposit. Conductivity in the backarc is also relatively high and may either be caused by still existing partial melts beneath the Paleocene to Miocene volcanic arcs or by related metallic deposits in the aureoles of hydrothermal alteration.
NASA Astrophysics Data System (ADS)
Sass, Paul; Ritter, Oliver; Rybin, Anatolii; Batalev, Vladislav
2013-04-01
Many geodynamic processes governing intra-continental collisional orogeny are largely unexplained and controversial. A key question is the state and dynamic behaviour of the lithosphere at middle and lower crustal levels while continental collision progresses. The Pamir - Tien Shan region in Central Asia may be the best location on Earth to study such lithospheric deformation processes in situ. The mountain ranges and high plateaus formed at the tip of the north-western Indian promontory through the Cenozoic experienced rates of shortening similar to the adjacent Himalaya-Tibet system. Today, the Pamir - Tien Shan orogenic belt hosts some of the deepest active intra-continental subduction zones on Earth and absorbs the highest strain rate over the shortest distance that is manifested in the India-Asia collision zone. The multi-disciplinary Tien Shan - Pamir Geodynamic Program (TIPAGE) was designed to address some of the geodynamic key questions in this region. A magnetotelluric (MT) survey was carried out in concert with other geophysical and geological observations in Kyrgyzstan and Tajikistan, predominantly along a 350 km long and 50 km wide corridor from southern Tajikistan to Osh in Kyrgyzstan across the Pamir Plateau and southern Tien Shan mountain ranges. In total we recorded MT data at 178 stations, 26 of them combine long-period and broad band recordings. We present and compare 2D and 3D MT inversion results. Strike analysis of the data revealed an overall mean geo-electric strike direction consistent with the predominant tectonic trends. 2D inversion yields a reasonable data fit, with exception of some sites which exhibit phases above 90 degrees. 3D inversion was carried out with the ModEM package. We inverted for all four impedance tensor components and the vertical magnetic transfer functions. Topography was also included. The 3D models are generally in agreement with the 2D results but achieve a better data fit, particularly phases which could not be
NASA Astrophysics Data System (ADS)
Sass, P.; Ritter, O.; Rybin, A.; Batalev, V.
2012-12-01
Many geodynamic processes governing intra-continental collisional orogeny are largely unexplained and controversial. A key question is the state and dynamic behaviour of the lithosphere at middle and lower crustal levels while continental collision progresses. The Pamir - Tien Shan region in Central Asia may be the best location on Earth to study such lithospheric deformation processes in situ. The mountain ranges and high plateaus formed at the tip of the north-western Indian promontory through the Cenozoic experienced rates of shortening similar to the adjacent Himalaya-Tibet system. Today, the Pamir - Tien Shan orogenic belt hosts some of the deepest active intra-continental subduction zones on Earth and absorbs the highest strain rate over the shortest distance that is manifested in the India-Asia collision zone. The multi-disciplinary Tien Shan - Pamir Geodynamic Program (TIPAGE) was designed to address some of the geodynamic key questions in this region. A magnetotelluric (MT) survey was carried out in concert with other geophysical and geological observations in Kyrgyzstan and Tajikistan, predominantly along a 350 km long and 50 km wide corridor from southern Tajikistan to Osh in Kyrgyzstan across the Pamir Plateau and southern Tien Shan mountain ranges. In total we recorded MT data at 178 stations, 26 of them combine long-period and broad band recordings. We present and compare 2D and 3D MT inversion results. Strike analysis of the data revealed an overall mean geo-electric strike direction consistent with the predominant tectonic trends. 2D inversion yields a reasonable data fit, with exception of some sites which exhibit phases above 90 degrees. 3D inversion was carried out with the ModEM package. We inverted for all four impedance tensor components and the vertical magnetic transfer functions. Topography was also included. The 3D models are generally in agreement with the 2D results but achieve a better data fit, particularly phases which could not be
Hallquist, J.O.
1981-01-01
A user's manual is provided for NIKE3D, a fully implicit three-dimensional finite element code for analyzing the large deformation static and dynamic response of inelastic solids. A contact-impact algorithm permits gaps and sliding along material interfaces. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node constant pressure solid elements. Bandwidth minimization is optional. Post-processors for NIKE3D include GRAPE for plotting deformed shapes and stress contours and DYNAP for plotting time histories.
NASA Astrophysics Data System (ADS)
Mashayekhi, Parisa; Ghorbani-Dashtaki, Shoja; Mosaddeghi, Mohammad Reza; Shirani, Hossein; Nodoushan, Ali Reza Mohammadi
2016-04-01
In this study, HYDRUS-2D/3D was used to simulate ponded infiltration through double-ring infiltrometers into a hypothetical loamy soil profile. Twelve scenarios of inverse modelling (divided into three groups) were considered for estimation of Mualem-van Genuchten hydraulic parameters. In the first group, simulation was carried out solely using cumulative infiltration data. In the second group, cumulative infiltration data plus water content at h = -330 cm (field capacity) were used as inputs. In the third group, cumulative infiltration data plus water contents at h = -330 cm (field capacity) and h = -15 000 cm (permanent wilting point) were used simultaneously as predictors. The results showed that numerical inverse modelling of the double-ring infiltrometer data provided a reliable alternative method for determining soil hydraulic parameters. The results also indicated that by reducing the number of hydraulic parameters involved in the optimization process, the simulation error is reduced. The best one in infiltration simulation which parameters α, n, and Ks were optimized using the infiltration data and field capacity as inputs. Including field capacity as additional data was important for better optimization/definition of soil hydraulic functions, but using field capacity and permanent wilting point simultaneously as additional data increased the simulation error.
NASA Astrophysics Data System (ADS)
von Hebel, Christian; Rudolph, Sebastian; Huisman, Johan A.; van der Kruk, Jan; Vereecken, Harry
2013-04-01
three different coil offsets in HCP and VCP measurement modes. This resulted in six high spatial resolution data sets of approximately 60000 measurements with different sensing depths. A 5 m block-kriging was applied to all six data sets to re-grid the sampling points on the same regular grid. For each grid node, the six measured apparent conductivities were used in a three-layer inversion. The three-layer inversion results of electrical conductivity thus obtained were used to derive a three-dimensional (3D) model of subsurface heterogeneity, which clearly indicated lateral and vertical conductivity changes of the subsurface that are related to changes in soil texture and soil water content.
NASA Astrophysics Data System (ADS)
Liang, Q.; Chen, C.; Kaban, M. K.; Thomas, M.
2014-12-01
Mantle density structure is a key for tectonics. The density variations in the upper mantle are affected by temperature and composition. Seismic tomography method has been widely applied to obtain the P- and S-wave velocity structure in the mantle, which is then used to calculate the density perturbation. However, the velocity model is mainly due to the thermal effects but not the compositional effects. A method of 3-D inversion of gravity anomaly developed in spherical coordinates is used to image the large-scale density structure of upper mantle in Southeast Asia. The mantle gravity anomalies used in inversion are calculated by removing the crustal effects from the observed gravity. With constraints of thermal density model from seismic tomography, the integrative density structure is estimated from gravity inversion. Consequently, we obtain the compositional density by subtracting the thermal density from the integrative structure. The result of inversion shows the anisotropic composition of subduction zones, Cratons and plates boundary in Southeast Asia. In the shallow depth, the compositional density anomalies of large scales present uniform features in oceanic and continental mantle. In depth of 75-175 km, there are differences between the thermal and the compositional variations. The density anomalies at these depths are both affected by temperature and composition of the upper mantle. Below 175-km depth, the density anomalies are dominated by the compositional variations. Furthermore, comparing with high seismicity occurred at moderate-depth (50-300 km), we found that the compositional density variations is one of the factor that inducing earthquakes. The constrained inversion of mantle gravity anomaly has possibility to reveal the subduction which is not clearly seen from low-resolution tomography data, and may reveal the relation of seismicity and composition in the upper mantle. This study is supported by the Program of International Science and
NASA Astrophysics Data System (ADS)
Afonso, J. C.; Fullea, J.; Yang, Y.; Connolly, J. A. D.; Jones, A. G.
2013-04-01
Here we present a 3-D multi-observable probabilistic inversion method, particularly designed for high-resolution (regional) thermal and compositional mapping of the lithosphere and sub-lithospheric upper mantle that circumvents the problems associated with traditional inversion methods. The key aspects of the method are as follows: (a) it exploits the increasing amount and quality of geophysical datasets; (b) it combines multiple geophysical observables (Rayleigh and Love dispersion curves, body-wave tomography, magnetotelluric, geothermal, petrological, gravity, elevation, and geoid) with different sensitivities to deep/shallow, thermal/compositional anomalies into a single thermodynamic-geophysical framework; (c) it uses a general probabilistic (Bayesian) formulation to appraise the data; (d) no initial model is needed; (e) compositional a priori information relies on robust statistical analyses of a large database of natural mantle samples; and (f) it provides a natural platform to estimate realistic uncertainties. In addition, the modular nature of the method/algorithm allows for incorporating or isolating specific forward operators according to available data. The strengths and limitations of the method are thoroughly explored with synthetic models. It is shown that the a posteriori probability density function (i.e., solution to the inverse problem) satisfactorily captures spatial variations in bulk composition and temperature with high resolution, as well as sharp discontinuities in these fields. Our results indicate that only temperature anomalies of ΔT ⪆150°C and large compositional anomalies of ΔMg# > 3 (or bulk ΔAl2O3 > 1.5) can be expected to be resolved simultaneously when combining high-quality geophysical data. This resolving power is sufficient to explore some long-standing problems regarding the nature and evolution of the lithosphere (e.g., vertical stratification of cratonic mantle, compositional versus temperature signatures in seismic
NASA Astrophysics Data System (ADS)
Afonso, J. C.; Fullea, J.; Griffin, W. L.; Yang, Y.; Jones, A. G.; D. Connolly, J. A.; O'Reilly, S. Y.
2013-05-01
of natural mantle samples collected from different tectonic settings (xenoliths, abyssal peridotites, ophiolite samples, etc.). This strategy relaxes more typical and restrictive assumptions such as the use of local/limited xenolith data or compositional regionalizations based on age-composition relations. We demonstrate that the combination of our ρ(m) with a L(m) that exploits the differential sensitivities of specific geophysical observables provides a general and robust inference platform to address the thermochemical structure of the lithosphere and sublithospheric upper mantle. An accompanying paper deals with the integration of these two functions into a general 3-D multiobservable Bayesian inversion method and its computational implementation.
S. Ethier; Z. Lin
2003-09-15
Several years of optimization on the super-scalar architecture has made it more difficult to port the current version of the 3D particle-in-cell code GTC to the CRAY/NEC SX-6 vector architecture. This paper explains the initial work that has been done to port this code to the SX-6 computer and to optimize the most time consuming parts. Early performance results are shown and compared to the same test done on the IBM SP Power 3 and Power 4 machines.
McBride, Cory L. (Elemental Technologies, American Fort, UT); Yarberry, Victor R.; Schmidt, Rodney Cannon; Meyers, Ray J.
2006-11-01
This report describes the SummitView 1.0 computer code developed at Sandia National Laboratories. SummitView is designed to generate a 3D solid model, amenable to visualization and meshing, that represents the end state of a microsystem fabrication process such as the SUMMiT (Sandia Ultra-Planar Multilevel MEMS Technology) V process. Functionally, SummitView performs essentially the same computational task as an earlier code called the 3D Geometry modeler [1]. However, because SummitView is based on 2D instead of 3D data structures and operations, it has significant speed and robustness advantages. As input it requires a definition of both the process itself and the collection of individual 2D masks created by the designer and associated with each of the process steps. The definition of the process is contained in a special process definition file [2] and the 2D masks are contained in MEM format files [3]. The code is written in C++ and consists of a set of classes and routines. The classes represent the geometric data and the SUMMiT V process steps. Classes are provided for the following process steps: Planar Deposition, Planar Etch, Conformal Deposition, Dry Etch, Wet Etch and Release Etch. SummitView is built upon the 2D Boolean library GBL-2D [4], and thus contains all of that library's functionality.
A multi-grid code for 3-D transonic potential flow about axisymmetric inlets at angle of attack
NASA Technical Reports Server (NTRS)
Mccarthy, D. R.; Reyhner, T. A.
1980-01-01
In the present work, an existing transonic potential code is adapted to utilize the Multiple Level Adaptive technique proposed by A. Brandt. It is shown that order of magnitude improvements in speed and greatly improved accuracy over the unmodified code are achieved. Consideration is given to the difficulties of multi-grid programming, and possible future applications are surveyed.
Solwnd: A 3D Compressible MHD Code for Solar Wind Studies. Version 1.0: Cartesian Coordinates
NASA Technical Reports Server (NTRS)
Deane, Anil E.
1996-01-01
Solwnd 1.0 is a three-dimensional compressible MHD code written in Fortran for studying the solar wind. Time-dependent boundary conditions are available. The computational algorithm is based on Flux Corrected Transport and the code is based on the existing code of Zalesak and Spicer. The flow considered is that of shear flow with incoming flow that perturbs this base flow. Several test cases corresponding to pressure balanced magnetic structures with velocity shear flow and various inflows including Alfven waves are presented. Version 1.0 of solwnd considers a rectangular Cartesian geometry. Future versions of solwnd will consider a spherical geometry. Some discussions of this issue is presented.
NASA Astrophysics Data System (ADS)
Luciani, S.; LeNiliot, C.
2008-11-01
Two-phase and boiling flow instabilities are complex, due to phase change and the existence of several interfaces. To fully understand the high heat transfer potential of boiling flows in microscale's geometry, it is vital to quantify these transfers. To perform this task, an experimental device has been designed to observe flow patterns. Analysis is made up by using an inverse method which allows us to estimate the local heat transfers while boiling occurs inside a microchannel. In our configuration, the direct measurement would impair the accuracy of the searched heat transfer coefficient because thermocouples implanted on the surface minichannels would disturb the established flow. In this communication, we are solving a 3D IHCP which consists in estimating using experimental data measurements the surface temperature and the surface heat flux in a minichannel during convective boiling under several gravity levels (g, 1g, 1.8g). The considered IHCP is formulated as a mathematical optimization problem and solved using the boundary element method (BEM).
Analysis of the beam halo in negative ion sources by using 3D3V PIC code.
Miyamoto, K; Nishioka, S; Goto, I; Hatayama, A; Hanada, M; Kojima, A; Hiratsuka, J
2016-02-01
The physical mechanism of the formation of the negative ion beam halo and the heat loads of the multi-stage acceleration grids are investigated with the 3D PIC (particle in cell) simulation. The following physical mechanism of the beam halo formation is verified: The beam core and the halo consist of the negative ions extracted from the center and the periphery of the meniscus, respectively. This difference of negative ion extraction location results in a geometrical aberration. Furthermore, it is shown that the heat loads on the first acceleration grid and the second acceleration grid are quantitatively improved compared with those for the 2D PIC simulation result.
Analysis of the beam halo in negative ion sources by using 3D3V PIC code.
Miyamoto, K; Nishioka, S; Goto, I; Hatayama, A; Hanada, M; Kojima, A; Hiratsuka, J
2016-02-01
The physical mechanism of the formation of the negative ion beam halo and the heat loads of the multi-stage acceleration grids are investigated with the 3D PIC (particle in cell) simulation. The following physical mechanism of the beam halo formation is verified: The beam core and the halo consist of the negative ions extracted from the center and the periphery of the meniscus, respectively. This difference of negative ion extraction location results in a geometrical aberration. Furthermore, it is shown that the heat loads on the first acceleration grid and the second acceleration grid are quantitatively improved compared with those for the 2D PIC simulation result. PMID:26932006
NASA Astrophysics Data System (ADS)
Suzuki, W.; Aoi, S.; Maeda, T.; Sekiguchi, H.; Kunugi, T.
