NASA Astrophysics Data System (ADS)
Rezaie, Mohammad; Moradzadeh, Ali; Kalate, Ali Nejati; Aghajani, Hamid
2017-01-01
Inversion of gravity data is one of the important steps in the interpretation of practical data. One of the most interesting geological frameworks for gravity data inversion is the detection of sharp boundaries between orebody and host rocks. The focusing inversion is able to reconstruct a sharp image of the geological target. This technique can be efficiently applied for the quantitative interpretation of gravity data. In this study, a new reweighted regularized method for the 3D focusing inversion technique based on Lanczos bidiagonalization method is developed. The inversion results of synthetic data show that the new method is faster than common reweighted regularized conjugate gradient method to produce an acceptable solution for focusing inverse problem. The new developed inversion scheme is also applied for inversion of the gravity data collected over the San Nicolas Cu-Zn orebody in Zacatecas State, Mexico. The inversion results indicate a remarkable correlation with the true structure of the orebody that is achieved from drilling data.
Development of direct-inverse 3-D methods for applied aerodynamic design and analysis
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1988-01-01
Several inverse methods have been compared and initial results indicate that differences in results are primarily due to coordinate systems and fuselage representations and not to design procedures. Further, results from a direct-inverse method that includes 3-D wing boundary layer effects, wake curvature, and wake displacement are presented. These results show that boundary layer displacements must be included in the design process for accurate results.
Fast 3D inversion of airborne gravity-gradiometry data using Lanczos bidiagonalization method
NASA Astrophysics Data System (ADS)
Meng, Zhaohai; Li, Fengting; Zhang, Dailei; Xu, Xuechun; Huang, Danian
2016-09-01
We developed a new fast inversion method for to process and interpret airborne gravity gradiometry data, which was based on Lanczos bidiagonalization algorithm. Here, we describe the application of this new 3D gravity gradiometry inversion method to recover a subsurface density distribution model from the airborne measured gravity gradiometry anomalies. For this purpose, the survey area is divided into a large number of rectangular cells with each cell possessing a constant unknown density. It is well known that the solution of large linear gravity gradiometry is an ill-posed problem since using the smoothest inversion method is considerably time consuming. We demonstrate that the Lanczos bidiagonalization method can be an appropriate algorithm to solve a Tikhonov solver time cost function for resolving the large equations within a short time. Lanczos bidiagonalization is designed to make the very large gravity gradiometry forward modeling matrices to become low-rank, which will considerably reduce the running time of the inversion method. We also use a weighted generalized cross validation method to choose the appropriate Tikhonov parameter to improve inversion results. The inversion incorporates a model norm that allows us to attain the smoothing and depth of the solution; in addition, the model norm counteracts the natural decay of the kernels, which concentrate at shallow depths. The method is applied on noise-contaminated synthetic gravity gradiometry data to demonstrate its suitability for large 3D gravity gradiometry data inversion. The airborne gravity gradiometry data from the Vinton Salt Dome, USE, were considered as a case study. The validity of the new method on real data is discussed with reference to the Vinton Dome inversion result. The intermediate density values in the constructed model coincide well with previous results and geological information. This demonstrates the validity of the gravity gradiometry inversion method.
NASA Astrophysics Data System (ADS)
Liu, B.; Li, S. C.; Nie, L. C.; Wang, J.; L, X.; Zhang, Q. S.
2012-12-01
Traditional inversion method is the most commonly used procedure for three-dimensional (3D) resistivity inversion, which usually takes the linearization of the problem and accomplish it by iterations. However, its accuracy is often dependent on the initial model, which can make the inversion trapped in local optima, even cause a bad result. Non-linear method is a feasible way to eliminate the dependence on the initial model. However, for large problems such as 3D resistivity inversion with inversion parameters exceeding a thousand, main challenges of non-linear method are premature and quite low search efficiency. To deal with these problems, we present an improved Genetic Algorithm (GA) method. In the improved GA method, smooth constraint and inequality constraint are both applied on the object function, by which the degree of non-uniqueness and ill-conditioning is decreased. Some measures are adopted from others by reference to maintain the diversity and stability of GA, e.g. real-coded method, and the adaptive adjustment of crossover and mutation probabilities. Then a generation method of approximately uniform initial population is proposed in this paper, with which uniformly distributed initial generation can be produced and the dependence on initial model can be eliminated. Further, a mutation direction control method is presented based on the joint algorithm, in which the linearization method is embedded in GA. The update vector produced by linearization method is used as mutation increment to maintain a better search direction compared with the traditional GA with non-controlled mutation operation. By this method, the mutation direction is optimized and the search efficiency is improved greatly. The performance of improved GA is evaluated by comparing with traditional inversion results in synthetic example or with drilling columnar sections in practical example. The synthetic and practical examples illustrate that with the improved GA method we can eliminate
Kılıç, Emre Eibert, Thomas F.
2015-05-01
An approach combining boundary integral and finite element methods is introduced for the solution of three-dimensional inverse electromagnetic medium scattering problems. Based on the equivalence principle, unknown equivalent electric and magnetic surface current densities on a closed surface are utilized to decompose the inverse medium problem into two parts: a linear radiation problem and a nonlinear cavity problem. The first problem is formulated by a boundary integral equation, the computational burden of which is reduced by employing the multilevel fast multipole method (MLFMM). Reconstructed Cauchy data on the surface allows the utilization of the Lorentz reciprocity and the Poynting's theorems. Exploiting these theorems, the noise level and an initial guess are estimated for the cavity problem. Moreover, it is possible to determine whether the material is lossy or not. In the second problem, the estimated surface currents form inhomogeneous boundary conditions of the cavity problem. The cavity problem is formulated by the finite element technique and solved iteratively by the Gauss–Newton method to reconstruct the properties of the object. Regularization for both the first and the second problems is achieved by a Krylov subspace method. The proposed method is tested against both synthetic and experimental data and promising reconstruction results are obtained.
Solving Dirac equations on a 3D lattice with inverse Hamiltonian and spectral methods
NASA Astrophysics Data System (ADS)
Ren, Z. X.; Zhang, S. Q.; Meng, J.
2017-02-01
A new method to solve the Dirac equation on a 3D lattice is proposed, in which the variational collapse problem is avoided by the inverse Hamiltonian method and the fermion doubling problem is avoided by performing spatial derivatives in momentum space with the help of the discrete Fourier transform, i.e., the spectral method. This method is demonstrated in solving the Dirac equation for a given spherical potential in a 3D lattice space. In comparison with the results obtained by the shooting method, the differences in single-particle energy are smaller than 10-4 MeV, and the densities are almost identical, which demonstrates the high accuracy of the present method. The results obtained by applying this method without any modification to solve the Dirac equations for an axial-deformed, nonaxial-deformed, and octupole-deformed potential are provided and discussed.
Earthquake source tensor inversion with the gCAP method and 3D Green's functions
NASA Astrophysics Data System (ADS)
Zheng, J.; Ben-Zion, Y.; Zhu, L.; Ross, Z.
2013-12-01
We develop and apply a method to invert earthquake seismograms for source properties using a general tensor representation and 3D Green's functions. The method employs (i) a general representation of earthquake potency/moment tensors with double couple (DC), compensated linear vector dipole (CLVD), and isotropic (ISO) components, and (ii) a corresponding generalized CAP (gCap) scheme where the continuous wave trains are broken into Pnl and surface waves (Zhu & Ben-Zion, 2013). For comparison, we also use the waveform inversion method of Zheng & Chen (2012) and Ammon et al. (1998). Sets of 3D Green's functions are calculated on a grid of 1 km3 using the 3-D community velocity model CVM-4 (Kohler et al. 2003). A bootstrap technique is adopted to establish robustness of the inversion results using the gCap method (Ross & Ben-Zion, 2013). Synthetic tests with 1-D and 3-D waveform calculations show that the source tensor inversion procedure is reasonably reliable and robust. As initial application, the method is used to investigate source properties of the March 11, 2013, Mw=4.7 earthquake on the San Jacinto fault using recordings of ~45 stations up to ~0.2Hz. Both the best fitting and most probable solutions include ISO component of ~1% and CLVD component of ~0%. The obtained ISO component, while small, is found to be a non-negligible positive value that can have significant implications for the physics of the failure process. Work on using higher frequency data for this and other earthquakes is in progress.
A hybrid method for inversion of 3D DC resistivity logging measurements.
Gajda-Zagórska, Ewa; Schaefer, Robert; Smołka, Maciej; Paszyński, Maciej; Pardo, David
This paper focuses on the application of hp hierarchic genetic strategy (hp-HGS) for solution of a challenging problem, the inversion of 3D direct current (DC) resistivity logging measurements. The problem under consideration has been formulated as the global optimization one, for which the objective function (misfit between computed and reference data) exhibits multiple minima. In this paper, we consider the extension of the hp-HGS strategy, namely we couple the hp-HGS algorithm with a gradient based optimization method for a local search. Forward simulations are performed with a self-adaptive hp finite element method, hp-FEM. The computational cost of misfit evaluation by hp-FEM depends strongly on the assumed accuracy. This accuracy is adapted to the tree of populations generated by the hp-HGS algorithm, which makes the global phase significantly cheaper. Moreover, tree structure of demes as well as branch reduction and conditional sprouting mechanism reduces the number of expensive local searches up to the number of minima to be recognized. The common (direct and inverse) accuracy control, crucial for the hp-HGS efficiency, has been motivated by precise mathematical considerations. Numerical results demonstrate the suitability of the proposed method for the inversion of 3D DC resistivity logging measurements.
Review on applications of 3D inverse design method for pump
NASA Astrophysics Data System (ADS)
Yin, Junlian; Wang, Dezhong
2014-05-01
The 3D inverse design method, which methodology is far superior to the conventional design method that based on geometrical description, is gradually applied in pump blade design. However, no complete description about the method is outlined. Also, there are no general rules available to set the two important input parameters, blade loading distribution and stacking condition. In this sense, the basic theory and the mechanism why the design method can suppress the formation of secondary flow are summarized. And also, several typical pump design cases with different specific speeds ranging from centrifugal pump to axial pump are surveyed. The results indicates that, for centrifugal pump and mixed pump or turbine, the ratio of blade loading on the hub to that on the shroud is more than unit in the fore part of the blade, whereas in the aft part, the ratio is decreased to satisfy the same wrap angle for hub and shroud. And the choice of blade loading type depends on the balancing of efficiency and cavitation. If the cavitation is more weighted, the better choice is aft-loaded, otherwise, the fore-loaded or mid-loaded is preferable to improve the efficiency. The stacking condition, which is an auxiliary to suppress the secondary flow, can have great effect on the jet-wake outflow and the operation range for pump. Ultimately, how to link the design method to modern optimization techniques is illustrated. With the know-how design methodology and the know-how systematic optimization approach, the application of optimization design is promising for engineering. This paper summarizes the 3D inverse design method systematically.
3D CSEM data inversion using Newton and Halley class methods
NASA Astrophysics Data System (ADS)
Amaya, M.; Hansen, K. R.; Morten, J. P.
2016-05-01
For the first time in 3D controlled source electromagnetic data inversion, we explore the use of the Newton and the Halley optimization methods, which may show their potential when the cost function has a complex topology. The inversion is formulated as a constrained nonlinear least-squares problem which is solved by iterative optimization. These methods require the derivatives up to second order of the residuals with respect to model parameters. We show how Green's functions determine the high-order derivatives, and develop a diagrammatical representation of the residual derivatives. The Green's functions are efficiently calculated on-the-fly, making use of a finite-difference frequency-domain forward modelling code based on a multi-frontal sparse direct solver. This allow us to build the second-order derivatives of the residuals keeping the memory cost in the same order as in a Gauss-Newton (GN) scheme. Model updates are computed with a trust-region based conjugate-gradient solver which does not require the computation of a stabilizer. We present inversion results for a synthetic survey and compare the GN, Newton, and super-Halley optimization schemes, and consider two different approaches to set the initial trust-region radius. Our analysis shows that the Newton and super-Halley schemes, using the same regularization configuration, add significant information to the inversion so that the convergence is reached by different paths. In our simple resistivity model examples, the convergence speed of the Newton and the super-Halley schemes are either similar or slightly superior with respect to the convergence speed of the GN scheme, close to the minimum of the cost function. Due to the current noise levels and other measurement inaccuracies in geophysical investigations, this advantageous behaviour is at present of low consequence, but may, with the further improvement of geophysical data acquisition, be an argument for more accurate higher-order methods like those
Wang, G.L.; Chew, W.C.; Cui, T.J.; Aydiner, A.A.; Wright, D.L.; Smith, D.V.
2004-01-01
Three-dimensional (3D) subsurface imaging by using inversion of data obtained from the very early time electromagnetic system (VETEM) was discussed. The study was carried out by using the distorted Born iterative method to match the internal nonlinear property of the 3D inversion problem. The forward solver was based on the total-current formulation bi-conjugate gradient-fast Fourier transform (BCCG-FFT). It was found that the selection of regularization parameter follow a heuristic rule as used in the Levenberg-Marquardt algorithm so that the iteration is stable.
Development of direct-inverse 3-D methods for applied transonic aerodynamic wing design and analysis
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1989-01-01
An inverse wing design method was developed around an existing transonic wing analysis code. The original analysis code, TAWFIVE, has as its core the numerical potential flow solver, FLO30, developed by Jameson and Caughey. Features of the analysis code include a finite-volume formulation; wing and fuselage fitted, curvilinear grid mesh; and a viscous boundary layer correction that also accounts for viscous wake thickness and curvature. The development of the inverse methods as an extension of previous methods existing for design in Cartesian coordinates is presented. Results are shown for inviscid wing design cases in super-critical flow regimes. The test cases selected also demonstrate the versatility of the design method in designing an entire wing or discontinuous sections of a wing.
3D Electromagnetic inversion using conjugate gradients
Newman, G.A.; Alumbaugh, D.L.
1997-06-01
In large scale 3D EM inverse problems it may not be possible to directly invert a full least-squares system matrix involving model sensitivity elements. Thus iterative methods must be employed. For the inverse problem, we favor either a linear or non-linear (NL) CG scheme, depending on the application. In a NL CG scheme, the gradient of the objective function is required at each relaxation step along with a univariate line search needed to determine the optimum model update. Solution examples based on both approaches will be presented.
A numerical method for the inverse problem of cell traction in 3D
NASA Astrophysics Data System (ADS)
Vitale, G.; Preziosi, L.; Ambrosi, D.
2012-09-01
Force traction microscopy is an inversion method that allows us to obtain the stress field applied by a living cell on the environment on the basis of a pointwise knowledge of the displacement produced by the cell itself. This classical biophysical problem, usually addressed in terms of Green’s functions, can be alternatively tackled in a variational framework. In such a case, a variation of the error functional under suitable regularization is operated in view of its minimization. This setting naturally suggests the introduction of a new equation, based on the adjoint operator of the elasticity problem. In this paper, we illustrate a numerical strategy of the inversion method that discretizes the partial differential equations associated with the optimal control problem by finite elements. A detailed discussion of the numerical approximation of a test problem (with known solution) that contains most of the mathematical difficulties of the real one allows a precise evaluation of the degree of confidence that one can achieve in the numerical results.
Development of direct-inverse 3-D methods for applied transonic aerodynamic wing design and analysis
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1989-01-01
Progress in the direct-inverse wing design method in curvilinear coordinates has been made. This includes the remedying of a spanwise oscillation problem and the assessment of grid skewness, viscous interaction, and the initial airfoil section on the final design. It was found that, in response to the spanwise oscillation problem that designing at every other spanwise station produced the best results for the cases presented, a smoothly varying grid is especially needed for the accurate design at the wing tip, the boundary layer displacement thicknesses must be included in a successful wing design, the design of high and medium aspect ratio wings is possible with this code, and the final airfoil section designed is fairly independent of the initial section.
NASA Astrophysics Data System (ADS)
Hara, Tatsuhiko
2004-08-01
We implement the Direct Solution Method (DSM) on a vector-parallel supercomputer and show that it is possible to significantly improve its computational efficiency through parallel computing. We apply the parallel DSM calculation to waveform inversion of long period (250-500 s) surface wave data for three-dimensional (3-D) S-wave velocity structure in the upper and uppermost lower mantle. We use a spherical harmonic expansion to represent lateral variation with the maximum angular degree 16. We find significant low velocities under south Pacific hot spots in the transition zone. This is consistent with other seismological studies conducted in the Superplume project, which suggests deep roots of these hot spots. We also perform simultaneous waveform inversion for 3-D S-wave velocity and Q structure. Since resolution for Q is not good, we develop a new technique in which power spectra are used as data for inversion. We find good correlation between long wavelength patterns of Vs and Q in the transition zone such as high Vs and high Q under the western Pacific.
Łeski, Szymon; Wójcik, Daniel K; Tereszczuk, Joanna; Swiejkowski, Daniel A; Kublik, Ewa; Wróbel, Andrzej
2007-01-01
Estimation of the continuous current-source density in bulk tissue from a finite set of electrode measurements is a daunting task. Here we present a methodology which allows such a reconstruction by generalizing the one-dimensional inverse CSD method. The idea is to assume a particular plausible form of CSD within a class described by a number of parameters which can be estimated from available data, for example a set of cubic splines in 3D spanned on a fixed grid of the same size as the set of measurements. To avoid specificity of particular choice of reconstruction grid we add random jitter to the points positions and show that it leads to a correct reconstruction. We propose different ways of improving the quality of reconstruction which take into account the sources located outside the recording region through appropriate boundary treatment. The efficiency of the traditional CSD and variants of inverse CSD methods is compared using several fidelity measures on different test data to investigate when one of the methods is superior to the others. The methods are illustrated with reconstructions of CSD from potentials evoked by stimulation of a bunch of whiskers recorded in a slab of the rat forebrain on a grid of 4x5x7 positions.
Development of direct-inverse 3-D methods for applied transonic aerodynamic wing design and analysis
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1988-01-01
Since the project is rapidly nearing conclusion, the status of the tasks outlined in the original proposal are briefly outlined. These tasks include: viscous interation and wake curvature effects; code optimization and design methodology studies; methods for the design of isolated regions; program improvement efforts; and validation, testing, and documentation.
3D Gravity Inversion using Tikhonov Regularization
NASA Astrophysics Data System (ADS)
Toushmalani, Reza; Saibi, Hakim
2015-08-01
Subsalt exploration for oil and gas is attractive in regions where 3D seismic depth-migration to recover the geometry of a salt base is difficult. Additional information to reduce the ambiguity in seismic images would be beneficial. Gravity data often serve these purposes in the petroleum industry. In this paper, the authors present an algorithm for a gravity inversion based on Tikhonov regularization and an automatically regularized solution process. They examined the 3D Euler deconvolution to extract the best anomaly source depth as a priori information to invert the gravity data and provided a synthetic example. Finally, they applied the gravity inversion to recently obtained gravity data from the Bandar Charak (Hormozgan, Iran) to identify its subsurface density structure. Their model showed the 3D shape of salt dome in this region.
3-D radial gravity gradient inversion
NASA Astrophysics Data System (ADS)
Oliveira, Vanderlei C.; Barbosa, Valéria C. F.
2013-11-01
We have presented a joint inversion of all gravity-gradient tensor components to estimate the shape of an isolated 3-D geological body located in subsurface. The method assumes the knowledge about the depth to the top and density contrast of the source. The geological body is approximated by an interpretation model formed by an ensemble of vertically juxtaposed 3-D right prisms, each one with known thickness and density contrast. All prisms forming the interpretation model have a polygonal horizontal cross-section that approximates a depth slice of the body. Each polygon defining a horizontal cross-section has the same fixed number of vertices, which are equally spaced from 0° to 360° and have their horizontal locations described in polar coordinates referred to an arbitrary origin inside the polygon. Although the number of vertices forming each polygon is known, the horizontal coordinates of these vertices are unknown. To retrieve a set of juxtaposed depth slices of the body, and consequently, its shape, our method estimates the radii of all vertices and the horizontal Cartesian coordinates of all arbitrary origins defining the geometry of all polygons describing the horizontal cross-sections of the prisms forming the interpretation model. To obtain a stable estimate that fits the observed data, we impose constraints on the shape of the estimated body. These constraints are imposed through the well-known zeroth- and first-order Tikhonov regularizations allowing, for example, the estimate of vertical or dipping bodies. If the data do not have enough in-depth resolution, the proposed inverse method can obtain a set of stable estimates fitting the observed data with different maximum depths. To analyse the data resolution and deal with this possible ambiguity, we plot the ℓ2-norm of the residuals (s) against the estimated volume (vp) produced by a set of estimated sources having different maximum depths. If this s × vp curve (s as a function of vp) shows a well
Design optimization of axial flow hydraulic turbine runner: Part I - an improved Q3D inverse method
NASA Astrophysics Data System (ADS)
Peng, Guoyi; Cao, Shuliang; Ishizuka, Masaru; Hayama, Shinji
2002-06-01
With the aim of constructing a comprehensive design optimization procedure of axial flow hydraulic turbine, an improved quasi-three-dimensional inverse method has been proposed from the viewpoint of system and a set of rotational flow governing equations as well as a blade geometry design equation has been derived. The computation domain is firstly taken from the inlet of guide vane to the far outlet of runner blade in the inverse method and flows in different regions are solved simultaneously. So the influence of wicket gate parameters on the runner blade design can be considered and the difficulty to define the flow condition at the runner blade inlet is surmounted. As a pre-computation of initial blade design on S2m surface is newly adopted, the iteration of S1 and S2m surfaces has been reduced greatly and the convergence of inverse computation has been improved. The present model has been applied to the inverse computation of a Kaplan turbine runner. Experimental results and the direct flow analysis have proved the validation of inverse computation. Numerical investigations show that a proper enlargement of guide vane distribution diameter is advantageous to improve the performance of axial hydraulic turbine runner. Copyright
Image Appraisal for 2D and 3D Electromagnetic Inversion
Alumbaugh, D.L.; Newman, G.A.
1999-01-28
Linearized methods are presented for appraising image resolution and parameter accuracy in images generated with two and three dimensional non-linear electromagnetic inversion schemes. When direct matrix inversion is employed, the model resolution and posterior model covariance matrices can be directly calculated. A method to examine how the horizontal and vertical resolution varies spatially within the electromagnetic property image is developed by examining the columns of the model resolution matrix. Plotting the square root of the diagonal of the model covariance matrix yields an estimate of how errors in the inversion process such as data noise and incorrect a priori assumptions about the imaged model map into parameter error. This type of image is shown to be useful in analyzing spatial variations in the image sensitivity to the data. A method is analyzed for statistically estimating the model covariance matrix when the conjugate gradient method is employed rather than a direct inversion technique (for example in 3D inversion). A method for calculating individual columns of the model resolution matrix using the conjugate gradient method is also developed. Examples of the image analysis techniques are provided on 2D and 3D synthetic cross well EM data sets, as well as a field data set collected at the Lost Hills Oil Field in Central California.
NASA Astrophysics Data System (ADS)
Aucejo, M.; Totaro, N.; Guyader, J.-L.
2010-08-01
In noise control, identification of the source velocity field remains a major problem open to investigation. Consequently, methods such as nearfield acoustical holography (NAH), principal source projection, the inverse frequency response function and hybrid NAH have been developed. However, these methods require free field conditions that are often difficult to achieve in practice. This article presents an alternative method known as inverse patch transfer functions, designed to identify source velocities and developed in the framework of the European SILENCE project. This method is based on the definition of a virtual cavity, the double measurement of the pressure and particle velocity fields on the aperture surfaces of this volume, divided into elementary areas called patches and the inversion of impedances matrices, numerically computed from a modal basis obtained by FEM. Theoretically, the method is applicable to sources with complex 3D geometries and measurements can be carried out in a non-anechoic environment even in the presence of other stationary sources outside the virtual cavity. In the present paper, the theoretical background of the iPTF method is described and the results (numerical and experimental) for a source with simple geometry (two baffled pistons driven in antiphase) are presented and discussed.
NASA Astrophysics Data System (ADS)
Ross, Z.; Ben-Zion, Y.; Zhu, L.; Graves, R. W.
2015-12-01
We perform a full source tensor inversion of several M > 4 earthquakes that occurred in the San Jacinto fault zone in southern California, with an emphasis on resolving signatures of volumetric source changes. A previous study on these events with Green's functions based on a 1D velocity model identified statistically significant explosive isotropic components (Ross et al. 2015). Here we use the SCEC 3D Community Velocity Model to derive Green's functions with source-receiver reciprocity and finite-difference calculations based on the code of Graves (1996). About 50 stations are used at epicentral distances of up to 55 km. The inversions are performed using the 'generalized Cut and Paste' method, which includes CLVD and isotropic components (Zhu and Ben-Zion 2013). The derived source tensors are compared to the results of the previous study based on the simplified 1D velocity model. The results are analyzed with bootstrap analysis to estimate uncertainties involved. Additional tests are performed using synthetic waveforms to study the effects of neglecting various features on the source inversions.
NASA Astrophysics Data System (ADS)
Martin, Roland; Chevrot, Sébastien; Komatitsch, Dimitri; Seoane, Lucia; Spangenberg, Hannah; Wang, Yi; Dufréchou, Grégory; Bonvalot, Sylvain; Bruinsma, Sean
2017-01-01
We image the internal density structure of the Pyrenees by inverting gravity data using an a priori density model derived by scaling a Vp model obtained by full waveform inversion of teleseismic P-waves. Gravity anomalies are computed via a 3D high-order finite-element integration in the same high-order spectral-element grid as the one used to solve the wave equation and thus to obtain the velocity model. The curvature of the Earth and surface topography are taken into account in order to obtain a density model as accurate as possible. The method is validated through comparisons with exact semi-analytical solutions. We show that the spectral element method drastically accelerates the computations when compared to other more classical methods. Different scaling relations between compressional velocity and density are tested, and the Nafe-Drake relation is the one that leads to the best agreement between computed and observed gravity anomalies. Gravity data inversion is then performed and the results allow us to put more constraints on the density structure of the shallow crust and on the deep architecture of the mountain range.
NASA Astrophysics Data System (ADS)
Ullmann, A.; Scheunert, M.; Afanasjew, M.; Börner, R.-U.; Siemon, B.; Spitzer, K.
2016-07-01
As a standard procedure, multi-frequency helicopter-borne electromagnetic (HEM) data are inverted to conductivity-depth models using 1-D inversion methods, which may, however, fail in areas of strong lateral conductivity contrasts (so-called induction anomalies). Such areas require more realistic multi-dimensional modelling. Since the full 3-D inversion of an entire HEM data set is still extremely time consuming, our idea is to combine fast 1-D and accurate but numerically expensive 3-D inversion of HEM data in such a way that the full 3-D inversion is only carried out for those parts of a HEM survey which are affected by induction anomalies. For all other parts, a 1-D inversion method is sufficient. We present a newly developed algorithm for identification, selection, and extraction of induction anomalies in HEM data sets and show how the 3-D inversion model of the anomalous area is re-integrated into the quasi-1-D background. Our proposed method is demonstrated to work properly on a synthetic and a field HEM data set from the Cuxhaven tunnel valley in Germany. We show that our 1-D/3-D approach yields better results compared to 1-D inversions in areas where 3-D effects occur.
Computational and methodological developments towards 3D full waveform inversion
NASA Astrophysics Data System (ADS)
Etienne, V.; Virieux, J.; Hu, G.; Jia, Y.; Operto, S.
2010-12-01
Full waveform inversion (FWI) is one of the most promising techniques for seismic imaging. It relies on a formalism taking into account every piece of information contained in the seismic data as opposed to more classical techniques such as travel time tomography. As a result, FWI is a high resolution imaging process able to reach a spatial accuracy equal to half a wavelength. FWI is based on a local optimization scheme and therefore the main limitation concerns the starting model which has to be closed enough to the real one in order to converge to the global minimum. Another counterpart of FWI is the required computational resources when considering models and frequencies of interest. The task becomes even more tremendous when one tends to perform the inversion using the elastic equation instead of using the acoustic approximation. This is the reason why until recently most studies were limited to 2D cases. In the last few years, due to the increase of the available computational power, FWI has focused a lot of interests and continuous efforts towards inversion of 3D models, leading to remarkable applications up to the continental scale. We investigate the computational burden induced by FWI in 3D elastic media and propose some strategic features leading to the reduction of the numerical cost while providing a great flexibility in the inversion parametrization. First, in order to release the memory requirements, we developed our FWI algorithm in the frequency domain and take benefit of the wave-number redundancy in the seismic data to process a quite reduced number of frequencies. To do so, we extract frequency solutions from time marching techniques which are efficient for 3D structures. Moreover, this frequency approach permits a multi-resolution strategy by proceeding from low to high frequencies: the final model at one frequency is used as the starting model for the next frequency. This procedure overcomes partially the non-linear behavior of the inversion
Joint inversions of two VTEM surveys using quasi-3D TDEM and 3D magnetic inversion algorithms
NASA Astrophysics Data System (ADS)
Kaminski, Vlad; Di Massa, Domenico; Viezzoli, Andrea
2016-05-01
In the current paper, we present results of a joint quasi-three-dimensional (quasi-3D) inversion of two versatile time domain electromagnetic (VTEM) datasets, as well as a joint 3D inversion of associated aeromagnetic datasets, from two surveys flown six years apart from one another (2007 and 2013) over a volcanogenic massive sulphide gold (VMS-Au) prospect in northern Ontario, Canada. The time domain electromagnetic (TDEM) data were inverted jointly using the spatially constrained inversion (SCI) approach. In order to increase the coherency in the model space, a calibration parameter was added. This was followed by a joint inversion of the total magnetic intensity (TMI) data extracted from the two surveys. The results of the inversions have been studied and matched with the known geology, adding some new valuable information to the ongoing mineral exploration initiative.
3D Magnetic inversion and remanence: solving the problem
NASA Astrophysics Data System (ADS)
Thomson, V.; Morris, W.
2003-04-01
3D inversion of surface magnetic data is a common processing technique when used in mineral exploration. The major drawback of most 3D inversion algorithms is that they assume that the surface magnetic anomaly is produced by induced magnetization and that there are no remanent magnetization or demagnetization effects present. This has a significant impact when modeling magnetic data that has remanent magnetization. The magnetic anomaly produced by a dipping subsurface body will be identical for a consistent relationship between the dip of the body and the dip of the magnetic vector, regardless of the actual dip of the magnetic body. For example, in the case where a subsurface body is dipping, such as a dipping dike, the dip estimated by the inversion routine will be correct only if induced magnetization is present. This has serious implications for mineral exploration. A solution to the remanence problem is to model the surface magnetic anomaly using a constrained 2D approach rather than 3D. Using a priori information on dip and strike length of a source body, it is possible to approximate the remanence direction and intensity. The 2D solutions can then be rendered into a 3D imaging package to create a model in 3D. A case study was performed on a mafic-ultramafic layered igneous intrusion located in Big Trout Lake, northwestern Ontario, Canada. Large layered igneous intrusions are known to have significant remanence. Like many other layered igneous intrusions such as the Bushveld Complex in South Africa, the Big Trout Lake Complex is highly prospective for Platinum Group Elements (PGEs). Intruded during Archean time, the Big Trout Lake Complex has been subsequently folded and faulted to near vertical. As a consequence of limited surface exposures, knowledge of layering within the pluton and the extent of deformation of the pluton is very limited. Newly acquired high-resolution aeromagnetic data shows a strongly mineralized horizon within the intrusion that
NASA Astrophysics Data System (ADS)
Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe
2016-04-01
The electrical resistivity tomography (ERT) method, initially developed for environmental and engineering exploration, is now commonly used for geological structures imaging. Such structures can present complex characteristics that conventional 2D inversion processes cannot perfectly integrate. Here we present a new 3D inversion algorithm named EResI, firstly developed for levee investigation, and presently applied to the study of a complex lava dome (the Puy de Dôme volcano, France). EResI algorithm is based on a conventional regularized Gauss-Newton inversion scheme and a 3D non-structured discretization of the model (double grid method based on tetrahedrons). This discretization allows to accurately model the topography of investigated structure (without a mesh deformation procedure) and also permits a precise location of the electrodes. Moreover, we demonstrate that a complete 3D unstructured discretization limits the number of inversion cells and is better adapted to the resolution capacity of tomography than a structured discretization. This study shows that a 3D inversion with a non-structured parametrization has some advantages compared to classical 2D inversions. The first advantage comes from the fact that a 2D inversion leads to artefacts due to 3D effects (3D topography, 3D internal resistivity). The second advantage comes from the fact that the capacity to experimentally align electrodes along an axis (for 2D surveys) depends on the constrains on the field (topography...). In this case, a 2D assumption induced by 2.5D inversion software prevents its capacity to model electrodes outside this axis leading to artefacts in the inversion result. The last limitation comes from the use of mesh deformation techniques used to accurately model the topography in 2D softwares. This technique used for structured discretization (Res2dinv) is prohibed for strong topography (>60 %) and leads to a small computational errors. A wide geophysical survey was carried out
The novel high-performance 3-D MT inverse solver
NASA Astrophysics Data System (ADS)
Kruglyakov, Mikhail; Geraskin, Alexey; Kuvshinov, Alexey
2016-04-01
We present novel, robust, scalable, and fast 3-D magnetotelluric (MT) inverse solver. The solver is written in multi-language paradigm to make it as efficient, readable and maintainable as possible. Separation of concerns and single responsibility concepts go through implementation of the solver. As a forward modelling engine a modern scalable solver extrEMe, based on contracting integral equation approach, is used. Iterative gradient-type (quasi-Newton) optimization scheme is invoked to search for (regularized) inverse problem solution, and adjoint source approach is used to calculate efficiently the gradient of the misfit. The inverse solver is able to deal with highly detailed and contrasting models, allows for working (separately or jointly) with any type of MT responses, and supports massive parallelization. Moreover, different parallelization strategies implemented in the code allow optimal usage of available computational resources for a given problem statement. To parameterize an inverse domain the so-called mask parameterization is implemented, which means that one can merge any subset of forward modelling cells in order to account for (usually) irregular distribution of observation sites. We report results of 3-D numerical experiments aimed at analysing the robustness, performance and scalability of the code. In particular, our computational experiments carried out at different platforms ranging from modern laptops to HPC Piz Daint (6th supercomputer in the world) demonstrate practically linear scalability of the code up to thousands of nodes.
3D-spectral CDIs: a fast alternative to 3D inversion?
NASA Astrophysics Data System (ADS)
Macnae, James
2015-09-01
Virtually all airborne electromagnetic (AEM) data is interpreted using stitched 1D conductivity sections, derived from constrained inversion or fast but fairly accurate approximations. A small subset of this AEM data recently has been inverted using either block 3D models or thin plates, which processes have limitations in terms of cost and accuracy, and the results are in general strongly biased by the choice of starting models. Recent developments in spectral modelling have allowed fast 3D approximations of the EM response of both vortex induction and current gathering for simple geological target geometries. Fitting these spectral responses to AEM data should be sufficient to accurately locate current systems within the ground, and the behaviour of these local current systems can in theory approximately define a conductivity structure in 3D. This paper describes the results of initial testing of the algorithm in fitting vortex induction in a small target at the Forrestania test range, Western Australia, using results from a versatile time-domain electromagnetic (VTEM)-Max survey.
NASA Astrophysics Data System (ADS)
Fadel, I.; van der Meijde, M.; Kerle, N.
2013-12-01
Non-uniqueness of satellite gravity interpretation has been usually reduced by using a priori information from various sources, e.g. seismic tomography models. The reduction in non-uniqueness has been based on velocity-density conversion formulas or user interpretation for 3D subsurface structures (objects) in seismic tomography models. However, these processes introduce additional uncertainty through the conversion relations due to the dependency on the other physical parameters such as temperature and pressure, or through the bias in the interpretation due to user choices and experience. In this research, a new methodology is introduced to extract the 3D subsurface structures from 3D geophysical data using a state-of-art 3D Object Oriented Image Analysis (OOA) technique. 3D OOA is tested using a set of synthetic models that simulate the real situation in the study area of this research. Then, 3D OOA is used to extract 3D subsurface objects from a real 3D seismic tomography model. The extracted 3D objects are used to reconstruct a forward model and its response is compared with the measured satellite gravity. Finally, the result of the forward modelling, based on the extracted 3D objects, is used to constrain the inversion process of satellite gravity data. Through this work, a new object-based approach is introduced to interpret and extract the 3D subsurface objects from 3D geophysical data. This can be used to constrain modelling and inversion of potential field data using the extracted 3D subsurface structures from other methods. In summary, a new approach is introduced to constrain inversion of satellite gravity measurements and enhance interpretation capabilities.
Inverse Tomo-Lithography for Making Microscopic 3D Parts
NASA Technical Reports Server (NTRS)
White, Victor; Wiberg, Dean
2003-01-01
According to a proposal, basic x-ray lithography would be extended to incorporate a technique, called inverse tomography, that would enable the fabrication of microscopic three-dimensional (3D) objects. The proposed inverse tomo-lithographic process would make it possible to produce complex shaped, submillimeter-sized parts that would be difficult or impossible to make in any other way. Examples of such shapes or parts include tapered helices, paraboloids with axes of different lengths, and even Archimedean screws that could serve as rotors in microturbines. The proposed inverse tomo-lithographic process would be based partly on a prior microfabrication process known by the German acronym LIGA (lithographie, galvanoformung, abformung, which means lithography, electroforming, molding). In LIGA, one generates a precise, high-aspect ratio pattern by exposing a thick, x-ray-sensitive resist material to an x-ray beam through a mask that contains the pattern. One can electrodeposit metal into the developed resist pattern to form a precise metal part, then dissolve the resist to free the metal. Aspect ratios of 100:1 and patterns into resist thicknesses of several millimeters are possible.
3D stochastic joint inversion of gravity and magnetic data
NASA Astrophysics Data System (ADS)
Shamsipour, Pejman; Marcotte, Denis; Chouteau, Michel
2012-04-01
A novel stochastic joint inversion method based on cokriging is applied to estimate density and magnetic susceptibility distributions from gravity and total magnetic field data. The method fully integrates the physical relations between density-gravity, on one hand, and magnetic susceptibility-total magnetic field, on the other hand. As a consequence, when the data are considered noise-free, the responses from the inverted density and susceptibility data exactly reproduce the observed data. The required density and magnetic susceptibility auto- and cross covariance are assumed to follow a linear model of coregionalization (LCM). The parameters of the LCM are estimated from v-v plot fitting of the gravity and total magnetic experimental covariances. The model is tested on two synthetic cases and one real data set, the Perseverance mine (Quebec, Canada). Joint inversions are compared to separate inversions. The joint inversions better recover the known models in the synthetic cases. With the real data set, better definition and location of the mineralized lenses are achieved by joint inversion.
3D Airborne Electromagnetic Inversion: A case study from the Musgrave Region, South Australia
NASA Astrophysics Data System (ADS)
Cox, L. H.; Wilson, G. A.; Zhdanov, M. S.; Sunwall, D. A.
2012-12-01
Geophysicists know and accept that geology is inherently 3D, and is resultant from complex, overlapping processes related to genesis, metamorphism, deformation, alteration, weathering, and/or hydrogeology. Yet, the geophysics community has long relied on qualitative analysis, conductivity depth imaging (CDIs), 1D inversion, and/or plate modeling. There are many reasons for this deficiency, not the least of which has been the lack of capacity for historic 3D AEM inversion algorithms to invert entire surveys so as to practically affect exploration decisions. Our recent introduction of a moving sensitivity domain (footprint) methodology has been a paradigm shift in AEM interpretation. The basis of this method is that one needs only to calculate the responses and sensitivities for that part of the 3D earth model that is within the AEM system's sensitivity domain (footprint), and then superimpose all sensitivity domains into a single, sparse sensitivity matrix for the entire 3D earth model which is then updated in a regularized inversion scheme. This has made it practical to rigorously invert entire surveys with thousands of line kilometers of AEM data to mega-cell 3D models in hours using multi-processor workstations. Since 2010, over eighty individual projects have been completed for Aerodat, AEROTEM, DIGHEM, GEOTEM, HELITEM, HoisTEM, MEGATEM, RepTEM, RESOLVE, SkyTEM, SPECTREM, TEMPEST, and VTEM data from Australia, Brazil, Canada, Finland, Ghana, Peru, Tanzania, the US, and Zambia. Examples of 3D AEM inversion have been published for a variety of applications, including mineral exploration, oil sands exploration, salinity, permafrost, and bathymetry mapping. In this paper, we present a comparison of 3D inversions for SkyTEM, SPECTREM, TEMPET and VTEM data acquired over the same area in the Musgrave region of South Australia for exploration under cover.
Lithologic identification & mapping test based on 3D inversion of magnetic and gravity
NASA Astrophysics Data System (ADS)
Yan, Jiayong; Lv, Qingtian; Qi, Guang; Zhao, Jinhua; Zhang, Yongqian
2016-04-01
Though lithologic identification & mapping to achieve ore concentration district transparent within 5km depth is the main way to realize deep fine structures study, to explore deep mineral resources and to reveal metallogenic regularity of large-scale ore district . Owing to the wide covered area, high sampling density and mature three-dimensional inversion algorithm of gravity and magnetic data, so gravity and magnetic inversion become the most likely way to achieve three-dimensional lithologic mapping at the present stage. In this paper, we take Lu-zong(Lujiang county to Zongyang county in Anhui province ,east China) ore district as a case, we proposed lithologic mapping flow based 3D inversion of gravity magnetic and then carry out the lithologic mapping test. Lithologic identification & mapping flow is as follows: 1. Analysis relations between lithology and density and magnetic susceptibility by cross plot. 2.Extracting appropriate residual anomalies from high-precision Bourger gravity and aeromagnetic. 3.Use same mesh, do 3D magnetic and gravity inversion respectively under prior information constrained, and then invert susceptibility and density 3D model. 4. According setp1, construct logical topology operations between density 3D model and susceptibility. 5.Use the logical operations, identify lithogies cell by cell in 3D mesh, and then get 3D lithological model. According this flow, we obtained three-dimensional distribution of five main type lithologies in the Lu-Zong ore district within 5km depth. The result of lithologic mapping not only showed that the shallow characteristics and surface geological mapping are basically Coincide,more importantly ,it reveals the deeper lithologic changes.The lithlogical model make up the insufficient of surface geological mapping. The lithologic mapping test results in Lu-Zong ore concentration district showed that lithological mapping using 3D inversion of gravity and magnetic is a effective method to reveal the
Research on Joint Parameter Inversion for an Integrated Underground Displacement 3D Measuring Sensor
Shentu, Nanying; Qiu, Guohua; Li, Qing; Tong, Renyuan; Shentu, Nankai; Wang, Yanjie
2015-01-01
Underground displacement monitoring is a key means to monitor and evaluate geological disasters and geotechnical projects. There exist few practical instruments able to monitor subsurface horizontal and vertical displacements simultaneously due to monitoring invisibility and complexity. A novel underground displacement 3D measuring sensor had been proposed in our previous studies, and great efforts have been taken in the basic theoretical research of underground displacement sensing and measuring characteristics by virtue of modeling, simulation and experiments. This paper presents an innovative underground displacement joint inversion method by mixing a specific forward modeling approach with an approximate optimization inversion procedure. It can realize a joint inversion of underground horizontal displacement and vertical displacement for the proposed 3D sensor. Comparative studies have been conducted between the measured and inversed parameters of underground horizontal and vertical displacements under a variety of experimental and inverse conditions. The results showed that when experimentally measured horizontal displacements and vertical displacements are both varied within 0 ~ 30 mm, horizontal displacement and vertical displacement inversion discrepancies are generally less than 3 mm and 1 mm, respectively, under three kinds of simulated underground displacement monitoring circumstances. This implies that our proposed underground displacement joint inversion method is robust and efficient to predict the measuring values of underground horizontal and vertical displacements for the proposed sensor. PMID:25871714
Methods for comparing 3D surface attributes
NASA Astrophysics Data System (ADS)
Pang, Alex; Freeman, Adam
1996-03-01
A common task in data analysis is to compare two or more sets of data, statistics, presentations, etc. A predominant method in use is side-by-side visual comparison of images. While straightforward, it burdens the user with the task of discerning the differences between the two images. The user if further taxed when the images are of 3D scenes. This paper presents several methods for analyzing the extent, magnitude, and manner in which surfaces in 3D differ in their attributes. The surface geometry are assumed to be identical and only the surface attributes (color, texture, etc.) are variable. As a case in point, we examine the differences obtained when a 3D scene is rendered progressively using radiosity with different form factor calculation methods. The comparison methods include extensions of simple methods such as mapping difference information to color or transparency, and more recent methods including the use of surface texture, perturbation, and adaptive placements of error glyphs.
Fast 3D inversion of gravity data using solution space priorconditioned lanczos bidiagonalization
NASA Astrophysics Data System (ADS)
Rezaie, Mohammad; Moradzadeh, Ali; Kalateh, Ali Nejati
2017-01-01
Inversion of gravity data is one of the most important steps in the quantitative interpretation of practical data. Inversion is a mathematical technique that automatically constructs a subsurface geophysical model from measured data, incorporating some priori information. Inversion of gravity data is time consuming because of increase in data and model parameters. Some efforts have been made to deal with this problem, one of them is using fast algorithms for solving system of equations in inverse problem. Lanczos bidiagonalization method is a fast algorithm that works based on Krylov subspace iterations and projection method, but cannot always provide a good basis for a projection method. So in this study, we combined the Krylov method with a regularization method applied to the low-dimensional projected problem. To achieve the goal, the orthonormal basis vectors of the discrete cosine transform (DCT) were used to build the low-dimensional subspace. The forward operator matrix replaced with a matrix of lower dimension, thus, the required memory and running time of the inverse modeling is decreased by using the proposed algorithm. It is shown that this algorithm can be appropriate to solve a Tikhonov cost function for inversion of gravity data. The proposed method has been applied on a noise-corrupted synthetic data and field gravity data (Mobrun gravity data) to demonstrate its reliability for three dimensional (3D) gravity inversion. The obtained results of 3D inversion both synthetic and field gravity data (Mobrun gravity data) indicate the proposed inversion algorithm could produce density models consistent with true structures.
3-D Inverse Teleseismic Scattered Wave Imaging using the Kirchhoff Approximation
NASA Astrophysics Data System (ADS)
Liu, K.; Levander, A.
2012-04-01
We have developed a 3-D teleseismic imaging technique for scattered elastic wavefields using the Kirchhoff approximation. Kirchhoff migration/inversion have been well developed in exploration seismology within the inverse scattering framework (e.g. Miller et al., 1987; Beylkin and Burridge, 1990) to image subsurface structure that generates secondary wavefields caused by localized heterogeneities. Application of this method in global seismology has been largely limited to 2-D images made with 1-D reference models due to high computational cost and the lack of adequately dense receiver arrays (Bostock, 2002, Poppeliers and Pavlis, 2003; Frederiksen and Revenaugh, 2004; Cao et al., 2010). The deployment of the USArray Transportable and Flexible arrays in the United States and dense array recordings in other countries motivate developing teleseismic scattered wavefield imaging with the Kirchhoff approximation for 3-D velocity models for both scalar and vector wavefields to improve upper mantle imaging. Following Bostock's development of the 2-D problem (2002), we derive the 3-D P-to-S scattering inversion formula by phrasing the inverse problem in terms of the generalized Radon transform (GRT) and singular functions of discontinuity surfaces. In the forward scattering modeling, we extend the method to utilize a 3-D migration velocity model by calculating 3-D finite-difference traveltimes, backprojected from the receivers using an eikonal solver. To demonstrate the relative accuracy of the inversion, we examine several synthetic cases with a variety of discontinuity surfaces (sinuous, dipping, dome- and crater-shaped discontinuity interfaces, point scatterers, etc.). The Kirchhoff GRT imaging can successfully recover the shapes of these structures very well. We compare our Kirchhoff approximation imaging with the Born-approximate results, as well as the common-conversion point (CCP) stacked receiver function imaging for the various synthetic cases, and show a field
Anisotropic 3D inversion of towed streamer EM data from the Troll West oil province (Invited)
NASA Astrophysics Data System (ADS)
Mattsson, J.; Midgley, J.; Zhdanov, M. S.; ENDO, M.
2013-12-01
Obviating the need for ocean bottom receivers, the towed streamer EM system enables CSEM data to be acquired simultaneously with seismic over very large areas in frontier and mature basins for higher production rates and more cost effective than conventional marine CSEM. The towed streamer EM data are currently processed and delivered as a spectrum of frequency-domain responses. We apply a 3D anisotropic inversion methodology for towed streamer EM data that includes a moving sensitivity domain. Our implementation is based on the 3D contraction integral equation method for computing the EM responses and Fréchet derivatives, and uses the re-weighted regularized conjugate gradient method for minimizing the objective functional with focusing regularization. We present an actual case study for the 3D anisotropic inversion of towed streamer EM data from the Troll West oil province in the North Sea, and demonstrate our ability to image the Troll West Oil and Gas Provinces. We conclude that 3D anisotropic inversion of the data from the current generation of towed streamer EM system can adequately recover both the vertical and horizontal resistivities in anisotropic hydrocarbon-bearing formations.
a Fast Method for Measuring the Similarity Between 3d Model and 3d Point Cloud
NASA Astrophysics Data System (ADS)
Zhang, Zongliang; Li, Jonathan; Li, Xin; Lin, Yangbin; Zhang, Shanxin; Wang, Cheng
2016-06-01
This paper proposes a fast method for measuring the partial Similarity between 3D Model and 3D point Cloud (SimMC). It is crucial to measure SimMC for many point cloud-related applications such as 3D object retrieval and inverse procedural modelling. In our proposed method, the surface area of model and the Distance from Model to point Cloud (DistMC) are exploited as measurements to calculate SimMC. Here, DistMC is defined as the weighted distance of the distances between points sampled from model and point cloud. Similarly, Distance from point Cloud to Model (DistCM) is defined as the average distance of the distances between points in point cloud and model. In order to reduce huge computational burdens brought by calculation of DistCM in some traditional methods, we define SimMC as the ratio of weighted surface area of model to DistMC. Compared to those traditional SimMC measuring methods that are only able to measure global similarity, our method is capable of measuring partial similarity by employing distance-weighted strategy. Moreover, our method is able to be faster than other partial similarity assessment methods. We demonstrate the superiority of our method both on synthetic data and laser scanning data.
3D LBFGS inversion of controlled source extremely low frequency electromagnetic data
NASA Astrophysics Data System (ADS)
Cao, Meng; Tan, Han-Dong; Wang, Kun-Peng
2016-12-01
The controlled source extremely low frequency (CSELF) electromagnetic method is characterized by extremely long and powerful sources and a huge measurement range. Its electromagnetic field can therefore be affected by the ionosphere and displacement current. Research on 3D forward modeling and inversion of CSELF electromagnetic data is currently in its infancy. This paper makes exploratory attempts to firstly calculate the 1D extremely low frequency electromagnetic field under ionosphere-air-earth coupling circumstances, and secondly analyze the propagation characteristics of the background electromagnetic field. The 3D staggered-grid finite difference scheme for solving for the secondary electric field is adopted and incorporated with the 1D modeling algorithm to complete 3D forward modeling. Considering that surveys can be carried out in the near field and transition zone for lower frequencies, the 3D Limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) inversion of CSELF electromagnetic data is presented (in which the sources, or primary fields, are included), with the aim of directly inverting the impedance data, regardless of where it is acquired. Derivation of the objective functional gradient is the core component in the inversion. Synthetic tests indicate that the well-chosen approximation to the Hessian can significantly speed up the inversion. The model responses corresponding to the coexistence of conductive and resistive blocks show that the off-diagonal components of tensor impedance are much more sensitive to the resistivity variation than the diagonal components. In comparison with conventional scalar inversion, tensor inversion is superior in the recoveries of electric anomalies and background resistivity.
3-D Sound Propagation and Acoustic Inversions in Shallow Water Oceans
2011-09-01
method is used to study canonical environmental models of shelfbreak front systems and nonlinear internal wave ducts. The WHOI 3D Parabolic-Equation...localization methods with normal mode theory have been established for localizing low frequency, broadband signals in a shallow water environment. Gauss ...approach for low-frequency broadband sound source localization in a shallow-water ocean is established. Gauss -Markov inverse theory is used in both
NASA Astrophysics Data System (ADS)
Rosas-Carbajal, M.; Linde, N.; Peacock, J.; Zyserman, F. I.; Kalscheuer, T.; Thiel, S.
2015-12-01
Surface-based monitoring of mass transfer caused by injections and extractions in deep boreholes is crucial to maximize oil, gas and geothermal production. Inductive electromagnetic methods, such as magnetotellurics, are appealing for these applications due to their large penetration depths and sensitivity to changes in fluid conductivity and fracture connectivity. In this work, we propose a 3-D Markov chain Monte Carlo inversion of time-lapse magnetotelluric data to image mass transfer following a saline fluid injection. The inversion estimates the posterior probability density function of the resulting plume, and thereby quantifies model uncertainty. To decrease computation times, we base the parametrization on a reduced Legendre moment decomposition of the plume. A synthetic test shows that our methodology is effective when the electrical resistivity structure prior to the injection is well known. The centre of mass and spread of the plume are well retrieved. We then apply our inversion strategy to an injection experiment in an enhanced geothermal system at Paralana, South Australia, and compare it to a 3-D deterministic time-lapse inversion. The latter retrieves resistivity changes that are more shallow than the actual injection interval, whereas the probabilistic inversion retrieves plumes that are located at the correct depths and oriented in a preferential north-south direction. To explain the time-lapse data, the inversion requires unrealistically large resistivity changes with respect to the base model. We suggest that this is partly explained by unaccounted subsurface heterogeneities in the base model from which time-lapse changes are inferred.
3-D inversion of gravity data in spherical coordinates with application to the GRAIL data
NASA Astrophysics Data System (ADS)
Liang, Qing; Chen, Chao; Li, Yaoguo
2014-06-01
Three-dimensional (3-D) inversion of gravity data has been widely used to reconstruct the density distributions of ore bodies, basins, crust, lithosphere, and upper mantle. For global model of 3-D density structures of planetary interior, such as the Earth, the Moon, or Mars, it is necessary to use an inversion algorithm that operates in the spherical coordinates. We develop a 3-D inversion algorithm formulated with specially designed model objective function and radial weighting function in the spherical coordinates. We present regional and global synthetic examples to illustrate the capability of the algorithm. The inverted results show density distribution features consistent with the true models. We also apply the algorithm to a set of lunar Bouguer gravity anomaly derived from the Gravity Recovery and Interior Laboratory (GRAIL) gravity field and obtain a lunar 3-D density distribution. High-density anomalies are clearly identified underlying lunar basins, a wide region of the lateral density heterogeneities that exist beneath the South Pole-Aitken basin are found, and low-density anomalies are distributed beneath the Feldspathic Highlands Terrane on the lunar far-side. The consistency of these results with those obtained independently from other existing methods verifies the newly developed algorithm.
Large scale 3-D modeling by integration of resistivity models and borehole data through inversion
NASA Astrophysics Data System (ADS)
Foged, N.; Marker, P. A.; Christansen, A. V.; Bauer-Gottwein, P.; Jørgensen, F.; Høyer, A.-S.; Auken, E.
2014-02-01
We present an automatic method for parameterization of a 3-D model of the subsurface, integrating lithological information from boreholes with resistivity models through an inverse optimization, with the objective of further detailing for geological models or as direct input to groundwater models. The parameter of interest is the clay fraction, expressed as the relative length of clay-units in a depth interval. The clay fraction is obtained from lithological logs and the clay fraction from the resistivity is obtained by establishing a simple petrophysical relationship, a translator function, between resistivity and the clay fraction. Through inversion we use the lithological data and the resistivity data to determine the optimum spatially distributed translator function. Applying the translator function we get a 3-D clay fraction model, which holds information from the resistivity dataset and the borehole dataset in one variable. Finally, we use k means clustering to generate a 3-D model of the subsurface structures. We apply the concept to the Norsminde survey in Denmark integrating approximately 700 boreholes and more than 100 000 resistivity models from an airborne survey in the parameterization of the 3-D model covering 156 km2. The final five-cluster 3-D model differentiates between clay materials and different high resistive materials from information held in resistivity model and borehole observations respectively.
Large-scale 3-D modeling by integration of resistivity models and borehole data through inversion
NASA Astrophysics Data System (ADS)
Foged, N.; Marker, P. A.; Christansen, A. V.; Bauer-Gottwein, P.; Jørgensen, F.; Høyer, A.-S.; Auken, E.
2014-11-01
We present an automatic method for parameterization of a 3-D model of the subsurface, integrating lithological information from boreholes with resistivity models through an inverse optimization, with the objective of further detailing of geological models, or as direct input into groundwater models. The parameter of interest is the clay fraction, expressed as the relative length of clay units in a depth interval. The clay fraction is obtained from lithological logs and the clay fraction from the resistivity is obtained by establishing a simple petrophysical relationship, a translator function, between resistivity and the clay fraction. Through inversion we use the lithological data and the resistivity data to determine the optimum spatially distributed translator function. Applying the translator function we get a 3-D clay fraction model, which holds information from the resistivity data set and the borehole data set in one variable. Finally, we use k-means clustering to generate a 3-D model of the subsurface structures. We apply the procedure to the Norsminde survey in Denmark, integrating approximately 700 boreholes and more than 100 000 resistivity models from an airborne survey in the parameterization of the 3-D model covering 156 km2. The final five-cluster 3-D model differentiates between clay materials and different high-resistivity materials from information held in the resistivity model and borehole observations, respectively.
3D Inversion of complex resistivity data: Case study on Mineral Exploration Site.
NASA Astrophysics Data System (ADS)
Son, Jeong-Sul; Kim, Jung-ho; Park, Sam-gyu; Park, My-Kyung
2016-04-01
Complex resistivity (CR) method is a frequency domain induced polarization (IP) method. It is also known as Spectral IP (SIP) method, if wider frequencies are used in data acquisition and interpretation. Although it takes more times than conventional time domain IP method, its data quality is more stable because its data acquisition which measures amplitude and phase is done when the source current is being injected. Our research group has been studying the modeling and inversion algorithms of complex resistivity (CR) method since several years ago and recently applied developed algorithms to various real field application. Due to tough terrain in our country, Profile survey and 2D interpretation were generally used. But to get more precise interpretation, three dimensional modeling and inversion algorithm is required. We developed three dimensional inversion algorithm for this purpose. In the inversion, we adopt the method of adaptive lagraingian multiplier which is automatically set based on the size of error misfit and model regularization norm. It was applied on the real data acquired for mineral exploration sites. CR data was acquired with the Zeta system, manufactured by Zonge Co. In the inversion, only the lower frequency data is used considering its quality and developed 3D inversion algorithm was applied to the acquired data set. Its results were compared to those of time domain IP data conducted at the same site. Resistivity image sections of CR and conventional resistivity method were almost identical. Phase anomalies were well matched with chargeability anomalies and the mining history of the test site. Each anomalies were well discriminated in 3D interpretation than those of 2D. From those experiments, we know that CR method was very effective for the mineral exploration.
A 3D Level Set Method for Microwave Breast Imaging
Colgan, Timothy J.; Hagness, Susan C.; Van Veen, Barry D.
2015-01-01
Objective Conventional inverse-scattering algorithms for microwave breast imaging result in moderate resolution images with blurred boundaries between tissues. Recent 2D numerical microwave imaging studies demonstrate that the use of a level set method preserves dielectric boundaries, resulting in a more accurate, higher resolution reconstruction of the dielectric properties distribution. Previously proposed level set algorithms are computationally expensive and thus impractical in 3D. In this paper we present a computationally tractable 3D microwave imaging algorithm based on level sets. Methods We reduce the computational cost of the level set method using a Jacobian matrix, rather than an adjoint method, to calculate Frechet derivatives. We demonstrate the feasibility of 3D imaging using simulated array measurements from 3D numerical breast phantoms. We evaluate performance by comparing full 3D reconstructions to those from a conventional microwave imaging technique. We also quantitatively assess the efficacy of our algorithm in evaluating breast density. Results Our reconstructions of 3D numerical breast phantoms improve upon those of a conventional microwave imaging technique. The density estimates from our level set algorithm are more accurate than those of conventional microwave imaging, and the accuracy is greater than that reported for mammographic density estimation. Conclusion Our level set method leads to a feasible level of computational complexity for full 3D imaging, and reconstructs the heterogeneous dielectric properties distribution of the breast more accurately than conventional microwave imaging methods. Significance 3D microwave breast imaging using a level set method is a promising low-cost, non-ionizing alternative to current breast imaging techniques. PMID:26011863
Sensitivity study of 3-D modeling for multi-D inversion of surface NMR
NASA Astrophysics Data System (ADS)
Warsa, Grandis, Hendra
2012-06-01
Geophysical field method of surface nuclear magnetic resonance (SNMR) allows a direct determination of hydrogeological parameters of the subsurface. The amplitude of the SNMR signal is directly linked to the amount of mobile water. The relaxation behaviour of the signal correlates with pore sizes and hydraulic conductivities of an aquifer. For improving capability and reliability of SNMR method we have presented a forward modeling scheme of 3-D water content and decay time structures that can be used for multi-D interpretation. Currently SNMR is carried out mainly with a 1-D working scheme using coinciding loops. For each sounding point using a coincident circular loop antenna, the amplitudes and decay times of the SNMR signal are the product of a three dimensional distribution of the water content and decay time in the subsurface and their sensitivity to the receiver. The antenna is moved at the surface and the SNMR relaxation signal are plotted as a function of the pulse moment and sounding point. The errors might be very large by neglecting the 2-D or even 3-D geometry of the structures which have to be considered in the analysis and inversion in the future. The results show that the 3-D modeling is reliable and flexible to be integrated into the 2-D/3-D inversion scheme for inverting surface NMR data to recover a multi-D distribution of water content and decay time of an aquifer.
Integrated gravity and gravity gradient 3D inversion using the non-linear conjugate gradient
NASA Astrophysics Data System (ADS)
Qin, Pengbo; Huang, Danian; Yuan, Yuan; Geng, Meixia; Liu, Jie
2016-03-01
Gravity data, which are critical in mineral, oil, and gas exploration, are obtained from the vertical component of the gravity field, while gravity gradient data are measured from changes in the gravity field in three directions. However, few studies have sought to improve exploration techniques by integrating gravity and gravity gradient data using inversion methods. In this study, we developed a new method to integrate gravity and gravity gradient data in a 3D density inversion using the non-linear conjugate gradient (NLCG) method and the minimum gradient support (MGS) functional to regularize the 3D inverse problem and to obtain a clear and accurate image of the anomalous body. The NLCG algorithm, which is suitable for solving large-scale nonlinear optimization problems and requires no memory storage, was compared to the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm and the results indicated that the convergence rate of NLCG is slower, but that the storage requirement and computation time is lower. To counteract the decay in kernel function, we introduced a depth weighting function for anomalous bodies at the same depth, with information about anomalous body depth obtained from well log and seismic exploration data. For anomalous bodies at different depths, we introduced a spatial gradient weighting function to incorporate additional information obtained in the inversion. We concluded that the spatial gradient weighting function enhanced the spatial resolution of the recovered model. Furthermore, our results showed that including multiple components for inversion increased the resolution of the recovered model. We validated our model by applying our inversion method to survey data from Vinton salt dome, Louisiana, USA. The results showed good agreement with known geologic information; thus confirming the accuracy of this approach.
NASA Astrophysics Data System (ADS)
Cubuk-Sabuncu, Yesim; Taymaz, Tuncay; Fichtner, Andreas
2016-04-01
We present a 3D radially anisotropic velocity model of the crust and uppermost mantle structure beneath the Sea of Marmara and surroundings based on the full waveform inversion method. The intense seismic activity and crustal deformation are observed in the Northwest Turkey due to transition tectonics between the strike-slip North Anatolian Fault (NAF) and the extensional Aegean region. We have selected and simulated complete waveforms of 62 earthquakes (Mw > 4.0) occurred during 2007-2015, and recorded at (Δ < 10°) distances. Three component earthquake data is obtained from broadband seismic stations of Kandilli Observatory and Earthquake Research Center (KOERI, Turkey), Hellenic Unified Seismic Network (HUSN, Greece) and Earthquake Research Center of Turkey (AFAD-DAD). The spectral-element solver of the wave equation, SES3D algorithm, is used to simulate seismic wave propagation in 3D spherical coordinates (Fichtner, 2009). The Large Scale Seismic Inversion Framework (LASIF) workflow tool is also used to perform full seismic waveform inversion (Krischer et al., 2015). The initial 3D Earth model is implemented from the multi-scale seismic tomography study of Fichtner et al. (2013). Discrepancies between the observed and simulated synthetic waveforms are determined using the time-frequency misfits which allows a separation between phase and amplitude information (Fichtner et al., 2008). The conjugate gradient optimization method is used to iteratively update the initial Earth model when minimizing the misfit. The inversion is terminated after 19 iterations since no further advances are observed in updated models. Our analysis revealed shear wave velocity variations of the shallow and deeper crustal structure beneath western Turkey down to depths of ~35-40 km. Low shear wave velocity anomalies are observed in the upper and mid crustal depths beneath major fault zones located in the study region. Low velocity zones also tend to mark the outline of young volcanic
Simultaneous elastic parameter inversion in 2-D/3-D TTI medium combined later arrival times
NASA Astrophysics Data System (ADS)
Bai, Chao-ying; Wang, Tao; Yang, Shang-bei; Li, Xing-wang; Huang, Guo-jiao
2016-04-01
Traditional traveltime inversion for anisotropic medium is, in general, based on a "weak" assumption in the anisotropic property, which simplifies both the forward part (ray tracing is performed once only) and the inversion part (a linear inversion solver is possible). But for some real applications, a general (both "weak" and "strong") anisotropic medium should be considered. In such cases, one has to develop a ray tracing algorithm to handle with the general (including "strong") anisotropic medium and also to design a non-linear inversion solver for later tomography. Meanwhile, it is constructive to investigate how much the tomographic resolution can be improved by introducing the later arrivals. For this motivation, we incorporated our newly developed ray tracing algorithm (multistage irregular shortest-path method) for general anisotropic media with a non-linear inversion solver (a damped minimum norm, constrained least squares problem with a conjugate gradient approach) to formulate a non-linear inversion solver for anisotropic medium. This anisotropic traveltime inversion procedure is able to combine the later (reflected) arrival times. Both 2-D/3-D synthetic inversion experiments and comparison tests show that (1) the proposed anisotropic traveltime inversion scheme is able to recover the high contrast anomalies and (2) it is possible to improve the tomographic resolution by introducing the later (reflected) arrivals, but not as expected in the isotropic medium, because the different velocity (qP, qSV and qSH) sensitivities (or derivatives) respective to the different elastic parameters are not the same but are also dependent on the inclination angle.
