Shao, Yan-Lin Faltinsen, Odd M.
2014-10-01
We propose a new efficient and accurate numerical method based on harmonic polynomials to solve boundary value problems governed by 3D Laplace equation. The computational domain is discretized by overlapping cells. Within each cell, the velocity potential is represented by the linear superposition of a complete set of harmonic polynomials, which are the elementary solutions of Laplace equation. By its definition, the method is named as Harmonic Polynomial Cell (HPC) method. The characteristics of the accuracy and efficiency of the HPC method are demonstrated by studying analytical cases. Comparisons will be made with some other existing boundary element based methods, e.g. Quadratic Boundary Element Method (QBEM) and the Fast Multipole Accelerated QBEM (FMA-QBEM) and a fourth order Finite Difference Method (FDM). To demonstrate the applications of the method, it is applied to some studies relevant for marine hydrodynamics. Sloshing in 3D rectangular tanks, a fully-nonlinear numerical wave tank, fully-nonlinear wave focusing on a semi-circular shoal, and the nonlinear wave diffraction of a bottom-mounted cylinder in regular waves are studied. The comparisons with the experimental results and other numerical results are all in satisfactory agreement, indicating that the present HPC method is a promising method in solving potential-flow problems. The underlying procedure of the HPC method could also be useful in other fields than marine hydrodynamics involved with solving Laplace equation.
Laplace-domain waveform modeling and inversion for the 3D acoustic-elastic coupled media
NASA Astrophysics Data System (ADS)
Shin, Jungkyun; Shin, Changsoo; Calandra, Henri
2016-06-01
Laplace-domain waveform inversion reconstructs long-wavelength subsurface models by using the zero-frequency component of damped seismic signals. Despite the computational advantages of Laplace-domain waveform inversion over conventional frequency-domain waveform inversion, an acoustic assumption and an iterative matrix solver have been used to invert 3D marine datasets to mitigate the intensive computing cost. In this study, we develop a Laplace-domain waveform modeling and inversion algorithm for 3D acoustic-elastic coupled media by using a parallel sparse direct solver library (MUltifrontal Massively Parallel Solver, MUMPS). We precisely simulate a real marine environment by coupling the 3D acoustic and elastic wave equations with the proper boundary condition at the fluid-solid interface. In addition, we can extract the elastic properties of the Earth below the sea bottom from the recorded acoustic pressure datasets. As a matrix solver, the parallel sparse direct solver is used to factorize the non-symmetric impedance matrix in a distributed memory architecture and rapidly solve the wave field for a number of shots by using the lower and upper matrix factors. Using both synthetic datasets and real datasets obtained by a 3D wide azimuth survey, the long-wavelength component of the P-wave and S-wave velocity models is reconstructed and the proposed modeling and inversion algorithm are verified. A cluster of 80 CPU cores is used for this study.
Laplace's equation and Faraday's lines of force
Narasimhan, T.N.
2007-06-01
Boundary-value problems involve two dependent variables: a potential function, and a stream function. They can be approached in two mutually independent ways. The first, introduced by Laplace, involves spatial gradients at a point. Inspired by Faraday, Maxwell introduced the other, visualizing the flow domain as a collection of flow tubes and isopotential surfaces. Boundary-value problems intrinsically entail coupled treatment (or, equivalently, optimization) of potential and stream functions Historically, potential theory avoided the cumbersome optimization task through ingenious techniques such as conformal mapping and Green's functions. Laplace's point-based approach, and Maxwell's global approach, each provides its own unique insights into boundary-value problems. Commonly, Laplace's equation is solved either algebraically, or with approximate numerical methods. Maxwell's geometry-based approach opens up novel possibilities of direct optimization, providing an independent logical basis for numerical models, rather than treating them as approximate solvers of the differential equation. Whereas points, gradients, and Darcy's law are central to posing problems on the basis of Laplace's approach, flow tubes, potential differences, and the mathematical form of Ohm's law are central to posing them in natural coordinates oriented along flow paths. Besides being of philosophical interest, optimization algorithms can provide advantages that complement the power of classical numerical models. In the spirit of Maxwell, who eloquently spoke for a balance between abstract mathematical symbolism and observable attributes of concrete objects, this paper is an examination of the central ideas of the two approaches, and a reflection on how Maxwell's integral visualization may be practically put to use in a world of digital computers.
Laplace equation, magnetic recording and the Karlqvist approximation
NASA Astrophysics Data System (ADS)
Tannous, C.
2015-09-01
Magnetic recording head theory is based on the Karlqvist approximation to solve the Laplace equation over a polygonal domain that originates from a magnetostatic approach to describe the magnetic field produced by the read/write head in the recording medium. The approximation is reviewed and compared to various approaches dealing with solving the Laplace equation using different boundary conditions. The solution is obtained by the Green function, Fourier transform, Fourier series and finally by conformal mapping methods that allow us, on one hand, to comply with the Sommerfeld edge condition required at angular points and on the other, to obtain exact results.
Myocardial wall thickening from gated magnetic resonance images using Laplace's equation
NASA Astrophysics Data System (ADS)
Prasad, M.; Ramesh, A.; Kavanagh, P.; Gerlach, J.; Germano, G.; Berman, D. S.; Slomka, P. J.
2009-02-01
The aim of our work is to present a robust 3D automated method for measuring regional myocardial thickening using cardiac magnetic resonance imaging (MRI) based on Laplace's equation. Multiple slices of the myocardium in short-axis orientation at end-diastolic and end-systolic phases were considered for this analysis. Automatically assigned 3D epicardial and endocardial boundaries were fitted to short-axis and long axis slices corrected for breathold related misregistration, and final boundaries were edited by a cardiologist if required. Myocardial thickness was quantified at the two cardiac phases by computing the distances between the myocardial boundaries over the entire volume using Laplace's equation. The distance between the surfaces was found by computing normalized gradients that form a vector field. The vector fields represent tangent vectors along field lines connecting both boundaries. 3D thickening measurements were transformed into polar map representation and 17-segment model (American Heart Association) regional thickening values were derived. The thickening results were then compared with standard 17-segment 6-point visual scoring of wall motion/wall thickening (0=normal; 5=greatest abnormality) performed by a consensus of two experienced imaging cardiologists. Preliminary results on eight subjects indicated a strong negative correlation (r=-0.8, p<0.0001) between the average thickening obtained using Laplace and the summed segmental visual scores. Additionally, quantitative ejection fraction measurements also correlated well with average thickening scores (r=0.72, p<0.0001). For segmental analysis, we obtained an overall correlation of -0.55 (p<0.0001) with higher agreement along the mid and apical regions (r=-0.6). In conclusion 3D Laplace transform can be used to quantify myocardial thickening in 3D.
Multipole Matrix of Green Function of Laplace Equation
NASA Astrophysics Data System (ADS)
Makuch, K.; Górka, P.
Multipole matrix elements of Green function of Laplace equation are calculated. The multipole matrix elements of Green function in electrostatics describe potential on a sphere which is produced by a charge distributed on the surface of a different (possibly overlapping) sphere of the same radius. The matrix elements are defined by double convolution of two spherical harmonics with the Green function of Laplace equation. The method we use relies on the fact that in the Fourier space the double convolution has simple form. Therefore we calculate the multipole matrix from its Fourier transform. An important part of our considerations is simplification of the three dimensional Fourier transformation of general multipole matrix by its rotational symmetry to the one-dimensional Hankel transformation.
Nodal Solutions for Supercritical Laplace Equations
NASA Astrophysics Data System (ADS)
Dalbono, Francesca; Franca, Matteo
2016-11-01
In this paper we study radial solutions for the following equation Δ u(x)+f (u(x), |x|) = 0, where {x in {Rn}}, n > 2, f is subcritical for r small and u large and supercritical for r large and u small, with respect to the Sobolev critical exponent {2^{*} = 2n/n-2}. The solutions are classified and characterized by their asymptotic behaviour and nodal properties. In an appropriate super-linear setting, we give an asymptotic condition sufficient to guarantee the existence of at least one ground state with fast decay with exactly j zeroes for any j ≥ 0. Under the same assumptions, we also find uncountably many ground states with slow decay, singular ground states with fast decay and singular ground states with slow decay, all of them with exactly j zeroes. Our approach, based on Fowler transformation and invariant manifold theory, enables us to deal with a wide family of potentials allowing spatial inhomogeneity and a quite general dependence on u. In particular, for the Matukuma-type potential, we show a kind of structural stability.
Open active cloaking and illusion devices for the Laplace equation
NASA Astrophysics Data System (ADS)
Ma, Qian; Yang, Fan; Jin, Tian Yu; Lei Mei, Zhong; Cui, Tie Jun
2016-04-01
We propose open active cloaking and illusion devices for the Laplace equation. Compared with the closed configurations of active cloaking and illusion devices, we focus on improving the distribution schemes for the controlled sources, which do not have to surround the protected object strictly. Instead, the controlled sources can be placed in several small discrete clusters, and produce the desired voltages along the controlled boundary, to actively hide or disguise the protected object. Numerical simulations are performed with satisfactory results, which are further validated by experimental measurements. The open cloaking and illusion devices have many advantages over the closed configurations in various potential applications.
Enclosure method for the p-Laplace equation
NASA Astrophysics Data System (ADS)
Brander, Tommi; Kar, Manas; Salo, Mikko
2015-04-01
We study the enclosure method for the p-Calderón problem, which is a nonlinear generalization of the inverse conductivity problem due to Calderón that involves the p-Laplace equation. The method allows one to reconstruct the convex hull of an inclusion in the nonlinear model by using exponentially growing solutions introduced by Wolff. We justify this method for the penetrable obstacle case, where the inclusion is modelled as a jump in the conductivity. The result is based on a monotonicity inequality and the properties of the Wolff solutions.
Experiments on Active Cloaking and Illusion for Laplace Equation
NASA Astrophysics Data System (ADS)
Ma, Qian; Mei, Zhong Lei; Zhu, Shou Kui; Jin, Tian Yu; Cui, Tie Jun
2013-10-01
In recent years, invisibility cloaks have received a lot of attention and interest. These devices are generally classified into two types: passive and active. The design and realization of passive cloaks have been intensively studied using transformation optics and plasmonic approaches. However, active cloaks are still limited to theory and numerical simulations. Here, we present the first experiment on active cloaking and propose an active illusion for the Laplace equation. We make use of a resistor network to simulate a conducting medium. Then, we surround the central region with controlled sources to protect it from outside detection. We show that by dynamically changing the controlled sources, the protected region can be cloaked or disguised as different objects (illusion). Our measurement results agree very well with numerical simulations. Compared with the passive counterparts, the active cloaking and illusion devices do not need complicated metamaterials. They are flexible, in-line controllable, and adaptable to the environment. In addition to dc electricity, the proposed method can also be used for thermodynamics and other problems governed by the Laplace equation.
Effectiveness of the Young-Laplace equation at nanoscale
Liu, Hailong; Cao, Guoxin
2016-01-01
Using molecular dynamics (MD) simulations, a new approach based on the behavior of pressurized water out of a nanopore (1.3–2.7 nm) in a flat plate is developed to calculate the relationship between the water surface curvature and the pressure difference across water surface. It is found that the water surface curvature is inversely proportional to the pressure difference across surface at nanoscale, and this relationship will be effective for different pore size, temperature, and even for electrolyte solutions. Based on the present results, we cannot only effectively determine the surface tension of water and the effects of temperature or electrolyte ions on the surface tension, but also show that the Young-Laplace (Y-L) equation is valid at nanoscale. In addition, the contact angle of water with the hydrophilic material can be further calculated by the relationship between the critical instable pressure of water surface (burst pressure) and nanopore size. Combining with the infiltration behavior of water into hydrophobic microchannels, the contact angle of water at nanoscale can be more accurately determined by measuring the critical pressure causing the instability of water surface, based on which the uncertainty of measuring the contact angle of water at nanoscale is highly reduced. PMID:27033874
NASA Technical Reports Server (NTRS)
Truong, K. V.; Unal, Aynur; Tobak, M.
1989-01-01
Various features of the solutions of Duffing's equation are described using a representation of the solutions in the Laplace-Borel transform domain. An application of this technique is illustrated for the symmetry-breaking bifurcation of a hard spring.
NASA Astrophysics Data System (ADS)
Petrov, P.; Newman, G. A.
2011-12-01
Recent developments in high resolution imaging technology of subsurface objects involves a combination of different geophysical measurements (gravity, EM and seismic). A joint image of the subsurface geophysical attributes (velocity, electrical conductivity and density) requires the consistent treatment of the different geophysical data due to their differing physical nature. For example, in conducting media, which is typical of the Earth's interior, EM energy propagation is defined by a diffusive mechanism and may be characterized by two specific length scales: wavelength and skin depth. However, the propagation of seismic signals is a multiwave process and is characterized by a set of wavelengths. Thus, to consistently treat seismic and electromagnetic data an additional length scale is needed for seismic data that does not directly depend on a wavelength and describes a diffusive process, similar to EM wave propagation in the subsurface. Works by Brown et al.(2005), Shin and Cha(2008), and Shin and Ha(2008) suggest that an artificial damping of seismic wave fields via Laplace-Fourier transformation can be an effective approach to obtain a seismic data that have similar spatial resolution to EM data. The key benefit of such transformation is that diffusive wave-field inversion works well for both data sets: seismic (Brown et al.,2005; Shin and Cha,2008) and electromagnetic (Commer and Newman,2008; Newman et al.,2010). With the recent interest in the Laplace-Fourier domain full waveform inversion, 3D fourth and second-order finite-difference schemes for modeling of seismic wave propagation have been developed (Petrov and Newman, 2010). Incorporation of attenuation and anisotropy into a velocity model is a necessary step for a more realistic description of subsurface media. Here we consider the extension of our method which includes attenuation and VTI anisotropy. Our approach is based on the integro-interpolation technique for velocity-stress formulation. Seven
Discovering the Laplace Transform in Undergraduate Differential Equations
ERIC Educational Resources Information Center
Quinn, Terrance J.; Rai, Sanjay
2008-01-01
The Laplace Transform is an object of fundamental importance in pure and applied mathematics. In addition, it has special pedagogical value in that it can provide a natural and concrete setting for a student to begin thinking about the modern concepts of "operator" and "functional". Most undergraduate textbooks, however, merely define the…
NASA Astrophysics Data System (ADS)
Petrov, P.; Newman, G. A.
2010-12-01
-Fourier domain we had developed 3D code for full-wave field simulation in the elastic media which take into account nonlinearity introduced by free-surface effects. Our approach is based on the velocity-stress formulation. In the contrast to conventional formulation we defined the material properties such as density and Lame constants not at nodal points but within cells. This second order finite differences method formulated in the cell-based grid, generate numerical solutions compatible with analytical ones within the range errors determinate by dispersion analysis. Our simulator will be embedded in an inversion scheme for joint seismic- electromagnetic imaging. It also offers possibilities for preconditioning the seismic wave propagation problems in the frequency domain. References. Shin, C. & Cha, Y. (2009), Waveform inversion in the Laplace-Fourier domain, Geophys. J. Int. 177(3), 1067- 1079. Shin, C. & Cha, Y. H. (2008), Waveform inversion in the Laplace domain, Geophys. J. Int. 173(3), 922-931. Commer, M. & Newman, G. (2008), New advances in three-dimensional controlled-source electromagnetic inversion, Geophys. J. Int. 172(2), 513-535. Newman, G. A., Commer, M. & Carazzone, J. J. (2010), Imaging CSEM data in the presence of electrical anisotropy, Geophysics, in press.
On the Implementation of 3D Galerkin Boundary Integral Equations
Nintcheu Fata, Sylvain; Gray, Leonard J
2010-01-01
In this article, a reverse contribution technique is proposed to accelerate the construction of the dense influence matrices associated with a Galerkin approximation of singular and hypersingular boundary integral equations of mixed-type in potential theory. In addition, a general-purpose sparse preconditioner for boundary element methods has also been developed to successfully deal with ill-conditioned linear systems arising from the discretization of mixed boundary-value problems on non-smooth surfaces. The proposed preconditioner, which originates from the precorrected-FFT method, is sparse, easy to generate and apply in a Krylov subspace iterative solution of discretized boundary integral equations. Moreover, an approximate inverse of the preconditioner is implicitly built by employing an incomplete LU factorization. Numerical experiments involving mixed boundary-value problems for the Laplace equation are included to illustrate the performance and validity of the proposed techniques.
NASA Astrophysics Data System (ADS)
Majić, Matt R. A.; Auguié, Baptiste; Le Ru, Eric C.
2017-03-01
We propose a powerful approach to solve Laplace's equation for point sources near a spherical object. The central new idea is to use prolate spheroidal solid harmonics, which are separable solutions of Laplace's equation in spheroidal coordinates, instead of the more natural spherical solid harmonics. Using electrostatics as an example, we motivate this choice and show that the resulting series expansions converge much faster. This improvement is discussed in terms of the singularity of the solution and its analytic continuation. The benefits of this approach are further illustrated for a specific example: the calculation of modified decay rates of light emitters close to nanostructures in the quasistatic approximation. We expect the general approach to be applicable with similar benefits to the solution of Laplace's equation for other geometries and to other equations of mathematical physics.
Laplace transform approach for solving integral equations using computer algebra system
NASA Astrophysics Data System (ADS)
Paneva-Konovska, Jordanka; Nikolova, Yanka
2016-12-01
The Laplace transform method, along with Computer Algebra Systems (CAS) "Maple" v. 13, are extremely successfully applied for solving a class of integral equations with an arbitrary order, including fractional order integral equations. The combining of both powerful approaches allows students more quickly, enjoyable and thoroughly to master the material.
A note on singularities of the 3-D Euler equation
NASA Technical Reports Server (NTRS)
Tanveer, S.
1994-01-01
In this paper, we consider analytic initial conditions with finite energy, whose complex spatial continuation is a superposition of a smooth background flow and a singular field. Through explicit calculation in the complex plane, we show that under some assumptions, the solution to the 3-D Euler equation ceases to be analytic in the real domain in finite time.
New modification of Laplace decomposition method for seventh order KdV equation
NASA Astrophysics Data System (ADS)
Kashkari, B. S.; Bakodah, H. O.
2013-10-01
In this paper, we develop a new modification of Laplace decomposition method for solving the seventh order KdV equations. The numerical results show that the method converges rapidly and compared with the Adomian decomposition method. The conservation properties of solution are examined by calculating the first three invariants.
An evolution infinity Laplace equation modelling dynamic elasto-plastic torsion
NASA Astrophysics Data System (ADS)
Messelmi, Farid
2016-09-01
We consider in this paper a parabolic partial differential equation involving the infinity Laplace operator and a Leray-Lions operator with no coercitive assumption. We prove the existence and uniqueness of the corresponding approached problem and we show that at the limit the solution solves the parabolic variational inequality arising in the elasto-plastic torsion problem.
Existence results for degenerate p(x)-Laplace equations with Leray-Lions type operators
NASA Astrophysics Data System (ADS)
Ho, Ky; Sim, Inbo
2017-01-01
We show the various existence results for degenerate $p(x)$-Laplace equations with Leray-Lions type operators. A suitable condition on degeneracy is discussed and proofs are mainly based on direct methods and critical point theories in Calculus of Variations. In particular, we investigate the various situations of the growth rates between principal operators and nonlinearities.
A parallel algorithm for solving the 3d Schroedinger equation
Strickland, Michael; Yager-Elorriaga, David
2010-08-20
We describe a parallel algorithm for solving the time-independent 3d Schroedinger equation using the finite difference time domain (FDTD) method. We introduce an optimized parallelization scheme that reduces communication overhead between computational nodes. We demonstrate that the compute time, t, scales inversely with the number of computational nodes as t {proportional_to} (N{sub nodes}){sup -0.95} {sup {+-} 0.04}. This makes it possible to solve the 3d Schroedinger equation on extremely large spatial lattices using a small computing cluster. In addition, we present a new method for precisely determining the energy eigenvalues and wavefunctions of quantum states based on a symmetry constraint on the FDTD initial condition. Finally, we discuss the usage of multi-resolution techniques in order to speed up convergence on extremely large lattices.
Solving nonlinear or stiff differential equations by Laplace homotopy analysis method(LHAM)
NASA Astrophysics Data System (ADS)
Chong, Fook Seng; Lem, Kong Hoong; Wong, Hui Lin
2015-10-01
The initial value problems of nonlinear or stiff ordinary differential equation appear in many fields of engineering science, particularly in the studies of electrical circuits, chemical reactions, wave vibration and so on. In this research, the standard homotopy analysis method hybrids with Laplace transform method to solve nonlinear and stiff differential equations. Using this modification, the problems solved by LHAM successfully yield good solutions. Some examples are examined to highlight the convenience and effectiveness of LHAM.
An integral equation approach to smooth 3D Navier-Stokes solution
NASA Astrophysics Data System (ADS)
Costin, O.; Luo, G.; Tanveer, S.
2008-12-01
We summarize a recently developed integral equation (IE) approach to tackling the long-time existence problem for smooth solution v(x, t) to the 3D Navier-Stokes (NS) equation in the context of a periodic box problem with smooth time independent forcing and initial condition v0. Using an inverse-Laplace transform of {\\skew5\\hat v} (k, t) - {\\skew5\\hat v}_0 in 1/t, we arrive at an IE for {\\skew5\\hat U} (k, p) , where p is inverse-Laplace dual to 1/t and k is the Fourier variable dual to x. The advantage of this formulation is that the solution {\\skew5\\hat U} to the IE is known to exist a priori for p \\in \\mathbb{R}^+ and the solution is integrable and exponentially bounded at ∞. Global existence of NS solution in this formulation is reduced to an asymptotics question. If \\parallel\\!{\\skew5\\hat U} (\\cdot, p)\\!\\parallel_{{l^{1} (\\mathbb{Z}^3)}} has subexponential bounds as p→∞, then global existence to NS follows. Moreover, if f=0, then the converse is also true in the following sense: if NS has global solution, then there exists n>=1 for which the inverse-Laplace transform of {\\skew5\\hat v} (k, t) - {\\skew5\\hat v}_0 in 1/tn necessarily decays as q→∞, where q is the inverse-Laplace dual to 1/tn. We also present refined estimates of the exponential growth when the solution {\\skew5\\hat U} is known on a finite interval [0, p0]. We also show that for analytic v[0] and f, with finitely many nonzero Fourier-coefficients, the series for {\\skew5\\hat U} (k, p) in powers of p has a radius of convergence independent of initial condition and forcing; indeed the radius gets bigger for smaller viscosity. We also show that the IE can be solved numerically with controlled errors. Preliminary numerical calculations for Kida (1985 J. Phys. Soc. Japan 54 2132) initial conditions, though far from being optimized, and performed on a modest interval in the accelerated variable q show decay in q.
Nonlinear Laplace equation, de Sitter vacua, and information geometry
Loran, Farhang
2005-06-15
Three exact solutions say {phi}{sub 0} of massless scalar theories on Euclidean space, i.e. D=6 {phi}{sup 3}, D=4 {phi}{sup 4} and D=3 {phi}{sup 6} models are obtained which share similar properties. The information geometry of their moduli spaces coincide with the Euclidean AdS{sub 7}, AdS{sub 5} and AdS{sub 4} respectively on which {phi}{sub 0} can be described as a stable tachyon. In D=4 we recognize that the SU(2) instanton density is proportional to {phi}{sub 0}{sup 4}. The original action S[{phi}] written in terms of new scalars {phi}-tilde={phi}-{phi}{sub 0} is shown to be equivalent to an interacting scalar theory on D-dimensional de Sitter background.
Bicubic B-spline interpolation method for two-dimensional Laplace's equations
NASA Astrophysics Data System (ADS)
Abd Hamid, Nur Nadiah; Majid, Ahmad Abd.; Ismail, Ahmad Izani Md.
2013-04-01
Two-dimensional Laplace's equation is solved using bicubic B-spline interpolation method. An arbitrary surface with some unknown coefficients is generated using bicubic B-spline surface's formula. This surface is presumed to be the solution for the equation. The values of the coefficients are calculated by spline interpolation technique using the corresponding differential equations and boundary conditions. This method produces approximated analytical solution for the equation. A numerical example will be presented along with a comparison of the results with finite element and isogeometrical methods.
NASA Technical Reports Server (NTRS)
Lyusternik, L. A.
1980-01-01
The mathematics involved in numerically solving for the plane boundary value of the Laplace equation by the grid method is developed. The approximate solution of a boundary value problem for the domain of the Laplace equation by the grid method consists of finding u at the grid corner which satisfies the equation at the internal corners (u=Du) and certain boundary value conditions at the boundary corners.
NASA Astrophysics Data System (ADS)
Vatsala, Aghalaya S.; Sowmya, M.
2017-01-01
Study of nonlinear sequential fractional differential equations of Riemann-Lioville type and Caputo type initial value problem are very useful in applications. In order to develop any iterative methods to solve the nonlinear problems, we need to solve the corresponding linear problem. In this work, we develop Laplace transform method to solve the linear sequential Riemann-Liouville fractional differential equations as well as linear sequential Caputo fractional differential equations of order nq which is sequential of order q. Also, nq is chosen such that (n-1) < nq < n. All our results yield the integer results as a special case when q tends to 1.
Modeling tree crown dynamics with 3D partial differential equations
Beyer, Robert; Letort, Véronique; Cournède, Paul-Henry
2014-01-01
We characterize a tree's spatial foliage distribution by the local leaf area density. Considering this spatially continuous variable allows to describe the spatiotemporal evolution of the tree crown by means of 3D partial differential equations. These offer a framework to rigorously take locally and adaptively acting effects into account, notably the growth toward light. Biomass production through photosynthesis and the allocation to foliage and wood are readily included in this model framework. The system of equations stands out due to its inherent dynamic property of self-organization and spontaneous adaptation, generating complex behavior from even only a few parameters. The density-based approach yields spatially structured tree crowns without relying on detailed geometry. We present the methodological fundamentals of such a modeling approach and discuss further prospects and applications. PMID:25101095
NASA Astrophysics Data System (ADS)
Liang, Yingjie; Chen, Wen; Magin, Richard L.
2016-07-01
Analytical solutions to the fractional diffusion equation are often obtained by using Laplace and Fourier transforms, which conveniently encode the order of the time and the space derivatives (α and β) as non-integer powers of the conjugate transform variables (s, and k) for the spectral and the spatial frequencies, respectively. This study presents a new solution to the fractional diffusion equation obtained using the Laplace transform and expressed as a Fox's H-function. This result clearly illustrates the kinetics of the underlying stochastic process in terms of the Laplace spectral frequency and entropy. The spectral entropy is numerically calculated by using the direct integration method and the adaptive Gauss-Kronrod quadrature algorithm. Here, the properties of spectral entropy are investigated for the cases of sub-diffusion and super-diffusion. We find that the overall spectral entropy decreases with the increasing α and β, and that the normal or Gaussian case with α = 1 and β = 2, has the lowest spectral entropy (i.e., less information is needed to describe the state of a Gaussian process). In addition, as the neighborhood over which the entropy is calculated increases, the spectral entropy decreases, which implies a spatial averaging or coarse graining of the material properties. Consequently, the spectral entropy is shown to provide a new way to characterize the temporal correlation of anomalous diffusion. Future studies should be designed to examine changes of spectral entropy in physical, chemical and biological systems undergoing phase changes, chemical reactions and tissue regeneration.
Axial and polar gravitational wave equations in a de Sitter expanding universe by Laplace transform
NASA Astrophysics Data System (ADS)
Viaggiu, Stefano
2017-02-01
In this paper we study the propagation in a de Sitter universe of gravitational waves generated by perturbating some unspecified spherical astrophysical object in the frequencies domain. We obtain the axial and polar perturbation equations in a cosmological de Sitter universe in the usual comoving coordinates, the coordinates we occupy in our galaxy. We write down the relevant equations in terms of Laplace transform with respect to the comoving time t instead of the usual Fourier one that is no longer available in a cosmological context. Both axial and polar perturbation equations are expressed in terms of a non trivial mixture of retarded-advanced metric coefficients with respect to the Laplace parameter s (complex translation). The axial case is studied in more detail. In particular, the axial perturbations can be reduced to a master linear second-order differential equation in terms of the Regge–Wheeler function Z where a coupling with a retarded Z with respect to the cosmological time t is present. It is shown that a de Sitter expanding universe can change the frequency ω of a gravitational wave as perceived by a comoving observer. The polar equations are much more involved. Nevertheless, we show that the polar perturbations can also be expressed in terms of four independent integrable differential equations.
The application of the Galerkin method to solving PIES for Laplace's equation
NASA Astrophysics Data System (ADS)
Bołtuć, Agnieszka; Zieniuk, Eugeniusz
2016-06-01
The paper presents the application of the Galerkin method to solving the parametric integral equation system (PIES) on the example of Laplace's equation. The main aim of the paper is the analysis of the effectiveness of two methods for PIES solving: the collocation method and the Galerkin method. Researches were performed on two examples with analytical solutions. Tests concern mainly the accuracy of obtained numerical solutions and their stability. For both analyzed methods calculations were made with the various number of expressions in the approximation series, whilst in the collocation method two variants of the arrangement of collocation points were considered. We also compared the complexity of both methods using the execution time.
Equations on knot polynomials and 3d/5d duality
Mironov, A.; Morozov, A.
2012-09-24
We briefly review the current situation with various relations between knot/braid polynomials (Chern-Simons correlation functions), ordinary and extended, considered as functions of the representation and of the knot topology. These include linear skein relations, quadratic Plucker relations, as well as 'differential' and (quantum) A-polynomial structures. We pay a special attention to identity between the A-polynomial equations for knots and Baxter equations for quantum relativistic integrable systems, related through Seiberg-Witten theory to 5d super-Yang-Mills models and through the AGT relation to the q-Virasoro algebra. This identity is an important ingredient of emerging a 3d- 5d generalization of the AGT relation. The shape of the Baxter equation (including the values of coefficients) depend on the choice of the knot/braid. Thus, like the case of KP integrability, where (some, so far torus) knots parameterize particular points of the Universal Grassmannian, in this relation they parameterize particular points in the moduli space of many-body integrable systems of relativistic type.
Bayesian inference using two-stage Laplace approximation for differential equation models
NASA Astrophysics Data System (ADS)
Dass, Sarat C.; Lee, Jaeyong; Lee, Kyoungjae
2016-11-01
We consider the problem of Bayesian inference for parameters in non-linear regression models whereby the underlying unknown response functions are formed by a set of differential equations. Bayesian methods of inference for unknown parameters rely primarily on the posterior obtained by Bayes rule. For differential equation models, analytic and closed forms for the posterior are not available and one has to resort to approximations. We propose a two-stage Laplace expansion to approximate the marginal likelihood, and hence, the posterior, to obtain an approximate closed form solution. For large sample sizes, the method of inference borrows from non-linear regression theory for maximum likelihood estimates, and is therefore, consistent. Our approach is exact in the limit and does not need the specification of an additional penalty parameter. Examples in this paper include the exponential model and SIR (Susceptible-Infected-Recovered) disease spread model.
Lu, Dingjie; Xie, Yi Min; Huang, Xiaodong; Zhou, Shiwei; Li, Qing
2015-11-28
Analytical studies on the size effects of a simply-shaped beam fixed at both ends have successfully explained the sudden changes of effective Young's modulus as its diameter decreases below 100 nm. Yet they are invalid for complex nanostructures ubiquitously existing in nature. In accordance with a generalized Young-Laplace equation, one of the representative size effects is transferred to non-uniformly distributed pressure against an external surface due to the imbalance of inward and outward loads. Because the magnitude of pressure depends on the principal curvatures, iterative steps have to be adopted to gradually stabilize the structure in finite element analysis. Computational results are in good agreement with both experiment data and theoretical prediction. Furthermore, the investigation on strengthened and softened Young's modulus for two complex nanostructures demonstrates that the proposed computational method provides a general and effective approach to analyze the size effects for nanostructures in arbitrary shape.
NASA Astrophysics Data System (ADS)
Wang, Rong Feng; Mei, Zhong Lei; Yang, Xin Yu; Ma, Xiang; Cui, Tie Jun
2014-04-01
For ideal invisibility cloaks, electromagnetic radiations cannot penetrate through the cloaking shell. However, researchers have suggested that the originally hidden object with a cloaking shell is visible to the outside world when it is covered by an "anticloak." In this paper, we give the first experimental verification of the "anticloak" for the Laplace equation, which requires negative conductivity profiles. The proposed device consists of two layers—the cloak and anticloak, which can work individually or collectively and give rise to different functions. Functionality switching among the invisibility cloak, anticloak, transparent cloak, superscatterer, and illusion is suggested and demonstrated. Based on the circuit theory, we fabricate a switching resistor network with both positive and negative resistors to emulate the cloaking and anticloaking interactions. The switchable cloaking, anticloaking, transparent, superscatterer, and illusion performances are confirmed by the experiments and/or numerical simulations.
Massopust, P.R.
1997-08-01
All solutions of an in its angular coordinates continuously perturbed Laplace-Beltrami equation in the open unit ball IB{sup n+2} {contained_in} IR{sup n+2}, n {ge} 1, are characterized. Moreover, it is shown that such pertubations yield distributional boundary values which are different from, but algebraically and topologically equivalent to, the hyperfunctions of Lions & Magenes. This is different from the case of radially perturbed Laplace-Beltrami operators (cf. [7]) where one has stability of distributional boundary values under such perturbations.
NASA Astrophysics Data System (ADS)
Telyakovskii, D. S.
2017-01-01
In this paper we weaken the sufficient conditions of harmonicity for functions of two variables. I.I. Privalov had shown that a continuous function that satisfies the Laplace equation in each point of the domain is harmonic. For function of two variables the Privalov’s condition on continuity can be weakened. G.P. Tolstov replaced the continuity condition by the boundness condition, later the author had shown that summability is sufficient. At the same time summability condition can not be weakened substantially. In this paper, while we keep the summability condition, we provide the sufficient condition for harmonicity of the functions, that satisfy less restricted condition than the Laplace equation in all points of the domain. We assume that arbitrary close to any point ζ there exists a collection of four nodes for which a difference relation of Schwartz type for the Laplace equation can be made arbitrary small by the absolute value. Nodes are the ends of two mutually perpendicular segments, that intersect at point ζ. We need to impose a certain weakened continuous assumption on function itself, in case of function that satisfy the traditional Laplace condition this continuity condition follows from the existence of the partial derivatives.
GPU Accelerated Spectral Element Methods: 3D Euler equations
NASA Astrophysics Data System (ADS)
Abdi, D. S.; Wilcox, L.; Giraldo, F.; Warburton, T.
2015-12-01
A GPU accelerated nodal discontinuous Galerkin method for the solution of three dimensional Euler equations is presented. The Euler equations are nonlinear hyperbolic equations that are widely used in Numerical Weather Prediction (NWP). Therefore, acceleration of the method plays an important practical role in not only getting daily forecasts faster but also in obtaining more accurate (high resolution) results. The equation sets used in our atomospheric model NUMA (non-hydrostatic unified model of the atmosphere) take into consideration non-hydrostatic effects that become more important with high resolution. We use algorithms suitable for the single instruction multiple thread (SIMT) architecture of GPUs to accelerate solution by an order of magnitude (20x) relative to CPU implementation. For portability to heterogeneous computing environment, we use a new programming language OCCA, which can be cross-compiled to either OpenCL, CUDA or OpenMP at runtime. Finally, the accuracy and performance of our GPU implementations are veried using several benchmark problems representative of different scales of atmospheric dynamics.
Galerkin Boundary Integral Analysis for the 3D Helmholtz Equation
Swager, Melissa; Gray, Leonard J; Nintcheu Fata, Sylvain
2010-01-01
A linear element Galerkin boundary integral analysis for the three-dimensional Helmholtz equation is presented. The emphasis is on solving acoustic scattering by an open (crack) surface, and to this end both a dual equation formulation and a symmetric hypersingular formulation have been developed. All singular integrals are defined and evaluated via a boundary limit process, facilitating the evaluation of the (finite) hypersingular Galerkin integral. This limit process is also the basis for the algorithm for post-processing of the surface gradient. The analytic integrations required by the limit process are carried out by employing a Taylor series expansion for the exponential factor in the Helmholtz fundamental solutions. For the open surface, the implementations are validated by comparing the numerical results obtained by using the two different methods.
Tripathi, Rajnee; Mishra, Hradyesh Kumar
2016-01-01
In this communication, we describe the Homotopy Perturbation Method with Laplace Transform (LT-HPM), which is used to solve the Lane-Emden type differential equations. It's very difficult to solve numerically the Lane-Emden types of the differential equation. Here we implemented this method for two linear homogeneous, two linear nonhomogeneous, and four nonlinear homogeneous Lane-Emden type differential equations and use their appropriate comparisons with exact solutions. In the current study, some examples are better than other existing methods with their nearer results in the form of power series. The Laplace transform used to accelerate the convergence of power series and the results are shown in the tables and graphs which have good agreement with the other existing method in the literature. The results show that LT-HPM is very effective and easy to implement.
Use of the augmented Young-Laplace equation to model equilibrium and evaporating extended menisci
DasGupta, S.; Schonberg, J.A.; Kim, I.Y.; Wayner, P.C.Jr. )
1993-05-01
The generic importance of fluid flow and change-of-phase heat transfer in the contact line region of an extended meniscus has led to theoretical and experimental research on the details of these transport processes. Numerical solutions of equilibrium and nonequilibrium models based on the augmented Young-Laplace equation were successfully used to evaluate experimental data for an extended meniscus. The data for the equilibrium and nonequilibrium meniscus profiles were obtained optically using ellipsometry and image processing interferometry. A Taylor series expansion of the fourth-order nonlinear transport model was used to obtain the extremely sensitive initial conditions at the interline. The solid-liquid-vapor Hamaker constants for the systems were obtained from the experimental data. The consistency of the data was demonstrated by using the combining rules to calculate the unknown value of the Hamaker constant for the experimental substrate. The sensitivity of the meniscus profile to small changes in the environment was demonstrated. Both temperature and intermolecular forces need to be included in modeling transport processes in the contact line region because the chemical potential is a function of both temperature and pressure.
NASA Technical Reports Server (NTRS)
Mccoy, M. J.
1980-01-01
Various finite difference techniques used to solve Laplace's equation are compared. Curvilinear coordinate systems are used on two dimensional regions with irregular boundaries, specifically, regions around circles and airfoils. Truncation errors are analyzed for three different finite difference methods. The false boundary method and two point and three point extrapolation schemes, used when having the Neumann boundary condition are considered and the effects of spacing and nonorthogonality in the coordinate systems are studied.
Convergence of the point vortex method for the 3-D Euler equations
NASA Astrophysics Data System (ADS)
Hou, Thomas Y.; Lowengrub, John
1990-11-01
Consistency, stability, and convergence of a point vortex approximation to the 3-D incompressible Euler equations with smooth solutions. The 3-D algorithm considered is similar to the corresponding 3-D vortex are proved blob algorithm introduced by Beale and Majda; The discretization error is second-order accurate. Then the method is stable in l sup p norm for the particle trajectories and in w sup -1,p norm for discrete vorticity. Consequently, the method converges up to any time for which the Euler equations have a smooth solution. One immediate application of the convergence result is that the vortex filament method without smoothing also converges.
An exact solution of the 3-D Navier-Stokes equation
NASA Astrophysics Data System (ADS)
Muriel, A.
2011-01-01
We continue our work (A. Muriel and M. Dresden, Physica D 101, 299, 1997) to calculate the time evolution of the one-particle distribution function. An improved operator formalism, heretofore unused, is applied for spatially uniform initial data. We then choose a Gaussian pair potential between particles. With these two conditions, the velocity fields, energy and pressure are calculated exactly. All stipulations of the Clay Mathematics Institute for proposed solutions of the 3-D Navier-Stokes Equation [ http://www.claymath.org/millennium/Navier-Stokes_Equations/navierstokes.pdf] are satisfied by our time evolution equation. We then substitute our results for the velocity fields into the 3-D Navier-Stokes Equation and calculate the pressure. The results from our time evolution equation and the prescribed pressure from the Navier-Stokes Equation constitute an exact solution to the Navier-Stokes Equation. No turbulence is obtained from the solution.
On the Dynamic Programming Approach for the 3D Navier-Stokes Equations
Manca, Luigi
2008-06-15
The dynamic programming approach for the control of a 3D flow governed by the stochastic Navier-Stokes equations for incompressible fluid in a bounded domain is studied. By a compactness argument, existence of solutions for the associated Hamilton-Jacobi-Bellman equation is proved. Finally, existence of an optimal control through the feedback formula and of an optimal state is discussed.
NASA Astrophysics Data System (ADS)
Adimurthi; Karthik, A.; Giacomoni, Jacques
2016-06-01
Let n ≥ 2 and Ω ⊂Rn be a bounded domain. Then by Trudinger-Moser embedding, W01,n (Ω) is embedded in an Orlicz space consisting of exponential functions. Consider the corresponding semilinear n-Laplace equation with critical or sub-critical exponential nonlinearity in a ball B (R) with dirichlet boundary condition. In this paper, we prove that under suitable growth conditions on the nonlinearity, there exists an γ0 > 0, and a corresponding R0 (γ0) > 0 such that for all 0 < R
NASA Astrophysics Data System (ADS)
Wang, Yanqing; Wu, Gang; Zhou, Daoguo
2016-12-01
By means of blow-up method and the special structure of the 3D viscous magnetohydrodynamics equations, we derive some interior regularity criteria in terms of horizontal part of the velocity with sufficiently small local scaled norm and both the vertical part of the velocity and the magnetic field with bounded local scaled norm for the suitable weak solutions to this system. As an application, this allows us to improve the previous limiting case for the regularity criterion about the MHD equations.
Implementation of Advanced Two Equation Turbulence Models in the USM3D Unstructured Flow Solver
NASA Technical Reports Server (NTRS)
Wang, Qun-Zhen; Massey, Steven J.; Abdol-Hamid, Khaled S.
2000-01-01
USM3D is a widely-used unstructured flow solver for simulating inviscid and viscous flows over complex geometries. The current version (version 5.0) of USM3D, however, does not have advanced turbulence models to accurately simulate complicated flow. We have implemented two modified versions of the original Jones and Launder k-epsilon "two-equation" turbulence model and the Girimaji algebraic Reynolds stress model in USM3D. Tests have been conducted for three flat plate boundary layer cases, a RAE2822 airfoil and an ONERA M6 wing. The results are compared with those from direct numerical simulation, empirical formulae, theoretical results, and the existing Spalart-Allmaras one-equation model.
NASA Astrophysics Data System (ADS)
Wichert, Viktoria; Arkenberg, Mario; Hauschildt, Peter H.
2016-10-01
Highly resolved state-of-the-art 3D atmosphere simulations will remain computationally extremely expensive for years to come. In addition to the need for more computing power, rethinking coding practices is necessary. We take a dual approach by introducing especially adapted, parallel numerical methods and correspondingly parallelizing critical code passages. In the following, we present our respective work on PHOENIX/3D. With new parallel numerical algorithms, there is a big opportunity for improvement when iteratively solving the system of equations emerging from the operator splitting of the radiative transfer equation J = ΛS. The narrow-banded approximate Λ-operator Λ* , which is used in PHOENIX/3D, occurs in each iteration step. By implementing a numerical algorithm which takes advantage of its characteristic traits, the parallel code's efficiency is further increased and a speed-up in computational time can be achieved.
3D linearized stability analysis of various forms of Burnett equations
NASA Astrophysics Data System (ADS)
Zhao, Wenwen; Chen, Weifang; Liu, Hualin; Agarwal, Ramesh K.
2014-12-01
Burnett equations were originally derived in 1935 by Burnett by employing the Chapman-Enskog expansion to Classical Boltzmann equation to second order in Knudsen number Kn. Since then several variants of these equations have been proposed in the literature; these variants have differing physical and numerical properties. In this paper, we consider three such variants which are known in the literature as `the Original Burnett (OB) equations', the Conventional Burnett (CB) equations' and the recently formulated by the authors `the Simplified Conventional (SCB) equations.' One of the most important issues in obtaining numerical solutions of the Burnett equations is their stability under small perturbations. In this paper, we perform the linearized stability (known as the Bobylev Stability) analysis of three-dimensional Burnett equations for all the three variants (OB, CB, and SCB) for the first time in the literature on this subject. By introducing small perturbations in the steady state flow field, the trajectory curve and the variation in attenuation coefficient with wave frequency of the characteristic equation are obtained for all the three variants of Burnett equations to determine their stability. The results show that the Simplified Conventional Burnett (SCB) equations are unconditionally stable under small wavelength perturbations. However, the Original Burnett (OB) and the Conventional Burnett (CB) equations are unstable when the Knudsen number becomes greater than a critical value and the stability condition worsens in 3D when compared to the stability condition for 1-D and 2-D equations. The critical Knudsen number for 3-D OB and CB equations is 0.061 and 0.287 respectively.
3D FEM-BEM-coupling method to solve magnetostatic Maxwell equations
NASA Astrophysics Data System (ADS)
Bruckner, Florian; Vogler, Christoph; Feischl, Michael; Praetorius, Dirk; Bergmair, Bernhard; Huber, Thomas; Fuger, Markus; Suess, Dieter
2012-05-01
3D magnetostatic Maxwell equations are solved using the direct Johnson-Nédélec FEM-BEM coupling method and a reduced scalar potential approach. The occurring BEM matrices are calculated analytically and approximated by H-matrices using the ACA+ algorithm. In addition a proper preconditioning method is suggested that allows to solve large-scale problems using iterative solvers.
On the breakdown of axisymmetric smooth solutions for the 3-D Euler equations
NASA Astrophysics Data System (ADS)
Chae, Dongho; Kim, Namkwon
1996-05-01
We refine the Beale-Kato-Majda criterion for the breakdown of smooth solutions of the 3-D incompressible Euler equations in the case of axisymmetry. In this case the angular component of vorticity in the cylindrical coordinates alone controls blow-up of the higher Sobolev norms of the velocity.
Solving Dirac equations on a 3D lattice with inverse Hamiltonian and spectral methods
NASA Astrophysics Data System (ADS)
Ren, Z. X.; Zhang, S. Q.; Meng, J.
2017-02-01
A new method to solve the Dirac equation on a 3D lattice is proposed, in which the variational collapse problem is avoided by the inverse Hamiltonian method and the fermion doubling problem is avoided by performing spatial derivatives in momentum space with the help of the discrete Fourier transform, i.e., the spectral method. This method is demonstrated in solving the Dirac equation for a given spherical potential in a 3D lattice space. In comparison with the results obtained by the shooting method, the differences in single-particle energy are smaller than 10-4 MeV, and the densities are almost identical, which demonstrates the high accuracy of the present method. The results obtained by applying this method without any modification to solve the Dirac equations for an axial-deformed, nonaxial-deformed, and octupole-deformed potential are provided and discussed.
On a particular solution to the 3D Navier-Stokes equations for liquids with cavitation
NASA Astrophysics Data System (ADS)
Rabinowitch, Alexander S.