2013-12-01
Source inversion analysis using near-source strong-motion records with an assumption of 1-D underground structure models has revealed the overall characteristics of the rupture process of the 2011 Tohoku-Oki mega-thrust earthquake. This assumption for the structure model is acceptable because the seismic waves radiated during the Tohoku-Oki event were rich in the very-low-frequency contents lower than 0.05 Hz, which are less affected by the small-scale heterogeneous structure. The analysis using more reliable Green's functions even in the higher-frequency range considering complex structure of the subduction zone will illuminate more detailed rupture process in space and time and the transition of the frequency dependence of the wave radiation for the Tohoku-Oki earthquake. In this study, we calculate the near-source Green's functions using a 3-D underground structure model and perform the source inversion analysis using them. The 3-D underground structure model used in this study is the Japan Integrated Velocity Structure Model (Headquarters for Earthquake Research Promotion, 2012). A curved fault model on the Pacific plate interface is discretized into 287 subfaults at ~20 km interval. The Green's functions are calculated using GMS (Aoi et al., 2004), which is a simulation program package for the seismic wave field by the finite difference method using discontinuous grids (Aoi and Fujiwara, 1999). Computational region is 136-146.2E in longitude, 34-41.6N in latitude, and 0-100 km in depth. The horizontal and vertical grid intervals are 200 m and 100 m, respectively, for the shallower region and those for the deeper region are tripled. The number of the total grids is 2.1 billion. We derive 300-s records by calculating 36,000 steps with a time interval of 0.0083 second (120 Hz sampling). It takes nearly one hour to compute one case using 48 Graphics Processing Units (GPU) on TSUBAME2.0 supercomputer owned by Tokyo Institute of Technology. In total, 574 cases are
NASA Astrophysics Data System (ADS)
Liang, Liang; Martin, Caitlin; Wang, Qian; Sun, Wei; Duncan, James
2016-03-01
Aortic valve (AV) disease is a significant cause of morbidity and mortality. The preferred treatment modality for severe AV disease is surgical resection and replacement of the native valve with either a mechanical or tissue prosthetic. In order to develop effective and long-lasting treatment methods, computational analyses, e.g., structural finite element (FE) and computational fluid dynamic simulations, are very effective for studying valve biomechanics. These computational analyses are based on mesh models of the aortic valve, which are usually constructed from 3D CT images though many hours of manual annotation, and therefore an automatic valve shape reconstruction method is desired. In this paper, we present a method for estimating the aortic valve shape from 3D cardiac CT images, which is represented by triangle meshes. We propose a pipeline for aortic valve shape estimation which includes novel algorithms for building local shape dictionaries and for building landmark detectors and curve detectors using local shape dictionaries. The method is evaluated on real patient image dataset using a leave-one-out approach and achieves an average accuracy of 0.69 mm. The work will facilitate automatic patient-specific computational modeling of the aortic valve.
NASA Astrophysics Data System (ADS)
Palma, V.; Carli, M.; Neri, A.
2011-02-01
In this paper a Multi-view Distributed Video Coding scheme for mobile applications is presented. Specifically a new fusion technique between temporal and spatial side information in Zernike Moments domain is proposed. Distributed video coding introduces a flexible architecture that enables the design of very low complex video encoders compared to its traditional counterparts. The main goal of our work is to generate at the decoder the side information that optimally blends temporal and interview data. Multi-view distributed coding performance strongly depends on the side information quality built at the decoder. At this aim for improving its quality a spatial view compensation/prediction in Zernike moments domain is applied. Spatial and temporal motion activity have been fused together to obtain the overall side-information. The proposed method has been evaluated by rate-distortion performances for different inter-view and temporal estimation quality conditions.
Shapiro, A.B.
1983-08-01
The computer code FACET calculates the radiation geometric view factor (alternatively called shape factor, angle factor, or configuration factor) between surfaces for axisymmetric, two-dimensional planar and three-dimensional geometries with interposed third surface obstructions. FACET was developed to calculate view factors for input to finite-element heat-transfer analysis codes. The first section of this report is a brief review of previous radiation-view-factor computer codes. The second section presents the defining integral equation for the geometric view factor between two surfaces and the assumptions made in its derivation. Also in this section are the numerical algorithms used to integrate this equation for the various geometries. The third section presents the algorithms used to detect self-shadowing and third-surface shadowing between the two surfaces for which a view factor is being calculated. The fourth section provides a user's input guide followed by several example problems.
Development of a 3D FEL code for the simulation of a high-gain harmonic generation experiment.
Biedron, S. G.
1999-02-26
Over the last few years, there has been a growing interest in self-amplified spontaneous emission (SASE) free-electron lasers (FELs) as a means for achieving a fourth-generation light source. In order to correctly and easily simulate the many configurations that have been suggested, such as multi-segmented wigglers and the method of high-gain harmonic generation, we have developed a robust three-dimensional code. The specifics of the code, the comparison to the linear theory as well as future plans will be presented.
O'Dwyer, Colm
2016-07-01
For consumer electronic devices, long-life, stable, and reasonably fast charging Li-ion batteries with good stable capacities are a necessity. For exciting and important advances in the materials that drive innovations in electrochemical energy storage (EES), modular thin-film solar cells, and wearable, flexible technology of the future, real-time analysis and indication of battery performance and health is crucial. Here, developments in color-coded assessment of battery material performance and diagnostics are described, and a vision for using electro-photonic inverse opal materials and all-optical probes to assess, characterize, and monitor the processes non-destructively in real time are outlined. By structuring any cathode or anode material in the form of a photonic crystal or as a 3D macroporous inverse opal, color-coded "chameleon" battery-strip electrodes may provide an amenable way to distinguish the type of process, the voltage, material and chemical phase changes, remaining capacity, cycle health, and state of charge or discharge of either existing or new materials in Li-ion or emerging alternative battery types, simply by monitoring its color change. PMID:26784012
O'Dwyer, Colm
2016-07-01
For consumer electronic devices, long-life, stable, and reasonably fast charging Li-ion batteries with good stable capacities are a necessity. For exciting and important advances in the materials that drive innovations in electrochemical energy storage (EES), modular thin-film solar cells, and wearable, flexible technology of the future, real-time analysis and indication of battery performance and health is crucial. Here, developments in color-coded assessment of battery material performance and diagnostics are described, and a vision for using electro-photonic inverse opal materials and all-optical probes to assess, characterize, and monitor the processes non-destructively in real time are outlined. By structuring any cathode or anode material in the form of a photonic crystal or as a 3D macroporous inverse opal, color-coded "chameleon" battery-strip electrodes may provide an amenable way to distinguish the type of process, the voltage, material and chemical phase changes, remaining capacity, cycle health, and state of charge or discharge of either existing or new materials in Li-ion or emerging alternative battery types, simply by monitoring its color change.
NASA Astrophysics Data System (ADS)
Chen, Yangkang; Huang, Weilin; Zhang, Dong; Chen, Wei
2016-10-01
Simultaneous seismic data denoising and reconstruction is a currently popular research subject in modern reflection seismology. Traditional rank-reduction based 3D seismic data denoising and reconstruction algorithm will cause strong residual noise in the reconstructed data and thus affect the following processing and interpretation tasks. In this paper, we propose an improved rank-reduction method by modifying the truncated singular value decomposition (TSVD) formula used in the traditional method. The proposed approach can help us obtain nearly perfect reconstruction performance even in the case of low signal-to-noise ratio (SNR). The proposed algorithm is tested via one synthetic and field data examples. Considering that seismic data interpolation and denoising source packages are seldom in the public domain, we also provide a program template for the rank-reduction based simultaneous denoising and reconstruction algorithm by providing an open-source Matlab package.
Bergeron, Andre; Caruge, Daniel; Clement, Philippe
2001-04-15
The physical validation compared with the hydraulic and two-phase flow experiments of the thermal-hydraulic FLICA-IV nuclear core computer code, in the case of a pressurized water reactor is presented. This three-dimensional two-phase flow code is devoted to steady state and transient thermal-hydraulic analysis of nuclear reactor cores. The four balance equations used by the code and the closure relationships are first presented. Then, the facilities employed for the code validation are described. They are the ones that use either laser velocimetry techniques in the case of hydraulic validation to measure accurately the flow field around rods or isokinetic sampling to carry out the qualities and the axial mass velocities at the outlet of a rod bundle in the case of two-phase flow validation. Comparisons between experimental and computed values are then presented for the axial flow blockage simulation, inlet assemblies flow mixing, axial flow spacer grid disturbance, and an outlet rod bundle map of qualities and axial mass velocities.
Modeling the physical structure of star-forming regions with LIME, a 3D radiative transfer code
NASA Astrophysics Data System (ADS)
Quénard, D.; Bottinelli, S.; Caux, E.
2016-05-01
The ability to predict line emission is crucial in order to make a comparison with observations. From LTE to full radiative transfer codes, the goal is always to derive the most accurately possible the physical properties of the source. Non-LTE calculations can be very time consuming but are needed in most of the cases since many studied regions are far from LTE.
Dynamic 3D shape of the plantar surface of the foot using coded structured light: a technical report
2014-01-01
Background The foot provides a crucial contribution to the balance and stability of the musculoskeletal system, and accurate foot measurements are important in applications such as designing custom insoles/footwear. With better understanding of the dynamic behavior of the foot, dynamic foot reconstruction techniques are surfacing as useful ways to properly measure the shape of the foot. This paper presents a novel design and implementation of a structured-light prototype system providing dense three dimensional (3D) measurements of the foot in motion. The input to the system is a video sequence of a foot during a single step; the output is a 3D reconstruction of the plantar surface of the foot for each frame of the input. Methods Engineering and clinical tests were carried out to test the accuracy and repeatability of the system. Accuracy experiments involved imaging a planar surface from different orientations and elevations and measuring the fitting errors of the data to a plane. Repeatability experiments were done using reconstructions from 27 different subjects, where for each one both right and left feet were reconstructed in static and dynamic conditions over two different days. Results The static accuracy of the system was found to be 0.3 mm with planar test objects. In tests with real feet, the system proved repeatable, with reconstruction differences between trials one week apart averaging 2.4 mm (static case) and 2.8 mm (dynamic case). Conclusion The results obtained in the experiments show positive accuracy and repeatability results when compared to current literature. The design also shows to be superior to the systems available in the literature in several factors. Further studies need to be done to quantify the reliability of the system in clinical environments. PMID:24456711
NASA Astrophysics Data System (ADS)
Macquet, Marie; Paul, Anne; Pedersen, Helle A.; Villaseñor, Antonio; Chevrot, Sébastien; Sylvander, Matthieu; Wolyniec, David; Pyrope Working Group
2014-10-01
The lithospheric architecture of the Pyrenees is still uncertain and highly debated. Here, we provide new constraints from a high-resolution 3-D S-wave velocity model of the Pyrenees and the adjacent foreland basins. This model is obtained from ambient noise tomography on records of temporary and permanent seismic arrays installed in southwestern France and northern Spain. We first computed group velocity maps for Rayleigh waves in the 5 to 55 s period range using noise correlation stacks at 1500-8500 station pairs. As the crust is very heterogeneous, poor results were obtained using a single starting model in a linearized inversion of group velocity dispersion curves for the shear wave structure. We therefore built a starting model for each grid node by full exploration of the model space. The resulting 3-D shear wave velocity model is compared to data from previous geophysical studies as a validation test. Despite the poor sensitivity of surface waves to seismic discontinuities, the geometry of the top of the basement and the Moho depth are retrieved well, except along the Cantabrian coast. Major reflectors of the ECORS deep seismic sounding profiles in the central and western Pyrenees coincide with sharp velocity gradients in our velocity model. We retrieve the difference between the thicker Iberian crust and the thinner European crust, the presence of low-velocity material of the Iberian crust underthrust beneath the European crust in the central Pyrenees, and the structural dissymmetry between the South Pyrenean Zone and the North Pyrenean Zone at the shallow crustal level. In the Labourd-Mauléon-Arzacq region (western Pyrenees), there is a high S-wave velocity anomaly at 20-30 km in depth, which might explain the positive Bouguer anomaly of the Labourd Massif. This high-velocity lower crust, which is also detected beneath the Parentis area, might be an imprint of the Albian-Aptian rifting phase. The southeastern part of the Massif Central has an unusual
Davis, Jean-Paul
2005-03-01
INVICE (INVerse analysis of Isentropic Compression Experiments) is a FORTRAN computer code that implements the inverse finite-difference method to analyze velocity data from isentropic compression experiments. This report gives a brief description of the methods used and the options available in the first beta version of the code, as well as instructions for using the code.
NASA Astrophysics Data System (ADS)
Harvey, R. W. (Bob); Petrov, Yu. V.; Jaeger, E. F.; Berry, L. A.; Bonoli, P. T.; Bader, A.
2015-11-01
A time-dependent simulation of C-Mod pulsed ICRF power is made calculating minority hydrogen ion distribution functions with the CQL3D-Hybrid-FOW finite-orbit-width Fokker-Planck code. ICRF fields are calculated with the AORSA full wave code, and RF diffusion coefficients are obtained from these fields using the DC Lorentz gyro-orbit code. Prior results with a zero-banana-width simulation using the CQL3D/AORSA/DC time-cycles showed a pronounced enhancement of the H distribution in the perpendicular velocity direction compared to results obtained from Stix's quasilinear theory, in general agreement with experiment. The present study compares the new FOW results, including relevant gyro-radius effects, to determine the importance of these effects on the the NPA synthetic diagnostic time-dependence. The new NPA results give increased agreement with experiment, particularly in the ramp-down time after the ICRF pulse. Funded, through subcontract with Massachusetts Institute of Technology, by USDOE sponsored SciDAC Center for Simulation of Wave-Plasma Interactions.
Initial Self-Consistent 3D Electron-Cloud Simulations of the LHC Beam with the Code WARP+POSINST
Vay, J; Furman, M A; Cohen, R H; Friedman, A; Grote, D P
2005-10-11
We present initial results for the self-consistent beam-cloud dynamics simulations for a sample LHC beam, using a newly developed set of modeling capability based on a merge [1] of the three-dimensional parallel Particle-In-Cell (PIC) accelerator code WARP [2] and the electron-cloud code POSINST [3]. Although the storage ring model we use as a test bed to contain the beam is much simpler and shorter than the LHC, its lattice elements are realistically modeled, as is the beam and the electron cloud dynamics. The simulated mechanisms for generation and absorption of the electrons at the walls are based on previously validated models available in POSINST [3, 4].
TRAC code assessment using data from SCTF Core-III, a large-scale 2D/3D facility
Boyack, B.E.; Shire, P.R.; Harmony, S.C.; Rhee, G.
1988-01-01
Nine tests from the SCTF Core-III configuration have been analyzed using TRAC-PF1/MOD1. The objectives of these assessment activities were to obtain a better understanding of the phenomena occurring during the refill and reflood phases of a large-break loss-of-coolant accident, to determine the accuracy to which key parameters are calculated, and to identify deficiencies in key code correlations and models that provide closure for the differential equations defining thermal-hydraulic phenomena in pressurized water reactors. Overall, the agreement between calculated and measured values of peak cladding temperature is reasonable. In addition, TRAC adequately predicts many of the trends observed in both the integral effect and separate effect tests conducted in SCTF Core-III. The importance of assessment activities that consider potential contributors to discrepancies between the measured and calculated results arising from three sources are described as those related to (1) knowledge about the facility configuration and operation, (2) facility modeling for code input, and (3) deficiencies in code correlations and models. An example is provided. 8 refs., 7 figs., 2 tabs.
NASA Astrophysics Data System (ADS)
Favier, L.; Zwinger, T.; Gillet-Chaulet, F.; Durand, G.; Gagliardini, O.
2012-04-01
Ice discharge and grounding line retreat in West Antarctica have been accelerated during the last decades. One of the most striking example is Pine Island Glacier (PIG) which accelerated dramatically over the last 30 years. Such rapid changes in this part of Antarctica are due to large modifications of ice dynamics which are nevertheless poorly understood, and badly represented in numerical models, as pointed out by the IPCC fourth assessment report. Here, a 3D full-Stokes model of a marine ice sheet is used to carry out prognostic simulations of PIG over the next two centuries. The flow problem is coupled with the evolution of the upper and lower free surfaces, and the position of the grounding line is determined by solving the contact problem between the ice-shelf/ice-sheet lower surface and the bedrock. The upper and lower surfaces, and the bathymetry provided on a 1 km grid (courtesy of A. Le Brocq) are used to produce the initial geometry of the entire PIG basin. The mesh refinement is a function of the surface velocities (also provided on a 1 km grid by A. Le Brocq) Hessian matrix and the distance to the grounding line. Surface velocities are also used to infer the basal drag through the resolution of an inverse Robin problem. The initial surface is first relaxed and the results are compared to the observed current surface elevation, surface velocity and change in surface elevation. A perturbation experiment is then performed for which the whole ice-shelf is instantaneously removed. This test can be seen as a worst case scenario as all the buttressing induced by the ice shelf is lost instantaneously. The effect of the ice-shelf disintegration for the following two centuries is discussed in terms of grounding line retreat and increase in sea level.