Rosas-Carbajal, Marina; Linde, Nicolas; Peacock, Jared R.; Zyserman, F. I.; Kalscheuer, Thomas; Thiel, Stephan
2015-01-01
Surface-based monitoring of mass transfer caused by injections and extractions in deep boreholes is crucial to maximize oil, gas and geothermal production. Inductive electromagnetic methods, such as magnetotellurics, are appealing for these applications due to their large penetration depths and sensitivity to changes in fluid conductivity and fracture connectivity. In this work, we propose a 3-D Markov chain Monte Carlo inversion of time-lapse magnetotelluric data to image mass transfer following a saline fluid injection. The inversion estimates the posterior probability density function of the resulting plume, and thereby quantifies model uncertainty. To decrease computation times, we base the parametrization on a reduced Legendre moment decomposition of the plume. A synthetic test shows that our methodology is effective when the electrical resistivity structure prior to the injection is well known. The centre of mass and spread of the plume are well retrieved.We then apply our inversion strategy to an injection experiment in an enhanced geothermal system at Paralana, South Australia, and compare it to a 3-D deterministic time-lapse inversion. The latter retrieves resistivity changes that are more shallow than the actual injection interval, whereas the probabilistic inversion retrieves plumes that are located at the correct depths and oriented in a preferential north-south direction. To explain the time-lapse data, the inversion requires unrealistically large resistivity changes with respect to the base model. We suggest that this is partly explained by unaccounted subsurface heterogeneities in the base model from which time-lapse changes are inferred.
Direct inversion of digital 3D Fraunhofer holography maps.
Podorov, Sergei G; Förster, Eckhart
2016-01-20
Differential Fourier holography (DFH) gives an exact mathematical solution of the inverse problem of diffraction in the Fraunhofer regime. After the first publication [Opt. Express15, 9954 (2007)], DFH was successfully applied in many experiments to obtain amplitude and phase information about two-dimensional images. In this paper, we demonstrate numerically the possibility to apply DFH also for investigation of unknown three-dimensional objects. The first simulation is made for a double-spiral structure plus a line as a reference object.
3D parallel inversion of time-domain airborne EM data
NASA Astrophysics Data System (ADS)
Liu, Yun-He; Yin, Chang-Chun; Ren, Xiu-Yan; Qiu, Chang-Kai
2016-12-01
To improve the inversion accuracy of time-domain airborne electromagnetic data, we propose a parallel 3D inversion algorithm for airborne EM data based on the direct Gauss-Newton optimization. Forward modeling is performed in the frequency domain based on the scattered secondary electrical field. Then, the inverse Fourier transform and convolution of the transmitting waveform are used to calculate the EM responses and the sensitivity matrix in the time domain for arbitrary transmitting waves. To optimize the computational time and memory requirements, we use the EM "footprint" concept to reduce the model size and obtain the sparse sensitivity matrix. To improve the 3D inversion, we use the OpenMP library and parallel computing. We test the proposed 3D parallel inversion code using two synthetic datasets and a field dataset. The time-domain airborne EM inversion results suggest that the proposed algorithm is effective, efficient, and practical.
Finite Element Based Anisotropic 3D Inversion of Marine CSEM Data
NASA Astrophysics Data System (ADS)
Chung, Y.; Byun, J.
2015-12-01
In order to interpret three-dimensional (3D) marine controlled-source electromagnetic (MCSEM) data, it is critical to accurately determine electrical anisotropy because ignoring anisotropy can produce misleading artifacts. In this study, we present an inversion method for 3D subsurface imaging in media with an inhomogeneous and anisotropic conductivity distribution. Direct solvers are incorporated both in the forward and inverse problems, For the forward problem, the vector Helmholtz equation for the secondary electric field is discretized on a hexahedral mesh using edge finite elements, then a direct sparse-matrix solver is chosen to effectively reuse its factorization both in the survey simulation and Jacobian computation. The inversion method is formulated as a functional optimization with an objective functional containing terms measuring data misfit and model structure by means of smoothness and anisotropy. These measures are efficiently incorporated through the use of an iteratively reweighted least-squares scheme. The objective functional is minimized by a Gauss-Newton approach using a direct dense-matrix solver. We demonstrate the accuracy and applicability of the algorithm by testing it on synthetic data sets.
Puso, M A; Laursen, T A
2002-05-02
Smoothing of contact surfaces can be used to eliminate the chatter typically seen with node on facet contact and give a better representation of the actual contact surface. The latter affect is well demonstrated for problems with interference fits. In this work we present two methods for the smoothing of contact surfaces for 3D finite element contact. In the first method, we employ Gregory patches to smooth the faceted surface in a node on facet implementation. In the second method, we employ a Bezier interpolation of the faceted surface in a mortar method implementation of contact. As is well known, node on facet approaches can exhibit locking due to the failure of the Babuska-Brezzi condition and in some instances fail the patch test. The mortar method implementation is stable and provides optimal convergence in the energy of error. In the this work we demonstrate the superiority of the smoothed versus the non-smoothed node on facet implementations. We also show where the node on facet method fails and some results from the smoothed mortar method implementation.
3D inversion of time-lapse CSEM data for reservoir monitoring
NASA Astrophysics Data System (ADS)
Black, N.; Wilson, G. A.; Zhdanov, M. S.
2010-12-01
Effective reservoir monitoring requires time-lapse reservoir information throughout the interwell volume. The ability to understand and control reservoir behavior over the course of production allows for optimization of reservoir performance and production strategies. Good monitoring information makes it possible to improve the timing and location of new drilling (for both production and injection wells), to recognize flow paths, and to map oil that has been bypassed. Recent studies have inferred the feasibility of time-lapse marine controlled-source electromagnetic (CSEM) methods for the monitoring of offshore oil and gas fields. However, quantitative interpretations to ascertain what reservoir information may be recovered have not been performed. The time-lapse CSEM inverse problem can be highly constrained since the geometry of the reservoir is established prior from high resolution seismic surveys, rock and fluid properties are measured from well logs, and multiple history matched production scenarios are contained in dynamic reservoir models. We present a 3D inversion study of synthetic time-lapse CSEM data modeled from dynamic reservoir simulations. We demonstrate that even with few constraints on the model, the hydrocarbon-water front can be recovered from 3D inversion.
Joint earthquake source inversions using seismo-geodesy and 3-D earth models
NASA Astrophysics Data System (ADS)
Weston, J.; Ferreira, A. M. G.; Funning, G. J.
2014-08-01
A joint earthquake source inversion technique is presented that uses InSAR and long-period teleseismic data, and, for the first time, takes 3-D Earth structure into account when modelling seismic surface and body waves. Ten average source parameters (Moment, latitude, longitude, depth, strike, dip, rake, length, width and slip) are estimated; hence, the technique is potentially useful for rapid source inversions of moderate magnitude earthquakes using multiple data sets. Unwrapped interferograms and long-period seismic data are jointly inverted for the location, fault geometry and seismic moment, using a hybrid downhill Powell-Monte Carlo algorithm. While the InSAR data are modelled assuming a rectangular dislocation in a homogeneous half-space, seismic data are modelled using the spectral element method for a 3-D earth model. The effect of noise and lateral heterogeneity on the inversions is investigated by carrying out realistic synthetic tests for various earthquakes with different faulting mechanisms and magnitude (Mw 6.0-6.6). Synthetic tests highlight the improvement in the constraint of fault geometry (strike, dip and rake) and moment when InSAR and seismic data are combined. Tests comparing the effect of using a 1-D or 3-D earth model show that long-period surface waves are more sensitive than long-period body waves to the change in earth model. Incorrect source parameters, particularly incorrect fault dip angles, can compensate for systematic errors in the assumed Earth structure, leading to an acceptable data fit despite large discrepancies in source parameters. Three real earthquakes are also investigated: Eureka Valley, California (1993 May 17, Mw 6.0), Aiquile, Bolivia (1998 February 22, Mw 6.6) and Zarand, Iran (2005 May 22, Mw 6.5). These events are located in different tectonic environments and show large discrepancies between InSAR and seismically determined source models. Despite the 40-50 km discrepancies in location between previous geodetic and
Advanced Multivariate Inversion Techniques for High Resolution 3D Geophysical Modeling (Invited)
NASA Astrophysics Data System (ADS)
Maceira, M.; Zhang, H.; Rowe, C. A.
2009-12-01
We focus on the development and application of advanced multivariate inversion techniques to generate a realistic, comprehensive, and high-resolution 3D model of the seismic structure of the crust and upper mantle that satisfies several independent geophysical datasets. Building on previous efforts of joint invesion using surface wave dispersion measurements, gravity data, and receiver functions, we have added a fourth dataset, seismic body wave P and S travel times, to the simultaneous joint inversion method. We present a 3D seismic velocity model of the crust and upper mantle of northwest China resulting from the simultaneous, joint inversion of these four data types. Surface wave dispersion measurements are primarily sensitive to seismic shear-wave velocities, but at shallow depths it is difficult to obtain high-resolution velocities and to constrain the structure due to the depth-averaging of the more easily-modeled, longer-period surface waves. Gravity inversions have the greatest resolving power at shallow depths, and they provide constraints on rock density variations. Moreover, while surface wave dispersion measurements are primarily sensitive to vertical shear-wave velocity averages, body wave receiver functions are sensitive to shear-wave velocity contrasts and vertical travel-times. Addition of the fourth dataset, consisting of seismic travel-time data, helps to constrain the shear wave velocities both vertically and horizontally in the model cells crossed by the ray paths. Incorporation of both P and S body wave travel times allows us to invert for both P and S velocity structure, capitalizing on empirical relationships between both wave types’ seismic velocities with rock densities, thus eliminating the need for ad hoc assumptions regarding the Poisson ratios. Our new tomography algorithm is a modification of the Maceira and Ammon joint inversion code, in combination with the Zhang and Thurber TomoDD (double-difference tomography) program.
Rodriguez, Brian D.; Sweetkind, Donald S.
2015-01-01
The 3-D inversion was generally able to reproduce the gross resistivity structure of the “known” model, but the simulated conductive volcanic composite unit horizons were often too shallow when compared to the “known” model. Additionally, the chosen computation parameters such as station spacing appear to have resulted in computational artifacts that are difficult to interpret but could potentially be removed with further refinements of the 3-D resistivity inversion modeling technique.
NASA Astrophysics Data System (ADS)
Yang, Dikun; Oldenburg, Douglas W.; Haber, Eldad
2014-03-01
Airborne electromagnetic (AEM) methods are highly efficient tools for assessing the Earth's conductivity structures in a large area at low cost. However, the configuration of AEM measurements, which typically have widely distributed transmitter-receiver pairs, makes the rigorous modelling and interpretation extremely time-consuming in 3-D. Excessive overcomputing can occur when working on a large mesh covering the entire survey area and inverting all soundings in the data set. We propose two improvements. The first is to use a locally optimized mesh for each AEM sounding for the forward modelling and calculation of sensitivity. This dedicated local mesh is small with fine cells near the sounding location and coarse cells far away in accordance with EM diffusion and the geometric decay of the signals. Once the forward problem is solved on the local meshes, the sensitivity for the inversion on the global mesh is available through quick interpolation. Using local meshes for AEM forward modelling avoids unnecessary computing on fine cells on a global mesh that are far away from the sounding location. Since local meshes are highly independent, the forward modelling can be efficiently parallelized over an array of processors. The second improvement is random and dynamic down-sampling of the soundings. Each inversion iteration only uses a random subset of the soundings, and the subset is reselected for every iteration. The number of soundings in the random subset, determined by an adaptive algorithm, is tied to the degree of model regularization. This minimizes the overcomputing caused by working with redundant soundings. Our methods are compared against conventional methods and tested with a synthetic example. We also invert a field data set that was previously considered to be too large to be practically inverted in 3-D. These examples show that our methodology can dramatically reduce the processing time of 3-D inversion to a practical level without losing resolution
Towards Automated Seismic Moment Tensor Inversion in Australia Using 3D Structural Model
NASA Astrophysics Data System (ADS)
Hingee, M.; Tkalcic, H.; Fichtner, A.; Sambridge, M.; Kennett, B. L.; Gorbatov, A.
2009-12-01
There is significant seismic activity in the region around Australia, largely due to the plate boundaries to the north and to the east of the mainland. This seismicity poses serious seismic and tsunamigenic hazard in a wider region, and risk to coastal areas of Australia, and is monitored by Geoscience Australia (GA) using a network of permanent broadband seismometers within Australia. Earthquake and tsunami warning systems were established by the Australian Government and have been using the waveforms from the GA seismological network. The permanent instruments are augmented by non-GA seismic stations based both within and outside of Australia. In particular, seismic moment tensor (MT) solutions for events around Australia as well as local distances are useful for both warning systems and geophysical studies in general. These monitoring systems, however, currently use only one dimensional, spherically-symmetric models of the Earth for source parameter determination. Recently, a novel 3D model of Australia and the surrounding area has been developed from spectral element simulations [1], taking into account not only velocity heterogeneities, but also radial anisotropy and seismic attenuation. This development, inter alia, introduces the potential of providing significant improvements in MT solution accuracy. Allowing reliable MT solutions with reduced dependence on non-GA stations is a secondary advantage. We studied the feasibility of using 1D versus 3D structural models. The accuracy of the 3D model has been investigated, confirming that these models are in most cases superior to the 1D models. A full MT inversion method using a point source approximation was developed as the first step, keeping in mind that for more complex source time functions, a finite source inversion will be needed. Synthetic experiments have been performed with random noise added to the signal to test the code in the both 1D and 3D setting, using a precomputed library of structural Greens
High-resolution imaging of crustal melts using 3D full-waveform seismic inversion
NASA Astrophysics Data System (ADS)
Warner, M.; Morgan, J. V.
2013-12-01
A newly practical seismic imaging technique, 3D full-waveform inversion (FWI), now has the ability to image zones of melt and melt pathways throughout the crust with a better resolution than any other geophysical method. 3D FWI has recently changed practice within the petroleum industry where it is used to obtain high-resolution high-fidelity models of physical properties in the sub-surface that are both interpreted directly and used to improve the migration of deeper reflections. This technology has been spectacularly successful in improving the imaging of reservoirs beneath shallow heterogeneities produced by, for example, gas clouds, buried fluvial channels, carbonate reefs and salt bodies. During FWI, the sub-surface model is recovered principally by using the low-frequency transmitted, refracted portion of the wavefield which is most sensitive to the macro-velocity structure. In the petroleum industry, these inversions are now routinely performed using long-offset surface-streamer and ocean-bottom data to maximum source-receiver offsets of about 15 km, leading to a maximum penetration depth of around 5 km. Using longer offsets, it is possible to extend this technology to image deeper crustal targets. Localised zones of partial melt produce large changes in p-wave and s-wave properties that are restricted in their spatial extent, and that therefore form ideal targets for 3D FWI. We have performed a suite of tests to explore the use of 3D FWI in imaging melt distribution beneath the active volcano of Montserrat. We built a model of the subsurface using a 3D travel-time tomographic model obtained from the SEA CALIPSO experiment. We added two magma chambers in accordance with a model obtained using surface-elevation changes and geochemical data. We used a wide-angle, wide-azimuth acquisition geometry to generate a fully-elastic synthetic seismic dataset, added noise, and inverted the windowed transmitted arrivals only. We used an elastic code for the forward
3D linear inversion of magnetic susceptibility data acquired by frequency domain EMI
NASA Astrophysics Data System (ADS)
Thiesson, J.; Tabbagh, A.; Simon, F.-X.; Dabas, M.
2017-01-01
Low induction number EMI instruments are able to simultaneously measure a soil's apparent magnetic susceptibility and electrical conductivity. This family of dual measurement instruments is highly useful for the analysis of soils and archeological sites. However, the electromagnetic properties of soils are found to vary over considerably different ranges: whereas their electrical conductivity varies from ≤ 0.1 to ≥ 100 mS/m, their relative magnetic permeability remains within a very small range, between 1.0001 and 1.01 SI. Consequently, although apparent conductivity measurements need to be inverted using non-linear processes, the variations of the apparent magnetic susceptibility can be approximated through the use of linear processes, as in the case of the magnetic prospection technique. Our proposed 3D inversion algorithm starts from apparent susceptibility data sets, acquired using different instruments over a given area. A reference vertical profile is defined by considering the mode of the vertical distributions of both the electrical resistivity and of the magnetic susceptibility. At each point of the mapped area, the reference vertical profile response is subtracted to obtain the apparent susceptibility variation dataset. A 2D horizontal Fourier transform is applied to these variation datasets and to the dipole (impulse) response of each instrument, a (vertical) 1D inversion is performed at each point in the spectral domain, and finally the resulting dataset is inverse transformed to restore the apparent 3D susceptibility variations. It has been shown that when applied to synthetic results, this method is able to correct the apparent deformations of a buried object resulting from the geometry of the instrument, and to restore reliable quantitative susceptibility contrasts. It also allows the thin layer solution, similar to that used in magnetic prospection, to be implemented. When applied to field data it initially delivers a level of contrast
Xie, G.; Li, J.; Majer, E.; Zuo, D.
1998-07-01
This paper describes a new 3D parallel GILD electromagnetic (EM) modeling and nonlinear inversion algorithm. The algorithm consists of: (a) a new magnetic integral equation instead of the electric integral equation to solve the electromagnetic forward modeling and inverse problem; (b) a collocation finite element method for solving the magnetic integral and a Galerkin finite element method for the magnetic differential equations; (c) a nonlinear regularizing optimization method to make the inversion stable and of high resolution; and (d) a new parallel 3D modeling and inversion using a global integral and local differential domain decomposition technique (GILD). The new 3D nonlinear electromagnetic inversion has been tested with synthetic data and field data. The authors obtained very good imaging for the synthetic data and reasonable subsurface EM imaging for the field data. The parallel algorithm has high parallel efficiency over 90% and can be a parallel solver for elliptic, parabolic, and hyperbolic modeling and inversion. The parallel GILD algorithm can be extended to develop a high resolution and large scale seismic and hydrology modeling and inversion in the massively parallel computer.
3D Propagation and Geoacoustic Inversion Studies in the Mid-Atlantic Bight
2016-06-07
3D Propagation and Geoacoustic Inversion Studies in the Mid-Atlantic Bight Kevin B. Smith Code PH/Sk, Department of Physics Naval Postgraduate...properties and measured transmission loss. Results from this analysis will be considered in the context of geoacoustic inversions . OBJECTIVES To...bathymetric features and ocean fronts near the shelf break of the mid-Atlantic Bight, and use of various data for geoacoutic inversion studies. The results
Rodriguez, Brian D.
2017-03-31
This report summarizes the results of three-dimensional (3-D) resistivity inversion simulations that were performed to account for local 3-D distortion of the electric field in the presence of 3-D regional structure, without any a priori information on the actual 3-D distribution of the known subsurface geology. The methodology used a 3-D geologic model to create a 3-D resistivity forward (“known”) model that depicted the subsurface resistivity structure expected for the input geologic configuration. The calculated magnetotelluric response of the modeled resistivity structure was assumed to represent observed magnetotelluric data and was subsequently used as input into a 3-D resistivity inverse model that used an iterative 3-D algorithm to estimate 3-D distortions without any a priori geologic information. A publicly available inversion code, WSINV3DMT, was used for all of the simulated inversions, initially using the default parameters, and subsequently using adjusted inversion parameters. A semiautomatic approach of accounting for the static shift using various selections of the highest frequencies and initial models was also tested. The resulting 3-D resistivity inversion simulation was compared to the “known” model and the results evaluated. The inversion approach that produced the lowest misfit to the various local 3-D distortions was an inversion that employed an initial model volume resistivity that was nearest to the maximum resistivities in the near-surface layer.
The 3D inversion of airborne gamma-ray spectrometric data
NASA Astrophysics Data System (ADS)
Minty, Brian; Brodie, Ross
2016-07-01
We present a new method for the inversion of airborne gamma-ray spectrometric line data to a regular grid of radioelement concentration estimates on the ground. The method incorporates the height of the aircraft, the 3D terrain within the field of view of the spectrometer, the directional sensitivity of rectangular detectors, and a source model comprising vertical rectangular prisms with the same horizontal dimensions as the required grid cell size. The top of each prism is a plane surface derived from a best-fit plane to the digital elevation model of the earth's surface within each grid cell area. The method is a significant improvement on current methods, and gives superior interpolation between flight lines. It also eliminates terrain effects that would normally remain in the data after the conventional processing of these data assuming a flat-earth model.
NASA Astrophysics Data System (ADS)
Simutė, S.; Fichtner, A.
2015-12-01
We present a feasibility study for seismic source inversions using a 3-D velocity model for the Japanese Islands. The approach involves numerically calculating 3-D Green's tensors, which is made efficient by exploiting Green's reciprocity. The rationale for 3-D seismic source inversion has several aspects. For structurally complex regions, such as the Japan area, it is necessary to account for 3-D Earth heterogeneities to prevent unknown structure polluting source solutions. In addition, earthquake source characterisation can serve as a means to delineate existing faults. Source parameters obtained for more realistic Earth models can then facilitate improvements in seismic tomography and early warning systems, which are particularly important for seismically active areas, such as Japan. We have created a database of numerically computed 3-D Green's reciprocals for a 40°× 40°× 600 km size area around the Japanese Archipelago for >150 broadband stations. For this we used a regional 3-D velocity model, recently obtained from full waveform inversion. The model includes attenuation and radial anisotropy and explains seismic waveform data for periods between 10 - 80 s generally well. The aim is to perform source inversions using the database of 3-D Green's tensors. As preliminary steps, we present initial concepts to address issues that are at the basis of our approach. We first investigate to which extent Green's reciprocity works in a discrete domain. Considering substantial amounts of computed Green's tensors we address storage requirements and file formatting. We discuss the importance of the initial source model, as an intelligent choice can substantially reduce the search volume. Possibilities to perform a Bayesian inversion and ways to move to finite source inversion are also explored.
Spontaneous mirror-symmetry breaking induces inverse energy cascade in 3D active fluids
Słomka, Jonasz; Dunkel, Jörn
2017-01-01
Classical turbulence theory assumes that energy transport in a 3D turbulent flow proceeds through a Richardson cascade whereby larger vortices successively decay into smaller ones. By contrast, an additional inverse cascade characterized by vortex growth exists in 2D fluids and gases, with profound implications for meteorological flows and fluid mixing. The possibility of a helicity-driven inverse cascade in 3D fluids had been rejected in the 1970s based on equilibrium-thermodynamic arguments. Recently, however, it was proposed that certain symmetry-breaking processes could potentially trigger a 3D inverse cascade, but no physical system exhibiting this phenomenon has been identified to date. Here, we present analytical and numerical evidence for the existence of an inverse energy cascade in an experimentally validated 3D active fluid model, describing microbial suspension flows that spontaneously break mirror symmetry. We show analytically that self-organized scale selection, a generic feature of many biological and engineered nonequilibrium fluids, can generate parity-violating Beltrami flows. Our simulations further demonstrate how active scale selection controls mirror-symmetry breaking and the emergence of a 3D inverse cascade. PMID:28193853
3-D joint inversion of the magnetotelluric phase tensor and vertical magnetic transfer functions
NASA Astrophysics Data System (ADS)
Tietze, Kristina; Ritter, Oliver; Egbert, Gary D.
2015-11-01
With advancing computational resources, 3-D inversion techniques have become feasible in recent years and are now a more widely used tool for magnetotelluric (MT) data interpretation. Galvanic distortion caused by small-scale near-surface inhomogeneities remains an obstacle for 3-D MT inversion which so far has experienced little attention. If not considered properly, the effect on 3-D inversion can be immense and result in erroneous subsurface models and interpretations. To tackle the problem we implemented inversion of the distortion-free phase tensor into the ModEM inversion package. The dimensionless phase tensor components describe only variations of the conductivity structure. When inverting these data, particular care has to be taken of the conductivity structure in the a priori model, which provides the reference frame when transferring the information from phase tensors into absolute conductivity values. Our results obtained with synthetic data show that phase tensor inversion can recover the regional conductivity structure in presence of galvanic distortion if the a priori model provides a reasonable assumption for the regional resistivity average. Joint inversion of phase tensor data and vertical magnetic transfer functions improves recovery of the absolute resistivity structure and is less dependent on the prior model. We also used phase tensor inversion for a data set of more than 250 MT sites from the central San Andreas fault, California, where a number of sites showed significant galvanic distortion. We find the regional structure of the phase tensor inversion results compatible with previously obtained models from impedance inversion. In the vicinity of distorted sites, phase tensor inversion models exhibit more homogeneous/smoother conductivity structures.
2010-09-01
lithosphere elude us. We have been able to surmise that geologic variations here are substantial, and we know that they frustrate attempts to use robust...concepts are summarized conceptually in Figure 2, which shows the regions of the lithosphere most sensitive to the different data that we employ. To...construct an approximate 3D model of the lithosphere , we use a hybrid 1D-3D inversion. In many tomography analyses, dispersion variations are
Inverse cascades sustained by the transfer rate of angular momentum in a 3D turbulent flow.
López-Caballero, Miguel; Burguete, Javier
2013-03-22
The existence of energy cascades as signatures of conserved magnitudes is one of the universal characteristics of turbulent flows. In homogeneous 3D turbulence, the energy conservation produces a direct cascade from large to small scales, although in 2D, it produces an inverse cascade pointing towards small wave numbers. In this Letter, we present the first evidence of an inverse cascade in a fully developed 3D experimental turbulent flow where the conserved magnitude is the angular momentum. Two counterrotating flows collide in a central region where very large fluctuations are produced, generating a turbulent drag that transfers the external torque between different fluid layers.
Inverse Cascades Sustained by the Transfer Rate of Angular Momentum in a 3D Turbulent Flow
NASA Astrophysics Data System (ADS)
López-Caballero, Miguel; Burguete, Javier
2013-03-01
The existence of energy cascades as signatures of conserved magnitudes is one of the universal characteristics of turbulent flows. In homogeneous 3D turbulence, the energy conservation produces a direct cascade from large to small scales, although in 2D, it produces an inverse cascade pointing towards small wave numbers. In this Letter, we present the first evidence of an inverse cascade in a fully developed 3D experimental turbulent flow where the conserved magnitude is the angular momentum. Two counterrotating flows collide in a central region where very large fluctuations are produced, generating a turbulent drag that transfers the external torque between different fluid layers.
Laplace-domain waveform modeling and inversion for the 3D acoustic-elastic coupled media
NASA Astrophysics Data System (ADS)
Shin, Jungkyun; Shin, Changsoo; Calandra, Henri
2016-06-01
Laplace-domain waveform inversion reconstructs long-wavelength subsurface models by using the zero-frequency component of damped seismic signals. Despite the computational advantages of Laplace-domain waveform inversion over conventional frequency-domain waveform inversion, an acoustic assumption and an iterative matrix solver have been used to invert 3D marine datasets to mitigate the intensive computing cost. In this study, we develop a Laplace-domain waveform modeling and inversion algorithm for 3D acoustic-elastic coupled media by using a parallel sparse direct solver library (MUltifrontal Massively Parallel Solver, MUMPS). We precisely simulate a real marine environment by coupling the 3D acoustic and elastic wave equations with the proper boundary condition at the fluid-solid interface. In addition, we can extract the elastic properties of the Earth below the sea bottom from the recorded acoustic pressure datasets. As a matrix solver, the parallel sparse direct solver is used to factorize the non-symmetric impedance matrix in a distributed memory architecture and rapidly solve the wave field for a number of shots by using the lower and upper matrix factors. Using both synthetic datasets and real datasets obtained by a 3D wide azimuth survey, the long-wavelength component of the P-wave and S-wave velocity models is reconstructed and the proposed modeling and inversion algorithm are verified. A cluster of 80 CPU cores is used for this study.
NASA Astrophysics Data System (ADS)
Agata, R.; Ichimura, T.; Hori, T.; Hirahara, K.; Hori, M.
2012-12-01
Crustal deformation analysis is important in order to understand the interplate coupling and coseismic fault slips. To perform it more accurately, we need a high-fidelity crustal structure model. However, in spite of accumulated crustal data, models with simplified flat shapes or relatively low resolution have been used, because the computation cost using high-fidelity models with a large degree-of-freedom (DOF) could be significantly high. Especially, estimation of the interplate coupling and coseismic fault slip requires the calculation of Green's function (the response displacement due to unit fault slip). To execute this computation in a realistic time, we need to reduce the computation cost. The objectives of our research is following: (1)To develop a method to generate 3D Finite Element (FE) models which represent heterogeneous crustal layers with the complex shape of crustal structure; (2)To develop a fast FE analysis method to perform crustal deformation analysis many times using single computation node, supposing the use of a small-scale computation environment. We developed an automatic FE model generation method using background grids with high quality meshes in a large area by extending the method of (Ichimura et al, 2009). We used Finite Element Method (FEM) because it has an advantage in representing the shape. Hybrid meshes consisting of tetrahedral and voxel elements are generated; the former is used when the interface surfaces and the grids intersect so that the shape of the crust is represented well, while the latter is used in the homogeneous areas. Also, we developed a method for crustal deformation analysis due to fault slip, which solves the FEM equation Ku=f assuming that the crust is an elastic body. To compute it fast, firstly we solved the problem by CG method with a simple preconditioning, parallelizing it by OpenMP. However, this computation took a long time, so we improved the method by introducing Multigrid Method (Saam, 2003) to the
Elastic wave modelling in 3D heterogeneous media: 3D grid method
NASA Astrophysics Data System (ADS)
Jianfeng, Zhang; Tielin, Liu
2002-09-01
We present a new numerical technique for elastic wave modelling in 3D heterogeneous media with surface topography, which is called the 3D grid method in this paper. This work is an extension of the 2D grid method that models P-SV wave propagation in 2D heterogeneous media. Similar to the finite-element method in the discretization of a numerical mesh, the proposed scheme is flexible in incorporating surface topography and curved interfaces; moreover it satisfies the free-surface boundary conditions of 3D topography naturally. The algorithm, developed from a parsimonious staggered-grid scheme, solves the problem using integral equilibrium around each node, instead of satisfying elastodynamic differential equations at each node as in the conventional finite-difference method. The computational cost and memory requirements for the proposed scheme are approximately the same as those used by the same order finite-difference method. In this paper, a mixed tetrahedral and parallelepiped grid method is presented; and the numerical dispersion and stability criteria on the tetrahedral grid method and parallelepiped grid method are discussed in detail. The proposed scheme is successfully tested against an analytical solution for the 3D Lamb problem and a solution of the boundary method for the diffraction of a hemispherical crater. Moreover, examples of surface-wave propagation in an elastic half-space with a semi-cylindrical trench on the surface and 3D plane-layered model are presented.
An optimal transport approach for seismic tomography: application to 3D full waveform inversion
NASA Astrophysics Data System (ADS)
Métivier, L.; Brossier, R.; Mérigot, Q.; Oudet, E.; Virieux, J.
2016-11-01
The use of optimal transport distance has recently yielded significant progress in image processing for pattern recognition, shape identification, and histograms matching. In this study, the use of this distance is investigated for a seismic tomography problem exploiting the complete waveform; the full waveform inversion. In its conventional formulation, this high resolution seismic imaging method is based on the minimization of the L 2 distance between predicted and observed data. Application of this method is generally hampered by the local minima of the associated L 2 misfit function, which correspond to velocity models matching the data up to one or several phase shifts. Conversely, the optimal transport distance appears as a more suitable tool to compare the misfit between oscillatory signals, for its ability to detect shifted patterns. However, its application to the full waveform inversion is not straightforward, as the mass conservation between the compared data cannot be guaranteed, a crucial assumption for optimal transport. In this study, the use of a distance based on the Kantorovich-Rubinstein norm is introduced to overcome this difficulty. Its mathematical link with the optimal transport distance is made clear. An efficient numerical strategy for its computation, based on a proximal splitting technique, is introduced. We demonstrate that each iteration of the corresponding algorithm requires solving the Poisson equation, for which fast solvers can be used, relying either on the fast Fourier transform or on multigrid techniques. The development of this numerical method make possible applications to industrial scale data, involving tenths of millions of discrete unknowns. The results we obtain on such large scale synthetic data illustrate the potentialities of the optimal transport for seismic imaging. Starting from crude initial velocity models, optimal transport based inversion yields significantly better velocity reconstructions than those based on
3-D Inversion of MT Data for Imaging Deformation Fronts in NW Poland
NASA Astrophysics Data System (ADS)
Ślęzak, Katarzyna; Jóźwiak, Waldemar; Nowożyński, Krzysztof; Brasse, Heinrich
2016-07-01
The Pomerania region (northwest part of Poland) occupies a significant position, where the largest European tectonic boundary is situated. This is the area of the contact between the East European Craton (EEC) and the Paleozoic Platform (PP) and it is known as the Trans-European Suture Zone (TESZ). The TESZ was formed during Paleozoic time as a consequence of the collision of several crustal units and it extends from the Black Sea in the southeast to the British Isles in the northwest. It is a region of key importance for our understanding of the tectonic history of Europe. Previous magnetotelluric (MT) results, based on 2-D inverse modeling, show that the contact zone is of lithospheric discontinuity character and there are distinct differences in geoelectric structures between the Precambrian EEC, transitional zone (TESZ), and the younger PP. The presence of a significant conductor at mid and lower crustal depths was also shown. Thus, the main aim of the research presented here was to obtain detailed, 3-D images of electrical conductivity in the crust and upper mantle and its regional distribution below the TESZ in the northwest part of Poland. To accomplish this task we applied the latest 3-D inversion codes, which allowed us to get more realistic model geometries. Additionally, to confirm and complement the study, the Horizontal Magnetic Tensor (HMT) analysis was realized. This method gives us an opportunity to efficiently locate the position of well-conducting structures. As a result we obtain a clearer, three-dimensional model of conductivity distribution, where highly conductive rock complexes appear which we tentatively connected to deformation fronts.
3D elastic full waveform inversion: case study from a land seismic survey
NASA Astrophysics Data System (ADS)
Kormann, Jean; Marti, David; Rodriguez, Juan-Esteban; Marzan, Ignacio; Ferrer, Miguel; Gutierrez, Natalia; Farres, Albert; Hanzich, Mauricio; de la Puente, Josep; Carbonell, Ramon
2016-04-01
Full Waveform Inversion (FWI) is one of the most advanced processing methods that is recently reaching a mature state after years of solving theoretical and technical issues such as the non-uniqueness of the solution and harnessing the huge computational power required by realistic scenarios. BSIT (Barcelona Subsurface Imaging Tools, www.bsc.es/bsit) includes a FWI algorithm that can tackle with very complex problems involving large datasets. We present here the application of this system to a 3D dataset acquired to constrain the shallow subsurface. This is where the wavefield is the most complicated, because most of the wavefield conversions takes place in the shallow region and also because the media is much more laterally heterogeneous. With this in mind, at least isotropic elastic approximation would be suitable as kernel engine for FWI. The current study explores the possibilities to apply elastic isotropic FWI using only the vertical component of the recorded seismograms. The survey covers an area of 500×500 m2, and consists in a receivers grid of 10 m×20 m combined with a 250 kg accelerated weight-drop as source on a displaced grid of 20 m×20 m. One of the main challenges in this case study is the costly 3D modeling that includes topography and substantial free surface effects. FWI is applied to a data subset (shooting lines 4 to 12), and is performed for 3 frequencies ranging from 15 to 25 Hz. The starting models are obtained from travel-time tomography and the all computation is run on 75 nodes of Mare Nostrum supercomputer during 3 days. The resulting models provide a higher resolution of the subsurface structures, and show a good correlation with the available borehole measurements. FWI allows to extend in a reliable way this 1D knowledge (borehole) to 3D.
3D inversion of aeromagnetic Data on Las Tablas District, Panama
NASA Astrophysics Data System (ADS)
Batista-Rodríguez, José A.; Caballero, Alberto; Pérez-Flores, Marco A.; Almaguer-Carmenates, Yuri
2017-03-01
We present a 3D model of Las Tablas District, Panama, obtained from the 3D inversion of aeromagnetic data, and constrained with information from surface geology, water wells and topography. The 3D model suggests the location, boundary, shape and depths of the sedimentary basin where the Mensabé and Salados rivers hydrogeological sub-basin is located. The model shows the connections between tectonics and the sedimentary basin, suggesting the probable areas for aquifers, the relations between them, their zone of recharge and discharge, and the probable zone of pollution. The inferred faults in the model may be the main recharge and discharge conduits for the groundwater and anthropogenic pollution. The geological and geometric characteristics shown in the 3D model are fundamental data for further hydrogeological and geophysical studies such as the location for future drinking water wells.
3-D wavelet compression and progressive inverse wavelet synthesis rendering of concentric mosaic.
Luo, Lin; Wu, Yunnan; Li, Jin; Zhang, Ya-Qin
2002-01-01
Using an array of photo shots, the concentric mosaic offers a quick way to capture and model a realistic three-dimensional (3-D) environment. We compress the concentric mosaic image array with a 3-D wavelet transform and coding scheme. Our compression algorithm and bitstream syntax are designed to ensure that a local view rendering of the environment requires only a partial bitstream, thereby eliminating the need to decompress the entire compressed bitstream before rendering. By exploiting the ladder-like structure of the wavelet lifting scheme, the progressive inverse wavelet synthesis (PIWS) algorithm is proposed to maximally reduce the computational cost of selective data accesses on such wavelet compressed datasets. Experimental results show that the 3-D wavelet coder achieves high-compression performance. With the PIWS algorithm, a 3-D environment can be rendered in real time from a compressed dataset.
3D gravity inversion and uncertainty assessment of basement relief via Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Pallero, J. L. G.; Fernández-Martínez, J. L.; Bonvalot, S.; Fudym, O.
2017-04-01
Nonlinear gravity inversion in sedimentary basins is a classical problem in applied geophysics. Although a 2D approximation is widely used, 3D models have been also proposed to better take into account the basin geometry. A common nonlinear approach to this 3D problem consists in modeling the basin as a set of right rectangular prisms with prescribed density contrast, whose depths are the unknowns. Then, the problem is iteratively solved via local optimization techniques from an initial model computed using some simplifications or being estimated using prior geophysical models. Nevertheless, this kind of approach is highly dependent on the prior information that is used, and lacks from a correct solution appraisal (nonlinear uncertainty analysis). In this paper, we use the family of global Particle Swarm Optimization (PSO) optimizers for the 3D gravity inversion and model appraisal of the solution that is adopted for basement relief estimation in sedimentary basins. Synthetic and real cases are illustrated, showing that robust results are obtained. Therefore, PSO seems to be a very good alternative for 3D gravity inversion and uncertainty assessment of basement relief when used in a sampling while optimizing approach. That way important geological questions can be answered probabilistically in order to perform risk assessment in the decisions that are made.
3D Face modeling using the multi-deformable method.
Hwang, Jinkyu; Yu, Sunjin; Kim, Joongrock; Lee, Sangyoun
2012-09-25
In this paper, we focus on the problem of the accuracy performance of 3D face modeling techniques using corresponding features in multiple views, which is quite sensitive to feature extraction errors. To solve the problem, we adopt a statistical model-based 3D face modeling approach in a mirror system consisting of two mirrors and a camera. The overall procedure of our 3D facial modeling method has two primary steps: 3D facial shape estimation using a multiple 3D face deformable model and texture mapping using seamless cloning that is a type of gradient-domain blending. To evaluate our method's performance, we generate 3D faces of 30 individuals and then carry out two tests: accuracy test and robustness test. Our method shows not only highly accurate 3D face shape results when compared with the ground truth, but also robustness to feature extraction errors. Moreover, 3D face rendering results intuitively show that our method is more robust to feature extraction errors than other 3D face modeling methods. An additional contribution of our method is that a wide range of face textures can be acquired by the mirror system. By using this texture map, we generate realistic 3D face for individuals at the end of the paper.
NASA Astrophysics Data System (ADS)
Beka, Thomas I.; Smirnov, Maxim; Birkelund, Yngve; Senger, Kim; Bergh, Steffen G.
2016-08-01
Broadband (0.001-1000 s) magnetotelluric (MT) data along a crooked profile collected to investigate the geothermal potential on Spitsbergen could not be fully explained by two-dimensional (2D) models; hence we interpret the data with three-dimensional (3D) inversion herein. To better accommodate 3D features and nearby off profile resistivity structures, the full MT impedance tensor data together with the tipper were inverted. As a model control, a detailed bathymetry is systematically incorporated in the inversion. Our results from testing different inversion settings emphasised that appropriately choosing and tuning the starting model, data error floor and the model regularization together are crucial to obtain optimum benefit from MT field data. Through the 3D inversion, we reproduced out of quadrant impedance components and obtained an overall satisfactory data fit (RMS = 1.05). The final 3D resistivity model displays a complex geology of the near surface region (< 1.5 km), which suggests fractures, localized and regional fault systems and igneous intrusions in the Mesozoic platform cover deposits. The Billefjorden fault zone is revealed as a consistent and deep rooted (> 2 km) conductive anomaly, confirming the regional nature of the fault. The fault zone is positioned between two uplifted basement blocks (> 1000 Ωm) of presumably pre-Devonian (Caledonian) metamorphic rocks, and the fault may have been responsible for deformation in the overlying Paleozoic-Mesozoic unit. Upper crustal conductive anomalies (< 10 Ωm) below the Paleozoic-Mesozoic succession in the western part of the 3D model are interpreted as part of a Devonian basin fill. These conductors are laterally and vertically bounded by resistive rocks, suggesting a conducive environment for deep geothermal heat storage. Having this scenario in an area of a known high heat-flow, deep faults and a thinned lithosphere makes the hypothesis on finding a technologically exploitable geothermal resource
Centroid Moment Tensor Inversion in a 3D heterogeneous Earth: Application to the Australasian region
NASA Astrophysics Data System (ADS)
Hejrani, B.; Tkalcic, H.; Fichtner, A.
2015-12-01
Australia is surrounded by active complex tectonic belts causing significant seismicity. The recent expansion of permanent seismic networks in the Australasian region provides great opportunity to study Earth structure and a great variety of physical mechanisms responsible for earthquakes.On one hand, a better understanding of the Australasian lithosphere, which is now available through tomographic images from full waveform modelling (Fichtner et al. 2010), provides a powerful tool to scrutinize the determination of earthquake source parameters. Even at relatively long periods (40-200s), the 3D effects of regional structure were shown to significantly alter the global centroid moment tensor solutions (Hingee et al. 2012). Thus, we can now explore other types of uncertainties and test the accuracy of global centroid moment tensor (GCMT) solution for the earthquakes in the Australasian region while checking for the systematic inconsistencies in the solutions. This has a significant bearing on tectonic interpretations. For example, azimuth and plunge of fault planes can be investigated in search for systematic biases.On the other hand, the time has come to take a full advantage of the 3D Earth structural model and embrace ongoing advances in computational power and storage. We develop a semi-automated procedure to calculate the Centroid Moment Tensors in a 3D heterogeneous Earth. We utilize the reciprocity theorem to create Green's functions for point sources covering seismogenic zones of Australasia. We focus on improving the capacity of the method to fully complement the existing monitoring tools at Geosciences Australia. Furthermore, we investigate the effects of detailed velocity structure on Centroid location and double-couple percentages. Moreover Azimuth and Plunge of focal mechanisms in GCMT (Global CMT), were investigated in search for any systematic bias.References: Fichtner, A., Kennett, B.L.N., Igel, H., Bunge, H.-P., 2010. Full waveform tomography for
NASA Astrophysics Data System (ADS)
Klibanov, Michael V.; Romanov, Vladimir G.
2016-01-01
The 3D inverse scattering problem of the reconstruction of the unknown dielectric permittivity in the generalized Helmholtz equation is considered. Applications are in imaging of nanostructures and biological cells. The main difference with the conventional inverse scattering problems is that only the modulus of the scattering wave field is measured. The phase is not measured. The initializing wave field is the incident plane wave. On the other hand, in the previous recent works of the authors about the ‘phaseless topic’ the case of the point source was considered (Klibanov and Romanov 2015 J. Inverse Ill-Posed Problem 23 415-28 J. Inverse Ill-Posed Problem 23 187-93). Two reconstruction procedures are developed.
Understanding how Fault-bounded Blocks Deform in 3D by Inverse Modelling
NASA Astrophysics Data System (ADS)
Jouen, G.; White, N.
2004-05-01
Normal faults play a crucial role in modifying basin stratigraphy. At the exploration scale, the internal deformation of tilted blocks is governed by the three-dimensional geometry of large-scale faults which bound these blocks. At the reservoir scale, the geometry and growth of normal faulting control the deformation of strata and the compartmentalisation of reservoir intervals. Despite their importance, large-scale normal faults are often difficult to image. The purpose of structural validation is two-fold: to determine the 3D shape of normal faults and to investigate the relationship between fault geometry and deformed stratigraphy including the intra-block faults. We have developed methods for tackling structural validation at a variety of scales in two and three dimensions. The cornerstone of our approach is the use of geophysical inverse theory to calculate optimal fault geometries from deformed strata. This approach allows us to focus on key questions: does a solution exist? Are there several possible solutions or just one unique one? In a complex normal fault system, which part of the fault controls the motion responsible for the deformation in the hanging-wall? Traditional forward modelling cannot answer these fundamental issues. We have applied the inversion on seismic data in particularly complex areas in the northern North Sea. The aims of this project are to determine the geometry of the basin-bounding fault, to assess the likelihood of out-of-plane motion as well as understanding the mode of deformation leading to the complexity of the present structure. Closely spaced inverse models show that the basin-bounding fault on the UK side is steeper and more planar than previously thought. This method also helped us to have a better view of what could have been the cause of the organisation and density of the intra-block faulting where it occurs. The North Cormorant study has shown how inverse modelling can yield important, quantitative, insights. Our
NASA Astrophysics Data System (ADS)
Zhu, Lupei; Zhou, Xiaofeng
2016-10-01
Source inversion of small-magnitude events such as aftershocks or mine collapses requires use of relatively high frequency seismic waveforms which are strongly affected by small-scale heterogeneities in the crust. In this study, we developed a new inversion method called gCAP3D for determining general moment tensor of a seismic source using Green's functions of 3D models. It inherits the advantageous features of the "Cut-and-Paste" (CAP) method to break a full seismogram into the Pnl and surface-wave segments and to allow time shift between observed and predicted waveforms. It uses grid search for 5 source parameters (relative strengths of the isotropic and compensated-linear-vector-dipole components and the strike, dip, and rake of the double-couple component) that minimize the waveform misfit. The scalar moment is estimated using the ratio of L2 norms of the data and synthetics. Focal depth can also be determined by repeating the inversion at different depths. We applied gCAP3D to the 2013 Ms 7.0 Lushan earthquake and its aftershocks using a 3D crustal-upper mantle velocity model derived from ambient noise tomography in the region. We first relocated the events using the double-difference method. We then used the finite-differences method and reciprocity principle to calculate Green's functions of the 3D model for 20 permanent broadband seismic stations within 200 km from the source region. We obtained moment tensors of the mainshock and 74 aftershocks ranging from Mw 5.2 to 3.4. The results show that the Lushan earthquake is a reverse faulting at a depth of 13-15 km on a plane dipping 40-47° to N46° W. Most of the aftershocks occurred off the main rupture plane and have similar focal mechanisms to the mainshock's, except in the proximity of the mainshock where the aftershocks' focal mechanisms display some variations.
3D Motion Planning Algorithms for Steerable Needles Using Inverse Kinematics
Duindam, Vincent; Xu, Jijie; Alterovitz, Ron; Sastry, Shankar; Goldberg, Ken
2010-01-01
Steerable needles can be used in medical applications to reach targets behind sensitive or impenetrable areas. The kinematics of a steerable needle are nonholonomic and, in 2D, equivalent to a Dubins car with constant radius of curvature. In 3D, the needle can be interpreted as an airplane with constant speed and pitch rate, zero yaw, and controllable roll angle. We present a constant-time motion planning algorithm for steerable needles based on explicit geometric inverse kinematics similar to the classic Paden-Kahan subproblems. Reachability and path competitivity are analyzed using analytic comparisons with shortest path solutions for the Dubins car (for 2D) and numerical simulations (for 3D). We also present an algorithm for local path adaptation using null-space results from redundant manipulator theory. Finally, we discuss several ways to use and extend the inverse kinematics solution to generate needle paths that avoid obstacles. PMID:21359051
NASA Astrophysics Data System (ADS)
Bell, R. E.; Morgan, J. V.; Warner, M.
2013-12-01
Our understanding of subduction margin seismogenesis has been revolutionised in the last couple of decades with the discovery that the size of the seismogenic zone may not be controlled simply by temperature and a broad spectrum of seismic behaviour exists from stick-slip to stable sliding. Laboratory and numerical experiments suggest that physical properties, particularly fluid pressure may play an important role in controlling the seismic behaviour of subduction margins. Although drilling can provide information on physical properties along subduction thrust faults at point locations at relatively shallow depths, correlations between physical properties and seismic velocity using rock physics relationships are required to resolve physical properties along the margin and down-dip. Therefore, high resolution seismic velocity models are key to recovering physical property information at subduction plate boundaries away from drill sites. 3D Full waveform inversion (FWI) is a technique pioneered by the oil industry to obtain high-resolution high-fidelity models of physical properties in the sub-surface. 3D FWI involves the inversion of low-frequency (>2 to <7 Hz), early arriving (principally transmitted) seismic data, to recover the macro (intermediate to long-wavelength) velocity structure. Although 2D FWI has been used to improve velocity models of subduction plate boundaries before, 3D FWI has not yet been attempted. 3D inversions have superior convergence and accuracy, as they sample the subsurface with multi-azimuth multiply-crossing wavefields. In this contribution we perform a suite of synthetic tests to investigate if 3D FWI could be used to better resolve physical property information along subduction margin plate boundaries using conventionally collected 3D seismic data. We base our analysis on the Muroto Basin area of the Nankai margin and investigate if the acquisition parameters and geometry of the subduction margin render 3D seismic data collected across
High-resolution imaging and inversion of 3D GPR data for layered media
NASA Astrophysics Data System (ADS)
Slob, Evert
2013-04-01
Ground penetrating radar is increasingly being used to provide quantitative information of layered structures. For application in civil engineering these can be roads, highway pavements, airport runways, bridges, tunnels, or buildings. Monitoring is important for the management and safety of these structures. Standard imaging uses a modeled wavefield extrapolator to image the data and the quality of the image depends heavily on the quality of the modeled extrapolator. Usually, data inversion is implemented by minimizing a cost function involving the measured data and the modeled data. The model is modified such that data computed from the model fits to the measured data. The data itself is not used, except as a measure of the model data fit. A recently developed alternative method is to use results from inverse scattering theory to first construct an image while all multiple reflections are simultaneously eliminated from the data. This image can be constructed from surface reflection data if the data allows separating the subsurface reflection response from the down going emitted field. For 3D waves in a layered medium this requires knowledge of all horizontal electric and magnetic field components. If the data is properly sampled the solution is unique. In layered media the plane wave decomposition allows computing the image for each angle of incidence separately as a function of image time that is equal to the one-way intercept time. Once the image is constructed for all available angles of incidence a simple matrix inversion leads to the desired electric permittivity and magnetic permeability values in each layer. Finally these values provide interval velocities that can be used to convert image time to depth and the inverse problem is solved. The theory requires infinite bandwidth frequency domain data, which is equivalent to measuring the true impulse response. This is not possible in practice and numerical results show that data with finite bandwidths can be
Method for 3D Airway Topology Extraction
Grothausmann, Roman; Kellner, Manuela; Heidrich, Marko; Lorbeer, Raoul-Amadeus; Ripken, Tammo; Meyer, Heiko; Kuehnel, Mark P.; Ochs, Matthias; Rosenhahn, Bodo
2015-01-01
In lungs the number of conducting airway generations as well as bifurcation patterns varies across species and shows specific characteristics relating to illnesses or gene variations. A method to characterize the topology of the mouse airway tree using scanning laser optical tomography (SLOT) tomograms is presented in this paper. It is used to test discrimination between two types of mice based on detected differences in their conducting airway pattern. Based on segmentations of the airways in these tomograms, the main spanning tree of the volume skeleton is computed. The resulting graph structure is used to distinguish between wild type and surfactant protein (SP-D) deficient knock-out mice. PMID:25767561
3D inversion of full gravity gradient tensor data using SL0 sparse recovery
NASA Astrophysics Data System (ADS)
Meng, Zhaohai
2016-04-01
We present a new method dedicated to the interpretation of full gravity gradient tensor data, based on SL0 sparse recovery inversion. The SL0 sparse recovery method aims to find out the minimum value of the objective function to fit the data function and to solve the non-zero solution to the objective function. Based on continuous iteration, we can easily obtain the final global minimum (namely the property and space attribute of the inversion target). We consider which type of tensor data combination produces the best inversion results based on the inversion results of different full gravity gradient tensor data combinations (separate tensor data and combined tensor data). We compare the recovered models obtained by inverting the different combinations of different gravity gradient tensor components to understand how different component combinations contribute to the resolution of the recovered model. Based on the comparison between the SL0 sparse recovery inversion results and the smoothest and focusing inversion results of the full gravity gradient tensor data, we show that SL0 sparse recovery inversion can obtain more stable and efficient inversion results with relatively sharp edge information, and that this method can also produce a stable solution of the inverse problem for complex geological structures. This new method to resolve very large full gravity gradient tensor datasets has the considerable advantage of being highly efficient; the full gravity gradient tensor inversion requires very little time. This new method is very effective in explaining the full gravity tensor which is very sensitive to small changes in local anomaly. The numerical simulation and inversion results of the compositional model indicates that including multiple components for inversion increases the resolution of the recovered density model and improves the structure delineation. We apply our inversion method to invert the gravity gradient tensor survey data from the Vinton salt
NASA Astrophysics Data System (ADS)
Torres-Verdin, C.
2007-05-01
This paper describes the successful implementation of a new 3D AVA stochastic inversion algorithm to quantitatively integrate pre-stack seismic amplitude data and well logs. The stochastic inversion algorithm is used to characterize flow units of a deepwater reservoir located in the central Gulf of Mexico. Conventional fluid/lithology sensitivity analysis indicates that the shale/sand interface represented by the top of the hydrocarbon-bearing turbidite deposits generates typical Class III AVA responses. On the other hand, layer- dependent Biot-Gassmann analysis shows significant sensitivity of the P-wave velocity and density to fluid substitution. Accordingly, AVA stochastic inversion, which combines the advantages of AVA analysis with those of geostatistical inversion, provided quantitative information about the lateral continuity of the turbidite reservoirs based on the interpretation of inverted acoustic properties (P-velocity, S-velocity, density), and lithotype (sand- shale) distributions. The quantitative use of rock/fluid information through AVA seismic amplitude data, coupled with the implementation of co-simulation via lithotype-dependent multidimensional joint probability distributions of acoustic/petrophysical properties, yields accurate 3D models of petrophysical properties such as porosity and permeability. Finally, by fully integrating pre-stack seismic amplitude data and well logs, the vertical resolution of inverted products is higher than that of deterministic inversions methods.
3D inversion of land-based CSEM data from the Ketzin CO2 storage formation
NASA Astrophysics Data System (ADS)
Grayver, Alexander; Streich, Rita; Ritter, Oliver
2013-04-01
We present 3D inversion of land controlled-source electromagnetic (CSEM) data collected across the CO2 storage test site at Ketzin, Germany. The CSEM data were generated by injecting currents into the earth at eight locations using a newly developed transmitter equipped with three grounded electrodes. Electric and magnetic field responses were recorded by 39 receivers along a line approximately perpendicular to the main geological trend. The survey aimed at imaging large-scale resistivity structure beyond the near-well region monitored by higher-resolution electrical techniques. Infrastructure present in the survey area, such as pipelines with impressed-current cathodic protection systems, power lines, and wind power plants cause strong noise in the data. The noise is effectively suppressed by adopting statistically robust processing techniques known from passive magnetotellurics. A newly developed Gauss-Newton type parallel distributed inversion scheme, which is based on a direct forward solver and explicitly calculates the full sensitivity matrix, is applied to recover subsurface conductivity images. As 3D inversion is demanding on computer time and memory, we run inversions on parallel distributed machines. We achieve good scalability by distributing computations and memory uniformly among the processes involved. We carry out cumulative sensitivity and resolution analyses for the sparse CSEM acquisition geometry. These studies indicate reasonable spatial coverage along the main survey line. Synthetic studies calculated for the real survey layout and representative conductivity models indicate that the magnetic field components are practically insensitive to resistive structures, whereas the electric field components resolve resistors and conductors similarly well. Because the magnetic field contributes little subsurface information, we concentrate on inverting the electric field, which is also more computer-efficient than inverting all components. We test
The multi-scale 3D-1D compatibility scoring for inverse protein folding problem
Oniuka, Kentaro; Asai, Kiyoshi
1994-12-31
The applicability of the Multi-Scale Structure Description (MSSD) scheme to the inverse-folding problems was investigated. An MSSD represents a 3D protein structure with multiple symbolic sequences, where fine structures are represented with the sequence at low levels, the middle scale structural motifs at middle levels, and global topology at high levels. Each symbol in the symbolic sequence denotes a type of local structure of the level scale. The structure fragments are classified at each scale level respectively according to the shape and the environment around the fragments: how the structure is exposed to the solvent or buried in the molecule. I modeled the propensity of an amino-acid sequence to the structure fragment type (i.e., primary constraint) at each scale level. The local propensity is, therefore, modeled at small scale (low) levels, while the global propensity modeled at large scale (high) levels. Thus, superposing all the primary constraints, a 3D protein structure yields an amino-acid sequence profile. Evaluating the fit of an amino acid sequence to the profile derived from the known 3D protein structure, we can identify which 3D structure the given amino-acid sequence would fold into. I checked whether a sequence identifies its own structure over two hundred protein sequences. In many cases, an amino acid sequence identified its own 3D protein structure.
Chern insulators without band inversion in Mo S2 monolayers with 3 d adatoms
NASA Astrophysics Data System (ADS)
Wei, Xinyuan; Zhao, Bao; Zhang, Jiayong; Xue, Yang; Li, Yun; Yang, Zhongqin
2017-02-01
Electronic and topological properties of Mo S2 monolayers endowed with 3 d transition metal (TM) adatoms (V-Fe) are explored by using ab initio methods and k .p models. Without the consideration of the Hubbard U interaction, the V, Cr, and Fe adatoms tend to locate on the top of the Mo atoms, while the most stable site for the Mn atom is at the hollow position of the Mo-S hexagon. After the Hubbard U is applied, the most stable sites of all the systems become the top of the Mo atoms. Chern insulators without band inversion are achieved in these systems. The V and Fe adsorption systems are the best candidates to produce the topological states. The k .p model calculations indicate that these topological states are determined by the TM magnetism, the C3 v crystal field from the Mo S2 substrate, and the TM atomic spin-orbit coupling (SOC). The special two-meron pseudospin texture is found to contribute to the topology. The apparent difference between the Berry curvatures for the V and Fe adsorption systems is also explored. Our results widen the understanding of the Chern insulators and are helpful for the applications of the Mo S2 monolayers in the future electronics and spintronics.
Theoretical assessment of 3-D magnetotelluric method for oil and gas exploration: Synthetic examples
NASA Astrophysics Data System (ADS)
Zhang, Kun; Wei, Wenbo; Lu, Qingtian; Dong, Hao; Li, Yanqing
2014-07-01
In petroleum explorations, seismic reflection technique has been almost always the preferred method for its high exploration depth and resolution. However, with the development of three dimensional (3D) inversion and interpretation schemes, much potential has been shown in MT method dealing with complex geological structures as in oil and gas exploration. In this study, synthetic geophysical models of petroleum reservoir structures are modeled and utilized to demonstrate that feasibility of 3-D MT technique for hydrocarbon exploration. A series of typical reservoir structure models are constructed and used to generate synthetic MT and seismic data to test the capabilities of 2-D/3-D MT and 2-D seismic inversion techniques. According to the inversion comparison, in addition to correctly retrieve the original forward model, the 3-D MT method also has some advantages over the reflective seismology method, which suffered from the lack of reflection wave and multiple wave problems. With the presented 3-D high resolution MT inversion method, MT techniques should be employed as one of the first choices for petroleum explorations.
NASA Astrophysics Data System (ADS)
Timur, Emre
2016-04-01
There are numerous geophysical methods used to investigate geothermal areas. The major purpose of this magnetic survey is to locate the boudaries of active hydrothermal system in the South of Gediz Graben in Salihli (Manisa/Turkey). The presence of the hydrothermal system had already been inferred from surface evidence of hydrothermal activity and drillings. Firstly, 3-D prismatic models were theoretically investigated and edge detection methods were utilized with an iterative inversion method to define the boundaries and the parameters of the structure. In the first step of the application, it was necessary to convert the total field anomaly into a pseudo-gravity anomaly map. Then the geometric boudaries of the structures were determined by applying a MATLAB based software with 3 different edge detection algorithms. The exact location of the structures were obtained by using these boundary coordinates as initial geometric parameters in the inversion process. In addition to these methods, reduction to pole and horizontal gradient methods were applied to the data to achieve more information about the location and shape of the possible reservoir. As a result, the edge detection methods were found to be successful, both in the field and as theoretical data sets for delineating the boundaries of the possible geothermal reservoir structure. The depth of the geothermal reservoir was determined as 2,4 km from 3-D inversion and 2,1 km from power spectrum methods.
Aydmer, A.A.; Chew, W.C.; Cui, T.J.; Wright, D.L.; Smith, D.V.; Abraham, J.D.
2001-01-01
A simple and efficient method for large scale three-dimensional (3-D) subsurface imaging of inhomogeneous background is presented. One-dimensional (1-D) multifrequency distorted Born iterative method (DBIM) is employed in the inversion. Simulation results utilizing synthetic scattering data are given. Calibration of the very early time electromagnetic (VETEM) experimental waveforms is detailed along with major problems encountered in practice and their solutions. This discussion is followed by the results of a large scale application of the method to the experimental data provided by the VETEM system of the U.S. Geological Survey. The method is shown to have a computational complexity that is promising for on-site inversion.
3D Self-Potential Inversion for Monitoring DNAPL Contaminant Distributions
NASA Astrophysics Data System (ADS)
Minsley, B. J.; Sogade, J.; Vichabian, Y.; Morgan, F. D.
2005-05-01
Self-potential (SP) data are collected over an area known to be contaminated with Dense Non-Aqueous Phase Liquids (DNAPLs) at the Savannah River Site in South Carolina. The field experiment consists of approximately 100 SP measurements on a surface grid and in four boreholes, and is repeated after one year. DNAPLs are known to undergo redox reactions during their degradation in the environment, which is often biologically mediated. Self-potential geophysics is employed in this study because of its sensitivity to the in-situ biochemical processes that degrade the contaminants. These reactions provide an electrochemical source that is manifested as an SP signature at the measurement locations remote from the contaminated areas. 3D inversion of the SP data is therefore needed to spatially locate the distribution of sources, which is related to contaminant presence. The inversion incorporates the 3D resistivity structure collected at the same site, and is better constrained in depth by using borehole data and regularization. Ground truth information taken after the first field experiment provides concentration data with depth for several DNAPL species in five boreholes. There is a good correlation between the ground truth data and SP source inversion, though this comparison is limited by several factors: the difference in resolution of the ground truth and inverted data, and the dependence of the redox processes on other constituents that were not measured during the ground truthing, such as oxygen content or microbial presence. Inversion of the second year's dataset provides information on the changes in the contaminant distribution, either due to natural degradation or ongoing remediation.
NASA Astrophysics Data System (ADS)
Sladen, A.; Monteiller, V.
2014-12-01
Most large earthquakes are generated in subduction zones. To study the complexity of these events, teleseismic body waves offer many advantages over other types of data: they allow to study both the temporal and spatial evolution of slip during the rupture, they don't depend on the presence of nearby land and they allow to study earthquakes regardless of their location. Since the development of teleseismic finite-fault inversion in the 1980th, teleseismic body waves have been simulated using 1D velocity models to take into account propagation effects at the source. Yet, subduction zones are known to be highly heterogeneous: they are characterized by curved and dipping structures, strong seismic velocity contrasts, strong variations of topography and height of the water column. The main reason for relying on a 1D approximation is the computational cost of 3D simulations. And while forward simulations of teleseismic waves in a 3D Earth are only starting to be tractable on modern computers at the frequency range of interest (0.1Hz or shorter), finite-fault source studies require a large number of these simulations. In this work, we present a new and efficient approach to compute 3D teleseismic body waves, in which the full 3D propagation is only computed in a regional domain using discontinuous Galerkin finite-element method, while the rest of the seismic wave field is propagated in a background axisymmetric Earth. The regional and global wave fields are matched using the so-called Total-Field/Scattered-Field technique. This new simulation approach allows us to study the waveform complexities resulting from 3D propagation and investigate how they could improve the resolution and reduce the non-uniqueness of finite-fault inversions.