2016-08-01
The 3D Navier-Stokes equations for incompressible viscous liquids are examined. In the axially symmetric case, they are represented in the form of three nonlinear partial differential equations. These equations are studied and their particular solution is found. In it, the velocity components are sinusoidal in the direction of their axis of symmetry. As to the pressure, it can reach a sufficiently small value at which the phenomenon of cavitation takes place in a liquid. The found solution describes some flows of viscous liquids outside vapor-filled regions in them.
Upper Semicontinuity of Pullback Attractors for the 3D Nonautonomous Benjamin-Bona-Mahony Equations
Yang, Xinguang; Wang, Xiaosong; Zhang, Lingrui
2014-01-01
We will study the upper semicontinuity of pullback attractors for the 3D nonautonomouss Benjamin-Bona-Mahony equations with external force perturbation terms. Under some regular assumptions, we can prove the pullback attractors 𝒜 ε(t) of equation ut-Δut-νΔu+∇·F→(u)=ɛg(x,t), x ∈ Ω, converge to the global attractor 𝒜 of the above-mentioned equation with ε = 0 for any t ∈ ℝ. PMID:24790585
Equation-of-State Test Suite for the DYNA3D Code
Benjamin, Russell D.
2015-11-05
This document describes the creation and implementation of a test suite for the Equationof- State models in the DYNA3D code. A customized input deck has been created for each model, as well as a script that extracts the relevant data from the high-speed edit file created by DYNA3D. Each equation-of-state model is broken apart and individual elements of the model are tested, as well as testing the entire model. The input deck for each model is described and the results of the tests are discussed. The intent of this work is to add this test suite to the validation suite presently used for DYNA3D.
NASA Astrophysics Data System (ADS)
Zhai, Xiaoping; Yin, Zhaoyang
2017-02-01
The present paper is dedicated to the global well-posedness for the 3D inhomogeneous incompressible Navier-Stokes equations, in critical Besov spaces without smallness assumption on the variation of the density. We aim at extending the work by Abidi, Gui and Zhang (2012) [2], and (2013) [3] to a lower regularity index about the initial velocity. The key to that improvement is a new a priori estimate for an elliptic equation with nonconstant coefficients in Besov spaces which have the same degree as L2 in R3. Finally, we also generalize our well-posedness result to the inhomogeneous incompressible MHD equations.
Meng, Da; Zheng, Bin; Lin, Guang; Sushko, Maria L.
2014-08-29
We have developed efficient numerical algorithms for the solution of 3D steady-state Poisson-Nernst-Planck equations (PNP) with excess chemical potentials described by the classical density functional theory (cDFT). The coupled PNP equations are discretized by finite difference scheme and solved iteratively by Gummel method with relaxation. The Nernst-Planck equations are transformed into Laplace equations through the Slotboom transformation. Algebraic multigrid method is then applied to efficiently solve the Poisson equation and the transformed Nernst-Planck equations. A novel strategy for calculating excess chemical potentials through fast Fourier transforms is proposed which reduces computational complexity from O(N2) to O(NlogN) where N is the number of grid points. Integrals involving Dirac delta function are evaluated directly by coordinate transformation which yields more accurate result compared to applying numerical quadrature to an approximated delta function. Numerical results for ion and electron transport in solid electrolyte for Li ion batteries are shown to be in good agreement with the experimental data and the results from previous studies.
3-D zebrafish embryo image filtering by nonlinear partial differential equations.
Rizzi, Barbara; Campana, Matteo; Zanella, Cecilia; Melani, Camilo; Cunderlik, Robert; Krivá, Zuzana; Bourgine, Paul; Mikula, Karol; Peyriéras, Nadine; Sarti, Alessandro
2007-01-01
We discuss application of nonlinear PDE based methods to filtering of 3-D confocal images of embryogenesis. We focus on the mean curvature driven and the regularized Perona-Malik equations, where standard as well as newly suggested edge detectors are used. After presenting the related mathematical models, the practical results are given and discussed by visual inspection and quantitatively using the mean Hausdorff distance.
The Beale-Kato-Majda Criterion for the 3D Magneto-Hydrodynamics Equations
NASA Astrophysics Data System (ADS)
Chen, Qionglei; Miao, Changxing; Zhang, Zhifei
2007-11-01
We study the blow-up criterion of smooth solutions to the 3D MHD equations. By means of the Littlewood-Paley decomposition, we prove a Beale-Kato-Majda type blow-up criterion of smooth solutions via the vorticity of velocity only, namely sup_{jinmathbb{Z}}int_0^T\\|Δ_j(nabla× u)\\|_infty dt, where Δ j is the frequency localization operator in the Littlewood-Paley decomposition.
NuSol - Numerical solver for the 3D stationary nuclear Schrödinger equation
NASA Astrophysics Data System (ADS)
Graen, Timo; Grubmüller, Helmut
2016-01-01
The classification of short hydrogen bonds depends on several factors including the shape and energy spacing between the nuclear eigenstates of the hydrogen. Here, we describe the NuSol program in which three classes of algorithms were implemented to solve the 1D, 2D and 3D time independent nuclear Schrödinger equation. The Schrödinger equation was solved using the finite differences based Numerov's method which was extended to higher dimensions, the more accurate pseudo-spectral Chebyshev collocation method and the sinc discrete variable representation by Colbert and Miller. NuSol can be applied to solve the Schrödinger equation for arbitrary analytical or numerical potentials with focus on nuclei bound by the potential of their molecular environment. We validated the methods against literature values for the 2D Henon-Heiles potential, the 3D linearly coupled sextic oscillators and applied them to study hydrogen bonding in the malonaldehyde derivate 4-cyano-2,2,6,6-tetramethyl-3,5-heptanedione. With NuSol, the extent of nuclear delocalization in a given molecular potential can directly be calculated without relying on linear reaction coordinates in 3D molecular space.
Analytical and numerical aspects in solving the controlled 3D Gross-Pitaevskii equation
NASA Astrophysics Data System (ADS)
Fedele, R.; Jovanović, D.; De Nicola, S.; Eliasson, B.; Shukla, P. K.
2009-11-01
The results of recently developed investigations, that have been carried out within the framework of the controlling potential method (CPM), are reviewed. This method allows one to decompose a three dimensional (3D) Gross-Pitaevskii equation (GPE) into the pair of coupled Schrödinger-type equations. Under suitable mathematical conditions, the solutions of the 3D controlled GPE can be constructed from the solutions of a 2D linear Schrödinger equation (the transverse component of the GPE) coupled with a 1D nonlinear Schrödinger equation (the longitudinal component of the GPE). Such decomposition allows one to cast the solutions in the form of the product of the solutions of the transverse and the longitudinal components of the GPE. The coupling between these two equations is the functional of both the transverse and the longitudinal profiles. It is shown that the CPM can be used to obtain a new class of three-dimensional solitary waves solutions of the GPE, which governs the dynamics of Bose-Einstein condensates. By imposing an external controlling potential, the desired time-dependent shape of the localized BECs is obtained. The stability of the exact solutions was checked with direct simulations of the time -dependent, three-dimensional GPE. Our simulations show that the localized condensates are stable with respect to perturbed initial conditions.
Analytical and numerical aspects in solving the controlled 3D Gross-Pitaevskii equation
Fedele, R.; Jovanovic, D.; De Nicola, S.; Eliasson, B.; Shukla, P. K.
2009-11-10
The results of recently developed investigations, that have been carried out within the framework of the controlling potential method (CPM), are reviewed. This method allows one to decompose a three dimensional (3D) Gross-Pitaevskii equation (GPE) into the pair of coupled Schroedinger-type equations. Under suitable mathematical conditions, the solutions of the 3D controlled GPE can be constructed from the solutions of a 2D linear Schroedinger equation (the transverse component of the GPE) coupled with a 1D nonlinear Schroedinger equation (the longitudinal component of the GPE). Such decomposition allows one to cast the solutions in the form of the product of the solutions of the transverse and the longitudinal components of the GPE. The coupling between these two equations is the functional of both the transverse and the longitudinal profiles. It is shown that the CPM can be used to obtain a new class of three-dimensional solitary waves solutions of the GPE, which governs the dynamics of Bose-Einstein condensates. By imposing an external controlling potential, the desired time-dependent shape of the localized BECs is obtained. The stability of the exact solutions was checked with direct simulations of the time -dependent, three-dimensional GPE. Our simulations show that the localized condensates are stable with respect to perturbed initial conditions.
The regularized 3D Boussinesq equations with fractional Laplacian and no diffusion
NASA Astrophysics Data System (ADS)
Bessaih, H.; Ferrario, B.
2017-02-01
In this paper, we study the 3D regularized Boussinesq equations. The velocity equation is regularized à la Leray through a smoothing kernel of order α in the nonlinear term and a β-fractional Laplacian; we consider the critical case α + β =5/4 and we assume 1/2 < β <5/4. The temperature equation is a pure transport equation, where the transport velocity is regularized through the same smoothing kernel of order α. We prove global well posedness when the initial velocity is in Hr and the initial temperature is in H r - β for r > max (2 β , β + 1). This regularity is enough to prove uniqueness of solutions. We also prove a continuous dependence of solutions on the initial conditions.
A least-squares finite element method for 3D incompressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Lin, T. L.; Hou, Lin-Jun; Povinelli, Louis A.
1993-01-01
The least-squares finite element method (LSFEM) based on the velocity-pressure-vorticity formulation is applied to three-dimensional steady incompressible Navier-Stokes problems. This method can accommodate equal-order interpolations, and results in symmetric, positive definite algebraic system. An additional compatibility equation, i.e., the divergence of vorticity vector should be zero, is included to make the first-order system elliptic. The Newton's method is employed to linearize the partial differential equations, the LSFEM is used to obtain discretized equations, and the system of algebraic equations is solved using the Jacobi preconditioned conjugate gradient method which avoids formation of either element or global matrices (matrix-free) to achieve high efficiency. The flow in a half of 3D cubic cavity is calculated at Re = 100, 400, and 1,000 with 50 x 52 x 25 trilinear elements. The Taylor-Gortler-like vortices are observed at Re = 1,000.
NASA Astrophysics Data System (ADS)
Wie, Bong; Ahn, Jaemyung
2017-03-01
This paper is concerned with a classical yet still mystifying problem regarding multiple roots of the angles-only initial orbit determination (IOD) polynomial equations of Lagrange, Laplace, and Gauss of the form: f( x) = x 8+ a x 6+ b x 3+ c=0 where a, c<0. A possibility of multiple non-spurious roots of this 8th order polynomial equation with b>0 has been extensively treated in the celestial mechanics literature. However, the literature on applied astrodynamics has not treated this multiple-root issue in detail, and not many specific numerical examples with multiple roots are available in the literature. In this paper, a very simple method of determining the correct root from two or three non-spurious roots is presented, which doesn't utilize any a priori knowledge and/or additional observations of the object. The proposed method exploits a simple approximate polynomial equation of the form: g( x) = x 8+ a x 6=0. An approximate polynomial equation, either g( x) = x 8+ c=0 or g( x) = x 8+ a x 6= x 6( x 2+ a) = 0, can also be used for quickly estimating an initial guess of the correct root.
NASA Astrophysics Data System (ADS)
Wie, Bong; Ahn, Jaemyung
2016-09-01
This paper is concerned with a classical yet still mystifying problem regarding multiple roots of the angles-only initial orbit determination (IOD) polynomial equations of Lagrange, Laplace, and Gauss of the form: f(x) = x 8+a x 6+b x 3+c=0 where a,c<0. A possibility of multiple non-spurious roots of this 8th order polynomial equation with b>0 has been extensively treated in the celestial mechanics literature. However, the literature on applied astrodynamics has not treated this multiple-root issue in detail, and not many specific numerical examples with multiple roots are available in the literature. In this paper, a very simple method of determining the correct root from two or three non-spurious roots is presented, which doesn't utilize any a priori knowledge and/or additional observations of the object. The proposed method exploits a simple approximate polynomial equation of the form: g(x) = x 8+a x 6=0. An approximate polynomial equation, either g(x) = x 8+c=0 or g(x) = x 8+a x 6=x 6(x 2+a) = 0, can also be used for quickly estimating an initial guess of the correct root.
Laplace and Z Transform Solutions of Differential and Difference Equations With the HP-41C.
ERIC Educational Resources Information Center
Harden, Richard C.; Simons, Fred O., Jr.
1983-01-01
A previously developed program for the HP-41C programmable calculator is extended to handle models of differential and difference equations with multiple eigenvalues. How to obtain difference equation solutions via the Z transform is described. (MNS)
A novel numerical flux for the 3D Euler equations with general equation of state
NASA Astrophysics Data System (ADS)
Toro, Eleuterio F.; Castro, Cristóbal E.; Lee, Bok Jik
2015-12-01
Here we extend the flux vector splitting approach recently proposed in E.F. Toro and M.E. Vázquez-Cendón (2012) [42]. The scheme was originally presented for the 1D Euler equations for ideal gases and its extension presented in this paper is threefold: (i) we solve the three-dimensional Euler equations on general meshes; (ii) we use a general equation of state; and (iii) we achieve high order of accuracy in both space and time through application of the semi-discrete ADER methodology on general meshes. The resulting methods are systematically assessed for accuracy, robustness and efficiency on a carefully selected suite of test problems. Formal high accuracy is assessed through convergence rates studies for schemes of up to 4th order of accuracy in both space and time on unstructured meshes.
NASA Astrophysics Data System (ADS)
DeJong, Andrew
Numerical models of fluid-structure interaction have grown in importance due to increasing interest in environmental energy harvesting, airfoil-gust interactions, and bio-inspired formation flying. Powered by increasingly powerful parallel computers, such models seek to explain the fundamental physics behind the complex, unsteady fluid-structure phenomena. To this end, a high-fidelity computational model based on the high-order spectral difference method on 3D unstructured, dynamic meshes has been developed. The spectral difference method constructs continuous solution fields within each element with a Riemann solver to compute the inviscid fluxes at the element interfaces and an averaging mechanism to compute the viscous fluxes. This method has shown promise in the past as a highly accurate, yet sufficiently fast method for solving unsteady viscous compressible flows. The solver is monolithically coupled to the equations of motion of an elastically mounted 3-degree of freedom rigid bluff body undergoing flow-induced lift, drag, and torque. The mesh is deformed using 4 methods: an analytic function, Laplace equation, biharmonic equation, and a bi-elliptic equation with variable diffusivity. This single system of equations -- fluid and structure -- is advanced through time using a 5-stage, 4th-order Runge-Kutta scheme. Message Passing Interface is used to run the coupled system in parallel on up to 240 processors. The solver is validated against previously published numerical and experimental data for an elastically mounted cylinder. The effect of adding an upstream body and inducing wake galloping is observed.
A fast rebinning algorithm for 3D positron emission tomography using John's equation
NASA Astrophysics Data System (ADS)
Defrise, Michel; Liu, Xuan
1999-08-01
Volume imaging in positron emission tomography (PET) requires the inversion of the three-dimensional (3D) x-ray transform. The usual solution to this problem is based on 3D filtered-backprojection (FBP), but is slow. Alternative methods have been proposed which factor the 3D data into independent 2D data sets corresponding to the 2D Radon transforms of a stack of parallel slices. Each slice is then reconstructed using 2D FBP. These so-called rebinning methods are numerically efficient but are approximate. In this paper a new exact rebinning method is derived by exploiting the fact that the 3D x-ray transform of a function is the solution to the second-order partial differential equation first studied by John. The method is proposed for two sampling schemes, one corresponding to a pair of infinite plane detectors and another one corresponding to a cylindrical multi-ring PET scanner. The new FORE-J algorithm has been implemented for this latter geometry and was compared with the approximate Fourier rebinning algorithm FORE and with another exact rebinning algorithm, FOREX. Results with simulated data demonstrate a significant improvement in accuracy compared to FORE, while the reconstruction time is doubled. Compared to FOREX, the FORE-J algorithm is slightly less accurate but more than three times faster.
Statistical properties of the 3-D poor man's Navier--Stokes equation
NASA Astrophysics Data System (ADS)
McDonough, J. M.
2007-11-01
The poor man's Navier--Stokes (PMNS) equation is an efficiently-evaluated discrete dynamical system (DDS) derived directly from the Navier--Stokes (N.--S.) equations via a Galerkin procedure. The 2-D version of this DDS was introduced by McDonough and Huang, Int. J. Numer. Meth. Fluids (2004), where it was thoroughly analyzed for values of bifurcation parameters that might be associated with isotropic turbulence. Yang et al., AIAA J. (2003), demonstrated that the PMNS equation could be employed to accurately fit experimental data. These results suggest possible use of the PMNS equation as part of a subgrid-scale (SGS) model for LES formulated to capture effects of interactions between turbulence and other physics on unresolved scales. Here, we consider statistical properties of the 3-D PMNS equation to ascertain whether they are sufficiently close to those of physical N.--S. flows to warrant development of such models. In particular, we will present auto and cross correlation of velocity components, probability density functions, flatness and skewness of velocity derivatives, and scaling of longitudinal velocity structure functions of orders two, three, four and six. It will be demonstrated that PMNS equation statistics are generally in accord with those of the full N.--S. equations, and as a consequence this DDS could lead to very efficient LES SGS models able to replicate small-scale turbulence interactions with other physics.
Stability of Blowup for a 1D Model of Axisymmetric 3D Euler Equation
NASA Astrophysics Data System (ADS)
Do, Tam; Kiselev, Alexander; Xu, Xiaoqian
2016-10-01
The question of the global regularity versus finite- time blowup in solutions of the 3D incompressible Euler equation is a major open problem of modern applied analysis. In this paper, we study a class of one-dimensional models of the axisymmetric hyperbolic boundary blow-up scenario for the 3D Euler equation proposed by Hou and Luo (Multiscale Model Simul 12:1722-1776, 2014) based on extensive numerical simulations. These models generalize the 1D Hou-Luo model suggested in Hou and Luo Luo and Hou (2014), for which finite-time blowup has been established in Choi et al. (arXiv preprint. arXiv:1407.4776, 2014). The main new aspects of this work are twofold. First, we establish finite-time blowup for a model that is a closer approximation of the three-dimensional case than the original Hou-Luo model, in the sense that it contains relevant lower-order terms in the Biot-Savart law that have been discarded in Hou and Luo Choi et al. (2014). Secondly, we show that the blow-up mechanism is quite robust, by considering a broader family of models with the same main term as in the Hou-Luo model. Such blow-up stability result may be useful in further work on understanding the 3D hyperbolic blow-up scenario.
Relativistic integro-differential form of the Lorentz-Dirac equation in 3D without runaways
NASA Astrophysics Data System (ADS)
Ibison, Michael; Puthoff, Harold E.
2001-04-01
It is well known that the third-order Lorentz-Dirac equation admits runaway solutions wherein the energy of the particle grows without limit, even when there is no external force. These solutions can be denied simply on physical grounds, and on the basis of careful analysis of the correspondence between classical and quantum theory. Nonetheless, one would prefer an equation that did not admit unphysical behavior at the outset. Such an equation - an integro-differential version of the Lorentz-Dirac equation - is currently available either in 1 dimension only, or in 3 dimensions only in the non-relativistic limit. It is shown herein how the Lorentz-Dirac equation may be integrated without approximation, and is thereby converted to a second-order integro-differential equation in 3D satisfying the above requirement. I.E., as a result, no additional constraints on the solutions are required because runaway solutions are intrinsically absent. The derivation is placed within the historical context established by standard works on classical electrodynamics by Rohrlich, and by Jackson.
Active exterior cloaking for the 2D Laplace and Helmholtz equations.
Vasquez, Fernando Guevara; Milton, Graeme W; Onofrei, Daniel
2009-08-14
A new cloaking method is presented for 2D quasistatics and the 2D Helmholtz equation that we speculate extends to other linear wave equations. For 2D quasistatics it is proven how a single active exterior cloaking device can be used to shield an object from surrounding fields, yet produce very small scattered fields. The problem is reduced to finding a polynomial which is close to 1 in a disk and close to 0 in another disk, and such a polynomial is constructed. For the 2D Helmholtz equation it is numerically shown that three exterior cloaking devices placed around the object suffice to hide it.
Free boundary value problem to 3D spherically symmetric compressible Navier-Stokes-Poisson equations
NASA Astrophysics Data System (ADS)
Kong, Huihui; Li, Hai-Liang
2017-02-01
In the paper, we consider the free boundary value problem to 3D spherically symmetric compressible isentropic Navier-Stokes-Poisson equations for self-gravitating gaseous stars with γ -law pressure density function for 6/5 <γ ≤ 4/3. For stress-free boundary condition and zero flow density continuously across the free boundary, the global existence of spherically symmetric weak solutions is shown, and the regularity and long time behavior of global solution are investigated for spherically symmetric initial data with the total mass smaller than a critical mass.
NASA Technical Reports Server (NTRS)
Pearson, E. M.; Halicioglu, T.; Tiller, W. A.
1985-01-01
A direct and convenient method is presented for deriving expressions which equate any thermodynamic state function to averages of specific dynamical functions and their fluctuations over the classical microcanonical distribution. Specific expressions are obtained for a variety of thermodynamic quantities. The effect of various entropy definitions on the results are assessed, and the latter are compared to previous work in the literature. The derived formulas are applied to the analysis of molecular-dynamics computer simulations.
High speed and flexible PEB 3D diffusion simulation based on Sylvester equation
NASA Astrophysics Data System (ADS)
Lin, Pei-Chun; Chen, Charlie Chung-Ping
2013-04-01
Post exposure bake (PEB) Diffusion effect is one of the most difficult issues in modeling chemically amplified resists. These model equations result in a system of nonlinear partial differential equations describing the time rate of change reaction and diffusion. Verifying such models are difficult, so numerical simulations are needed to solve the model equations. In this paper, we propose a high speed 3D resist image simulation algorithm based on a novel method to solve the PEB Diffusion equation. Our major discovery is that the matrix formulation of the diffusion equation under the Crank- Nicolson scheme can be derived into a special form, AX+XB=C, where the X matrix is a 3D resist image after diffusion effect, A and B matrices contain the diffusion coefficients and the space relationship between directions x, y and z. These matrices are sparse, symmetric and diagonal dominant. The C matrix is the last time-step resist image. The Sylvester equation can be reduced to another form as (I⊗A + BT⊗I) X =C, in which the operator ⊗ is the Kronecker product notation. Compared with a traditional convolution method, our method is more useful in a way that boundary conditions can be more flexible. From our experimental results, we see that the error of the convolution method can be as high as 30% at borders of the design pattern. Furthermore, since the PEB temperature may not be uniform at multi-zone PEB, the convolution method might not be directly applicable in this scenario. Our method is about 20 times faster than the convolution method for a single time step (2 seconds) as illustrated in the attached figure. To simulate 50 seconds of the flexible PEB diffusion process, our method only takes 210 seconds with a convolution set up for a 1240×1240 working area. We use the typical 45nm immersion lithography in our work. The exposure wavelength is set to 193nm; the NA is 1.3775; and the diffusion coefficient is 1.455×10-17m2/s at PEB temperature 150°C along with PEB
Second order Method for Solving 3D Elasticity Equations with Complex Interfaces
Wang, Bao; Xia, Kelin; Wei, Guo-Wei
2015-01-01
Elastic materials are ubiquitous in nature and indispensable components in man-made devices and equipments. When a device or equipment involves composite or multiple elastic materials, elasticity interface problems come into play. The solution of three dimensional (3D) elasticity interface problems is significantly more difficult than that of elliptic counterparts due to the coupled vector components and cross derivatives in the governing elasticity equation. This work introduces the matched interface and boundary (MIB) method for solving 3D elasticity interface problems. The proposed MIB elasticity interface scheme utilizes fictitious values on irregular grid points near the material interface to replace function values in the discretization so that the elasticity equation can be discretized using the standard finite difference schemes as if there were no material interface. The interface jump conditions are rigorously enforced on the intersecting points between the interface and the mesh lines. Such an enforcement determines the fictitious values. A number of new techniques has been developed to construct efficient MIB elasticity interface schemes for dealing with cross derivative in coupled governing equations. The proposed method is extensively validated over both weak and strong discontinuity of the solution, both piecewise constant and position-dependent material parameters, both smooth and nonsmooth interface geometries, and both small and large contrasts in the Poisson’s ratio and shear modulus across the interface. Numerical experiments indicate that the present MIB method is of second order convergence in both L∞ and L2 error norms for handling arbitrarily complex interfaces, including biomolecular surfaces. To our best knowledge, this is the first elasticity interface method that is able to deliver the second convergence for the molecular surfaces of proteins.. PMID:25914422
Cari, C. Suparmi, A.
2014-09-30
Dirac equation of 3D harmonics oscillator plus trigonometric Scarf non-central potential for spin symmetric case is solved using supersymmetric quantum mechanics approach. The Dirac equation for exact spin symmetry reduces to Schrodinger like equation. The relativistic energy and wave function for spin symmetric case are simply obtained using SUSY quantum mechanics method and idea of shape invariance.
NASA Astrophysics Data System (ADS)
Holota, Petr; Nesvadba, Otakar
2015-04-01
In this paper the reciprocal distance is used for generating Galerkin's approximations in the weak solution of Neumann's problem that has an important role in Earth's gravity field studies. The reciprocal distance has a natural tie to the fundamental solution of Laplace's partial differential equation and in the paper it is represented by means of an expansion into a series of oblate spheroidal harmonics. Subsequently, the gradient vector of the reciprocal distance is constructed. In the computation of its components the expansion mentioned above is employed. The paper then focuses on the scalar product of reciprocal distance gradients in two different points and in particular on a series representation of a volume integral of the scalar product spread over an unbounded domain given by the exterior of an oblate spheroid (oblate ellipsoid of revolution). The integral yields the entries of Galerkin's matrix. The numerical interpretation of all the expansions used as well as the respective software implementation within the OpenCL framework is treated, which concerns also a numerical evaluation of Legendre functions of a real and an imaginary argument. In parallel an approximate closed formula expressing the entries of Galerkin's matrix (with an accuracy up to terms multiplied by the square of numerical eccentricity) is derived for convenience and comparison. The paper is added extensive numerical examples that illustrate the approach applied and demonstrate the accuracy of the derived formulas. Aspects related to practical applications are discussed.
Accelerating the shifted Laplace preconditioner for the Helmholtz equation by multilevel deflation
NASA Astrophysics Data System (ADS)
Sheikh, A. H.; Lahaye, D.; Garcia Ramos, L.; Nabben, R.; Vuik, C.
2016-10-01
Many important physical phenomena can be described by the Helmholtz equation. We investigate to what extent the convergence of the shifted Laplacian preconditioner for the Helmholtz equation can be accelerated using deflation with multigrid vectors. We therefore present a unified framework for two published algorithms. The first deflates the preconditioned operator and requires no further preconditioning. The second deflates the original operator and combines deflation and preconditioning in a multiplicative fashion. We pursue two scientific contributions. First we show, using a model problem analysis, that both algorithms cluster the eigenvalues. The new and key insight here is that the near-kernel of the coarse grid operator causes a limited set of eigenvalues to shift away from the center of the cluster with a distance proportional to the wave number. This effect is less pronounced in the first algorithmic variant at the expense of a higher computational cost. In the second contribution we quantify for the first time the large amount of reduction in CPU-time that results from the clustering of eigenvalues and the reduction in iteration count. We report to this end on the findings of an implementation in PETSc on two and three-dimensional problems with constant and variable wave number.
Computational time analysis of the numerical solution of 3D electrostatic Poisson's equation
NASA Astrophysics Data System (ADS)
Kamboh, Shakeel Ahmed; Labadin, Jane; Rigit, Andrew Ragai Henri; Ling, Tech Chaw; Amur, Khuda Bux; Chaudhary, Muhammad Tayyab
2015-05-01
3D Poisson's equation is solved numerically to simulate the electric potential in a prototype design of electrohydrodynamic (EHD) ion-drag micropump. Finite difference method (FDM) is employed to discretize the governing equation. The system of linear equations resulting from FDM is solved iteratively by using the sequential Jacobi (SJ) and sequential Gauss-Seidel (SGS) methods, simulation results are also compared to examine the difference between the results. The main objective was to analyze the computational time required by both the methods with respect to different grid sizes and parallelize the Jacobi method to reduce the computational time. In common, the SGS method is faster than the SJ method but the data parallelism of Jacobi method may produce good speedup over SGS method. In this study, the feasibility of using parallel Jacobi (PJ) method is attempted in relation to SGS method. MATLAB Parallel/Distributed computing environment is used and a parallel code for SJ method is implemented. It was found that for small grid size the SGS method remains dominant over SJ method and PJ method while for large grid size both the sequential methods may take nearly too much processing time to converge. Yet, the PJ method reduces computational time to some extent for large grid sizes.
NASA Astrophysics Data System (ADS)
Klibanov, Michael V.; Romanov, Vladimir G.
2016-01-01
The 3D inverse scattering problem of the reconstruction of the unknown dielectric permittivity in the generalized Helmholtz equation is considered. Applications are in imaging of nanostructures and biological cells. The main difference with the conventional inverse scattering problems is that only the modulus of the scattering wave field is measured. The phase is not measured. The initializing wave field is the incident plane wave. On the other hand, in the previous recent works of the authors about the ‘phaseless topic’ the case of the point source was considered (Klibanov and Romanov 2015 J. Inverse Ill-Posed Problem 23 415-28 J. Inverse Ill-Posed Problem 23 187-93). Two reconstruction procedures are developed.
3D early embryogenesis image filtering by nonlinear partial differential equations.
Krivá, Z; Mikula, K; Peyriéras, N; Rizzi, B; Sarti, A; Stasová, O
2010-08-01
We present nonlinear diffusion equations, numerical schemes to solve them and their application for filtering 3D images obtained from laser scanning microscopy (LSM) of living zebrafish embryos, with a goal to identify the optimal filtering method and its parameters. In the large scale applications dealing with analysis of 3D+time embryogenesis images, an important objective is a correct detection of the number and position of cell nuclei yielding the spatio-temporal cell lineage tree of embryogenesis. The filtering is the first and necessary step of the image analysis chain and must lead to correct results, removing the noise, sharpening the nuclei edges and correcting the acquisition errors related to spuriously connected subregions. In this paper we study such properties for the regularized Perona-Malik model and for the generalized mean curvature flow equations in the level-set formulation. A comparison with other nonlinear diffusion filters, like tensor anisotropic diffusion and Beltrami flow, is also included. All numerical schemes are based on the same discretization principles, i.e. finite volume method in space and semi-implicit scheme in time, for solving nonlinear partial differential equations. These numerical schemes are unconditionally stable, fast and naturally parallelizable. The filtering results are evaluated and compared first using the Mean Hausdorff distance between a gold standard and different isosurfaces of original and filtered data. Then, the number of isosurface connected components in a region of interest (ROI) detected in original and after the filtering is compared with the corresponding correct number of nuclei in the gold standard. Such analysis proves the robustness and reliability of the edge preserving nonlinear diffusion filtering for this type of data and lead to finding the optimal filtering parameters for the studied models and numerical schemes. Further comparisons consist in ability of splitting the very close objects which
NASA Astrophysics Data System (ADS)
Noppel, M.; Vehkamäki, H.; Winkler, P. M.; Kulmala, M.; Wagner, P. E.
2013-10-01
Based on the results of a previous paper [M. Noppel, H. Vehkamäki, P. M. Winkler, M. Kulmala, and P. E. Wagner, J. Chem. Phys. 139, 134107 (2013)], we derive a thermodynamically consistent expression for reversible or minimal work needed to form a dielectric liquid nucleus of a new phase on a charged insoluble conducting sphere within a uniform macroscopic one- or multicomponent mother phase. The currently available model for ion-induced nucleation assumes complete spherical symmetry of the system, implying that the seed ion is immediately surrounded by the condensing liquid from all sides. We take a step further and treat more realistic geometries, where a cap-shaped liquid cluster forms on the surface of the seed particle. We derive the equilibrium conditions for such a cluster. The equalities of chemical potentials of each species between the nucleus and the vapor represent the conditions of chemical equilibrium. The generalized Young equation that relates contact angle with surface tensions, surface excess polarizations, and line tension, also containing the electrical contribution from triple line excess polarization, expresses the condition of thermodynamic equilibrium at three-phase contact line. The generalized Laplace equation gives the condition of mechanical equilibrium at vapor-liquid dividing surface: it relates generalized pressures in neighboring bulk phases at an interface with surface tension, excess surface polarization, and dielectric displacements in neighboring phases with two principal radii of surface curvature and curvatures of equipotential surfaces in neighboring phases at that point. We also re-express the generalized Laplace equation as a partial differential equation, which, along with electrostatic Laplace equations for bulk phases, determines the shape of a nucleus. We derive expressions that are suitable for calculations of the size and composition of a critical nucleus (generalized version of the classical Kelvin-Thomson equation).
NASA Astrophysics Data System (ADS)
Abdi, Daniel S.; Giraldo, Francis X.
2016-09-01
A unified approach for the numerical solution of the 3D hyperbolic Euler equations using high order methods, namely continuous Galerkin (CG) and discontinuous Galerkin (DG) methods, is presented. First, we examine how classical CG that uses a global storage scheme can be constructed within the DG framework using constraint imposition techniques commonly used in the finite element literature. Then, we implement and test a simplified version in the Non-hydrostatic Unified Model of the Atmosphere (NUMA) for the case of explicit time integration and a diagonal mass matrix. Constructing CG within the DG framework allows CG to benefit from the desirable properties of DG such as, easier hp-refinement, better stability etc. Moreover, this representation allows for regional mixing of CG and DG depending on the flow regime in an area. The different flavors of CG and DG in the unified implementation are then tested for accuracy and performance using a suite of benchmark problems representative of cloud-resolving scale, meso-scale and global-scale atmospheric dynamics. The value of our unified approach is that we are able to show how to carry both CG and DG methods within the same code and also offer a simple recipe for modifying an existing CG code to DG and vice versa.
Ying, Michael; Yung, Dennis M C; Ho, Karen K L
2008-01-01
This study aimed to develop a new two-dimensional (2-D) ultrasound thyroid volume estimation equation using three-dimensional (3-D) ultrasound as the standard of reference, and to compare the thyroid volume estimation accuracy of the new equation with three previously reported equations. 2-D and 3-D ultrasound examinations of the thyroid gland were performed in 150 subjects with normal serum thyrotropin (TSH, thyroid-stimulating hormone) and free thyroxine (fT4) levels (63 men and 87 women, age range: 17 to 71 y). In each subject, the volume of both thyroid lobes was measured by 3-D ultrasound. On 2-D ultrasound, the craniocaudal (CC), lateromedial (LM) and anteroposterior (AP) dimensions of the thyroid lobes were measured. The equation was derived by correlating the volume of the thyroid lobes measured with 3-D ultrasound and the product of the three dimensions measured with 2-D ultrasound using linear regression analysis, in 75 subjects without thyroid nodule. The accuracy of thyroid volume estimation of the new equation and the three previously reported equations was evaluated and compared in another 75 subjects (without thyroid nodule, n = 30; with thyroid nodule, n = 45). It is suggested that volume of thyroid lobe may be estimated as: volume of thyroid lobe = 0.38.(CC.LM.AP) + 1.76. Result showed that the new equation (16.9% to 36.1%) had a significantly smaller thyroid volume estimation error than the previously reported equations (20.8% to 54.9%) (p < 0.05). There was a significantly larger thyroid volume estimation error when thyroid glands with nodules were examined (p < 0.05). With the use of the appropriate thyroid volume equation, 2-D ultrasound can be a useful alternative in thyroid volume measurement when 3-D ultrasound is not available.
NASA Astrophysics Data System (ADS)
Rabinowitch, Alexander S.
2015-09-01
A special class of axially symmetric nonstationary flows of incompressible viscous fluids is examined. For it, the 3D Navier-Stokes equations are reduced to a nonlinear partial differential equation of the third order and a linear partial differential equation of the second order. These equations are studied and their particular analytical solutions are found. The obtained particular solution to the Navier-Stokes equations could be used to describe some types of turbulent flows of viscous fluids in the case of high Reynolds numbers.
NASA Astrophysics Data System (ADS)
Bustamante, Miguel D.
2011-06-01
We prove by an explicit construction that solutions to incompressible 3D Euler equations defined in the periodic cube Ω=[0 can be mapped bijectively to a new system of equations whose solutions are globally regular. We establish that the usual Beale-Kato-Majda criterion for finite-time singularity (or blowup) of a solution to the 3D Euler system is equivalent to a condition on the corresponding regular solution of the new system. In the hypothetical case of Euler finite-time singularity, we provide an explicit formula for the blowup time in terms of the regular solution of the new system. The new system is amenable to being integrated numerically using similar methods as in Euler equations. We propose a method to simulate numerically the new regular system and describe how to use this to draw robust and reliable conclusions on the finite-time singularity problem of Euler equations, based on the conservation of quantities directly related to energy and circulation. The method of mapping to a regular system can be extended to any fluid equation that admits a Beale-Kato-Majda type of theorem, e.g. 3D Navier-Stokes, 2D and 3D magnetohydrodynamics, and 1D inviscid Burgers. We discuss briefly the case of 2D ideal magnetohydrodynamics. In order to illustrate the usefulness of the mapping, we provide a thorough comparison of the analytical solution versus the numerical solution in the case of 1D inviscid Burgers equation.
A 3D staggered-grid finite difference scheme for poroelastic wave equation
NASA Astrophysics Data System (ADS)
Zhang, Yijie; Gao, Jinghuai
2014-10-01
Three dimensional numerical modeling has been a viable tool for understanding wave propagation in real media. The poroelastic media can better describe the phenomena of hydrocarbon reservoirs than acoustic and elastic media. However, the numerical modeling in 3D poroelastic media demands significantly more computational capacity, including both computational time and memory. In this paper, we present a 3D poroelastic staggered-grid finite difference (SFD) scheme. During the procedure, parallel computing is implemented to reduce the computational time. Parallelization is based on domain decomposition, and communication between processors is performed using message passing interface (MPI). Parallel analysis shows that the parallelized SFD scheme significantly improves the simulation efficiency and 3D decomposition in domain is the most efficient. We also analyze the numerical dispersion and stability condition of the 3D poroelastic SFD method. Numerical results show that the 3D numerical simulation can provide a real description of wave propagation.
A remark on the Beale-Kato-Majda criterion for the 3D MHD equations with zero magnetic diffusivity
NASA Astrophysics Data System (ADS)
Gala, Sadek; Ragusa, Maria Alessandra
2016-06-01
In this work, we show that a smooth solution of the 3D MHD equations with zero magnetic diffusivity in the whole space ℝ3 breaks down if and only if a certain norm of the magnetic field blows up at the same time.
SATELLITE DYNAMICS ON THE LAPLACE SURFACE
Tremaine, Scott; Touma, Jihad; Namouni, Fathi E-mail: jihad.touma@gmail.com
2009-03-15
The orbital dynamics of most planetary satellites is governed by the quadrupole moment from the equatorial bulge of the host planet and the tidal field from the Sun. On the Laplace surface, the long-term orbital evolution driven by the combined effects of these forces is zero, so that orbits have a fixed orientation and shape. The 'classical' Laplace surface is defined for circular orbits, and coincides with the planet's equator at small planetocentric distances and with its orbital plane at large distances. A dissipative circumplanetary disk should settle to this surface, and hence satellites formed from such a disk are likely to orbit in or near the classical Laplace surface. This paper studies the properties of Laplace surfaces. Our principal results are: (1) if the planetary obliquity exceeds 68.{sup 0}875, there is a range of semimajor axes in which the classical Laplace surface is unstable; (2) at some obliquities and planetocentric distances, there is a distinct Laplace surface consisting of nested eccentric orbits, which bifurcates from the classical Laplace surface at the point where instability sets in; (3) there is also a 'polar' Laplace surface perpendicular to the line of nodes of the planetary equator on the planetary orbit; (4) for circular orbits, the polar Laplace surface is stable at small planetocentric distances and unstable at large distances; (5) at the onset of instability, this polar Laplace surface bifurcates into two polar Laplace surfaces composed of nested eccentric orbits.
NASA Astrophysics Data System (ADS)
Shalaev, V. I.
2016-10-01
Singularities appearing in solutions of 3D laminar boundary layer (BL) equations, when two streamline families are collided, are discussed. For conical bodies, equations are investigated using asymptotic methods. Analytical solutions are obtained for the outer BL region; their singularities in the runoff plane are studied. The asymptotic flow structure near the singularity is constructed on the base of Navier-Stokes equations at large Reynolds numbers. For different flow regions analytical solutions are found and are matched with BL equation solutions. Properties of BL equations for the near-wall region in the runoff plane are investigated and a criterion of the solution disappearing is found. It is shown that this criterion separates two different topological flow structures and corresponds to the singularity appearance in this plane in solutions of full equations. Calculations confirmed obtained results are presented.
NASA Astrophysics Data System (ADS)
Fedele, Renato; Jovanović, Dušan; De Nicola, Sergio; Eliasson, Bengt; Shukla, Padma K.
2010-01-01
The possibility of the decomposition of the three-dimensional (3D) Gross-Pitaevskii equation (GPE) into a pair of coupled Schrödinger-type equations, is investigated. It is shown that, under suitable mathematical conditions, it is possible to construct the exact controlled solutions of the 3D GPE from the solutions of a linear 2D Schrödinger equation coupled with a 1D nonlinear Schrödinger equation (the transverse and longitudinal components of the GPE, respectively). The coupling between these two equations is the functional of the transverse and the longitudinal profiles. The applied method of nonlinear decomposition, called the controlling potential method (CPM), yields the full 3D solution in the form of the product of the solutions of the transverse and longitudinal components of the GPE. It is shown that the CPM constitutes a variational principle and sets up a condition on the controlling potential well. Its physical interpretation is given in terms of the minimization of the (energy) effects introduced by the control. The method is applied to the case of a parabolic external potential to construct analytically an exact BEC state in the form of a bright soliton, for which the quantitative comparison between the external and controlling potentials is presented.
Diffuse optical 3D-slice imaging of bounded turbid media using a new integro-differential equation.
Pattanayak, D; Yodh, A
1999-04-12
A new integro-differential equation for diffuse photon density waves (DPDW) is derived within the diffusion approximation. The new equation applies to inhomogeneous bounded turbid media. Interestingly, it does not contain any terms involving gradients of the light diffusion coefficient. The integro-differential equation for diffusive waves is used to develop a 3D-slice imaging algorithm based the on angular spectrum representation in the parallel plate geometry. The algorithm may be useful for near infrared optical imaging of breast tissue, and is applicable to other diagnostics such as ultrasound and microwave imaging.
On the Global Regularity of a Helical-Decimated Version of the 3D Navier-Stokes Equations
NASA Astrophysics Data System (ADS)
Biferale, Luca; Titi, Edriss S.
2013-06-01
We study the global regularity, for all time and all initial data in H 1/2, of a recently introduced decimated version of the incompressible 3D Navier-Stokes (dNS) equations. The model is based on a projection of the dynamical evolution of Navier-Stokes (NS) equations into the subspace where helicity (the L 2-scalar product of velocity and vorticity) is sign-definite. The presence of a second (beside energy) sign-definite inviscid conserved quadratic quantity, which is equivalent to the H 1/2-Sobolev norm, allows us to demonstrate global existence and uniqueness, of space-periodic solutions, together with continuity with respect to the initial conditions, for this decimated 3D model. This is achieved thanks to the establishment of two new estimates, for this 3D model, which show that the H 1/2 and the time average of the square of the H 3/2 norms of the velocity field remain finite. Such two additional bounds are known, in the spirit of the work of H. Fujita and T. Kato (Arch. Ration. Mech. Anal. 16:269-315, 1964; Rend. Semin. Mat. Univ. Padova 32:243-260, 1962), to be sufficient for showing well-posedness for the 3D NS equations. Furthermore, they are directly linked to the helicity evolution for the dNS model, and therefore with a clear physical meaning and consequences.
3-D Acoustic Scattering from 2-D Rough Surfaces Using A Parabolic Equation Model
2013-12-01
acoustic propagation signals, especially at mid- frequencies and higher (e.g., acoustic communications systems). For many years, the effects of rough...of the effect of surface scattering on 3-D propagation , which is critical in evaluating the variability in underwater acoustic propagation . Results...14. SUBJECT TERMS Acoustic Propagation , Acoustic Scattering, Sea Surface Perturbations, Split- Step Fourier Algorithm, Finite Difference Algorithm
NASA Astrophysics Data System (ADS)
Samian, R. S.; Abbassi, A.; Ghazanfarian, J.
2013-09-01
The thermal performance of two-dimensional (2D) field-effect transistors (FET) is investigated frequently by solving the Fourier heat diffusion law and the Boltzmann transport equation (BTE). With the introduction of the new generation of 3D FETs in which their thickness is less than the phonon mean-free-path it is necessary to carefully simulate the thermal performance of such devices. This paper numerically integrates the BTE in common 2D transistors including planar single layer and Silicon-On-Insulator (SOI) transistor, and the new generation of 3D transistors including FinFET and Tri-Gate devices. In order to decrease the directional dependency of results in 3D simulations; the Legendre equal-weight (PN-EW) quadrature set has been employed. It is found that if similar switching time is assumed for 3D and 2D FETs while the new generation of 3D FETs has less net energy consumption, they have higher hot-spot temperature. The results show continuous heat flux distribution normal to the silicon/oxide interface while the temperature jump is seen at the interface in double layer transistors.
Daniell, Nathan; Olds, Timothy; Tomkinson, Grant
2012-05-01
Measurements of whole body surface area (WBSA) have important applications in numerous fields including biological anthropology, clinical medicine, biomechanics, and sports science. Currently, WBSA is most often estimated using predictive equations due to the complex and time consuming methods required for direct measurement. The main aim of this study was to identify whether there were significant and meaningful differences between WBSA measurements taken using a whole body three-dimensional (3D) scanner (criterion measure) and the estimates derived from each WBSA equation identified from a systematic review. The study also aimed to determine whether differences varied according to body mass index (BMI), sex, or athletic status. Fifteen WBSA equations were compared with direct measurements taken on 1,714 young adult subjects, aged 18-30 years, using the Vitus Smart 3D whole body scanner, including 1,452 subjects (753 males, 699 females) from the general Australian population and 262 rowers (148 males, 114 females). Mixed-design analysis of variances determined significant differences and accuracy was quantified using Bland-Altman analysis and effect sizes. Thirteen of the 15 equations overestimated WBSA. With a few exceptions, equations were accurate with a low-systematic error (bias ≤2%) and low-random error (standard deviation of the differences 1.5-3.0%). However, BMI did have a substantial impact with the accuracy of some WBSA equations varying between the four BMI categories. The Shuter and Aslani: Eur J Appl Physiol 82 (2000) 250-254 equation was identified as the most accurate equation and should be used for Western populations 18-30 years of age. Care must be taken when deciding which equation to use when estimating WBSA.
On the transition towards slow manifold in shallow-water and 3D Euler equations in a rotating frame
NASA Technical Reports Server (NTRS)
Mahalov, A.