NASA Astrophysics Data System (ADS)
Lebedeva-Ivanova, Nina; Gaina, Carmen; Minakov, Alexander; Kashubin, Sergey
2016-04-01
We derived Moho depth and crustal thickness for the High Arctic region by 3D forward and inverse gravity modelling method in the spectral domain (Minakov et al. 2012) using lithosphere thermal gravity anomaly correction (Alvey et al., 2008); a vertical density variation for the sedimentary layer and lateral crustal variation density. Recently updated grids of bathymetry (Jakobsson et al., 2012), gravity anomaly (Gaina et al, 2011) and dynamic topography (Spasojevic & Gurnis, 2012) were used as input data for the algorithm. TeMAr sedimentary thickness grid (Petrov et al., 2013) was modified according to the most recently published seismic data, and was re-gridded and utilized as input data. Other input parameters for the algorithm were calibrated using seismic crustal scale profiles. The results are numerically compared with publically available grids of the Moho depth and crustal thickness for the High Arctic region (CRUST 1 and GEMMA global grids; the deep Arctic Ocean grids by Glebovsky et al., 2013) and seismic crustal scale profiles. The global grids provide coarser resolution of 0.5-1.0 geographic degrees and not focused on the High Arctic region. Our grids better capture all main features of the region and show smaller error in relation to the seismic crustal profiles compare to CRUST 1 and GEMMA grids. Results of 3D gravity modelling by Glebovsky et al. (2013) with separated geostructures approach show also good fit with seismic profiles; however these grids cover the deep part of the Arctic Ocean only. Alvey A, Gaina C, Kusznir NJ, Torsvik TH (2008). Integrated crustal thickness mapping and plate recon-structions for the high Arctic. Earth Planet Sci Lett 274:310-321. Gaina C, Werner SC, Saltus R, Maus S (2011). Circum-Arctic mapping project: new magnetic and gravity anomaly maps of the Arctic. Geol Soc Lond Mem 35, 39-48. Glebovsky V.Yu., Astafurova E.G., Chernykh A.A., Korneva M.A., Kaminsky V.D., Poselov V.A. (2013). Thickness of the Earth's crust in the
Cheng, H.S.; Rohatgi, U.S.
1993-06-01
An investigation was made of the potential for thermal-hydraulic instabilities coupled to neutronic feedback in a BWR due to a two recirculation pump trip event using the RAMONA-4B computer code with 3D neutron kinetics. It is concluded that a high-power (100%) and low-flow (75%) initial condition would most likely lead to in-phase density wave oscillations after the tripping of both recirculation pumps, and that RAMONA-4B is capable of predicting such thermal-hydraulic instabilities coupled to neutronic feedback in BWR and in SBWR.
Implementation and validation of a Reynolds stress model in the COMMIX-1C/RSM and CAPS-3D/RSM codes
Chang, F.C.; Bottoni, M.
1995-08-01
A Reynolds stress model (RSM) of turbulence, based on seven transport equations, has been linked to the COMMIX-1C/RSM and CAPS-3D/RSM computer codes. Six of the equations model the transport of the components of the Reynolds stress tensor and the seventh models the dissipation of turbulent kinetic energy. When a fluid is heated, four additional transport equations are used: three for the turbulent heat fluxes and one for the variance of temperature fluctuations. All of the analytical and numerical details of the implementation of the new turbulence model are documented. The model was verified by simulation of homogeneous turbulence.
UCODE, a computer code for universal inverse modeling
Poeter, E.P.; Hill, M.C.
1999-01-01
This article presents the US Geological Survey computer program UCODE, which was developed in collaboration with the US Army Corps of Engineers Waterways Experiment Station and the International Ground Water Modeling Center of the Colorado School of Mines. UCODE performs inverse modeling, posed as a parameter-estimation problem, using nonlinear regression. Any application model or set of models can be used; the only requirement is that they have numerical (ASCII or text only) input and output files and that the numbers in these files have sufficient significant digits. Application models can include preprocessors and postprocessors as well as models related to the processes of interest (physical, chemical and so on), making UCODE extremely powerful for model calibration. Estimated parameters can be defined flexibly with user-specified functions. Observations to be matched in the regression can be any quantity for which a simulated equivalent value can be produced, thus simulated equivalent values are calculated using values that appear in the application model output files and can be manipulated with additive and multiplicative functions, if necessary. Prior, or direct, information on estimated parameters also can be included in the regression. The nonlinear regression problem is solved by minimizing a weighted least-squares objective function with respect to the parameter values using a modified Gauss-Newton method. Sensitivities needed for the method are calculated approximately by forward or central differences and problems and solutions related to this approximation are discussed. Statistics are calculated and printed for use in (1) diagnosing inadequate data or identifying parameters that probably cannot be estimated with the available data, (2) evaluating estimated parameter values, (3) evaluating the model representation of the actual processes and (4) quantifying the uncertainty of model simulated values. UCODE is intended for use on any computer operating
A fully-neoclassical finite-orbit-width version of the CQL3D Fokker-Planck code
NASA Astrophysics Data System (ADS)
Petrov, Yu V.; Harvey, R. W.
2016-11-01
The time-dependent bounce-averaged CQL3D flux-conservative finite-difference Fokker-Planck equation (FPE) solver has been upgraded to include finite-orbit-width (FOW) capabilities which are necessary for an accurate description of neoclassical transport, losses to the walls, and transfer of particles, momentum, and heat to the scrape-off layer. The FOW modifications are implemented in the formulation of the neutral beam source, collision operator, RF quasilinear diffusion operator, and in synthetic particle diagnostics. The collisional neoclassical radial transport appears naturally in the FOW version due to the orbit-averaging of local collision coefficients coupled with transformation coefficients from local (R, Z) coordinates along each guiding-center orbit to the corresponding midplane computational coordinates, where the FPE is solved. In a similar way, the local quasilinear RF diffusion terms give rise to additional radial transport of orbits. We note that the neoclassical results are obtained for ‘full’ orbits, not dependent on a common small orbit-width approximation. Results of validation tests for the FOW version are also presented.
NASA Technical Reports Server (NTRS)
Walitt, L.
1982-01-01
The VANS successive approximation numerical method was extended to the computation of three dimensional, viscous, transonic flows in turbomachines. A cross-sectional computer code, which conserves mass flux at each point of the cross-sectional surface of computation was developed. In the VANS numerical method, the cross-sectional computation follows a blade-to-blade calculation. Numerical calculations were made for an axial annular turbine cascade and a transonic, centrifugal impeller with splitter vanes. The subsonic turbine cascade computation was generated in blade-to-blade surface to evaluate the accuracy of the blade-to-blade mode of marching. Calculated blade pressures at the hub, mid, and tip radii of the cascade agreed with corresponding measurements. The transonic impeller computation was conducted to test the newly developed locally mass flux conservative cross-sectional computer code. Both blade-to-blade and cross sectional modes of calculation were implemented for this problem. A triplet point shock structure was computed in the inducer region of the impeller. In addition, time-averaged shroud static pressures generally agreed with measured shroud pressures. It is concluded that the blade-to-blade computation produces a useful engineering flow field in regions of subsonic relative flow; and cross-sectional computation, with a locally mass flux conservative continuity equation, is required to compute the shock waves in regions of supersonic relative flow.
3D differential phase contrast microscopy
NASA Astrophysics Data System (ADS)
Chen, Michael; Tian, Lei; Waller, Laura
2016-03-01
We demonstrate three-dimensional (3D) optical phase and amplitude reconstruction based on coded source illumination using a programmable LED array. Multiple stacks of images along the optical axis are computed from recorded intensities captured by multiple images under off-axis illumination. Based on the first Born approximation, a linear differential phase contrast (DPC) model is built between 3D complex index of refraction and the intensity stacks. Therefore, 3D volume reconstruction can be achieved via a fast inversion method, without the intermediate 2D phase retrieval step. Our system employs spatially partially coherent illumination, so the transverse resolution achieves twice the NA of coherent systems, while axial resolution is also improved 2× as compared to holographic imaging.
MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data
NASA Astrophysics Data System (ADS)
Key, Kerry
2016-08-01
This work presents MARE2DEM, a freely available code for 2-D anisotropic inversion of magnetotelluric (MT) data and frequency-domain controlled-source electromagnetic (CSEM) data from onshore and offshore surveys. MARE2DEM parameterizes the inverse model using a grid of arbitrarily shaped polygons, where unstructured triangular or quadrilateral grids are typically used due to their ease of construction. Unstructured grids provide significantly more geometric flexibility and parameter efficiency than the structured rectangular grids commonly used by most other inversion codes. Transmitter and receiver components located on topographic slopes can be tilted parallel to the boundary so that the simulated electromagnetic fields accurately reproduce the real survey geometry. The forward solution is implemented with a goal-oriented adaptive finite element method that automatically generates and refines unstructured triangular element grids that conform to the inversion parameter grid, ensuring accurate responses as the model conductivity changes. This dual-grid approach is significantly more efficient than the conventional use of a single grid for both the forward and inverse meshes since the more detailed finite element meshes required for accurate responses do not increase the memory requirements of the inverse problem. Forward solutions are computed in parallel with a highly efficient scaling by partitioning the data into smaller independent modeling tasks consisting of subsets of the input frequencies, transmitters and receivers. Non-linear inversion is carried out with a new Occam inversion approach that requires fewer forward calls. Dense matrix operations are optimized for memory and parallel scalability using the ScaLAPACK parallel library. Free parameters can be bounded using a new non-linear transformation that leaves the transformed parameters nearly the same as the original parameters within the bounds, thereby reducing non-linear smoothing effects. Data
MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data
NASA Astrophysics Data System (ADS)
Key, Kerry
2016-10-01
This work presents MARE2DEM, a freely available code for 2-D anisotropic inversion of magnetotelluric (MT) data and frequency-domain controlled-source electromagnetic (CSEM) data from onshore and offshore surveys. MARE2DEM parametrizes the inverse model using a grid of arbitrarily shaped polygons, where unstructured triangular or quadrilateral grids are typically used due to their ease of construction. Unstructured grids provide significantly more geometric flexibility and parameter efficiency than the structured rectangular grids commonly used by most other inversion codes. Transmitter and receiver components located on topographic slopes can be tilted parallel to the boundary so that the simulated electromagnetic fields accurately reproduce the real survey geometry. The forward solution is implemented with a goal-oriented adaptive finite-element method that automatically generates and refines unstructured triangular element grids that conform to the inversion parameter grid, ensuring accurate responses as the model conductivity changes. This dual-grid approach is significantly more efficient than the conventional use of a single grid for both the forward and inverse meshes since the more detailed finite-element meshes required for accurate responses do not increase the memory requirements of the inverse problem. Forward solutions are computed in parallel with a highly efficient scaling by partitioning the data into smaller independent modeling tasks consisting of subsets of the input frequencies, transmitters and receivers. Non-linear inversion is carried out with a new Occam inversion approach that requires fewer forward calls. Dense matrix operations are optimized for memory and parallel scalability using the ScaLAPACK parallel library. Free parameters can be bounded using a new non-linear transformation that leaves the transformed parameters nearly the same as the original parameters within the bounds, thereby reducing non-linear smoothing effects. Data
2013-10-01
Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.
Deciphering the genetic regulatory code using an inverse error control coding framework.
Rintoul, Mark Daniel; May, Elebeoba Eni; Brown, William Michael; Johnston, Anna Marie; Watson, Jean-Paul
2005-03-01
We have found that developing a computational framework for reconstructing error control codes for engineered data and ultimately for deciphering genetic regulatory coding sequences is a challenging and uncharted area that will require advances in computational technology for exact solutions. Although exact solutions are desired, computational approaches that yield plausible solutions would be considered sufficient as a proof of concept to the feasibility of reverse engineering error control codes and the possibility of developing a quantitative model for understanding and engineering genetic regulation. Such evidence would help move the idea of reconstructing error control codes for engineered and biological systems from the high risk high payoff realm into the highly probable high payoff domain. Additionally this work will impact biological sensor development and the ability to model and ultimately develop defense mechanisms against bioagents that can be engineered to cause catastrophic damage. Understanding how biological organisms are able to communicate their genetic message efficiently in the presence of noise can improve our current communication protocols, a continuing research interest. Towards this end, project goals include: (1) Develop parameter estimation methods for n for block codes and for n, k, and m for convolutional codes. Use methods to determine error control (EC) code parameters for gene regulatory sequence. (2) Develop an evolutionary computing computational framework for near-optimal solutions to the algebraic code reconstruction problem. Method will be tested on engineered and biological sequences.
Gifford, Kent A; Wareing, Todd A; Failla, Gregory; Horton, John L; Eifel, Patricia J; Mourtada, Firas
2009-12-03
A patient dose distribution was calculated by a 3D multi-group S N particle transport code for intracavitary brachytherapy of the cervix uteri and compared to previously published Monte Carlo results. A Cs-137 LDR intracavitary brachytherapy CT data set was chosen from our clinical database. MCNPX version 2.5.c, was used to calculate the dose distribution. A 3D multi-group S N particle transport code, Attila version 6.1.1 was used to simulate the same patient. Each patient applicator was built in SolidWorks, a mechanical design package, and then assembled with a coordinate transformation and rotation for the patient. The SolidWorks exported applicator geometry was imported into Attila for calculation. Dose matrices were overlaid on the patient CT data set. Dose volume histograms and point doses were compared. The MCNPX calculation required 14.8 hours, whereas the Attila calculation required 22.2 minutes on a 1.8 GHz AMD Opteron CPU. Agreement between Attila and MCNPX dose calculations at the ICRU 38 points was within +/- 3%. Calculated doses to the 2 cc and 5 cc volumes of highest dose differed by not more than +/- 1.1% between the two codes. Dose and DVH overlays agreed well qualitatively. Attila can calculate dose accurately and efficiently for this Cs-137 CT-based patient geometry. Our data showed that a three-group cross-section set is adequate for Cs-137 computations. Future work is aimed at implementing an optimized version of Attila for radiotherapy calculations.
3D Elastic Wavefield Tomography
NASA Astrophysics Data System (ADS)
Guasch, L.; Warner, M.; Stekl, I.; Umpleby, A.; Shah, N.
2010-12-01
Wavefield tomography, or waveform inversion, aims to extract the maximum information from seismic data by matching trace by trace the response of the solid earth to seismic waves using numerical modelling tools. Its first formulation dates from the early 80's, when Albert Tarantola developed a solid theoretical basis that is still used today with little change. Due to computational limitations, the application of the method to 3D problems has been unaffordable until a few years ago, and then only under the acoustic approximation. Although acoustic wavefield tomography is widely used, a complete solution of the seismic inversion problem requires that we account properly for the physics of wave propagation, and so must include elastic effects. We have developed a 3D tomographic wavefield inversion code that incorporates the full elastic wave equation. The bottle neck of the different implementations is the forward modelling algorithm that generates the synthetic data to be compared with the field seismograms as well as the backpropagation of the residuals needed to form the direction update of the model parameters. Furthermore, one or two extra modelling runs are needed in order to calculate the step-length. Our approach uses a FD scheme explicit time-stepping by finite differences that are 4th order in space and 2nd order in time, which is a 3D version of the one developed by Jean Virieux in 1986. We chose the time domain because an explicit time scheme is much less demanding in terms of memory than its frequency domain analogue, although the discussion of wich domain is more efficient still remains open. We calculate the parameter gradients for Vp and Vs by correlating the normal and shear stress wavefields respectively. A straightforward application would lead to the storage of the wavefield at all grid points at each time-step. We tackled this problem using two different approaches. The first one makes better use of resources for small models of dimension equal
Dunn, F.E.; Thomas, J.; Liaw, J.; Matos, J.E.