3D inversion based on multi-grid approach of magnetotelluric data from Northern Scandinavia
NASA Astrophysics Data System (ADS)
Cherevatova, M.; Smirnov, M.; Korja, T. J.; Egbert, G. D.
2012-12-01
In this work we investigate the geoelectrical structure of the cratonic margin of Fennoscandian Shield by means of magnetotelluric (MT) measurements carried out in Northern Norway and Sweden during summer 2011-2012. The project Magnetotellurics in the Scandes (MaSca) focuses on the investigation of the crust, upper mantle and lithospheric structure in a transition zone from a stable Precambrian cratonic interior to a passive continental margin beneath the Caledonian Orogen and the Scandes Mountains in western Fennoscandia. Recent MT profiles in the central and southern Scandes indicated a large contrast in resistivity between Caledonides and Precambrian basement. The alum shales as a highly conductive layers between the resistive Precambrian basement and the overlying Caledonian nappes are revealed from this profiles. Additional measurements in the Northern Scandes were required. All together data from 60 synchronous long period (LMT) and about 200 broad band (BMT) sites were acquired. The array stretches from Lofoten and Bodo (Norway) in the west to Kiruna and Skeleftea (Sweden) in the east covering an area of 500x500 square kilometers. LMT sites were occupied for about two months, while most of the BMT sites were measured during one day. We have used new multi-grid approach for 3D electromagnetic (EM) inversion and modelling. Our approach is based on the OcTree discretization where the spatial domain is represented by rectangular cells, each of which might be subdivided (recursively) into eight sub-cells. In this simplified implementation the grid is refined only in the horizontal direction, uniformly in each vertical layer. Using multi-grid we manage to have a high grid resolution near the surface (for instance, to tackle with galvanic distortions) and lower resolution at greater depth as the EM fields decay in the Earth according to the diffusion equation. We also have a benefit in computational costs as number of unknowns decrease. The multi-grid forward
3-D inversion of synthetic marine magnetotelluric data: resolution and sensitivity
NASA Astrophysics Data System (ADS)
Tada, N.; Baba, K.; Siripunvaraporn, W.; Uyeshima, M.; Utada, H.
2010-12-01
In recent years, seafloor magnetotelluric (MT) observation is carried out by using an increasing number of ocean bottom electromagnetometers (OBEMs) not only along a line but also in 2-D array. Thus, imaging electrical conductivity structures under the seafloor in 3-D is now feasible. A 3-D approach is indispensable especially for marine MT data, because the electric and magnetic fields observed at the seafloor are heavily distorted by the rugged seafloor topography and the distribution of land and sea which are generally 3-D. It is very important to incorporate the topography in a 3-D model for an accurate estimation of the conductivity structure beneath seafloor that is generally more resistive than seawater by several orders of magnitude. WSINV3DMT (Siripunvaraporn et al., 2005) is one of 3-D inversion codes that are now of practical use, but the original WSINV3DMT is not applicable to marine MT data because of two reasons. 1) MT responses are calculated only at the boundary corresponding to the Earth surface. 2) We have to use fine mesh design because an observation site must locate exactly at the center of the top surface of a block, which needs large memory that even a highest performance computer can not handle. We propose an extended version of the WSINV3DMT by solving the two problems shown above so that it can be applied to the marine MT data. The extended version of the WSINV3DMT is tested using synthetic models including a 3-D anomaly, seawater and topographic variation. Here shown is an example of a checkerboard test by using a model in which 10 ohm-m and 100 ohm-m blocks are put alternately in both horizontal and vertical directions. The model is composed of 5 blocks in horizontal directions and of 4 blocks in vertical direction with a background of a 31.6 ohm-m half-space below actual topography. The calculation area in the inversion is 7440 × 7440 × 1008 km, and is discretized at 35 blocks in the x and y directions, and 69 blocks in the z
Improving automated 3D reconstruction methods via vision metrology
NASA Astrophysics Data System (ADS)
Toschi, Isabella; Nocerino, Erica; Hess, Mona; Menna, Fabio; Sargeant, Ben; MacDonald, Lindsay; Remondino, Fabio; Robson, Stuart
2015-05-01
This paper aims to provide a procedure for improving automated 3D reconstruction methods via vision metrology. The 3D reconstruction problem is generally addressed using two different approaches. On the one hand, vision metrology (VM) systems try to accurately derive 3D coordinates of few sparse object points for industrial measurement and inspection applications; on the other, recent dense image matching (DIM) algorithms are designed to produce dense point clouds for surface representations and analyses. This paper strives to demonstrate a step towards narrowing the gap between traditional VM and DIM approaches. Efforts are therefore intended to (i) test the metric performance of the automated photogrammetric 3D reconstruction procedure, (ii) enhance the accuracy of the final results and (iii) obtain statistical indicators of the quality achieved in the orientation step. VM tools are exploited to integrate their main functionalities (centroid measurement, photogrammetric network adjustment, precision assessment, etc.) into the pipeline of 3D dense reconstruction. Finally, geometric analyses and accuracy evaluations are performed on the raw output of the matching (i.e. the point clouds) by adopting a metrological approach. The latter is based on the use of known geometric shapes and quality parameters derived from VDI/VDE guidelines. Tests are carried out by imaging the calibrated Portable Metric Test Object, designed and built at University College London (UCL), UK. It allows assessment of the performance of the image orientation and matching procedures within a typical industrial scenario, characterised by poor texture and known 3D/2D shapes.
Realistic 3D coherent transfer function inverse filtering of complex fields
Cotte, Yann; Toy, Fatih M.; Arfire, Cristian; Kou, Shan Shan; Boss, Daniel; Bergoënd, Isabelle; Depeursinge, Christian
2011-01-01
We present a novel technique for three-dimensional (3D) image processing of complex fields. It consists in inverting the coherent image formation by filtering the complex spectrum with a realistic 3D coherent transfer function (CTF) of a high-NA digital holographic microscope. By combining scattering theory and signal processing, the method is demonstrated to yield the reconstruction of a scattering object field. Experimental reconstructions in phase and amplitude are presented under non-design imaging conditions. The suggested technique is best suited for an implementation in high-resolution diffraction tomography based on sample or illumination rotation. PMID:21833359
Realistic 3D coherent transfer function inverse filtering of complex fields.
Cotte, Yann; Toy, Fatih M; Arfire, Cristian; Kou, Shan Shan; Boss, Daniel; Bergoënd, Isabelle; Depeursinge, Christian
2011-08-01
We present a novel technique for three-dimensional (3D) image processing of complex fields. It consists in inverting the coherent image formation by filtering the complex spectrum with a realistic 3D coherent transfer function (CTF) of a high-NA digital holographic microscope. By combining scattering theory and signal processing, the method is demonstrated to yield the reconstruction of a scattering object field. Experimental reconstructions in phase and amplitude are presented under non-design imaging conditions. The suggested technique is best suited for an implementation in high-resolution diffraction tomography based on sample or illumination rotation.
Improving Nearest Neighbour Search in 3d Spatial Access Method
NASA Astrophysics Data System (ADS)
Suhaibaha, A.; Rahman, A. A.; Uznir, U.; Anton, F.; Mioc, D.
2016-10-01
Nearest Neighbour (NN) is one of the important queries and analyses for spatial application. In normal practice, spatial access method structure is used during the Nearest Neighbour query execution to retrieve information from the database. However, most of the spatial access method structures are still facing with unresolved issues such as overlapping among nodes and repetitive data entry. This situation will perform an excessive Input/Output (IO) operation which is inefficient for data retrieval. The situation will become more crucial while dealing with 3D data. The size of 3D data is usually large due to its detail geometry and other attached information. In this research, a clustered 3D hierarchical structure is introduced as a 3D spatial access method structure. The structure is expected to improve the retrieval of Nearest Neighbour information for 3D objects. Several tests are performed in answering Single Nearest Neighbour search and k Nearest Neighbour (kNN) search. The tests indicate that clustered hierarchical structure is efficient in handling Nearest Neighbour query compared to its competitor. From the results, clustered hierarchical structure reduced the repetitive data entry and the accessed page. The proposed structure also produced minimal Input/Output operation. The query response time is also outperformed compared to the other competitor. For future outlook of this research several possible applications are discussed and summarized.
FGG-NUFFT-Based Method for Near-Field 3-D Imaging Using Millimeter Waves
Kan, Yingzhi; Zhu, Yongfeng; Tang, Liang; Fu, Qiang; Pei, Hucheng
2016-01-01
In this paper, to deal with the concealed target detection problem, an accurate and efficient algorithm for near-field millimeter wave three-dimensional (3-D) imaging is proposed that uses a two-dimensional (2-D) plane antenna array. First, a two-dimensional fast Fourier transform (FFT) is performed on the scattered data along the antenna array plane. Then, a phase shift is performed to compensate for the spherical wave effect. Finally, fast Gaussian gridding based nonuniform FFT (FGG-NUFFT) combined with 2-D inverse FFT (IFFT) is performed on the nonuniform 3-D spatial spectrum in the frequency wavenumber domain to achieve 3-D imaging. The conventional method for near-field 3-D imaging uses Stolt interpolation to obtain uniform spatial spectrum samples and performs 3-D IFFT to reconstruct a 3-D image. Compared with the conventional method, our FGG-NUFFT based method is comparable in both efficiency and accuracy in the full sampled case and can obtain more accurate images with less clutter and fewer noisy artifacts in the down-sampled case, which are good properties for practical applications. Both simulation and experimental results demonstrate that the FGG-NUFFT-based near-field 3-D imaging algorithm can have better imaging performance than the conventional method for down-sampled measurements. PMID:27657066
FGG-NUFFT-Based Method for Near-Field 3-D Imaging Using Millimeter Waves.
Kan, Yingzhi; Zhu, Yongfeng; Tang, Liang; Fu, Qiang; Pei, Hucheng
2016-09-19
In this paper, to deal with the concealed target detection problem, an accurate and efficient algorithm for near-field millimeter wave three-dimensional (3-D) imaging is proposed that uses a two-dimensional (2-D) plane antenna array. First, a two-dimensional fast Fourier transform (FFT) is performed on the scattered data along the antenna array plane. Then, a phase shift is performed to compensate for the spherical wave effect. Finally, fast Gaussian gridding based nonuniform FFT (FGG-NUFFT) combined with 2-D inverse FFT (IFFT) is performed on the nonuniform 3-D spatial spectrum in the frequency wavenumber domain to achieve 3-D imaging. The conventional method for near-field 3-D imaging uses Stolt interpolation to obtain uniform spatial spectrum samples and performs 3-D IFFT to reconstruct a 3-D image. Compared with the conventional method, our FGG-NUFFT based method is comparable in both efficiency and accuracy in the full sampled case and can obtain more accurate images with less clutter and fewer noisy artifacts in the down-sampled case, which are good properties for practical applications. Both simulation and experimental results demonstrate that the FGG-NUFFT-based near-field 3-D imaging algorithm can have better imaging performance than the conventional method for down-sampled measurements.
Levander, Alan Richard; Zelt, Colin A.
2015-03-17
The work plan for this project was to develop and apply advanced seismic reflection and wide-angle processing and inversion techniques to high resolution seismic data for the shallow subsurface to seismically characterize the shallow subsurface at hazardous waste sites as an aid to containment and cleanup activities. We proposed to continue work on seismic data that we had already acquired under a previous DoE grant, as well as to acquire additional new datasets for analysis. The project successfully developed and/or implemented the use of 3D reflection seismology algorithms, waveform tomography and finite-frequency tomography using compressional and shear waves for high resolution characterization of the shallow subsurface at two waste sites. These two sites have markedly different near-surface structures, groundwater flow patterns, and hazardous waste problems. This is documented in the list of refereed documents, conference proceedings, and Rice graduate theses, listed below.
Weng Cho Chew
2004-10-27
The project aim was the improvement, evaluation, and application of one dimensional (1D) inversion and development and application of three dimensional (3D) inversion to processing of data collected at waste pits at the Idaho National Engineering and Environmental Laboratory. The inversion methods were intended mainly for the Very Early Time Electromagnetic (VETEM) system which was designed to improve the state-of-the-art of electromagnetic imaging of the shallow (0 to about 5m) subsurface through electrically conductive soils.
A new model of the Arctic crustal thickness from 3D gravity inversion
NASA Astrophysics Data System (ADS)
Lebedeva-Ivanova, N. N.; Gaina, C.; Minakov, A.; Kashubin, S.
2015-12-01
The remarkable increase of new data collections and compilations for the Arctic region during the last decade motivate for a re-evaluation of our knowledge about the crustal structure and the tectonic evolution of the Arctic basins. 3D forward and inverse gravity modelling methods in the spectral domain (Minakov et al. 2012); lithosphere thermal gravity anomaly correction (Alvey et al., 2008); a vertical density variation for the sedimentary layer and lateral crustal variation density are integrated in the algorithm for derive the crustal thickness of the High Arctic region. Recently updated grids of bathymetry (Jakobsson et al., 2012), gravity anomaly (Gaina et al, 2011) and dynamic topography (Spasojevic & Gurnis, 2012) were used as input data for the algorithm. TeMAr sedimentary thickness grid (Petrov et al., 2015) was modified according to the most recent published seismic data, and was re-gridded and utilized as input data. Other input parameters for the algorithm were calibrated using seismic crustal scale profiles. Derived crustal thickness and Moho depth grids cover the area northward from 66° N and fit within a few kilometres with seismic crustal models for the most parts of the High Arctic region. Greater misfit in Moho depth between our results and seismic study (Chain & Lebedeva-Ivanova, 2015) under the northern Canada Basin suggest exceptional property of crust or/and mantel in this part of the Basin. Assumed mantle density of 3.25 kg/cm3provide the best fit for the region; it may indicate pervasive subcontinental lithospheric mantle (Goldstein et al., 2008) under the whole Arctic region. New results show a possible crustal connection between the Alpha and the Lomonosov ridges near the Canadian margin. The deepest Moho depth of c.34 km for Alpha-Mendeleev Ridge System is observed under the southern Mendeleev Ridge. The derived crustal thickness and Moho depth show a substantial improvement from the publicly available grids (CRUST1 (Laske et al., 2013
A method to fabricate disconnected silver nanostructures in 3D.
Vora, Kevin; Kang, SeungYeon; Mazur, Eric
2012-11-27
The standard nanofabrication toolkit includes techniques primarily aimed at creating 2D patterns in dielectric media. Creating metal patterns on a submicron scale requires a combination of nanofabrication tools and several material processing steps. For example, steps to create planar metal structures using ultraviolet photolithography and electron-beam lithography can include sample exposure, sample development, metal deposition, and metal liftoff. To create 3D metal structures, the sequence is repeated multiple times. The complexity and difficulty of stacking and aligning multiple layers limits practical implementations of 3D metal structuring using standard nanofabrication tools. Femtosecond-laser direct-writing has emerged as a pre-eminent technique for 3D nanofabrication.(1,2) Femtosecond lasers are frequently used to create 3D patterns in polymers and glasses.(3-7) However, 3D metal direct-writing remains a challenge. Here, we describe a method to fabricate silver nanostructures embedded inside a polymer matrix using a femtosecond laser centered at 800 nm. The method enables the fabrication of patterns not feasible using other techniques, such as 3D arrays of disconnected silver voxels.(8) Disconnected 3D metal patterns are useful for metamaterials where unit cells are not in contact with each other,(9) such as coupled metal dot(10,11)or coupled metal rod(12,13) resonators. Potential applications include negative index metamaterials, invisibility cloaks, and perfect lenses. In femtosecond-laser direct-writing, the laser wavelength is chosen such that photons are not linearly absorbed in the target medium. When the laser pulse duration is compressed to the femtosecond time scale and the radiation is tightly focused inside the target, the extremely high intensity induces nonlinear absorption. Multiple photons are absorbed simultaneously to cause electronic transitions that lead to material modification within the focused region. Using this approach, one can
A Method to Fabricate Disconnected Silver Nanostructures in 3D
Vora, Kevin; Kang, SeungYeon; Mazur, Eric
2012-01-01
The standard nanofabrication toolkit includes techniques primarily aimed at creating 2D patterns in dielectric media. Creating metal patterns on a submicron scale requires a combination of nanofabrication tools and several material processing steps. For example, steps to create planar metal structures using ultraviolet photolithography and electron-beam lithography can include sample exposure, sample development, metal deposition, and metal liftoff. To create 3D metal structures, the sequence is repeated multiple times. The complexity and difficulty of stacking and aligning multiple layers limits practical implementations of 3D metal structuring using standard nanofabrication tools. Femtosecond-laser direct-writing has emerged as a pre-eminent technique for 3D nanofabrication.1,2 Femtosecond lasers are frequently used to create 3D patterns in polymers and glasses.3-7 However, 3D metal direct-writing remains a challenge. Here, we describe a method to fabricate silver nanostructures embedded inside a polymer matrix using a femtosecond laser centered at 800 nm. The method enables the fabrication of patterns not feasible using other techniques, such as 3D arrays of disconnected silver voxels.8 Disconnected 3D metal patterns are useful for metamaterials where unit cells are not in contact with each other,9 such as coupled metal dot10,11or coupled metal rod12,13 resonators. Potential applications include negative index metamaterials, invisibility cloaks, and perfect lenses. In femtosecond-laser direct-writing, the laser wavelength is chosen such that photons are not linearly absorbed in the target medium. When the laser pulse duration is compressed to the femtosecond time scale and the radiation is tightly focused inside the target, the extremely high intensity induces nonlinear absorption. Multiple photons are absorbed simultaneously to cause electronic transitions that lead to material modification within the focused region. Using this approach, one can form structures
Comparing 3D virtual methods for hemimandibular body reconstruction.
Benazzi, Stefano; Fiorenza, Luca; Kozakowski, Stephanie; Kullmer, Ottmar
2011-07-01
Reconstruction of fractured, distorted, or missing parts in human skeleton presents an equal challenge in the fields of paleoanthropology, bioarcheology, forensics, and medicine. This is particularly important within the disciplines such as orthodontics and surgery, when dealing with mandibular defects due to tumors, developmental abnormalities, or trauma. In such cases, proper restorations of both form (for esthetic purposes) and function (restoration of articulation, occlusion, and mastication) are required. Several digital approaches based on three-dimensional (3D) digital modeling, computer-aided design (CAD)/computer-aided manufacturing techniques, and more recently geometric morphometric methods have been used to solve this problem. Nevertheless, comparisons among their outcomes are rarely provided. In this contribution, three methods for hemimandibular body reconstruction have been tested. Two bone defects were virtually simulated in a 3D digital model of a human hemimandible. Accordingly, 3D digital scaffolds were obtained using the mirror copy of the unaffected hemimandible (Method 1), the thin plate spline (TPS) interpolation (Method 2), and the combination between TPS and CAD techniques (Method 3). The mirror copy of the unaffected hemimandible does not provide a suitable solution for bone restoration. The combination between TPS interpolation and CAD techniques (Method 3) produces an almost perfect-fitting 3D digital model that can be used for biocompatible custom-made scaffolds generated by rapid prototyping technologies.
NASA Astrophysics Data System (ADS)
Yang, Pengliang; Brossier, Romain; Métivier, Ludovic; Virieux, Jean
2016-10-01
In this paper, we study 3-D multiparameter full waveform inversion (FWI) in viscoelastic media based on the generalized Maxwell/Zener body including arbitrary number of attenuation mechanisms. We present a frequency-domain energy analysis to establish the stability condition of a full anisotropic viscoelastic system, according to zero-valued boundary condition and the elastic-viscoelastic correspondence principle: the real-valued stiffness matrix becomes a complex-valued one in Fourier domain when seismic attenuation is taken into account. We develop a least-squares optimization approach to linearly relate the quality factor with the anelastic coefficients by estimating a set of constants which are independent of the spatial coordinates, which supplies an explicit incorporation of the parameter Q in the general viscoelastic wave equation. By introducing the Lagrangian multipliers into the matrix expression of the wave equation with implicit time integration, we build a systematic formulation of multiparameter FWI for full anisotropic viscoelastic wave equation, while the equivalent form of the state and adjoint equation with explicit time integration is available to be resolved efficiently. In particular, this formulation lays the foundation for the inversion of the parameter Q in the time domain with full anisotropic viscoelastic properties. In the 3-D isotropic viscoelastic settings, the anelastic coefficients and the quality factors using bulk and shear moduli parametrization can be related to the counterparts using P and S velocity. Gradients with respect to any other parameter of interest can be found by chain rule. Pioneering numerical validations as well as the real applications of this most generic framework will be carried out to disclose the potential of viscoelastic FWI when adequate high-performance computing resources and the field data are available.
Inverse modeling of InSAR and ground leveling data for 3D volumetric strain distribution
NASA Astrophysics Data System (ADS)
Gallardo, L. A.; Glowacka, E.; Sarychikhina, O.
2015-12-01
Wide availability of modern Interferometric Synthetic aperture Radar (InSAR) data have made possible the extensive observation of differential surface displacements and are becoming an efficient tool for the detailed monitoring of terrain subsidence associated to reservoir dynamics, volcanic deformation and active tectonism. Unfortunately, this increasing popularity has not been matched by the availability of automated codes to estimate underground deformation, since many of them still rely on trial-error subsurface model building strategies. We posit that an efficient algorithm for the volumetric modeling of differential surface displacements should match the availability of current leveling and InSAR data and have developed an algorithm for the joint inversion of ground leveling and dInSAR data in 3D. We assume the ground displacements are originated by a stress free-volume strain distribution in a homogeneous elastic media and determined the displacement field associated to an ensemble of rectangular prisms. This formulation is then used to develop a 3D conjugate gradient inversion code that searches for the three-dimensional distribution of the volumetric strains that predict InSAR and leveling surface displacements simultaneously. The algorithm is regularized applying discontinuos first and zero order Thikonov constraints. For efficiency, the resulting computational code takes advantage of the resulting convolution integral associated to the deformation field and some basic tools for multithreading parallelization. We extensively test our algorithm on leveling and InSAR test and field data of the Northwest of Mexico and compare to some feasible geological scenarios of underground deformation.
Episcopic 3D Imaging Methods: Tools for Researching Gene Function
Weninger, Wolfgang J; Geyer, Stefan H
2008-01-01
This work aims at describing episcopic 3D imaging methods and at discussing how these methods can contribute to researching the genetic mechanisms driving embryogenesis and tissue remodelling, and the genesis of pathologies. Several episcopic 3D imaging methods exist. The most advanced are capable of generating high-resolution volume data (voxel sizes from 0.5x0.5x1 µm upwards) of small to large embryos of model organisms and tissue samples. Beside anatomy and tissue architecture, gene expression and gene product patterns can be three dimensionally analyzed in their precise anatomical and histological context with the aid of whole mount in situ hybridization or whole mount immunohistochemical staining techniques. Episcopic 3D imaging techniques were and are employed for analyzing the precise morphological phenotype of experimentally malformed, randomly produced, or genetically engineered embryos of biomedical model organisms. It has been shown that episcopic 3D imaging also fits for describing the spatial distribution of genes and gene products during embryogenesis, and that it can be used for analyzing tissue samples of adult model animals and humans. The latter offers the possibility to use episcopic 3D imaging techniques for researching the causality and treatment of pathologies or for staging cancer. Such applications, however, are not yet routine and currently only preliminary results are available. We conclude that, although episcopic 3D imaging is in its very beginnings, it represents an upcoming methodology, which in short terms will become an indispensable tool for researching the genetic regulation of embryo development as well as the genesis of malformations and diseases. PMID:19452045
Inverse cascades sustained by the transfer rate of angular momentum in a 3D turbulent flow
NASA Astrophysics Data System (ADS)
Burguete, Javier; Lopez-Caballero, Miguel
2013-11-01
The existence of energy cascades as signatures of conserved magnitudes is one of the universal characteristics of turbulent flows. In this work we present the evidence of an inverse cascade in a fully developed 3D experimental turbulent flow where the conserved magnitude is the angular momentum. We analyze the behavior of a fluid in a closed cavity where two inhomogeneous and strongly turbulent flows collide in a thin region. The experimental volume is a closed cylinder (diameter of 20 cm) where two impellers rotate in opposite directions. A key characteristic of this setup the high stability of the propellers (the instantaneous fluctuations are below 0 . 1 %). We have performed PIV and LDA measurements of the velocity fields. Typical characteristics of the turbulent flow in this setup are: turbulence intensity 50 % , the Reλ = 900 , the Taylor microscale λT = 1 . 8 mm and the integral scale LI = 15 mm. The analysis of the data series reveal that below the injection scales an inverse cascade can be identified (-1/3 in time, -7/3 in space) that can be explained as the transfer of angular momentum between the diferent fluid layers. A. de la Torre, J. Burguete, Phys Rev Lett 99 (2007) 054101. M. Lopez-Caballero, J. Burguete, Phys Rev Lett 110 (2013) 124501.
KOALA: 3-D shape of asteroids from multi-data inversion
NASA Astrophysics Data System (ADS)
Carry, B.; Kaasalainen, M.; Merline, W. J.; Drummond, J. D.; Durech, J.; Berthier, J.; Conrad, A.
2011-10-01
We describe our on-going observing program to determine the physical properties of asteroids from groundbased facilities. We combine disk-resolved images from adaptive optics, optical lightcurves, and stellar occultations to put tighter constraints on the spin, 3-D shape, and size of asteroids. We will discuss the relevance of the determination of physical properties to help understand the asteroid population (e.g., density, composition, and non-gravitational forces). We will then briefly describe our multi-data inversion algorithm KOALA (Carry et al. 2010a, Kaasalainen 2011, see also Kaasalainen et al., same meeting), which allows the determination of certain physical properties of an asteroid from the combination of different techniques of observation. A comparison of results obtained with KOALA on asteroid (21) Lutetia, prior to the ESA Rosetta flyby, with the high spatial resolution images returned from that flyby, will then be presented, showing the high accuracy of KOALA inversion. Finally, we will describe our current development of the algorithm, and focus on examples of other asteroids currently being studied with KOALA.
A new visualization method for 3D head MRA data
NASA Astrophysics Data System (ADS)
Ohashi, Satoshi; Hatanaka, Masahiko
2008-03-01
In this paper, we propose a new visualization method for head MRA data which supports the user to easily determine the positioning of MPR images and/or MIP images based on the blood vessel network structure (the anatomic location of blood vessels). This visualization method has following features: (a) the blood vessel (cerebral artery) network structure in 3D head MRA data is portrayed the 3D line structure; (b) the MPR or MIP images are combined with the blood vessel network structure and displayed in a 3D visualization space; (c) the positioning of MPR or MIP is decided based on the anatomic location of blood vessels; (d) The image processing and drawing can be operated at real-time without a special hardware accelerator. As a result, we believe that our method is available to position MPR images or MIP images related to the blood vessel network structure. Moreover, we think that the user using this method can obtain the 3D information (position, angle, direction) of both these images and the blood vessel network structure.
NASA Astrophysics Data System (ADS)
Santhanam, Anand P.; Min, Yugang; Mudur, Sudhir P.; Rastogi, Abhinav; Ruddy, Bari H.; Shah, Amish; Divo, Eduardo; Kassab, Alain; Rolland, Jannick P.; Kupelian, Patrick
2010-07-01
A method to estimate the deformation operator for the 3D volumetric lung dynamics of human subjects is described in this paper. For known values of air flow and volumetric displacement, the deformation operator and subsequently the elastic properties of the lung are estimated in terms of a Green's function. A Hyper-Spherical Harmonic (HSH) transformation is employed to compute the deformation operator. The hyper-spherical coordinate transformation method discussed in this paper facilitates accounting for the heterogeneity of the deformation operator using a finite number of frequency coefficients. Spirometry measurements are used to provide values for the airflow inside the lung. Using a 3D optical flow-based method, the 3D volumetric displacement of the left and right lungs, which represents the local anatomy and deformation of a human subject, was estimated from 4D-CT dataset. Results from an implementation of the method show the estimation of the deformation operator for the left and right lungs of a human subject with non-small cell lung cancer. Validation of the proposed method shows that we can estimate the Young's modulus of each voxel within a 2% error level.
NASA Astrophysics Data System (ADS)
Kuvshinov, Alexey; Semenov, Alexey
2012-06-01
We present a novel frequency-domain inverse solution to recover the 3-D electrical conductivity distribution in the mantle. The solution is based on analysis of local C-responses. It exploits an iterative gradient-type method - limited-memory quasi-Newton method - for minimizing the penalty function consisting of data misfit and regularization terms. The integral equation code is used as a forward engine to calculate responses and data misfit gradients during inversion. An adjoint approach is implemented to compute misfit gradients efficiently. Further improvements in computational load come from parallelizing the scheme with respect to frequencies, and from setting the most time-consuming part of the forward calculations - calculation of Green's tensors - apart from the inversion loop. Convergence, performance, and accuracy of our 3-D inverse solution are demonstrated with a synthetic numerical example. A companion paper applies the strategy set forth here to real data.
Importance of a 3D forward modeling tool for surface wave analysis methods
NASA Astrophysics Data System (ADS)
Pageot, Damien; Le Feuvre, Mathieu; Donatienne, Leparoux; Philippe, Côte; Yann, Capdeville
2016-04-01
Since a few years, seismic surface waves analysis methods (SWM) have been widely developed and tested in the context of subsurface characterization and have demonstrated their effectiveness for sounding and monitoring purposes, e.g., high-resolution tomography of the principal geological units of California or real time monitoring of the Piton de la Fournaise volcano. Historically, these methods are mostly developed under the assumption of semi-infinite 1D layered medium without topography. The forward modeling is generally based on Thomson-Haskell matrix based modeling algorithm and the inversion is driven by Monte-Carlo sampling. Given their efficiency, SWM have been transfered to several scale of which civil engineering structures in order to, e.g., determine the so-called V s30 parameter or assess other critical constructional parameters in pavement engineering. However, at this scale, many structures may often exhibit 3D surface variations which drastically limit the efficiency of SWM application. Indeed, even in the case of an homogeneous structure, 3D geometry can bias the dispersion diagram of Rayleigh waves up to obtain discontinuous phase velocity curves which drastically impact the 1D mean velocity model obtained from dispersion inversion. Taking advantages of high-performance computing center accessibility and wave propagation modeling algorithm development, it is now possible to consider the use of a 3D elastic forward modeling algorithm instead of Thomson-Haskell method in the SWM inversion process. We use a parallelized 3D elastic modeling code based on the spectral element method which allows to obtain accurate synthetic data with very low numerical dispersion and a reasonable numerical cost. In this study, we choose dike embankments as an illustrative example. We first show that their longitudinal geometry may have a significant effect on dispersion diagrams of Rayleigh waves. Then, we demonstrate the necessity of 3D elastic modeling as a forward
NASA Astrophysics Data System (ADS)
Spicer, B.; Morris, B.; Ugalde, H.
2011-09-01
Hosted within the Pacquet Harbour Group (PHG) on the Baie Verte Peninsula of north-central Newfoundland, the Rambler rhyolite is a 487 Ma unit of felsic tuffs, flows and subvolcanic intrusive rocks. The PHG has been affected by multiple phases of deformation with the youngest D4 deformation event producing broad northeast plunging upright cross folds in the Rambler rhyolite. Fold culminations on the upper bounding surface of the rhyolite host Cu +/- Au volcanogenic massive sulfide deposits (e.g. Rambler and Ming mines). Geophysical inversions of recently acquired high resolution gravity and magnetic data have been implemented to determine the extent of the fold axis (dome) at depth. To direct the outcome of the inversion process towards a more geologically reasonable solution this study outlines a procedure which permits the inclusion of known geological and geophysical constraints into the input (reference) model for inversion using the MAG3D and GRAV3D algorithms provided by the University of British Columbia Geophysical Inversion Facility. Reference model constraints included surficial geological contacts as defined by aeromagnetic data, and subsurface distribution of physical property variations from a series of drill-hole logs. The output (computed) model images the surface of the rhyolite dome as dipping roughly 40° to the northeast as a series of voxels with density values ranging from 2.71 to 2.75 g/cm3. While previously published ore deposit models parallel this structure in the near surface, results from these inversions suggest deeper exploration may be favorable. Magnetic inversion modeling has not provided any insight into dome morphology however it outlines the distribution of gabbroic dykes surrounding the dome.
Novel 3D Compression Methods for Geometry, Connectivity and Texture
NASA Astrophysics Data System (ADS)
Siddeq, M. M.; Rodrigues, M. A.
2016-06-01
A large number of applications in medical visualization, games, engineering design, entertainment, heritage, e-commerce and so on require the transmission of 3D models over the Internet or over local networks. 3D data compression is an important requirement for fast data storage, access and transmission within bandwidth limitations. The Wavefront OBJ (object) file format is commonly used to share models due to its clear simple design. Normally each OBJ file contains a large amount of data (e.g. vertices and triangulated faces, normals, texture coordinates and other parameters) describing the mesh surface. In this paper we introduce a new method to compress geometry, connectivity and texture coordinates by a novel Geometry Minimization Algorithm (GM-Algorithm) in connection with arithmetic coding. First, each vertex ( x, y, z) coordinates are encoded to a single value by the GM-Algorithm. Second, triangle faces are encoded by computing the differences between two adjacent vertex locations, which are compressed by arithmetic coding together with texture coordinates. We demonstrate the method on large data sets achieving compression ratios between 87 and 99 % without reduction in the number of reconstructed vertices and triangle faces. The decompression step is based on a Parallel Fast Matching Search Algorithm (Parallel-FMS) to recover the structure of the 3D mesh. A comparative analysis of compression ratios is provided with a number of commonly used 3D file formats such as VRML, OpenCTM and STL highlighting the performance and effectiveness of the proposed method.
Enhanced imaging of CO2 at the Ketzin storage site: Inversion of 3D time-lapse seismic data
NASA Astrophysics Data System (ADS)
Gil, M.; Götz, J.; Ivanova, A.; Juhlin, C.; Krawczyk, C. M.; Lüth, S.; Yang, C.
2012-04-01
The Ketzin test site, located near Berlin, is Europe's longest-operating on-shore CO2 storage site. As of December 2011, more than 56,000 tons of food grade CO2 has been injected since June 2008 in an anticlinal structure of the Northeast German Basin. The target reservoir consists of porous, brine bearing sandstone units of the Upper Triassic Stuttgart Formation at approximately 630 to 650 m depth. In order to enhance the understanding of the structural geometry of the site and to investigate the extension of the CO2-plume, several geophysical monitoring methods are being applied at Ketzin, among these are active seismic measurements, geoelectrics and borehole measurements. Among the various seismic techniques (e.g. 2D reflection surveys, crosshole tomography, Vertical Seismic Profiling, 2D- and 3D-Moving Source Profiling) employed at this pilot site, 3D time-lapse reflection surveys are an important component. The baseline 3D survey was acquired in 2005 and the first repeat measurements were performed in 2009 after injection of about 22,000 tons of CO2. The second repeat survey is planned to be carried out in fall 2012. These measurements allow the time-lapse signature of the injected CO2 to be imaged. The time-lapse amplitude variation attributed to the injected CO2 in the reservoir matches, considering detection limits of seismic surface measurements, the expected distribution of the CO2 plume derived from reservoir simulations. Previous attempts towards a quantitative interpretation were based on integrative considerations of different types of geophysical measurements using strict assumptions and characterized by large error bars. In order to increase the resolution and reliability of the data and to improve estimation of rock properties and especially to enhance the imaging resolution of the CO2-plume, the time-lapse 3D seismic data have now been inverted for seismic impedances with different methods, which is the focus of this presentation. One difficulty
NASA Astrophysics Data System (ADS)
Jesús Moral García, Francisco; Rebollo Castillo, Francisco Javier; Monteiro Santos, Fernando
2016-04-01
Maps of apparent electrical conductivity of the soil are commonly used in precision agriculture to indirectly characterize some important properties like salinity, water, and clay content. Traditionally, these studies are made through an empirical relationship between apparent electrical conductivity and properties measured in soil samples collected at a few locations in the experimental area and at a few selected depths. Recently, some authors have used not the apparent conductivity values but the soil bulk conductivity (in 2D or 3D) calculated from measured apparent electrical conductivity through the application of an inversion method. All the published works used data collected with electromagnetic (EM) instruments. We present a new software to invert the apparent electrical conductivity data collected with VERIS 3100 and 3150 (or the more recent version with three pairs of electrodes) using the 1D spatially constrained inversion method (1D SCI). The software allows the calculation of the distribution of the bulk electrical conductivity in the survey area till a depth of 1 m. The algorithm is applied to experimental data and correlations with clay and water content have been established using soil samples collected at some boreholes. Keywords: Digital soil mapping; inversion modelling; VERIS; soil apparent electrical conductivity.
Effective classification of 3D image data using partitioning methods
NASA Astrophysics Data System (ADS)
Megalooikonomou, Vasileios; Pokrajac, Dragoljub; Lazarevic, Aleksandar; Obradovic, Zoran
2002-03-01
We propose partitioning-based methods to facilitate the classification of 3-D binary image data sets of regions of interest (ROIs) with highly non-uniform distributions. The first method is based on recursive dynamic partitioning of a 3-D volume into a number of 3-D hyper-rectangles. For each hyper-rectangle, we consider, as a potential attribute, the number of voxels (volume elements) that belong to ROIs. A hyper-rectangle is partitioned only if the corresponding attribute does not have high discriminative power, determined by statistical tests, but it is still sufficiently large for further splitting. The final discriminative hyper-rectangles form new attributes that are further employed in neural network classification models. The second method is based on maximum likelihood employing non-spatial (k-means) and spatial DBSCAN clustering algorithms to estimate the parameters of the underlying distributions. The proposed methods were experimentally evaluated on mixtures of Gaussian distributions, on realistic lesion-deficit data generated by a simulator conforming to a clinical study, and on synthetic fractal data. Both proposed methods have provided good classification on Gaussian mixtures and on realistic data. However, the experimental results on fractal data indicated that the clustering-based methods were only slightly better than random guess, while the recursive partitioning provided significantly better classification accuracy.
NASA Astrophysics Data System (ADS)
Petrov, P.; Newman, G. A.
2011-12-01
Recent developments in high resolution imaging technology of subsurface objects involves a combination of different geophysical measurements (gravity, EM and seismic). A joint image of the subsurface geophysical attributes (velocity, electrical conductivity and density) requires the consistent treatment of the different geophysical data due to their differing physical nature. For example, in conducting media, which is typical of the Earth's interior, EM energy propagation is defined by a diffusive mechanism and may be characterized by two specific length scales: wavelength and skin depth. However, the propagation of seismic signals is a multiwave process and is characterized by a set of wavelengths. Thus, to consistently treat seismic and electromagnetic data an additional length scale is needed for seismic data that does not directly depend on a wavelength and describes a diffusive process, similar to EM wave propagation in the subsurface. Works by Brown et al.(2005), Shin and Cha(2008), and Shin and Ha(2008) suggest that an artificial damping of seismic wave fields via Laplace-Fourier transformation can be an effective approach to obtain a seismic data that have similar spatial resolution to EM data. The key benefit of such transformation is that diffusive wave-field inversion works well for both data sets: seismic (Brown et al.,2005; Shin and Cha,2008) and electromagnetic (Commer and Newman,2008; Newman et al.,2010). With the recent interest in the Laplace-Fourier domain full waveform inversion, 3D fourth and second-order finite-difference schemes for modeling of seismic wave propagation have been developed (Petrov and Newman, 2010). Incorporation of attenuation and anisotropy into a velocity model is a necessary step for a more realistic description of subsurface media. Here we consider the extension of our method which includes attenuation and VTI anisotropy. Our approach is based on the integro-interpolation technique for velocity-stress formulation. Seven
NASA Astrophysics Data System (ADS)
Fargier, Yannick; Dore, Ludovic; Antoine, Raphael; Palma Lopes, Sérgio; Fauchard, Cyrille
2016-04-01
The extraction of subsurface materials is a key element for the economy of a nation. However, natural degradation of underground quarries is a major issue from an economic and public safety point of view. Consequently, the quarries stakeholders require relevant tools to define hazards associated to these structures. Safety assessment methods of underground quarries are recent and mainly based on rock physical properties. This kind of method leads to a certain homogeneity assumption of pillar internal properties that can cause an underestimation of the risk. Electrical Resistivity Imaging (ERI) is a widely used method that possesses two advantages to overcome this limitation. The first is to provide a qualitative understanding for the detection and monitoring of anomalies in the pillar body (e.g. faults). The second is to provide a quantitative description of the electrical resistivity distribution inside the pillar. This quantitative description can be interpreted with constitutive laws to help decision support (water content decreases the mechanical resistance of a chalk). However, conventional 2D and 3D Imaging techniques are usually applied to flat surface surveys or to surfaces with moderate topography. A 3D inversion of more complex media (case of the pillar) requires a full consideration of the geometry that was never taken into account before. The Photogrammetric technique presents a cost effective solution to obtain an accurate description of the external geometry of a complex media. However, this method has never been fully coupled with a geophysical method to enhance/improve the inversion process. Consequently we developed a complete procedure showing that photogrammetric and ERI tools can be efficiently combined to assess a complex 3D structure. This procedure includes in a first part a photogrammetric survey, a processing stage with an open source software and a post-processing stage finalizing a 3D surface model. The second part necessitates the
A method for building 3D models of barchan dunes
NASA Astrophysics Data System (ADS)
Nai, Yang; Li-lan, Su; Lin, Wan; Jie, Yang; Shi-yi, Chen; Wei-lu, Hu
2016-01-01
The distributions of barchan dunes are usually represented by digital terrain models (DTMs) overlaid with digital orthophoto maps. Given that most regions with barchan dues have low relief, a 3D map obtained from a DTM may ineffectively show the stereoscopic shape of each dune. The method of building 3D models of barchan dunes using existing modeling software seldom considers the geographical environment. As a result, barchan dune models are often inconsistent with actual DTMs and incompletely express the morphological characteristics of dunes. Manual construction of barchan dune models is also costly and time consuming. Considering these problems, the morphological characteristics of barchan dunes and the mathematical relationships between the morphological parameters of the dunes, such as length, height, and width, are analyzed in this study. The methods of extracting the morphological feature points of barchan dunes, calculating their morphological parameters and building dune outlines and skeleton lines based on the medial axes, are also presented. The dune outlines, skeleton lines, and part of the medial axes of dunes are used to construct a constrained triangulated irregular network. C# and ArcEngine are employed to build 3D models of barchan dunes automatically. Experimental results of a study conducted in Tengger Desert show that the method can be used to approximate the morphological characteristics of barchan dunes and is less time consuming than manual methods.
Application of 3D reflection seismic methods to mineral exploration
NASA Astrophysics Data System (ADS)
Urosevic, Milovan
2013-04-01
Seismic exploration for mineral deposits is often tested by excessively complex structures, regolith heterogeneity, intrinsically low signal to noise ratio, ground relief and accessibility. In brown fields, where the majority of the seismic surveys have been conducted, existing infrastructure, old pits and tailings, heavy machinery in operation, mine drainage and other mine related activities are further challenging the application of seismic methods and furthermore increasing its cost. It is therefore not surprising that the mining industry has been reluctant to use seismic methods, particularly 3D for mineral exploration, primarily due to the high cost, but also because of variable performance, and in some cases ambiguous interpretation results. However, shallow mineral reserves are becoming depleted and exploration is moving towards deeper targets. Seismic methods will be more important for deeper investigations and may become the primary exploration tool in the near future. The big issue is if we have an appropriate seismic "strategy" for exploration of deep, complex mineral reserves. From the existing case histories worldwide we know that massive ore deposits (VMS, VHMS) constitute the best case scenario for the application of 3D seismic. Direct targeting of massive ore bodies from seismic has been documented in several case histories. Sediment hosted deposits could, in some cases, can also produce a detectable seismic signature. Other deposit types such as IOCG and skarn are much more challenging for the application of seismic methods. The complexity of these deposits requires new thinking. Several 3D surveys acquired over different deposit types will be presented and discussed.
Breast tumour visualization using 3D quantitative ultrasound methods
NASA Astrophysics Data System (ADS)
Gangeh, Mehrdad J.; Raheem, Abdul; Tadayyon, Hadi; Liu, Simon; Hadizad, Farnoosh; Czarnota, Gregory J.
2016-04-01
Breast cancer is one of the most common cancer types accounting for 29% of all cancer cases. Early detection and treatment has a crucial impact on improving the survival of affected patients. Ultrasound (US) is non-ionizing, portable, inexpensive, and real-time imaging modality for screening and quantifying breast cancer. Due to these attractive attributes, the last decade has witnessed many studies on using quantitative ultrasound (QUS) methods in tissue characterization. However, these studies have mainly been limited to 2-D QUS methods using hand-held US (HHUS) scanners. With the availability of automated breast ultrasound (ABUS) technology, this study is the first to develop 3-D QUS methods for the ABUS visualization of breast tumours. Using an ABUS system, unlike the manual 2-D HHUS device, the whole patient's breast was scanned in an automated manner. The acquired frames were subsequently examined and a region of interest (ROI) was selected in each frame where tumour was identified. Standard 2-D QUS methods were used to compute spectral and backscatter coefficient (BSC) parametric maps on the selected ROIs. Next, the computed 2-D parameters were mapped to a Cartesian 3-D space, interpolated, and rendered to provide a transparent color-coded visualization of the entire breast tumour. Such 3-D visualization can potentially be used for further analysis of the breast tumours in terms of their size and extension. Moreover, the 3-D volumetric scans can be used for tissue characterization and the categorization of breast tumours as benign or malignant by quantifying the computed parametric maps over the whole tumour volume.
Optical Sensors and Methods for Underwater 3D Reconstruction
Massot-Campos, Miquel; Oliver-Codina, Gabriel
2015-01-01
This paper presents a survey on optical sensors and methods for 3D reconstruction in underwater environments. The techniques to obtain range data have been listed and explained, together with the different sensor hardware that makes them possible. The literature has been reviewed, and a classification has been proposed for the existing solutions. New developments, commercial solutions and previous reviews in this topic have also been gathered and considered. PMID:26694389
Discrete Method of Images for 3D Radio Propagation Modeling
NASA Astrophysics Data System (ADS)
Novak, Roman
2016-09-01
Discretization by rasterization is introduced into the method of images (MI) in the context of 3D deterministic radio propagation modeling as a way to exploit spatial coherence of electromagnetic propagation for fine-grained parallelism. Traditional algebraic treatment of bounding regions and surfaces is replaced by computer graphics rendering of 3D reflections and double refractions while building the image tree. The visibility of reception points and surfaces is also resolved by shader programs. The proposed rasterization is shown to be of comparable run time to that of the fundamentally parallel shooting and bouncing rays. The rasterization does not affect the signal evaluation backtracking step, thus preserving its advantage over the brute force ray-tracing methods in terms of accuracy. Moreover, the rendering resolution may be scaled back for a given level of scenario detail with only marginal impact on the image tree size. This allows selection of scene optimized execution parameters for faster execution, giving the method a competitive edge. The proposed variant of MI can be run on any GPU that supports real-time 3D graphics.
Method for modeling post-mortem biometric 3D fingerprints
NASA Astrophysics Data System (ADS)
Rajeev, Srijith; Shreyas, Kamath K. M.; Agaian, Sos S.
2016-05-01
Despite the advancements of fingerprint recognition in 2-D and 3-D domain, authenticating deformed/post-mortem fingerprints continue to be an important challenge. Prior cleansing and reconditioning of the deceased finger is required before acquisition of the fingerprint. The victim's finger needs to be precisely and carefully operated by a medium to record the fingerprint impression. This process may damage the structure of the finger, which subsequently leads to higher false rejection rates. This paper proposes a non-invasive method to perform 3-D deformed/post-mortem finger modeling, which produces a 2-D rolled equivalent fingerprint for automated verification. The presented novel modeling method involves masking, filtering, and unrolling. Computer simulations were conducted on finger models with different depth variations obtained from Flashscan3D LLC. Results illustrate that the modeling scheme provides a viable 2-D fingerprint of deformed models for automated verification. The quality and adaptability of the obtained unrolled 2-D fingerprints were analyzed using NIST fingerprint software. Eventually, the presented method could be extended to other biometric traits such as palm, foot, tongue etc. for security and administrative applications.
NASA Astrophysics Data System (ADS)
Preston, Leiph Alexander
We develop and apply a non-linear inversion of direct and wide-angle reflection travel times for 3-D P-wave velocity structure, earthquake hypocenters, and reflector geometry under NW Washington focusing on the structure of the subducting Juan de Fuca plate. The first-arrival travel times are derived from both active-source experiments and from local earthquakes. The reflection arrivals were picked from data collected during the 1998 Wet SHIPS active-source experiment, which consisted of air-gun sources within the inland water-ways of NW Washington and SW British Columbia to land-based stations. Our inversion procedure reduces the well-known trade-off between reflector position and the velocities above it by the combination of simultaneous inversion and adequate crossing paths. We interpret the wide-angle reflector as the Moho of the subducting Juan de Fuca slab. The relocated intraslab earthquakes separate into two groups: those located up-dip of the 45km reflector depth contour generally lie below the reflector in material whose velocity exceeds 7.7km/s, placing them within the subducting mantle, while those down-dip of this contour occur within material whose velocities are 6.8--7.5km/s, placing them within subducted oceanic crust. We interpret these groups of earthquakes as resulting from serpentine dehydration in the subducted mantle and the basalt to eclogite transformation in the subducted crust. We have performed velocity checkerboard, slab velocity resolution, and parameter sensitivity tests to estimate our ability to resolve the relationship among the reflector, intraslab hypocenters, and slab velocity structure. These tests indicate we have the necessary resolvability and can distinguish the relative locations among the velocities, reflector, and intraslab hypocenters within the subducting slab to +/-2km. The occurrence of events within the subducted mantle geometrically allows for larger magnitude earthquakes than could occur if they were confined to
Statistical Inverse Ray Tracing for Image-Based 3D Modeling.
Liu, Shubao; Cooper, David B
2014-10-01
This paper proposes a new formulation and solution to image-based 3D modeling (aka "multi-view stereo") based on generative statistical modeling and inference. The proposed new approach, named statistical inverse ray tracing, models and estimates the occlusion relationship accurately through optimizing a physically sound image generation model based on volumetric ray tracing. Together with geometric priors, they are put together into a Bayesian formulation known as Markov random field (MRF) model. This MRF model is different from typical MRFs used in image analysis in the sense that the ray clique, which models the ray-tracing process, consists of thousands of random variables instead of two to dozens. To handle the computational challenges associated with large clique size, an algorithm with linear computational complexity is developed by exploiting, using dynamic programming, the recursive chain structure of the ray clique. We further demonstrate the benefit of exact modeling and accurate estimation of the occlusion relationship by evaluating the proposed algorithm on several challenging data sets.
Parallel 3D Mortar Element Method for Adaptive Nonconforming Meshes
NASA Technical Reports Server (NTRS)
Feng, Huiyu; Mavriplis, Catherine; VanderWijngaart, Rob; Biswas, Rupak
2004-01-01
High order methods are frequently used in computational simulation for their high accuracy. An efficient way to avoid unnecessary computation in smooth regions of the solution is to use adaptive meshes which employ fine grids only in areas where they are needed. Nonconforming spectral elements allow the grid to be flexibly adjusted to satisfy the computational accuracy requirements. The method is suitable for computational simulations of unsteady problems with very disparate length scales or unsteady moving features, such as heat transfer, fluid dynamics or flame combustion. In this work, we select the Mark Element Method (MEM) to handle the non-conforming interfaces between elements. A new technique is introduced to efficiently implement MEM in 3-D nonconforming meshes. By introducing an "intermediate mortar", the proposed method decomposes the projection between 3-D elements and mortars into two steps. In each step, projection matrices derived in 2-D are used. The two-step method avoids explicitly forming/deriving large projection matrices for 3-D meshes, and also helps to simplify the implementation. This new technique can be used for both h- and p-type adaptation. This method is applied to an unsteady 3-D moving heat source problem. With our new MEM implementation, mesh adaptation is able to efficiently refine the grid near the heat source and coarsen the grid once the heat source passes. The savings in computational work resulting from the dynamic mesh adaptation is demonstrated by the reduction of the the number of elements used and CPU time spent. MEM and mesh adaptation, respectively, bring irregularity and dynamics to the computer memory access pattern. Hence, they provide a good way to gauge the performance of computer systems when running scientific applications whose memory access patterns are irregular and unpredictable. We select a 3-D moving heat source problem as the Unstructured Adaptive (UA) grid benchmark, a new component of the NAS Parallel
NASA Astrophysics Data System (ADS)
Afonso, J. C.; Fullea, J.; Yang, Y.; Griffin, W. L.; Jones, A. G.; Connolly, J.; Lebedev, S.; O'Reilly, S. Y.
2011-12-01
High-resolution imaging and characterization of the thermal and compositional structure of the lithospheric and sublithospheric upper mantle are the basis for understanding the formation and evolution of the lithosphere and the interaction between the crust-mantle and lithosphere-asthenosphere systems. Unfortunately, such imaging and characterization using available geophysical-geochemical methods still present unsolved and technically challenging problems. In this contribution we present a new full-3D multi-observable inversion method particularly designed for high-resolution (regional) thermal and compositional mapping of the lithosphere and sublithospheric upper mantle. Ambient noise tomography, multiple plane wave earthquake tomography, magnetotelluric, thermal, thermodynamic, and potential field modelling are all combined in a single thermodynamic-geophysical framework and appraised within a general probabilistic (Bayesian) formulation. This circumvents the problems of strong non-linearity involved in traditional inversions, provides highly refined seismic information, minimizes the problem of trade-off between temperature and composition in wave speeds, offers critical insights into incompatibilities between traditional stand-alone methods, and takes advantage of a priori local geochemical information. Both synthetic models and preliminary results in real-case examples will be used to discuss the benefits, robustness, and limitations of this method.
NASA Astrophysics Data System (ADS)
Sharkawi, K.-H.; Abdul-Rahman, A.
2013-09-01
to LoD4. The accuracy and structural complexity of the 3D objects increases with the LoD level where LoD0 is the simplest LoD (2.5D; Digital Terrain Model (DTM) + building or roof print) while LoD4 is the most complex LoD (architectural details with interior structures). Semantic information is one of the main components in CityGML and 3D City Models, and provides important information for any analyses. However, more often than not, the semantic information is not available for the 3D city model due to the unstandardized modelling process. One of the examples is where a building is normally generated as one object (without specific feature layers such as Roof, Ground floor, Level 1, Level 2, Block A, Block B, etc). This research attempts to develop a method to improve the semantic data updating process by segmenting the 3D building into simpler parts which will make it easier for the users to select and update the semantic information. The methodology is implemented for 3D buildings in LoD2 where the buildings are generated without architectural details but with distinct roof structures. This paper also introduces hybrid semantic-geometric 3D segmentation method that deals with hierarchical segmentation of a 3D building based on its semantic value and surface characteristics, fitted by one of the predefined primitives. For future work, the segmentation method will be implemented as part of the change detection module that can detect any changes on the 3D buildings, store and retrieve semantic information of the changed structure, automatically updates the 3D models and visualize the results in a userfriendly graphical user interface (GUI).
NASA Astrophysics Data System (ADS)
Spichak, V. V.
2011-01-01
Possibilities for three-dimensional (3D) magnetotelluric (MT) sounding of local objects contained in the Earth's crust are estimated in a case study of the magma chamber of the Vesuvius volcano. Stochastic inversion of the model MT data by the Markov Chain Monte Carlo (MCMC) method has shown that the most efficient approach is not simultaneous but successive estimation of the geometry and the depth of the anomaly and the assessment of the conductivity distribution within the anomalous region. A zone of equivalence is revealed between the a priori estimate of the depth of the anomalous zone and the a posteriori distribution of electric conductivity within it. Based on the present estimation and previous results, an algorithm for determination of the parameters of local crustal anomaly is proposed.
Method and simulation to study 3D crosstalk perception
NASA Astrophysics Data System (ADS)
Khaustova, Dar'ya; Blondé, Laurent; Huynh-Thu, Quan; Vienne, Cyril; Doyen, Didier
2012-03-01
To various degrees, all modern 3DTV displays suffer from crosstalk, which can lead to a decrease of both visual quality and visual comfort, and also affect perception of depth. In the absence of a perfect 3D display technology, crosstalk has to be taken into account when studying perception of 3D stereoscopic content. In order to improve 3D presentation systems and understand how to efficiently eliminate crosstalk, it is necessary to understand its impact on human perception. In this paper, we present a practical method to study the perception of crosstalk. The approach consists of four steps: (1) physical measurements of a 3DTV, (2) building of a crosstalk surface based on those measurements and representing specifically the behavior of that 3TV, (3) manipulation of the crosstalk function and application on reference images to produce test images degraded by crosstalk in various ways, and (4) psychophysical tests. Our approach allows both a realistic representation of the behavior of a 3DTV and the easy manipulation of its resulting crosstalk in order to conduct psycho-visual experiments. Our approach can be used in all studies requiring the understanding of how crosstalk affects perception of stereoscopic content and how it can be corrected efficiently.
System and method for 3D printing of aerogels
Worsley, Marcus A.; Duoss, Eric; Kuntz, Joshua; Spadaccini, Christopher; Zhu, Cheng
2016-03-08
A method of forming an aerogel. The method may involve providing a graphene oxide powder and mixing the graphene oxide powder with a solution to form an ink. A 3D printing technique may be used to write the ink into a catalytic solution that is contained in a fluid containment member to form a wet part. The wet part may then be cured in a sealed container for a predetermined period of time at a predetermined temperature. The cured wet part may then be dried to form a finished aerogel part.
Regional conductivity structure of Cascadia from 3D inversion of USArray magnetotelluric data
NASA Astrophysics Data System (ADS)
Egbert, G. D.; Patro, P. K.
2008-12-01
Magnetotelluric (MT) data are being acquired in a series of temporary arrays deployed across the continental US through EMScope, a part of the USArray component of EarthScope. Initial deployments in 2006 and 2007 acquired data at 110 sites covering the US Pacific Northwest. The MT sites, distributed with the same nominal spacing as the USArray seismic transportable array (~75 km), produced data in the period range 10- 20,000s of very good to excellent quality. The most striking and robust feature revealed by 3D inversion of this dataset is an extensive lower crustal conductor covering most of the study area southeast of a line running from the California border at the coast to the Blue Mountains of Northeastern Oregon. The conductance of this layer, which is about 15 km thick with a top at roughly 20 km depth, exceeds 3000 S beneath the he Northwest Basin and Range (BR) province of southeastern Oregon. The high conductivity in this region is inferred to result from fluids - including possibly partial melt at depth - associated with magmatic underplating and BR extension. The lower crust is much more resistive beneath the Coast Range, Willamette Valley and Puget Lowlands of Western Washington and Oregon, and beneath the Columbia Plateau. This area of resistive crust, which was derived from a large fragment of thickened oceanic lithosphere that was accreted to North America at approximately 48 Ma ("Siletzia"), is revealed by geological and geodetic studies to be strong, accommodating tectonic stresses through rigid block rotations. In contrast, the area to the southeast characterized by high conductivity in the lower crust is actively deforming, consistent with an important role for fluids in weakening of continental crust. The resistive Siletzia crust is broken by an elongated N-S zone of high conductivity beneath the Cascade volcanoes. High conductivities beneath the volcanoes also most likely reflect the presence of interconnected fluids, in this case released
3D reconstruction methods of coronal structures by radio observations
NASA Technical Reports Server (NTRS)
Aschwanden, Markus J.; Bastian, T. S.; White, Stephen M.
1992-01-01
The ability to carry out the three dimensional (3D) reconstruction of structures in the solar corona would represent a major advance in the study of the physical properties in active regions and in flares. Methods which allow a geometric reconstruction of quasistationary coronal structures (for example active region loops) or dynamic structures (for example flaring loops) are described: stereoscopy of multi-day imaging observations by the VLA (Very Large Array); tomography of optically thin emission (in radio or soft x-rays); multifrequency band imaging by the VLA; and tracing of magnetic field lines by propagating electron beams.
NASA Astrophysics Data System (ADS)
Ekinci, Yunus Levent; Ertekin, Can
2015-04-01
Concern about sedimentary basins is generally related to their genetic and economic significance. Analysis of sedimentary basins requires the acquisition of data through outcrop studies and subsurface investigations that encompass drilling and geophysics. These data are commonly analysed by computer-assisted techniques. One of these methods is based on analysing gravity anomalies to compute the depth of sedimentary basin-basement rock interface. Sedimentary basins produce negative gravity anomalies, because they have mostly lower densities than that of the surrounding basement rocks. Density variations in a sedimentary fill increase rapidly at shallower depths then gradually reach the density of surrounding basement rocks due to the geostatic pressure i.e. compaction. The decrease of the density contrast can be easily estimated by a quadratic function. Hence, if the densities are chosen properly and the regional background is removed correctly, the topographical relief of the sedimentary basin-basement rock interface might be estimated by the inversion of the gravity data using an exponential density-depth relation. Three dimensional forward modelling procedure can be carried out by introducing a Cartesian coordinate system, and placing vertical prisms just below observation points on the grid plane. Depth to the basement, namely depths to the bottom of the vertical prisms are adjusted in an iterative manner by minimizing the differences between measured and calculated residual gravity anomalies. In this study, we present a MATLAB-based inversion code for the interpretation of sedimentary basins by approximating the topographical relief of sedimentary basin-basement rock interfaces. For a given gridded residual gravity anomaly map, the procedure estimates the bottom depths of vertical prisms by considering some published formulas and assumptions. The utility of the developed inversion code was successfully tested on theoretically produced gridded gravity data set
Prinz, V Ya; Seleznev, Vladimir
2016-12-13
It is a well-known fact that bone scaffold topography on micro- and nanometer scale influences the cellular behavior. Nano-scale surface modification of scaffolds allows the modulation of biological activity for enhanced cell differentiation. To date, there has been only a limited success in printing scaffolds with micro- and nano-scale features exposed on the surface. To improve on the currently available imperfect technologies, in our paper we introduce new hybrid technologies based on a combination of 2D (nano imprint) and 3D printing methods. The first method is based on using light projection 3D printing and simultaneous 2D nanostructuring of each of the layers during the formation of the 3D structure. The second method is based on the sequential integration of preliminarily created 2D nanostructured films into a 3D printed structure. The capabilities of the developed hybrid technologies are demonstrated with the example of forming 3D bone scaffolds. The proposed technologies can be used to fabricate complex 3D micro- and nanostructured products for various fields.
The development of a 3D risk analysis method.
I, Yet-Pole; Cheng, Te-Lung
2008-05-01
Much attention has been paid to the quantitative risk analysis (QRA) research in recent years due to more and more severe disasters that have happened in the process industries. Owing to its calculation complexity, very few software, such as SAFETI, can really make the risk presentation meet the practice requirements. However, the traditional risk presentation method, like the individual risk contour in SAFETI, is mainly based on the consequence analysis results of dispersion modeling, which usually assumes that the vapor cloud disperses over a constant ground roughness on a flat terrain with no obstructions and concentration fluctuations, which is quite different from the real situations of a chemical process plant. All these models usually over-predict the hazardous regions in order to maintain their conservativeness, which also increases the uncertainty of the simulation results. On the other hand, a more rigorous model such as the computational fluid dynamics (CFD) model can resolve the previous limitations; however, it cannot resolve the complexity of risk calculations. In this research, a conceptual three-dimensional (3D) risk calculation method was proposed via the combination of results of a series of CFD simulations with some post-processing procedures to obtain the 3D individual risk iso-surfaces. It is believed that such technique will not only be limited to risk analysis at ground level, but also be extended into aerial, submarine, or space risk analyses in the near future.
A perceptual preprocess method for 3D-HEVC
NASA Astrophysics Data System (ADS)
Shi, Yawen; Wang, Yongfang; Wang, Yubing
2015-08-01
A perceptual preprocessing method for 3D-HEVC coding is proposed in the paper. Firstly we proposed a new JND model, which accounts for luminance contrast masking effect, spatial masking effect, and temporal masking effect, saliency characteristic as well as depth information. We utilize spectral residual approach to obtain the saliency map and built a visual saliency factor based on saliency map. In order to distinguish the sensitivity of objects in different depth. We segment each texture frame into foreground and background by a automatic threshold selection algorithm using corresponding depth information, and then built a depth weighting factor. A JND modulation factor is built with a linear combined with visual saliency factor and depth weighting factor to adjust the JND threshold. Then, we applied the proposed JND model to 3D-HEVC for residual filtering and distortion coefficient processing. The filtering process is that the residual value will be set to zero if the JND threshold is greater than residual value, or directly subtract the JND threshold from residual value if JND threshold is less than residual value. Experiment results demonstrate that the proposed method can achieve average bit rate reduction of 15.11%, compared to the original coding scheme with HTM12.1, while maintains the same subjective quality.