1994-01-01
The long-time, asymptotic state of rotating homogeneous shallow-water equations is investigated. Our analysis is based on long-time averaged rotating shallow-water equations describing interactions of large-scale, horizontal, two-dimensional motions with surface inertial-gravity waves field for a shallow, uniformly rotating fluid layer. These equations are obtained in two steps: first by introducing a Poincare/Kelvin linear propagator directly into classical shallow-water equations, then by averaging. The averaged equations describe interaction of wave fields with large-scale motions on time scales long compared to the time scale 1/f(sub o) introduced by rotation (f(sub o)/2-angular velocity of background rotation). The present analysis is similar to the one presented by Waleffe (1991) for 3D Euler equations in a rotating frame. However, since three-wave interactions in rotating shallow-water equations are forbidden, the final equations describing the asymptotic state are simplified considerably. Special emphasis is given to a new conservation law found in the asymptotic state and decoupling of the dynamics of the divergence free part of the velocity field. The possible rising of a decoupled dynamics in the asymptotic state is also investigated for homogeneous turbulence subjected to a background rotation. In our analysis we use long-time expansion, where the velocity field is decomposed into the 'slow manifold' part (the manifold which is unaffected by the linear 'rapid' effects of rotation or the inertial waves) and a formal 3D disturbance. We derive the physical space version of the long-time averaged equations and consider an invariant, basis-free derivation. This formulation can be used to generalize Waleffe's (1991) helical decomposition to viscous inhomogeneous flows (e.g. problems in cylindrical geometry with no-slip boundary conditions on the cylinder surface and homogeneous in the vertical direction).
Universal Bounds for the Littlewood-Paley First-Order Moments of the 3D Navier-Stokes Equations
NASA Astrophysics Data System (ADS)
Otto, Felix; Ramos, Fabio
2010-12-01
We derive upper bounds for the infinite-time and space average of the L 1-norm of the Littlewood-Paley decomposition of weak solutions of the 3 D periodic Navier-Stokes equations. The result suggests that the Kolmogorov characteristic velocity scaling, {mathbf{U}_kappa˜ɛ^{1/3} kappa^{-1/3}} , holds as an upper bound for a region of wavenumbers near the dissipative cutoff.
Xie, G.; Li, J.; Majer, E.; Zuo, D.
1998-07-01
This paper describes a new 3D parallel GILD electromagnetic (EM) modeling and nonlinear inversion algorithm. The algorithm consists of: (a) a new magnetic integral equation instead of the electric integral equation to solve the electromagnetic forward modeling and inverse problem; (b) a collocation finite element method for solving the magnetic integral and a Galerkin finite element method for the magnetic differential equations; (c) a nonlinear regularizing optimization method to make the inversion stable and of high resolution; and (d) a new parallel 3D modeling and inversion using a global integral and local differential domain decomposition technique (GILD). The new 3D nonlinear electromagnetic inversion has been tested with synthetic data and field data. The authors obtained very good imaging for the synthetic data and reasonable subsurface EM imaging for the field data. The parallel algorithm has high parallel efficiency over 90% and can be a parallel solver for elliptic, parabolic, and hyperbolic modeling and inversion. The parallel GILD algorithm can be extended to develop a high resolution and large scale seismic and hydrology modeling and inversion in the massively parallel computer.
Du, Qi-Shi; Liu, Peng-Jun; Huang, Ri-Bo
2008-02-01
In this study the excess chemical potential of the integral equation theory, 3D-RISM-HNC [Q. Du, Q. Wei, J. Phys. Chem. B 107 (2003) 13463-13470], is visualized in three-dimensional form and localized at interaction sites of solute molecule. Taking the advantage of reference interaction site model (RISM), the calculation equations of chemical excess potential are reformulized according to the solute interaction sites s in molecular space. Consequently the solvation free energy is localized at every interaction site of solute molecule. For visualization of the 3D-RISM-HNC calculation results, the excess chemical potentials are described using radial and three-dimensional diagrams. It is found that the radial diagrams of the excess chemical potentials are more sensitive to the bridge functions than the radial diagrams of solvent site density distributions. The diagrams of average excess chemical potential provide useful information of solute-solvent electrostatic and van der Waals interactions. The local description of solvation free energy at active sites of solute in 3D-RISM-HNC may broaden the application scope of statistical mechanical integral equation theory in solution chemistry and life science.
Cauchy's almost forgotten Lagrangian formulation of the Euler equation for 3D incompressible flow
NASA Astrophysics Data System (ADS)
Frisch, Uriel; Villone, Barbara
2014-09-01
Two prized papers, one by Augustin Cauchy in 1815, presented to the French Academy and the other by Hermann Hankel in 1861, presented to Göttingen University, contain major discoveries on vorticity dynamics whose impact is now quickly increasing. Cauchy found a Lagrangian formulation of 3D ideal incompressible flow in terms of three invariants that generalize to three dimensions the now well-known law of conservation of vorticity along fluid particle trajectories for two-dimensional flow. This has very recently been used to prove analyticity in time of fluid particle trajectories for 3D incompressible Euler flow and can be extended to compressible flow, in particular to cosmological dark matter. Hankel showed that Cauchy's formulation gives a very simple Lagrangian derivation of the Helmholtz vorticity-flux invariants and, in the middle of the proof, derived an intermediate result which is the conservation of the circulation of the velocity around a closed contour moving with the fluid. This circulation theorem was to be rediscovered independently by William Thomson (Kelvin) in 1869. Cauchy's invariants were only occasionally cited in the 19th century - besides Hankel, foremost by George Stokes and Maurice Lévy - and even less so in the 20th until they were rediscovered via Emmy Noether's theorem in the late 1960, but reattributed to Cauchy only at the end of the 20th century by Russian scientists.
A lattice-Boltzmann scheme of the Navier-Stokes equations on a 3D cuboid lattice
NASA Astrophysics Data System (ADS)
Min, Haoda; Peng, Cheng; Wang, Lian-Ping
2015-11-01
The standard lattice-Boltzmann method (LBM) for fluid flow simulation is based on a square (in 2D) or cubic (in 3D) lattice grids. Recently, two new lattice Boltzmann schemes have been developed on a 2D rectangular grid using the MRT (multiple-relaxation-time) collision model, by adding a free parameter in the definition of moments or by extending the equilibrium moments. Here we developed a lattice Boltzmann model on 3D cuboid lattice, namely, a lattice grid with different grid lengths in different spatial directions. We designed our MRT-LBM model by matching the moment equations from the Chapman-Enskog expansion with the Navier-Stokes equations. The model guarantees correct hydrodynamics. A second-order term is added to the equilibrium moments in order to restore the isotropy of viscosity on a cuboid lattice. The form and the coefficients of the extended equilibrium moments are determined through an inverse design process. An additional benefit of the model is that the viscosity can be adjusted independent of the stress-moment relaxation parameter, thus improving the numerical stability of the model. The resulting cuboid MRT-LBM model is then validated through benchmark simulations using laminar channel flow, turbulent channel flow, and the 3D Taylor-Green vortex flow.
Numerical solution of 3D Navier-Stokes equations with upwind implicit schemes
NASA Technical Reports Server (NTRS)
Marx, Yves P.
1990-01-01
An upwind MUSCL type implicit scheme for the three-dimensional Navier-Stokes equations is presented. Comparison between different approximate Riemann solvers (Roe and Osher) are performed and the influence of the reconstructions schemes on the accuracy of the solution as well as on the convergence of the method is studied. A new limiter is introduced in order to remove the problems usually associated with non-linear upwind schemes. The implementation of a diagonal upwind implicit operator for the three-dimensional Navier-Stokes equations is also discussed. Finally the turbulence modeling is assessed. Good prediction of separated flows are demonstrated if a non-equilibrium turbulence model is used.
Flow effects of blood constitutive equations in 3D models of vascular anomalies
NASA Astrophysics Data System (ADS)
Neofytou, Panagiotis; Tsangaris, Sokrates
2006-06-01
The effects of different blood rheological models are investigated numerically utilizing two three- dimensional (3D) models of vascular anomalies, namely a stenosis and an abdominal aortic aneurysm model. The employed CFD code incorporates the SIMPLE scheme in conjunction with the finite-volume method with collocated arrangement of variables. The approximation of the convection terms is carried out using the QUICK differencing scheme, whereas the code enables also multi-block computations, which are useful in order to cope with the two-block grid structure of the current computational domain. Three non-Newtonian models are employed, namely the Casson, Power-Law and Quemada models, which have been introduced in the past for modelling the rheological behaviour of blood and cover both the viscous as well as the two-phase character of blood. In view of the haemodynamical mechanisms related to abnormalities in the vascular network and the role of the wall shear stress in initiating and further developing of arterial diseases, the present study focuses on the 3D flow field and in particular on the distribution as well as on both low and high values of the wall shear stress in the vicinity of the anomaly. Finally, a comparison is made between the effects of each rheological model on the aforementioned parameters. Results show marked differences between simulating blood as Newtonian and non-Newtonian fluid and furthermore the Power-Law model exhibits different behaviour in all cases compared to the other models whereas Quemada and Casson models exhibit similar behaviour in the case of the stenosis but different behaviour in the case of the aneurysm.
Geometric constraints on potentially singular solutions for the 3-D Euler equations
Constantin, P.; Fefferman, C.; Majda, A.J.
1996-12-31
We discuss necessary and sufficient conditions for the formation of finite time singularities (blow up) in the incompressible three dimensional Euler equations. The well-known result of Beale, Kato and Majda states that these equations have smooth solutions on the time interval (0,t) if, and only if lim/t{r_arrow}T {integral}{sup t}{sub 0} {parallel}{Omega}({center_dot},s){parallel}{sub L}{sup {infinity}} (dx)dx < {infinity} where {Omega} = {triangledown} X u is the vorticity of the fluid and u is its divergence=free velocity. In this paper we prove criteria in which the direction of vorticity {xi} = {Omega}/{vert_bar}{Omega}{vert_bar} plays an important role.
Frequency Localized Regularity Criteria for the 3D Navier-Stokes Equations
NASA Astrophysics Data System (ADS)
Bradshaw, Z.; Grujić, Z.
2017-04-01
Two regularity criteria are established to highlight which Littlewood-Paley frequencies play an essential role in possible singularity formation in a Leray-Hopf weak solution to the Navier-Stokes equations in three spatial dimensions. One of these is a frequency localized refinement of known Ladyzhenskaya-Prodi-Serrin-type regularity criteria restricted to a finite window of frequencies, the lower bound of which diverges to {+∞} as t approaches an initial singular time.
Calculations of separated 3-D flows with a pressure-staggered Navier-Stokes equations solver
NASA Technical Reports Server (NTRS)
Kim, S.-W.
1991-01-01
A Navier-Stokes equations solver based on a pressure correction method with a pressure-staggered mesh and calculations of separated three-dimensional flows are presented. It is shown that the velocity pressure decoupling, which occurs when various pressure correction algorithms are used for pressure-staggered meshes, is caused by the ill-conditioned discrete pressure correction equation. The use of a partial differential equation for the incremental pressure eliminates the velocity pressure decoupling mechanism by itself and yields accurate numerical results. Example flows considered are a three-dimensional lid driven cavity flow and a laminar flow through a 90 degree bend square duct. For the lid driven cavity flow, the present numerical results compare more favorably with the measured data than those obtained using a formally third order accurate quadratic upwind interpolation scheme. For the curved duct flow, the present numerical method yields a grid independent solution with a very small number of grid points. The calculated velocity profiles are in good agreement with the measured data.
NASA Astrophysics Data System (ADS)
Le Hardy, D.; Favennec, Y.; Rousseau, B.; Hecht, F.
2017-04-01
The contribution of this paper relies in the development of numerical algorithms for the mathematical treatment of specular reflection on borders when dealing with the numerical solution of radiative transfer problems. The radiative transfer equation being integro-differential, the discrete ordinates method allows to write down a set of semi-discrete equations in which weights are to be calculated. The calculation of these weights is well known to be based on either a quadrature or on angular discretization, making the use of such method straightforward for the state equation. Also, the diffuse contribution of reflection on borders is usually well taken into account. However, the calculation of accurate partition ratio coefficients is much more tricky for the specular condition applied on arbitrary geometrical borders. This paper presents algorithms that calculate analytically partition ratio coefficients needed in numerical treatments. The developed algorithms, combined with a decentered finite element scheme, are validated with the help of comparisons with analytical solutions before being applied on complex geometries.
NASA Astrophysics Data System (ADS)
Yu, Haibo; Zhao, Junning
2017-01-01
In this paper, we study the global existence for classical solutions to the 3D isentropic compressible Navier-Stokes equations in a cuboid domain. Compared to the Cauchy problem studied in Hoff (1995 J. Differ. Equ. 120 215-54), Hoff (2005 J. Math. Fluid Mech. 7 315-38), Huang et al (2012 Commun. Pure Appl. Math. 65 549-85), some new thoughts are applied to obtain upper bounds for density. Precisely, through piecewise estimation and some time-depending a priori estimates, we establish time-uniform upper bounds for density under the assumption that the initial energy is small. The initial vacuum is allowed.
Complex Singular Solutions of the 3-d Navier-Stokes Equations and Related Real Solutions
NASA Astrophysics Data System (ADS)
Boldrighini, Carlo; Li, Dong; Sinai, Yakov G.
2017-02-01
By applying methods of statistical physics Li and Sinai (J Eur Math Soc 10:267-313, 2008) proved that there are complex solutions of the Navier-Stokes equations in the whole space R3 which blow up at a finite time. We present a review of the results obtained so far, by theoretical work and computer simulations, for the singular complex solutions, and compare with the behavior of related real solutions. We also discuss the possible application of the techniques introduced in (J Eur Math Soc 10:267-313, 2008) to the study of the real ones.
Complex Singular Solutions of the 3-d Navier-Stokes Equations and Related Real Solutions
NASA Astrophysics Data System (ADS)
Boldrighini, Carlo; Li, Dong; Sinai, Yakov G.
2017-04-01
By applying methods of statistical physics Li and Sinai (J Eur Math Soc 10:267-313, 2008) proved that there are complex solutions of the Navier-Stokes equations in the whole space R3 which blow up at a finite time. We present a review of the results obtained so far, by theoretical work and computer simulations, for the singular complex solutions, and compare with the behavior of related real solutions. We also discuss the possible application of the techniques introduced in (J Eur Math Soc 10:267-313, 2008) to the study of the real ones.
Statistical shape analysis using 3D Poisson equation--A quantitatively validated approach.
Gao, Yi; Bouix, Sylvain
2016-05-01
Statistical shape analysis has been an important area of research with applications in biology, anatomy, neuroscience, agriculture, paleontology, etc. Unfortunately, the proposed methods are rarely quantitatively evaluated, and as shown in recent studies, when they are evaluated, significant discrepancies exist in their outputs. In this work, we concentrate on the problem of finding the consistent location of deformation between two population of shapes. We propose a new shape analysis algorithm along with a framework to perform a quantitative evaluation of its performance. Specifically, the algorithm constructs a Signed Poisson Map (SPoM) by solving two Poisson equations on the volumetric shapes of arbitrary topology, and statistical analysis is then carried out on the SPoMs. The method is quantitatively evaluated on synthetic shapes and applied on real shape data sets in brain structures.
On the Helicity in 3D-Periodic Navier-Stokes Equations II: The Statistical Case
NASA Astrophysics Data System (ADS)
Foias, Ciprian; Hoang, Luan; Nicolaenko, Basil
2009-09-01
We study the asymptotic behavior of the statistical solutions to the Navier-Stokes equations using the normalization map [9]. It is then applied to the study of mean energy, mean dissipation rate of energy, and mean helicity of the spatial periodic flows driven by potential body forces. The statistical distribution of the asymptotic Beltrami flows are also investigated. We connect our mathematical analysis with the empirical theory of decaying turbulence. With appropriate mathematically defined ensemble averages, the Kolmogorov universal features are shown to be transient in time. We provide an estimate for the time interval in which those features may still be present. Our collaborator and friend Basil Nicolaenko passed away in September of 2007, after this work was completed. Honoring his contribution and friendship, we dedicate this article to him.
Superconvergence of mixed finite element approximations to 3-D Maxwell's equations in metamaterials
NASA Astrophysics Data System (ADS)
Huang, Yunqing; Li, Jichun; Yang, Wei; Sun, Shuyu
2011-09-01
Numerical simulation of metamaterials has attracted more and more attention since 2000, after the first metamaterial with negative refraction index was successfully constructed. In this paper we construct a fully-discrete leap-frog type finite element scheme to solve the three-dimensional time-dependent Maxwell's equations when metamaterials are involved. First, we obtain some superclose results between the interpolations of the analytical solutions and finite element solutions obtained using arbitrary orders of Raviart-Thomas-Nédélec mixed spaces on regular cubic meshes. Then we prove the superconvergence result in the discrete l2 norm achieved for the lowest-order Raviart-Thomas-Nédélec space. To our best knowledge, such superconvergence results have never been obtained elsewhere. Finally, we implement the leap-frog scheme and present numerical results justifying our theoretical analysis.
Implicit scheme for Maxwell equations solution in case of flat 3D domains
NASA Astrophysics Data System (ADS)
Boronina, Marina; Vshivkov, Vitaly
2016-02-01
We present a new finite-difference scheme for Maxwell's equations solution for three-dimensional domains with different scales in different directions. The stability condition of the standard leap-frog scheme requires decreasing of the time-step with decreasing of the minimal spatial step, which depends on the minimal domain size. We overcome the conditional stability by modifying the standard scheme adding implicitness in the direction of the smallest size. The new scheme satisfies the Gauss law for the electric and magnetic fields in the final- differences. The approximation order, the maintenance of the wave amplitude and propagation speed, the invariance of the wave propagation on angle with the coordinate axes are analyzed.
Further Remarks on the Luo-Hou's Ansatz for a Self-similar Solution to the 3D Euler Equations
NASA Astrophysics Data System (ADS)
Sperone, Gianmarco
2017-01-01
It is shown that the self-similar ansatz proposed by T. Hou and G. Luo to describe a singular solution of the 3D axisymmetric Euler equations leads, without assuming any asymptotic condition on the self-similar profiles, to an overdetermined system of partial differential equations that produces two families of solutions: a class of trivial solutions in which the vorticity field is identically zero, and a family of solutions that blow-up immediately, where the vorticity field is governed by a stationary regime. In any case, the analytical properties of these solutions are not consistent with the numerical observations reported by T. Hou and G. Luo. Therefore, this result is a refinement of the previous work published by D. Chae and T.-P. Tsai on this matter, where the authors found the trivial class of solutions under a certain decay condition of the blow-up profiles.
Preconditioning for modal discontinuous Galerkin methods for unsteady 3D Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Birken, Philipp; Gassner, Gregor; Haas, Mark; Munz, Claus-Dieter
2013-05-01
We compare different block preconditioners in the context of parallel time adaptive higher order implicit time integration using Jacobian-free Newton-Krylov (JFNK) solvers for discontinuous Galerkin (DG) discretizations of the three dimensional time dependent Navier-Stokes equations. A special emphasis of this work is the performance for a relative high number of processors, i.e. with a low number of elements on the processor. For high order DG discretizations, a particular problem that needs to be addressed is the size of the blocks in the Jacobian. Thus, we propose a new class of preconditioners that exploits the hierarchy of modal basis functions and introduces a flexible order of the off-diagonal Jacobian blocks. While the standard preconditioners 'block Jacobi' (no off-blocks) and full symmetric Gauss-Seidel (full off-blocks) are included as special cases, the reduction of the off-block order results in the new scheme ROBO-SGS. This allows us to investigate the impact of the preconditioner's sparsity pattern with respect to the computational performance. Since the number of iterations is not well suited to judge the efficiency of a preconditioner, we additionally consider CPU time for the comparisons. We found that both block Jacobi and ROBO-SGS have good overall performance and good strong parallel scaling behavior.
A 3D High-Order Unstructured Finite-Volume Algorithm for Solving Maxwell's Equations
NASA Technical Reports Server (NTRS)
Liu, Yen; Kwak, Dochan (Technical Monitor)
1995-01-01
A three-dimensional finite-volume algorithm based on arbitrary basis functions for time-dependent problems on general unstructured grids is developed. The method is applied to the time-domain Maxwell equations. Discrete unknowns are volume integrals or cell averages of the electric and magnetic field variables. Spatial terms are converted to surface integrals using the Gauss curl theorem. Polynomial basis functions are introduced in constructing local representations of the fields and evaluating the volume and surface integrals. Electric and magnetic fields are approximated by linear combinations of these basis functions. Unlike other unstructured formulations used in Computational Fluid Dynamics, the new formulation actually does not reconstruct the field variables at each time step. Instead, the spatial terms are calculated in terms of unknowns by precomputing weights at the beginning of the computation as functions of cell geometry and basis functions to retain efficiency. Since no assumption is made for cell geometry, this new formulation is suitable for arbitrarily defined grids, either smooth or unsmooth. However, to facilitate the volume and surface integrations, arbitrary polyhedral cells with polygonal faces are used in constructing grids. Both centered and upwind schemes are formulated. It is shown that conventional schemes (second order in Cartesian grids) are equivalent to the new schemes using first degree polynomials as the basis functions and the midpoint quadrature for the integrations. In the new formulation, higher orders of accuracy are achieved by using higher degree polynomial basis functions. Furthermore, all the surface and volume integrations are carried out exactly. Several model electromagnetic scattering problems are calculated and compared with analytical solutions. Examples are given for cases based on 0th to 3rd degree polynomial basis functions. In all calculations, a centered scheme is applied in the interior, while an upwind
NASA Astrophysics Data System (ADS)
Ge, Liang; Sotiropoulos, Fotis
2007-08-01
A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g. the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [A. Gilmanov, F. Sotiropoulos, A hybrid cartesian/immersed boundary method for simulating flows with 3d, geometrically complex, moving bodies, Journal of Computational Physics 207 (2005) 457-492.]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow
NASA Technical Reports Server (NTRS)
Demuren, A. O.; Ibraheem, S. O.
1993-01-01
The convergence characteristics of various approximate factorizations for the 3D Euler and Navier-Stokes equations are examined using the von-Neumann stability analysis method. Three upwind-difference based factorizations and several central-difference based factorizations are considered for the Euler equations. In the upwind factorizations both the flux-vector splitting methods of Steger and Warming and van Leer are considered. Analysis of the Navier-Stokes equations is performed only on the Beam and Warming central-difference scheme. The range of CFL numbers over which each factorization is stable is presented for one-, two-, and three-dimensional flow. Also presented for each factorization is the CFL number at which the maximum eigenvalue is minimized, for all Fourier components, as well as for the high frequency range only. The latter is useful for predicting the effectiveness of multigrid procedures with these schemes as smoothers. Further, local mode analysis is performed to test the suitability of using a uniform flow field in the stability analysis. Some inconsistencies in the results from previous analyses are resolved.
NASA Technical Reports Server (NTRS)
Harris, Julius E.; Iyer, Venkit; Radwan, Samir
1987-01-01
The application of stability theory in Laminar Flow Control (LFC) research requires that density and velocity profiles be specified throughout the viscous flow field of interest. These profile values must be as numerically accurate as possible and free of any numerically induced oscillations. Guidelines for the present research project are presented: develop an efficient and accurate procedure for solving the 3-D boundary layer equation for aerospace configurations; develop an interface program to couple selected 3-D inviscid programs that span the subsonic to hypersonic Mach number range; and document and release software to the LFC community. The interface program was found to be a dependable approach for developing a user friendly procedure for generating the boundary-layer grid and transforming an inviscid solution from a relatively coarse grid to a sufficiently fine boundary-layer grid. The boundary-layer program was shown to be fourth-order accurate in the direction normal to the wall boundary and second-order accurate in planes parallel to the boundary. The fourth-order accuracy allows accurate calculations with as few as one-fifth the number of grid points required for conventional second-order schemes.
Soligno, Giuseppe; Dijkstra, Marjolein; van Roij, René
2014-12-28
Many physical problems require explicit knowledge of the equilibrium shape of the interface between two fluid phases. Here, we present a new numerical method which is simply implementable and easily adaptable for a wide range of problems involving capillary deformations of fluid-fluid interfaces. We apply a simulated annealing algorithm to find the interface shape that minimizes the thermodynamic potential of the system. First, for completeness, we provide an analytical proof that minimizing this potential is equivalent to solving the Young-Laplace equation and the Young law. Then, we illustrate our numerical method showing two-dimensional results for fluid-fluid menisci between vertical or inclined walls and curved surfaces, capillary interactions between vertical walls, equilibrium shapes of sessile heavy droplets on a flat horizontal solid surface, and of droplets pending from flat or curved solid surfaces. Finally, we show illustrative three-dimensional results to point out the applicability of the method to micro- or nano-particles adsorbed at a fluid-fluid interface.
Soligno, Giuseppe; Roij, René van; Dijkstra, Marjolein
2014-12-28
Many physical problems require explicit knowledge of the equilibrium shape of the interface between two fluid phases. Here, we present a new numerical method which is simply implementable and easily adaptable for a wide range of problems involving capillary deformations of fluid-fluid interfaces. We apply a simulated annealing algorithm to find the interface shape that minimizes the thermodynamic potential of the system. First, for completeness, we provide an analytical proof that minimizing this potential is equivalent to solving the Young-Laplace equation and the Young law. Then, we illustrate our numerical method showing two-dimensional results for fluid-fluid menisci between vertical or inclined walls and curved surfaces, capillary interactions between vertical walls, equilibrium shapes of sessile heavy droplets on a flat horizontal solid surface, and of droplets pending from flat or curved solid surfaces. Finally, we show illustrative three-dimensional results to point out the applicability of the method to micro- or nano-particles adsorbed at a fluid-fluid interface.
NASA Astrophysics Data System (ADS)
Li, H.; Feng, X. S.; Xiang, J.; Zuo, P.
2014-12-01
In Li et al. [2013, New approach for solving the inverse boundary value problem of Laplace's equation on a circle: Technique renovation of the Grad-Shafranov (GS) reconstruction, J. Geophys. Res. Space., 118, 2876-2881], a couple of Hilbert transform relations were applied to the study of the ill-posedness for the essential GS reconstructions. In this further study, a detailed derivation for these reciprocal relations are presented in case of the plane circular region, and then the reciprocal relations are extended to apply to the plane rectangular region after a conformal mapping procedure. While for the case of plane rectangular region, it is confronted by a traditional problem of the so-called corner singularities, which divided the extended reciprocal relations into four integrals with end-point singularities. With the help of the extended Euler-Maclaurin expansion, new quadrature schemes are developed for these singular integrals. Benchmark testing with the analytic solutions on a rectangle boundary has also show the efficiency and robustness of these extensions. The new solution approach is also developed with the introduced reciprocal relations, and an iterated Tikhonov regularization scheme is applied to deal with the ill-posed linear operators appearing in the discretization of the new approach. The special case on the rectangular boundary is benchmarked with the analytic solutions. Numerical experiments highlight the efficiency and robustness of the proposed method. A robust solution approach is expected to be developed based on these new results for the GS equation on any 2D region with partial-known boundary conditions.
An efficient finite-element algorithm for 3D layered complex structure modelling.
Sahalos, J N; Kyriacou, G A; Vafiadis, E
1994-05-01
In this paper an efficient finite-element method (FEM) algorithm for complicated three-dimensional (3D) layered type models has been developed. Its unique feature is that it can handle, with memory requirements within the abilities of a simple PC, arbitrarily shaped 3D elements. This task is achieved by storing only the non-zero coefficients of the sparse FEM system of equations. The algorithm is applied to the solution of the Laplace equation in models with up to 79 layers of trilinear general hexahedron elements. The system of equations is solved with the Gauss-Seidel iterative technique.
NASA Astrophysics Data System (ADS)
Simpson, J. J.; Taflove, A.
2005-12-01
We report a finite-difference time-domain (FDTD) computational solution of Maxwell's equations [1] that models the possibility of detecting and characterizing ionospheric disturbances above seismic regions. Specifically, we study anomalies in Schumann resonance spectra in the extremely low frequency (ELF) range below 30 Hz as observed in Japan caused by a hypothetical cylindrical ionospheric disturbance above Taiwan. We consider excitation of the global Earth-ionosphere waveguide by lightning in three major thunderstorm regions of the world: Southeast Asia, South America (Amazon region), and Africa. Furthermore, we investigate varying geometries and characteristics of the ionospheric disturbance above Taiwan. The FDTD technique used in this study enables a direct, full-vector, three-dimensional (3-D) time-domain Maxwell's equations calculation of round-the-world ELF propagation accounting for arbitrary horizontal as well as vertical geometrical and electrical inhomogeneities and anisotropies of the excitation, ionosphere, lithosphere, and oceans. Our entire-Earth model grids the annular lithosphere-atmosphere volume within 100 km of sea level, and contains over 6,500,000 grid-points (63 km laterally between adjacent grid points, 5 km radial resolution). We use our recently developed spherical geodesic gridding technique having a spatial discretization best described as resembling the surface of a soccer ball [2]. The grid is comprised entirely of hexagonal cells except for a small fixed number of pentagonal cells needed for completion. Grid-cell areas and locations are optimized to yield a smoothly varying area difference between adjacent cells, thereby maximizing numerical convergence. We compare our calculated results with measured data prior to the Chi-Chi earthquake in Taiwan as reported by Hayakawa et. al. [3]. Acknowledgement This work was suggested by Dr. Masashi Hayakawa, University of Electro-Communications, Chofugaoka, Chofu Tokyo. References [1] A
On the Finite-Time Splash and Splat Singularities for the 3-D Free-Surface Euler Equations
NASA Astrophysics Data System (ADS)
Coutand, Daniel; Shkoller, Steve
2014-01-01
We prove that the 3-D free-surface incompressible Euler equations with regular initial geometries and velocity fields have solutions which can form a finite-time "splash" (or "splat") singularity first introduced in Castro et al. (Splash singularity for water waves, http://arxiv.org/abs/1106.2120v2, 2011), wherein the evolving 2-D hypersurface, the moving boundary of the fluid domain, self-intersects at a point (or on surface). Such singularities can occur when the crest of a breaking wave falls unto its trough, or in the study of drop impact upon liquid surfaces. Our approach is founded upon the Lagrangian description of the free-boundary problem, combined with a novel approximation scheme of a finite collection of local coordinate charts; as such we are able to analyze a rather general set of geometries for the evolving 2-D free-surface of the fluid. We do not assume the fluid is irrotational, and as such, our method can be used for a number of other fluid interface problems, including compressible flows, plasmas, as well as the inclusion of surface tension effects.
NASA Astrophysics Data System (ADS)
Gainullin, I. K.; Sonkin, M. A.
2015-03-01
A parallelized three-dimensional (3D) time-dependent Schrodinger equation (TDSE) solver for one-electron systems is presented in this paper. The TDSE Solver is based on the finite-difference method (FDM) in Cartesian coordinates and uses a simple and explicit leap-frog numerical scheme. The simplicity of the numerical method provides very efficient parallelization and high performance of calculations using Graphics Processing Units (GPUs). For example, calculation of 106 time-steps on the 1000ṡ1000ṡ1000 numerical grid (109 points) takes only 16 hours on 16 Tesla M2090 GPUs. The TDSE Solver demonstrates scalability (parallel efficiency) close to 100% with some limitations on the problem size. The TDSE Solver is validated by calculation of energy eigenstates of the hydrogen atom (13.55 eV) and affinity level of H- ion (0.75 eV). The comparison with other TDSE solvers shows that a GPU-based TDSE Solver is 3 times faster for the problems of the same size and with the same cost of computational resources. The usage of a non-regular Cartesian grid or problem-specific non-Cartesian coordinates increases this benefit up to 10 times. The TDSE Solver was applied to the calculation of the resonant charge transfer (RCT) in nanosystems, including several related physical problems, such as electron capture during H+-H0 collision and electron tunneling between H- ion and thin metallic island film.
ERIC Educational Resources Information Center
Merchant, Zahira; Goetz, Ernest T.; Keeney-Kennicutt, Wendy; Kwok, Oi-man; Cifuentes, Lauren; Davis, Trina J.
2012-01-01
We examined a model of the impact of a 3D desktop virtual reality environment on the learner characteristics (i.e. perceptual and psychological variables) that can enhance chemistry-related learning achievements in an introductory college chemistry class. The relationships between the 3D virtual reality features and the chemistry learning test as…
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.
1990-01-01
The development and applications of multiblock/multizone and adaptive grid methodologies for solving the three-dimensional simplified Navier-Stokes equations are described. Adaptive grid and multiblock/multizone approaches are introduced and applied to external and internal flow problems. These new implementations increase the capabilities and flexibility of the PAB3D code in solving flow problems associated with complex geometry.
NASA Astrophysics Data System (ADS)
Zieniuk, Eugeniusz; Kapturczak, Marta; Sawicki, Dominik
2016-06-01
In solving of boundary value problems the shapes of the boundary can be modelled by the curves widely used in computer graphics. In parametric integral equations system (PIES) such curves are directly included into the mathematical formalism. Its simplify the way of definition and modification of the shape of the boundary. Until now in PIES the B-spline, Bézier and Hermite curves were used. Recent developments in the computer graphics paid our attention, therefore we implemented in PIES possibility of defining the shape of boundary using the NURBS curves. The curves will allow us to modeling different shapes more precisely. In this paper we will compare PIES solutions (with applied NURBS) with the solutions existing in the literature.
NASA Astrophysics Data System (ADS)
Bustamante, Miguel D.
2014-11-01
We consider 3D Euler fluids endowed with a discrete symmetry whereby the velocity field is invariant under mirror reflections about a 2D surface known as the ``symmetry plane.'' This type of flow is widely used in numerical simulations of classical/magnetic/quantum turbulence and vortex reconnection. On the 2D symmetry plane, the governing equations are best written in terms of two scalars: vorticity and stretching rate of vorticity. These determine the velocity field on the symmetry plane. However, the governing equations are not closed, because of the contribution of a single pressure term that depends on the full 3D velocity profile. By modelling this pressure term we propose a one-parameter family of sensible models for the flow along the 2D symmetry plane. We apply the method of infinitesimal Lie symmetries and solve the governing equations analytically for the two scalars as functions of time. We show how the value of the model's parameter determines if the analytical solution has a finite-time blowup and obtain explicit formulae for the blowup time. We validate the models by showing that a particular choice of the model's parameter corresponds to a well-known exact solution of 3D Euler equations [Gibbon et al., Physica D 132, 497 (1999)]. We discuss practical applications. Supported by Science Foundation Ireland (SFI) under Grant Number 12/IP/1491.
NASA Technical Reports Server (NTRS)
Kwak, D.
1994-01-01
INS3D computes steady-state solutions to the incompressible Navier-Stokes equations. The INS3D approach utilizes pseudo-compressibility combined with an approximate factorization scheme. This computational fluid dynamics (CFD) code has been verified on problems such as flow through a channel, flow over a backwardfacing step and flow over a circular cylinder. Three dimensional cases include flow over an ogive cylinder, flow through a rectangular duct, wind tunnel inlet flow, cylinder-wall juncture flow and flow through multiple posts mounted between two plates. INS3D uses a pseudo-compressibility approach in which a time derivative of pressure is added to the continuity equation, which together with the momentum equations form a set of four equations with pressure and velocity as the dependent variables. The equations' coordinates are transformed for general three dimensional applications. The equations are advanced in time by the implicit, non-iterative, approximately-factored, finite-difference scheme of Beam and Warming. The numerical stability of the scheme depends on the use of higher-order smoothing terms to damp out higher-frequency oscillations caused by second-order central differencing. The artificial compressibility introduces pressure (sound) waves of finite speed (whereas the speed of sound would be infinite in an incompressible fluid). As the solution converges, these pressure waves die out, causing the derivation of pressure with respect to time to approach zero. Thus, continuity is satisfied for the incompressible fluid in the steady state. Computational efficiency is achieved using a diagonal algorithm. A block tri-diagonal option is also available. When a steady-state solution is reached, the modified continuity equation will satisfy the divergence-free velocity field condition. INS3D is capable of handling several different types of boundaries encountered in numerical simulations, including solid-surface, inflow and outflow, and far
NASA Technical Reports Server (NTRS)
Biyabani, S. R.
1994-01-01
INS3D computes steady-state solutions to the incompressible Navier-Stokes equations. The INS3D approach utilizes pseudo-compressibility combined with an approximate factorization scheme. This computational fluid dynamics (CFD) code has been verified on problems such as flow through a channel, flow over a backwardfacing step and flow over a circular cylinder. Three dimensional cases include flow over an ogive cylinder, flow through a rectangular duct, wind tunnel inlet flow, cylinder-wall juncture flow and flow through multiple posts mounted between two plates. INS3D uses a pseudo-compressibility approach in which a time derivative of pressure is added to the continuity equation, which together with the momentum equations form a set of four equations with pressure and velocity as the dependent variables. The equations' coordinates are transformed for general three dimensional applications. The equations are advanced in time by the implicit, non-iterative, approximately-factored, finite-difference scheme of Beam and Warming. The numerical stability of the scheme depends on the use of higher-order smoothing terms to damp out higher-frequency oscillations caused by second-order central differencing. The artificial compressibility introduces pressure (sound) waves of finite speed (whereas the speed of sound would be infinite in an incompressible fluid). As the solution converges, these pressure waves die out, causing the derivation of pressure with respect to time to approach zero. Thus, continuity is satisfied for the incompressible fluid in the steady state. Computational efficiency is achieved using a diagonal algorithm. A block tri-diagonal option is also available. When a steady-state solution is reached, the modified continuity equation will satisfy the divergence-free velocity field condition. INS3D is capable of handling several different types of boundaries encountered in numerical simulations, including solid-surface, inflow and outflow, and far
Kamon, M.; Phillips, J.R.
1994-12-31
In this paper techniques are presented for preconditioning equations generated by discretizing constrained vector integral equations associated with magnetoquasistatic analysis. Standard preconditioning approaches often fail on these problems. The authors present a specialized preconditioning technique and prove convergence bounds independent of the constraint equations and electromagnetic excitation frequency. Computational results from analyzing several electronic packaging examples are given to demonstrate that the new preconditioning approach can sometimes reduce the number of GMRES iterations by more than an order of magnitude.
NASA Astrophysics Data System (ADS)
Wu, Guochun
2017-01-01
In this paper, we investigate the global existence and uniqueness of strong solutions to the initial boundary value problem for the 3D compressible Navier-Stokes equations without heat conductivity in a bounded domain with slip boundary. The global existence and uniqueness of strong solutions are obtained when the initial data is near its equilibrium in H2 (Ω). Furthermore, the exponential convergence rates of the pressure and velocity are also proved by delicate energy methods.
Nonstationary 3D motion of an elastic spherical shell
NASA Astrophysics Data System (ADS)
Tarlakovskii, D. V.; Fedotenkov, G. V.
2015-03-01
A 3D model of motion of a thin elastic spherical Timoshenko shell under the action of arbitrarily distributed nonstationary pressure is considered. An approach for splitting the system of equations of 3D motion of the shell is proposed. The integral representations of the solution with kernels in the form of influence functions, which can be determined analytically by using series expansions in the eigenfunctions and the Laplace transform, are constructed. An algorithm for solving the problem on the action of nonstationary normal pressure on the shell is constructed and implemented. The obtained results find practical use in aircraft and rocket construction and in many other industrial fields where thin-walled shell structural members under nonstationary working conditions are widely used.
On Bi-Grid Local Mode Analysis of Solution Techniques for 3-D Euler and Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Ibraheem, S. O.; Demuren, A. O.
1994-01-01
A procedure is presented for utilizing a bi-grid stability analysis as a practical tool for predicting multigrid performance in a range of numerical methods for solving Euler and Navier-Stokes equations. Model problems based on the convection, diffusion and Burger's equation are used to illustrate the superiority of the bi-grid analysis as a predictive tool for multigrid performance in comparison to the smoothing factor derived from conventional von Neumann analysis. For the Euler equations, bi-grid analysis is presented for three upwind difference based factorizations, namely Spatial, Eigenvalue and Combination splits, and two central difference based factorizations, namely LU and ADI methods. In the former, both the Steger-Warming and van Leer flux-vector splitting methods are considered. For the Navier-Stokes equations, only the Beam-Warming (ADI) central difference scheme is considered. In each case, estimates of multigrid convergence rates from the bi-grid analysis are compared to smoothing factors obtained from single-grid stability analysis. Effects of grid aspect ratio and flow skewness are examined. Both predictions are compared with practical multigrid convergence rates for 2-D Euler and Navier-Stokes solutions based on the Beam-Warming central scheme.
Spong, Donald A
2016-06-20
AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.
On the Rigorous Derivation of the 3D Cubic Nonlinear Schrödinger Equation with a Quadratic Trap
NASA Astrophysics Data System (ADS)
Chen, Xuwen
2013-11-01
We consider the dynamics of the three-dimensional N-body Schrödinger equation in the presence of a quadratic trap. We assume the pair interaction potential is N 3 β-1 V( N β x). We justify the mean-field approximation and offer a rigorous derivation of the three-dimensional cubic nonlinear Schrödinger equation (NLS) with a quadratic trap. We establish the space-time bound conjectured by Klainerman and Machedon (Commun Math Phys 279:169-185, 2008) for by adapting and simplifying an argument in Chen and Pavlović (Annales Henri Poincaré, 2013) which solves the problem for in the absence of a trap.
NASA Astrophysics Data System (ADS)
Razafison, Ulrich
We consider the three-dimensional exterior problem for stationary Navier-Stokes equations. We prove, under assumptions of smallness of the data, existence and uniqueness of solutions. By setting the problem in weighted spaces where the weights reflect the anisotropic decay properties of the fundamental solution of Oseen, we show the better decay of the solutions outside the wake region. Moreover, the solutions we obtained have a finite Dirichlet integral and under additional assumptions on the weights they are also PR-solutions in the sense of Finn [R. Finn, On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems, Arch. Ration. Mech. Anal. 19 (1965) 363-406]. The study relies on an L-theory for 1
NASA Astrophysics Data System (ADS)
Pu, Xueke; Guo, Boling
In this paper, we consider the ergodicity of invariant measures for the stochastic Ginzburg-Landau equation with degenerate random forcing. First, we show the existence and pathwise uniqueness of strong solutions with H-initial data, and then the existence of an invariant measure for the Feller semigroup by the Krylov-Bogoliubov method. Then in the case of degenerate additive noise, using the notion of asymptotically strong Feller property, we prove the uniqueness of invariant measures for the transition semigroup.
Doinikov, Alexander A; Novell, Anthony; Calmon, Pierre; Bouakaz, Ayache
2014-09-01
The purpose of this work is to validate, by comparing numerical and experimental results, the ability of the Westervelt equation to predict the behavior of ultrasound beams generated by phased-array transducers. To this end, the full Westervelt equation is solved numerically and the results obtained are compared with experimental measurements. The numerical implementation of the Westervelt equation is performed using the explicit finite-difference time-domain method on a three-dimensional Cartesian grid. The validation of the developed numerical code is first carried out by using experimental data obtained for two different focused circular transducers in the regimes of small-amplitude and finite-amplitude excitations. Then, the comparison of simulated and measured ultrasonic fields is extended to the case of a modified 32-element array transducer. It is shown that the developed code is capable of correctly predicting the behavior of the main lobe and the grating lobes in the cases of zero and nonzero steering angles for both the fundamental and the second-harmonic components.
NASA Technical Reports Server (NTRS)
Zhang, Jun; Ge, Lixin; Kouatchou, Jules
2000-01-01
A new fourth order compact difference scheme for the three dimensional convection diffusion equation with variable coefficients is presented. The novelty of this new difference scheme is that it Only requires 15 grid points and that it can be decoupled with two colors. The entire computational grid can be updated in two parallel subsweeps with the Gauss-Seidel type iterative method. This is compared with the known 19 point fourth order compact differenCe scheme which requires four colors to decouple the computational grid. Numerical results, with multigrid methods implemented on a shared memory parallel computer, are presented to compare the 15 point and the 19 point fourth order compact schemes.
Galerkin method for unsplit 3-D Dirac equation using atomically/kinetically balanced B-spline basis
Fillion-Gourdeau, F.; Lorin, E.; Bandrauk, A.D.
2016-02-15
A Galerkin method is developed to solve the time-dependent Dirac equation in prolate spheroidal coordinates for an electron–molecular two-center system. The initial state is evaluated from a variational principle using a kinetic/atomic balanced basis, which allows for an efficient and accurate determination of the Dirac spectrum and eigenfunctions. B-spline basis functions are used to obtain high accuracy. This numerical method is used to compute the energy spectrum of the two-center problem and then the evolution of eigenstate wavefunctions in an external electromagnetic field.
NASA Astrophysics Data System (ADS)
Berselli, Luigi C.; Spirito, Stefano
2017-03-01
In this paper we consider the Navier-Stokes equations supplemented with either the Dirichlet or vorticity-based Navier slip boundary conditions. We prove that weak solutions obtained as limits of solutions of the Navier-Stokes-Voigt model satisfy the local energy inequality, and we also prove certain regularity results for the pressure. Moreover, in the periodic setting we prove that if the parameters are chosen in an appropriate way, then we can construct suitable weak solutions through a Fourier-Galerkin finite-dimensional approximation in the space variables.
OpenMP for 3D potential boundary value problems solved by PIES
NASA Astrophysics Data System (ADS)
KuŻelewski, Andrzej; Zieniuk, Eugeniusz
2016-06-01
The main purpose of this paper is examination of an application of modern parallel computing technique OpenMP to speed up the calculation in the numerical solution of parametric integral equations systems (PIES). The authors noticed, that solving more complex boundary problems by PIES sometimes requires large computing time. This paper presents the use of OpenMP and fast C++ linear algebra library Armadillo for boundary value problems modelled by 3D Laplace's equation and solved using PIES. The testing example shows that the use of mentioned technologies significantly increases speed of calculations in PIES.
Joukar, Amin; Nammakie, Erfan; Niroomand-Oscuii, Hanieh
2015-01-01
The application of laser in ophthalmology and eye surgery is so widespread that hardly can anyone deny its importance. On the other hand, since the human eye is an organ susceptible to external factors such as heat waves, laser radiation rapidly increases the temperature of the eye and therefore the study of temperature distribution inside the eye under laser irradiation is crucial; but the use of experimental and invasive methods for measuring the temperature inside the eye is typically high-risk and hazardous. In this paper, using the three-dimensional finite element method, the distribution of heat transfer inside the eye under transient condition was studied through three different lasers named Nd:Yag, Nd:Yap and ArF. Considering the metabolic heat and blood perfusion rate in various regions of the eye, numerical solution of space-time dependant Pennes bioheat transfer equation has been applied in this study. Lambert-Beer's law has been used to model the absorption of laser energy inside the eye tissues. It should also be mentioned that the effect of the ambient temperature, tear evaporation rate, laser power and the pupil diameter on the temperature distribution have been studied. Also, temperature distribution inside the eye after applying each laser and temperature variations of six optional regions as functions of time have been investigated. The results show that these radiations cause temperature rise in various regions, which will in turn causes serious damages to the eye tissues. Investigating the temperature distribution inside the eye under the laser irradiation can be a useful tool to study and predict the thermal effects of laser radiation on the human eye and evaluate the risk involved in performing laser surgery.
NASA Technical Reports Server (NTRS)
Cwik, T.; Jamnejad, V.; Zuffada, C.