2008-07-15
For safety analyses to support conversion of MNSR reactors from HEU fuel to LEU fuel, a RELAP5-3D model was set up to simulate the entire MNSR system. This model includes the core, the beryllium reflectors, the water in the tank and the water in the surrounding pool. The MCNP code was used to obtain the power distributions in the core and to obtain reactivity feedback coefficients for the transient analyses. The RELAP5-3D model was validated by comparing measured and calculated data for the NIRR-1 reactor in Nigeria. Comparisons include normal operation at constant power and a 3.77 mk rod withdrawal transient. Excellent agreement was obtained for core coolant inlet and outlet temperatures for operation at constant power, and for power level, coolant inlet temperature, and coolant outlet temperature for the rod withdrawal transient. In addition to the negative reactivity feedbacks from increasing core moderator and fuel temperatures, it was necessary to calculate and include positive reactivity feedback from temperature changes in the radial beryllium reflector and changes in the temperature and density of the water in the tank above the core and at the side of the core. The validated RELAP5-3D model was then used to analyze 3.77 mk rod withdrawal transients for LEU cores with two UO{sub 2} fuel pin designs. The impact of cracking of oxide LEU fuel is discussed. In addition, steady-state power operation at elevated power levels was evaluated to determine steady-state safety margins for onset of nucleate boiling and for onset of significant voiding. (author)
Berger, R.L.; Divol, L.; Glenzer, S.; Hinkel, D.E.; Kirkwood, R.K.; Langdon, A.B.; Moody, J.D.; Still, C.H.; Suter, L.; Williams, E.A.; Young, P.E.
2000-06-01
Using the three-dimensional wave propagation code, F3D[Berger et al., Phys. Fluids B 5,2243 (1993), Berger et al., Phys. Plasmas 5,4337(1998)], and the massively parallel version pF3D, [Still et al. Phys. Plasmas 7 (2000)], we have computed the transmitted and reflected light for laser and plasma conditions in experiments that simulated ignition hohlraum conditions. The frequency spectrum and the wavenumber spectrum of the transmitted light are calculated and used to identify the relative contributions of stimulated forward Brillouin and self-focusing in hydrocarbon-filled balloons, commonly called gasbags. The effect of beam smoothing, smoothing by spectral dispersion (SSD) and polarization smoothing (PS), on the stimulated Brillouin backscatter (SBS) from Scale-1 NOVA hohlraums was simulated with the use nonlinear saturation models that limit the amplitude of the driven acoustic waves. Other experiments on CO{sub 2} gasbags simultaneously measure at a range of intensities the SBS reflectivity and the Thomson scatter from the SBS-driven acoustic waves that provide a more detailed test of the modeling. These calculations also predict that the backscattered light will be very nonuniform in the nearfield (the focusing system optics) which is important for specifying the backscatter intensities be tolerated by the National Ignition Facility laser system.
NASA Astrophysics Data System (ADS)
Dzhalandinov, A.; Tsofin, V.; Kochkin, V.; Panferov, P.; Timofeev, A.; Reshetnikov, A.; Makhotin, D.; Erak, D.; Voloschenko, A.
2016-02-01
Usually the synthesis of two-dimensional and one-dimensional discrete ordinate calculations is used to evaluate neutron fluence on VVER-1000 reactor pressure vessel (RPV) for prognosis of radiation embrittlement. But there are some cases when this approach is not applicable. For example the latest projects of VVER-1000 have upgraded surveillance program. Containers with surveillance specimens are located on the inner surface of RPV with fast neutron flux maximum. Therefore, the synthesis approach is not suitable enough for calculation of local disturbance of neutron field in RPV inner surface behind the surveillance specimens because of their complicated and heterogeneous structure. In some cases the VVER-1000 core loading consists of fuel assemblies with different fuel height and the applicability of synthesis approach is also ambiguous for these fuel cycles. Also, the synthesis approach is not enough correct for the neutron fluence estimation at the RPV area above core top. Because of these reasons only the 3D neutron transport codes seem to be satisfactory for calculation of neutron fluence on the VVER-1000 RPV. The direct 3D calculations are also recommended by modern regulations.
NASA Technical Reports Server (NTRS)
Kapoor, Kamlesh; Anderson, Bernhard H.; Shaw, Robert J.
1994-01-01
A three-dimensional computational fluid dynamics code, RPLUS3D, which was developed for the reactive propulsive flows of ramjets and scramjets, was validated for glancing shock wave-boundary layer interactions. Both laminar and turbulent flows were studied. A supersonic flow over a wedge mounted on a flat plate was numerically simulated. For the laminar case, the static pressure distribution, velocity vectors, and particle traces on the flat plate were obtained. For turbulent flow, both the Baldwin-Lomax and Chien two-equation turbulent models were used. The static pressure distributions, pitot pressure, and yaw angle profiles were computed. In addition, the velocity vectors and particle traces on the flat plate were also obtained from the computed solution. Overall, the computed results for both laminar and turbulent cases compared very well with the experimentally obtained data.
NASA Astrophysics Data System (ADS)
Lampson, Alan I.; Plummer, David N.; Erkkila, John H.; Crowell, Peter G.; Helms, Charles A.
1998-05-01
This paper describes a series of analyses using the 3-d MINT Navier-Stokes and OCELOT wave optics codes to calculate beam quality in a COIL laser cavity. To make this analysis tractable, the problem was broken into two contributions to the medium quality; that associated with microscale disturbances primarily from the transverse iodine injectors, and that associated with the macroscale including boundary layers and shock-like effects. Results for both microscale and macroscale medium quality are presented for the baseline layer operating point in terms of single pass wavefront error. These results show that the microscale optical path difference effects are 1D in nature and of low spatial order. The COIL medium quality is shown to be dominated by macroscale effects; primarily pressure waves generated from flow/boundary layer interactions on the cavity shrouds.
Use of the FLUKA Monte Carlo code for 3D patient-specific dosimetry on PET-CT and SPECT-CT images.
Botta, F; Mairani, A; Hobbs, R F; Vergara Gil, A; Pacilio, M; Parodi, K; Cremonesi, M; Coca Pérez, M A; Di Dia, A; Ferrari, M; Guerriero, F; Battistoni, G; Pedroli, G; Paganelli, G; Torres Aroche, L A; Sgouros, G
2013-11-21
Patient-specific absorbed dose calculation for nuclear medicine therapy is a topic of increasing interest. 3D dosimetry at the voxel level is one of the major improvements for the development of more accurate calculation techniques, as compared to the standard dosimetry at the organ level. This study aims to use the FLUKA Monte Carlo code to perform patient-specific 3D dosimetry through direct Monte Carlo simulation on PET-CT and SPECT-CT images. To this aim, dedicated routines were developed in the FLUKA environment. Two sets of simulations were performed on model and phantom images. Firstly, the correct handling of PET and SPECT images was tested under the assumption of homogeneous water medium by comparing FLUKA results with those obtained with the voxel kernel convolution method and with other Monte Carlo-based tools developed to the same purpose (the EGS-based 3D-RD software and the MCNP5-based MCID). Afterwards, the correct integration of the PET/SPECT and CT information was tested, performing direct simulations on PET/CT images for both homogeneous (water) and non-homogeneous (water with air, lung and bone inserts) phantoms. Comparison was performed with the other Monte Carlo tools performing direct simulation as well. The absorbed dose maps were compared at the voxel level. In the case of homogeneous water, by simulating 10(8) primary particles a 2% average difference with respect to the kernel convolution method was achieved; such difference was lower than the statistical uncertainty affecting the FLUKA results. The agreement with the other tools was within 3–4%, partially ascribable to the differences among the simulation algorithms. Including the CT-based density map, the average difference was always within 4% irrespective of the medium (water, air, bone), except for a maximum 6% value when comparing FLUKA and 3D-RD in air. The results confirmed that the routines were properly developed, opening the way for the use of FLUKA for patient-specific, image
Use of the FLUKA Monte Carlo code for 3D patient-specific dosimetry on PET-CT and SPECT-CT images*
Botta, F; Mairani, A; Hobbs, R F; Vergara Gil, A; Pacilio, M; Parodi, K; Cremonesi, M; Coca Pérez, M A; Di Dia, A; Ferrari, M; Guerriero, F; Battistoni, G; Pedroli, G; Paganelli, G; Torres Aroche, L A; Sgouros, G
2014-01-01
Patient-specific absorbed dose calculation for nuclear medicine therapy is a topic of increasing interest. 3D dosimetry at the voxel level is one of the major improvements for the development of more accurate calculation techniques, as compared to the standard dosimetry at the organ level. This study aims to use the FLUKA Monte Carlo code to perform patient-specific 3D dosimetry through direct Monte Carlo simulation on PET-CT and SPECT-CT images. To this aim, dedicated routines were developed in the FLUKA environment. Two sets of simulations were performed on model and phantom images. Firstly, the correct handling of PET and SPECT images was tested under the assumption of homogeneous water medium by comparing FLUKA results with those obtained with the voxel kernel convolution method and with other Monte Carlo-based tools developed to the same purpose (the EGS-based 3D-RD software and the MCNP5-based MCID). Afterwards, the correct integration of the PET/SPECT and CT information was tested, performing direct simulations on PET/CT images for both homogeneous (water) and non-homogeneous (water with air, lung and bone inserts) phantoms. Comparison was performed with the other Monte Carlo tools performing direct simulation as well. The absorbed dose maps were compared at the voxel level. In the case of homogeneous water, by simulating 108 primary particles a 2% average difference with respect to the kernel convolution method was achieved; such difference was lower than the statistical uncertainty affecting the FLUKA results. The agreement with the other tools was within 3–4%, partially ascribable to the differences among the simulation algorithms. Including the CT-based density map, the average difference was always within 4% irrespective of the medium (water, air, bone), except for a maximum 6% value when comparing FLUKA and 3D-RD in air. The results confirmed that the routines were properly developed, opening the way for the use of FLUKA for patient-specific, image
NASA Astrophysics Data System (ADS)
Cunningham, G.; Tu, W.; Chen, Y.; Reeves, G. D.; Henderson, M. G.; Baker, D. N.; Blake, J. B.; Spence, H.
2013-12-01
During the interval October 8-9, 2012, the phase-space density (PSD) of high-energy electrons exhibited a dropout preceding an intense enhancement observed by the MagEIS and REPT instruments aboard the Van Allen Probes. The evolution of the PSD suggests heating by chorus waves, which were observed to have high intensities at the time of the enhancement [1]. Although intense chorus waves were also observed during the first Dst dip on October 8, no PSD enhancement was observed at this time. We demonstrate a quantitative reproduction of the entire event that makes use of three recent modifications to the LANL DREAM3D diffusion code: 1) incorporation of a time-dependent, low-energy, boundary condition from the MagEIS instrument, 2) use of a time-dependent estimate of the chorus wave intensity derived from observations of POES low-energy electron precipitation, and 3) use of an estimate of the last closed drift shell, beyond which electrons are assumed to have a lifetime that is proportional to their drift period around earth. The key features of the event are quantitatively reproduced by the simulation, including the dropout on October 8, and a rapid increase in PSD early on October 9, with a peak near L*=4.2. The DREAM3D code predicts the dropout on October 8 because this feature is dominated by magnetospheric compression and outward radial diffusion-the L* of the last closed drift-shell reaches a minimum value of 5.33 at 1026 UT on October 8. We find that a ';statistical' wave model based on historical CRRES measurements binned in AE* does not reproduce the enhancement because the peak wave amplitudes are only a few 10's of pT, whereas an ';event-specific' model reproduces both the magnitude and timing of the enhancement very well, a s shown in the Figure, because the peak wave amplitudes are 10x higher. [1] 'Electron Acceleration in the Heart of the Van Allen Radiation Belts', G. D. Reeves et al., Science 1237743, Published online 25 July 2013 [DOI:10.1126/science
Not Available
1984-10-01
STEALTH is a family of computer codes that can be used to calculate a variety of physical processes in which the dynamic behavior of a continuum is involved. The version of STEALTH described in this volume is designed for calculations of fluid-structure interaction. This version of the program consists of a hydrodynamic version of STEALTH which has been coupled to a finite-element code, WHAMSE. STEALTH computes the transient response of the fluid continuum, while WHAMSE computes the transient response of shell and beam structures under external fluid loadings. The coupling between STEALTH and WHAMSE is performed during each cycle or step of a calculation. Separate calculations of fluid response and structure response are avoided, thereby giving a more accurate model of the dynamic coupling between fluid and structure. This volume provides the theoretical background, the finite-difference equations, the finite-element equations, a discussion of several sample problems, a listing of the input decks for the sample problems, a programmer's manual and a description of the input records for the STEALTH/WHAMSE computer program.
NASA Astrophysics Data System (ADS)
Qiang, J.; Leitner, D.; Todd, D. S.; Ryne, R. D.
2005-03-01
The superconducting ECR ion source VENUS serves as the prototype injector ion source for the Rare Isotope Accelerator (RIA) driver linac. The RIA driver linac requires a great variety of high charge state ion beams with up to an order of magnitude higher intensity than currently achievable with conventional ECR ion sources. In order to design the beam line optics of the low energy beam line for the RIA front end for the wide parameter range required for the RIA driver accelerator, reliable simulations of the ion beam extraction from the ECR ion source through the ion mass analyzing system are essential. The RIA low energy beam transport line must be able to transport intense beams (up to 10 mA) of light and heavy ions at 30 keV. For this purpose, LBNL is developing the parallel 3D particle-in-cell code IMPACT to simulate the ion beam transport from the ECR extraction aperture through the analyzing section of the low energy transport system. IMPACT, a parallel, particle-in-cell code, is currently used to model the superconducting RF linac section of RIA and is being modified in order to simulate DC beams from the ECR ion source extraction. By using the high performance of parallel supercomputing we will be able to account consistently for the changing space charge in the extraction region and the analyzing section. A progress report and early results in the modeling of the VENUS source will be presented.
Qiang, J.; Leitner, D.; Todd, D.S.; Ryne, R.D.
2005-03-15
The superconducting ECR ion source VENUS serves as the prototype injector ion source for the Rare Isotope Accelerator (RIA) driver linac. The RIA driver linac requires a great variety of high charge state ion beams with up to an order of magnitude higher intensity than currently achievable with conventional ECR ion sources. In order to design the beam line optics of the low energy beam line for the RIA front end for the wide parameter range required for the RIA driver accelerator, reliable simulations of the ion beam extraction from the ECR ion source through the ion mass analyzing system are essential. The RIA low energy beam transport line must be able to transport intense beams (up to 10 mA) of light and heavy ions at 30 keV.For this purpose, LBNL is developing the parallel 3D particle-in-cell code IMPACT to simulate the ion beam transport from the ECR extraction aperture through the analyzing section of the low energy transport system. IMPACT, a parallel, particle-in-cell code, is currently used to model the superconducting RF linac section of RIA and is being modified in order to simulate DC beams from the ECR ion source extraction. By using the high performance of parallel supercomputing we will be able to account consistently for the changing space charge in the extraction region and the analyzing section. A progress report and early results in the modeling of the VENUS source will be presented.