Burgess, Ian B; Aizenberg, Joanna; Lončar, Marko
2013-12-01
Structural hierarchy and complex 3D architecture are characteristics of biological photonic designs that are challenging to reproduce in synthetic materials. Top-down lithography allows for designer patterning of arbitrary shapes, but is largely restricted to planar 2D structures. Self-assembly techniques facilitate easy fabrication of 3D photonic crystals, but controllable defect-integration is difficult. In this paper we combine the advantages of top-down and bottom-up fabrication, developing two techniques to deposit 2D-lithographically-patterned planar layers on top of or in between inverse-opal 3D photonic crystals and creating hierarchical structures that resemble the architecture of the bright green wing scales of the butterfly, Parides sesostris. These fabrication procedures, combining advantages of both top-down and bottom-up fabrication, may prove useful in the development of omnidirectional coloration elements and 3D-2D photonic crystal devices.
NASA Astrophysics Data System (ADS)
Choi, S.; Kim, C.; Kim, H. R.; Park, C.; Park, H. Y.
2015-12-01
We performed the marine magnetic and the bathymetry survey in the Lau basin for finding the submarine hydrothermal deposits in October 2009. We acquired magnetic and bathymetry datasets by using Overhouser Proton Magnetometer SeaSPY(Marine Magnetics Co.) and Multi-Beam Echo Sounder EM120(Kongsberg Co.). We conducted the data processing to obtain detailed seabed topography, magnetic anomaly and reduction to the pole(RTP). The Lau basin is one of the youngest back-arc basins in the Southwest Pacific. This region was a lot of hydrothermal activities and hydrothermal deposits. In particular, Tofua Arc(TA) in the Lau basin consists of various and complex stratovolcanos(from Massoth et al., 2007).), We calculated the magnetic susceptibility distribution of the TA19-1 seamount(longitude:176°23.5'W, latitude: 22°42.5'W)area using the RTP data by 3-D magnetic inversion from Jung's previous study(2013). Based on 2D 'compact gravity inversion' by Last & Kubik(1983), we expend it to the 3D algorithm using iterative reweighted least squares method with some weight matrices. The used weight matrices are two types: 1) the minimum gradient support(MGS) that controls the spatial distribution of the solution from Porniaguine and Zhdanov(1999); 2) the depth weight that are used according to the shape of subsurface structures. From the modeling, we derived the appropriate scale factor for the use of depth weight and setting magnetic susceptibility. Furthermore, we have to enter a very small error value to control the computation of the singular point of the inversion model that was able to be easily calculated for modeling. In addition, we applied separately weighted value for the correct shape and depth of the magnetic source. We selected the best results model by change to converge of RMS. Compared between the final modeled result and RTP values in this study, they are generally similar to the each other. But the input values and the modeled values have slightly little difference
Advanced 3D inverse method for designing turbomachine blades
Dang, T.
1995-10-01
To meet the goal of 60% plant-cycle efficiency or better set in the ATS Program for baseload utility scale power generation, several critical technologies need to be developed. One such need is the improvement of component efficiencies. This work addresses the issue of improving the performance of turbo-machine components in gas turbines through the development of an advanced three-dimensional and viscous blade design system. This technology is needed to replace some elements in current design systems that are based on outdated technology.
The COMET method in 3-D hexagonal geometry
Connolly, K. J.; Rahnema, F.
2012-07-01
The hybrid stochastic-deterministic coarse mesh radiation transport (COMET) method developed at Georgia Tech now solves reactor core problems in 3-D hexagonal geometry. In this paper, the method is used to solve three preliminary test problems designed to challenge the method with steep flux gradients, high leakage, and strong asymmetry and heterogeneity in the core. The test problems are composed of blocks taken from a high temperature test reactor benchmark problem. As the method is still in development, these problems and their results are strictly preliminary. Results are compared to whole core Monte Carlo reference solutions in order to verify the method. Relative errors are on the order of 50 pcm in core eigenvalue, and mean relative error in pin fission density calculations is less than 1% in these difficult test cores. The method requires the one-time pre-computation of a response expansion coefficient library, which may be compiled in a comparable amount of time to a single whole core Monte Carlo calculation. After the library has been computed, COMET may solve any number of core configurations on the order of an hour, representing a significant gain in efficiency over other methods for whole core transport calculations. (authors)
Comparison of bootstrap resampling methods for 3-D PET imaging.
Lartizien, C; Aubin, J-B; Buvat, I
2010-07-01
Two groups of bootstrap methods have been proposed to estimate the statistical properties of positron emission tomography (PET) images by generating multiple statistically equivalent data sets from few data samples. The first group generates resampled data based on a parametric approach assuming that data from which resampling is performed follows a Poisson distribution while the second group consists of nonparametric approaches. These methods either require a unique original sample or a series of statistically equivalent data that can be list-mode files or sinograms. Previous reports regarding these bootstrap approaches suggest different results. This work compares the accuracy of three of these bootstrap methods for 3-D PET imaging based on simulated data. Two methods are based on a unique file, namely a list-mode based nonparametric (LMNP) method and a sinogram based parametric (SP) method. The third method is a sinogram-based nonparametric (SNP) method. Another original method (extended LMNP) was also investigated, which is an extension of the LMNP methods based on deriving a resampled list-mode file by drawings events from multiple original list-mode files. Our comparison is based on the analysis of the statistical moments estimated on the repeated and resampled data. This includes the probability density function and the moments of order 1 and 2. Results show that the two methods based on multiple original data (SNP and extended LMNP) are the only methods that correctly estimate the statistical parameters. Performances of the LMNP and SP methods are variable. Simulated data used in this study were characterized by a high noise level. Differences among the tested strategies might be reduced with clinical data sets with lower noise.
On 3D inelastic analysis methods for hot section components
NASA Technical Reports Server (NTRS)
Mcknight, R. L.; Chen, P. C.; Dame, L. T.; Holt, R. V.; Huang, H.; Hartle, M.; Gellin, S.; Allen, D. H.; Haisler, W. E.
1986-01-01
Accomplishments are described for the 2-year program, to develop advanced 3-D inelastic structural stress analysis methods and solution strategies for more accurate and cost effective analysis of combustors, turbine blades and vanes. The approach was to develop a matrix of formulation elements and constitutive models. Three constitutive models were developed in conjunction with optimized iterating techniques, accelerators, and convergence criteria within a framework of dynamic time incrementing. Three formulations models were developed; an eight-noded mid-surface shell element, a nine-noded mid-surface shell element and a twenty-noded isoparametric solid element. A separate computer program was developed for each combination of constitutive model-formulation model. Each program provides a functional stand alone capability for performing cyclic nonlinear structural analysis. In addition, the analysis capabilities incorporated into each program can be abstracted in subroutine form for incorporation into other codes or to form new combinations.
The 3D inelastic analysis methods for hot section components
NASA Technical Reports Server (NTRS)
Mcknight, R. L.; Maffeo, R. J.; Tipton, M. T.; Weber, G.
1992-01-01
A two-year program to develop advanced 3D inelastic structural stress analysis methods and solution strategies for more accurate and cost effective analysis of combustors, turbine blades, and vanes is described. The approach was to develop a matrix of formulation elements and constitutive models. Three constitutive models were developed in conjunction with optimized iterating techniques, accelerators, and convergence criteria within a framework of dynamic time incrementing. Three formulation models were developed: an eight-noded midsurface shell element; a nine-noded midsurface shell element; and a twenty-noded isoparametric solid element. A separate computer program has been developed for each combination of constitutive model-formulation model. Each program provides a functional stand alone capability for performing cyclic nonlinear structural analysis. In addition, the analysis capabilities incorporated into each program can be abstracted in subroutine form for incorporation into other codes or to form new combinations.
Lattice Boltzmann Method for 3-D Flows with Curved Boundary
NASA Technical Reports Server (NTRS)
Mei, Renwei; Shyy, Wei; Yu, Dazhi; Luo, Li-Shi
2002-01-01
In this work, we investigate two issues that are important to computational efficiency and reliability in fluid dynamics applications of the lattice, Boltzmann equation (LBE): (1) Computational stability and accuracy of different lattice Boltzmann models and (2) the treatment of the boundary conditions on curved solid boundaries and their 3-D implementations. Three athermal 3-D LBE models (D3QI5, D3Ql9, and D3Q27) are studied and compared in terms of efficiency, accuracy, and robustness. The boundary treatment recently developed by Filippova and Hanel and Met et al. in 2-D is extended to and implemented for 3-D. The convergence, stability, and computational efficiency of the 3-D LBE models with the boundary treatment for curved boundaries were tested in simulations of four 3-D flows: (1) Fully developed flows in a square duct, (2) flow in a 3-D lid-driven cavity, (3) fully developed flows in a circular pipe, and (4) a uniform flow over a sphere. We found that while the fifteen-velocity 3-D (D3Ql5) model is more prone to numerical instability and the D3Q27 is more computationally intensive, the 63Q19 model provides a balance between computational reliability and efficiency. Through numerical simulations, we demonstrated that the boundary treatment for 3-D arbitrary curved geometry has second-order accuracy and possesses satisfactory stability characteristics.
3D Wavelet-Based Filter and Method
Moss, William C.; Haase, Sebastian; Sedat, John W.
2008-08-12
A 3D wavelet-based filter for visualizing and locating structural features of a user-specified linear size in 2D or 3D image data. The only input parameter is a characteristic linear size of the feature of interest, and the filter output contains only those regions that are correlated with the characteristic size, thus denoising the image.
Pavei, Gaspare; Seminati, Elena; Cazzola, Dario; Minetti, Alberto E.
2017-01-01
The dynamics of body center of mass (BCoM) 3D trajectory during locomotion is crucial to the mechanical understanding of the different gaits. Forward Dynamics (FD) obtains BCoM motion from ground reaction forces while Inverse Dynamics (ID) estimates BCoM position and speed from motion capture of body segments. These two techniques are widely used by the literature on the estimation of BCoM. Despite the specific pros and cons of both methods, FD is less biased and considered as the golden standard, while ID estimates strongly depend on the segmental model adopted to schematically represent the moving body. In these experiments a single subject walked, ran, (uni- and bi-laterally) skipped, and race-walked at a wide range of speeds on a treadmill with force sensors underneath. In all conditions a simultaneous motion capture (8 cameras, 36 markers) took place. 3D BCoM trajectories computed according to five marker set models of ID have been compared to the one obtained by FD on the same (about 2,700) strides. Such a comparison aims to check the validity of the investigated models to capture the “true” dynamics of gaits in terms of distance between paths, mechanical external work and energy recovery. Results allow to conclude that: (1) among gaits, race walking is the most critical in being described by ID, (2) among the investigated segmental models, those capturing the motion of four limbs and trunk more closely reproduce the subtle temporal and spatial changes of BCoM trajectory within the strides of most gaits, (3) FD-ID discrepancy in external work is speed dependent within a gait in the most unsuccessful models, and (4) the internal work is not affected by the difference in BCoM estimates. PMID:28337148
Modeling Coastal Salinity in Quasi 2D and 3D Using a DUALEM-421 and Inversion Software.
Davies, Gareth; Huang, Jingyi; Monteiro Santos, Fernando Acacio; Triantafilis, John
2015-01-01
Rising sea levels, owing to climate change, are a threat to fresh water coastal aquifers. This is because saline intrusions are caused by increases and intensification of medium-large scale influences including sea level rise, wave climate, tidal cycles, and shifts in beach morphology. Methods are therefore required to understand the dynamics of these interactions. While traditional borehole and galvanic contact resistivity (GCR) techniques have been successful they are time-consuming. Alternatively, frequency-domain electromagnetic (FEM) induction is potentially useful as physical contact with the ground is not required. A DUALEM-421 and EM4Soil inversion software package are used to develop a quasi two- (2D) and quasi three-dimensional (3D) electromagnetic conductivity images (EMCI) across Long Reef Beach located north of Sydney Harbour, New South Wales, Australia. The quasi 2D models discern: the dry sand (<10 mS/m) associated with the incipient dune; sand with fresh water (10 to 20 mS/m); mixing of fresh and saline water (20 to 500 mS/m), and; saline sand of varying moisture (more than 500 mS/m). The quasi 3D EMCIs generated for low and high tides suggest that daily tidal cycles do not have a significant effect on local groundwater salinity. Instead, the saline intrusion is most likely influenced by medium-large scale drivers including local wave climate and morphology along this wave-dominated beach. Further research is required to elucidate the influence of spring-neap tidal cycles, contrasting beach morphological states and sea level rise.
Pavei, Gaspare; Seminati, Elena; Cazzola, Dario; Minetti, Alberto E
2017-01-01
The dynamics of body center of mass (BCoM) 3D trajectory during locomotion is crucial to the mechanical understanding of the different gaits. Forward Dynamics (FD) obtains BCoM motion from ground reaction forces while Inverse Dynamics (ID) estimates BCoM position and speed from motion capture of body segments. These two techniques are widely used by the literature on the estimation of BCoM. Despite the specific pros and cons of both methods, FD is less biased and considered as the golden standard, while ID estimates strongly depend on the segmental model adopted to schematically represent the moving body. In these experiments a single subject walked, ran, (uni- and bi-laterally) skipped, and race-walked at a wide range of speeds on a treadmill with force sensors underneath. In all conditions a simultaneous motion capture (8 cameras, 36 markers) took place. 3D BCoM trajectories computed according to five marker set models of ID have been compared to the one obtained by FD on the same (about 2,700) strides. Such a comparison aims to check the validity of the investigated models to capture the "true" dynamics of gaits in terms of distance between paths, mechanical external work and energy recovery. Results allow to conclude that: (1) among gaits, race walking is the most critical in being described by ID, (2) among the investigated segmental models, those capturing the motion of four limbs and trunk more closely reproduce the subtle temporal and spatial changes of BCoM trajectory within the strides of most gaits, (3) FD-ID discrepancy in external work is speed dependent within a gait in the most unsuccessful models, and (4) the internal work is not affected by the difference in BCoM estimates.
Methods for Geometric Data Validation of 3d City Models
NASA Astrophysics Data System (ADS)
Wagner, D.; Alam, N.; Wewetzer, M.; Pries, M.; Coors, V.
2015-12-01
Geometric quality of 3D city models is crucial for data analysis and simulation tasks, which are part of modern applications of the data (e.g. potential heating energy consumption of city quarters, solar potential, etc.). Geometric quality in these contexts is however a different concept as it is for 2D maps. In the latter case, aspects such as positional or temporal accuracy and correctness represent typical quality metrics of the data. They are defined in ISO 19157 and should be mentioned as part of the metadata. 3D data has a far wider range of aspects which influence their quality, plus the idea of quality itself is application dependent. Thus, concepts for definition of quality are needed, including methods to validate these definitions. Quality on this sense means internal validation and detection of inconsistent or wrong geometry according to a predefined set of rules. A useful starting point would be to have correct geometry in accordance with ISO 19107. A valid solid should consist of planar faces which touch their neighbours exclusively in defined corner points and edges. No gaps between them are allowed, and the whole feature must be 2-manifold. In this paper, we present methods to validate common geometric requirements for building geometry. Different checks based on several algorithms have been implemented to validate a set of rules derived from the solid definition mentioned above (e.g. water tightness of the solid or planarity of its polygons), as they were developed for the software tool CityDoctor. The method of each check is specified, with a special focus on the discussion of tolerance values where they are necessary. The checks include polygon level checks to validate the correctness of each polygon, i.e. closeness of the bounding linear ring and planarity. On the solid level, which is only validated if the polygons have passed validation, correct polygon orientation is checked, after self-intersections outside of defined corner points and edges
3D model retrieval method based on mesh segmentation
NASA Astrophysics Data System (ADS)
Gan, Yuanchao; Tang, Yan; Zhang, Qingchen
2012-04-01
In the process of feature description and extraction, current 3D model retrieval algorithms focus on the global features of 3D models but ignore the combination of global and local features of the model. For this reason, they show less effective performance to the models with similar global shape and different local shape. This paper proposes a novel algorithm for 3D model retrieval based on mesh segmentation. The key idea is to exact the structure feature and the local shape feature of 3D models, and then to compares the similarities of the two characteristics and the total similarity between the models. A system that realizes this approach was built and tested on a database of 200 objects and achieves expected results. The results show that the proposed algorithm improves the precision and the recall rate effectively.
3D face recognition by projection-based methods
NASA Astrophysics Data System (ADS)
Dutagaci, Helin; Sankur, Bülent; Yemez, Yücel
2006-02-01
In this paper, we investigate recognition performances of various projection-based features applied on registered 3D scans of faces. Some features are data driven, such as ICA-based features or NNMF-based features. Other features are obtained using DFT or DCT-based schemes. We apply the feature extraction techniques to three different representations of registered faces, namely, 3D point clouds, 2D depth images and 3D voxel. We consider both global and local features. Global features are extracted from the whole face data, whereas local features are computed over the blocks partitioned from 2D depth images. The block-based local features are fused both at feature level and at decision level. The resulting feature vectors are matched using Linear Discriminant Analysis. Experiments using different combinations of representation types and feature vectors are conducted on the 3D-RMA dataset.
3D Gravity Inversion of Northern Sinai Peninsula: A Case Study
NASA Astrophysics Data System (ADS)
Khalil, Mohamed A.; Santos, Fernando M.
2014-07-01
The Sinai Peninsula has attracted the attention of many geological and geophysical studies as it is influenced and bounded by major tectonic events. Those are (1) the Mesozoic to Early Cenozoic tectonically active opening of the Tethys, (2) the Late Cretaceous to Early Tertiary (Laramide) Syrian arc system, due to closing of the Tethys (3) the Oligo-Miocene Gulf of Suez rifted basin, and (4) the Late Miocene to Recent transform Dead Sea-Gulf of Aqaba rift. Additionally, the shear zones inside Sinai such as the Ragabet El-Naam and Minsherah-Abu Kandu Shear Zones. Each of these major tectonic events has affected dramatically the structure evolution of the northern Sinai area. The present paper estimates the 3D density contrast model using the gravity data of northern Sinai. The estimated 3D density contrast model elucidated the peculiarities of the main structural elements in the region. The estimated 3D density contrast model showed the high and low gravity anomalies that form the main mountains and main valleys in northern Sinai. The estimated low density zones are in agreement with the inferred faults resulting from the first horizontal derivative. Comparing the 3D model with the tectonic history of the region and the results of the first horizontal derivative and least square separation increased the reliability of the model.
3-D Sound Propagation and Acoustic Inversions in Shallow Water Oceans
2012-12-19
fixed arc-length grid.] 10 Modeling comparisons Propagate over seamount , off center Source at 250 m, 100Hz 4 cases - (1) Nx2D, (2) Cartesian, (3...cylindrical PE. Figure 2. PE model comparisons I Sound propagation over a seamount are computed by different 3-D PE models, including (1) Nx2- D (2
Compartmentalization of the Coso East Flank geothermal field imaged by 3-D full-tensor MT inversion
NASA Astrophysics Data System (ADS)
Lindsey, Nathaniel J.; Kaven, Joern Ole; Davatzes, Nicholas; Newman, Gregory A.
2017-02-01
Previous magnetotelluric (MT) studies of the high-temperature Coso geothermal system in California identified a subvertical feature of low resistivity (2-5 Ohm m) and appreciable lateral extent (>1 km) in the producing zone of the East Flank field. However, these models could not reproduce gross 3-D effects in the recorded data. We perform 3-D full-tensor inversion and retrieve a resistivity model that out-performs previous 2-D and 3-D off-diagonal models in terms of its fit to the complete 3-D MT data set as well as the degree of modelling bias. Inclusion of secondary Zxx and Zyy data components leads to a robust east-dip (60†) to the previously identified conductive East Flank reservoir feature, which correlates strongly with recently mapped surface faults, downhole well temperatures, 3-D seismic reflection data, and local microseismicity. We perform synthetic forward modelling to test the best-fit dip of this conductor using the response at a nearby MT station. We interpret the dipping conductor as a fractured and fluidized compartment, which is structurally controlled by an unmapped blind East Flank fault zone.
Compartmentalization of the Coso East Flank Geothermal Field Imaged by 3-D Full-tensor MT Inversion
NASA Astrophysics Data System (ADS)
Lindsey, Nathaniel J.; Kaven, Joern Ole; Davatzes, Nicholas; Newman, Gregory A.
2016-11-01
Previous magnetotelluric (MT) studies of the high-temperature Coso geothermal system in California identified a subvertical feature of low resistivity (2 - 5 Ohm-m) and appreciable lateral extent (>1 km) in the producing zone of the East Flank field. However, these models could not reproduce gross 3-D effects in the recorded data. We perform 3-D full-tensor inversion and retrieve a resistivity model that out-performs previous 2-D and 3-D off-diagonal models in terms of its fit to the complete 3-D MT dataset as well as the degree of modeling bias. Inclusion of secondary Zxx and Zyy data components leads to a robust east-dip (60o) to the previously identified conductive East Flank reservoir feature, which correlates strongly with recently mapped surface faults, downhole well temperatures, 3-D seismic reflection data, and local microseismicity. We perform synthetic forward modeling to test the best fit dip of this conductor using the response at a nearby MT station. We interpret the dipping conductor as a fractured and fluidized compartment, which is structurally-controlled by an unmapped blind East Flank fault zone.
NASA Astrophysics Data System (ADS)
Camacho, Antonio G.; Carmona, Enrique; García-Jerez, Antonio; Sánchez-Martos, Francisco; Prieto, Juan F.; Fernández, José; Luzón, Francisco
2015-11-01
This paper presents a gravimetric study (based on 382 gravimetric stations in an area about 32 km2) of a nearly flat basin: the Low Andarax valley. This alluvial basin, close to its river mouth, is located in the extreme south of the province of Almería and coincides with one of the existing depressions in the Betic Cordillera. The paper presents new methodological work to adapt a published inversion approach (GROWTH method) to the case of an alluvial valley (sedimentary stratification, with density increase downward). The adjusted 3D density model reveals several features in the topography of the discontinuity layers between the calcareous basement (2,700 kg/m3) and two sedimentary layers (2,400 and 2,250 kg/m3). We interpret several low density alignments as corresponding to SE faults striking about N140-145°E. Some detected basement elevations (such as the one, previously known by boreholes, in Viator village) are apparently connected with the fault pattern. The outcomes of this work are: (1) new gravimetric data, (2) new methodological options, and (3) the resulting structural conclusions.
NASA Astrophysics Data System (ADS)
Lague, D.; Brodu, N.; Leroux, J.
2012-12-01
Ground based lidar and photogrammetric techniques are increasingly used to track the evolution of natural surfaces in 3D at an unprecedented resolution and precision. The range of applications encompass many type of natural surfaces with different geometries and roughness characteristics (landslides, cliff erosion, river beds, bank erosion,....). Unravelling surface change in these contexts requires to compare large point clouds in 2D or 3D. The most commonly used method in geomorphology is based on a 2D difference of the gridded point clouds. Yet this is hardly adapted to many 3D natural environments such as rivers (with horizontal beds and vertical banks), while gridding complex rough surfaces is a complex task. On the other hand, tools allowing to perform 3D comparison are scarce and may require to mesh the point clouds which is difficult on rough natural surfaces. Moreover, existing 3D comparison tools do not provide an explicit calculation of confidence intervals that would factor in registration errors, roughness effects and instrument related position uncertainties. To unlock this problem, we developed the first algorithm combining a 3D measurement of surface change directly on point clouds with an estimate of spatially variable confidence intervals (called M3C2). The method has two steps : (1) surface normal estimation and orientation in 3D at a scale consistent with the local roughness ; (2) measurement of mean surface change along the normal direction with explicit calculation of a local confidence interval. Comparison with existing 3D methods based on a closest-point calculation demonstrates the higher precision of the M3C2 method when mm changes needs to be detected. The M3C2 method is also simple to use as it does not require surface meshing or gridding, and is not sensitive to missing data or change in point density. We also present a 3D classification tool (CANUPO) for vegetation removal based on a new geometrical measure: the multi
Methods For Electronic 3-D Moving Pictures Without Glasses
NASA Astrophysics Data System (ADS)
Collender, Robert B.
1987-06-01
This paper describes implementation approaches in image acquisition and playback for 3-D computer graphics, 3-D television and 3-D theatre movies without special glasses. Projection lamps, spatial light modulators, CRT's and dynamic scanning are all eliminated by the application of an active image array, all static components and a semi-specular screen. The resulting picture shows horizontal parallax with a wide horizontal view field (up to 360 de-grees) giving a holographic appearance in full color with smooth continuous viewing without speckle. Static component systems are compared with dynamic component systems using both linear and circular arrays. Implementation of computer graphic systems are shown that allow complex shaded color images to extend from the viewer's eyes to infinity. Large screen systems visible by hundreds of people are feasible by the use of low f-stops and high gain screens in projection. Screen geometries and special screen properties are shown. Viewing characteristics offer no restrictions in view-position over the entire view-field and have a "look-around" feature for all the categories of computer graphics, television and movies. Standard video cassettes and optical discs can also interface the system to generate a 3-D window viewable without glasses. A prognosis is given for technology application to 3-D pictures without glasses that replicate the daily viewing experience. Super-position of computer graphics on real-world pictures is shown feasible.
Electromagnetic Response Inversion for a 3D Distribution of Conductivity/Dielect
Newman, Gregory
2001-10-24
NLCGCS inverts electromagnetic responses for a 3D distribution of electrical conductivity and dielectric permittivity within the earth for geophysical applications using single processor computers. The software comes bundled with a graphical user interface to aid in model construction and analysis and viewing of earth images. The solution employs both dipole and finite size source configurations for harmonic oscillatory sources. A new nonlinear preconditioner is included in the solution to speed up solution convergence.
Structural results for La Palma island using 3-D gravity inversion
NASA Astrophysics Data System (ADS)
Camacho, A. G.; FernáNdez, J.; GonzáLez, P. J.; Rundle, J. B.; Prieto, J. F.; Arjona, A.
2009-05-01
A recent gravity survey composed of 317 bench marks all over the island of La Palma (Canary Islands) is used, in combination with satellite data for regional aspects, to obtain results about structural properties of the island connected with the tectonic environment and local volcanism. To that end, a nonlinear three-dimensional gravity inversion approach is considered. The inversion scheme provides, in a nonsubjective form, the geometry of the anomalous bodies constructed in a random growth process. Results from the inversion can be interpreted in the framework of the geologic evolution of this ocean island volcano as a complex composite volcano with a large central body with high-density corresponding to the older intrusive part of the basalt complex. New unexpected features are enlightened, such as large thermal anomalies in the upper mantle southward of La Palma, as well as fracture en echelon zones associable to a slow active process of dislocation related to the recent volcanism in the southern half of the island. The results obtained for La Palma as a test site testify to the usefulness of the developed gravity inversion methodology for structural studies on islands in general.
NASA Astrophysics Data System (ADS)
Petrov, P.; Newman, G. A.
2010-12-01
-Fourier domain we had developed 3D code for full-wave field simulation in the elastic media which take into account nonlinearity introduced by free-surface effects. Our approach is based on the velocity-stress formulation. In the contrast to conventional formulation we defined the material properties such as density and Lame constants not at nodal points but within cells. This second order finite differences method formulated in the cell-based grid, generate numerical solutions compatible with analytical ones within the range errors determinate by dispersion analysis. Our simulator will be embedded in an inversion scheme for joint seismic- electromagnetic imaging. It also offers possibilities for preconditioning the seismic wave propagation problems in the frequency domain. References. Shin, C. & Cha, Y. (2009), Waveform inversion in the Laplace-Fourier domain, Geophys. J. Int. 177(3), 1067- 1079. Shin, C. & Cha, Y. H. (2008), Waveform inversion in the Laplace domain, Geophys. J. Int. 173(3), 922-931. Commer, M. & Newman, G. (2008), New advances in three-dimensional controlled-source electromagnetic inversion, Geophys. J. Int. 172(2), 513-535. Newman, G. A., Commer, M. & Carazzone, J. J. (2010), Imaging CSEM data in the presence of electrical anisotropy, Geophysics, in press.
Full-wave Moment Tensor and Tomographic Inversions Based on 3D Strain Green Tensor
2010-01-31
G. Jahnke, Wave propagation in 3D spherical sections: effects of subduction zones , Phys. Earth Planet. Inter., 132, 219-234, 2002. Komastitsch, D...is at scales smaller than the Fresnel zone . For example, a 1-Hz P/Pn wave recorded by a receiver ~1000 km from the source has a Fresnel zone width...approach, Eos Trans. AGU, 89(53), Fall Meet. Suppl., abstract T11E-06 Invited, 2008b. Sigloch, K., N. McQuarrie, G. Nolet, Two-stage subduction
Development and Tuning of a 3-D Stochastic Inversion Methodology for the European Arctic
2008-09-01
Norway and is subdivided into four tectonic nappes. Obduction started in the Vendian to Middle Cambrian and lasted until the Silurian . 2008...10 and 150 s period were combined with existing data provided by the University of Colorado at Boulder. This new data set was inverted for maps...showing the 2D group-velocity distribution of Love and Rayleigh waves for specific periods . Using a Monte Carlo inversion technique (Shapiro and
Optimization of computations for adjoint field and Jacobian needed in 3D CSEM inversion
NASA Astrophysics Data System (ADS)
Dehiya, Rahul; Singh, Arun; Gupta, Pravin K.; Israil, M.
2017-01-01
We present the features and results of a newly developed code, based on Gauss-Newton optimization technique, for solving three-dimensional Controlled-Source Electromagnetic inverse problem. In this code a special emphasis has been put on representing the operations by block matrices for conjugate gradient iteration. We show how in the computation of Jacobian, the matrix formed by differentiation of system matrix can be made independent of frequency to optimize the operations at conjugate gradient step. The coarse level parallel computing, using OpenMP framework, is used primarily due to its simplicity in implementation and accessibility of shared memory multi-core computing machine to almost anyone. We demonstrate how the coarseness of modeling grid in comparison to source (comp`utational receivers) spacing can be exploited for efficient computing, without compromising the quality of the inverted model, by reducing the number of adjoint calls. It is also demonstrated that the adjoint field can even be computed on a grid coarser than the modeling grid without affecting the inversion outcome. These observations were reconfirmed using an experiment design where the deviation of source from straight tow line is considered. Finally, a real field data inversion experiment is presented to demonstrate robustness of the code.
Object-oriented urban 3D spatial data model organization method
NASA Astrophysics Data System (ADS)
Li, Jing-wen; Li, Wen-qing; Lv, Nan; Su, Tao
2015-12-01
This paper combined the 3d data model with object-oriented organization method, put forward the model of 3d data based on object-oriented method, implemented the city 3d model to quickly build logical semantic expression and model, solved the city 3d spatial information representation problem of the same location with multiple property and the same property with multiple locations, designed the space object structure of point, line, polygon, body for city of 3d spatial database, and provided a new thought and method for the city 3d GIS model and organization management.
An automated 3D reconstruction method of UAV images
NASA Astrophysics Data System (ADS)
Liu, Jun; Wang, He; Liu, Xiaoyang; Li, Feng; Sun, Guangtong; Song, Ping
2015-10-01
In this paper a novel fully automated 3D reconstruction approach based on low-altitude unmanned aerial vehicle system (UAVs) images will be presented, which does not require previous camera calibration or any other external prior knowledge. Dense 3D point clouds are generated by integrating orderly feature extraction, image matching, structure from motion (SfM) and multi-view stereo (MVS) algorithms, overcoming many of the cost, time limitations of rigorous photogrammetry techniques. An image topology analysis strategy is introduced to speed up large scene reconstruction by taking advantage of the flight-control data acquired by UAV. Image topology map can significantly reduce the running time of feature matching by limiting the combination of images. A high-resolution digital surface model of the study area is produced base on UAV point clouds by constructing the triangular irregular network. Experimental results show that the proposed approach is robust and feasible for automatic 3D reconstruction of low-altitude UAV images, and has great potential for the acquisition of spatial information at large scales mapping, especially suitable for rapid response and precise modelling in disaster emergency.
Deployment of a 3D tag tracking method utilising RFID
NASA Astrophysics Data System (ADS)
Wasif Reza, Ahmed; Yun, Teoh Wei; Dimyati, Kaharudin; Geok Tan, Kim; Ariffin Noordin, Kamarul
2012-04-01
Recent trend shows that one of the crucial problems faced while using radio frequency to track the objects is the inconsistency of the signal strength reception, which can be mainly due to the environmental factors and the blockage, which always have the most impact on the tracking accuracy. Besides, three dimensions are more relevant to a warehouse scanning. Therefore, this study proposes a highly accurate and new three-dimensional (3D) radio frequency identification-based indoor tracking system with the consideration of different attenuation factors and obstacles. The obtained results show that the proposed system yields high-quality performance with an average error as low as 0.27 m (without obstacles and attenuation effects). The obtained results also show that the proposed tracking technique can achieve relatively lower errors (0.4 and 0.36 m, respectively) even in the presence of the highest attenuation effect, e = 3.3 or when the environment is largely affected by 50% of the obstacles. Furthermore, the superiority of the proposed 3D tracking system has been proved by comparing with other existing approaches. The 3D tracking system proposed in this study can be applicable to a warehouse scanning.
Bhattacharya, Jishnu; Wolverton, C
2013-05-07
Spinel oxides represent an important class of cathode materials for Li-ion batteries. Two major variants of the spinel crystal structure are normal and inverse. The relative stability of normal and inverse ordering at different stages of lithiation has important consequences in lithium diffusivity, voltage, capacity retention and battery life. In this paper, we investigate the relative structural stability of normal and inverse structures of the 3d transition metal oxide spinels with first-principles DFT calculations. We have considered ternary spinel oxides LixM2O4 with M = Ti, V, Cr, Mn, Fe, Co and Ni in both lithiated (x = 1) and delithiated (x = 0) conditions. We find that for all lithiated spinels, the normal structure is preferred regardless of the metal. We observe that the normal structure for all these oxides has a lower size mismatch between octahedral cations compared to the inverse structure. With delithiation, many of the oxides undergo a change in stability with vanadium in particular, showing a tendency to occupy tetrahedral sites. We find that in the delithiated oxide, only vanadium ions can access a +5 oxidation state which prefers tetrahedral coordination. We have also calculated the average voltage of lithiation for these spinels. The calculated voltages agree well with the previously measured and calculated values, wherever available. For the yet to be characterized spinels, our calculation provides voltage values which can motivate further experimental attention. Lastly, we observe that all the normal spinel oxides of the 3d transition metal series have a driving force for a transformation to the non-spinel structure upon delithiation.
Block-Iterative Methods for 3D Constant-Coefficient Stencils on GPUs and Multicore CPUs
Philip, Bobby; Wang, Zhen; Berrill, Mark A
2014-06-01
Block iterative methods are extremely important as smoothers for multigrid methods, as preconditioners for Krylov methods, and as solvers for diagonally dominant linear systems. Developing robust and efficient smoother algorithms suitable for current and evolving GPU and multicore CPU systems is a significant challenge. We address this issue in the case of constant-coefficient stencils arising in the solution of elliptic partial differential equations on structured 3D uniform and adaptively refined block structured grids. Robust, highly parallel implementations of block Jacobi and chaotic block Gauss-Seidel algorithms with exact inversion of the blocks are developed using different parallelization techniques. Experimental results for NVIDIA Fermi/Kepler GPUs and AMD multicore systems are presented.
Dirac Circles and Quantum Hall Effect in 3D Inversion-Symmetric Crystals
NASA Astrophysics Data System (ADS)
Wieder, Benjamin J.; Kim, Youngkuk; Kane, C. L.
2015-03-01
In the presence of inversion and time-reversal symmetries, materials with weak spin-orbit coupling may host topologically protected Dirac line nodes. A band inversion transition in these systems can produce a line node which closes on itself and forms a protected Dirac circle. The surfaces parallel to this circle host zero-energy puddles in momentum space which are flat if the inverting bands have the same effective mass. In cases with differing effective masses, the surface modes disperse, but the bulk Dirac circle remains gapless. Adding an external magnetic field perpendicular to this circle creates surface Landau levels, whose number can be controlled by tuning the field strength. When a new level is created or destroyed, the bulk becomes gapless and the zero-temperature bulk conductivity displays a sharp peak. The sequence of conductivity peaks describes an unusual manifestation of the integer quantum hall effect. We characterize surface and bulk transport as a function of magnetic field strength and in the presence of disorder.
Barlebo, H.C.; Rosbjerg, D.; Hill, M.C.
1996-01-01
An extensive amount of data including hydraulic heads, hydraulic conductivities and concentrations of several solutes from controlled injections have been collected during the MADE 1 and MADE 2 experiments at a heterogeneous site near Columbus, Mississippi. In this paper the use of three-dimensional inverse groundwater models including simultaneous estimation of flow and transport parameters is proposed to help identify the dominant characteristics at the site. Simulations show that using a hydraulic conductivity distribution obtained from 2187 borehole flowmeter tests directly in the model produces poor matches to the measured hydraulic heads and tritium concentrations. Alternatively, time averaged hydraulic head maps are used to define zones of constant hydraulic conductivity to be estimated. Preliminary simulations suggest that in the case of conservative transport many, but not all, of the major plume characteristics can be explained by large-scale heterogeneity in recharge and hydraulic conductivity.
Hall-Effect Sign Inversion in a Realizable 3D Metamaterial
NASA Astrophysics Data System (ADS)
Kadic, Muamer; Schittny, Robert; Bückmann, Tiemo; Kern, Christian; Wegener, Martin
2015-04-01
In 2009, Briane and Milton proved mathematically the existence of three-dimensional isotropic metamaterials with a classical Hall coefficient that is negative with respect to that of all of the metamaterial constituents. Here, we significantly simplify their blueprint towards an architecture composed of only a single-constituent material in vacuum or air, which can be seen as a special type of porosity. We show numerically that the sign of the Hall voltage is determined by a separation parameter between adjacent tori. This qualitative behavior is robust even for only a small number of metamaterial unit cells. The combination of simplification and robustness brings experimental verification of this striking sign inversion into reach. Furthermore, we provide a simple intuitive explanation of the underlying physical mechanism.
Brosten, T.R.; Day-Lewis, F. D.; Schultz, G.M.; Curtis, G.P.; Lane, J.W.
2011-01-01
Electromagnetic induction (EMI) instruments provide rapid, noninvasive, and spatially dense data for characterization of soil and groundwater properties. Data from multi-frequency EMI tools can be inverted to provide quantitative electrical conductivity estimates as a function of depth. In this study, multi-frequency EMI data collected across an abandoned uranium mill site near Naturita, Colorado, USA, are inverted to produce vertical distribution of electrical conductivity (EC) across the site. The relation between measured apparent electrical conductivity (ECa) and hydraulic conductivity (K) is weak (correlation coefficient of 0.20), whereas the correlation between the depth dependent EC obtained from the inversions, and K is sufficiently strong to be used for hydrologic estimation (correlation coefficient of -0.62). Depth-specific EC values were correlated with co-located K measurements to develop a site-specific ln(EC)-ln(K) relation. This petrophysical relation was applied to produce a spatially detailed map of K across the study area. A synthetic example based on ECa values at the site was used to assess model resolution and correlation loss given variations in depth and/or measurement error. Results from synthetic modeling indicate that optimum correlation with K occurs at ~0.5m followed by a gradual correlation loss of 90% at 2.3m. These results are consistent with an analysis of depth of investigation (DOI) given the range of frequencies, transmitter-receiver separation, and measurement errors for the field data. DOIs were estimated at 2.0??0.5m depending on the soil conductivities. A 4-layer model, with varying thicknesses, was used to invert the ECa to maximize available information within the aquifer region for improved correlations with K. Results show improved correlation between K and the corresponding inverted EC at similar depths, underscoring the importance of inversion in using multi-frequency EMI data for hydrologic estimation. ?? 2011.
NASA Astrophysics Data System (ADS)
Balkaya, Çağlayan; Ekinci, Yunus Levent; Göktürkler, Gökhan; Turan, Seçil
2017-01-01
3D non-linear inversion of total field magnetic anomalies caused by vertical-sided prismatic bodies has been achieved by differential evolution (DE), which is one of the population-based evolutionary algorithms. We have demonstrated the efficiency of the algorithm on both synthetic and field magnetic anomalies by estimating horizontal distances from the origin in both north and east directions, depths to the top and bottom of the bodies, inclination and declination angles of the magnetization, and intensity of magnetization of the causative bodies. In the synthetic anomaly case, we have considered both noise-free and noisy data sets due to two vertical-sided prismatic bodies in a non-magnetic medium. For the field case, airborne magnetic anomalies originated from intrusive granitoids at the eastern part of the Biga Peninsula (NW Turkey) which is composed of various kinds of sedimentary, metamorphic and igneous rocks, have been inverted and interpreted. Since the granitoids are the outcropped rocks in the field, the estimations for the top depths of two prisms representing the magnetic bodies were excluded during inversion studies. Estimated bottom depths are in good agreement with the ones obtained by a different approach based on 3D modelling of pseudogravity anomalies. Accuracy of the estimated parameters from both cases has been also investigated via probability density functions. Based on the tests in the present study, it can be concluded that DE is a useful tool for the parameter estimation of source bodies using magnetic anomalies.
NASA Astrophysics Data System (ADS)
Gao, J.; Zhang, H.
2015-12-01
Near surface geophysical exploration for the purpose of engineering design or construction For this reason, geophysical imaging demands a higher resolution and a better quantitative interpretation. Seismic travel time tomography and direct current resistivity tomography are two main methods for the near surface survey. Because of the limited coverage of observation system and the complex physical relationship between physical parameters and observations, individual geophysical method suffers issues of non-uniqueness and resolution limitation to some degree. We have developed a joint inversion method to combine seismic travel time tomography and full channel resistivity tomography. For the full channel resistivity survey, it uses two electrodes for power supply and all the other electrodes for recording. Compared with the traditional resistivity method, it collects more data and has a better model converge. Our joint inversion strategy relies on the structure constraint enforced through minimizing cross gradients between seismic velocity and resistivity models (Gallardo, 2003). For resistivity tomography, sensitivity kernels are obtained through the adjoint method by solving the electrostatic field equation with the finite-difference method. For seismic travel time tomography, ray paths and travel times are calculated using the fast marching method. We have tested our joint inversion method for a 2D cross-hole problem where two small zones with high and low velocity/resistivity anomalies. Seismic/electrical sources/receivers are installed in two boreholes. For separate seismic inversion, the smearing effect is evident and two anomaly zones are distorted and misplaced. For separate electric resistivity inversion, although two anomaly zones are positioned correctly their values are not accurate. By joint inversion, two velocity anomaly zones are clearly imaged and the smearing effect is greatly reduced. In comparison, for the resistivity model, the two anomaly zones
3D full tensor gradient method improves subsalt interpretation
Coburn, G.W.
1998-09-14
Imagine you`re working the deepwater Gulf of Mexico, looking for potential subsalt prospects to guide your company`s bidding in an upcoming lease sale. There are no speculative 3D surveys in the area, just 2D seismic and a few well logs. So you obtain some regional 2D lines across a number of promising salt features and begin your initial structural interpretation. The top of salt is pretty easy to pick. But, not surprisingly, the base is fuzzy in many areas. Large shadow zones wipe out the image, making it difficult to tell how thick the salt may be and whether sediments continue beneath the salt or truncate at the edges. With the limited data you have available, you could pick the base of salt in several different places, all of them reasonable. How do you decide? One option is an expensive reprocessing job. But it would be nice to have another choice--a way to independently test your salt interpretation against high-quality data not derived from seismic. Three-dimensional full tensor gradient (FTG) data can provide such an alternative. This article focuses on an actual test study done on a regional 2D seismic line across the Green Canyon area of the Gulf of Mexico. The purpose of the study was to determine how well 3D FTG data could identify the base of salt, where standard seismic interpretation was ambiguous.
NASA Astrophysics Data System (ADS)
Mair, H. D.; Ciorau, P.; Owen, D.; Hazelton, T.; Dunning, G.
2000-05-01
Two ultrasonic simulation packages: Imagine 3D and SIMSCAN have specifically been developed to solve the inverse problem for blade root and rotor steeple of low-pressure turbine. The software was integrated with the 3D drawing of the inspected parts, and with the dimensions of linear phased-array probes. SIMSCAN simulates the inspection scenario in both optional conditions: defect location and probe movement/refracted angle range. The results are displayed into Imagine 3-D, with a variety of options: rendering, display 1:1, grid, generated UT beam. The results are very useful for procedure developer, training and to optimize the phased-array probe inspection sequence. A spreadsheet is generated to correlate the defect coordinates with UT data (probe position, skew and refracted angle, UT path, and probe movement). The simulation models were validated during experimental work with phased-array systems. The accuracy in probe position is ±1 mm, and the refracted/skew angle is within ±0.5°. Representative examples of phased array focal laws/probe movement for a specific defect location, are also included.
MOM3D method of moments code theory manual
NASA Technical Reports Server (NTRS)
Shaeffer, John F.
1992-01-01
MOM3D is a FORTRAN algorithm that solves Maxwell's equations as expressed via the electric field integral equation for the electromagnetic response of open or closed three dimensional surfaces modeled with triangle patches. Two joined triangles (couples) form the vector current unknowns for the surface. Boundary conditions are for perfectly conducting or resistive surfaces. The impedance matrix represents the fundamental electromagnetic interaction of the body with itself. A variety of electromagnetic analysis options are possible once the impedance matrix is computed including backscatter radar cross section (RCS), bistatic RCS, antenna pattern prediction for user specified body voltage excitation ports, RCS image projection showing RCS scattering center locations, surface currents excited on the body as induced by specified plane wave excitation, and near field computation for the electric field on or near the body.
3D sensitivity of 6-electrode Focused Impedance Method (FIM)
NASA Astrophysics Data System (ADS)
Masum Iquebal, A. H.; Siddique-e Rabbani, K.
2010-04-01
The present work was taken up to have an understanding of the depth sensitivity of the 6 electrode FIM developed by our laboratory earlier, so that it may be applied judiciously for the measurement of organs in 3D, with electrodes on the skin surface. For a fixed electrode geometry sensitivity is expected to depend on the depth, size and conductivity of the target object. With current electrodes 18 cm apart and potential electrodes 5 cm apart, depth sensitivity of spherical conductors, insulators and of pieces of potato of different diameters were measured. The sensitivity dropped sharply with depth gradually leveling off to background, and objects could be sensed down to a depth of about twice their diameters. The sensitivity at a certain depth increases almost linearly with volume for objects with the same conductivity. Thus these results increase confidence in the use of FIM for studying organs at depths of the body.
Robust method for 3D arterial spin labeling in mice.
Chugh, Brige Paul; Bishop, Jonathan; Zhou, Yu-Qing; Wu, Jian; Henkelman, R Mark; Sled, John G
2012-07-01
Arterial spin labeling is a versatile perfusion quantification methodology, which has the potential to provide accurate characterization of cerebral blood flow (CBF) in mouse models. However, a paucity of physiological data needed for accurate modeling, more stringent requirements for gradient performance, and strong artifacts introduced by magnetization transfer present special challenges for accurate CBF mapping in the mouse. This article describes robust mapping of CBF over three-dimensional brain regions using amplitude-modulated continuous arterial spin labeling. To provide physiological data for CBF modeling, the carotid artery blood velocity distribution was characterized using pulsed-wave Doppler ultrasound. These blood velocity measurements were used in simulations that optimize inversion efficiency for parameters meeting MRI gradient duty cycle constraints. A rapid slice positioning algorithm was developed and evaluated to provide accurate positioning of the labeling plane. To account for enhancement of T(1) due to magnetization transfer, a binary spin bath model of magnetization transfer was used to provide a more accurate estimate of CBF. Finally, a study of CBF was conducted on 10 mice with findings of highly reproducible inversion efficiency (mean ± standard-error-of-the-mean, 0.67 ± 0.03), statistically significant variation in CBF over 12 brain regions (P < 0.0001) and a mean ± standard-error-of-the-mean whole brain CBF of 219 ± 6 mL/100 g/min.
NASA Astrophysics Data System (ADS)
Oh, Ju-Won; Alkhalifah, Tariq
2016-09-01
Multiparameter full waveform inversion (FWI) applied to an elastic orthorhombic model description of the subsurface requires in theory a nine-parameter representation of each pixel of the model. Even with optimal acquisition on the Earth surface that includes large offsets, full azimuth, and multicomponent sensors, the potential for trade-off between the elastic orthorhombic parameters are large. The first step to understanding such trade-off is analysing the scattering potential of each parameter, and specifically, its scattering radiation patterns. We investigate such radiation patterns for diffraction and for scattering from a horizontal reflector considering a background isotropic model. The radiation patterns show considerable potential for trade-off between the parameters and the potentially limited resolution in their recovery. The radiation patterns of C11, C22, and C33 are well separated so that we expect to recover these parameters with limited trade-offs. However, the resolution of their recovery represented by recovered range of model wavenumbers varies between these parameters. We can only invert for the short wavelength components (reflection) of C33 while we can mainly invert for the long wavelength components (transmission) of the elastic coefficients C11 and C22 if we have large enough offsets. The elastic coefficients C13, C23, and C12 suffer from strong trade-offs with C55, C44, and C66, respectively. The trade-offs between C13 and C55, as well as C23 and C44, can be partially mitigated if we acquire P-SV and SV-SV waves. However, to reduce the trade-offs between C12 and C66, we require credible SH-SH waves. The analytical radiation patterns of the elastic constants are supported by numerical gradients of these parameters.
NASA Astrophysics Data System (ADS)
Martin, Roland; Monteiller, Vadim; Chevrot, Sébastien; Wang, Yi; Komatitsch, Dimitri; Dufréchou, Grégory
2015-04-01
We describe here a method of inversion applied to seismic data sets constrained by gravity data at the regional scale. This will allow us to obtain robust models of P and S wave velocities but also of density, providing key constraints on the composition and thermal state of the lithosphere. Our approach relies on teleseimic waves, which illuminate the medium from below. We have developped a hybrid method in which a wave propagation method at the global scale (DSM/Direct solution method) is coupled with a spectral element method at the regional scale (Monteiller et al. 2013). With the spectral element method, we are able to model the 3D wave propagation effects in a computational domain of 400km long x 400km wide and 200 km deep, for an incident teleseismic wavefront introduced at the boundaries of this domain with periods as short as 2 s. The DSM global method allows to compute this incident field for a spherical Earth model. We use a multi-scale joint inversion of both gravity and seismic waveform data, accounting for the long wavelengths of the gravity field taken from a global model. In terms of inversion technique, we have validated an adjoint method for the inversion of seismic waveforms. An optimized BFGS inversion technique is used to minimize the difference between observed and computed full waveforms. The gradient of the misfit function gives the direction over which the model must be perturbed to minimize this difference. At each step of the inversion procedure we choose an optimal step length that accelerates the minimization. This is the crucial ingredient that allows us to build an efficient iterative full waveform inversion. We have extended this method by incorporating gravity data provided by the BGI/Bureau Gravimétrique International into the inversion. If the waveforms allow us to constrain the seismic velocities, they are less sensitive to the structure in density, which gives independent and crucial information to constrain the nature of rocks
A coordinate-free method for the analysis of 3D facial change
NASA Astrophysics Data System (ADS)
Mao, Zhili; Siebert, Jan Paul; Cockshott, W. Paul; Ayoub, Ashraf Farouk
2004-05-01
Euclidean Distance Matrix Analysis (EDMA) is widely held as the most important coordinate-free method by which to analyze landmarks. It has been used extensively in the field of medical anthropometry and has already produced many useful results. Unfortunately this method renders little information regarding the surface on which these points are located and accordingly is inadequate for the 3D analysis of surface anatomy. Here we shall present a new inverse surface flatness metric, the ratio between the Geodesic and the Euclidean inter-landmark distances. Because this metric also only reflects one aspect of three-dimensional shape, i.e. surface flatness, we have combined it with the Euclidean distance to investigate 3D facial change. The goal of this investigation is to be able to analyze three-dimensional facial change in terms of bilateral symmetry as encoded both by surface flatness and by geometric configuration. Our initial study, based on 25 models of surgically managed children (unilateral cleft lip repair) and 40 models of control children at the age of 2 years, indicates that the faces of the surgically managed group were found to be significantly less symmetric than those of the control group in terms of surface flatness, geometric configuration and overall symmetry.
Development of 3-D Ice Accretion Measurement Method
NASA Technical Reports Server (NTRS)
Lee, Sam; Broeren, Andy P.; Addy, Harold E., Jr.; Sills, Robert; Pifer, Ellen M.
2012-01-01
A research plan is currently being implemented by NASA to develop and validate the use of a commercial laser scanner to record and archive fully three-dimensional (3-D) ice shapes from an icing wind tunnel. The plan focused specifically upon measuring ice accreted in the NASA Icing Research Tunnel (IRT). The plan was divided into two phases. The first phase was the identification and selection of the laser scanning system and the post-processing software to purchase and develop further. The second phase was the implementation and validation of the selected system through a series of icing and aerodynamic tests. Phase I of the research plan has been completed. It consisted of evaluating several scanning hardware and software systems against an established selection criteria through demonstrations in the IRT. The results of Phase I showed that all of the scanning systems that were evaluated were equally capable of scanning ice shapes. The factors that differentiated the scanners were ease of use and the ability to operate in a wide range of IRT environmental conditions.
NASA Astrophysics Data System (ADS)
Heincke, B.; Moorkamp, M.; Jegen, M.; Hobbs, R. W.
2012-12-01
Imaging of sub-basalt sediments with reflection seismic techniques is limited due to absorption, scattering and transmission effects and the presence of peg-leg multiples. Although many of the difficulties facing conventional seismic profiles can be overcome by recording long offset data resolution of sub-basalt sediments in seismic sections is typically still largely restricted. Therefore multi-parametric approaches in general and joint inversion strategies in particular (e.g. Colombo et al., 2008, Jordan et al., 2012) are considered as alternative to gain additional information from sub-basalt structures. Here, we combine in a 3-D joint inversion first-arrival time tomography, FTG gravity and MT data to identify the base basalt and resolve potential sediments underneath. For sub-basalt exploration the three methods complement each other such that the null space is reduced and significantly better resolved models can be obtained than would be possible by the individual methods: The seismic data gives a robust model for the supra-basalt sediments whilst the gravity field is dominated by the high density basalt and basement features. The MT on the other hand is sensitive to the conductivity in both the supra- and sub-basalt sediments. We will present preliminary individual and joint inversion result for a FTG, seismic and MT data set located in the Faroe-Shetland basin. Because the investigated area is rather large (~75 x 40 km) and the individual data sets are relatively huge, we use a joint inversion framework (see Moorkamp et al., 2011) which is designed to handle large amount of data/model parameters. This program has moreover the options to link the individual parameter models either petrophysically using fixed parameter relationships or structurally using the cross-gradient approach. The seismic data set consists of a pattern of 8 intersecting wide-angle seismic profiles with maximum offsets of up to ~24 km. The 3-D gravity data set (size :~ 30 x 30 km) is
Lei Liu; Feng Zhou; Xue-Ru Bai; Ming-Liang Tao; Zi-Jing Zhang
2016-04-01
Traditionally, the factorization method is applied to reconstruct the 3D geometry of a target from its sequential inverse synthetic aperture radar images. However, this method requires performing cross-range scaling to all the sub-images and thus has a large computational burden. To tackle this problem, this paper proposes a novel method for joint cross-range scaling and 3D geometry reconstruction of steadily moving targets. In this method, we model the equivalent rotational angular velocity (RAV) by a linear polynomial with time, and set its coefficients randomly to perform sub-image cross-range scaling. Then, we generate the initial trajectory matrix of the scattering centers, and solve the 3D geometry and projection vectors by the factorization method with relaxed constraints. After that, the coefficients of the polynomial are estimated from the projection vectors to obtain the RAV. Finally, the trajectory matrix is re-scaled using the estimated rotational angle, and accurate 3D geometry is reconstructed. The two major steps, i.e., the cross-range scaling and the factorization, are performed repeatedly to achieve precise 3D geometry reconstruction. Simulation results have proved the effectiveness and robustness of the proposed method.
Rezania, Vahid; Tuszynski, Jack
2016-01-01
In this paper, we develop a spatio-temporal modeling approach to describe blood and drug flow, as well as drug uptake and elimination, on an approximation of the liver. Extending on previously developed computational approaches, we generate an approximation of a liver, which consists of a portal and hepatic vein vasculature structure, embedded in the surrounding liver tissue. The vasculature is generated via constrained constructive optimization, and then converted to a spatial grid of a selected grid size. Estimates for surrounding upscaled lobule tissue properties are then presented appropriate to the same grid size. Simulation of fluid flow and drug metabolism (hepatic clearance) are completed using discretized forms of the relevant convective-diffusive-reactive partial differential equations for these processes. This results in a single stage, uniformly consistent method to simulate equations for blood and drug flow, as well as drug metabolism, on a 3D structure representative of a liver. PMID:27649537
A Computational Method for 3D Anisotropic Travel-time Tomography of Rocks in the Laboratory
NASA Astrophysics Data System (ADS)
Ghofranitabari, Mehdi; Young, R. Paul
2013-04-01
True triaxial loading in the laboratory applies three principal stresses on a cubic rock specimen. Elliptical anisotropy and distributed heterogeneities are introduced in the rock due to closure and opening of the pre-existing cracks and creation and growth of the new aligned cracks. The rock sample is tested in a Geophysical Imaging Cell that is armed with an Acoustic Emission monitoring system which can perform transducer to transducer velocity surveys to image velocity structure of the sample during the experiment. Ultrasonic travel-time tomography as a non-destructive method outfits a map of wave propagation velocity in the sample in order to detect the uniformly distributed or localised heterogeneities and provide the spatial variation and temporal evolution of induced damages in rocks at various stages of loading. The rock sample is partitioned into cubic grid cells as model space. Ray-based tomography method measuring body wave travel time along ray paths between pairs of emitting and receiving transducers is used to calculate isotropic ray-path segment matrix elements (Gij) which contain segment lengths of the ith ray in the jth cell in three dimensions. Synthetic P wave travel times are computed between pairs of transducers in a hypothetical isotropic heterogeneous cubic sample as data space along with an error due to precision of measurement. 3D strain of the squeezed rock and the consequent geometrical deformation is also included in computations for further accuracy. Singular Value Decomposition method is used for the inversion from data space to model space. In the next step, the anisotropic ray-path segment matrix and the corresponded data space are computed for hypothetical anisotropic heterogeneous samples based on the elliptical anisotropic model of velocity which is obtained from the real laboratory experimental data. The method is examined for several different synthetic heterogeneous models. An "Inaccuracy factor" is utilized to inquire the
Star-Lack, J; Nelson, S J; Kurhanewicz, J; Huang, L R; Vigneron, D B
1997-08-01
A T1 insensitive solvent suppression technique-band selective inversion with gradient dephasing (BASING)-was developed to suppress water and lipids for 1H magnetic resonance spectroscopy (MRS). BASING, which consists of a frequency selective RF inversion pulse surrounded by spoiler gradient pulses of opposite signs, was used to dephase stopband resonances and minimally impact passband metabolites. Passband phase linearity was achieved with a dual BASING scheme. Using the Shinnar-Le Roux algorithm, a highpass filter was designed to suppress water and rephase the lactate methyl doublet independently of TE, and water/lipid bandstop filters were designed for the brain and prostate. Phantom and in vivo experimental 3D PRESS CSI data were acquired at 1.5 T to compare BASING with CHESS and STIR suppression. With BASING, the measured suppression factor was over 100 times higher than with CHESS or STIR causing baseline distortions to be removed. It was shown that BASING can be incorporated into a variety of sequences to offer improved suppression in the presence of B1 and T1 inhomogeneites.
NASA Astrophysics Data System (ADS)
Windhari, Ayuty; Handayani, Gunawan
2015-04-01
The 3D inversion gravity anomaly to estimate topographical density using a matlab source code from gridded data provided by Parker Oldenburg algorithm based on fast Fourier transform was computed. We extend and improved the source code of 3DINVERT.M invented by Gomez Ortiz and Agarwal (2005) using the relationship between Fourier transform of the gravity anomaly and the sum of the Fourier transform from the topography density. We gave density contrast between the two media to apply the inversion. FFT routine was implemented to construct amplitude spectrum to the given mean depth. The results were presented as new graphics of inverted topography density, the gravity anomaly due to the inverted topography and the difference between the input gravity data and the computed ones. It terminates when the RMS error is lower than pre-assigned value used as convergence criterion or until maximum of iterations is reached. As an example, we used the matlab program on gravity data of Banten region, Indonesia.
A treatment planning code for inverse planning and 3D optimization in hadrontherapy.
Bourhaleb, F; Marchetto, F; Attili, A; Pittà, G; Cirio, R; Donetti, M; Giordanengo, S; Givehchi, N; Iliescu, S; Krengli, M; La Rosa, A; Massai, D; Pecka, A; Pardo, J; Peroni, C
2008-09-01
The therapeutic use of protons and ions, especially carbon ions, is a new technique and a challenge to conform the dose to the target due to the energy deposition characteristics of hadron beams. An appropriate treatment planning system (TPS) is strictly necessary to take full advantage. We developed a TPS software, ANCOD++, for the evaluation of the optimal conformal dose. ANCOD++ is an analytical code using the voxel-scan technique as an active method to deliver the dose to the patient, and provides treatment plans with both proton and carbon ion beams. The iterative algorithm, coded in C++ and running on Unix/Linux platform, allows the determination of the best fluences of the individual beams to obtain an optimal physical dose distribution, delivering a maximum dose to the target volume and a minimum dose to critical structures. The TPS is supported by Monte Carlo simulations with the package GEANT3 to provide the necessary physical lookup tables and verify the optimized treatment plans. Dose verifications done by means of full Monte Carlo simulations show an overall good agreement with the treatment planning calculations. We stress the fact that the purpose of this work is the verification of the physical dose and a next work will be dedicated to the radiobiological evaluation of the equivalent biological dose.
NASA Astrophysics Data System (ADS)
Preza, Chrysanthe; Miller, Michael I.; Conchello, Jose-Angel
1993-07-01
We have shown that the linear least-squares (LLS) estimate of the intensities of a 3-D object obtained from a set of optical sections is unstable due to the inversion of small and zero-valued eigenvalues of the point-spread function (PSF) operator. The LLS solution was regularized by constraining it to lie in a subspace spanned by the eigenvectors corresponding to a selected number of the largest eigenvalues. In this paper we extend the regularized LLS solution to a maximum a posteriori (MAP) solution induced by a prior formed from a 'Good's like' smoothness penalty. This approach also yields a regularized linear estimator which reduces noise as well as edge artifacts in the reconstruction. The advantage of the linear MAP (LMAP) estimate over the current regularized LLS (RLLS) is its ability to regularize the inverse problem by smoothly penalizing components in the image associated with small eigenvalues. Computer simulations were performed using a theoretical PSF and a simple phantom to compare the two regularization techniques. It is shown that the reconstructions using the smoothness prior, give superior variance and bias results compared to the RLLS reconstructions. Encouraging reconstructions obtained with the LMAP method from real microscopical images of a 10 micrometers fluorescent bead, and a four-cell Volvox embryo are shown.
Speidel, M; Hatt, C; Tomkowiak, M; Raval, A; Funk, T
2014-06-15
Purpose: To develop a method for the fusion of 3D echocardiography and Scanning-Beam Digital X-ray (SBDX) fluoroscopy to assist with catheter device and soft tissue visualization during interventional procedures. Methods: SBDX is a technology for low-dose inverse geometry x-ray fluoroscopy that performs digital tomosynthesis at multiple planes in real time. In this study, transesophageal echocardiography (TEE) images were fused with SBDX images by estimating the 3D position and orientation (the “pose”) of the TEE probe within the x-ray coordinate system and then spatially transforming the TEE image data to match this pose. An initial pose estimate was obtained through tomosynthesis-based 3D localization of points along the probe perimeter. Position and angle estimates were then iteratively refined by comparing simulated projections of a 3D probe model against SBDX x-ray images. Algorithm performance was quantified by imaging a TEE probe in different known orientations and locations within the x-ray field (0-30 degree tilt angle, up to 50 mm translation). Fused 3D TEE/SBDX imaging was demonstrated by imaging a tissue-mimicking polyvinyl alcohol cylindrical cavity as a catheter was navigated along the cavity axis. Results: Detected changes in probe tilt angle agreed with the known changes to within 1.2 degrees. For a 50 mm translation along the source-detector axis, the detected translation was 50.3 mm. Errors for in-plane translations ranged from 0.1 to 0.9 mm. In a fused 3D TEE/SBDX display, the catheter device was well visualized and coincident with the device shadow in the TEE images. The TEE images portrayed phantom boundaries that were not evident under x-ray. Conclusion: Registration of soft tissue anatomy derived from TEE imaging and device imaging from SBDX x-ray fluoroscopy is feasible. The simultaneous 3D visualization of these two modalities may be useful in interventional procedures involving the navigation of devices to soft tissue anatomy.
NASA Astrophysics Data System (ADS)
Kiyan, D.; Jones, A. G.; Fullea, J.; Ledo, J.; Siniscalchi, A.; Romano, G.