1993-01-01
It is often desirable to calculate the electromagnetic fields inside and about a complicated system of scattering bodies, as well as in their far-field region. The finite element method (FE) is well suited to solving the interior problem, but the domain has to be limited to a manageable size. At the truncation of the FE mesh one can either impose approximate (absorbing) boundary conditions or set up an integral equation (IE) for the fields scattered from the bodies. The latter approach is preferable since it results in higher accuracy. Hence, the two techniques can be successfully combined by introducing a surface that encloses the scatterers, applying a FE model to the inner volume and setting up an IE for the tangential fields components on the surface. Here the continuity of the tangential fields is used bo obtain a consistent solution. A few coupled FE-IE methods have recently appeared in the literature. The approach presented here has the advantage of using edge-based finite elements, a type of finite elements with degrees of freedom associated with edges of the mesh. Because of their properties, they are better suited than the conventional node based elements to represent electromagnetic fields, particularly when inhomogeneous regions are modeled, since the node based elements impose an unnatural continuity of all field components across boundaries of mesh elements. Additionally, our approach is well suited to handle large size problems and lends itself to code parallelization. We will discuss the salient features that make our approach very efficient from the standpoint of numerical computation, and the fields and RCS of a few objects are illustrated as examples.
NASA Astrophysics Data System (ADS)
Porter, K.
2015-12-01
There are two common ways to create a ground-motion map for a hypothetical earthquake: using ground motion prediction equations (by far the more common of the two) and using 3-D physics-based modeling. The former is very familiar to engineers, the latter much less so, and the difference can present a problem because engineers tend to trust the familiar and distrust novelty. Maps for essentially the same hypothetical earthquake using the two different methods can look very different, while appearing to present the same information. Using one or the other can lead an engineer or disaster planner to very different estimates of damage and risk. The reasons have to do with depiction of variability, spatial correlation of shaking, the skewed distribution of real-world shaking, and the upward-curving relationship between shaking and damage. The scientists who develop the two kinds of map tend to specialize in one or the other and seem to defend their turf, which can aggravate the problem of clearly communicating with engineers.The USGS Science Application for Risk Reduction's (SAFRR) HayWired scenario has addressed the challenge of explaining to engineers the differences between the two maps, and why, in a disaster planning scenario, one might want to use the less-familiar 3-D map.
NASA Astrophysics Data System (ADS)
Li, Liang; Lanteri, Stéphane; Perrussel, Ronan
2014-01-01
A Schwarz-type domain decomposition method is presented for the solution of the system of 3d time-harmonic Maxwell's equations. We introduce a hybridizable discontinuous Galerkin (HDG) scheme for the discretization of the problem based on a tetrahedrization of the computational domain. The discrete system of the HDG method on each subdomain is solved by an optimized sparse direct (LU factorization) solver. The solution of the interface system in the domain decomposition framework is accelerated by a Krylov subspace method. The formulation and the implementation of the resulting DD-HDG (Domain Decomposed-Hybridizable Discontinuous Galerkin) method are detailed. Numerical results show that the resulting DD-HDG solution strategy has an optimal convergence rate and can save both CPU time and memory cost compared to a classical upwind flux-based DD-DG (Domain Decomposed-Discontinuous Galerkin) approach.
NASA Astrophysics Data System (ADS)
Cheskidov, A.; Shvydkoy, R.
2014-06-01
Motivated by Kolmogorov's theory of turbulence we present a unified approach to the regularity problems for the 3D Navier-Stokes and Euler equations. We introduce a dissipation wavenumber that separates low modes where the Euler dynamics is predominant from the high modes where the viscous forces take over. Then using an indifferent to the viscosity technique we obtain a new regularity criterion which is weaker than every Ladyzhenskaya-Prodi-Serrin condition in the viscous case, and reduces to the Beale-Kato-Majda criterion in the inviscid case. In the viscous case we prove that Leray-Hopf solutions are regular provided , which improves our previous condition. We also show that for all Leray-Hopf solutions. Finally, we prove that Leray-Hopf solutions are regular when the time-averaged spatial intermittency is small, i.e., close to Kolmogorov's regime.
NASA Astrophysics Data System (ADS)
Plastino, A.; Rocca, M. C.
2013-11-01
We introduce here the q-Laplace transform as a new weapon in Tsallis’ arsenal, discussing its main properties and analyzing some examples. The q-Gaussian instance receives special consideration. Also, we derive the q-partition function from the q-Laplace transform.
NASA Astrophysics Data System (ADS)
Martin, R.; Komatitsch, D.
2007-05-01
In geophysical exploration, high computational cost of full waveform inverse problem can be drastically reduced by implementing efficient boundary conditions. In many regions of interest for the oil industry or geophysical exploration, nearly tabular geological structures can be handled and analyzed by setting receivers in wells or/and at large offset. Then, the numerical modelling of waves travelling in thin slices along wells and near surface structures can provide very fast responses if highly accurate absorbing conditions around the slice are introduced in the wave propagation modelling. Here we propose then a Convolutional version of the well known Perfectly Matched layer technique. This optimized version allows the generation of seismic waves travelling close to the boundary layer at almost grazing incidence, which allows the treatment of thin 3D slices. The Perfectly Matched Layer (PML) technique, introduced in 1994 by Bérenger for Maxwell's equations, has become classical in the context of numerical simulations in electromagnetics, in particular for 3D finite difference in the time domain (FDTD) calculations. One of the most attractive properties of a PML model is that no reflection occurs at the interface between the physical domain and the absorbing layer before truncation to a finite-size layer and discretization by a numerical scheme. Therefore, the absorbing layer does not send spurious energy back into the medium. This property holds for any frequency and angle of incidence. However, the layer must be truncated in order to be able to perform numerical simulations, and such truncation creates a reflected wave whose amplitude is amplified by the discretization process. In 2001, Collino and Tsogka introduced a PML model for the elastodynamics equation written as a first-order system in velocity and stress with split unknowns, and discretized it based on the standard 2D staggered-grid finite-difference scheme of Virieux (1986). Then in 2001 and 2004
NASA Technical Reports Server (NTRS)
Phillips, J. R.
1996-01-01
In this paper we derive error bounds for a collocation-grid-projection scheme tuned for use in multilevel methods for solving boundary-element discretizations of potential integral equations. The grid-projection scheme is then combined with a precorrected FFT style multilevel method for solving potential integral equations with 1/r and e(sup ikr)/r kernels. A complexity analysis of this combined method is given to show that for homogeneous problems, the method is order n natural log n nearly independent of the kernel. In addition, it is shown analytically and experimentally that for an inhomogeneity generated by a very finely discretized surface, the combined method slows to order n(sup 4/3). Finally, examples are given to show that the collocation-based grid-projection plus precorrected-FFT scheme is competitive with fast-multipole algorithms when considering realistic problems and 1/r kernels, but can be used over a range of spatial frequencies with only a small performance penalty.
Ghosh, Aryya; Vaval, Nayana; Pal, Sourav
2015-07-14
Auger decay is an efficient ultrafast relaxation process of core-shell or inner-shell excited atom or molecule. Generally, it occurs in femto-second or even atto-second time domain. Direct measurement of lifetimes of Auger process of single ionized and double ionized inner-shell state of an atom or molecule is an extremely difficult task. In this paper, we have applied the highly correlated complex absorbing potential-equation-of-motion coupled cluster (CAP-EOMCC) approach which is a combination of CAP and EOMCC approach to calculate the lifetime of the states arising from 2p inner-shell ionization of an Ar atom and 3d inner-shell ionization of Kr atom. We have also calculated the lifetime of Ar{sup 2+}(2p{sup −1}3p{sup −1}) {sup 1}D, Ar{sup 2+}(2p{sup −1}3p{sup −1}) {sup 1}S, and Ar{sup 2+}(2p{sup −1}3s{sup −1}) {sup 1}P double ionized states. The predicted results are compared with the other theoretical results as well as experimental results available in the literature.
Conformal Laplace superintegrable systems in 2D: polynomial invariant subspaces
NASA Astrophysics Data System (ADS)
Escobar-Ruiz, M. A.; Miller, Willard, Jr.
2016-07-01
2nd-order conformal superintegrable systems in n dimensions are Laplace equations on a manifold with an added scalar potential and 2n-1 independent 2nd order conformal symmetry operators. They encode all the information about Helmholtz (eigenvalue) superintegrable systems in an efficient manner: there is a 1-1 correspondence between Laplace superintegrable systems and Stäckel equivalence classes of Helmholtz superintegrable systems. In this paper we focus on superintegrable systems in two-dimensions, n = 2, where there are 44 Helmholtz systems, corresponding to 12 Laplace systems. For each Laplace equation we determine the possible two-variate polynomial subspaces that are invariant under the action of the Laplace operator, thus leading to families of polynomial eigenfunctions. We also study the behavior of the polynomial invariant subspaces under a Stäckel transform. The principal new results are the details of the polynomial variables and the conditions on parameters of the potential corresponding to polynomial solutions. The hidden gl 3-algebraic structure is exhibited for the exact and quasi-exact systems. For physically meaningful solutions, the orthogonality properties and normalizability of the polynomials are presented as well. Finally, for all Helmholtz superintegrable solvable systems we give a unified construction of one-dimensional (1D) and two-dimensional (2D) quasi-exactly solvable potentials possessing polynomial solutions, and a construction of new 2D PT-symmetric potentials is established.
The Laplace Planes of Uranus and Pluto
NASA Technical Reports Server (NTRS)
Dobrovolskis, Anthony R.
1993-01-01
Satellite orbits close to an oblate planet precess about its equatorial plane, while distant satellites precess around the plane of the planet's heliocentric orbit. In between, satellites in nearly circular orbits precess about a warped intermediate surface called the Laplace 'plane.' Herein we derive general formulas for locating the Laplace plane. Because Uranus and Pluto have high obliquities, their Laplace planes are severely warped. We present maps of these Laplace planes, of interest in telescopic searches for new satellites. The Laplace plane of the Solar System as a whole is similarly distorted, but comets in the inner Oort cloud precess too slowly to sense the Laplace plane.
NASA Astrophysics Data System (ADS)
Wang, F.; Jordan, T. H.
2012-12-01
Seismic hazard models based on empirical ground motion prediction equations (GMPEs) employ a model-based factorization to account for source, propagation, and path effects. An alternative is to simulate these effects directly using earthquake source models combined with three-dimensional (3D) models of Earth structure. We have developed an averaging-based factorization (ABF) scheme that facilitates the geographically explicit comparison of these two types of seismic hazard models. For any fault source k with epicentral position x, slip spatial and temporal distribution f, and moment magnitude m, we calculate the excitation functions G(s, k, x, m, f) for sites s in a geographical region R, such as 5% damped spectral acceleration at a particular period. Through a sequence of weighted-averaging and normalization operations following a certain hierarchy over f, m, x, k, and s, we uniquely factorize G(s, k, x, m, f) into six components: A, B(s), C(s, k), D(s, k, x), E(s, k, x, m), and F(s, k, x, m, f). Factors for a target model can be divided by those of a reference model to obtain six corresponding factor ratios, or residual factors: a, b(s), c(s, k), d(s, k, x), e(s, k, x, m), and f(s, k, x, m, f). We show that these residual factors characterize differences in basin effects primarily through b(s), distance scaling primarily through c(s, k), and source directivity primarily through d(s, k, x). We illustrate the ABF scheme by comparing CyberShake Hazard Model (CSHM) for the Los Angeles region (Graves et. al. 2010) with the Next Generation Attenuation (NGA) GMPEs modified according to the directivity relations of Spudich and Chiou (2008). Relative to CSHM, all NGA models underestimate the directivity and basin effects. In particular, the NGA models do not account for the coupling between source directivity and basin excitation that substantially enhance the low-frequency seismic hazards in the sedimentary basins of the Los Angeles region. Assuming Cyber
An extension of the Laplace transform to Schwartz distributions
NASA Technical Reports Server (NTRS)
Price, D. R.
1974-01-01
A characterization of the Laplace transform is developed which extends the transform to the Schwartz distributions. The class of distributions includes the impulse functions and other singular functions which occur as solutions to ordinary and partial differential equations. The standard theorems on analyticity, uniqueness, and invertibility of the transform are proved by using the characterization as the definition of the Laplace transform. The definition uses sequences of linear transformations on the space of distributions which extends the Laplace transform to another class of generalized functions, the Mikusinski operators. It is shown that the sequential definition of the transform is equivalent to Schwartz' extension of the ordinary Laplace transform to distributions but, in contrast to Schwartz' definition, does not use the distributional Fourier transform. Several theorems concerning the particular linear transformations used to define the Laplace transforms are proved. All the results proved in one dimension are extended to the n-dimensional case, but proofs are presented only for those situations that require methods different from their one-dimensional analogs.
Exponentials and Laplace transforms on nonuniform time scales
NASA Astrophysics Data System (ADS)
Ortigueira, Manuel D.; Torres, Delfim F. M.; Trujillo, Juan J.
2016-10-01
We formulate a coherent approach to signals and systems theory on time scales. The two derivatives from the time-scale calculus are used, i.e., nabla (forward) and delta (backward), and the corresponding eigenfunctions, the so-called nabla and delta exponentials, computed. With these exponentials, two generalised discrete-time Laplace transforms are deduced and their properties studied. These transforms are compatible with the standard Laplace and Z transforms. They are used to study discrete-time linear systems defined by difference equations. These equations mimic the usual continuous-time equations that are uniformly approximated when the sampling interval becomes small. Impulse response and transfer function notions are introduced. This implies a unified mathematical framework that allows us to approximate the classic continuous-time case when the sampling rate is high or to obtain the standard discrete-time case, based on difference equations, when the time grid becomes uniform.
2015-06-04
that involve physics coupling with phase change in the simulation of 3D deep convection . We show that the VMS+DC approach is a robust technique that can...of 3D deep convection . We show that the VMS+DC approach is a robust technique that can damp the high order modes characterizing the spectral element...of Spectral Elements, Deep Convection , Kessler Microphysics Preprint J. Comput. Phys. 283 (2015) 360-373 June 4, 2015 1. Introduction In the field of
The PROSAIC Laplace and Fourier Transform
Smith, G.A.
1994-11-01
Integral Transform methods play an extremely important role in many branches of science and engineering. The ease with which many problems may be solved using these techniques is well known. In Electrical Engineering especially, Laplace and Fourier Transforms have been used for a long time as a way to change the solution of differential equations into trivial algebraic manipulations or to provide alternate representations of signals and data. These techniques, while seemingly overshadowed by today`s emphasis on digital analysis, still form an invaluable basis in the understanding of systems and circuits. A firm grasp of the practical aspects of these subjects provides valuable conceptual tools. This tutorial paper is a review of Laplace and Fourier Transforms from an applied perspective with an emphasis on engineering applications. The interrelationship of the time and frequency domains will be stressed, in an attempt to comfort those who, after living so much of their lives in the time domain, find thinking in the frequency domain disquieting.
Four Poission-Laplace Theory of Gravitation (I)
NASA Astrophysics Data System (ADS)
Nyambuya, Golden Gadzirayi
2015-08-01
The Poisson-Laplace equation is a working and acceptable equation of gravitation which is mostly used or applied in its differential form in Magneto-Hydro-Dynamic (MHD) modelling of e.g. molecular clouds. From a general relativistic standpoint, it describes gravitational fields in the region of low spacetime curvature as it emerges in the weak field limit. For non-static gravitational fields, this equation is not generally covariant. On the requirements of general covariance, this equation can be extended to include a time-dependent component, in which case one is led to the Four Poisson-Laplace equation. We solve the Four Poisson-Laplace equation for radial solutions, and apart from the Newtonian gravitational component, we obtain four new solutions leading to four new gravitational components capable (in-principle) of explaining e.g. the Pioneer anomaly, the Titius-Bode Law and the formation of planetary rings. In this letter, we focus only on writing down these solutions. The task showing that these new solutions might explain the aforesaid gravitational anomalies has been left for separate future readings.
An efficient 3D traveltime calculation using coarse-grid mesh for shallow-depth source
NASA Astrophysics Data System (ADS)
Son, Woohyun; Pyun, Sukjoon; Lee, Ho-Young; Koo, Nam-Hyung; Shin, Changsoo
2016-10-01
3D Kirchhoff pre-stack depth migration requires an efficient algorithm to compute first-arrival traveltimes. In this paper, we exploited a wave-equation-based traveltime calculation algorithm, which is called the suppressed wave equation estimation of traveltime (SWEET), and the equivalent source distribution (ESD) algorithm. The motivation of using the SWEET algorithm is to solve the Laplace-domain wave equation using coarse grid spacing to calculate first-arrival traveltimes. However, if a real source is located at shallow-depth close to free surface, we cannot accurately calculate the wavefield using coarse grid spacing. So, we need an additional algorithm to correctly simulate the shallow source even for the coarse grid mesh. The ESD algorithm is a method to define a set of distributed nodal sources that approximate a point source at the inter-nodal location in a velocity model with large grid spacing. Thanks to the ESD algorithm, we can efficiently calculate the first-arrival traveltimes of waves emitted from shallow source point even when we solve the Laplace-domain wave equation using a coarse-grid mesh. The proposed algorithm is applied to the SEG/EAGE 3D salt model. From the result, we note that the combination of SWEET and ESD algorithms can be successfully used for the traveltime calculation under the condition of a shallow-depth source. We also confirmed that our algorithm using coarse-grid mesh requires less computational time than the conventional SWEET algorithm using relatively fine-grid mesh.
NASA Astrophysics Data System (ADS)
Pletinckx, D.
2011-09-01
The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
3d-3d correspondence revisited
Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; ...
2016-04-21
In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.
Laplace-domain waveform inversion versus refraction-traveltime tomography
NASA Astrophysics Data System (ADS)
Bae, Ho Seuk; Pyun, Sukjoon; Shin, Changsoo; Marfurt, Kurt J.; Chung, Wookeen
2012-07-01
Geophysicists and applied mathematicians have proposed a rich suite of long-wavelength velocity estimation algorithms to construct starting velocity models for subsequent pre-stack depth migration and inversion. Refraction-traveltime tomography derives subsurface velocity models from picked first-arrival traveltimes. In contrast, Laplace-domain waveform inversion recovers long-wavelength velocity structure using the weighted amplitudes of first and later arrivals. There are several implementations of first-arrival traveltime inversion, with most based on ray tracing, and some based on the damped monochromatic wave equation, which accurately represent simple and finite-frequency first arrivals. Computationally, Laplace-domain wavefield inversion is quite similar to refraction-traveltime tomography using damped monochromatic wavefield, but the objective functions used in inversion are radically different. As in classical ray trace-based traveltime inversion, the objective of refraction-traveltime tomography using damped monochromatic wavefield is to match the phase (traveltime) of the first arrival of each measured seismic trace. In contrast, the objective of Laplace-domain wavefield inversion is to match the weighted amplitudes of both first and later arrivals to the weighted amplitudes of the measured seismic trace. Principles of refraction-traveltime tomography were used to generate velocity models of the earth one century ago. Laplace-domain waveform inversion is a more recently introduced algorithm and has been less rigorously studied by the seismic research community, with many workers believing it be equivalent to finite-frequency first-arrival traveltime tomography. We show that Laplace-domain waveform inversion is both theoretically and empirically different from finite-frequency first-arrival traveltime tomography. Specifically, we examine the Jacobian (sensitivity) kernels used in the two inversion schemes to quantify the different sensitivities (and hence
Vector Helmholtz-Gauss and vector Laplace-Gauss beams.
Bandres, Miguel A; Gutiérrez-Vega, Julio C
2005-08-15
We demonstrate the existence of vector Helmholtz-Gauss (vHzG) and vector Laplace-Gauss beams that constitute two general families of localized vector beam solutions of the Maxwell equations in the paraxial approximation. The electromagnetic components are determined starting from the scalar solutions of the two-dimensional Helmholtz and Laplace equations, respectively. Special cases of the vHzG beams are TE and TM Gaussian vector beams, nondiffracting vector Bessel beams, polarized Bessel-Gauss beams, modes in cylindrical waveguides and cavities, and scalar Helmholtz-Gauss beams. The general expression of the vHzG beams can be used straightforwardly to obtain vector Mathieu-Gauss and vector parabolic-Gauss beams, which to our knowledge have not yet been reported.
Graph Laplace for occluded face completion and recognition.
Deng, Yue; Dai, Qionghai; Zhang, Zengke
2011-08-01
This paper proposes a spectral-graph-based algorithm for face image repairing, which can improve the recognition performance on occluded faces. The face completion algorithm proposed in this paper includes three main procedures: 1) sparse representation for partially occluded face classification; 2) image-based data mining; and 3) graph Laplace (GL) for face image completion. The novel part of the proposed framework is GL, as named from graphical models and the Laplace equation, and can achieve a high-quality repairing of damaged or occluded faces. The relationship between the GL and the traditional Poisson equation is proven. We apply our face repairing algorithm to produce completed faces, and use face recognition to evaluate the performance of the algorithm. Experimental results verify the effectiveness of the GL method for occluded face completion.
NASA Astrophysics Data System (ADS)
Zheng, Xiang; Yang, Chao; Cai, Xiao-Chuan; Keyes, David
2015-03-01
We present a numerical algorithm for simulating the spinodal decomposition described by the three dimensional Cahn-Hilliard-Cook (CHC) equation, which is a fourth-order stochastic partial differential equation with a noise term. The equation is discretized in space and time based on a fully implicit, cell-centered finite difference scheme, with an adaptive time-stepping strategy designed to accelerate the progress to equilibrium. At each time step, a parallel Newton-Krylov-Schwarz algorithm is used to solve the nonlinear system. We discuss various numerical and computational challenges associated with the method. The numerical scheme is validated by a comparison with an explicit scheme of high accuracy (and unreasonably high cost). We present steady state solutions of the CHC equation in two and three dimensions. The effect of the thermal fluctuation on the spinodal decomposition process is studied. We show that the existence of the thermal fluctuation accelerates the spinodal decomposition process and that the final steady morphology is sensitive to the stochastic noise. We also show the evolution of the energies and statistical moments. In terms of the parallel performance, it is found that the implicit domain decomposition approach scales well on supercomputers with a large number of processors.
Zheng, Xiang; Yang, Chao; Cai, Xiao-Chuan; Keyes, David
2015-03-15
We present a numerical algorithm for simulating the spinodal decomposition described by the three dimensional Cahn–Hilliard–Cook (CHC) equation, which is a fourth-order stochastic partial differential equation with a noise term. The equation is discretized in space and time based on a fully implicit, cell-centered finite difference scheme, with an adaptive time-stepping strategy designed to accelerate the progress to equilibrium. At each time step, a parallel Newton–Krylov–Schwarz algorithm is used to solve the nonlinear system. We discuss various numerical and computational challenges associated with the method. The numerical scheme is validated by a comparison with an explicit scheme of high accuracy (and unreasonably high cost). We present steady state solutions of the CHC equation in two and three dimensions. The effect of the thermal fluctuation on the spinodal decomposition process is studied. We show that the existence of the thermal fluctuation accelerates the spinodal decomposition process and that the final steady morphology is sensitive to the stochastic noise. We also show the evolution of the energies and statistical moments. In terms of the parallel performance, it is found that the implicit domain decomposition approach scales well on supercomputers with a large number of processors.
Calculation of the virtual current in an electromagnetic flow meter with one bubble using 3D model.
Zhang, Xiao-Zhang; Li, Yantao
2004-04-01
Based on the theory of electromagnetic induction flow measurement, the Laplace equation in a complicated three-dimensional (3D) domain is solved by an alternating method. Virtual current potentials are obtained for an electromagnetic flow meter with one spherical bubble inside. The solutions are used to investigate the effects of bubble size and bubble position on the virtual current. Comparisons are done among the cases of 2D and 3D models, and of point electrode and large electrode. The results show that the 2D model overestimates the effect, while large electrodes are least sensitive to the bubble. This paper offers fundamentals for the study of the behavior of an electromagnetic flow meter in multiphase flow. For application, the results provide a possible way to estimate errors of the flow meter caused by multiphase flow.
NASA Astrophysics Data System (ADS)
Meulien Ohlmann, Odile
2013-02-01
Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?
NASA Technical Reports Server (NTRS)
Friedrich, R.; Drewelow, W.
1978-01-01
An algorithm is described that is based on the method of breaking the Laplace transform down into partial fractions which are then inverse-transformed separately. The sum of the resulting partial functions is the wanted time function. Any problems caused by equation system forms are largely limited by appropriate normalization using an auxiliary parameter. The practical limits of program application are reached when the degree of the denominator of the Laplace transform is seven to eight.
NASA Astrophysics Data System (ADS)
Wolkov, A. V.
2010-03-01
The Galerkin method with discontinuous basis functions is adapted for solving the Euler and Navier-Stokes equations on unstructured hexahedral grids. A hybrid multigrid algorithm involving the finite element and grid stages is used as an iterative solution method. Numerical results of calculating the sphere inviscid flow, viscous flow in a bent pipe, and turbulent flow past a wing are presented. The numerical results and the computational cost are compared with those obtained using the finite volume method.
NASA Astrophysics Data System (ADS)
Chen, Thomas; Pavlović, Nataša
2012-08-01
We prove a Beale-Kato-Majda type criterion for the loss of regularity for solutions of the incompressible Euler equations in {Hs({R}^3)} , for {s>5/2} . Instead of double exponential estimates of Beale-Kato-Majda type, we obtain a single exponential bound on {|u(t)|_{H^s}} involving the length parameter introduced by Constantin in (SIAM Rev. 36(1):73-98, 1994). In particular, we derive lower bounds on the blowup rate of such solutions.
NASA Astrophysics Data System (ADS)
Korayem, M. H.; Shafei, A. M.
2013-02-01
The goal of this paper is to describe the application of Gibbs-Appell (G-A) formulation and the assumed modes method to the mathematical modeling of N-viscoelastic link manipulators. The paper's focus is on obtaining accurate and complete equations of motion which encompass the most related structural properties of lightweight elastic manipulators. In this study, two important damping mechanisms, namely, the structural viscoelasticity (Kelvin-Voigt) effect (as internal damping) and the viscous air effect (as external damping) have been considered. To include the effects of shear and rotational inertia, the assumption of Timoshenko beam (TB) theory (TBT) has been applied. Gravity, torsion, and longitudinal elongation effects have also been included in the formulations. To systematically derive the equations of motion and improve the computational efficiency, a recursive algorithm has been used in the modeling of the system. In this algorithm, all the mathematical operations are carried out by only 3×3 and 3×1 matrices. Finally, a computational simulation for a manipulator with two elastic links is performed in order to verify the proposed method.
Inversion and approximation of Laplace transforms
NASA Technical Reports Server (NTRS)
Lear, W. M.
1980-01-01
A method of inverting Laplace transforms by using a set of orthonormal functions is reported. As a byproduct of the inversion, approximation of complicated Laplace transforms by a transform with a series of simple poles along the left half plane real axis is shown. The inversion and approximation process is simple enough to be put on a programmable hand calculator.
ERIC Educational Resources Information Center
Hastings, S. K.
2002-01-01
Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)
Zaeytijd, J. de Bogaert, I.; Franchois, A.
2008-07-01
Electromagnetic scattering problems involving inhomogeneous objects can be numerically solved by applying a Method of Moments discretization to the volume integral equation. For electrically large problems, the iterative solution of the resulting linear system is expensive, both computationally and in memory use. In this paper, a hybrid MLFMA-FFT method is presented, which combines the fast Fourier transform (FFT) method and the High Frequency Multilevel Fast Multipole Algorithm (MLFMA) in order to reduce the cost of the matrix-vector multiplications needed in the iterative solver. The method represents the scatterers within a set of possibly disjoint identical cubic subdomains, which are meshed using a uniform cubic grid. This specific mesh allows for the application of FFTs to calculate the near interactions in the MLFMA and reduces the memory cost considerably, since the aggregation and disaggregation matrices of the MLFMA can be reused. Additional improvements to the general MLFMA framework, such as an extention of the FFT interpolation scheme of Sarvas et al. from the scalar to the vectorial case in combination with a more economical representation of the radiation patterns on the lowest level in vector spherical harmonics, are proposed and the choice of the subdomain size is discussed. The hybrid method performs better in terms of speed and memory use on large sparse configurations than both the FFT method and the HF MLFMA separately and it has lower memory requirements on general large problems. This is illustrated on a number of representative numerical test cases.
NASA Astrophysics Data System (ADS)
Ando, Ryosuke
2016-11-01
The elastodynamic boundary integral equation method (BIEM) in real space and in the temporal domain is an accurate semi-analytical tool to investigate the earthquake rupture dynamics on non-planar faults. However, its heavy computational demand for a historic integral generally increases with a time complexity of O(MN3)for the number of time steps N and elements M due to volume integration in the causality cone. In this study, we introduce an efficient BIEM, termed the `Fast Domain Partitioning Method' (FDPM), which enables us to reduce the computation time to the order of the surface integral, O(MN2), without degrading the accuracy. The memory requirement is also reduced to O(M2) from O(M2N). FDPM uses the physical nature of Green's function for stress to partition the causality cone into the domains of the P and S wave fronts, the domain in-between the P and S wave fronts, and the domain of the static equilibrium, where the latter two domains exhibit simpler dependences on time and/or space. The scalability of this method is demonstrated on the large-scale parallel computing environments of distributed memory systems. It is also shown that FDPM enables an efficient use of memory storage, which makes it possible to reduce computation times to a previously unprecedented level. We thus present FDPM as a powerful tool to break through the current fundamental difficulties in running dynamic simulations of coseismic ruptures and earthquake cycles under realistic conditions of fault geometries.
NASA Astrophysics Data System (ADS)
Cao, Qian; Thawait, Gaurav; Gang, Grace J.; Zbijewski, Wojciech; Reigel, Thomas; Brown, Tyler; Corner, Brian; Demehri, Shadpour; Siewerdsen, Jeffrey H.
2015-02-01
Joint space morphology can be indicative of the risk, presence, progression, and/or treatment response of disease or trauma. We describe a novel methodology of characterizing joint space morphology in high-resolution 3D images (e.g. cone-beam CT (CBCT)) using a model based on elementary electrostatics that overcomes a variety of basic limitations of existing 2D and 3D methods. The method models each surface of a joint as a conductor at fixed electrostatic potential and characterizes the intra-articular space in terms of the electric field lines resulting from the solution of Gauss’ Law and the Laplace equation. As a test case, the method was applied to discrimination of healthy and osteoarthritic subjects (N = 39) in 3D images of the knee acquired on an extremity CBCT system. The method demonstrated improved diagnostic performance (area under the receiver operating characteristic curve, AUC > 0.98) compared to simpler methods of quantitative measurement and qualitative image-based assessment by three expert musculoskeletal radiologists (AUC = 0.87, p-value = 0.007). The method is applicable to simple (e.g. the knee or elbow) or multi-axial joints (e.g. the wrist or ankle) and may provide a useful means of quantitatively assessing a variety of joint pathologies.
6D Interpretation of 3D Gravity
NASA Astrophysics Data System (ADS)
Herfray, Yannick; Krasnov, Kirill; Scarinci, Carlos
2017-02-01
We show that 3D gravity, in its pure connection formulation, admits a natural 6D interpretation. The 3D field equations for the connection are equivalent to 6D Hitchin equations for the Chern–Simons 3-form in the total space of the principal bundle over the 3-dimensional base. Turning this construction around one gets an explanation of why the pure connection formulation of 3D gravity exists. More generally, we interpret 3D gravity as the dimensional reduction of the 6D Hitchin theory. To this end, we show that any \\text{SU}(2) invariant closed 3-form in the total space of the principal \\text{SU}(2) bundle can be parametrised by a connection together with a 2-form field on the base. The dimensional reduction of the 6D Hitchin theory then gives rise to 3D gravity coupled to a topological 2-form field.
Generalized Laplace Transforms and Extended Heaviside Calculus
ERIC Educational Resources Information Center
Deakin, Michael A. B.
2008-01-01
An extended Heaviside calculus proposed by Peraire in a recent paper is similar to a generalization of the Laplace transform proposed by the present author. This similarity will be illustrated by analysis of an example supplied by Peraire.
NASA Astrophysics Data System (ADS)
Moore, Gregory F.
2009-05-01
This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.
NASA Astrophysics Data System (ADS)
Oldham, Mark
2015-01-01
Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.
Well test analysis benefits from new method of Laplace space inversion
Wooden, B.; Azari, M.; Soliman, M. )
1992-07-20
This paper reports that for modeling well test data more reliably, a new computer program easily and accurately inverts the Laplace transform. Converting real time and space solution to Laplace space is often done in the petroleum industry and provides the vehicle to develop numerous new solutions. The Laplace space transform is frequently used in pressure transient analysis primarily because it can reduce or transform a highly difficult problem into a much simpler one. Typically, a Laplace space equation can be manipulated by use of simple algebra to accomplish other desired ends, such as incorporating additional transformed equations to solve other aspects of the engineering problem. Once the transformed equation is complete, it is then necessary to convert to real time and space. This conversion is accomplished analytically by what is referred to as inverting the Laplace transform with sets of formulas and relationships between real and transformed space and time. In many cases, this inversion is not easy or cannot be done by conventional analytic means. In those situation, an engineer requires a program that numerically inverts the transform. The new program, the Azari-Wooden-Graver, or AWG method, has this capability.
Cummings, Eric; LaJeunesse, Tony
2008-10-05
Laplace is a electric field driven flow simulation program for detailed device design support. Transport processes include electrokinesis, dielectrophoresis, and diffusion. Laplace solves for the electric field in a microfluidic system and the liquid and particle flow that is produced by the electric field for the primary purpose of microfluidic design development and simulation. Laplace allows you to visualize the flow by tracking tracer particles, viewing flow streamlines, etc. Laplace can make movies of simulated particle motion to allow you to test and share the behavior of microfuidic designs. The electric field is calculated using an iterative linear solver and particle motion is solved by finite difference, finite-displacement simulation of particle trajectories. Laplace uses a bitmapped picture or drawing of a microsystem to infer the geometry. The channel depth is everywhere proportional to the magnitude of the blue channel of the image: 0 (black) = zero depth, or no channel, 256 (saturated blue) = deepest channel, and intermediate values correspond to intermediate depths. Laplace automatically applies various boundary conditions (applied voltage or current) to ports, where channels cross the edge of the image.
Iliesiu, Luca; Kos, Filip; Poland, David; ...
2016-03-17
We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.
Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran
2016-03-17
We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C_{T}. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.
Clement, T.P.; Jones, N.L.
1998-02-01
RT3D (Reactive Transport in 3-Dimensions) is a computer code that solves coupled partial differential equations that describe reactive-flow and transport of multiple mobile and/or immobile species in a three dimensional saturated porous media. RT3D was developed from the single-species transport code, MT3D (DoD-1.5, 1997 version). As with MT3D, RT3D also uses the USGS groundwater flow model MODFLOW for computing spatial and temporal variations in groundwater head distribution. This report presents a set of tutorial problems that are designed to illustrate how RT3D simulations can be performed within the Department of Defense Groundwater Modeling System (GMS). GMS serves as a pre- and post-processing interface for RT3D. GMS can be used to define all the input files needed by RT3D code, and later the code can be launched from within GMS and run as a separate application. Once the RT3D simulation is completed, the solution can be imported to GMS for graphical post-processing. RT3D v1.0 supports several reaction packages that can be used for simulating different types of reactive contaminants. Each of the tutorials, described below, provides training on a different RT3D reaction package. Each reaction package has different input requirements, and the tutorials are designed to describe these differences. Furthermore, the tutorials illustrate the various options available in GMS for graphical post-processing of RT3D results. Users are strongly encouraged to complete the tutorials before attempting to use RT3D and GMS on a routine basis.
NASA Technical Reports Server (NTRS)
Plaut, Jeffrey J.
1993-01-01
Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.
NASA Astrophysics Data System (ADS)
Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.
2010-06-01
Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of
3D structured illumination microscopy
NASA Astrophysics Data System (ADS)
Dougherty, William M.; Goodwin, Paul C.
2011-03-01
Three-dimensional structured illumination microscopy achieves double the lateral and axial resolution of wide-field microscopy, using conventional fluorescent dyes, proteins and sample preparation techniques. A three-dimensional interference-fringe pattern excites the fluorescence, filling in the "missing cone" of the wide field optical transfer function, thereby enabling axial (z) discrimination. The pattern acts as a spatial carrier frequency that mixes with the higher spatial frequency components of the image, which usually succumb to the diffraction limit. The fluorescence image encodes the high frequency content as a down-mixed, moiré-like pattern. A series of images is required, wherein the 3D pattern is shifted and rotated, providing down-mixed data for a system of linear equations. Super-resolution is obtained by solving these equations. The speed with which the image series can be obtained can be a problem for the microscopy of living cells. Challenges include pattern-switching speeds, optical efficiency, wavefront quality and fringe contrast, fringe pitch optimization, and polarization issues. We will review some recent developments in 3D-SIM hardware with the goal of super-resolved z-stacks of motile cells.
Hong, X; Gao, H
2014-06-15
Purpose: The Linear Boltzmann Transport Equation (LBTE) solved through statistical Monte Carlo (MC) method provides the accurate dose calculation in radiotherapy. This work is to investigate the alternative way for accurately solving LBTE using deterministic numerical method due to its possible advantage in computational speed from MC. Methods: Instead of using traditional spherical harmonics to approximate angular scattering kernel, our deterministic numerical method directly computes angular scattering weights, based on a new angular discretization method that utilizes linear finite element method on the local triangulation of unit angular sphere. As a Result, our angular discretization method has the unique advantage in positivity, i.e., to maintain all scattering weights nonnegative all the time, which is physically correct. Moreover, our method is local in angular space, and therefore handles the anisotropic scattering well, such as the forward-peaking scattering. To be compatible with image-guided radiotherapy, the spatial variables are discretized on the structured grid with the standard diamond scheme. After discretization, the improved sourceiteration method is utilized for solving the linear system without saving the linear system to memory. The accuracy of our 3D solver is validated using analytic solutions and benchmarked with Geant4, a popular MC solver. Results: The differences between Geant4 solutions and our solutions were less than 1.5% for various testing cases that mimic the practical cases. More details are available in the supporting document. Conclusion: We have developed a 3D LBTE solver based on a new angular discretization method that guarantees the positivity of scattering weights for physical correctness, and it has been benchmarked with Geant4 for photon dose calculation.
Laplace-Gauss and Helmholtz-Gauss paraxial modes in media with quadratic refraction index.
Kiselev, Aleksei P; Plachenov, Alexandr B
2016-04-01
The scalar theory of paraxial wave propagation in an axisymmetric medium where the refraction index quadratically depends on transverse variables is addressed. Exact solutions of the corresponding parabolic equation are presented, generalizing the Laplace-Gauss and Helmholtz-Gauss modes earlier known for homogeneous media. Also, a generalization of a zero-order asymmetric Bessel-Gauss beam is given.
NASA Technical Reports Server (NTRS)
1997-01-01
The two hills in the distance, approximately one to two kilometers away, have been dubbed the 'Twin Peaks' and are of great interest to Pathfinder scientists as objects of future study. 3D glasses are necessary to identify surface detail. The white areas on the left hill, called the 'Ski Run' by scientists, may have been formed by hydrologic processes.
The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
NASA Astrophysics Data System (ADS)
Fung, Y. C.
1995-05-01
This conference on physiology and function covers a wide range of subjects, including the vasculature and blood flow, the flow of gas, water, and blood in the lung, the neurological structure and function, the modeling, and the motion and mechanics of organs. Many technologies are discussed. I believe that the list would include a robotic photographer, to hold the optical equipment in a precisely controlled way to obtain the images for the user. Why are 3D images needed? They are to achieve certain objectives through measurements of some objects. For example, in order to improve performance in sports or beauty of a person, we measure the form, dimensions, appearance, and movements.
NASA Technical Reports Server (NTRS)
1992-01-01
Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.
Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael
2009-01-01
This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308
NASA Technical Reports Server (NTRS)
1997-01-01
An area of rocky terrain near the landing site of the Sagan Memorial Station can be seen in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
MAP3D: a media processor approach for high-end 3D graphics
NASA Astrophysics Data System (ADS)
Darsa, Lucia; Stadnicki, Steven; Basoglu, Chris
1999-12-01
Equator Technologies, Inc. has used a software-first approach to produce several programmable and advanced VLIW processor architectures that have the flexibility to run both traditional systems tasks and an array of media-rich applications. For example, Equator's MAP1000A is the world's fastest single-chip programmable signal and image processor targeted for digital consumer and office automation markets. The Equator MAP3D is a proposal for the architecture of the next generation of the Equator MAP family. The MAP3D is designed to achieve high-end 3D performance and a variety of customizable special effects by combining special graphics features with high performance floating-point and media processor architecture. As a programmable media processor, it offers the advantages of a completely configurable 3D pipeline--allowing developers to experiment with different algorithms and to tailor their pipeline to achieve the highest performance for a particular application. With the support of Equator's advanced C compiler and toolkit, MAP3D programs can be written in a high-level language. This allows the compiler to successfully find and exploit any parallelism in a programmer's code, thus decreasing the time to market of a given applications. The ability to run an operating system makes it possible to run concurrent applications in the MAP3D chip, such as video decoding while executing the 3D pipelines, so that integration of applications is easily achieved--using real-time decoded imagery for texturing 3D objects, for instance. This novel architecture enables an affordable, integrated solution for high performance 3D graphics.
Parseval-Type Relations for Laplace Transform and their Applications
ERIC Educational Resources Information Center
Herman, S.; Maceli, J.; Rogala, M.; Yurekli, O.
2008-01-01
In the present note, two Parseval-type relations involving the Laplace transform are given. The application of the relations is demonstrated in evaluating improper integrals and Laplace transforms of trigonometric functions.
Caspi, S.; Helm, M.; Laslett, L.J.
1991-03-30
We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.
Laplace, Pierre-Simon (1749-1827)
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
Celestial mechanician, born in Beaumont-en-Auge, Normandy, France, became professor of mathematics at the Ecole Militaire in Paris, examining the cadet Napoleon Bonaparte. This position made Laplace well known to people in positions of power, which he opportunistically exploited, becoming, under Napoleon, Minister of the Interior (Napoleon soon removed him from office `because he brought the spir...
Evaluation of the Laplace Integral. Classroom Notes
ERIC Educational Resources Information Center
Chen, Hongwei
2004-01-01
Based on the dominated convergence theorem and parametric differentiation, two different evaluations of the Laplace integral are displayed. This article presents two different proofs of (1) which may be of interest since they are based on principles within the realm of real analysis. The first method applies the dominated convergence theorem to…
An approximation for inverse Laplace transforms
NASA Technical Reports Server (NTRS)
Lear, W. M.
1981-01-01
Programmable calculator runs simple finite-series approximation for Laplace transform inversions. Utilizing family of orthonormal functions, approximation is used for wide range of transforms, including those encountered in feedback control problems. Method works well as long as F(t) decays to zero as it approaches infinity and so is appliable to most physical systems.
Tidal Friction in the Earth-Moon System and Laplace Planes: Darwin Redux
NASA Technical Reports Server (NTRS)
Rubincam, David P.
2015-01-01
The dynamical evolution of the Earth-Moon system due to tidal friction is treated here. George H. Darwin used Laplace planes (also called proper planes) in his study of tidal evolution. The Laplace plane approach is adapted here to the formalisms of W.M. Kaula and P. Goldreich. Like Darwin, the approach assumes a three-body problem: Earth, Moon, and Sun, where the Moon and Sun are point-masses. The tidal potential is written in terms of the Laplace plane angles. The resulting secular equations of motion can be easily integrated numerically assuming the Moon is in a circular orbit about the Earth and the Earth is in a circular orbit about the Sun. For Earth-Moon distances greater than 10 Earth radii, the Earth's approximate tidal response can be characterized with a single parameter, which is a ratio: a Love number times the sine of a lag angle divided by another such product. For low parameter values it can be shown that Darwin's low-viscosity molten Earth, M. Ross's and G. Schubert's model of an Earth near melting, and Goldreich's equal tidal lag angles must all give similar histories. For higher parameter values, as perhaps has been the case at times with the ocean tides, the Earth's obliquity may have decreased slightly instead of increased once the Moon's orbit evolved further than 50 Earth radii from the Earth, with possible implications for climate. This is contrast to the other tidal friction models mentioned, which have the obliquity always increasing with time. As for the Moon, its orbit is presently tilted to its Laplace plane by 5.2deg. The equations do not allow the Moon to evolve out of its Laplace plane by tidal friction alone, so that if it was originally in its Laplace plane, the tilt arose with the addition of other mechanisms, such as resonance passages.
Tidal friction in the Earth-Moon system and Laplace planes: Darwin redux
NASA Astrophysics Data System (ADS)
Rubincam, David Parry
2016-03-01
The dynamical evolution of the Earth-Moon system due to tidal friction is treated here. George H. Darwin used Laplace planes (also called proper planes) in his study of tidal evolution. The Laplace plane approach is adapted here to the formalisms of W.M. Kaula and P. Goldreich. Like Darwin, the approach assumes a three-body problem: Earth, Moon, and Sun, where the Moon and Sun are point-masses. The tidal potential is written in terms of the Laplace plane angles. The resulting secular equations of motion can be easily integrated numerically assuming the Moon is in a circular orbit about the Earth and the Earth is in a circular orbit about the Sun. For Earth-Moon distances greater than ∼10 Earth radii, the Earth's approximate tidal response can be characterized with a single parameter, which is a ratio: a Love number times the sine of a lag angle divided by another such product. For low parameter values it can be shown that Darwin's low-viscosity molten Earth, M. Ross's and G. Schubert's model of an Earth near melting, and Goldreich's equal tidal lag angles must all give similar histories. For higher parameter values, as perhaps has been the case at times with the ocean tides, the Earth's obliquity may have decreased slightly instead of increased once the Moon's orbit evolved further than 50 Earth radii from the Earth, with possible implications for climate. This is contrast to the other tidal friction models mentioned, which have the obliquity always increasing with time. As for the Moon, its orbit is presently tilted to its Laplace plane by 5.2°. The equations do not allow the Moon to evolve out of its Laplace plane by tidal friction alone, so that if it was originally in its Laplace plane, the tilt arose with the addition of other mechanisms, such as resonance passages.
1994-01-01
based on tensor products of piecewise polynomials, RAIRO Anal. Numer., 8 (1974), pp. 61- 1 66. 4. M. ZLUMAL, Superconvergence and reduced integration in...solutions, RAIRO Anal. Numir., 13 (1979), pp. 139-166. 6. R.Z. DAUTOV, A.V. LAPIN AND A.D. LYASHKO, Some mesh schemes for quasi-linear elliptic equations...problems, RAIRO Math. Model. Numer. Anal., 21 (1987), pp. 679-695. 8. M. KI1f2EK AND P. NEITTAANMAKI, On superconvergence techniques, Acta Applic. Math., 9
NASA Astrophysics Data System (ADS)
Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther
2007-09-01
Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.
NASA Technical Reports Server (NTRS)
2004-01-01
This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.
Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.
On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.
The image mosaic is about 6 centimeters (2.4 inches) across.