NASA Astrophysics Data System (ADS)
Picot-Colbeaux, Géraldine; Devau, Nicolas; Thiéry, Dominique; Pettenati, Marie; Surdyk, Nicolas; Parmentier, Marc; Amraoui, Nadia; Crastes de Paulet, François; André, Laurent
2016-04-01
Chalk aquifer is the main water resource for domestic water supply in many parts in northern France. In same basin, groundwater is frequently affected by quality problems concerning nitrates. Often close to or above the drinking water standards, nitrate concentration in groundwater is mainly due to historical agriculture practices, combined with leakage and aquifer recharge through the vadose zone. The complexity of processes occurring into such an environment leads to take into account a lot of knowledge on agronomy, geochemistry and hydrogeology in order to understand, model and predict the spatiotemporal evolution of nitrate content and provide a decision support tool for the water producers and stakeholders. To succeed in this challenge, conceptual and numerical models representing accurately the Chalk aquifer specificity need to be developed. A multidisciplinary approach is developed to simulate storage and transport from the ground surface until groundwater. This involves a new agronomic module "NITRATE" (NItrogen TRansfer for Arable soil to groundwaTEr), a soil-crop model allowing to calculate nitrogen mass balance in arable soil, and the "PHREEQC" numerical code for geochemical calculations, both coupled with the 3D transient groundwater numerical code "MARTHE". Otherwise, new development achieved on MARTHE code allows the use of dual porosity and permeability calculations needed in the fissured Chalk aquifer context. This method concerning the integration of existing multi-disciplinary tools is a real challenge to reduce the number of parameters by selecting the relevant equations and simplifying the equations without altering the signal. The robustness and the validity of these numerical developments are tested step by step with several simulations constrained by climate forcing, land use and nitrogen inputs over several decades. In the first time, simulations are performed in a 1D vertical unsaturated soil column for representing experimental nitrates
NASA Astrophysics Data System (ADS)
Draper, Martin; Usera, Gabriel
2015-04-01
The Scale Dependent Dynamic Model (SDDM) has been widely validated in large-eddy simulations using pseudo-spectral codes [1][2][3]. The scale dependency, particularly the potential law, has been proved also in a priori studies [4][5]. To the authors' knowledge there have been only few attempts to use the SDDM in finite difference (FD) and finite volume (FV) codes [6][7], finding some improvements with the dynamic procedures (scale independent or scale dependent approach), but not showing the behavior of the scale-dependence parameter when using the SDDM. The aim of the present paper is to evaluate the SDDM in the open source code caffa3d.MBRi, an updated version of the code presented in [8]. caffa3d.MBRi is a FV code, second-order accurate, parallelized with MPI, in which the domain is divided in unstructured blocks of structured grids. To accomplish this, 2 cases are considered: flow between flat plates and flow over a rough surface with the presence of a model wind turbine, taking for this case the experimental data presented in [9]. In both cases the standard Smagorinsky Model (SM), the Scale Independent Dynamic Model (SIDM) and the SDDM are tested. As presented in [6][7] slight improvements are obtained with the SDDM. Nevertheless, the behavior of the scale-dependence parameter supports the generalization of the dynamic procedure proposed in the SDDM, particularly taking into account that no explicit filter is used (the implicit filter is unknown). [1] F. Porté-Agel, C. Meneveau, M.B. Parlange. "A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer". Journal of Fluid Mechanics, 2000, 415, 261-284. [2] E. Bou-Zeid, C. Meneveau, M. Parlante. "A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows". Physics of Fluids, 2005, 17, 025105 (18p). [3] R. Stoll, F. Porté-Agel. "Dynamic subgrid-scale models for momentum and scalar fluxes in large-eddy simulations of
Pfuhler, Stefan
2013-01-01
Reconstructed 3D human epidermal skin models are being used increasingly for safety testing of chemicals. Based on EpiDerm™ tissues, an assay was developed in which the tissues were topically exposed to test chemicals for 3h followed by cell isolation and assessment of DNA damage using the comet assay. Inter-laboratory reproducibility of the 3D skin comet assay was initially demonstrated using two model genotoxic carcinogens, methyl methane sulfonate (MMS) and 4-nitroquinoline-n-oxide, and the results showed good concordance among three different laboratories and with in vivo data. In Phase 2 of the project, intra- and inter-laboratory reproducibility was investigated with five coded compounds with different genotoxicity liability tested at three different laboratories. For the genotoxic carcinogens MMS and N-ethyl-N-nitrosourea, all laboratories reported a dose-related and statistically significant increase (P < 0.05) in DNA damage in every experiment. For the genotoxic carcinogen, 2,4-diaminotoluene, the overall result from all laboratories showed a smaller, but significant genotoxic response (P < 0.05). For cyclohexanone (CHN) (non-genotoxic in vitro and in vivo, and non-carcinogenic), an increase compared to the solvent control acetone was observed only in one laboratory. However, the response was not dose related and CHN was judged negative overall, as was p-nitrophenol (p-NP) (genotoxic in vitro but not in vivo and non-carcinogenic), which was the only compound showing clear cytotoxic effects. For p-NP, significant DNA damage generally occurred only at doses that were substantially cytotoxic (>30% cell loss), and the overall response was comparable in all laboratories despite some differences in doses tested. The results of the collaborative study for the coded compounds were generally reproducible among the laboratories involved and intra-laboratory reproducibility was also good. These data indicate that the comet assay in EpiDerm™ skin models is a
ERIC Educational Resources Information Center
Brown, Malcolm
2009-01-01
Inversions are fascinating phenomena. They are reversals of the normal or expected order. They occur across a wide variety of contexts. What do inversions have to do with learning spaces? The author suggests that they are a useful metaphor for the process that is unfolding in higher education with respect to education. On the basis of…
NASA Astrophysics Data System (ADS)
Audigane, Pascal; Chiaberge, Christophe; Mathurin, Frédéric; Lions, Julie; Picot-Colbeaux, Géraldine
2011-04-01
This paper is addressed to the TOUGH2 user community. It presents a new tool for handling simulations run with the TOUGH2 code with specific application to CO 2 geological storage. This tool is composed of separate FORTRAN subroutines (or modules) that can be run independently, using input and output files in ASCII format for TOUGH2. These modules have been developed specifically for modeling of carbon dioxide geological storage and their use with TOUGH2 and the Equation of State module ECO2N, dedicated to CO 2-water-salt mixture systems, with TOUGHREACT, which is an adaptation of TOUGH2 with ECO2N and geochemical fluid-rock interactions, and with TOUGH2 and the EOS7C module dedicated to CO 2-CH 4 gas mixture is described. The objective is to save time for the pre-processing, execution and visualization of complex geometry for geological system representation. The workflow is rapid and user-friendly and future implementation to other TOUGH2 EOS modules for other contexts (e.g. nuclear waste disposal, geothermal production) is straightforward. Three examples are shown for validation: (i) leakage of CO 2 up through an abandoned well; (ii) 3D reactive transport modeling of CO 2 in a sandy aquifer formation in the Sleipner gas Field, (North Sea, Norway); and (iii) an estimation of enhanced gas recovery technology using CO 2 as the injected and stored gas to produce methane in the K12B Gas Field (North Sea, Denmark).
NASA Astrophysics Data System (ADS)
Marinin, I. V.; Kabanikhin, S. I.; Krivorotko, O. I.; Karas, A.; Khidasheli, D. G.
2012-04-01
We consider new techniques and methods for earthquake and tsunami related problems, particularly - inverse problems for the determination of tsunami source parameters, numerical simulation of long wave propagation in soil and water and tsunami risk estimations. In addition, we will touch upon the issue of database management and destruction scenario visualization. New approaches and strategies, as well as mathematical tools and software are to be shown. The long joint investigations by researchers of the Institute of Mathematical Geophysics and Computational Mathematics SB RAS and specialists from WAPMERR and Informap have produced special theoretical approaches, numerical methods, and software tsunami and earthquake modeling (modeling of propagation and run-up of tsunami waves on coastal areas), visualization, risk estimation of tsunami, and earthquakes. Algorithms are developed for the operational definition of the origin and forms of the tsunami source. The system TSS numerically simulates the source of tsunami and/or earthquakes and includes the possibility to solve the direct and the inverse problem. It becomes possible to involve advanced mathematical results to improve models and to increase the resolution of inverse problems. Via TSS one can construct maps of risks, the online scenario of disasters, estimation of potential damage to buildings and roads. One of the main tools for the numerical modeling is the finite volume method (FVM), which allows us to achieve stability with respect to possible input errors, as well as to achieve optimum computing speed. Our approach to the inverse problem of tsunami and earthquake determination is based on recent theoretical results concerning the Dirichlet problem for the wave equation. This problem is intrinsically ill-posed. We use the optimization approach to solve this problem and SVD-analysis to estimate the degree of ill-posedness and to find the quasi-solution. The software system we developed is intended to
NASA Astrophysics Data System (ADS)
Zhou, Li; Zhang, Wei; Shen, Yang; Chen, Xiaofei; Zhang, Jie
2016-06-01
With dense seismic arrays and advanced imaging methods, regional three-dimensional (3D) Earth models have become more accurate. It is now increasingly feasible and advantageous to use a 3D Earth model to better locate earthquakes and invert their source mechanisms by fitting synthetics to observed waveforms. In this study, we develop an approach to determine both the earthquake location and source mechanism from waveform information. The observed waveforms are filtered in different frequency bands and separated into windows for the individual phases. Instead of picking the arrival times, the traveltime differences are measured by cross-correlation between synthetic waveforms based on the 3D Earth model and observed waveforms. The earthquake location is determined by minimizing the cross-correlation traveltime differences. We then fix the horizontal location of the earthquake and perform a grid search in depth to determine the source mechanism at each point by fitting the synthetic and observed waveforms. This new method is verified by a synthetic test with noise added to the synthetic waveforms and a realistic station distribution. We apply this method to a series of M W3.4-5.6 earthquakes in the Longmenshan fault (LMSF) zone, a region with rugged topography between the eastern margin of the Tibetan plateau and the western part of the Sichuan basin. The results show that our solutions result in improved waveform fits compared to the source parameters from the catalogs we used and the location can be better constrained than the amplitude-only approach. Furthermore, the source solutions with realistic topography provide a better fit to the observed waveforms than those without the topography, indicating the need to take the topography into account in regions with rugged topography.
Walroth, Richard C; Lukens, James T; MacMillan, Samantha N; Finkelstein, Kenneth D; Lancaster, Kyle M
2016-02-17
The contested electronic structure of [Cu(CF3)4](1-) is investigated with UV/visible/near IR spectroscopy, Cu K-edge X-ray absorption spectroscopy, and 1s2p resonant inelastic X-ray scattering. These data, supported by density functional theory, multiplet theory, and multireference calculations, support a ground state electronic configuration in which the lowest unoccupied orbital is of predominantly trifluoromethyl character. The consensus 3d(10) configuration features an inverted ligand field in which all five metal-localized molecular orbitals are located at lower energy relative to the trifluoromethyl-centered σ orbitals.
Inverse Heat Conduction Methods in the CHAR Code for Aerothermal Flight Data Reconstruction
NASA Technical Reports Server (NTRS)
Oliver, A. Brandon; Amar, Adam J.
2016-01-01
Reconstruction of flight aerothermal environments often requires the solution of an inverse heat transfer problem, which is an ill-posed problem of determining boundary conditions from discrete measurements in the interior of the domain. This paper will present the algorithms implemented in the CHAR code for use in reconstruction of EFT-1 flight data and future testing activities. Implementation details will be discussed, and alternative hybrid-methods that are permitted by the implementation will be described. Results will be presented for a number of problems.
Inverse Heat Conduction Methods in the CHAR Code for Aerothermal Flight Data Reconstruction
NASA Technical Reports Server (NTRS)
Oliver, A Brandon; Amar, Adam J.
2016-01-01
Reconstruction of flight aerothermal environments often requires the solution of an inverse heat transfer problem, which is an ill-posed problem of specifying boundary conditions from discrete measurements in the interior of the domain. This paper will present the algorithms implemented in the CHAR code for use in reconstruction of EFT-1 flight data and future testing activities. Implementation nuances will be discussed, and alternative hybrid-methods that are permitted by the implementation will be described. Results will be presented for a number of one-dimensional and multi-dimensional problems
Yoshida, Ayako; Shiratori, Yoko; Suzuki, Makoto; Ozasa, Masaya; Takeyama, Mamoru; Eshima, Mitsuhiro; Shinohara, Maiko; Yamamoto, Takao; Tajima, Tsuyoshi
2015-05-01
To evaluate whether electrocardiography-gated is useful in non-contrast-enhanced MRA with time-spatial labeling inversion pulse (Time-SLIP) in renal transplantation patients compared with respiration-triggered free-breathing. Simulation-based analyses of black blood time interval (BBTI) values for spatial selective inversion-recovery pulse and electrocardiography rates were performed, and confirmed on human subjects using a three-dimensional (3D) coherent steady-state free precession (SSFP) sequence on a 1.5 tesla Toshiba MRI scanner. Signal acquisition interval and BBTI values in which signal of a water tissue becomes the null point showed a strong correlation, and successfully suppressed signals from the background and provided better contrast between the arteries and the background. Because electrocardiography-gated non-contrast MRA does not depend on the respiration interval, providing a contrast stable, it was suggested to be an effective screening tool for evaluation of pelvic arteries.
NASA Astrophysics Data System (ADS)
Khalil, Mohamed A.; Santos, Fernando M.; Farzamian, Mohammad
2014-04-01
Sinai Peninsula occupies a part of the arid zone belt of northern Africa and southwestern Asia. The largest ephemeral stream in the Sinai Peninsula is called Wadi El-Arish, which winds down northward to the Mediterranean Sea. The delta of Wadi El-Arish has been built by the heavy floods of the Wadi. The Quaternary aquifer is the main water supply of the delta of Wadi El-Arish and its vicinities. The combined action of aridity and extensive pumping from the Quaternary aquifer led to a noticeable increase in groundwater salinity. The hydrochemistry and isotope hydrology confirm that the Quaternary aquifer is recharged by an old saline groundwater from the Pre-Quaternary. A hydrogeological connection between Quaternary and Pre-Quaternary aquifers in the form of fault(s) should exist to explain the hydro-tectonic regime of this area. The Bouguer gravity map shows the high gravity anomaly of the doubly plunging anticline of Risan Aniza Mountain to the south of El-Arish area, which is a part of the Syrian Arc System of northern Sinai Peninsula. A 3D density contrast model, 3D Euler deconvolution, horizontal derivative and least square separation have been performed. The findings showed that (1) two deep regional faults extending NE-SW, surround the Risan Aniza anticline, and (2) two deep local N-S faults are in the area of Delta Wadi El-Arish. These deep faults are proposed to bring the deep Cretaceous aquifer into contact with the shallow Quaternary aquifer and work as a hydrogeological connection between both aquifers. The present hypothesis has some geological evidences from the subsurface lithology of the nearby wells.
NASA Astrophysics Data System (ADS)
Massoud, Usama; Soliman, Mamdouh; Taha, Ayman; Khozym, Ashraf; Salah, Hany
2015-12-01
Seawater intrusion is a widespread environmental problem in the Egyptian coastal aquifers. It affects the groundwater used in domestic and agricultural activities along these coasts. In this study, resistivity survey in the form of Vertical Electrical Sounding (VES) was conducted at ZAWYET EL HAWALA cultivated site, northwest coast of Egypt to outline a freshwater zone overlies the main saltwater body, and to determine the most suitable location for drilling water well for irrigation purposes. The VES data were measured at 11 stations in the studied site. After processing, the data were inverted in 1-D and 3-D schemes and the final model was presented as resistivity slices with depth. The results indicate that the effect of saltwater intrusion was observed, as low resistivity values, at 7.5 m below ground surface (bgs) at the northern part of the study area (toward the Mediterranean Sea), and extends southward with increasing depth covering the whole area at about 30 m bgs. The fresh water zone shows a minimum thickness of less than 7.5 m at the northern side and a maximum thickness of about 20 m at the southern side of the area. The proper site for drilling water well tap and the freshwater zone is the location of VES6 or VES9 with a maximum well depth of about 20 m bgs. The water withdrawal from the proposed well should be controlled not to raise the main saline water table in the well site. The main sources of the freshwater zone are the rainfall and surface runoff descending from the southern tableland. Excess rainfall and surface runoff can be avoided from direct discharge to the sea by collecting them in man-made outlined trenches and re-using the stored water in irrigation during the dry seasons.