2013-12-01
The overarching objectives of the second phase of the PICASSO (Program to Investigate Convective Alboran Sea System Overturn) project and the concomitant TopoMed (Plate re-organization in the western Mediterranean: Lithospheric causes and topographic consequences - an ESF EUROSCORES TOPO-EUROPE project) project are (i) to provide new electrical conductivity constraints on the crustal and lithospheric structures of the Atlas Mountains, and (ii) to test the hypotheses for explaining the observation of a 'missing' mantle root inferred from surface heat flow, gravity and geoid anomalies, elevation and seismic data modeling (i.e. Zeyen et al., 2005; Teixell et al., 2005; Fullea et al., 2010). We present the results from three-dimensional (3-D) MT inversion of data from two MT profiles employing the parallel version of Modular system for Electromagnetic inversion (ModEM; Egbert & Kelbert, 2012) code. For the profile in eastern Morocco, passing through Midelt, a distinct conductivity difference between the Middle-High Atlas (conductive) and Anti Atlas (resistive) correlates with the South Atlas Front fault, the depth extent of which appears to be limited to the uppermost mantle (approximately 55 km). In all inverse solutions, the crust and the upper mantle show a resistive signature (750 Ωm - 1,000 Ωm) beneath the Anti Atlas to a depth of 100 km, which is the part of stable West African Craton. Our results are at variance with the proposed thin lithosphere beneath the Middle-High Atlas as we see no evidence for a shallow asthenosphere. Our second profile lies in western Morocco traversing through Marrakech. For the first time, the electrical resistivity distribution in the crust and in the upper mantle of Western High Atlas has been studied. Our 3-D resistivity model shows that conductive (1-20 Ωm) western High Atlas is confined by two resistive basins (>1,000 Ωm), Souss basin to the south and Houz basin to the north. At the southern boundary of the western High Atlas
NASA Astrophysics Data System (ADS)
Bignardi, S.; Mantovani, A.; Abu Zeid, N.
2016-08-01
OpenHVSR is a computer program developed in the Matlab environment, designed for the simultaneous modeling and inversion of large Horizontal-to-Vertical Spectral Ratio (HVSR or H/V) datasets in order to construct 2D/3D subsurface models (topography included). The program is designed to provide a high level of interactive experience to the user and still to be of intuitive use. It implements several effective and established tools already present in the code ModelHVSR by Herak (2008), and many novel features such as: -confidence evaluation on lateral heterogeneity -evaluation of frequency dependent single parameter impact on the misfit function -relaxation of Vp/Vs bounds to allow for water table inclusion -a new cost function formulation which include a slope dependent term for fast matching of peaks, which greatly enhances convergence in case of low quality HVSR curves inversion -capability for the user of editing the subsurface model at any time during the inversion and capability to test the changes before acceptance. In what follows, we shall present many features of the program and we shall show its capabilities on both simulated and real data. We aim to supply a powerful tool to the scientific and professional community capable of handling large sets of HSVR curves, to retrieve the most from their microtremor data within a reduced amount of time and allowing the experienced scientist the necessary flexibility to integrate into the model their own geological knowledge of the sites under investigation. This is especially desirable now that microtremor testing has become routinely used. After testing the code over different datasets, both simulated and real, we finally decided to make it available in an open source format. The program is available by contacting the authors.
NASA Astrophysics Data System (ADS)
An, Zhiguo; Di, Qingyun
2016-12-01
The Alxa area in Inner Mongolia has been selected as a possible site for geological disposal of high-level radioactive waste (HLRW). Based on results of a previous study on crustal stability, the Tamusu rock mass has been chosen as the target. To determine the geological structure of this rock mass, aeromagnetic and gravity data are collected and inverted. Three-dimensional (3D) inversion horizontal slices show that the internal density of the rock mass and the distribution of magnetic properties are not uniform, with fractures and fragmentation being present. To confirm this result, the controlled source audio-frequency magnetotelluric method (CSAMT) was applied to explore the geological structures, the typical CSAMT sounding curve was analyzed, and the response characteristics of the geological structure and surrounding rock are distinguished. The original data were processed and interpreted in combination with data from surface geology and drilling and logging data. It is found that the CSAMT results were consistent with those from 3D inversion of the gravity and magnetic data, confirming the existence of fractures and fragmentation in the exploration area.
A hybrid method for the computation of quasi-3D seismograms.
NASA Astrophysics Data System (ADS)
Masson, Yder; Romanowicz, Barbara
2013-04-01
The development of powerful computer clusters and efficient numerical computation methods, such as the Spectral Element Method (SEM) made possible the computation of seismic wave propagation in a heterogeneous 3D earth. However, the cost of theses computations is still problematic for global scale tomography that requires hundreds of such simulations. Part of the ongoing research effort is dedicated to the development of faster modeling methods based on the spectral element method. Capdeville et al. (2002) proposed to couple SEM simulations with normal modes calculation (C-SEM). Nissen-Meyer et al. (2007) used 2D SEM simulations to compute 3D seismograms in a 1D earth model. Thanks to these developments, and for the first time, Lekic et al. (2011) developed a 3D global model of the upper mantle using SEM simulations. At the local and continental scale, adjoint tomography that is using a lot of SEM simulation can be implemented on current computers (Tape, Liu et al. 2009). Due to their smaller size, these models offer higher resolution. They provide us with images of the crust and the upper part of the mantle. In an attempt to teleport such local adjoint tomographic inversions into the deep earth, we are developing a hybrid method where SEM computation are limited to a region of interest within the earth. That region can have an arbitrary shape and size. Outside this region, the seismic wavefield is extrapolated to obtain synthetic data at the Earth's surface. A key feature of the method is the use of a time reversal mirror to inject the wavefield induced by distant seismic source into the region of interest (Robertsson and Chapman 2000). We compute synthetic seismograms as follow: Inside the region of interest, we are using regional spectral element software RegSEM to compute wave propagation in 3D. Outside this region, the wavefield is extrapolated to the surface by convolution with the Green's functions from the mirror to the seismic stations. For now, these
A 3D discontinuous Galerkin finite-element method for teleseismic modelling.
NASA Astrophysics Data System (ADS)
monteiller, vadim; Beller, Stephen; Nolet, Guust; Operto, Stephane; Virieux, Jean
2014-05-01
The massive development of dense seismic arrays and the rapide increase in computing capacity allow today to consider application of full waveform inversion of teleseismic data for high-resolution lithospheric imaging. We present an hybrid numerical method that allows for the modelling of short period telesismic waves in 3D lithospheric target with the discontinuous Galerkin finite elements method, opennig the possibility to perform waveform inversion of seismograms recorded by dense regional broadband arrays. In order to reduce the computational cost of the forward-problem, we developed a method that relies on multi-core parallel computing and computational-domain reduction. We defined two nested levels for parallelism based on MPI library, which are managed by two MPI communicators. Firstly, we use a domain partitionning strategy, assigning one subdomain to one cpu and, secondly we distribute telesismic sources on different copies of the partitioned domain. However, despite the supercomputer ability, the forward-problem remains expensive for telesismic configuration especially when 3D numerical methods are considered. In order to perform the forward problem in a reasonable amount of time, we reduce the computational domain in which full waveform modelling is performed. We defined a 3D regional domain located below the seismological network that is embeded in a background homogeneous or axisymetric model, in which the seismic wavefield can be computed efficiently. The background wavefield is used to compute the full wavefield in the 3D regional domain using the so-called total-field/scattered-field technique (Alterman & Karal (1968),Taflove & Hagness (2005)), which relies on the decomposition of the wavefield into a background and a scattered wavefields. The computational domain is subdivided intro three subdomains: an outer domain formed by the perfectly-mathed absorbing layers, an intermediate zone in which only the outgoing wavefield scattered by the
NASA Astrophysics Data System (ADS)
van Velden, Floris H. P.; Kloet, Reina W.; van Berckel, Bart N. M.; Wolfensberger, Saskia P. A.; Lammertsma, Adriaan A.; Boellaard, Ronald
2008-06-01
The High-Resolution Research Tomograph (HRRT) is a dedicated human brain positron emission tomography (PET) scanner. Recently, a 3D filtered backprojection (3D-FBP) reconstruction method has been implemented to reduce bias in short duration frames, currently observed in 3D ordinary Poisson OSEM (3D-OP-OSEM) reconstructions. Further improvements might be expected using a new method of variance reduction on randoms (VRR) based on coincidence histograms instead of using the delayed window technique (DW) to estimate randoms. The goal of this study was to evaluate VRR in combination with 3D-OP-OSEM and 3D-FBP reconstruction techniques. To this end, several phantom studies and a human brain study were performed. For most phantom studies, 3D-OP-OSEM showed higher accuracy of observed activity concentrations with VRR than with DW. However, both positive and negative deviations in reconstructed activity concentrations and large biases of grey to white matter contrast ratio (up to 88%) were still observed as a function of scan statistics. Moreover 3D-OP-OSEM+VRR also showed bias up to 64% in clinical data, i.e. in some pharmacokinetic parameters as compared with those obtained with 3D-FBP+VRR. In the case of 3D-FBP, VRR showed similar results as DW for both phantom and clinical data, except that VRR showed a better standard deviation of 6-10%. Therefore, VRR should be used to correct for randoms in HRRT PET studies.
Filtering method for 3D laser scanning point cloud
NASA Astrophysics Data System (ADS)
Liu, Da; Wang, Li; Hao, Yuncai; Zhang, Jun
2015-10-01
In recent years, with the rapid development of the hardware and software of the three-dimensional model acquisition, three-dimensional laser scanning technology is utilized in various aspects, especially in space exploration. The point cloud filter is very important before using the data. In the paper, considering both the processing quality and computing speed, an improved mean-shift point cloud filter method is proposed. Firstly, by analyze the relevance of the normal vector between the upcoming processing point and the near points, the iterative neighborhood of the mean-shift is selected dynamically, then the high frequency noise is constrained. Secondly, considering the normal vector of the processing point, the normal vector is updated. Finally, updated position is calculated for each point, then each point is moved in the normal vector according to the updated position. The experimental results show that the large features are retained, at the same time, the small sharp features are also existed for different size and shape of objects, so the target feature information is protected precisely. The computational complexity of the proposed method is not high, it can bring high precision results with fast speed, so it is very suitable for space application. It can also be utilized in civil, such as large object measurement, industrial measurement, car navigation etc. In the future, filter with the help of point strength will be further exploited.
GPU Accelerated Spectral Element Methods: 3D Euler equations
NASA Astrophysics Data System (ADS)
Abdi, D. S.; Wilcox, L.; Giraldo, F.; Warburton, T.
2015-12-01
A GPU accelerated nodal discontinuous Galerkin method for the solution of three dimensional Euler equations is presented. The Euler equations are nonlinear hyperbolic equations that are widely used in Numerical Weather Prediction (NWP). Therefore, acceleration of the method plays an important practical role in not only getting daily forecasts faster but also in obtaining more accurate (high resolution) results. The equation sets used in our atomospheric model NUMA (non-hydrostatic unified model of the atmosphere) take into consideration non-hydrostatic effects that become more important with high resolution. We use algorithms suitable for the single instruction multiple thread (SIMT) architecture of GPUs to accelerate solution by an order of magnitude (20x) relative to CPU implementation. For portability to heterogeneous computing environment, we use a new programming language OCCA, which can be cross-compiled to either OpenCL, CUDA or OpenMP at runtime. Finally, the accuracy and performance of our GPU implementations are veried using several benchmark problems representative of different scales of atmospheric dynamics.
Multi-crosswell profile 3D imaging and method
Washbourne, John K.; Rector, III, James W.; Bube, Kenneth P.
2002-01-01
Characterizing the value of a particular property, for example, seismic velocity, of a subsurface region of ground is described. In one aspect, the value of the particular property is represented using at least one continuous analytic function such as a Chebychev polynomial. The seismic data may include data derived from at least one crosswell dataset for the subsurface region of interest and may also include other data. In either instance, data may simultaneously be used from a first crosswell dataset in conjunction with one or more other crosswell datasets and/or with the other data. In another aspect, the value of the property is characterized in three dimensions throughout the region of interest using crosswell and/or other data. In still another aspect, crosswell datasets for highly deviated or horizontal boreholes are inherently useful. The method is performed, in part, by fitting a set of vertically spaced layer boundaries, represented by an analytic function such as a Chebychev polynomial, within and across the region encompassing the boreholes such that a series of layers is defined between the layer boundaries. Initial values of the particular property are then established between the layer boundaries and across the subterranean region using a series of continuous analytic functions. The continuous analytic functions are then adjusted to more closely match the value of the particular property across the subterranean region of ground to determine the value of the particular property for any selected point within the region.
Tissue elasticity measurement method using forward and inversion algorithms
NASA Astrophysics Data System (ADS)
Lee, Jong-Ha; Won, Chang-Hee; Park, Hee-Jun; Ku, Jeonghun; Heo, Yun Seok; Kim, Yoon-Nyun
2013-03-01
Elasticity is an important indicator of tissue health, with increased stiffness pointing to an increased risk of cancer. We investigated a tissue elasticity measurement method using forward and inversion algorithms for the application of early breast tumor identification. An optical based elasticity measurement system is developed to capture images of the embedded lesions using total internal reflection principle. From elasticity images, we developed a novel method to estimate the elasticity of the embedded lesion using 3-D finite-element-model-based forward algorithm, and neural-network-based inversion algorithm. The experimental results showed that the proposed characterization method can be diffierentiate the benign and malignant breast lesions.
NASA Astrophysics Data System (ADS)
Kaban, Mikhail K.; Stolk, Ward; Tesauro, Magdala; El Khrepy, Sami; Al-Arifi, Nassir; Beekman, Fred; Cloetingh, Sierd A. P. L.
2016-11-01
We construct a new-generation 3D density model of the upper mantle of Asia and its surrounding areas based on a joint interpretation of several data sets. A recent model of the crust combining nearly all available seismic data is employed to calculate the impact of the crust on the gravity anomalies and observed topography and to estimate the residual mantle anomalies and residual topography. These fields are jointly inverted to calculate the density variations in the lithosphere and upper mantle down to 325 km. As an initial approximation, we estimate density variations using a seismic tomography model. Seismic velocity variations are converted into temperatures and then to density variations based on mineral physics constraints. In the Occam-type inversion, we fit both the residual mantle gravity anomalies and residual topography by finding deviations to the initial model. The obtained corrections improve the resolution of the initial model and reflect important features of the mantle structure that are not well resolved by the seismic tomography. The most significant negative corrections of the upper mantle density, found in the Siberian and East European cratons, can be associated with depleted mantle material. The most pronounced positive density anomalies are found beneath the Tarim and South Caspian basins, Barents Sea, and Bay of Bengal. We attribute these anomalies to eclogites in the uppermost mantle, which have substantially affected the evolution of the basins. Furthermore, the obtained results provide evidence for the presence of eclogites in the oceanic subducting mantle lithosphere.
3D structural cartography based on magnetic and gravity data inversion - Case of South-West Algeria
NASA Astrophysics Data System (ADS)
Hichem, Boubekri; Mohamed, Hamoudi; Abderrahmane, Bendaoud; Ivan, Priezzhev; Karim, Allek
2015-12-01
This article presents the results of 3D aeromagnetic and gravity data inversion across the West African Craton (WAC) in South West Algeria. Although the used data have different origins and resolutions, the performed manual and automatic interpretation for each dataset shows a good correlation with some earlier geological studies of the region, major structural aspects of the locality, as well as other new structural features. Many curved faults parallel to the suture zone indicate the presence of terranes or the metacratonization of the WAC and a related fault network of great importance with NE-SW and NW-SE directions. The mega shear zones from north to south, which are visible at the surface in the Hoggar, are also observed along the Saharan Platform. The fact that these faults are observed since the Cambro-Ordovician in all crust (including the Saharan Basins) indicates that this area, which is situated on the border of the WAC, remained active during the entire period of time.
NASA Astrophysics Data System (ADS)
Lestari, Titik; Nugraha, Andri Dian
2015-04-01
Southern Sumatra region has a high level of seismicity due to the influence of the subduction system, Sumatra fault, Mentawai fault and stretching zone activities. The seismic activities of Southern Sumatra region are recorded by Meteorological Climatological and Geophysical Agency (MCGA's) Seismograph network. In this study, we used earthquake data catalog compiled by MCGA for 3013 events from 10 seismic stations around Southern Sumatra region for time periods of April 2009 - April 2014 in order to invert for the 3-D seismic velocities structure (Vp, Vs, and Vp/Vs ratio). We applied double-difference seismic tomography method (tomoDD) to determine Vp, Vs and Vp/Vs ratio with hypocenter adjustment. For the inversion procedure, we started from the initial 1-D seismic velocity model of AK135 and constant Vp/Vs of 1.73. The synthetic travel time from source to receiver was calculated using ray pseudo-bending technique, while the main tomographic inversion was applied using LSQR method. The resolution model was evaluated using checkerboard test and Derivative Weigh Sum (DWS). Our preliminary results show low Vp and Vs anomalies region along Bukit Barisan which is may be associated with weak zone of Sumatran fault and migration of partial melted material. Low velocity anomalies at 30-50 km depth in the fore arc region may indicated the hydrous material circulation because the slab dehydration. We detected low seismic seismicity in the fore arc region that may be indicated as seismic gap. It is coincides contact zone of high and low velocity anomalies. And two large earthquakes (Jambi and Mentawai) also occurred at the contact of contrast velocity.
Lestari, Titik; Nugraha, Andri Dian
2015-04-24
Southern Sumatra region has a high level of seismicity due to the influence of the subduction system, Sumatra fault, Mentawai fault and stretching zone activities. The seismic activities of Southern Sumatra region are recorded by Meteorological Climatological and Geophysical Agency (MCGA’s) Seismograph network. In this study, we used earthquake data catalog compiled by MCGA for 3013 events from 10 seismic stations around Southern Sumatra region for time periods of April 2009 – April 2014 in order to invert for the 3-D seismic velocities structure (Vp, Vs, and Vp/Vs ratio). We applied double-difference seismic tomography method (tomoDD) to determine Vp, Vs and Vp/Vs ratio with hypocenter adjustment. For the inversion procedure, we started from the initial 1-D seismic velocity model of AK135 and constant Vp/Vs of 1.73. The synthetic travel time from source to receiver was calculated using ray pseudo-bending technique, while the main tomographic inversion was applied using LSQR method. The resolution model was evaluated using checkerboard test and Derivative Weigh Sum (DWS). Our preliminary results show low Vp and Vs anomalies region along Bukit Barisan which is may be associated with weak zone of Sumatran fault and migration of partial melted material. Low velocity anomalies at 30-50 km depth in the fore arc region may indicated the hydrous material circulation because the slab dehydration. We detected low seismic seismicity in the fore arc region that may be indicated as seismic gap. It is coincides contact zone of high and low velocity anomalies. And two large earthquakes (Jambi and Mentawai) also occurred at the contact of contrast velocity.
Nerves of Steel: a Low-Cost Method for 3D Printing the Cranial Nerves.
Javan, Ramin; Davidson, Duncan; Javan, Afshin
2017-02-21
Steady-state free precession (SSFP) magnetic resonance imaging (MRI) can demonstrate details down to the cranial nerve (CN) level. High-resolution three-dimensional (3D) visualization can now quickly be performed at the workstation. However, we are still limited by visualization on flat screens. The emerging technologies in rapid prototyping or 3D printing overcome this limitation. It comprises a variety of automated manufacturing techniques, which use virtual 3D data sets to fabricate solid forms in a layer-by-layer technique. The complex neuroanatomy of the CNs may be better understood and depicted by the use of highly customizable advanced 3D printed models. In this technical note, after manually perfecting the segmentation of each CN and brain stem on each SSFP-MRI image, initial 3D reconstruction was performed. The bony skull base was also reconstructed from computed tomography (CT) data. Autodesk 3D Studio Max, available through freeware student/educator license, was used to three-dimensionally trace the 3D reconstructed CNs in order to create smooth graphically designed CNs and to assure proper fitting of the CNs into their respective neural foramina and fissures. This model was then 3D printed with polyamide through a commercial online service. Two different methods are discussed for the key segmentation and 3D reconstruction steps, by either using professional commercial software, i.e., Materialise Mimics, or utilizing a combination of the widely available software Adobe Photoshop, as well as a freeware software, OsiriX Lite.
Chajon, Enrique; Dumas, Isabelle; Touleimat, Mahmoud B.Sc.; Magne, Nicolas; Coulot, Jeremy; Verstraet, Rodolfe; Lefkopoulos, Dimitri; Haie-Meder, Christine
2007-11-01
Purpose: The purpose of this study was to evaluate the inverse planning simulated annealing (IPSA) software for the optimization of dose distribution in patients with cervix carcinoma treated with MRI-based pulsed-dose rate intracavitary brachytherapy. Methods and Materials: Thirty patients treated with a technique using a customized vaginal mold were selected. Dose-volume parameters obtained using the IPSA method were compared with the classic manual optimization method (MOM). Target volumes and organs at risk were delineated according to the Gynecological Brachytherapy Group/European Society for Therapeutic Radiology and Oncology recommendations. Because the pulsed dose rate program was based on clinical experience with low dose rate, dwell time values were required to be as homogeneous as possible. To achieve this goal, different modifications of the IPSA program were applied. Results: The first dose distribution calculated by the IPSA algorithm proposed a heterogeneous distribution of dwell time positions. The mean D90, D100, and V100 calculated with both methods did not differ significantly when the constraints were applied. For the bladder, doses calculated at the ICRU reference point derived from the MOM differed significantly from the doses calculated by the IPSA method (mean, 58.4 vs. 55 Gy respectively; p = 0.0001). For the rectum, the doses calculated at the ICRU reference point were also significantly lower with the IPSA method. Conclusions: The inverse planning method provided fast and automatic solutions for the optimization of dose distribution. However, the straightforward use of IPSA generated significant heterogeneity in dwell time values. Caution is therefore recommended in the use of inverse optimization tools with clinical relevance study of new dosimetric rules.
3D-2D registration of cerebral angiograms: a method and evaluation on clinical images.
Mitrovic, Uroš; Špiclin, Žiga; Likar, Boštjan; Pernuš, Franjo
2013-08-01
Endovascular image-guided interventions (EIGI) involve navigation of a catheter through the vasculature followed by application of treatment at the site of anomaly using live 2D projection images for guidance. 3D images acquired prior to EIGI are used to quantify the vascular anomaly and plan the intervention. If fused with the information of live 2D images they can also facilitate navigation and treatment. For this purpose 3D-2D image registration is required. Although several 3D-2D registration methods for EIGI achieve registration accuracy below 1 mm, their clinical application is still limited by insufficient robustness or reliability. In this paper, we propose a 3D-2D registration method based on matching a 3D vasculature model to intensity gradients of live 2D images. To objectively validate 3D-2D registration methods, we acquired a clinical image database of 10 patients undergoing cerebral EIGI and established "gold standard" registrations by aligning fiducial markers in 3D and 2D images. The proposed method had mean registration accuracy below 0.65 mm, which was comparable to tested state-of-the-art methods, and execution time below 1 s. With the highest rate of successful registrations and the highest capture range the proposed method was the most robust and thus a good candidate for application in EIGI.
Convergence of the point vortex method for the 3-D Euler equations
NASA Astrophysics Data System (ADS)
Hou, Thomas Y.; Lowengrub, John
1990-11-01
Consistency, stability, and convergence of a point vortex approximation to the 3-D incompressible Euler equations with smooth solutions. The 3-D algorithm considered is similar to the corresponding 3-D vortex are proved blob algorithm introduced by Beale and Majda; The discretization error is second-order accurate. Then the method is stable in l sup p norm for the particle trajectories and in w sup -1,p norm for discrete vorticity. Consequently, the method converges up to any time for which the Euler equations have a smooth solution. One immediate application of the convergence result is that the vortex filament method without smoothing also converges.
Iterative alternating sequential (IAS) method for radio tomography of asteroids in 3D
NASA Astrophysics Data System (ADS)
Pursiainen, S.; Kaasalainen, M.
2013-07-01
We present a feasibility study of the radio tomography of asteroids. We consider the simplest and most robust type of a radio experiment and physical model, related to the CONSERT (Comet Nucleus Sounding Experiment by Radiowave Transmission) setup, where an orbiter measures the propagation time and amplitude of a radio frequency signal between the orbiter and a transponder placed on an asteroid's surface. Contrary to CONSERT, we consider the simultaneous use of multiple transponders. We study two main questions: (i) what is the basic information content (reconstruction potential) of the data and the minimum number of transponders for recovering most of it and (ii) how to formulate Bayesian methods for an efficient 3D reconstruction. Our approach was to reconstruct the perturbations of a non-constant refractive index inside the asteroid based on simulated signal travel time measurements. We formulate this ill-posed inverse problem by an approximative linear forward (data prediction) model through optical path length and Snell's law, resulting in a formula closely related to the cone-beam and Radon transforms. The linear forward model was applied to three-dimensional asteroid geometries involving an isotropic and piecewise constant refractive index distribution composed of the unknown perturbation and a background given a priori. The inverse approach was based on a hierarchical Bayesian model. The reconstructions were produced via the iterative alternating sequential (IAS) maximum a posteriori (MAP) estimation algorithm. We explored the various aspects of the problem by considering the recovery of empty cavities inside an asteroid. Two different transponder setups, a spherical and a realistic computation geometry, as well as various cavity distributions were tested. The results suggest that (i) the information content of the travel time data is robust and allows a unique reconstruction with suitable methods; (ii) finding a reasonable reconstruction requires the use
NASA Astrophysics Data System (ADS)
Meqbel, N. M.; Egbert, G. D.; Kelbert, A.
2011-12-01
Long period (10-20,000 s) magnetotelluric (MT) data are being acquired in a series of temporary arrays deployed across the continental United States through the EMScope component of EarthScope. MT deployments in 2006-2011 have acquired data at 325 sites on an approximately regular grid, with the same nominal spacing as the USArray broadband seismic transportable array (~70 km). The MT sites span a rectangular area from NW Washington to NW Colorado. Here we present results of a 3-D inversion of the full data set. A number of conductive and resistive features appear consistently in the crust and upper mantle in essentially all of a large suite of 3-D inverse solutions. Extensive areas of high conductivity are found in the lower crust (up to a depth of ~ 40 km) beneath the Basin & Range in southeastern Oregon, as imaged by Patro and Egbert (2008). In our new model, this feature extends further to the south and to the east, where it merges with somewhat deeper (uppermost mantle) conductivities beneath the Yellowstone-Snake River Plain. This deeper feature, which extends from Yellowstone to the SW into northeastern Nevada, coincides with the track of the Yellowstone hotspot discussed e.g., in Smith et. al. (2008). The lower crust and the uppermost mantle in the northeastern part of the domain, covering the area from eastern Washington to Montana and continuing south to Wyoming, is generally resistive, with a few localized exceptions. This resistive zone coincides with high velocities discussed and interpreted, e.g., by Yang et. al. (2008) as thick, stable Proterozoic lithosphere. A number of large-scale anomalous features also appear consistently in the upper mantle, at depths of ~ 50 km to 300 km. Most striking is a zone of high resistivity on the western edge of the domain, beneath western Oregon, Washington and northern California in the area occupied by oceanic lithosphere of the Juan de Fuca Plate, which has subducted beneath the relatively more conductive
A review of 3D/2D registration methods for image-guided interventions.
Markelj, P; Tomaževič, D; Likar, B; Pernuš, F
2012-04-01
Registration of pre- and intra-interventional data is one of the key technologies for image-guided radiation therapy, radiosurgery, minimally invasive surgery, endoscopy, and interventional radiology. In this paper, we survey those 3D/2D data registration methods that utilize 3D computer tomography or magnetic resonance images as the pre-interventional data and 2D X-ray projection images as the intra-interventional data. The 3D/2D registration methods are reviewed with respect to image modality, image dimensionality, registration basis, geometric transformation, user interaction, optimization procedure, subject, and object of registration.
3D Discontinuous Galerkin elastic seismic wave modeling based upon a grid injection method
NASA Astrophysics Data System (ADS)
Monteiller, V.
2015-12-01
Full waveform inversion (FWI) is a seismic imaging method that estimates thesub-surface physical properties with a spatial resolution of the order of thewavelength. FWI is generally recast as the iterative optimization of anobjective function that measures the distance between modeled and recordeddata. In the framework of local descent methods, FWI requires to perform atleast two seismic modelings per source and per FWI iteration.Due to the resulting computational burden, applications of elastic FWI have been usuallyrestricted to 2D geometries. Despite the continuous growth of high-performancecomputing facilities, application of 3D elastic FWI to real-scale problemsremain computationally too expensive. To perform elastic seismic modeling with a reasonable amount of time, weconsider a reduced computational domain embedded in a larger background modelin which seismic sources are located. Our aim is to compute repeatedly thefull wavefield in the targeted domain after model alteration, once theincident wavefield has been computed once for all in the background model. Toachieve this goal, we use a grid injection method referred to as the Total-Field/Scattered-Field (TF/SF) technique in theelectromagnetic community. We implemented the Total-Field/Scattered-Field approach in theDiscontinuous Galerkin Finite Element method (DG-FEM) that is used to performmodeling in the local domain. We show how to interface the DG-FEM with any modeling engine (analytical solution, finite difference or finite elements methods) that is suitable for the background simulation. One advantage of the Total-Field/Scattered-Field approach is related to thefact that the scattered wavefield instead of the full wavefield enter thePMLs, hence making more efficient the absorption of the outgoing waves at theouter edges of the computational domain. The domain reduction in which theDG-FEM is applied allows us to use modest computational resources opening theway for high-resolution imaging by full
Inversion methods for interpretation of asteroid lightcurves
NASA Technical Reports Server (NTRS)
Kaasalainen, Mikko; Lamberg, L.; Lumme, K.
1992-01-01
We have developed methods of inversion that can be used in the determination of the three-dimensional shape or the albedo distribution of the surface of a body from disk-integrated photometry, assuming the shape to be strictly convex. In addition to the theory of inversion methods, we have studied the practical aspects of the inversion problem and applied our methods to lightcurve data of 39 Laetitia and 16 Psyche.
Commer, Michael; Helwig, Stefan, L.; Hordt, Andreas; Scholl,Carsten; Tezkan, Bulent
2006-06-14
Three long-offset transient electromagnetic (LOTEM) surveyswerecarried out at the active volcano Merapi in Central Java (Indonesia)during the years 1998, 2000, and 2001. The measurements focused on thegeneral resistivity structure of the volcanic edifice at depths of 0.5-2km and the further investigation of a southside anomaly. The measurementswere insufficient for a full 3D inversion scheme, which could enable theimaging of finely discretized resistivity distributions. Therefore, astable, damped least-squares joint-inversion approach is used to optimize3D models with a limited number of parameters. The mode ls feature therealistic simulation of topography, a layered background structure, andadditional coarse 3D blocks representing conductivity anomalies.Twenty-eight LOTEM transients, comprising both horizontal and verticalcomponents of the magnetic induction time derivative, were analyzed. Inview of the few unknowns, we were able to achieve reasonable data fits.The inversion results indicate an upwelling conductor below the summit,suggesting hydrothermal activity in the central volcanic complex. Ashallow conductor due to a magma-filled chamber, at depths down to 1 kmbelow the summit, suggested by earlier seismic studies, is not indicatedby the inversion results. In conjunction with an anomalous-density model,derived from arecent gravity study, our inversion results provideinformation about the southern geological structure resulting from amajor sector collapse during the Middle Merapi period. The density modelallows to assess a porosity range andthus an estimated vertical salinityprofile to explain the high conductivities on a larger scale, extendingbeyond the foothills of Merapi.
Using Adjoint Methods to Improve 3-D Velocity Models of Southern California
NASA Astrophysics Data System (ADS)
Liu, Q.; Tape, C.; Maggi, A.; Tromp, J.
2006-12-01
We use adjoint methods popular in climate and ocean dynamics to calculate Fréchet derivatives for tomographic inversions in southern California. The Fréchet derivative of an objective function χ(m), where m denotes the Earth model, may be written in the generic form δχ=int Km(x) δln m(x) d3x, where δln m=δ m/m denotes the relative model perturbation. For illustrative purposes, we construct the 3-D finite-frequency banana-doughnut kernel Km, corresponding to the misfit of a single traveltime measurement, by simultaneously computing the 'adjoint' wave field s† forward in time and reconstructing the regular wave field s backward in time. The adjoint wave field is produced by using the time-reversed velocity at the receiver as a fictitious source, while the regular wave field is reconstructed on the fly by propagating the last frame of the wave field saved by a previous forward simulation backward in time. The approach is based upon the spectral-element method, and only two simulations are needed to produce density, shear-wave, and compressional-wave sensitivity kernels. This method is applied to the SCEC southern California velocity model. Various density, shear-wave, and compressional-wave sensitivity kernels are presented for different phases in the seismograms. We also generate 'event' kernels for Pnl, S and surface waves, which are the Fréchet kernels of misfit functions that measure the P, S or surface wave traveltime residuals at all the receivers simultaneously for one particular event. Effectively, an event kernel is a sum of weighted Fréchet kernels, with weights determined by the associated traveltime anomalies. By the nature of the 3-D simulation, every event kernel is also computed based upon just two simulations, i.e., its construction costs the same amount of computation time as an individual banana-doughnut kernel. One can think of the sum of the event kernels for all available earthquakes, called the 'misfit' kernel, as a graphical
NASA Astrophysics Data System (ADS)
Mashayekhi, Parisa; Ghorbani-Dashtaki, Shoja; Mosaddeghi, Mohammad Reza; Shirani, Hossein; Nodoushan, Ali Reza Mohammadi
2016-04-01
In this study, HYDRUS-2D/3D was used to simulate ponded infiltration through double-ring infiltrometers into a hypothetical loamy soil profile. Twelve scenarios of inverse modelling (divided into three groups) were considered for estimation of Mualem-van Genuchten hydraulic parameters. In the first group, simulation was carried out solely using cumulative infiltration data. In the second group, cumulative infiltration data plus water content at h = -330 cm (field capacity) were used as inputs. In the third group, cumulative infiltration data plus water contents at h = -330 cm (field capacity) and h = -15 000 cm (permanent wilting point) were used simultaneously as predictors. The results showed that numerical inverse modelling of the double-ring infiltrometer data provided a reliable alternative method for determining soil hydraulic parameters. The results also indicated that by reducing the number of hydraulic parameters involved in the optimization process, the simulation error is reduced. The best one in infiltration simulation which parameters α, n, and Ks were optimized using the infiltration data and field capacity as inputs. Including field capacity as additional data was important for better optimization/definition of soil hydraulic functions, but using field capacity and permanent wilting point simultaneously as additional data increased the simulation error.
3D X-ray imaging methods in support catheter ablations of cardiac arrhythmias.
Stárek, Zdeněk; Lehar, František; Jež, Jiří; Wolf, Jiří; Novák, Miroslav
2014-10-01
Cardiac arrhythmias are a very frequent illness. Pharmacotherapy is not very effective in persistent arrhythmias and brings along a number of risks. Catheter ablation has became an effective and curative treatment method over the past 20 years. To support complex arrhythmia ablations, the 3D X-ray cardiac cavities imaging is used, most frequently the 3D reconstruction of CT images. The 3D cardiac rotational angiography (3DRA) represents a modern method enabling to create CT like 3D images on a standard X-ray machine equipped with special software. Its advantage lies in the possibility to obtain images during the procedure, decreased radiation dose and reduction of amount of the contrast agent. The left atrium model is the one most frequently used for complex atrial arrhythmia ablations, particularly for atrial fibrillation. CT data allow for creation and segmentation of 3D models of all cardiac cavities. Recently, a research has been made proving the use of 3DRA to create 3D models of other cardiac (right ventricle, left ventricle, aorta) and non-cardiac structures (oesophagus). They can be used during catheter ablation of complex arrhythmias to improve orientation during the construction of 3D electroanatomic maps, directly fused with 3D electroanatomic systems and/or fused with fluoroscopy. An intensive development in the 3D model creation and use has taken place over the past years and they became routinely used during catheter ablations of arrhythmias, mainly atrial fibrillation ablation procedures. Further development may be anticipated in the future in both the creation and use of these models.
A 3D terrain reconstruction method of stereo vision based quadruped robot navigation system
NASA Astrophysics Data System (ADS)
Ge, Zhuo; Zhu, Ying; Liang, Guanhao
2017-01-01
To provide 3D environment information for the quadruped robot autonomous navigation system during walking through rough terrain, based on the stereo vision, a novel 3D terrain reconstruction method is presented. In order to solve the problem that images collected by stereo sensors have large regions with similar grayscale and the problem that image matching is poor at real-time performance, watershed algorithm and fuzzy c-means clustering algorithm are combined for contour extraction. Aiming at the problem of error matching, duel constraint with region matching and pixel matching is established for matching optimization. Using the stereo matching edge pixel pairs, the 3D coordinate algorithm is estimated according to the binocular stereo vision imaging model. Experimental results show that the proposed method can yield high stereo matching ratio and reconstruct 3D scene quickly and efficiently.
A method for 3D scene recognition using shadow information and a single fixed viewpoint
NASA Astrophysics Data System (ADS)
Bamber, David C.; Rogers, Jeremy D.; Page, Scott F.
2012-05-01
The ability to passively reconstruct a scene in 3D provides significant benefit to Situational Awareness systems employed in security and surveillance applications. Traditionally, passive 3D scene modelling techniques, such as Shape from Silhouette, require images from multiple sensor viewpoints, acquired either through the motion of a single sensor or from multiple sensors. As a result, the application of these techniques often attracts high costs, and presents numerous practical challenges. This paper presents a 3D scene reconstruction approach based on exploiting scene shadows, which only requires information from a single static sensor. This paper demonstrates that a large amount of 3D information about a scene can be interpreted from shadows; shadows reveal the shape of objects as viewed from a solar perspective and additional perspectives are gained as the sun arcs across the sky. The approach has been tested on synthetic and real data and is shown to be capable of reconstructing 3D scene objects where traditional 3D imaging methods fail. Providing the shadows within a scene are discernible, the proposed technique is able to reconstruct 3D objects that are camouflaged, obscured or even outside of the sensor's Field of View. The proposed approach can be applied in a range of applications, for example urban surveillance, checkpoint and border control, critical infrastructure protection and for identifying concealed or suspicious objects or persons which would normally be hidden from the sensor viewpoint.
Accurate compressed look up table method for CGH in 3D holographic display.
Gao, Chuan; Liu, Juan; Li, Xin; Xue, Gaolei; Jia, Jia; Wang, Yongtian
2015-12-28
Computer generated hologram (CGH) should be obtained with high accuracy and high speed in 3D holographic display, and most researches focus on the high speed. In this paper, a simple and effective computation method for CGH is proposed based on Fresnel diffraction theory and look up table. Numerical simulations and optical experiments are performed to demonstrate its feasibility. The proposed method can obtain more accurate reconstructed images with lower memory usage compared with split look up table method and compressed look up table method without sacrificing the computational speed in holograms generation, so it is called accurate compressed look up table method (AC-LUT). It is believed that AC-LUT method is an effective method to calculate the CGH of 3D objects for real-time 3D holographic display where the huge information data is required, and it could provide fast and accurate digital transmission in various dynamic optical fields in the future.
A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels.
Rutz, Alexandra L; Hyland, Kelly E; Jakus, Adam E; Burghardt, Wesley R; Shah, Ramille N
2015-03-04
A multimaterial bio-ink method using polyethylene glycol crosslinking is presented for expanding the biomaterial palette required for 3D bioprinting of more mimetic and customizable tissue and organ constructs. Lightly crosslinked, soft hydrogels are produced from precursor solutions of various materials and 3D printed. Rheological and biological characterizations are presented, and the promise of this new bio-ink synthesis strategy is discussed.
NASA Astrophysics Data System (ADS)
Miller, Craig A.; Williams-Jones, Glyn; Fournier, Dominique; Witter, Jeff
2017-02-01
Active, large volume, silicic magma systems are potentially the most hazardous form of volcanism on Earth. Knowledge of the location, size, and physical properties of silicic magma reservoirs, is therefore important for providing context in which to accurately interpret monitoring data and make informed hazard assessments. Accordingly, we present the first geophysical image of the Laguna del Maule volcanic field magmatic system, using a novel 3D inversion of gravity data constrained by thermodynamic modelling. The joint analysis of gravity and thermodynamic data allows for a rich interpretation of the magma system, and highlights the importance of considering the full thermodynamic effects on melt density, when interpreting gravity models of active magmatic systems. We image a 30 km3, low density, volatile rich magma reservoir, at around 2 km depth, containing at least 85% melt, hosted within a broader 115 km3 body interpreted as wholly or partially crystallised (>70% crystal) cumulate mush. Our model suggests a magmatic system with shallow, crystal poor magma, overlying deeper, crystal rich magma. Even though a large density contrast (-600 kg/m3) with the surrounding crust exists, the lithostatic load is 50% greater than the magma buoyancy force, suggesting buoyancy alone is insufficient to trigger an eruption. The reservoir is adjacent to the inferred extension of the Troncoso fault and overlies the location of an intruding sill, driving present day deformation. The reservoir is in close proximity to the 2.0 km3 Nieblas (rln) eruption at 2-3 ka, which we calculate tapped approximately 7% of the magma reservoir. However, we suggest that the present day magma system is not large enough to have fed all post-glacial eruptions, and that the location, or size of the system may have migrated or varied over time, with each eruption tapping only a small aliquot of the available magma. The presence of a shallow reservoir of volatile rich, near liquidus magma, in close
NASA Astrophysics Data System (ADS)
Meqbel, Naser M.; Egbert, Gary D.; Wannamaker, Philip E.; Kelbert, Anna; Schultz, Adam
2014-09-01
Long period (10-20,000 s) magnetotelluric (MT) data are being acquired across the continental USA on a quasi-regular grid of ˜70 km spacing as an electromagnetic component of the National Science Foundation EarthScope/USArray Program. These data are sensitive to fluids, melts, and other orogenic indicators, and thus provide a valuable complement to other components of EarthScope. We present and interpret results of 3-D MT data inversion from 325 sites acquired from 2006-2011 to provide a regional scale view of electrical resistivity from the middle crust to nearly the mantle transition zone, covering an area from NW Washington to NW Colorado. Beneath the active extensional subprovinces in the south-central region, on average we see a resistive upper crust, and then extensive areas of low resistivity in the lower crust and uppermost mantle. Further below, much of the upper half of the upper mantle appears moderately resistive, then subsequently the lower upper mantle becomes moderately conductive. This column suggests a dynamic process of moderately hydrated and fertile deeper upper mantle upwelling during extension, intersection of that material with the damp solidus causing dehydration and melting, and upward exodus of generated mafic melts to pond and exsolve saline fluids near Moho levels. Lithosphere here is very thin. To the east and northeast, thick sections of resistive lithosphere are imaged under the Wyoming and Medicine Hat Cratons. These are punctuated with numerous electrically conductive sutures presumably containing graphitic or sulfide-bearing meta-sediments deeply underthrust and emplaced during ancient collisions. Below Cascadia, the subducting Juan de Fuca and Gorda lithosphere appears highly resistive. Suspected oceanic lithosphere relicts in the central NW part of the model domain also are resistive, including the accreted “Siletzia” terrane beneath the Coast Ranges and Columbia Embayment, and the seismically fast “slab curtain” beneath
Novel scanning electron microscopy methods for analyzing the 3D structure of the Golgi apparatus.
Koga, Daisuke; Ushiki, Tatsuo; Watanabe, Tsuyoshi
2017-01-01
The structure of the Golgi apparatus has been extensively examined by light and electron microscopy, but details of its three-dimensional (3D) structure have remained unclear because of the technical limitations of conventional microscopy techniques. To overcome this problem, we have developed several novel scanning electron microscopy (SEM) methods for observing the 3D structure of subcellular organelles including the Golgi apparatus: (1) an osmium maceration method that facilitates SEM observation of membranous organelles, including the Golgi apparatus, by selectively removing soluble cytoplasmic proteins, (2) an osmium impregnation/maceration method that combines an osmium impregnation method with the osmium maceration method to determine the polarity of the Golgi apparatus by SEM, (3) a correlative light and SEM method that combines a cryosectioning technique with the osmium maceration method to enable correlation of the immunocytochemical distribution of molecules with the 3D ultrastructure of the Golgi apparatus, and (4) array tomography based on the systematic collection and integration of SEM images of serial ultrathin sections on glass slides for revealing the 3D ultrastructure of the entire Golgi apparatus. Together, the novel SEM techniques listed above can reveal the complete 3D structure of the Golgi apparatus in different cell types.
A Study of Static Shift Removal Methods in a 3D Magnetotelluric Survey at Pisagua Fault, Chile.
NASA Astrophysics Data System (ADS)
Bascur, J.; Comte, D.; Dias, D.; Siripunvaraporn, W.
2014-12-01
The static shift is one of the main problems that cause misleads in the magnetotellurics (MT) interpretation. This work presents a study comparing methods for removing the static shift effect from MT data acquired around the Pisagua Fault in Chile (2014). This evaluation considers the methods based on the joint inversion of the subsurface resistivity with the static shift effect and the calibration based on the TDEM data.First, it was developed a formulation in the data space, following the work of W. Siripunvaraporn (2005), that allows the joint inversion of the resistivity model and the static shift effect. That formulation makes it possible to use any linear representation for removing the static shift in the MT stations. This property permits compare the representation proposed by Sasaki (2004) and the static shift tensor, which use a 2x2 matrix to correct the effect. The last one is suggested to be a better model for 3D MT responses, because it can reproduce the distortion on the phase of MT data.Twenty one stations, measuring MT and TDEM methods, were acquired at the east side of the Pisagua town in the North of Chile (figure). In this place, there is an evident scarp on the topography that reveals the existence of an important fault (Pisagua Fault). Also, the Chilean desert at this location is characterized by the presence of shallow nitrate deposits (called "caliche"), whose have an elevated electrical resistance and can produce the static shift effect in the MT stations. For those reasons it was expected that the sector around the Pisagua Fault was an adequate place to evaluate static correction methods, because the data certainly would be distorted by the static shift and a successful correction method should reveal the fault observed at surface.The MT data acquired have mostly a 3D dimensionality (using A. Marti criteria, 2009) and show signs of being static shifted. A 3D inversion of this data, without considering the static shift, results in a poor
An exact inverse method for subsonic flows
NASA Technical Reports Server (NTRS)
Daripa, Prabir
1988-01-01
A new inverse method for the aerodynamic design of airfoils is presented for subcritical flows. The pressure distribution in this method can be prescribed as a function of the arclength of the still unknown body. It is shown that this inverse problem is mathematically equivalent to solving only one nonlinear boundary value problem subject to known Dirichlet data on the boundary.
Local motion-compensated method for high-quality 3D coronary artery reconstruction
Liu, Bo; Bai, Xiangzhi; Zhou, Fugen
2016-01-01
The 3D reconstruction of coronary artery from X-ray angiograms rotationally acquired on C-arm has great clinical value. While cardiac-gated reconstruction has shown promising results, it suffers from the problem of residual motion. This work proposed a new local motion-compensated reconstruction method to handle this issue. An initial image was firstly reconstructed using a regularized iterative reconstruction method. Then a 3D/2D registration method was proposed to estimate the residual vessel motion. Finally, the residual motion was compensated in the final reconstruction using the extended iterative reconstruction method. Through quantitative evaluation, it was found that high-quality 3D reconstruction could be obtained and the result was comparable to state-of-the-art method. PMID:28018741
Local motion-compensated method for high-quality 3D coronary artery reconstruction.
Liu, Bo; Bai, Xiangzhi; Zhou, Fugen
2016-12-01
The 3D reconstruction of coronary artery from X-ray angiograms rotationally acquired on C-arm has great clinical value. While cardiac-gated reconstruction has shown promising results, it suffers from the problem of residual motion. This work proposed a new local motion-compensated reconstruction method to handle this issue. An initial image was firstly reconstructed using a regularized iterative reconstruction method. Then a 3D/2D registration method was proposed to estimate the residual vessel motion. Finally, the residual motion was compensated in the final reconstruction using the extended iterative reconstruction method. Through quantitative evaluation, it was found that high-quality 3D reconstruction could be obtained and the result was comparable to state-of-the-art method.
Comparative study of inversion methods of three-dimensional NMR and sensitivity to fluids
NASA Astrophysics Data System (ADS)
Tan, Maojin; Wang, Peng; Mao, Keyu
2014-04-01
Three-dimensional nuclear magnetic resonance (3D NMR) logging can simultaneously measure transverse relaxation time (T2), longitudinal relaxation time (T1), and diffusion coefficient (D). These parameters can be used to distinguish fluids in the porous reservoirs. For 3D NMR logging, the relaxation mechanism and mathematical model, Fredholm equation, are introduced, and the inversion methods including Singular Value Decomposition (SVD), Butler-Reeds-Dawson (BRD), and Global Inversion (GI) methods are studied in detail, respectively. During one simulation test, multi-echo CPMG sequence activation is designed firstly, echo trains of the ideal fluid models are synthesized, then an inversion algorithm is carried on these synthetic echo trains, and finally T2-T1-D map is built. Futhermore, SVD, BRD, and GI methods are respectively applied into a same fluid model, and the computing speed and inversion accuracy are compared and analyzed. When the optimal inversion method and matrix dimention are applied, the inversion results are in good aggreement with the supposed fluid model, which indicates that the inversion method of 3D NMR is applieable for fluid typing of oil and gas reservoirs. Additionally, the forward modeling and inversion tests are made in oil-water and gas-water models, respectively, the sensitivity to the fluids in different magnetic field gradients is also examined in detail. The effect of magnetic gradient on fluid typing in 3D NMR logging is stuied and the optimal manetic gradient is choosen.
Implementation of algebraic stress models in a general 3-D Navier-Stokes method (PAB3D)
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.
1995-01-01
A three-dimensional multiblock Navier-Stokes code, PAB3D, which was developed for propulsion integration and general aerodynamic analysis, has been used extensively by NASA Langley and other organizations to perform both internal (exhaust) and external flow analysis of complex aircraft configurations. This code was designed to solve the simplified Reynolds Averaged Navier-Stokes equations. A two-equation k-epsilon turbulence model has been used with considerable success, especially for attached flows. Accurate predicting of transonic shock wave location and pressure recovery in separated flow regions has been more difficult. Two algebraic Reynolds stress models (ASM) have been recently implemented in the code that greatly improved the code's ability to predict these difficult flow conditions. Good agreement with Direct Numerical Simulation (DNS) for a subsonic flat plate was achieved with ASM's developed by Shih, Zhu, and Lumley and Gatski and Speziale. Good predictions were also achieved at subsonic and transonic Mach numbers for shock location and trailing edge boattail pressure recovery on a single-engine afterbody/nozzle model.
A measurement method for micro 3D shape based on grids-processing and stereovision technology
NASA Astrophysics Data System (ADS)
Li, Chuanwei; Liu, Zhanwei; Xie, Huimin
2013-04-01
An integrated measurement method for micro 3D surface shape by a combination of stereovision technology in a scanning electron microscope (SEM) and grids-processing methodology is proposed. The principle of the proposed method is introduced in detail. By capturing two images of the tested specimen with grids on the surface at different tilt angles in an SEM, the 3D surface shape of the specimen can be obtained. Numerical simulation is applied to analyze the feasibility of the proposed method. A validation experiment is performed here. The surface shape of the metal-wire/polymer-membrane structures with thermal deformation is reconstructed. By processing the surface grids of the specimen, the out-of-plane displacement field of the specimen surface is also obtained. Compared with the measurement results obtained by a 3D digital microscope, the experimental error of the proposed method is discussed
Numerical Investigation of 3D multichannel analysis of surface wave method
NASA Astrophysics Data System (ADS)
Wang, Limin; Xu, Yixian; Luo, Yinhe
2015-08-01
Multichannel analysis of surface wave (MASW) method is an efficient tool to obtain near-surface S-wave velocity, and it has gained popularity in engineering practice. Up to now, most examples of using the MASW technique are focused on 2D models or data from a 1D linear receiver spread. We propose a 3D MASW scheme. A finite-difference (FD) method is used to investigate the method using linear and fan-shaped receiver spreads. Results show that the 3D topography strongly affects propagation of Rayleigh waves. The energy concentration of dispersion image is distorted and bifurcated because of the influence of free-surface topography. These effects are reduced with the 3D MASW method. Lastly we investigate the relation between the array size and the resolution of dispersion measurement.
Zhang, Zhao; Liu, Juan; Jia, Jia; Li, Xin; Han, Jian; Hu, Bin; Wang, Yongtian
2013-08-01
Heavy computational load of computer-generated hologram (CGH) and imprecise intensity modulation of 3D images are crucial problems in dynamic holographic display. The nonuniform sampling method is proposed to speed up CGH generation and precisely modulate the reconstructed intensities of phase-only CGH. The proposed method can eliminate the redundant information properly, where 70% reduction in the storage amount can be reached when it is combined with the novel lookup table method. Multigrayscale modulation of reconstructed 3D images can be achieved successfully. Numerical simulations and optical experiments are performed, and both are in good agreement. It is believed that the proposed method can be used in 3D dynamic holographic display.
Efficient fabrication method of nano-grating for 3D holographic display with full parallax views.
Wan, Wenqiang; Qiao, Wen; Huang, Wenbin; Zhu, Ming; Fang, Zongbao; Pu, Donglin; Ye, Yan; Liu, Yanhua; Chen, Linsen
2016-03-21
Without any special glasses, multiview 3D displays based on the diffractive optics can present high resolution, full-parallax 3D images in an ultra-wide viewing angle. The enabling optical component, namely the phase plate, can produce arbitrarily distributed view zones by carefully designing the orientation and the period of each nano-grating pixel. However, such 3D display screen is restricted to a limited size due to the time-consuming fabricating process of nano-gratings on the phase plate. In this paper, we proposed and developed a lithography system that can fabricate the phase plate efficiently. Here we made two phase plates with full nano-grating pixel coverage at a speed of 20 mm^{2}/mins, a 500 fold increment in the efficiency when compared to the method of E-beam lithography. One 2.5-inch phase plate generated 9-view 3D images with horizontal-parallax, while the other 6-inch phase plate produced 64-view 3D images with full-parallax. The angular divergence in horizontal axis and vertical axis was 1.5 degrees, and 1.25 degrees, respectively, slightly larger than the simulated value of 1.2 degrees by Finite Difference Time Domain (FDTD). The intensity variation was less than 10% for each viewpoint, in consistency with the simulation results. On top of each phase plate, a high-resolution binary masking pattern containing amplitude information of all viewing zone was well aligned. We achieved a resolution of 400 pixels/inch and a viewing angle of 40 degrees for 9-view 3D images with horizontal parallax. In another prototype, the resolution of each view was 160 pixels/inch and the view angle was 50 degrees for 64-view 3D images with full parallax. As demonstrated in the experiments, the homemade lithography system provided the key fabricating technology for multiview 3D holographic display.
Receptor-based 3D-QSAR in Drug Design: Methods and Applications in Kinase Studies.
Fang, Cheng; Xiao, Zhiyan
2016-01-01
Receptor-based 3D-QSAR strategy represents a superior integration of structure-based drug design (SBDD) and three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis. It combines the accurate prediction of ligand poses by the SBDD approach with the good predictability and interpretability of statistical models derived from the 3D-QSAR approach. Extensive efforts have been devoted to the development of receptor-based 3D-QSAR methods and two alternative approaches have been exploited. One associates with computing the binding interactions between a receptor and a ligand to generate structure-based descriptors for QSAR analyses. The other concerns the application of various docking protocols to generate optimal ligand poses so as to provide reliable molecular alignments for the conventional 3D-QSAR operations. This review highlights new concepts and methodologies recently developed in the field of receptorbased 3D-QSAR, and in particular, covers its application in kinase studies.
a Method of 3d Measurement and Reconstruction for Cultural Relics in Museums
NASA Astrophysics Data System (ADS)
Zheng, S.; Zhou, Y.; Huang, R.; Zhou, L.; Xu, X.; Wang, C.
2012-07-01
Three-dimensional measurement and reconstruction during conservation and restoration of cultural relics have become an essential part of a modem museum regular work. Although many kinds of methods including laser scanning, computer vision and close-range photogrammetry have been put forward, but problems still exist, such as contradiction between cost and good result, time and fine effect. Aimed at these problems, this paper proposed a structure-light based method for 3D measurement and reconstruction of cultural relics in museums. Firstly, based on structure-light principle, digitalization hardware has been built and with its help, dense point cloud of cultural relics' surface can be easily acquired. To produce accurate 3D geometry model from point cloud data, multi processing algorithms have been developed and corresponding software has been implemented whose functions include blunder detection and removal, point cloud alignment and merge, 3D mesh construction and simplification. Finally, high-resolution images are captured and the alignment of these images and 3D geometry model is conducted and realistic, accurate 3D model is constructed. Based on such method, a complete system including hardware and software are built. Multi-kinds of cultural relics have been used to test this method and results prove its own feature such as high efficiency, high accuracy, easy operation and so on.
2D-3D hybrid stabilized finite element method for tsunami runup simulations
NASA Astrophysics Data System (ADS)
Takase, S.; Moriguchi, S.; Terada, K.; Kato, J.; Kyoya, T.; Kashiyama, K.; Kotani, T.
2016-09-01
This paper presents a two-dimensional (2D)-three-dimensional (3D) hybrid stabilized finite element method that enables us to predict a propagation process of tsunami generated in a hypocentral region, which ranges from offshore propagation to runup to urban areas, with high accuracy and relatively low computational costs. To be more specific, the 2D shallow water equation is employed to simulate the propagation of offshore waves, while the 3D Navier-Stokes equation is employed for the runup in urban areas. The stabilized finite element method is utilized for numerical simulations for both of the 2D and 3D domains that are independently discretized with unstructured meshes. The multi-point constraint and transmission methods are applied to satisfy the continuity of flow velocities and pressures at the interface between the resulting 2D and 3D meshes, since neither their spatial dimensions nor node arrangements are consistent. Numerical examples are presented to demonstrate the performance of the proposed hybrid method to simulate tsunami behavior, including offshore propagation and runup to urban areas, with substantially lower computation costs in comparison with full 3D computations.
Methods for 2-D and 3-D Endobronchial Ultrasound Image Segmentation.
Zang, Xiaonan; Bascom, Rebecca; Gilbert, Christopher; Toth, Jennifer; Higgins, William
2016-07-01
Endobronchial ultrasound (EBUS) is now commonly used for cancer-staging bronchoscopy. Unfortunately, EBUS is challenging to use and interpreting EBUS video sequences is difficult. Other ultrasound imaging domains, hampered by related difficulties, have benefited from computer-based image-segmentation methods. Yet, so far, no such methods have been proposed for EBUS. We propose image-segmentation methods for 2-D EBUS frames and 3-D EBUS sequences. Our 2-D method adapts the fast-marching level-set process, anisotropic diffusion, and region growing to the problem of segmenting 2-D EBUS frames. Our 3-D method builds upon the 2-D method while also incorporating the geodesic level-set process for segmenting EBUS sequences. Tests with lung-cancer patient data showed that the methods ran fully automatically for nearly 80% of test cases. For the remaining cases, the only user-interaction required was the selection of a seed point. When compared to ground-truth segmentations, the 2-D method achieved an overall Dice index = 90.0% ±4.9%, while the 3-D method achieved an overall Dice index = 83.9 ± 6.0%. In addition, the computation time (2-D, 0.070 s/frame; 3-D, 0.088 s/frame) was two orders of magnitude faster than interactive contour definition. Finally, we demonstrate the potential of the methods for EBUS localization in a multimodal image-guided bronchoscopy system.
a Method of 3d Freeform Fabrication Using a Curing of Photopolymer Resin
NASA Astrophysics Data System (ADS)
Kim, Jung Su; Kim, Dong Soo; Lee, Min Cheol; Lee, Won Hee
Recently, Study of 3D freeform fabrication method was working in the various applications. For example, in the powder base, it's laminated using a binding method or laser sintering method. However, the demerits of these methods are to take long time for post process and not enough to keep high strength of manufacturing part. The binding method needs the post process and the time for post process needs longer time than a manufacturing time. The sintering method has huge size of system with module of the laser. In this paper, we introduce a method of 3D freeform fabrication using a curing of photopolymer resin. A photopolymer curing method has simply fabrication process and high strength of manufacturing part. So, we are configuration the system with compact type module for the office environment and experiment a UV curing test with photopolymer resin in the 3D freeform fabrication method. In the conclusion, we fabricate the 3D freeform part, which is suitable to the office environment using a photopolymer curing method.
FNAS/Rapid Spectral Inversion Methods
NASA Technical Reports Server (NTRS)
Poularikas, Alexander
1997-01-01
The purpose of this investigation was to study methods and ways for rapid inversion programs involving the correlated k-method, and to study the infrared observations of Saturn from the Cassini orbiter.
Numerical non-LTE 3D radiative transfer using a multigrid method
NASA Astrophysics Data System (ADS)
Bjørgen, Johan P.; Leenaarts, Jorrit
2017-03-01
Context. 3D non-LTE radiative transfer problems are computationally demanding, and this sets limits on the size of the problems that can be solved. So far, multilevel accelerated lambda iteration (MALI) has been the method of choice to perform high-resolution computations in multidimensional problems. The disadvantage of MALI is that its computing time scales as O(n2), with n the number of grid points. When the grid becomes finer, the computational cost increases quadratically. Aims: We aim to develop a 3D non-LTE radiative transfer code that is more efficient than MALI. Methods: We implement a non-linear multigrid, fast approximation storage scheme, into the existing Multi3D radiative transfer code. We verify our multigrid implementation by comparing with MALI computations. We show that multigrid can be employed in realistic problems with snapshots from 3D radiative magnetohydrodynamics (MHD) simulations as input atmospheres. Results: With multigrid, we obtain a factor 3.3-4.5 speed-up compared to MALI. With full-multigrid, the speed-up increases to a factor 6. The speed-up is expected to increase for input atmospheres with more grid points and finer grid spacing. Conclusions: Solving 3D non-LTE radiative transfer problems using non-linear multigrid methods can be applied to realistic atmospheres with a substantial increase in speed.
Voxel-coding method for quantification of vascular structure from 3D images
NASA Astrophysics Data System (ADS)
Soltanian-Zadeh, Hamid; Shahrokni, Ali; Zoroofi, Reza A.
2001-05-01
This paper presents an image processing method for information extraction from 3D images of vasculature. It automates the study of vascular structures by extracting quantitative information such as skeleton, length, diameter, and vessel-to- tissue ratio for different vessels as well as their branches. Furthermore, it generates 3D visualization of vessels based on desired anatomical characteristics such as vessel diameter or 3D connectivity. Steps of the proposed approach are as follows. (1) Preprocessing, in which intensity adjustment, optimal thresholding, and median filtering are done. (2) 3D thinning, in which medial axis and skeleton of the vessels are found. (3) Branch labeling, in which different branches are identified and each voxel is assigned to the corresponding branch. (4) Quantitation, in which length of each branch is estimated, based on the number of voxels assigned to it, and its diameter is calculated using the medial axis direction. (5) Visualization, in which vascular structure is shown in 3D, using color coding and surface rendering methods. We have tested and evaluated the proposed algorithms using simulated images of multi-branch vessels and real confocal microscopic images of the vessels in rat brains. Experimental results illustrate performance of the methods and usefulness of the results for medical image analysis applications.
NASA Technical Reports Server (NTRS)
Zhao, W.; Newman, J. C., Jr.; Sutton, M. A.; Wu, X. R.; Shivakumar, K. N.
1995-01-01
Stress intensity factors for quarter-elliptical corner cracks emanating from a circular hole are determined using a 3-D weight function method combined with a 3-D finite element method. The 3-D finite element method is used to analyze uncracked configuration and provide stress distribution in the region where crack is to occur. Using this stress distribution as input, the 3-D weight function method is used to determine stress intensity factors. Three different loading conditions, i.e. remote tension, remote bending and wedge loading, are considered for a wide range in geometrical parameters. The significance in using 3-D uncracked stress distribution and the difference between single and double corner cracks are studied. Typical crack opening displacements are also provided. Comparisons are made with solutions available in the literature.
Ground motion simulations in Marmara (Turkey) region from 3D finite difference method
NASA Astrophysics Data System (ADS)
Aochi, Hideo; Ulrich, Thomas; Douglas, John
2016-04-01
In the framework of the European project MARSite (2012-2016), one of the main contributions from our research team was to provide ground-motion simulations for the Marmara region from various earthquake source scenarios. We adopted a 3D finite difference code, taking into account the 3D structure around the Sea of Marmara (including the bathymetry) and the sea layer. We simulated two moderate earthquakes (about Mw4.5) and found that the 3D structure improves significantly the waveforms compared to the 1D layer model. Simulations were carried out for different earthquakes (moderate point sources and large finite sources) in order to provide shake maps (Aochi and Ulrich, BSSA, 2015), to study the variability of ground-motion parameters (Douglas & Aochi, BSSA, 2016) as well as to provide synthetic seismograms for the blind inversion tests (Diao et al., GJI, 2016). The results are also planned to be integrated in broadband ground-motion simulations, tsunamis generation and simulations of triggered landslides (in progress by different partners). The simulations are freely shared among the partners via the internet and the visualization of the results is diffused on the project's homepage. All these simulations should be seen as a reference for this region, as they are based on the latest knowledge that obtained during the MARSite project, although their refinement and validation of the model parameters and the simulations are a continuing research task relying on continuing observations. The numerical code used, the models and the simulations are available on demand.
NASA Astrophysics Data System (ADS)
Meqbel, N. M.; Egbert, G. D.; Wannamaker, P. E.; Kelbert, A.; Schultz, A.
