Science.gov

Sample records for 3d local earthquake

  1. 3D Local Earthquake Tomography of England and Wales

    NASA Astrophysics Data System (ADS)

    Hardwick, A.; England, R.; Maguire, P.; Baptie, B.; Ottemoller, L.

    2006-12-01

    For the past three decades crustal studies of the British Isles have been restricted to the interpretation of 2-D seismic reflection and refraction profiles, mostly aquired offshore. The British Geological Survey (BGS) seismic monitoring network has grown substantially over the past twenty years to a density and quality unprecedented for an aseismic region. Recently, this has made it possible to undertake teleseismic studies to image the seismic velocity of the mantle via 3-D tomography and 1-D receiver functions for the crust and uppermost mantle. Whilst the British Isles can be considered an aseismic region by world standards, the BGS network typically records 40 local events of over 2.0 on the local magnitude scale every year. Irrespective of an intra-plate setting, the width of seismogenic zone is exceptional, ranging from the surface to in excess of 30 kilometres depth despite no surface ruptures ever having been observed. For the first time we utilise these locally generated seismic events within the BGS digital catalogue recorded over the past two decades to produce a model of seismic P- and S- velocity to depths of 70 km beneath England, Wales and the Irish Sea at an unmatched resolution. A high quality subset of over 1,000 local events and 18,000 arrival times has been extracted from the entire digital catalogue. This has been used to relocate the events with a 1-D seismic P-velocity model extracted from a regional 2-D model derived by extrapolation of wide-angle refraction profiles. The initial locations and 1-D model have been simultaneously updated and refined using VELEST to produce a consistent set of station corrections for the BGS network which is in good agreement with known geology. The updated locations and 1-D model acts as the reference model for a 3-D tomographic model developed with the SIMULPS inversion code. Our 3-D model will compliment teleseismic and controlled source studies which demonstrate seismic anomalies thought to be associated

  2. High-resolution 3-D P wave attenuation structure of the New Madrid Seismic Zone using local earthquake tomography

    NASA Astrophysics Data System (ADS)

    Bisrat, Shishay T.; DeShon, Heather R.; Pesicek, Jeremy; Thurber, Clifford

    2014-01-01

    A three-dimensional (3-D), high-resolution P wave seismic attenuation model for the New Madrid Seismic Zone (NMSZ) is determined using P wave path attenuation (t*) values of small-magnitude earthquakes (MD < 3.9). Events were recorded at 89 broadband and short-period seismometers of the Cooperative New Madrid Seismic Zone Network and 40 short-period seismometers of the Portable Array for Numerical Data Acquisition experiment. The amplitude spectra of all the earthquakes are simultaneously inverted for source, path (t*), and site parameters. The t* values are inverted for QP using local earthquake tomography methods and a known 3-D P wave velocity model for the region. The four major seismicity arms of the NMSZ exhibit reduced QP (higher attenuation) than the surrounding crust. The highest attenuation anomalies coincide with areas of previously reported high swarm activity attributed to fluid-rich fractures along the southeast extension of the Reelfoot fault. The QP results are consistent with previous attenuation studies in the region, which showed that active fault zones and fractured crust in the NMSZ are highly attenuating.

  3. Density structure and geometry of the Costa Rican subduction zone from 3-D gravity modeling and local earthquake data

    NASA Astrophysics Data System (ADS)

    Lücke, O. H.; Arroyo, I. G.

    2015-10-01

    The eastern part of the oceanic Cocos Plate presents a heterogeneous crustal structure due to diverse origins and ages as well as plate-hot spot interactions which originated the Cocos Ridge, a structure that converges with the Caribbean Plate in southeastern Costa Rica. The complex structure of the oceanic plate directly influences the dynamics and geometry of the subduction zone along the Middle American Trench. In this paper an integrated interpretation of the slab geometry in Costa Rica is presented based on 3-D density modeling of combined satellite and surface gravity data, constrained by available geophysical and geological data and seismological information obtained from local networks. The results show the continuation of steep subduction geometry from the Nicaraguan margin into northwestern Costa Rica, followed by a moderate dipping slab under the Central Cordillera toward the end of the Central American Volcanic Arc. Contrary to commonly assumed, to the southeast end of the volcanic arc, our preferred model shows a steep, coherent slab that extends up to the landward projection of the Panama Fracture Zone. Overall, a gradual change in the depth of the intraplate seismicity is observed, reaching 220 km in the northwestern part, and becoming progressively shallower toward the southeast, where it reaches a maximum depth of 75 km. The changes in the terminal depth of the observed seismicity correlate with the increased density in the modeled slab. The absence of intermediate depth (> 75 km) intraplate seismicity in the southeastern section and the higher densities for the subducted slab in this area, support a model in which dehydration reactions in the subducted slab cease at a shallower depth, originating an anhydrous and thus aseismic slab.

  4. Density structure and geometry of the Costa Rican subduction zone from 3-D gravity modeling and local earthquake data

    NASA Astrophysics Data System (ADS)

    Lücke, O. H.; Arroyo, I. G.

    2015-07-01

    The eastern part of the oceanic Cocos Plate presents a heterogeneous crustal structure due to diverse origins and ages as well as plate-hot spot interactions which originated the Cocos Ridge, a structure that converges with the Caribbean Plate in southeastern Costa Rica. The complex structure of the oceanic plate directly influences the dynamics and geometry of the subduction zone along the Middle American Trench. In this paper an integrated interpretation of the slab geometry is presented based on three-dimensional density modeling of combined satellite and surface gravity data, constrained by available geophysical and geological data and seismological information obtained from local networks. The results show the continuation of steep subduction geometry from the Nicaraguan margin into Northwestern Costa Rica, followed by a moderate dipping slab under the Central Cordillera toward the end of the Central American Volcanic Arc. To the southeast end of the volcanic arc, our preferred model shows a steep, coherent slab that extends up to the landward projection of the Panama Fracture Zone. Overall, a gradual change in the depth of the intraplate seismicity is observed, reaching 220 km in the northwestern part, and becoming progressively shallower toward the southeast, where it reaches a terminal depth of 75 km. The changes in the terminal depth of the observed seismicity correlate with the increased density in the modeled slab. The absence of intermediate depth intraplate seismicity in the southeastern section and the higher densities for the subducted slab in this area, support a model in which dehydration reactions in the subducted slab cease at a shallower depth, originating an anhydrous and thus aseismic slab.

  5. 3D Dynamic Earthquake Fracture Simulation (Test Case)

    NASA Astrophysics Data System (ADS)

    Korkusuz Öztürk, Yasemin; Meral Özel, Nurcan; Ando, Ryosuke

    2016-04-01

    A 3D dynamic earthquake fracture simulation is being developed for the fault structures which are non-planar to understand heterogeneous stress states in the Marmara Sea. Locating in a seismic gap, a large earthquake is expected in the center of the Sea of Marmara. Concerning the fact that more than 14 million inhabitants of İstanbul, located very closely to the Marmara Sea, the importance of the analysis of the Central Marmara Sea is extremely high. A few 3D dynamic earthquake fracture studies have been already done in the Sea of Marmara for pure right lateral strike-slip stress regimes (Oglesby and Mai, 2012; Aochi and Ulrich, 2015). In this study, a 3D dynamic earthquake fracture model with heterogeneous stress patches from the TPV5, a SCEC code validation case, is adapted. In this test model, the fault and the ground surfaces are gridded by a scalene triangulation technique using GMSH program. For a grid size changing between 0.616 km and 1.050 km the number of elements for the fault surface is 1984 and for the ground surface is 1216. When these results are compared with Kaneko's results for TPV5 from SPECFEM3D, reliable findings could be observed for the first 6.5 seconds (stations on the fault) although a stability problem is encountered after this time threshold. To solve this problem grid sizes are made smaller, so the number of elements increase 7986 for the fault surface and 4867 for the ground surface. On the other hand, computational problems arise in that case, since the computation time is directly proportional to the number of total elements and the required memory also increases with the square of that. Therefore, it is expected that this method can be adapted for less coarse grid cases, regarding the main difficulty coming from the necessity of an effective supercomputer and run time limitations. The main objective of this research is to obtain 3D dynamic earthquake rupture scenarios, concerning not only planar and non-planar faults but also

  6. Testing the USGS 3D San Francisco Bay Area Seismic Velocity Model using Observations of 0.5 to 2 s Surface Waves from Local and Regional Earthquakes (Invited)

    NASA Astrophysics Data System (ADS)

    Brocher, T. M.; Frankel, A. D.; Oppenheimer, D. H.; Fletcher, J. B.; Luetgert, J. H.

    2010-12-01

    USGS 3D seismic velocity model. For the past year, long period motions have also been recorded by the NetQuakes project which is installing a large number (hundreds) of small, relatively inexpensive seismographs in 1 to 2 story homes and businesses. The instruments have an 18-bit resolution recorder and ± 3 g internal tri-axial MEMS accelerometers. NetQuakes instruments have successfully recorded long period motions from the January 9, 2010 M6.5 quake in the Gorda Plate near the Mendocino Triple Junction, the largest earthquake in northern California since June 17, 2005.

  7. Visualizing Earthquakes in '3D' using the IRIS Earthquake Browser (IEB) Website

    NASA Astrophysics Data System (ADS)

    Welti, R.; McQuillan, P. J.; Weertman, B. R.

    2012-12-01

    The distribution of earthquakes is often easier to interpret in 3D, but most 3D visualization tools require the installation of specialized software and some practice in their use. To reduce this barrier for students and the general public, a pseudo-3D seismicity viewer has been developed which runs in a web browser as part of the IRIS Earthquake Browser (IEB). IEB is an interactive map for viewing earthquake epicenters all over the world, and is composed of a Google map, HTML, JavaScript and a fast earthquake hypocenter web service. The web service accesses seismic data at IRIS from the early 1960s until present. Users can change the region, the number of events, and the depth and magnitude ranges to display. Earthquakes may also be viewed as a table, or exported to various formats. Predefined regions can be selected and zoomed to, and bookmarks generally preserve whatever region and settings are in effect when bookmarked, allowing the easy sharing of particular "scenarios" with other users. Plate boundaries can be added to the display. The 3DV viewer displays events for the currently-selected IEB region in a separate window. They can be rotated and zoomed, with a fast response for plots of up to several thousand events. Rotation can be done manually by dragging or automatically at a set rate, and tectonic plate boundaries turned on or off. 3DV uses a geographical projection algorithm provided by Gary Pavils and collaborators. It is written in HTML5, and is based on CanvasMol by Branislav Ulicny.; A region SE of Fiji, selected in IRIS Earthquake Browser. ; The same region as viewed in 3D Viewer.

  8. Dynamic 3D simulations of earthquakes on en echelon faults

    USGS Publications Warehouse

    Harris, R.A.; Day, S.M.

    1999-01-01

    One of the mysteries of earthquake mechanics is why earthquakes stop. This process determines the difference between small and devastating ruptures. One possibility is that fault geometry controls earthquake size. We test this hypothesis using a numerical algorithm that simulates spontaneous rupture propagation in a three-dimensional medium and apply our knowledge to two California fault zones. We find that the size difference between the 1934 and 1966 Parkfield, California, earthquakes may be the product of a stepover at the southern end of the 1934 earthquake and show how the 1992 Landers, California, earthquake followed physically reasonable expectations when it jumped across en echelon faults to become a large event. If there are no linking structures, such as transfer faults, then strike-slip earthquakes are unlikely to propagate through stepovers >5 km wide. Copyright 1999 by the American Geophysical Union.

  9. The 3-D unstructured mesh generation using local transformations

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    1993-01-01

    The topics are presented in viewgraph form and include the following: 3D combinatorial edge swapping; 3D incremental triangulation via local transformations; a new approach to multigrid for unstructured meshes; surface mesh generation using local transforms; volume triangulations; viscous mesh generation; and future directions.

  10. R3D Align: global pairwise alignment of RNA 3D structures using local superpositions

    PubMed Central

    Rahrig, Ryan R.; Leontis, Neocles B.; Zirbel, Craig L.

    2010-01-01

    Motivation: Comparing 3D structures of homologous RNA molecules yields information about sequence and structural variability. To compare large RNA 3D structures, accurate automatic comparison tools are needed. In this article, we introduce a new algorithm and web server to align large homologous RNA structures nucleotide by nucleotide using local superpositions that accommodate the flexibility of RNA molecules. Local alignments are merged to form a global alignment by employing a maximum clique algorithm on a specially defined graph that we call the ‘local alignment’ graph. Results: The algorithm is implemented in a program suite and web server called ‘R3D Align’. The R3D Align alignment of homologous 3D structures of 5S, 16S and 23S rRNA was compared to a high-quality hand alignment. A full comparison of the 16S alignment with the other state-of-the-art methods is also provided. The R3D Align program suite includes new diagnostic tools for the structural evaluation of RNA alignments. The R3D Align alignments were compared to those produced by other programs and were found to be the most accurate, in comparison with a high quality hand-crafted alignment and in conjunction with a series of other diagnostics presented. The number of aligned base pairs as well as measures of geometric similarity are used to evaluate the accuracy of the alignments. Availability: R3D Align is freely available through a web server http://rna.bgsu.edu/R3DAlign. The MATLAB source code of the program suite is also freely available for download at that location. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: r-rahrig@onu.edu PMID:20929913

  11. Haiti 2010 Earthquake: A 3D Deformation Analysis

    NASA Astrophysics Data System (ADS)

    Suresh, Gopika; Minet, Christian; Eineder, Michael; Parizzi, Alessandro; Yague-Martinez, Nestor

    2012-01-01

    On January 12, 2010 at 2153 GMT, a magnitude 7.0 earthquake struck the region of Haiti with its hypocenter at a distance of 25 km from the capital city of Port-au- Prince. This disaster killed about 316,000, injured 300,000 and displaced another 1.3 million people around Port-au-Prince. The earthquake occurred along the Enriquillo- Plantain Garden fault zone, which is one of the two main strike-slip faults inferred to accommodate about 7-10 mm yr-1 relative motion between the Caribbean and the North American Plates. In order to analyse the deformation caused by the earthquake, TerraSAR-X and ALOS-PALSAR data, was processed using Differential Interferometry and Incoherent cross-correlation methods.

  12. Assessing a 3D smoothed seismicity model of induced earthquakes

    NASA Astrophysics Data System (ADS)

    Zechar, Jeremy; Király, Eszter; Gischig, Valentin; Wiemer, Stefan

    2016-04-01

    As more energy exploration and extraction efforts cause earthquakes, it becomes increasingly important to control induced seismicity. Risk management schemes must be improved and should ultimately be based on near-real-time forecasting systems. With this goal in mind, we propose a test bench to evaluate models of induced seismicity based on metrics developed by the CSEP community. To illustrate the test bench, we consider a model based on the so-called seismogenic index and a rate decay; to produce three-dimensional forecasts, we smooth past earthquakes in space and time. We explore four variants of this model using the Basel 2006 and Soultz-sous-Forêts 2004 datasets to make short-term forecasts, test their consistency, and rank the model variants. Our results suggest that such a smoothed seismicity model is useful for forecasting induced seismicity within three days, and giving more weight to recent events improves forecast performance. Moreover, the location of the largest induced earthquake is forecast well by this model. Despite the good spatial performance, the model does not estimate the seismicity rate well: it frequently overestimates during stimulation and during the early post-stimulation period, and it systematically underestimates around shut-in. In this presentation, we also describe a robust estimate of information gain, a modification that can also benefit forecast experiments involving tectonic earthquakes.

  13. Exploring local regularities for 3D object recognition

    NASA Astrophysics Data System (ADS)

    Tian, Huaiwen; Qin, Shengfeng

    2016-09-01

    In order to find better simplicity measurements for 3D object recognition, a new set of local regularities is developed and tested in a stepwise 3D reconstruction method, including localized minimizing standard deviation of angles(L-MSDA), localized minimizing standard deviation of segment magnitudes(L-MSDSM), localized minimum standard deviation of areas of child faces (L-MSDAF), localized minimum sum of segment magnitudes of common edges (L-MSSM), and localized minimum sum of areas of child face (L-MSAF). Based on their effectiveness measurements in terms of form and size distortions, it is found that when two local regularities: L-MSDA and L-MSDSM are combined together, they can produce better performance. In addition, the best weightings for them to work together are identified as 10% for L-MSDSM and 90% for L-MSDA. The test results show that the combined usage of L-MSDA and L-MSDSM with identified weightings has a potential to be applied in other optimization based 3D recognition methods to improve their efficacy and robustness.

  14. The 1999 Izmit, Turkey, earthquake: A 3D dynamic stress transfer model of intraearthquake triggering

    USGS Publications Warehouse

    Harris, R.A.; Dolan, J.F.; Hartleb, R.; Day, S.M.

    2002-01-01

    Before the August 1999 Izmit (Kocaeli), Turkey, earthquake, theoretical studies of earthquake ruptures and geological observations had provided estimates of how far an earthquake might jump to get to a neighboring fault. Both numerical simulations and geological observations suggested that 5 km might be the upper limit if there were no transfer faults. The Izmit earthquake appears to have followed these expectations. It did not jump across any step-over wider than 5 km and was instead stopped by a narrower step-over at its eastern end and possibly by a stress shadow caused by a historic large earthquake at its western end. Our 3D spontaneous rupture simulations of the 1999 Izmit earthquake provide two new insights: (1) the west- to east-striking fault segments of this part of the North Anatolian fault are oriented so as to be low-stress faults and (2) the easternmost segment involved in the August 1999 rupture may be dipping. An interesting feature of the Izmit earthquake is that a 5-km-long gap in surface rupture and an adjacent 25° restraining bend in the fault zone did not stop the earthquake. The latter observation is a warning that significant fault bends in strike-slip faults may not arrest future earthquakes.

  15. Structural response to 3D simulated earthquake motions in San Bernardino Valley

    USGS Publications Warehouse

    Safak, E.; Frankel, A.

    1994-01-01

    Structural repsonse to one- and three-dimensional (3D) simulated motions in San Bernardino Valley from a hypothetical earthquake along the San Andreas fault with moment magnitude 6.5 and rupture length of 30km is investigated. The results show that the ground motions and the structural response vary dramatically with the type of simulation and the location. -from Authors

  16. Finite-Source Inversion for the 2004 Parkfield Earthquake using 3D Velocity Model Green's Functions

    NASA Astrophysics Data System (ADS)

    Kim, A.; Dreger, D.; Larsen, S.

    2008-12-01

    We determine finite fault models of the 2004 Parkfield earthquake using 3D Green's functions. Because of the dense station coverage and detailed 3D velocity structure model in this region, this earthquake provides an excellent opportunity to examine how the 3D velocity structure affects the finite fault inverse solutions. Various studies (e.g. Michaels and Eberhart-Phillips, 1991; Thurber et al., 2006) indicate that there is a pronounced velocity contrast across the San Andreas Fault along the Parkfield segment. Also the fault zone at Parkfield is wide as evidenced by mapped surface faults and where surface slip and creep occurred in the 1966 and the 2004 Parkfield earthquakes. For high resolution images of the rupture process"Ait is necessary to include the accurate 3D velocity structure for the finite source inversion. Liu and Aurchuleta (2004) performed finite fault inversions using both 1D and 3D Green's functions for 1989 Loma Prieta earthquake using the same source paramerization and data but different Green's functions and found that the models were quite different. This indicates that the choice of the velocity model significantly affects the waveform modeling at near-fault stations. In this study, we used the P-wave velocity model developed by Thurber et al (2006) to construct the 3D Green's functions. P-wave speeds are converted to S-wave speeds and density using by the empirical relationships of Brocher (2005). Using a finite difference method, E3D (Larsen and Schultz, 1995), we computed the 3D Green's functions numerically by inserting body forces at each station. Using reciprocity, these Green's functions are recombined to represent the ground motion at each station due to the slip on the fault plane. First we modeled the waveforms of small earthquakes to validate the 3D velocity model and the reciprocity of the Green"fs function. In the numerical tests we found that the 3D velocity model predicted the individual phases well at frequencies lower than 0

  17. Modeling Recent Large Earthquakes Using the 3-D Global Wave Field

    NASA Astrophysics Data System (ADS)

    Hjörleifsdóttir, V.; Kanamori, H.; Tromp, J.

    2003-04-01

    We use the spectral-element method (SEM) to accurately compute waveforms at periods of 40 s and longer for three recent large earthquakes using 3D Earth models and finite source models. The M_w~7.6, Jan~26, 2001, Bhuj, India event had a small rupture area and is well modeled at long periods with a point source. We use this event as a calibration event to investigate the effects of 3-D Earth models on the waveforms. The M_w~7.9, Nov~11, 2001, Kunlun, China, event exhibits a large directivity (an asymmetry in the radiation pattern) even at periods longer than 200~s. We used the source time function determined by Kikuchi and Yamanaka (2001) and the overall pattern of slip distribution determined by Lin et al. to guide the wave-form modeling. The large directivity is consistent with a long fault, at least 300 km, and an average rupture speed of 3±0.3~km/s. The directivity at long periods is not sensitive to variations in the rupture speed along strike as long as the average rupture speed is constant. Thus, local variations in rupture speed cannot be ruled out. The rupture speed is a key parameter for estimating the fracture energy of earthquakes. The M_w~8.1, March~25, 1998, event near the Balleny Islands on the Antarctic Plate exhibits large directivity in long period surface waves, similar to the Kunlun event. Many slip models have been obtained from body waves for this earthquake (Kuge et al. (1999), Nettles et al. (1999), Antolik et al. (2000), Henry et al. (2000) and Tsuboi et al. (2000)). We used the slip model from Henry et al. to compute SEM waveforms for this event. The synthetic waveforms show a good fit to the data at periods from 40-200~s, but the amplitude and directivity at longer periods are significantly smaller than observed. Henry et al. suggest that this event comprised two subevents with one triggering the other at a distance of 100 km. To explain the observed directivity however, a significant amount of slip is required between the two subevents

  18. 3D Spontaneous Rupture Models of Large Earthquakes on the Hayward Fault, California

    NASA Astrophysics Data System (ADS)

    Barall, M.; Harris, R. A.; Simpson, R. W.

    2008-12-01

    We are constructing 3D spontaneous rupture computer simulations of large earthquakes on the Hayward and central Calaveras faults. The Hayward fault has a geologic history of producing many large earthquakes (Lienkaemper and Williams, 2007), with its most recent large event a M6.8 earthquake in 1868. Future large earthquakes on the Hayward fault are not only possible, but probable (WGCEP, 2008). Our numerical simulation efforts use information about the complex 3D fault geometry of the Hayward and Calaveras faults and information about the geology and physical properties of the rocks that surround the Hayward and Calaveras faults (Graymer et al., 2005). Initial stresses on the fault surface are inferred from geodetic observations (Schmidt et al., 2005), seismological studies (Hardebeck and Aron, 2008), and from rate-and- state simulations of the interseismic interval (Stuart et al., 2008). In addition, friction properties on the fault surface are inferred from laboratory measurements of adjacent rock types (Morrow et al., 2008). We incorporate these details into forward 3D computer simulations of dynamic rupture propagation, using the FaultMod finite-element code (Barall, 2008). The 3D fault geometry is constructed using a mesh-morphing technique, which starts with a vertical planar fault and then distorts the entire mesh to produce the desired fault geometry. We also employ a grid-doubling technique to create a variable-resolution mesh, with the smallest elements located in a thin layer surrounding the fault surface, which provides the higher resolution needed to model the frictional behavior of the fault. Our goals are to constrain estimates of the lateral and depth extent of future large Hayward earthquakes, and to explore how the behavior of large earthquakes may be affected by interseismic stress accumulation and aseismic slip.

  19. 3-D model-based tracking for UAV indoor localization.

    PubMed

    Teulière, Céline; Marchand, Eric; Eck, Laurent

    2015-05-01

    This paper proposes a novel model-based tracking approach for 3-D localization. One main difficulty of standard model-based approach lies in the presence of low-level ambiguities between different edges. In this paper, given a 3-D model of the edges of the environment, we derive a multiple hypotheses tracker which retrieves the potential poses of the camera from the observations in the image. We also show how these candidate poses can be integrated into a particle filtering framework to guide the particle set toward the peaks of the distribution. Motivated by the UAV indoor localization problem where GPS signal is not available, we validate the algorithm on real image sequences from UAV flights.

  20. 3-D model-based tracking for UAV indoor localization.

    PubMed

    Teulière, Céline; Marchand, Eric; Eck, Laurent

    2015-05-01

    This paper proposes a novel model-based tracking approach for 3-D localization. One main difficulty of standard model-based approach lies in the presence of low-level ambiguities between different edges. In this paper, given a 3-D model of the edges of the environment, we derive a multiple hypotheses tracker which retrieves the potential poses of the camera from the observations in the image. We also show how these candidate poses can be integrated into a particle filtering framework to guide the particle set toward the peaks of the distribution. Motivated by the UAV indoor localization problem where GPS signal is not available, we validate the algorithm on real image sequences from UAV flights. PMID:25099967

  1. 3-D Simulations of Megathrust Earthquakes - Application to the 2003 M8.3 Tokachi-Oki Earthquake

    NASA Astrophysics Data System (ADS)

    Wirth, E. A.; Frankel, A. D.; Vidale, J. E.

    2015-12-01

    Numerical modeling of megathrust earthquakes is an important tool for seismic hazard assessment, particularly in subduction systems where recordings of great earthquakes are sparse or non-existent. Here, we produce broadband synthetic seismograms for the 2003 M8.3 Tokachi-Oki, Japan earthquake. At long periods (> 1 sec), synthetic waveforms are produced using numerical simulations with the 3D Japan Integrated Velocity Structure Model (Koketsu et al., 2008). For comparison, these 3D numerical simulations were carried out using both (1) a finite difference method and (2) the finite element code, SPECFEM3D. The 3D simulations were used to validate a compound rupture model, in which slip on the fault consisted of multiple M7 high stress drop asperities superimposed on a background slip distribution with longer rise times. At short periods (< 1 sec), we used a summation of stochastic seismograms from point sources, and combined the short and long period synthetics using a matched filter. We compared the broadband synthetics to actual waveform data and the observed response spectral accelerations from the Tokachi-Oki event. We found that the synthetic response spectra are sensitive to the coherence of the rupture front. This work serves to validate this methodology for predicting ground motions for future M8-9 megathrust events in Cascadia.

  2. Mapping 3D fault geometry in earthquakes using high-resolution topography: Examples from the 2010 El Mayor-Cucapah (Mexico) and 2013 Balochistan (Pakistan) earthquakes

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Walker, Richard T.; Elliott, John R.; Parsons, Barry

    2016-04-01

    Fault dips are usually measured from outcrops in the field or inferred through geodetic or seismological modeling. Here we apply the classic structural geology approach of calculating dip from a fault's 3-D surface trace using recent, high-resolution topography. A test study applied to the 2010 El Mayor-Cucapah earthquake shows very good agreement between our results and those previously determined from field measurements. To obtain a reliable estimate, a fault segment ≥120 m long with a topographic variation ≥15 m is suggested. We then applied this method to the 2013 Balochistan earthquake, getting dips similar to previous estimates. Our dip estimates show a switch from north to south dipping at the southern end of the main trace, which appears to be a response to local extension within a stepover. We suggest that this previously unidentified geometrical complexity may act as the endpoint of earthquake ruptures for the southern end of the Hoshab fault.

  3. Earthquake source tensor inversion with the gCAP method and 3D Green's functions

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Ben-Zion, Y.; Zhu, L.; Ross, Z.

    2013-12-01

    We develop and apply a method to invert earthquake seismograms for source properties using a general tensor representation and 3D Green's functions. The method employs (i) a general representation of earthquake potency/moment tensors with double couple (DC), compensated linear vector dipole (CLVD), and isotropic (ISO) components, and (ii) a corresponding generalized CAP (gCap) scheme where the continuous wave trains are broken into Pnl and surface waves (Zhu & Ben-Zion, 2013). For comparison, we also use the waveform inversion method of Zheng & Chen (2012) and Ammon et al. (1998). Sets of 3D Green's functions are calculated on a grid of 1 km3 using the 3-D community velocity model CVM-4 (Kohler et al. 2003). A bootstrap technique is adopted to establish robustness of the inversion results using the gCap method (Ross & Ben-Zion, 2013). Synthetic tests with 1-D and 3-D waveform calculations show that the source tensor inversion procedure is reasonably reliable and robust. As initial application, the method is used to investigate source properties of the March 11, 2013, Mw=4.7 earthquake on the San Jacinto fault using recordings of ~45 stations up to ~0.2Hz. Both the best fitting and most probable solutions include ISO component of ~1% and CLVD component of ~0%. The obtained ISO component, while small, is found to be a non-negligible positive value that can have significant implications for the physics of the failure process. Work on using higher frequency data for this and other earthquakes is in progress.

  4. Interactive 3D Visualization of Humboldt Bay Bridge Earthquake Simulation With High Definition Stereo Output

    NASA Astrophysics Data System (ADS)

    Ang, P. B.; Nayak, A.; Yan, J.; Elgamal, A.

    2006-12-01

    This visualization project involves the study of the Humboldt Bay Middle Channel Bridge, a Pacific Earthquake Engineering Research (PEER) testbed site, subjected to an earthquake simulated by the Department of Structural Engineering, UCSD. The numerical simulation and data generation was carried out using the OpenSees finite element analysis platform, and GiD was employed for the mesh generation in preprocessing. In collaboration with the Scripps Visualization Center, the data was transformed into a virtual 3D world that a viewer could rotate around, zoom into, pan about, step through each timestep or examine in true stereo. The data consists of the static mesh of the bridge-foundation-ground elements, material indices for each type of element, the displacement amount of each element nodes over time, and the shear stress levels for each ground element over time. The Coin3D C++ Open Inventor API was used to parse the data and to render the bridge system in full 3D at 1130 individual time steps to show how the bridge structure and the surrounding soil elements interact during the full course of an earthquake. The results can be viewed interactively while using the program, saved as images and processed into animated movies, in resolutions as high as High Definition (1920x1080), or in stereo modes such as red-blue anaglyph.

  5. Locating earthquakes in west Texas oil fields using 3-D anisotropic velocity models

    SciTech Connect

    Hua, Fa; Doser, D.; Baker, M. . Dept. of Geological Sciences)

    1993-02-01

    Earthquakes within the War-Wink gas field, Ward County, Texas, that have been located with a 1-D velocity model occur near the edges and top of a naturally occurring overpressured zone. Because the War-Wink field is a structurally controlled anticline with significant velocity anisotropy associated with the overpressured zone and finely layered evaporites, the authors have attempted to re-locate earthquakes using a 3-D anisotropic velocity model. Preliminary results with this model give the unsatisfactory result that many earthquakes previously located at the top of the overpressured zone (3-3.5 km) moved into the evaporites (1-1.5 km) above the field. They believe that this result could be caused by: (1) aliasing the velocity model; or (2) problems in determining the correct location minima when several minima exist. They are currently attempting to determine which of these causes is more likely for the unsatisfactory result observed.

  6. Robust 3D face recognition by local shape difference boosting.

    PubMed

    Wang, Yueming; Liu, Jianzhuang; Tang, Xiaoou

    2010-10-01

    This paper proposes a new 3D face recognition approach, Collective Shape Difference Classifier (CSDC), to meet practical application requirements, i.e., high recognition performance, high computational efficiency, and easy implementation. We first present a fast posture alignment method which is self-dependent and avoids the registration between an input face against every face in the gallery. Then, a Signed Shape Difference Map (SSDM) is computed between two aligned 3D faces as a mediate representation for the shape comparison. Based on the SSDMs, three kinds of features are used to encode both the local similarity and the change characteristics between facial shapes. The most discriminative local features are selected optimally by boosting and trained as weak classifiers for assembling three collective strong classifiers, namely, CSDCs with respect to the three kinds of features. Different schemes are designed for verification and identification to pursue high performance in both recognition and computation. The experiments, carried out on FRGC v2 with the standard protocol, yield three verification rates all better than 97.9 percent with the FAR of 0.1 percent and rank-1 recognition rates above 98 percent. Each recognition against a gallery with 1,000 faces only takes about 3.6 seconds. These experimental results demonstrate that our algorithm is not only effective but also time efficient. PMID:20724762

  7. Resolution improvement by 3D particle averaging in localization microscopy

    PubMed Central

    Broeken, Jordi; Johnson, Hannah; Lidke, Diane S.; Liu, Sheng; Nieuwenhuizen, Robert P.J.; Stallinga, Sjoerd; Lidke, Keith A.; Rieger, Bernd

    2015-01-01

    Inspired by recent developments in localization microscopy that applied averaging of identical particles in 2D for increasing the resolution even further, we discuss considerations for alignment (registration) methods for particles in general and for 3D in particular. We detail that traditional techniques for particle registration from cryo electron microscopy based on cross-correlation are not suitable, as the underlying image formation process is fundamentally different. We argue that only localizations, i.e. a set of coordinates with associated uncertainties, are recorded and not a continuous intensity distribution. We present a method that owes to this fact and that is inspired by the field of statistical pattern recognition. In particular we suggest to use an adapted version of the Bhattacharyya distance as a merit function for registration. We evaluate the method in simulations and demonstrate it on three-dimensional super-resolution data of Alexa 647 labelled to the Nup133 protein in the nuclear pore complex of Hela cells. From the simulations we find suggestions that for successful registration the localization uncertainty must be smaller than the distance between labeling sites on a particle. These suggestions are supported by theoretical considerations concerning the attainable resolution in localization microscopy and its scaling behavior as a function of labeling density and localization precision. PMID:25866640

  8. 3D lung image retrieval using localized features

    NASA Astrophysics Data System (ADS)

    Depeursinge, Adrien; Zrimec, Tatjana; Busayarat, Sata; Müller, Henning

    2011-03-01

    The interpretation of high-resolution computed tomography (HRCT) images of the chest showing disorders of the lung tissue associated with interstitial lung diseases (ILDs) is time-consuming and requires experience. Whereas automatic detection and quantification of the lung tissue patterns showed promising results in several studies, its aid for the clinicians is limited to the challenge of image interpretation, letting the radiologists with the problem of the final histological diagnosis. Complementary to lung tissue categorization, providing visually similar cases using content-based image retrieval (CBIR) is in line with the clinical workflow of the radiologists. In a preliminary study, a Euclidean distance based on volume percentages of five lung tissue types was used as inter-case distance for CBIR. The latter showed the feasibility of retrieving similar histological diagnoses of ILD based on visual content, although no localization information was used for CBIR. However, to retrieve and show similar images with pathology appearing at a particular lung position was not possible. In this work, a 3D localization system based on lung anatomy is used to localize low-level features used for CBIR. When compared to our previous study, the introduction of localization features allows improving early precision for some histological diagnoses, especially when the region of appearance of lung tissue disorders is important.

  9. Sample drift correction in 3D fluorescence photoactivation localization microscopy

    NASA Astrophysics Data System (ADS)

    Mlodzianoski, Michael J.; Schreiner, John M.; Callahan, Steven P.; Smolková, Katarina; Dlasková, Andrea; Šantorová, Jitka; Ježek, Petr; Bewersdorf, Joerg

    2011-08-01

    The recent development of diffraction-unlimited far-field fluorescence microscopy has overcome the classical resolution limit of ~250 nm of conventional light microscopy by about a factor of ten. The improved resolution, however, reveals not only biological structures at an unprecedented resolution, but is also susceptible to sample drift on a much finer scale than previously relevant. Without correction, sample drift leads to smeared images with decreased resolution, and in the worst case to misinterpretation of the imaged structures. This poses a problem especially for techniques such as Fluorescence Photoactivation Localization Microscopy (FPALM/PALM) or Stochastic Optical Reconstruction Microscopy (STORM), which often require minutes recording time. Here we discuss an approach that corrects for three-dimensional (3D) drift in images of fixed samples without the requirement for fiduciary markers or instrument modifications. Drift is determined by calculating the spatial cross-correlation function between subsets of localized particles imaged at different times. Correction down to ~5 nm precision is achieved despite the fact that different molecules are imaged in each frame. We demonstrate the performance of our drift correction algorithm with different simulated structures and analyze its dependence on particle density and localization precision. By imaging mitochondria with Biplane FPALM we show our algorithm's feasibility in a practical application.

  10. A Hierarchical Bayesian Approcah for Earthquake Location and Data Uncertainty Estimation in 3D Heterogeneous Media

    NASA Astrophysics Data System (ADS)

    Arroucau, P.; Custodio, S.

    2014-12-01

    Solving inverse problems requires an estimate of data uncertainties. This usually takes the form of a data covariance matrix, which determines the shape of the model posterior distribution. Those uncertainties are yet not always known precisely and it is common practice to simply set them to a fixed, reasonable value. In the case of earthquake location, the hypocentral parameters (longitude, latitude, depth and origin time) are typically inverted for using seismic phase arrival times. But quantitative data variance estimates are rarely provided. Instead, arrival time catalogs usually associate phase picks with a quality factor, which is subsequently interpreted more or less arbitrarily in terms of data uncertainty in the location procedure. Here, we present a hierarchical Bayesian algorithm for earthquake location in 3D heterogeneous media, in which not only the earthquake hypocentral parameters, but also the P- and S-wave arrival time uncertainties, are inverted for, hence allowing more realistic posterior model covariance estimates. Forward modeling is achieved by means of the Fast Marching Method (FMM), an eikonal solver which has the ability to take interfaces into account, so direct, reflected and refracted phases can be used in the inversion. We illustrate the ability of our algorithm to retrieve earthquake hypocentral parameters as well as data uncertainties through synthetic examples and using a subset of arrival time catalogs for mainland Portugal and its Atlantic margin.

  11. Structural control on the Tohoku earthquake rupture process investigated by 3D FEM, tsunami and geodetic data

    PubMed Central

    Romano, F.; Trasatti, E.; Lorito, S.; Piromallo, C.; Piatanesi, A.; Ito, Y.; Zhao, D.; Hirata, K.; Lanucara, P.; Cocco, M.

    2014-01-01

    The 2011 Tohoku earthquake (Mw = 9.1) highlighted previously unobserved features for megathrust events, such as the large slip in a relatively limited area and the shallow rupture propagation. We use a Finite Element Model (FEM), taking into account the 3D geometrical and structural complexities up to the trench zone, and perform a joint inversion of tsunami and geodetic data to retrieve the earthquake slip distribution. We obtain a close spatial correlation between the main deep slip patch and the local seismic velocity anomalies, and large shallow slip extending also to the North coherently with a seismically observed low-frequency radiation. These observations suggest that the friction controlled the rupture, initially confining the deeper rupture and then driving its propagation up to the trench, where it spreads laterally. These findings are relevant to earthquake and tsunami hazard assessment because they may help to detect regions likely prone to rupture along the megathrust, and to constrain the probability of high slip near the trench. Our estimate of ~40 m slip value around the JFAST (Japan Trench Fast Drilling Project) drilling zone contributes to constrain the dynamic shear stress and friction coefficient of the fault obtained by temperature measurements to ~0.68 MPa and ~0.10, respectively. PMID:25005351

  12. Structural control on the Tohoku earthquake rupture process investigated by 3D FEM, tsunami and geodetic data.

    PubMed

    Romano, F; Trasatti, E; Lorito, S; Piromallo, C; Piatanesi, A; Ito, Y; Zhao, D; Hirata, K; Lanucara, P; Cocco, M

    2014-01-01

    The 2011 Tohoku earthquake (Mw = 9.1) highlighted previously unobserved features for megathrust events, such as the large slip in a relatively limited area and the shallow rupture propagation. We use a Finite Element Model (FEM), taking into account the 3D geometrical and structural complexities up to the trench zone, and perform a joint inversion of tsunami and geodetic data to retrieve the earthquake slip distribution. We obtain a close spatial correlation between the main deep slip patch and the local seismic velocity anomalies, and large shallow slip extending also to the North coherently with a seismically observed low-frequency radiation. These observations suggest that the friction controlled the rupture, initially confining the deeper rupture and then driving its propagation up to the trench, where it spreads laterally. These findings are relevant to earthquake and tsunami hazard assessment because they may help to detect regions likely prone to rupture along the megathrust, and to constrain the probability of high slip near the trench. Our estimate of ~40 m slip value around the JFAST (Japan Trench Fast Drilling Project) drilling zone contributes to constrain the dynamic shear stress and friction coefficient of the fault obtained by temperature measurements to ~0.68 MPa and ~0.10, respectively. PMID:25005351

  13. Earthquake Source Parameters Relationships from 3D Rough Fault Dynamic Rupture

    NASA Astrophysics Data System (ADS)

    Yao, Q.; Day, S. M.; Shi, Z.

    2015-12-01

    Fault surface roughness has a strong influence on the distribution of stress around the fault, and affects the dynamics of the earthquake process. In particular, roughness influences the distribution of the parameters conventionally used to describe fault slip in, for example, kinematic modeling of strong ground motion. We explore the effect of the fault roughness on earthquake source parameters through the statistical analysis of a large suite of 3D rupture simulations. We have built a database of more than 1000 simulated dynamic ruptures based on different rough fault profiles and relative-strength (S) ratios, and have quantitatively analyzed the correlation between earthquake source parameter pairs.. In the subshear propagation-speed regime, we find the following relationships: (1) Rise time, total slip and peak slip rate each decrease with increasing roughness. (2) Rupture velocity is weakly positively related to slip, and the relationship is stronger with increasing roughness. We also explore how peak slip rate, rise time and different pairs of source parameters correlations are affected by fault roughness. This work may give useful guidance for use in kinematic rupture-source generators and help improve methods for ground strong motion prediction.

  14. 3D deformation of Japan, before and after the earthquake in March 2011

    NASA Astrophysics Data System (ADS)

    Harada, Y.; Kato, T.

    2012-12-01

    The Geographical Survey Institute of Japan (GSI) has about 1300 GPS stations (GEONET) in Japan for more than 15 years observing Japanese inland crustal deformations, and the GEONET has enabled us to watch how Japan is continuously deforming at a rate of a few cm/year. However, most Japanese do not know these facts because it is not easy to understand figures of time series or vector arrows of the GPS data. We developed a way to make 3D animations of Japanese crustal deformation using the GEONET GPS data, which make it easy even for kids to understand Japanese inland motions. From the animation, we can easily understand that Japan is overall shrinking by the compressing force from the Pacific plate and Philippine Sea plate. The Tohoku area is shrinking at rate of around 2cm/yr, that is about 20m over 1000 years. After the March 11, 2011 earthquake, the Tohoku area has expanded more than 5m. If M9 quakes are occurring every 1000 years in this area, the elastic component of the Tohoku region deformation is only 25%. Also people can note that the Nankai area in southwest Japan is shrinking much more significantly. People can expect future M8 class earthquakes in this area without having special scientific knowledge. Recognition of these motions will help the Japanese people to prepare for natural disaster such as big earthquakes and tsunamis. In this talk, a detailed method of creating grid files from GPS data using GMT will be explained. Japanese crustal deformation after the earthquake in March 2011. Horizontal scale is exaggerated by 20000. The reference frame is ITRF2005.

  15. Seismicity patterns along the Ecuadorian subduction zone: new constraints from earthquake location in a 3-D a priori velocity model

    NASA Astrophysics Data System (ADS)

    Font, Yvonne; Segovia, Monica; Vaca, Sandro; Theunissen, Thomas

    2013-04-01

    To improve earthquake location, we create a 3-D a priori P-wave velocity model (3-DVM) that approximates the large velocity variations of the Ecuadorian subduction system. The 3-DVM is constructed from the integration of geophysical and geological data that depend on the structural geometry and velocity properties of the crust and the upper mantle. In addition, specific station selection is carried out to compensate for the high station density on the Andean Chain. 3-D synthetic experiments are then designed to evaluate the network capacity to recover the event position using only P arrivals and the MAXI technique. Three synthetic earthquake location experiments are proposed: (1) noise-free and (2) noisy arrivals used in the 3-DVM, and (3) noise-free arrivals used in a 1-DVM. Synthetic results indicate that, under the best conditions (exact arrival data set and 3-DVM), the spatiotemporal configuration of the Ecuadorian network can accurately locate 70 per cent of events in the frontal part of the subduction zone (average azimuthal gap is 289° ± 44°). Noisy P arrivals (up to ± 0.3 s) can accurately located 50 per cent of earthquakes. Processing earthquake location within a 1-DVM almost never allows accurate hypocentre position for offshore earthquakes (15 per cent), which highlights the role of using a 3-DVM in subduction zone. For the application to real data, the seismicity distribution from the 3-D-MAXI catalogue is also compared to the determinations obtained in a 1-D-layered VM. In addition to good-quality location uncertainties, the clustering and the depth distribution confirm the 3-D-MAXI catalogue reliability. The pattern of the seismicity distribution (a 13 yr record during the inter-seismic period of the seismic cycle) is compared to the pattern of rupture zone and asperity of the Mw = 7.9 1942 and the Mw = 7.7 1958 events (the Mw = 8.8 1906 asperity patch is not defined). We observe that the nucleation of 1942, 1958 and 1906 events coincides with

  16. Velocity and Density Models Incorporating the Cascadia Subduction Zone for 3D Earthquake Ground Motion Simulations

    USGS Publications Warehouse

    Stephenson, William J.