NASA Technical Reports Server (NTRS)
1997-01-01
Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
SB3D User Manual, Santa Barbara 3D Radiative Transfer Model
O'Hirok, William
1999-01-01
SB3D is a three-dimensional atmospheric and oceanic radiative transfer model for the Solar spectrum. The microphysics employed in the model are the same as used in the model SBDART. It is assumed that the user of SB3D is familiar with SBDART and IDL. SB3D differs from SBDART in that computations are conducted on media in three-dimensions rather than a single column (i.e. plane-parallel), and a stochastic method (Monte Carlo) is employed instead of a numerical approach (Discrete Ordinates) for estimating a solution to the radiative transfer equation. Because of these two differences between SB3D and SBDART, the input and running of SB3D is more unwieldy and requires compromises between model performance and computational expense. Hence, there is no one correct method for running the model and the user must develop a sense to the proper input and configuration of the model.
Laplace-Runge-Lenz vector for arbitrary spin
Nikitin, A. G.
2013-12-15
A countable set of superintegrable quantum mechanical systems is presented which admit the dynamical symmetry with respect to algebra so(4). This algebra is generated by the Laplace-Runge-Lenz vector generalized to the case of arbitrary spin. The presented systems describe neutral particles with non-trivial multipole momenta. Their spectra can be found algebraically like in the case of hydrogen atom. Solutions for the systems with spins 1/2 and 1 are presented explicitly, solutions for spin 3/2 can be expressed via solutions of an ordinary differential equation of first order. A more extended version of this paper including detailed calculations is published as an e-print arXiv:1308.4279.
Recent EFIT Developments and 3D Extension
NASA Astrophysics Data System (ADS)
Lao, L. L.; Chu, M. S.; St. John, H. E.; Strait, E. J.; Montgomery, A. L.; Perkins, F. W.
2006-10-01
Recent developments of the equilibrium reconstruction code EFIT and its 3D extension to model toroidally asymmetric effects due to error and externally applied perturbation magnetic fields are presented. These include a new more complete uncertainty matrix for magnetic diagnostics based on detailed knowledge about their fabrication, installation, calibration, and operation. A new algorithm to efficiently compute high bootstrap-fraction equilibria that explicitly separates out the Pfirsch-Schluter and bootstrap contributions to the poloidal current stream function is also being developed. Other on-going and planned developments include a new computational structure based on Fortran 90/95 with a unified interface that can conveniently accommodate different tokamak devices and grid sizes, as well as a computational link that allows easy integration with transport and stability physics modules for integrated modeling. EFIT reconstruction capability is also being extended to 3D based on perturbation solutions to the 3D Grad-Shafranov equilibrium equation.
3-D Mesh Generation Nonlinear Systems
Christon, M. A.; Dovey, D.; Stillman, D. W.; Hallquist, J. O.; Rainsberger, R. B
1994-04-07
INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D, NIKE3D, FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surface equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The primary new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition.
NASA Astrophysics Data System (ADS)
Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco
2011-09-01
Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.
Spherical 3D isotropic wavelets
NASA Astrophysics Data System (ADS)
Lanusse, F.; Rassat, A.; Starck, J.-L.
2012-04-01
Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html
3D Elevation Program—Virtual USA in 3D
Lukas, Vicki; Stoker, J.M.
2016-04-14
The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.
Convergent radial dispersion: a Laplace transform solution for aquifer tracer testing
Moench, A.F.
1989-01-01
A Laplace transform solution was obtained for the injection of a tracer in a well situated in a homogeneous aquifer where steady, horizontal, radially convergent flow has been established due to pumping at a second well. The standard advection-dispersion equation for mass transfer was used as the controlling equation. For boundary conditions, mass balances that account for mixing of the tracer with the fluid residing in the injection and pumping wells were used. The derived solution, which can be adapted for either resident or flux-averaged concentration, is of practical use only for the pumped well. This problem is of interest because it is easily applied to field determination of aquifer dispersivity and effective porosity. Breakthrough curves were obtained by numerical inversion of the Laplace transform solution. -from Author
None
2016-07-12
This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.
NASA Astrophysics Data System (ADS)
van Hecke, Martin; de Reus, Koen; Florijn, Bastiaan; Coulais, Corentin
2014-03-01
We present a class of elastic structures which exhibit collective buckling in 3D, and create these by a 3D printing/moulding technique. Our structures consist of cubic lattice of anisotropic unit cells, and we show that their mechanical properties are programmable via the orientation of these unit cells.
2013-10-30
This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.
2013-10-01
Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.
NASA Technical Reports Server (NTRS)
1977-01-01
A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.
Development and Testing of EFIT 3D Equilibrium Reconstruction Capability
NASA Astrophysics Data System (ADS)
Lao, L. L.; Ferraro, N. M.; Strait, E. J.; Turnbull, A. D.; King, J. D.
2014-10-01
Recent development and testing of EFIT capability to reconstruct tokamak 3D perturbed equilibrium are described. The 3D extension is based on an expansion of the MHD equations to account for the 3D effects. EFIT uses the cylindrical coordinate system and can include magnetic island and stochastic effects. Several linearization schemes are being explored to improve the EFIT 3D perturbed solutions. Algorithms are also being developed to allow EFIT to reconstruct 3D perturbed equilibria directly making use of plasma response to 3D perturbations from the MARS or M3D-C1 MHD codes. Other efforts include testing of the new EFIT 3D capability using simulated magnetic data based on response calculations from MARS and M3D-C1, and performing detailed benchmarking calculations against other 3D codes such as VMEC/V3FIT. Reconstruction examples using EFIT and the new DIII-D 3D magnetic measurements to reconstruct 3D perturbed experimental equilibria using well-diagnosed discharges from DIII-D error field, RWM, and RMP experiments will be presented. Work supported by the US DOE under DE-FC02-04ER54698 and DE-FG02-95ER54309.
NASA Astrophysics Data System (ADS)
Walsh, J. R.
2004-02-01
The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly
Wavelet-based denoising using local Laplace prior
NASA Astrophysics Data System (ADS)
Rabbani, Hossein; Vafadust, Mansur; Selesnick, Ivan
2007-09-01
Although wavelet-based image denoising is a powerful tool for image processing applications, relatively few publications have addressed so far wavelet-based video denoising. The main reason is that the standard 3-D data transforms do not provide useful representations with good energy compaction property, for most video data. For example, the multi-dimensional standard separable discrete wavelet transform (M-D DWT) mixes orientations and motions in its subbands, and produces the checkerboard artifacts. So, instead of M-D DWT, usually oriented transforms suchas multi-dimensional complex wavelet transform (M-D DCWT) are proposed for video processing. In this paper we use a Laplace distribution with local variance to model the statistical properties of noise-free wavelet coefficients. This distribution is able to simultaneously model the heavy-tailed and intrascale dependency properties of wavelets. Using this model, simple shrinkage functions are obtained employing maximum a posteriori (MAP) and minimum mean squared error (MMSE) estimators. These shrinkage functions are proposed for video denoising in DCWT domain. The simulation results shows that this simple denoising method has impressive performance visually and quantitatively.
Nonparametric identification of structural modifications in Laplace domain
NASA Astrophysics Data System (ADS)
Suwała, G.; Jankowski, Ł.
2017-02-01
This paper proposes and experimentally verifies a Laplace-domain method for identification of structural modifications, which (1) unlike time-domain formulations, allows the identification to be focused on these parts of the frequency spectrum that have a high signal-to-noise ratio, and (2) unlike frequency-domain formulations, decreases the influence of numerical artifacts related to the particular choice of the FFT exponential window decay. In comparison to the time-domain approach proposed earlier, advantages of the proposed method are smaller computational cost and higher accuracy, which leads to reliable performance in more difficult identification cases. Analytical formulas for the first- and second-order sensitivity analysis are derived. The approach is based on a reduced nonparametric model, which has the form of a set of selected structural impulse responses. Such a model can be collected purely experimentally, which obviates the need for design and laborious updating of a parametric model, such as a finite element model. The approach is verified experimentally using a 26-node lab 3D truss structure and 30 identification cases of a single mass modification or two concurrent mass modifications.
NASA Astrophysics Data System (ADS)
Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Bryan; Chenault, David B.; Kingston, David; Geulen, Vanilynmae; Newell, Scott; Pettijohn, Brad
2009-02-01
In this paper, we report on the development of a 3D vision system consisting of a flat panel stereoscopic display and auto-converging stereo camera and an assessment of the system's use for robotic driving, manipulation, and surveillance operations. The 3D vision system was integrated onto a Talon Robot and Operator Control Unit (OCU) such that direct comparisons of the performance of a number of test subjects using 2D and 3D vision systems were possible. A number of representative scenarios were developed to determine which tasks benefited most from the added depth perception and to understand when the 3D vision system hindered understanding of the scene. Two tests were conducted at Fort Leonard Wood, MO with noncommissioned officers ranked Staff Sergeant and Sergeant First Class. The scenarios; the test planning, approach and protocols; the data analysis; and the resulting performance assessment of the 3D vision system are reported.
Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A
2015-12-01
3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.
NASA Technical Reports Server (NTRS)
Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.
1990-01-01
PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.
Parallel CARLOS-3D code development
Putnam, J.M.; Kotulski, J.D.
1996-02-01
CARLOS-3D is a three-dimensional scattering code which was developed under the sponsorship of the Electromagnetic Code Consortium, and is currently used by over 80 aerospace companies and government agencies. The code has been extensively validated and runs on both serial workstations and parallel super computers such as the Intel Paragon. CARLOS-3D is a three-dimensional surface integral equation scattering code based on a Galerkin method of moments formulation employing Rao- Wilton-Glisson roof-top basis for triangular faceted surfaces. Fully arbitrary 3D geometries composed of multiple conducting and homogeneous bulk dielectric materials can be modeled. This presentation describes some of the extensions to the CARLOS-3D code, and how the operator structure of the code facilitated these improvements. Body of revolution (BOR) and two-dimensional geometries were incorporated by simply including new input routines, and the appropriate Galerkin matrix operator routines. Some additional modifications were required in the combined field integral equation matrix generation routine due to the symmetric nature of the BOR and 2D operators. Quadrilateral patched surfaces with linear roof-top basis functions were also implemented in the same manner. Quadrilateral facets and triangular facets can be used in combination to more efficiently model geometries with both large smooth surfaces and surfaces with fine detail such as gaps and cracks. Since the parallel implementation in CARLOS-3D is at high level, these changes were independent of the computer platform being used. This approach minimizes code maintenance, while providing capabilities with little additional effort. Results are presented showing the performance and accuracy of the code for some large scattering problems. Comparisons between triangular faceted and quadrilateral faceted geometry representations will be shown for some complex scatterers.
ERIC Educational Resources Information Center
Iqbal, M.
2002-01-01
In this paper we have converted the Laplace transform into an integral equation of the first kind of convolution type, which is an ill-posed problem, and used a statistical regularization method to solve it. The method is applied to three examples. It gives a good approximation to the true solution and compares well with the method given by…
NASA Astrophysics Data System (ADS)
Mehrabi Pari, Sharareh; Javidan, Kurosh; Taghavi Shahri, Fatemeh
2016-05-01
The "Laplace Transform Method" is used to solve the Fokker-Plank equation for finding the time evolution of the heavy quarks distribution functions such as charm and bottom in quark gluon plasma. These solutions will lead us to calculation of nuclear suppression factor RAA. The results have good agreement with available experiment data from the PHENIX collaboration.
Unassisted 3D camera calibration
NASA Astrophysics Data System (ADS)
Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.
2012-03-01
With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.
2007-11-02
AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 5 Feb 98 4. TITLE AND SUBTITLE 3D Scan Systems Integration REPORT TYPE AND DATES COVERED...2-89) Prescribed by ANSI Std. Z39-1 298-102 [ EDO QUALITY W3PECTEDI DLA-ARN Final Report for US Defense Logistics Agency on DDFG-T2/P3: 3D...SCAN SYSTEMS INTEGRATION Contract Number SPO100-95-D-1014 Contractor Ohio University Delivery Order # 0001 Delivery Order Title 3D Scan Systems
Simon, Carl G; Yang, Yanyin; Dorsey, Shauna M; Ramalingam, Murugan; Chatterjee, Kaushik
2011-01-01
We have developed a combinatorial platform for fabricating tissue scaffold arrays that can be used for screening cell-material interactions. Traditional research involves preparing samples one at a time for characterization and testing. Combinatorial and high-throughput (CHT) methods lower the cost of research by reducing the amount of time and material required for experiments by combining many samples into miniaturized specimens. In order to help accelerate biomaterials research, many new CHT methods have been developed for screening cell-material interactions where materials are presented to cells as a 2D film or surface. However, biomaterials are frequently used to fabricate 3D scaffolds, cells exist in vivo in a 3D environment and cells cultured in a 3D environment in vitro typically behave more physiologically than those cultured on a 2D surface. Thus, we have developed a platform for fabricating tissue scaffold libraries where biomaterials can be presented to cells in a 3D format.
NASA Astrophysics Data System (ADS)
Lee-Elkin, Forest
2008-04-01
Three dimensional (3D) autofocus remains a significant challenge for the development of practical 3D multipass radar imaging. The current 2D radar autofocus methods are not readily extendable across sensor passes. We propose a general framework that allows a class of data adaptive solutions for 3D auto-focus across passes with minimal constraints on the scene contents. The key enabling assumption is that portions of the scene are sparse in elevation which reduces the number of free variables and results in a system that is simultaneously solved for scatterer heights and autofocus parameters. The proposed method extends 2-pass interferometric synthetic aperture radar (IFSAR) methods to an arbitrary number of passes allowing the consideration of scattering from multiple height locations. A specific case from the proposed autofocus framework is solved and demonstrates autofocus and coherent multipass 3D estimation across the 8 passes of the "Gotcha Volumetric SAR Data Set" X-Band radar data.
Feeling Wall Tension in an Interactive Demonstration of Laplace's Law
ERIC Educational Resources Information Center
Letic, Milorad
2012-01-01
Laplace's Law plays a major role in explanations of the wall tension of structures like blood vessels, the bladder, the uterus in pregnancy, bronchioles, eyeballs, and the behavior of aneurisms or the enlarged heart. The general relation of Laplace's law, expressing that the product of the radius of curvature (r) and pressure (P) is equal to wall…
Towards Informetrics: Haitun, Laplace, Zipf, Bradford and the Alvey Programme.
ERIC Educational Resources Information Center
Brookes, B. C.
1984-01-01
Review of recent developments in statistical theories for social sciences highlights Haitun's statistical distributions, Laplace's "Law of Succession" and distribution, Laplace and Bradford analysis of book-index data, inefficiency of frequency distribution analysis, Laws of Bradford and Zipf, natural categorization, and Bradford Law and…
Combinatorial 3D Mechanical Metamaterials
NASA Astrophysics Data System (ADS)
Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin
2015-03-01
We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.
PSH3D fast Poisson solver for petascale DNS
NASA Astrophysics Data System (ADS)
Adams, Darren; Dodd, Michael; Ferrante, Antonino
2016-11-01
Direct numerical simulation (DNS) of high Reynolds number, Re >= O (105) , turbulent flows requires computational meshes >= O (1012) grid points, and, thus, the use of petascale supercomputers. DNS often requires the solution of a Helmholtz (or Poisson) equation for pressure, which constitutes the bottleneck of the solver. We have developed a parallel solver of the Helmholtz equation in 3D, PSH3D. The numerical method underlying PSH3D combines a parallel 2D Fast Fourier transform in two spatial directions, and a parallel linear solver in the third direction. For computational meshes up to 81923 grid points, our numerical results show that PSH3D scales up to at least 262k cores of Cray XT5 (Blue Waters). PSH3D has a peak performance 6 × faster than 3D FFT-based methods when used with the 'partial-global' optimization, and for a 81923 mesh solves the Poisson equation in 1 sec using 128k cores. Also, we have verified that the use of PSH3D with the 'partial-global' optimization in our DNS solver does not reduce the accuracy of the numerical solution of the incompressible Navier-Stokes equations.
EFIT 3D Reconstruction and Recent Developments
NASA Astrophysics Data System (ADS)
Lao, L. L.; Chu, M. S.; St. John, H. E.; Strait, E. J.; Turnbull, A. D.; Ren, Q.; Jeon, Y. M.; Flannagan, D.
2007-11-01
Recent 3D extension of the EFIT equilibrium reconstruction code to model toroidally asymmetric effects due to error and externally applied perturbation magnetic fields and other developments are presented. The 3D extension is based on an expansion of the MHD equations. Other developments include a new computational structure based on Fortran 90/95 with a unified interface that can conveniently accommodate different tokamak devices and grid sizes, as well as a Python-based GUI. New computational links that allow easy integration with transport and stability physics modules to facilitate kinetic reconstruction and stability analysis are also being developed. A new more complete uncertainty matrix for magnetic diagnostics based on knowledge about their fabrication, installation, calibration, and operation has also been implemented into EFIT and tested. Reconstructions with the new magnetic uncertainty matrix yield results similar to those using the existing one but with more realistic fitting merit figures.
PLOT3D/AMES, DEC VAX VMS VERSION USING DISSPLA (WITH TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
PLOT3D/AMES, DEC VAX VMS VERSION USING DISSPLA (WITHOUT TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P. G.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
3-D Force-balanced Magnetospheric Configurations
Sorin Zaharia; C.Z. Cheng; K. Maezawa
2003-02-10
The knowledge of plasma pressure is essential for many physics applications in the magnetosphere, such as computing magnetospheric currents and deriving magnetosphere-ionosphere coupling. A thorough knowledge of the 3-D pressure distribution has however eluded the community, as most in-situ pressure observations are either in the ionosphere or the equatorial region of the magnetosphere. With the assumption of pressure isotropy there have been attempts to obtain the pressure at different locations by either (a) mapping observed data (e.g., in the ionosphere) along the field lines of an empirical magnetospheric field model or (b) computing a pressure profile in the equatorial plane (in 2-D) or along the Sun-Earth axis (in 1-D) that is in force balance with the magnetic stresses of an empirical model. However, the pressure distributions obtained through these methods are not in force balance with the empirical magnetic field at all locations. In order to find a global 3-D plasma pressure distribution in force balance with the magnetospheric magnetic field, we have developed the MAG-3D code, that solves the 3-D force balance equation J x B = (upside-down delta) P computationally. Our calculation is performed in a flux coordinate system in which the magnetic field is expressed in terms of Euler potentials as B = (upside-down delta) psi x (upside-down delta) alpha. The pressure distribution, P = P(psi,alpha), is prescribed in the equatorial plane and is based on satellite measurements. In addition, computational boundary conditions for y surfaces are imposed using empirical field models. Our results provide 3-D distributions of magnetic field and plasma pressure as well as parallel and transverse currents for both quiet-time and disturbed magnetospheric conditions.
Laplace transform homotopy perturbation method for the approximation of variational problems.
Filobello-Nino, U; Vazquez-Leal, H; Rashidi, M M; Sedighi, H M; Perez-Sesma, A; Sandoval-Hernandez, M; Sarmiento-Reyes, A; Contreras-Hernandez, A D; Pereyra-Diaz, D; Hoyos-Reyes, C; Jimenez-Fernandez, V M; Huerta-Chua, J; Castro-Gonzalez, F; Laguna-Camacho, J R
2016-01-01
This article proposes the application of Laplace Transform-Homotopy Perturbation Method and some of its modifications in order to find analytical approximate solutions for the linear and nonlinear differential equations which arise from some variational problems. As case study we will solve four ordinary differential equations, and we will show that the proposed solutions have good accuracy, even we will obtain an exact solution. In the sequel, we will see that the square residual error for the approximate solutions, belongs to the interval [0.001918936920, 0.06334882582], which confirms the accuracy of the proposed methods, taking into account the complexity and difficulty of variational problems.
NASA Astrophysics Data System (ADS)
Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.
2014-08-01
In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers
PLOT3D/AMES, GENERIC UNIX VERSION USING DISSPLA (WITHOUT TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
PLOT3D/AMES, GENERIC UNIX VERSION USING DISSPLA (WITH TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters
NASA Astrophysics Data System (ADS)
Schild, Jonas; Seele, Sven; Masuch, Maic
2012-03-01
Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.
NASA Technical Reports Server (NTRS)
2002-01-01
In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.
3D Finite Element Electrical Model of Larval Zebrafish ECG Signals.
Crowcombe, James; Dhillon, Sundeep Singh; Hurst, Rhiannon Mary; Egginton, Stuart; Müller, Ferenc; Sík, Attila; Tarte, Edward
2016-01-01
Assessment of heart function in zebrafish larvae using electrocardiography (ECG) is a potentially useful tool in developing cardiac treatments and the assessment of drug therapies. In order to better understand how a measured ECG waveform is related to the structure of the heart, its position within the larva and the position of the electrodes, a 3D model of a 3 days post fertilisation (dpf) larval zebrafish was developed to simulate cardiac electrical activity and investigate the voltage distribution throughout the body. The geometry consisted of two main components; the zebrafish body was modelled as a homogeneous volume, while the heart was split into five distinct regions (sinoatrial region, atrial wall, atrioventricular band, ventricular wall and heart chambers). Similarly, the electrical model consisted of two parts with the body described by Laplace's equation and the heart using a bidomain ionic model based upon the Fitzhugh-Nagumo equations. Each region of the heart was differentiated by action potential (AP) parameters and activation wave conduction velocities, which were fitted and scaled based on previously published experimental results. ECG measurements in vivo at different electrode recording positions were then compared to the model results. The model was able to simulate action potentials, wave propagation and all the major features (P wave, R wave, T wave) of the ECG, as well as polarity of the peaks observed at each position. This model was based upon our current understanding of the structure of the normal zebrafish larval heart. Further development would enable us to incorporate features associated with the diseased heart and hence assist in the interpretation of larval zebrafish ECGs in these conditions.
A 3-D chimera grid embedding technique
NASA Technical Reports Server (NTRS)
Benek, J. A.; Buning, P. G.; Steger, J. L.
1985-01-01
A three-dimensional (3-D) chimera grid-embedding technique is described. The technique simplifies the construction of computational grids about complex geometries. The method subdivides the physical domain into regions which can accommodate easily generated grids. Communication among the grids is accomplished by interpolation of the dependent variables at grid boundaries. The procedures for constructing the composite mesh and the associated data structures are described. The method is demonstrated by solution of the Euler equations for the transonic flow about a wing/body, wing/body/tail, and a configuration of three ellipsoidal bodies.
Van Goethem, Emeline; Guiet, Romain; Balor, Stéphanie; Charrière, Guillaume M; Poincloux, Renaud; Labrousse, Arnaud; Maridonneau-Parini, Isabelle; Le Cabec, Véronique
2011-01-01
Macrophage tissue infiltration is a critical step in the immune response against microorganisms and is also associated with disease progression in chronic inflammation and cancer. Macrophages are constitutively equipped with specialized structures called podosomes dedicated to extracellular matrix (ECM) degradation. We recently reported that these structures play a critical role in trans-matrix mesenchymal migration mode, a protease-dependent mechanism. Podosome molecular components and their ECM-degrading activity have been extensively studied in two dimensions (2D), but yet very little is known about their fate in three-dimensional (3D) environments. Therefore, localization of podosome markers and proteolytic activity were carefully examined in human macrophages performing mesenchymal migration. Using our gelled collagen I 3D matrix model to obligate human macrophages to perform mesenchymal migration, classical podosome markers including talin, paxillin, vinculin, gelsolin, cortactin were found to accumulate at the tip of F-actin-rich cell protrusions together with β1 integrin and CD44 but not β2 integrin. Macrophage proteolytic activity was observed at podosome-like protrusion sites using confocal fluorescence microscopy and electron microscopy. The formation of migration tunnels by macrophages inside the matrix was accomplished by degradation, engulfment and mechanic compaction of the matrix. In addition, videomicroscopy revealed that 3D F-actin-rich protrusions of migrating macrophages were as dynamic as their 2D counterparts. Overall, the specifications of 3D podosomes resembled those of 2D podosome rosettes rather than those of individual podosomes. This observation was further supported by the aspect of 3D podosomes in fibroblasts expressing Hck, a master regulator of podosome rosettes in macrophages. In conclusion, human macrophage podosomes go 3D and take the shape of spherical podosome rosettes when the cells perform mesenchymal migration. This work
3D Printed Bionic Nanodevices.
Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C
2016-06-01
The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the
PLOT3D/AMES, UNIX SUPERCOMPUTER AND SGI IRIS VERSION (WITH TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
PLOT3D/AMES, UNIX SUPERCOMPUTER AND SGI IRIS VERSION (WITHOUT TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
NASA Technical Reports Server (NTRS)
1997-01-01
Portions of the lander's deflated airbags and a petal are at the lower area of this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. The metallic object at lower right is part of the lander's low-gain antenna. This image is part of a 3D 'monster
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
3D Computations and Experiments
Couch, R; Faux, D; Goto, D; Nikkel, D
2004-04-05
This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.
Elastic wave modelling in 3D heterogeneous media: 3D grid method
NASA Astrophysics Data System (ADS)
Jianfeng, Zhang; Tielin, Liu
2002-09-01
We present a new numerical technique for elastic wave modelling in 3D heterogeneous media with surface topography, which is called the 3D grid method in this paper. This work is an extension of the 2D grid method that models P-SV wave propagation in 2D heterogeneous media. Similar to the finite-element method in the discretization of a numerical mesh, the proposed scheme is flexible in incorporating surface topography and curved interfaces; moreover it satisfies the free-surface boundary conditions of 3D topography naturally. The algorithm, developed from a parsimonious staggered-grid scheme, solves the problem using integral equilibrium around each node, instead of satisfying elastodynamic differential equations at each node as in the conventional finite-difference method. The computational cost and memory requirements for the proposed scheme are approximately the same as those used by the same order finite-difference method. In this paper, a mixed tetrahedral and parallelepiped grid method is presented; and the numerical dispersion and stability criteria on the tetrahedral grid method and parallelepiped grid method are discussed in detail. The proposed scheme is successfully tested against an analytical solution for the 3D Lamb problem and a solution of the boundary method for the diffraction of a hemispherical crater. Moreover, examples of surface-wave propagation in an elastic half-space with a semi-cylindrical trench on the surface and 3D plane-layered model are presented.
PLOT3D/AMES, SGI IRIS VERSION (WITHOUT TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
PLOT3D/AMES, SGI IRIS VERSION (WITH TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
Correlation Filtering of Modal Dynamics using the Laplace Wavelet
NASA Technical Reports Server (NTRS)
Freudinger, Lawrence C.; Lind, Rick; Brenner, Martin J.
1997-01-01
Wavelet analysis allows processing of transient response data commonly encountered in vibration health monitoring tasks such as aircraft flutter testing. The Laplace wavelet is formulated as an impulse response of a single mode system to be similar to data features commonly encountered in these health monitoring tasks. A correlation filtering approach is introduced using the Laplace wavelet to decompose a signal into impulse responses of single mode subsystems. Applications using responses from flutter testing of aeroelastic systems demonstrate modal parameters and stability estimates can be estimated by correlation filtering free decay data with a set of Laplace wavelets.
Tilted planes in 3D image analysis
NASA Astrophysics Data System (ADS)
Pargas, Roy P.; Staples, Nancy J.; Malloy, Brian F.; Cantrell, Ken; Chhatriwala, Murtuza
1998-03-01
Reliable 3D wholebody scanners which output digitized 3D images of a complete human body are now commercially available. This paper describes a software package, called 3DM, being developed by researchers at Clemson University and which manipulates and extracts measurements from such images. The focus of this paper is on tilted planes, a 3DM tool which allows a user to define a plane through a scanned image, tilt it in any direction, and effectively define three disjoint regions on the image: the points on the plane and the points on either side of the plane. With tilted planes, the user can accurately take measurements required in applications such as apparel manufacturing. The user can manually segment the body rather precisely. Tilted planes assist the user in analyzing the form of the body and classifying the body in terms of body shape. Finally, titled planes allow the user to eliminate extraneous and unwanted points often generated by a 3D scanner. This paper describes the user interface for tilted planes, the equations defining the plane as the user moves it through the scanned image, an overview of the algorithms, and the interaction of the tilted plane feature with other tools in 3DM.
ERIC Educational Resources Information Center
Mayshark, Robin K.
1991-01-01
Students explore three-dimensional properties by creating red and green wall decorations related to Christmas. Students examine why images seem to vibrate when red and green pieces are small and close together. Instructions to conduct the activity and construct 3-D glasses are given. (MDH)
3D Printing: Exploring Capabilities
ERIC Educational Resources Information Center
Samuels, Kyle; Flowers, Jim
2015-01-01
As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…
Russ, Trina; Koch, Mark; Koudelka, Melissa; Peters, Ralph; Little, Charles; Boehnen, Chris; Peters, Tanya
2007-07-20
This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial features of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.
ERIC Educational Resources Information Center
Manos, Harry
2016-01-01
Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…
NASA Astrophysics Data System (ADS)
Chatelin, Robin; Poncet, Philippe
2014-07-01
Particle methods are very convenient to compute transport equations in fluid mechanics as their computational cost is linear and they are not limited by convection stability conditions. To achieve large 3D computations the method must be coupled to efficient algorithms for velocity computations, including a good treatment of non-homogeneities and complex moving geometries. The Penalization method enables to consider moving bodies interaction by adding a term in the conservation of momentum equation. This work introduces a new computational algorithm to solve implicitly in the same step the Penalization term and the Laplace operators, since explicit computations are limited by stability issues, especially at low Reynolds number. This computational algorithm is based on the Sherman-Morrison-Woodbury formula coupled to a GMRES iterative method to reduce the computations to a sequence of Poisson problems: this allows to formulate a penalized Poisson equation as a large perturbation of a standard Poisson, by means of algebraic relations. A direct consequence is the possibility to use fast solvers based on Fast Fourier Transforms for this problem with good efficiency from both the computational and the memory consumption point of views, since these solvers are recursive and they do not perform any matrix assembling. The resulting fluid mechanics computations are very fast and they consume a small amount of memory, compared to a reference solver or a linear system resolution. The present applications focus mainly on a coupling between transport equation and 3D Stokes equations, for studying biological organisms motion in a highly viscous flows with variable viscosity.
TACO3D. 3-D Finite Element Heat Transfer Code
Mason, W.E.
1992-03-04
TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.
3D simulation for solitons used in optical fibers
NASA Astrophysics Data System (ADS)
Vasile, F.; Tebeica, C. M.; Schiopu, P.; Vladescu, M.
2016-12-01
In this paper is described 3D simulation for solitions used in optical fibers. In the scientific works is started from nonlinear propagation equation and the solitons represents its solutions. This paper presents the simulation of the fundamental soliton in 3D together with simulation of the second order soliton in 3D. These simulations help in the study of the optical fibers for long distances and in the interactions between the solitons. This study helps the understanding of the nonlinear propagation equation and for nonlinear waves. These 3D simulations are obtained using MATLAB programming language, and we can observe fundamental difference between the soliton and the second order/higher order soliton and in their evolution.
Convergence rate of Cesaro means of Fourier-Laplace series
NASA Astrophysics Data System (ADS)
Li, Luoqing; Yu, Chunwu
2007-01-01
The convergence rate of Fourier-Laplace series in logarithmic subclasses of L2([Sigma]d) defined in terms of moduli of continuity is of interest. Lin and Wang [C. Lin, K. Wang, Convergence rate of Fourier-Laplace series of L2-functions, J. Approx. Theory 128 (2004) 103-114] recently presented a characterization of those subclasses and provided the almost everywhere convergence rates of Fourier-Laplace series in those subclasses. In this note, the almost everywhere convergence rates of the Cesaro means for Fourier-Laplace series of the logarithmic subclasses are obtained. The strong approximation order of the Cesaro means and the partial summation operators are also presented.
3D Equilibrium Reconstructions in DIII-D
NASA Astrophysics Data System (ADS)
Lao, L. L.; Ferraro, N. W.; Strait, E. J.; Turnbull, A. D.; King, J. D.; Hirshman, H. P.; Lazarus, E. A.; Sontag, A. C.; Hanson, J.; Trevisan, G.
2013-10-01
Accurate and efficient 3D equilibrium reconstruction is needed in tokamaks for study of 3D magnetic field effects on experimentally reconstructed equilibrium and for analysis of MHD stability experiments with externally imposed magnetic perturbations. A large number of new magnetic probes have been recently installed in DIII-D to improve 3D equilibrium measurements and to facilitate 3D reconstructions. The V3FIT code has been in use in DIII-D to support 3D reconstruction and the new magnetic diagnostic design. V3FIT is based on the 3D equilibrium code VMEC that assumes nested magnetic surfaces. V3FIT uses a pseudo-Newton least-square algorithm to search for the solution vector. In parallel, the EFIT equilibrium reconstruction code is being extended to allow for 3D effects using a perturbation approach based on an expansion of the MHD equations. EFIT uses the cylindrical coordinate system and can include the magnetic island and stochastic effects. Algorithms are being developed to allow EFIT to reconstruct 3D perturbed equilibria directly making use of plasma response to 3D perturbations from the GATO, MARS-F, or M3D-C1 MHD codes. DIII-D 3D reconstruction examples using EFIT and V3FIT and the new 3D magnetic data will be presented. Work supported in part by US DOE under DE-FC02-04ER54698, DE-FG02-95ER54309 and DE-AC05-06OR23100.
Fast Solvers for Transient Hydraulic Tomography based on Laplace transform
NASA Astrophysics Data System (ADS)
Bakhos, T.; Saibaba, A.; Kitanidis, P. K.
2013-12-01
Transient Hydraulic Tomography (THT) is a method to estimate the parameters hydraulic conductivity and specific storage, from measurements of hydraulic heads or pressure obtained in a series of interference tests in aquifer geologic formation such as an aquifer (i.e., pumping at one location and depth while measuring the response at several others). These measurements can be used to reconstruct the spatial variation of hydraulic parameters by solving a nonlinear inverse problem, which we tackle using the geostatistical approach. A central challenge associated with the application of the geostatistical approach to THT, is the computational cost associated with constructing the Jacobian - which represents the sensitivity of the measurements to the unknown parameters. This essentially requires repeated solutions to the 'forward problem' and the 'adjoint problem' for determination of derivatives, which are both time-dependent parabolic partial differential equations. To solve the 'forward problem', we use a Laplace Transform based exponential time integrator combined with a Krylov subspace based method for solving shifted systems. This approach allows us to independently evaluate the transient problem at different time instants at (almost) the cost of solving one steady-state groundwater equation. A similar approach can be used to accelerate the solution of the 'adjoint problem' as well. As we demonstrate, this approach dramatically lowers the computational cost associated with evaluating the Jacobian and as a result, the reconstruction of the parameters. The performance of our algorithm is demonstrated on some challenging synthetic examples; in particular, we apply it to large-scale inverse problems arising from transient hydraulic tomography.
3D dimeron as a stable topological object
NASA Astrophysics Data System (ADS)
Yang, Shijie; Liu, Yongkai
2015-03-01
Searching for novel topological objects is always an intriguing task for scientists in various fields. We study a new three-dimensional (3D) topological structure called 3D dimeron in the trapped two-component Bose-Einstein condensates. The 3D dimeron differs to the conventional 3D skyrmion for the condensates hosting two interlocked vortex-rings. We demonstrate that the vortex-rings are connected by a singular string and the complexity constitutes a vortex-molecule. The stability is investigated through numerically evolving the Gross-Pitaevskii equations, giving a coherent Rabi coupling between the two components. Alternatively, we find that the stable 3D dimeron can be naturally generated from a vortex-free Gaussian wave packet via incorporating a synthetic non-Abelian gauge potential into the condensates. This work is supported by the NSF of China under Grant No. 11374036 and the National 973 program under Grant No. 2012CB821403.
Forensic 3D scene reconstruction
NASA Astrophysics Data System (ADS)
Little, Charles Q.; Small, Daniel E.; Peters, Ralph R.; Rigdon, J. B.
2000-05-01
Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a fieldable prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.
NASA Technical Reports Server (NTRS)
Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.
2013-01-01
Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.
van Geer, Erik; Molenbroek, Johan; Schreven, Sander; deVoogd-Claessen, Lenneke; Toussaint, Huib
2012-01-01
In competitive swimming, suits have become more important. These suits influence friction, pressure and wave drag. Friction drag is related to the surface properties whereas both pressure and wave drag are greatly influenced by body shape. To find a relationship between the body shape and the drag, the anthropometry of several world class female swimmers wearing different suits was accurately defined using a 3D scanner and traditional measuring methods. The 3D scans delivered more detailed information about the body shape. On the same day the swimmers did performance tests in the water with the tested suits. Afterwards the result of the performance tests and the differences found in body shape was analyzed to determine the deformation caused by a swimsuit and its effect on the swimming performance. Although the amount of data is limited because of the few test subjects, there is an indication that the deformation of the body influences the swimming performance.
Forensic 3D Scene Reconstruction
LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.
1999-10-12
Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.
Belenkov, E. A. Ali-Pasha, V. A.
2011-01-15
The structure of clusters of some new carbon 3D-graphite phases have been calculated using the molecular-mechanics methods. It is established that 3D-graphite polytypes {alpha}{sub 1,1}, {alpha}{sub 1,3}, {alpha}{sub 1,5}, {alpha}{sub 2,1}, {alpha}{sub 2,3}, {alpha}{sub 3,1}, {beta}{sub 1,2}, {beta}{sub 1,4}, {beta}{sub 1,6}, {beta}{sub 2,1}, and {beta}{sub 3,2} consist of sp{sup 2}-hybridized atoms, have hexagonal unit cells, and differ in regards to the structure of layers and order of their alternation. A possible way to experimentally synthesize new carbon phases is proposed: the polymerization and carbonization of hydrocarbon molecules.
CFL3D User's Manual (Version 5.0)
NASA Technical Reports Server (NTRS)
Krist, Sherrie L.; Biedron, Robert T.; Rumsey, Christopher L.
1998-01-01
This document is the User's Manual for the CFL3D computer code, a thin-layer Reynolds-averaged Navier-Stokes flow solver for structured multiple-zone grids. Descriptions of the code's input parameters, non-dimensionalizations, file formats, boundary conditions, and equations are included. Sample 2-D and 3-D test cases are also described, and many helpful hints for using the code are provided.
[Real time 3D echocardiography
NASA Technical Reports Server (NTRS)
Bauer, F.; Shiota, T.; Thomas, J. D.
2001-01-01
Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.
Use and Misuse of Laplace's Law in Ophthalmology
Chung, Cheuk Wang; Girard, Michaël J. A.; Jan, Ning-Jiun; Sigal, Ian A.
2016-01-01
Purpose Laplace's Law, with its compactness and simplicity, has long been employed in ophthalmology for describing the mechanics of the corneoscleral shell. We questioned the appropriateness of Laplace's Law for computing wall stress in the eye considering the advances in knowledge of ocular biomechanics. Methods In this manuscript we recapitulate the formulation of Laplace's Law, as well as common interpretations and uses in ophthalmology. Using numerical modeling, we study how Laplace's Law cannot account for important characteristics of the eye, such as variations in globe shape and size or tissue thickness, anisotropy, viscoelasticity, or that the eye is a living, dynamic organ. Results We show that accounting for various geometrical and material factors, excluded from Laplace's Law, can alter estimates of corneoscleral wall stress as much as 456% and, therefore, that Laplace's Law is unreliable. Conclusions We conclude by illustrating how computational techniques, such as finite element modeling, can account for the factors mentioned above, and are thus more suitable tools to provide quantitative characterization of corneoscleral biomechanics. PMID:26803799
GPU-Accelerated Denoising in 3D (GD3D)
2013-10-01
The raw computational power GPU Accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. This software addresses two facets of this promising application: what tuning is necessary to achieve optimal performance on a modern GPU? And what parameters yield the best denoising results in practice? To answer the first question, the software performs an autotuning step to empirically determine optimal memory blocking on the GPU. To answer the second, it performs a sweep of algorithm parameters to determine the combination that best reduces the mean squared error relative to a noiseless reference image.
NASA Astrophysics Data System (ADS)
Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.
2002-12-01
Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated
Adapting 3D Equilibrium Reconstruction to Reconstruct Weakly 3D H-mode Tokamaks
NASA Astrophysics Data System (ADS)
Cianciosa, M. R.; Hirshman, S. P.; Seal, S. K.; Unterberg, E. A.; Wilcox, R. S.; Wingen, A.; Hanson, J. D.
2015-11-01
The application of resonant magnetic perturbations for edge localized mode (ELM) mitigation breaks the toroidal symmetry of tokamaks. In these scenarios, the axisymmetric assumptions of the Grad-Shafranov equation no longer apply. By extension, equilibrium reconstruction tools, built around these axisymmetric assumptions, are insufficient to fully reconstruct a 3D perturbed equilibrium. 3D reconstruction tools typically work on systems where the 3D components of signals are a significant component of the input signals. In nominally axisymmetric systems, applied field perturbations can be on the order of 1% of the main field or less. To reconstruct these equilibria, the 3D component of signals must be isolated from the axisymmetric portions to provide the necessary information for reconstruction. This presentation will report on the adaptation to V3FIT for application on DIII-D H-mode discharges with applied resonant magnetic perturbations (RMPs). Newly implemented motional stark effect signals and modeling of electric field effects will also be discussed. Work supported under U.S. DOE Cooperative Agreement DE-AC05-00OR22725.
The PRISM3D paleoenvironmental reconstruction
Dowsett, H.; Robinson, M.; Haywood, A.M.; Salzmann, U.; Hill, Daniel; Sohl, L.E.; Chandler, M.; Williams, Mark; Foley, K.; Stoll, D.K.
2010-01-01
The Pliocene Research, Interpretation and Synoptic Mapping (PRISM) paleoenvironmental reconstruction is an internally consistent and comprehensive global synthesis of a past interval of relatively warm and stable climate. It is regularly used in model studies that aim to better understand Pliocene climate, to improve model performance in future climate scenarios, and to distinguish model-dependent climate effects. The PRISM reconstruction is constantly evolving in order to incorporate additional geographic sites and environmental parameters, and is continuously refined by independent research findings. The new PRISM three dimensional (3D) reconstruction differs from previous PRISM reconstructions in that it includes a subsurface ocean temperature reconstruction, integrates geochemical sea surface temperature proxies to supplement the faunal-based temperature estimates, and uses numerical models for the first time to augment fossil data. Here we describe the components of PRISM3D and describe new findings specific to the new reconstruction. Highlights of the new PRISM3D reconstruction include removal of Hudson Bay and the Great Lakes and creation of open waterways in locations where the current bedrock elevation is less than 25m above modern sea level, due to the removal of the West Antarctic Ice Sheet and the reduction of the East Antarctic Ice Sheet. The mid-Piacenzian oceans were characterized by a reduced east-west temperature gradient in the equatorial Pacific, but PRISM3D data do not imply permanent El Niño conditions. The reduced equator-to-pole temperature gradient that characterized previous PRISM reconstructions is supported by significant displacement of vegetation belts toward the poles, is extended into the Arctic Ocean, and is confirmed by multiple proxies in PRISM3D. Arctic warmth coupled with increased dryness suggests the formation of warm and salty paleo North Atlantic Deep Water (NADW) and a more vigorous thermohaline circulation system that may
Lattice Boltzmann Method for 3-D Flows with Curved Boundary
NASA Technical Reports Server (NTRS)
Mei, Renwei; Shyy, Wei; Yu, Dazhi; Luo, Li-Shi
2002-01-01
In this work, we investigate two issues that are important to computational efficiency and reliability in fluid dynamics applications of the lattice, Boltzmann equation (LBE): (1) Computational stability and accuracy of different lattice Boltzmann models and (2) the treatment of the boundary conditions on curved solid boundaries and their 3-D implementations. Three athermal 3-D LBE models (D3QI5, D3Ql9, and D3Q27) are studied and compared in terms of efficiency, accuracy, and robustness. The boundary treatment recently developed by Filippova and Hanel and Met et al. in 2-D is extended to and implemented for 3-D. The convergence, stability, and computational efficiency of the 3-D LBE models with the boundary treatment for curved boundaries were tested in simulations of four 3-D flows: (1) Fully developed flows in a square duct, (2) flow in a 3-D lid-driven cavity, (3) fully developed flows in a circular pipe, and (4) a uniform flow over a sphere. We found that while the fifteen-velocity 3-D (D3Ql5) model is more prone to numerical instability and the D3Q27 is more computationally intensive, the 63Q19 model provides a balance between computational reliability and efficiency. Through numerical simulations, we demonstrated that the boundary treatment for 3-D arbitrary curved geometry has second-order accuracy and possesses satisfactory stability characteristics.
Interactive 3D Mars Visualization
NASA Technical Reports Server (NTRS)
Powell, Mark W.
2012-01-01
The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.
3D Nanostructuring of Semiconductors
NASA Astrophysics Data System (ADS)
Blick, Robert
2000-03-01
Modern semiconductor technology allows to machine devices on the nanometer scale. I will discuss the current limits of the fabrication processes, which enable the definition of single electron transistors with dimensions down to 8 nm. In addition to the conventional 2D patterning and structuring of semiconductors, I will demonstrate how to apply 3D nanostructuring techniques to build freely suspended single-crystal beams with lateral dimension down to 20 nm. In transport measurements in the temperature range from 30 mK up to 100 K these nano-crystals are characterized regarding their electronic as well as their mechanical properties. Moreover, I will present possible applications of these devices.
NASA Technical Reports Server (NTRS)
2004-01-01
This 3-D cylindrical-perspective mosaic taken by the navigation camera on the Mars Exploration Rover Spirit on sol 82 shows the view south of the large crater dubbed 'Bonneville.' The rover will travel toward the Columbia Hills, seen here at the upper left. The rock dubbed 'Mazatzal' and the hole the rover drilled in to it can be seen at the lower left. The rover's position is referred to as 'Site 22, Position 32.' This image was geometrically corrected to make the horizon appear flat.
NASA Astrophysics Data System (ADS)
Manos, Harry
2016-03-01
Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.
NASA Technical Reports Server (NTRS)
2004-01-01
This is a 3-D anaglyph showing a microscopic image taken of an area measuring 3 centimeters (1.2 inches) across on the rock called Adirondack. The image was taken at Gusev Crater on the 33rd day of the Mars Exploration Rover Spirit's journey (Feb. 5, 2004), after the rover used its rock abrasion tool brush to clean the surface of the rock. Dust, which was pushed off to the side during cleaning, can still be seen to the left and in low areas of the rock.
Love, Lonnie
2015-01-09
ORNL's newly printed 3D Shelby Cobra was showcased at the 2015 NAIAS in Detroit. This "laboratory on wheels" uses the Shelby Cobra design, celebrating the 50th anniversary of this model and honoring the first vehicle to be voted a national monument. The Shelby was printed at the Department of Energy’s Manufacturing Demonstration Facility at ORNL using the BAAM (Big Area Additive Manufacturing) machine and is intended as a “plug-n-play” laboratory on wheels. The Shelby will allow research and development of integrated components to be tested and enhanced in real time, improving the use of sustainable, digital manufacturing solutions in the automotive industry.
Multigrid calculations of 3-D turbulent viscous flows
NASA Technical Reports Server (NTRS)
Yokota, Jeffrey W.
1989-01-01
Convergence properties of a multigrid algorithm, developed to calculate compressible viscous flows, are analyzed by a vector sequence eigenvalue estimate. The full 3-D Reynolds-averaged Navier-Stokes equations are integrated by an implicit multigrid scheme while a k-epsilon turbulence model is solved, uncoupled from the flow equations. Estimates of the eigenvalue structure for both single and multigrid calculations are compared in an attempt to analyze the process as well as the results of the multigrid technique. The flow through an annular turbine is used to illustrate the scheme's ability to calculate complex 3-D flows.