2013-12-01
Long period (10-20,000 s) magnetotelluric (MT) data are being acquired across the continental USA on a quasi-regular grid of ~70 km spacing as an electromagnetic component of the National Science Foundation EarthScope/USArray Program. These data are sensitive to fluids, melts, and other orogenic indicators, and thus provide a valuable complement to other components of EarthScope. We present and interpret results of 3-D MT data inversion from 325 sites acquired from 2006-2011 to provide a regional scale view of electrical resistivity from the middle crust to nearly the mantle transition zone, covering an area from NW Washington to NW Colorado. Extensive areas of low resistivity are imaged in the lower crust and uppermost mantle beneath the extensional provinces, most plausibly explained by underplated, hybridized magmas and associated exsolved highly saline fluids. These pervasive low resistivities show aligned or 'streaky' textures roughly parallel to seismic fast-axes, possibly reflecting widespread flow induced alignment of melt in this area. Thick sections of resistive lithosphere imaged in the eastern and northeastern part of the domain coincide spatially with the Wyoming and Medicine Hat Cratons. Sutures bounding these cratonic blocks are electrically conductive most likely due to meta-sediments emplaced during ancient collisions. Below the Cascadia forearc, the subducting Juan de Fuca and Gorda lithosphere appears highly resistive. Other resistive zones in the NW part of the domain may denote relict oceanic lithosphere: the accreted 'Siletzia' terrane beneath the Coast Ranges and Columbia Embayment, and the seismically fast 'slab curtain' beneath eastern Idaho interpreted by others as stranded Farallon lithosphere. Quasi-horizontal patches of low resistivity in the deep crust beneath the Cascade volcanic arc and fore-arc likely represent fluids evolved from breakdown of hydrous minerals in the down-going slab. In the backarc, low resistivities concentrate in
3D FEM-BEM-coupling method to solve magnetostatic Maxwell equations
NASA Astrophysics Data System (ADS)
Bruckner, Florian; Vogler, Christoph; Feischl, Michael; Praetorius, Dirk; Bergmair, Bernhard; Huber, Thomas; Fuger, Markus; Suess, Dieter
2012-05-01
3D magnetostatic Maxwell equations are solved using the direct Johnson-Nédélec FEM-BEM coupling method and a reduced scalar potential approach. The occurring BEM matrices are calculated analytically and approximated by H-matrices using the ACA+ algorithm. In addition a proper preconditioning method is suggested that allows to solve large-scale problems using iterative solvers.
NASA Astrophysics Data System (ADS)
Kardell, Dominik A.
The two end-member concept of mantle plume-driven versus far field stress-driven continental rifting anticipates high volumes of magma emplaced close to the rift-initiating plume, whereas relatively low magmatic volumes are predicted at large distances from the plume where the rifting is thought to be driven by far field stresses. We test this concept at the Guinea Plateau, which represents the last area of separation between Africa and South America, by investigating for rift-related volumes of magmatism using borehole, 3D seismic, and gravity data to run structural 3D inversions in two different data areas. Despite our interpretation of igneous rocks spanning large areas of continental shelf covered by the available seismic surveys, the calculated volumes in the Guinea Plateau barely match the magmatic volumes of other magma-poor margins and thus endorse the aforementioned concept. While the volcanic units on the shelf seem to be characterized more dominantly by horizontally deposited extrusive volcanic flows distributed over larger areas, numerous paleo-seamounts pierce complexly deformed pre and syn-rift sedimentary units on the slope. As non-uniqueness is an omnipresent issue when using potential field data to model geologic features, our method faced some challenges in the areas exhibiting complicated geology. In this situation less rigid constraints were applied in the modeling process. The misfit issues were successfully addressed by filtering the frequency content of the gravity data according to the depth of the investigated geology. In this work, we classify and compare our volume estimates for rift-related magmatism between the Guinea Fracture Zone (FZ) and the Saint Paul's FZ while presenting the refinements applied to our modeling technique.
Detecting and estimating errors in 3D restoration methods using analog models.
NASA Astrophysics Data System (ADS)
José Ramón, Ma; Pueyo, Emilio L.; Briz, José Luis
2015-04-01
Some geological scenarios may be important for a number of socio-economic reasons, such as water or energy resources, but the available underground information is often limited, scarce and heterogeneous. A truly 3D reconstruction, which is still necessary during the decision-making process, may have important social and economic implications. For this reason, restoration methods were developed. By honoring some geometric or mechanical laws, they help build a reliable image of the subsurface. Pioneer methods were firstly applied in 2D (balanced and restored cross-sections) during the sixties and seventies. Later on, and due to the improvements of computational capabilities, they were extended to 3D. Currently, there are some academic and commercial restoration solutions; Unfold by the Université de Grenoble, Move by Midland Valley Exploration, Kine3D (on gOcad code) by Paradigm, Dynel3D by igeoss-Schlumberger. We have developed our own restoration method, Pmag3Drest (IGME-Universidad de Zaragoza), which is designed to tackle complex geometrical scenarios using paleomagnetic vectors as a pseudo-3D indicator of deformation. However, all these methods have limitations based on the assumptions they need to establish. For this reason, detecting and estimating uncertainty in 3D restoration methods is of key importance to trust the reconstructions. Checking the reliability and the internal consistency of every method, as well as to compare the results among restoration tools, is a critical issue never tackled so far because of the impossibility to test out the results in Nature. To overcome this problem we have developed a technique using analog models. We built complex geometric models inspired in real cases of superposed and/or conical folding at laboratory scale. The stratigraphic volumes were modeled using EVA sheets (ethylene vinyl acetate). Their rheology (tensile and tear strength, elongation, density etc) and thickness can be chosen among a large number of values
A new 3D reconstruction method of small solar system bodies
NASA Astrophysics Data System (ADS)
Capanna, C.; Jorda, L.; Lamy, P.; Gesquiere, G.
2011-10-01
The 3D reconstruction of small solar system bodies consitutes an essential step toward understanding and interpreting their physical and geological properties. We propose a new reconstruction method by photoclinometry based on the minimization of the chisquare difference between observed and synthetic images by deformation of a 3D triangular mesh. This method has been tested on images of the two asteroids (2867) Steins and (21) Lutetia observed during ESA's ROSETTA mission, and it will be applied to elaborate digital terrain models from images of the asteroid (4) Vesta, the target of NASA's DAWN spacecraft.
NASA Astrophysics Data System (ADS)
Morgan, Joanna; Warner, Michael; Arnoux, Gillean; Hooft, Emilie; Toomey, Douglas; VanderBeek, Brandon; Wilcock, William
2016-02-01
3-D full-waveform inversion (FWI) is an advanced seismic imaging technique that has been widely adopted by the oil and gas industry to obtain high-fidelity models of P-wave velocity that lead to improvements in migrated images of the reservoir. Most industrial applications of 3-D FWI model the acoustic wavefield, often account for the kinematic effect of anisotropy, and focus on matching the low-frequency component of the early arriving refractions that are most sensitive to P-wave velocity structure. Here, we have adopted the same approach in an application of 3-D acoustic, anisotropic FWI to an ocean-bottom-seismometer (OBS) field data set acquired across the Endeavour oceanic spreading centre in the northeastern Pacific. Starting models for P-wave velocity and anisotropy were obtained from traveltime tomography; during FWI, velocity is updated whereas anisotropy is kept fixed. We demonstrate that, for the Endeavour field data set, 3-D FWI is able to recover fine-scale velocity structure with a resolution that is 2-4 times better than conventional traveltime tomography. Quality assurance procedures have been employed to monitor each step of the workflow; these are time consuming but critical to the development of a successful inversion strategy. Finally, a suite of checkerboard tests has been performed which shows that the full potential resolution of FWI can be obtained if we acquire a 3-D survey with a slightly denser shot and receiver spacing than is usual for an academic experiment. We anticipate that this exciting development will encourage future seismic investigations of earth science targets that would benefit from the superior resolution offered by 3-D FWI.
NASA Astrophysics Data System (ADS)
Bouma, Henri; van der Mark, Wannes; Eendebak, Pieter T.; Landsmeer, Sander H.; van Eekeren, Adam W. M.; ter Haar, Frank B.; Wieringa, F. Pieter; van Basten, Jean-Paul
2012-06-01
Compared to open surgery, minimal invasive surgery offers reduced trauma and faster recovery. However, lack of direct view limits space perception. Stereo-endoscopy improves depth perception, but is still restricted to the direct endoscopic field-of-view. We describe a novel technology that reconstructs 3D-panoramas from endoscopic video streams providing a much wider cumulative overview. The method is compatible with any endoscope. We demonstrate that it is possible to generate photorealistic 3D-environments from mono- and stereoscopic endoscopy. The resulting 3D-reconstructions can be directly applied in simulators and e-learning. Extended to real-time processing, the method looks promising for telesurgery or other remote vision-guided tasks.
Simulations of Coulomb systems with slab geometry using an efficient 3D Ewald summation method.
dos Santos, Alexandre P; Girotto, Matheus; Levin, Yan
2016-04-14
We present a new approach to efficiently simulate electrolytes confined between infinite charged walls using a 3d Ewald summation method. The optimal performance is achieved by separating the electrostatic potential produced by the charged walls from the electrostatic potential of electrolyte. The electric field produced by the 3d periodic images of the walls is constant inside the simulation cell, with the field produced by the transverse images of the charged plates canceling out. The non-neutral confined electrolyte in an external potential can be simulated using 3d Ewald summation with a suitable renormalization of the electrostatic energy, to remove a divergence, and a correction that accounts for the conditional convergence of the resulting lattice sum. The new algorithm is at least an order of magnitude more rapid than the usual simulation methods for the slab geometry and can be further sped up by adopting a particle-particle particle-mesh approach.
A Review of Failure Analysis Methods for Advanced 3D Microelectronic Packages
NASA Astrophysics Data System (ADS)
Li, Yan; Srinath, Purushotham Kaushik Muthur; Goyal, Deepak
2016-01-01
Advanced three dimensional (3D) packaging is a key enabler in driving form factor reduction, performance benefits, and package cost reduction, especially in the fast paced mobility and ultraportable consumer electronics segments. The high level of functional integration and the complex package architecture pose a significant challenge for conventional fault isolation (FI) and failure analysis (FA) methods. Innovative FI/FA tools and techniques are required to tackle the technical and throughput challenges. In this paper, the applications of FI and FA techniques such as Electro Optic Terahertz Pulse Reflectometry, 3D x-ray computed tomography, lock-in thermography, and novel physical sample preparation methods to 3D packages with package on package and stacked die with through silicon via configurations are reviewed, along with the key FI and FA challenges.
Multiplexing encoding method for full-color dynamic 3D holographic display.
Xue, Gaolei; Liu, Juan; Li, Xin; Jia, Jia; Zhang, Zhao; Hu, Bin; Wang, Yongtian
2014-07-28
The multiplexing encoding method is proposed and demonstrated for reconstructing colorful images accurately by using single phase-only spatial light modulator (SLM). It will encode the light waves at different wavelengths into one pure-phase hologram at the same time based on the analytic formulas. The three-dimensional (3D) images can be reconstructed clearly when the light waves at different wavelengths are incident into the encoding hologram. Numerical simulations and optical experiments for 2D and 3D colorful images are performed. The results show that the colorful reconstructed images with high quality are achieved successfully. The proposed multiplexing method is a simple and fast encoding approach and the size of the system is small and compact. It is expected to be used for realizing full-color 3D holographic display in future.
Mitton, D; Landry, C; Véron, S; Skalli, W; Lavaste, F; De Guise, J A
2000-03-01
Standard 3D reconstruction of bones using stereoradiography is limited by the number of anatomical landmarks visible in more than one projection. The proposed technique enables the 3D reconstruction of additional landmarks that can be identified in only one of the radiographs. The principle of this method is the deformation of an elastic object that respects stereocorresponding and non-stereocorresponding observations available in different projections. This technique is based on the principle that any non-stereocorresponding point belongs to a line joining the X-ray source and the projection of the point in one view. The aim is to determine the 3D position of these points on their line of projection when submitted to geometrical and topological constraints. This technique is used to obtain the 3D geometry of 18 cadaveric upper cervical vertebrae. The reconstructed geometry obtained is compared with direct measurements using a magnetic digitiser. The order of precision determined with the point-to-surface distance between the reconstruction obtained with that technique and reference measurements is about 1 mm, depending on the vertebrae studied. Comparison results indicate that the obtained reconstruction is close to the actual vertebral geometry. This method can therefore be proposed to obtain the 3D geometry of vertebrae.
Device and methods for "gold standard" registration of clinical 3D and 2D cerebral angiograms
NASA Astrophysics Data System (ADS)
Madan, Hennadii; Likar, Boštjan; Pernuš, Franjo; Å piclin, Žiga
2015-03-01
Translation of any novel and existing 3D-2D image registration methods into clinical image-guidance systems is limited due to lack of their objective validation on clinical image datasets. The main reason is that, besides the calibration of the 2D imaging system, a reference or "gold standard" registration is very difficult to obtain on clinical image datasets. In the context of cerebral endovascular image-guided interventions (EIGIs), we present a calibration device in the form of a headband with integrated fiducial markers and, secondly, propose an automated pipeline comprising 3D and 2D image processing, analysis and annotation steps, the result of which is a retrospective calibration of the 2D imaging system and an optimal, i.e., "gold standard" registration of 3D and 2D images. The device and methods were used to create the "gold standard" on 15 datasets of 3D and 2D cerebral angiograms, whereas each dataset was acquired on a patient undergoing EIGI for either aneurysm coiling or embolization of arteriovenous malformation. The use of the device integrated seamlessly in the clinical workflow of EIGI. While the automated pipeline eliminated all manual input or interactive image processing, analysis or annotation. In this way, the time to obtain the "gold standard" was reduced from 30 to less than one minute and the "gold standard" of 3D-2D registration on all 15 datasets of cerebral angiograms was obtained with a sub-0.1 mm accuracy.
NASA Astrophysics Data System (ADS)
Crockett, Ethan Van
The need for clinically intuitive metrics for patient-specific quality assurance in radiation therapy has been well-documented (Zhen, Nelms et al. 2011). A novel transform method has shown to be effective at converting full-density 3D dose measurements made in a phantom to dose values in the patient geometry, enabling comparisons using clinically intuitive metrics such as dose-volume histograms (Oldham et al. 2011). This work investigates the transform method and compares its calculated dose-volume histograms (DVHs) to DVH values calculated by a Delta4 QA device (Scandidos), marking the first comparison of a true 3D system to a semi-3D device using clinical metrics. Measurements were made using Presage 3D dosimeters, which were readout by an in-house optical-CT scanner. Three patient cases were chosen for the study: one head-and-neck VMAT treatment and two spine IMRT treatments. The transform method showed good agreement with the planned dose values for all three cases. Furthermore, the transformed DVHs adhered to the planned dose with more accuracy than the Delta4 DVHs. The similarity between the Delta4 DVHs and the transformed DVHs, however, was greater for one of the spine cases than it was for the head-and-neck case, implying that the accuracy of the Delta4 Anatomy software may vary from one treatment site to another. Overall, the transform method, which incorporates data from full-density 3D dose measurements, provides clinically intuitive results that are more accurate and consistent than the corresponding results from a semi-3D Delta 4 system.
Methods of constructing a 3D geological model from scatter data
Horsman, J.; Bethel, W.
1995-04-01
Most geoscience applications, such as assessment of an oil reservoir or hazardous waste site, require geological characterization of the site. Geological characterization involves analysis of spatial distributions of lithology, porosity, etc. Because of the complexity of the spatial relationships, the authors find that a 3-D model of geology is better suited for integration of many different types of data and provides a better representation of a site than a 2-D one. A 3-D model of geology is constructed from sample data obtained from field measurements, which are usually scattered. To create a volume model from scattered data, interpolation between points is required. The interpolation can be computed using one of several computational algorithms. Alternatively, a manual method may be employed, in which an interactive graphics device is used to input by hand the information that lies between the data points. For example, a mouse can be used to draw lines connecting data points with equal values. The combination of these two methods presents yet another approach. In this study, the authors will compare selected methods of 3-D geological modeling, They used a flow-based, modular visualization environment (AVS) to construct the geological models computationally. Within this system, they used three modules, scat{_}3d, trivar and scatter{_}to{_}ucd, as examples of computational methods. They compare these methods to the combined manual and computational approach. Because there are no tools readily available in AVS for this type of construction, they used a geological modeling system to demonstrate this method.
A 3-D aerodynamic method for the analysis of isolated horizontal-axis wind turbines
Ammara, I.; Masson, C.; Paraschivoiu, I.
1997-12-31
In most existing performance-analysis methods, wind turbines are considered isolated so that interference effects caused by other rotors or by the site topography are neglected. The main objective of this paper is to propose a practical 3-D method suitable for the study of these effects, in order to optimize the arrangement and the positioning of Horizontal-Axis Wind Turbines (HAWTs) in a wind farm. In the proposed methodology, the flow field around isolated HAWTs is predicted by solving the 3-D, time-averaged, steady-state, incompressible, Navier-Stokes equations in which the turbines are represented by distributions of momentum sources. The resulting governing equations are solved using a Control-Volume Finite Element Method (CVFEM). The fundamental aspects related to the development of a practical 3-D method are discussed in this paper, with an emphasis on some of the challenges that arose during its implementation. The current implementation is limited to the analysis of isolated HAWTs. Preliminary results have indicated that, the proposed 3-D method reaches the same level of accuracy, in terms of performance predictions, that the previously developed 2-D axisymmetric model and the well-known momentum-strip theory, while still using reasonable computers resources. It can be considered as a useful tool for the design of HAWTs. Its main advantages, however, are its intrinsic capacity to predict the details of the flow in the wake, and its capabilities of modelling arbitrary wind-turbine arrangements and including ground effects.
Efficient methods to model the scattering of ultrasonic guided waves in 3D
NASA Astrophysics Data System (ADS)
Moreau, L.; Velichko, A.; Wilcox, P. D.
2010-03-01
The propagation of ultrasonic guided waves and their interaction with a defect is of interest to the nondestructive testing community. There is no general solution to the scattering problem and it is still an ongoing research topic. Due to the complexity of guided wave scattering problems, most existing models are related to the 2D case. However, thanks to the increase in computer calculation power, specific 3D problems can also be studied, with the help of numerical or semi-analytical methods. This paper describes two efficient methods aimed at modeling 3D scattering problems. The first method is the use of the Huygens' principle to reduce the size of finite element models. This principle allows the area of interest to be restricted to the very near field of the defect, for both the generation of the incident field and the modal decomposition of the scattered field. The second method consists of separating the 3D problem into two 2D problems for which the solutions are calculated and used to approximate the 3D solution. This can be used at low frequency-thickness products, where Lamb waves have a similar behavior to bulk waves. These two methods are presented briefly and compared on simple scattering cases.
An improved 3-D Look--Locker imaging method for T(1) parameter estimation.
Nkongchu, Ken; Santyr, Giles
2005-09-01
The 3-D Look-Locker (LL) imaging method has been shown to be a highly efficient and accurate method for the volumetric mapping of the spin lattice relaxation time T(1). However, conventional 3-D LL imaging schemes are typically limited to small tip angle RF pulses (
Accident or homicide--virtual crime scene reconstruction using 3D methods.
Buck, Ursula; Naether, Silvio; Räss, Beat; Jackowski, Christian; Thali, Michael J
2013-02-10
The analysis and reconstruction of forensically relevant events, such as traffic accidents, criminal assaults and homicides are based on external and internal morphological findings of the injured or deceased person. For this approach high-tech methods are gaining increasing importance in forensic investigations. The non-contact optical 3D digitising system GOM ATOS is applied as a suitable tool for whole body surface and wound documentation and analysis in order to identify injury-causing instruments and to reconstruct the course of event. In addition to the surface documentation, cross-sectional imaging methods deliver medical internal findings of the body. These 3D data are fused into a whole body model of the deceased. Additional to the findings of the bodies, the injury inflicting instruments and incident scene is documented in 3D. The 3D data of the incident scene, generated by 3D laser scanning and photogrammetry, is also included into the reconstruction. Two cases illustrate the methods. In the fist case a man was shot in his bedroom and the main question was, if the offender shot the man intentionally or accidentally, as he declared. In the second case a woman was hit by a car, driving backwards into a garage. It was unclear if the driver drove backwards once or twice, which would indicate that he willingly injured and killed the woman. With this work, we demonstrate how 3D documentation, data merging and animation enable to answer reconstructive questions regarding the dynamic development of patterned injuries, and how this leads to a real data based reconstruction of the course of event.
NASA Astrophysics Data System (ADS)
Toschi, I.; Capra, A.; De Luca, L.; Beraldin, J.-A.; Cournoyer, L.
2014-05-01
This paper discusses a methodology to evaluate the accuracy of recently developed image-based 3D modelling techniques. So far, the emergence of these novel methods has not been supported by the definition of an internationally recognized standard which is fundamental for user confidence and market growth. In order to provide an element of reflection and solution to the different communities involved in 3D imaging, a promising approach is presented in this paper for the assessment of both metric quality and limitations of an open-source suite of tools (Apero/MicMac), developed for the extraction of dense 3D point clouds from a set of unordered 2D images. The proposed procedural workflow is performed within a metrological context, through inter-comparisons with "reference" data acquired with two hemispherical laser scanners, one total station, and one laser tracker. The methodology is applied to two case studies, designed in order to analyse the software performances in dealing with both outdoor and environmentally controlled conditions, i.e. the main entrance of Cathédrale de la Major (Marseille, France) and a custom-made scene located at National Research Council of Canada 3D imaging Metrology Laboratory (Ottawa). Comparative data and accuracy evidence produced for both tests allow the study of some key factors affecting 3D model accuracy.
Method of Individual Adjustment for 3D CT Analysis: Linear Measurement.
Kim, Dong Kyu; Choi, Dong Hun; Lee, Jeong Woo; Yang, Jung Dug; Chung, Ho Yun; Cho, Byung Chae; Choi, Kang Young
2016-01-01
Introduction. We aim to regularize measurement values in three-dimensional (3D) computed tomography (CT) reconstructed images for higher-precision 3D analysis, focusing on length-based 3D cephalometric examinations. Methods. We measure the linear distances between points on different skull models using Vernier calipers (real values). We use 10 differently tilted CT scans for 3D CT reconstruction of the models and measure the same linear distances from the picture archiving and communication system (PACS). In both cases, each measurement is performed three times by three doctors, yielding nine measurements. The real values are compared with the PACS values. Each PACS measurement is revised based on the display field of view (DFOV) values and compared with the real values. Results. The real values and the PACS measurement changes according to tilt value have no significant correlations (p > 0.05). However, significant correlations appear between the real values and DFOV-adjusted PACS measurements (p < 0.001). Hence, we obtain a correlation expression that can yield real physical values from PACS measurements. The DFOV value intervals for various age groups are also verified. Conclusion. Precise confirmation of individual preoperative length and precise analysis of postoperative improvements through 3D analysis is possible, which is helpful for facial-bone-surgery symmetry correction.
Method of Individual Adjustment for 3D CT Analysis: Linear Measurement
Choi, Dong Hun; Lee, Jeong Woo; Yang, Jung Dug; Chung, Ho Yun; Cho, Byung Chae
2016-01-01
Introduction. We aim to regularize measurement values in three-dimensional (3D) computed tomography (CT) reconstructed images for higher-precision 3D analysis, focusing on length-based 3D cephalometric examinations. Methods. We measure the linear distances between points on different skull models using Vernier calipers (real values). We use 10 differently tilted CT scans for 3D CT reconstruction of the models and measure the same linear distances from the picture archiving and communication system (PACS). In both cases, each measurement is performed three times by three doctors, yielding nine measurements. The real values are compared with the PACS values. Each PACS measurement is revised based on the display field of view (DFOV) values and compared with the real values. Results. The real values and the PACS measurement changes according to tilt value have no significant correlations (p > 0.05). However, significant correlations appear between the real values and DFOV-adjusted PACS measurements (p < 0.001). Hence, we obtain a correlation expression that can yield real physical values from PACS measurements. The DFOV value intervals for various age groups are also verified. Conclusion. Precise confirmation of individual preoperative length and precise analysis of postoperative improvements through 3D analysis is possible, which is helpful for facial-bone-surgery symmetry correction. PMID:28070517
3D unstructured mesh ALE hydrodynamics with the upwind discontinuous galerkin method
Kershaw, D S; Milovich, J L; Prasad, M K; Shaw, M J; Shestakov, A I
1999-05-07
The authors describe a numerical scheme to solve 3D Arbitrary Lagrangian-Eulerian (ALE) hydrodynamics on an unstructured mesh using a discontinuous Galerkin method (DGM) and an explicit Runge-Kutta time discretization. Upwinding is achieved through Roe's linearized Riemann solver with the Harten-Hyman entropy fix. For stabilization, a 3D quadratic programming generalization of van Leer's 1D minmod slope limiter is used along with a Lapidus type artificial viscosity. This DGM scheme has been tested on a variety of hydrodynamic test problems and appears to be robust making it the basis for the integrated 3D inertial confinement fusion modeling code (ICF3D). For efficient code development, they use C++ object oriented programming to easily separate the complexities of an unstructured mesh from the basic physics modules. ICF3D is fully parallelized using domain decomposition and the MPI message passing library. It is fully portable. It runs on uniprocessor workstations and massively parallel platforms with distributed and shared memory.
A fast and accurate method to predict 2D and 3D aerodynamic boundary layer flows
NASA Astrophysics Data System (ADS)
Bijleveld, H. A.; Veldman, A. E. P.
2014-12-01
A quasi-simultaneous interaction method is applied to predict 2D and 3D aerodynamic flows. This method is suitable for offshore wind turbine design software as it is a very accurate and computationally reasonably cheap method. This study shows the results for a NACA 0012 airfoil. The two applied solvers converge to the experimental values when the grid is refined. We also show that in separation the eigenvalues remain positive thus avoiding the Goldstein singularity at separation. In 3D we show a flow over a dent in which separation occurs. A rotating flat plat is used to show the applicability of the method for rotating flows. The shown capabilities of the method indicate that the quasi-simultaneous interaction method is suitable for design methods for offshore wind turbine blades.
An inverse method for the aerodynamic design of three-dimensional aircraft engine nacelles
NASA Technical Reports Server (NTRS)
Bell, R. A.; Cedar, R. D.
1991-01-01
A fast, efficient and user friendly inverse design system for 3-D nacelles was developed. The system is a product of a 2-D inverse design method originally developed at NASA-Langley and the CFL3D analysis code which was also developed at NASA-Langley and modified for nacelle analysis. The design system uses a predictor/corrector design approach in which an analysis code is used to calculate the flow field for an initial geometry, the geometry is then modified based on the difference between the calculated and target pressures. A detailed discussion of the design method, the process of linking it to the modified CFL3D solver and its extension to 3-D is presented. This is followed by a number of examples of the use of the design system for the design of both axisymmetric and 3-D nacelles.
Wang, Mingqiang; Zhang, Shuai; Song, Yuanjun; Dong, Jidong; Wei, Huawei; Xie, Huaquan; Fang, Xiaojiao; Shao, Lu; Huang, Yudong; Jiang, Zaixing
2016-11-18
Graphene oxide nanoribbons (GONRs) are one of the most promising carbon based materials. The integration of 2D GONR sheets into macroscopic materials, such as continuous fibers or film, leads the way in translating the good properties of individual GONR sheets into macroscopic and ordered materials for future applications. In this study, we first report the fabrication of GONR fibers utilizing GONR sheets as the raw material without any supporting surfactant or polymer. The method of fabricating fibers is referred to as '3D solution printing'. GONR fibers exhibit good mechanical and electrical properties, whose tensile strength and electrical conductivity could reach up to 95 MPa and 680 S cm(-1), respectively. Hence, the fabricated 3D integrated circuits are lighter and smaller compared to traditional metal circuits, and with high electrical properties. The 3D integrated circuits, therefore, have a bright future prospect.
NASA Astrophysics Data System (ADS)
Wang, Mingqiang; Zhang, Shuai; Song, Yuanjun; Dong, Jidong; Wei, Huawei; Xie, Huaquan; Fang, Xiaojiao; Shao, Lu; Huang, Yudong; Jiang, Zaixing
2016-11-01
Graphene oxide nanoribbons (GONRs) are one of the most promising carbon based materials. The integration of 2D GONR sheets into macroscopic materials, such as continuous fibers or film, leads the way in translating the good properties of individual GONR sheets into macroscopic and ordered materials for future applications. In this study, we first report the fabrication of GONR fibers utilizing GONR sheets as the raw material without any supporting surfactant or polymer. The method of fabricating fibers is referred to as ‘3D solution printing’. GONR fibers exhibit good mechanical and electrical properties, whose tensile strength and electrical conductivity could reach up to 95 MPa and 680 S cm-1, respectively. Hence, the fabricated 3D integrated circuits are lighter and smaller compared to traditional metal circuits, and with high electrical properties. The 3D integrated circuits, therefore, have a bright future prospect.
An efficient calibration method for freehand 3-D ultrasound imaging systems.
Leotta, Daniel F
2004-07-01
A phantom has been developed to quickly calibrate a freehand 3-D ultrasound (US) imaging system. Calibration defines the spatial relationship between the US image plane and an external tracking device attached to the scanhead. The phantom consists of a planar array of strings and beads, and a set of out-of-plane strings that guide the user to proper scanhead orientation for imaging. When an US image plane is coincident with the plane defined by the strings, the calibration parameters are calculated by matching of homologous points in the image and phantom. The resulting precision and accuracy of the 3-D imaging system are similar to those achieved with a more complex calibration procedure. The 3-D reconstruction performance of the calibrated system is demonstrated with a magnetic tracking system, but the method could be applied to other tracking devices.
"Gold standard" data for evaluation and comparison of 3D/2D registration methods.
Tomazevic, Dejan; Likar, Bostjan; Pernus, Franjo
2004-01-01
Evaluation and comparison of registration techniques for image-guided surgery is an important problem that has received little attention in the literature. In this paper we address the challenging problem of generating reliable "gold standard" data for use in evaluating the accuracy of 3D/2D registrations. We have devised a cadaveric lumbar spine phantom with fiducial markers and established highly accurate correspondences between 3D CT and MR images and 18 2D X-ray images. The expected target registration errors for target points on the pedicles are less than 0.26 mm for CT-to-X-ray registration and less than 0.42 mm for MR-to-X-ray registration. As such, the "gold standard" data, which has been made publicly available on the Internet (http://lit.fe.uni-lj.si/Downloads/downloads.asp), is useful for evaluation and comparison of 3D/2D image registration methods.
A 3D AgCl hierarchical superstructure synthesized by a wet chemical oxidation method.
Lou, Zaizhu; Huang, Baibiao; Ma, Xiangchao; Zhang, Xiaoyang; Qin, Xiaoyan; Wang, Zeyan; Dai, Ying; Liu, Yuanyuan
2012-12-07
A novel 3D AgCl hierarchical superstructure, with fast growth along the 〈111〉 directions of cubic seeds, is synthesized by using a wet chemical oxidation method. The morphological structures and the growth process are investigated by scanning electron microscopy and X-ray diffraction. The crystal structures are analyzed by their crystallographic orientations. The surface energy of AgCl facets {100}, {110}, and {111} with absorbance of Cl(-) ions is studied by density functional theory calculations. Based on the experimental and computational results, a plausible mechanism is proposed to illustrate the formation of the 3D AgCl hierarchical superstructures. With more active sites, the photocatalytic activity of the 3D AgCl hierarchical superstructures is better than those of concave and cubic ones in oxygen evolution under irradiation by visible light.
2D and 3D Method of Characteristic Tools for Complex Nozzle Development
NASA Technical Reports Server (NTRS)
Rice, Tharen
2003-01-01
This report details the development of a 2D and 3D Method of Characteristic (MOC) tool for the design of complex nozzle geometries. These tools are GUI driven and can be run on most Windows-based platforms. The report provides a user's manual for these tools as well as explains the mathematical algorithms used in the MOC solutions.
NASA Astrophysics Data System (ADS)
Afonso, Juan Carlos; Rawlinson, Nicholas; Yang, Yingjie; Schutt, Derek L.; Jones, Alan G.; Fullea, Javier; Griffin, William L.
2016-10-01
We apply a novel 3-D multiobservable probabilistic tomography method that we have recently developed and benchmarked, to directly image the thermochemical structure of the Colorado Plateau and surrounding areas by jointly inverting P wave and S wave teleseismic arrival times, Rayleigh wave dispersion data, Bouguer anomalies, satellite-derived gravity gradients, geoid height, absolute (local and dynamic) elevation, and surface heat flow data. The temperature and compositional structures recovered by our inversion reveal a high level of correlation between recent basaltic magmatism and zones of high temperature and low Mg# (i.e., refertilized mantle) in the lithosphere, consistent with independent geochemical data. However, the lithospheric mantle is overall characterized by a highly heterogeneous thermochemical structure, with only some features correlating well with either Proterozoic and/or Cenozoic crustal structures. This suggests that most of the present-day deep lithospheric architecture reflects the superposition of numerous geodynamic events of different scale and nature to those that created major crustal structures. This is consistent with the complex lithosphere-asthenosphere system that we image, which exhibits a variety of multiscale feedback mechanisms (e.g., small-scale convection, magmatic intrusion, delamination, etc.) driving surface processes. Our results also suggest that most of the present-day elevation in the Colorado Plateau and surrounding regions is the result of thermochemical buoyancy sources within the lithosphere, with dynamic effects (from sublithospheric mantle flow) contributing only locally up to ˜15-35%.
A new method of 3D scene recognition from still images
NASA Astrophysics Data System (ADS)
Zheng, Li-ming; Wang, Xing-song
2014-04-01
Most methods of monocular visual three dimensional (3D) scene recognition involve supervised machine learning. However, these methods often rely on prior knowledge. Specifically, they learn the image scene as part of a training dataset. For this reason, when the sampling equipment or scene is changed, monocular visual 3D scene recognition may fail. To cope with this problem, a new method of unsupervised learning for monocular visual 3D scene recognition is here proposed. First, the image is made using superpixel segmentation based on the CIELAB color space values L, a, and b and on the coordinate values x and y of pixels, forming a superpixel image with a specific density. Second, a spectral clustering algorithm based on the superpixels' color characteristics and neighboring relationships was used to reduce the dimensions of the superpixel image. Third, the fuzzy distribution density functions representing sky, ground, and façade are multiplied with the segment pixels, where the expectations of these segments are obtained. A preliminary classification of sky, ground, and façade is generated in this way. Fourth, the most accurate classification images of sky, ground, and façade were extracted through the tier-1 wavelet sampling and Manhattan direction feature. Finally, a depth perception map is generated based on the pinhole imaging model and the linear perspective information of ground surface. Here, 400 images of Make3D Image data from the Cornell University website were used to test the algorithm. The experimental results showed that this unsupervised learning method provides a more effective monocular visual 3D scene recognition model than other methods.
3-D Localization Method for a Magnetically Actuated Soft Capsule Endoscope and Its Applications
Yim, Sehyuk; Sitti, Metin
2014-01-01
In this paper, we present a 3-D localization method for a magnetically actuated soft capsule endoscope (MASCE). The proposed localization scheme consists of three steps. First, MASCE is oriented to be coaxially aligned with an external permanent magnet (EPM). Second, MASCE is axially contracted by the enhanced magnetic attraction of the approaching EPM. Third, MASCE recovers its initial shape by the retracting EPM as the magnetic attraction weakens. The combination of the estimated direction in the coaxial alignment step and the estimated distance in the shape deformation (recovery) step provides the position of MASCE in 3-D. It is experimentally shown that the proposed localization method could provide 2.0–3.7 mm of distance error in 3-D. This study also introduces two new applications of the proposed localization method. First, based on the trace of contact points between the MASCE and the surface of the stomach, the 3-D geometrical model of a synthetic stomach was reconstructed. Next, the relative tissue compliance at each local contact point in the stomach was characterized by measuring the local tissue deformation at each point due to the preloading force. Finally, the characterized relative tissue compliance parameter was mapped onto the geometrical model of the stomach toward future use in disease diagnosis. PMID:25383064
Gap-filling methods for 3D PlanTIS data
NASA Astrophysics Data System (ADS)
Loukiala, A.; Tuna, U.; Beer, S.; Jahnke, S.; Ruotsalainen, U.
2010-10-01
The range of positron emitters and their labeled compounds have led to high-resolution PET scanners becoming widely used, not only in clinical and pre-clinical studies but also in plant studies. A high-resolution PET scanner, plant tomographic imaging system (PlanTIS), was designed to study metabolic and physiological functions of plants noninvasively. The gantry of the PlanTIS scanner has detector-free regions. Even when the gantry of the PlanTIS is rotated during the scan, these regions result in missing sinogram bins in the acquired data. Missing data need to be estimated prior to the analytical image reconstructions in order to avoid artifacts in the final reconstructed images. In this study, we propose three gap-filling methods for estimation of the unique gaps existing in the 3D PlanTIS sinogram data. The 3D sinogram data were gap-filled either by linear interpolation in the transaxial planes or by the bicubic interpolation method (proposed for the ECAT high-resolution research tomograph) in the transradial planes or by the inpainting method in the transangular planes. Each gap-filling method independently compensates for slices in one of three orthogonal sinogram planes (transaxial, transradial and transangular planes). A 3D numerical Shepp-Logan phantom and the NEMA image quality phantom were used to evaluate the methods. The gap-filled sinograms were reconstructed using the analytical 3D reprojection (3DRP) method. The NEMA phantom sinograms were also reconstructed by the iterative reconstruction method, ordered subsets maximum a posteriori one step late (OSMAPOSL), to compare the results of gap filling followed by 3DRP with the results of OSMAPOSL reconstruction without gap filling. The three methods were evaluated quantitatively (by mean square error and coefficients of variation) over the selected regions of the 3D numerical Shepp-Logan phantom at eight different Poisson noise levels. Moreover, the NEMA phantom scan data were used in visual assessments
An extension of the Saltykov method to quantify 3D grain size distributions in mylonites
NASA Astrophysics Data System (ADS)
Lopez-Sanchez, Marco A.; Llana-Fúnez, Sergio
2016-12-01
The estimation of 3D grain size distributions (GSDs) in mylonites is key to understanding the rheological properties of crystalline aggregates and to constraining dynamic recrystallization models. This paper investigates whether a common stereological method, the Saltykov method, is appropriate for the study of GSDs in mylonites. In addition, we present a new stereological method, named the two-step method, which estimates a lognormal probability density function describing the 3D GSD. Both methods are tested for reproducibility and accuracy using natural and synthetic data sets. The main conclusion is that both methods are accurate and simple enough to be systematically used in recrystallized aggregates with near-equant grains. The Saltykov method is particularly suitable for estimating the volume percentage of particular grain-size fractions with an absolute uncertainty of ±5 in the estimates. The two-step method is suitable for quantifying the shape of the actual 3D GSD in recrystallized rocks using a single value, the multiplicative standard deviation (MSD) parameter, and providing a precision in the estimate typically better than 5%. The novel method provides a MSD value in recrystallized quartz that differs from previous estimates based on apparent 2D GSDs, highlighting the inconvenience of using apparent GSDs for such tasks.
Computational methods for constructing protein structure models from 3D electron microscopy maps.
Esquivel-Rodríguez, Juan; Kihara, Daisuke
2013-10-01
Protein structure determination by cryo-electron microscopy (EM) has made significant progress in the past decades. Resolutions of EM maps have been improving as evidenced by recently reported structures that are solved at high resolutions close to 3Å. Computational methods play a key role in interpreting EM data. Among many computational procedures applied to an EM map to obtain protein structure information, in this article we focus on reviewing computational methods that model protein three-dimensional (3D) structures from a 3D EM density map that is constructed from two-dimensional (2D) maps. The computational methods we discuss range from de novo methods, which identify structural elements in an EM map, to structure fitting methods, where known high resolution structures are fit into a low-resolution EM map. A list of available computational tools is also provided.
Efficient calculation method for realistic deep 3D scene hologram using orthographic projection
NASA Astrophysics Data System (ADS)
Igarashi, Shunsuke; Nakamura, Tomoya; Matsushima, Kyoji; Yamaguchi, Masahiro
2016-03-01
We propose a fast calculation method to synthesize a computer-generated hologram (CGH) of realistic deep three-dimensional (3D) scene. In our previous study, we have proposed a calculation method of CGH for reproducing such scene called ray-sampling-plane (RSP) method, in which light-ray information of a scene is converted to wavefront, and the wavefront is numerically propagated based on diffraction theory. In this paper, we introduce orthographic projection to the RSP method for accelerating calculation time. By numerical experiments, we verified the accelerated calculation with the ratio of 28-times compared to the conventional RSP method. The calculated CGH was fabricated by the printing system using laser lithography and demonstrated deep 3D image reconstruction in 52mm×52mm with realistic appearance effect such as gloss and translucent effect.
TU-CD-BRA-01: A Novel 3D Registration Method for Multiparametric Radiological Images
Akhbardeh, A; Parekth, VS; Jacobs, MA
2015-06-15
Purpose: Multiparametric and multimodality radiological imaging methods, such as, magnetic resonance imaging(MRI), computed tomography(CT), and positron emission tomography(PET), provide multiple types of tissue contrast and anatomical information for clinical diagnosis. However, these radiological modalities are acquired using very different technical parameters, e.g.,field of view(FOV), matrix size, and scan planes, which, can lead to challenges in registering the different data sets. Therefore, we developed a hybrid registration method based on 3D wavelet transformation and 3D interpolations that performs 3D resampling and rotation of the target radiological images without loss of information Methods: T1-weighted, T2-weighted, diffusion-weighted-imaging(DWI), dynamic-contrast-enhanced(DCE) MRI and PET/CT were used in the registration algorithm from breast and prostate data at 3T MRI and multimodality(PET/CT) cases. The hybrid registration scheme consists of several steps to reslice and match each modality using a combination of 3D wavelets, interpolations, and affine registration steps. First, orthogonal reslicing is performed to equalize FOV, matrix sizes and the number of slices using wavelet transformation. Second, angular resampling of the target data is performed to match the reference data. Finally, using optimized angles from resampling, 3D registration is performed using similarity transformation(scaling and translation) between the reference and resliced target volume is performed. After registration, the mean-square-error(MSE) and Dice Similarity(DS) between the reference and registered target volumes were calculated. Results: The 3D registration method registered synthetic and clinical data with significant improvement(p<0.05) of overlap between anatomical structures. After transforming and deforming the synthetic data, the MSE and Dice similarity were 0.12 and 0.99. The average improvement of the MSE in breast was 62%(0.27 to 0.10) and prostate was
New data-driven method from 3D confocal microscopy for calculating phytoplankton cell biovolume.
Roselli, L; Paparella, F; Stanca, E; Basset, A
2015-06-01
Confocal laser scanner microscopy coupled with an image analysis system was used to directly determine the shape and calculate the biovolume of phytoplankton organisms by constructing 3D models of cells. The study was performed on Biceratium furca (Ehrenberg) Vanhoeffen, which is one of the most complex-shaped phytoplankton. Traditionally, biovolume is obtained from a standardized set of geometric models based on linear dimensions measured by light microscopy. However, especially in the case of complex-shaped cells, biovolume is affected by very large errors associated with the numerous manual measurements that this entails. We evaluate the accuracy of these traditional methods by comparing the results obtained using geometric models with direct biovolume measurement by image analysis. Our results show cell biovolume measurement based on decomposition into simple geometrical shapes can be highly inaccurate. Although we assume that the most accurate cell shape is obtained by 3D direct biovolume measurement, which is based on voxel counting, the intrinsic uncertainty of this method is explored and assessed. Finally, we implement a data-driven formula-based approach to the calculation of biovolume of this complex-shaped organism. On one hand, the model is obtained from 3D direct calculation. On the other hand, it is based on just two linear dimensions which can easily be measured by hand. This approach has already been used for investigating the complexities of morphology and for determining the 3D structure of cells. It could also represent a novel way to generalize scaling laws for biovolume calculation.
A correction method of color projection fringes in 3D contour measurement
NASA Astrophysics Data System (ADS)
Song, Li-mei; Li, Zong-yan; Chen, Chang-man; Xi, Jiang-tao; Guo, Qing-hua; Li, Xiao-jie
2015-07-01
In the three-dimensional (3D) contour measurement, the phase shift profilometry (PSP) method is the most widely used one. However, the measurement speed of PSP is very low because of the multiple projections. In order to improve the measurement speed, color grating stripes are used for measurement in this paper. During the measurement, only one color sinusoidal fringe is projected on the measured object. Therefore, the measurement speed is greatly improved. Since there is coupling or interference phenomenon between the adjacent color grating stripes, a color correction method is used to improve the measurement results. A method for correcting nonlinear error of measurement system is proposed in this paper, and the sinusoidal property of acquired image after correction is better than that before correction. Experimental results show that with these correction methods, the measurement errors can be reduced. Therefore, it can support a good foundation for the high-precision 3D reconstruction.
Robust method for extracting the pulmonary vascular trees from 3D MDCT images
NASA Astrophysics Data System (ADS)
Taeprasartsit, Pinyo; Higgins, William E.
2011-03-01
Segmentation of pulmonary blood vessels from three-dimensional (3D) multi-detector CT (MDCT) images is important for pulmonary applications. This work presents a method for extracting the vascular trees of the pulmonary arteries and veins, applicable to both contrast-enhanced and unenhanced 3D MDCT image data. The method finds 2D elliptical cross-sections and evaluates agreement of these cross-sections in consecutive slices to find likely cross-sections. It next employs morphological multiscale analysis to separate vessels from adjoining airway walls. The method then tracks the center of the likely cross-sections to connect them to the pulmonary vessels in the mediastinum and forms connected vascular trees spanning both lungs. A ground-truth study indicates that the method was able to detect on the order of 98% of the vessel branches having diameter >= 3.0 mm. The extracted vascular trees can be utilized for the guidance of safe bronchoscopic biopsy.
Connesson, N.; Clayton, E.H.; Bayly, P.V.; Pierron, F.
2015-01-01
In-vivo measurement of the mechanical properties of soft tissues is essential to provide necessary data in biomechanics and medicine (early cancer diagnosis, study of traumatic brain injuries, etc.). Imaging techniques such as Magnetic Resonance Elastography (MRE) can provide 3D displacement maps in the bulk and in vivo, from which, using inverse methods, it is then possible to identify some mechanical parameters of the tissues (stiffness, damping etc.). The main difficulties in these inverse identification procedures consist in dealing with the pressure waves contained in the data and with the experimental noise perturbing the spatial derivatives required during the processing. The Optimized Virtual Fields Method (OVFM) [1], designed to be robust to noise, present natural and rigorous solution to deal with these problems. The OVFM has been adapted to identify material parameter maps from Magnetic Resonance Elastography (MRE) data consisting of 3-dimensional displacement fields in harmonically loaded soft materials. In this work, the method has been developed to identify elastic and viscoelastic models. The OVFM sensitivity to spatial resolution and to noise has been studied by analyzing 3D analytically simulated displacement data. This study evaluates and describes the OVFM identification performances: different biases on the identified parameters are induced by the spatial resolution and experimental noise. The well-known identification problems in the case of quasi-incompressible materials also find a natural solution in the OVFM. Moreover, an a posteriori criterion to estimate the local identification quality is proposed. The identification results obtained on actual experiments are briefly presented. PMID:26146416
NASA Astrophysics Data System (ADS)
Suzuki, W.; Aoi, S.; Maeda, T.; Sekiguchi, H.; Kunugi, T.
2013-12-01
Source inversion analysis using near-source strong-motion records with an assumption of 1-D underground structure models has revealed the overall characteristics of the rupture process of the 2011 Tohoku-Oki mega-thrust earthquake. This assumption for the structure model is acceptable because the seismic waves radiated during the Tohoku-Oki event were rich in the very-low-frequency contents lower than 0.05 Hz, which are less affected by the small-scale heterogeneous structure. The analysis using more reliable Green's functions even in the higher-frequency range considering complex structure of the subduction zone will illuminate more detailed rupture process in space and time and the transition of the frequency dependence of the wave radiation for the Tohoku-Oki earthquake. In this study, we calculate the near-source Green's functions using a 3-D underground structure model and perform the source inversion analysis using them. The 3-D underground structure model used in this study is the Japan Integrated Velocity Structure Model (Headquarters for Earthquake Research Promotion, 2012). A curved fault model on the Pacific plate interface is discretized into 287 subfaults at ~20 km interval. The Green's functions are calculated using GMS (Aoi et al., 2004), which is a simulation program package for the seismic wave field by the finite difference method using discontinuous grids (Aoi and Fujiwara, 1999). Computational region is 136-146.2E in longitude, 34-41.6N in latitude, and 0-100 km in depth. The horizontal and vertical grid intervals are 200 m and 100 m, respectively, for the shallower region and those for the deeper region are tripled. The number of the total grids is 2.1 billion. We derive 300-s records by calculating 36,000 steps with a time interval of 0.0083 second (120 Hz sampling). It takes nearly one hour to compute one case using 48 Graphics Processing Units (GPU) on TSUBAME2.0 supercomputer owned by Tokyo Institute of Technology. In total, 574 cases are
NASA Astrophysics Data System (ADS)
McNulty, David; Geaney, Hugh; Carroll, Elaine; Garvey, Shane; Lonergan, Alex; O’Dwyer, Colm
2017-02-01
Engineering Co3O4 nanoparticles into highly ordered, 3D inverse opal (IO) structures is shown to significantly improve their performance as more efficient conversion mode Li-ion anode materials. By comparison with Co3O4 microparticles, the advantages of the porous anode architecture are clearly shown. The inverse opal material markedly enhances specific capacity and capacity retention. The impact of various C rates on the rate of the initial charge demonstrates that higher rate charging (10 C) was much less destructive to the inverse opal structure than charging at a slow rate (0.1 C). Slower C rates that affect the IO structure resulted in higher specific capacities (more Li2O) as well as improved capacity retention. The IO structures cycle as CoO, which improves Coulombic efficiency and limits volumetric changes, allowing rate changes more efficiently. This work demonstrates how 3D IOs improve conversion mode anode material performance in the absence of additive or binders, thus enhancing mass transport of Li2O charge–discharge product through the open structure. This effect mitigates clogging by structural changes at slow rates (high capacity) and is beneficial to the overall electrochemical performance.
3D hierarchical interface-enriched finite element method: Implementation and applications
NASA Astrophysics Data System (ADS)
Soghrati, Soheil; Ahmadian, Hossein
2015-10-01
A hierarchical interface-enriched finite element method (HIFEM) is proposed for the mesh-independent treatment of 3D problems with intricate morphologies. The HIFEM implements a recursive algorithm for creating enrichment functions that capture gradient discontinuities in nonconforming finite elements cut by arbitrary number and configuration of materials interfaces. The method enables the mesh-independent simulation of multiphase problems with materials interfaces that are in close proximity or contact while providing a straightforward general approach for evaluating the enrichments. In this manuscript, we present a detailed discussion on the implementation issues and required computational geometry considerations associated with the HIFEM approximation of thermal and mechanical responses of 3D problems. A convergence study is provided to investigate the accuracy and convergence rate of the HIFEM and compare them with standard FEM benchmark solutions. We will also demonstrate the application of this mesh-independent method for simulating the thermal and mechanical responses of two composite materials systems with complex microstructures.
A Method for Sectioning and Immunohistochemical Analysis of Stem Cell-Derived 3-D Organoids.
Wiley, Luke A; Beebe, David C; Mullins, Robert F; Stone, Edwin M; Tucker, Budd A
2016-05-12
This unit describes a protocol for embedding, sectioning, and immunocytochemical analysis of pluripotent stem cell-derived 3-D organoids. Specifically, we describe a method to embed iPSC-derived retinal cups in low-melt agarose, acquire thick sections using a vibratome tissue slicer, and perform immunohistochemical analysis. This method includes an approach for antibody labeling that minimizes the amount of antibody needed for individual experiments and that utilizes large-volume washing to increase the signal-to-noise ratio, allowing for clean, high-resolution imaging of developing cell types. The universal methods described can be employed regardless of the type of pluripotent stem cell used and 3-D organoid generated. © 2016 by John Wiley & Sons, Inc.
A novel adaptive 3D medical image interpolation method based on shape
NASA Astrophysics Data System (ADS)
Chen, Jiaxin; Ma, Wei
2013-03-01
Image interpolation of cross-sections is one of the key steps of medical visualization. Aiming at the problem of fuzzy boundaries and large amount of calculation, which are brought by the traditional interpolation, a novel adaptive 3-D medical image interpolation method is proposed in this paper. Firstly, the contour is obtained by the edge interpolation, and the corresponding points are found according to the relation of the contour and points on the original images. Secondly, this algorithm utilizes volume relativity to get the best point-pair with the adaptive methods. Finally, the grey value of interpolation pixel is got by the matching point interpolation. The experimental results show that the method presented in the paper not only can meet the requirements of interpolation accuracy, but also can be used effectively in medical image 3D reconstruction.
Finite volume and finite element methods applied to 3D laminar and turbulent channel flows
Louda, Petr; Příhoda, Jaromír; Sváček, Petr; Kozel, Karel
2014-12-10
The work deals with numerical simulations of incompressible flow in channels with rectangular cross section. The rectangular cross section itself leads to development of various secondary flow patterns, where accuracy of simulation is influenced by numerical viscosity of the scheme and by turbulence modeling. In this work some developments of stabilized finite element method are presented. Its results are compared with those of an implicit finite volume method also described, in laminar and turbulent flows. It is shown that numerical viscosity can cause errors of same magnitude as different turbulence models. The finite volume method is also applied to 3D turbulent flow around backward facing step and good agreement with 3D experimental results is obtained.
NASA Astrophysics Data System (ADS)
Uehara, Shin-ichi; Ujike, Hiroyasu; Hamagishi, Goro; Taira, Kazuki; Koike, Takafumi; Kato, Chiaki; Nomura, Toshio; Horikoshi, Tsutomu; Mashitani, Ken; Yuuki, Akimasa; Izumi, Kuniaki; Hisatake, Yuzo; Watanabe, Naoko; Umezu, Naoaki; Nakano, Yoshihiko
2010-02-01
We are engaged in international standardization activities for 3D displays. We consider that for a sound development of 3D displays' market, the standards should be based on not only mechanism of 3D displays, but also human factors for stereopsis. However, we think that there is no common understanding on what the 3D display should be and that the situation makes developing the standards difficult. In this paper, to understand the mechanism and human factors, we focus on a double image, which occurs in some conditions on an autostereoscopic display. Although the double image is generally considered as an unwanted effect, we consider that whether the double image is unwanted or not depends on the situation and that there are some allowable double images. We tried to classify the double images into the unwanted and the allowable in terms of the display mechanism and visual ergonomics for stereopsis. The issues associated with the double image are closely related to performance characteristics for the autostereoscopic display. We also propose performance characteristics, measurement and analysis methods to represent interocular crosstalk and motion parallax.
A novel method for the 3-D reconstruction of scoliotic ribs from frontal and lateral radiographs.
Seoud, Lama; Cheriet, Farida; Labelle, Hubert; Dansereau, Jean
2011-05-01
Among the external manifestations of scoliosis, the rib hump, which is associated with the ribs' deformities and rotations, constitutes the most disturbing aspect of the scoliotic deformity for patients. A personalized 3-D model of the rib cage is important for a better evaluation of the deformity, and hence, a better treatment planning. A novel method for the 3-D reconstruction of the rib cage, based only on two standard radiographs, is proposed in this paper. For each rib, two points are extrapolated from the reconstructed spine, and three points are reconstructed by stereo radiography. The reconstruction is then refined using a surface approximation. The method was evaluated using clinical data of 13 patients with scoliosis. A comparison was conducted between the reconstructions obtained with the proposed method and those obtained by using a previous reconstruction method based on two frontal radiographs. A first comparison criterion was the distances between the reconstructed ribs and the surface topography of the trunk, considered as the reference modality. The correlation between ribs axial rotation and back surface rotation was also evaluated. The proposed method successfully reconstructed the ribs of the 6th-12th thoracic levels. The evaluation results showed that the 3-D configuration of the new rib reconstructions is more consistent with the surface topography and provides more accurate measurements of ribs axial rotation.
3D Imaging of Rapidly Spinning Space Targets Based on a Factorization Method
Bi, Yanxian; Wei, Shaoming; Wang, Jun; Mao, Shiyi
2017-01-01
Three-dimensional (3D) imaging of space targets can provide crucial information about the target shape and size, which are significant supports for the application of automatic target classification and recognition. In this paper, a new 3D imaging of space spinning targets via a factorization method is proposed. Firstly, after the translational compensation, the scattering centers two-dimensional (2D) range and range-rate sequence induced by the target spinning is extracted using a high resolution spectral estimation technique. Secondly, measurement data association is implemented to obtain the scattering center trajectory matrix by using a range-Doppler tracker. Then, we use an initial coarse angular velocity to generate the projection matrix, which consists of the scattering centers range and cross-range, and a factorization method is applied iteratively to the projection matrix to estimate the accurate angular velocity. Finally, we use the accurate estimate spinning angular velocity to rescale the projection matrix and the well-scaled target 3D geometry is reconstructed. Compared to the previous literature methods, ambiguity in the spatial axes can be removed by this method. Simulation results have demonstrated the effectiveness and robustness of the proposed method. PMID:28216588
NASA Astrophysics Data System (ADS)
Ren, Zhengyong; Tang, Jingtian; Kalscheuer, Thomas; Maurer, Hansruedi
2017-01-01
A novel fast and accurate algorithm is developed for large-scale 3-D gravity and magnetic modeling problems. An unstructured grid discretization is used to approximate sources with arbitrary mass and magnetization distributions. A novel adaptive multilevel fast multipole (AMFM) method is developed to reduce the modeling time. An observation octree is constructed on a set of arbitrarily distributed observation sites, while a source octree is constructed on a source tetrahedral grid. A novel characteristic is the independence between the observation octree and the source octree, which simplifies the implementation of different survey configurations such as airborne and ground surveys. Two synthetic models, a cubic model and a half-space model with mountain-valley topography, are tested. As compared to analytical solutions of gravity and magnetic signals, excellent agreements of the solutions verify the accuracy of our AMFM algorithm. Finally, our AMFM method is used to calculate the terrain effect on an airborne gravity data set for a realistic topography model represented by a triangular surface retrieved from a digital elevation model. Using 16 threads, more than 5800 billion interactions between 1,002,001 observation points and 5,839,830 tetrahedral elements are computed in 453.6 s. A traditional first-order Gaussian quadrature approach requires 3.77 days. Hence, our new AMFM algorithm not only can quickly compute the gravity and magnetic signals for complicated problems but also can substantially accelerate the solution of 3-D inversion problems.
A Quality Assurance Method that Utilizes 3D Dosimetry and Facilitates Clinical Interpretation
Oldham, Mark; Thomas, Andrew; O'Daniel, Jennifer; Juang, Titania; Ibbott, Geoffrey; Adamovics, John; Kirkpatrick, John P.
2012-10-01
Purpose: To demonstrate a new three-dimensional (3D) quality assurance (QA) method that provides comprehensive dosimetry verification and facilitates evaluation of the clinical significance of QA data acquired in a phantom. Also to apply the method to investigate the dosimetric efficacy of base-of-skull (BOS) intensity-modulated radiotherapy (IMRT) treatment. Methods and Materials: Two types of IMRT QA verification plans were created for 6 patients who received BOS IMRT. The first plan enabled conventional 2D planar IMRT QA using the Varian portal dosimetry system. The second plan enabled 3D verification using an anthropomorphic head phantom. In the latter, the 3D dose distribution was measured using the DLOS/Presage dosimetry system (DLOS = Duke Large-field-of-view Optical-CT System, Presage Heuris Pharma, Skillman, NJ), which yielded isotropic 2-mm data throughout the treated volume. In a novel step, measured 3D dose distributions were transformed back to the patient's CT to enable calculation of dose-volume histograms (DVH) and dose overlays. Measured and planned patient DVHs were compared to investigate clinical significance. Results: Close agreement between measured and calculated dose distributions was observed for all 6 cases. For gamma criteria of 3%, 2 mm, the mean passing rate for portal dosimetry was 96.8% (range, 92.0%-98.9%), compared to 94.9% (range, 90.1%-98.9%) for 3D. There was no clear correlation between 2D and 3D passing rates. Planned and measured dose distributions were evaluated on the patient's anatomy, using DVH and dose overlays. Minor deviations were detected, and the clinical significance of these are presented and discussed. Conclusions: Two advantages accrue to the methods presented here. First, treatment accuracy is evaluated throughout the whole treated volume, yielding comprehensive verification. Second, the clinical significance of any deviations can be assessed through the generation of DVH curves and dose overlays on the patient
A 3-D liver segmentation method with parallel computing for selective internal radiation therapy.
Goryawala, Mohammed; Guillen, Magno R; Cabrerizo, Mercedes; Barreto, Armando; Gulec, Seza; Barot, Tushar C; Suthar, Rekha R; Bhatt, Ruchir N; Mcgoron, Anthony; Adjouadi, Malek
2012-01-01
This study describes a new 3-D liver segmentation method in support of the selective internal radiation treatment as a treatment for liver tumors. This 3-D segmentation is based on coupling a modified k-means segmentation method with a special localized contouring algorithm. In the segmentation process, five separate regions are identified on the computerized tomography image frames. The merit of the proposed method lays in its potential to provide fast and accurate liver segmentation and 3-D rendering as well as in delineating tumor region(s), all with minimal user interaction. Leveraging of multicore platforms is shown to speed up the processing of medical images considerably, making this method more suitable in clinical settings. Experiments were performed to assess the effect of parallelization using up to 442 slices. Empirical results, using a single workstation, show a reduction in processing time from 4.5 h to almost 1 h for a 78% gain. Most important is the accuracy achieved in estimating the volumes of the liver and tumor region(s), yielding an average error of less than 2% in volume estimation over volumes generated on the basis of the current manually guided segmentation processes. Results were assessed using the analysis of variance statistical analysis.
Enhanced Rgb-D Mapping Method for Detailed 3d Modeling of Large Indoor Environments
NASA Astrophysics Data System (ADS)
Tang, Shengjun; Zhu, Qing; Chen, Wu; Darwish, Walid; Wu, Bo; Hu, Han; Chen, Min
2016-06-01
RGB-D sensors are novel sensing systems that capture RGB images along with pixel-wise depth information. Although they are widely used in various applications, RGB-D sensors have significant drawbacks with respect to 3D dense mapping of indoor environments. First, they only allow a measurement range with a limited distance (e.g., within 3 m) and a limited field of view. Second, the error of the depth measurement increases with increasing distance to the sensor. In this paper, we propose an enhanced RGB-D mapping method for detailed 3D modeling of large indoor environments by combining RGB image-based modeling and depth-based modeling. The scale ambiguity problem during the pose estimation with RGB image sequences can be resolved by integrating the information from the depth and visual information provided by the proposed system. A robust rigid-transformation recovery method is developed to register the RGB image-based and depth-based 3D models together. The proposed method is examined with two datasets collected in indoor environments for which the experimental results demonstrate the feasibility and robustness of the proposed method
Liu, Miao; Yang, Shourui; Wang, Zhangying; Huang, Shujun; Liu, Yue; Niu, Zhenqi; Zhang, Xiaoxuan; Zhu, Jigui; Zhang, Zonghua
2016-05-30
Augmented reality system can be applied to provide precise guidance for various kinds of manual works. The adaptability and guiding accuracy of such systems are decided by the computational model and the corresponding calibration method. In this paper, a novel type of augmented reality guiding system and the corresponding designing scheme are proposed. Guided by external positioning equipment, the proposed system can achieve high relative indication accuracy in a large working space. Meanwhile, the proposed system is realized with a digital projector and the general back projection model is derived with geometry relationship between digitized 3D model and the projector in free space. The corresponding calibration method is also designed for the proposed system to obtain the parameters of projector. To validate the proposed back projection model, the coordinate data collected by a 3D positioning equipment is used to calculate and optimize the extrinsic parameters. The final projecting indication accuracy of the system is verified with subpixel pattern projecting technique.
A novel 3D constellation-masked method for physical security in hierarchical OFDMA system.
Zhang, Lijia; Liu, Bo; Xin, Xiangjun; Liu, Deming
2013-07-01
This paper proposes a novel 3D constellation-masked method to ensure the physical security in hierarchical optical orthogonal frequency division multiplexing access (OFDMA) system. The 3D constellation masking is executed on the two levels of hierarchical modulation and among different OFDM subcarriers, which is realized by the masking vectors. The Lorenz chaotic model is adopted for the generation of masking vectors in the proposed scheme. A 9.85 Gb/s encrypted hierarchical QAM OFDM signal is successfully demonstrated in the experiment. The performance of illegal optical network unit (ONU) with different masking vectors is also investigated. The proposed method is demonstrated to be secure and efficient against the commonly known attacks in the experiment.
Investigating the Bag-of-Words Method for 3D Shape Retrieval
NASA Astrophysics Data System (ADS)
Li, Xiaolan; Godil, Afzal
2010-12-01
This paper investigates the capabilities of the Bag-of-Words (BWs) method in the 3D shape retrieval field. The contributions of this paper are (1) the 3D shape retrieval task is categorized from different points of view: specific versus generic, partial-to-global retrieval (PGR) versus global-to-global retrieval (GGR), and articulated versus nonarticulated (2) the spatial information, represented as concentric spheres, is integrated into the framework to improve the discriminative ability (3) the analysis of the experimental results on Purdue Engineering Benchmark (PEB) reveals that some properties of the BW approach make it perform better on the PGR task than the GGR task (4) the BW approach is evaluated on nonarticulated database PEB and articulated database McGill Shape Benchmark (MSB) and compared to other methods.
Comparison of parabolic filtration methods for 3D filtered back projection in pulsed EPR imaging
NASA Astrophysics Data System (ADS)
Qiao, Zhiwei; Redler, Gage; Epel, Boris; Halpern, Howard J.