    2007-01-01

    INTRODUCTION In support of earthquake hazards and ground motion studies in the Pacific Northwest, three-dimensional P- and S-wave velocity (3D Vp and Vs) and density (3D rho) models incorporating the Cascadia subduction zone have been developed for the region encompassed from about 40.2?N to 50?N latitude, and from about -122?W to -129?W longitude. The model volume includes elevations from 0 km to 60 km (elevation is opposite of depth in model coordinates). Stephenson and Frankel (2003) presented preliminary ground motion simulations valid up to 0.1 Hz using an earlier version of these models. The version of the model volume described here includes more structural and geophysical detail, particularly in the Puget Lowland as required for scenario earthquake simulations in the development of the Seattle Urban Hazards Maps (Frankel and others, 2007). Olsen and others (in press) used the model volume discussed here to perform a Cascadia simulation up to 0.5 Hz using a Sumatra-Andaman Islands rupture history. As research from the EarthScope Program (http://www.earthscope.org) is published, a wealth of important detail can be added to these model volumes, particularly to depths of the upper-mantle. However, at the time of development for this model version, no EarthScope-specific results were incorporated. This report is intended to be a reference for colleagues and associates who have used or are planning to use this preliminary model in their research. To this end, it is intended that these models will be considered a beginning template for a community velocity model of the Cascadia region as more data and results become available.

  17. Coseismic deformation due to the 2011 Tohoku earthquake: influence of 3-D plate structure around Japan

    NASA Astrophysics Data System (ADS)

    Hashima, A.; Freed, A. M.; Becker, T. W.; Sato, H.; Okaya, D. A.; Suito, H.; Hatanaka, Y.; Matsubara, M.; Takeda, T.; Ishiyama, T.; Iwasaki, T.

    2013-12-01

    Beneath the Japan islands, the Pacific plate descends from the east and the Philippine sea plate descends from the south, causing interaction of two slabs at depth. The 2011 M9 Tohoku earthquake in northern Japan had a source region with a length of ~500 km and a width of ~200 km and forced broad lithospheric and mantle regions in the region to deform. Here, we investigate the effects of slab geometry and 3D heterogeneity on the inversion of inferred coseismic slip and the resulting broad coseismic deformation throughout the region. We construct a 3-D finite element model (FEM) to generate Green's functions for use in a coseismic inversion study that allows considering the influence of complex slab geometry as well as heterogeneities in elastic structure on inferred slip. We utilize the large, land-based Japan GPS array as well as seafloor geodetic constraints in the inversion. We are particularly interested in how coseismic seafloor constraints influence inversion results. Our FEM considers a region of 4500 km x 4900 km x 670 km, incorporating the Pacific and the Philippine sea slabs by interpolating models for the Tohoku region and the Nankai trough, as well as the Kuril, Ryukyu and Izu-Bonin arcs. The model region is divided into about 500,000 tetrahedral elements with average dimension ranging from 20-100 km. We also test the role of gravity on coseismic results, with initial results suggesting that gravitational loading is not an important factor because of the shallow dip of the upper Pacific slab.Our long-term objective is to study the influence of the Tohoku earthquake on evolution of stresses throughout Japan due to both coseismic and postseismic processes, the latter including afterslip and viscoelastic relaxation. An accurate accounting of coseismic slip is very important to such an endeavor.

  18. Tracking Down the Causes of Recent Induced and Natural Intraplate Earthquakes with 3D Seismological Analyses in Northwest Germany

    NASA Astrophysics Data System (ADS)

    Uta, P.; Brandes, C.; Boennemann, C.; Plenefisch, T.; Winsemann, J.

    2015-12-01

    Northwest Germany is a typical low strain intraplate region with a low seismic activity. Nevertheless, 58 well documented earthquakes with magnitudes of 0.5 - 4.3 affected the area in the last 40 years. Most of the epicenters were located in the vicinity of active natural gas fields and some inside. Accordingly, the earthquakes were interpreted as a consequence of hydrocarbon recovery (e.g. Dahm et al. 2007, Bischoff et al. 2013) and classified as induced events in the bulletins of the Federal Institute for Geosciences and Natural Resources (BGR). The two major ones have magnitudes of 4.3 and 4.0. They are the strongest earthquakes ever recorded in Northern Germany. Consequently, these events raise the question whether the ongoing extraction itself can cause them or if other natural tectonic processes like glacial isostatic adjustment may considerably contribute to their initiation. Recent studies of Brandes et al. (2012) imply that lithospheric stress changes due to post glacial isostatic adjustment might be also a potential natural cause for earthquakes in Central Europe. In order to better analyse the earthquakes and to test this latter hypothesis we performed a relocalization of the events with the NonLinLoc (Lomax et al. 2000) program package and two differently scaled 3D P-wave velocity models. Depending on the station coverage for a distinct event, either a fine gridded local model (88 x 73 x 15 km, WEG-model, made available by the industry) or a coarse regional model (1600 x 1600 x 45 km, data from CRUST1.0, Laske et al. 2013) and for some cases a combination of both models was used for the relocalization. The results confirm the trend of the older routine analysis: The majority of the events are located at the margins of the natural gas fields, some of them are now located closer to them. Focal depths mostly vary between 3.5 km and 10 km. However, for some of the events, especially for the older events with relatively bad station coverage, the error bars

  19. Dynamic earthquake rupture simulations on nonplanar faults embedded in 3D geometrically complex, heterogeneous elastic solids

    NASA Astrophysics Data System (ADS)

    Duru, Kenneth; Dunham, Eric M.

    2016-01-01

    Dynamic propagation of shear ruptures on a frictional interface in an elastic solid is a useful idealization of natural earthquakes. The conditions relating discontinuities in particle velocities across fault zones and tractions acting on the fault are often expressed as nonlinear friction laws. The corresponding initial boundary value problems are both numerically and computationally challenging. In addition, seismic waves generated by earthquake ruptures must be propagated for many wavelengths away from the fault. Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods. We present a high order accurate finite difference method for: a) enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration; b) dynamic propagation of earthquake ruptures along nonplanar faults; and c) accurate propagation of seismic waves in heterogeneous media with free surface topography. We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts (SBP) finite difference operators in space. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. The finite difference stencils used in this paper are sixth order accurate in the interior and third order accurate close to the boundaries. However, the method is applicable to any spatial operator with a diagonal norm satisfying the SBP property. Time stepping is performed with a 4th order accurate explicit low storage Runge-Kutta scheme, thus yielding a globally fourth order accurate method in both space and time. We show numerical simulations on band limited self-similar fractal faults revealing the complexity of rupture dynamics

  20. Dynamic earthquake rupture simulation on nonplanar faults embedded in 3D geometrically complex, heterogeneous Earth models

    NASA Astrophysics Data System (ADS)

    Duru, K.; Dunham, E. M.; Bydlon, S. A.; Radhakrishnan, H.

    2014-12-01

    Dynamic propagation of shear ruptures on a frictional interface is a useful idealization of a natural earthquake.The conditions relating slip rate and fault shear strength are often expressed as nonlinear friction laws.The corresponding initial boundary value problems are both numerically and computationally challenging.In addition, seismic waves generated by earthquake ruptures must be propagated, far away from fault zones, to seismic stations and remote areas.Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods.We present a numerical method for:a) enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration;b) dynamic propagation of earthquake ruptures along rough faults; c) accurate propagation of seismic waves in heterogeneous media with free surface topography.We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts finite differences in space. The finite difference stencils are 6th order accurate in the interior and 3rd order accurate close to the boundaries. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. Time stepping is performed with a 4th order accurate explicit low storage Runge-Kutta scheme. We have performed extensive numerical experiments using a slip-weakening friction law on non-planar faults, including recent SCEC benchmark problems. We also show simulations on fractal faults revealing the complexity of rupture dynamics on rough faults. We are presently extending our method to rate-and-state friction laws and off-fault plasticity.

  1. Robust 3D face landmark localization based on local coordinate coding.

    PubMed

    Song, Mingli; Tao, Dacheng; Sun, Shengpeng; Chen, Chun; Maybank, Stephen J

    2014-12-01

    In the 3D facial animation and synthesis community, input faces are usually required to be labeled by a set of landmarks for parameterization. Because of the variations in pose, expression and resolution, automatic 3D face landmark localization remains a challenge. In this paper, a novel landmark localization approach is presented. The approach is based on local coordinate coding (LCC) and consists of two stages. In the first stage, we perform nose detection, relying on the fact that the nose shape is usually invariant under the variations in the pose, expression, and resolution. Then, we use the iterative closest points algorithm to find a 3D affine transformation that aligns the input face to a reference face. In the second stage, we perform resampling to build correspondences between the input 3D face and the training faces. Then, an LCC-based localization algorithm is proposed to obtain the positions of the landmarks in the input face. Experimental results show that the proposed method is comparable to state of the art methods in terms of its robustness, flexibility, and accuracy. PMID:25296404

  2. P and S automatic picks for 3D earthquake tomography in NE Italy

    NASA Astrophysics Data System (ADS)

    Lovisa, L.; Bragato, P.; Gentili, S.

    2006-12-01

    Earthquake tomography is useful to study structural and geological features of the crust. In particular, it uses P and S arrival times for reconstructing weaves velocity fields and locating earthquakes hypocenters. However, tomography needs a large effort to provide a high number of manual picks. On the other side, many automatic picking methods have been proposed, but they are usually applied to preliminary elaboration of the data (fast alert and automatic bulletin generation); they are generally considered not reliable for tomography. In this work, we present and discuss the results of Vp, Vs and Vp/Vs tomographies obtained using automatic picks generated by the system TAPNEI (Gentili and Bragato 2006), applied in the NE Italy. Preliminarily, in order to estimate the error in comparison with the unknown true arrival times, an analysis on the picking quality is done. The tests have been performed using two dataset: the first is made up by 240 earthquakes automatically picked by TAPNEI; the second counts in the same earthquakes but manually picked (OGS database). The grid and the software used to perform tomography (Sim28, Michelini and Mc Evilly, 1991) are the same in the two cases. Vp, Vs and Vp/Vs fields of the two tomographies and their differences are shown on vertical sections. In addiction, the differences in earthquakes locations are studied; in particular, the quality of the accuracy of the localizations has been analyzed by estimating the distance of the hypocenter distributions with respect to the manual locations. The analysis include also a qualitative comparison with an independent tomography (Gentile et al., 2000) performed using Simulps (Evans et al, 1994) on a set of 224 earthquakes accurately selected and manually relocated. The quality of the pickings and the comparison with the tomography obtained by manual data suggest that earthquake tomography with automatic data can provide reliable results. We suggest the use of such data when a large

  3. Application of 3D WebGIS and real-time technique in earthquake information publishing and visualization

    NASA Astrophysics Data System (ADS)

    Li, Boren; Wu, Jianping; Pan, Mao; Huang, Jing

    2015-06-01

    In hazard management, earthquake researchers have utilized GIS to ease the process of managing disasters. Researchers use WebGIS to assess hazards and seismic risk. Although they can provide a visual analysis platform based on GIS technology, they lack a general description in the extensibility of WebGIS for processing dynamic data, especially real-time data. In this paper, we propose a novel approach for real-time 3D visual earthquake information publishing model based on WebGIS and digital globe to improve the ability of processing real-time data in systems based on WebGIS. On the basis of the model, we implement a real-time 3D earthquake information publishing system—EqMap3D. The system can not only publish real-time earthquake information but also display these data and their background geoscience information in a 3D scene. It provides a powerful tool for display, analysis, and decision-making for researchers and administrators. It also facilitates better communication between researchers engaged in geosciences and the interested public.

  4. Geofencing-Based Localization for 3d Data Acquisition Navigation

    NASA Astrophysics Data System (ADS)

    Nakagawa, M.; Kamio, T.; Yasojima, H.; Kobayashi, T.

    2016-06-01

    Users require navigation for many location-based applications using moving sensors, such as autonomous robot control, mapping route navigation and mobile infrastructure inspection. In indoor environments, indoor positioning systems using GNSSs can provide seamless indoor-outdoor positioning and navigation services. However, instabilities in sensor position data acquisition remain, because the indoor environment is more complex than the outdoor environment. On the other hand, simultaneous localization and mapping processing is better than indoor positioning for measurement accuracy and sensor cost. However, it is not easy to estimate position data from a single viewpoint directly. Based on these technical issues, we focus on geofencing techniques to improve position data acquisition. In this research, we propose a methodology to estimate more stable position or location data using unstable position data based on geofencing in indoor environments. We verify our methodology through experiments in indoor environments.

  5. Effect of 3-D viscoelastic structure on post-seismic relaxation from the 2004 M = 9.2 Sumatra earthquake

    USGS Publications Warehouse

    Pollitz, F.; Banerjee, P.; Grijalva, K.; Nagarajan, B.; Burgmann, R.

    2008-01-01

    The 2004 M=9.2 Sumatra-Andaman earthquake profoundly altered the state of stress in a large volume surrounding the ???1400 km long rupture. Induced mantle flow fields and coupled surface deformation are sensitive to the 3-D rheology structure. To predict the post-seismic motions from this earthquake, relaxation of a 3-D spherical viscoelastic earth model is simulated using the theory of coupled normal modes. The quasi-static deformation basis set and solution on the 3-D model is constructed using: a spherically stratified viscoelastic earth model with a linear stress-strain relation; an aspherical perturbation in viscoelastic structure; a 'static'mode basis set consisting of Earth's spheroidal and toroidal free oscillations; a "viscoelastic" mode basis set; and interaction kernels that describe the coupling among viscoelastic and static modes. Application to the 2004 Sumatra-Andaman earthquake illustrates the profound modification of the post-seismic flow field at depth by a slab structure and similarly large effects on the near-field post-seismic deformation field at Earth's surface. Comparison with post-seismic GPS observations illustrates the extent to which viscoelastic relaxation contributes to the regional post-seismic deformation. ?? Journal compilation ?? 2008 RAS.

  6. Local tsunamis and earthquake source parameters

    USGS Publications Warehouse

    Geist, Eric L.; Dmowska, Renata; Saltzman, Barry

    1999-01-01

    This chapter establishes the relationship among earthquake source parameters and the generation, propagation, and run-up of local tsunamis. In general terms, displacement of the seafloor during the earthquake rupture is modeled using the elastic dislocation theory for which the displacement field is dependent on the slip distribution, fault geometry, and the elastic response and properties of the medium. Specifically, nonlinear long-wave theory governs the propagation and run-up of tsunamis. A parametric study is devised to examine the relative importance of individual earthquake source parameters on local tsunamis, because the physics that describes tsunamis from generation through run-up is complex. Analysis of the source parameters of various tsunamigenic earthquakes have indicated that the details of the earthquake source, namely, nonuniform distribution of slip along the fault plane, have a significant effect on the local tsunami run-up. Numerical methods have been developed to address the realistic bathymetric and shoreline conditions. The accuracy of determining the run-up on shore is directly dependent on the source parameters of the earthquake, which provide the initial conditions used for the hydrodynamic models.

  7. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions

    NASA Astrophysics Data System (ADS)

    Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.

    2015-11-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils.

  8. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions.

    PubMed

    Doyle, Andrew D; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M

    2015-01-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils. PMID:26548801

  9. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions

    PubMed Central

    Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.

    2015-01-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils. PMID:26548801

  10. Depth to the Juan De Fuca slab beneath the Cascadia subduction margin - a 3-D model for sorting earthquakes

    USGS Publications Warehouse

    McCrory, Patricia A.; Blair, J. Luke; Oppenheimer, David H.; Walter, Stephen R.

    2004-01-01

    We present an updated model of the Juan de Fuca slab beneath southern British Columbia, Washington, Oregon, and northern California, and use this model to separate earthquakes occurring above and below the slab surface. The model is based on depth contours previously published by Fluck and others (1997). Our model attempts to rectify a number of shortcomings in the original model and update it with new work. The most significant improvements include (1) a gridded slab surface in geo-referenced (ArcGIS) format, (2) continuation of the slab surface to its full northern and southern edges, (3) extension of the slab surface from 50-km depth down to 110-km beneath the Cascade arc volcanoes, and (4) revision of the slab shape based on new seismic-reflection and seismic-refraction studies. We have used this surface to sort earthquakes and present some general observations and interpretations of seismicity patterns revealed by our analysis. For example, deep earthquakes within the Juan de Fuca Plate beneath western Washington define a linear trend that may mark a tear within the subducting plate Also earthquakes associated with the northern stands of the San Andreas Fault abruptly terminate at the inferred southern boundary of the Juan de Fuca slab. In addition, we provide files of earthquakes above and below the slab surface and a 3-D animation or fly-through showing a shaded-relief map with plate boundaries, the slab surface, and hypocenters for use as a visualization tool.

  11. IRIS Earthquake Browser with Integration to the GEON IDV for 3-D Visualization of Hypocenters.

    NASA Astrophysics Data System (ADS)

    Weertman, B. R.

    2007-12-01

    We present a new generation of web based earthquake query tool - the IRIS Earthquake Browser (IEB). The IEB combines the DMC's large set of earthquake catalogs (provided by USGS/NEIC, ISC and the ANF) with the popular Google Maps web interface. With the IEB you can quickly and easily find earthquakes in any region of the globe. Using Google's detailed satellite images, earthquakes can be easily co-located with natural geographic features such as volcanoes as well as man made features such as commercial mines. A set of controls allow earthquakes to be filtered by time, magnitude, and depth range as well as catalog name, contributor name and magnitude type. Displayed events can be easily exported in NetCDF format into the GEON Integrated Data Viewer (IDV) where hypocenters may be visualized in three dimensions. Looking "under the hood", the IEB is based on AJAX technology and utilizes REST style web services hosted at the IRIS DMC. The IEB is part of a broader effort at the DMC aimed at making our data holdings available via web services. The IEB is useful both educationally and as a research tool.

  12. 3D high-density localization microscopy using hybrid astigmatic/ biplane imaging and sparse image reconstruction.

    PubMed

    Min, Junhong; Holden, Seamus J; Carlini, Lina; Unser, Michael; Manley, Suliana; Ye, Jong Chul

    2014-11-01

    Localization microscopy achieves nanoscale spatial resolution by iterative localization of sparsely activated molecules, which generally leads to a long acquisition time. By implementing advanced algorithms to treat overlapping point spread functions (PSFs), imaging of densely activated molecules can improve the limited temporal resolution, as has been well demonstrated in two-dimensional imaging. However, three-dimensional (3D) localization of high-density data remains challenging since PSFs are far more similar along the axial dimension than the lateral dimensions. Here, we present a new, high-density 3D imaging system and algorithm. The hybrid system is implemented by combining astigmatic and biplane imaging. The proposed 3D reconstruction algorithm is extended from our state-of-the art 2D high-density localization algorithm. Using mutual coherence analysis of model PSFs, we validated that the hybrid system is more suitable than astigmatic or biplane imaging alone for 3D localization of high-density data. The efficacy of the proposed method was confirmed via simulation and real data of microtubules. Furthermore, we also successfully demonstrated fluorescent-protein-based live cell 3D localization microscopy with a temporal resolution of just 3 seconds, capturing fast dynamics of the endoplasmic recticulum.

  13. Predicting Strong Ground-Motion Seismograms for Magnitude 9 Cascadia Earthquakes Using 3D Simulations with High Stress Drop Sub-Events

    NASA Astrophysics Data System (ADS)

    Frankel, A. D.; Wirth, E. A.; Stephenson, W. J.; Moschetti, M. P.; Ramirez-Guzman, L.

    2015-12-01

    We have produced broadband (0-10 Hz) synthetic seismograms for magnitude 9.0 earthquakes on the Cascadia subduction zone by combining synthetics from simulations with a 3D velocity model at low frequencies (≤ 1 Hz) with stochastic synthetics at high frequencies (≥ 1 Hz). We use a compound rupture model consisting of a set of M8 high stress drop sub-events superimposed on a background slip distribution of up to 20m that builds relatively slowly. The 3D simulations were conducted using a finite difference program and the finite element program Hercules. The high-frequency (≥ 1 Hz) energy in this rupture model is primarily generated in the portion of the rupture with the M8 sub-events. In our initial runs, we included four M7.9-8.2 sub-events similar to those that we used to successfully model the strong ground motions recorded from the 2010 M8.8 Maule, Chile earthquake. At periods of 2-10 s, the 3D synthetics exhibit substantial amplification (about a factor of 2) for sites in the Puget Lowland and even more amplification (up to a factor of 5) for sites in the Seattle and Tacoma sedimentary basins, compared to rock sites outside of the Puget Lowland. This regional and more localized basin amplification found from the simulations is supported by observations from local earthquakes. There are substantial variations in the simulated M9 time histories and response spectra caused by differences in the hypocenter location, slip distribution, down-dip extent of rupture, coherence of the rupture front, and location of sub-events. We examined the sensitivity of the 3D synthetics to the velocity model of the Seattle basin. We found significant differences in S-wave focusing and surface wave conversions between a 3D model of the basin from a spatially-smoothed tomographic inversion of Rayleigh-wave phase velocities and a model that has an abrupt southern edge of the Seattle basin, as observed in seismic reflection profiles.

  14. Modeling of Localized Neutral Particle Sources in 3D Edge Plasmas

    SciTech Connect

    Umansky, M V; Rognlien, T D; Fenstermacher, M E; Borchardt, M; Mutzke, A; Riemann, J; Schneider, R; Owen, L W

    2002-05-23

    A new edge plasma code BoRiS [1] has a fully 3D fluid plasma model. We supplement BoRiS with a 3D fluid neutral model including equations for parallel momentum and collisional perpendicular diffusion. This makes BoRiS an integrated plasma-neutral model suitable for a variety of applications. We present modeling results for a localized gas source in the geometry of the NCSX stellarator.

  15. Automatic loop closure detection using multiple cameras for 3D indoor localization

    NASA Astrophysics Data System (ADS)

    Kua, John; Corso, Nicholas; Zakhor, Avideh

    2012-03-01

    Automated 3D modeling of building interiors is useful in applications such as virtual reality and environment mapping. We have developed a human operated backpack data acquisition system equipped with a variety of sensors such as cameras, laser scanners, and orientation measurement sensors to generate 3D models of building interiors, including uneven surfaces and stairwells. An important intermediate step in any 3D modeling system, including ours, is accurate 6 degrees of freedom localization over time. In this paper, we propose two approaches to improve localization accuracy over our previously proposed methods. First, we develop an adaptive localization algorithm which takes advantage of the environment's floor planarity whenever possible. Secondly, we show that by including all the loop closures resulting from two cameras facing away from each other, it is possible to reduce localization error in scenarios where parts of the acquisition path is retraced. We experimentally characterize the performance gains due to both schemes.

  16. 3D Geovisualization & Stylization to Manage Comprehensive and Participative Local Urban Plans

    NASA Astrophysics Data System (ADS)

    Brasebin, M.; Christophe, S.; Jacquinod, F.; Vinesse, A.; Mahon, H.

    2016-10-01

    3D geo-visualization is more and more used and appreciated to support public participation, and is generally used to present predesigned planned projects. Nevertheless, other participatory processes may benefit from such technology such as the elaboration of urban planning documents. In this article, we present one of the objectives of the PLU++ project: the design of a 3D geo-visualization system that eases the participation concerning local urban plans. Through a pluridisciplinary approach, it aims at covering the different aspects of such a system: the simulation of built configurations to represent regulation information, the efficient stylization of these objects to make people understand their meanings and the interaction between 3D simulation and stylization. The system aims at being adaptive according to the participation context and to the dynamic of the participation. It will offer the possibility to modify simulation results and the rendering styles of the 3D representations to support participation. The proposed 3D rendering styles will be used in a set of practical experiments in order to test and validate some hypothesis from past researches of the project members about 3D simulation, 3D semiotics and knowledge about uses.

  17. A Multiscale Constraints Method Localization of 3D Facial Feature Points

    PubMed Central

    Li, Hong-an; Zhang, Yongxin; Li, Zhanli; Li, Huilin

    2015-01-01

    It is an important task to locate facial feature points due to the widespread application of 3D human face models in medical fields. In this paper, we propose a 3D facial feature point localization method that combines the relative angle histograms with multiscale constraints. Firstly, the relative angle histogram of each vertex in a 3D point distribution model is calculated; then the cluster set of the facial feature points is determined using the cluster algorithm. Finally, the feature points are located precisely according to multiscale integral features. The experimental results show that the feature point localization accuracy of this algorithm is better than that of the localization method using the relative angle histograms. PMID:26539244

  18. 3D Dynamic Rupture Simulations Across Interacting Faults: the Mw7.0, 2010, Haiti Earthquake

    NASA Astrophysics Data System (ADS)

    Douilly, R.; Aochi, H.; Calais, E.; Freed, A. M.; Aagaard, B.

    2014-12-01

    The mechanisms controlling rupture propagation between fault segments during an earthquake are key to the hazard posed by fault systems. Rupture initiation on a fault segment sometimes transfers to a larger fault, resulting in a significant event (e.g.i, 2002 M7.9Denali and 2010 M7.1 Darfield earthquakes). In other cases rupture is constrained to the initial segment and does not transfer to nearby faults, resulting in events of moderate magnitude. This is the case of the 1989 M6.9 Loma Prieta and 2010 M7.0 Haiti earthquakes which initiated on reverse faults abutting against a major strike-slip plate boundary fault but did not propagate onto it. Here we investigatethe rupture dynamics of the Haiti earthquake, seeking to understand why rupture propagated across two segments of the Léogâne fault but did not propagate to the adjacenent Enriquillo Plantain Garden Fault, the major 200 km long plate boundary fault cutting through southern Haiti. We use a Finite Element Model to simulate the nucleation and propagation of rupture on the Léogâne fault, varying friction and background stress to determine the parameter set that best explains the observed earthquake sequence. The best-fit simulation is in remarkable agreement with several finite fault inversions and predicts ground displacement in very good agreement with geodetic and geological observations. The two slip patches inferred from finite-fault inversions are explained by the successive rupture of two fault segments oriented favorably with respect to the rupture propagation, while the geometry of the Enriquillo fault did not allow shear stress to reach failure. Although our simulation results replicate well the ground deformation consistent with the geodetic surface observation but convolving the ground motion with the soil amplification from the microzonation study will correctly account for the heterogeneity of the PGA throughout the rupture area.

  19. Local 3D matrix confinement determines division axis through cell shape.

    PubMed

    He, Lijuan; Chen, Weitong; Wu, Pei-Hsun; Jimenez, Angela; Wong, Bin Sheng; San, Angela; Konstantopoulos, Konstantinos; Wirtz, Denis

    2016-02-01

    How the division axis is determined in mammalian cells embedded in three-dimensional (3D) matrices remains elusive, despite that many types of cells divide in 3D environments. Cells on two-dimensional (2D) substrates typically round up completely to divide. Here, we show that in 3D collagen matrices, mammalian cells such as HT1080 human fibrosarcoma and MDA-MB-231 breast cancer cells exhibit division modes distinct from their Counterparts on 2D substrates, with a markedly higher fraction of cells remaining highly elongated through mitosis in 3D matrices. The long axis of elongated mitotic cells accurately predicts the division axis, independently of matrix density and cell-matrix interactions. This 3D-specific elongated division mode is determined by the local confinement produced by the matrix and the ability of cells to protrude and locally remodel the matrix via β1 integrin. Elongated division is readily recapitulated using collagen-coated microfabricated channels. Cells depleted of β1 integrin still divide in the elongated mode in microchannels, suggesting that 3D confinement is sufficient to induce the elongated cell-division phenotype.

  20. Local 3D matrix confinement determines division axis through cell shape

    PubMed Central

    He, Lijuan; Chen, Weitong; Wu, Pei-Hsun; Jimenez, Angela; Wong, Bin Sheng; San, Angela; Konstantopoulos, Konstantinos; Wirtz, Denis

    2016-01-01

    How the division axis is determined in mammalian cells embedded in three-dimensional (3D) matrices remains elusive, despite that many types of cells divide in 3D environments. Cells on two-dimensional (2D) substrates typically round up completely to divide. Here, we show that in 3D collagen matrices, mammalian cells such as HT1080 human fibrosarcoma and MDA-MB-231 breast cancer cells exhibit division modes distinct from their Counterparts on 2D substrates, with a markedly higher fraction of cells remaining highly elongated through mitosis in 3D matrices. The long axis of elongated mitotic cells accurately predicts the division axis, independently of matrix density and cell-matrix interactions. This 3D-specific elongated division mode is determined by the local confinement produced by the matrix and the ability of cells to protrude and locally remodel the matrix via β1 integrin. Elongated division is readily recapitulated using collagen-coated microfabricated channels. Cells depleted of β1 integrin still divide in the elongated mode in microchannels, suggesting that 3D confinement is sufficient to induce the elongated cell-division phenotype. PMID:26515603

  1. Framework for quantitative evaluation of 3D vessel segmentation approaches using vascular phantoms in conjunction with 3D landmark localization and registration

    NASA Astrophysics Data System (ADS)

    Wörz, Stefan; Hoegen, Philipp; Liao, Wei; Müller-Eschner, Matthias; Kauczor, Hans-Ulrich; von Tengg-Kobligk, Hendrik; Rohr, Karl

    2016-03-01

    We introduce a framework for quantitative evaluation of 3D vessel segmentation approaches using vascular phantoms. Phantoms are designed using a CAD system and created with a 3D printer, and comprise realistic shapes including branches and pathologies such as abdominal aortic aneurysms (AAA). To transfer ground truth information to the 3D image coordinate system, we use a landmark-based registration scheme utilizing fiducial markers integrated in the phantom design. For accurate 3D localization of the markers we developed a novel 3D parametric intensity model that is directly fitted to the markers in the images. We also performed a quantitative evaluation of different vessel segmentation approaches for a phantom of an AAA.

  2. Local Earthquake Tomography in the Eifel Region, Middle Europe

    NASA Astrophysics Data System (ADS)

    Gaensicke, H.

    2001-12-01

    The aim of the Eifel Plume project is to verify the existence of an assumed mantle plume responsible for the Tertiary and Quaternary volcanism in the Eifel region of midwest Germany. During a large passive and semi-active seismological experiment (November 1997 - June 1998) about 160 mobil broadband and short period stations were operated in addition to about 100 permanent stations in the area of interest. The stations registered teleseismic and local events. Local events are used to obtain a threedimensional tomographic model of seismic velocities in the crust. Since local earthquake tomography requires a large set of crustal travel paths, seismograms of local events recorded from July 1998 to June 2001 by permanent stations were added to the Eifel Plume data set. In addition to travel time corrections for the teleseismic tomography of the upper mantle, the new 3D velocity model should improve the precision for location of local events. From a total of 832 local seismic events, 172 were identified as tectonic earthquakes. The other events were either quarry blasts or shallow mine-induced seismic events. The locations of 60 quarry blasts are known and for 30 of them the firing time was measured during the field experiment. Since the origin time and location of these events are known with high precision, they are used to validate inverted velocity models. Station corrections from simultaneous 1D-inversion of local earthquake traveltimes and hypocenters are in good agreement with travel time residuals calculated from teleseismic rays. A strong azimuthal dependency of travel time residuals resulting from a 1D velocity model was found for quarry blasts with hypocenters in the volcanic field in the center of the Eifel. Simultaneous 3D-inversion calculations show strong heterogeneities in the upper crust and a negative anomaly for p-wave velocities in the lower crust. The latter either could indicate a low velocity zone close to the Moho or subsidence of the Moho. We

  3. Complex earthquake rupture and local tsunamis

    USGS Publications Warehouse

    Geist, E.L.

    2002-01-01

    In contrast to far-field tsunami amplitudes that are fairly well predicted by the seismic moment of subduction zone earthquakes, there exists significant variation in the scaling of local tsunami amplitude with respect to seismic moment. From a global catalog of tsunami runup observations this variability is greatest for the most frequently occuring tsunamigenic subduction zone earthquakes in the magnitude range of 7 < Mw < 8.5. Variability in local tsunami runup scaling can be ascribed to tsunami source parameters that are independent of seismic moment: variations in the water depth in the source region, the combination of higher slip and lower shear modulus at shallow depth, and rupture complexity in the form of heterogeneous slip distribution patterns. The focus of this study is on the effect that rupture complexity has on the local tsunami wave field. A wide range of slip distribution patterns are generated using a stochastic, self-affine source model that is consistent with the falloff of far-field seismic displacement spectra at high frequencies. The synthetic slip distributions generated by the stochastic source model are discretized and the vertical displacement fields from point source elastic dislocation expressions are superimposed to compute the coseismic vertical displacement field. For shallow subduction zone earthquakes it is demonstrated that self-affine irregularities of the slip distribution result in significant variations in local tsunami amplitude. The effects of rupture complexity are less pronounced for earthquakes at greater depth or along faults with steep dip angles. For a test region along the Pacific coast of central Mexico, peak nearshore tsunami amplitude is calculated for a large number (N = 100) of synthetic slip distribution patterns, all with identical seismic moment (Mw = 8.1). Analysis of the results indicates that for earthquakes of a fixed location, geometry, and seismic moment, peak nearshore tsunami amplitude can vary by a

  4. Preliminary result of teleseismic double-difference relocation of earthquakes in the Molucca collision zone with a 3D velocity model

    SciTech Connect

    Shiddiqi, Hasbi Ash E-mail: h.a.shiddiqi@gmail.com; Widiyantoro, Sri; Nugraha, Andri Dian; Ramdhan, Mohamad; Wandono,; Sutiyono,; Handayani, Titi; Nugroho, Hendro

    2015-04-24

    We have relocated hypocenters of earthquakes occurring in the Molucca collision zone and surrounding region taken from the BMKG catalog using teleseismic double-difference relocation algorithm (teletomoDD). We used P-wave arrival times of local, regional, and teleseismic events recorded at 304 recording stations. Over 7,000 earthquakes were recorded by the BMKG seismographicnetworkin the study region from April, 2009 toJune, 2014. We used a 3D regional-global nested velocity modelresulting fromprevious global tomographystudy. In this study, the3D seismic velocity model was appliedto theIndonesian region, whilethe1D seismicvelocity model (ak135)wasused for regions outside of Indonesia. Our relocation results show a better improvement in travel-time RMS residuals comparedto those of the BMKG catalog.Ourresultsalso show that relocation shifts were dominated intheeast-west direction, whichmaybeinfluenced by theexistingvelocity anomaly related to the reversed V-shaped slabbeneaththestudy region. Our eventrelocation results refine the geometry of slabs beneath the Halmahera and Sangihe arcs.

  5. Evidence of toroidally localized turbulence with applied 3D fields in the DIII-D tokamak

    DOE PAGES

    Wilcox, R. S.; Shafer, M. W.; Ferraro, N. M.; McKee, G. R.; Zeng, L.; Rhodes, T. L.; Canik, J. M.; Paz-Soldan, C.; Nazikian, R.; Unterberg, E. A.

    2016-09-21

    New evidence indicates that there is significant 3D variation in density fluctuations near the boundary of weakly 3D tokamak plasmas when resonant magnetic perturbations are applied to suppress transient edge instabilities. The increase in fluctuations is concomitant with an increase in the measured density gradient, suggesting that this toroidally localized gradient increase could be a mechanism for turbulence destabilization in localized flux tubes. Two-fluid magnetohydrodynamic simulations find that, although changes to the magnetic field topology are small, there is a significant 3D variation of the density gradient within the flux surfaces that is extended along field lines. This modeling agreesmore » qualitatively with the measurements. The observed gradient and fluctuation asymmetries are proposed as a mechanism by which global profile gradients in the pedestal could be relaxed due to a local change in the 3D equilibrium. In conclusion, these processes may play an important role in pedestal and scrape-off layer transport in ITER and other future tokamak devices with small applied 3D fields.« less

  6. Evidence of Toroidally Localized Turbulence with Applied 3D Fields in the DIII-D Tokamak

    NASA Astrophysics Data System (ADS)

    Wilcox, R. S.; Shafer, M. W.; Ferraro, N. M.; McKee, G. R.; Zeng, L.; Rhodes, T. L.; Canik, J. M.; Paz-Soldan, C.; Nazikian, R.; Unterberg, E. A.

    2016-09-01

    New evidence indicates that there is significant 3D variation in density fluctuations near the boundary of weakly 3D tokamak plasmas when resonant magnetic perturbations are applied to suppress transient edge instabilities. The increase in fluctuations is concomitant with an increase in the measured density gradient, suggesting that this toroidally localized gradient increase could be a mechanism for turbulence destabilization in localized flux tubes. Two-fluid magnetohydrodynamic simulations find that, although changes to the magnetic field topology are small, there is a significant 3D variation of the density gradient within the flux surfaces that is extended along field lines. This modeling agrees qualitatively with the measurements. The observed gradient and fluctuation asymmetries are proposed as a mechanism by which global profile gradients in the pedestal could be relaxed due to a local change in the 3D equilibrium. These processes may play an important role in pedestal and scrape-off layer transport in ITER and other future tokamak devices with small applied 3D fields.

  7. Study of the tsunamigenic rupture process of the 2011 Tohoku earthquake using a 3D Finite Element Model

    NASA Astrophysics Data System (ADS)

    Romano, Fabrizio; Trasatti, Elisa; Lorito, Stefano; Piromallo, Claudia; Piatanesi, Alessio; Cocco, Massimo; Murphy, Shane; Tonini, Roberto; Volpe, Manuela; Brizuela, Beatriz

    2016-04-01

    The study of the 2011 Tohoku earthquake revealed some new aspects in the rupture process of a megathrust event. Indeed, despite its magnitude Mw 9.0, this earthquake was characterized by a spatially limited rupture area and, contrary to the common view that the shallow portion of the subduction interface mainly experiences aseismic slip, the seismic rupture propagated onto the Japan trench with very large slip (> 50 m). Starting from slip distributions obtained by joint inversion of tsunami and geodetic data, we discuss the sensitivity of the tsunami impact predictions to the complexity of the modelling strategy. We use numerical tools ranging from a homogeneous half-space dislocation model (considering only vertical sea-floor displacement and tsunami propagation in the linear shallow-water approximation) to the more complex 3D-FEM model (with heterogeneous elastic parameters derived from 3D seismic tomography), including horizontal displacement and non-hydrostatic dispersive tsunami modeling. This research is funded by the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 603839 (Project ASTARTE - Assessment, Strategy and Risk Reduction for Tsunamis in Europe)

  8. Shallow subsurface control on earthquake damage patterns: first results from a 3D geological voxel model study (Tokyo Lowland, Japan)

    NASA Astrophysics Data System (ADS)

    Stafleu, Jan; Busschers, Freek; Tanabe, Susumu

    2016-04-01

    The Tokyo Lowland is situated in a Neogene sedimentary basin near the triple junction of the North American, Pacific, and Philippine tectonic plates. The basin is filled with Neogene and Quaternary sediments up to a thickness of 3 km. In the upper 70 m of the basin, thick sequences of soft Holocene sediments occur which are assumed to have played a key role in the spatial variation of damage intensity during the 1923 Kanto earthquake (Magnitude 7.9 to 8.3). Historical records show this earthquake destroyed large parts of the Tokyo urban area which in that time was largely made up by wooden houses. Although the epicentre was 70 km to the southwest of Tokyo, severe damage occurred north of the city centre, presumably due to ground motion amplification in the soft Holocene sediments in the shallow subsurface. In order to assess the presumed relation between the damage pattern of the 1923 earthquake and the occurrence of soft Holocene sediments in the shallow subsurface, we constructed a 3D geological voxel model of the central part of the Tokyo Lowland. The model was constructed using a methodology originally developed for the lowlands of the Netherlands. The modelling workflow basically consists of three steps. First, some 10,000 borehole descriptions (gathered for geomechanical purposes), were subdivided into geological units that have uniform sediment characteristics, using both lithological and geomechanical (N-value) criteria. Second, 2D bounding surfaces were constructed, representing tops and bases of the geological units. These surfaces were used to place each voxel (100 by 100 by 1 m) within the correct geological unit. The N-values and lithological units in the borehole descriptions were subsequently used to perform a 3D stochastic interpolation of N-value and lithological class within each geological unit. Using a vertical voxel stack analysis, we were able to create a map showing the accumulated thickness of soft muds in the Holocene succession. A

  9. 3-D P- and S-wave velocity structure and low-frequency earthquake locations in the Parkfield, California region

    NASA Astrophysics Data System (ADS)

    Zeng, Xiangfang; Thurber, Clifford H.; Shelly, David R.; Harrington, Rebecca M.; Cochran, Elizabeth S.; Bennington, Ninfa L.; Peterson, Dana; Guo, Bin; McClement, Kara

    2016-09-01

    To refine the 3-D seismic velocity model in the greater Parkfield, California region, a new data set including regular earthquakes, shots, quarry blasts and low-frequency earthquakes (LFEs) was assembled. Hundreds of traces of each LFE family at two temporary arrays were stacked with time-frequency domain phase weighted stacking method to improve signal-to-noise ratio. We extend our model resolution to lower crustal depth with LFE data. Our result images not only previously identified features but also low velocity zones (LVZs) in the area around the LFEs and the lower crust beneath the southern Rinconada Fault. The former LVZ is consistent with high fluid pressure that can account for several aspects of LFE behaviour. The latter LVZ is consistent with a high conductivity zone in magnetotelluric studies. A new Vs model was developed with S picks that were obtained with a new autopicker. At shallow depth, the low Vs areas underlie the strongest shaking areas in the 2004 Parkfield earthquake. We relocate LFE families and analyse the location uncertainties with the NonLinLoc and tomoDD codes. The two methods yield similar results.

  10. 3D Visualization of Earthquake Focal Mechanisms Using ArcScene

    USGS Publications Warehouse

    Labay, Keith A.; Haeussler, Peter J.

    2007-01-01

    In addition to the default settings, there are several other options in 3DFM that can be adjusted. The appearance of the symbols can be changed by (1) creating rings around the fault planes that are colored based on magnitude, (2) showing only the fault planes instead of a sphere, (3) drawing a flat disc that identifies the primary nodal plane, (4) or by displaying the null, pressure, and tension axes. The size of the symbols can be changed by adjusting their diameter, scaling them based on the magnitude of the earthquake, or scaling them by the estimated size of the rupture patch based on earthquake magnitude. It is also possible to filter the data using any combination of the strike, dip, rake, magnitude, depth, null axis plunge, pressure axis plunge, tension axis plunge, or fault type values of the points. For a large dataset, these filters can be used to create different subsets of symbols. Symbols created by 3DFM are stored in graphics layers that appear in the ArcScene® table of contents. Multiple graphics layers can be created and saved to preserve the output from different symbol options.

  11. Local-global alignment for finding 3D similarities in protein structures

    DOEpatents

    Zemla, Adam T.

    2011-09-20

    A method of finding 3D similarities in protein structures of a first molecule and a second molecule. The method comprises providing preselected information regarding the first molecule and the second molecule. Comparing the first molecule and the second molecule using Longest Continuous Segments (LCS) analysis. Comparing the first molecule and the second molecule using Global Distance Test (GDT) analysis. Comparing the first molecule and the second molecule using Local Global Alignment Scoring function (LGA_S) analysis. Verifying constructed alignment and repeating the steps to find the regions of 3D similarities in protein structures.

  12. Improvement of 3d Monte Carlo Localization Using a Depth Camera and Terrestrial Laser Scanner

    NASA Astrophysics Data System (ADS)

    Kanai, S.; Hatakeyama, R.; Date, H.