Positional Awareness Map 3D (PAM3D)
NASA Technical Reports Server (NTRS)
Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise
2012-01-01
The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.
Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C
2013-06-12
The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.
3D Printable Graphene Composite
Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong
2015-01-01
In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C−1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673
Mannoor, Manu S.; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A.; Soboyejo, Winston O.; Verma, Naveen; Gracias, David H.; McAlpine, Michael C.
2013-01-01
The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the precise anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097
Martian terrain & airbags - 3D
NASA Technical Reports Server (NTRS)
1997-01-01
Portions of the lander's deflated airbags and a petal are at lower left in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
Martian terrain & airbags - 3D
NASA Technical Reports Server (NTRS)
1997-01-01
Portions of the lander's deflated airbags and a petal are at the lower area of this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
NASA Astrophysics Data System (ADS)
Huber, C.; Abert, C.; Bruckner, F.; Groenefeld, M.; Muthsam, O.; Schuschnigg, S.; Sirak, K.; Thanhoffer, R.; Teliban, I.; Vogler, C.; Windl, R.; Suess, D.
2016-10-01
3D print is a recently developed technique, for single-unit production, and for structures that have been impossible to build previously. The current work presents a method to 3D print polymer bonded isotropic hard magnets with a low-cost, end-user 3D printer. Commercially available isotropic NdFeB powder inside a PA11 matrix is characterized, and prepared for the printing process. An example of a printed magnet with a complex shape that was designed to generate a specific stray field is presented, and compared with finite element simulation solving the macroscopic Maxwell equations. For magnetic characterization, and comparing 3D printed structures with injection molded parts, hysteresis measurements are performed. To measure the stray field outside the magnet, the printer is upgraded to a 3D magnetic flux density measurement system. To skip an elaborate adjusting of the sensor, a simulation is used to calibrate the angles, sensitivity, and the offset of the sensor. With this setup, a measurement resolution of 0.05 mm along the z-axes is achievable. The effectiveness of our calibration method is shown. With our setup, we are able to print polymer bonded magnetic systems with the freedom of having a specific complex shape with locally tailored magnetic properties. The 3D scanning setup is easy to mount, and with our calibration method we are able to get accurate measuring results of the stray field.
3D Printing of Graphene Aerogels.
Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong
2016-04-06
3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction.
Quasi 3D dispersion experiment
NASA Astrophysics Data System (ADS)
Bakucz, P.
2003-04-01
This paper studies the problem of tracer dispersion in a coloured fluid flowing through a two-phase 3D rough channel-system in a 40 cm*40 cm plexi-container filled by homogen glass fractions and colourless fluid. The unstable interface between the driving coloured fluid and the colourless fluid develops viscous fingers with a fractal structure at high capillary number. Five two-dimensional fractal fronts have been observed at the same time using four cameras along the vertical side-walls and using one camera located above the plexi-container. In possession of five fronts the spatial concentration contours are determined using statistical models. The concentration contours are self-affine fractal curves with a fractal dimension D=2.19. This result is valid for disperison at high Péclet numbers.
Sinclair, Michael B
2012-01-05
ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from the displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.
Love, Lonnie
2016-11-02
ORNL's newly printed 3D Shelby Cobra was showcased at the 2015 NAIAS in Detroit. This "laboratory on wheels" uses the Shelby Cobra design, celebrating the 50th anniversary of this model and honoring the first vehicle to be voted a national monument. The Shelby was printed at the Department of Energyâs Manufacturing Demonstration Facility at ORNL using the BAAM (Big Area Additive Manufacturing) machine and is intended as a âplug-n-playâ laboratory on wheels. The Shelby will allow research and development of integrated components to be tested and enhanced in real time, improving the use of sustainable, digital manufacturing solutions in the automotive industry.
NASA Technical Reports Server (NTRS)
2009-01-01
wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.
The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.
This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.
High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these
ERIC Educational Resources Information Center
Snyder, Jennifer
2012-01-01
Students often have a hard time equating time spent on art history as time well spent in the art room. Likewise, art teachers struggle with how to keep interest in their classrooms high when the subject turns to history. Some teachers show endless videos, with the students nodding sleepily along to the narrator. Others try to incorporate small…
THERM3D -- A boundary element computer program for transient heat conduction problems
Ingber, M.S.
1994-02-01
The computer code THERM3D implements the direct boundary element method (BEM) to solve transient heat conduction problems in arbitrary three-dimensional domains. This particular implementation of the BEM avoids performing time-consuming domain integrations by approximating a ``generalized forcing function`` in the interior of the domain with the use of radial basis functions. An approximate particular solution is then constructed, and the original problem is transformed into a sequence of Laplace problems. The code is capable of handling a large variety of boundary conditions including isothermal, specified flux, convection, radiation, and combined convection and radiation conditions. The computer code is benchmarked by comparisons with analytic and finite element results.
Reconfigurable liquid metal circuits by Laplace pressure shaping
NASA Astrophysics Data System (ADS)
Cumby, Brad L.; Hayes, Gerard J.; Dickey, Michael D.; Justice, Ryan S.; Tabor, Christopher E.; Heikenfeld, Jason C.
2012-10-01
We report reconfigurable circuits formed by liquid metal shaping with <10 pounds per square inch (psi) Laplace and vacuum pressures. Laplace pressure drives liquid metals into microreplicated trenches, and upon release of vacuum, the liquid metal dewets into droplets that are compacted to 10-100× less area than when in the channel. Experimental validation includes measurements of actuation speeds exceeding 30 cm/s, simple erasable resistive networks, and switchable 4.5 GHz antennas. Such capability may be of value for next generation of simple electronic switches, tunable antennas, adaptive reflectors, and switchable metamaterials.
Non-isothermal 3D SDPD Simulations
NASA Astrophysics Data System (ADS)
Yang, Jun; Potami, Raffaele; Gatsonis, Nikolaos
2012-11-01
The study of fluids at micro and nanoscale requires new modeling and computational approaches. Smooth Particle Dissipative Dynamics (SDPD) is a mesh-free method that provides a bridge between the continuum equations of hydrodynamics embedded in the Smooth Particle Hydrodynamics approach and the molecular nature embedded in the DPD approach. SDPD is thermodynamically consistent, does not rely on arbitrary coefficients for its thermostat, involves realistic transport coefficients, and includes fluctuation terms. SDPD is implemented in our work for arbitrary 3D geometries with a methodology to model solid wall boundary conditions. We present simulations for isothermal flows for verification of our approach. The entropy equation is implemented with a velocity-entropy Verlet integration algorithm Flows with heat transfer are simulated for verification of the SDPD. We present also the self-diffusion coefficient derived from SDPD simulations for gases and liquids. Results show the scale dependence of self-diffusion coefficient on SDPD particle size. Computational Mathematics Program of the Air Force Office of Scientific Research under grant/contract number FA9550-06-1-0236.
NASA Astrophysics Data System (ADS)
Hermanns, Maria
The Kitaev honeycomb model has become one of the archetypal spin models exhibiting topological phases of matter, where the magnetic moments fractionalize into Majorana fermions interacting with a Z2 gauge field. In this talk, we discuss generalizations of this model to three-dimensional lattice structures. Our main focus is the metallic state that the emergent Majorana fermions form. In particular, we discuss the relation of the nature of this Majorana metal to the details of the underlying lattice structure. Besides (almost) conventional metals with a Majorana Fermi surface, one also finds various realizations of Dirac semi-metals, where the gapless modes form Fermi lines or even Weyl nodes. We introduce a general classification of these gapless quantum spin liquids using projective symmetry analysis. Furthermore, we briefly outline why these Majorana metals in 3D Kitaev systems provide an even richer variety of Dirac and Weyl phases than possible for electronic matter and comment on possible experimental signatures. Work done in collaboration with Kevin O'Brien and Simon Trebst.
3D multiplexed immunoplasmonics microscopy
NASA Astrophysics Data System (ADS)
Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel
2016-07-01
Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed
Crowdsourcing Based 3d Modeling
NASA Astrophysics Data System (ADS)
Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.
2016-06-01
Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.
[3D emulation of epicardium dynamic mapping].
Lu, Jun; Yang, Cui-Wei; Fang, Zu-Xiang
2005-03-01
In order to realize epicardium dynamic mapping of the whole atria, 3-D graphics are drawn with OpenGL. Some source codes are introduced in the paper to explain how to produce, read, and manipulate 3-D model data.
An interactive multiview 3D display system
NASA Astrophysics Data System (ADS)
Zhang, Zhaoxing; Geng, Zheng; Zhang, Mei; Dong, Hui
2013-03-01
The progresses in 3D display systems and user interaction technologies will help more effective 3D visualization of 3D information. They yield a realistic representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them. In this paper, we describe an autostereoscopic multiview 3D display system with capability of real-time user interaction. Design principle of this autostereoscopic multiview 3D display system is presented, together with the details of its hardware/software architecture. A prototype is built and tested based upon multi-projectors and horizontal optical anisotropic display structure. Experimental results illustrate the effectiveness of this novel 3D display and user interaction system.
Numerical determination of the fundamental eigenvalue for the Laplace operator on a spherical domain
NASA Technical Reports Server (NTRS)
Walden, H.
1977-01-01
Methods for obtaining approximate solutions for the fundamental eigenvalue of the Laplace-Beltrami operator (i.e., the membrane eignevalue problem for the vibration equation) on the unit spherical surface are developed. Two types of spherical surface domains are considered: the interior of a spherical triangle, and the exterior of a great circle arc extending for less than pi radians (a spherical surface with a slit). In both cases, zero boundary conditions are imposed. In order to solve the resulting second-order elliptic partial differential equations in two independent variables, a finite difference approximation is employed. The fundamental eigenvalue is approximated by iteration utilizing the power method and point successive overrelaxation. Some numerical results are given and compared, in certain special cases, with analytical solutions to the eigenvalue problem. The significance of the numerical eigenvalue results is discussed in terms of the singularities in the solution of three-dimensional boundary-value problems near a polyhedral corner of the domain.
Laser Based 3D Volumetric Display System
1993-03-01
Literature, Costa Mesa, CA July 1983. 3. "A Real Time Autostereoscopic Multiplanar 3D Display System", Rodney Don Williams, Felix Garcia, Jr., Texas...8217 .- NUMBERS LASER BASED 3D VOLUMETRIC DISPLAY SYSTEM PR: CD13 0. AUTHOR(S) PE: N/AWIU: DN303151 P. Soltan, J. Trias, W. Robinson, W. Dahlke 7...laser generated 3D volumetric images on a rotating double helix, (where the 3D displays are computer controlled for group viewing with the naked eye
True 3d Images and Their Applications
NASA Astrophysics Data System (ADS)
Wang, Z.; wang@hzgeospace., zheng.
2012-07-01
A true 3D image is a geo-referenced image. Besides having its radiometric information, it also has true 3Dground coordinates XYZ for every pixels of it. For a true 3D image, especially a true 3D oblique image, it has true 3D coordinates not only for building roofs and/or open grounds, but also for all other visible objects on the ground, such as visible building walls/windows and even trees. The true 3D image breaks the 2D barrier of the traditional orthophotos by introducing the third dimension (elevation) into the image. From a true 3D image, for example, people will not only be able to read a building's location (XY), but also its height (Z). true 3D images will fundamentally change, if not revolutionize, the way people display, look, extract, use, and represent the geospatial information from imagery. In many areas, true 3D images can make profound impacts on the ways of how geospatial information is represented, how true 3D ground modeling is performed, and how the real world scenes are presented. This paper first gives a definition and description of a true 3D image and followed by a brief review of what key advancements of geospatial technologies have made the creation of true 3D images possible. Next, the paper introduces what a true 3D image is made of. Then, the paper discusses some possible contributions and impacts the true 3D images can make to geospatial information fields. At the end, the paper presents a list of the benefits of having and using true 3D images and the applications of true 3D images in a couple of 3D city modeling projects.
SALE3D. ICEd-ALE Treatment of 3-D Fluid Flow
Amsden, A.A.; Ruppel, H.M.
1992-01-14
SALE3D calculates three-dimensional fluid flow at all speeds, from the incompressible limit to highly supersonic. An implicit treatment of the pressure calculation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique provides this flow speed flexibility. In addition, the computing mesh may move with the fluid in a typical Lagrangian fashion, be held in an Eulerian manner, or move in some arbitrarily specified way to provide a continuous rezoning capability. This latitude results from use of an Arbitrary Lagrangian-Eulerian (ALE) treatment of the mesh. The partial differential equations solved are the Navier-Stokes equations and the mass and internal energy equations. The fluid pressure is determined from an equation of state and supplemented with an artificial viscous pressure for the computation of shock waves. The computing mesh consists of a three-dimensional network of arbitrarily shaped, six-sided deformable cells, and a variety of user-selectable boundary conditions are provided in the program.
3D Printing and Its Urologic Applications
Soliman, Youssef; Feibus, Allison H; Baum, Neil
2015-01-01
3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology. PMID:26028997
Teaching Geography with 3-D Visualization Technology
ERIC Educational Resources Information Center
Anthamatten, Peter; Ziegler, Susy S.
2006-01-01
Technology that helps students view images in three dimensions (3-D) can support a broad range of learning styles. "Geo-Wall systems" are visualization tools that allow scientists, teachers, and students to project stereographic images and view them in 3-D. We developed and presented 3-D visualization exercises in several undergraduate courses.…
Expanding Geometry Understanding with 3D Printing
ERIC Educational Resources Information Center
Cochran, Jill A.; Cochran, Zane; Laney, Kendra; Dean, Mandi
2016-01-01
With the rise of personal desktop 3D printing, a wide spectrum of educational opportunities has become available for educators to leverage this technology in their classrooms. Until recently, the ability to create physical 3D models was well beyond the scope, skill, and budget of many schools. However, since desktop 3D printers have become readily…
NASA Astrophysics Data System (ADS)
Engle, Rob
2008-02-01
This paper discusses the creative and technical challenges encountered during the production of "Beowulf 3D," director Robert Zemeckis' adaptation of the Old English epic poem and the first film to be simultaneously released in IMAX 3D and digital 3D formats.
3D Flow Visualization Using Texture Advection
NASA Technical Reports Server (NTRS)
Kao, David; Zhang, Bing; Kim, Kwansik; Pang, Alex; Moran, Pat (Technical Monitor)
2001-01-01
Texture advection is an effective tool for animating and investigating 2D flows. In this paper, we discuss how this technique can be extended to 3D flows. In particular, we examine the use of 3D and 4D textures on 3D synthetic and computational fluid dynamics flow fields.
Numerical Laplace Transform Inversion Employing the Gaver-Stehfest Algorithm.
ERIC Educational Resources Information Center
Jacquot, Raymond G.; And Others
1985-01-01
Presents a technique for the numerical inversion of Laplace Transforms and several examples employing this technique. Limitations of the method in terms of available computer word length and the effects of these limitations on approximate inverse functions are also discussed. (JN)
Using Expected Value to Introduce the Laplace Transform
ERIC Educational Resources Information Center
Lutzer, Carl V.
2015-01-01
We propose an introduction to the Laplace transform in which Riemann sums are used to approximate the expected net change in a function, assuming that it quantifies a process that can terminate at random. We assume only a basic understanding of probability.
Quasi-3D Algorithm in Multi-scale Modeling Framework
NASA Astrophysics Data System (ADS)
Jung, J.; Arakawa, A.
2008-12-01
As discussed in the companion paper by Arakawa and Jung, the Quasi-3D (Q3D) Multi-scale Modeling Framework (MMF) is a 4D estimation/prediction framework that combines a GCM with a 3D anelastic vector vorticity equation model (VVM) applied to a Q3D network of horizontal grid points. This paper presents an outline of the recently revised Q3D algorithm and a highlight of the results obtained by application of the algorithm to an idealized model setting. The Q3D network of grid points consists of two sets of grid-point arrays perpendicular to each other. For a scalar variable, for example, each set consists of three parallel rows of grid points. Principal and supplementary predictions are made on the central and the two adjacent rows, respectively. The supplementary prediction is to allow the principal prediction be three-dimensional at least to the second-order accuracy. To accommodate a higher-order accuracy and to make the supplementary predictions formally three-dimensional, a few rows of ghost points are added at each side of the array. Values at these ghost points are diagnostically determined by a combination of statistical estimation and extrapolation. The basic structure of the estimation algorithm is determined in view of the global stability of Q3D advection. The algorithm is calibrated using the statistics of past data at and near the intersections of the two sets of grid- point arrays. Since the CRM in the Q3D MMF extends beyond individual GCM boxes, the CRM can be a GCM by itself. However, it is better to couple the CRM with the GCM because (1) the CRM is a Q3D CRM based on a highly anisotropic network of grid points and (2) coupling with a GCM makes it more straightforward to inherit our experience with the conventional GCMs. In the coupled system we have selected, prediction of thermdynamic variables is almost entirely done by the Q3D CRM with no direct forcing by the GCM. The coupling of the dynamics between the two components is through mutual
NASA Astrophysics Data System (ADS)
Orazov, Issabek; Besbaev, Gani A.
2016-12-01
In the present work we investigate a nonlocal boundary problem for the Laplace equation in a half-disk, with opposite flows at the part of the boundary. The difference of this problem is the impossibility of direct applying of the Fourier method (separation of variables). Because the corresponding spectral problem for the ordinary differential equation has the system of eigenfunctions not forming a basis. A special system of functions based on these eigenfunctions is constructed. This system has already formed the basis. This fact is used for solving the nonlocal boundary problem. The existence and the uniqueness of classical solution of the problem are proved.
3-D Perspective Pasadena, California
NASA Technical Reports Server (NTRS)
2000-01-01
This perspective view shows the western part of the city of Pasadena, California, looking north towards the San Gabriel Mountains. Portions of the cities of Altadena and La Canada, Flintridge are also shown. The image was created from three datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation data; Landsat data from November 11, 1986 provided the land surface color (not the sky) and U.S. Geological Survey digital aerial photography provides the image detail. The Rose Bowl, surrounded by a golf course, is the circular feature at the bottom center of the image. The Jet Propulsion Laboratory is the cluster of large buildings north of the Rose Bowl at the base of the mountains. A large landfill, Scholl Canyon, is the smooth area in the lower left corner of the scene. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Wildfires strip the mountains of vegetation, increasing the hazards from flooding and mudflows for several years afterwards. Data such as shown on this image can be used to predict both how wildfires will spread over the terrain and also how mudflows will be channeled down the canyons. The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency
Multitasking the code ARC3D. [for computational fluid dynamics
NASA Technical Reports Server (NTRS)
Barton, John T.; Hsiung, Christopher C.
1986-01-01
The CRAY multitasking system was developed in order to utilize all four processors and sharply reduce the wall clock run time. This paper describes the techniques used to modify the computational fluid dynamics code ARC3D for this run and analyzes the achieved speedup. The ARC3D code solves either the Euler or thin-layer N-S equations using an implicit approximate factorization scheme. Results indicate that multitask processing can be used to achieve wall clock speedup factors of over three times, depending on the nature of the program code being used. Multitasking appears to be particularly advantageous for large-memory problems running on multiple CPU computers.
Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion
NASA Astrophysics Data System (ADS)
Handy Turner, Tara
2010-02-01
From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.
Mini 3D for shallow gas reconnaissance
Vallieres, T. des; Enns, D.; Kuehn, H.; Parron, D.; Lafet, Y.; Van Hulle, D.
1996-12-31
The Mini 3D project was undertaken by TOTAL and ELF with the support of CEPM (Comite d`Etudes Petrolieres et Marines) to define an economical method of obtaining 3D seismic HR data for shallow gas assessment. An experimental 3D survey was carried out with classical site survey techniques in the North Sea. From these data 19 simulations, were produced to compare different acquisition geometries ranging from dual, 600 m long cables to a single receiver. Results show that short offset, low fold and very simple streamer positioning are sufficient to give a reliable 3D image of gas charged bodies. The 3D data allow a much more accurate risk delineation than 2D HR data. Moreover on financial grounds Mini-3D is comparable in cost to a classical HR 2D survey. In view of these results, such HR 3D should now be the standard for shallow gas surveying.
Solution of the General Helmholtz Equation Starting from Laplace’s Equation
2002-11-01
ingle -ridge wav guide Mode Mode k, k, Diff. No. published computed % (rad/cm) (rad/cm) 1. T M 12.1640W 12.2338 0.57 m- 2. TM, 2.293817 12,4106 0.95...and Appointments Committee, IEEE she is a Profesor Titular de Ethics and Member Conduct Committee, and IEEE Universidad of the Departamnento de
NASA Astrophysics Data System (ADS)
Yang, Bian-Xia; Sun, Hong-Rui; Feng, Zhaosheng
In this paper, we are concerned with the unilateral global bifurcation structure of fractional differential equation (‑Δ)αu(x) = λa(x)u(x) + F(x,u,λ),x ∈ Ω,u = 0,inℝN\\Ω with nondifferentiable nonlinearity F. It shows that there are two distinct unbounded subcontinua 𝒞+ and 𝒞‑ consisting of the continuum 𝒞 emanating from [λ1 ‑ d,λ1 + d] ×{0}, and two unbounded subcontinua 𝒟+ and 𝒟‑ consisting of the continuum 𝒟 emanating from [λ1 ‑d¯,λ1 + d¯] ×{∞}. As an application of this unilateral global bifurcation results, we present the existence of the principal half-eigenvalues of the half-linear fractional eigenvalue problem. Finally, we deal with the existence of constant sign solutions for a class of fractional nonlinear problems. Main results of this paper generalize the known results on classical Laplace operators to fractional Laplace operators.
Unstructured grid solutions to a wing/pylon/store configuration using VGRID3D/USM3D
NASA Technical Reports Server (NTRS)
Parikh, Paresh; Pirzadeh, Shahyar; Frink, Neal T.
1992-01-01
The purpose of this paper is to validate an inviscid flow solution package based on a new unstructured grid methodology using experimental data on a wing/pylon/store configuration. The solution package consists of an advancing front unstructured grid generator, VGRID3D, and an efficient Euler equation solver, USM3D. Comparisons of computed data versus experimental data are made for two free-stream Mach numbers at five store locations relative to the wing. Both rigid body aerodynamics and mutual interference effects are explored. A very good agreement is observed between computed and wind tunnel data.
Compression of 3D Point Clouds Using a Region-Adaptive Hierarchical Transform.
De Queiroz, Ricardo; Chou, Philip A
2016-06-01
In free-viewpoint video, there is a recent trend to represent scene objects as solids rather than using multiple depth maps. Point clouds have been used in computer graphics for a long time and with the recent possibility of real time capturing and rendering, point clouds have been favored over meshes in order to save computation. Each point in the cloud is associated with its 3D position and its color. We devise a method to compress the colors in point clouds which is based on a hierarchical transform and arithmetic coding. The transform is a hierarchical sub-band transform that resembles an adaptive variation of a Haar wavelet. The arithmetic encoding of the coefficients assumes Laplace distributions, one per sub-band. The Laplace parameter for each distribution is transmitted to the decoder using a custom method. The geometry of the point cloud is encoded using the well-established octtree scanning. Results show that the proposed solution performs comparably to the current state-of-the-art, in many occasions outperforming it, while being much more computationally efficient. We believe this work represents the state-of-the-art in intra-frame compression of point clouds for real-time 3D video.
POISs3: A 3D poisson smoother of structured grids
NASA Astrophysics Data System (ADS)
Lehtimaeki, R.
Flow solvers based on solving Navier-Stokes or Euler equations generally need a computational grid to represent the domain of the flow. A structured computational grid can be efficiently produced by algebraic methods like transfinite interpolation. Unfortunately, algebraic methods propagate all kinds of unsmoothness of the boundary into the field. Unsmoothness of the grid, in turn, can result in inaccuracy in the flow solver. In the present work a 3D elliptic grid smoother was developed. The smoother is based on solving three Poisson equations, one for each curvilinear direction. The Poisson equations formed in the physical region are first transformed to the computational (rectilinear) region. The resulting equations form a system of three coupled elliptic quasi-linear partial differential equations in the computational domain. A short review of the Poisson method is presented. The regularity of a grid cell is studied and a skewness value is developed.
NASA Astrophysics Data System (ADS)
Hejazialhosseini, Babak; Rossinelli, Diego; Koumoutsakos, Petros
2013-09-01
We present a simulation for the interactions of shockwaves with light spherical density inhomogeneities. Euler equations for two-phase compressible flows are solved in a 3D uniform resolution finite volume based solver using 5th order WENO reconstructions of the primitive quantities, HLL-type numerical fluxes and 3rd order TVD time stepping scheme. In this study, a normal Mach 3 shockwave in air is directed at a helium bubble with an interface Atwood number of -0.76. We employ 4 billion cells on a supercomputing cluster and demonstrate the development of this flow until relatively late times. Shock passage compresses the bubble and deposits baroclinic vorticity on the interface. Initial distribution of the vorticity and compressions lead to the formation of an air jet, interface roll-ups and the formation of a long lasting vortical core, the white core. Compressed upstream of the bubble turns into a mixing zone and as the vortex ring distances from this mixing zone, a plume-shaped region is formed and sustained. Close observations have been reported in previous experimental works. The visualization is presented in a fluid dynamics video.
3D RISM theory with fast reciprocal-space electrostatics
Heil, Jochen; Kast, Stefan M.
2015-03-21
The calculation of electrostatic solute-solvent interactions in 3D RISM (“three-dimensional reference interaction site model”) integral equation theory is recast in a form that allows for a computational treatment analogous to the “particle-mesh Ewald” formalism as used for molecular simulations. In addition, relations that connect 3D RISM correlation functions and interaction potentials with thermodynamic quantities such as the chemical potential and average solute-solvent interaction energy are reformulated in a way that calculations of expensive real-space electrostatic terms on the 3D grid are completely avoided. These methodical enhancements allow for both, a significant speedup particularly for large solute systems and a smoother convergence of predicted thermodynamic quantities with respect to box size, as illustrated for several benchmark systems.
VISRAD, 3-D Target Design and Radiation Simulation Code
NASA Astrophysics Data System (ADS)
Golovkin, Igor; Macfarlane, Joseph; Golovkina, Viktoriya
2016-10-01
The 3-D view factor code VISRAD is widely used in designing HEDP experiments at major laser and pulsed-power facilities, including NIF, OMEGA, OMEGA-EP, ORION, LMJ, Z, and PLX. It simulates target designs by generating a 3-D grid of surface elements, utilizing a variety of 3-D primitives and surface removal algorithms, and can be used to compute the radiation flux throughout the surface element grid by computing element-to-element view factors and solving power balance equations. Target set-up and beam pointing are facilitated by allowing users to specify positions and angular orientations using a variety of coordinates systems (e.g., that of any laser beam, target component, or diagnostic port). Analytic modeling for laser beam spatial profiles for OMEGA DPPs and NIF CPPs is used to compute laser intensity profiles throughout the grid of surface elements. We will discuss recent improvements to the software package and plans for future developments.
3-D Technology Approaches for Biological Ecologies
NASA Astrophysics Data System (ADS)
Liu, Liyu; Austin, Robert; U. S-China Physical-Oncology Sciences Alliance (PS-OA) Team
Constructing three dimensional (3-D) landscapes is an inevitable issue in deep study of biological ecologies, because in whatever scales in nature, all of the ecosystems are composed by complex 3-D environments and biological behaviors. Just imagine if a 3-D technology could help complex ecosystems be built easily and mimic in vivo microenvironment realistically with flexible environmental controls, it will be a fantastic and powerful thrust to assist researchers for explorations. For years, we have been utilizing and developing different technologies for constructing 3-D micro landscapes for biophysics studies in in vitro. Here, I will review our past efforts, including probing cancer cell invasiveness with 3-D silicon based Tepuis, constructing 3-D microenvironment for cell invasion and metastasis through polydimethylsiloxane (PDMS) soft lithography, as well as explorations of optimized stenting positions for coronary bifurcation disease with 3-D wax printing and the latest home designed 3-D bio-printer. Although 3-D technologies is currently considered not mature enough for arbitrary 3-D micro-ecological models with easy design and fabrication, I hope through my talk, the audiences will be able to sense its significance and predictable breakthroughs in the near future. This work was supported by the State Key Development Program for Basic Research of China (Grant No. 2013CB837200), the National Natural Science Foundation of China (Grant No. 11474345) and the Beijing Natural Science Foundation (Grant No. 7154221).
3D change detection - Approaches and applications
NASA Astrophysics Data System (ADS)
Qin, Rongjun; Tian, Jiaojiao; Reinartz, Peter
2016-12-01
Due to the unprecedented technology development of sensors, platforms and algorithms for 3D data acquisition and generation, 3D spaceborne, airborne and close-range data, in the form of image based, Light Detection and Ranging (LiDAR) based point clouds, Digital Elevation Models (DEM) and 3D city models, become more accessible than ever before. Change detection (CD) or time-series data analysis in 3D has gained great attention due to its capability of providing volumetric dynamics to facilitate more applications and provide more accurate results. The state-of-the-art CD reviews aim to provide a comprehensive synthesis and to simplify the taxonomy of the traditional remote sensing CD techniques, which mainly sit within the boundary of 2D image/spectrum analysis, largely ignoring the particularities of 3D aspects of the data. The inclusion of 3D data for change detection (termed 3D CD), not only provides a source with different modality for analysis, but also transcends the border of traditional top-view 2D pixel/object-based analysis to highly detailed, oblique view or voxel-based geometric analysis. This paper reviews the recent developments and applications of 3D CD using remote sensing and close-range data, in support of both academia and industry researchers who seek for solutions in detecting and analyzing 3D dynamics of various objects of interest. We first describe the general considerations of 3D CD problems in different processing stages and identify CD types based on the information used, being the geometric comparison and geometric-spectral analysis. We then summarize relevant works and practices in urban, environment, ecology and civil applications, etc. Given the broad spectrum of applications and different types of 3D data, we discuss important issues in 3D CD methods. Finally, we present concluding remarks in algorithmic aspects of 3D CD.
3D measurement for rapid prototyping
NASA Astrophysics Data System (ADS)
Albrecht, Peter; Lilienblum, Tilo; Sommerkorn, Gerd; Michaelis, Bernd
1996-08-01
Optical 3-D measurement is an interesting approach for rapid prototyping. On one hand it's necessary to get the 3-D data of an object and on the other hand it's necessary to check the manufactured object (quality checking). Optical 3-D measurement can realize both. Classical 3-D measurement procedures based on photogrammetry cause systematic errors at strongly curved surfaces or steps in surfaces. One possibility to reduce these errors is to calculate the 3-D coordinates from several successively taken images. Thus it's possible to get higher spatial resolution and to reduce the systematic errors at 'problem surfaces.' Another possibility is to process the measurement values by neural networks. A modified associative memory smoothes and corrects the calculated 3-D coordinates using a-priori knowledge about the measurement object.
The Classical Laplace Plane and Its use as a Stable Disposal Orbit for GEO
NASA Astrophysics Data System (ADS)
Rosengren, A.; Scheeres, D.; McMahon, J.
2013-09-01
The geosynchronous Earth orbit (GEO) is the most susceptible region to space debris because there is no natural cleansing mechanism, such as atmospheric drag. Placing satellites in super-synchronous disposal orbits at the ends of their operational lifetimes has been recommended and practiced as one possible means of protecting this environment. The discovery of the high area-to-mass ratio (HAMR) debris population in near geosynchronous orbit (ca. 2004) raises concern for the long-term sustainability of this unique resource. It is currently believed that HAMR objects are sheets of multilayer insulation detaching from satellites in GEO disposal orbits due to surface degradation and material deterioration. The low energy release of HAMR objects from aging satellites abandoned in disposal orbits is not directly addressed in the national policies that established the graveyard. The current disposal regions cannot account for the large solar radiation pressure (SRP) perturbations of HAMR objects, implying that these storage orbits are not well suited as a graveyard. The orbital dynamics of uncontrolled GEO satellites is governed by the oblateness of the Earth and luni-solar gravitational interactions. By itself, Earth's oblateness causes the pole of the orbital plane to precess around Earth's rotation pole. Lunisolar perturbations will have a similar effect, but the precession will now take place about the orbit poles of the Moon and the Sun, respectively. The classical Laplace plane is the mean reference plane about whose axis the satellite's orbit precesses. On the Laplace place, the secular orbital evolution driven by the combined effects of these perturbations is zero, so that the orbits are frozen. The Laplace plane at GEO lies between the plane of the Earth's equator and that of the ecliptic, passing through their intersection, and has an inclination of about 7.5 degrees relative to Earth's equator. The uncontrolled GEO satellites precess at a constant inclination
Coronal roots of solar wind streams: 3-D MHD modeling
NASA Technical Reports Server (NTRS)
Pisanko, Yu. V.
1995-01-01
Weak (discontinuous) solutions of the 3-D MHD equations look like a promising tool to model the transonic solar wind with structural elements: current sheets, coronal plumes etc. Using the observational information about various coronal emissions one can include these structural elements into the 3-D MHD solar wind model by embedding the discontinuities of given type. Such 3-D MHD structured solar wind is calculated self-consistently: variants are examined via numerical experiments. In particular, the behavior of coronal plumes in the transonic solar wind flow, is modeled. The input information for numerical modeling (for example, the magnetic field map at the very base of the solar corona) can be adjusted so that fast stream arises over the center of the coronal hole, over the coronal hole boundaries and, even, over the region with closed magnetic topology. 3-D MHD equations have the analytical solution which can serve as a model of supersonic trans-alfvenic solar wind in the (5-20) solar radii heliocentric distance interval. The transverse, nonradial total (gas + magnetic field) pressure balance in the flow is the corner-stone of this solution. The solution describes the filamentation (ray-like structure of the solar corona) and streaming (formation of high-speed streams with velocities up to 800 km/sec) as a consequence of the magnetic field spatial inhomogeneous structure and trans-alfvenic character of the flow. The magnetic field works in the model as a 'controller' for the solar wind streaming and filamentation.
Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU.
Xia, Yong; Wang, Kuanquan; Zhang, Henggui
2015-01-01
Large-scale 3D virtual heart model simulations are highly demanding in computational resources. This imposes a big challenge to the traditional computation resources based on CPU environment, which already cannot meet the requirement of the whole computation demands or are not easily available due to expensive costs. GPU as a parallel computing environment therefore provides an alternative to solve the large-scale computational problems of whole heart modeling. In this study, using a 3D sheep atrial model as a test bed, we developed a GPU-based simulation algorithm to simulate the conduction of electrical excitation waves in the 3D atria. In the GPU algorithm, a multicellular tissue model was split into two components: one is the single cell model (ordinary differential equation) and the other is the diffusion term of the monodomain model (partial differential equation). Such a decoupling enabled realization of the GPU parallel algorithm. Furthermore, several optimization strategies were proposed based on the features of the virtual heart model, which enabled a 200-fold speedup as compared to a CPU implementation. In conclusion, an optimized GPU algorithm has been developed that provides an economic and powerful platform for 3D whole heart simulations.
Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU
Xia, Yong; Wang, Kuanquan; Zhang, Henggui
2015-01-01
Large-scale 3D virtual heart model simulations are highly demanding in computational resources. This imposes a big challenge to the traditional computation resources based on CPU environment, which already cannot meet the requirement of the whole computation demands or are not easily available due to expensive costs. GPU as a parallel computing environment therefore provides an alternative to solve the large-scale computational problems of whole heart modeling. In this study, using a 3D sheep atrial model as a test bed, we developed a GPU-based simulation algorithm to simulate the conduction of electrical excitation waves in the 3D atria. In the GPU algorithm, a multicellular tissue model was split into two components: one is the single cell model (ordinary differential equation) and the other is the diffusion term of the monodomain model (partial differential equation). Such a decoupling enabled realization of the GPU parallel algorithm. Furthermore, several optimization strategies were proposed based on the features of the virtual heart model, which enabled a 200-fold speedup as compared to a CPU implementation. In conclusion, an optimized GPU algorithm has been developed that provides an economic and powerful platform for 3D whole heart simulations. PMID:26581957
Photorefractive Polymers for Updateable 3D Displays
2010-02-24
Final Performance Report 3. DATES COVERED (From - To) 01-01-2007 to 11-30-2009 4. TITLE AND SUBTITLE Photorefractive Polymers for Updateable 3D ...ABSTRACT During the tenure of this project a large area updateable 3D color display has been developed for the first time using a new co-polymer...photorefractive polymers have been demonstrated. Moreover, a 6 inch × 6 inch sample was fabricated demonstrating the feasibility of making large area 3D
3D Microperfusion Model of ADPKD
2015-10-01
Stratasys 3D printer . PDMS was cast in the negative molds in order to create permanent biocompatible plastic masters (SmoothCast 310). All goals of task...1 AWARD NUMBER: W81XWH-14-1-0304 TITLE: 3D Microperfusion Model of ADPKD PRINCIPAL INVESTIGATOR: David L. Kaplan CONTRACTING ORGANIZATION...ADDRESS. 1. REPORT DATE October 2015 2. REPORT TYPE Annual Report 3. DATES COVERED 15 Sep 2014 - 14 Sep 2015 4. TITLE AND SUBTITLE 3D
Parker, Dennis L.
2015-01-01
SYNOPSIS There has been significant progress made in 3D carotid plaque magnetic resonance imaging techniques in recent years. 3D plaque imaging clearly represents the future in clinical use. With effective flow suppression techniques, choices of different contrast weighting acquisitions, and time-efficient imaging approaches, 3D plaque imaging offers flexible imaging plane and view angle analysis, large coverage, multi-vascular beds capability, and even can be used in fast screening. PMID:26610656
3-D Extensions for Trustworthy Systems
2011-01-01
3- D Extensions for Trustworthy Systems (Invited Paper) Ted Huffmire∗, Timothy Levin∗, Cynthia Irvine∗, Ryan Kastner† and Timothy Sherwood...address these problems, we propose an approach to trustworthy system development based on 3- D integration, an emerging chip fabrication technique in...which two or more integrated circuit dies are fabricated individually and then combined into a single stack using vertical conductive posts. With 3- D
Hardware Trust Implications of 3-D Integration
2010-12-01
enhancing a commod- ity processor with a variety of security functions. This paper examines the 3-D design approach and provides an analysis concluding...of key components. The question addressed by this paper is, “Can a 3-D control plane provide useful secure services when it is conjoined with an...untrust- worthy computation plane?” Design-level investigation of this question yields a definite yes. This paper explores 3- D applications and their
Digital holography and 3-D imaging.
Banerjee, Partha; Barbastathis, George; Kim, Myung; Kukhtarev, Nickolai
2011-03-01
This feature issue on Digital Holography and 3-D Imaging comprises 15 papers on digital holographic techniques and applications, computer-generated holography and encryption techniques, and 3-D display. It is hoped that future work in the area leads to innovative applications of digital holography and 3-D imaging to biology and sensing, and to the development of novel nonlinear dynamic digital holographic techniques.
3D seismic image processing for interpretation
NASA Astrophysics Data System (ADS)
Wu, Xinming
Extracting fault, unconformity, and horizon surfaces from a seismic image is useful for interpretation of geologic structures and stratigraphic features. Although interpretation of these surfaces has been automated to some extent by others, significant manual effort is still required for extracting each type of these geologic surfaces. I propose methods to automatically extract all the fault, unconformity, and horizon surfaces from a 3D seismic image. To a large degree, these methods just involve image processing or array processing which is achieved by efficiently solving partial differential equations. For fault interpretation, I propose a linked data structure, which is simpler than triangle or quad meshes, to represent a fault surface. In this simple data structure, each sample of a fault corresponds to exactly one image sample. Using this linked data structure, I extract complete and intersecting fault surfaces without holes from 3D seismic images. I use the same structure in subsequent processing to estimate fault slip vectors. I further propose two methods, using precomputed fault surfaces and slips, to undo faulting in seismic images by simultaneously moving fault blocks and faults themselves. For unconformity interpretation, I first propose a new method to compute a unconformity likelihood image that highlights both the termination areas and the corresponding parallel unconformities and correlative conformities. I then extract unconformity surfaces from the likelihood image and use these surfaces as constraints to more accurately estimate seismic normal vectors that are discontinuous near the unconformities. Finally, I use the estimated normal vectors and use the unconformities as constraints to compute a flattened image, in which seismic reflectors are all flat and vertical gaps correspond to the unconformities. Horizon extraction is straightforward after computing a map of image flattening; we can first extract horizontal slices in the flattened space
A Nonlinear Modal Aeroelastic Solver for FUN3D
NASA Technical Reports Server (NTRS)
Goldman, Benjamin D.; Bartels, Robert E.; Biedron, Robert T.; Scott, Robert C.
2016-01-01
A nonlinear structural solver has been implemented internally within the NASA FUN3D computational fluid dynamics code, allowing for some new aeroelastic capabilities. Using a modal representation of the structure, a set of differential or differential-algebraic equations are derived for general thin structures with geometric nonlinearities. ODEPACK and LAPACK routines are linked with FUN3D, and the nonlinear equations are solved at each CFD time step. The existing predictor-corrector method is retained, whereby the structural solution is updated after mesh deformation. The nonlinear solver is validated using a test case for a flexible aeroshell at transonic, supersonic, and hypersonic flow conditions. Agreement with linear theory is seen for the static aeroelastic solutions at relatively low dynamic pressures, but structural nonlinearities limit deformation amplitudes at high dynamic pressures. No flutter was found at any of the tested trajectory points, though LCO may be possible in the transonic regime.
Dimensional accuracy of 3D printed vertebra
NASA Astrophysics Data System (ADS)
Ogden, Kent; Ordway, Nathaniel; Diallo, Dalanda; Tillapaugh-Fay, Gwen; Aslan, Can
2014-03-01
3D printer applications in the biomedical sciences and medical imaging are expanding and will have an increasing impact on the practice of medicine. Orthopedic and reconstructive surgery has been an obvious area for development of 3D printer applications as the segmentation of bony anatomy to generate printable models is relatively straightforward. There are important issues that should be addressed when using 3D printed models for applications that may affect patient care; in particular the dimensional accuracy of the printed parts needs to be high to avoid poor decisions being made prior to surgery or therapeutic procedures. In this work, the dimensional accuracy of 3D printed vertebral bodies derived from CT data for a cadaver spine is compared with direct measurements on the ex-vivo vertebra and with measurements made on the 3D rendered vertebra using commercial 3D image processing software. The vertebra was printed on a consumer grade 3D printer using an additive print process using PLA (polylactic acid) filament. Measurements were made for 15 different anatomic features of the vertebral body, including vertebral body height, endplate width and depth, pedicle height and width, and spinal canal width and depth, among others. It is shown that for the segmentation and printing process used, the results of measurements made on the 3D printed vertebral body are substantially the same as those produced by direct measurement on the vertebra and measurements made on the 3D rendered vertebra.
Verification and Validation of the k-kL Turbulence Model in FUN3D and CFL3D Codes
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.; Carlson, Jan-Renee; Rumsey, Christopher L.
2015-01-01
The implementation of the k-kL turbulence model using multiple computational uid dy- namics (CFD) codes is reported herein. The k-kL model is a two-equation turbulence model based on Abdol-Hamid's closure and Menter's modi cation to Rotta's two-equation model. Rotta shows that a reliable transport equation can be formed from the turbulent length scale L, and the turbulent kinetic energy k. Rotta's equation is well suited for term-by-term mod- eling and displays useful features compared to other two-equation models. An important di erence is that this formulation leads to the inclusion of higher-order velocity derivatives in the source terms of the scale equations. This can enhance the ability of the Reynolds- averaged Navier-Stokes (RANS) solvers to simulate unsteady ows. The present report documents the formulation of the model as implemented in the CFD codes Fun3D and CFL3D. Methodology, veri cation and validation examples are shown. Attached and sepa- rated ow cases are documented and compared with experimental data. The results show generally very good comparisons with canonical and experimental data, as well as matching results code-to-code. The results from this formulation are similar or better than results using the SST turbulence model.
FastScript3D - A Companion to Java 3D
NASA Technical Reports Server (NTRS)
Koenig, Patti
2005-01-01
FastScript3D is a computer program, written in the Java 3D(TM) programming language, that establishes an alternative language that helps users who lack expertise in Java 3D to use Java 3D for constructing three-dimensional (3D)-appearing graphics. The FastScript3D language provides a set of simple, intuitive, one-line text-string commands for creating, controlling, and animating 3D models. The first word in a string is the name of a command; the rest of the string contains the data arguments for the command. The commands can also be used as an aid to learning Java 3D. Developers can extend the language by adding custom text-string commands. The commands can define new 3D objects or load representations of 3D objects from files in formats compatible with such other software systems as X3D. The text strings can be easily integrated into other languages. FastScript3D facilitates communication between scripting languages [which enable programming of hyper-text markup language (HTML) documents to interact with users] and Java 3D. The FastScript3D language can be extended and customized on both the scripting side and the Java 3D side.
The nonsinglet structure function evolution by Laplace method
Boroun, G. R. E-mail: boroun@razi.ac.ir; Zarrin, S.
2015-12-15
We derive a general scheme for the evolution of the nonsinglet structure function at the leadingorder (LO) and next-to-leading-order (NLO) by using the Laplace-transform technique. Results for the nonsinglet structure function are compared with MSTW2008, GRV, and CKMT parameterizations and also EMC experimental data in the LO and NLO analysis. The results are in good agreement with the experimental data and other parameterizations in the low- and large-x regions.
The Laplace resonance in the Kepler-60 planetary system
NASA Astrophysics Data System (ADS)
Goździewski, K.; Migaszewski, C.; Panichi, F.; Szuszkiewicz, E.
2016-01-01
We investigate the dynamical stability of the Kepler-60 planetary system with three super-Earths. We determine their orbital elements and masses by transit timing variation (TTV) data spanning quarters Q1-Q16 of the Kepler mission. The system is dynamically active but the TTV data constrain masses to ˜4 M⊕ and orbits in safely wide stable zones. The observations prefer two types of solutions. The true three-body Laplace mean-motion resonance (MMR) exhibits the critical angle librating around ≃45° and aligned apsides of the inner and outer pair of planets. In the Laplace MMR formed through a chain of two-planet 5:4 and 4:3 MMRs, all critical angles librate with small amplitudes ˜30° and apsidal lines in planet's pairs are anti-aligned. The system is simultaneously locked in a three-body MMR with librations amplitude ≃10o. The true Laplace MMR can evolve towards a chain of two-body MMRs in the presence of planetary migration. Therefore, the three-body MMR formed in this way seems to be more likely state of the system. However, the true three-body MMR cannot be disregarded a priori and it remains a puzzling configuration that may challenge the planet formation theory.
3D ultrafast ultrasound imaging in vivo.
Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu
2014-10-07
Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32 × 32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra--and inter-observer variability.
3D ultrafast ultrasound imaging in vivo
NASA Astrophysics Data System (ADS)
Provost, Jean; Papadacci, Clement; Esteban Arango, Juan; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu
2014-10-01
Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32 × 32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra—and inter-observer variability.
An aerial 3D printing test mission
NASA Astrophysics Data System (ADS)
Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy
2016-05-01
This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.