Lee, Sunbok; Lee, Youngshin; Kim, Dong Ha; Moon, Jun Hyuk
2013-12-11
We for the first time demonstrated carbon-deposited TiO2 inverse opal (C-TiO2 IO) structures as highly efficient visible photocatalysts. The carbon deposition proceeded via high-temperature pyrolysis of phloroglucinol/formaldehyde resol, which had been coated onto the TiO2 IO structures. Carbon deposition formed a carbon layer and doped the TiO2 interface, which synergistically enhanced visible-light absorption. We directly measured the visible-light photocatalytic activity by constructing solar cells comprising the C-TiO2 IO electrode. Photocatalytic degradation of organic dyes in a solution was also evaluated. Photocatalytic dye degradation under visible light was only observed in the presence of the C-TiO2 IO sample and was increased with the content of carbon deposition. The IO structures could be readily decorated with TiO2 nanoparticles to increase the surface area and enhance the photocatalytic activity. Notably, the photocatalytic reaction was found to proceed in a viscous polymeric solution. A comparison of the mesoporous TiO2 structure and the IO TiO2 structure revealed that the latter performed better as the solution viscosity increased. This result was attributed to facile diffusion into the fully connected and low-tortuosity macropore network of the IO structure. PMID:24266769
NASA Astrophysics Data System (ADS)
Käufl, Paul; Valentine, Andrew P.; Trampert, Jeannot
2016-08-01
Despite the ever increasing availability of computational power, real-time source inversions based on physical modeling of wave propagation in realistic media remain challenging. We investigate how a nonlinear Bayesian approach based on pattern recognition and synthetic 3-D Green's functions can be used to rapidly invert strong-motion data for point source parameters by means of a case study for a fault system in the Los Angeles Basin. The probabilistic inverse mapping is represented in compact form by a neural network which yields probability distributions over source parameters. It can therefore be evaluated rapidly and with very moderate CPU and memory requirements. We present a simulated real-time inversion of data for the 2008 Mw 5.4 Chino Hills event. Initial estimates of epicentral location and magnitude are available ˜14 s after origin time. The estimate can be refined as more data arrive: by ˜40 s, fault strike and source depth can also be determined with relatively high certainty.
NASA Astrophysics Data System (ADS)
Efstathiou, Angeliki; Tzanis, Andreas; Chailas, Stylianos; Stamatakis, Michael
2013-04-01
We report the results of a joint analysis of geophysical (aeromagnetic) and seismotectonic data, applied to the investigation of the deep structure, magmatic activity and geothermal potential of the north-western stretches of the Hellenic Volcanic Arc (HVA). The HVA is usually considered to be a single arcuate entity stretching from Sousaki (near Corinth) at the NW, to Nisyros Island at the SE. However, different types of and their ages indicate the presence of two different volcanic groups. Our study focuses on the northern part of the west (older) volcanic group and includes the Crommyonian (Sousaki) volcanic field at the west end of Megaris peninsula (east margin on the contemporary Corinth Rift), the Aegina and Methana volcanic complex at the Saronic Gulf, where typical Quaternary calc-alkaline volcanics predominate, and the Argolid peninsula to the south and south-west. In addition to the rocks associated with Quaternary volcanism, the study area includes a series of Mesozoic ultramafic (ophiolitic) outcrops at the Megaris peninsula, to the north and north-east of the Crommyonian volcanic field, as well as throughout the Argolid. A major deep structural and tectonic feature of the study area, and one with profound influence on crustal deformation and the evolution of rapidly deforming extensional structures like the Corinth Rift and the Saronic Gulf, is the local geometry and dynamics of the African oceanic crust subducting beneath the Aegean plate. Locally, the subducting slab has a NNW strike and ENE plunge, with the dip angle changing rapidly (steepening) approx. beneath the Argolid. The aeromagnetic data was extracted from the recently (re)compiled aeromagnetic map of Greece (Chailas et al, 2010) and was inverted with the UBC-GIF magnetic inversion suite (Li and Oldenburg, 1996). The inversion included rigorous geological constraints introduced by means of numerous in-situ magnetic susceptibility measurements. The inversion has imaged several isolated
NASA Astrophysics Data System (ADS)
Park, Sunyoung; Ishii, Miaki
2015-11-01
Rupture properties, such as rupture direction, length, propagation speed and source duration, provide important insights into earthquake mechanisms. One approach to estimate these properties is to investigate the body-wave duration that depends upon the relative location of the station with respect to the rupture direction. Under the assumption that the propagation is unilateral, the duration can be expressed as a function of the dip and azimuth of the rupture. Examination of duration measurements with respect to both the take-off angle and the azimuth is crucial to obtain robust estimates of rupture parameters, especially for nearly vertical rupture propagation. Moreover, limited data coverage, such as using only teleseismic data, can bias the source duration estimate for dipping ruptures, and this bias can map into estimates of other source properties such as rupture extent and rupture speed. Based upon this framework, we introduce an inversion scheme that uses the duration measurements to obtain four parameters: the source duration, a measure of the rupture extent and speed, and dip and azimuth of the rupture propagation. The method is applied to two deep-focus events in the Sea of Okhotsk region, an Mw 7.7 event that occurred on 2012 August 14 and an Mw 8.3 event from 2013 May 24. The source durations are 26 ± 1 and 37 ± 1 s, and rupture speeds are 49 ± 4 per cent and 26 ± 3 per cent of shear wave speed for the Mw 7.7 and 8.3 events, respectively. The azimuths of the two ruptures are parallel to the trench, but are in opposite directions. The dips of the Mw 7.7 and 8.3 events are constrained to be 48° ± 8° downdip and 19° ± 8° updip, respectively. The fit to the data is significantly poorer for the Mw 8.3 event than the Mw 7.7 event, suggesting that the unilateral rupture may not be a good assumption. The analysis is expanded into a multi-episode model, and a secondary episode is determined for the Mw 8.3 event in the southeast direction. The two
A 2D forward and inverse code for streaming potential problems
NASA Astrophysics Data System (ADS)
Soueid Ahmed, A.; Jardani, A.; Revil, A.
2013-12-01
The self-potential method corresponds to the passive measurement of the electrical field in response to the occurrence of natural sources of current in the ground. One of these sources corresponds to the streaming current associated with the flow of the groundwater. We can therefore apply the self- potential method to recover non-intrusively some information regarding the groundwater flow. We first solve the forward problem starting with the solution of the groundwater flow problem, then computing the source current density, and finally solving a Poisson equation for the electrical potential. We use the finite-element method to solve the relevant partial differential equations. In order to reduce the number of (petrophysical) model parameters required to solve the forward problem, we introduced an effective charge density tensor of the pore water, which can be determined directly from the permeability tensor for neutral pore waters. The second aspect of our work concerns the inversion of the self-potential data using Tikhonov regularization with smoothness and weighting depth constraints. This approach accounts for the distribution of the electrical resistivity, which can be independently and approximately determined from electrical resistivity tomography. A numerical code, SP2DINV, has been implemented in Matlab to perform both the forward and inverse modeling. Three synthetic case studies are discussed.
SP2DINV: A 2D forward and inverse code for streaming potential problems
NASA Astrophysics Data System (ADS)
Soueid Ahmed, A.; Jardani, A.; Revil, A.; Dupont, J. P.
2013-09-01
The self-potential method corresponds to the passive measurement of the electrical field in response to the occurrence of natural sources of current in the ground. One of these sources corresponds to the streaming current associated with the flow of the ground water. We can therefore apply the self-potential method to recover non-intrusively some information regarding the ground water flow. We first solve the forward problem starting with the solution of the ground water flow problem, then computing the source current density, and finally solving a Poisson equation for the electrical potential. We use the finite-element method to solve the relevant partial differential equations. In order to reduce the number of (petrophysical) model parameters required to solve the forward problem, we introduced an effective charge density tensor of the pore water, which can be determined directly from the permeability tensor for neutral pore waters. The second aspect of our work concerns the inversion of the self-potential data using Tikhonov regularization with smoothness and weighting depth constraints. This approach accounts for the distribution of the electrical resistivity, which can be independently and approximately determined from electrical resistivity tomography. A numerical code, SP2DINV, has been implemented in Matlab to perform both the forward and inverse modeling. Three synthetic case studies are discussed.
3D Computations and Experiments
Couch, R; Faux, D; Goto, D; Nikkel, D
2004-04-05
This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.
NASA Astrophysics Data System (ADS)
Abbassi, B.; Huebert, J.; Liu, L.; Lee, B.; Cheng, L.; Richards, J. P.; Unsworth, M. J.; Oldenburg, D.
2013-12-01
The Newton property is an epithermal Au-Ag deposit containing precious metals in association with disseminated sulfide minerals such as pyrite. This type of deposit often shows variable geological patterns, so it is important to find fast and cost-efficient methods for their exploration. Aeromagnetic surveys and ground electrical resistivity-induced polarization methods were applied over the Newton property. From preliminary 3D inversion of ZTEM and aeromagnetic data, and joint 3D inversion of electrical resistivity-induced polarization data, we show that low-resistivity and high-chargeability regions are signatures of disseminated sulfide mineralization. Potassic alteration, characterized by hydrothermal biotite (now mostly chloritized) and magnetite is also present locally, and may be related to underlying porphyry-type mineralization. This type of alteration can be identified from its magnetic signature, but the occurrence of other magnetic formations in the deposit area made interpretations of magnetic data difficult. We show that filtering geological noises related to background magnetic anomalies is an essential step in focusing on potassic alteration zones. We used electrical resistivity and induced polarization chargeability models to remove the signals of barren magnetic zones to focus on the susceptibilities pertaining to deep potassic alterations. In order to test the credibility of these interpretations, extensive petrophysical measurements (magnetic susceptibility, electrical resistivity, and gamma ray spectra) were collected on drill-core samples. We show that potassic alteration can also be characterized accurately from high levels of potassium to thorium ratio (K/Th) in gamma ray spectrometric measurements, and that this correlation is stronger than the magnetic signal (likely because hydrothermal magnetite is variable in abundance). Therefore, we focused on magnetic susceptibility values correlated with high K/Th ratios in order to reduce the
NASA Astrophysics Data System (ADS)
Bremner, P. M.; Panning, M. P.; Russo, R. M.; Mocanu, V. I.; Stanciu, A. C.; Torpey, M. E.; Hongsresawat, S.; VanDecar, J. C.
2014-12-01
We present the latest 3-D isotropic crustal velocity model beneath central Idaho and eastern Oregon. We produced the velocity model from vertical component Rayleigh wave group and phase velocity measurements on data from the IDaho/ORegon (IDOR) Passive seismic network, 86 broadband seismic stations, using ambient noise tomography and the methods of Gallego et. al (2010) and Lin et. al (2008). We calculated inter-station group/phase velocities in narrow frequency bands from travel-time measurements of the stacked cross-correlations (bandpass filtered between 2 and 30 seconds), which we used to invert for velocity structure beneath the network. Goals of our work include refining models of crustal structure in the accreted Blue Mountain terranes in the western study area; determining the depth extent of the Salmon River Suture/West Idaho Shear Zone (WISZ), which crosses north-south through the middle of the network; determining the architecture of the Idaho batholith, an extensive largely crustal-derived pluton; and examining the nature of the autochthonous (?) North American crust and lithosphere beneath and east of the batholith. We derived Rayleigh wave group and phase velocity maps for each frequency band using the damped least-squares inversion method of Tarantola (2005), and then jointly inverted for velocity with depth. Moho depths are prescribed in the joint inversions based on receiver functions, also from the IDOR seismic data, and provides a starting crustal velocity model. 3-D checkerboard resolution tests indicate lateral resolution of better than 40 km. Preliminary results show higher S wave velocities in the western study area, and lower velocities in the lower crust on the east side of the network, consistent with Basin-and-Range style extension there. A tabular velocity anomaly juxtaposing higher above lower seismic velocities dips shallow west in the midcrust on the west side of the network.
NASA Astrophysics Data System (ADS)
Bremner, P. M.; Panning, M. P.; Russo, R.; Mocanu, V. I.; Stanciu, A. C.; Torpey, M. E.; Hongsresawat, S.; VanDecar, J. C.
2015-12-01
We present new 3-D radially anisotropic and isotropic crustal velocity models beneath central Idaho and eastern Oregon. We produced the velocity models from Love and horizontal component Rayleigh wave group and phase velocity measurements on the IDaho/ORegon (IDOR) Passive seismic network, 86 broadband seismic stations, dataset using ambient noise tomography and the methods of Gallego et. al (2010) and Lin et. al (2008). We calculated inter-station group/phase velocities in narrow frequency bands from travel-time measurements of the rotated stacked horizontal component cross-correlations (bandpass filtered between 2 and 30 seconds), which we used to invert for velocity structure beneath the network. We derived group and phase velocity maps for each frequency band using the damped least-squares inversion method of Tarantola (2005), and then jointly inverted for velocity with depth. Moho depths are prescribed in the joint inversions based on receiver functions, also from the IDOR seismic data, and provides a starting crustal velocity model. Goals of our work include refining models of crustal structure in the accreted Blue Mountain terranes in the western study area; determining the depth extent of the Salmon River Suture/West Idaho Shear Zone (WISZ), which crosses north-south through the middle of the network; determining the architecture of the Idaho batholith, an extensive largely crustal-derived pluton; and examining the nature of the autochthonous (?) North American crust and lithosphere beneath and east of the batholith.
NASA Astrophysics Data System (ADS)
Harvey, R. W.; Petrov, Yu.; Jaeger, E. F.; Berry, L. A.; Bonoli, P. T.; Bader, A.
2015-12-01
A time-dependent simulation of C-Mod pulsed TCRF power is made obtaining minority hydrogen ion distributions with the CQL3D-Hybrid-FOW finite-orbit-width Fokker-Planck code. Cyclotron-resonant TCRF fields are calculated with the AORSA full wave code. The RF diffusion coefficients used in CQL3D are obtained with the DC Lorentz gyro-orbit code for perturbed particle trajectories in the combined equilibrium and TCRF electromagnetic fields. Prior results with a zero-banana-width simulation using the CQL3D/AORSA/DC time-cycles showed a pronounced enhancement of the H distribution in the perpendicular velocity direction compared to results obtained from Stix's quasilinear theory, and this substantially increased the rampup rate of the observed vertically-viewed neutral particle analyzer (NPA) flux, in general agreement with experiment. However, ramp down of the NPA flux after the pulse, remained long compared to the experiment. The present study compares the new FOW results, including relevant gyro-radius effects, to determine the importance of these new effects on the the NPA time-dependence.
NASA Astrophysics Data System (ADS)
Becciani, U.; Ansaloni, R.; Antonuccio-Delogu, V.; Erbacci, G.; Gambera, M.; Pagliaro, A.
1997-10-01
N-body algorithms for long-range unscreened interactions like gravity belong to a class of highly irregular problems whose optimal solution is a challenging task for present-day massively parallel computers. In this paper we describe a strategy for optimal memory and work distribution which we have applied to our parallel implementation of the Barnes & Hut (1986) recursive tree scheme on a Cray T3D using the CRAFT programming environment. We have performed a series of tests to find an optimal data distribution in the T3D memory, and to identify a strategy for the Dynamic Load Balance in order to obtain good performances when running large simulations (more than 10 million particles). The results of tests show that the step duration depends on two main factors: the data locality and the T3D network contention. Increasing data locality we are able to minimize the step duration if the closest bodies (direct interaction) tend to be located in the same PE local memory (contiguous block subdivision, high granularity), whereas the tree properties have a fine grain distribution. In a very large simulation, due to network contention, an unbalanced load arises. To remedy this we have devised an automatic work redistribution mechanism which provided a good Dynamic Load Balance at the price of an insignificant overhead.
NASA Astrophysics Data System (ADS)
Pletinckx, D.
2011-09-01
The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.
LASTRAC.3d: Transition Prediction in 3D Boundary Layers
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan
2004-01-01
Langley Stability and Transition Analysis Code (LASTRAC) is a general-purpose, physics-based transition prediction code released by NASA for laminar flow control studies and transition research. This paper describes the LASTRAC extension to general three-dimensional (3D) boundary layers such as finite swept wings, cones, or bodies at an angle of attack. The stability problem is formulated by using a body-fitted nonorthogonal curvilinear coordinate system constructed on the body surface. The nonorthogonal coordinate system offers a variety of marching paths and spanwise waveforms. In the extreme case of an infinite swept wing boundary layer, marching with a nonorthogonal coordinate produces identical solutions to those obtained with an orthogonal coordinate system using the earlier release of LASTRAC. Several methods to formulate the 3D parabolized stability equations (PSE) are discussed. A surface-marching procedure akin to that for 3D boundary layer equations may be used to solve the 3D parabolized disturbance equations. On the other hand, the local line-marching PSE method, formulated as an easy extension from its 2D counterpart and capable of handling the spanwise mean flow and disturbance variation, offers an alternative. A linear stability theory or parabolized stability equations based N-factor analysis carried out along the streamline direction with a fixed wavelength and downstream-varying spanwise direction constitutes an efficient engineering approach to study instability wave evolution in a 3D boundary layer. The surface-marching PSE method enables a consistent treatment of the disturbance evolution along both streamwise and spanwise directions but requires more stringent initial conditions. Both PSE methods and the traditional LST approach are implemented in the LASTRAC.3d code. Several test cases for tapered or finite swept wings and cones at an angle of attack are discussed.