    2015-05-01

    Effective and accurate localization method in three-dimensional indoor environments is a key requirement for indoor navigation and lifelong robotic assistance. So far, Monte Carlo Localization (MCL) has given one of the promising solutions for the indoor localization methods. Previous work of MCL has been mostly limited to 2D motion estimation in a planar map, and a few 3D MCL approaches have been recently proposed. However, their localization accuracy and efficiency still remain at an unsatisfactory level (a few hundreds millimetre error at up to a few FPS) or is not fully verified with the precise ground truth. Therefore, the purpose of this study is to improve an accuracy and efficiency of 6DOF motion estimation in 3D MCL for indoor localization. Firstly, a terrestrial laser scanner is used for creating a precise 3D mesh model as an environment map, and a professional-level depth camera is installed as an outer sensor. GPU scene simulation is also introduced to upgrade the speed of prediction phase in MCL. Moreover, for further improvement, GPGPU programming is implemented to realize further speed up of the likelihood estimation phase, and anisotropic particle propagation is introduced into MCL based on the observations from an inertia sensor. Improvements in the localization accuracy and efficiency are verified by the comparison with a previous MCL method. As a result, it was confirmed that GPGPU-based algorithm was effective in increasing the computational efficiency to 10-50 FPS when the number of particles remain below a few hundreds. On the other hand, inertia sensor-based algorithm reduced the localization error to a median of 47mm even with less number of particles. The results showed that our proposed 3D MCL method outperforms the previous one in accuracy and efficiency.

  13. Nodes Localization in 3D Wireless Sensor Networks Based on Multidimensional Scaling Algorithm

    PubMed Central

    2014-01-01

    In the recent years, there has been a huge advancement in wireless sensor computing technology. Today, wireless sensor network (WSN) has become a key technology for different types of smart environment. Nodes localization in WSN has arisen as a very challenging problem in the research community. Most of the applications for WSN are not useful without a priory known nodes positions. Adding GPS receivers to each node is an expensive solution and inapplicable for indoor environments. In this paper, we implemented and evaluated an algorithm based on multidimensional scaling (MDS) technique for three-dimensional (3D) nodes localization in WSN using improved heuristic method for distance calculation. Using extensive simulations we investigated our approach regarding various network parameters. We compared the results from the simulations with other approaches for 3D-WSN localization and showed that our approach outperforms other techniques in terms of accuracy. PMID:27437480

  14. Bayesian Estimation of 3D Non-planar Fault Geometry and Slip: An application to the 2011 Megathrust (Mw 9.1) Tohoku-Oki Earthquake

    NASA Astrophysics Data System (ADS)

    Dutta, Rishabh; Jónsson, Sigurjón

    2016-04-01

    Earthquake faults are generally considered planar (or of other simple geometry) in earthquake source parameter estimations. However, simplistic fault geometries likely result in biases in estimated slip distributions and increased fault slip uncertainties. In case of large subduction zone earthquakes, these biases and uncertainties propagate into tsunami waveform modeling and other calculations related to postseismic studies, Coulomb failure stresses, etc. In this research, we parameterize 3D non-planar fault geometry for the 2011 Tohoku-Oki earthquake (Mw 9.1) and estimate these geometrical parameters along with fault slip parameters from onland and offshore GPS using Bayesian inference. This non-planar fault is formed using several 3rd degree polynomials in along-strike (X-Y plane) and along-dip (X-Z plane) directions that are tied together using a triangular mesh. The coefficients of these polynomials constitute the fault geometrical parameters. We use the trench and locations of past seismicity as a priori information to constrain these fault geometrical parameters and the Laplacian to characterize the fault slip smoothness. Hyper-parameters associated to these a priori constraints are estimated empirically and the posterior probability distribution of the model (fault geometry and slip) parameters is sampled using an adaptive Metropolis Hastings algorithm. The across-strike uncertainties in the fault geometry (effectively the local fault location) around high-slip patches increases from 6 km at 10km depth to about 35 km at 50km depth, whereas around low-slip patches the uncertainties are larger (from 7 km to 70 km). Uncertainties in reverse slip are found to be higher at high slip patches than at low slip patches. In addition, there appears to be high correlation between adjacent patches of high slip. Our results demonstrate that we can constrain complex non-planar fault geometry together with fault slip from GPS data using past seismicity as a priori

  15. Uniform Local Binary Pattern Based Texture-Edge Feature for 3D Human Behavior Recognition.

    PubMed

    Ming, Yue; Wang, Guangchao; Fan, Chunxiao

    2015-01-01

    With the rapid development of 3D somatosensory technology, human behavior recognition has become an important research field. Human behavior feature analysis has evolved from traditional 2D features to 3D features. In order to improve the performance of human activity recognition, a human behavior recognition method is proposed, which is based on a hybrid texture-edge local pattern coding feature extraction and integration of RGB and depth videos information. The paper mainly focuses on background subtraction on RGB and depth video sequences of behaviors, extracting and integrating historical images of the behavior outlines, feature extraction and classification. The new method of 3D human behavior recognition has achieved the rapid and efficient recognition of behavior videos. A large number of experiments show that the proposed method has faster speed and higher recognition rate. The recognition method has good robustness for different environmental colors, lightings and other factors. Meanwhile, the feature of mixed texture-edge uniform local binary pattern can be used in most 3D behavior recognition.

  16. Uniform Local Binary Pattern Based Texture-Edge Feature for 3D Human Behavior Recognition

    PubMed Central

    Ming, Yue; Wang, Guangchao; Fan, Chunxiao

    2015-01-01

    With the rapid development of 3D somatosensory technology, human behavior recognition has become an important research field. Human behavior feature analysis has evolved from traditional 2D features to 3D features. In order to improve the performance of human activity recognition, a human behavior recognition method is proposed, which is based on a hybrid texture-edge local pattern coding feature extraction and integration of RGB and depth videos information. The paper mainly focuses on background subtraction on RGB and depth video sequences of behaviors, extracting and integrating historical images of the behavior outlines, feature extraction and classification. The new method of 3D human behavior recognition has achieved the rapid and efficient recognition of behavior videos. A large number of experiments show that the proposed method has faster speed and higher recognition rate. The recognition method has good robustness for different environmental colors, lightings and other factors. Meanwhile, the feature of mixed texture-edge uniform local binary pattern can be used in most 3D behavior recognition. PMID:25942404

  17. Anderson Localization of a Bose-Einstein Condensate in a 3D Random Potential

    SciTech Connect

    Skipetrov, S. E.; Minguzzi, A.; Tiggelen, B. A. van; Shapiro, B.

    2008-04-25

    We study the effect of Anderson localization on the expansion of a Bose-Einstein condensate, released from a harmonic trap, in a 3D random potential. We use scaling arguments and the self-consistent theory of localization to show that the long-time behavior of the condensate density is controlled by a single parameter equal to the ratio of the mobility edge and the chemical potential of the condensate. We find that the two critical exponents of the localization transition determine the evolution of the condensate density in time and space.

  18. 2D image classification for 3D anatomy localization: employing deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    de Vos, Bob D.; Wolterink, Jelmer M.; de Jong, Pim A.; Viergever, Max A.; Išgum, Ivana

    2016-03-01

    Localization of anatomical regions of interest (ROIs) is a preprocessing step in many medical image analysis tasks. While trivial for humans, it is complex for automatic methods. Classic machine learning approaches require the challenge of hand crafting features to describe differences between ROIs and background. Deep convolutional neural networks (CNNs) alleviate this by automatically finding hierarchical feature representations from raw images. We employ this trait to detect anatomical ROIs in 2D image slices in order to localize them in 3D. In 100 low-dose non-contrast enhanced non-ECG synchronized screening chest CT scans, a reference standard was defined by manually delineating rectangular bounding boxes around three anatomical ROIs -- heart, aortic arch, and descending aorta. Every anatomical ROI was automatically identified using a combination of three CNNs, each analyzing one orthogonal image plane. While single CNNs predicted presence or absence of a specific ROI in the given plane, the combination of their results provided a 3D bounding box around it. Classification performance of each CNN, expressed in area under the receiver operating characteristic curve, was >=0.988. Additionally, the performance of ROI localization was evaluated. Median Dice scores for automatically determined bounding boxes around the heart, aortic arch, and descending aorta were 0.89, 0.70, and 0.85 respectively. The results demonstrate that accurate automatic 3D localization of anatomical structures by CNN-based 2D image classification is feasible.

  19. Needle Trajectory and Tip Localization in Real-Time 3-D Ultrasound Using a Moving Stylus.

    PubMed

    Beigi, Parmida; Rohling, Robert; Salcudean, Tim; Lessoway, Victoria A; Ng, Gary C

    2015-07-01

    Described here is a novel approach to needle localization in 3-D ultrasound based on automatic detection of small changes in appearance on movement of the needle stylus. By stylus oscillation, including its full insertion into the cannula to the tip, the image processing techniques can localize the needle trajectory and the tip in the 3-D ultrasound volume. The 3-D needle localization task is reduced to two 2-D localizations using orthogonal projections. To evaluate our method, we tested it on three different ex vivo tissue types, and the preliminary results indicated that the method accuracy lies within clinical acceptance, with average error ranges of 0.9°-1.4° in needle trajectory and 0.8-1.1 mm in needle tip. Results also indicate that method performance is independent of the echogenicity of the tissue. This technique is a safe way of producing ultrasonic intensity changes and appears to introduce negligible risk to the patient, as the outer cannula remains fixed.

  20. 3-D earthquake surface displacements from differencing pre- and post-event LiDAR point clouds

    NASA Astrophysics Data System (ADS)

    Krishnan, A. K.; Nissen, E.; Arrowsmith, R.; Saripalli, S.

    2012-12-01

    The explosion in aerial LiDAR surveying along active faults across the western United States and elsewhere provides a high-resolution topographic baseline against which to compare repeat LiDAR datasets collected after future earthquakes. We present a new method for determining 3-D coseismic surface displacements and rotations by differencing pre- and post-earthquake LiDAR point clouds using an adaptation of the Iterative Closest Point (ICP) algorithm, a point set registration technique widely used in medical imaging, computer vision and graphics. There is no need for any gridding or smoothing of the LiDAR data and the method works well even with large mismatches in the density of the two point clouds. To explore the method's performance, we simulate pre- and post-event point clouds using real ("B4") LiDAR data on the southern San Andreas Fault perturbed with displacements of known magnitude. For input point clouds with ~2 points per square meter, we are able to reproduce displacements with a 50 m grid spacing and with horizontal and vertical accuracies of ~20 cm and ~4 cm. In the future, finer grids and improved precisions should be possible with higher shot densities and better survey geo-referencing. By capturing near-fault deformation in 3-D, LiDAR differencing with ICP will complement satellite-based techniques such as InSAR which map only certain components of the surface deformation and which often break down close to surface faulting or in areas of dense vegetation. It will be especially useful for mapping shallow fault slip and rupture zone deformation, helping inform paleoseismic studies and better constrain fault zone rheology. Because ICP can image rotations directly, the technique will also help resolve the detailed kinematics of distributed zones of faulting where block rotations may be common.

  1. Multi-camera sensor system for 3D segmentation and localization of multiple mobile robots.

    PubMed

    Losada, Cristina; Mazo, Manuel; Palazuelos, Sira; Pizarro, Daniel; Marrón, Marta

    2010-01-01

    This paper presents a method for obtaining the motion segmentation and 3D localization of multiple mobile robots in an intelligent space using a multi-camera sensor system. The set of calibrated and synchronized cameras are placed in fixed positions within the environment (intelligent space). The proposed algorithm for motion segmentation and 3D localization is based on the minimization of an objective function. This function includes information from all the cameras, and it does not rely on previous knowledge or invasive landmarks on board the robots. The proposed objective function depends on three groups of variables: the segmentation boundaries, the motion parameters and the depth. For the objective function minimization, we use a greedy iterative algorithm with three steps that, after initialization of segmentation boundaries and depth, are repeated until convergence.

  2. Multi-Camera Sensor System for 3D Segmentation and Localization of Multiple Mobile Robots

    PubMed Central

    Losada, Cristina; Mazo, Manuel; Palazuelos, Sira; Pizarro, Daniel; Marrón, Marta

    2010-01-01

    This paper presents a method for obtaining the motion segmentation and 3D localization of multiple mobile robots in an intelligent space using a multi-camera sensor system. The set of calibrated and synchronized cameras are placed in fixed positions within the environment (intelligent space). The proposed algorithm for motion segmentation and 3D localization is based on the minimization of an objective function. This function includes information from all the cameras, and it does not rely on previous knowledge or invasive landmarks on board the robots. The proposed objective function depends on three groups of variables: the segmentation boundaries, the motion parameters and the depth. For the objective function minimization, we use a greedy iterative algorithm with three steps that, after initialization of segmentation boundaries and depth, are repeated until convergence. PMID:22319297

  3. Coseismic deformation due to the 2011 Tohoku-oki earthquake: influence of 3-D elastic structure around Japan

    NASA Astrophysics Data System (ADS)

    Hashima, Akinori; Becker, Thorsten W.; Freed, Andrew M.; Sato, Hiroshi; Okaya, David A.

    2016-09-01

    We investigated the effects of elastic heterogeneity on coseismic deformation associated with the 2011 Tohoku-oki earthquake, Japan, using a 3-D finite element model, incorporating the geometry of regional plate boundaries. Using a forward approach, we computed displacement fields for different elastic models with a given slip distribution. Three main structural models are considered to separate the effects of different kinds of heterogeneity: a homogeneous model, a two-layered model with crust-mantle stratification, and a crust-mantle layered model with a strong subducting slab. We observed two counteracting effects: (1) On large spatial scales, elastic layering with increasing rigidity with depth leads to a decrease in surface displacement. (2) An increase in rigidity from above the slab interface to below causes an increase in surface displacement, because the weaker hanging wall deforms to accommodate coseismic slip. Results for slip inversions associated with the Tohoku-oki earthquake show that slip patterns are modified when comparing homogeneous and heterogeneous models. However, the maximum slip only changes slightly: It increases from 38.5 m in the homogeneous to 39.6 m in the layered case and decreases to 37.3 m when slabs are introduced. Potency, i.e., the product of slip and fault area, changes accordingly. Layering leads to inferred slip distributions that are broader and deeper compared to the homogeneous case, particularly to the south of the overall slip maximum. The introduction of a strong slab leads to a reduction in slip around the slip maximum near the trench. We also find that details of the vertical deformation patterns for heterogeneous models are sensitive to the Poisson's ratio. While elastic heterogeneity does therefore not have a dramatic effect on bulk quantities such as inferred potency, the mechanical response of a layered medium with a slab does lead to a systematically modified slip response, and such effects may bias studies of

  4. 3D imaging of crustal structure under the Piedmont province in central Virginia, from reflection RVSP processing of aftershock recordings from the August 23, 2011 Virginia earthquake

    NASA Astrophysics Data System (ADS)

    Quiros, D. A.; Brown, L. D.; Cabolova, A.; Davenport, K. K.; Hole, J. A.; Mooney, W. D.

    2013-12-01

    Aftershocks from the magnitude Mw 5.8 August 23, 2011, central Virginia earthquake were recorded using an unusually dense array of seismometers in what has been termed an AIDA (Aftershock Imaging with Dense Arrays) deployment. Over 200 stations were deployed in the epicentral region of this event to a) more precisely determine hypocentral locations, b) more accurately define velocity structure in the aftershock zone, c) characterize propagation characteristics of the crust in the area, and d) image geologic structures in the hypocentral volume with reflection techniques using aftershocks as sources. The AIDA-Virginia experiment successfully recorded a large number of aftershocks from which local tomographic velocity estimates and accurate hypocentral locations were obtained. These results facilitated the use of aftershocks as sources for reflection imaging. In this study we demonstrate how earthquake sources recorded by surface arrays can be treated using the imaging techniques associated with Vertical Seismic Profiling (VSP), in particular a variant known as Reverse VSP (RVSP). The central VSP processing algorithms used for this study are VSP normal moveout (VSPnmo) and VSP-to-Common Reflection Point (CRP). Applying these techniques to individual aftershocks from the Virginia experiment results in 3D reflection images of structural complexity in the immediate vicinity of the aftershocks. The most prominent feature observed on these 3D images is a strong moderately east-dipping reflector at a depth of approximately 6 to 8 km that directly underlies, and is continuous beneath, the more steeply dipping aftershock zone. We interpret this reflector as part of a complex imbricate thrust sequence associated with Paleozoic convergence during the Appalachian orogeny. Its apparent continuity beneath the fault zone implied by the aftershock's hypocenters suggests that this inferred fault zone has little or no cumulative offset, supporting the speculation that this event

  5. Simulation and testing of a multichannel system for 3D sound localization

    NASA Astrophysics Data System (ADS)

    Matthews, Edward Albert

    Three-dimensional (3D) audio involves the ability to localize sound anywhere in a three-dimensional space. 3D audio can be used to provide the listener with the perception of moving sounds and can provide a realistic listening experience for applications such as gaming, video conferencing, movies, and concerts. The purpose of this research is to simulate and test 3D audio by incorporating auditory localization techniques in a multi-channel speaker system. The objective is to develop an algorithm that can place an audio event in a desired location by calculating and controlling the gain factors of each speaker. A MATLAB simulation displays the location of the speakers and perceived sound, which is verified through experimentation. The scenario in which the listener is not equidistant from each of the speakers is also investigated and simulated. This research is envisioned to lead to a better understanding of human localization of sound, and will contribute to a more realistic listening experience.

  6. Freehand photoacoustic tomography for 3D angiography using local gradient information

    NASA Astrophysics Data System (ADS)

    Kirchner, Thomas; Wild, Esther; Maier-Hein, Klaus H.; Maier-Hein, Lena

    2016-03-01

    Photo-acoustic tomography (PAT) is capable of imaging optical absorption in depths beyond the diffusion limit. As blood is one of the main absorbers in tissue, one important application is the visualization of vasculature, which can provide important clues for diagnosing diseases like cancer. While the state-of-the-art work in photo-acoustic 3D angiography has focused on computed tomography systems involving complex setups, we propose an approach based on optically tracking a freehand linear ultrasound probe that can be smoothly integrated into the clinical workflow. To this end, we present a method for calibration of a PAT system using an N-wire phantom specifically designed for PAT and show how to use local gradient information in the 3D reconstructed volume to significantly enhance the signal. According to experiments performed with a tissue mimicking intra-lipid phantom, the signal-to-noise ratio, contrast and contrast-to-noise ratio measured in the full field of view of the linear probe can be improved by factors of 1.7+/-0.7, 14.6+/-5.8 and 2.8+/-1.2 respectively, when comparing the post envelope detection reconstructed 3D volume with the processed one. Qualitative validation performed in tissue mimicking gelatin phantoms further showed good agreement of the reconstructed vasculature with corresponding structures extracted from X-ray computed tomographies. As our method provides high contrast 3D images of the vasculature despite a low hardware complexity its potential for clinical application is high.

  7. Rapid object indexing using locality sensitive hashing and joint 3D-signature space estimation.

    PubMed

    Matei, Bogdan; Shan, Ying; Sawhney, Harpreet S; Tan, Yi; Kumar, Rakesh; Huber, Daniel; Hebert, Martial

    2006-07-01

    We propose a new method for rapid 3D object indexing that combines feature-based methods with coarse alignment-based matching techniques. Our approach achieves a sublinear complexity on the number of models, maintaining at the same time a high degree of performance for real 3D sensed data that is acquired in largely uncontrolled settings. The key component of our method is to first index surface descriptors computed at salient locations from the scene into the whole model database using the Locality Sensitive Hashing (LSH), a probabilistic approximate nearest neighbor method. Progressively complex geometric constraints are subsequently enforced to further prune the initial candidates and eliminate false correspondences due to inaccuracies in the surface descriptors and the errors of the LSH algorithm. The indexed models are selected based on the MAP rule using posterior probability of the models estimated in the joint 3D-signature space. Experiments with real 3D data employing a large database of vehicles, most of them very similar in shape, containing 1,000,000 features from more than 365 models demonstrate a high degree of performance in the presence of occlusion and obscuration, unmodeled vehicle interiors and part articulations, with an average processing time between 50 and 100 seconds per query.

  8. Multilevel local refinement and multigrid methods for 3-D turbulent flow

    SciTech Connect

    Liao, C.; Liu, C.; Sung, C.H.; Huang, T.T.

    1996-12-31

    A numerical approach based on multigrid, multilevel local refinement, and preconditioning methods for solving incompressible Reynolds-averaged Navier-Stokes equations is presented. 3-D turbulent flow around an underwater vehicle is computed. 3 multigrid levels and 2 local refinement grid levels are used. The global grid is 24 x 8 x 12. The first patch is 40 x 16 x 20 and the second patch is 72 x 32 x 36. 4th order artificial dissipation are used for numerical stability. The conservative artificial compressibility method are used for further improvement of convergence. To improve the accuracy of coarse/fine grid interface of local refinement, flux interpolation method for refined grid boundary is used. The numerical results are in good agreement with experimental data. The local refinement can improve the prediction accuracy significantly. The flux interpolation method for local refinement can keep conservation for a composite grid, therefore further modify the prediction accuracy.

  9. GPCA vs. PCA in recognition and 3-D localization of ultrasound reflectors.

    PubMed

    Luna, Carlos A; Jiménez, José A; Pizarro, Daniel; Losada, Cristina; Rodriguez, José M

    2010-01-01

    In this paper, a new method of classification and localization of reflectors, using the time-of-flight (TOF) data obtained from ultrasonic transducers, is presented. The method of classification and localization is based on Generalized Principal Component Analysis (GPCA) applied to the TOF values obtained from a sensor that contains four ultrasound emitters and 16 receivers. Since PCA works with vectorized representations of TOF, it does not take into account the spatial locality of receivers. The GPCA works with two-dimensional representations of TOF, taking into account information on the spatial position of the receivers. This report includes a detailed description of the method of classification and localization and the results of achieved tests with three types of reflectors in 3-D environments: planes, edges, and corners. The results in terms of processing time, classification and localization were very satisfactory for the reflectors located in the range of 50-350 cm.

  10. Automated localization of implanted seeds in 3D TRUS images used for prostate brachytherapy

    SciTech Connect

    Wei Zhouping; Gardi, Lori; Downey, Donal B.; Fenster, Aaron

    2006-07-15

    An algorithm has been developed in this paper to localize implanted radioactive seeds in 3D ultrasound images for a dynamic intraoperative brachytherapy procedure. Segmentation of the seeds is difficult, due to their small size in relatively low quality of transrectal ultrasound (TRUS) images. In this paper, intraoperative seed segmentation in 3D TRUS images is achieved by performing a subtraction of the image before the needle has been inserted, and the image after the seeds have been implanted. The seeds are searched in a 'local' space determined by the needle position and orientation information, which are obtained from a needle segmentation algorithm. To test this approach, 3D TRUS images of the agar and chicken tissue phantoms were obtained. Within these phantoms, dummy seeds were implanted. The seed locations determined by the seed segmentation algorithm were compared with those obtained from a volumetric cone-beam flat-panel micro-CT scanner and human observers. Evaluation of the algorithm showed that the rms error in determining the seed locations using the seed segmentation algorithm was 0.98 mm in agar phantoms and 1.02 mm in chicken phantoms.

  11. Localizing Protein in 3D Neural Stem Cell Culture: a Hybrid Visualization Methodology

    PubMed Central

    Fai, Stephen; Bennett, Steffany A.L.

    2010-01-01

    The importance of 3-dimensional (3D) topography in influencing neural stem and progenitor cell (NPC) phenotype is widely acknowledged yet challenging to study. When dissociated from embryonic or post-natal brain, single NPCs will proliferate in suspension to form neurospheres. Daughter cells within these cultures spontaneously adopt distinct developmental lineages (neurons, oligodendrocytes, and astrocytes) over the course of expansion despite being exposed to the same extracellular milieu. This progression recapitulates many of the stages observed over the course of neurogenesis and gliogenesis in post-natal brain and is often used to study basic NPC biology within a controlled environment. Assessing the full impact of 3D topography and cellular positioning within these cultures on NPC fate is, however, difficult. To localize target proteins and identify NPC lineages by immunocytochemistry, free-floating neurospheres must be plated on a substrate or serially sectioned. This processing is required to ensure equivalent cell permeabilization and antibody access throughout the sphere. As a result, 2D epifluorescent images of cryosections or confocal reconstructions of 3D Z-stacks can only provide spatial information about cell position within discrete physical or digital 3D slices and do not visualize cellular position in the intact sphere. Here, to reiterate the topography of the neurosphere culture and permit spatial analysis of protein expression throughout the entire culture, we present a protocol for isolation, expansion, and serial sectioning of post-natal hippocampal neurospheres suitable for epifluorescent or confocal immunodetection of target proteins. Connexin29 (Cx29) is analyzed as an example. Next, using a hybrid of graphic editing and 3D modelling softwares rigorously applied to maintain biological detail, we describe how to re-assemble the 3D structural positioning of these images and digitally map labelled cells within the complete neurosphere. This

  12. The 3-D aftershock distribution of three recent M5~5.5 earthquakes in the Anza region,California

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Wdowinski, S.; Lin, G.

    2011-12-01

    The San Jacinto fault zone (SJFZ) exhibits the highest level of seismicity compared to other regions in southern California. On average, it produces four earthquakes per day, most of them at depth of 10-17 km. Over the past decade, an increasing seismic activity occurred in the Anza region, which included three M5~5.5 events and their aftershock sequences. These events occurred in 2001, 2005, and 2010. In this research we map the 3-D distribution of these three events to evaluate their rupture geometry and better understand the unusual deep seismic pattern along the SJFZ, which was termed "deep creep" (Wdowinski, 2009). We relocated 97,562 events from 1981 to 2011 in Anza region by applying the Source-Specific Station Term (SSST) method (Lin et al., 2006) and used an accurate 1-D velocity model derived from 3-D model of Lin et al (2007) and used In order to separate the aftershock sequence from background seismicity, we characterized each of the three aftershock sequences using Omori's law. Preliminary results show that all three sequences had a similar geometry of deep elongated aftershock distribution. Most aftershocks occurred at depth of 10-17 km and extended over a 70 km long segments of the SJFZ, centered at the mainshock hypocenters. A comparative study of other M5~5.5 mainshocks and their aftershock sequences in southern California reveals very different geometrical pattern, suggesting that the three Anza M5~5.5 events are unique and can be indicative of "deep creep" deformation processes. Reference 1.Lin, G.and Shearer,P.M.,2006, The COMPLOC earthquake location package,Seism. Res. Lett.77, pp.440-444. 2.Lin, G. and Shearer, P.M., Hauksson, E., and Thurber C.H.,2007, A three-dimensional crustal seismic velocity model for southern California from a composite event method,J. Geophys.Res.112, B12306, doi: 10.1029/ 2007JB004977. 3.Wdowinski, S. ,2009, Deep creep as a cause for the excess seismicity along the San Jacinto fault, Nat. Geosci.,doi:10.1038/NGEO684.

  13. TSaT-MUSIC: a novel algorithm for rapid and accurate ultrasonic 3D localization

    NASA Astrophysics Data System (ADS)

    Mizutani, Kyohei; Ito, Toshio; Sugimoto, Masanori; Hashizume, Hiromichi

    2011-12-01

    We describe a fast and accurate indoor localization technique using the multiple signal classification (MUSIC) algorithm. The MUSIC algorithm is known as a high-resolution method for estimating directions of arrival (DOAs) or propagation delays. A critical problem in using the MUSIC algorithm for localization is its computational complexity. Therefore, we devised a novel algorithm called Time Space additional Temporal-MUSIC, which can rapidly and simultaneously identify DOAs and delays of mul-ticarrier ultrasonic waves from transmitters. Computer simulations have proved that the computation time of the proposed algorithm is almost constant in spite of increasing numbers of incoming waves and is faster than that of existing methods based on the MUSIC algorithm. The robustness of the proposed algorithm is discussed through simulations. Experiments in real environments showed that the standard deviation of position estimations in 3D space is less than 10 mm, which is satisfactory for indoor localization.

  14. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking

    SciTech Connect

    Dettmer, Simon L.; Keyser, Ulrich F.; Pagliara, Stefano

    2014-02-15

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of these methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g., electrokinetic or dielectrophoretic forces.

  15. Sound localization with head movement: implications for 3-d audio displays

    PubMed Central

    McAnally, Ken I.; Martin, Russell L.

    2014-01-01

    Previous studies have shown that the accuracy of sound localization is improved if listeners are allowed to move their heads during signal presentation. This study describes the function relating localization accuracy to the extent of head movement in azimuth. Sounds that are difficult to localize were presented in the free field from sources at a wide range of azimuths and elevations. Sounds remained active until the participants' heads had rotated through windows ranging in width of 2, 4, 8, 16, 32, or 64° of azimuth. Error in determining sound-source elevation and the rate of front/back confusion were found to decrease with increases in azimuth window width. Error in determining sound-source lateral angle was not found to vary with azimuth window width. Implications for 3-d audio displays: the utility of a 3-d audio display for imparting spatial information is likely to be improved if operators are able to move their heads during signal presentation. Head movement may compensate in part for a paucity of spectral cues to sound-source location resulting from limitations in either the audio signals presented or the directional filters (i.e., head-related transfer functions) used to generate a display. However, head movements of a moderate size (i.e., through around 32° of azimuth) may be required to ensure that spatial information is conveyed with high accuracy. PMID:25161605

  16. New Approach for 3D Local Structure Refinement Using Non-Muffin-Tin XANES Analysis

    SciTech Connect

    Smolentsev, Grigory; Soldatov, Alexander V.; Feiters, Martin C.

    2007-02-02

    A new technique of 3D local structure refinement using full-potential X-ray absorption near edge structure (XANES) analysis is proposed and demonstrated in application to metalloorganic complexes of Ni. It can be applied to determine local structure in those cases where the muffin-tin approximation used in most full multiple scattering schemes fails. The method is based on the fitting of experimental XANES data using multidimensional interpolation of spectra as a function of structural parameters, recently proposed by us, and ab-initio full potential calculations of XANES using finite difference method. The small number of required ab-initio calculations is the main advantage of the approach, which allows one to use computationally time-expensive non-muffin-tin finite-difference method. The possibility to extract information on bond angles in addition to bond-lengths accessible to standard EXAFS is demonstrated and it opens new perspectives of quantitative XANES analysis as a 3D local structure probe.

  17. Snapshots: a novel local surface descriptor and matching algorithm for robust 3D surface alignment.

    PubMed

    Malassiotis, Sotiris; Strintzis, Michael G

    2007-07-01

    In this paper, a novel local surface descriptor is proposed and applied to the problem of aligning partial views of a 3D object. The descriptor is based on taking "snapshots" of the surface over each point using a virtual camera oriented perpendicularly to the surface. This representation has the advantage of imposing minimal loss of information be robust to self-occlusions and also be very efficient to compute. Then, we describe an efficient search technique to deal with the rotation ambiguity of our representation and experimentally demonstrate the benefits of our approaches which are pronounced especially when we align views with small overlap. PMID:17496386

  18. Robust Locally Weighted Regression For Ground Surface Extraction In Mobile Laser Scanning 3D Data

    NASA Astrophysics Data System (ADS)

    Nurunnabi, A.; West, G.; Belton, D.

    2013-10-01

    A new robust way for ground surface extraction from mobile laser scanning 3D point cloud data is proposed in this paper. Fitting polynomials along 2D/3D points is one of the well-known methods for filtering ground points, but it is evident that unorganized point clouds consist of multiple complex structures by nature so it is not suitable for fitting a parametric global model. The aim of this research is to develop and implement an algorithm to classify ground and non-ground points based on statistically robust locally weighted regression which fits a regression surface (line in 2D) by fitting without any predefined global functional relation among the variables of interest. Afterwards, the z (elevation)-values are robustly down weighted based on the residuals for the fitted points. The new set of down weighted z-values along with x (or y) values are used to get a new fit of the (lower) surface (line). The process of fitting and down-weighting continues until the difference between two consecutive fits is insignificant. Then the final fit represents the ground level of the given point cloud and the ground surface points can be extracted. The performance of the new method has been demonstrated through vehicle based mobile laser scanning 3D point cloud data from urban areas which include different problematic objects such as short walls, large buildings, electric poles, sign posts and cars. The method has potential in areas like building/construction footprint determination, 3D city modelling, corridor mapping and asset management.

  19. Local magnitude scale for earthquakes in Turkey

    NASA Astrophysics Data System (ADS)

    Kılıç, T.; Ottemöller, L.; Havskov, J.; Yanık, K.; Kılıçarslan, Ö.; Alver, F.; Özyazıcıoğlu, M.

    2016-06-01

    Based on the earthquake event data accumulated by the Turkish National Seismic Network between 2007 and 2013, the local magnitude (Richter, Ml) scale is calibrated for Turkey and the close neighborhood. A total of 137 earthquakes (Mw > 3.5) are used for the Ml inversion for the whole country. Three Ml scales, whole country, East, and West Turkey, are developed, and the scales also include the station correction terms. Since the scales for the two parts of the country are very similar, it is concluded that a single Ml scale is suitable for the whole country. Available data indicate the new scale to suffer from saturation beyond magnitude 6.5. For this data set, the horizontal amplitudes are on average larger than vertical amplitudes by a factor of 1.8. The recommendation made is to measure Ml amplitudes on the vertical channels and then add the logarithm scale factor to have a measure of maximum amplitude on the horizontal. The new Ml is compared to Mw from EMSC, and there is almost a 1:1 relationship, indicating that the new scale gives reliable magnitudes for Turkey.

  20. Comparison of Phase-Based 3D Near-Field Source Localization Techniques for UHF RFID.

    PubMed

    Parr, Andreas; Miesen, Robert; Vossiek, Martin

    2016-01-01

    In this paper, we present multiple techniques for phase-based narrowband backscatter tag localization in three-dimensional space with planar antenna arrays or synthetic apertures. Beamformer and MUSIC localization algorithms, known from near-field source localization and direction-of-arrival estimation, are applied to the 3D backscatter scenario and their performance in terms of localization accuracy is evaluated. We discuss the impact of different transceiver modes known from the literature, which evaluate different send and receive antenna path combinations for a single localization, as in multiple input multiple output (MIMO) systems. Furthermore, we propose a new Singledimensional-MIMO (S-MIMO) transceiver mode, which is especially suited for use with mobile robot systems. Monte-Carlo simulations based on a realistic multipath error model ensure spatial correlation of the simulated signals, and serve to critically appraise the accuracies of the different localization approaches. A synthetic uniform rectangular array created by a robotic arm is used to evaluate selected localization techniques. We use an Ultra High Frequency (UHF) Radiofrequency Identification (RFID) setup to compare measurements with the theory and simulation. The results show how a mean localization accuracy of less than 30 cm can be reached in an indoor environment. Further simulations demonstrate how the distance between aperture and tag affects the localization accuracy and how the size and grid spacing of the rectangular array need to be adapted to improve the localization accuracy down to orders of magnitude in the centimeter range, and to maximize array efficiency in terms of localization accuracy per number of elements. PMID:27347976

  1. Comparison of Phase-Based 3D Near-Field Source Localization Techniques for UHF RFID.

    PubMed

    Parr, Andreas; Miesen, Robert; Vossiek, Martin

    2016-06-25

    In this paper, we present multiple techniques for phase-based narrowband backscatter tag localization in three-dimensional space with planar antenna arrays or synthetic apertures. Beamformer and MUSIC localization algorithms, known from near-field source localization and direction-of-arrival estimation, are applied to the 3D backscatter scenario and their performance in terms of localization accuracy is evaluated. We discuss the impact of different transceiver modes known from the literature, which evaluate different send and receive antenna path combinations for a single localization, as in multiple input multiple output (MIMO) systems. Furthermore, we propose a new Singledimensional-MIMO (S-MIMO) transceiver mode, which is especially suited for use with mobile robot systems. Monte-Carlo simulations based on a realistic multipath error model ensure spatial correlation of the simulated signals, and serve to critically appraise the accuracies of the different localization approaches. A synthetic uniform rectangular array created by a robotic arm is used to evaluate selected localization techniques. We use an Ultra High Frequency (UHF) Radiofrequency Identification (RFID) setup to compare measurements with the theory and simulation. The results show how a mean localization accuracy of less than 30 cm can be reached in an indoor environment. Further simulations demonstrate how the distance between aperture and tag affects the localization accuracy and how the size and grid spacing of the rectangular array need to be adapted to improve the localization accuracy down to orders of magnitude in the centimeter range, and to maximize array efficiency in terms of localization accuracy per number of elements.

  2. Comparison of Phase-Based 3D Near-Field Source Localization Techniques for UHF RFID

    PubMed Central

    Parr, Andreas; Miesen, Robert; Vossiek, Martin

    2016-01-01

    In this paper, we present multiple techniques for phase-based narrowband backscatter tag localization in three-dimensional space with planar antenna arrays or synthetic apertures. Beamformer and MUSIC localization algorithms, known from near-field source localization and direction-of-arrival estimation, are applied to the 3D backscatter scenario and their performance in terms of localization accuracy is evaluated. We discuss the impact of different transceiver modes known from the literature, which evaluate different send and receive antenna path combinations for a single localization, as in multiple input multiple output (MIMO) systems. Furthermore, we propose a new Singledimensional-MIMO (S-MIMO) transceiver mode, which is especially suited for use with mobile robot systems. Monte-Carlo simulations based on a realistic multipath error model ensure spatial correlation of the simulated signals, and serve to critically appraise the accuracies of the different localization approaches. A synthetic uniform rectangular array created by a robotic arm is used to evaluate selected localization techniques. We use an Ultra High Frequency (UHF) Radiofrequency Identification (RFID) setup to compare measurements with the theory and simulation. The results show how a mean localization accuracy of less than 30 cm can be reached in an indoor environment. Further simulations demonstrate how the distance between aperture and tag affects the localization accuracy and how the size and grid spacing of the rectangular array need to be adapted to improve the localization accuracy down to orders of magnitude in the centimeter range, and to maximize array efficiency in terms of localization accuracy per number of elements. PMID:27347976

  3. Electronic structure and local magnetism of 3d-5d impurity substituted CeFe2

    NASA Astrophysics Data System (ADS)

    Das, Rakesh; Das, G. P.; Srivastava, S. K.

    2016-04-01

    We present here a systematic first-principles study of electronic structure and local magnetic properties of Ce[Fe0.75M0.25]2 compounds, where M is a 3d, 4d or 5d transition or post-transition element, using the generalized gradient approximation of the density functional theory. The d-f band hybridizations existing in CeFe2 get modified by the impurity M in an orderly manner across a period for each impurity series: the hybridization is strongest for the Mn group impurity in the period and gets diminished on either side of it. The weakening of the d-f hybridization strength is also associated with a relative localization of the Ce 4f states with respect to the delocalized 4f states in CeFe2. The above effects are most prominent for 3d impurity series, while for 4d and 5d impurities, the hybridizations and relocalizations are relatively weak due primarily to the relatively extended nature of 4d and 5d wavefunctions. The Ce local moment is found to decrease from the CeFe2 value in proportion to the strength of relocalization, thus following almost the same orderly trend as obeyed by the d-f hybridization. Further, depending on the way the spin-up and spin-down densities of states of an impurity shift relative to the Fermi energy, the impurity local moments are highest for Mn or Fe group, reduce on either side, become zero for Ni to Ga, and are small but negative for V and Ti. The Ce hyperfine field is found to follow the M local moment in a linear fashion, and vice-versa.

  4. A 3-D shear velocity model of the southern North American and Caribbean plates from ambient noise and earthquake tomography

    NASA Astrophysics Data System (ADS)

    Gaite, B.; Villaseñor, A.; Iglesias, A.; Herraiz, M.; Jiménez-Munt, I.

    2015-02-01

    We use group velocities from earthquake tomography together with group and phase velocities from ambient noise tomography (ANT) of Rayleigh waves to invert for the 3-D shear-wave velocity structure (5-70 km) of the Caribbean (CAR) and southern North American (NAM) plates. The lithospheric model proposed offers a complete image of the crust and uppermost-mantle with imprints of the tectonic evolution. One of the most striking features inferred is the main role of the Ouachita-Marathon-Sonora orogeny front on the crustal seismic structure of the NAM plate. A new imaged feature is the low crustal velocities along the USA-Mexico border. The model also shows a break of the east-west mantle velocity dichotomy of the NAM and CAR plates beneath the Isthmus of the Tehuantepec and the Yucatan Block. High upper-mantle velocities along the Mesoamerican Subduction Zone coincide with inactive volcanic areas while the lowest velocities correspond to active volcanic arcs and thin lithospheric mantle regions.

  5. Preliminary simulation of a M6.5 earthquake on the Seattle Fault using 3D finite-difference modeling

    USGS Publications Warehouse

    Stephenson, William J.; Frankel, Arthur D.

    2000-01-01

    A three-dimensional finite-difference simulation of a moderate-sized (M 6.5) thrust-faulting earthquake on the Seattle fault demonstrates the effects of the Seattle Basin on strong ground motion in the Puget lowland. The model area includes the cities of Seattle, Bremerton and Bellevue. We use a recently developed detailed 3D-velocity model of the Seattle Basin in these simulations. The model extended to 20-km depth and assumed rupture on a finite fault with random slip distribution. Preliminary results from simulations of frequencies 0.5 Hz and lower suggest amplification can occur at the surface of the Seattle Basin by the trapping of energy in the Quaternary sediments. Surface waves generated within the basin appear to contribute to amplification throughout the modeled region. Several factors apparently contribute to large ground motions in downtown Seattle: (1) radiation pattern and directivity from the rupture; (2) amplification and energy trapping within the Quaternary sediments; and (3) basin geometry and variation in depth of both Quaternary and Tertiary sediments

  6. Can 3D light localization be reached in ‘white paint’?

    NASA Astrophysics Data System (ADS)

    Sperling, T.; Schertel, L.; Ackermann, M.; Aubry, G. J.; Aegerter, C. M.; Maret, G.

    2016-01-01

    When waves scatter multiple times in 3D random media, a disorder driven phase transition from diffusion to localization may occur (Anderson 1958 Phys. Rev. 109 1492-505 Abrahams et al 1979 Phys. Rev. Lett. 42 673-6). In ‘The question of classical localization: a theory of white paint?’ Anderson suggested the possibility to observe light localization in TiO2 samples (Anderson 1985 Phil. Mag. B 52 505-9). We recently claimed the observation of localization effects measuring photon time of flight (ToF) distributions (Störzer et al 2006 Phys. Rev. Lett. 96 063904) and evaluating transmission profiles (TPs) (Sperling et al 2013 Nat. Photonics 7 48-52) in such TiO2 samples. Here we present a careful study of the long time tail of ToF distributions and the long time behavior of the TP width for very thin samples and different turbidities that questions the localization interpretation. We further show new data that allow an alternative consistent explanation of these previous data by a fluorescence process. An adapted diffusion model including an appropriate exponential fluorescence decay accounts for the shape of the ToF distributions and the TP width. These observations question whether the strong localization regime can be reached with visible light scattering in polydisperse TiO2 samples, since the disorder parameter can hardly be increased any further in such a ‘white paint’ material.

  7. Recognizing objects in 3D point clouds with multi-scale local features.

    PubMed

    Lu, Min; Guo, Yulan; Zhang, Jun; Ma, Yanxin; Lei, Yinjie

    2014-01-01

    Recognizing 3D objects from point clouds in the presence of significant clutter and occlusion is a highly challenging task. In this paper, we present a coarse-to-fine 3D object recognition algorithm. During the phase of offline training, each model is represented with a set of multi-scale local surface features. During the phase of online recognition, a set of keypoints are first detected from each scene. The local surfaces around these keypoints are further encoded with multi-scale feature descriptors. These scene features are then matched against all model features to generate recognition hypotheses, which include model hypotheses and pose hypotheses. Finally, these hypotheses are verified to produce recognition results. The proposed algorithm was tested on two standard datasets, with rigorous comparisons to the state-of-the-art algorithms. Experimental results show that our algorithm was fully automatic and highly effective. It was also very robust to occlusion and clutter. It achieved the best recognition performance on all of these datasets, showing its superiority compared to existing algorithms.

  8. TRAIL protein localization in human primary T cells by 3D microscopy using 3D interactive surface plot: a new method to visualize plasma membrane.

    PubMed

    Gras, Christophe; Smith, Nikaïa; Sengmanivong, Lucie; Gandini, Mariana; Kubelka, Claire Fernandes; Herbeuval, Jean-Philippe

    2013-01-31

    The apoptotic ligand TNF-related apoptosis ligand (TRAIL) is expressed on the membrane of immune cells during HIV infection. The intracellular stockade of TRAIL in human primary CD4(+) T cells is not known. Here we investigated whether primary CD4(+) T cells expressed TRAIL in their intracellular compartment and whether TRAIL is relocalized on the plasma membrane under HIV activation. We found that TRAIL protein was stocked in intracellular compartment in non activated CD4(+) T cells and that the total level of TRAIL protein was not increased under HIV-1 stimulation. However, TRAIL was massively relocalized on plasma membrane when cells were cultured with HIV. Using three dimensional (3D) microscopy we localized TRAIL protein in human T cells and developed a new method to visualize plasma membrane without the need of a membrane marker. This method used the 3D interactive surface plot and bright light acquired images. PMID:23085529

  9. TRAIL protein localization in human primary T cells by 3D microscopy using 3D interactive surface plot: a new method to visualize plasma membrane.