Intersecting D 3 -D3 ' -brane system at finite temperature
NASA Astrophysics Data System (ADS)
Cottrell, William; Hanson, James; Hashimoto, Akikazu; Loveridge, Andrew; Pettengill, Duncan
2017-02-01
We analyze the dynamics of the intersecting D 3 -D3 ' -brane system overlapping in 1 +1 dimensions, in a holographic treatment where N D3 branes are manifested as anti-de Sitter Schwartzschild geometry, and the D3 ' brane is treated as a probe. We extract the thermodynamic equation of state from the set of embedding solutions, and analyze the stability at the perturbative and the nonperturbative level. We review a systematic procedure to resolve local instabilities and multivaluedness in the equations of state based on classic ideas of convexity in the microcanonical ensemble. We then identify a runaway behavior which was not noticed previously for this system.
A non-conforming 3D spherical harmonic transport solver
Van Criekingen, S.
2006-07-01
A new 3D transport solver for the time-independent Boltzmann transport equation has been developed. This solver is based on the second-order even-parity form of the transport equation. The angular discretization is performed through the expansion of the angular neutron flux in spherical harmonics (PN method). The novelty of this solver is the use of non-conforming finite elements for the spatial discretization. Such elements lead to a discontinuous flux approximation. This interface continuity requirement relaxation property is shared with mixed-dual formulations such as the ones based on Raviart-Thomas finite elements. Encouraging numerical results are presented. (authors)
Integration of real-time 3D image acquisition and multiview 3D display
NASA Astrophysics Data System (ADS)
Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Li, Wei; Wang, Jingyi; Liu, Yongchun
2014-03-01
Seamless integration of 3D acquisition and 3D display systems offers enhanced experience in 3D visualization of the real world objects or scenes. The vivid representation of captured 3D objects displayed on a glasses-free 3D display screen could bring the realistic viewing experience to viewers as if they are viewing real-world scene. Although the technologies in 3D acquisition and 3D display have advanced rapidly in recent years, effort is lacking in studying the seamless integration of these two different aspects of 3D technologies. In this paper, we describe our recent progress on integrating a light-field 3D acquisition system and an autostereoscopic multiview 3D display for real-time light field capture and display. This paper focuses on both the architecture design and the implementation of the hardware and the software of this integrated 3D system. A prototype of the integrated 3D system is built to demonstrate the real-time 3D acquisition and 3D display capability of our proposed system.
Immersive 3D Geovisualization in Higher Education
ERIC Educational Resources Information Center
Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold
2015-01-01
In this study, we investigate how immersive 3D geovisualization can be used in higher education. Based on MacEachren and Kraak's geovisualization cube, we examine the usage of immersive 3D geovisualization and its usefulness in a research-based learning module on flood risk, called GEOSimulator. Results of a survey among participating students…
A 3D Geostatistical Mapping Tool
Weiss, W. W.; Stevenson, Graig; Patel, Ketan; Wang, Jun
1999-02-09
This software provides accurate 3D reservoir modeling tools and high quality 3D graphics for PC platforms enabling engineers and geologists to better comprehend reservoirs and consequently improve their decisions. The mapping algorithms are fractals, kriging, sequential guassian simulation, and three nearest neighbor methods.
ERIC Educational Resources Information Center
Love, Tyler S.; Roy, Ken
2016-01-01
Health concerns from 3D printing were first documented by Stephens, Azimi, Orch, and Ramos (2013), who found that commercially available 3D printers were producing hazardous levels of ultrafine particles (UFPs) and volatile organic compounds (VOCs) when plastic materials were melted through the extruder. UFPs are particles less than 100 nanometers…
Topology dictionary for 3D video understanding.
Tung, Tony; Matsuyama, Takashi
2012-08-01
This paper presents a novel approach that achieves 3D video understanding. 3D video consists of a stream of 3D models of subjects in motion. The acquisition of long sequences requires large storage space (2 GB for 1 min). Moreover, it is tedious to browse data sets and extract meaningful information. We propose the topology dictionary to encode and describe 3D video content. The model consists of a topology-based shape descriptor dictionary which can be generated from either extracted patterns or training sequences. The model relies on 1) topology description and classification using Reeb graphs, and 2) a Markov motion graph to represent topology change states. We show that the use of Reeb graphs as the high-level topology descriptor is relevant. It allows the dictionary to automatically model complex sequences, whereas other strategies would require prior knowledge on the shape and topology of the captured subjects. Our approach serves to encode 3D video sequences, and can be applied for content-based description and summarization of 3D video sequences. Furthermore, topology class labeling during a learning process enables the system to perform content-based event recognition. Experiments were carried out on various 3D videos. We showcase an application for 3D video progressive summarization using the topology dictionary.
3D elastic control for mobile devices.
Hachet, Martin; Pouderoux, Joachim; Guitton, Pascal
2008-01-01
To increase the input space of mobile devices, the authors developed a proof-of-concept 3D elastic controller that easily adapts to mobile devices. This embedded device improves the completion of high-level interaction tasks such as visualization of large documents and navigation in 3D environments. It also opens new directions for tomorrow's mobile applications.
3D Printing of Molecular Models
ERIC Educational Resources Information Center
Gardner, Adam; Olson, Arthur
2016-01-01
Physical molecular models have played a valuable role in our understanding of the invisible nano-scale world. We discuss 3D printing and its use in producing models of the molecules of life. Complex biomolecular models, produced from 3D printed parts, can demonstrate characteristics of molecular structure and function, such as viral self-assembly,…
3D Printed Block Copolymer Nanostructures
ERIC Educational Resources Information Center
Scalfani, Vincent F.; Turner, C. Heath; Rupar, Paul A.; Jenkins, Alexander H.; Bara, Jason E.
2015-01-01
The emergence of 3D printing has dramatically advanced the availability of tangible molecular and extended solid models. Interestingly, there are few nanostructure models available both commercially and through other do-it-yourself approaches such as 3D printing. This is unfortunate given the importance of nanotechnology in science today. In this…
Infrastructure for 3D Imaging Test Bed
2007-05-11
analysis. (c.) Real time detection & analysis of human gait: using a video camera we capture walking human silhouette for pattern modeling and gait ... analysis . Fig. 5 shows the scanning result result that is fed into a Geo-magic software tool for 3D meshing. Fig. 5: 3D scanning result In
Wow! 3D Content Awakens the Classroom
ERIC Educational Resources Information Center
Gordon, Dan
2010-01-01
From her first encounter with stereoscopic 3D technology designed for classroom instruction, Megan Timme, principal at Hamilton Park Pacesetter Magnet School in Dallas, sensed it could be transformative. Last spring, when she began pilot-testing 3D content in her third-, fourth- and fifth-grade classrooms, Timme wasn't disappointed. Students…
Stereo 3-D Vision in Teaching Physics
ERIC Educational Resources Information Center
Zabunov, Svetoslav
2012-01-01
Stereo 3-D vision is a technology used to present images on a flat surface (screen, paper, etc.) and at the same time to create the notion of three-dimensional spatial perception of the viewed scene. A great number of physical processes are much better understood when viewed in stereo 3-D vision compared to standard flat 2-D presentation. The…
Pathways for Learning from 3D Technology
ERIC Educational Resources Information Center
Carrier, L. Mark; Rab, Saira S.; Rosen, Larry D.; Vasquez, Ludivina; Cheever, Nancy A.
2012-01-01
The purpose of this study was to find out if 3D stereoscopic presentation of information in a movie format changes a viewer's experience of the movie content. Four possible pathways from 3D presentation to memory and learning were considered: a direct connection based on cognitive neuroscience research; a connection through "immersion"…
ERIC Educational Resources Information Center
Norbury, Keith
2012-01-01
It may be too soon for students to be showing up for class with popcorn and gummy bears, but technology similar to that behind the 3D blockbuster movie "Avatar" is slowly finding its way into college classrooms. 3D classroom projectors are taking students on fantastic voyages inside the human body, to the ruins of ancient Greece--even to faraway…
Static & Dynamic Response of 3D Solids
Lin, Jerry
1996-07-15
NIKE3D is a large deformations 3D finite element code used to obtain the resulting displacements and stresses from multi-body static and dynamic structural thermo-mechanics problems with sliding interfaces. Many nonlinear and temperature dependent constitutive models are available.
BEAMS3D Neutral Beam Injection Model
Lazerson, Samuel
2014-04-14
With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.
Fabrication of 3D Silicon Sensors
Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; Kenney, C.; Hasi, J.; Da Via, C.; Parker, S.I.; /Hawaii U.
2012-06-06
Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.
NASA Astrophysics Data System (ADS)
Dekker, T.; de Zwart, S. T.; Willemsen, O. H.; Hiddink, M. G. H.; IJzerman, W. L.
2006-02-01
A prerequisite for a wide market acceptance of 3D displays is the ability to switch between 3D and full resolution 2D. In this paper we present a robust and cost effective concept for an auto-stereoscopic switchable 2D/3D display. The display is based on an LCD panel, equipped with switchable LC-filled lenticular lenses. We will discuss 3D image quality, with the focus on display uniformity. We show that slanting the lenticulars in combination with a good lens design can minimize non-uniformities in our 20" 2D/3D monitors. Furthermore, we introduce fractional viewing systems as a very robust concept to further improve uniformity in the case slanting the lenticulars and optimizing the lens design are not sufficient. We will discuss measurements and numerical simulations of the key optical characteristics of this display. Finally, we discuss 2D image quality, the switching characteristics and the residual lens effect.
Biocompatible 3D Matrix with Antimicrobial Properties.
Ion, Alberto; Andronescu, Ecaterina; Rădulescu, Dragoș; Rădulescu, Marius; Iordache, Florin; Vasile, Bogdan Ștefan; Surdu, Adrian Vasile; Albu, Madalina Georgiana; Maniu, Horia; Chifiriuc, Mariana Carmen; Grumezescu, Alexandru Mihai; Holban, Alina Maria
2016-01-20
The aim of this study was to develop, characterize and assess the biological activity of a new regenerative 3D matrix with antimicrobial properties, based on collagen (COLL), hydroxyapatite (HAp), β-cyclodextrin (β-CD) and usnic acid (UA). The prepared 3D matrix was characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Microscopy (FT-IRM), Transmission Electron Microscopy (TEM), and X-ray Diffraction (XRD). In vitro qualitative and quantitative analyses performed on cultured diploid cells demonstrated that the 3D matrix is biocompatible, allowing the normal development and growth of MG-63 osteoblast-like cells and exhibited an antimicrobial effect, especially on the Staphylococcus aureus strain, explained by the particular higher inhibitory activity of usnic acid (UA) against Gram positive bacterial strains. Our data strongly recommend the obtained 3D matrix to be used as a successful alternative for the fabrication of three dimensional (3D) anti-infective regeneration matrix for bone tissue engineering.
Quon 3D language for quantum information
Liu, Zhengwei; Wozniakowski, Alex; Jaffe, Arthur M.
2017-01-01
We present a 3D topological picture-language for quantum information. Our approach combines charged excitations carried by strings, with topological properties that arise from embedding the strings in the interior of a 3D manifold with boundary. A quon is a composite that acts as a particle. Specifically, a quon is a hemisphere containing a neutral pair of open strings with opposite charge. We interpret multiquons and their transformations in a natural way. We obtain a type of relation, a string–genus “joint relation,” involving both a string and the 3D manifold. We use the joint relation to obtain a topological interpretation of the C∗-Hopf algebra relations, which are widely used in tensor networks. We obtain a 3D representation of the controlled NOT (CNOT) gate that is considerably simpler than earlier work, and a 3D topological protocol for teleportation. PMID:28167790
3D Ultrafast Ultrasound Imaging In Vivo
Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu
2014-01-01
Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative real-time imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in three dimensions based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32×32 matrix-array probe. Its capability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3-D Shear-Wave Imaging, 3-D Ultrafast Doppler Imaging and finally 3D Ultrafast combined Tissue and Flow Doppler. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3-D Ultrafast Doppler was used to obtain 3-D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, for the first time, the complex 3-D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, and the 3-D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3-D Ultrafast Ultrasound Imaging for the 3-D real-time mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra- and inter-observer variability. PMID:25207828
3D Visualization Development of SIUE Campus
NASA Astrophysics Data System (ADS)
Nellutla, Shravya
Geographic Information Systems (GIS) has progressed from the traditional map-making to the modern technology where the information can be created, edited, managed and analyzed. Like any other models, maps are simplified representations of real world. Hence visualization plays an essential role in the applications of GIS. The use of sophisticated visualization tools and methods, especially three dimensional (3D) modeling, has been rising considerably due to the advancement of technology. There are currently many off-the-shelf technologies available in the market to build 3D GIS models. One of the objectives of this research was to examine the available ArcGIS and its extensions for 3D modeling and visualization and use them to depict a real world scenario. Furthermore, with the advent of the web, a platform for accessing and sharing spatial information on the Internet, it is possible to generate interactive online maps. Integrating Internet capacity with GIS functionality redefines the process of sharing and processing the spatial information. Enabling a 3D map online requires off-the-shelf GIS software, 3D model builders, web server, web applications and client server technologies. Such environments are either complicated or expensive because of the amount of hardware and software involved. Therefore, the second objective of this research was to investigate and develop simpler yet cost-effective 3D modeling approach that uses available ArcGIS suite products and the free 3D computer graphics software for designing 3D world scenes. Both ArcGIS Explorer and ArcGIS Online will be used to demonstrate the way of sharing and distributing 3D geographic information on the Internet. A case study of the development of 3D campus for the Southern Illinois University Edwardsville is demonstrated.
Pathways for Learning from 3D Technology
Carrier, L. Mark; Rab, Saira S.; Rosen, Larry D.; Vasquez, Ludivina; Cheever, Nancy A.
2016-01-01
The purpose of this study was to find out if 3D stereoscopic presentation of information in a movie format changes a viewer's experience of the movie content. Four possible pathways from 3D presentation to memory and learning were considered: a direct connection based on cognitive neuroscience research; a connection through "immersion" in that 3D presentations could provide additional sensorial cues (e.g., depth cues) that lead to a higher sense of being surrounded by the stimulus; a connection through general interest such that 3D presentation increases a viewer’s interest that leads to greater attention paid to the stimulus (e.g., "involvement"); and a connection through discomfort, with the 3D goggles causing discomfort that interferes with involvement and thus with memory. The memories of 396 participants who viewed two-dimensional (2D) or 3D movies at movie theaters in Southern California were tested. Within three days of viewing a movie, participants filled out an online anonymous questionnaire that queried them about their movie content memories, subjective movie-going experiences (including emotional reactions and "presence") and demographic backgrounds. The responses to the questionnaire were subjected to path analyses in which several different links between 3D presentation to memory (and other variables) were explored. The results showed there were no effects of 3D presentation, either directly or indirectly, upon memory. However, the largest effects of 3D presentation were on emotions and immersion, with 3D presentation leading to reduced positive emotions, increased negative emotions and lowered immersion, compared to 2D presentations. PMID:28078331
The psychology of the 3D experience
NASA Astrophysics Data System (ADS)
Janicke, Sophie H.; Ellis, Andrew
2013-03-01
With 3D televisions expected to reach 50% home saturation as early as 2016, understanding the psychological mechanisms underlying the user response to 3D technology is critical for content providers, educators and academics. Unfortunately, research examining the effects of 3D technology has not kept pace with the technology's rapid adoption, resulting in large-scale use of a technology about which very little is actually known. Recognizing this need for new research, we conducted a series of studies measuring and comparing many of the variables and processes underlying both 2D and 3D media experiences. In our first study, we found narratives within primetime dramas had the power to shift viewer attitudes in both 2D and 3D settings. However, we found no difference in persuasive power between 2D and 3D content. We contend this lack of effect was the result of poor conversion quality and the unique demands of 3D production. In our second study, we found 3D technology significantly increased enjoyment when viewing sports content, yet offered no added enjoyment when viewing a movie trailer. The enhanced enjoyment of the sports content was shown to be the result of heightened emotional arousal and attention in the 3D condition. We believe the lack of effect found for the movie trailer may be genre-related. In our final study, we found 3D technology significantly enhanced enjoyment of two video games from different genres. The added enjoyment was found to be the result of an increased sense of presence.
Cloud-resolving component in the quasi-3D multi-scale modeling framework
NASA Astrophysics Data System (ADS)
Jung, Joon-Hee; Arakawa, Akio
2010-05-01
A quasi-3D multi-scale modeling framework (Q3D MMF), which combines a GCM with a Q3D CRM, is an attempt to include three dimensional cloud effects in a GCM without necessarily using a global cloud-resolving model. The horizontal domain of the Q3D CRM consists of two perpendicular sets of channels crossing at the center of a GCM grid box, each of which includes two grid-point arrays. Through coupling this structure with a GCM, the whole system of the Q3D MMF can converge to a fully 3D global CRM as the GCM's resolution is refined. Consequently, the horizontal resolution of the GCM can be freely chosen depending on the objective of application. However, due to the use of very narrow channels for the cloud-resolving component, its prediction algorithm must be specially designed. As a step in developing a Q3D MMF, we have first constructed a prediction algorithm for the Q3D CRM applying a 3D anelastic vector vorticity equation model to the Q3D network of grid points. Preliminary tests of the Q3D CRM have been performed for an idealized small domain. Comparing the results with those of the straightforward application of a 3D CRM, it is concluded that the Q3D CRM can reproduce most of the important statistics of the 3D solutions and the MMF based on the Q3D CRM will be a useful framework for climate modeling. This paper presents an outline of the Q3D algorithm and highlights of the results.
MOM3D/EM-ANIMATE - MOM3D WITH ANIMATION CODE
NASA Technical Reports Server (NTRS)
Shaeffer, J. F.
1994-01-01
MOM3D (LAR-15074) is a FORTRAN method-of-moments electromagnetic analysis algorithm for open or closed 3-D perfectly conducting or resistive surfaces. Radar cross section with plane wave illumination is the prime analysis emphasis; however, provision is also included for local port excitation for computing antenna gain patterns and input impedances. The Electric Field Integral Equation form of Maxwell's equations is solved using local triangle couple basis and testing functions with a resultant system impedance matrix. The analysis emphasis is not only for routine RCS pattern predictions, but also for phenomenological diagnostics: bistatic imaging, currents, and near scattered/total electric fields. The images, currents, and near fields are output in form suitable for animation. MOM3D computes the full backscatter and bistatic radar cross section polarization scattering matrix (amplitude and phase), body currents and near scattered and total fields for plane wave illumination. MOM3D also incorporates a new bistatic k space imaging algorithm for computing down range and down/cross range diagnostic images using only one matrix inversion. MOM3D has been made memory and cpu time efficient by using symmetric matrices, symmetric geometry, and partitioned fixed and variable geometries suitable for design iteration studies. MOM3D may be run interactively or in batch mode on 486 IBM PCs and compatibles, UNIX workstations or larger computers. A 486 PC with 16 megabytes of memory has the potential to solve a 30 square wavelength (containing 3000 unknowns) symmetric configuration. Geometries are described using a triangular mesh input in the form of a list of spatial vertex points and a triangle join connection list. The EM-ANIMATE (LAR-15075) program is a specialized visualization program that displays and animates the near-field and surface-current solutions obtained from an electromagnetics program, in particular, that from MOM3D. The EM-ANIMATE program is windows based and
Potential of 3D City Models to assess flood vulnerability
NASA Astrophysics Data System (ADS)
Schröter, Kai; Bochow, Mathias; Schüttig, Martin; Nagel, Claus; Ross, Lutz; Kreibich, Heidi
2016-04-01
Vulnerability, as the product of exposure and susceptibility, is a key factor of the flood risk equation. Furthermore, the estimation of flood loss is very sensitive to the choice of the vulnerability model. Still, in contrast to elaborate hazard simulations, vulnerability is often considered in a simplified manner concerning the spatial resolution and geo-location of exposed objects as well as the susceptibility of these objects at risk. Usually, area specific potential flood loss is quantified on the level of aggregated land-use classes, and both hazard intensity and resistance characteristics of affected objects are represented in highly simplified terms. We investigate the potential of 3D City Models and spatial features derived from remote sensing data to improve the differentiation of vulnerability in flood risk assessment. 3D City Models are based on CityGML, an application scheme of the Geography Markup Language (GML), which represents the 3D geometry, 3D topology, semantics and appearance of objects on different levels of detail. As such, 3D City Models offer detailed spatial information which is useful to describe the exposure and to characterize the susceptibility of residential buildings at risk. This information is further consolidated with spatial features of the building stock derived from remote sensing data. Using this database a spatially detailed flood vulnerability model is developed by means of data-mining. Empirical flood damage data are used to derive and to validate flood susceptibility models for individual objects. We present first results from a prototype application in the city of Dresden, Germany. The vulnerability modeling based on 3D City Models and remote sensing data is compared i) to the generally accepted good engineering practice based on area specific loss potential and ii) to a highly detailed representation of flood vulnerability based on a building typology using urban structure types. Comparisons are drawn in terms of
3D bioprinting of tissues and organs.
Murphy, Sean V; Atala, Anthony
2014-08-01
Additive manufacturing, otherwise known as three-dimensional (3D) printing, is driving major innovations in many areas, such as engineering, manufacturing, art, education and medicine. Recent advances have enabled 3D printing of biocompatible materials, cells and supporting components into complex 3D functional living tissues. 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. Compared with non-biological printing, 3D bioprinting involves additional complexities, such as the choice of materials, cell types, growth and differentiation factors, and technical challenges related to the sensitivities of living cells and the construction of tissues. Addressing these complexities requires the integration of technologies from the fields of engineering, biomaterials science, cell biology, physics and medicine. 3D bioprinting has already been used for the generation and transplantation of several tissues, including multilayered skin, bone, vascular grafts, tracheal splints, heart tissue and cartilaginous structures. Other applications include developing high-throughput 3D-bioprinted tissue models for research, drug discovery and toxicology.
Medical 3D Printing for the Radiologist.
Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A; Cai, Tianrun; Kumamaru, Kanako K; George, Elizabeth; Wake, Nicole; Caterson, Edward J; Pomahac, Bohdan; Ho, Vincent B; Grant, Gerald T; Rybicki, Frank J
2015-01-01
While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article.
Medical 3D Printing for the Radiologist
Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A.; Cai, Tianrun; Kumamaru, Kanako K.; George, Elizabeth; Wake, Nicole; Caterson, Edward J.; Pomahac, Bohdan; Ho, Vincent B.; Grant, Gerald T.
2015-01-01
While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article. ©RSNA, 2015 PMID:26562233
3D imaging in forensic odontology.
Evans, Sam; Jones, Carl; Plassmann, Peter
2010-06-16
This paper describes the investigation of a new 3D capture method for acquiring and subsequent forensic analysis of bite mark injuries on human skin. When documenting bite marks with standard 2D cameras errors in photographic technique can occur if best practice is not followed. Subsequent forensic analysis of the mark is problematic when a 3D structure is recorded into a 2D space. Although strict guidelines (BAFO) exist, these are time-consuming to follow and, due to their complexity, may produce errors. A 3D image capture and processing system might avoid the problems resulting from the 2D reduction process, simplifying the guidelines and reducing errors. Proposed Solution: a series of experiments are described in this paper to demonstrate that the potential of a 3D system might produce suitable results. The experiments tested precision and accuracy of the traditional 2D and 3D methods. A 3D image capture device minimises the amount of angular distortion, therefore such a system has the potential to create more robust forensic evidence for use in courts. A first set of experiments tested and demonstrated which method of forensic analysis creates the least amount of intra-operator error. A second set tested and demonstrated which method of image capture creates the least amount of inter-operator error and visual distortion. In a third set the effects of angular distortion on 2D and 3D methods of image capture were evaluated.
NUBEAM developments and 3d halo modeling
NASA Astrophysics Data System (ADS)
Gorelenkova, M. V.; Medley, S. S.; Kaye, S. M.
2012-10-01
Recent developments related to the 3D halo model in NUBEAM code are described. To have a reliable halo neutral source for diagnostic simulation, the TRANSP/NUBEAM code has been enhanced with full implementation of ADAS atomic physic ground state and excited state data for hydrogenic beams and mixed species plasma targets. The ADAS codes and database provide the density and temperature dependence of the atomic data, and the collective nature of the state excitation process. To be able to populate 3D halo output with sufficient statistical resolution, the capability to control the statistics of fast ion CX modeling and for thermal halo launch has been added to NUBEAM. The 3D halo neutral model is based on modification and extension of the ``beam in box'' aligned 3d Cartesian grid that includes the neutral beam itself, 3D fast neutral densities due to CX of partially slowed down fast ions in the beam halo region, 3D thermal neutral densities due to CX deposition and fast neutral recapture source. More details on the 3D halo simulation design will be presented.
Optically rewritable 3D liquid crystal displays.
Sun, J; Srivastava, A K; Zhang, W; Wang, L; Chigrinov, V G; Kwok, H S
2014-11-01
Optically rewritable liquid crystal display (ORWLCD) is a concept based on the optically addressed bi-stable display that does not need any power to hold the image after being uploaded. Recently, the demand for the 3D image display has increased enormously. Several attempts have been made to achieve 3D image on the ORWLCD, but all of them involve high complexity for image processing on both hardware and software levels. In this Letter, we disclose a concept for the 3D-ORWLCD by dividing the given image in three parts with different optic axis. A quarter-wave plate is placed on the top of the ORWLCD to modify the emerging light from different domains of the image in different manner. Thereafter, Polaroid glasses can be used to visualize the 3D image. The 3D image can be refreshed, on the 3D-ORWLCD, in one-step with proper ORWLCD printer and image processing, and therefore, with easy image refreshing and good image quality, such displays can be applied for many applications viz. 3D bi-stable display, security elements, etc.
3D packaging for integrated circuit systems
Chu, D.; Palmer, D.W.
1996-11-01
A goal was set for high density, high performance microelectronics pursued through a dense 3D packing of integrated circuits. A {open_quotes}tool set{close_quotes} of assembly processes have been developed that enable 3D system designs: 3D thermal analysis, silicon electrical through vias, IC thinning, mounting wells in silicon, adhesives for silicon stacking, pretesting of IC chips before commitment to stacks, and bond pad bumping. Validation of these process developments occurred through both Sandia prototypes and subsequent commercial examples.
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.
2014-01-01
This manual describes the installation and execution of FUN3D version 12.5, including optional dependent packages. FUN3D is a suite of computational uid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables ecient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.
2014-01-01
This manual describes the installation and execution of FUN3D version 12.4, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixedelement unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
3D Immersive Visualization with Astrophysical Data
NASA Astrophysics Data System (ADS)
Kent, Brian R.
2017-01-01
We present the refinement of a new 3D immersion technique for astrophysical data visualization.Methodology to create 360 degree spherical panoramas is reviewed. The 3D software package Blender coupled with Python and the Google Spatial Media module are used together to create the final data products. Data can be viewed interactively with a mobile phone or tablet or in a web browser. The technique can apply to different kinds of astronomical data including 3D stellar and galaxy catalogs, images, and planetary maps.
A high capacity 3D steganography algorithm.
Chao, Min-Wen; Lin, Chao-hung; Yu, Cheng-Wei; Lee, Tong-Yee
2009-01-01
In this paper, we present a very high-capacity and low-distortion 3D steganography scheme. Our steganography approach is based on a novel multilayered embedding scheme to hide secret messages in the vertices of 3D polygon models. Experimental results show that the cover model distortion is very small as the number of hiding layers ranges from 7 to 13 layers. To the best of our knowledge, this novel approach can provide much higher hiding capacity than other state-of-the-art approaches, while obeying the low distortion and security basic requirements for steganography on 3D models.
2015-04-23
A new type of graphene aerogel will make for better energy storage, sensors, nanoelectronics, catalysis and separations. Lawrence Livermore National Laboratory researchers have made graphene aerogel microlattices with an engineered architecture via a 3D printing technique known as direct ink writing. The research appears in the April 22 edition of the journal, Nature Communications. The 3D printed graphene aerogels have high surface area, excellent electrical conductivity, are lightweight, have mechanical stiffness and exhibit supercompressibility (up to 90 percent compressive strain). In addition, the 3D printed graphene aerogel microlattices show an order of magnitude improvement over bulk graphene materials and much better mass transport.
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.
2015-01-01
This manual describes the installation and execution of FUN3D version 12.6, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.
2016-01-01
This manual describes the installation and execution of FUN3D version 12.9, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.
2017-01-01
This manual describes the installation and execution of FUN3D version 13.1, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.
2015-01-01
This manual describes the installation and execution of FUN3D version 12.7, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bill; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.
2016-01-01
This manual describes the installation and execution of FUN3D version 13.0, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.
2015-01-01
This manual describes the installation and execution of FUN3D version 12.8, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
An Improved Version of TOPAZ 3D
Krasnykh, Anatoly
2003-07-29
An improved version of the TOPAZ 3D gun code is presented as a powerful tool for beam optics simulation. In contrast to the previous version of TOPAZ 3D, the geometry of the device under test is introduced into TOPAZ 3D directly from a CAD program, such as Solid Edge or AutoCAD. In order to have this new feature, an interface was developed, using the GiD software package as a meshing code. The article describes this method with two models to illustrate the results.
RHOCUBE: 3D density distributions modeling code
NASA Astrophysics Data System (ADS)
Nikutta, Robert; Agliozzo, Claudia
2016-11-01
RHOCUBE models 3D density distributions on a discrete Cartesian grid and their integrated 2D maps. It can be used for a range of applications, including modeling the electron number density in LBV shells and computing the emission measure. The RHOCUBE Python package provides several 3D density distributions, including a powerlaw shell, truncated Gaussian shell, constant-density torus, dual cones, and spiralling helical tubes, and can accept additional distributions. RHOCUBE provides convenient methods for shifts and rotations in 3D, and if necessary, an arbitrary number of density distributions can be combined into the same model cube and the integration ∫ dz performed through the joint density field.
Explicit 3-D Hydrodynamic FEM Program
2000-11-07
DYNA3D is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding, single surface contact and automatic contact generation.
3D-HIM: A 3D High-density Interleaved Memory for Bipolar RRAM Design
2013-05-01
JOURNAL ARTICLE (Post Print ) 3. DATES COVERED (From - To) DEC 2010 – NOV 2012 4. TITLE AND SUBTITLE 3D -HIM: A 3D HIGH-DENSITY INTERLEAVED MEMORY...emerged as one of the promising candidates for large data storage in computing systems. Moreover, building up RRAM in a three dimensional ( 3D ) stacking...brings in the potential reliability issue. To alleviate the situation, we introduce two novel 3D stacking structures built upon bipolar RRAM
MOM3D/EM-ANIMATE - MOM3D WITH ANIMATION CODE
NASA Technical Reports Server (NTRS)
Shaeffer, J. F.
1994-01-01
MOM3D (LAR-15074) is a FORTRAN method-of-moments electromagnetic analysis algorithm for open or closed 3-D perfectly conducting or resistive surfaces. Radar cross section with plane wave illumination is the prime analysis emphasis; however, provision is also included for local port excitation for computing antenna gain patterns and input impedances. The Electric Field Integral Equation form of Maxwell's equations is solved using local triangle couple basis and testing functions with a resultant system impedance matrix. The analysis emphasis is not only for routine RCS pattern predictions, but also for phenomenological diagnostics: bistatic imaging, currents, and near scattered/total electric fields. The images, currents, and near fields are output in form suitable for animation. MOM3D computes the full backscatter and bistatic radar cross section polarization scattering matrix (amplitude and phase), body currents and near scattered and total fields for plane wave illumination. MOM3D also incorporates a new bistatic k space imaging algorithm for computing down range and down/cross range diagnostic images using only one matrix inversion. MOM3D has been made memory and cpu time efficient by using symmetric matrices, symmetric geometry, and partitioned fixed and variable geometries suitable for design iteration studies. MOM3D may be run interactively or in batch mode on 486 IBM PCs and compatibles, UNIX workstations or larger computers. A 486 PC with 16 megabytes of memory has the potential to solve a 30 square wavelength (containing 3000 unknowns) symmetric configuration. Geometries are described using a triangular mesh input in the form of a list of spatial vertex points and a triangle join connection list. The EM-ANIMATE (LAR-15075) program is a specialized visualization program that displays and animates the near-field and surface-current solutions obtained from an electromagnetics program, in particular, that from MOM3D. The EM-ANIMATE program is windows based and
Do-It-Yourself: 3D Models of Hydrogenic Orbitals through 3D Printing
ERIC Educational Resources Information Center
Griffith, Kaitlyn M.; de Cataldo, Riccardo; Fogarty, Keir H.
2016-01-01
Introductory chemistry students often have difficulty visualizing the 3-dimensional shapes of the hydrogenic electron orbitals without the aid of physical 3D models. Unfortunately, commercially available models can be quite expensive. 3D printing offers a solution for producing models of hydrogenic orbitals. 3D printing technology is widely…
Optical 3D surface digitizing in forensic medicine: 3D documentation of skin and bone injuries.
Thali, Michael J; Braun, Marcel; Dirnhofer, Richard
2003-11-26
Photography process reduces a three-dimensional (3D) wound to a two-dimensional level. If there is a need for a high-resolution 3D dataset of an object, it needs to be three-dimensionally scanned. No-contact optical 3D digitizing surface scanners can be used as a powerful tool for wound and injury-causing instrument analysis in trauma cases. The 3D skin wound and a bone injury documentation using the optical scanner Advanced TOpometric Sensor (ATOS II, GOM International, Switzerland) will be demonstrated using two illustrative cases. Using this 3D optical digitizing method the wounds (the virtual 3D computer model of the skin and the bone injuries) and the virtual 3D model of the injury-causing tool are graphically documented in 3D in real-life size and shape and can be rotated in the CAD program on the computer screen. In addition, the virtual 3D models of the bone injuries and tool can now be compared in a 3D CAD program against one another in virtual space, to see if there are matching areas. Further steps in forensic medicine will be a full 3D surface documentation of the human body and all the forensic relevant injuries using optical 3D scanners.
XML3D and Xflow: combining declarative 3D for the Web with generic data flows.
Klein, Felix; Sons, Kristian; Rubinstein, Dmitri; Slusallek, Philipp
2013-01-01
Researchers have combined XML3D, which provides declarative, interactive 3D scene descriptions based on HTML5, with Xflow, a language for declarative, high-performance data processing. The result lets Web developers combine a 3D scene graph with data flows for dynamic meshes, animations, image processing, and postprocessing.
3D critical layers in fully-developed turbulent flows
NASA Astrophysics Data System (ADS)
Saxton-Fox, Theresa; McKeon, Beverley
2016-11-01
Recent work has shown that 3D critical layers drive self-sustaining behavior of exact coherent solutions of the Navier-Stokes equations (Wang et al. 2007; Hall and Sherwin 2010; Park and Graham 2015). This study investigates the role of 3D critical layers in fully-developed turbulent flows. 3D critical layer effects are identified in instantaneous snapshots of turbulent boundary layers in both experimental and DNS data (Wu et al. 2014). Additionally, a 3D critical layer effect is demonstrated to appear using only a few resolvent response modes from the resolvent analysis of McKeon and Sharma 2010, with phase relationships appropriately chosen. Connections are sought to the thin shear layers observed in turbulent boundary layers (Klewicki and Hirschi 2004; Eisma et al. 2015) and to amplitude modulation observations (Mathis et al. 2009; Duvvuri and McKeon 2014). This research is made possible by the Department of Defense through the National Defense & Engineering Graduate Fellowship (NDSEG) Program and by the Air Force Office of Scientific Research Grant # FA9550-12-1-0060. The support of the Center for Turbulence Research (CTR) summer program at Stanford is gratefully acknowledged.
Frozen Gaussian approximation for 3-D seismic wave propagation
NASA Astrophysics Data System (ADS)
Chai, Lihui; Tong, Ping; Yang, Xu
2017-01-01
We present a systematic introduction on applying frozen Gaussian approximation (FGA) to compute synthetic seismograms in 3-D earth models. In this method, seismic wavefield is decomposed into frozen (fixed-width) Gaussian functions, which propagate along ray paths. Rather than the coherent state solution to the wave equation, this method is rigorously derived by asymptotic expansion on phase plane, with analysis of its accuracy determined by the ratio of short wavelength over large domain size. Similar to other ray-based beam methods (e.g. Gaussian beam methods), one can use relatively small number of Gaussians to get accurate approximations of high-frequency wavefield. The algorithm is embarrassingly parallel, which can drastically speed up the computation with a multicore-processor computer station. We illustrate the accuracy and efficiency of the method by comparing it to the spectral element method for a 3-D seismic wave propagation in homogeneous media, where one has the analytical solution as a benchmark. As another proof of methodology, simulations of high-frequency seismic wave propagation in heterogeneous media are performed for 3-D waveguide model and smoothed Marmousi model, respectively. The second contribution of this paper is that, we incorporate the Snell's law into the FGA formulation, and asymptotically derive reflection, transmission and free surface conditions for FGA to compute high-frequency seismic wave propagation in high contrast media. We numerically test these conditions by computing traveltime kernels of different phases in the 3-D crust-over-mantle model.
Extremely accurate sequential verification of RELAP5-3D
Mesina, George L.; Aumiller, David L.; Buschman, Francis X.
2015-11-19
Large computer programs like RELAP5-3D solve complex systems of governing, closure and special process equations to model the underlying physics of nuclear power plants. Further, these programs incorporate many other features for physics, input, output, data management, user-interaction, and post-processing. For software quality assurance, the code must be verified and validated before being released to users. For RELAP5-3D, verification and validation are restricted to nuclear power plant applications. Verification means ensuring that the program is built right by checking that it meets its design specifications, comparing coding to algorithms and equations and comparing calculations against analytical solutions and method of manufactured solutions. Sequential verification performs these comparisons initially, but thereafter only compares code calculations between consecutive code versions to demonstrate that no unintended changes have been introduced. Recently, an automated, highly accurate sequential verification method has been developed for RELAP5-3D. The method also provides to test that no unintended consequences result from code development in the following code capabilities: repeating a timestep advancement, continuing a run from a restart file, multiple cases in a single code execution, and modes of coupled/uncoupled operation. In conclusion, mathematical analyses of the adequacy of the checks used in the comparisons are provided.
Extremely accurate sequential verification of RELAP5-3D
Mesina, George L.; Aumiller, David L.; Buschman, Francis X.
2015-11-19
Large computer programs like RELAP5-3D solve complex systems of governing, closure and special process equations to model the underlying physics of nuclear power plants. Further, these programs incorporate many other features for physics, input, output, data management, user-interaction, and post-processing. For software quality assurance, the code must be verified and validated before being released to users. For RELAP5-3D, verification and validation are restricted to nuclear power plant applications. Verification means ensuring that the program is built right by checking that it meets its design specifications, comparing coding to algorithms and equations and comparing calculations against analytical solutions and method ofmore » manufactured solutions. Sequential verification performs these comparisons initially, but thereafter only compares code calculations between consecutive code versions to demonstrate that no unintended changes have been introduced. Recently, an automated, highly accurate sequential verification method has been developed for RELAP5-3D. The method also provides to test that no unintended consequences result from code development in the following code capabilities: repeating a timestep advancement, continuing a run from a restart file, multiple cases in a single code execution, and modes of coupled/uncoupled operation. In conclusion, mathematical analyses of the adequacy of the checks used in the comparisons are provided.« less
Quantifying modes of 3D cell migration
Driscoll, Meghan K.; Danuser, Gaudenz
2015-01-01
Although it is widely appreciated that cells migrate in a variety of diverse environments in vivo, we are only now beginning to use experimental workflows that yield images with sufficient spatiotemporal resolution to study the molecular processes governing cell migration in 3D environments. Since cell migration is a dynamic process, it is usually studied via microscopy, but 3D movies of 3D processes are difficult to interpret by visual inspection. In this review, we discuss the technologies required to study the diversity of 3D cell migration modes with a focus on the visualization and computational analysis tools needed to study cell migration quantitatively at a level comparable to the analyses performed today on cells crawling on flat substrates. PMID:26603943
Modeling cellular processes in 3D.
Mogilner, Alex; Odde, David
2011-12-01
Recent advances in photonic imaging and fluorescent protein technology offer unprecedented views of molecular space-time dynamics in living cells. At the same time, advances in computing hardware and software enable modeling of ever more complex systems, from global climate to cell division. As modeling and experiment become more closely integrated we must address the issue of modeling cellular processes in 3D. Here, we highlight recent advances related to 3D modeling in cell biology. While some processes require full 3D analysis, we suggest that others are more naturally described in 2D or 1D. Keeping the dimensionality as low as possible reduces computational time and makes models more intuitively comprehensible; however, the ability to test full 3D models will build greater confidence in models generally and remains an important emerging area of cell biological modeling.
Cyclone Rusty's Landfall in 3-D
This 3-D image derived from NASA's TRMM satellite Precipitation Radar data on February 26, 2013 at 0654 UTC showed that the tops of some towering thunderstorms in Rusty's eye wall were reaching hei...
Tropical Cyclone Jack in Satellite 3-D
This 3-D flyby from NASA's TRMM satellite of Tropical Cyclone Jack on April 21 shows that some of the thunderstorms were shown by TRMM PR were still reaching height of at least 17 km (10.5 miles). ...
Future Engineers 3-D Print Timelapse
NASA Challenges K-12 students to create a model of a container for space using 3-D modeling software. Astronauts need containers of all kinds - from advanced containers that can study fruit flies t...
3-D Animation of Typhoon Bopha
This 3-D animation of NASA's TRMM satellite data showed Typhoon Bopha tracking over the Philippines on Dec. 3 and moving into the Sulu Sea on Dec. 4, 2012. TRMM saw heavy rain (red) was falling at ...
DNA biosensing with 3D printing technology.
Loo, Adeline Huiling; Chua, Chun Kiang; Pumera, Martin
2017-01-16
3D printing, an upcoming technology, has vast potential to transform conventional fabrication processes due to the numerous improvements it can offer to the current methods. To date, the employment of 3D printing technology has been examined for applications in the fields of engineering, manufacturing and biological sciences. In this study, we examined the potential of adopting 3D printing technology for a novel application, electrochemical DNA biosensing. Metal 3D printing was utilized to construct helical-shaped stainless steel electrodes which functioned as a transducing platform for the detection of DNA hybridization. The ability of electroactive methylene blue to intercalate into the double helix structure of double-stranded DNA was then exploited to monitor the DNA hybridization process, with its inherent reduction peak serving as an analytical signal. The designed biosensing approach was found to demonstrate superior selectivity against a non-complementary DNA target, with a detection range of 1-1000 nM.
Designing Biomaterials for 3D Printing.
Guvendiren, Murat; Molde, Joseph; Soares, Rosane M D; Kohn, Joachim
2016-10-10
Three-dimensional (3D) printing is becoming an increasingly common technique to fabricate scaffolds and devices for tissue engineering applications. This is due to the potential of 3D printing to provide patient-specific designs, high structural complexity, rapid on-demand fabrication at a low-cost. One of the major bottlenecks that limits the widespread acceptance of 3D printing in biomanufacturing is the lack of diversity in "biomaterial inks". Printability of a biomaterial is determined by the printing technique. Although a wide range of biomaterial inks including polymers, ceramics, hydrogels and composites have been developed, the field is still struggling with processing of these materials into self-supporting devices with tunable mechanics, degradation, and bioactivity. This review aims to highlight the past and recent advances in biomaterial ink development and design considerations moving forward. A brief overview of 3D printing technologies focusing on ink design parameters is also included.
3D Printing for Tissue Engineering.
Richards, Dylan Jack; Tan, Yu; Jia, Jia; Yao, Hai; Mei, Ying
2013-10-01
Tissue engineering aims to fabricate functional tissue for applications in regenerative medicine and drug testing. More recently, 3D printing has shown great promise in tissue fabrication with a structural control from micro- to macro-scale by using a layer-by-layer approach. Whether through scaffold-based or scaffold-free approaches, the standard for 3D printed tissue engineering constructs is to provide a biomimetic structural environment that facilitates tissue formation and promotes host tissue integration (e.g., cellular infiltration, vascularization, and active remodeling). This review will cover several approaches that have advanced the field of 3D printing through novel fabrication methods of tissue engineering constructs. It will also discuss the applications of synthetic and natural materials for 3D printing facilitated tissue fabrication.
3-D Flyover Visualization of Veil Nebula
This 3-D visualization flies across a small portion of the Veil Nebula as photographed by the Hubble Space Telescope. This region is a small part of a huge expanding remnant from a star that explod...
This 3-D flyby of Tropical Storm Ingrid's rainfall was created from TRMM satellite data for Sept. 16. Heaviest rainfall appears in red towers over the Gulf of Mexico, while moderate rainfall stretc...
Quantifying Modes of 3D Cell Migration.
Driscoll, Meghan K; Danuser, Gaudenz
2015-12-01
Although it is widely appreciated that cells migrate in a variety of diverse environments in vivo, we are only now beginning to use experimental workflows that yield images with sufficient spatiotemporal resolution to study the molecular processes governing cell migration in 3D environments. Since cell migration is a dynamic process, it is usually studied via microscopy, but 3D movies of 3D processes are difficult to interpret by visual inspection. In this review, we discuss the technologies required to study the diversity of 3D cell migration modes with a focus on the visualization and computational analysis tools needed to study cell migration quantitatively at a level comparable to the analyses performed today on cells crawling on flat substrates.
3D Printing for Tissue Engineering
Jia, Jia; Yao, Hai; Mei, Ying
2016-01-01
Tissue engineering aims to fabricate functional tissue for applications in regenerative medicine and drug testing. More recently, 3D printing has shown great promise in tissue fabrication with a structural control from micro- to macro-scale by using a layer-by-layer approach. Whether through scaffold-based or scaffold-free approaches, the standard for 3D printed tissue engineering constructs is to provide a biomimetic structural environment that facilitates tissue formation and promotes host tissue integration (e.g., cellular infiltration, vascularization, and active remodeling). This review will cover several approaches that have advanced the field of 3D printing through novel fabrication methods of tissue engineering constructs. It will also discuss the applications of synthetic and natural materials for 3D printing facilitated tissue fabrication. PMID:26869728
NASA Technical Reports Server (NTRS)
Kulikov, anton I.; Doronila, Paul R.; Nguyen, Viet T.; Jackson, Randal K.; Greene, William M.; Hussey, Kevin J.; Garcia, Christopher M.; Lopez, Christian A.
2013-01-01
Eyes on the Earth 3D software gives scientists, and the general public, a realtime, 3D interactive means of accurately viewing the real-time locations, speed, and values of recently collected data from several of NASA's Earth Observing Satellites using a standard Web browser (climate.nasa.gov/eyes). Anyone with Web access can use this software to see where the NASA fleet of these satellites is now, or where they will be up to a year in the future. The software also displays several Earth Science Data sets that have been collected on a daily basis. This application uses a third-party, 3D, realtime, interactive game engine called Unity 3D to visualize the satellites and is accessible from a Web browser.
Nonlaser-based 3D surface imaging
Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J.
1994-11-15
3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.
3-D TRMM Flyby of Hurricane Amanda
The TRMM satellite flew over Hurricane Amanda on Tuesday, May 27 at 1049 UTC (6:49 a.m. EDT) and captured rainfall rates and cloud height data that was used to create this 3-D simulated flyby. Cred...