Pahn, T.; Jonkman, J.; Rolges, R.; Robertson, A.
2012-11-01
Physically measuring the dynamic responses of wind turbine support structures enables the calculation of the applied loads using an inverse procedure. In this process, inverse means deriving the inputs/forces from the outputs/responses. This paper presents results of a numerical verification of such an inverse load calculation. For this verification, the comprehensive simulation code FAST is used. FAST accounts for the coupled dynamics of wind inflow, aerodynamics, elasticity and turbine controls. Simulations are run using a 5-MW onshore wind turbine model with a tubular tower. Both the applied loads due to the instantaneous wind field and the resulting system responses are known from the simulations. Using the system responses as inputs to the inverse calculation, the applied loads are calculated, which in this case are the rotor thrust forces. These forces are compared to the rotor thrust forces known from the FAST simulations. The results of these comparisons are presented to assess the accuracy of the inverse calculation. To study the influences of turbine controls, load cases in normal operation between cut-in and rated wind speed, near rated wind speed and between rated and cut-out wind speed are chosen. The presented study shows that the inverse load calculation is capable of computing very good estimates of the rotor thrust. The accuracy of the inverse calculation does not depend on the control activity of the wind turbine.
3d-3d correspondence revisited
NASA Astrophysics Data System (ADS)
Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr
2016-04-01
In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.
3d-3d correspondence revisited
Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr
2016-04-21
In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.
NASA Astrophysics Data System (ADS)
Sihver, L.; Mancusi, D.; Niita, K.; Sato, T.; Townsend, L.; Farmer, C.; Pinsky, L.; Ferrari, A.; Cerutti, F.; Gomes, I.
Particles and heavy ions are used in various fields of nuclear physics, medical physics, and material science, and their interactions with different media, including human tissue and critical organs, have therefore carefully been investigated both experimentally and theoretically since the 1930s. However, heavy-ion transport includes many complex processes and measurements for all possible systems, including critical organs, would be impractical or too expensive; e.g. direct measurements of dose equivalents to critical organs in humans cannot be performed. A reliable and accurate particle and heavy-ion transport code is therefore an essential tool in the design study of accelerator facilities as well as for other various applications. Recently, new applications have also arisen within transmutation and reactor science, space and medicine, especially radiotherapy, and several accelerator facilities are operating or planned for construction. Accurate knowledge of the physics of interaction of particles and heavy ions is also necessary for estimating radiation damage to equipment used on space vehicles, to calculate the transport of the heavy ions in the galactic cosmic ray (GCR) through the interstellar medium, and the evolution of the heavier elements after the Big Bang. Concerns about the biological effect of space radiation and space dosimetry are increasing rapidly due to the perspective of long-duration astronaut missions, both in relation to the International Space Station and to manned interplanetary missions in near future. Radiation protection studies for crews of international flights at high altitude have also received considerable attention in recent years. There is therefore a need to develop accurate and reliable particle and heavy-ion transport codes. To be able to calculate complex geometries, including production and transport of protons, neutrons, and alpha particles, 3-dimensional transport using Monte Carlo (MC) technique must be used. Today
Clement, T.P.; Jones, N.L.
1998-02-01
RT3D (Reactive Transport in 3-Dimensions) is a computer code that solves coupled partial differential equations that describe reactive-flow and transport of multiple mobile and/or immobile species in a three dimensional saturated porous media. RT3D was developed from the single-species transport code, MT3D (DoD-1.5, 1997 version). As with MT3D, RT3D also uses the USGS groundwater flow model MODFLOW for computing spatial and temporal variations in groundwater head distribution. This report presents a set of tutorial problems that are designed to illustrate how RT3D simulations can be performed within the Department of Defense Groundwater Modeling System (GMS). GMS serves as a pre- and post-processing interface for RT3D. GMS can be used to define all the input files needed by RT3D code, and later the code can be launched from within GMS and run as a separate application. Once the RT3D simulation is completed, the solution can be imported to GMS for graphical post-processing. RT3D v1.0 supports several reaction packages that can be used for simulating different types of reactive contaminants. Each of the tutorials, described below, provides training on a different RT3D reaction package. Each reaction package has different input requirements, and the tutorials are designed to describe these differences. Furthermore, the tutorials illustrate the various options available in GMS for graphical post-processing of RT3D results. Users are strongly encouraged to complete the tutorials before attempting to use RT3D and GMS on a routine basis.
NASA Astrophysics Data System (ADS)
Ronchin, Erika; Masterlark, Timothy; Dawson, John; Saunders, Steve; Martí Molist, Joan
2015-04-01
In this study, we present a method to fully integrate a family of finite element models (FEMs) into the regularized linear inversion of InSAR data collected at Rabaul caldera (PNG) between February 2007 and December 2010. During this period the caldera experienced a long-term steady subsidence that characterized surface movement both inside the caldera and outside, on its western side. The inversion is based on an array of FEM sources in the sense that the Green's function matrix is a library of forward numerical displacement solutions generated by the sources of an array common to all FEMs. Each entry of the library is the LOS surface displacement generated by injecting a unity mass of fluid, of known density and bulk modulus, into a different source cavity of the array for each FEM. By using FEMs, we are taking advantage of their capability of including topography and heterogeneous distribution of elastic material properties. All FEMs of the family share the same mesh in which only one source is activated at the time by removing the corresponding elements and applying the unity fluid flux. The domain therefore only needs to be discretized once. This precludes remeshing for each activated source, thus reducing computational requirements, often a downside of FEM-based inversions. Without imposing an a-priori source, the method allows us to identify, from a least-squares standpoint, a complex distribution of fluid flux (or change in pressure) with a 3D free geometry within the source array, as dictated by the data. The results of applying the proposed inversion to Rabaul InSAR data show a shallow magmatic system under the caldera made of two interconnected lobes located at the two opposite sides of the caldera. These lobes could be consistent with feeding reservoirs of the ongoing Tavuvur volcano eruption of andesitic products, on the eastern side, and of the past Vulcan volcano eruptions of more evolved materials, on the western side. The interconnection and
NASA Astrophysics Data System (ADS)
Meulien Ohlmann, Odile
2013-02-01
Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?
Mirin, A.A.
1988-07-01
A formula is derived for predicting multiprocessing efficiency on Cray supercomputers equipped with the Cray Time-Sharing System (CTSS). The model is applicable to an intensive time-sharing environment. The actual efficiency estimate depends on three factors: the code size, task length, and job mix. The implementation of multitasking in a three-dimensional plasma magnetohydrodynamics (MHD) code, TEMCO, is discussed. TEMCO solves the primitive one-fluid compressible MHD equations and includes resistive and Hall effects in Ohm's law. Virtually all segments of the main time-integration loop are multitasked. The multiprocessing efficiency model is applied to TEMCO. Excellent agreement is obtained between the actual multiprocessing efficiency and the theoretical prediction.
Kelley, N.D.
1992-11-01
We have recently expanded the numerical turbulence simulation (SNLWIND) developed by Veers [1] to include all three components of the turbulent wind vector. We have also configured the code to simulate the characteristics of turbulent wind fields upwind and downwind of a large wind farm, as well as over uniform, flat terrain. Veers`s original method only simulates the longitudinal component of the wind in neutral flow. This paper overviews the development of spectral distribution, spatial coherence, and cross correlation models used to expired the SNLWIND code to include the three components of the turbulent wind over a range of atmospheric stabilities. These models are based on extensive measurements of the turbulence characteristics immediately upwind and downwind of a large wind farm in San Gorgonio Pass, California.
NASA Astrophysics Data System (ADS)
Kelley, N. D.
1992-11-01
We have recently expanded the numerical turbulence simulation (SNLWIND) developed by Veers to include all three components of the turbulent wind vector. We have also configured the code to simulate the characteristics of turbulent wind fields upwind and downwind of a large wind farm, as well as over uniform, flat terrain. Veers's original method only simulates the longitudinal component of the wind in neutral flow. This paper overviews the development of spectral distribution, spatial coherence, and cross correlation models used to expired the SNLWIND code to include the three components of the turbulent wind over a range of atmospheric stabilities. These models are based on extensive measurements of the turbulence characteristics immediately upwind and downwind of a large wind farm in San Gorgonio Pass, California.
D. Scott Lucas; D. S. Lucas
2005-09-01
An LDRD (Laboratory Directed Research and Development) project is underway at the Idaho National Laboratory (INL) to apply the three-dimensional multi-group deterministic neutron transport code (Attila®) to criticality, flux and depletion calculations of the Advanced Test Reactor (ATR). This paper discusses the development of Attila models for ATR, capabilities of Attila, the generation and use of different cross-section libraries, and comparisons to ATR data, MCNP, MCNPX and future applications.
Riemke, Richard Allan
2002-09-01
The Reactor Excursion and Leak Analysis Program with 3D capability1 (RELAP5-3D) is a reactor system analysis code that has been developed at the Idaho National Engineering and Environmental Laboratory (INEEL) for the U. S. Department of Energy (DOE). The 3D capability in RELAP5-3D includes 3D hydrodynamics2 and 3D neutron kinetics3,4. Assessment, verification, and validation of the 3D capability in RELAP5-3D is discussed in the literature5,6,7,8,9,10. Additional assessment, verification, and validation of the 3D capability of RELAP5-3D will be presented in other papers in this users seminar. As with any software, user problems occur. User problems usually fall into the categories of input processing failure, code execution failure, restart/renodalization failure, unphysical result, and installation. This presentation will discuss some of the more generic user problems that have been reported on RELAP5-3D as well as their resolution.
2007-07-20
This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial featuresmore » of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.« less
Russ, Trina; Koch, Mark; Koudelka, Melissa; Peters, Ralph; Little, Charles; Boehnen, Chris; Peters, Tanya
2007-07-20
This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial features of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.
Profiling of fine- and coarse-mode particles with LIRIC (LIdar/Radiometer Inversion Code)
NASA Astrophysics Data System (ADS)
Perrone, M. R.; Burlizzi, P.; De Tomasi, F.; Chaikovsky, A.
2014-08-01
The paper investigates numerical procedures that allow determining the dependence on altitude of aerosol properties from multi wavelength elastic lidar signals. In particular, the potential of the LIdar/Radiometer Inversion Code (LIRIC) to retrieve the vertical profiles of fine and coarse-mode particles by combining 3-wavelength lidar measurements and collocated AERONET (AErosol RObotic NETwork) sun/sky photometer measurements is investigated. The used lidar signals are at 355, 532 and 1064 nm. Aerosol extinction coefficient (αL), lidar ratio (LRL), and Ångstrom exponent (ÅL) profiles from LIRIC are compared with the corresponding profiles (α, LR, and Å) retrieved from a Constrained Iterative Inversion (CII) procedure to investigate the LIRIC retrieval ability. Then, an aerosol classification framework which relies on the use of a graphical framework and on the combined analysis of the Ångstrom exponent (at the 355 and 1064 nm wavelength pair, Å(355, 1064)) and its spectral curvature (ΔÅ = Å(355, 532)-Å(532, 1064)) is used to investigate the ability of LIRIC to retrieve vertical profiles of fine and coarse-mode particles. The Å-ΔÅ aerosol classification framework allows estimating the dependence on altitude of the aerosol fine modal radius and of the fine mode contribution to the whole aerosol optical thickness, as discussed in Perrone et al. (2014). The application of LIRIC to three different aerosol scenarios dealing with aerosol properties dependent on altitude has revealed that the differences between αL and α vary with the altitude and on average increase with the decrease of the lidar signal wavelength. It has also been found that the differences between ÅL and corresponding Å values vary with the altitude and the wavelength pair. The sensitivity of Ångstrom exponents to the aerosol size distribution which vary with the wavelength pair was responsible for these last results. The aerosol classification framework has revealed that the
NASA Astrophysics Data System (ADS)
Santander-García, M.; Bujarrabal, V.; Koning, N.; Steffen, W.
2015-01-01
Context. Modern instrumentation in radioastronomy constitutes a valuable tool for studying the Universe: ALMA has reached unprecedented sensitivities and spatial resolution, while Herschel/HIFI has opened a new window (most of the sub-mm and far-infrared ranges are only accessible from space) for probing molecular warm gas (~50-1000 K). On the other hand, the software SHAPE has emerged in the past few years as a standard tool for determining the morphology and velocity field of different kinds of gaseous emission nebulae via spatio-kinematical modelling. Standard SHAPE implements radiative transfer solving, but it is only available for atomic species and not for molecules. Aims: Being aware of the growing importance of the development of tools for simplifying the analyses of molecular data from new-era observatories, we introduce the computer code shapemol, a complement to SHAPE, with which we intend to fill the so-far under-developed molecular niche. Methods: shapemol enables user-friendly, spatio-kinematic modelling with accurate non-LTE calculations of excitation and radiative transfer in CO lines. Currently, it allows radiative transfer solving in the 12CO and 13CO J = 1-0 to J = 17-16 lines, but its implementation permits easily extending the code to different transitions and other molecular species, either by the code developers or by the user. Used along SHAPE, shapemol allows easily generating synthetic maps to test against interferometric observations, as well as synthetic line profiles to match single-dish observations. Results: We give a full description of how shapemol works, and we discuss its limitations and the sources of uncertainty to be expected in the final synthetic profiles or maps. As an example of the power and versatility of shapemol, we build a model of the molecular envelope of the planetary nebula NGC 6302 and compare it with 12CO and 13CO J = 2-1 interferometric maps from SMA and high-J transitions from Herschel/HIFI. We find the
Kipp, K.L.
1987-01-01
The Heat- and Soil-Transport Program (HST3D) simulates groundwater flow and associated heat and solute transport in three dimensions. The three governing equations are coupled through the interstitial pore velocity, the dependence of the fluid density on pressure, temperature, the solute-mass fraction , and the dependence of the fluid viscosity on temperature and solute-mass fraction. The solute transport equation is for only a single, solute species with possible linear equilibrium sorption and linear decay. Finite difference techniques are used to discretize the governing equations using a point-distributed grid. The flow-, heat- and solute-transport equations are solved , in turn, after a particle Gauss-reduction scheme is used to modify them. The modified equations are more tightly coupled and have better stability for the numerical solutions. The basic source-sink term represents wells. A complex well flow model may be used to simulate specified flow rate and pressure conditions at the land surface or within the aquifer, with or without pressure and flow rate constraints. Boundary condition types offered include specified value, specified flux, leakage, heat conduction, and approximate free surface, and two types of aquifer influence functions. All boundary conditions can be functions of time. Two techniques are available for solution of the finite difference matrix equations. One technique is a direct-elimination solver, using equations reordered by alternating diagonal planes. The other technique is an iterative solver, using two-line successive over-relaxation. A restart option is available for storing intermediate results and restarting the simulation at an intermediate time with modified boundary conditions. This feature also can be used as protection against computer system failure. Data input and output may be in metric (SI) units or inch-pound units. Output may include tables of dependent variables and parameters, zoned-contour maps, and plots of the
Lewkowicz, Daniel; Delevoye-Turrell, Yvonne
2016-03-01
We present here a toolbox for the real-time motion capture of biological movements that runs in the cross-platform MATLAB environment (The MathWorks, Inc., Natick, MA). It provides instantaneous processing of the 3-D movement coordinates of up to 20 markers at a single instant. Available functions include (1) the setting of reference positions, areas, and trajectories of interest; (2) recording of the 3-D coordinates for each marker over the trial duration; and (3) the detection of events to use as triggers for external reinforcers (e.g., lights, sounds, or odors). Through fast online communication between the hardware controller and RTMocap, automatic trial selection is possible by means of either a preset or an adaptive criterion. Rapid preprocessing of signals is also provided, which includes artifact rejection, filtering, spline interpolation, and averaging. A key example is detailed, and three typical variations are developed (1) to provide a clear understanding of the importance of real-time control for 3-D motion in cognitive sciences and (2) to present users with simple lines of code that can be used as starting points for customizing experiments using the simple MATLAB syntax. RTMocap is freely available (http://sites.google.com/site/RTMocap/) under the GNU public license for noncommercial use and open-source development, together with sample data and extensive documentation.