    PubMed

    Gras, Christophe; Smith, Nikaïa; Sengmanivong, Lucie; Gandini, Mariana; Kubelka, Claire Fernandes; Herbeuval, Jean-Philippe

    2013-01-31

    The apoptotic ligand TNF-related apoptosis ligand (TRAIL) is expressed on the membrane of immune cells during HIV infection. The intracellular stockade of TRAIL in human primary CD4(+) T cells is not known. Here we investigated whether primary CD4(+) T cells expressed TRAIL in their intracellular compartment and whether TRAIL is relocalized on the plasma membrane under HIV activation. We found that TRAIL protein was stocked in intracellular compartment in non activated CD4(+) T cells and that the total level of TRAIL protein was not increased under HIV-1 stimulation. However, TRAIL was massively relocalized on plasma membrane when cells were cultured with HIV. Using three dimensional (3D) microscopy we localized TRAIL protein in human T cells and developed a new method to visualize plasma membrane without the need of a membrane marker. This method used the 3D interactive surface plot and bright light acquired images.

  10. 3D quasi-dynamic modeling of earthquake cycles of the great Tohoku-oki earthquake by considering high-speed friction and thermal pressurization

    NASA Astrophysics Data System (ADS)

    Shibazaki, B.; Tsutsumi, A.; Shimamoto, T.; Noda, H.

    2012-12-01

    Some observational studies [e.g. Hasegawa et al., 2011] suggested that the 2011 great Tohoku-oki Earthquake (Mw 9.0) released roughly all of the accumulated elastic strain on the plate interface owing to considerable weakening of the fault. Recent studies show that considerable weakening can occur at a high slip velocity because of thermal pressurization or thermal weakening processes [Noda and Lapusta, 2010; Di Toro et al., 2011]. Tsutsumi et al. [2011] examined the frictional properties of clay-rich fault materials under water-saturated conditions and found that velocity weakening or strengthening occurs at intermediate slip velocities and that dramatic weakening occurs at high slip velocities. This dramatic weakening at higher slip velocities is caused by pore-fluid pressurization via frictional heating or gouge weakening. In the present study, we investigate the generation mechanism of megathrust earthquakes along the Japan trench by performing 3D quasi-dynamic modeling with high-speed friction or thermal pressurization. We propose a rate- and state-dependent friction law with two state variables that exhibit weak velocity weakening or strengthening with a small critical displacement at low to intermediate velocities, but a strong velocity weakening with a large critical displacement at high slip velocities [Shibazaki et al., 2011]. We use this friction law for 3D quasi-dynamic modeling of a cycle of the great Tohoku-oki earthquake. We set several asperities where velocity weakening occurs at low to intermediate slip velocities. Outside of the asperities, velocity strengthening occurs at low to intermediate slip velocities. At high slip velocities, strong velocity weakening occurs both within and outside of the asperities. The rupture of asperities occurs at intervals of several tens of years, whereas megathrust events occur at much longer intervals (several hundred years). Megathrust slips occur even in regions where velocity strengthening occurs at low to

  11. Estimating 3D tilt from local image cues in natural scenes

    PubMed Central

    Burge, Johannes; McCann, Brian C.; Geisler, Wilson S.

    2016-01-01

    Estimating three-dimensional (3D) surface orientation (slant and tilt) is an important first step toward estimating 3D shape. Here, we examine how three local image cues from the same location (disparity gradient, luminance gradient, and dominant texture orientation) should be combined to estimate 3D tilt in natural scenes. We collected a database of natural stereoscopic images with precisely co-registered range images that provide the ground-truth distance at each pixel location. We then analyzed the relationship between ground-truth tilt and image cue values. Our analysis is free of assumptions about the joint probability distributions and yields the Bayes optimal estimates of tilt, given the cue values. Rich results emerge: (a) typical tilt estimates are only moderately accurate and strongly influenced by the cardinal bias in the prior probability distribution; (b) when cue values are similar, or when slant is greater than 40°, estimates are substantially more accurate; (c) when luminance and texture cues agree, they often veto the disparity cue, and when they disagree, they have little effect; and (d) simplifying assumptions common in the cue combination literature is often justified for estimating tilt in natural scenes. The fact that tilt estimates are typically not very accurate is consistent with subjective impressions from viewing small patches of natural scene. The fact that estimates are substantially more accurate for a subset of image locations is also consistent with subjective impressions and with the hypothesis that perceived surface orientation, at more global scales, is achieved by interpolation or extrapolation from estimates at key locations. PMID:27738702

  12. Local ISM 3D Distribution and Soft X-ray Background Inferences for Nearby Hot Gas

    NASA Technical Reports Server (NTRS)

    Puspitarini, L.; Lallement, R.; Snowden, Steven L.; Vergely, J.-L.; Snowden, S.

    2014-01-01

    Three-dimensional (3D) interstellar medium (ISM) maps can be used to locate not only interstellar (IS) clouds, but also IS bubbles between the clouds that are blown by stellar winds and supernovae, and are filled by hot gas. To demonstrate this, and to derive a clearer picture of the local ISM, we compare our recent 3D IS dust distribution maps to the ROSAT diffuse Xray background maps after removal of heliospheric emission. In the Galactic plane, there is a good correspondence between the locations and extents of the mapped nearby cavities and the soft (0.25 keV) background emission distribution, showing that most of these nearby cavities contribute to this soft X-ray emission. Assuming a constant dust to gas ratio and homogeneous 106 K hot gas filling the cavities, we modeled in a simple way the 0.25 keV surface brightness along the Galactic plane as seen from the Sun, taking into account the absorption by the mapped clouds. The data-model comparison favors the existence of hot gas in the solar neighborhood, the so-called Local Bubble (LB). The inferred mean pressure in the local cavities is found to be approx.9,400/cu cm K, in agreement with previous studies, providing a validation test for the method. On the other hand, the model overestimates the emission from the huge cavities located in the third quadrant. Using CaII absorption data, we show that the dust to CaII ratio is very small in those regions, implying the presence of a large quantity of lower temperature (non-X-ray emitting) ionized gas and as a consequence a reduction of the volume filled by hot gas, explaining at least part of the discrepancy. In the meridian plane, the two main brightness enhancements coincide well with the LB's most elongated parts and chimneys connecting the LB to the halo, but no particular nearby cavity is found towards the enhancement in the direction of the bright North Polar Spur (NPS) at high latitude. We searched in the 3D maps for the source regions of the higher energy

  13. Discovery of previously unrecognised local faults in London, UK, using detailed 3D geological modelling

    NASA Astrophysics Data System (ADS)

    Aldiss, Don; Haslam, Richard

    2013-04-01

    In parts of London, faulting introduces lateral heterogeneity to the local ground conditions, especially where construction works intercept the Palaeogene Lambeth Group. This brings difficulties to the compilation of a ground model that is fully consistent with the ground investigation data, and so to the design and construction of engineering works. However, because bedrock in the London area is rather uniform at outcrop, and is widely covered by Quaternary deposits, few faults are shown on the geological maps of the area. This paper discusses a successful resolution of this problem at a site in east central London, where tunnels for a new underground railway station are planned. A 3D geological model was used to provide an understanding of the local geological structure, in faulted Lambeth Group strata, that had not been possible by other commonly-used methods. This model includes seven previously unrecognised faults, with downthrows ranging from about 1 m to about 12 m. The model was constructed in the GSI3D geological modelling software using about 145 borehole records, including many legacy records, in an area of 850 m by 500 m. The basis of a GSI3D 3D geological model is a network of 2D cross-sections drawn by a geologist, generally connecting borehole positions (where the borehole records define the level of the geological units that are present), and outcrop and subcrop lines for those units (where shown by a geological map). When the lines tracing the base of each geological unit within the intersecting cross-sections are complete and mutually consistent, the software is used to generate TIN surfaces between those lines, so creating a 3D geological model. Even where a geological model is constructed as if no faults were present, changes in apparent dip between two data points within a single cross-section can indicate that a fault is present in that segment of the cross-section. If displacements of similar size with the same polarity are found in a series

  14. 3D maps of the local ISM from inversion of individual color excess measurements

    NASA Astrophysics Data System (ADS)

    Lallement, R.; Vergely, J.-L.; Valette, B.; Puspitarini, L.; Eyer, L.; Casagrande, L.

    2014-01-01

    Aims: Three-dimensional (3D) maps of the Galactic interstellar matter (ISM) are a potential tool of wide use, but accurate and detailed maps are still lacking. One of the ways to construct the maps is to invert individual distance-limited ISM measurements, a method we have applied here to measurements of stellar color excess in the optical. Methods: We assembled color excess data together with the associated parallax or photometric distances to constitute a catalog of ≃23 000 sightlines for stars within 2.5 kpc. The photometric data are taken from Strömgren catalogs, the Geneva photometric database, and the Geneva-Copenhagen survey. We also included extinctions derived towards open clusters. We applied an inversion method based on a regularized Bayesian approach to this color excess dataset, a method previously used for mapping at closer distances. Results: We show the dust spatial distribution resulting from the inversion by means of planar cuts through the differential opacity 3D distribution, and by means of 2D maps of the integrated opacity from the Sun up to various distances. The mapping assigns locations to the nearby dense clouds and represents their distribution at the spatial resolution that is allowed by the dataset properties, i.e. ≃10 pc close to the Sun and increasing to ≃100 pc beyond 1 kpc. Biases toward nearby and/or weakly extincted stars make this dataset particularly appropriate to mapping the local and neighboring cavities and to locating faint, extended nearby clouds, which are both goals that are difficult or impossible with other mapping methods. The new maps reveal a ≃1 kpc wide empty region in the third quadrant in the continuation of the so-called CMa tunnel of the Local Cavity, a cavity that we identify as the Superbubble GSH238+00+09 detected in radio emission maps and that is found to be bounded by the Orion and Vela clouds. The maps also show an extended narrower tunnel in the opposite direction (l ≃ 70°) that also extends

  15. Vertical Corner Feature Based Precise Vehicle Localization Using 3D LIDAR in Urban Area.

    PubMed

    Im, Jun-Hyuck; Im, Sung-Hyuck; Jee, Gyu-In

    2016-01-01

    Tall buildings are concentrated in urban areas. The outer walls of buildings are vertically erected to the ground and almost flat. Therefore, the vertical corners that meet the vertical planes are present everywhere in urban areas. These corners act as convenient landmarks, which can be extracted by using the light detection and ranging (LIDAR) sensor. A vertical corner feature based precise vehicle localization method is proposed in this paper and implemented using 3D LIDAR (Velodyne HDL-32E). The vehicle motion is predicted by accumulating the pose increment output from the iterative closest point (ICP) algorithm based on the geometric relations between the scan data of the 3D LIDAR. The vertical corner is extracted using the proposed corner extraction method. The vehicle position is then corrected by matching the prebuilt corner map with the extracted corner. The experiment was carried out in the Gangnam area of Seoul, South Korea. In the experimental results, the maximum horizontal position error is about 0.46 m and the 2D Root Mean Square (RMS) horizontal error is about 0.138 m. PMID:27517936

  16. Vertical Corner Feature Based Precise Vehicle Localization Using 3D LIDAR in Urban Area.

    PubMed

    Im, Jun-Hyuck; Im, Sung-Hyuck; Jee, Gyu-In

    2016-08-10

    Tall buildings are concentrated in urban areas. The outer walls of buildings are vertically erected to the ground and almost flat. Therefore, the vertical corners that meet the vertical planes are present everywhere in urban areas. These corners act as convenient landmarks, which can be extracted by using the light detection and ranging (LIDAR) sensor. A vertical corner feature based precise vehicle localization method is proposed in this paper and implemented using 3D LIDAR (Velodyne HDL-32E). The vehicle motion is predicted by accumulating the pose increment output from the iterative closest point (ICP) algorithm based on the geometric relations between the scan data of the 3D LIDAR. The vertical corner is extracted using the proposed corner extraction method. The vehicle position is then corrected by matching the prebuilt corner map with the extracted corner. The experiment was carried out in the Gangnam area of Seoul, South Korea. In the experimental results, the maximum horizontal position error is about 0.46 m and the 2D Root Mean Square (RMS) horizontal error is about 0.138 m.

  17. Vertical Corner Feature Based Precise Vehicle Localization Using 3D LIDAR in Urban Area

    PubMed Central

    Im, Jun-Hyuck; Im, Sung-Hyuck; Jee, Gyu-In

    2016-01-01

    Tall buildings are concentrated in urban areas. The outer walls of buildings are vertically erected to the ground and almost flat. Therefore, the vertical corners that meet the vertical planes are present everywhere in urban areas. These corners act as convenient landmarks, which can be extracted by using the light detection and ranging (LIDAR) sensor. A vertical corner feature based precise vehicle localization method is proposed in this paper and implemented using 3D LIDAR (Velodyne HDL-32E). The vehicle motion is predicted by accumulating the pose increment output from the iterative closest point (ICP) algorithm based on the geometric relations between the scan data of the 3D LIDAR. The vertical corner is extracted using the proposed corner extraction method. The vehicle position is then corrected by matching the prebuilt corner map with the extracted corner. The experiment was carried out in the Gangnam area of Seoul, South Korea. In the experimental results, the maximum horizontal position error is about 0.46 m and the 2D Root Mean Square (RMS) horizontal error is about 0.138 m. PMID:27517936

  18. A method of 3D object recognition and localization in a cloud of points

    NASA Astrophysics Data System (ADS)

    Bielicki, Jerzy; Sitnik, Robert

    2013-12-01

    The proposed method given in this article is prepared for analysis of data in the form of cloud of points directly from 3D measurements. It is designed for use in the end-user applications that can directly be integrated with 3D scanning software. The method utilizes locally calculated feature vectors (FVs) in point cloud data. Recognition is based on comparison of the analyzed scene with reference object library. A global descriptor in the form of a set of spatially distributed FVs is created for each reference model. During the detection process, correlation of subsets of reference FVs with FVs calculated in the scene is computed. Features utilized in the algorithm are based on parameters, which qualitatively estimate mean and Gaussian curvatures. Replacement of differentiation with averaging in the curvatures estimation makes the algorithm more resistant to discontinuities and poor quality of the input data. Utilization of the FV subsets allows to detect partially occluded and cluttered objects in the scene, while additional spatial information maintains false positive rate at a reasonably low level.

  19. 3D Faulting Numerical Model Related To 2009 L'Aquila Earthquake Based On DInSAR Observations

    NASA Astrophysics Data System (ADS)

    Castaldo, Raffaele; Tizzani, Pietro; Solaro, Giuseppe; Pepe, Susi; Lanari, Riccardo

    2014-05-01

    We investigate the surface displacements in the area affected by the April 6, 2009 L'Aquila earthquake (Central Italy) through an advanced 3D numerical modeling approach, by exploiting DInSAR deformation velocity maps based on ENVISAT (Ascending and Descending orbits) and COSMO-SkyMed data (Ascending orbit). We benefited from the available geological and geophysical information to investigate the impact of known buried structures on the modulation of the observed ground deformation field; in this context we implemented the a priori information in a Finite Element (FE) Environment considering a structural mechanical physical approach. The performed analysis demonstrate that the displacement pattern associated with the Mw 6.3 main-shock event is consistent with the activation of several fault segments of the Paganica fault. In particular, we analyzed the seismic events in a structural mechanical context under the plane stress mode approximation to solve for the retrieved displacements. We defined the sub-domain setting of the 3D FEM model using the information derived from the CROOP M-15 seismic line. We assumed stationarity and linear elasticity of the involved materials by considering a solution of classical equilibrium mechanical equations. We evolved our model through two stages: the model compacted under the weight of the rock successions (gravity loading) until it reached a stable equilibrium. At the second stage (co-seismic), where the stresses were released through a slip along the faults, by using an optimization procedure we retrieved: (i) the active seismogenic structures responsible for the observed ground deformation, (ii) the effects of the different mechanical constraints on the ground deformation pattern and (iii) the spatial distribution of the retrieved stress field. We evaluated the boundary setting best fit configuration responsible for the observed ground deformation. To this aim, we first generated several forward structural mechanical models

  20. Earthquake imprints on seafloor sediments in Northern Ireland, UK: 3D characterisation of Soft Sediment Deformation (SSD).

    NASA Astrophysics Data System (ADS)

    Laborde, Marine; Homberg, Catherine; Schnyder, Johann; Raine, Rob; Smyth, Dermot

    2016-04-01

    The Penarth Group deposits (Rhaetian, Triassic-Jurassic boundary) in Northern Ireland are characteristic of lagoonal and shallow marine environments. Despite the likely absence of significant slopes, these formations are affected by episodic and intense re-sedimentation events, revealed by prominent soft sediment deformation. This study aims to characterise the origin and mechanisms of these deformation events that occurred before the lithification of the sediment, when it was only slightly indurated and still waterlogged. In this study we examine evidence from four on-shore cores and one outcrop within two separate basins c. 80 km apart (Larne Basin and Rathlin Basin). Facies correlations within the Westbury Formation and the Langport Formation (Cotham Member) between the five logged sections allow identification of at least two distinct periods of liquefaction within the Penarth Group. The soft sediment deformations observed in Northern Ireland are characterised by the presence of numerous centimetre- to decimetre-scale convolute bedding, slumps, isoclinally folded cross bedding, loading and diapirism. In core, small-scale normal syn-sedimentary faults, with offsets of a few millimetres to a few centimetres are responsible for the development of small grabens. Rose diagrams of fold axes and fault strikes in all studied sections show a NW-SE preferred orientation, indicating a strong tectonic control. Located on the foreshore, the outcrop at Waterloo allows 3D characterisation of the structures, of which the size and shape appear to be dependent on a variety of parameters such as particle size, the shear strength of the material and the thickness of the layer. We propose that deformation of seafloor deposits was generated by a succession of earthquakes within an extensional tectonic regime during the Early Mesozoic and we discuss the respective contribution of the above mentioned control parameters on the deformation of surface and subsurface sediments.

  1. An optimal sensing strategy for recognition and localization of 3-D natural quadric objects

    NASA Technical Reports Server (NTRS)

    Lee, Sukhan; Hahn, Hernsoo

    1991-01-01

    An optimal sensing strategy for an optical proximity sensor system engaged in the recognition and localization of 3-D natural quadric objects is presented. The optimal sensing strategy consists of the selection of an optimal beam orientation and the determination of an optimal probing plane that compose an optimal data collection operation known as an optimal probing. The decision of an optimal probing is based on the measure of discrimination power of a cluster of surfaces on a multiple interpretation image (MII), where the measure of discrimination power is defined in terms of a utility function computing the expected number of interpretations that can be pruned out by a probing. An object representation suitable for active sensing based on a surface description vector (SDV) distribution graph and hierarchical tables is presented. Experimental results are shown.

  2. Local electronic structure and magnetic properties of 3d transition metal doped GaAs

    NASA Astrophysics Data System (ADS)

    Lin, He; Duan, Haiming

    2008-05-01

    The local electronic structure and magnetic properties of GaAs doped with 3d transition metal (Sc, Ti, V, Cr, Mn, Fe, Co, Ni) were studied by using discrete variational method (DVM) based on density functional theory. The calculated result indicated that the magnetic moment of transition metal increases first and then decreases, and reaches the maximum value when Mn is doped into GaAs. In the case of Mn concentration of 1.4%, the magnetic moment of Mn is in good agreement with the experimental result. The coupling between impure atoms in the system with two impure atoms was found to have obvious variation. For different transition metal, the coupling between the impure atom and the nearest neighbor As also has different variation.

  3. Full optical characterization of autostereoscopic 3D displays using local viewing angle and imaging measurements

    NASA Astrophysics Data System (ADS)

    Boher, Pierre; Leroux, Thierry; Bignon, Thibault; Collomb-Patton, Véronique

    2012-03-01

    Two commercial auto-stereoscopic 3D displays are characterized a using Fourier optics viewing angle system and an imaging video-luminance-meter. One display has a fixed emissive configuration and the other adapts its emission to the observer position using head tracking. For a fixed emissive condition, three viewing angle measurements are performed at three positions (center, right and left). Qualified monocular and binocular viewing spaces in front of the display are deduced as well as the best working distance. The imaging system is then positioned at this working distance and crosstalk homogeneity on the entire surface of the display is measured. We show that the crosstalk is generally not optimized on all the surface of the display. Display aspect simulation using viewing angle measurements allows understanding better the origin of those crosstalk variations. Local imperfections like scratches and marks generally increase drastically the crosstalk, demonstrating that cleanliness requirements for this type of display are quite critical.

  4. A 3-D velocity model for earthquake location from combined geological and geophysical data: a case study from the TABOO near fault observatory (Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Latorre, Diana; Lupattelli, Andrea; Mirabella, Francesco; Trippetta, Fabio; Valoroso, Luisa; Lomax, Anthony; Di Stefano, Raffaele; Collettini, Cristiano; Chiaraluce, Lauro

    2014-05-01

    Accurate hypocenter location at the crustal scale strongly depends on our knowledge of the 3D velocity structure. The integration of geological and geophysical data, when available, should contribute to a reliable seismic velocity model in order to guarantee high quality earthquake locations as well as their consistency with the geological structure. Here we present a 3D, P- and S-wave velocity model of the Upper Tiber valley region (Northern Apennines) retrieved by combining an extremely robust dataset of surface and sub-surface geological data (seismic reflection profiles and boreholes), in situ and laboratory velocity measurements, and earthquake data. The study area is a portion of the Apennine belt undergoing active extension where a set of high-angle normal faults is detached on the Altotiberina low-angle normal fault (ATF). From 2010, this area hosts a scientific infrastructure (the Alto Tiberina Near Fault Observatory, TABOO; http://taboo.rm.ingv.it/), consisting of a dense array of multi-sensor stations, devoted to studying the earthquakes preparatory phase and the deformation processes along the ATF fault system. The proposed 3D velocity model is a layered model in which irregular shaped surfaces limit the boundaries between main lithological units. The model has been constructed by interpolating depth converted seismic horizons interpreted along 40 seismic reflection profiles (down to 4s two way travel times) that have been calibrated with 6 deep boreholes (down to 5 km depth) and constrained by detailed geological maps and structural surveys data. The layers of the model are characterized by similar rock types and seismic velocity properties. The P- and S-waves velocities for each layer have been derived from velocity measurements coming from both boreholes (sonic logs) and laboratory, where measurements have been performed on analogue natural samples increasing confining pressure in order to simulate crustal conditions. In order to test the 3D velocity

  5. Local phase tensor features for 3-D ultrasound to statistical shape+pose spine model registration.

    PubMed

    Hacihaliloglu, Ilker; Rasoulian, Abtin; Rohling, Robert N; Abolmaesumi, Purang

    2014-11-01

    Most conventional spine interventions are performed under X-ray fluoroscopy guidance. In recent years, there has been a growing interest to develop nonionizing imaging alternatives to guide these procedures. Ultrasound guidance has emerged as a leading alternative. However, a challenging problem is automatic identification of the spinal anatomy in ultrasound data. In this paper, we propose a local phase-based bone feature enhancement technique that can robustly identify the spine surface in ultrasound images. The local phase information is obtained using a gradient energy tensor filter. This information is used to construct local phase tensors in ultrasound images, which highlight the spine surface. We show that our proposed approach results in a more distinct enhancement of the bone surfaces compared to recently proposed techniques based on monogenic scale-space filters and logarithmic Gabor filters. We also demonstrate that registration accuracy of a statistical shape+pose model of the spine to 3-D ultrasound images can be significantly improved, using the proposed method, compared to those obtained using monogenic scale-space filters and logarithmic Gabor filters.

  6. 2D and 3D Visualizations of the Fault Areas, Initial Heights and Tsunami Simulations of Five Largest Historical Earthquakes in Mediterrenean Region.

    NASA Astrophysics Data System (ADS)

    Gürleme, Beran; Tarık Meriç, Hakan; Ulutaş, Ergin; Anunziato, Alessandro

    2016-04-01

    The aim of this study is the simulation and visualization of the initial and maximum tsunami wave heights in 2D and 3D along the Mediterranean coasts inferred from the five largest earthquakes in history in this region. The earthquakes considered in the study are 21 July 365 Crete, 8 August 1303 Crete, 3 May 1481 Rhodes, 28 December Messina and 21 May 2003 Algeria. All these earthquakes spawned tsunamis and inflicted damage in coastal regions. The study was conducted to explain which could be the potential Tsunami consequences caused by similar earthquakes occurring in the region in the future. The methodology used for the calculation of tsunami wave heights from the earthquakes includes the determination of earthquake parameters, modeling of the initial wave height, simulation of the wave propagation and calculation of the maximum wave heights near coastal areas. The parameters of the earthquakes are based on previously published fault mechanism solutions and known tectonic features of the regions. Static dislocation algorithm for the initial wave height is used from the parameters of focal mechanism solutions. The study was conducted also to understand the reliability of the previously published focal mechanism solutions for the earthquakes by using the principal stress axis in the regions. The 2D and 3D visualized models of tsunamis from the earthquakes include isometric grid representing the sea surface for the purpose of a better understanding of the initial tsunami mechanism compared to 1D visualizations. In many studies, the earthquake locations, tectonic features of the regions, initial heights and tsunami simulations are shown on maps as bird's eye in 1D visualization. However these kinds of features are related in depths and bathymetric features. For that reason, our approaches will contribute to have better understanding where the uplift- subsidence of initial heights and crests-troughs of simulated wave heights and thus provide a better insight of the

  7. 3D localization of electrophysiology catheters from a single x-ray cone-beam projection

    SciTech Connect

    Robert, Normand Polack, George G.; Sethi, Benu; Rowlands, John A.; Crystal, Eugene

    2015-10-15

    Purpose: X-ray images allow the visualization of percutaneous devices such as catheters in real time but inherently lack depth information. The provision of 3D localization of these devices from cone beam x-ray projections would be advantageous for interventions such as electrophysiology (EP), whereby the operator needs to return a device to the same anatomical locations during the procedure. A method to achieve real-time 3D single view localization (SVL) of an object of known geometry from a single x-ray image is presented. SVL exploits the change in the magnification of an object as its distance from the x-ray source is varied. The x-ray projection of an object of interest is compared to a synthetic x-ray projection of a model of said object as its pose is varied. Methods: SVL was tested with a 3 mm spherical marker and an electrophysiology catheter. The effect of x-ray acquisition parameters on SVL was investigated. An independent reference localization method was developed to compare results when imaging a catheter translated via a computer controlled three-axes stage. SVL was also performed on clinical fluoroscopy image sequences. A commercial navigation system was used in some clinical image sequences for comparison. Results: SVL estimates exhibited little change as x-ray acquisition parameters were varied. The reproducibility of catheter position estimates in phantoms denoted by the standard deviations, (σ{sub x}, σ{sub y}, σ{sub z}) = (0.099 mm,  0.093 mm,  2.2 mm), where x and y are parallel to the detector plane and z is the distance from the x-ray source. Position estimates (x, y, z) exhibited a 4% systematic error (underestimation) when compared to the reference method. The authors demonstrated that EP catheters can be tracked in clinical fluoroscopic images. Conclusions: It has been shown that EP catheters can be localized in real time in phantoms and clinical images at fluoroscopic exposure rates. Further work is required to characterize

  8. Clean localization super-resolution microscopy for 3D biological imaging

    NASA Astrophysics Data System (ADS)

    Mondal, Partha P.; Curthoys, Nikki M.; Hess, Samuel T.

    2016-01-01

    We propose clean localization microscopy (a variant of fPALM) using a molecule filtering technique. Localization imaging involves acquiring a large number of images containing single molecule signatures followed by one-to-one mapping to render a super-resolution image. In principle, this process can be repeated for other z-planes to construct a 3D image. But, single molecules observed from off-focal planes result in false representation of their presence in the focal plane, resulting in incorrect quantification and analysis. We overcome this with a single molecule filtering technique that imposes constraints on the diffraction limited spot size of single molecules in the image plane. Calibration with sub-diffraction size beads puts a natural cutoff on the actual diffraction-limited size of single molecules in the focal plane. This helps in distinguishing beads present in the focal plane from those in the off-focal planes thereby providing an estimate of the single molecules in the focal plane. We study the distribution of actin (labeled with a photoactivatable CAGE 552 dye) in NIH 3T3 mouse fibroblast cells.

  9. 3D seismic velocity structure in the rupture area of the 2014 M8.2 Iquique earthquake in Northern Chile

    NASA Astrophysics Data System (ADS)

    Woollam, Jack; Fuenzallida, Amaya; Garth, Tom; Rietbrock, Andreas; Ruiz, Sergio; Tavera, Hernando

    2016-04-01

    Seismic velocity tomography is one of the key tools in Earth sciences to image the physical properties of the subsurface. In recent years significant advances have been made to image the Chilean subductions zone, especially in the area of the 2010 M8.8 Maule earthquake (e.g. Hicks et al., 2014), providing much needed physical constraints for earthquakes source inversions and rupture models. In 2014 the M8.2 Iquique earthquake struck the northern part of the Chilean subduction zone in close proximity to the Peruvian boarder. The pre- and aftershock sequence of this major earthquake was recorded by a densified seismological network in Northern Chile and Southern Peru, which provides an excellent data set to study in depth the 3D velocity structure along the subduction megathrust. Based on an automatic event catalogue of nearly 10,000 events spanning the time period March to May 2014 we selected approximately 450 events for a staggered 3D inversion approach. Events are selected to guarantee an even ray coverage through the inversion volume. We only select events with a minimum GAP of 200 to improve depth estimates and therefore increase resolution in the marine forearc. Additionally, we investigate secondary arrivals between the P- and S-wave arrival to improve depth location. Up to now we have processed about 450 events, from which about 150 with at least 30 P- and S-wave observations have been selected for the subsequent 3D tomography. Overall the data quality is very high, which allows arrival time estimates better than 0.05s on average. We will show results from the 1D, 2D, and preliminary 3D inversions and discuss the results together with the obtained seismicity distribution.

  10. Location and moment tensor inversion of small earthquakes using 3D Green's functions in models with rugged topography: application to the Longmenshan fault zone

    NASA Astrophysics Data System (ADS)

    Zhou, Li; Zhang, Wei; Shen, Yang; Chen, Xiaofei; Zhang, Jie

    2016-06-01

    With dense seismic arrays and advanced imaging methods, regional three-dimensional (3D) Earth models have become more accurate. It is now increasingly feasible and advantageous to use a 3D Earth model to better locate earthquakes and invert their source mechanisms by fitting synthetics to observed waveforms. In this study, we develop an approach to determine both the earthquake location and source mechanism from waveform information. The observed waveforms are filtered in different frequency bands and separated into windows for the individual phases. Instead of picking the arrival times, the traveltime differences are measured by cross-correlation between synthetic waveforms based on the 3D Earth model and observed waveforms. The earthquake location is determined by minimizing the cross-correlation traveltime differences. We then fix the horizontal location of the earthquake and perform a grid search in depth to determine the source mechanism at each point by fitting the synthetic and observed waveforms. This new method is verified by a synthetic test with noise added to the synthetic waveforms and a realistic station distribution. We apply this method to a series of M W3.4-5.6 earthquakes in the Longmenshan fault (LMSF) zone, a region with rugged topography between the eastern margin of the Tibetan plateau and the western part of the Sichuan basin. The results show that our solutions result in improved waveform fits compared to the source parameters from the catalogs we used and the location can be better constrained than the amplitude-only approach. Furthermore, the source solutions with realistic topography provide a better fit to the observed waveforms than those without the topography, indicating the need to take the topography into account in regions with rugged topography.

  11. A 3D hp-Discontinuous Galerkin Method: Revisiting the M7.3 Landers Earthquake Dynamics

    NASA Astrophysics Data System (ADS)

    Tago, J.; Cruz-Atienza, V. M.; Virieux, J.; Etienne, V.; Sanchez-Sesma, F. J.

    2011-12-01

    two benchmark problems of the SCEC/USGS Spontaneous Rupture Code Verification Project (Harris et al., 2009): TPV3 and TPV10, and we have compared our solutions with those from other well-established approaches. The second problem is selected because it deals with a 60 degrees-dipping normal fault reaching the free surface (FS), which requires an accurate solution of the fault traction vector (i.e. including the normal component) due to the dynamic feedback from reflected waves in the FS in both the fault strength and shear loading. To illustrate the capabilities of the approach handling non-planar faults in heterogeneous media we present 3D spontaneous rupture scenarios over the Landers-earthquake fault system and discuss the importance of the system geometry to understand the stress change associated with the final slip distribution determined by previous authors.

  12. Dynamic triggering of small local earthquakes in the central Himalaya

    NASA Astrophysics Data System (ADS)

    Mendoza, Manuel M.; Ghosh, Abhijit; Rai, Shyam S.

    2016-09-01

    We present the first observation of remote dynamic triggering of local microearthquakes in central Himalaya caused by the teleseismic waves from the 2007 Mw 8.5 Sumatra earthquake that occurs ~4500 km away. We find small local earthquakes in the Kumaon-Garhwal Himalaya triggered by teleseismic long-period surface waves. Interestingly, an elevated level of seismicity persists for a week or so after the arrival of the teleseismic waves. The teleseismic waves impart ~9 kPa of peak dynamic stresses, suggesting that the Himalayan faults in this area are sensitive to small stress changes. This heightened and protracted seismicity indicates that the transient dynamic stresses may have triggered secondary processes, such as slow slip, that may be responsible for the persistence of this earthquake sequence. The region is thought to be close to a large damaging earthquake in the near future. This study provides improved constraints on the factors controlling the earthquake cycle.

  13. Thrust faulting and 3D ground deformation of the 3 July 2015 Mw 6.4 Pishan, China earthquake from Sentinel-1A radar interferometry

    NASA Astrophysics Data System (ADS)

    Sun, Jianbao; Shen, Zheng-Kang; Li, Tao; Chen, Jie

    2016-06-01

    Boosted by the launch of Sentinel-1A radar satellite from the European Space Agency (ESA), we now have the opportunity of fast, full and multiple coverage of the land based deformation field of earthquakes. Here we use the data to investigate a strong earthquake struck Pishan, western China on July 3, 2015. The earthquake fault is blind and no ground break features are found on-site, thus Synthetic Aperture Radar (SAR) data give full play to its technical advantage for the recovery of coseismic deformation field. By using the Sentinel-1A radar data in the Interferometric Wide Swath mode, we obtain 3 tracks of InSAR data over the struck region, and resolve the 3D ground deformation generated by the earthquake. Then the Line-of-Sight (LOS) InSAR data are inverted for the slip-distribution of the seismogenic fault. The final model shows that the earthquake is completely blind with pure-thrust motion. The maximum slip is ~ 0.48 m at a depth of ~ 7 km, consistent with the depth estimate from seismic reflection data. In particular, the inverted model is also compatible with a south-dipping fault ramp among a group of fault interfaces detected by the seismic reflection profile over the region. The seismic moment obtained equals to a Mw 6.4 earthquake. The Pishan earthquake ruptured the frontal part of the thrust ramps under the Slik anticline, and unloaded the coulomb stress of them. However, it may have loaded stress to the back-thrust above the thrust ramps by ~ 1-4 bar, and promoted it for future failure. Moreover, the stress loading on the west side of the earthquake fault is much larger than that on the east side, indicating a higher risk for failure to the west of the Zepu fault.

  14. Constraining Source Locations of Shallow Subduction Megathrust Earthquakes in 1-D and 3-D Velocity Models - A Case Study of the 2002 Mw=6.4 Osa Earthquake, Costa Rica

    NASA Astrophysics Data System (ADS)

    Grevemeyer, I.; Arroyo, I. G.

    2015-12-01

    Earthquake source locations are generally routinely constrained using a global 1-D Earth model. However, the source location might be associated with large uncertainties. This is definitively the case for earthquakes occurring at active continental margins were thin oceanic crust subducts below thick continental crust and hence large lateral changes in crustal thickness occur as a function of distance to the deep-sea trench. Here, we conducted a case study of the 2002 Mw 6.4 Osa thrust earthquake in Costa Rica that was followed by an aftershock sequence. Initial relocations indicated that the main shock occurred fairly trenchward of most large earthquakes along the Middle America Trench off central Costa Rica. The earthquake sequence occurred while a temporary network of ocean-bottom-hydrophones and land stations 80 km to the northwest were deployed. By adding readings from permanent Costa Rican stations, we obtain uncommon P wave coverage of a large subduction zone earthquake. We relocated this catalog using a nonlinear probabilistic approach using a 1-D and two 3-D P-wave velocity models. The 3-D model was either derived from 3-D tomography based on onshore stations and a priori model based on seismic refraction data. All epicentres occurred close to the trench axis, but depth estimates vary by several tens of kilometres. Based on the epicentres and constraints from seismic reflection data the main shock occurred 25 km from the trench and probably along the plate interface at 5-10 km depth. The source location that agreed best with the geology was based on the 3-D velocity model derived from a priori data. Aftershocks propagated downdip to the area of a 1999 Mw 6.9 sequence and partially overlapped it. The results indicate that underthrusting of the young and buoyant Cocos Ridge has created conditions for interpolate seismogenesis shallower and closer to the trench axis than elsewhere along the central Costa Rica margin.

  15. Automatic registration of optical imagery with 3d lidar data using local combined mutual information

    NASA Astrophysics Data System (ADS)

    Parmehr, E. G.; Fraser, C. S.; Zhang, C.; Leach, J.

    2013-10-01

    Automatic registration of multi-sensor data is a basic step in data fusion for photogrammetric and remote sensing applications. The effectiveness of intensity-based methods such as Mutual Information (MI) for automated registration of multi-sensor image has been previously reported for medical and remote sensing applications. In this paper, a new multivariable MI approach that exploits complementary information of inherently registered LiDAR DSM and intensity data to improve the robustness of registering optical imagery and LiDAR point cloud, is presented. LiDAR DSM and intensity information has been utilised in measuring the similarity of LiDAR and optical imagery via the Combined MI. An effective histogramming technique is adopted to facilitate estimation of a 3D probability density function (pdf). In addition, a local similarity measure is introduced to decrease the complexity of optimisation at higher dimensions and computation cost. Therefore, the reliability of registration is improved due to the use of redundant observations of similarity. The performance of the proposed method for registration of satellite and aerial images with LiDAR data in urban and rural areas is experimentally evaluated and the results obtained are discussed.

  16. Indoor Localization Algorithms for an Ambulatory Human Operated 3D Mobile Mapping System

    SciTech Connect

    Corso, N; Zakhor, A

    2013-12-03

    Indoor localization and mapping is an important problem with many applications such as emergency response, architectural modeling, and historical preservation. In this paper, we develop an automatic, off-line pipeline for metrically accurate, GPS-denied, indoor 3D mobile mapping using a human-mounted backpack system consisting of a variety of sensors. There are three novel contributions in our proposed mapping approach. First, we present an algorithm which automatically detects loop closure constraints from an occupancy grid map. In doing so, we ensure that constraints are detected only in locations that are well conditioned for scan matching. Secondly, we address the problem of scan matching with poor initial condition by presenting an outlier-resistant, genetic scan matching algorithm that accurately matches scans despite a poor initial condition. Third, we present two metrics based on the amount and complexity of overlapping geometry in order to vet the estimated loop closure constraints. By doing so, we automatically prevent erroneous loop closures from degrading the accuracy of the reconstructed trajectory. The proposed algorithms are experimentally verified using both controlled and real-world data. The end-to-end system performance is evaluated using 100 surveyed control points in an office environment and obtains a mean accuracy of 10 cm. Experimental results are also shown on three additional datasets from real world environments including a 1500 meter trajectory in a warehouse sized retail shopping center.

  17. 3-D localization of gamma ray sources with coded apertures for medical applications

    NASA Astrophysics Data System (ADS)

    Kaissas, I.; Papadimitropoulos, C.; Karafasoulis, K.; Potiriadis, C.; Lambropoulos, C. P.

    2015-09-01

    Several small gamma cameras for radioguided surgery using CdTe or CdZnTe have parallel or pinhole collimators. Coded aperture imaging is a well-known method for gamma ray source directional identification, applied in astrophysics mainly. The increase in efficiency due to the substitution of the collimators by the coded masks renders the method attractive for gamma probes used in radioguided surgery. We have constructed and operationally verified a setup consisting of two CdTe gamma cameras with Modified Uniform Redundant Array (MURA) coded aperture masks of rank 7 and 19 and a video camera. The 3-D position of point-like radioactive sources is estimated via triangulation using decoded images acquired by the gamma cameras. We have also developed code for both fast and detailed simulations and we have verified the agreement between experimental results and simulations. In this paper we present a simulation study for the spatial localization of two point sources using coded aperture masks with rank 7 and 19.

  18. Photon efficient double-helix PSF microscopy with application to 3D photo-activation localization imaging

    PubMed Central

    Grover, Ginni; Quirin, Sean; Fiedler, Callie; Piestun, Rafael

    2011-01-01

    We present a double-helix point spread function (DH-PSF) based three-dimensional (3D) microscope with efficient photon collection using a phase mask fabricated by gray-level lithography. The system using the phase mask more than doubles the efficiency of current liquid crystal spatial light modulator implementations. We demonstrate the phase mask DH-PSF microscope for 3D photo-activation localization microscopy (PM-DH-PALM) over an extended axial range. PMID:22076263

  19. Locally adaptive 2D-3D registration using vascular structure model for liver catheterization.

    PubMed

    Kim, Jihye; Lee, Jeongjin; Chung, Jin Wook; Shin, Yeong-Gil

    2016-03-01

    Two-dimensional-three-dimensional (2D-3D) registration between intra-operative 2D digital subtraction angiography (DSA) and pre-operative 3D computed tomography angiography (CTA) can be used for roadmapping purposes. However, through the projection of 3D vessels, incorrect intersections and overlaps between vessels are produced because of the complex vascular structure, which makes it difficult to obtain the correct solution of 2D-3D registration. To overcome these problems, we propose a registration method that selects a suitable part of a 3D vascular structure for a given DSA image and finds the optimized solution to the partial 3D structure. The proposed algorithm can reduce the registration errors because it restricts the range of the 3D vascular structure for the registration by using only the relevant 3D vessels with the given DSA. To search for the appropriate 3D partial structure, we first construct a tree model of the 3D vascular structure and divide it into several subtrees in accordance with the connectivity. Then, the best matched subtree with the given DSA image is selected using the results from the coarse registration between each subtree and the vessels in the DSA image. Finally, a fine registration is conducted to minimize the difference between the selected subtree and the vessels of the DSA image. In experimental results obtained using 10 clinical datasets, the average distance errors in the case of the proposed method were 2.34±1.94mm. The proposed algorithm converges faster and produces more correct results than the conventional method in evaluations on patient datasets.

  20. Locally adaptive 2D-3D registration using vascular structure model for liver catheterization.

    PubMed

    Kim, Jihye; Lee, Jeongjin; Chung, Jin Wook; Shin, Yeong-Gil

    2016-03-01

    Two-dimensional-three-dimensional (2D-3D) registration between intra-operative 2D digital subtraction angiography (DSA) and pre-operative 3D computed tomography angiography (CTA) can be used for roadmapping purposes. However, through the projection of 3D vessels, incorrect intersections and overlaps between vessels are produced because of the complex vascular structure, which makes it difficult to obtain the correct solution of 2D-3D registration. To overcome these problems, we propose a registration method that selects a suitable part of a 3D vascular structure for a given DSA image and finds the optimized solution to the partial 3D structure. The proposed algorithm can reduce the registration errors because it restricts the range of the 3D vascular structure for the registration by using only the relevant 3D vessels with the given DSA. To search for the appropriate 3D partial structure, we first construct a tree model of the 3D vascular structure and divide it into several subtrees in accordance with the connectivity. Then, the best matched subtree with the given DSA image is selected using the results from the coarse registration between each subtree and the vessels in the DSA image. Finally, a fine registration is conducted to minimize the difference between the selected subtree and the vessels of the DSA image. In experimental results obtained using 10 clinical datasets, the average distance errors in the case of the proposed method were 2.34±1.94mm. The proposed algorithm converges faster and produces more correct results than the conventional method in evaluations on patient datasets. PMID:26824922

  1. Slip Distribution of the 2011 Tohoku-oki Earthquake obtained by Geodetic and Tsunami Data and with a 3-D Finite Element Model

    NASA Astrophysics Data System (ADS)

    Romano, F.; Trasatti, E.; Lorito, S.; Ito, Y.; Piatanesi, A.; Lanucara, P.; Hirata, K.; D'Agostino, N.; Cocco, M.