2014-11-01
Pulse electron paramagnetic resonance imaging (Pulse EPRI) is a robust method for noninvasively measuring local oxygen concentrations in vivo. For 3D tomographic EPRI, the most commonly used reconstruction algorithm is filtered back projection (FBP), in which the parabolic filtration process strongly influences image quality. In this work, we designed and compared 7 parabolic filtration methods to reconstruct both simulated and real phantoms. To evaluate these methods, we designed 3 error criteria and 1 spatial resolution criterion. It was determined that the 2 point derivative filtration method and the two-ramp-filter method have unavoidable negative effects resulting in diminished spatial resolution and increased artifacts respectively. For the noiseless phantom the rectangular-window parabolic filtration method and sinc-window parabolic filtration method were found to be optimal, providing high spatial resolution and small errors. In the presence of noise, the 3 point derivative method and Hamming-window parabolic filtration method resulted in the best compromise between low image noise and high spatial resolution. The 3 point derivative method is faster than Hamming-window parabolic filtration method, so we conclude that the 3 point derivative method is optimal for 3D FBP.
Perfetti, Christopher M; Rearden, Bradley T
2014-01-01
This work introduces a new approach for calculating sensitivity coefficients for generalized neutronic responses to nuclear data uncertainties using continuous-energy Monte Carlo methods. The approach presented in this paper, known as the GEAR-MC method, allows for the calculation of generalized sensitivity coefficients for multiple responses in a single Monte Carlo calculation with no nuclear data perturbations or knowledge of nuclear covariance data. The theory behind the GEAR-MC method is presented here, and proof of principle is demonstrated by using the GEAR-MC method to calculate sensitivity coefficients for responses in several 3D, continuous-energy Monte Carlo applications.
A Method for 3D Histopathology Reconstruction Supporting Mouse Microvasculature Analysis
Xu, Yiwen; Pickering, J. Geoffrey; Nong, Zengxuan; Gibson, Eli; Arpino, John-Michael; Yin, Hao; Ward, Aaron D.
2015-01-01
Structural abnormalities of the microvasculature can impair perfusion and function. Conventional histology provides good spatial resolution with which to evaluate the microvascular structure but affords no 3-dimensional information; this limitation could lead to misinterpretations of the complex microvessel network in health and disease. The objective of this study was to develop and evaluate an accurate, fully automated 3D histology reconstruction method to visualize the arterioles and venules within the mouse hind-limb. Sections of the tibialis anterior muscle from C57BL/J6 mice (both normal and subjected to femoral artery excision) were reconstructed using pairwise rigid and affine registrations of 5 µm-thick, paraffin-embedded serial sections digitized at 0.25 µm/pixel. Low-resolution intensity-based rigid registration was used to initialize the nucleus landmark-based registration, and conventional high-resolution intensity-based registration method. The affine nucleus landmark-based registration was developed in this work and was compared to the conventional affine high-resolution intensity-based registration method. Target registration errors were measured between adjacent tissue sections (pairwise error), as well as with respect to a 3D reference reconstruction (accumulated error, to capture propagation of error through the stack of sections). Accumulated error measures were lower (p<0.01) for the nucleus landmark technique and superior vasculature continuity was observed. These findings indicate that registration based on automatic extraction and correspondence of small, homologous landmarks may support accurate 3D histology reconstruction. This technique avoids the otherwise problematic “banana-into-cylinder” effect observed using conventional methods that optimize the pairwise alignment of salient structures, forcing them to be section-orthogonal. This approach will provide a valuable tool for high-accuracy 3D histology tissue reconstructions for
Ultrasonic 3-D Vector Flow Method for Quantitative In Vivo Peak Velocity and Flow Rate Estimation.
Holbek, Simon; Ewertsen, Caroline; Bouzari, Hamed; Pihl, Michael Johannes; Hansen, Kristoffer Lindskov; Stuart, Matthias Bo; Thomsen, Carsten; Nielsen, Michael Bachmann; Jensen, Jorgen Arendt
2017-03-01
Current clinical ultrasound (US) systems are limited to show blood flow movement in either 1-D or 2-D. In this paper, a method for estimating 3-D vector velocities in a plane using the transverse oscillation method, a 32×32 element matrix array, and the experimental US scanner SARUS is presented. The aim of this paper is to estimate precise flow rates and peak velocities derived from 3-D vector flow estimates. The emission sequence provides 3-D vector flow estimates at up to 1.145 frames/s in a plane, and was used to estimate 3-D vector flow in a cross-sectional image plane. The method is validated in two phantom studies, where flow rates are measured in a flow-rig, providing a constant parabolic flow, and in a straight-vessel phantom ( ∅=8 mm) connected to a flow pump capable of generating time varying waveforms. Flow rates are estimated to be 82.1 ± 2.8 L/min in the flow-rig compared with the expected 79.8 L/min, and to 2.68 ± 0.04 mL/stroke in the pulsating environment compared with the expected 2.57 ± 0.08 mL/stroke. Flow rates estimated in the common carotid artery of a healthy volunteer are compared with magnetic resonance imaging (MRI) measured flow rates using a 1-D through-plane velocity sequence. Mean flow rates were 333 ± 31 mL/min for the presented method and 346 ± 2 mL/min for the MRI measurements.
NASA Astrophysics Data System (ADS)
Suzuki, Yuki; Kawai, Kenji; Geller, Robert J.; Borgeaud, Anselme F. E.; Konishi, Kensuke
2016-12-01
We conduct waveform inversion to infer the three-dimensional (3-D) S-velocity structure in the lowermost 400 km of the mantle (the D'' region) beneath the Northern Pacific region. Our dataset consists of about 20,000 transverse component broadband body-wave seismograms observed at North American stations for 131 intermediate and deep earthquakes which occurred beneath the western Pacific subduction region. We use S, ScS, and other phases that arrive between them. Resolution tests indicate that our methods and dataset can resolve the velocity structure in the target region with a horizontal scale of about 150 km and a vertical scale of about 50 km. The 3-D S-velocity model obtained in this study shows three prominent features: (1) prominent sheet-like lateral high-velocity anomalies up to ˜3% faster than the Preliminary Reference Earth Model (PREM) with a thickness of ˜200 km, whose lower boundary is ˜150 km above the core-mantle boundary (CMB). (2) A prominent low-velocity anomaly block located to the west of the Kamchatka peninsula, which is ˜2.5% slower than PREM, immediately above the CMB beneath the high-velocity anomalies. (3) A relatively thin (˜300 km) low-velocity structure continuous from the low-velocity anomaly "(2)" to at least 400 km above the CMB. We also detect a continuous low-velocity anomaly from the east of the Kamchatka peninsula at an altitude of 50 km above the CMB to the far east of the Kuril islands at an altitude of 400 km above the CMB. We interpret these features respectively as: (1) remnants of slab material where the bridgmanite to Mg-post-perovskite phase transition may have occurred within the slab, (2, 3) large amounts of hot and less dense materials beneath the cold Kula or Pacific slab remnants just above the CMB which ascend and form a passive plume upwelling at the edge of the slab remnants.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Widiwijayanti, C.; Tiberi, C.; Diament, M.; Deplus, C.; Mikhailov, V.; Louat, R.; Tikhotsky, S.; Gvishiani, A.
2003-04-01
The Molucca Sea extending from northeastern Indonesia to southern Philippines islands, is a zone of oceanic basin closure between two opposite-facing subduction zones. This convergence results in the collision of two subduction zones, which style evolves from the southern to the northern parts of the Molucca Sea. In order to provide new insights into the present-day lithospheric structures in the Molucca Sea area, we inverted satellite and sea-surface gravity data into an iterative scheme including a priori seismological data. The seismological data were collected from two networks of Ocean Bottom Seismometer (OBS). These data allowed us to locate local seismic events and to build 3D tomographic images. We relate these results to the different stages of collision. The gravity data consists of combined sea-surface and satellite derived gravity. We used Kolmogorov-Wiener optimal (mean-square) filter to extract the gravity signal associated with lithospheric structures, then analyzed it to determine main regional features of lithospheric structure. For this purpose we employed a selection of Euler solutions based on a new clustering technique. To identify the geometry and nature of lithospheric structures, we also performed a 3-D gravity inversion for the northern Molucca Sea data, introducing our tomographic model as an independent constraint. The combination of both methods permits us to obtain a coherent image of the lithospheric structure. The results of this study illustrate the heterogeneity of lithospheric units in the northern Molucca Sea, which results from the collision between the Sangihe margin and lithospheric fragments from the Phillipine plate such as the Snellius plateau or the Halmahera volcanic arc. Three phenomena can explain the observed lithospheric structure: 1) the rupture of the Molucca Sea plate, accompanied by the appearance at the surface of slices of oceanic crust, favoring the development of suture zones as the collision evolves, 2) the
Shao, Yan-Lin Faltinsen, Odd M.
2014-10-01
We propose a new efficient and accurate numerical method based on harmonic polynomials to solve boundary value problems governed by 3D Laplace equation. The computational domain is discretized by overlapping cells. Within each cell, the velocity potential is represented by the linear superposition of a complete set of harmonic polynomials, which are the elementary solutions of Laplace equation. By its definition, the method is named as Harmonic Polynomial Cell (HPC) method. The characteristics of the accuracy and efficiency of the HPC method are demonstrated by studying analytical cases. Comparisons will be made with some other existing boundary element based methods, e.g. Quadratic Boundary Element Method (QBEM) and the Fast Multipole Accelerated QBEM (FMA-QBEM) and a fourth order Finite Difference Method (FDM). To demonstrate the applications of the method, it is applied to some studies relevant for marine hydrodynamics. Sloshing in 3D rectangular tanks, a fully-nonlinear numerical wave tank, fully-nonlinear wave focusing on a semi-circular shoal, and the nonlinear wave diffraction of a bottom-mounted cylinder in regular waves are studied. The comparisons with the experimental results and other numerical results are all in satisfactory agreement, indicating that the present HPC method is a promising method in solving potential-flow problems. The underlying procedure of the HPC method could also be useful in other fields than marine hydrodynamics involved with solving Laplace equation.
NASA Astrophysics Data System (ADS)
Grigoraş, I.-R.; Covăsnianu, A.; Pleşu, G.; Benedict, B.
2009-04-01
The paper describes an experiment which took place in Iasi town, Romania, consisted in two different topographical survey techniques applied for one and the same objective placed in a block within the city (western part) - a thermal power station. The purpose was to compare those methods and to determine which one is proper to be used in this domain in terms of fastness, optimization and speed of data processing. First technique applied for our survey was the classical one, with a total station. Using the CAD technique, we obtained a final product (a dwg file) and a list of coordinates (a text file). The second method, which we focused our attention more, was the measurement with a very precise 3D laser scanstation, also very suitable in archeology. The data obtained were processed with special software. Result was a 3D model of the thermal power plant composed of measurable cloud point data. Finally, analyzing the advantages and disadvantages of each method, we came to the conclusion that the 3D laser scanning which we used matches well the application, in this case civil engineering, but the future of accepting and implementing this technique is in the hands of Romanian authorities.
A new combined prior based reconstruction method for compressed sensing in 3D ultrasound imaging
NASA Astrophysics Data System (ADS)
Uddin, Muhammad S.; Islam, Rafiqul; Tahtali, Murat; Lambert, Andrew J.; Pickering, Mark R.
2015-03-01
Ultrasound (US) imaging is one of the most popular medical imaging modalities, with 3D US imaging gaining popularity recently due to its considerable advantages over 2D US imaging. However, as it is limited by long acquisition times and the huge amount of data processing it requires, methods for reducing these factors have attracted considerable research interest. Compressed sensing (CS) is one of the best candidates for accelerating the acquisition rate and reducing the data processing time without degrading image quality. However, CS is prone to introduce noise-like artefacts due to random under-sampling. To address this issue, we propose a combined prior-based reconstruction method for 3D US imaging. A Laplacian mixture model (LMM) constraint in the wavelet domain is combined with a total variation (TV) constraint to create a new regularization regularization prior. An experimental evaluation conducted to validate our method using synthetic 3D US images shows that it performs better than other approaches in terms of both qualitative and quantitative measures.
Embedded 3D shape measurement system based on a novel spatio-temporal coding method
NASA Astrophysics Data System (ADS)
Xu, Bin; Tian, Jindong; Tian, Yong; Li, Dong
2016-11-01
Structured light measurement has been wildly used since 1970s in industrial component detection, reverse engineering, 3D molding, robot navigation, medical and many other fields. In order to satisfy the demand for high speed, high precision and high resolution 3-D measurement for embedded system, a new patterns combining binary and gray coding principle in space are designed and projected onto the object surface orderly. Each pixel corresponds to the designed sequence of gray values in time - domain, which is treated as a feature vector. The unique gray vector is then dimensionally reduced to a scalar which could be used as characteristic information for binocular matching. In this method, the number of projected structured light patterns is reduced, and the time-consuming phase unwrapping in traditional phase shift methods is avoided. This algorithm is eventually implemented on DM3730 embedded system for 3-D measuring, which consists of an ARM and a DSP core and has a strong capability of digital signal processing. Experimental results demonstrated the feasibility of the proposed method.
A variable flip angle-based method for reducing blurring in 3D GRASE ASL
NASA Astrophysics Data System (ADS)
Liang, Xiaoyun; Connelly, Alan; Tournier, Jacques-Donald; Calamante, Fernando
2014-09-01
Arterial Spin Labeling (ASL) is an MRI technique to measure cerebral blood flow directly and noninvasively, and thus provides a more direct quantitative correlate of neural activity than blood-oxygen-level-dependent fMRI. A 3D gradient and spin-echo (GRASE) sequence is capable of enhancing signal-to-noise ratio, and has been shown to be a very useful readout module for ASL sequences. Nonetheless, the introduction of significant blurring in its single-shot version, due to T2 decay along the partition dimension, compromises the achievable spatial resolution, limiting the potential of this technique for whole-brain coverage. To address this issue, a method for reducing blurring based on a variable flip angle (VFA) scheme is proposed in this study for 3D GRASE ASL perfusion. Numerical simulations show that the proposed method is capable of reducing the blurring significantly compared to the standard constant flip angle approach; this result was further confirmed using in vivo data. The proposed VFA method should therefore be of significance to 3D GRASE ASL fMRI studies, since it is able to reduce blurring without sacrificing temporal resolution.
Solid-liquid phase transitions in 3D systems with the inverse-power and Yukawa potentials
NASA Astrophysics Data System (ADS)
Vaulina, O. S.; Koss, X. G.
2016-03-01
The melting of face-centered cubic (fcc) and body-centered cubic (bcc) crystal lattices was studied analytically and numerically for the systems of particles interacting via the inverse-power-law and Yukawa potentials. New approach is proposed for determination of the solid-liquid phase transitions in these systems. The suggested approach takes into account a nonlinearity (anharmonicity) of pair interaction forces and allows to correctly predict the conditions of melting of the systems with various isotropic pair interaction potentials. The obtained results are compared with the existing theoretical and numerical data.
Validation of 3D Seismic Velocity Models Using the Spectral Element Method
NASA Astrophysics Data System (ADS)
Maceira, M.; Larmat, C. S.; Porritt, R. W.; Higdon, D.; Allen, R. M.
2012-12-01
For over a decade now, many research institutions have been focusing on addressing the Earth's 3D heterogeneities and complexities by improving tomographic methods. Utilizing dense array datasets, these efforts have led to unprecedented 3D seismic images, but little is done in terms of model validation or to provide any absolute assessment of model uncertainty. Furthermore, the question of "How good is a 3D geophysical model at representing the Earth's true physics? " remains largely not addressed in a time when 3D Earth models are used for societal and energy security. In the last few years, new horizons have opened up in earth structure imaging, with the advent of new numerical and mathematical methods in computational seismology and statistical sciences. We use these methods to tackle the question of model validation taking advantage of unique and extensive High Performance Computing resources available at Los Alamos National Laboratory. We present results from a study focused on validating 3D models for the Western USA generated using both ray-theoretical and finite-frequency approximations. In this manner we do not validate just the model but also the imaging technique. For this test case, we utilize the Dynamic North America (DNA) model family of UC Berkeley, as they are readily available in both formulations. We evaluate model performances by comparing observed and synthetic seismograms generated using the Spectral Element Method. Results show that both, finite-frequency and ray-theoretical DNA09 models, predict the observations well. Waveform cross-correlation coefficients show a difference in performance between models obtained with the finite-frequency or ray-theory limited to smallest periods (<15s), with no perceptible difference at longer periods (50-200s). At those shortest periods, and based on statistical analyses on S-wave phase delay measurements, finite-frequency shows an improvement over ray theory. We are also investigating the breakdown of ray
NASA Astrophysics Data System (ADS)
Schultz, A.
2010-12-01
3D forward solvers lie at the core of inverse formulations used to image the variation of electrical conductivity within the Earth's interior. This property is associated with variations in temperature, composition, phase, presence of volatiles, and in specific settings, the presence of groundwater, geothermal resources, oil/gas or minerals. The high cost of 3D solutions has been a stumbling block to wider adoption of 3D methods. Parallel algorithms for modeling frequency domain 3D EM problems have not achieved wide scale adoption, with emphasis on fairly coarse grained parallelism using MPI and similar approaches. The communications bandwidth as well as the latency required to send and receive network communication packets is a limiting factor in implementing fine grained parallel strategies, inhibiting wide adoption of these algorithms. Leading Graphics Processor Unit (GPU) companies now produce GPUs with hundreds of GPU processor cores per die. The footprint, in silicon, of the GPU's restricted instruction set is much smaller than the general purpose instruction set required of a CPU. Consequently, the density of processor cores on a GPU can be much greater than on a CPU. GPUs also have local memory, registers and high speed communication with host CPUs, usually through PCIe type interconnects. The extremely low cost and high computational power of GPUs provides the EM geophysics community with an opportunity to achieve fine grained (i.e. massive) parallelization of codes on low cost hardware. The current generation of GPUs (e.g. NVidia Fermi) provides 3 billion transistors per chip die, with nearly 500 processor cores and up to 6 GB of fast (DDR5) GPU memory. This latest generation of GPU supports fast hardware double precision (64 bit) floating point operations of the type required for frequency domain EM forward solutions. Each Fermi GPU board can sustain nearly 1 TFLOP in double precision, and multiple boards can be installed in the host computer system. We
A 3D front tracking method on a CPU/GPU system
Bo, Wurigen; Grove, John
2011-01-21
We describe the method to port a sequential 3D interface tracking code to a GPU with CUDA. The interface is represented as a triangular mesh. Interface geometry properties and point propagation are performed on a GPU. Interface mesh adaptation is performed on a CPU. The convergence of the method is assessed from the test problems with given velocity fields. Performance results show overall speedups from 11 to 14 for the test problems under mesh refinement. We also briefly describe our ongoing work to couple the interface tracking method with a hydro solver.
Wound Measurement Techniques: Comparing the Use of Ruler Method, 2D Imaging and 3D Scanner.
Shah, Aj; Wollak, C; Shah, J B
2013-12-01
The statistics on the growing number of non-healing wounds is alarming. In the United States, chronic wounds affect 6.5 million patients. An estimated US $25 billion is spent annually on treatment of chronic wounds and the burden is rapidly growing due to increasing health care costs, an aging population and a sharp rise in the incidence of diabetes and obesity worldwide.(1) Accurate wound measurement techniques will help health care personnel to monitor the wounds which will indirectly help improving care.(7,9) The clinical practice of measuring wounds has not improved even today.(2,3) A common method like the ruler method to measure wounds has poor interrater and intrarater reliability.(2,3) Measuring the greatest length by the greatest width perpendicular to the greatest length, the perpendicular method, is more valid and reliable than other ruler based methods.(2) Another common method like acetate tracing is more accurate than the ruler method but still has its disadvantages. These common measurement techniques are time consuming with variable inaccuracies. In this study, volumetric measurements taken with a non-contact 3-D scanner are benchmarked against the common ruler method, acetate grid tracing, and 2-D image planimetry volumetric measurement technique. A liquid volumetric fill method is used as the control volume. Results support the hypothesis that the 3-D scanner consistently shows accurate volumetric measurements in comparison to standard volumetric measurements obtained by the waterfill technique (average difference of 11%). The 3-D scanner measurement technique was found more reliable and valid compared to other three techniques, the ruler method (average difference of 75%), acetate grid tracing (average difference of 41%), and 2D planimetric measurements (average difference of 52%). Acetate tracing showed more accurate measurements compared to the ruler method (average difference of 41% (acetate tracing) compared to 75% (ruler method)). Improving
Wound Measurement Techniques: Comparing the Use of Ruler Method, 2D Imaging and 3D Scanner
Shah, Aj; Wollak, C.; Shah, J.B.
2015-01-01
The statistics on the growing number of non-healing wounds is alarming. In the United States, chronic wounds affect 6.5 million patients. An estimated US $25 billion is spent annually on treatment of chronic wounds and the burden is rapidly growing due to increasing health care costs, an aging population and a sharp rise in the incidence of diabetes and obesity worldwide.1 Accurate wound measurement techniques will help health care personnel to monitor the wounds which will indirectly help improving care.7,9 The clinical practice of measuring wounds has not improved even today.2,3 A common method like the ruler method to measure wounds has poor interrater and intrarater reliability.2,3 Measuring the greatest length by the greatest width perpendicular to the greatest length, the perpendicular method, is more valid and reliable than other ruler based methods.2 Another common method like acetate tracing is more accurate than the ruler method but still has its disadvantages. These common measurement techniques are time consuming with variable inaccuracies. In this study, volumetric measurements taken with a non-contact 3-D scanner are benchmarked against the common ruler method, acetate grid tracing, and 2-D image planimetry volumetric measurement technique. A liquid volumetric fill method is used as the control volume. Results support the hypothesis that the 3-D scanner consistently shows accurate volumetric measurements in comparison to standard volumetric measurements obtained by the waterfill technique (average difference of 11%). The 3-D scanner measurement technique was found more reliable and valid compared to other three techniques, the ruler method (average difference of 75%), acetate grid tracing (average difference of 41%), and 2D planimetric measurements (average difference of 52%). Acetate tracing showed more accurate measurements compared to the ruler method (average difference of 41% (acetate tracing) compared to 75% (ruler method)). Improving the
NASA Technical Reports Server (NTRS)
Nakazawa, S.
1988-01-01
This annual status report presents the results of work performed during the fourth year of the 3-D Inelastic Analysis Methods for Hot Section Components program (NASA Contract NAS3-23697). The objective of the program is to produce a series of new computer codes permitting more accurate and efficient 3-D analysis of selected hot section components, i.e., combustor liners, turbine blades and turbine vanes. The computer codes embody a progression of math models and are streamlined to take advantage of geometrical features, loading conditions, and forms of material response that distinguish each group of selected components. Volume 1 of this report discusses the special finite element models developed during the fourth year of the contract.
OPTIMIZATION OF 3-D IMAGE-GUIDED NEAR INFRARED SPECTROSCOPY USING BOUNDARY ELEMENT METHOD
Srinivasan, Subhadra; Carpenter, Colin; Pogue, Brian W.; Paulsen, Keith D.
2010-01-01
Multimodality imaging systems combining optical techniques with MRI/CT provide high-resolution functional characterization of tissue by imaging molecular and vascular biomarkers. To optimize these hybrid systems for clinical use, faster and automatable algorithms are required for 3-D imaging. Towards this end, a boundary element model was used to incorporate tissue boundaries from MRI/CT into image formation process. This method uses surface rendering to describe light propagation in 3-D using diffusion equation. Parallel computing provided speedup of up to 54% in time of computation. Simulations showed that location of NIRS probe was crucial for quantitatively accurate estimation of tumor response. A change of up to 61% was seen between cycles 1 and 3 in monitoring tissue response to neoadjuvant chemotherapy. PMID:20523751
A Novel 2D-to-3D Video Conversion Method Using Time-Coherent Depth Maps
Yin, Shouyi; Dong, Hao; Jiang, Guangli; Liu, Leibo; Wei, Shaojun
2015-01-01
In this paper, we propose a novel 2D-to-3D video conversion method for 3D entertainment applications. 3D entertainment is getting more and more popular and can be found in many contexts, such as TV and home gaming equipment. 3D image sensors are a new method to produce stereoscopic video content conveniently and at a low cost, and can thus meet the urgent demand for 3D videos in the 3D entertaiment market. Generally, 2D image sensor and 2D-to-3D conversion chip can compose a 3D image sensor. Our study presents a novel 2D-to-3D video conversion algorithm which can be adopted in a 3D image sensor. In our algorithm, a depth map is generated by combining global depth gradient and local depth refinement for each frame of 2D video input. Global depth gradient is computed according to image type while local depth refinement is related to color information. As input 2D video content consists of a number of video shots, the proposed algorithm reuses the global depth gradient of frames within the same video shot to generate time-coherent depth maps. The experimental results prove that this novel method can adapt to different image types, reduce computational complexity and improve the temporal smoothness of generated 3D video. PMID:26131674
A compact robotic apparatus and method for 3-D ultrasound guided prostate therapy
NASA Astrophysics Data System (ADS)
Bax, Jeffrey; Gardi, Lori; Montreuil, Jacques; Smith, David; Fenster, Aaron
2007-03-01
Ultrasound imaging has revolutionized the treatment of prostate cancer by producing increasingly accurate models of the prostate and influencing sophisticated targeting procedures for the insertion of radioactive seeds during brachytherapy. Three-dimensional (3D) ultrasound imaging, which allows 3D models of the prostate to be constructed from a series of two-dimensional images, helps to accurately target and implant seeds into the prostate. We have developed a compact robotic apparatus, as well as an effective method for guiding and controlling the insertion of transperineal needles into the prostate. This device has been designed to accurately guide a needle in 3D space so that the needle can be inserted into the prostate at an angle that does not interfere with the pubic arch. The physician can adjust manually or automatically the position of the apparatus in order to place several radioactive seeds into the prostate at designated target locations. Because many physicians are wary of conducting robotic surgical procedures, the apparatus has been developed so that the physician can position the needle for manual insertion and apply a method for manually releasing the needle without damaging the apparatus or endangering the patient.
3D In Vitro Model for Breast Cancer Research Using Magnetic Levitation and Bioprinting Method.
Leonard, Fransisca; Godin, Biana
2016-01-01
Tumor microenvironment composition and architecture are known as a major factor in orchestrating the tumor growth and its response to various therapies. In this context, in vivo studies are necessary to evaluate the responses. However, while tumor cells can be of human origin, tumor microenvironment in the in vivo models is host-based. On the other hand, in vitro studies in a flat monoculture of tumor cells (the most frequently used in vitro tumor model) are unable to recapitulate the complexity of tumor microenvironment. Three-dimensional (3D) in vitro cell cultures of tumor cells have been proven to be an important experimental tool in understanding mechanisms of tumor growth, response to therapeutics, and transport of nutrients/drugs. We have recently described a novel tool to create 3D co-cultures of tumor cells and cells in the tumor microenvironment. Our method utilizes magnetic manipulation/levitation of the specific ratios of tumor cells and cells in the tumor microenvironment (from human or animal origin) aiding in the formation of tumor spheres with defined cellular composition and density, as quickly as within 24 h. This chapter describes the experimental protocols developed to model the 3D structure of the cancer environment using the above method.
3D in vitro model for breast cancer research using magnetic levitation and bioprinting method
Leonard, Fransisca; Godin, Biana
2016-01-01
Summary Tumor microenvironment composition and architecture are known as a major factor in orchestrating the tumor growth and its response to various therapies. In this context, in vivo studies are necessary to evaluate the responses. However, while tumor cells can be of human origin, tumor microenvironment in the in vivo models is host-based. On the other hand, in vitro studies in a flat monoculture of tumor cells (the most frequently used in vitro tumor model) are unable to recapitulate the complexity of tumor microenvironment. Three-dimensional (3D) in vitro cell cultures of tumor cells have been proven to be an important experimental tool in understanding mechanisms of tumor growth, response to therapeutics and transport of nutrients/drugs. We have recently described a novel tool to create 3D co-cultures of tumor cells and cells in the tumor microenvironment. Our method utilizes magnetic manipulation/levitation of the specific ratios of tumor cells and cells in the tumor microenvironment (from human or animal origin) aiding in the formation of tumor spheres with defined cellular composition and density, as quickly as within 24 hours. This chapter describes the experimental protocols developed to model the 3D structure of the cancer environment using the above method. PMID:26820961
Scientific rotoscoping: a morphology-based method of 3-D motion analysis and visualization.
Gatesy, Stephen M; Baier, David B; Jenkins, Farish A; Dial, Kenneth P
2010-06-01
Three-dimensional skeletal movement is often impossible to accurately quantify from external markers. X-ray imaging more directly visualizes moving bones, but extracting 3-D kinematic data is notoriously difficult from a single perspective. Stereophotogrammetry is extremely powerful if bi-planar fluoroscopy is available, yet implantation of three radio-opaque markers in each segment of interest may be impractical. Herein we introduce scientific rotoscoping (SR), a new method of motion analysis that uses articulated bone models to simultaneously animate and quantify moving skeletons without markers. The three-step process is described using examples from our work on pigeon flight and alligator walking. First, the experimental scene is reconstructed in 3-D using commercial animation software so that frames of undistorted fluoroscopic and standard video can be viewed in their correct spatial context through calibrated virtual cameras. Second, polygonal models of relevant bones are created from CT or laser scans and rearticulated into a hierarchical marionette controlled by virtual joints. Third, the marionette is registered to video images by adjusting each of its degrees of freedom over a sequence of frames. SR outputs high-resolution 3-D kinematic data for multiple, unmarked bones and anatomically accurate animations that can be rendered from any perspective. Rather than generating moving stick figures abstracted from the coordinates of independent surface points, SR is a morphology-based method of motion analysis deeply rooted in osteological and arthrological data.
Woie, Leik; Måløy, Frode; Eftestøl, Trygve; Engan, Kjersti; Edvardsen, Thor; Kvaløy, Jan Terje; Ørn, Stein
2014-02-01
Current methods for the estimation of infarct size by late-enhanced cardiac magnetic imaging are based upon 2D analysis that first determines the size of the infarction in each slice, and thereafter adds the infarct sizes from each slice to generate a volume. We present a novel, automatic 3D method that estimates infarct size by a simultaneous analysis of all pixels from all slices. In a population of 54 patients with ischemic scars, the infarct size estimated by the automatic 3D method was compared with four established 2D methods. The new 3D method defined scar as the sum of all pixels with signal intensity (SI) ≥35 % of max SI from the complete myocardium, border zone: SI 35-50 % of max SI and core as SI ≥50 % of max SI. The 3D method yielded smaller infarct size (-2.8 ± 2.3 %) and core size (-3.0 ± 1.7 %) than the 2D method most similar to ours. There was no difference in the size of the border zone (0.2 ± 1.4 %). The 3D method demonstrated stronger correlations between scar size and left ventricular (LV) remodelling parameters (LV ejection fraction: r = -0.71, p < 0.0005, LV end-diastolic index: r = 0.54, p < 0.0005, and LV end-systolic index: r = 0.59, p < 0.0005) compared with conventional 2D methods. Infarct size estimation by our novel 3D automatic method is without the need for manual demarcation of the scar; it is less time-consuming and has a stronger correlation with remodelling parameters compared with existing methods.
A Cost-Effective Method to Assemble Biomimetic 3D Cell Culture Platforms
Khalil, Sabreen; El-Badri, Nagwa; El-Mokhtaar, Mohamed; Al-Mofty, Saif; Farghaly, Mohamed; Ayman, Radwa; Habib, Dina; Mousa, Noha
2016-01-01
Developing effective stem cell based therapies requires the design of complex in vitro culture systems for more accurate representation of the stem cell niche. Attempts to improve conventional cell culture platforms include the use of biomaterial coated culture plates, sphere culture, microfluidic systems and bioreactors. Most of these platforms are not cost-effective, require industrial technical expertise to fabricate, and remain too simplistic compared to the physiological cell niche. The human amniotic membrane (hAM) has been used successfully in clinical grafting applications due to its unique biological composition and regenerative properties. In this study, we present a combinatorial platform that integrates the hAM with biomolecular, topographic and mechanical cues in one versatile model. Methods We utilized the hAM to provide the biological and the three dimensional (3D) topographic components of the prototype. The 3D nano-roughness of the hAM was characterized using surface electron microscopy and surface image analysis (ImageJ and SurfaceJ). We developed additional macro-scale and micro-scale versions of the platform which provided additional shear stress factors to simulate the fluid dynamics of the in vivo extracellular fluids. Results Three models of varying complexities of the prototype were assembled. A well-defined 3D surface modulation of the hAM in comparable to commercial 3D biomaterial culture substrates was achieved without complex fabrication and with significantly lower cost. Performance of the prototype was demonstrated through culture of primary human umbilical cord mononuclear blood cells (MNCs), human bone marrow mesenchymal stem cell line (hBMSC), and human breast cancer tissue. Conclusion This study presents methods of assembling an integrated, flexible and low cost biomimetic cell culture platform for diverse cell culture applications. PMID:27935982
2D and 3D visualization methods of endoscopic panoramic bladder images
NASA Astrophysics Data System (ADS)
Behrens, Alexander; Heisterklaus, Iris; Müller, Yannick; Stehle, Thomas; Gross, Sebastian; Aach, Til
2011-03-01
While several mosaicking algorithms have been developed to compose endoscopic images of the internal urinary bladder wall into panoramic images, the quantitative evaluation of these output images in terms of geometrical distortions have often not been discussed. However, the visualization of the distortion level is highly desired for an objective image-based medical diagnosis. Thus, we present in this paper a method to create quality maps from the characteristics of transformation parameters, which were applied to the endoscopic images during the registration process of the mosaicking algorithm. For a global first view impression, the quality maps are laid over the panoramic image and highlight image regions in pseudo-colors according to their local distortions. This illustration supports then surgeons to identify geometrically distorted structures easily in the panoramic image, which allow more objective medical interpretations of tumor tissue in shape and size. Aside from introducing quality maps in 2-D, we also discuss a visualization method to map panoramic images onto a 3-D spherical bladder model. Reference points are manually selected by the surgeon in the panoramic image and the 3-D model. Then the panoramic image is mapped by the Hammer-Aitoff equal-area projection onto the 3-D surface using texture mapping. Finally the textured bladder model can be freely moved in a virtual environment for inspection. Using a two-hemisphere bladder representation, references between panoramic image regions and their corresponding space coordinates within the bladder model are reconstructed. This additional spatial 3-D information thus assists the surgeon in navigation, documentation, as well as surgical planning.
NASA Astrophysics Data System (ADS)
Pilia, S.; Rawlinson, N.; Direen, N. G.
2013-12-01
Although the notion of Rodinia is quite well accepted in the geoscience community, the location and nature of the eastern continental margin of the Gondwana fragment in Australia is still vague and remains one of the most hotly debated topics in Australian geology. Moreover, most post-Rodinian reconstructions models choose not to tackle the ';Tasmanian challenge', and focus only on the tectonic evolution of mainland southeast Australia, thereby conveniently ignoring the wider tectonic implications of Tasmania's complex geological history. One of the chief limitations of the tectonic reconstructions in this region is a lack of information on Paleozoic (possibly Proterozoic) basement structures. Vast Mesozoic-Cainozoic sedimentary and volcanic cover sequences obscure older outcrops and limit the power of direct observational techniques. In response to these challenges, our effort is focused on ambient seismic noise for imaging 3D crustal shear velocity structure using surface waves, which is capable of illuminating basement structure beneath younger cover. The data used in this study is sourced from the WOMBAT transportable seismic array, which is compounded by around 650 stations spanning the majority of southeastern Australia, including Tasmania and several islands in Bass Strait. To produce the highest quality Green's functions, careful processing of the data has been performed, after which group velocity dispersion measurements have been carried out using a frequency-time analysis method on the symmetric component of the empirical Green's functions (EGFs). Group dispersion measurements from the EGFs have been inverted using a novel hierarchical, transdimensional, Bayesian algorithm to obtain Rayleigh-wave group velocity maps at different periods from 2 to 30 s. The new approach has several advantages in that the number and distribution of model parameters are implicitly controlled by the data, in which the noise is treated as unknown in the inversion. This
3-D surface profilometry based on modulation measurement by applying wavelet transform method
NASA Astrophysics Data System (ADS)
Zhong, Min; Chen, Feng; Xiao, Chao; Wei, Yongchao
2017-01-01
A new analysis of 3-D surface profilometry based on modulation measurement technique by the application of Wavelet Transform method is proposed. As a tool excelling for its multi-resolution and localization in the time and frequency domains, Wavelet Transform method with good localized time-frequency analysis ability and effective de-noizing capacity can extract the modulation distribution more accurately than Fourier Transform method. Especially for the analysis of complex object, more details of the measured object can be well remained. In this paper, the theoretical derivation of Wavelet Transform method that obtains the modulation values from a captured fringe pattern is given. Both computer simulation and elementary experiment are used to show the validity of the proposed method by making a comparison with the results of Fourier Transform method. The results show that the Wavelet Transform method has a better performance than the Fourier Transform method in modulation values retrieval.
NASA Astrophysics Data System (ADS)
Bertrand, E. A.; Caldwell, G.; Bannister, S. C.; Hill, G.; Bennie, S.
2013-12-01
The Taupo Volcanic Zone (TVZ), located in the central North Island of New Zealand, is a rifted arc that contains more than 20 liquid-dominated high-temperature geothermal systems, which together discharge ~4.2 GW of heat at the surface. The shallow (upper ~500 m) extent of these geothermal systems is marked by low-resistivity, mapped by tens-of-thousands of DC resistivity measurements collected throughout the 1970's and 80's. Conceptual models of heat transport through the brittle crust of the TVZ link these low-resistivity anomalies to the tops of vertically ascending plumes of convecting hydrothermal fluid. Recently, data from a 40-site array of broadband seismometers with ~4 km station spacing, and an array of 270 broadband magnetotelluric (MT) measurements with ~2 km station spacing, have been collected in the south-eastern part of the TVZ in an experiment to image the deep structure (or roots) of the geothermal systems in this region. Unlike DC resistivity, these MT measurements are capable of resolving the resistivity structure of the Earth to depths of 10 km or more. 2-D and 3-D models of subsets of these MT data have been used to provide the first-ever images of quasi-vertical low-resistivity zones (at depths of 3-7 km) that connect with the near-surface geothermal fields. These low-resistivity zones are interpreted to represent convection plumes of high-temperature fluids ascending within fractures, which supply heat to the overlying geothermal fields. At the Rotokawa, Ngatamariki and Ohaaki geothermal fields, these plumes extend to a broad layer of low-resistivity, inferred to represent a magmatic, basal heat source located below the seismogenic zone (at ~7-8 km depth) that drives convection in the brittle crust above. Little is known about the mechanisms that transfer heat into the hydrothermal regime. However, at Rotokawa, new 3-D resistivity models image a vertical low-resistivity zone that lies directly beneath the geothermal field. The top of this
A brain-computer interface method combined with eye tracking for 3D interaction.
Lee, Eui Chul; Woo, Jin Cheol; Kim, Jong Hwa; Whang, Mincheol; Park, Kang Ryoung
2010-07-15
With the recent increase in the number of three-dimensional (3D) applications, the need for interfaces to these applications has increased. Although the eye tracking method has been widely used as an interaction interface for hand-disabled persons, this approach cannot be used for depth directional navigation. To solve this problem, we propose a new brain computer interface (BCI) method in which the BCI and eye tracking are combined to analyze depth navigation, including selection and two-dimensional (2D) gaze direction, respectively. The proposed method is novel in the following five ways compared to previous works. First, a device to measure both the gaze direction and an electroencephalogram (EEG) pattern is proposed with the sensors needed to measure the EEG attached to a head-mounted eye tracking device. Second, the reliability of the BCI interface is verified by demonstrating that there is no difference between the real and the imaginary movements for the same work in terms of the EEG power spectrum. Third, depth control for the 3D interaction interface is implemented by an imaginary arm reaching movement. Fourth, a selection method is implemented by an imaginary hand grabbing movement. Finally, for the independent operation of gazing and the BCI, a mode selection method is proposed that measures a user's concentration by analyzing the pupil accommodation speed, which is not affected by the operation of gazing and the BCI. According to experimental results, we confirmed the feasibility of the proposed 3D interaction method using eye tracking and a BCI.
Spectral element method for band-structure calculations of 3D phononic crystals
NASA Astrophysics Data System (ADS)
Shi, Linlin; Liu, Na; Zhou, Jianyang; Zhou, Yuanguo; Wang, Jiamin; Huo Liu, Qing
2016-11-01
The spectral element method (SEM) is a special kind of high-order finite element method (FEM) which combines the flexibility of a finite element method with the accuracy of a spectral method. In contrast to the traditional FEM, the SEM exhibits advantages in the high-order accuracy as the error decreases exponentially with the increase of interpolation degree by employing the Gauss-Lobatto-Legendre (GLL) polynomials as basis functions. In this study, the spectral element method is developed for the first time for the determination of band structures of 3D isotropic/anisotropic phononic crystals (PCs). Based on the Bloch theorem, we present a novel, intuitive discretization formulation for Navier equation in the SEM scheme for periodic media. By virtue of using the orthogonal Legendre polynomials, the generalized eigenvalue problem is converted to a regular one in our SEM implementation to improve the efficiency. Besides, according to the specific geometry structure, 8-node and 27-node hexahedral elements as well as an analytic mesh have been used to accurately capture curved PC models in our SEM scheme. To verify its accuracy and efficiency, this study analyses the phononic-crystal plates with square and triangular lattice arrangements, and the 3D cubic phononic crystals consisting of simple cubic (SC), bulk central cubic (BCC) and faced central cubic (FCC) lattices with isotropic or anisotropic scatters. All the numerical results considered demonstrate that SEM is superior to the conventional FEM and can be an efficient alternative method for accurate determination of band structures of 3D phononic crystals.
NASA Astrophysics Data System (ADS)
Lebedeva-Ivanova, Nina; Gaina, Carmen; Minakov, Alexander; Kashubin, Sergey
2016-04-01
We derived Moho depth and crustal thickness for the High Arctic region by 3D forward and inverse gravity modelling method in the spectral domain (Minakov et al. 2012) using lithosphere thermal gravity anomaly correction (Alvey et al., 2008); a vertical density variation for the sedimentary layer and lateral crustal variation density. Recently updated grids of bathymetry (Jakobsson et al., 2012), gravity anomaly (Gaina et al, 2011) and dynamic topography (Spasojevic & Gurnis, 2012) were used as input data for the algorithm. TeMAr sedimentary thickness grid (Petrov et al., 2013) was modified according to the most recently published seismic data, and was re-gridded and utilized as input data. Other input parameters for the algorithm were calibrated using seismic crustal scale profiles. The results are numerically compared with publically available grids of the Moho depth and crustal thickness for the High Arctic region (CRUST 1 and GEMMA global grids; the deep Arctic Ocean grids by Glebovsky et al., 2013) and seismic crustal scale profiles. The global grids provide coarser resolution of 0.5-1.0 geographic degrees and not focused on the High Arctic region. Our grids better capture all main features of the region and show smaller error in relation to the seismic crustal profiles compare to CRUST 1 and GEMMA grids. Results of 3D gravity modelling by Glebovsky et al. (2013) with separated geostructures approach show also good fit with seismic profiles; however these grids cover the deep part of the Arctic Ocean only. Alvey A, Gaina C, Kusznir NJ, Torsvik TH (2008). Integrated crustal thickness mapping and plate recon-structions for the high Arctic. Earth Planet Sci Lett 274:310-321. Gaina C, Werner SC, Saltus R, Maus S (2011). Circum-Arctic mapping project: new magnetic and gravity anomaly maps of the Arctic. Geol Soc Lond Mem 35, 39-48. Glebovsky V.Yu., Astafurova E.G., Chernykh A.A., Korneva M.A., Kaminsky V.D., Poselov V.A. (2013). Thickness of the Earth's crust in the
3D modelling of the electromagnetic response of geophysical targets using the FDTD method
Debroux, P.S.
1996-05-01
A publicly available and maintained electromagnetic finite-difference time domain (FDTD) code has been applied to the forward modelling of the response of 1D, 2D and 3D geophysical targets to a vertical magnetic dipole excitation. The FDTD method is used to analyze target responses in the 1 MHz to 100 MHz range, where either conduction or displacement currents may have the controlling role. The response of the geophysical target to the excitation is presented as changes in the magnetic field ellipticity. The results of the FDTD code compare favorably with previously published integral equation solutions of the response of 1D targets, and FDTD models calculated with different finite-difference cell sizes are compared to find the effect of model discretization on the solution. The discretization errors, calculated as absolute error in ellipticity, are presented for the different ground geometry models considered, and are, for the most part, below 10% of the integral equation solutions. Finally, the FDTD code is used to calculate the magnetic ellipticity response of a 2D survey and a 3D sounding of complicated geophysical targets. The response of these 2D and 3D targets are too complicated to be verified with integral equation solutions, but show the proper low- and high-frequency responses.
Locally conservative groundwater flow in the continuous Galerkin method using 3-D prismatic patches
NASA Astrophysics Data System (ADS)
Wu, Qiang; Zhao, Yingwang; Lin, Yu-Feng F.; Xu, Hua
2016-11-01
A new procedure has been developed to improve the velocity field computed by the continuous Galerkin finite element method (CG). It enables extending the postprocessing algorithm proposed by Cordes and Kinzelbach (1992) to three-dimensional (3-D) models by using prismatic patches for saturated groundwater flow. This approach leverages a dual mesh to preserve local mass conservation and provides interpolated velocities based on consistent fluxes. To develop this 3-D approach, a triangular conservative patch is introduced by computing not only advection fluxes, but also vertical infiltrations, storage changes, and other sink or source terms. This triangular patch is then used to develop a prismatic patch, which consists of subprisms in two layers. By dividing a single two-layer patch into two separate one-layer patches, two dimensional (2-D) algorithms can be applied to compute velocities. As a consequence, each subelement is able to preserve local mass conservation. A hypothetical 3-D model is used to evaluate the precision of streamlines and flow rates generated by this approach and the FEFLOW simulation program.
GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method
Gong Chunye; Liu Jie; Chi Lihua; Huang Haowei; Fang Jingyue; Gong Zhenghu
2011-07-01
Graphics Processing Unit (GPU), originally developed for real-time, high-definition 3D graphics in computer games, now provides great faculty in solving scientific applications. The basis of particle transport simulation is the time-dependent, multi-group, inhomogeneous Boltzmann transport equation. The numerical solution to the Boltzmann equation involves the discrete ordinates (S{sub n}) method and the procedure of source iteration. In this paper, we present a GPU accelerated simulation of one energy group time-independent deterministic discrete ordinates particle transport in 3D Cartesian geometry (Sweep3D). The performance of the GPU simulations are reported with the simulations of vacuum boundary condition. The discussion of the relative advantages and disadvantages of the GPU implementation, the simulation on multi GPUs, the programming effort and code portability are also reported. The results show that the overall performance speedup of one NVIDIA Tesla M2050 GPU ranges from 2.56 compared with one Intel Xeon X5670 chip to 8.14 compared with one Intel Core Q6600 chip for no flux fixup. The simulation with flux fixup on one M2050 is 1.23 times faster than on one X5670.
Development of biologically active compounds by combining 3D QSAR and structure-based design methods
NASA Astrophysics Data System (ADS)
Sippl, Wolfgang
2002-11-01
One of the major challenges in computational approaches to drug design is the accurate prediction of the binding affinity of novel biomolecules. In the present study an automated procedure which combines docking and 3D-QSAR methods was applied to several drug targets. The developed receptor-based 3D-QSAR methodology was tested on several sets of ligands for which the three-dimensional structure of the target protein has been solved - namely estrogen receptor, acetylcholine esterase and protein-tyrosine-phosphatase 1B. The molecular alignments of the studied ligands were determined using the docking program AutoDock and were compared with the X-ray structures of the corresponding protein-ligand complexes. The automatically generated protein-based ligand alignment obtained was subsequently taken as basis for a comparative field analysis applying the GRID/GOLPE approach. Using GRID interaction fields and applying variable selection procedures, highly predictive models were obtained. It is expected that concepts from receptor-based 3D QSAR will be valuable tools for the analysis of high-throughput screening as well as virtual screening data
NASA Astrophysics Data System (ADS)
Wang, Minjie; Shen, Shuwei; Yang, Jie; Dong, Erbao; Xu, Ronald
2014-03-01
The performance of biomedical optical imaging devices heavily relies on appropriate calibration. However, many of existing calibration phantoms for biomedical optical devices are based on homogenous materials without considering the multi-layer heterogeneous structures observed in biological tissue. Using such a phantom for optical calibration may result in measurement bias. To overcome this problem, we propose a 3D printing method for freeform fabrication of tissue simulating phantoms with multilayer heterogeneous structure. The phantom simulates not only the morphologic characteristics of biological tissue but also absorption and scattering properties. The printing system is based on a 3D motion platform with coordinated control of the DC motors. A special jet nozzle is designed to mix base, scattering, and absorption materials at different ratios. 3D tissue structures are fabricated through layer-by-layer printing with selective deposition of phantom materials of different ingredients. Different mixed ratios of base, scattering and absorption materials have been tested in order to optimize the printing outcome. A spectrometer and a tissue spectrophotometer are used for characterizing phantom absorption and scattering properties. The goal of this project is to fabricate skin tissue simulating phantoms as a traceable standard for the calibration of biomedical optical spectral devices.
A cut cell method for the 3D simulation of Crookes radiometer
Dechriste, Guillaume; Mieussens, Luc
2014-12-09
Devices involved in engineering applications, such as vacuum pumps or MEMS, may be made of several moving parts. This raise the issue of the simulation of rarefied gas flow around moving boundaries. We propose a simple process, known as cut cell method, to treat the motion of a solid body in the framework of the deterministic solving of a kinetic equation. Up to our knowledge, this is the first time that this approach has been used for this kind of simulations. The method is illustrated by the 2D and 3D simulations of a Crookes radiometer.
A cut cell method for the 3D simulation of Crookes radiometer
NASA Astrophysics Data System (ADS)
Dechriste, Guillaume; Mieussens, Luc
2014-12-01
Devices involved in engineering applications, such as vacuum pumps or MEMS, may be made of several moving parts. This raise the issue of the simulation of rarefied gas flow around moving boundaries. We propose a simple process, known as cut cell method, to treat the motion of a solid body in the framework of the deterministic solving of a kinetic equation. Up to our knowledge, this is the first time that this approach has been used for this kind of simulations. The method is illustrated by the 2D and 3D simulations of a Crookes radiometer.
NASA Astrophysics Data System (ADS)
Uzkeda, Hodei; Bulnes, Mayte; Poblet, Josep; García-Ramos, José Carlos; Piñuela, Laura
2016-09-01
We constructed a geological map, a 3D model and cross-sections, carried out a structural analysis, determined the stress fields and tectonic transport vectors, restored a cross section and performed a subsidence analysis to unravel the kinematic evolution of the NE emerged portion of the Asturian Basin (NW Iberian Peninsula), where Jurassic rocks crop out. The major folds run NW-SE, normal faults exhibit three dominant orientations: NW-SE, NE-SW and E-W, and thrusts display E-W strikes. After Upper Triassic-Lower Jurassic thermal subsidence, Middle Jurassic doming occurred, accompanied by normal faulting, high heat flow and basin uplift, followed by Upper Jurassic high-rate basin subsidence. Another extensional event, possibly during Late Jurassic-Early Cretaceous, caused an increment in the normal faults displacement. A contractional event, probably of Cenozoic age, led to selective and irregularly distributed buttressing and fault reactivation as reverse or strike-slip faults, and folding and/or offset of some previous faults by new generation folds and thrusts. The Middle Jurassic event could be a precursor of the Bay of Biscay and North Atlantic opening that occurred from Late Jurassic to Early Cretaceous, whereas the Cenozoic event would be responsible for the Pyrenean and Cantabrian ranges and the partial closure of the Bay of Biscay.
NASA Technical Reports Server (NTRS)
Fleming, H. E.
1977-01-01
Linear numerical inversion methods applied to atmospheric remote sounding generally can be categorized in two ways: (1) iterative, and (2) inverse matrix methods. However, these two categories are not unrelated; a duality exists between them. In other words, given an iterative scheme, a corresponding inverse matrix method exists, and conversely. This duality concept is developed for the more familiar linear methods. The iterative duals are compared with the classical linear iterative approaches and their differences analyzed. The importance of the initial profile in all methods is stressed. Calculations using simulated data are made to compare accuracies and to examine the dependence of the solution on the initial profile.
NASA Astrophysics Data System (ADS)
Meqbel, N. M.; Egbert, G. D.; Kelbert, A.
2010-12-01
Long period (10-20,000 s) magnetotelluric (MT) data are being acquired in a series of temporary arrays deployed across the continental United States through EMScope, a component of EarthScope, a multidisciplinary decade-long project to study the structure and evolution of the North American Continent. MT deployments in 2006-2010 have so far acquired data at 237 sites on an approximately regular grid, with the same nominal spacing as the USArray broadband seismic transportable array (~70 km), covering the Northwestern US, from the Oregon-Washington coast across the Rocky Mountains, into Montana and Wyoming. Preliminary 3-D inversion results (Patro and Egbert; 2008), based on data from the 110 westernmost “Cascadia” sites collected in the first two years, revealed extensive areas of high conductivity in the lower crust beneath the Northwest Basin and Range (NBR), inferred to result from fluids (including possibly partial melt at depth) associated with magmatic underplating, and beneath the Cascade Mountains, probably due to fluids released by the subducting Juan de Fuca slab. Here we extend this study, refining and further testing the preliminary results from Cascadia, and extending the inversion domain to the East, to include all of the EarthScope data. Although site spacing is very broad, distinct regional structures are clearly evident even in simple maps of apparent resistivity, phase and induction vectors. For the 3-D inversion we are using the parallelized version of our recently developed Modular Code (ModEM), which supports Non-Linear Conjugate Gradient and several Gauss-Newton type schemes. Our initial 3-D inversion results using 212 MT sites, fitting impedances and vertical field transfer functions (together and separately) suggest several conductive and resistive structures which appear to be stable and required by the measured data. These include: - A conductive structure elongated in the N-S direction underneath the volcanic arc of the Cascadia
A faster method for 3D/2D medical image registration—a simulation study
NASA Astrophysics Data System (ADS)
Birkfellner, Wolfgang; Wirth, Joachim; Burgstaller, Wolfgang; Baumann, Bernard; Staedele, Harald; Hammer, Beat; Claudius Gellrich, Niels; Jacob, Augustinus Ludwig; Regazzoni, Pietro; Messmer, Peter
2003-08-01
3D/2D patient-to-computed-tomography (CT) registration is a method to determine a transformation that maps two coordinate systems by comparing a projection image rendered from CT to a real projection image. Iterative variation of the CT's position between rendering steps finally leads to exact registration. Applications include exact patient positioning in radiation therapy, calibration of surgical robots, and pose estimation in computer-aided surgery. One of the problems associated with 3D/2D registration is the fact that finding a registration includes solving a minimization problem in six degrees of freedom (dof) in motion. This results in considerable time requirements since for each iteration step at least one volume rendering has to be computed. We show that by choosing an appropriate world coordinate system and by applying a 2D/2D registration method in each iteration step, the number of iterations can be grossly reduced from n6 to n5. Here, n is the number of discrete variations around a given coordinate. Depending on the configuration of the optimization algorithm, this reduces the total number of iterations necessary to at least 1/3 of it's original value. The method was implemented and extensively tested on simulated x-ray images of a tibia, a pelvis and a skull base. When using one projective image and a discrete full parameter space search for solving the optimization problem, average accuracy was found to be 1.0 +/- 0.6(°) and 4.1 +/- 1.9 (mm) for a registration in six parameters, and 1.0 +/- 0.7(°) and 4.2 +/- 1.6 (mm) when using the 5 + 1 dof method described in this paper. Time requirements were reduced by a factor 3.1. We conclude that this hardware-independent optimization of 3D/2D registration is a step towards increasing the acceptance of this promising method for a wide number of clinical applications.
A faster method for 3D/2D medical image registration--a simulation study.
Birkfellner, Wolfgang; Wirth, Joachim; Burgstaller, Wolfgang; Baumann, Bernard; Staedele, Harald; Hammer, Beat; Gellrich, Niels Claudius; Jacob, Augustinus Ludwig; Regazzoni, Pietro; Messmer, Peter
2003-08-21
3D/2D patient-to-computed-tomography (CT) registration is a method to determine a transformation that maps two coordinate systems by comparing a projection image rendered from CT to a real projection image. Iterative variation of the CT's position between rendering steps finally leads to exact registration. Applications include exact patient positioning in radiation therapy, calibration of surgical robots, and pose estimation in computer-aided surgery. One of the problems associated with 3D/2D registration is the fact that finding a registration includes solving a minimization problem in six degrees of freedom (dof) in motion. This results in considerable time requirements since for each iteration step at least one volume rendering has to be computed. We show that by choosing an appropriate world coordinate system and by applying a 2D/2D registration method in each iteration step, the number of iterations can be grossly reduced from n6 to n5. Here, n is the number of discrete variations around a given coordinate. Depending on the configuration of the optimization algorithm, this reduces the total number of iterations necessary to at least 1/3 of it's original value. The method was implemented and extensively tested on simulated x-ray images of a tibia, a pelvis and a skull base. When using one projective image and a discrete full parameter space search for solving the optimization problem, average accuracy was found to be 1.0 +/- 0.6(degrees) and 4.1 +/- 1.9 (mm) for a registration in six parameters, and 1.0 +/- 0.7(degrees) and 4.2 +/- 1.6 (mm) when using the 5 + 1 dof method described in this paper. Time requirements were reduced by a factor 3.1. We conclude that this hardware-independent optimization of 3D/2D registration is a step towards increasing the acceptance of this promising method for a wide number of clinical applications.
Elucidating the scapulo-humeral rhythm calculation: 3D joint contribution method.
Robert-Lachaine, Xavier; Marion, Patrick; Godbout, Véronique; Bleau, Jacinte; Begon, Mickael
2015-01-01
The scapulo-humeral rhythm quantifies shoulder joint coordination during arm elevation. The common method calculates a ratio of gleno-humeral (GH) elevation to scapulo-thoracic upward rotation angles. However the other rotations also contribute to arm elevation. The objective is to propose a 3D dynamic scapulo-humeral rhythm calculation method including all rotations of the shoulder joints and compare with the common method. Twenty-nine skin markers were placed on the trunk and dominant arm of 14 healthy males to measure shoulder kinematics. Two-way repeated measures ANOVAs were applied to compare the two methods of calculation of joint contributions and scapulo-humeral rhythm during arm elevation. Significant main effects (p < 0.05) were observed between methods in joint contribution angles and scapulo-humeral rhythms. A systematic overestimation of the GH contribution was observed when only using the GH elevation angle because the scapula is moved outside a vertical plane. Hence, the proposed 3D method to calculate the scapulo-humeral rhythm allows an improved functional shoulder evaluation.
NASA Inverse Methods/Data Assimilation
NASA Technical Reports Server (NTRS)
Bennett, Andrew
2003-01-01
An overview of NASA's Third International Summer School on Inverse Methods and Data Assimilation which was conducted at Oregon State University from July 22 to August 2, 2002, is presented. Items listed include: a roster of attendees, a description of course content and talks given.
3D registration method based on scattered point cloud from B-model ultrasound image
NASA Astrophysics Data System (ADS)
Hu, Lei; Xu, Xiaojun; Wang, Lifeng; Guo, Na; Xie, Feng
2017-01-01
The paper proposes a registration method on 3D point cloud of the bone tissue surface extracted by B-mode ultrasound image and the CT model . The B-mode ultrasound is used to get two-dimensional images of the femur tissue . The binocular stereo vision tracker is used to obtain spatial position and orientation of the optical positioning device fixed on the ultrasound probe. The combining of the two kind of data generates 3D point cloud of the bone tissue surface. The pixel coordinates of the bone surface are automatically obtained from ultrasound image using an improved local phase symmetry (phase symmetry, PS) . The mapping of the pixel coordinates on the ultrasound image and 3D space is obtained through a series of calibration methods. In order to detect the effect of registration, six markers are implanted on a complete fresh pig femoral .The actual coordinates of the marks are measured with two methods. The first method is to get the coordinates with measuring tools under a coordinate system. The second is to measure the coordinates of the markers in the CT model registered with 3D point cloud using the ICP registration algorithm under the same coordinate system. Ten registration experiments are carried out in the same way. Error results are obtained by comparing the two sets of mark point coordinates obtained by two different methods. The results is that a minimum error is 1.34mm, the maximum error is 3.22mm,and the average error of 2.52mm; ICP registration algorithm calculates the average error of 0.89mm and a standard deviation of 0.62mm.This evaluation standards of registration accuracy is different from the average error obtained by the ICP registration algorithm. It can be intuitive to show the error caused by the operation of clinical doctors. Reference to the accuracy requirements of different operation in the Department of orthopedics, the method can be apply to the bone reduction and the anterior cruciate ligament surgery.
Development of a piecewise linear omnidirectional 3D image registration method.
Bae, Hyunsoo; Kang, Wonjin; Lee, SukGyu; Kim, Youngwoo
2016-12-01
This paper proposes a new piecewise linear omnidirectional image registration method. The proposed method segments an image captured by multiple cameras into 2D segments defined by feature points of the image and then stitches each segment geometrically by considering the inclination of the segment in the 3D space. Depending on the intended use of image registration, the proposed method can be used to improve image registration accuracy or reduce the computation time in image registration because the trade-off between the computation time and image registration accuracy can be controlled for. In general, nonlinear image registration methods have been used in 3D omnidirectional image registration processes to reduce image distortion by camera lenses. The proposed method depends on a linear transformation process for omnidirectional image registration, and therefore it can enhance the effectiveness of the geometry recognition process, increase image registration accuracy by increasing the number of cameras or feature points of each image, increase the image registration speed by reducing the number of cameras or feature points of each image, and provide simultaneous information on shapes and colors of captured objects.
NASA Astrophysics Data System (ADS)
Shahraeeni, E.; Firoozabadi, A.
2012-12-01
We present a 3D model for fully compositional multi-phase multi-component flow in porous media with species transfer between the phases. Phase properties are modeled with the Peng-Robinson equation of state. Because phase properties may exhibit strong discontinuities, we approximate the mass transport update by the means of discontinuous Galerkin method. Pressure and velocity fields are continuous across the whole domain of solution, which is guaranteed by using the mixed hybrid finite element method. Complexity of the flow necessitates the use of either very fine mesh or higher-order schemes. The use of higher-order finite element methods significantly reduces numerical dispersion and grid orientation effects that plague traditional finite difference methods. We have shown that in 3D the convergence rate of our scheme is twice as first order method and the CPU time may improve up to three orders of magnitude for the same level of accuracy. Our numerical model facilitates accurate simulation of delicate feature of compositional flow like fingering and CO2 injection in complex reservoirs for a broad range of applications, including CO2 sequestration in finite aquifer and water flooded reservoirs with transfer of all species between the phases.
Development of a piecewise linear omnidirectional 3D image registration method
NASA Astrophysics Data System (ADS)
Bae, Hyunsoo; Kang, Wonjin; Lee, SukGyu; Kim, Youngwoo
2016-12-01
This paper proposes a new piecewise linear omnidirectional image registration method. The proposed method segments an image captured by multiple cameras into 2D segments defined by feature points of the image and then stitches each segment geometrically by considering the inclination of the segment in the 3D space. Depending on the intended use of image registration, the proposed method can be used to improve image registration accuracy or reduce the computation time in image registration because the trade-off between the computation time and image registration accuracy can be controlled for. In general, nonlinear image registration methods have been used in 3D omnidirectional image registration processes to reduce image distortion by camera lenses. The proposed method depends on a linear transformation process for omnidirectional image registration, and therefore it can enhance the effectiveness of the geometry recognition process, increase image registration accuracy by increasing the number of cameras or feature points of each image, increase the image registration speed by reducing the number of cameras or feature points of each image, and provide simultaneous information on shapes and colors of captured objects.
Clinical Evaluation of a 3-D Automatic Annotation Method for Breast Ultrasound Imaging.
Jiang, Wei-Wei; Li, Cheng; Li, An-Hua; Zheng, Yong-Ping
2016-04-01
The routine clinical breast ultrasound annotation method is limited by the time it consumes, inconsistency, inaccuracy and incomplete notation. A novel 3-D automatic annotation method for breast ultrasound imaging has been developed that uses a spatial sensor to track and record conventional B-mode scanning so as to provide more objective annotation. The aim of the study described here was to test the feasibility of the automatic annotation method in clinical breast ultrasound scanning. An ultrasound scanning procedure using the new method was established. The new method and the conventional manual annotation method were compared in 46 breast cancer patients (49 ± 12 y). The time used for scanning a patient was recorded and compared for the two methods. Intra-observer and inter-observer experiments were performed, and intra-class correlation coefficients (ICCs) were calculated to analyze system reproducibility. The results revealed that the new annotation method had an average scanning time 36 s (42.9%) less than that of the conventional method. There were high correlations between the results of the two annotation methods (r = 0.933, p < 0.0001 for distance; r = 0.995, p < 0.0001 for radial angle). Intra-observer and inter-observer reproducibility was excellent, with all ICCs > 0.92. The results indicated that the 3-D automatic annotation method is reliable for clinical breast ultrasound scanning and can greatly reduce scanning time. Although large-scale clinical studies are still needed, this work verified that the new annotation method has potential to be a valuable tool in breast ultrasound examination.