Lewkowicz, Daniel; Delevoye-Turrell, Yvonne
2016-03-01
We present here a toolbox for the real-time motion capture of biological movements that runs in the cross-platform MATLAB environment (The MathWorks, Inc., Natick, MA). It provides instantaneous processing of the 3-D movement coordinates of up to 20 markers at a single instant. Available functions include (1) the setting of reference positions, areas, and trajectories of interest; (2) recording of the 3-D coordinates for each marker over the trial duration; and (3) the detection of events to use as triggers for external reinforcers (e.g., lights, sounds, or odors). Through fast online communication between the hardware controller and RTMocap, automatic trial selection is possible by means of either a preset or an adaptive criterion. Rapid preprocessing of signals is also provided, which includes artifact rejection, filtering, spline interpolation, and averaging. A key example is detailed, and three typical variations are developed (1) to provide a clear understanding of the importance of real-time control for 3-D motion in cognitive sciences and (2) to present users with simple lines of code that can be used as starting points for customizing experiments using the simple MATLAB syntax. RTMocap is freely available (http://sites.google.com/site/RTMocap/) under the GNU public license for noncommercial use and open-source development, together with sample data and extensive documentation. PMID:25805426
Static & Dynamic Response of 3D Solids
1996-07-15
NIKE3D is a large deformations 3D finite element code used to obtain the resulting displacements and stresses from multi-body static and dynamic structural thermo-mechanics problems with sliding interfaces. Many nonlinear and temperature dependent constitutive models are available.
NASA Astrophysics Data System (ADS)
Muta, Osamu; Akaiwa, Yoshihiko
In this paper, we propose a simple peak power reduction (PPR) method based on adaptive inversion of parity-check block of codeword in BCH-coded OFDM system. In the proposed method, the entire parity-check block of the codeword is adaptively inversed by multiplying weighting factors (WFs) so as to minimize PAPR of the OFDM signal, symbol-by-symbol. At the receiver, these WFs are estimated based on the property of BCH decoding. When the primitive BCH code with single error correction such as (31,26) code is used, to estimate the WFs, the proposed method employs a significant bit protection method which assigns a significant bit to the best subcarrier selected among all possible subcarriers. With computer simulation, when (31,26), (31,21) and (32,21) BCH codes are employed, PAPR of the OFDM signal at the CCDF (Complementary Cumulative Distribution Function) of 10-4 is reduced by about 1.9, 2.5 and 2.5dB by applying the PPR method, while achieving the BER performance comparable to the case with the perfect WF estimation in exponentially decaying 12-path Rayleigh fading condition.
Dumonteil, E.; Le Peillet, A.; Lee, Y. K.; Petit, O.; Jouanne, C.; Mazzolo, A.
2006-07-01
The measurement of the stationarity of Monte Carlo fission source distributions in k{sub eff} calculations plays a central role in the ability to discriminate between fake and 'true' convergence (in the case of a high dominant ratio or in case of loosely coupled systems). Recent theoretical developments have been made in the study of source convergence diagnostics, using Shannon entropy. We will first recall those results, and we will then generalize them using the expression of Boltzmann entropy, highlighting the gain in terms of the various physical problems that we can treat. Finally we will present the results of several OECD/NEA benchmarks using the Tripoli-4 Monte Carlo code, enhanced with this new criterion. (authors)
ERIC Educational Resources Information Center
Hastings, S. K.
2002-01-01
Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)
NASA Astrophysics Data System (ADS)
Liu, Yangyang; Lv, Qunbo; Li, Weiyan; Xiangli, Bin
2015-09-01
As a novel spectrum imaging technology was developed recent years, push-broom coded aperture spectral imaging (PCASI) has the advantages of high throughput, high SNR, high stability etc. This coded aperture spectral imaging utilizes fixed code templates and push-broom mode, which can realize the high-precision reconstruction of spatial and spectral information. But during optical lens designing, manufacturing and debugging, it is inevitably exist some minor coma errors. Even minor coma errors can reduce image quality. In this paper, we simulated the system optical coma error's influence to the quality of reconstructed image, analyzed the variant of the coded aperture in different optical coma effect, then proposed an accurate curve of image quality and optical coma quality in 255×255 size code template, which provide important references for design and development of push-broom coded aperture spectrometer.
Explicit 3-D Hydrodynamic FEM Program
2000-11-07
DYNA3D is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, includingmore » frictional sliding, single surface contact and automatic contact generation.« less
An Improved Version of TOPAZ 3D
Krasnykh, Anatoly
2003-07-29
An improved version of the TOPAZ 3D gun code is presented as a powerful tool for beam optics simulation. In contrast to the previous version of TOPAZ 3D, the geometry of the device under test is introduced into TOPAZ 3D directly from a CAD program, such as Solid Edge or AutoCAD. In order to have this new feature, an interface was developed, using the GiD software package as a meshing code. The article describes this method with two models to illustrate the results.
3-D transient analysis of pebble-bed HTGR by TORT-TD/ATTICA3D
Seubert, A.; Sureda, A.; Lapins, J.; Buck, M.; Bader, J.; Laurien, E.
2012-07-01
As most of the acceptance criteria are local core parameters, application of transient 3-D fine mesh neutron transport and thermal hydraulics coupled codes is mandatory for best estimate evaluations of safety margins. This also applies to high-temperature gas cooled reactors (HTGR). Application of 3-D fine-mesh transient transport codes using few energy groups coupled with 3-D thermal hydraulics codes becomes feasible in view of increasing computing power. This paper describes the discrete ordinates based coupled code system TORT-TD/ATTICA3D that has recently been extended by a fine-mesh diffusion solver. Based on transient analyses for the PBMR-400 design, the transport/diffusion capabilities are demonstrated and 3-D local flux and power redistribution effects during a partial control rod withdrawal are shown. (authors)
BEAMS3D Neutral Beam Injection Model
Lazerson, Samuel
2014-04-14
With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.
NASA Astrophysics Data System (ADS)
Tietze, Kristina; Ritter, Oliver
2013-10-01
3-D inversion techniques have become a widely used tool in magnetotelluric (MT) data interpretation. However, with real data sets, many of the controlling factors for the outcome of 3-D inversion are little explored, such as alignment of the coordinate system, handling and influence of data errors and model regularization. Here we present 3-D inversion results of 169 MT sites from the central San Andreas Fault in California. Previous extensive 2-D inversion and 3-D forward modelling of the data set revealed significant along-strike variation of the electrical conductivity structure. 3-D inversion can recover these features but only if the inversion parameters are tuned in accordance with the particularities of the data set. Based on synthetic 3-D data we explore the model space and test the impacts of a wide range of inversion settings. The tests showed that the recovery of a pronounced regional 2-D structure in inversion of the complete impedance tensor depends on the coordinate system. As interdependencies between data components are not considered in standard 3-D MT inversion codes, 2-D subsurface structures can vanish if data are not aligned with the regional strike direction. A priori models and data weighting, that is, how strongly individual components of the impedance tensor and/or vertical magnetic field transfer functions dominate the solution, are crucial controls for the outcome of 3-D inversion. If deviations from a prior model are heavily penalized, regularization is prone to result in erroneous and misleading 3-D inversion models, particularly in the presence of strong conductivity contrasts. A `good' overall rms misfit is often meaningless or misleading as a huge range of 3-D inversion results exist, all with similarly `acceptable' misfits but producing significantly differing images of the conductivity structures. Reliable and meaningful 3-D inversion models can only be recovered if data misfit is assessed systematically in the frequency
Welter, David E.; Doherty, John E.; Hunt, Randall J.; Muffels, Christopher T.; Tonkin, Matthew J.; Schreuder, Willem A.
2012-01-01
An object-oriented parameter estimation code was developed to incorporate benefits of object-oriented programming techniques for solving large parameter estimation modeling problems. The code is written in C++ and is a formulation and expansion of the algorithms included in PEST, a widely used parameter estimation code written in Fortran. The new code is called PEST++ and is designed to lower the barriers of entry for users and developers while providing efficient algorithms that can accommodate large, highly parameterized problems. This effort has focused on (1) implementing the most popular features of PEST in a fashion that is easy for novice or experienced modelers to use and (2) creating a software design that is easy to extend; that is, this effort provides a documented object-oriented framework designed from the ground up to be modular and extensible. In addition, all PEST++ source code and its associated libraries, as well as the general run manager source code, have been integrated in the Microsoft Visual Studio® 2010 integrated development environment. The PEST++ code is designed to provide a foundation for an open-source development environment capable of producing robust and efficient parameter estimation tools for the environmental modeling community into the future.
Nidaira, Minoru; Kuba, Yumani; Saitoh, Mika; Taira, Katsuya; Maeshiro, Noriyuki; Mahoe, Yoko; Kyan, Hisako; Takara, Taketoshi; Okano, Sho; Kudaka, Jun; Yoshida, Hiromu; Oishi, Kazunori; Kimura, Hirokazu
2014-04-01
A large acute hemorrhagic conjunctivitis (AHC) outbreak occurred in 2011 in Okinawa Prefecture in Japan. Ten strains of coxsackievirus group A type 24 variant (CA24v) were isolated from patients with AHC and full sequence analysis of the VP3, VP1, 3C(pro) and 3D(pol) coding regions performed. To assess time-scale evolution, phylogenetic analysis was performed using the Bayesian Markov chain Monte Carlo method. In addition, similarity plots were constructed and pairwise distance (p-distance) and positive pressure analyses performed. A phylogenetic tree based on the VP1 coding region showed that the present strains belong to genotype 4 (G4). In addition, the present strains could have divided in about 2010 from the same lineages detected in other countries such as China, India and Australia. The mean rates of molecular evolution of four coding regions were estimated at about 6.15 to 7.86 × 10(-3) substitutions/site/year. Similarity plot analyses suggested that nucleotide similarities between the present strains and a prototype strain (EH24/70 strain) were 0.77-0.94. The p-distance of the present strains was relatively short (<0.01). Only one positive selected site (L25H) was identified in the VP1 protein. These findings suggest that the present CA24v strains causing AHC are genetically related to other AHC strains with rapid evolution and emerged in around 2010.
Turner, D.
1983-08-01
The T-HEMP3D (Transportable HEMP3D) computer program is a derivative of the STEALTH three-dimensional thermodynamics code developed by Science Applications, Inc., under the direction of Ron Hofmann. STEALTH, in turn, is based entirely on the original HEMP3D code written at Lawrence Livermore National Laboratory. The primary advantage STEALTH has over its predecessors is that it was designed using modern structured design techniques, with rigorous programming standards enforced. This yields two benefits. First, the code is easily changeable; this is a necessity for a physics code used for research. The second benefit is that the code is easily transportable between different types of computers. The STEALTH program was transferred to LLNL under a cooperative development agreement. Changes were made primarily in three areas: material specification, coordinate generation, and the addition of sliding surface boundary conditions. The code was renamed T-HEMP3D to avoid confusion with other versions of STEALTH. This document summarizes the input to T-HEMP3D, as used at LLNL. It does not describe the physics simulated by the program, nor the numerical techniques employed. Furthermore, it does not describe the separate job steps of coordinate generation and post-processing, including graphical display of results. (WHK)
NUBEAM developments and 3d halo modeling
NASA Astrophysics Data System (ADS)
Gorelenkova, M. V.; Medley, S. S.; Kaye, S. M.
2012-10-01
Recent developments related to the 3D halo model in NUBEAM code are described. To have a reliable halo neutral source for diagnostic simulation, the TRANSP/NUBEAM code has been enhanced with full implementation of ADAS atomic physic ground state and excited state data for hydrogenic beams and mixed species plasma targets. The ADAS codes and database provide the density and temperature dependence of the atomic data, and the collective nature of the state excitation process. To be able to populate 3D halo output with sufficient statistical resolution, the capability to control the statistics of fast ion CX modeling and for thermal halo launch has been added to NUBEAM. The 3D halo neutral model is based on modification and extension of the ``beam in box'' aligned 3d Cartesian grid that includes the neutral beam itself, 3D fast neutral densities due to CX of partially slowed down fast ions in the beam halo region, 3D thermal neutral densities due to CX deposition and fast neutral recapture source. More details on the 3D halo simulation design will be presented.
NASA Astrophysics Data System (ADS)
Oldham, Mark
2015-01-01
Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.
NASA Astrophysics Data System (ADS)
Moore, Gregory F.
2009-05-01
This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.
Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran
2016-03-17
We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.
3-D Finite Element Code Postprocessor
1996-07-15
TAURUS is an interactive post-processing application supporting visualization of finite element analysis results on unstructured grids. TAURUS provides the ability to display deformed geometries and contours or fringes of a large number of derived results on meshes consisting of beam, plate, shell, and solid type finite elements. Time history plotting is also available.
JAR3D Webserver: Scoring and aligning RNA loop sequences to known 3D motifs
Roll, James; Zirbel, Craig L.; Sweeney, Blake; Petrov, Anton I.; Leontis, Neocles
2016-01-01
Many non-coding RNAs have been identified and may function by forming 2D and 3D structures. RNA hairpin and internal loops are often represented as unstructured on secondary structure diagrams, but RNA 3D structures show that most such loops are structured by non-Watson–Crick basepairs and base stacking. Moreover, different RNA sequences can form the same RNA 3D motif. JAR3D finds possible 3D geometries for hairpin and internal loops by matching loop sequences to motif groups from the RNA 3D Motif Atlas, by exact sequence match when possible, and by probabilistic scoring and edit distance for novel sequences. The scoring gauges the ability of the sequences to form the same pattern of interactions observed in 3D structures of the motif. The JAR3D webserver at http://rna.bgsu.edu/jar3d/ takes one or many sequences of a single loop as input, or else one or many sequences of longer RNAs with multiple loops. Each sequence is scored against all current motif groups. The output shows the ten best-matching motif groups. Users can align input sequences to each of the motif groups found by JAR3D. JAR3D will be updated with every release of the RNA 3D Motif Atlas, and so its performance is expected to improve over time. PMID:27235417
NASA Astrophysics Data System (ADS)
Plaut, J. J.
1993-08-01
Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.
Van, B.T.; Pajon, J.L.; Joseph, P. )
1991-11-01
This paper shows how some simple 3D computer graphics tools can be combined to provide efficient software for visualizing and analyzing data obtained from reservoir simulators and geological simulations. The animation and interactive capabilities of the software quickly provide a deep understanding of the fluid-flow behavior and an accurate idea of the internal architecture of a reservoir.
NASA Astrophysics Data System (ADS)
Agata, R.; Ichimura, T.; Hori, T.; Hirahara, K.; Hori, M.
2012-12-01
Crustal deformation analysis is important in order to understand the interplate coupling and coseismic fault slips. To perform it more accurately, we need a high-fidelity crustal structure model. However, in spite of accumulated crustal data, models with simplified flat shapes or relatively low resolution have been used, because the computation cost using high-fidelity models with a large degree-of-freedom (DOF) could be significantly high. Especially, estimation of the interplate coupling and coseismic fault slip requires the calculation of Green's function (the response displacement due to unit fault slip). To execute this computation in a realistic time, we need to reduce the computation cost. The objectives of our research is following: (1)To develop a method to generate 3D Finite Element (FE) models which represent heterogeneous crustal layers with the complex shape of crustal structure; (2)To develop a fast FE analysis method to perform crustal deformation analysis many times using single computation node, supposing the use of a small-scale computation environment. We developed an automatic FE model generation method using background grids with high quality meshes in a large area by extending the method of (Ichimura et al, 2009). We used Finite Element Method (FEM) because it has an advantage in representing the shape. Hybrid meshes consisting of tetrahedral and voxel elements are generated; the former is used when the interface surfaces and the grids intersect so that the shape of the crust is represented well, while the latter is used in the homogeneous areas. Also, we developed a method for crustal deformation analysis due to fault slip, which solves the FEM equation Ku=f assuming that the crust is an elastic body. To compute it fast, firstly we solved the problem by CG method with a simple preconditioning, parallelizing it by OpenMP. However, this computation took a long time, so we improved the method by introducing Multigrid Method (Saam, 2003) to the
RAG-3D: A search tool for RNA 3D substructures
Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; Schlick, Tamar
2015-08-24
In this study, to address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally describedmore » in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.« less
RAG-3D: A search tool for RNA 3D substructures
Zahran, Mai; Sevim Bayrak, Cigdem; El