    2012-12-01

    The rupture process of the Great 2011 Tohoku-oki earthquake has been particularly well studied by using an unprecedented collection of geophysical data. There is a general agreement among the different source models obtained by modeling seismological, geodetic and tsunami data. A slip patch of nearly 40÷50 meters has been imaged and located around and up-dip from the hypocenter by most of published models, while some differences exist in the slip pattern retrieved at shallow depths near the trench, likely due to the different resolving power of distinct data sets and to the adopted fault geometry. It is well known that the modeling of great subduction earthquakes requires the use of 3-D structural models in order to properly account for the effects of topography, bathymetry and the geometrical variations of the plate interface as well as for the effects of elastic contrasts between the subducting plate and the continental lithosphere. In this study we build a 3-D Finite Element (FE) model of the Tohoku-oki area in order to infer the slip distribution of the 2011 earthquake by performing a joint inversion of geodetic (GPS and seafloor observations) and tsunami (ocean bottom pressure sensors, DART and GPS buoys) data. The FE model is used to compute the geodetic and tsunami Green's functions. In order to understand how geometrical and elastic heterogeneities control the inferred slip distribution of the Tohoku-oki earthquake, we compare the slip patterns obtained using both homogeneous and heterogeneous structural models. The goal of this study is to better constrain the slip distribution and the maximum slip amplitudes. In particular, we aim to focus on the rupture process in the shallower part of the fault plane and near the trench, which is crucial to model the tsunami data and to assess the tsunamigenic potential of earthquakes in this region.

  2. The Donegal Sign Tree: A Local Legend Confirmed with Holographic Radar and 3-D Magnetics

    NASA Astrophysics Data System (ADS)

    Bechtel, T.; Cassidy, M.; Inagaki, M.; Windsor, C.; Capineri, L.; Falorni, P.; Bulleti, A.; Valentini, S.; Borgioli, G.; Ivashov, S.; Zhuravlev, A.; Razewig, V.; Vasiliev, I.; Bechtel, E.

    2009-05-01

    A tree at a crossroad in Historic Donegal, PA (founded 1722) bears unusual burls. Two are similar in size, and lie on opposite sides of the trunk at a height of six feet. Locals say that the tree engulfed an old road sign, and the geometry of the burls gives this appearance. However, the trunk between these two burls bears no welt where it sealed after swallowing the sign. In addition, there are other burls farther up the tree, which are not consistent with engulfed signs. Although the locals all know the legend of the swallowed sign, none ever actually saw the sign; not even an octogenarian who has lived at the crossroad his entire life, and recalls the tree as a child just as it is today. In order to test the veracity of the legend, this study performed subsurface imaging of the tree using holographic subsurface radar (Rascan), and 3-D measurements of the magnetic field about the tree using cesium vapor sensors. The Rascan system used is a continuous wave subsurface radar that operates at 5 discrete frequencies between 1.5 and 2.0 GHz. Reflections from subsurface objects are recorded as the phase difference pattern between an internal reference signal, and the reflected signal. Thus, it is a microwave analogy for optical holography. Rascan records reflections with two receiving antennae - parallel and perpendicular to the transmitter - so a single set of scans provides ten images; five frequencies at two polarizations. This ensures that an object at arbitrary depth will produce a strong phase difference in one of the images. As a consequence, elongate objects that are angled from the plane of scanning (e.g. a dipping sheet) produce "zebra stripes" of contrast values that vary cyclically with depth. The presence of stripes, and their relative positions in the different frequency images (the movement of which has been dubbed the "zebra shift") is useful for determining the relative depth of different portions of a dipping planar, or curved subsurface object. Rascan

  3. 3D P-wave velocity structure of the crust and relocation of earthquakes in the Lushan, China, source area

    NASA Astrophysics Data System (ADS)

    Yu, Xiangwei; Wang, Xiaona; Zhang, Wenbo

    2016-04-01

    Many researchers have investigated the Lushan source area with geological and geophysical approaches since the 2013 Lushan, China, earthquake happened. Compared with the previous tomographic studies, we have used a much large data set and an updated tomographic method to determine a small scale three-dimensional P wave velocity structure with spatial resolution less than 5km, which plays the important role for understanding the deep structure and the genetic mechanism beneath the Lushan area. The double difference seismic tomography method is applied to 50,711 absolute first arrival P wave arrival times and 7,294,691 high quality relative P arrival times of 5,285 events of Lushan seismic sequence to simultaneously determine the detailed crustal 3D P wave velocity structure and the hypocenter parameters in the Lushan seismic area. This method takes account of the path anomaly biases explicitly by making full use of valuable information of seismic wave propagation jointly with absolute and relative arrival time data. Our results show that the Lushan mainshock locates at 30.28N, 103.98E, with the depth of 16.38km. The front edge of aftershock in the northeast of mainshock present a spade with a steep dip angle, the aftershocks' extended length is about 12km. In the southwest of Lushan mainshock, the front edge of aftershock in low velocity zone slope gently, the aftershocks' extended length is about 23km. Our high-resolution tomographic model not only displays the general features contained in the previous models, but also reveals some new features. The Tianquan, Shuangshi and Daguan line lies in the transition zone between high velocity anomalies to the southeast and low velocity anomalies to the northwest at the ground surface. An obvious high-velocity anomaly is visible in Daxing area. With the depth increasing, Baoxing high velocity anomaly extends to Lingguan, while the southeast of the Tianquan, Shuangshi and Daguan line still shows low velocity. The high

  4. Hand-eye calibration of a robot--UltraSound probe system without any 3D localizers.

    PubMed

    Sarrazin, Johan; Promayon, Emmanuel; Baumann, Michael; Troccaz, Jocelyne

    2015-01-01

    3D UltraSound (US) probes are used in clinical applications for their ease of use and ability to obtain intra-operative volumes. In surgical navigation applications a calibration step is needed to localize the probe in a general coordinate system. This paper presents a new hand-eye calibration method using directly the kinematic model of a robot and US volume registration data that does not require any 3D localizers. First results show a targeting error of 2.34 mm on an experimental setup using manual segmentation of five beads in ten US volumes. PMID:26736191

  5. Hand-eye calibration of a robot--UltraSound probe system without any 3D localizers.

    PubMed

    Sarrazin, Johan; Promayon, Emmanuel; Baumann, Michael; Troccaz, Jocelyne

    2015-01-01

    3D UltraSound (US) probes are used in clinical applications for their ease of use and ability to obtain intra-operative volumes. In surgical navigation applications a calibration step is needed to localize the probe in a general coordinate system. This paper presents a new hand-eye calibration method using directly the kinematic model of a robot and US volume registration data that does not require any 3D localizers. First results show a targeting error of 2.34 mm on an experimental setup using manual segmentation of five beads in ten US volumes.

  6. 3D crustal structure and long-period ground motions from a M9.0 megathrust earthquake in the Pacific Northwest region

    USGS Publications Warehouse

    Olsen, K.B.; Stephenson, W.J.; Geisselmeyer, A.

    2008-01-01

    We have developed a community velocity model for the Pacific Northwest region from northern California to southern Canada and carried out the first 3D simulation of a Mw 9.0 megathrust earthquake rupturing along the Cascadia subduction zone using a parallel supercomputer. A long-period (<0.5 Hz) source model was designed by mapping the inversion results for the December 26, 2004 Sumatra–Andaman earthquake (Han et al., Science 313(5787):658–662, 2006) onto the Cascadia subduction zone. Representative peak ground velocities for the metropolitan centers of the region include 42 cm/s in the Seattle area and 8–20 cm/s in the Tacoma, Olympia, Vancouver, and Portland areas. Combined with an extended duration of the shaking up to 5 min, these long-period ground motions may inflict significant damage on the built environment, in particular on the highrises in downtown Seattle.

  7. A Bayesian approach to real-time 3D tumor localization via monoscopic x-ray imaging during treatment delivery

    SciTech Connect

    Li, Ruijiang; Fahimian, Benjamin P.; Xing, Lei

    2011-07-15

    Purpose: Monoscopic x-ray imaging with on-board kV devices is an attractive approach for real-time image guidance in modern radiation therapy such as VMAT or IMRT, but it falls short in providing reliable information along the direction of imaging x-ray. By effectively taking consideration of projection data at prior times and/or angles through a Bayesian formalism, the authors develop an algorithm for real-time and full 3D tumor localization with a single x-ray imager during treatment delivery. Methods: First, a prior probability density function is constructed using the 2D tumor locations on the projection images acquired during patient setup. Whenever an x-ray image is acquired during the treatment delivery, the corresponding 2D tumor location on the imager is used to update the likelihood function. The unresolved third dimension is obtained by maximizing the posterior probability distribution. The algorithm can also be used in a retrospective fashion when all the projection images during the treatment delivery are used for 3D localization purposes. The algorithm does not involve complex optimization of any model parameter and therefore can be used in a ''plug-and-play'' fashion. The authors validated the algorithm using (1) simulated 3D linear and elliptic motion and (2) 3D tumor motion trajectories of a lung and a pancreas patient reproduced by a physical phantom. Continuous kV images were acquired over a full gantry rotation with the Varian TrueBeam on-board imaging system. Three scenarios were considered: fluoroscopic setup, cone beam CT setup, and retrospective analysis. Results: For the simulation study, the RMS 3D localization error is 1.2 and 2.4 mm for the linear and elliptic motions, respectively. For the phantom experiments, the 3D localization error is < 1 mm on average and < 1.5 mm at 95th percentile in the lung and pancreas cases for all three scenarios. The difference in 3D localization error for different scenarios is small and is not

  8. Earthquakes in Action: Incorporating Multimedia, Internet Resources, Large-scale Seismic Data, and 3-D Visualizations into Innovative Activities and Research Projects for Today's High School Students

    NASA Astrophysics Data System (ADS)

    Smith-Konter, B.; Jacobs, A.; Lawrence, K.; Kilb, D.

    2006-12-01

    The most effective means of communicating science to today's "high-tech" students is through the use of visually attractive and animated lessons, hands-on activities, and interactive Internet-based exercises. To address these needs, we have developed Earthquakes in Action, a summer high school enrichment course offered through the California State Summer School for Mathematics and Science (COSMOS) Program at the University of California, San Diego. The summer course consists of classroom lectures, lab experiments, and a final research project designed to foster geophysical innovations, technological inquiries, and effective scientific communication (http://topex.ucsd.edu/cosmos/earthquakes). Course content includes lessons on plate tectonics, seismic wave behavior, seismometer construction, fault characteristics, California seismicity, global seismic hazards, earthquake stress triggering, tsunami generation, and geodetic measurements of the Earth's crust. Students are introduced to these topics through lectures-made-fun using a range of multimedia, including computer animations, videos, and interactive 3-D visualizations. These lessons are further enforced through both hands-on lab experiments and computer-based exercises. Lab experiments included building hand-held seismometers, simulating the frictional behavior of faults using bricks and sandpaper, simulating tsunami generation in a mini-wave pool, and using the Internet to collect global earthquake data on a daily basis and map earthquake locations using a large classroom map. Students also use Internet resources like Google Earth and UNAVCO/EarthScope's Jules Verne Voyager Jr. interactive mapping tool to study Earth Science on a global scale. All computer-based exercises and experiments developed for Earthquakes in Action have been distributed to teachers participating in the 2006 Earthquake Education Workshop, hosted by the Visualization Center at Scripps Institution of Oceanography (http

  9. A cut-&-paste strategy for the 3-D inversion of helicopter-borne electromagnetic data - II. Combining regional 1-D and local 3-D inversion

    NASA Astrophysics Data System (ADS)

    Ullmann, A.; Scheunert, M.; Afanasjew, M.; Börner, R.-U.; Siemon, B.; Spitzer, K.

    2016-07-01

    As a standard procedure, multi-frequency helicopter-borne electromagnetic (HEM) data are inverted to conductivity-depth models using 1-D inversion methods, which may, however, fail in areas of strong lateral conductivity contrasts (so-called induction anomalies). Such areas require more realistic multi-dimensional modelling. Since the full 3-D inversion of an entire HEM data set is still extremely time consuming, our idea is to combine fast 1-D and accurate but numerically expensive 3-D inversion of HEM data in such a way that the full 3-D inversion is only carried out for those parts of a HEM survey which are affected by induction anomalies. For all other parts, a 1-D inversion method is sufficient. We present a newly developed algorithm for identification, selection, and extraction of induction anomalies in HEM data sets and show how the 3-D inversion model of the anomalous area is re-integrated into the quasi-1-D background. Our proposed method is demonstrated to work properly on a synthetic and a field HEM data set from the Cuxhaven tunnel valley in Germany. We show that our 1-D/3-D approach yields better results compared to 1-D inversions in areas where 3-D effects occur.

  10. 3D-Epitope-Explorer (3DEX): localization of conformational epitopes within three-dimensional structures of proteins.

    PubMed

    Schreiber, Andreas; Humbert, Michael; Benz, Alexander; Dietrich, Ursula

    2005-07-15

    Neutralizing antibodies often recognize conformational, discontinuous epitopes. Linear peptides mimicking such conformational epitopes can be selected from phage display peptide libraries by screening with the respective antibodies. However, it is difficult to localize these "mimotopes" within the three-dimensional (3D) structures of the target proteins. Knowledge of conformational epitopes of neutralizing antibodies would help to design antigens able to elicit protective immune responses. Therefore, we provide here a software that allows to localize linear peptide sequences within 3D structures of proteins. The 3D-Epitope-Explorer (3DEX) software allows to map conformational epitopes in 3D protein structures based on an algorithm that takes into account the physicochemical neighborhood of C(alpha)- or C(beta)-atoms of individual amino acids. A given amino acid of a peptide sequence is localized within the protein and the software searches within predefined distances for the amino acids neighboring that amino acid in the peptide. Surface exposure of the amino acids can also be taken into consideration. The procedure is then repeated for the remaining amino acids of the peptide. The introduction of a joker function allows to map peptide mimotopes, which do not necessarily have 100% sequence homology to the protein. Using this software we were able to localize mimotopes selected from phage displayed peptide libraries with polyclonal antibodies from HIV-positive patient plasma within the 3D structure of gp120, the exterior glycoprotein of HIV-1. We also analyzed two recently published peptide sequences corresponding to known conformational epitopes to further confirm the integrity of 3DEX.

  11. 3-D or median map? Earthquake scenario ground-motion maps from physics-based models versus maps from ground-motion prediction equations

    NASA Astrophysics Data System (ADS)

    Porter, K.

    2015-12-01

    There are two common ways to create a ground-motion map for a hypothetical earthquake: using ground motion prediction equations (by far the more common of the two) and using 3-D physics-based modeling. The former is very familiar to engineers, the latter much less so, and the difference can present a problem because engineers tend to trust the familiar and distrust novelty. Maps for essentially the same hypothetical earthquake using the two different methods can look very different, while appearing to present the same information. Using one or the other can lead an engineer or disaster planner to very different estimates of damage and risk. The reasons have to do with depiction of variability, spatial correlation of shaking, the skewed distribution of real-world shaking, and the upward-curving relationship between shaking and damage. The scientists who develop the two kinds of map tend to specialize in one or the other and seem to defend their turf, which can aggravate the problem of clearly communicating with engineers.The USGS Science Application for Risk Reduction's (SAFRR) HayWired scenario has addressed the challenge of explaining to engineers the differences between the two maps, and why, in a disaster planning scenario, one might want to use the less-familiar 3-D map.

  12. Earthquake relocation using a 3D a-priori geological velocity model from the western Alps to Corsica: Implication for seismic hazard

    NASA Astrophysics Data System (ADS)

    Béthoux, Nicole; Theunissen, Thomas; Beslier, Marie-Odile; Font, Yvonne; Thouvenot, François; Dessa, Jean-Xavier; Simon, Soazig; Courrioux, Gabriel; Guillen, Antonio

    2016-02-01

    The region between the inner zones of the Alps and Corsica juxtaposes an overthickened crust to an oceanic domain, which makes difficult to ascertain the focal depth of seismic events using routine location codes and average 1D velocity models. The aim of this article is to show that, even with a rather lose monitoring network, accurate routine locations can be achieved by using realistic 3D modelling and advanced location techniques. Previous earthquake tomography studies cover the whole region with spatial resolutions of several tens of kilometres on land, but they fail to resolve the marine domain due to the absence of station coverage and sparse seismicity. To overcome these limitations, we first construct a 3D a-priori P and S velocity model integrating known geophysical and geological information. Significant progress has been achieved in the 3D numerical modelling of complex geological structures by the development of dedicated softwares (e.g. 3D GeoModeller), capable at once of elaborating a 3D structural model from geological and geophysical constraints and, possibly, of refining it by inversion processes (Calcagno et al., 2008). Then, we build an arrival-time catalogue of 1500 events recorded from 2000 to 2011. Hypocentres are then located in this model using a numerical code based on the maximum intersection method (Font et al., 2004), updated by Theunissen et al. (2012), as well as another 3D location technique, the NonLinLoc software (Lomax and Curtis, 2001). The reduction of arrival-time residuals and uncertainties (dh, dz) with respect to classical 1D locations demonstrates the improved accuracy allowed by our approach and confirms the coherence of the 3D geological model built and used in this study. Our results are also compared with previous works that benefitted from the installation of dense temporary networks surrounding the studied epicentre area. The resulting 3D location catalogue allows us to improve the regional seismic hazard assessment

  13. High-precision differential earthquake location in 3-D models: evidence for a rheological barrier controlling the microseismicity at the Irpinia fault zone in southern Apennines

    NASA Astrophysics Data System (ADS)

    De Landro, Grazia; Amoroso, Ortensia; Stabile, Tony Alfredo; Matrullo, Emanuela; Lomax, Antony; Zollo, Aldo

    2015-12-01

    A non-linear, global-search, probabilistic, double-difference earthquake location technique is illustrated. The main advantages of this method are the determination of comprehensive and complete solutions through the probability density function (PDF), the use of differential arrival times as data and the possibility to use a 3-D velocity model both for absolute and double-difference locations, all of which help to obtain accurate differential locations in structurally complex geological media. The joint use of this methodology and an accurate differential time data set allowed us to carry out a high-resolution, earthquake location analysis, which helps to characterize the active fault geometries in the studied region. We investigated the recent microseismicity occurring at the Campanian-Lucanian Apennines in the crustal volume embedding the fault system that generated the 1980 MS 6.9 earthquake in Irpinia. In order to obtain highly accurate seismicity locations, we applied the method to the P and S arrival time data set from 1312 events (ML < 3.1) that occurred from August 2005 to April 2011 and used the 3-D P- and S-wave velocity models optimized for the area under study. Both manually refined and cross-correlation refined absolute arrival times have been used. The refined seismicity locations show that the events occur in a volume delimited by the faults activated during the 1980 MS 6.9 Irpinia earthquake on subparallel, predominantly normal faults. We find an abrupt interruption of the seismicity across an SW-NE oriented structural discontinuity corresponding to a contact zone between different rheology rock formations (carbonate platform and basin residuals). This `barrier' appears to be located in the area bounded by the fault segments activated during the first (0 s) and the second (18 s) rupture episodes of the 1980s Irpinia earthquake. We hypothesize that this geometrical barrier could have played a key role during the 1980 Irpinia event, and possibly

  14. Postseismic Displacement Following the Sumatra-Andaman Earthquake Detected by Continuous GPS Observation and the Effect of Viscoelastic Relaxation Using 3D- FEM

    NASA Astrophysics Data System (ADS)

    Katagi, T.; Hashimoto, M.; Hashizume, M.; Choosakul, N.; Takemoto, S.; Fukuda, Y.; Fujimori, K.; Satomura, M.; Wu, P.; Otsuka, Y.; Takiguchi, H.; Saito, S.; Maruyama, T.; Kato, T.

    2007-12-01

    We have studied postseismic displacement following the Sumatra-Andaman earthquake of December 26, 2004 in Thailand and other Southeast Asian countries using continuous GPS observation. We will report the results of our GPS analysis from the beginning of 2001 to the end of October 2007. We have also constructed 3D-FEM to evaluate the effect of viscoelastic relaxation following the earthquake. We will also report this result. We used continuous GPS data from 6 sites operated by Chulalongkorn Univ. and Kyoto Univ. or JAMSTEC, 2 sites by Shizuoka Univ. and JAMSTEC, 3 sites by NICT in Thailand and Myanmar, 1 site by STE-Lab, Nagoya Univ., and IGS sites which are located in countries surrounding the Indian Ocean include Japan, China and Australia. Bernese 5.0 was used for the processing of 30 sec. sampling data to obtain static solutions. From our analysis, no significant motions were detected at each site until the day of the earthquake. Although postseismic displacements still have been detected at CHMI and SIS2 in northern Thailand, far from the epicenter, they seem to be decelerated. On the other hand, at SAMP and PHKT, close to the epicenter, where postseismic displacements also became smaller, but still may take a time to stop. An about 29 cm SW-ward motion was detected at PHKT from just after the Sumatra-Andaman earthquake to June 2007, which is larger than its coseismic displacement, about 26 cm. We have constructed 3D-FEM model to estimate how much viscoelastic relaxation affects postseismic displacements after the earthquake. We adopted a Maxwell viscoelastic body as well as Katagi et al. (2006), and modeled around the Andaman-Sea area using isoparametric hexahedral elements with 8 nodes (Zienkiewicz and Cheng, 1967). The Andaman-Sea is well known as a back arc basins, and its ocean floor is still spreading. Therefore, the mantle viscosity under the Sunda-plate may be smaller because of upwelling warm mantle. We are going to investigate and report the

  15. Local plate/rod descriptors of 3D trabecular bone micro-CT images from medial axis topologic analysis

    SciTech Connect

    Peyrin, Francoise; Attali, Dominique; Chappard, Christine; Benhamou, Claude Laurent

    2010-08-15

    Purpose: Trabecular bone microarchitecture is made of a complex network of plate and rod structures evolving with age and disease. The purpose of this article is to propose a new 3D local analysis method for the quantitative assessment of parameters related to the geometry of trabecular bone microarchitecture. Methods: The method is based on the topologic classification of the medial axis of the 3D image into branches, rods, and plates. Thanks to the reversibility of the medial axis, the classification is next extended to the whole 3D image. Finally, the percentages of rods and plates as well as their mean thicknesses are calculated. The method was applied both to simulated test images and 3D micro-CT images of human trabecular bone. Results: The classification of simulated phantoms made of plates and rods shows that the maximum error in the quantitative percentages of plate and rods is less than 6% and smaller than with the structure model index (SMI). Micro-CT images of human femoral bone taken in osteoporosis and early or advanced osteoarthritis were analyzed. Despite the large physiological variability, the present method avoids the underestimation of rods observed with other local methods. The relative percentages of rods and plates were not significantly different between osteoarthritis and osteoporotic groups, whereas their absolute percentages were in relation to an increase of rod and plate thicknesses in advanced osteoarthritis with also higher relative and absolute number of nodes. Conclusions: The proposed method is model-independent, robust to surface irregularities, and enables geometrical characterization of not only skeletal structures but entire 3D images. Its application provided more accurate results than the standard SMI on simple simulated phantoms, but the discrepancy observed on the advanced osteoarthritis group raises questions that will require further investigations. The systematic use of such a local method in the characterization of

  16. 3D Dynamic Rupture Simulation Across a Complex Fault System: the Mw7.0, 2010, Haiti Earthquake

    NASA Astrophysics Data System (ADS)

    Douilly, R.; Aochi, H.; Calais, E.; Freed, A. M.

    2013-12-01

    Earthquakes ruptures sometimes take place on a secondary fault and surprisingly do not activate an adjacent major one. The 1989 Loma Prieta earthquake is a classic case where rupture occurred on a blind thrust while the adjacent San Andreas Fault was not triggered during the process. Similar to Loma Prieta, the Mw7.0, January 12 2010, Haiti earthquake also ruptured a secondary blind thrust, the Léogâne fault, adjacent to the main plate boundary, the Enriquillo Plantain Garden Fault, which did not rupture during this event. Aftershock relocalizations delineate the Léogâne rupture with two north dipping segments with slightly different dip, where the easternmost segment had mostly dip-slip motion and the westernmost one had mostly strike-slip motion. In addition, an offshore south dipping structure inferred from the aftershocks to the west of the rupture zone coincides with the offshore Trois Baies reverse fault, a region of increase in Coulomb stress increase. In this study, we investigate the rupture dynamics of the Haiti earthquake in a complex fault system of multiple segments identified by the aftershock relocations. We suppose a background stress regime that is consistent with the type of motion of each fault and with the regional tectonic regime. We initiate a nucleation on the east segment of the Léogâne fault by defining a circular region with a 2 km radius where shear stress is slightly greater than the yield stress. By varying friction on faults and background stress, we find a range of plausible scenarios. In the absence of near-field seismic records of the event, we score the different models against the static deformation field derived from GPS and InSAR at the surface. All the plausible simulations show that the rupture propagates from the eastern to the western segment along the Léogâne fault, but not on the Enriquillo fault nor on the Trois Baies fault. The best-fit simulation shows a significant increase of shear stresses on the Trois Baies

  17. Connecting earthquake source products to local tsunami warning

    NASA Astrophysics Data System (ADS)

    Melgar, D.; Allen, R. M.

    2015-12-01

    Issuing warning of a tsunami in advance of its arrival to the coastlines immediately adjacent to large earthquakes remains a challenging problem. The heterogeneous development state of regional geophysical monitoring infrastructure across subduction zones worldwide means that a flexible approach to warning, capable of ingesting multiple data types and earthquake source products, is the most appealing. We will present results from the study of 3 recent large events that have been observed with diverse geophysical measurements; the 2011 Mw9.0 Tohoku-oki, the 2010 Mw8.8 Maule and 2014 Mw8.2 Iquique events. First, we will show that earthquake slip models derived from combination of land (GPS and strong motion) as well as off-shore (tide gauges, ocean-bottom pressure, and GPS buoy) can be coupled to tsunami propagation models to produce simulations that closely match the measured run-up at the local coastlines. Using these models as a baseline for validation we will demonstrate a methodology that takes advantage of simpler, but more readily available earthquake source products such as rapid point-source magnitude estimates from coastal GPS observations and regional moment tensors. We will show that while trading-off precision for speed, these simpler earthquake source models produce inundation forecasts reliable enough to be used for warning within minutes of earthquake onset. Most subduction zones around the world already have some geophysical infrastructure and are producing some form of real-time earthquake source product, our results strongly argue that by coupling these data products to tsunami propagation models local tsunami warning is possible at most subduction zones with already available infrastructure.

  18. Lapse-time dependent coda-wave depth sensitivity to local velocity perturbations in 3-D heterogeneous elastic media

    NASA Astrophysics Data System (ADS)

    Obermann, Anne; Planès, Thomas; Hadziioannou, Céline; Campillo, Michel

    2016-07-01

    In the context of seismic monitoring, recent studies made successful use of seismic coda waves to locate medium changes on the horizontal plane. Locating the depth of the changes, however, remains a challenge. In this paper, we use 3-D wavefield simulations to address two problems: firstly, we evaluate the contribution of surface and body wave sensitivity to a change at depth. We introduce a thin layer with a perturbed velocity at different depths and measure the apparent relative velocity changes due to this layer at different times in the coda and for different degrees of heterogeneity of the model. We show that the depth sensitivity can be modelled as a linear combination of body- and surface-wave sensitivity. The lapse-time dependent sensitivity ratio of body waves and surface waves can be used to build 3-D sensitivity kernels for imaging purposes. Secondly, we compare the lapse-time behavior in the presence of a perturbation in horizontal and vertical slabs to address, for instance, the origin of the velocity changes detected after large earthquakes.

  19. Lapse-time-dependent coda-wave depth sensitivity to local velocity perturbations in 3-D heterogeneous elastic media

    NASA Astrophysics Data System (ADS)

    Obermann, Anne; Planès, Thomas; Hadziioannou, Céline; Campillo, Michel

    2016-10-01

    In the context of seismic monitoring, recent studies made successful use of seismic coda waves to locate medium changes on the horizontal plane. Locating the depth of the changes, however, remains a challenge. In this paper, we use 3-D wavefield simulations to address two problems: first, we evaluate the contribution of surface- and body-wave sensitivity to a change at depth. We introduce a thin layer with a perturbed velocity at different depths and measure the apparent relative velocity changes due to this layer at different times in the coda and for different degrees of heterogeneity of the model. We show that the depth sensitivity can be modelled as a linear combination of body- and surface-wave sensitivity. The lapse-time-dependent sensitivity ratio of body waves and surface waves can be used to build 3-D sensitivity kernels for imaging purposes. Second, we compare the lapse-time behaviour in the presence of a perturbation in horizontal and vertical slabs to address, for instance, the origin of the velocity changes detected after large earthquakes.

  20. Is earthquake activity along the French Atlantic margin favoured by local rheological contrasts?

    NASA Astrophysics Data System (ADS)

    Mazabraud, Yves; Béthoux, Nicole; Delouis, Bertrand

    2013-09-01

    The seismological study of recent seismic crises near Oleron Island confirms the coexistence of an extensional deformation and a transtensive regime in the Atlantic margin of France, which is different from the general western European stress field corresponding to a strike-slip regime. We argue that the switch of the principal stress axes σ1/σ2 in a NW-SE vertical plane is linked with the existence of crustal heterogeneities. Events of magnitude larger than 5 sometimes occur along the Atlantic margin of France, such as the 7 September 1972 (ML = 5.2) earthquake near Oleron island and the 30 September 2002 (ML = 5.7) Hennebont event in Brittany. To test the mechanism of local strain localization, we model the deformation of the hypocentral area of the Hennebont earthquake using a 3D thermo-mechanical finite element code. We conclude that the occurrence of moderate earthquakes located in limited parts of the Hercynian shear zones (as the often reactivated swarms near Oleron) could be due to local reactivation of pre-existing faults. These sporadic seismic ruptures are favoured by stress concentration due to rheological heterogeneities.

  1. Determination of focal mechanisms of intermediate-magnitude earthquakes in Mexico, based on Greens functions calculated for a 3D Earth model

    NASA Astrophysics Data System (ADS)

    Rodrigo Rodríguez Cardozo, Félix; Hjörleifsdóttir, Vala

    2015-04-01

    One important ingredient in the study of the complex active tectonics in Mexico is the analysis of earthquake focal mechanisms, or the seismic moment tensor. They can be determined trough the calculation of Green functions and subsequent inversion for moment-tensor parameters. However, this calculation is gets progressively more difficult as the magnitude of the earthquakes decreases. Large earthquakes excite waves of longer periods that interact weakly with laterally heterogeneities in the crust. For these earthquakes, using 1D velocity models to compute the Greens fucntions works well. The opposite occurs for smaller and intermediate sized events, where the relatively shorter periods excited interact strongly with lateral heterogeneities in the crust and upper mantle and requires more specific or regional 3D models. In this study, we calculate Greens functions for earthquakes in Mexico using a laterally heterogeneous seismic wave speed model, comprised of mantle model S362ANI (Kustowski et al 2008) and crustal model CRUST 2.0 (Bassin et al 1990). Subsequently, we invert the observed seismograms for the seismic moment tensor using a method developed by Liu et al (2004) an implemented by Óscar de La Vega (2014) for earthquakes in Mexico. By following a brute force approach, in which we include all observed Rayleigh and Love waves of the Mexican National Seismic Network (Servicio Sismológico Naciona, SSN), we obtain reliable focal mechanisms for events that excite a considerable amount of low frequency waves (Mw > 4.8). However, we are not able to consistently estimate focal mechanisms for smaller events using this method, due to high noise levels in many of the records. Excluding the noisy records, or noisy parts of the records manually, requires interactive edition of the data, using an efficient tool for the editing. Therefore, we developed a graphical user interface (GUI), based on python and the python library ObsPy, that allows the edition of observed and

  2. Localization and visualization of excess chemical potential in statistical mechanical integral equation theory 3D-HNC-RISM.

    PubMed

    Du, Qi-Shi; Liu, Peng-Jun; Huang, Ri-Bo

    2008-02-01

    In this study the excess chemical potential of the integral equation theory, 3D-RISM-HNC [Q. Du, Q. Wei, J. Phys. Chem. B 107 (2003) 13463-13470], is visualized in three-dimensional form and localized at interaction sites of solute molecule. Taking the advantage of reference interaction site model (RISM), the calculation equations of chemical excess potential are reformulized according to the solute interaction sites s in molecular space. Consequently the solvation free energy is localized at every interaction site of solute molecule. For visualization of the 3D-RISM-HNC calculation results, the excess chemical potentials are described using radial and three-dimensional diagrams. It is found that the radial diagrams of the excess chemical potentials are more sensitive to the bridge functions than the radial diagrams of solvent site density distributions. The diagrams of average excess chemical potential provide useful information of solute-solvent electrostatic and van der Waals interactions. The local description of solvation free energy at active sites of solute in 3D-RISM-HNC may broaden the application scope of statistical mechanical integral equation theory in solution chemistry and life science.

  3. Optical Coherence Tomography Noise Reduction Using Anisotropic Local Bivariate Gaussian Mixture Prior in 3D Complex Wavelet Domain

    PubMed Central

    Sonka, Milan; Abramoff, Michael D.

    2013-01-01

    In this paper, MMSE estimator is employed for noise-free 3D OCT data recovery in 3D complex wavelet domain. Since the proposed distribution for noise-free data plays a key role in the performance of MMSE estimator, a priori distribution for the pdf of noise-free 3D complex wavelet coefficients is proposed which is able to model the main statistical properties of wavelets. We model the coefficients with a mixture of two bivariate Gaussian pdfs with local parameters which are able to capture the heavy-tailed property and inter- and intrascale dependencies of coefficients. In addition, based on the special structure of OCT images, we use an anisotropic windowing procedure for local parameters estimation that results in visual quality improvement. On this base, several OCT despeckling algorithms are obtained based on using Gaussian/two-sided Rayleigh noise distribution and homomorphic/nonhomomorphic model. In order to evaluate the performance of the proposed algorithm, we use 156 selected ROIs from 650 × 512 × 128 OCT dataset in the presence of wet AMD pathology. Our simulations show that the best MMSE estimator using local bivariate mixture prior is for the nonhomomorphic model in the presence of Gaussian noise which results in an improvement of 7.8 ± 1.7 in CNR. PMID:24222760

  4. Intrinsic spatial shift of local focus metric curves in digital inline holography for accurate 3D morphology measurement of irregular micro-objects

    NASA Astrophysics Data System (ADS)

    Wu, Yingchun; Wu, Xuecheng; Lebrun, Denis; Brunel, Marc; Coëtmellec, Sébastien; Lesouhaitier, Olivier; Chen, Jia; Gréhan, Gérard

    2016-09-01

    A theoretical model of digital inline holography system reveals that the local focus metric curves (FMCs) of different parts of an irregular micro-object present spatial shift in the depth direction which is resulted from the depth shift. Thus, the 3D morphology of an irregular micro-object can be accurately measured using the cross correlation of the local FMCs. This method retrieves the 3D depth information directly, avoiding the uncertainty inherited from the depth position determination. Typical 3D morphology measurements, including the 3D boundary lines of tilted carbon fibers and irregular coal particles, and the 3D swimming gesture of a live Caenorhabdities elegans, are presented.

  5. 3D velocity structure of the outer forearc of the Colombia-Ecuador subduction zone; implications for the 1958 megathrust earthquake rupture zone

    NASA Astrophysics Data System (ADS)

    Galve, A.; Charvis, P.; Garcia Cano, L.; Marcaillou, B.

    2013-12-01

    In 2005, we conducted an onshore-offshore 3D refraction and wide-angle reflection seismic experiment over the rupture zone of the 1958 subduction earthquake that occurred near the border between Colombia and Ecuador. This earthquake was part of a sequence of 3 large ruptures (1942, Mw=7.8; 1958, Mw=7.7; 1979, Mw=8.2), which successively broke from south to north the segments of the megathrust that had been ruptured in 1906 by a single, very large magnitude (8.8) earthquake. Using first arrival traveltime inversion, we constructed a well-defined Vp velocity model of the plate boundary and of the upper and lower plates, down to 25 km depth. The model reveals a 5-km thick, low velocity zone in the upper plate, located immediately above the interplate contact. Because similar low-velocity zones are commonly observed along margins made of oceanic or island-arc accreted terranes, we suggest that the low-velocity zone might result from the alteration and hydration of mafic and ultramafic rocks in the upper plate basement, rather than from hydrofracturing alone. Sediments underplated beneath the inner wedge might contribute to the low-velocity zone but it is unlikely that they are several kilometers thick. Nevertheless, fluids expelled by the compaction and dehydration of those underplated sediments possibly favor the alteration of the overlying rocks. The low-velocity zone is spatially coincident with the 1958 rupture area. Near the toe of the margin, the model shows a low velocity gradient in the outer wedge that we interpret as a zone of highly faulted and fractured rocks or of poorly consolidated sediments. This low velocity/low gradient region forms the oceanward limit of the rupture zones of both the 1958 and the 1979 earthquakes. We suggest that the two earthquake ruptures were arrested by the low velocity zone because its low rigidity contributed to dissipate most of the seismic energy and of the coseismic strain/stress. This might be the reason why the 1958

  6. Upper-crust Tomographic Structure of the Southern Korea Peninsula from Local Earthquakes

    NASA Astrophysics Data System (ADS)

    Kim, K. H.; Park, J. H.; Kang, S. Y.

    2015-12-01

    We derived the three dimensional P wave velocity model for the uppermost 14 km of crust in the southern Korea peninsula using travel-time data from local earthquakes which are recorded by two nation-wide seismic networks operated by Korea Meteorological Administration and Korea Institute of Geoscience and Mineral Resources. Earthquakes in the study occurred between 2001 and 2014. 19,935 P wave arrivals from 747 earthquakes observed by 184 seismic stations are selected for the 3-D tomographic inversion. In order to secure best possible data for tomography inversion, we applied a strict criteria during the selection of earthquakes and travel-times. The study area is parameterized by 10km×10km×4km grid for velocity inversion and 1km×1km×1km grid for travel time calculations. Checkerboard resolution test are used to demonstrate the ray coverage and the resolution for the given station-event configurations. The results indicate P-wave velocity model at shallow depths less than 2 km are not properly resolved mainly due to the insufficient ray coverage. The model at deeper depths greater than 14 km also suffered by lack of ray coverage. Thus, we limit our interpretations of the preliminary P wave velocity model to areas that are illuminated by enough rays. P wave velocity model indicates there are significant lateral velocity variations across the southern Korea peninsula. Most distinguished feature in the velocity model is the higher velocity anomaly beneath the southeastern Korea peninsula. The anomaly regions is distinguished by well-defined tectonic boundary. At 8 km depth, lower velocity anomaly is observed in Gyeonggi massif and high-mountain regions in the southern Korea peninsula. The 3-D velocity model is compared with geophysical and geological observations.

  7. Three-dimensional (3D) coseismic deformation map produced by the 2014 South Napa Earthquake estimated and modeled by SAR and GPS data integration

    NASA Astrophysics Data System (ADS)

    Polcari, Marco; Albano, Matteo; Fernández, José; Palano, Mimmo; Samsonov, Sergey; Stramondo, Salvatore; Zerbini, Susanna

    2016-04-01

    In this work we present a 3D map of coseismic displacements due to the 2014 Mw 6.0 South Napa earthquake, California, obtained by integrating displacement information data from SAR Interferometry (InSAR), Multiple Aperture Interferometry (MAI), Pixel Offset Tracking (POT) and GPS data acquired by both permanent stations and campaigns sites. This seismic event produced significant surface deformation along the 3D components causing several damages to vineyards, roads and houses. The remote sensing results, i.e. InSAR, MAI and POT, were obtained from the pair of SAR images provided by the Sentinel-1 satellite, launched on April 3rd, 2014. They were acquired on August 7th and 31st along descending orbits with an incidence angle of about 23°. The GPS dataset includes measurements from 32 stations belonging to the Bay Area Regional Deformation Network (BARDN), 301 continuous stations available from the UNAVCO and the CDDIS archives, and 13 additional campaign sites from Barnhart et al, 2014 [1]. These data constrain the horizontal and vertical displacement components proving to be helpful for the adopted integration method. We exploit the Bayes theory to search for the 3D coseismic displacement components. In particular, for each point, we construct an energy function and solve the problem to find a global minimum. Experimental results are consistent with a strike-slip fault mechanism with an approximately NW-SE fault plane. Indeed, the 3D displacement map shows a strong North-South (NS) component, peaking at about 15 cm, a few kilometers far from the epicenter. The East-West (EW) displacement component reaches its maximum (~10 cm) south of the city of Napa, whereas the vertical one (UP) is smaller, although a subsidence in the order of 8 cm on the east side of the fault can be observed. A source modelling was performed by inverting the estimated displacement components. The best fitting model is given by a ~N330° E-oriented and ~70° dipping fault with a prevailing

  8. Kinematic modeling the 2014 Mw6 South Napa, California, earthquake using near-fault strong-motion data and 3D Green's functions

    NASA Astrophysics Data System (ADS)

    Gallovic, F.; Imperatori, W.

    2015-12-01

    On 24 August 2014 an Mw 6.1 earthquake struck the Napa area in the north San Francisco Bay region. We perform slip inversion using method by Gallovič et al. (2015), employing low frequency data (0.05-0.5 Hz) recorded by 10 near-fault strong-motion stations and a 1D velocity model (GIL7). We reveal rupture propagating up-dip and unilaterally along the fault with dominant shallow asperity. While the fit of the data is good in terms of the first main pulses, the observed weaker secondary arrivals at some of the stations remain unexplained. We then perform forward simulation combining the revealed '1D' source model and detailed 3D USGS velocity model of the Bay region. While the 3D crustal model slightly improves the fit at stations located outside of major basin structures, it introduces strong spurious reverberations at stations inside the basins. These strong oscillations disappear when the 3D velocity model is smoothed. We also perform slip inversion using 3D Green's functions, obtaining a source model that effectively suppresses the oscillations, but also worsens the fit at stations outside the basins. Compared to the '1D' rupture model, the '3D' rupture model has longer rise times and lower peak slip rates, but it also contains more spurious features. Thus we conclude that the '1D' rupture model is more robust, suggesting that the 3D USGS velocity model for the Bay area should be improved in some of its parts. As a next step, based on the low-resolution slip models, we follow the approach of Ruiz (Ruiz et al., 2011) to build broadband kinematic source models to simulate deterministically ground motions up to 5Hz, including topography, intrinsic attenuation and random small-scale velocity heterogeneity. Calculations show an extremely complex wave field in comparison with 1D simulations. Finally, we check how our deterministic synthetics compare with those obtained using popular broadband hybrid techniques (e.g., Mai et al., 2010).

  9. High-content 3D multicolor super-resolution localization microscopy.

    PubMed

    Pereira, Pedro M; Almada, Pedro; Henriques, Ricardo

    2015-01-01

    Super-resolution (SR) methodologies permit the visualization of cellular structures at near-molecular scale (1-30 nm), enabling novel mechanistic analysis of key events in cell biology not resolvable by conventional fluorescence imaging (∼300-nm resolution). When this level of detail is combined with computing power and fast and reliable analysis software, high-content screenings using SR becomes a practical option to address multiple biological questions. The importance of combining these powerful analytical techniques cannot be ignored, as they can address phenotypic changes on the molecular scale and in a statistically robust manner. In this work, we suggest an easy-to-implement protocol that can be applied to set up a high-content 3D SR experiment with user-friendly and freely available software. The protocol can be divided into two main parts: chamber and sample preparation, where a protocol to set up a direct STORM (dSTORM) sample is presented; and a second part where a protocol for image acquisition and analysis is described. We intend to take the reader step-by-step through the experimental process highlighting possible experimental bottlenecks and possible improvements based on recent developments in the field.

  10. Connecting Global Measures of 3D Magnetic Reconnection to Local Kinetic Physics

    SciTech Connect

    Daughton, William Scott

    2015-07-16

    After giving the motivation for the work, slides present the topic under the following headings: Description of LAPD experiment; Actual simulation setup; Simple kinetic theory of ined-tied tearing; Diagnostics to characterizing 3D reconnection; Example #1 - short-tied system; and Example #2 - long line-tied system. Colorful simulations are shown for quasipotential vs field line exponentiation, field line integrated Ohms Law, and correlation with agyrotopy & energy conversion for example #1; and evolution of current density for largest case, field exponentiation vs quasi-potential, and time evolution of magnetic field lines for example #2. To satisfy line-tied boundary conditions, there is need for superposition of oblique modes--the simple two-mode approximation works surprisingly well. For force-free layers with bg >1, the fastest growing periodic modes are oblique with kxλ ~0.5. This implies a minimum length of Ly > 2πλbg. There are strong correlations between σ → Ξ → A0e (observable with spacecraft). Electron pressure tensor is the dominant non-ideal term.