Pizarro, Oscar; Friedman, Ariell; Bryson, Mitch; Williams, Stefan B; Madin, Joshua
2017-03-01
Visual 3D reconstruction techniques provide rich ecological and habitat structural information from underwater imagery. However, an unaided swimmer or diver struggles to navigate precisely over larger extents with consistent image overlap needed for visual reconstruction. While underwater robots have demonstrated systematic coverage of areas much larger than the footprint of a single image, access to suitable robotic systems is limited and requires specialized operators. Furthermore, robots are poor at navigating hydrodynamic habitats such as shallow coral reefs. We present a simple approach that constrains the motion of a swimmer using a line unwinding from a fixed central drum. The resulting motion is the involute of a circle, a spiral-like path with constant spacing between revolutions. We test this survey method at a broad range of habitats and hydrodynamic conditions encircling Lizard Island in the Great Barrier Reef, Australia. The approach generates fast, structured, repeatable, and large-extent surveys (~110 m(2) in 15 min) that can be performed with two people and are superior to the commonly used "mow the lawn" method. The amount of image overlap is a design parameter, allowing for surveys that can then be reliably used in an automated processing pipeline to generate 3D reconstructions, orthographically projected mosaics, and structural complexity indices. The individual images or full mosaics can also be labeled for benthic diversity and cover estimates. The survey method we present can serve as a standard approach to repeatedly collecting underwater imagery for high-resolution 2D mosaics and 3D reconstructions covering spatial extents much larger than a single image footprint without requiring sophisticated robotic systems or lengthy deployment of visual guides. As such, it opens up cost-effective novel observations to inform studies relating habitat structure to ecological processes and biodiversity at scales and spatial resolutions not readily
A novel 3D absorption correction method for quantitative EDX-STEM tomography.
Burdet, Pierre; Saghi, Z; Filippin, A N; Borrás, A; Midgley, P A
2016-01-01
This paper presents a novel 3D method to correct for absorption in energy dispersive X-ray (EDX) microanalysis of heterogeneous samples of unknown structure and composition. By using STEM-based tomography coupled with EDX, an initial 3D reconstruction is used to extract the location of generated X-rays as well as the X-ray path through the sample to the surface. The absorption correction needed to retrieve the generated X-ray intensity is then calculated voxel-by-voxel estimating the different compositions encountered by the X-ray. The method is applied to a core/shell nanowire containing carbon and oxygen, two elements generating highly absorbed low energy X-rays. Absorption is shown to cause major reconstruction artefacts, in the form of an incomplete recovery of the oxide and an erroneous presence of carbon in the shell. By applying the correction method, these artefacts are greatly reduced. The accuracy of the method is assessed using reference X-ray lines with low absorption.
A 3D finite element ALE method using an approximate Riemann solution
Chiravalle, V. P.; Morgan, N. R.
2016-08-09
Arbitrary Lagrangian–Eulerian finite volume methods that solve a multidimensional Riemann-like problem at the cell center in a staggered grid hydrodynamic (SGH) arrangement have been proposed. This research proposes a new 3D finite element arbitrary Lagrangian–Eulerian SGH method that incorporates a multidimensional Riemann-like problem. Here, two different Riemann jump relations are investigated. A new limiting method that greatly improves the accuracy of the SGH method on isentropic flows is investigated. A remap method that improves upon a well-known mesh relaxation and remapping technique in order to ensure total energy conservation during the remap is also presented. Numerical details and test problem results are presented.
A 3D finite element ALE method using an approximate Riemann solution
Chiravalle, V. P.; Morgan, N. R.
2016-08-09
Arbitrary Lagrangian–Eulerian finite volume methods that solve a multidimensional Riemann-like problem at the cell center in a staggered grid hydrodynamic (SGH) arrangement have been proposed. This research proposes a new 3D finite element arbitrary Lagrangian–Eulerian SGH method that incorporates a multidimensional Riemann-like problem. Here, two different Riemann jump relations are investigated. A new limiting method that greatly improves the accuracy of the SGH method on isentropic flows is investigated. A remap method that improves upon a well-known mesh relaxation and remapping technique in order to ensure total energy conservation during the remap is also presented. Numerical details and test problemmore » results are presented.« less
3D measurement and camera attitude estimation method based on trifocal tensor
NASA Astrophysics Data System (ADS)
Chen, Shengyi; Liu, Haibo; Yao, Linshen; Yu, Qifeng
2016-11-01
To simultaneously perform 3D measurement and camera attitude estimation, an efficient and robust method based on trifocal tensor is proposed in this paper, which only employs the intrinsic parameters and positions of three cameras. The initial trifocal tensor is obtained by using heteroscedastic errors-in-variables (HEIV) estimator and the initial relative poses of the three cameras is acquired by decomposing the tensor. Further the initial attitude of the cameras is obtained with knowledge of the three cameras' positions. Then the camera attitude and the interested points' image positions are optimized according to the constraint of trifocal tensor with the HEIV method. Finally the spatial positions of the points are obtained by using intersection measurement method. Both simulation and real image experiment results suggest that the proposed method achieves the same precision of the Bundle Adjustment (BA) method but be more efficient.
On 3-D inelastic analysis methods for hot section components (base program)
NASA Technical Reports Server (NTRS)
Wilson, R. B.; Bak, M. J.; Nakazawa, S.; Banerjee, P. K.
1986-01-01
A 3-D Inelastic Analysis Method program is described. This program consists of a series of new computer codes embodying a progression of mathematical models (mechanics of materials, special finite element, boundary element) for streamlined analysis of: (1) combustor liners, (2) turbine blades, and (3) turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain)and global (dynamics, buckling) structural behavior of the three selected components. Three computer codes, referred to as MOMM (Mechanics of Materials Model), MHOST (Marc-Hot Section Technology), and BEST (Boundary Element Stress Technology), have been developed and are briefly described in this report.
Computation of an Underexpanded 3-D Rectangular Jet by the CE/SE Method
NASA Technical Reports Server (NTRS)
Loh, Ching Y.; Himansu, Ananda; Wang, Xiao Y.; Jorgenson, Philip C. E.
2000-01-01
Recently, an unstructured three-dimensional space-time conservation element and solution element (CE/SE) Euler solver was developed. Now it is also developed for parallel computation using METIS for domain decomposition and MPI (message passing interface). The method is employed here to numerically study the near-field of a typical 3-D rectangular under-expanded jet. For the computed case-a jet with Mach number Mj = 1.6. with a very modest grid of 1.7 million tetrahedrons, the flow features such as the shock-cell structures and the axis switching, are in good qualitative agreement with experimental results.
Characteristics Analysis on Various Kinds of Hybrid Stepping Motors Using 3D Finite Element Method
NASA Astrophysics Data System (ADS)
Enomoto, Yuji; Maki, Kohji; Miyata, Kenji; Oonishi, Kazuo; Sakamoto, Masafumi; Abukawa, Toshimi
We have presented a powerful scheme of investigating hybrid stepping motor characteristics by using 3D finite element method. A linear magnetic field analysis is effectively applicable to predict relative performance of several motors in an extremely short computing time. The waveforms of cogging torque by linear and nonlinear analysis resemble each other, while the wave amplitude in the linear analysis is about 2 times larger than one in the nonlinear analysis in the presented example. The overestimation factor of cogging torque is approximately constant for the same material composition.
NASA Technical Reports Server (NTRS)
Wilson, R. B.; Banerjee, P. K.
1987-01-01
This Annual Status Report presents the results of work performed during the third year of the 3-D Inelastic Analysis Methods for Hot Sections Components program (NASA Contract NAS3-23697). The objective of the program is to produce a series of computer codes that permit more accurate and efficient three-dimensional analyses of selected hot section components, i.e., combustor liners, turbine blades, and turbine vanes. The computer codes embody a progression of mathematical models and are streamlined to take advantage of geometrical features, loading conditions, and forms of material response that distinguish each group of selected components.
NASA Astrophysics Data System (ADS)
Boubekeur, Mohamed; Kameni Ntichi, Abelin; Pichon, Lionel
2016-02-01
This paper presents a modeling of heterogeneous sheets in the time domain discontinuous Galerkin method. An homogenization model combined to a sheet interface condition is used to avoid the mesh of these sheets in order to study the transient response of heterogeneous enclosures. The validation of this approach is based on a comparison with the case when the sheet is meshed. To illustrate the efficiency of the interface condition, the simulation of a 3D cavity is performed. Contribution to the topical issue "Numelec 2015 - Elected submissions", edited by Adel Razek
Study of 3D printing method for GRIN micro-optics devices
NASA Astrophysics Data System (ADS)
Wang, P. J.; Yeh, J. A.; Hsu, W. Y.; Cheng, Y. C.; Lee, W.; Wu, N. H.; Wu, C. Y.
2016-03-01
Conventional optical elements are based on either refractive or reflective optics theory to fulfill the design specifications via optics performance data. In refractive optical lenses, the refractive index of materials and radius of curvature of element surfaces determine the optical power and wavefront aberrations so that optical performance can be further optimized iteratively. Although gradient index (GRIN) phenomenon in optical materials is well studied for more than a half century, the optics theory in lens design via GRIN materials is still yet to be comprehensively investigated before realistic GRIN lenses are manufactured. In this paper, 3D printing method for manufacture of micro-optics devices with special features has been studied based on methods reported in the literatures. Due to the additive nature of the method, GRIN lenses in micro-optics devices seem to be readily achievable if a design methodology is available. First, derivation of ray-tracing formulae is introduced for all possible structures in GRIN lenses. Optics simulation program is employed for characterization of GRIN lenses with performance data given by aberration coefficients in Zernike polynomial. Finally, a proposed structure of 3D printing machine is described with conceptual illustration.
ROI-preserving 3D video compression method utilizing depth information
NASA Astrophysics Data System (ADS)
Ti, Chunli; Xu, Guodong; Guan, Yudong; Teng, Yidan
2015-09-01
Efficiently transmitting the extra information of three dimensional (3D) video is becoming a key issue of the development of 3DTV. 2D plus depth format not only occupies the smaller bandwidth and is compatible transmission under the condition of the existing channel, but also can provide technique support for advanced 3D video compression in some extend. This paper proposes an ROI-preserving compression scheme to further improve the visual quality at a limited bit rate. According to the connection between the focus of Human Visual System (HVS) and depth information, region of interest (ROI) can be automatically selected via depth map progressing. The main improvement from common method is that a meanshift based segmentation is executed to the depth map before foreground ROI selection to keep the integrity of scene. Besides, the sensitive areas along the edges are also protected. The Spatio-temporal filtering adapting to H.264 is used to the non-ROI of both 2D video and depth map before compression. Experiments indicate that, the ROI extracted by this method is more undamaged and according with subjective feeling, and the proposed method can keep the key high-frequency information more effectively while the bit rate is reduced.
Multilevel local refinement and multigrid methods for 3-D turbulent flow
Liao, C.; Liu, C.; Sung, C.H.; Huang, T.T.
1996-12-31
A numerical approach based on multigrid, multilevel local refinement, and preconditioning methods for solving incompressible Reynolds-averaged Navier-Stokes equations is presented. 3-D turbulent flow around an underwater vehicle is computed. 3 multigrid levels and 2 local refinement grid levels are used. The global grid is 24 x 8 x 12. The first patch is 40 x 16 x 20 and the second patch is 72 x 32 x 36. 4th order artificial dissipation are used for numerical stability. The conservative artificial compressibility method are used for further improvement of convergence. To improve the accuracy of coarse/fine grid interface of local refinement, flux interpolation method for refined grid boundary is used. The numerical results are in good agreement with experimental data. The local refinement can improve the prediction accuracy significantly. The flux interpolation method for local refinement can keep conservation for a composite grid, therefore further modify the prediction accuracy.
A flexible new method for 3D measurement based on multi-view image sequences
NASA Astrophysics Data System (ADS)
Cui, Haihua; Zhao, Zhimin; Cheng, Xiaosheng; Guo, Changye; Jia, Huayu
2016-11-01
Three-dimensional measurement is the base part for reverse engineering. The paper developed a new flexible and fast optical measurement method based on multi-view geometry theory. At first, feature points are detected and matched with improved SIFT algorithm. The Hellinger Kernel is used to estimate the histogram distance instead of traditional Euclidean distance, which is immunity to the weak texture image; then a new filter three-principle for filtering the calculation of essential matrix is designed, the essential matrix is calculated using the improved a Contrario Ransac filter method. One view point cloud is constructed accurately with two view images; after this, the overlapped features are used to eliminate the accumulated errors caused by added view images, which improved the camera's position precision. At last, the method is verified with the application of dental restoration CAD/CAM, experiment results show that the proposed method is fast, accurate and flexible for tooth 3D measurement.
A least-squares finite element method for 3D incompressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Lin, T. L.; Hou, Lin-Jun; Povinelli, Louis A.
1993-01-01
The least-squares finite element method (LSFEM) based on the velocity-pressure-vorticity formulation is applied to three-dimensional steady incompressible Navier-Stokes problems. This method can accommodate equal-order interpolations, and results in symmetric, positive definite algebraic system. An additional compatibility equation, i.e., the divergence of vorticity vector should be zero, is included to make the first-order system elliptic. The Newton's method is employed to linearize the partial differential equations, the LSFEM is used to obtain discretized equations, and the system of algebraic equations is solved using the Jacobi preconditioned conjugate gradient method which avoids formation of either element or global matrices (matrix-free) to achieve high efficiency. The flow in a half of 3D cubic cavity is calculated at Re = 100, 400, and 1,000 with 50 x 52 x 25 trilinear elements. The Taylor-Gortler-like vortices are observed at Re = 1,000.
A novel window based method for approximating the Hausdorff in 3D range imagery.
Koch, Mark William
2004-10-01
Matching a set of 3D points to another set of 3D points is an important part of any 3D object recognition system. The Hausdorff distance is known for it robustness in the face of obscuration, clutter, and noise. We show how to approximate the 3D Hausdorff fraction with linear time complexity and quadratic space complexity. We empirically demonstrate that the approximation is very good when compared to actual Hausdorff distances.
Tsunami waveform inversion by adjoint methods
NASA Astrophysics Data System (ADS)
Pires, Carlos; Miranda, Pedro M. A.
2001-09-01
An adjoint method for tsunami waveform inversion is proposed, as an alternative to the technique based on Green's functions of the linear long wave model. The method has the advantage of being able to use the nonlinear shallow water equations, or other appropriate equation sets, and to optimize an initial state given as a linear or nonlinear function of any set of free parameters. This last facility is used to perform explicit optimization of the focal fault parameters, characterizing the initial sea surface displacement of tsunamigenic earthquakes. The proposed methodology is validated with experiments using synthetic data, showing the possibility of recovering all relevant details of a tsunami source from tide gauge observations, providing that the adjoint method is constrained in an appropriate manner. It is found, as in other methods, that the inversion skill of tsunami sources increases with the azimuthal and temporal coverage of assimilated tide gauge stations; furthermore, it is shown that the eigenvalue analysis of the Hessian matrix of the cost function provides a consistent and useful methodology to choose the subset of independent parameters that can be inverted with a given dataset of observations and to evaluate the error of the inversion process. The method is also applied to real tide gauge series, from the tsunami of the February 28, 1969, Gorringe Bank earthquake, suggesting some reasonable changes to the assumed focal parameters of that event. It is suggested that the method proposed may be able to deal with transient tsunami sources such as those generated by submarine landslides.
Current methods of radio occultation data inversion
NASA Technical Reports Server (NTRS)
Kliore, A. J.
1972-01-01
The methods of Abel integral transform and ray-tracing inversion have been applied to data received from radio occultation experiments as a means of obtaining refractive index profiles of the ionospheres and atmospheres of Mars and Venus. In the case of Mars, certain simplifications are introduced by the assumption of small refractive bending in the atmosphere. General inversion methods, independent of the thin atmosphere approximation, have been used to invert the data obtained from the radio occultation of Mariner 5 by Venus; similar methods will be used to analyze data obtained from Jupiter with Pioneers F and G, as well as from the other outer planets in the Outer Planet Grand Tour Missions.
An efficient method for inverse problems
NASA Technical Reports Server (NTRS)
Daripa, Prabir
1987-01-01
A new inverse method for aerodynamic design of subcritical airfoils is presented. The pressure distribution in this method can be prescribed in a natural way, i.e. as a function of arclength of the as yet unknown body. This inverse problem is shown to be mathematically equivalent to solving a single nonlinear boundary value problem subject to known Dirichlet data on the boundary. The solution to this problem determines the airfoil, the free stream Mach number M(sub x) and the upstream flow direction theta(sub x). The existence of a solution for any given pressure distribution is discussed. The method is easy to implement and extremely efficient. We present a series of results for which comparisons are made with the known airfoils.
NASA Technical Reports Server (NTRS)
Zhao, W.; Newman, J. C., Jr.; Sutton, M. A.; Shivakumar, K. N.; Wu, X. R.
1995-01-01
Parallel with the work in Part-1, stress intensity factors for semi-elliptical surface cracks emanating from a circular hole are determined. The 3-D weight function method with the 3D finite element solutions for the uncracked stress distribution as in Part-1 is used for the analysis. Two different loading conditions, i.e. remote tension and wedge loading, are considered for a wide range in geometrical parameters. Both single and double surface cracks are studied and compared with other solutions available in the literature. Typical crack opening displacements are also provided.
A new multiresolution method applied to the 3D reconstruction of small bodies
NASA Astrophysics Data System (ADS)
Capanna, C.; Jorda, L.; Lamy, P. L.; Gesquiere, G.
2012-12-01
The knowledge of the three-dimensional (3D) shape of small solar system bodies, such as asteroids and comets, is essential in determining their global physical properties (volume, density, rotational parameters). It also allows performing geomorphological studies of their surface through the characterization of topographic features, such as craters, faults, landslides, grooves, hills, etc.. In the case of small bodies, the shape is often only constrained by images obtained by interplanetary spacecrafts. Several techniques are available to retrieve 3D global shapes from these images. Stereography which relies on control points has been extensively used in the past, most recently to reconstruct the nucleus of comet 9P/Tempel 1 [Thomas (2007)]. The most accurate methods are however photogrammetry and photoclinometry, often used in conjunction with stereography. Stereophotogrammetry (SPG) has been used to reconstruct the shapes of the nucleus of comet 19P/Borrelly [Oberst (2004)] and of the asteroid (21) Lutetia [Preusker (2012)]. Stereophotoclinometry (SPC) has allowed retrieving an accurate shape of the asteroids (25143) Itokawa [Gaskell (2008)] and (2867) Steins [Jorda (2012)]. We present a new photoclinometry method based on the deformation of a 3D triangular mesh [Capanna (2012)] using a multi-resolution scheme which starts from a sphere of 300 facets and yields a shape model with 100; 000 facets. Our strategy is inspired by the "Full Multigrid" method [Botsch (2007)] and consists in going alternatively between two resolutions in order to obtain an optimized shape model at a given resolution before going to the higher resolution. In order to improve the robustness of our method, we use a set of control points obtained by stereography. Our method has been tested on images acquired by the OSIRIS visible camera, aboard the Rosetta spacecraft of the European Space Agency, during the fly-by of asteroid (21) Lutetia in July 2010. We present the corresponding 3D shape
Sutradhar, Alok; Park, Jaejong; Carrau, Diana; Nguyen, Tam H; Miller, Michael J; Paulino, Glaucio H
2016-07-01
Large craniofacial defects require efficient bone replacements which should not only provide good aesthetics but also possess stable structural function. The proposed work uses a novel multiresolution topology optimization method to achieve the task. Using a compliance minimization objective, patient-specific bone replacement shapes can be designed for different clinical cases that ensure revival of efficient load transfer mechanisms in the mid-face. In this work, four clinical cases are introduced and their respective patient-specific designs are obtained using the proposed method. The optimized designs are then virtually inserted into the defect to visually inspect the viability of the design . Further, once the design is verified by the reconstructive surgeon, prototypes are fabricated using a 3D printer for validation. The robustness of the designs are mechanically tested by subjecting them to a physiological loading condition which mimics the masticatory activity. The full-field strain result through 3D image correlation and the finite element analysis implies that the solution can survive the maximum mastication of 120 lb. Also, the designs have the potential to restore the buttress system and provide the structural integrity. Using the topology optimization framework in designing the bone replacement shapes would deliver surgeons new alternatives for rather complicated mid-face reconstruction.
NASA Astrophysics Data System (ADS)
Mokrý, Pavel; Psota, Pavel; Steiger, Kateřina; Václavík, Jan; Vápenka, David; Doleček, Roman; Vojtíšek, Petr; Sládek, Juraj; Lédl, Vít.
2016-11-01
We report on the development and implementation of the digital holographic tomography for the three-dimensio- nal (3D) observations of the domain patterns in the ferroelectric single crystals. Ferroelectric materials represent a group of materials, whose macroscopic dielectric, electromechanical, and elastic properties are greatly in uenced by the presence of domain patterns. Understanding the role of domain patterns on the aforementioned properties require the experimental techniques, which allow the precise 3D measurements of the spatial distribution of ferroelectric domains in the single crystal. Unfortunately, such techniques are rather limited at this time. The most frequently used piezoelectric atomic force microscopy allows 2D observations on the ferroelectric sample surface. Optical methods based on the birefringence measurements provide parameters of the domain patterns averaged over the sample volume. In this paper, we analyze the possibility that the spatial distribution of the ferroelectric domains can be obtained by means of the measurement of the wavefront deformation of the transmitted optical wave. We demonstrate that the spatial distribution of the ferroelectric domains can be determined by means of the measurement of the spatial distribution of the refractive index. Finally, it is demonstrated that the measurements of wavefront deformations generated in ferroelectric polydomain systems with small variations of the refractive index provide data, which can be further processed by means of the conventional tomographic methods.
Local 3-D Toroidal Plasma Tomography Using the Phillips-Tikhonov Regularization Method
NASA Astrophysics Data System (ADS)
Lee, Seung Hun; Kim, Junghee; Choe, Wonho
2008-11-01
Tomography is one of a powerful diagnostic method for obtaining the local information from the line-integrated plasma emission in fusion devices. The 3-D tomography is a complicated task compared to the 2-D tomography. Because of the limitation of the spatial distribution of the array detectors around a torus, the regularization algorithm such as the Phillips-Tikhonov method is advantageous to achieve more reliable reconstruction. In this work, we performed a feasibility study of 3-D tomography for toroidal plasmas. Four tangentially-viewing array detectors of each array consisting of 16x16 detector elements were assumed to be implemented. The reconstruction area is configured as 70 cm x 50 cm of poloidal cross-section and 40 toroidal layers, which has spatial resolution of 5 cm. We chose the phantoms which are KSTAR plasma-like profiles combined with the equilibrium flux surfaces with n = 0, 1, 2, 3 modes. The change of the emission peak in each layer in the reconstruction result agrees reasonably well with that of the phantom, with relative error of 5 - 10 %.
Spectral triangulation: a 3D method for locating single-walled carbon nanotubes in vivo.
Lin, Ching-Wei; Bachilo, Sergei M; Vu, Michael; Beckingham, Kathleen M; Bruce Weisman, R
2016-05-21
Nanomaterials with luminescence in the short-wave infrared (SWIR) region are of special interest for biological research and medical diagnostics because of favorable tissue transparency and low autofluorescence backgrounds in that region. Single-walled carbon nanotubes (SWCNTs) show well-known sharp SWIR spectral signatures and therefore have potential for noninvasive detection and imaging of cancer tumours, when linked to selective targeting agents such as antibodies. However, such applications face the challenge of sensitively detecting and localizing the source of SWIR emission from inside tissues. A new method, called spectral triangulation, is presented for three dimensional (3D) localization using sparse optical measurements made at the specimen surface. Structurally unsorted SWCNT samples emitting over a range of wavelengths are excited inside tissue phantoms by an LED matrix. The resulting SWIR emission is sampled at points on the surface by a scanning fibre optic probe leading to an InGaAs spectrometer or a spectrally filtered InGaAs avalanche photodiode detector. Because of water absorption, attenuation of the SWCNT fluorescence in tissues is strongly wavelength-dependent. We therefore gauge the SWCNT-probe distance by analysing differential changes in the measured SWCNT emission spectra. SWCNT fluorescence can be clearly detected through at least 20 mm of tissue phantom, and the 3D locations of embedded SWCNT test samples are found with sub-millimeter accuracy at depths up to 10 mm. Our method can also distinguish and locate two embedded SWCNT sources at distinct positions.
ROI-based transmission method for stereoscopic video to maximize rendered 3D video quality
NASA Astrophysics Data System (ADS)
Hewage, Chaminda T. E. R.; Martini, Maria G.; Appuhami, Harsha D.
2012-03-01
A technique to improve the rendering quality of novel views for colour plus depth based 3D video is proposed. Most depth discontinuities occur around the edges of depth map objects. If information around edges of both colour and depth map images is lost during transmission, this will affect the quality of the rendered views. Therefore this work proposes a technique to categorize edge and surrounding areas into two different regions (Region Of Interests (ROIs)) and later protect them separately to provide Unequal Error Protection (UEP) during transmission. In this way the most important edge areas (vital for novel view rendering) will be more protected than other surrounding areas. This method is tested over a H.264/AVC based simulcast encoding and transmission setup. The results show improved rendered quality with the proposed ROI-based UEP method compared to Equal Error Protection (EEP) method.
3-D sensor using relative stereo method for bio-seedlings transplanting system
NASA Astrophysics Data System (ADS)
Hiroyasu, Takehisa; Hayashi, Jun'ichiro; Hojo, Hirotaka; Hata, Seiji
2005-12-01
In the plant factory of crone seedlings, most of the production processes are highly automated, but the transplanting process of the small seedlings is hard to be automated because the figures of small seedlings are not stable and to handle the seedlings it is required to observe the shapes of the small seedlings. Here, a 3-D vision system for robot to be used for the transplanting process in a plant factory has been introduced. This system has been employed relative stereo method and slit light measuring method and it can detect the shape of small seedlings and decides the cutting point. In this paper, the structure of the vision system and the image processing method for the system is explained.
Regeneration of stochastic processes: an inverse method
NASA Astrophysics Data System (ADS)
Ghasemi, F.; Peinke, J.; Sahimi, M.; Rahimi Tabar, M. R.
2005-10-01
We propose a novel inverse method that utilizes a set of data to construct a simple equation that governs the stochastic process for which the data have been measured, hence enabling us to reconstruct the stochastic process. As an example, we analyze the stochasticity in the beat-to-beat fluctuations in the heart rates of healthy subjects as well as those with congestive heart failure. The inverse method provides a novel technique for distinguishing the two classes of subjects in terms of a drift and a diffusion coefficients which behave completely differently for the two classes of subjects, hence potentially providing a novel diagnostic tool for distinguishing healthy subjects from those with congestive heart failure, even at the early stages of the disease development.
Zhao, Yue; Shen, Yi; Bernard, Adeline; Cachard, Christian; Liebgott, Hervé
2017-01-01
This article compares four different biopsy needle localization algorithms in both 3D and 4D situations to evaluate their accuracy and execution time. The localization algorithms were: Principle component analysis (PCA), random Hough transform (RHT), parallel integral projection (PIP) and ROI-RK (ROI based RANSAC and Kalman filter). To enhance the contrast of the biopsy needle and background tissue, a line filtering pre-processing step was implemented. To make the PCA, RHT and PIP algorithms comparable with the ROI-RK method, a region of interest (ROI) strategy was added. Simulated and ex-vivo data were used to evaluate the performance of the different biopsy needle localization algorithms. The resolutions of the sectorial and cylindrical volumes were 0.3mm×0.4mm×0.6mmand0.1mm×0.1mm×0.2mm (axial×lateral×azimuthal) respectively. In so far as the simulation and experimental results show, the ROI-RK method successfully located and tracked the biopsy needle in both 3D and 4D situations. The tip localization error was within 1.5mm and the axis accuracy was within 1.6mm. To the best of our knowledge, considering both localization accuracy and execution time, the ROI-RK was the most stable and time-saving method. Normally, accuracy comes at the expense of time. However, the ROI-RK method was able to locate the biopsy needle with high accuracy in real time, which makes it a promising method for clinical applications.
Time-Lapse 3D Inversion of Complex Conductivity Data Using an Active Time Constrained (ATC) Approach
Induced polarization (more precisely the magnitude and the phase of the impedance of the subsurface) is measured using a network of electrodes located at the ground surface or in boreholes. This method yields important information related to the distribution of permeability and ...
Variational Bayesian Approximation methods for inverse problems
NASA Astrophysics Data System (ADS)
Mohammad-Djafari, Ali
2012-09-01
Variational Bayesian Approximation (VBA) methods are recent tools for effective Bayesian computations. In this paper, these tools are used for inverse problems where the prior models include hidden variables and where where the estimation of the hyper parameters has also to be addressed. In particular two specific prior models (Student-t and mixture of Gaussian models) are considered and details of the algorithms are given.
Women's Preferences for Penis Size: A New Research Method Using Selection among 3D Models.
Prause, Nicole; Park, Jaymie; Leung, Shannon; Miller, Geoffrey
2015-01-01
Women's preferences for penis size may affect men's comfort with their own bodies and may have implications for sexual health. Studies of women's penis size preferences typically have relied on their abstract ratings or selecting amongst 2D, flaccid images. This study used haptic stimuli to allow assessment of women's size recall accuracy for the first time, as well as examine their preferences for erect penis sizes in different relationship contexts. Women (N = 75) selected amongst 33, 3D models. Women recalled model size accurately using this method, although they made more errors with respect to penis length than circumference. Women preferred a penis of slightly larger circumference and length for one-time (length = 6.4 inches/16.3 cm, circumference = 5.0 inches/12.7 cm) versus long-term (length = 6.3 inches/16.0 cm, circumference = 4.8 inches/12.2 cm) sexual partners. These first estimates of erect penis size preferences using 3D models suggest women accurately recall size and prefer penises only slightly larger than average.
Detecting method of subjects' 3D positions and experimental advanced camera control system
NASA Astrophysics Data System (ADS)
Kato, Daiichiro; Abe, Kazuo; Ishikawa, Akio; Yamada, Mitsuho; Suzuki, Takahito; Kuwashima, Shigesumi
1997-04-01
Steady progress is being made in the development of an intelligent robot camera capable of automatically shooting pictures with a powerful sense of reality or tracking objects whose shooting requires advanced techniques. Currently, only experienced broadcasting cameramen can provide these pictures.TO develop an intelligent robot camera with these abilities, we need to clearly understand how a broadcasting cameraman assesses his shooting situation and how his camera is moved during shooting. We use a real- time analyzer to study a cameraman's work and his gaze movements at studios and during sports broadcasts. This time, we have developed a detecting method of subjects' 3D positions and an experimental camera control system to help us further understand the movements required for an intelligent robot camera. The features are as follows: (1) Two sensor cameras shoot a moving subject and detect colors, producing its 3D coordinates. (2) Capable of driving a camera based on camera movement data obtained by a real-time analyzer. 'Moving shoot' is the name we have given to the object position detection technology on which this system is based. We used it in a soccer game, producing computer graphics showing how players moved. These results will also be reported.
Women's Preferences for Penis Size: A New Research Method Using Selection among 3D Models
Park, Jaymie; Leung, Shannon
2015-01-01
Women’s preferences for penis size may affect men’s comfort with their own bodies and may have implications for sexual health. Studies of women’s penis size preferences typically have relied on their abstract ratings or selecting amongst 2D, flaccid images. This study used haptic stimuli to allow assessment of women’s size recall accuracy for the first time, as well as examine their preferences for erect penis sizes in different relationship contexts. Women (N = 75) selected amongst 33, 3D models. Women recalled model size accurately using this method, although they made more errors with respect to penis length than circumference. Women preferred a penis of slightly larger circumference and length for one-time (length = 6.4 inches/16.3 cm, circumference = 5.0 inches/12.7 cm) versus long-term (length = 6.3 inches/16.0 cm, circumference = 4.8 inches/12.2 cm) sexual partners. These first estimates of erect penis size preferences using 3D models suggest women accurately recall size and prefer penises only slightly larger than average. PMID:26332467
Method for accurate sizing of pulmonary vessels from 3D medical images
NASA Astrophysics Data System (ADS)
O'Dell, Walter G.
2015-03-01
Detailed characterization of vascular anatomy, in particular the quantification of changes in the distribution of vessel sizes and of vascular pruning, is essential for the diagnosis and management of a variety of pulmonary vascular diseases and for the care of cancer survivors who have received radiation to the thorax. Clinical estimates of vessel radii are typically based on setting a pixel intensity threshold and counting how many "On" pixels are present across the vessel cross-section. A more objective approach introduced recently involves fitting the image with a library of spherical Gaussian filters and utilizing the size of the best matching filter as the estimate of vessel diameter. However, both these approaches have significant accuracy limitations including mis-match between a Gaussian intensity distribution and that of real vessels. Here we introduce and demonstrate a novel approach for accurate vessel sizing using 3D appearance models of a tubular structure along a curvilinear trajectory in 3D space. The vessel branch trajectories are represented with cubic Hermite splines and the tubular branch surfaces represented as a finite element surface mesh. An iterative parameter adjustment scheme is employed to optimally match the appearance models to a patient's chest X-ray computed tomography (CT) scan to generate estimates for branch radii and trajectories with subpixel resolution. The method is demonstrated on pulmonary vasculature in an adult human CT scan, and on 2D simulated test cases.
NASA Astrophysics Data System (ADS)
Lin, Zhili; Li, Xiaoyan; Zhao, Kuixia; Chen, Xudong; Chen, Mingyu; Pu, Jixiong
2016-06-01
For an inertial confinement fusion (ICF) system, the light intensity distribution in the hohlraum is key to the initial plasma excitation and later laser-plasma interaction process. Based on the concept of coordinate transformation of spatial points and vector, we present a robust method with a detailed procedure that makes the calculation of the three dimensional (3D) light intensity distribution in hohlraum easily. The method is intuitive but powerful enough to solve the complex cases of random number of laser beams with arbitrary polarization states and incidence angles. Its application is exemplified in the Shenguang III Facility (SG-III) that verifies its effectiveness and it is useful for guiding the design of hohlraum structure parameter.
Development and Evaluation of Roadside/Obstacle Detection Method Using 3D Scanned Data Processing
NASA Astrophysics Data System (ADS)
Yamamoto, Hiroshi; Ishii, Yoshinori; Yamazaki, Katsuyuki
In this paper, we have reported the development of a snowblower support system which can safely navigate snowblowers, even during a whiteout, with the combination of a very accurate GPS system, so called RTK-GPS, and a unique and highly accurate map of roadsides and obstacles on roads. Particularly emphasized new techniques in this paper are ways to detect accurate geographical positions of roadsides and obstacles by utilizing and analyzing 3D laser scanned data, whose data has become available in recent days. The experiment has shown that the map created by the methods and RTK-GPS can sufficiently navigate snowblowers, whereby a secure and pleasant social environment can be archived in snow areas of Japan. In addition, proposed methods are expected to be useful for other systems such as a quick development of a highly accurate road map, a safely navigation of a wheeled chair, and so on.
Segmentation of Brain MRI Using SOM-FCM-Based Method and 3D Statistical Descriptors
Ortiz, Andrés; Palacio, Antonio A.; Górriz, Juan M.; Ramírez, Javier; Salas-González, Diego
2013-01-01
Current medical imaging systems provide excellent spatial resolution, high tissue contrast, and up to 65535 intensity levels. Thus, image processing techniques which aim to exploit the information contained in the images are necessary for using these images in computer-aided diagnosis (CAD) systems. Image segmentation may be defined as the process of parcelling the image to delimit different neuroanatomical tissues present on the brain. In this paper we propose a segmentation technique using 3D statistical features extracted from the volume image. In addition, the presented method is based on unsupervised vector quantization and fuzzy clustering techniques and does not use any a priori information. The resulting fuzzy segmentation method addresses the problem of partial volume effect (PVE) and has been assessed using real brain images from the Internet Brain Image Repository (IBSR). PMID:23762192
Proposal of a taste evaluating method of the sponge cake by using 3D range sensor
NASA Astrophysics Data System (ADS)
Kato, Kunihito; Yamamoto, Kazuhiko; Ogawa, Noriko
2002-10-01
Nowadays, the image processing techniques are while applying to the food industry in many situations. The most of these researches are applications for the quality control in plants, and there are hardly any cases of measuring the 'taste'. We are developing the measuring system of the deliciousness by using the image sensing. In this paper, we propose the estimation method of the deliciousness of a sponge cake. Considering about the deliciousness of the sponge cake, if the size of the bubbles on the surface is small and the number of them is large, then it is defined that the deliciousness of the sponge cake is better in the field of the food science. We proposed a method of detection bubbles in the surface of the sectional sponge cake automatically by using 3-D image processing. By the statistical information of these detected bubbles based on the food science, the deliciousness is estimated.
3D Pharmacophore, hierarchical methods, and 5-HT4 receptor binding data.
Varin, Thibault; Saettel, Nicolas; Villain, Jonathan; Lesnard, Aurelien; Dauphin, François; Bureau, Ronan; Rault, Sylvain
2008-10-01
5-Hydroxytryptamine subtype-4 (5-HT(4)) receptors have stimulated considerable interest amongst scientists and clinicians owing to their importance in neurophysiology and potential as therapeutic targets. A comparative analysis of hierarchical methods applied to data from one thousand 5-HT(4) receptor-ligand binding interactions was carried out. The chemical structures were described as chemical and pharmacophore fingerprints. The definitions of indices, related to the quality of the hierarchies in being able to distinguish between active and inactive compounds, revealed two interesting hierarchies with the Unity (1 active cluster) and pharmacophore fingerprints (4 active clusters). The results of this study also showed the importance of correct choice of metrics as well as the effectiveness of a new alternative of the Ward clustering algorithm named Energy (Minimum E-Distance method). In parallel, the relationship between these classifications and a previously defined 3D 5-HT(4) antagonist pharmacophore was established.
A Bayesian method for microseismic source inversion
NASA Astrophysics Data System (ADS)
Pugh, D. J.; White, R. S.; Christie, P. A. F.
2016-08-01
Earthquake source inversion is highly dependent on location determination and velocity models. Uncertainties in both the model parameters and the observations need to be rigorously incorporated into an inversion approach. Here, we show a probabilistic Bayesian method that allows formal inclusion of the uncertainties in the moment tensor inversion. This method allows the combination of different sets of far-field observations, such as P-wave and S-wave polarities and amplitude ratios, into one inversion. Additional observations can be included by deriving a suitable likelihood function from the uncertainties. This inversion produces samples from the source posterior probability distribution, including a best-fitting solution for the source mechanism and associated probability. The inversion can be constrained to the double-couple space or allowed to explore the gamut of moment tensor solutions, allowing volumetric and other non-double-couple components. The posterior probability of the double-couple and full moment tensor source models can be evaluated from the Bayesian evidence, using samples from the likelihood distributions for the two source models, producing an estimate of whether or not a source is double-couple. Such an approach is ideally suited to microseismic studies where there are many sources of uncertainty and it is often difficult to produce reliability estimates of the source mechanism, although this can be true of many other cases. Using full-waveform synthetic seismograms, we also show the effects of noise, location, network distribution and velocity model uncertainty on the source probability density function. The noise has the largest effect on the results, especially as it can affect other parts of the event processing. This uncertainty can lead to erroneous non-double-couple source probability distributions, even when no other uncertainties exist. Although including amplitude ratios can improve the constraint on the source probability
Wang, Aijun; Liu, Wenfang; Tang, Junjie; Chen, Sheng-Li; Dong, Peng
2014-04-15
A photonic bandgap (PBG) extension of surface-disordered 3D photonic crystals (PCs) based on the TiO2 inverse opal (TiO2-IO) architecture has been demonstrated. By using a liquid phase deposition (LPD) process based on the controlled hydrolysis of ammonium hexafluorotitanate and boric acid, an extra layer of TiO2 nanoparticles were deposited onto the internal surface of the air voids in the TiO2-IOs to increase their surface roughness, thereby introducing surface disorder in the 3D order structures. The PBG relative width of surface-disordered TiO2-IOs has been broadened significantly, and, compared to the original TiO2-IO, its largest rate of increase (27%) has been obtained. It was found that the PBG relative width increased rapidly at first and then to a much slower rate of change with increase of the duration of the LPD time. A possible cause for this finding is discussed in this Letter.
Oldenburg, Amy L.; Yu, Xiao; Gilliss, Thomas; Alabi, Oluwafemi; Taylor, Russell M.; Troester, Melissa A.
2015-01-01
The progression of breast cancer is known to be affected by stromal cells within the local microenvironment. Here we study the effect of stromal fibroblasts on the in-place motions (motility) of mammary epithelial cells within organoids in 3D co-culture, inferred from the speckle fluctuation spectrum using optical coherence tomography (OCT). In contrast to Brownian motion, mammary cell motions exhibit an inverse power-law fluctuation spectrum. We introduce two complementary metrics for quantifying fluctuation spectra: the power-law exponent and a novel definition of the motility amplitude, both of which are signal- and position-independent. We find that the power-law exponent and motility amplitude are positively (p<0.001) and negatively (p<0.01) correlated with the density of stromal cells in 3D co-culture, respectively. We also show how the hyperspectral data can be visualized using these metrics to observe heterogeneity within organoids. This constitutes a simple and powerful tool for detecting and imaging cellular functional changes with OCT. PMID:26973862
Improved time-space method for 3-D heat transfer problems including global warming
Saitoh, T.S.; Wakashima, Shinichiro
1999-07-01
In this paper, the Time-Space Method (TSM) which has been proposed for solving general heat transfer and fluid flow problems was improved in order to cover global and urban warming. The TSM is effective in almost all-transient heat transfer and fluid flow problems, and has been already applied to the 2-D melting problems (or moving boundary problems). The computer running time will be reduced to only 1/100th--1/1000th of the existing schemes for 2-D and 3-D problems. However, in order to apply to much larger-scale problems, for example, global warming, urban warming and general ocean circulation, the SOR method (or other iterative methods) in four dimensions is somewhat tedious and provokingly slow. Motivated by the above situation, the authors improved the speed of iteration of the previous TSM by introducing the following ideas: (1) Timewise chopping: Time domain is chopped into small peaches to save memory requirement; (2) Adaptive iteration: Converged region is eliminated for further iteration; (3) Internal selective iteration: Equation with slow iteration speed in iterative procedure is selectively iterated to accelerate entire convergence; and (4) False transient integration: False transient term is added to the Poisson-type equation and the relevant solution is regarded as a parabolic equation. By adopting the above improvements, the higher-order finite different schemes and the hybrid mesh, the computer running time for the TSM is reduced to some 1/4600th of the conventional explicit method for a typical 3-D natural convection problem in a closed cavity. The proposed TSM will be more efficacious for large-scale environmental problems, such as global warming, urban warming and general ocean circulation, in which a tremendous computing time would be required.
Pan, Zhao; Wang, Yu-tian; Shao, Xiao-qing; Wu, Xi-jun; Yang, Li-li
2012-03-01
A method for identification and concentration measurement of petroleum pollutant by combining three-dimensional (3-D) fluorescence spectra with parallel factor analysis (PARAFAC) was proposed. The main emphasis of research was the measurement of coexisting different kinds of petroleum. The CCl4 solutions of a 0# diesel sample, a 97# gasoline sample, and a kerosene sample were used as measurement objects. The condition of multiple petroleum coexistence was simulated by petroleum solutions with different mixed ratios. The character of PARAFAC in complex mixture coexisting system analysis was studied. The spectra of three kinds of solutions and the spectra of gasoline-diesel mixed samples, diesel-kerosene mixed samples, and gas oline-diesel mixed with small counts of kerosene interference samples were analyzed respectively. The core consistency diagnostic method and residual sum of squares method were applied to calculate the number of factors in PARAFAC. In gasoline-diesel experiment, gasoline or diesel can be identified and measured as a whole respectively by 2-factors parallel factors analysis. In diesel-kerosene experiment, 2-factors parallel factors analysis can only obtain the characters of diesel, and the 3rd factor is needed to separate the kerosene spectral character from the mixture spectrum. When small counts of kerosene exist in gasoline-diesel solution, gasoline and diesel still can be identified and measured as principal components by a 2-factors parallel factor analysis, and the effect of interference on qualitative analysis is not significant. The experiment verified that the PARAFAC method can obtain characteristic spectrum of each kind of petroleum, and the concentration of petroleum in solutions can be predicted simultaneously, with recoveries shown in the paper. The results showed the possibility of petroleum pollutant identification and concentration measurement based on the 3-D fluorescence spectra and PARAFAC.
Second order Method for Solving 3D Elasticity Equations with Complex Interfaces
Wang, Bao; Xia, Kelin; Wei, Guo-Wei
2015-01-01
Elastic materials are ubiquitous in nature and indispensable components in man-made devices and equipments. When a device or equipment involves composite or multiple elastic materials, elasticity interface problems come into play. The solution of three dimensional (3D) elasticity interface problems is significantly more difficult than that of elliptic counterparts due to the coupled vector components and cross derivatives in the governing elasticity equation. This work introduces the matched interface and boundary (MIB) method for solving 3D elasticity interface problems. The proposed MIB elasticity interface scheme utilizes fictitious values on irregular grid points near the material interface to replace function values in the discretization so that the elasticity equation can be discretized using the standard finite difference schemes as if there were no material interface. The interface jump conditions are rigorously enforced on the intersecting points between the interface and the mesh lines. Such an enforcement determines the fictitious values. A number of new techniques has been developed to construct efficient MIB elasticity interface schemes for dealing with cross derivative in coupled governing equations. The proposed method is extensively validated over both weak and strong discontinuity of the solution, both piecewise constant and position-dependent material parameters, both smooth and nonsmooth interface geometries, and both small and large contrasts in the Poisson’s ratio and shear modulus across the interface. Numerical experiments indicate that the present MIB method is of second order convergence in both L∞ and L2 error norms for handling arbitrarily complex interfaces, including biomolecular surfaces. To our best knowledge, this is the first elasticity interface method that is able to deliver the second convergence for the molecular surfaces of proteins.. PMID:25914422
Testing 3D landform quantification methods with synthetic drumlins in a real digital elevation model
NASA Astrophysics Data System (ADS)
Hillier, John K.; Smith, Mike J.
2012-06-01
Metrics such as height and volume quantifying the 3D morphology of landforms are important observations that reflect and constrain Earth surface processes. Errors in such measurements are, however, poorly understood. A novel approach, using statistically valid ‘synthetic' landscapes to quantify the errors is presented. The utility of the approach is illustrated using a case study of 184 drumlins observed in Scotland as quantified from a Digital Elevation Model (DEM) by the ‘cookie cutter' extraction method. To create the synthetic DEMs, observed drumlins were removed from the measured DEM and replaced by elongate 3D Gaussian ones of equivalent dimensions positioned randomly with respect to the ‘noise' (e.g. trees) and regional trends (e.g. hills) that cause the errors. Then, errors in the cookie cutter extraction method were investigated by using it to quantify these ‘synthetic' drumlins, whose location and size is known. Thus, the approach determines which key metrics are recovered accurately. For example, mean height of 6.8 m is recovered poorly at 12.5 ± 0.6 (2σ) m, but mean volume is recovered correctly. Additionally, quantification methods can be compared: A variant on the cookie cutter using an un-tensioned spline induced about twice (× 1.79) as much error. Finally, a previously reportedly statistically significant (p = 0.007) difference in mean volume between sub-populations of different ages, which may reflect formational processes, is demonstrated to be only 30-50% likely to exist in reality. Critically, the synthetic DEMs are demonstrated to realistically model parameter recovery, primarily because they are still almost entirely the original landscape. Results are insensitive to the exact method used to create the synthetic DEMs, and the approach could be readily adapted to assess a variety of landforms (e.g. craters, dunes and volcanoes).
First 3D thermal mapping of an active volcano using an advanced photogrammetric method
NASA Astrophysics Data System (ADS)
Antoine, Raphael; Baratoux, David; Lacogne, Julien; Lopez, Teodolina; Fauchard, Cyrille; Bretar, Frédéric; Arab-Sedze, Mélanie; Staudacher, Thomas; Jacquemoud, Stéphane; Pierrot-Deseilligny, Marc
2014-05-01
Thermal infrared data obtained in the [7-14 microns] spectral range are usually used in many Earth Science disciplines. These studies are exclusively based on the analysis of 2D information. In this case, a quantitative analysis of the surface energy budget remains limited, as it may be difficult to estimate the radiative contribution of the topography, the thermal influence of winds on the surface or potential imprints of subsurface flows on the soil without any precise DEM. The draping of a thermal image on a recent DEM is a common method to obtain a 3D thermal map of a surface. However, this method has many disadvantages i) errors can be significant in the orientation process of the thermal images, due to the lack of tie points between the images and the DEM; ii) the use of a recent DEM implies the use of another remote sensing technique to quantify the topography; iii) finally, the characterization of the evolution of a surface requires the simultaneous acquisition of thermal data and topographic information, which may be expensive in most cases. The stereophotogrammetry method allows to reconstitute the relief of an object from photos taken from different positions. Recently, substantial progress have been realized in the generation of high spatial resolution topographic surfaces using stereophotogrammetry. However, the presence of shadows, homogeneous textures and/or weak contrasts in the visible spectrum (e.g., flowing lavas, uniform lithologies) may prevent from the use of such method, because of the difficulties to find tie points on each image. Such situations are more favorable in the thermal infrared spectrum, as any variation in the thermal properties or geometric orientation of the surfaces may induce temperature contrasts that are detectable with a thermal camera. This system, usually functioning with a array sensor (Focal Plane Array) and an optical device, have geometric characteristics that are similar to digital cameras. Thus, it may be possible
Training toward Advanced 3D Seismic Methods for CO2 Monitoring, Verification, and Accounting
Christopher Liner
2012-05-31
The objective of our work is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2}, specifically better quantification and sensitivity for mapping of caprock integrity, fractures, and other potential leakage pathways. We utilize data and results developed through previous DOE-funded CO{sub 2} characterization project (DE-FG26-06NT42734) at the Dickman Field of Ness County, KS. Dickman is a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontinent to Indiana and Illinois. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. In a previous DOE-funded project, geological and seismic data were integrated to create a geological property model and a flow simulation grid. We believe that sequestration of CO{sub 2} will largely occur in areas of relatively flat geology and simple near surface, similar to Dickman. The challenge is not complex geology, but development of improved, lower-cost methods for detecting natural fractures and subtle faults. Our project used numerical simulation to test methods of gathering multicomponent, full azimuth data ideal for this purpose. Our specific objectives were to apply advanced seismic methods to aide in quantifying reservoir properties and lateral continuity of CO{sub 2} sequestration targets. The purpose of the current project is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2
Dunkerley, David A. P.; Funk, Tobias; Speidel, Michael A.
2016-01-01
Scanning-beam digital x-ray (SBDX) is an inverse geometry x-ray fluoroscopy system capable of tomosynthesis-based 3D catheter tracking. This work proposes a method of dose-reduced 3D tracking using dynamic electronic collimation (DEC) of the SBDX scanning x-ray tube. Positions in the 2D focal spot array are selectively activated to create a region-of-interest (ROI) x-ray field around the tracked catheter. The ROI position is updated for each frame based on a motion vector calculated from the two most recent 3D tracking results. The technique was evaluated with SBDX data acquired as a catheter tip inside a chest phantom was pulled along a 3D trajectory. DEC scans were retrospectively generated from the detector images stored for each focal spot position. DEC imaging of a catheter tip in a volume measuring 11.4 cm across at isocenter required 340 active focal spots per frame, versus 4473 spots in full-FOV mode. The dose-area-product (DAP) and peak skin dose (PSD) for DEC versus full field-of-view (FOV) scanning were calculated using an SBDX Monte Carlo simulation code. DAP was reduced to 7.4% to 8.4% of the full-FOV value, consistent with the relative number of active focal spots (7.6%). For image sequences with a moving catheter, PSD was 33.6% to 34.8% of the full-FOV value. The root-mean-squared-deviation between DEC-based 3D tracking coordinates and full-FOV 3D tracking coordinates was less than 0.1 mm. The 3D distance between the tracked tip and the sheath centerline averaged 0.75 mm. Dynamic electronic collimation can reduce dose with minimal change in tracking performance. PMID:27375314
The `L' Array, a method to model 3D Electrical Resistivity Tomography (ERT) data
NASA Astrophysics Data System (ADS)
Chavez Segura, R. E.; Chavez-Hernandez, G.; Delgado, C.; Tejero-Andrade, A.
2010-12-01
The electrical resistivity tomography (ERT) is a method designed to calculate the distribution of apparent electrical resistivities in the subsoil by means of a great number of observations with the aim of determining an electrical image displaying the distribution of true resistivities in the subsoil. Such process can be carried out to define 2D or 3D models of the subsurface. For a 3D ERT, usually, the electrodes are placed in a squared grid keeping the distance between adjacent electrodes constant in the x and y directions. Another design employed, consists of a series of parallel lines whose space inter-lines must be smaller or equal to four times the electrode separation. The most common electrode arrays frequently employed for this type of studies are the pole-pole, pole-dipole and dipole-dipole. Unfortunately, ERT surface sampling schemes are limited by physical conditions or obstacles, like buildings, highly populated urban zones, and geologic/topographic features, where the lines of electrodes cannot be set. However, it is always necessary to characterize the subsoil beneath such anthropogenic or natural features. The ‘L’ shaped array has the main purpose to overcome such difficulties by surrounding the study area with a square of electrode lines. The measurements are obtained by switching automatically current and potential electrodes from one line to the other. Each observation adds a level of information, from one profile to the other. Once the total levels of data are completed, the opposite ‘L’ array can be measured following the same process. The complete square is computed after the parallel profiles are observed as well. At the end, the computed resistivities are combined to form a 3D matrix of observations. Such set of data can be inverted to obtain the true resistivity distribution at depth in the form of a working cube, which can be interpreted. The method was tested with theoretical models, which included a set of two resistive cubes
A fast nonlinear conjugate gradient based method for 3D concentrated frictional contact problems
NASA Astrophysics Data System (ADS)
Zhao, Jing; Vollebregt, Edwin A. H.; Oosterlee, Cornelis W.
2015-05-01
This paper presents a fast numerical solver for a nonlinear constrained optimization problem, arising from 3D concentrated frictional shift and rolling contact problems with dry Coulomb friction. The solver combines an active set strategy with a nonlinear conjugate gradient method. One novelty is to consider the tractions of each slip element in a polar coordinate system, using azimuth angles as variables instead of conventional traction variables. The new variables are scaled by the diagonal of the underlying Jacobian. The fast Fourier transform (FFT) technique accelerates all matrix-vector products encountered, exploiting the matrix' Toeplitz structure. Numerical tests demonstrate a significant reduction of the computational time compared to existing solvers for concentrated contact problems.
A Kosloff/Basal method, 3D migration program implemented on the CYBER 205 supercomputer
NASA Technical Reports Server (NTRS)
Pyle, L. D.; Wheat, S. R.
1984-01-01
Conventional finite difference migration has relied on approximations to the acoustic wave equation which allow energy to propagate only downwards. Although generally reliable, such approaches usually do not yield an accurate migration for geological structures with strong lateral velocity variations or with steeply dipping reflectors. An earlier study by D. Kosloff and E. Baysal (Migration with the Full Acoustic Wave Equation) examined an alternative approach based on the full acoustic wave equation. The 2D, Fourier type algorithm which was developed was tested by Kosloff and Baysal against synthetic data and against physical model data. The results indicated that such a scheme gives accurate migration for complicated structures. This paper describes the development and testing of a vectorized, 3D migration program for the CYBER 205 using the Kosloff/Baysal method. The program can accept as many as 65,536 zero offset (stacked) traces.
NASA Technical Reports Server (NTRS)
Nakazawa, S.
1987-01-01
This Annual Status Report presents the results of work performed during the third year of the 3-D Inelastic Analysis Methods for Hot Section Components program (NASA Contract NAS3-23697). The objective of the program is to produce a series of new computer codes that permit more accurate and efficient three-dimensional analysis of selected hot section components, i.e., combustor liners, turbine blades, and turbine vanes. The computer codes embody a progression of mathematical models and are streamlined to take advantage of geometrical features, loading conditions, and forms of material response that distinguish each group of selected components. This report is presented in two volumes. Volume 1 describes effort performed under Task 4B, Special Finite Element Special Function Models, while Volume 2 concentrates on Task 4C, Advanced Special Functions Models.
The Wavelet Element Method. Part 2; Realization and Additional Features in 2D and 3D
NASA Technical Reports Server (NTRS)
Canuto, Claudio; Tabacco, Anita; Urban, Karsten
1998-01-01
The Wavelet Element Method (WEM) provides a construction of multiresolution systems and biorthogonal wavelets on fairly general domains. These are split into subdomains that are mapped to a single reference hypercube. Tensor products of scaling functions and wavelets defined on the unit interval are used on the reference domain. By introducing appropriate matching conditions across the interelement boundaries, a globally continuous biorthogonal wavelet basis on the general domain is obtained. This construction does not uniquely define the basis functions but rather leaves some freedom for fulfilling additional features. In this paper we detail the general construction principle of the WEM to the 1D, 2D and 3D cases. We address additional features such as symmetry, vanishing moments and minimal support of the wavelet functions in each particular dimension. The construction is illustrated by using biorthogonal spline wavelets on the interval.
Spectral triangulation: a 3D method for locating single-walled carbon nanotubes in vivo
NASA Astrophysics Data System (ADS)
Lin, Ching-Wei; Bachilo, Sergei M.; Vu, Michael; Beckingham, Kathleen M.; Bruce Weisman, R.
2016-05-01
Nanomaterials with luminescence in the short-wave infrared (SWIR) region are of special interest for biological research and medical diagnostics because of favorable tissue transparency and low autofluorescence backgrounds in that region. Single-walled carbon nanotubes (SWCNTs) show well-known sharp SWIR spectral signatures and therefore have potential for noninvasive detection and imaging of cancer tumours, when linked to selective targeting agents such as antibodies. However, such applications face the challenge of sensitively detecting and localizing the source of SWIR emission from inside tissues. A new method, called spectral triangulation, is presented for three dimensional (3D) localization using sparse optical measurements made at the specimen surface. Structurally unsorted SWCNT samples emitting over a range of wavelengths are excited inside tissue phantoms by an LED matrix. The resulting SWIR emission is sampled at points on the surface by a scanning fibre optic probe leading to an InGaAs spectrometer or a spectrally filtered InGaAs avalanche photodiode detector. Because of water absorption, attenuation of the SWCNT fluorescence in tissues is strongly wavelength-dependent. We therefore gauge the SWCNT-probe distance by analysing differential changes in the measured SWCNT emission spectra. SWCNT fluorescence can be clearly detected through at least 20 mm of tissue phantom, and the 3D locations of embedded SWCNT test samples are found with sub-millimeter accuracy at depths up to 10 mm. Our method can also distinguish and locate two embedded SWCNT sources at distinct positions.Nanomaterials with luminescence in the short-wave infrared (SWIR) region are of special interest for biological research and medical diagnostics because of favorable tissue transparency and low autofluorescence backgrounds in that region. Single-walled carbon nanotubes (SWCNTs) show well-known sharp SWIR spectral signatures and therefore have potential for noninvasive detection and
Real-time rendering method and performance evaluation of composable 3D lenses for interactive VR.
Borst, Christoph W; Tiesel, Jan-Phillip; Best, Christopher M
2010-01-01
We present and evaluate a new approach for real-time rendering of composable 3D lenses for polygonal scenes. Such lenses, usually called "volumetric lenses," are an extension of 2D Magic Lenses to 3D volumes in which effects are applied to scene elements. Although the composition of 2D lenses is well known, 3D composition was long considered infeasible due to both geometric and semantic complexity. Nonetheless, for a scene with multiple interactive 3D lenses, the problem of intersecting lenses must be considered. Intersecting 3D lenses in meaningful ways supports new interfaces such as hierarchical 3D windows, 3D lenses for managing and composing visualization options, or interactive shader development by direct manipulation of lenses providing component effects. Our 3D volumetric lens approach differs from other approaches and is one of the first to address efficient composition of multiple lenses. It is well-suited to head-tracked VR environments because it requires no view-dependent generation of major data structures, allowing caching and reuse of full or partial results. A Composite Shader Factory module composes shader programs for rendering composite visual styles and geometry of intersection regions. Geometry is handled by Boolean combinations of region tests in fragment shaders, which allows both convex and nonconvex CSG volumes for lens shape. Efficiency is further addressed by a Region Analyzer module and by broad-phase culling. Finally, we consider the handling of order effects for composed 3D lenses.
A 3D moving mesh Finite Element Method for two-phase flows
NASA Astrophysics Data System (ADS)
Anjos, G. R.; Borhani, N.; Mangiavacchi, N.; Thome, J. R.
2014-08-01
A 3D ALE Finite Element Method is developed to study two-phase flow phenomena using a new discretization method to compute the surface tension forces. The computational method is based on the Arbitrary Lagrangian-Eulerian formulation (ALE) and the Finite Element Method (FEM), creating a two-phase method with an improved model for the liquid-gas interface. An adaptive mesh update procedure is also proposed for effective management of the mesh to remove, add and repair elements, since the computational mesh nodes move according to the flow. The ALE description explicitly defines the two-phase interface position by a set of interconnected nodes which ensures a sharp representation of the boundary, including the role of the surface tension. The proposed methodology for computing the curvature leads to accurate results with moderate programming effort and computational cost. Static and dynamic tests have been carried out to validate the method and the results have compared well to analytical solutions and experimental results found in the literature, demonstrating that the new proposed methodology provides good accuracy to describe the interfacial forces and bubble dynamics. This paper focuses on the description of the proposed methodology, with particular emphasis on the discretization of the surface tension force, the new remeshing technique, and the validation results. Additionally, a microchannel simulation in complex geometry is presented for two elongated bubbles.
2014-08-19
finite element method, performance verification on experimental data, imaging of explosive devices, comparison with the classical Krein equation method...of the globally convergent numerical method of this project and the classical Krein equation method. It was established that while the first method...of a long standing problem about uniqueness of a phaseless 3-d inverse problem of quantum scattering. This was an open question since the publication
NASA Astrophysics Data System (ADS)
Kordy, M.; Wannamaker, P.; Maris, V.; Cherkaev, E.; Hill, G.
2016-01-01
We have developed an algorithm, which we call HexMT, for 3-D simulation and inversion of magnetotelluric (MT) responses using deformable hexahedral finite elements that permit incorporation of topography. Direct solvers parallelized on symmetric multiprocessor (SMP), single-chassis workstations with large RAM are used throughout, including the forward solution, parameter Jacobians and model parameter update. In Part I, the forward simulator and Jacobian calculations are presented. We use first-order edge elements to represent the secondary electric field (E), yielding accuracy O(h) for E and its curl (magnetic field). For very low frequencies or small material admittivities, the E-field requires divergence correction. With the help of Hodge decomposition, the correction may be applied in one step after the forward solution is calculated. This allows accurate E-field solutions in dielectric air. The system matrix factorization and source vector solutions are computed using the MKL PARDISO library, which shows good scalability through 24 processor cores. The factorized matrix is used to calculate the forward response as well as the Jacobians of electromagnetic (EM) field and MT responses using the reciprocity theorem. Comparison with other codes demonstrates accuracy of our forward calculations. We consider a popular conductive/resistive double brick structure, several synthetic topographic models and the natural topography of Mount Erebus in Antarctica. In particular, the ability of finite elements to represent smooth topographic slopes permits accurate simulation of refraction of EM waves normal to the slopes at high frequencies. Run-time tests of the parallelized algorithm indicate that for meshes as large as 176 × 176 × 70 elements, MT forward responses and Jacobians can be calculated in ˜1.5 hr per frequency. Together with an efficient inversion parameter step described in Part II, MT inversion problems of 200-300 stations are computable with total run times
James Reeves
2005-01-31
In a study funded by the U.S. Department of Energy and GeoSpectrum, Inc., new P-wave 3D seismic interpretation methods to characterize fractured gas reservoirs are developed. A data driven exploratory approach is used to determine empirical relationships for reservoir properties. Fractures are predicted using seismic lineament mapping through a series of horizon and time slices in the reservoir zone. A seismic lineament is a linear feature seen in a slice through the seismic volume that has negligible vertical offset. We interpret that in regions of high seismic lineament density there is a greater likelihood of fractured reservoir. Seismic AVO attributes are developed to map brittle reservoir rock (low clay) and gas content. Brittle rocks are interpreted to be more fractured when seismic lineaments are present. The most important attribute developed in this study is the gas sensitive phase gradient (a new AVO attribute), as reservoir fractures may provide a plumbing system for both water and gas. Success is obtained when economic gas and oil discoveries are found. In a gas field previously plagued with poor drilling results, four new wells were spotted using the new methodology and recently drilled. The wells have estimated best of 12-months production indicators of 2106, 1652, 941, and 227 MCFGPD. The latter well was drilled in a region of swarming seismic lineaments but has poor gas sensitive phase gradient (AVO) and clay volume attributes. GeoSpectrum advised the unit operators that this location did not appear to have significant Lower Dakota gas before the well was drilled. The other three wells are considered good wells in this part of the basin and among the best wells in the area. These new drilling results have nearly doubled the gas production and the value of the field. The interpretation method is ready for commercialization and gas exploration and development. The new technology is adaptable to conventional lower cost 3D seismic surveys.
Efficient computational methods for electromagnetic imaging with applications to 3D magnetotellurics
NASA Astrophysics Data System (ADS)
Kordy, Michal Adam
The motivation for this work is the forward and inverse problem for magnetotellurics, a frequency domain electromagnetic remote-sensing geophysical method used in mineral, geothermal, and groundwater exploration. The dissertation consists of four papers. In the first paper, we prove the existence and uniqueness of a representation of any vector field in H(curl) by a vector lying in H(curl) and H(div). It allows us to represent electric or magnetic fields by another vector field, for which nodal finite element approximatio