3D-printed bioanalytical devices
NASA Astrophysics Data System (ADS)
Bishop, Gregory W.; Satterwhite-Warden, Jennifer E.; Kadimisetty, Karteek; Rusling, James F.
2016-07-01
While 3D printing technologies first appeared in the 1980s, prohibitive costs, limited materials, and the relatively small number of commercially available printers confined applications mainly to prototyping for manufacturing purposes. As technologies, printer cost, materials, and accessibility continue to improve, 3D printing has found widespread implementation in research and development in many disciplines due to ease-of-use and relatively fast design-to-object workflow. Several 3D printing techniques have been used to prepare devices such as milli- and microfluidic flow cells for analyses of cells and biomolecules as well as interfaces that enable bioanalytical measurements using cellphones. This review focuses on preparation and applications of 3D-printed bioanalytical devices.
Oshiro, Yukio; Ohkohchi, Nobuhiro
2017-03-27
To perform accurate hepatectomy without injury, it is necessary to understand the anatomical relationship among the branches of Glisson's sheath, hepatic veins, and tumor. In Japan, three-dimensional (3D) preoperative simulation for liver surgery is becoming increasingly common, and liver 3D modeling and 3D hepatectomy simulation by 3D analysis software for liver surgery have been covered by universal healthcare insurance since 2012. Herein, we review the history of virtual hepatectomy using computer-aided surgery (CAS) and our research to date, and we discuss the future prospects of CAS. We have used the SYNAPSE VINCENT medical imaging system (Fujifilm Medical, Tokyo, Japan) for 3D visualization and virtual resection of the liver since 2010. We developed a novel fusion imaging technique combining 3D computed tomography (CT) with magnetic resonance imaging (MRI). The fusion image enables us to easily visualize anatomic relationships among the hepatic arteries, portal veins, bile duct, and tumor in the hepatic hilum. In 2013, we developed an original software, called Liversim, that enables real-time deformation of the liver using physical simulation, and a randomized control trial has recently been conducted to evaluate the use of Liversim and SYNAPSE VINCENT for preoperative simulation and planning. Furthermore, we developed a novel hollow 3D-printed liver model whose surface is covered with frames. This model is useful for safe liver resection, has better visibility, and the production cost is reduced to one-third of a previous model. Preoperative simulation and navigation with CAS in liver resection are expected to help planning and conducting a surgery and surgical education. Thus, a novel CAS system will contribute to not only the performance of reliable hepatectomy but also to surgical education.
Microfabricating 3D Structures by Laser Origami
2011-11-09
technique generates 3D microstructures by controlled out-of- plane folding of 2D patterns through a variety of laser-based digital fabrication...processes. Digital microfabrication techniques such as laser direct-write (LDW) offer a viable alternative for generating 3D self-folding designs. These...folding at the microscale where manual or mechanized actuation of the smaller struc- tures is not practical. LDW techniques allow micromachining and
Spatioangular Prefiltering for Multiview 3D Displays.
Ramachandra, Vikas; Hirakawa, Keigo; Zwicker, Matthias; Nguyen, Truong
2011-05-01
In this paper, we analyze the reproduction of light fields on multiview 3D displays. A three-way interaction between the input light field signal (which is often aliased), the joint spatioangular sampling grids of multiview 3D displays, and the interview light leakage in modern multiview 3D displays is characterized in the joint spatioangular frequency domain. Reconstruction of light fields by all physical 3D displays is prone to light leakage, which means that the reconstruction low-pass filter implemented by the display is too broad in the angular domain. As a result, 3D displays excessively attenuate angular frequencies. Our analysis shows that this reduces sharpness of the images shown in the 3D displays. In this paper, stereoscopic image recovery is recast as a problem of joint spatioangular signal reconstruction. The combination of the 3D display point spread function and human visual system provides the narrow-band low-pass filter which removes spectral replicas in the reconstructed light field on the multiview display. The nonideality of this filter is corrected with the proposed prefiltering. The proposed light field reconstruction method performs light field antialiasing as well as angular sharpening to compensate for the nonideal response of the 3D display. The union of cosets approach which has been used earlier by others is employed here to model the nonrectangular spatioangular sampling grids on a multiview display in a generic fashion. We confirm the effectiveness of our approach in simulation and in physical hardware, and demonstrate improvement over existing techniques.
Investigations of Tides from the Antiquity to Laplace
NASA Astrophysics Data System (ADS)
Deparis, Vincent; Legros, Hilaire; Souchay, Jean
Tidal phenomena along the coasts were known since the prehistoric era, but a long journey of investigations through the centuries was necessary from the Greco-Roman Antiquity to the modern era to unravel in a quasi-definitive way many secrets of the ebb and flow. These investigations occupied the great scholars from Aristotle to Galileo, Newton, Euler, d'Alembert, Laplace, and the list could go on. We will review the historical steps which contributed to an increasing understanding of the tides.
Newton, laplace, and the epistemology of systems biology.
Bittner, Michael L; Dougherty, Edward R
2012-01-01
For science, theoretical or applied, to significantly advance, researchers must use the most appropriate mathematical methods. A century and a half elapsed between Newton's development of the calculus and Laplace's development of celestial mechanics. One cannot imagine the latter without the former. Today, more than three-quarters of a century has elapsed since the birth of stochastic systems theory. This article provides a perspective on the utilization of systems theory as the proper vehicle for the development of systems biology and its application to complex regulatory diseases such as cancer.
Auto convergence for stereoscopic 3D cameras
NASA Astrophysics Data System (ADS)
Zhang, Buyue; Kothandaraman, Sreenivas; Batur, Aziz Umit
2012-03-01
Viewing comfort is an important concern for 3-D capable consumer electronics such as 3-D cameras and TVs. Consumer generated content is typically viewed at a close distance which makes the vergence-accommodation conflict particularly pronounced, causing discomfort and eye fatigue. In this paper, we present a Stereo Auto Convergence (SAC) algorithm for consumer 3-D cameras that reduces the vergence-accommodation conflict on the 3-D display by adjusting the depth of the scene automatically. Our algorithm processes stereo video in realtime and shifts each stereo frame horizontally by an appropriate amount to converge on the chosen object in that frame. The algorithm starts by estimating disparities between the left and right image pairs using correlations of the vertical projections of the image data. The estimated disparities are then analyzed by the algorithm to select a point of convergence. The current and target disparities of the chosen convergence point determines how much horizontal shift is needed. A disparity safety check is then performed to determine whether or not the maximum and minimum disparity limits would be exceeded after auto convergence. If the limits would be exceeded, further adjustments are made to satisfy the safety limits. Finally, desired convergence is achieved by shifting the left and the right frames accordingly. Our algorithm runs real-time at 30 fps on a TI OMAP4 processor. It is tested using an OMAP4 embedded prototype stereo 3-D camera. It significantly improves 3-D viewing comfort.
Assessing 3d Photogrammetry Techniques in Craniometrics
NASA Astrophysics Data System (ADS)
Moshobane, M. C.; de Bruyn, P. J. N.; Bester, M. N.
2016-06-01
Morphometrics (the measurement of morphological features) has been revolutionized by the creation of new techniques to study how organismal shape co-varies with several factors such as ecophenotypy. Ecophenotypy refers to the divergence of phenotypes due to developmental changes induced by local environmental conditions, producing distinct ecophenotypes. None of the techniques hitherto utilized could explicitly address organismal shape in a complete biological form, i.e. three-dimensionally. This study investigates the use of the commercial software, Photomodeler Scanner® (PMSc®) three-dimensional (3D) modelling software to produce accurate and high-resolution 3D models. Henceforth, the modelling of Subantarctic fur seal (Arctocephalus tropicalis) and Antarctic fur seal (Arctocephalus gazella) skulls which could allow for 3D measurements. Using this method, sixteen accurate 3D skull models were produced and five metrics were determined. The 3D linear measurements were compared to measurements taken manually with a digital caliper. In addition, repetitive measurements were recorded by varying researchers to determine repeatability. To allow for comparison straight line measurements were taken with the software, assuming that close accord with all manually measured features would illustrate the model's accurate replication of reality. Measurements were not significantly different demonstrating that realistic 3D skull models can be successfully produced to provide a consistent basis for craniometrics, with the additional benefit of allowing non-linear measurements if required.
3D steerable wavelets in practice.
Chenouard, Nicolas; Unser, Michael
2012-11-01
We introduce a systematic and practical design for steerable wavelet frames in 3D. Our steerable wavelets are obtained by applying a 3D version of the generalized Riesz transform to a primary isotropic wavelet frame. The novel transform is self-reversible (tight frame) and its elementary constituents (Riesz wavelets) can be efficiently rotated in any 3D direction by forming appropriate linear combinations. Moreover, the basis functions at a given location can be linearly combined to design custom (and adaptive) steerable wavelets. The features of the proposed method are illustrated with the processing and analysis of 3D biomedical data. In particular, we show how those wavelets can be used to characterize directional patterns and to detect edges by means of a 3D monogenic analysis. We also propose a new inverse-problem formalism along with an optimization algorithm for reconstructing 3D images from a sparse set of wavelet-domain edges. The scheme results in high-quality image reconstructions which demonstrate the feature-reduction ability of the steerable wavelets as well as their potential for solving inverse problems.
3D Viscoelastic traction force microscopy.
Toyjanova, Jennet; Hannen, Erin; Bar-Kochba, Eyal; Darling, Eric M; Henann, David L; Franck, Christian
2014-10-28
Native cell-material interactions occur on materials differing in their structural composition, chemistry, and physical compliance. While the last two decades have shown the importance of traction forces during cell-material interactions, they have been almost exclusively presented on purely elastic in vitro materials. Yet, most bodily tissue materials exhibit some level of viscoelasticity, which could play an important role in how cells sense and transduce tractions. To expand the realm of cell traction measurements and to encompass all materials from elastic to viscoelastic, this paper presents a general, and comprehensive approach for quantifying 3D cell tractions in viscoelastic materials. This methodology includes the experimental characterization of the time-dependent material properties for any viscoelastic material with the subsequent mathematical implementation of the determined material model into a 3D traction force microscopy (3D TFM) framework. Utilizing this new 3D viscoelastic TFM (3D VTFM) approach, we quantify the influence of viscosity on the overall material traction calculations and quantify the error associated with omitting time-dependent material effects, as is the case for all other TFM formulations. We anticipate that the 3D VTFM technique will open up new avenues of cell-material investigations on even more physiologically relevant time-dependent materials including collagen and fibrin gels.
Focus-distance-controlled 3D TV
NASA Astrophysics Data System (ADS)
Yanagisawa, Nobuaki; Kim, Kyung-tae; Son, Jung-Young; Murata, Tatsuya; Orima, Takatoshi
1996-09-01
There is a phenomenon that a 3D image appears in proportion to a focus distance when something is watched through a convex lens. An adjustable focus lens which can control the focus distance of the convex lens is contrived and applied to 3D TV. We can watch 3D TV without eyeglasses. The 3D TV image meets the NTSC standard. A parallax data and a focus data about the image can be accommodated at the same time. A continuous image method realizes much wider views. An anti 3D image effect can be avoided by using this method. At present, an analysis of proto-type lens and experiment are being carried out. As a result, a phantom effect and a viewing area can be improved. It is possible to watch the 3D TV at any distance. Distance data are triangulated by two cameras. A plan of AVI photo type using ten thousand lenses is discussed. This method is compared with four major conventional methods. As a result, it is revealed that this method can make the efficient use of Integral Photography and Varifocal type method. In the case of Integral Photography, a miniaturization of this system is possible. But it is difficult to get actual focus. In the case of varifocal type method, there is no problem with focusing, but the miniaturization is impossible. The theory investigated in this paper makes it possible to solve these problems.
Focus-distance-controlled 3D TV
NASA Astrophysics Data System (ADS)
Yanagisawa, Nobuaki; Kim, Kyung-tae; Son, Jung-Young; Murata, Tatsuya; Orima, Takatoshi
1997-05-01
There is a phenomenon that a 3D image appears in proportion to a focus distance when something is watched through a convex lens. An adjustable focus lens which can control the focus distance of the convex lens is contrived and applied to 3D TV. We can watch 3D TV without eyeglasses. The 3D TV image meets the NTSC standard. A parallax data and a focus data about the image can be accommodated at the same time. A continuous image method realizes much wider views. An anti 3D image effect can be avoided by using this method. At present, an analysis of proto-type lens and experiment are being carried out. As a result, a phantom effect and a viewing area can be improved. It is possible to watch the 3D TV at any distance. Distance data are triangulated by two cameras. A plan of AVI proto type using ten thousands lenses is discussed. This method is compared with four major conventional methods. As a result, it is revealed that this method can make the efficient use of integral photography and varifocal type method. In the case of integral photography, a miniaturization of this system is possible. But it is difficult to get actual focus. In the case of varifocal type method, there is no problem with focusing, but the miniaturization is impossible. The theory investigated in this paper makes it possible to solve these problems.
3D goes digital: from stereoscopy to modern 3D imaging techniques
NASA Astrophysics Data System (ADS)
Kerwien, N.
2014-11-01
In the 19th century, English physicist Charles Wheatstone discovered stereopsis, the basis for 3D perception. His construction of the first stereoscope established the foundation for stereoscopic 3D imaging. Since then, many optical instruments were influenced by these basic ideas. In recent decades, the advent of digital technologies revolutionized 3D imaging. Powerful readily available sensors and displays combined with efficient pre- or post-processing enable new methods for 3D imaging and applications. This paper draws an arc from basic concepts of 3D imaging to modern digital implementations, highlighting instructive examples from its 175 years of history.
The NIH 3D Print Exchange: A Public Resource for Bioscientific and Biomedical 3D Prints
Coakley, Meghan F.; Hurt, Darrell E.; Weber, Nick; Mtingwa, Makazi; Fincher, Erin C.; Alekseyev, Vsevelod; Chen, David T.; Yun, Alvin; Gizaw, Metasebia; Swan, Jeremy; Yoo, Terry S.; Huyen, Yentram
2016-01-01
The National Institutes of Health (NIH) has launched the NIH 3D Print Exchange, an online portal for discovering and creating bioscientifically relevant 3D models suitable for 3D printing, to provide both researchers and educators with a trusted source to discover accurate and informative models. There are a number of online resources for 3D prints, but there is a paucity of scientific models, and the expertise required to generate and validate such models remains a barrier. The NIH 3D Print Exchange fills this gap by providing novel, web-based tools that empower users with the ability to create ready-to-print 3D files from molecular structure data, microscopy image stacks, and computed tomography scan data. The NIH 3D Print Exchange facilitates open data sharing in a community-driven environment, and also includes various interactive features, as well as information and tutorials on 3D modeling software. As the first government-sponsored website dedicated to 3D printing, the NIH 3D Print Exchange is an important step forward to bringing 3D printing to the mainstream for scientific research and education. PMID:28367477
CFL3D, FUN3d, and NSU3D Contributions to the Fifth Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Park, Michael A.; Laflin, Kelly R.; Chaffin, Mark S.; Powell, Nicholas; Levy, David W.
2013-01-01
Results presented at the Fifth Drag Prediction Workshop using CFL3D, FUN3D, and NSU3D are described. These are calculations on the workshop provided grids and drag adapted grids. The NSU3D results have been updated to reflect an improvement to skin friction calculation on skewed grids. FUN3D results generated after the workshop are included for custom participant generated grids and a grid from a previous workshop. Uniform grid refinement at the design condition shows a tight grouping in calculated drag, where the variation in the pressure component of drag is larger than the skin friction component. At this design condition, A fine-grid drag value was predicted with a smaller drag adjoint adapted grid via tetrahedral adaption to a metric and mixed-element subdivision. The buffet study produced larger variation than the design case, which is attributed to large differences in the predicted side-of-body separation extent. Various modeling and discretization approaches had a strong impact on predicted side-of-body separation. This large wing root separation bubble was not observed in wind tunnel tests indicating that more work is necessary in modeling wing root juncture flows to predict experiments.
Higher Order Lagrange Finite Elements In M3D
J. Chen; H.R. Strauss; S.C. Jardin; W. Park; L.E. Sugiyama; G. Fu; J. Breslau
2004-12-17
The M3D code has been using linear finite elements to represent multilevel MHD on 2-D poloidal planes. Triangular higher order elements, up to third order, are constructed here in order to provide M3D the capability to solve highly anisotropic transport problems. It is found that higher order elements are essential to resolve the thin transition layer characteristic of the anisotropic transport equation, particularly when the strong anisotropic direction is not aligned with one of the Cartesian coordinates. The transition layer is measured by the profile width, which is zero for infinite anisotropy. It is shown that only higher order schemes have the ability to make this layer converge towards zero when the anisotropy gets stronger and stronger. Two cases are considered. One has the strong transport direction partially aligned with one of the element edges, the other doesn't have any alignment. Both cases have the strong transport direction misaligned with the grid line by some angles.
DREAM3D simulations of inner-belt dynamics
Cunningham, Gregory Scott
2015-05-26
A 1973 paper by Lyons and Thorne explains the two-belt structure for electrons in the inner magnetosphere as a balance between inward radial diffusion and loss to the atmosphere, where the loss to the atmosphere is enabled by pitch-angle scattering from Coulomb and wave-particle interactions. In the 1973 paper, equilibrium solutions to a decoupled set of 1D radial diffusion equations, one for each value of the first invariant of motion, μ, were computed to produce the equilibrium two-belt structure. Each 1D radial diffusion equation incorporated an L-and μ-dependent `lifetime' due to the Coulomb and wave-particle interactions. This decoupling of the problem is appropriate under the assumption that radial diffusion is slow in comparison to pitch-angle scattering. However, for some values of μ and L the lifetime associated with pitch-angle scattering is comparable to the timescale associated with radial diffusion, suggesting that the true equilibrium solutions might reflect `coupled modes' involving pitch-angle scattering and radial diffusion and thus requiring a 3D diffusion model. In the work we show here, we have computed the equilibrium solutions using our 3D diffusion model, DREAM3D, that allows for such coupling. We find that the 3D equilibrium solutions are quite similar to the solutions shown in the 1973 paper when we use the same physical models for radial diffusion and pitch-angle scattering from hiss. However, we show that the equilibrium solutions are quite sensitive to various aspects of the physics model employed in the 1973 paper that can be improved, suggesting that additional work needs to be done to understand the two-belt structure.
Multi-user 3D film on a time-multiplexed side-emission backlight system.
Ting, Chih-Hung; Chang, Yu-Cheng; Chen, Chun-Ho; Huang, Yi-Pai; Tsai, Han-Wen
2016-10-01
The desirable features for a portable 3D display include displaying 2D and 3D images without resolution degradation for multiple users, a 2D/3D switchable functionality, and, in particular, a compact volume. To produce a portable 3D display with these desirable features, we propose here a multi-user 3D film combined with a side-emission backlight system that has a directional-sequential light distribution. According to the simulation and experimental results, the multi-user 3D film successfully uses an inverted trapezoid structure to separate the rays of each light source and increases the number of observers from one to three. Additionally, the specification of the inverted trapezoid structure can be determined via equations for different designated viewing positions of the side observer and for the ratio of light intensities for the central and side observers.
Self assembled structures for 3D integration
NASA Astrophysics Data System (ADS)
Rao, Madhav
Three dimensional (3D) micro-scale structures attached to a silicon substrate have various applications in microelectronics. However, formation of 3D structures using conventional micro-fabrication techniques are not efficient and require precise control of processing parameters. Self assembly is a method for creating 3D structures that takes advantage of surface area minimization phenomena. Solder based self assembly (SBSA), the subject of this dissertation, uses solder as a facilitator in the formation of 3D structures from 2D patterns. Etching a sacrificial layer underneath a portion of the 2D pattern allows the solder reflow step to pull those areas out of the substrate plane resulting in a folded 3D structure. Initial studies using the SBSA method demonstrated low yields in the formation of five different polyhedra. The failures in folding were primarily attributed to nonuniform solder deposition on the underlying metal pads. The dip soldering method was analyzed and subsequently refined. A modified dip soldering process provided improved yield among the polyhedra. Solder bridging referred as joining of solder deposited on different metal patterns in an entity influenced the folding mechanism. In general, design parameters such as small gap-spacings and thick metal pads were found to favor solder bridging for all patterns studied. Two types of soldering: face and edge soldering were analyzed. Face soldering refers to the application of solder on the entire metal face. Edge soldering indicates application of solder only on the edges of the metal face. Mechanical grinding showed that face soldered SBSA structures were void free and robust in nature. In addition, the face soldered 3D structures provide a consistent heat resistant solder standoff height that serve as attachments in the integration of dissimilar electronic technologies. Face soldered 3D structures were developed on the underlying conducting channel to determine the thermo-electric reliability of
PLOT3D Export Tool for Tecplot
NASA Technical Reports Server (NTRS)
Alter, Stephen
2010-01-01
The PLOT3D export tool for Tecplot solves the problem of modified data being impossible to output for use by another computational science solver. The PLOT3D Exporter add-on enables the use of the most commonly available visualization tools to engineers for output of a standard format. The exportation of PLOT3D data from Tecplot has far reaching effects because it allows for grid and solution manipulation within a graphical user interface (GUI) that is easily customized with macro language-based and user-developed GUIs. The add-on also enables the use of Tecplot as an interpolation tool for solution conversion between different grids of different types. This one add-on enhances the functionality of Tecplot so significantly, it offers the ability to incorporate Tecplot into a general suite of tools for computational science applications as a 3D graphics engine for visualization of all data. Within the PLOT3D Export Add-on are several functions that enhance the operations and effectiveness of the add-on. Unlike Tecplot output functions, the PLOT3D Export Add-on enables the use of the zone selection dialog in Tecplot to choose which zones are to be written by offering three distinct options - output of active, inactive, or all zones (grid blocks). As the user modifies the zones to output with the zone selection dialog, the zones to be written are similarly updated. This enables the use of Tecplot to create multiple configurations of a geometry being analyzed. For example, if an aircraft is loaded with multiple deflections of flaps, by activating and deactivating different zones for a specific flap setting, new specific configurations of that aircraft can be easily generated by only writing out specific zones. Thus, if ten flap settings are loaded into Tecplot, the PLOT3D Export software can output ten different configurations, one for each flap setting.
A microfluidic device for 2D to 3D and 3D to 3D cell navigation
NASA Astrophysics Data System (ADS)
Shamloo, Amir; Amirifar, Leyla
2016-01-01
Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies.
The resurrection of Laplace's method of initial orbit determination
NASA Astrophysics Data System (ADS)
Taff, L. G.
1983-01-01
This report deals with a number of interrelated topics. The common thread is Laplace's method of initial orbit determination based on passively acquired optical data. We discuss this method's principal competitor (that of Gauss), the difficulties of Gauss's technique, and the traditional reasons the Gaussian method is preferred to the Laplacian. We reject this hegemony for a variety of reasons and concentrate on Laplace's method in an era of a surfeit of high quality data. This leads us into a discussion of data smoothing. Once one leaves the raw observatorial data the possibility of combining observations from multiple observers comes to mind and hence the determination of parallax by trigonometrical means. All of this may be applied to two different classes of objects-astroids and artificial satellites. Our immediate interests are in fast moving asteroids (greater than 0.5/day or an abnormally fast ecliptic latitude rate) and high altitude artificial satellites (P greater than 6h). In both instances it is the high inclination and high eccentricity subset which is of special concern.
A finite element solver for 3-D compressible viscous flows
NASA Technical Reports Server (NTRS)
Reddy, K. C.; Reddy, J. N.; Nayani, S.
1990-01-01
Computation of the flow field inside a space shuttle main engine (SSME) requires the application of state of the art computational fluid dynamic (CFD) technology. Several computer codes are under development to solve 3-D flow through the hot gas manifold. Some algorithms were designed to solve the unsteady compressible Navier-Stokes equations, either by implicit or explicit factorization methods, using several hundred or thousands of time steps to reach a steady state solution. A new iterative algorithm is being developed for the solution of the implicit finite element equations without assembling global matrices. It is an efficient iteration scheme based on a modified nonlinear Gauss-Seidel iteration with symmetric sweeps. The algorithm is analyzed for a model equation and is shown to be unconditionally stable. Results from a series of test problems are presented. The finite element code was tested for couette flow, which is flow under a pressure gradient between two parallel plates in relative motion. Another problem that was solved is viscous laminar flow over a flat plate. The general 3-D finite element code was used to compute the flow in an axisymmetric turnaround duct at low Mach numbers.
Modeling moving systems with RELAP5-3D
Mesina, G. L.; Aumiller, David L.; Buschman, Francis X.; Kyle, Matt R.
2015-12-04
RELAP5-3D is typically used to model stationary, land-based reactors. However, it can also model reactors in other inertial and accelerating frames of reference. By changing the magnitude of the gravitational vector through user input, RELAP5-3D can model reactors on a space station or the moon. The field equations have also been modified to model reactors in a non-inertial frame, such as occur in land-based reactors during earthquakes or onboard spacecraft. Transient body forces affect fluid flow in thermal-fluid machinery aboard accelerating crafts during rotational and translational accelerations. It is useful to express the equations of fluid motion in the accelerating frame of reference attached to the moving craft. However, careful treatment of the rotational and translational kinematics is required to accurately capture the physics of the fluid motion. Correlations for flow at angles between horizontal and vertical are generated via interpolation where no experimental studies or data exist. The equations for three-dimensional fluid motion in a non-inertial frame of reference are developed. As a result, two different systems for describing rotational motion are presented, user input is discussed, and an example is given.
Modeling moving systems with RELAP5-3D
Mesina, G. L.; Aumiller, David L.; Buschman, Francis X.; ...
2015-12-04
RELAP5-3D is typically used to model stationary, land-based reactors. However, it can also model reactors in other inertial and accelerating frames of reference. By changing the magnitude of the gravitational vector through user input, RELAP5-3D can model reactors on a space station or the moon. The field equations have also been modified to model reactors in a non-inertial frame, such as occur in land-based reactors during earthquakes or onboard spacecraft. Transient body forces affect fluid flow in thermal-fluid machinery aboard accelerating crafts during rotational and translational accelerations. It is useful to express the equations of fluid motion in the acceleratingmore » frame of reference attached to the moving craft. However, careful treatment of the rotational and translational kinematics is required to accurately capture the physics of the fluid motion. Correlations for flow at angles between horizontal and vertical are generated via interpolation where no experimental studies or data exist. The equations for three-dimensional fluid motion in a non-inertial frame of reference are developed. As a result, two different systems for describing rotational motion are presented, user input is discussed, and an example is given.« less
RAG-3D: A search tool for RNA 3D substructures
Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; Schlick, Tamar
2015-08-24
In this study, to address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.
RAG-3D: A search tool for RNA 3D substructures
Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; ...
2015-08-24
In this study, to address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally describedmore » in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.« less
ICER-3D Hyperspectral Image Compression Software
NASA Technical Reports Server (NTRS)
Xie, Hua; Kiely, Aaron; Klimesh, matthew; Aranki, Nazeeh
2010-01-01
Software has been developed to implement the ICER-3D algorithm. ICER-3D effects progressive, three-dimensional (3D), wavelet-based compression of hyperspectral images. If a compressed data stream is truncated, the progressive nature of the algorithm enables reconstruction of hyperspectral data at fidelity commensurate with the given data volume. The ICER-3D software is capable of providing either lossless or lossy compression, and incorporates an error-containment scheme to limit the effects of data loss during transmission. The compression algorithm, which was derived from the ICER image compression algorithm, includes wavelet-transform, context-modeling, and entropy coding subalgorithms. The 3D wavelet decomposition structure used by ICER-3D exploits correlations in all three dimensions of sets of hyperspectral image data, while facilitating elimination of spectral ringing artifacts, using a technique summarized in "Improving 3D Wavelet-Based Compression of Spectral Images" (NPO-41381), NASA Tech Briefs, Vol. 33, No. 3 (March 2009), page 7a. Correlation is further exploited by a context-modeling subalgorithm, which exploits spectral dependencies in the wavelet-transformed hyperspectral data, using an algorithm that is summarized in "Context Modeler for Wavelet Compression of Hyperspectral Images" (NPO-43239), which follows this article. An important feature of ICER-3D is a scheme for limiting the adverse effects of loss of data during transmission. In this scheme, as in the similar scheme used by ICER, the spatial-frequency domain is partitioned into rectangular error-containment regions. In ICER-3D, the partitions extend through all the wavelength bands. The data in each partition are compressed independently of those in the other partitions, so that loss or corruption of data from any partition does not affect the other partitions. Furthermore, because compression is progressive within each partition, when data are lost, any data from that partition received
Full-color holographic 3D printer
NASA Astrophysics Data System (ADS)
Takano, Masami; Shigeta, Hiroaki; Nishihara, Takashi; Yamaguchi, Masahiro; Takahashi, Susumu; Ohyama, Nagaaki; Kobayashi, Akihiko; Iwata, Fujio
2003-05-01
A holographic 3D printer is a system that produces a direct hologram with full-parallax information using the 3-dimensional data of a subject from a computer. In this paper, we present a proposal for the reproduction of full-color images with the holographic 3D printer. In order to realize the 3-dimensional color image, we selected the 3 laser wavelength colors of red (λ=633nm), green (λ=533nm), and blue (λ=442nm), and we built a one-step optical system using a projection system and a liquid crystal display. The 3-dimensional color image is obtained by synthesizing in a 2D array the multiple exposure with these 3 wavelengths made on each 250mm elementary hologram, and moving recording medium on a x-y stage. For the natural color reproduction in the holographic 3D printer, we take the approach of the digital processing technique based on the color management technology. The matching between the input and output colors is performed by investigating first, the relation between the gray level transmittance of the LCD and the diffraction efficiency of the hologram and second, by measuring the color displayed by the hologram to establish a correlation. In our first experimental results a non-linear functional relation for single and multiple exposure of the three components were found. These results are the first step in the realization of a natural color 3D image produced by the holographic color 3D printer.
3D bioprinting for engineering complex tissues.
Mandrycky, Christian; Wang, Zongjie; Kim, Keekyoung; Kim, Deok-Ho
2016-01-01
Bioprinting is a 3D fabrication technology used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. While still in its early stages, bioprinting strategies have demonstrated their potential use in regenerative medicine to generate a variety of transplantable tissues, including skin, cartilage, and bone. However, current bioprinting approaches still have technical challenges in terms of high-resolution cell deposition, controlled cell distributions, vascularization, and innervation within complex 3D tissues. While no one-size-fits-all approach to bioprinting has emerged, it remains an on-demand, versatile fabrication technique that may address the growing organ shortage as well as provide a high-throughput method for cell patterning at the micrometer scale for broad biomedical engineering applications. In this review, we introduce the basic principles, materials, integration strategies and applications of bioprinting. We also discuss the recent developments, current challenges and future prospects of 3D bioprinting for engineering complex tissues. Combined with recent advances in human pluripotent stem cell technologies, 3D-bioprinted tissue models could serve as an enabling platform for high-throughput predictive drug screening and more effective regenerative therapies.
3D optical measuring technologies and systems
NASA Astrophysics Data System (ADS)
Chugui, Yuri V.
2005-02-01
The results of the R & D activity of TDI SIE SB RAS in the field of the 3D optical measuring technologies and systems for noncontact 3D optical dimensional inspection applied to atomic and railway industry safety problems are presented. This activity includes investigations of diffraction phenomena on some 3D objects, using the original constructive calculation method. The efficient algorithms for precise determining the transverse and longitudinal sizes of 3D objects of constant thickness by diffraction method, peculiarities on formation of the shadow and images of the typical elements of the extended objects were suggested. Ensuring the safety of nuclear reactors and running trains as well as their high exploitation reliability requires a 100% noncontact precise inspection of geometrical parameters of their components. To solve this problem we have developed methods and produced the technical vision measuring systems LMM, CONTROL, PROFIL, and technologies for noncontact 3D dimensional inspection of grid spacers and fuel elements for the nuclear reactor VVER-1000 and VVER-440, as well as automatic laser diagnostic COMPLEX for noncontact inspection of geometric parameters of running freight car wheel pairs. The performances of these systems and the results of industrial testing are presented and discussed. The created devices are in pilot operation at Atomic and Railway Companies.
Magnetic Properties of 3D Printed Toroids
NASA Astrophysics Data System (ADS)
Bollig, Lindsey; Otto, Austin; Hilpisch, Peter; Mowry, Greg; Nelson-Cheeseman, Brittany; Renewable Energy; Alternatives Lab (REAL) Team
Transformers are ubiquitous in electronics today. Although toroidal geometries perform most efficiently, transformers are traditionally made with rectangular cross-sections due to the lower manufacturing costs. Additive manufacturing techniques (3D printing) can easily achieve toroidal geometries by building up a part through a series of 2D layers. To get strong magnetic properties in a 3D printed transformer, a composite filament is used containing Fe dispersed in a polymer matrix. How the resulting 3D printed toroid responds to a magnetic field depends on two structural factors of the printed 2D layers: fill factor (planar density) and fill pattern. In this work, we investigate how the fill factor and fill pattern affect the magnetic properties of 3D printed toroids. The magnetic properties of the printed toroids are measured by a custom circuit that produces a hysteresis loop for each toroid. Toroids with various fill factors and fill patterns are compared to determine how these two factors can affect the magnetic field the toroid can produce. These 3D printed toroids can be used for numerous applications in order to increase the efficiency of transformers by making it possible for manufacturers to make a toroidal geometry.
Zuppinger, Christian
2016-07-01
This review discusses historical milestones, recent developments and challenges in the area of 3D culture models with cardiovascular cell types. Expectations in this area have been raised in recent years, but more relevant in vitro research, more accurate drug testing results, reliable disease models and insights leading to bioartificial organs are expected from the transition to 3D cell culture. However, the construction of organ-like cardiac 3D models currently remains a difficult challenge. The heart consists of highly differentiated cells in an intricate arrangement.Furthermore, electrical “wiring”, a vascular system and multiple cell types act in concert to respond to the rapidly changing demands of the body. Although cardiovascular 3D culture models have been predominantly developed for regenerative medicine in the past, their use in drug screening and for disease models has become more popular recently. Many sophisticated 3D culture models are currently being developed in this dynamic area of life science. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
3D Spray Droplet Distributions in Sneezes
NASA Astrophysics Data System (ADS)
Techet, Alexandra; Scharfman, Barry; Bourouiba, Lydia
2015-11-01
3D spray droplet clouds generated during human sneezing are investigated using the Synthetic Aperture Feature Extraction (SAFE) method, which relies on light field imaging (LFI) and synthetic aperture (SA) refocusing computational photographic techniques. An array of nine high-speed cameras are used to image sneeze droplets and tracked the droplets in 3D space and time (3D + T). An additional high-speed camera is utilized to track the motion of the head during sneezing. In the SAFE method, the raw images recorded by each camera in the array are preprocessed and binarized, simplifying post processing after image refocusing and enabling the extraction of feature sizes and positions in 3D + T. These binary images are refocused using either additive or multiplicative methods, combined with thresholding. Sneeze droplet centroids, radii, distributions and trajectories are determined and compared with existing data. The reconstructed 3D droplet centroids and radii enable a more complete understanding of the physical extent and fluid dynamics of sneeze ejecta. These measurements are important for understanding the infectious disease transmission potential of sneezes in various indoor environments.
BEAMS3D Neutral Beam Injection Model
NASA Astrophysics Data System (ADS)
McMillan, Matthew; Lazerson, Samuel A.
2014-09-01
With the advent of applied 3D fields in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous slowing down, and pitch angle scattering are modeled with the ADAS atomic physics database. Elementary benchmark calculations are presented to verify the collisionless particle orbits, NBI model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields. Notice: this manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.
Extra dimensions: 3D in PDF documentation
Graf, Norman A.
2011-01-11
Experimental science is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universal 3D (U3D) file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. By providing support for scripting and animation, temporal data can also be easily distributed to a wide, non-technical audience. We discuss how the field of radiation imaging could benefit from incorporating full 3D information about not only the detectors, but also the results of the experimental analyses, in its electronic publications. In this article, we present examples drawn from high-energy physics, mathematics and molecular biology which take advantage of this functionality. Furthermore, we demonstrate how 3D detector elements can be documented, using either CAD drawings or other sources such as GEANT visualizations as input.
Extra dimensions: 3D in PDF documentation
Graf, Norman A.
2011-01-11
Experimental science is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universalmore » 3D (U3D) file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. By providing support for scripting and animation, temporal data can also be easily distributed to a wide, non-technical audience. We discuss how the field of radiation imaging could benefit from incorporating full 3D information about not only the detectors, but also the results of the experimental analyses, in its electronic publications. In this article, we present examples drawn from high-energy physics, mathematics and molecular biology which take advantage of this functionality. Furthermore, we demonstrate how 3D detector elements can be documented, using either CAD drawings or other sources such as GEANT visualizations as input.« less
3D Simulation: Microgravity Environments and Applications
NASA Technical Reports Server (NTRS)
Hunter, Steve L.; Dischinger, Charles; Estes, Samantha; Parker, Nelson C. (Technical Monitor)
2001-01-01
Most, if not all, 3-D and Virtual Reality (VR) software programs are designed for one-G gravity applications. Space environments simulations require gravity effects of one one-thousandth to one one-million of that of the Earth's surface (10(exp -3) - 10(exp -6) G), thus one must be able to generate simulations that replicate those microgravity effects upon simulated astronauts. Unfortunately, the software programs utilized by the National Aeronautical and Space Administration does not have the ability to readily neutralize the one-G gravity effect. This pre-programmed situation causes the engineer or analysis difficulty during micro-gravity simulations. Therefore, microgravity simulations require special techniques or additional code in order to apply the power of 3D graphic simulation to space related applications. This paper discusses the problem and possible solutions to allow microgravity 3-D/VR simulations to be completed successfully without program code modifications.
3D Printed Multimaterial Microfluidic Valve
Patrick, William G.; Sharma, Sunanda; Kong, David S.; Oxman, Neri
2016-01-01
We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics. PMID:27525809
Impedance mammograph 3D phantom studies.
Wtorek, J; Stelter, J; Nowakowski, A
1999-04-20
The results obtained using the Technical University of Gdansk Electroimpedance Mammograph (TUGEM) of a 3D phantom study are presented. The TUGEM system is briefly described. The hardware contains the measurement head and DSP-based identification modules controlled by a PC computer. A specially developed reconstruction algorithm, Regulated Correction Frequency Algebraic Reconstruction Technique (RCFART), is used to obtain 3D images. To visualize results, the Advance Visualization System (AVS) is used. It allows a powerful image processing on a fast workstation or on a high-performance computer. Results of three types of 3D conductivity perturbations used in the study (aluminum, Plexiglas, and cucumber) are shown. The relative volumes of perturbations less than 2% of the measurement chamber are easily evidenced.
Spectroradiometric characterization of autostereoscopic 3D displays
NASA Astrophysics Data System (ADS)
Rubiño, Manuel; Salas, Carlos; Pozo, Antonio M.; Castro, J. J.; Pérez-Ocón, Francisco
2013-11-01
Spectroradiometric measurements have been made for the experimental characterization of the RGB channels of autostereoscopic 3D displays, giving results for different measurement angles with respect to the normal direction of the plane of the display. In the study, 2 different models of autostereoscopic 3D displays of different sizes and resolutions were used, making measurements with a spectroradiometer (model PR-670 SpectraScan of PhotoResearch). From the measurements made, goniometric results were recorded for luminance contrast, and the fundamental hypotheses have been evaluated for the characterization of the displays: independence of the RGB channels and their constancy. The results show that the display with the lower angle variability in the contrast-ratio value and constancy of the chromaticity coordinates nevertheless presented the greatest additivity deviations with the measurement angle. For both displays, when the parameters evaluated were taken into account, lower angle variability consistently resulted in the 2D mode than in the 3D mode.
Ames Lab 101: 3D Metals Printer
Ott, Ryan
2014-02-13
To meet one of the biggest energy challenges of the 21st century - finding alternatives to rare-earth elements and other critical materials - scientists will need new and advanced tools. The Critical Materials Institute at the U.S. Department of Energy's Ames Laboratory has a new one: a 3D printer for metals research. 3D printing technology, which has captured the imagination of both industry and consumers, enables ideas to move quickly from the initial design phase to final form using materials including polymers, ceramics, paper and even food. But the Critical Materials Institute (CMI) will apply the advantages of the 3D printing process in a unique way: for materials discovery.
3D Gravity Inversion using Tikhonov Regularization
NASA Astrophysics Data System (ADS)
Toushmalani, Reza; Saibi, Hakim
2015-08-01
Subsalt exploration for oil and gas is attractive in regions where 3D seismic depth-migration to recover the geometry of a salt base is difficult. Additional information to reduce the ambiguity in seismic images would be beneficial. Gravity data often serve these purposes in the petroleum industry. In this paper, the authors present an algorithm for a gravity inversion based on Tikhonov regularization and an automatically regularized solution process. They examined the 3D Euler deconvolution to extract the best anomaly source depth as a priori information to invert the gravity data and provided a synthetic example. Finally, they applied the gravity inversion to recently obtained gravity data from the Bandar Charak (Hormozgan, Iran) to identify its subsurface density structure. Their model showed the 3D shape of salt dome in this region.
3D face analysis for demographic biometrics
Tokola, Ryan A; Mikkilineni, Aravind K; Boehnen, Chris Bensing
2015-01-01
Despite being increasingly easy to acquire, 3D data is rarely used for face-based biometrics applications beyond identification. Recent work in image-based demographic biometrics has enjoyed much success, but these approaches suffer from the well-known limitations of 2D representations, particularly variations in illumination, texture, and pose, as well as a fundamental inability to describe 3D shape. This paper shows that simple 3D shape features in a face-based coordinate system are capable of representing many biometric attributes without problem-specific models or specialized domain knowledge. The same feature vector achieves impressive results for problems as diverse as age estimation, gender classification, and race classification.
Active segmentation of 3D axonal images.
Muralidhar, Gautam S; Gopinath, Ajay; Bovik, Alan C; Ben-Yakar, Adela
2012-01-01
We present an active contour framework for segmenting neuronal axons on 3D confocal microscopy data. Our work is motivated by the need to conduct high throughput experiments involving microfluidic devices and femtosecond lasers to study the genetic mechanisms behind nerve regeneration and repair. While most of the applications for active contours have focused on segmenting closed regions in 2D medical and natural images, there haven't been many applications that have focused on segmenting open-ended curvilinear structures in 2D or higher dimensions. The active contour framework we present here ties together a well known 2D active contour model [5] along with the physics of projection imaging geometry to yield a segmented axon in 3D. Qualitative results illustrate the promise of our approach for segmenting neruonal axons on 3D confocal microscopy data.
Atomic resolution 3D electron diffraction microscopy
Miao, Jianwei; Ohsuna, Tetsu; Terasaki, Osamu; O'Keefe, Michael A.
2002-03-01
Electron lens aberration is the major barrier limiting the resolution of electron microscopy. Here we describe a novel form of electron microscopy to overcome electron lens aberration. By combining coherent electron diffraction with the oversampling phasing method, we show that the 3D structure of a 2 x 2 x 2 unit cell nano-crystal (framework of LTA [Al12Si12O48]8) can be ab initio determined at the resolution of 1 Angstrom from a series of simulated noisy diffraction pattern projections with rotation angles ranging from -70 degrees to +70 degrees in 5 degrees increments along a single rotation axis. This form of microscopy (which we call 3D electron diffraction microscopy) does not require any reference waves, and can image the 3D structure of nanocrystals, as well as non-crystalline biological and materials science samples, with the resolution limited only by the quality of sample diffraction.
Simple buffers for 3D STORM microscopy.
Olivier, Nicolas; Keller, Debora; Rajan, Vinoth Sundar; Gönczy, Pierre; Manley, Suliana
2013-06-01
3D STORM is one of the leading methods for super-resolution imaging, with resolution down to 10 nm in the lateral direction, and 30-50 nm in the axial direction. However, there is one important requirement to perform this type of imaging: making dye molecules blink. This usually relies on the utilization of complex buffers, containing different chemicals and sensitive enzymatic systems, limiting the reproducibility of the method. We report here that the commercial mounting medium Vectashield can be used for STORM of Alexa-647, and yields images comparable or superior to those obtained with more complex buffers, especially for 3D imaging. We expect that this advance will promote the versatile utilization of 3D STORM by removing one of its entry barriers, as well as provide a more reproducible way to compare optical setups and data processing algorithms.
3D integral imaging with optical processing
NASA Astrophysics Data System (ADS)
Martínez-Corral, Manuel; Martínez-Cuenca, Raúl; Saavedra, Genaro; Javidi, Bahram
2008-04-01
Integral imaging (InI) systems are imaging devices that provide auto-stereoscopic images of 3D intensity objects. Since the birth of this new technology, InI systems have faced satisfactorily many of their initial drawbacks. Basically, two kind of procedures have been used: digital and optical procedures. The "3D Imaging and Display Group" at the University of Valencia, with the essential collaboration of Prof. Javidi, has centered its efforts in the 3D InI with optical processing. Among other achievements, our Group has proposed the annular amplitude modulation for enlargement of the depth of field, dynamic focusing for reduction of the facet-braiding effect, or the TRES and MATRES devices to enlarge the viewing angle.
Methods for comparing 3D surface attributes
NASA Astrophysics Data System (ADS)
Pang, Alex; Freeman, Adam
1996-03-01
A common task in data analysis is to compare two or more sets of data, statistics, presentations, etc. A predominant method in use is side-by-side visual comparison of images. While straightforward, it burdens the user with the task of discerning the differences between the two images. The user if further taxed when the images are of 3D scenes. This paper presents several methods for analyzing the extent, magnitude, and manner in which surfaces in 3D differ in their attributes. The surface geometry are assumed to be identical and only the surface attributes (color, texture, etc.) are variable. As a case in point, we examine the differences obtained when a 3D scene is rendered progressively using radiosity with different form factor calculation methods. The comparison methods include extensions of simple methods such as mapping difference information to color or transparency, and more recent methods including the use of surface texture, perturbation, and adaptive placements of error glyphs.
3D nanopillar optical antenna photodetectors.
Senanayake, Pradeep; Hung, Chung-Hong; Shapiro, Joshua; Scofield, Adam; Lin, Andrew; Williams, Benjamin S; Huffaker, Diana L
2012-11-05
We demonstrate 3D surface plasmon photoresponse in nanopillar arrays resulting in enhanced responsivity due to both Localized Surface Plasmon Resonances (LSPRs) and Surface Plasmon Polariton Bloch Waves (SPP-BWs). The LSPRs are excited due to a partial gold shell coating the nanopillar which acts as a 3D Nanopillar Optical Antenna (NOA) in focusing light into the nanopillar. Angular photoresponse measurements show that SPP-BWs can be spectrally coincident with LSPRs to result in a x2 enhancement in responsivity at 1180 nm. Full-wave Finite Difference Time Domain (FDTD) simulations substantiate both the spatial and spectral coupling of the SPP-BW / LSPR for enhanced absorption and the nature of the LSPR. Geometrical control of the 3D NOA and the self-aligned metal hole lattice allows the hybridization of both localized and propagating surface plasmon modes for enhanced absorption. Hybridized plasmonic modes opens up new avenues in optical antenna design in nanoscale photodetectors.