  11. High-content 3D multicolor super-resolution localization microscopy.

    PubMed

    Pereira, Pedro M; Almada, Pedro; Henriques, Ricardo

    2015-01-01

    Super-resolution (SR) methodologies permit the visualization of cellular structures at near-molecular scale (1-30 nm), enabling novel mechanistic analysis of key events in cell biology not resolvable by conventional fluorescence imaging (∼300-nm resolution). When this level of detail is combined with computing power and fast and reliable analysis software, high-content screenings using SR becomes a practical option to address multiple biological questions. The importance of combining these powerful analytical techniques cannot be ignored, as they can address phenotypic changes on the molecular scale and in a statistically robust manner. In this work, we suggest an easy-to-implement protocol that can be applied to set up a high-content 3D SR experiment with user-friendly and freely available software. The protocol can be divided into two main parts: chamber and sample preparation, where a protocol to set up a direct STORM (dSTORM) sample is presented; and a second part where a protocol for image acquisition and analysis is described. We intend to take the reader step-by-step through the experimental process highlighting possible experimental bottlenecks and possible improvements based on recent developments in the field. PMID:25640426

  12. Rupture Processes of the Mw8.3 Sea of Okhotsk Earthquake and Aftershock Sequences from 3-D Back Projection Imaging

    NASA Astrophysics Data System (ADS)

    Jian, P. R.; Hung, S. H.; Meng, L.

    2014-12-01

    On May 24, 2013, the largest deep earthquake ever recorded in history occurred on the southern tip of the Kamchatka Island, where the Pacific Plate subducts underneath the Okhotsk Plate. Previous 2D beamforming back projection (BP) of P- coda waves suggests the mainshock ruptured bilaterally along a horizontal fault plane determined by the global centroid moment tensor solution. On the other hand, the multiple point source inversion of P and SH waveforms argued that the earthquake comprises a sequence of 6 subevents not located on a single plane but actually distributed in a zone that extends 64 km horizontally and 35 km in depth. We then apply a three-dimensional MUSIC BP approach to resolve the rupture processes of the manishock and two large aftershocks (M6.7) with no a priori setup of preferential orientations of the planar rupture. The maximum pseudo-spectrum of high-frequency P wave in a sequence of time windows recorded by the densely-distributed stations from US and EU Array are used to image 3-D temporal and spatial rupture distribution. The resulting image confirms that the nearly N-S striking but two antiparallel rupture stages. The first subhorizontal rupture initially propagates toward the NNE direction, while at 18 s later it directs reversely to the SSW and concurrently shifts downward to 35 km deeper lasting for about 20 s. The rupture lengths in the first NNE-ward and second SSW-ward stage are about 30 km and 85 km; the estimated rupture velocities are 3 km/s and 4.25 km/s, respectively. Synthetic experiments are undertaken to assess the capability of the 3D MUSIC BP for the recovery of spatio-temporal rupture processes. Besides, high frequency BP images based on the EU-Array data show two M6.7 aftershocks are more likely to rupture on the vertical fault planes.

  13. 3D source localization of interictal spikes in epilepsy patients with MRI lesions

    NASA Astrophysics Data System (ADS)

    Ding, Lei; Worrell, Gregory A.; Lagerlund, Terrence D.; He, Bin

    2006-08-01

    The present study aims to accurately localize epileptogenic regions which are responsible for epileptic activities in epilepsy patients by means of a new subspace source localization approach, i.e. first principle vectors (FINE), using scalp EEG recordings. Computer simulations were first performed to assess source localization accuracy of FINE in the clinical electrode set-up. The source localization results from FINE were compared with the results from a classic subspace source localization approach, i.e. MUSIC, and their differences were tested statistically using the paired t-test. Other factors influencing the source localization accuracy were assessed statistically by ANOVA. The interictal epileptiform spike data from three adult epilepsy patients with medically intractable partial epilepsy and well-defined symptomatic MRI lesions were then studied using both FINE and MUSIC. The comparison between the electrical sources estimated by the subspace source localization approaches and MRI lesions was made through the coregistration between the EEG recordings and MRI scans. The accuracy of estimations made by FINE and MUSIC was also evaluated and compared by R2 statistic, which was used to indicate the goodness-of-fit of the estimated sources to the scalp EEG recordings. The three-concentric-spheres head volume conductor model was built for each patient with three spheres of different radii which takes the individual head size and skull thickness into consideration. The results from computer simulations indicate that the improvement of source spatial resolvability and localization accuracy of FINE as compared with MUSIC is significant when simulated sources are closely spaced, deep, or signal-to-noise ratio is low in a clinical electrode set-up. The interictal electrical generators estimated by FINE and MUSIC are in concordance with the patients' structural abnormality, i.e. MRI lesions, in all three patients. The higher R2 values achieved by FINE than MUSIC

  14. Improved localization accuracy in magnetic source imaging using a 3-D laser scanner.

    PubMed

    Bardouille, Timothy; Krishnamurthy, Santosh V; Hajra, Sujoy Ghosh; D'Arcy, Ryan C N

    2012-12-01

    Brain source localization accuracy in magnetoencephalography (MEG) requires accuracy in both digitizing anatomical landmarks and coregistering to anatomical magnetic resonance images (MRI). We compared the source localization accuracy and MEG-MRI coregistration accuracy of two head digitization systems-a laser scanner and the current standard electromagnetic digitization system (Polhemus)-using a calibrated phantom and human data. When compared using the calibrated phantom, surface and source localization accuracy for data acquired with the laser scanner improved over the Polhemus by 141% and 132%, respectively. Laser scan digitization reduced MEG source localization error by 1.38 mm on average. In human participants, a laser scan of the face generated a 1000-fold more points per unit time than the Polhemus head digitization. An automated surface-matching algorithm improved the accuracy of MEG-MRI coregistration over the equivalent manual procedure. Simulations showed that the laser scan coverage could be reduced to an area around the eyes only while maintaining coregistration accuracy, suggesting that acquisition time can be substantially reduced. Our results show that the laser scanner can both reduce setup time and improve localization accuracy, in comparison to the Polhemus digitization system.

  15. Applicability of 3D Monte Carlo simulations for local values calculations in a PWR core

    NASA Astrophysics Data System (ADS)

    Bernard, Franck; Cochet, Bertrand; Jinaphanh, Alexis; Jacquet, Olivier

    2014-06-01

    As technical support of the French Nuclear Safety Authority, IRSN has been developing the MORET Monte Carlo code for many years in the framework of criticality safety assessment and is now working to extend its application to reactor physics. For that purpose, beside the validation for criticality safety (more than 2000 benchmarks from the ICSBEP Handbook have been modeled and analyzed), a complementary validation phase for reactor physics has been started, with benchmarks from IRPHEP Handbook and others. In particular, to evaluate the applicability of MORET and other Monte Carlo codes for local flux or power density calculations in large power reactors, it has been decided to contribute to the "Monte Carlo Performance Benchmark" (hosted by OECD/NEA). The aim of this benchmark is to monitor, in forthcoming decades, the performance progress of detailed Monte Carlo full core calculations. More precisely, it measures their advancement towards achieving high statistical accuracy in reasonable computation time for local power at fuel pellet level. A full PWR reactor core is modeled to compute local power densities for more than 6 million fuel regions. This paper presents results obtained at IRSN for this benchmark with MORET and comparisons with MCNP. The number of fuel elements is so large that source convergence as well as statistical convergence issues could cause large errors in local tallies, especially in peripheral zones. Various sampling or tracking methods have been implemented in MORET, and their operational effects on such a complex case have been studied. Beyond convergence issues, to compute local values in so many fuel regions could cause prohibitive slowing down of neutron tracking. To avoid this, energy grid unification and tallies preparation before tracking have been implemented, tested and proved to be successful. In this particular case, IRSN obtained promising results with MORET compared to MCNP, in terms of local power densities, standard

  16. Global localization of 3D anatomical structures by pre-filtered Hough forests and discrete optimization.

    PubMed

    Donner, René; Menze, Bjoern H; Bischof, Horst; Langs, Georg

    2013-12-01

    The accurate localization of anatomical landmarks is a challenging task, often solved by domain specific approaches. We propose a method for the automatic localization of landmarks in complex, repetitive anatomical structures. The key idea is to combine three steps: (1) a classifier for pre-filtering anatomical landmark positions that (2) are refined through a Hough regression model, together with (3) a parts-based model of the global landmark topology to select the final landmark positions. During training landmarks are annotated in a set of example volumes. A classifier learns local landmark appearance, and Hough regressors are trained to aggregate neighborhood information to a precise landmark coordinate position. A non-parametric geometric model encodes the spatial relationships between the landmarks and derives a topology which connects mutually predictive landmarks. During the global search we classify all voxels in the query volume, and perform regression-based agglomeration of landmark probabilities to highly accurate and specific candidate points at potential landmark locations. We encode the candidates' weights together with the conformity of the connecting edges to the learnt geometric model in a Markov Random Field (MRF). By solving the corresponding discrete optimization problem, the most probable location for each model landmark is found in the query volume. We show that this approach is able to consistently localize the model landmarks despite the complex and repetitive character of the anatomical structures on three challenging data sets (hand radiographs, hand CTs, and whole body CTs), with a median localization error of 0.80 mm, 1.19 mm and 2.71 mm, respectively. PMID:23664450

  17. Global localization of 3D anatomical structures by pre-filtered Hough Forests and discrete optimization

    PubMed Central

    Donner, René; Menze, Bjoern H.; Bischof, Horst; Langs, Georg

    2013-01-01

    The accurate localization of anatomical landmarks is a challenging task, often solved by domain specific approaches. We propose a method for the automatic localization of landmarks in complex, repetitive anatomical structures. The key idea is to combine three steps: (1) a classifier for pre-filtering anatomical landmark positions that (2) are refined through a Hough regression model, together with (3) a parts-based model of the global landmark topology to select the final landmark positions. During training landmarks are annotated in a set of example volumes. A classifier learns local landmark appearance, and Hough regressors are trained to aggregate neighborhood information to a precise landmark coordinate position. A non-parametric geometric model encodes the spatial relationships between the landmarks and derives a topology which connects mutually predictive landmarks. During the global search we classify all voxels in the query volume, and perform regression-based agglomeration of landmark probabilities to highly accurate and specific candidate points at potential landmark locations. We encode the candidates’ weights together with the conformity of the connecting edges to the learnt geometric model in a Markov Random Field (MRF). By solving the corresponding discrete optimization problem, the most probable location for each model landmark is found in the query volume. We show that this approach is able to consistently localize the model landmarks despite the complex and repetitive character of the anatomical structures on three challenging data sets (hand radiographs, hand CTs, and whole body CTs), with a median localization error of 0.80 mm, 1.19 mm and 2.71 mm, respectively. PMID:23664450

  18. 3D growth rates from tomographic images: local measurements for a better understanding of snow metamorphism

    NASA Astrophysics Data System (ADS)

    Flin, F.; Calonne, N.; Denis, R.; Caneill, R.; Bernard, L.; Anne, D.; Philip, A.; Roulle, J.; Rolland du Roscoat, S.; Geindreau, C.

    2015-12-01

    Once deposited on the ground, snow forms a complex porous material whose microstructure constantly transforms over time. These evolutions, which strongly impact the physical and mechanical properties of snow (e.g. Srivastava et al, 2010; Calonne et al, 2014) need to be considered in details for an accurate snowpack modeling. However, some of the physical mechanisms involved in metamorphism are still poorly understood.To address this problem, several investigations combining X-ray tomography and 3D micro-modeling have been carried out (e.g. Flin et al, 2003; Kämpfer and Plapp, 2009; Pinzer et al, 2012) but precise comparisons between experimentation and modeling remain difficult. One of the difficulties comes from the lack of high resolution time-lapse series for experiments occurring with very well-defined boundary conditions, and from which precise measurements of the interfacial growth rates can be done.Thanks to a recently developed cryogenic cell (Calonne et al, 2015), we conducted in situ time-lapse tomographic experiments on several snow and ice samples under various conditions (isothermal metamorphism at -7°C, temperature gradient metamorphism at -2°C under a TG of 18 K/m, air cavity migration in a single crystal at -4°C under a TG of 50 K/m). The non-destructive nature of X-ray microtomography yielded series of 8 micron resolution images that were acquired with a 2 to 12 h time step. An image analysis method was then developed to estimate the normal growth rates on each point of the ice-air interface and applied to the series obtained.The analysis of the results and their comparison to those of existing models (e.g. Flin et al, 2003; Flin and Brzoska, 2008) give interesting outlooks for the understanding of the physical mechanisms involved in snow metamorphism. References:Calonne, N., et al (2015), Geophys. Res. Lett., 42, 3911-3918.Calonne, N., et al (2014), The Cryosphere, 8, 2255-2274.Flin, F. and J.-B. Brzoska (2008), Ann. Glaciol., 49, 17-21.Flin

  19. 3d N = 1 Chern-Simons-matter theory and localization

    NASA Astrophysics Data System (ADS)

    Tsimpis, Dimitrios; Zhu, Yaodong

    2016-10-01

    We consider the most general, classically-conformal, three-dimensional N = 1 Chern-Simons-matter theory with global symmetry Sp (2) and gauge group U (N) × U (N). We show that the Lagrangian in the on-shell formulation of the theory admits one more free parameter as compared to the theory formulated in off-shell N = 1 superspace. The theory on T3 can be formally localized. We partially carry out the localization procedure for the theory on T3 with periodic boundary conditions. In particular we show that restricting to the saddle points with vanishing gauge connection gives a trivial contribution to the partition function, i.e. the bosonic and fermionic contributions exactly cancel each other.

  20. Seismically Inferred Rupture Process of the 2011 Tohoku-Oki Earthquake by Using Data-Validated 3D and 2.5D Green's Tensor Waveforms

    NASA Astrophysics Data System (ADS)

    Okamoto, T.; Takenaka, H.; Hara, T.; Nakamura, T.; Aoki, T.

    2014-12-01

    We analyze "seismic" rupture process of the March 11, 2011 Tohoku-Oki earthquake (GCMT Mw9.1) by using a non-linear multi-time-window waveform inversion method. We incorporate the effect of the near-source laterally heterogeneous structure on the synthetic Green's tensor waveforms; otherwise the analysis may result in erroneous solutions [1]. To increase the resolution we use teleseismic and strong-motion seismograms jointly because the one-sided distribution of strong-motion station may cause reduced resolution near the trench axis [2]. We use a 2.5D FDM [3] for teleseismic P-waves and a full 3D FDM that incorporates topography, oceanic water layer, 3D heterogeneity and attenuation for strong-motions [4]. We apply multi-GPU acceleration by using the TSUBAME supercomputer in Tokyo Institute of Technology [5]. We "validated" the Green's tensor waveforms with a point-source moment tensor inversion analysis for a small (Mw5.8) shallow event: we confirm the observed waveforms are reproduced well with the synthetics.The inferred slip distribution using the 2.5D and 3D Green's functions has large slips (max. 37 m) near the hypocenter and small slips near the trench (figure). Also an isolated slip region is identified close to Fukushima prefecture. These features are similar to those obtained by our preliminary study [4]. The land-ward large slips and trench-ward small slips have also been reported by [2]. It is remarkable that we confirmed these features by using data-validated Green's functions. On the other hand very large slips are inferred close to the trench when we apply "1D" Green's functions that do not incorporate the lateral heterogeneity. Our result suggests the trench-ward large deformation that caused large tsunamis did not radiate strong seismic waves. Very slow slips (e.g., the tsunami earthquake), delayed slips and anelastic deformation are among the candidates of the physical processes of the deformation.[1] Okamoto and Takenaka, EPS, 61, e17-e20, 2009

  1. Locally modified QUICK scheme for highly convective 2-D and 3-D flows

    NASA Astrophysics Data System (ADS)

    Leonard, B. P.

    The positive and negative aspects of the QUICK scheme are discussed. QUICK is used in the bulk of the flow domain; however, when the local curvature of the convected variable exceeds a preset value, the algorithm switches to exponential upwinding or other compatible interpolation. Results are presented for the purely convective oblique-step test. A comparison is made between the sharp monotonic EULER-QUICK results and first-, second-, and third-order upwinding.

  2. Decoding 3-D Reach and Grasp Kinematics from High-Frequency Local Field Potentials in Primate Primary Motor Cortex

    PubMed Central

    Zhuang, Jun; Vargas-Irwin, Carlos; Donoghue, John P.

    2011-01-01

    Intracortical microelectrode array recordings generate a variety of neural signals with potential application as control signals in neural interface systems. Previous studies have focused on single and multiunit activity, as well as low frequency local field potentials (LFPs), but have not explored higher frequency (>200 Hz) LFPs. In addition, the potential to decode three dimensional (3-D) reach and grasp kinematics based on LFPs has not been demonstrated. Here, we use mutual information and decoding analyses to probe the information content about 3-D reaching and grasping of 7 different LFP frequency bands in the range of 0.3 Hz – 400 Hz. LFPs were recorded via 96-microelectrode arrays in primary motor cortex (M1) of two monkeys performing free reaching to grasp moving objects. Mutual information analyses revealed that higher frequency bands (e.g. 100 – 200 Hz and 200 – 400 Hz) carried the most information about the examined kinematics. Furthermore, Kalman filter decoding revealed that broadband high frequency LFPs, likely reflecting multiunit activity, provided the best decoding performance as well as substantial accuracy in reconstructing reach kinematics, grasp aperture and aperture velocity. These results indicate that LFPs, especially high frequency bands, could be useful signals for neural interfaces controlling 3-D reach and grasp kinematics. PMID:20403782

  3. New 3D parallel GILD electromagnetic modeling and nonlinear inversion using global magnetic integral and local differential equation

    SciTech Connect

    Xie, G.; Li, J.; Majer, E.; Zuo, D.

    1998-07-01

    This paper describes a new 3D parallel GILD electromagnetic (EM) modeling and nonlinear inversion algorithm. The algorithm consists of: (a) a new magnetic integral equation instead of the electric integral equation to solve the electromagnetic forward modeling and inverse problem; (b) a collocation finite element method for solving the magnetic integral and a Galerkin finite element method for the magnetic differential equations; (c) a nonlinear regularizing optimization method to make the inversion stable and of high resolution; and (d) a new parallel 3D modeling and inversion using a global integral and local differential domain decomposition technique (GILD). The new 3D nonlinear electromagnetic inversion has been tested with synthetic data and field data. The authors obtained very good imaging for the synthetic data and reasonable subsurface EM imaging for the field data. The parallel algorithm has high parallel efficiency over 90% and can be a parallel solver for elliptic, parabolic, and hyperbolic modeling and inversion. The parallel GILD algorithm can be extended to develop a high resolution and large scale seismic and hydrology modeling and inversion in the massively parallel computer.

  4. Robust 3D object localization and pose estimation for random bin picking with the 3DMaMa algorithm

    NASA Astrophysics Data System (ADS)

    Skotheim, Øystein; Thielemann, Jens T.; Berge, Asbjørn; Sommerfelt, Arne

    2010-02-01

    Enabling robots to automatically locate and pick up randomly placed and oriented objects from a bin is an important challenge in factory automation, replacing tedious and heavy manual labor. A system should be able to recognize and locate objects with a predefined shape and estimate the position with the precision necessary for a gripping robot to pick it up. We describe a system that consists of a structured light instrument for capturing 3D data and a robust approach for object location and pose estimation. The method does not depend on segmentation of range images, but instead searches through pairs of 2D manifolds to localize candidates for object match. This leads to an algorithm that is not very sensitive to scene complexity or the number of objects in the scene. Furthermore, the strategy for candidate search is easily reconfigurable to arbitrary objects. Experiments reported in this paper show the utility of the method on a general random bin picking problem, in this paper exemplified by localization of car parts with random position and orientation. Full pose estimation is done in less than 380 ms per image. We believe that the method is applicable for a wide range of industrial automation problems where precise localization of 3D objects in a scene is needed.

  5. Travel time calculation in regular 3D grid in local and regional scale using fast marching method

    NASA Astrophysics Data System (ADS)

    Polkowski, M.

    2015-12-01

    Local and regional 3D seismic velocity models of crust and sediments are very important for numerous technics like mantle and core tomography, localization of local and regional events and others. Most of those techniques require calculation of wave travel time through the 3D model. This can be achieved using multiple approaches from simple ray tracing to advanced full waveform calculation. In this study simple and efficient implementation of fast marching method is presented. This method provides more information than ray tracing and is much less complicated than methods like full waveform being the perfect compromise. Presented code is written in C++, well commented and is easy to modify for different types of studies. Additionally performance is widely discussed including possibilities of multithreading and massive parallelism like GPU. Source code will be published in 2016 as it is part of the PhD thesis. National Science Centre Poland provided financial support for this work via NCN grant DEC-2011/02/A/ST10/00284.

  6. Modular poly(ethylene glycol) matrices for the controlled 3D-localized osteogenic differentiation of mesenchymal stem cells.

    PubMed

    Metzger, Stéphanie; Lienemann, Philipp S; Ghayor, Chafik; Weber, Wilfried; Martin, Ivan; Weber, Franz E; Ehrbar, Martin

    2015-03-11

    The in vitro formation of physiologically relevant engineered tissues is still limited by the availability of adequate growth-factor-presenting cell-instructive biomaterials, allowing simultaneous and three-dimensionally localized differentiation of multiple tissue progenitor cells. Together with ever improving technologies such as microfluidics, printing, or lithography, these biomaterials could provide the basis for generating provisional cellular constructs, which can differentiate to form tissue mimetics. Although state-of-the-art biomaterials are endowed with sophisticated modules for time- and space-controlled positioning and release of bioactive molecules, reports on 3D arrangements of differentiation-inducing growth factors are scarce. This paper describes the stable and localized immobilization of biotinylated bioactive molecules to a modular, Factor XIII-cross-linked poly(ethylene glycol) hydrogel platform using a genetically engineered streptavidin linker. Linker incorporation is demonstrated by Western blot, and streptavidin functionality is confirmed by capturing biotinylated alkaline phosphatase (ALP). After optimizing bone morphogenetic protein 2 (BMP-2) biotinylation, streptavidin-modified hydrogels are able to bind and present bioactive BMP-2-biotin. Finally, with this immobilization scheme for BMP-2, the specific osteogenic differentiation of mesenchymal stem cells is demonstrated by inducing ALP expression in confined 3D areas. In future, this platform together with other affinity-based strategies will be useful for the local incorporation of various growth factors for engineering cell-responsive constructs.

  7. Efficient Numerical Modeling of 3D, Half-Space, Slow-Slip and Quasi-Dynamic Earthquake Ruptures

    NASA Astrophysics Data System (ADS)

    Bradley, A. M.; Segall, P.

    2011-12-01

    Motivated by the hypothesis that dilatancy plays a critical role in faulting in subduction zones, we are developing FDRA2 (Fault Dynamics with the Radiation-damping Approximation), a software package to simulate three-dimensional quasi-dynamic faulting that includes rate-state friction, thermal pressurization, and dilatancy (following Segall and Rice [1995]) in a finite-width shear zone. This work builds on the two-dimensional simulations performed by FDRA1 (Bradley and Segall [AGU 2010], Segall and Bradley [submitted]). These simulations show that at lower background effective normal stress (\\bar σ), slow slip events occur spontaneously, whereas at higher \\bar σ , slip is inertially limited. At intermediate \\bar σ , dynamic events are followed by quiescent periods and then long durations of repeating slow slip events. Models with depth-dependent properties produce sequences similar to those observed in Cascadia. Like FDRA1, FDRA2 solves partial differential equations in pressure and temperature on profiles normal to the fault. The diffusion equations are discretized in space using finite differences on a nonuniform mesh having greater density near the fault. The full system of equations is a semiexplicit index-1 differential algebraic equation (DAE) in slip, slip rate, state, fault zone porosity, pressure, and temperature. We integrate state, porosity, and slip explicitly; solve the momentum balance equation on the fault for slip rate; and integrate pressure and temperature implicitly. Adaptive time steps are limited by accuracy and the stability criterion governing explicit integration of hyperbolic, but not the more stringent one governing parabolic, PDE. To compute elasticity in a 3D half-space, FDRA2 compresses the large, dense matrix arising from the boundary element method using an H-matrix. The work to perform a matrix-vector product scales almost linearly, rather than quadratically, in the number of fault cells. A new technique to relate the error

  8. 3D P-Wave Velocity Structure of the Crust and Relocation of Earthquakes in 21 the Lushan Source Area

    NASA Astrophysics Data System (ADS)

    Yu, X.; Wang, X.; Zhang, W.

    2014-12-01

    The double difference seismic tomography method is applied to the absolute first arrival P wave arrival times and high quality relative P arrival times of the Lushan seismic sequence to determine the detailed crustal 3D P wave velocity structure and the hypocenter parameters in the Lushan seismic area. The results show that the Lushan mainshock locates at 30.28 N, 103.98 E, with the depth of 16.38 km. The leading edge of aftershock in the northeast of mainshock present a spade with a steep dip angle, the aftershocks' extended length is about 12 km. In the southwest of the Lushan mainshock, the leading edge of aftershock in low velocity zone slope gently, the aftershocks' extended length is about 23 km. The P wave velocity structure of the Lushan seismic area shows obviously lateral heterogeneity. The P wave velocity anomalies represent close relationship with topographic relief and geological structure. In Baoxing area the complex rocks correspond obvious high-velocity anomalies extending down to 15 km depth,while the Cenozoic rocks are correlated with low-velocity anomalies. Our high-resolution tomographic model not only displays the general features contained in the previous models, but also reveals some new features. An obvious high-velocity anomaly is visible in Daxing area. The high-velocity anomalies beneath Baoxing and Daxing connect each other in 10 km depth, which makes the contrast between high and low velocity anomalies more sharp. Above 20 km depth the velocity structure in southwest and northeast segment of the mainshock shows a big difference: low-velocity anomalies are dominated the southwest segment, while high-velocity anomalies rule the northeast segment. The Lushan mainshock locates at the leading edge of a low-velocity anomaly surrounded by the Baoxing and Daxing high-velocity anomalies. The Lushan aftershocks in southwest are distributed in low-velocity anomalies or the transition belt: the footwall represents low-velocity anomalies, while

  9. Action Enhances Acoustic Cues for 3-D Target Localization by Echolocating Bats

    PubMed Central

    Wohlgemuth, Melville J.

    2016-01-01

    Under natural conditions, animals encounter a barrage of sensory information from which they must select and interpret biologically relevant signals. Active sensing can facilitate this process by engaging motor systems in the sampling of sensory information. The echolocating bat serves as an excellent model to investigate the coupling between action and sensing because it adaptively controls both the acoustic signals used to probe the environment and movements to receive echoes at the auditory periphery. We report here that the echolocating bat controls the features of its sonar vocalizations in tandem with the positioning of the outer ears to maximize acoustic cues for target detection and localization. The bat’s adaptive control of sonar vocalizations and ear positioning occurs on a millisecond timescale to capture spatial information from arriving echoes, as well as on a longer timescale to track target movement. Our results demonstrate that purposeful control over sonar sound production and reception can serve to improve acoustic cues for localization tasks. This finding also highlights the general importance of movement to sensory processing across animal species. Finally, our discoveries point to important parallels between spatial perception by echolocation and vision. PMID:27608186

  10. STRUCTURE IN THE 3D GALAXY DISTRIBUTION. II. VOIDS AND WATERSHEDS OF LOCAL MAXIMA AND MINIMA

    SciTech Connect

    Way, M. J.; Gazis, P. R.; Scargle, Jeffrey D. E-mail: PGazis@sbcglobal.net

    2015-01-20

    The major uncertainties in studies of the multi-scale structure of the universe arise not from observational errors but from the variety of legitimate definitions and detection methods for individual structures. To facilitate the study of these methodological dependencies, we have carried out 12 different analyses defining structures in various ways. This has been done in a purely geometrical way by utilizing the HOP algorithm as a unique parameter-free method of assigning groups of galaxies to local density maxima or minima. From three density estimation techniques (smoothing kernels, Bayesian blocks, and self-organizing maps) applied to three data sets (the Sloan Digital Sky Survey Data Release 7, the Millennium simulation, and randomly distributed points) we tabulate information that can be used to construct catalogs of structures connected to local density maxima and minima. We also introduce a void finder that utilizes a method to assemble Delaunay tetrahedra into connected structures and characterizes regions empty of galaxies in the source catalog.

  11. Structure in the 3D Galaxy Distribution. II. Voids and Watersheds of Local Maxima and Minima

    NASA Astrophysics Data System (ADS)

    Way, M. J.; Gazis, P. R.; Scargle, Jeffrey D.

    2015-01-01

    The major uncertainties in studies of the multi-scale structure of the universe arise not from observational errors but from the variety of legitimate definitions and detection methods for individual structures. To facilitate the study of these methodological dependencies, we have carried out 12 different analyses defining structures in various ways. This has been done in a purely geometrical way by utilizing the HOP algorithm as a unique parameter-free method of assigning groups of galaxies to local density maxima or minima. From three density estimation techniques (smoothing kernels, Bayesian blocks, and self-organizing maps) applied to three data sets (the Sloan Digital Sky Survey Data Release 7, the Millennium simulation, and randomly distributed points) we tabulate information that can be used to construct catalogs of structures connected to local density maxima and minima. We also introduce a void finder that utilizes a method to assemble Delaunay tetrahedra into connected structures and characterizes regions empty of galaxies in the source catalog.

  12. Tools to Perform Local Dense 3D Reconstruction of Shallow Water Seabed.

    PubMed

    Avanthey, Loïca; Beaudoin, Laurent; Gademer, Antoine; Roux, Michel

    2016-01-01

    Tasks such as distinguishing or identifying individual objects of interest require the production of dense local clouds at the scale of these individual objects of interest. Due to the physical and dynamic properties of an underwater environment, the usual dense matching algorithms must be rethought in order to be adaptive. These properties also imply that the scene must be observed at close range. Classic robotized acquisition systems are oversized for local studies in shallow water while the systematic acquisition of data is not guaranteed with divers. We address these two major issues through a multidisciplinary approach. To efficiently acquire on-demand stereoscopic pairs using simple logistics in small areas of shallow water, we devised an agile light-weight dedicated system which is easy to reproduce. To densely match two views in a reliable way, we devised a reconstruction algorithm that automatically accounts for the dynamics, variability and light absorption of the underwater environment. Field experiments in the Mediterranean Sea were used to assess the results.

  13. Tools to Perform Local Dense 3D Reconstruction of Shallow Water Seabed ‡

    PubMed Central

    Avanthey, Loïca; Beaudoin, Laurent; Gademer, Antoine; Roux, Michel

    2016-01-01

    Tasks such as distinguishing or identifying individual objects of interest require the production of dense local clouds at the scale of these individual objects of interest. Due to the physical and dynamic properties of an underwater environment, the usual dense matching algorithms must be rethought in order to be adaptive. These properties also imply that the scene must be observed at close range. Classic robotized acquisition systems are oversized for local studies in shallow water while the systematic acquisition of data is not guaranteed with divers. We address these two major issues through a multidisciplinary approach. To efficiently acquire on-demand stereoscopic pairs using simple logistics in small areas of shallow water, we devised an agile light-weight dedicated system which is easy to reproduce. To densely match two views in a reliable way, we devised a reconstruction algorithm that automatically accounts for the dynamics, variability and light absorption of the underwater environment. Field experiments in the Mediterranean Sea were used to assess the results. PMID:27196913

  14. Tools to Perform Local Dense 3D Reconstruction of Shallow Water Seabed.

    PubMed

    Avanthey, Loïca; Beaudoin, Laurent; Gademer, Antoine; Roux, Michel

    2016-01-01

    Tasks such as distinguishing or identifying individual objects of interest require the production of dense local clouds at the scale of these individual objects of interest. Due to the physical and dynamic properties of an underwater environment, the usual dense matching algorithms must be rethought in order to be adaptive. These properties also imply that the scene must be observed at close range. Classic robotized acquisition systems are oversized for local studies in shallow water while the systematic acquisition of data is not guaranteed with divers. We address these two major issues through a multidisciplinary approach. To efficiently acquire on-demand stereoscopic pairs using simple logistics in small areas of shallow water, we devised an agile light-weight dedicated system which is easy to reproduce. To densely match two views in a reliable way, we devised a reconstruction algorithm that automatically accounts for the dynamics, variability and light absorption of the underwater environment. Field experiments in the Mediterranean Sea were used to assess the results. PMID:27196913

  15. Action Enhances Acoustic Cues for 3-D Target Localization by Echolocating Bats.

    PubMed

    Wohlgemuth, Melville J; Kothari, Ninad B; Moss, Cynthia F

    2016-09-01

    Under natural conditions, animals encounter a barrage of sensory information from which they must select and interpret biologically relevant signals. Active sensing can facilitate this process by engaging motor systems in the sampling of sensory information. The echolocating bat serves as an excellent model to investigate the coupling between action and sensing because it adaptively controls both the acoustic signals used to probe the environment and movements to receive echoes at the auditory periphery. We report here that the echolocating bat controls the features of its sonar vocalizations in tandem with the positioning of the outer ears to maximize acoustic cues for target detection and localization. The bat's adaptive control of sonar vocalizations and ear positioning occurs on a millisecond timescale to capture spatial information from arriving echoes, as well as on a longer timescale to track target movement. Our results demonstrate that purposeful control over sonar sound production and reception can serve to improve acoustic cues for localization tasks. This finding also highlights the general importance of movement to sensory processing across animal species. Finally, our discoveries point to important parallels between spatial perception by echolocation and vision.

  16. Action Enhances Acoustic Cues for 3-D Target Localization by Echolocating Bats.

    PubMed

    Wohlgemuth, Melville J; Kothari, Ninad B; Moss, Cynthia F

    2016-09-01

    Under natural conditions, animals encounter a barrage of sensory information from which they must select and interpret biologically relevant signals. Active sensing can facilitate this process by engaging motor systems in the sampling of sensory information. The echolocating bat serves as an excellent model to investigate the coupling between action and sensing because it adaptively controls both the acoustic signals used to probe the environment and movements to receive echoes at the auditory periphery. We report here that the echolocating bat controls the features of its sonar vocalizations in tandem with the positioning of the outer ears to maximize acoustic cues for target detection and localization. The bat's adaptive control of sonar vocalizations and ear positioning occurs on a millisecond timescale to capture spatial information from arriving echoes, as well as on a longer timescale to track target movement. Our results demonstrate that purposeful control over sonar sound production and reception can serve to improve acoustic cues for localization tasks. This finding also highlights the general importance of movement to sensory processing across animal species. Finally, our discoveries point to important parallels between spatial perception by echolocation and vision. PMID:27608186

  17. Automatic 3D Shape Severity Quantification and Localization for Deformational Plagiocephaly

    PubMed Central

    Atmosukarto, Indriyati; Shapiro, Linda G.; Cunningham, Michael L.; Speltz, Matthew

    2009-01-01

    Recent studies have shown an increase in the occurrence of deformational plagiocephaly and brachycephaly in children. This increase has coincided with the “Back to Sleep” campaign that was introduced to reduce the risk of Sudden Infant Death Syndrome (SIDS). However, there has yet to be an objective quantification of the degree of severity for these two conditions. Most diagnoses are done on subjective factors such as patient history and physician examination. The existence of an objective quantification would help research in areas of diagnosis and intervention measures, as well as provide a tool for finding correlation between the shape severity and cognitive outcome. This paper describes a new shape severity quantification and localization method for deformational plagiocephaly and brachycephaly. Our results show that there is a positive correlation between the new shape severity measure and the scores entered by a human expert. PMID:21103039

  18. Interactive 3D segmentation of the prostate in magnetic resonance images using shape and local appearance similarity analysis

    NASA Astrophysics Data System (ADS)

    Shahedi, Maysam; Fenster, Aaron; Cool, Derek W.; Romagnoli, Cesare; Ward, Aaron D.

    2013-03-01

    3D segmentation of the prostate in medical images is useful to prostate cancer diagnosis and therapy guidance, but is time-consuming to perform manually. Clinical translation of computer-assisted segmentation algorithms for this purpose requires a comprehensive and complementary set of evaluation metrics that are informative to the clinical end user. We have developed an interactive 3D prostate segmentation method for 1.5T and 3.0T T2-weighted magnetic resonance imaging (T2W MRI) acquired using an endorectal coil. We evaluated our method against manual segmentations of 36 3D images using complementary boundary-based (mean absolute distance; MAD), regional overlap (Dice similarity coefficient; DSC) and volume difference (ΔV) metrics. Our technique is based on inter-subject prostate shape and local boundary appearance similarity. In the training phase, we calculated a point distribution model (PDM) and a set of local mean intensity patches centered on the prostate border to capture shape and appearance variability. To segment an unseen image, we defined a set of rays - one corresponding to each of the mean intensity patches computed in training - emanating from the prostate centre. We used a radial-based search strategy and translated each mean intensity patch along its corresponding ray, selecting as a candidate the boundary point with the highest normalized cross correlation along each ray. These boundary points were then regularized using the PDM. For the whole gland, we measured a mean+/-std MAD of 2.5+/-0.7 mm, DSC of 80+/-4%, and ΔV of 1.1+/-8.8 cc. We also provided an anatomic breakdown of these metrics within the prostatic base, mid-gland, and apex.

  19. Characterization of global flow and local fluctuations in 3D SPH simulations of protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Arena, S. E.; Gonzalez, J.-F.

    2013-07-01

    A complete and detailed knowledge of the structure of the gaseous component in protoplanetary discs is essential to the study of dust evolution during the early phases of pre-planetesimal formation. The aim of this paper is to determine if three-dimensional accretion discs simulated by the smoothed particle hydrodynamics (SPH) method can reproduce the observational data now available and the expected turbulent nature of protoplanetary discs. The investigation is carried out by setting up a suite of diagnostic tools specifically designed to characterize both the global flow and the fluctuations of the gaseous disc. The main result concerns the role of the artificial viscosity implementation in the SPH method: in addition to the already known ability of SPH artificial viscosity to mimic a physical-like viscosity under specific conditions, we show how the same artificial viscosity prescription behaves like an implicit turbulence model. In fact, we identify a threshold for the parameters in the standard artificial viscosity above which SPH disc models present a cascade in the power spectrum of velocity fluctuations, turbulent diffusion and a mass accretion rate of the same order of magnitude as measured in observations. Furthermore, the turbulence properties observed locally in SPH disc models are accompanied by meridional circulation in the global flow of the gas, proving that the two mechanisms can coexist.

  20. New local potential useful for genome annotation and 3D modeling

    SciTech Connect

    Chandonia, John-Marc; Cohen, Fred E.

    2003-07-17

    A new potential energy function representing the conformational preferences of sequentially local regions of a protein backbone is presented. This potential is derived from secondary structure probabilities such as those produced by neural network-based prediction methods. The potential is applied to the problem of remote homolog identification, in combination with a distance dependent inter-residue potential and position-based scoring matrices. This fold recognition jury is implemented in a Java application called JThread. These methods are benchmarked on several test sets, including one released entirely after development and parameterization of JThread. In benchmark tests to identify known folds structurally similar (but not identical) to the native structure of a sequence, JThread performs significantly better than PSI-BLAST, with 10 percent more structures correctly identified as the most likely structural match in a fold library, and 20 percent more structures correctly narrowed down to a set of five possible candidates. JThread also significantly improves the average sequence alignment accuracy, from 53 percent to 62 percent of residues correctly aligned. Reliable fold assignments and alignments are identified, making the method useful for genome annotation. JThread is applied to predicted open reading frames (ORFs) from the genomes of Mycoplasma genitalium and Drosophila melanogaster, identifying 20 new structural annotations in the former and 801 in the latter.

  1. Estimation of aortic valve leaflets from 3D CT images using local shape dictionaries and linear coding

    NASA Astrophysics Data System (ADS)

    Liang, Liang; Martin, Caitlin; Wang, Qian; Sun, Wei; Duncan, James

    2016-03-01

    Aortic valve (AV) disease is a significant cause of morbidity and mortality. The preferred treatment modality for severe AV disease is surgical resection and replacement of the native valve with either a mechanical or tissue prosthetic. In order to develop effective and long-lasting treatment methods, computational analyses, e.g., structural finite element (FE) and computational fluid dynamic simulations, are very effective for studying valve biomechanics. These computational analyses are based on mesh models of the aortic valve, which are usually constructed from 3D CT images though many hours of manual annotation, and therefore an automatic valve shape reconstruction method is desired. In this paper, we present a method for estimating the aortic valve shape from 3D cardiac CT images, which is represented by triangle meshes. We propose a pipeline for aortic valve shape estimation which includes novel algorithms for building local shape dictionaries and for building landmark detectors and curve detectors using local shape dictionaries. The method is evaluated on real patient image dataset using a leave-one-out approach and achieves an average accuracy of 0.69 mm. The work will facilitate automatic patient-specific computational modeling of the aortic valve.

  2. A high-resolution 3D seismic velocity model of the 2010 Mw 8.8 Maule, Chile earthquake rupture zone using land & OBS networks

    NASA Astrophysics Data System (ADS)

    Hicks, S. P.; Rietbrock, A.; Ryder, I. M.; Miller, M.; Lee, C.

    2013-12-01

    Knowledge of seismic properties along a subduction megathrust can shed light on the composition and structure of rocks along the fault. By comparing seismic velocity structure with models of interseismic locking, co-seismic slip and afterslip, we can begin to understand how physical properties may affect fault dynamics throughout the subduction seismic cycle. The Maule earthquake, which hit the coast of central Chile in 2010, is the 6th largest earthquake ever recorded, rupturing a 500 x 80 km area of the Chilean megathrust. Published models demonstrate a complex bilateral rupture, with most co-seismic slip occurring to the north of the mainshock epicentre, although significant slip likely stopped short of the trench and the continental Moho. Here, we show a new high-resolution 3D velocity model (vp and vp/vs ratio) of the central Chilean margin Our velocity model is based on manually picked P- and S-wave arrival times from 670 aftershocks recorded by the International Maule Aftershock Deployment (IMAD) network. Seismic properties of the marine forearc are poorly understood in subduction zones, but by incorporating picks from two ocean-bottom seismometer (OBS) networks, we can resolve the velocity structure of the megathrust as far as the trench. In total, the catalogue used for the tomographic inversion yields a total of ~50,000 high quality P- and S-wave picks. We analyse the quality of our model by analysis of the resolution matrix and by testing characteristic models. The 3D velocity model shows the main structures associated within a subduction forearc: the marine forearc basin (vp < 6.0 km/s), continental mantle (vp > 7.5 km/s), and subducting oceanic crust (vp ~ 7.7 km/s). The plate interface is well defined by relocated aftershock seismicity. P-wave velocities along the megathrust range from 6.5 km/s beneath the marine forearc to 7.7 km/s at the intersection of the megathrust with the continental Moho. We infer several high vp anomalies within the South

  3. SU-D-9A-06: 3D Localization of Neurovascular Bundles Through MR-TRUS Registration in Prostate Radiotherapy

    SciTech Connect

    Yang, X; Rossi, P; Ogunleye, T; Jani, A; Curran, W; Liu, T

    2014-06-01

    Purpose: Erectile dysfunction (ED) is the most common complication of prostate-cancer radiotherapy (RT) and the major mechanism is radiation-induced neurovascular bundle (NVB) damage. However, the localization of the NVB remains challenging. This study's purpose is to accurately localize 3D NVB by integrating MR and transrectal ultrasound (TRUS) images through MR-TRUS fusion. Methods: T1 and T2-weighted MR prostate images were acquired using a Philips 1.5T MR scanner and a pelvic phase-array coil. The 3D TRUS images were captured with a clinical scanner and a 7.5 MHz biplane probe. The TRUS probe was attached to a stepper; the B-mode images were captured from the prostate base to apex at a 1-mm step and the Doppler images were acquired in a 5-mm step. The registration method modeled the prostate tissue as an elastic material, and jointly estimated the boundary condition (surface deformation) and the volumetric deformations under elastic constraint. This technique was validated with a clinical study of 7 patients undergoing RT treatment for prostate cancer. The accuracy of our approach was assessed through the locations of landmarks, as well as previous ultrasound Doppler images of patients. Results: MR-TRUS registration was successfully performed for all patients. The mean displacement of the landmarks between the post-registration MR and TRUS images was 1.37±0.42 mm, which demonstrated the precision of the registration based on the biomechanical model; and the NVB volume Dice Overlap Coefficient was 92.1±3.2%, which demonstrated the accuracy of the NVB localization. Conclusion: We have developed a novel approach to improve 3D NVB localization through MR-TRUS fusion for prostate RT, demonstrated its clinical feasibility, and validated its accuracy with ultrasound Doppler data. This technique could be a useful tool as we try to spare the NVB in prostate RT, monitor NBV response to RT, and potentially improve post-RT potency outcomes.

  4. Accurate quantification of local changes for carotid arteries in 3D ultrasound images using convex optimization-based deformable registration

    NASA Astrophysics Data System (ADS)

    Cheng, Jieyu; Qiu, Wu; Yuan, Jing; Fenster, Aaron; Chiu, Bernard

    2016-03-01

    Registration of longitudinally acquired 3D ultrasound (US) images plays an important role in monitoring and quantifying progression/regression of carotid atherosclerosis. We introduce an image-based non-rigid registration algorithm to align the baseline 3D carotid US with longitudinal images acquired over several follow-up time points. This algorithm minimizes the sum of absolute intensity differences (SAD) under a variational optical-flow perspective within a multi-scale optimization framework to capture local and global deformations. Outer wall and lumen were segmented manually on each image, and the performance of the registration algorithm was quantified by Dice similarity coefficient (DSC) and mean absolute distance (MAD) of the outer wall and lumen surfaces after registration. In this study, images for 5 subjects were registered initially by rigid registration, followed by the proposed algorithm. Mean DSC generated by the proposed algorithm was 79:3+/-3:8% for lumen and 85:9+/-4:0% for outer wall, compared to 73:9+/-3:4% and 84:7+/-3:2% generated by rigid registration. Mean MAD of 0:46+/-0:08mm and 0:52+/-0:13mm were generated for lumen and outer wall respectively by the proposed algorithm, compared to 0:55+/-0:08mm and 0:54+/-0:11mm generated by rigid registration. The mean registration time of our method per image pair was 143+/-23s.

  5. Neuronal nuclei localization in 3D using level set and watershed segmentation from laser scanning microscopy images

    NASA Astrophysics Data System (ADS)

    Zhu, Yingxuan; Olson, Eric; Subramanian, Arun; Feiglin, David; Varshney, Pramod K.; Krol, Andrzej

    2008-03-01

    Abnormalities of the number and location of cells are hallmarks of both developmental and degenerative neurological diseases. However, standard stereological methods are impractical for assigning each cell's nucleus position within a large volume of brain tissue. We propose an automated approach for segmentation and localization of the brain cell nuclei in laser scanning microscopy (LSM) embryonic mouse brain images. The nuclei in these images are first segmented by using the level set (LS) and watershed methods in each optical plane. The segmentation results are further refined by application of information from adjacent optical planes and prior knowledge of nuclear shape. Segmentation is then followed with an algorithm for 3D localization of the centroid of nucleus (CN). Each volume of tissue is thus represented by a collection of centroids leading to an approximate 10,000-fold reduction in the data set size, as compared to the original image series. Our method has been tested on LSM images obtained from an embryonic mouse brain, and compared to the segmentation and CN localization performed by an expert. The average Euclidian distance between locations of CNs obtained using our method and those obtained by an expert is 1.58+/-1.24 µm, a value well within the ~5 µm average radius of each nucleus. We conclude that our approach accurately segments and localizes CNs within cell dense embryonic tissue.

  6. Correction of depth-dependent aberrations in 3D single-molecule localization and super-resolution microscopy.

    PubMed

    McGorty, Ryan; Schnitzbauer, Joerg; Zhang, Wei; Huang, Bo

    2014-01-15

    Single-molecule switching based super-resolution microscopy techniques have been extended into three dimensions through various 3D single-molecule localization methods. However, the localization accuracy in z can be severely degraded by the presence of aberrations, particularly the spherical aberration introduced by the refractive index mismatch when imaging into an aqueous sample with an oil immersion objective. This aberration confines the imaging depth in most experiments to regions close to the coverslip. Here we show a method to obtain accurate, depth-dependent z calibrations by measuring the point spread function (PSF) at the coverslip surface, calculating the microscope pupil function through phase retrieval, and then computing the depth-dependent PSF with the addition of spherical aberrations. We demonstrate experimentally that this method can maintain z localization accuracy over a large range of imaging depths. Our super-resolution images of a mammalian cell nucleus acquired between 0 and 2.5 μm past the coverslip show that this method produces accurate z localizations even in the deepest focal plane.

  7. Full source tensor inversions of San Jacinto fault zone earthquakes using 3D Green's functions with the gCAP method

    NASA Astrophysics Data System (ADS)

    Ross, Z.; Ben-Zion, Y.; Zhu, L.; Graves, R. W.

    2015-12-01

    We perform a full source tensor inversion of several M > 4 earthquakes that occurred in the San Jacinto fault zone in southern California, with an emphasis on resolving signatures of volumetric source changes. A previous study on these events with Green's functions based on a 1D velocity model identified statistically significant explosive isotropic components (Ross et al. 2015). Here we use the SCEC 3D Community Velocity Model to derive Green's functions with source-receiver reciprocity and finite-difference calculations based on the code of Graves (1996). About 50 stations are used at epicentral distances of up to 55 km. The inversions are performed using the 'generalized Cut and Paste' method, which includes CLVD and isotropic components (Zhu and Ben-Zion 2013). The derived source tensors are compared to the results of the previous study based on the simplified 1D velocity model. The results are analyzed with bootstrap analysis to estimate uncertainties involved. Additional tests are performed using synthetic waveforms to study the effects of neglecting various features on the source inversions.

  8. 3D displacements maps of the L'Aquila earthquake by applying SISTEM method to GPS and ENVISAT and ALOS DInSAR data

    NASA Astrophysics Data System (ADS)

    Guglielmino, Francesco; Anzidei, Marco; Briole, Pierre; de Michele, Marcello; Elias, Panagiotis; Nunnari, Giuseppe; Puglisi, Giuseppe; Spata, Alessandro

    2010-05-01

    We present an application of the novel SISTEM (Simultaneous and Integrated Strain Tensor Estimation from geodetic and satellite deformation Measurements) approach [Guglielmino et al., 2009] to obtain a 3D estimation of the ground deformation pattern produced by the April 6, 2009, Mw 6.3 L'Aquila earthquake, the most destructive in the Abruzzo region since the huge 1703 earthquake [Boschi et al., 2000; Chiarabba et al., 2005]. The focal mechanism of the main shock is of normal faulting with NE-SW oriented T-axis [INGV, 2009]. Most of the aftershocks, located by the INGV seismic network, are in the depth range 5÷15 km, depicting a SW dipping fault plane [INGV, 2009]. Field observations [EMERGEO working group, 2009] have identified surface ground cracks with centimeter to decimeters throws over a wide belt running along the Paganica Fault. A closely spaced GPS (Global Positioning System) network was set up in this sector of the Apennines after 1999 [Anzidei et al., 2005] and more than 10 Continuous GPS (CGPS) stations have been operating in this region over the last years. On March 30 2008, INGV installed five GPS receivers on selected benchmarks of the Central Apennine Geodetic Network (CaGeoNet) bordering the L'Aquila basin in order to detect the eventual ground movements during the seismic sequence. These stations were crucial to resolve the near-field co-seismic deformation pattern properly, allowing direct observation of the details of co-seismic displacement related to the main shock. Thanks to the ESA Earth Watching project, which made Envisat data quickly available after their acquisition, we performed a DInSAR (Differential Interferometric Synthetic Aperture Radar) analysis of ascending and descending images sampling the date of the earthquake. In particular, we analyze the descending pair for the interval 27/04/2008 - 12/04/2009 (tbline = 350 days; Bperp = 44m) and the ascending pair for the interval 11/03/2009 - 15/04/2009 (tbline = 35 days; Bperp = 227m

  9. 3D displacements maps of the L'Aquila earthquake by applying SISTEM method to GPS and ENVISAT and ALOS DInSAR data

    NASA Astrophysics Data System (ADS)

    Guglielmino, Francesco; Anzidei, Marco; Briole, Pierre; de Michele, Marcello; Elias, Panagiotis; Nunnari, Giuseppe; Puglisi, Giuseppe; Spata, Alessandro

    2010-05-01

    We present an application of the novel SISTEM (Simultaneous and Integrated Strain Tensor Estimation from geodetic and satellite deformation Measurements) approach [Guglielmino et al., 2009] to obtain a 3D estimation of the ground deformation pattern produced by the April 6, 2009, Mw 6.3 L'Aquila earthquake, the most destructive in the Abruzzo region since the huge 1703 earthquake [Boschi et al., 2000; Chiarabba et al., 2005]. The focal mechanism of the main shock is of normal faulting with NE-SW oriented T-axis [INGV, 2009]. Most of the aftershocks, located by the INGV seismic network, are in the depth range 5÷15 km, depicting a SW dipping fault plane [INGV, 2009]. Field observations [EMERGEO working group, 2009] have identified surface ground cracks with centimeter to decimeters throws over a wide belt running along the Paganica Fault. A closely spaced GPS (Global Positioning System) network was set up in this sector of the Apennines after 1999 [Anzidei et al., 2005] and more than 10 Continuous GPS (CGPS) stations have been operating in this region over the last years. On March 30 2008, INGV installed five GPS receivers on selected benchmarks of the Central Apennine Geodetic Network (CaGeoNet) bordering the L'Aquila basin in order to detect the eventual ground movements during the seismic sequence. These stations were crucial to resolve the near-field co-seismic deformation pattern properly, allowing direct observation of the details of co-seismic displacement related to the main shock. Thanks to the ESA Earth Watching project, which made Envisat data quickly available after their acquisition, we performed a DInSAR (Differential Interferometric Synthetic Aperture Radar) analysis of ascending and descending images sampling the date of the earthquake. In particular, we analyze the descending pair for the interval 27/04/2008 - 12/04/2009 (tbline = 350 days; Bperp = 44m) and the ascending pair for the interval 11/03/2009 - 15/04/2009 (tbline = 35 days; Bperp = 227m

  10. About Non-Line-Of-Sight satellite detection and exclusion in a 3D map-aided localization algorithm.

    PubMed

    Peyraud, Sébastien; Bétaille, David; Renault, Stéphane; Ortiz, Miguel; Mougel, Florian; Meizel, Dominique; Peyret, François

    2013-01-01

    Reliable GPS positioning in city environment is a key issue: actually, signals are prone to multipath, with poor satellite geometry in many streets. Using a 3D urban model to forecast satellite visibility in urban contexts in order to improve GPS localization is the main topic of the present article. A virtual image processing that detects and eliminates possible faulty measurements is the core of this method. This image is generated using the position estimated a priori by the navigation process itself, under road constraints. This position is then updated by measurements to line-of-sight satellites only. This closed-loop real-time processing has shown very first promising full-scale test results.

  11. About Non-Line-Of-Sight Satellite Detection and Exclusion in a 3D Map-Aided Localization Algorithm

    PubMed Central

    Peyraud, Sébastien; Bétaille, David; Renault, Stéphane; Ortiz, Miguel; Mougel, Florian; Meizel, Dominique; Peyret, François

    2013-01-01

    Reliable GPS positioning in city environment is a key issue actually, signals are prone to multipath, with poor satellite geometry in many streets. Using a 3D urban model to forecast satellite visibility in urban contexts in order to improve GPS localization is the main topic of the present article. A virtual image processing that detects and eliminates possible faulty measurements is the core of this method. This image is generated using the position estimated a priori by the navigation process itself, under road constraints. This position is then updated by measurements to line-of-sight satellites only. This closed-loop real-time processing has shown very first promising full-scale test results. PMID:23344379

  12. Local existence and Gevrey regularity of 3-D Navier-Stokes equations with ℓp initial data

    NASA Astrophysics Data System (ADS)

    Biswas, Animikh

    We obtain local existence and Gevrey regularity of 3-D periodic Navier-Stokes equations in case the sequence of Fourier coefficients of the initial data is in ℓp (p<3/2). The ℓp norm of the sequence of Fourier coefficients of the solution and its analogous Gevrey norm remains bounded on a time interval whose length depends only on the size of the body force and the ℓp norm of the Fourier coefficient sequence of the initial data. The control on the Gevrey norm produces explicit estimates on the analyticity radius of the solution as in Foias and Temam (J. Funct. Anal. 87 (1989) 359-369). The results provide an alternate approach in estimating the space-analyticity radius of solutions to Navier-Stokes equations than the one presented by Grujić and Kukavica (J. Funct. Anal. 152 (1998) 447-466).

  13. Source inversion analysis of the 2011 Tohoku-Oki earthquake using Green's functions calculated from a 3-D heterogeneous structure model

    NASA Astrophysics Data System (ADS)

    Suzuki, W.; Aoi, S.; Maeda, T.; Sekiguchi, H.; Kunugi, T.

    2013-12-01

    Source inversion analysis using near-source strong-motion records with an assumption of 1-D underground structure models has revealed the overall characteristics of the rupture process of the 2011 Tohoku-Oki mega-thrust earthquake. This assumption for the structure model is acceptable because the seismic waves radiated during the Tohoku-Oki event were rich in the very-low-frequency contents lower than 0.05 Hz, which are less affected by the small-scale heterogeneous structure. The analysis using more reliable Green's functions even in the higher-frequency range considering complex structure of the subduction zone will illuminate more detailed rupture process in space and time and the transition of the frequency dependence of the wave radiation for the Tohoku-Oki earthquake. In this study, we calculate the near-source Green's functions using a 3-D underground structure model and perform the source inversion analysis using them. The 3-D underground structure model used in this study is the Japan Integrated Velocity Structure Model (Headquarters for Earthquake Research Promotion, 2012). A curved fault model on the Pacific plate interface is discretized into 287 subfaults at ~20 km interval. The Green's functions are calculated using GMS (Aoi et al., 2004), which is a simulation program package for the seismic wave field by the finite difference method using discontinuous grids (Aoi and Fujiwara, 1999). Computational region is 136-146.2E in longitude, 34-41.6N in latitude, and 0-100 km in depth. The horizontal and vertical grid intervals are 200 m and 100 m, respectively, for the shallower region and those for the deeper region are tripled. The number of the total grids is 2.1 billion. We derive 300-s records by calculating 36,000 steps with a time interval of 0.0083 second (120 Hz sampling). It takes nearly one hour to compute one case using 48 Graphics Processing Units (GPU) on TSUBAME2.0 supercomputer owned by Tokyo Institute of Technology. In total, 574 cases are

  14. An investigation of matching symmetry in the human pinnae with possible implications for 3D ear recognition and sound localization.

    PubMed

    Claes, Peter; Reijniers, Jonas; Shriver, Mark D; Snyders, Jonatan; Suetens, Paul; Nielandt, Joachim; De Tré, Guy; Vandermeulen, Dirk

    2015-01-01

    The human external ears, or pinnae, have an intriguing shape and, like most parts of the human external body, bilateral symmetry is observed between left and right. It is a well-known part of our auditory sensory system and mediates the spatial localization of incoming sounds in 3D from monaural cues due to its shape-specific filtering as well as binaural cues due to the paired bilateral locations of the left and right ears. Another less broadly appreciated aspect of the human pinna shape is its uniqueness from one individual to another, which is on the level of what is seen in fingerprints and facial features. This makes pinnae very useful in human identification, which is of great interest in biometrics and forensics. Anatomically, the type of symmetry observed is known as matching symmetry, with structures present as separate mirror copies on both sides of the body, and in this work we report the first such investigation of the human pinna in 3D. Within the framework of geometric morphometrics, we started by partitioning ear shape, represented in a spatially dense way, into patterns of symmetry and asymmetry, following a two-factor anova design. Matching symmetry was measured in all substructures of the pinna anatomy. However, substructures that 'stick out' such as the helix, tragus, and lobule also contained a fair degree of asymmetry. In contrast, substructures such as the conchae, antitragus, and antihelix expressed relatively stronger degrees of symmetric variation in relation to their levels of asymmetry. Insights gained from this study were injected into an accompanying identification setup exploiting matching symmetry where improved performance is demonstrated. Finally, possible implications of the results in the context of ear recognition as well as sound localization are discussed.

  15. Effects of Heterogeneities in Strength and Initial Shear Stress on Large Ruptures in a Fast Multi-cycle Earthquake Simulator (RSQSim) and DYNA3D

    NASA Astrophysics Data System (ADS)

    Stevens, J.; Richards-Dinger, K.; Dieterich, J.; Oglesby, D.

    2008-12-01

    RSQSim is a fast earthquake simulator that produces long (~ 106 event and ~ 104 year) synthetic seismicity catalogs in complex fault systems. It treats the interseismic and nucleation phases of the seismic cycle quasi-statically with an approximate version of rate- and state-dependent friction. The ruptures themselves are quasi-dynamic with slip speeds determined by shear impedance considerations. Validation of coseismic final slip (and therefore stress change) distributions is important for the generation of long catalogs because subsequent events in such simulators need to inherit the proper stress fields. Also, the heterogeneous evolved stress states from long simulations in complex fault systems (resulting from complex large ruptures, ongoing smaller seismicity, and stress interactions within the fault system) may be useful as more realistic inputs to dynamic rupture modelling. If the time evolution of ruptures in RSQSim is also realistic, they may be useful as kinematic sources for seismic hazard ground motion calculations. As part of an effort to validate the quasi-dynamic ruptures in RSQSim, we compare rupture propagation on a variable-strength planar fault in RSQSim to that on a similar fault in DYNA3D (a fully dynamic finite element model employing slip-weakening friction) for single, large, artificially nucleated ruptures. Previous work has shown that on homogeneous planar faults the RSQSim results agreed quantitatively very well with those of DYNA3D. For this comparison, our asperity model consists of multiple rectangular zones of increased normal stress of varying size, location, and amplitude. The heterogeneities produce complex ruptures - the rupture front tends to wrap itself around the barriers and create a burst of energy once it propagates across a barrier. Both codes allow rupture propagation over significant zones of negative stress drop in these asperity regions. Rupture durations, average rupture propagation speeds, and overall slip pattern

  16. Local earthquake tomography of the Tjörnes Fracture Zone

    NASA Astrophysics Data System (ADS)

    Riedel, C.; Dahm, T.; Ryggvason, A.

    2003-04-01

    The Tjörnes Fracture Zone (TFZ) separates the Northern Volcanic Zone of Iceland from Kolbeinsey Ridge. This separation occurs along three seismically active linemanets that are oriented in an angle of about 30° relative to the main direction of spreading within the rift zones. In between 1994 and 2001 a dataset of around 28000 events has been been gathered by the South Icelandic Lowland (SIL) network in the region. Events of local magnitude higher than 1.1 have been extracted from the dataset and were used for a local earthquake tomography of the area. In a first step a 1D minimum model was prepared using HYPOGRID, an in-house developed grid-search algorithm scanning the parameter space of 1D gridded P-velocity models for an absolute minimum time residual in a series of velocity model redefinitions and hypocenter relocationing. These location of the hypocenters were refined using the HypoDD algorithm of Waldhauser and Ellsworth. The results of 1D minimization serve as input to the 3D tomography algorithm which inverts for local deviations from this 1D model on a 3D grid by a typical expansion of the Geiger algorithm to station corrections as in JHD methods and on top vp and vs velocity model. A vp/vs ratio of 1.71 as best fit of the Wadati diagram slope was initially used. HYPOGRID developed at Hamburg University and the tomography algorithm developed at Uppsala University both use an Eikonal solver applying the Huygens principle. The station set-up in the north of Iceland allows only for a limited resolution in 3D structure, because the azimuthal gap for many events is too large to allow for a good depth confinement. However, a checkerboard test reveals good resolution in a depth around 7-12 km, coinciding with the results of a convergence test.

  17. LLNL-Earth3D

    SciTech Connect

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  18. The 3-D surface deformation, coseismic fault slip and after-slip of the 2010 Mw6.9 Yushu earthquake, Tibet, China

    NASA Astrophysics Data System (ADS)

    Zhang, Guohong; Shan, Xinjian; Feng, Guangcai

    2016-07-01

    Using SAR interferometry on C band Envisat descending track and L band ALOS ascending track SAR images, respectively, we firstly obtain two coseismic deformation fields and one postseismic deformation of the 2010 Yushu earthquake, Tibet, China. In the meanwhile, we also obtain the azimuthal coseismic deformation of the Yushu event by Multi Aperture Interferometry (MAI) technique. With the 3 components of one-dimensional coseismic InSAR measurements, we resolve the complete 3-dimensional deformation of the 2010 Yushu event, which shows conformity and complexity to left lateral slip mechanism. The horizontal deformation is basically consistent with a sinistral slip event; whereas the vertical displacement does show certain level of complexity, which we argue is indicative of local fault geometry variation. Based on the InSAR data and elastic dislocation assumption, we invert for coseismic fault slip and early after-slip of the Yushu event. Our inversion results show major coseismic left lateral strike slip with only minor thrust component. The after-slip model fills most of the slip gaps left by the coseismic fault slip and finds a complementary slip distribution to the coseismic fault slip, which is a good indicator that future earthquake potential on the Yushu segment has been significantly reduced.

  19. Orientation-weighted local Minkowski functionals in 3D for quantitative assessment of trabecular bone structure in the hip

    NASA Astrophysics Data System (ADS)

    Boehm, H. F.; Bitterling, H.; Weber, C.; Kuhn, V.; Eckstein, F.; Reiser, M.

    2007-03-01

    Fragility fractures or pathologic fractures of the hip, i.e. fractures with no apparent trauma, represent the worst complication in osteoporosis with a mortality close to 25% during the first post-traumatic year. Over 90% of hip fractures result from falls from standing height. A substantial number of femoral fractures are initiated in the femoral neck or the trochanteric regions which contain an internal architecture of trabeculae that are functionally highly specialized to withstand the complex pattern of external and internal forces associated with human gait. Prediction of the mechanical strength of bone tissue can be achieved by dedicated texture analysis of data obtained by high resolution imaging modalities, e.g. computed tomography (CT) or magnetic resonance tomography (MRI). Since in the case of the proximal femur, the connectivity, regional distribution and - most of all - the preferred orientation of individual trabeculae change considerably within narrow spatial limits, it seems most reasonable to evaluate the femoral bone structure on an orientation-weighted, local scale. In past studies, we could demonstrate the advantages of topological analysis of bone structure using the Minkowski Functionals in 3D on a global and on a local scale. The current study was designed to test the hypothesis that the prediction of the mechanical competence of the proximal femur by a new algorithm considering orientational changes of topological properties in the trabecular architecture is feasible and better suited than conventional methods based on the measurement of the mineral density of bone tissue (BMD).

  20. In vivo 3D analysis of systemic effects after local heavy-ion beam irradiation in an animal model

    PubMed Central

    Nagata, Kento; Hashimoto, Chika; Watanabe-Asaka, Tomomi; Itoh, Kazusa; Yasuda, Takako; Ohta, Kousaku; Oonishi, Hisako; Igarashi, Kento; Suzuki, Michiyo; Funayama, Tomoo; Kobayashi, Yasuhiko; Nishimaki, Toshiyuki; Katsumura, Takafumi; Oota, Hiroki; Ogawa, Motoyuki; Oga, Atsunori; Ikemoto, Kenzo; Itoh, Hiroshi; Kutsuna, Natsumaro; Oda, Shoji; Mitani, Hiroshi

    2016-01-01

    Radiotherapy is widely used in cancer treatment. In addition to inducing effects in the irradiated area, irradiation may induce effects on tissues close to and distant from the irradiated area. Japanese medaka, Oryzias latipes, is a small teleost fish and a model organism for evaluating the environmental effects of radiation. In this study, we applied low-energy carbon-ion (26.7 MeV/u) irradiation to adult medaka to a depth of approximately 2.2 mm from the body surface using an irradiation system at the National Institutes for Quantum and Radiological Science and Technology. We histologically evaluated the systemic alterations induced by irradiation using serial sections of the whole body, and conducted a heart rate analysis. Tissues from the irradiated side showed signs of serious injury that corresponded with the radiation dose. A 3D reconstruction analysis of the kidney sections showed reductions in the kidney volume and blood cell mass along the irradiated area, reflecting the precise localization of the injuries caused by carbon-beam irradiation. Capillary aneurysms were observed in the gill in both ventrally and dorsally irradiated fish, suggesting systemic irradiation effects. The present study provides an in vivo model for further investigation of the effects of irradiation beyond the locally irradiated area. PMID:27345436

  1. Automatic localization of target vertebrae in spine surgery using fast CT-to-fluoroscopy (3D-2D) image registration

    NASA Astrophysics Data System (ADS)

    Otake, Y.; Schafer, S.; Stayman, J. W.; Zbijewski, W.; Kleinszig, G.; Graumann, R.; Khanna, A. J.; Siewerdsen, J. H.

    2012-02-01

    Localization of target vertebrae is an essential step in minimally invasive spine surgery, with conventional methods relying on "level counting" - i.e., manual counting of vertebrae under fluoroscopy starting from readily identifiable anatomy (e.g., the sacrum). The approach requires an undesirable level of radiation, time, and is prone to counting errors due to the similar appearance of vertebrae in projection images; wrong-level surgery occurs in 1 of every ~3000 cases. This paper proposes a method to automatically localize target vertebrae in x-ray projections using 3D-2D registration between preoperative CT (in which vertebrae are preoperatively labeled) and intraoperative fluoroscopy. The registration uses an intensity-based approach with a gradient-based similarity metric and the CMA-ES algorithm for optimization. Digitally reconstructed radiographs (DRRs) and a robust similarity metric are computed on GPU to accelerate the process. Evaluation in clinical CT data included 5,000 PA and LAT projections randomly perturbed to simulate human variability in setup of mobile intraoperative C-arm. The method demonstrated 100% success for PA view (projection error: 0.42mm) and 99.8% success for LAT view (projection error: 0.37mm). Initial implementation on GPU provided automatic target localization within about 3 sec, with further improvement underway via multi-GPU. The ability to automatically label vertebrae in fluoroscopy promises to streamline surgical workflow, improve patient safety, and reduce wrong-site surgeries, especially in large patients for whom manual methods are time consuming and error prone.

  2. Earthquakes

    MedlinePlus

    An earthquake happens when two blocks of the earth suddenly slip past one another. Earthquakes strike suddenly, violently, and without warning at any time of the day or night. If an earthquake occurs in a populated area, it may cause ...

  3. Determination of Rectification Corrections for Semi Gantry Crane Rail Axes in the Local 3D Coordinate System

    NASA Astrophysics Data System (ADS)

    Filipiak, Daria; Kamiński, Waldemar

    2015-02-01

    Electronic tacheometers are currently the standard instruments used in geodetic work, including also geodetic engineering measurements. The main advantage connected with this equipment is among others high accuracy of the measurement and thus high accuracy of the final determinations represented for example by the points' coordinates. One of many applications of the tacheometers is the measurement of crane rail axes. This measurement is based on polar method and it allows to get the spatial coordinates of points in 3D local system. The standard technology of measurement of crane rail axes and development of its calculations' results is well-known and widely presented in the subject literature. At the same time new methods of observations results evaluation are developing. Some new proposals for the development of measurement results were already presented in (Kamiński, 2013). This paper is a generalisation of the paper quoted above. The authors developed the concept which was presented there by a proposal for determining rectification corrections for semi gantry crane rail axes. To carried out the task, the parametric method with conditions on parameters was used. Moreover the practical tests on simulated measurement results were conducted. The results obtained from alignment confirmed the theoretical assumptions. Despite the fact that analyses were carried out only on the simulated data, it is already possible to say that presented method for determination of rectification corrections for crane rail axes can be used for development of the observations from real measurement.

  4. High-resolution local earthquake tomography of the southern Dead Sea area

    NASA Astrophysics Data System (ADS)

    Braeuer, B.; Asch, Guenter; Hofstetter, R.; Haberland, Ch.; Jaser, D.; El-Kelani, R.; Weber, M.

    2012-12-01

    Local earthquake data from a dense temporary seismological network in the southern Dead Sea area have been analysed within the project DESIRE (Dead Sea Integrated Research Project). Local earthquakes are used for the first precise image of the distribution of the P-wave velocity and the vP/vS ratios. 65 stations registered 655 local events within 18 months of observation time. A subset of 530 well-locatable events with 26 730 P- and S-arrival times was used to calculate a tomographic model for the vP and vP/vS distribution. Since the study area is at first-order 2-D, a gradual approach was chosen, which compromised a 2-D inversion followed by a 3-D inversion. The sedimentary basin fill is clearly imaged through high vP/vS ratios and low vP. The basin fill shows an asymmetric structure with average depth of 7 km at the western boundary and depth between 10 and 14 km at the eastern boundary. This asymmetry is reflected by the vertical strike-slip eastern border fault, and the normal faulting at the western boundary, caused by the transtensional deformation within the last 5 Myr. Within the basin fill the Lisan salt diapir is imaged through low vP/vS ratios, reflecting its low fluid content. The extensions were determined to 12 km in E-W and 17 km in N-S direction while its depth is 5-6 km. The thickness of the pre-basin sediments below the basin fill cannot be derived from the tomography data—it is estimated to less than 3 km from former investigations. Below the basin, down to 18 km depth very low P-wave velocities and low vP/vS ratios are observed—most likely caused by fluids from the surrounding crust or the upper mantle.

  5. A microwave imaging-based 3D localization algorithm for an in-body RF source as in wireless capsule endoscopes.

    PubMed

    Chandra, Rohit; Balasingham, Ilangko

    2015-01-01

    A microwave imaging-based technique for 3D localization of an in-body RF source is presented. Such a technique can be useful for localization of an RF source as in wireless capsule endoscopes for positioning of any abnormality in the gastrointestinal tract. Microwave imaging is used to determine the dielectric properties (relative permittivity and conductivity) of the tissues that are required for a precise localization. A 2D microwave imaging algorithm is used for determination of the dielectric properties. Calibration method is developed for removing any error due to the used 2D imaging algorithm on the imaging data of a 3D body. The developed method is tested on a simple 3D heterogeneous phantom through finite-difference-time-domain simulations. Additive white Gaussian noise at the signal-to-noise ratio of 30 dB is added to the simulated data to make them more realistic. The developed calibration method improves the imaging and the localization accuracy. Statistics on the localization accuracy are generated by randomly placing the RF source at various positions inside the small intestine of the phantom. The cumulative distribution function of the localization error is plotted. In 90% of the cases, the localization accuracy was found within 1.67 cm, showing the capability of the developed method for 3D localization.

  6. Earthquakes.

    ERIC Educational Resources Information Center

    Walter, Edward J.

    1977-01-01

    Presents an analysis of the causes of earthquakes. Topics discussed include (1) geological and seismological factors that determine the effect of a particular earthquake on a given structure; (2) description of some large earthquakes such as the San Francisco quake; and (3) prediction of earthquakes. (HM)

  7. Earthquakes.

    ERIC Educational Resources Information Center

    Pakiser, Louis C.

    One of a series of general interest publications on science topics, the booklet provides those interested in earthquakes with an introduction to the subject. Following a section presenting an historical look at the world's major earthquakes, the booklet discusses earthquake-prone geographic areas, the nature and workings of earthquakes, earthquake…

  8. 3D Osteoarthritic Changes in TMJ Condylar Morphology Correlates with Specific Systemic and Local Biomarkers of Disease

    PubMed Central

    Cevidanes, Lucia H. S.; Walker, David; Schilling, Juan; Sugai, James; Giannobile, William; Paniagua, Beatriz; Benavides, Erika; Zhu, Hongtu; Marron, J. Steve; Jung, Bryan T.; Baranowski, David; Rhodes, Jesse; Nackley, Andrea; Lim, Pei Feng; Ludlow, John B.; Nguyen, Tung; Goncalves, Joao R.; Wolford, Larry; Kapila, Sunil; Styner, Martin

    2014-01-01

    Objective To assess 3D morphological variations and local and systemic biomarker profiles in subjects with a diagnosis of temporomandibular joint osteoarthritis (TMJ OA). Design Twenty-eight patients with long-term TMJ OA (39.9 ± 16 years), 12 patients at initial diagnosis of OA (47.4 ± 16.1 years), and 12 healthy controls (41.8 ± 12.2 years) were recruited. All patients were female and had cone beam CT scans taken. TMJ arthrocentesis and venipuncture were performed on 12 OA and 12 age-matched healthy controls. Serum and synovial fluid levels of 50 biomarkers of arthritic inflammation were quantified by protein microarrays. Shape Analysis MANCOVA tested statistical correlations between biomarker levels and variations in condylar morphology. Results Compared with healthy controls, the OA average condyle was significantly smaller in all dimensions except its anterior surface, with areas indicative of bone resorption along the articular surface, particularly in the lateral pole. Synovial fluid levels of ANG, GDF15, TIMP-1, CXCL16, MMP-3 and MMP-7 were significantly correlated with bone apposition of the condylar anterior surface. Serum levels of ENA-78, MMP-3, PAI-1, VE-Cadherin, VEGF, GM-CSF, TGFβb1, IFNγg, TNFαa, IL-1αa, and IL-6 were significantly correlated with flattening of the lateral pole. Expression levels of ANG were significantly correlated with the articular morphology in healthy controls. Conclusions Bone resorption at the articular surface, particularly at the lateral pole was statistically significant at initial diagnosis of TMJ OA. Synovial fluid levels of ANG, GDF15, TIMP-1, CXCL16, MMP-3 and MMP-7 were correlated with bone apposition. Serum levels of ENA-78, MMP-3, PAI-1, VE-Cadherin, VEGF, GM-CSF, TGFβ1, IFNγ, TNFα, IL-1α, and IL-6 were correlated with bone resorption. PMID:25278075

  9. Locating Local Earthquakes Using Single 3-Component Broadband Seismological Data

    NASA Astrophysics Data System (ADS)

    Das, S. B.; Mitra, S.

    2015-12-01

    We devised a technique to locate local earthquakes using single 3-component broadband seismograph and analyze the factors governing the accuracy of our result. The need for devising such a technique arises in regions of sparse seismic network. In state-of-the-art location algorithms, a minimum of three station recordings are required for obtaining well resolved locations. However, the problem arises when an event is recorded by less than three stations. This may be because of the following reasons: (a) down time of stations in a sparse network; (b) geographically isolated regions with limited logistic support to setup large network; (c) regions of insufficient economy for financing multi-station network and (d) poor signal-to-noise ratio for smaller events at most stations, except the one in its closest vicinity. Our technique provides a workable solution to the above problematic scenarios. However, our methodology is strongly dependent on the velocity model of the region. Our method uses a three step processing: (a) ascertain the back-azimuth of the event from the P-wave particle motion recorded on the horizontal components; (b) estimate the hypocentral distance using the S-P time; and (c) ascertain the emergent angle from the vertical and radial components. Once this is obtained, one can ray-trace through the 1-D velocity model to estimate the hypocentral location. We test our method on synthetic data, which produces results with 99% precision. With observed data, the accuracy of our results are very encouraging. The precision of our results depend on the signal-to-noise ratio (SNR) and choice of the right band-pass filter to isolate the P-wave signal. We used our method on minor aftershocks (3 < mb < 4) of the 2011 Sikkim earthquake using data from the Sikkim Himalayan network. Location of these events highlight the transverse strike-slip structure within the Indian plate, which was observed from source mechanism study of the mainshock and larger aftershocks.

  10. A Novel Multi-Purpose Matching Representation of Local 3D Surfaces: A Rotationally Invariant, Efficient, and Highly Discriminative Approach With an Adjustable Sensitivity.

    PubMed

    Al-Osaimi, Faisal R

    2016-02-01

    In this paper, a novel approach to local 3D surface matching representation suitable for a range of 3D vision applications is introduced. Local 3D surface patches around key points on the 3D surface are represented by 2D images such that the representing 2D images enjoy certain characteristics which positively impact the matching accuracy, robustness, and speed. First, the proposed representation is complete, in the sense, there is no information loss during their computation. Second, the 3DoF 2D representations are strictly invariant to all the 3DoF rotations. To optimally avail surface information, the sensitivity of the representations to surface information is adjustable. This also provides the proposed matching representation with the means to optimally adjust to a particular class of problems/applications or an acquisition technology. Each 2D matching representation is a sequence of adjustable integral kernels, where each kernel is efficiently computed from a triple of precise 3D curves (profiles) formed by intersecting three concentric spheres with the 3D surface. Robust techniques for sampling the profiles and establishing correspondences among them were devised. Based on the proposed matching representation, two techniques for the detection of key points were presented. The first is suitable for static images, while the second is suitable for 3D videos. The approach was tested on the face recognition grand challenge v2.0, the 3D twins expression challenge, and the Bosphorus data sets, and a superior face recognition performance was achieved. In addition, the proposed approach was used in object class recognition and tested on a Kinect data set. PMID:26513787

  11. A Novel Multi-Purpose Matching Representation of Local 3D Surfaces: A Rotationally Invariant, Efficient, and Highly Discriminative Approach With an Adjustable Sensitivity.

    PubMed

    Al-Osaimi, Faisal R

    2016-02-01

    In this paper, a novel approach to local 3D surface matching representation suitable for a range of 3D vision applications is introduced. Local 3D surface patches around key points on the 3D surface are represented by 2D images such that the representing 2D images enjoy certain characteristics which positively impact the matching accuracy, robustness, and speed. First, the proposed representation is complete, in the sense, there is no information loss during their computation. Second, the 3DoF 2D representations are strictly invariant to all the 3DoF rotations. To optimally avail surface information, the sensitivity of the representations to surface information is adjustable. This also provides the proposed matching representation with the means to optimally adjust to a particular class of problems/applications or an acquisition technology. Each 2D matching representation is a sequence of adjustable integral kernels, where each kernel is efficiently computed from a triple of precise 3D curves (profiles) formed by intersecting three concentric spheres with the 3D surface. Robust techniques for sampling the profiles and establishing correspondences among them were devised. Based on the proposed matching representation, two techniques for the detection of key points were presented. The first is suitable for static images, while the second is suitable for 3D videos. The approach was tested on the face recognition grand challenge v2.0, the 3D twins expression challenge, and the Bosphorus data sets, and a superior face recognition performance was achieved. In addition, the proposed approach was used in object class recognition and tested on a Kinect data set.

  12. LOTOS code for local earthquake tomographic inversion: benchmarks for testing tomographic algorithms

    NASA Astrophysics Data System (ADS)

    Koulakov, I. Yu.

    2009-04-01

    We present the LOTOS-07 code for performing local earthquake tomographic (LET) inversion, which is freely available at www.ivan-art.com/science/LOTOS_07. The initial data for the code are the arrival times from local seismicity and coordinates of the stations. It does not require any information about the sources. The calculations start from absolute location of sources and estimates of an optimal 1D velocity model. Then the sources are relocated simultaneously with the 3D velocity distribution during iterative coupled tomographic inversions. The code allows results to be compared based on node or cell parameterizations. Both Vp-Vs and Vp - Vp/Vs inversion schemes can be performed by the LOTOS code. The working ability of the LOTOS code is illustrated with different real and synthetic datasets. Some of the tests are used to disprove existing stereotypes of LET schemes such as using trade-off curves for evaluation of damping parameters and GAP criterion for selection of events. We also present a series of synthetic datasets with unknown sources and velocity models (www.ivan-art.com/science/benchmark) that can be used as blind benchmarks for testing different tomographic algorithms. We encourage other users of tomography algorithms to join the program on creating benchmarks that can be used to check existing codes. The program codes and testing datasets will be freely distributed during the poster presentation.

  13. TIPS Placement in Swine, Guided by Electromagnetic Real-Time Needle Tip Localization Displayed on Previously Acquired 3-D CT

    SciTech Connect

    Solomon, Stephen B.; Magee, Carolyn; Acker, David E.; Venbrux, Anthony C.

    1999-09-15

    Purpose: To determine the feasibility of guiding a transjugular intrahepatic portosystemic shunt (TIPS) procedure with an electromagnetic real-time needle tip position sensor coupled to previously acquired 3-dimensional (3-D) computed tomography (CT) images. Methods: An electromagnetic position sensor was placed at the tip of a Colapinto needle. The real-time position and orientation of the needle tip was then displayed on previously acquired 3-D CT images which were registered with the five swine. Portal vein puncture was then attempted in all animals. Results: The computer calculated accuracy of the position sensor was on average 3 mm. Four of five portal vein punctures were successful. In the successes, only one or two attempts were necessary and success was achieved in minutes. Conclusion: A real-time position sensor attached to the tip of a Colapinto needle and coupled to previously acquired 3-D CT images may potentially aid in entering the portal vein during the TIPS procedure.

  14. 3D Elastic Seismic Wave Propagation Code

    1998-09-23

    E3D is capable of simulating seismic wave propagation in a 3D heterogeneous earth. Seismic waves are initiated by earthquake, explosive, and/or other sources. These waves propagate through a 3D geologic model, and are simulated as synthetic seismograms or other graphical output.

  15. About some stereotypes in Local Earthquake Tomography (LET)

    NASA Astrophysics Data System (ADS)

    Koulakov, I. Yu.

    2009-04-01

    Local earthquake tomography (LET) scheme, when both stations and events are located inside the study area, aims at simultaneous determination of P and S velocity structure and source parameters. This is one of the most complicated situations among most of other tomographic schemes as it presumes solution of coupled non-linear problem for velocity structure and source locations. There are several LET codes which are used in practice, and some of them are considered today as well established tools. However, in the up-to-day papers such codes are often presented without prompt description and testing, with only referring to previous "classical" works. Here we consider several stereotypes and myths which pass from one LET study to another, such as: (1) GAP criterion for data selection; (2) using coarse parameterization grids; (3) using the trade-off curves to evaluate the damping parameters; (4) some typical errors in synthetic modeling; (5) preferential using Vp and Vp/Vs inversion scheme; (6) resolution estimates based on some formal parameters; (7) ways for estimating noise effect. We suppose that some of these issues are critical and may appear injurious for the results of tomographic inversion. The purpose of this overview is to attract attention of developers and users of the LET codes to these problems, to discuss them and to take them into account in the new LET studies.

  16. Integrated WiFi/PDR/Smartphone Using an Unscented Kalman Filter Algorithm for 3D Indoor Localization.

    PubMed

    Chen, Guoliang; Meng, Xiaolin; Wang, Yunjia; Zhang, Yanzhe; Tian, Peng; Yang, Huachao

    2015-01-01

    Because of the high calculation cost and poor performance of a traditional planar map when dealing with complicated indoor geographic information, a WiFi fingerprint indoor positioning system cannot be widely employed on a smartphone platform. By making full use of the hardware sensors embedded in the smartphone, this study proposes an integrated approach to a three-dimensional (3D) indoor positioning system. First, an improved K-means clustering method is adopted to reduce the fingerprint database retrieval time and enhance positioning efficiency. Next, with the mobile phone's acceleration sensor, a new step counting method based on auto-correlation analysis is proposed to achieve cell phone inertial navigation positioning. Furthermore, the integration of WiFi positioning with Pedestrian Dead Reckoning (PDR) obtains higher positional accuracy with the help of the Unscented Kalman Filter algorithm. Finally, a hybrid 3D positioning system based on Unity 3D, which can carry out real-time positioning for targets in 3D scenes, is designed for the fluent operation of mobile terminals. PMID:26404314

  17. Integrated WiFi/PDR/Smartphone Using an Unscented Kalman Filter Algorithm for 3D Indoor Localization

    PubMed Central

    Chen, Guoliang; Meng, Xiaolin; Wang, Yunjia; Zhang, Yanzhe; Tian, Peng; Yang, Huachao

    2015-01-01

    Because of the high calculation cost and poor performance of a traditional planar map when dealing with complicated indoor geographic information, a WiFi fingerprint indoor positioning system cannot be widely employed on a smartphone platform. By making full use of the hardware sensors embedded in the smartphone, this study proposes an integrated approach to a three-dimensional (3D) indoor positioning system. First, an improved K-means clustering method is adopted to reduce the fingerprint database retrieval time and enhance positioning efficiency. Next, with the mobile phone’s acceleration sensor, a new step counting method based on auto-correlation analysis is proposed to achieve cell phone inertial navigation positioning. Furthermore, the integration of WiFi positioning with Pedestrian Dead Reckoning (PDR) obtains higher positional accuracy with the help of the Unscented Kalman Filter algorithm. Finally, a hybrid 3D positioning system based on Unity 3D, which can carry out real-time positioning for targets in 3D scenes, is designed for the fluent operation of mobile terminals. PMID:26404314

  18. Integrated WiFi/PDR/Smartphone Using an Unscented Kalman Filter Algorithm for 3D Indoor Localization.

    PubMed

    Chen, Guoliang; Meng, Xiaolin; Wang, Yunjia; Zhang, Yanzhe; Tian, Peng; Yang, Huachao

    2015-09-23

    Because of the high calculation cost and poor performance of a traditional planar map when dealing with complicated indoor geographic information, a WiFi fingerprint indoor positioning system cannot be widely employed on a smartphone platform. By making full use of the hardware sensors embedded in the smartphone, this study proposes an integrated approach to a three-dimensional (3D) indoor positioning system. First, an improved K-means clustering method is adopted to reduce the fingerprint database retrieval time and enhance positioning efficiency. Next, with the mobile phone's acceleration sensor, a new step counting method based on auto-correlation analysis is proposed to achieve cell phone inertial navigation positioning. Furthermore, the integration of WiFi positioning with Pedestrian Dead Reckoning (PDR) obtains higher positional accuracy with the help of the Unscented Kalman Filter algorithm. Finally, a hybrid 3D positioning system based on Unity 3D, which can carry out real-time positioning for targets in 3D scenes, is designed for the fluent operation of mobile terminals.

  19. Earthquakes

    ERIC Educational Resources Information Center

    Roper, Paul J.; Roper, Jere Gerard

    1974-01-01

    Describes the causes and effects of earthquakes, defines the meaning of magnitude (measured on the Richter Magnitude Scale) and intensity (measured on a modified Mercalli Intensity Scale) and discusses earthquake prediction and control. (JR)

  20. 3D non-rigid registration using surface and local salient features for transrectal ultrasound image-guided prostate biopsy

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Akbari, Hamed; Halig, Luma; Fei, Baowei

    2011-03-01

    We present a 3D non-rigid registration algorithm for the potential use in combining PET/CT and transrectal ultrasound (TRUS) images for targeted prostate biopsy. Our registration is a hybrid approach that simultaneously optimizes the similarities from point-based registration and volume matching methods. The 3D registration is obtained by minimizing the distances of corresponding points at the surface and within the prostate and by maximizing the overlap ratio of the bladder neck on both images. The hybrid approach not only capture deformation at the prostate surface and internal landmarks but also the deformation at the bladder neck regions. The registration uses a soft assignment and deterministic annealing process. The correspondences are iteratively established in a fuzzy-to-deterministic approach. B-splines are used to generate a smooth non-rigid spatial transformation. In this study, we tested our registration with pre- and postbiopsy TRUS images of the same patients. Registration accuracy is evaluated using manual defined anatomic landmarks, i.e. calcification. The root-mean-squared (RMS) of the difference image between the reference and floating images was decreased by 62.6+/-9.1% after registration. The mean target registration error (TRE) was 0.88+/-0.16 mm, i.e. less than 3 voxels with a voxel size of 0.38×0.38×0.38 mm3 for all five patients. The experimental results demonstrate the robustness and accuracy of the 3D non-rigid registration algorithm.

  1. Martin Marietta Energy Systems, Inc. comprehensive earthquake management plan: Local Emergency Squads training manual

    SciTech Connect

    Not Available

    1990-01-01

    The training objectives are: Describe the Local Emergency Squad's goals and responsibilities during the damage assessment process and relate its importance to the protection and recovery of plant personnel following an earthquake.

  2. QUANTIFYING UNCERTAINTIES IN GROUND MOTION SIMULATIONS FOR SCENARIO EARTHQUAKES ON THE HAYWARD-RODGERS CREEK FAULT SYSTEM USING THE USGS 3D VELOCITY MODEL AND REALISTIC PSEUDODYNAMIC RUPTURE MODELS

    SciTech Connect

    Rodgers, A; Xie, X

    2008-01-09

    This project seeks to compute ground motions for large (M>6.5) scenario earthquakes on the Hayward Fault using realistic pseudodynamic ruptures, the USGS three-dimensional (3D) velocity model and anelastic finite difference simulations on parallel computers. We will attempt to bound ground motions by performing simulations with suites of stochastic rupture models for a given scenario on a given fault segment. The outcome of this effort will provide the average, spread and range of ground motions that can be expected from likely large earthquake scenarios. The resulting ground motions will be based on first-principles calculations and include the effects of slip heterogeneity, fault geometry and directivity, however, they will be band-limited to relatively low-frequency (< 1 Hz).

  3. Accuracy of x-ray image-based 3D localization from two C-arm views: a comparison between an ideal system and a real device

    NASA Astrophysics Data System (ADS)

    Brost, Alexander; Strobel, Norbert; Yatziv, Liron; Gilson, Wesley; Meyer, Bernhard; Hornegger, Joachim; Lewin, Jonathan; Wacker, Frank

    2009-02-01

    arm X-ray imaging devices are commonly used for minimally invasive cardiovascular or other interventional procedures. Calibrated state-of-the-art systems can, however, not only be used for 2D imaging but also for three-dimensional reconstruction either using tomographic techniques or even stereotactic approaches. To evaluate the accuracy of X-ray object localization from two views, a simulation study assuming an ideal imaging geometry was carried out first. This was backed up with a phantom experiment involving a real C-arm angiography system. Both studies were based on a phantom comprising five point objects. These point objects were projected onto a flat-panel detector under different C-arm view positions. The resulting 2D positions were perturbed by adding Gaussian noise to simulate 2D point localization errors. In the next step, 3D point positions were triangulated from two views. A 3D error was computed by taking differences between the reconstructed 3D positions using the perturbed 2D positions and the initial 3D positions of the five points. This experiment was repeated for various C-arm angulations involving angular differences ranging from 15° to 165°. The smallest 3D reconstruction error was achieved, as expected, by views that were 90° degrees apart. In this case, the simulation study yielded a 3D error of 0.82 mm +/- 0.24 mm (mean +/- standard deviation) for 2D noise with a standard deviation of 1.232 mm (4 detector pixels). The experimental result for this view configuration obtained on an AXIOM Artis C-arm (Siemens AG, Healthcare Sector, Forchheim, Germany) system was 0.98 mm +/- 0.29 mm, respectively. These results show that state-of-the-art C-arm systems can localize instruments with millimeter accuracy, and that they can accomplish this almost as well as an idealized theoretical counterpart. High stereotactic localization accuracy, good patient access, and CT-like 3D imaging capabilities render state-of-the-art C-arm systems ideal devices for X

  4. Intensity-modulated radiotherapy, not 3D conformal, is the preferred technique for treating locally advanced lung cancer

    PubMed Central

    Chang, Joe Y.

    2015-01-01

    When used to treat lung cancer, intensity-modulated radiotherapy (IMRT) can deliver higher dose to the targets and spare more critical organs in lung cancer than can 3D conformal radiotherapy (3DCRT). However, tumor-motion management and optimized radiotherapy planning based on four-dimensional computed tomography (4D CT) scanning are crucial to maximize the benefit of IMRT and to eliminate or minimize potential uncertainties. This article summarizes these strategies and reviews published findings supporting the safety and efficacy of IMRT for lung cancer. PMID:25771415

  5. A New FE Modeling Method for Isothermal Local Loading Process of Large-scale Complex Titanium Alloy Components Based on DEFORM-3D

    SciTech Connect

    Zhang Dawei; Yang He; Sun Zhichao; Fan Xiaoguang

    2010-06-15

    Isothermal local loading process provides a new way to form large-scale complex titanium alloy components. The forming process is characterized by an extreme size (large scale in global and compared small size in regional), multi-parameter effects, and complicated loading path. To establish a reasonable finite element model is one of the key problems urgently to be solved in the research and development of isothermal local loading forming process of large-scale complex titanium alloy components. In this paper, a new finite element model of the isothermal local loading process is developed under the DEFORM-3D environment based on the solution of some key techniques. The modeling method has the following features: (1) different meshing techniques are used in different loading areas and the number of meshed elements is determined according to the deformation characteristic in different local loading steps in order to improve computational efficiency; (2) the accurate magnitude of the friction factor under titanium alloy hot forming (isothermal forming) condition is adopted instead of the typical value for lubricated hot forming processes; (3) different FEM solvers are chosen at different stages according to the loading characteristic and the contact state; (4) in contrast to the local component model, a full 3D component is modeled to simulate the process. The 3D-FE model is validated by experimental data of a large-scale bulkhead forming under isothermal local loading. The model can describe the quantitative relationships between the forming conditions and the forming results. The results of the present study may provide a basis for studying the local deformation mechanism, selecting the reasonable parameters, optimizing the die design and the process control in isothermal local loading process of large-scale complex titanium alloy components.

  6. A New FE Modeling Method for Isothermal Local Loading Process of Large-scale Complex Titanium Alloy Components Based on DEFORM-3D

    NASA Astrophysics Data System (ADS)

    Zhang, Dawei; Yang, He; Sun, Zhichao; Fan, Xiaoguang

    2010-06-01

    Isothermal local loading process provides a new way to form large-scale complex titanium alloy components. The forming process is characterized by an extreme size (large scale in global and compared small size in regional), multi-parameter effects, and complicated loading path. To establish a reasonable finite element model is one of the key problems urgently to be solved in the research and development of isothermal local loading forming process of large-scale complex titanium alloy components. In this paper, a new finite element model of the isothermal local loading process is developed under the DEFORM-3D environment based on the solution of some key techniques. The modeling method has the following features: (1) different meshing techniques are used in different loading areas and the number of meshed elements is determined according to the deformation characteristic in different local loading steps in order to improve computational efficiency; (2) the accurate magnitude of the friction factor under titanium alloy hot forming (isothermal forming) condition is adopted instead of the typical value for lubricated hot forming processes; (3) different FEM solvers are chosen at different stages according to the loading characteristic and the contact state; (4) in contrast to the local component model, a full 3D component is modeled to simulate the process. The 3D-FE model is validated by experimental data of a large-scale bulkhead forming under isothermal local loading. The model can describe the quantitative relationships between the forming conditions and the forming results. The results of the present study may provide a basis for studying the local deformation mechanism, selecting the reasonable parameters, optimizing the die design and the process control in isothermal local loading process of large-scale complex titanium alloy components.

  7. Faulting of local earthquakes in the Valley of Mexico Basin

    NASA Astrophysics Data System (ADS)

    Bello, D. I.; Quintanar, L.; Jimenez, Z.

    2012-12-01

    In this work we determine focal mechanisms and source parameters of relevant earthquakes (M > 2 occurred in the Valley of Mexico Basin during the past ten years. Data delineates four seismic zones: the first is located north of the Basin, the second in the Chichinautzin mountains range, the third in the Eastern part of Basin and the fourth in the area surrounding the volcano Popocatepetl; here earthquakes are associated with volcanic activity. Source mechanisms were obtained using a method of waveform modeling and joint inversion of polarities and amplitudes of P and S phases. Our results show mechanisms mainly of normal type, consistent with the faulting found across the Trans Mexican volcanic belt. Likewise, from the spectral analysis of signals, we observe an overestimation of the magnitude reported by the Mexican Seismological Service for the earthquakes analyzed. During July 2012, there was an earthquake swarm in the eastern part of Valley of Mexico damaging some constructions in the epicentral area. Our preliminary analysis indicates that most earthquakes of the swarm occurred at shallow depth (<1 km), which could be correlated with the surface cracks observed in the zone. The seismicity, as well the subsidence and faults in the area, is a factor that contributes significantly to increase seismic hazard in the area and should be considered by civil authorities.

  8. Sliding slice: A novel approach for high accuracy and automatic 3D localization of seeds from CT scans

    SciTech Connect

    Tubic, Dragan; Beaulieu, Luc

    2005-01-01

    We present a conceptually novel principle for 3D reconstruction of prostate seed implants. Unlike existing methods for implant reconstruction, the proposed algorithm uses raw CT data (sinograms) instead of reconstructed CT slices. Using raw CT data solves several inevitable problems related to the reconstruction from CT slices. First, the sinograms are not affected by reconstruction artifacts in the presence of metallic objects and seeds in the patient body. Second, the scanning axis is not undersampled as in the case of CT slices; as a matter of fact the scanning axis is the most densely sampled and each seed is typically represented by several hundred samples. Moreover, the shape of a single seed in a sinogram can be modeled exactly, thus facilitating the detection. All this allows very accurate 3D reconstruction of both position and the orientation of the seeds. Preliminary results indicate that the seed position can be estimated with 0.15 mm accuracy (average), while the orientation estimate accuracy is within 3 deg. on average. Although the main contribution of the paper is to present a new principle of reconstruction, a preliminary implementation is also presented as a proof of concept. The implemented algorithm has been tested on a phantom and the obtained results are presented to validate the proposed approach.

  9. Segmentation of heterogeneous or small FDG PET positive tissue based on a 3D-locally adaptive random walk algorithm.

    PubMed

    Onoma, D P; Ruan, S; Thureau, S; Nkhali, L; Modzelewski, R; Monnehan, G A; Vera, P; Gardin, I

    2014-12-01

    A segmentation algorithm based on the random walk (RW) method, called 3D-LARW, has been developed to delineate small tumors or tumors with a heterogeneous distribution of FDG on PET images. Based on the original algorithm of RW [1], we propose an improved approach using new parameters depending on the Euclidean distance between two adjacent voxels instead of a fixed one and integrating probability densities of labels into the system of linear equations used in the RW. These improvements were evaluated and compared with the original RW method, a thresholding with a fixed value (40% of the maximum in the lesion), an adaptive thresholding algorithm on uniform spheres filled with FDG and FLAB method, on simulated heterogeneous spheres and on clinical data (14 patients). On these three different data, 3D-LARW has shown better segmentation results than the original RW algorithm and the three other methods. As expected, these improvements are more pronounced for the segmentation of small or tumors having heterogeneous FDG uptake.

  10. A comparison of needle tip localization accuracy using 2D and 3D trans-rectal ultrasound for high-dose-rate prostate cancer brachytherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Hrinivich, W. Thomas; Hoover, Douglas A.; Surry, Kathleen; Edirisinghe, Chandima; Montreuil, Jacques; D'Souza, David; Fenster, Aaron; Wong, Eugene

    2016-03-01

    Background: High-dose-rate brachytherapy (HDR-BT) is a prostate cancer treatment option involving the insertion of hollow needles into the gland through the perineum to deliver a radioactive source. Conventional needle imaging involves indexing a trans-rectal ultrasound (TRUS) probe in the superior/inferior (S/I) direction, using the axial transducer to produce an image set for organ segmentation. These images have limited resolution in the needle insertion direction (S/I), so the sagittal transducer is used to identify needle tips, requiring a manual registration with the axial view. This registration introduces a source of uncertainty in the final segmentations and subsequent treatment plan. Our lab has developed a device enabling 3D-TRUS guided insertions with high S/I spatial resolution, eliminating the need to align axial and sagittal views. Purpose: To compare HDR-BT needle tip localization accuracy between 2D and 3D-TRUS. Methods: 5 prostate cancer patients underwent conventional 2D TRUS guided HDR-BT, during which 3D images were also acquired for post-operative registration and segmentation. Needle end-length measurements were taken, providing a gold standard for insertion depths. Results: 73 needles were analyzed from all 5 patients. Needle tip position differences between imaging techniques was found to be largest in the S/I direction with mean+/-SD of -2.5+/-4.0 mm. End-length measurements indicated that 3D TRUS provided statistically significantly lower mean+/-SD insertion depth error of -0.2+/-3.4 mm versus 2.3+/-3.7 mm with 2D guidance (p < .001). Conclusions: 3D TRUS may provide more accurate HDR-BT needle localization than conventional 2D TRUS guidance for the majority of HDR-BT needles.

  11. From local earthquakes tomography to Moho topography beneath the Western Alps

    NASA Astrophysics Data System (ADS)

    Potin, Bertrand; Valette, Bernard; Thouvenot, François; Monteiller, Vadim

    2015-04-01

    The Western Alps are the result of the collision between the European margin and the Apulian margin, which started about 35 Ma ago. Nowadays, the lithosphere beneath the Western Alps consists of the subduction of the European plate underneath the Apulian plate. Such geometry implies a complex Moho discontinuity. Over the past 25 years, several dense seismic networks settled in France, Italy and Switzerland have permitted to locate more than 45,000 local earthquakes. In this study, we used 335 stations spread over a 200,000 km2 area, and about 35,000 events that have been located with at least 5 stations and 7 P and S-waves picks. The resulting dataset is formed of more than 820,000 data. Most of the Western Alps earthquakes occurred within the first 10 km beneath surface, nevertheless a large part of P and S-waves are refracted waves on the Moho discontinuity. In order to build up the Moho topography of the western Alps, we used at first this data set to perform a crust and upper mantle tomography based on travel-times analysis. Our model consists of a set of V P and V P/V S values given at each node of a three-dimensional, regularly spaced grid, which constitutes the inversion grid. Transition between crust and mantle is modeled by a continuous change in velocity, as we do not introduce any a priori information on the Moho interface. Earthquake locations and site-effect residuals at each station are also determined in the process. The forward computation of travel times in the 3D model is performed by integrating slowness along the rays, which are determined by the Podvin-Lecomte algorithm (basically a finite difference resolution of eikonal equation). Inversion is carried out using a non-linear least-squares approach based on a stochastic description of data and model. The smoothing and damping parameters are adjusted by means of L-curves analysis. The Moho discontinuity is obtained by matching an isovelocity surface of this tomography model with information on

  12. Highly-accelerated quantitative 2D and 3D localized spectroscopy with linear algebraic modeling (SLAM) and sensitivity encoding

    PubMed Central

    Zhang, Yi; Gabr, Refaat E.; Zhou, Jinyuan; Weiss, Robert G.; Bottomley, Paul A.

    2013-01-01

    Noninvasive magnetic resonance spectroscopy (MRS) with chemical shift imaging (CSI) provides valuable metabolic information for research and clinical studies, but is often limited by long scan times. Recently, spectroscopy with linear algebraic modeling (SLAM) was shown to provide compartment-averaged spectra resolved in one spatial dimension with many-fold reductions in scan-time. This was achieved using a small subset of the CSI phase-encoding steps from central image k-space that maximized the signal-to-noise ratio. Here, SLAM is extended to two- and three-dimensions (2D, 3D). In addition, SLAM is combined with sensitivity-encoded (SENSE) parallel imaging techniques, enabling the replacement of even more CSI phase-encoding steps to further accelerate scan-speed. A modified SLAM reconstruction algorithm is introduced that significantly reduces the effects of signal nonuniformity within compartments. Finally, main-field inhomogeneity corrections are provided, analogous to CSI. These methods are all tested on brain proton MRS data from a total of 24 patients with brain tumors, and in a human cardiac phosphorus 3D SLAM study at 3T. Acceleration factors of up to 120-fold versus CSI are demonstrated, including speed-up factors of 5-fold relative to already-accelerated SENSE CSI. Brain metabolites are quantified in SLAM and SENSE SLAM spectra and found to be indistinguishable from CSI measures from the same compartments. The modified reconstruction algorithm demonstrated immunity to maladjusted segmentation and errors from signal heterogeneity in brain data. In conclusion, SLAM demonstrates the potential to supplant CSI in studies requiring compartment-average spectra or large volume coverage, by dramatically reducing scan-time while providing essentially the same quantitative results. PMID:24188921

  13. Highly-accelerated quantitative 2D and 3D localized spectroscopy with linear algebraic modeling (SLAM) and sensitivity encoding

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Gabr, Refaat E.; Zhou, Jinyuan; Weiss, Robert G.; Bottomley, Paul A.

    2013-12-01

    Noninvasive magnetic resonance spectroscopy (MRS) with chemical shift imaging (CSI) provides valuable metabolic information for research and clinical studies, but is often limited by long scan times. Recently, spectroscopy with linear algebraic modeling (SLAM) was shown to provide compartment-averaged spectra resolved in one spatial dimension with many-fold reductions in scan-time. This was achieved using a small subset of the CSI phase-encoding steps from central image k-space that maximized the signal-to-noise ratio. Here, SLAM is extended to two- and three-dimensions (2D, 3D). In addition, SLAM is combined with sensitivity-encoded (SENSE) parallel imaging techniques, enabling the replacement of even more CSI phase-encoding steps to further accelerate scan-speed. A modified SLAM reconstruction algorithm is introduced that significantly reduces the effects of signal nonuniformity within compartments. Finally, main-field inhomogeneity corrections are provided, analogous to CSI. These methods are all tested on brain proton MRS data from a total of 24 patients with brain tumors, and in a human cardiac phosphorus 3D SLAM study at 3T. Acceleration factors of up to 120-fold versus CSI are demonstrated, including speed-up factors of 5-fold relative to already-accelerated SENSE CSI. Brain metabolites are quantified in SLAM and SENSE SLAM spectra and found to be indistinguishable from CSI measures from the same compartments. The modified reconstruction algorithm demonstrated immunity to maladjusted segmentation and errors from signal heterogeneity in brain data. In conclusion, SLAM demonstrates the potential to supplant CSI in studies requiring compartment-average spectra or large volume coverage, by dramatically reducing scan-time while providing essentially the same quantitative results.

  14. Rapid processing of data based on high-performance algorithms for solving inverse problems and 3D-simulation of the tsunami and earthquakes

    NASA Astrophysics Data System (ADS)

    Marinin, I. V.; Kabanikhin, S. I.; Krivorotko, O. I.; Karas, A.; Khidasheli, D. G.

    2012-04-01

    We consider new techniques and methods for earthquake and tsunami related problems, particularly - inverse problems for the determination of tsunami source parameters, numerical simulation of long wave propagation in soil and water and tsunami risk estimations. In addition, we will touch upon the issue of database management and destruction scenario visualization. New approaches and strategies, as well as mathematical tools and software are to be shown. The long joint investigations by researchers of the Institute of Mathematical Geophysics and Computational Mathematics SB RAS and specialists from WAPMERR and Informap have produced special theoretical approaches, numerical methods, and software tsunami and earthquake modeling (modeling of propagation and run-up of tsunami waves on coastal areas), visualization, risk estimation of tsunami, and earthquakes. Algorithms are developed for the operational definition of the origin and forms of the tsunami source. The system TSS numerically simulates the source of tsunami and/or earthquakes and includes the possibility to solve the direct and the inverse problem. It becomes possible to involve advanced mathematical results to improve models and to increase the resolution of inverse problems. Via TSS one can construct maps of risks, the online scenario of disasters, estimation of potential damage to buildings and roads. One of the main tools for the numerical modeling is the finite volume method (FVM), which allows us to achieve stability with respect to possible input errors, as well as to achieve optimum computing speed. Our approach to the inverse problem of tsunami and earthquake determination is based on recent theoretical results concerning the Dirichlet problem for the wave equation. This problem is intrinsically ill-posed. We use the optimization approach to solve this problem and SVD-analysis to estimate the degree of ill-posedness and to find the quasi-solution. The software system we developed is intended to

  15. Local seismicity preceding the March 14, 1979, Petatlan, Mexico Earthquake (Ms = 7.6)

    NASA Astrophysics Data System (ADS)

    Hsu, Vindell; Gettrust, Joseph F.; Helsley, Charles E.; Berg, Eduard

    1983-05-01

    Local seismicity surrounding the epicenter of the March 14, 1979, Petatlan, Mexico earthquake was monitored by a network of portable seismographs of the Hawaii Institute of Geophysics from 6 weeks before to 4 weeks after the main shock. Prior to the main shock, the recorded local seismic activity was shallow and restricted within the continental plate above the Benioff zone. The relocated main shock hypocenter also lay above the Benioff zone, suggesting an initial failure within the continental lithosphere. Four zones can be recognized that showed relatively higher seismic activity than the background. Activity within these zones has followed a number of moderate earthquakes that occurred before or after the initial deployment of the network. Three of these moderate earthquakes were near the Mexican coastline and occurred sequentially from southeast to northwest during the three months before the Petatlan earthquake. The Petatlan event occurred along the northwestern extension of this trend. We infer a possible connection between this observed earthquake migration pattern and the subduction of a fracture zone because the 200-km segment that includes the aftershock zones of the Petatlan earthquake and the three preceding moderate earthquakes matches the intersection of the southeastern limb of the Orozco Fracture Zone and the Middle America Trench. The Petatlan earthquake source region includes the region of the last of the three near-coast seismic activities (zone A). Earthquakes of zone A migrated toward the Petatlan main shock epicenter and were separated from it by an aseismic zone about 10 km wide. We designate this group of earthquakes as the foreshocks of the Petatlan earthquake. These foreshocks occurred within the continental lithosphere and their observed characteristics are interpreted as due to the high-stress environment before the main shock. Pre-main shock seismicity of the Petatlan earthquake source region shows a good correlation with the

  16. Joint Inversion for Earthquake Depths Using Local Waveforms and Amplitude Spectra of Rayleigh Waves

    NASA Astrophysics Data System (ADS)

    Jia, Zhe; Ni, Sidao; Chu, Risheng; Zhan, Zhongwen

    2016-08-01

    Reliable earthquake depth is fundamental to many seismological problems. In this paper, we present a method to jointly invert for centroid depths with local (distance < 5°) seismic waveforms and regional (distance of 5°-15°) Rayleigh wave amplitude spectra on sparse networks. We use earthquake focal mechanisms and magnitudes retrieved with the Cut-and-Paste (CAP) method to compute synthetic amplitude spectra of fundamental mode Rayleigh wave for a range of depths. Then we grid search to find the optimal depth that minimizes the joint misfit of amplitude spectra and local waveforms. As case studies, we apply this method to the 2008 Wells, Nevada Mw6.0 earthquake and a Mw5.6 outer-rise earthquake to the east of Japan Trench in 2013. Uncertainties estimated with a bootstrap re-sampling approach show that this joint inversion approach constrains centroid depths well, which are also verified by independent teleseismic depth-phase data.

  17. Magmatic Systems in 3-D

    NASA Astrophysics Data System (ADS)

    Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.

    2002-12-01

    Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated

  18. Sedimentary basin effects in Seattle, Washington: Ground-motion observations and 3D simulations

    USGS Publications Warehouse

    Frankel, Arthur; Stephenson, William; Carver, David

    2009-01-01

    Seismograms of local earthquakes recorded in Seattle exhibit surface waves in the Seattle basin and basin-edge focusing of S waves. Spectral ratios of Swaves and later arrivals at 1 Hz for stiff-soil sites in the Seattle basin show a dependence on the direction to the earthquake, with earthquakes to the south and southwest producing higher average amplification. Earthquakes to the southwest typically produce larger basin surface waves relative to S waves than earthquakes to the north and northwest, probably because of the velocity contrast across the Seattle fault along the southern margin of the Seattle basin. S to P conversions are observed for some events and are likely converted at the bottom of the Seattle basin. We model five earthquakes, including the M 6.8 Nisqually earthquake, using 3D finite-difference simulations accurate up to 1 Hz. The simulations reproduce the observed dependence of amplification on the direction to the earthquake. The simulations generally match the timing and character of basin surface waves observed for many events. The 3D simulation for the Nisqually earth-quake produces focusing of S waves along the southern margin of the Seattle basin near the area in west Seattle that experienced increased chimney damage from the earthquake, similar to the results of the higher-frequency 2D simulation reported by Stephenson et al. (2006). Waveforms from the 3D simulations show reasonable agreement with the data at low frequencies (0.2-0.4 Hz) for the Nisqually earthquake and an M 4.8 deep earthquake west of Seattle.

  19. Local Genome Topology Can Exhibit an Incompletely Rewired 3D-Folding State during Somatic Cell Reprogramming.

    PubMed

    Beagan, Jonathan A; Gilgenast, Thomas G; Kim, Jesi; Plona, Zachary; Norton, Heidi K; Hu, Gui; Hsu, Sarah C; Shields, Emily J; Lyu, Xiaowen; Apostolou, Effie; Hochedlinger, Konrad; Corces, Victor G; Dekker, Job; Phillips-Cremins, Jennifer E

    2016-05-01

    Pluripotent genomes are folded in a topological hierarchy that reorganizes during differentiation. The extent to which chromatin architecture is reconfigured during somatic cell reprogramming is poorly understood. Here we integrate fine-resolution architecture maps with epigenetic marks and gene expression in embryonic stem cells (ESCs), neural progenitor cells (NPCs), and NPC-derived induced pluripotent stem cells (iPSCs). We find that most pluripotency genes reconnect to target enhancers during reprogramming. Unexpectedly, some NPC interactions around pluripotency genes persist in our iPSC clone. Pluripotency genes engaged in both "fully-reprogrammed" and "persistent-NPC" interactions exhibit over/undershooting of target expression levels in iPSCs. Additionally, we identify a subset of "poorly reprogrammed" interactions that do not reconnect in iPSCs and display only partially recovered, ESC-specific CTCF occupancy. 2i/LIF can abrogate persistent-NPC interactions, recover poorly reprogrammed interactions, reinstate CTCF occupancy, and restore expression levels. Our results demonstrate that iPSC genomes can exhibit imperfectly rewired 3D-folding linked to inaccurately reprogrammed gene expression. PMID:27152443

  20. Water-level changes induced by local and distant earthquakes at Long Valley caldera, California

    NASA Astrophysics Data System (ADS)

    Roeloffs, Evelyn; Sneed, Michelle; Galloway, Devin L.; Sorey, Michael L.; Farrar, Christopher D.; Howle, James F.; Hughes, Jennifer

    2003-10-01

    Distant as well as local earthquakes have induced groundwater-level changes persisting for days to weeks at Long Valley caldera, California. Four wells open to formations as deep as 300 m have responded to 16 earthquakes, and responses to two earthquakes in the 3-km-deep Long Valley Exploratory Well (LVEW) show that these changes are not limited to weathered or unconsolidated near-surface rocks. All five wells exhibit water-level variations in response to earth tides, indicating they can be used as low-resolution strainmeters. Earthquakes induce gradual water-level changes that increase in amplitude for as long as 30 days, then return more slowly to pre-earthquake levels. The gradual water-level changes are always drops at wells LKT, LVEW, and CH-10B, and always rises at well CW-3. At a dilatometer just outside the caldera, earthquake-induced strain responses consist of either a step followed by a contractional strain-rate increase, or a transient contractional signal that reaches a maximum in about seven days and then returns toward the pre-earthquake value. The sizes of the gradual water-level changes generally increase with earthquake magnitude and decrease with hypocentral distance. Local earthquakes in Long Valley produce coseismic water-level steps; otherwise the responses to local earthquakes and distant earthquakes are indistinguishable. In particular, water-level and strain changes in Long Valley following the 1992 M7.3 Landers earthquake, 450 km distant, closely resemble those initiated by a M4.9 local earthquake on November 22, 1997, during a seismic swarm with features indicative of fluid involvement. At the LKT well, many of the response time histories are identical for 20 days after each earthquake, and can be matched by a theoretical solution giving the pore pressure as a function of time due to diffusion of a nearby, instantaneous, pressure drop. Such pressure drops could be produced by accelerated inflation of the resurgent dome by amounts too

  1. Water-level changes induced by local and distant earthquakes at Long Valley caldera, California

    USGS Publications Warehouse

    Roeloffs, E.; Sneed, M.; Galloway, D.L.; Sorey, M.L.; Farrar, C.D.; Howle, J.F.; Hughes, J.

    2003-01-01

    Distant as well as local earthquakes have induced groundwater-level changes persisting for days to weeks at Long Valley caldera, California. Four wells open to formations as deep as 300 m have responded to 16 earthquakes, and responses to two earthquakes in the 3-km-deep Long Valley Exploratory Well (LVEW) show that these changes are not limited to weathered or unconsolidated near-surface rocks. All five wells exhibit water-level variations in response to earth tides, indicating they can be used as low-resolution strainmeters. Earthquakes induce gradual water-level changes that increase in amplitude for as long as 30 days, then return more slowly to pre-earthquake levels. The gradual water-level changes are always drops at wells LKT, LVEW, and CH-10B, and always rises at well CW-3. At a dilatometer just outside the caldera, earthquake-induced strain responses consist of either a step followed by a contractional strain-rate increase, or a transient contractional signal that reaches a maximum in about seven days and then returns toward the pre-earthquake value. The sizes of the gradual water-level changes generally increase with earthquake magnitude and decrease with hypocentral distance. Local earthquakes in Long Valley produce coseismic water-level steps; otherwise the responses to local earthquakes and distant earthquakes are indistinguishable. In particular, water-level and strain changes in Long Valley following the 1992 M7.3 Landers earthquake, 450 km distant, closely resemble those initiated by a M4.9 local earthquake on November 22, 1997, during a seismic swarm with features indicative of fluid involvement. At the LKT well, many of the response time histories are identical for 20 days after each earthquake, and can be matched by a theoretical solution giving the pore pressure as a function of time due to diffusion of a nearby, instantaneous, pressure drop. Such pressure drops could be produced by accelerated inflation of the resurgent dome by amounts too

  2. Novel Vertical 3D Structure of TaOx-based RRAM with Self-localized Switching Region by Sidewall Electrode Oxidation

    PubMed Central

    Yu, Muxi; Cai, Yimao; Wang, Zongwei; Fang, Yichen; Liu, Yefan; Yu, Zhizhen; Pan, Yue; Zhang, Zhenxing; Tan, Jing; Yang, Xue; Li, Ming; Huang, Ru

    2016-01-01

    A novel vertical 3D RRAM structure with greatly improved reliability behavior is proposed and experimentally demonstrated through basically compatible process featuring self-localized switching region by sidewall electrode oxidation. Compared with the conventional structure, due to the effective confinement of the switching region, the newly-proposed structure shows about two orders higher endurance (>108 without verification operation) and better retention (>180h@150 °C), as well as high uniformity. Corresponding model is put forward, on the base of which thorough theoretical analysis and calculations are conducted as well, demonstrating that, resulting from the physically-isolated switching from neighboring cells, the proposed structure exhibits dramatically improved reliability due to effective suppression of thermal effects and oxygen vacancies diffusion interference, indicating that this novel structure is very promising for future high density 3D RRAM application. PMID:26884054

  3. Earthquake!

    ERIC Educational Resources Information Center

    Hernandez, Hildo

    2000-01-01

    Examines the types of damage experienced by California State University at Northridge during the 1994 earthquake and what lessons were learned in handling this emergency are discussed. The problem of loose asbestos is addressed. (GR)

  4. Earthquakes

    USGS Publications Warehouse

    Shedlock, Kaye M.; Pakiser, Louis Charles

    1998-01-01

    One of the most frightening and destructive phenomena of nature is a severe earthquake and its terrible aftereffects. An earthquake is a sudden movement of the Earth, caused by the abrupt release of strain that has accumulated over a long time. For hundreds of millions of years, the forces of plate tectonics have shaped the Earth as the huge plates that form the Earth's surface slowly move over, under, and past each other. Sometimes the movement is gradual. At other times, the plates are locked together, unable to release the accumulating energy. When the accumulated energy grows strong enough, the plates break free. If the earthquake occurs in a populated area, it may cause many deaths and injuries and extensive property damage. Today we are challenging the assumption that earthquakes must present an uncontrollable and unpredictable hazard to life and property. Scientists have begun to estimate the locations and likelihoods of future damaging earthquakes. Sites of greatest hazard are being identified, and definite progress is being made in designing structures that will withstand the effects of earthquakes.

  5. Rapid tsunami models and earthquake source parameters: Far-field and local applications

    USGS Publications Warehouse

    Geist, E.L.

    2005-01-01

    Rapid tsunami models have recently been developed to forecast far-field tsunami amplitudes from initial earthquake information (magnitude and hypocenter). Earthquake source parameters that directly affect tsunami generation as used in rapid tsunami models are examined, with particular attention to local versus far-field application of those models. First, validity of the assumption that the focal mechanism and type of faulting for tsunamigenic earthquakes is similar in a given region can be evaluated by measuring the seismic consistency of past events. Second, the assumption that slip occurs uniformly over an area of rupture will most often underestimate the amplitude and leading-wave steepness of the local tsunami. Third, sometimes large magnitude earthquakes will exhibit a high degree of spatial heterogeneity such that tsunami sources will be composed of distinct sub-events that can cause constructive and destructive interference in the wavefield away from the source. Using a stochastic source model, it is demonstrated that local tsunami amplitudes vary by as much as a factor of two or more, depending on the local bathymetry. If other earthquake source parameters such as focal depth or shear modulus are varied in addition to the slip distribution patterns, even greater uncertainty in local tsunami amplitude is expected for earthquakes of similar magnitude. Because of the short amount of time available to issue local warnings and because of the high degree of uncertainty associated with local, model-based forecasts as suggested by this study, direct wave height observations and a strong public education and preparedness program are critical for those regions near suspected tsunami sources.

  6. Local three-dimensional earthquake tomography by trans-dimensional Monte Carlo sampling

    NASA Astrophysics Data System (ADS)

    Piana Agostinetti, Nicola; Giacomuzzi, Genny; Malinverno, Alberto

    2015-06-01

    Local earthquake tomography is a non-linear and non-unique inverse problem that uses event arrival times to solve for the spatial distribution of elastic properties. The typical approach is to apply iterative linearization and derive a preferred solution, but such solutions are biased by a number of subjective choices: the starting model that is iteratively adjusted, the degree of regularization used to obtain a smooth solution, and the assumed noise level in the arrival time data. These subjective choices also affect the estimation of the uncertainties in the inverted parameters. The method presented here is developed in a Bayesian framework where a priori information and measurements are combined to define a posterior probability density of the parameters of interest: elastic properties in a subsurface 3-D model, hypocentre coordinates and noise level in the data. We apply a trans-dimensional Markov chain Monte Carlo algorithm that asymptotically samples the posterior distribution of the investigated parameters. This approach allows us to overcome the issues raised above. First, starting a number of sampling chains from random samples of the prior probability distribution lessens the dependence of the solution from the starting point. Secondly, the number of elastic parameters in the 3-D subsurface model is one of the unknowns in the inversion, and the parsimony of Bayesian inference ensures that the degree of detail in the solution is controlled by the information in the data, given realistic assumptions for the error statistics. Finally, the noise level in the data, which controls the uncertainties of the solution, is also one of the inverted parameters, providing a first-order estimate of the data errors. We apply our method to both synthetic and field arrival time data. The synthetic data inversion successfully recovers velocity anomalies, hypocentre coordinates and the level of noise in the data. The Bayesian inversion of field measurements gives results

  7. Seismicity and the state of stress from investigations of local earthquakes in the Kumaon Himalaya

    NASA Astrophysics Data System (ADS)

    Gaur, V. K.; Chander, R.; Sarkar, I.; Khattri, K. N.; Sinvhal, H.

    1985-10-01

    Results of investigations of local earthquakes in the region of the Main Central Thrust (MCT) in the Kumaon Himalaya, between and adjacent to the valleys of the Bhagirathi and Yamuna rivers, are presented. Records of over 250 earthquakes were analysed and the following facts emerged: (1) Earthquakes in the Himalayas occur in specific areas and belts. One such belt has been identified in the region under investigation, hypocentral estimates being more reliable for earthquakes occurring in the middle segment approximately 70 km long of this belt, crossing the Yamuna river between the villages of Barkot and Syanachatti. (2) All but a few epicentres in this middle segment, lie to the southwest of the surface trace of the MCT in a zone with a width of 10-30 km. (3) Most of the earthquakes in this segment occur at depths of less than 10 km below the ground surface, the maximum estimated depth being 32 km. Using observations of first motion for a composite focal mechanism solution, the nodal planes were observed to be near vertical and the compression axis near horizontal and normal to the local strike of the seismic belt and of the MCT. We conclude that although the Main Central Thrust itself is not seismically active in this region, there is considerable activity immediately to the southwest of it. Furthermore, the mode of faulting as inferred from the records of these earthquakes, is strike slip.

  8. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds.

    PubMed

    Taboas, J M; Maddox, R D; Krebsbach, P H; Hollister, S J

    2003-01-01

    Precise control over scaffold material, porosity, and internal pore architecture is essential for tissue engineering. By coupling solid free form (SFF) manufacturing with conventional sponge scaffold fabrication procedures, we have developed methods for casting scaffolds that contain designed and controlled locally porous and globally porous internal architectures. These methods are compatible with numerous bioresorbable and non-resorbable polymers, ceramics, and biologic materials. Phase separation, emulsion-solvent diffusion, and porogen leaching were used to create poly(L)lactide (PLA) scaffolds containing both computationally designed global pores (500, 600, or 800 microm wide channels) and solvent fashioned local pores (50-100 microm wide voids or 5-10 microm length plates). Globally porous PLA and polyglycolide/PLA discrete composites were made using melt processing. Biphasic scaffolds with mechanically interdigitated PLA and sintered hydroxyapatite regions were fabricated with 500 and 600 microm wide global pores. PLA scaffolds with complex internal architectures that mimicked human trabecular bone were produced. Our indirect fabrication using casting in SFF molds provided enhanced control over scaffold shape, material, porosity and pore architecture, including size, geometry, orientation, branching, and interconnectivity. These scaffolds that contain concurrent local and global pores, discrete material regions, and biomimetic internal architectures may prove valuable for multi-tissue and structural tissue interface engineering. PMID:12417192

  9. A time series generalized functional model based method for vibration-based damage precise localization in structures consisting of 1D, 2D, and 3D elements

    NASA Astrophysics Data System (ADS)

    Sakaris, C. S.; Sakellariou, J. S.; Fassois, S. D.

    2016-06-01

    This study focuses on the problem of vibration-based damage precise localization via data-based, time series type, methods for structures consisting of 1D, 2D, or 3D elements. A Generalized Functional Model Based method is postulated based on an expanded Vector-dependent Functionally Pooled ARX (VFP-ARX) model form, capable of accounting for an arbitrary structural topology. The FP model's operating parameter vector elements are properly constrained to reflect any given topology. Damage localization is based on operating parameter vector estimation within the specified topology, so that the location estimate and its uncertainty bounds are statistically optimal. The method's effectiveness is experimentally demonstrated through damage precise localization on a laboratory spatial truss structure using various damage scenarios and a single pair of random excitation - vibration response signals in a low and limited frequency bandwidth.

  10. Fully Automatic Localization and Segmentation of 3D Vertebral Bodies from CT/MR Images via a Learning-Based Method.

    PubMed

    Chu, Chengwen; Belavý, Daniel L; Armbrecht, Gabriele; Bansmann, Martin; Felsenberg, Dieter; Zheng, Guoyan

    2015-01-01

    In this paper, we address the problems of fully automatic localization and segmentation of 3D vertebral bodies from CT/MR images. We propose a learning-based, unified random forest regression and classification framework to tackle these two problems. More specifically, in the first stage, the localization of 3D vertebral bodies is solved with random forest regression where we aggregate the votes from a set of randomly sampled image patches to get a probability map of the center of a target vertebral body in a given image. The resultant probability map is then further regularized by Hidden Markov Model (HMM) to eliminate potential ambiguity caused by the neighboring vertebral bodies. The output from the first stage allows us to define a region of interest (ROI) for the segmentation step, where we use random forest classification to estimate the likelihood of a voxel in the ROI being foreground or background. The estimated likelihood is combined with the prior probability, which is learned from a set of training data, to get the posterior probability of the voxel. The segmentation of the target vertebral body is then done by a binary thresholding of the estimated probability. We evaluated the present approach on two openly available datasets: 1) 3D T2-weighted spine MR images from 23 patients and 2) 3D spine CT images from 10 patients. Taking manual segmentation as the ground truth (each MR image contains at least 7 vertebral bodies from T11 to L5 and each CT image contains 5 vertebral bodies from L1 to L5), we evaluated the present approach with leave-one-out experiments. Specifically, for the T2-weighted MR images, we achieved for localization a mean error of 1.6 mm, and for segmentation a mean Dice metric of 88.7% and a mean surface distance of 1.5 mm, respectively. For the CT images we achieved for localization a mean error of 1.9 mm, and for segmentation a mean Dice metric of 91.0% and a mean surface distance of 0.9 mm, respectively. PMID:26599505

  11. Fully Automatic Localization and Segmentation of 3D Vertebral Bodies from CT/MR Images via a Learning-Based Method

    PubMed Central

    Chu, Chengwen; Belavý, Daniel L.; Armbrecht, Gabriele; Bansmann, Martin; Felsenberg, Dieter; Zheng, Guoyan

    2015-01-01

    In this paper, we address the problems of fully automatic localization and segmentation of 3D vertebral bodies from CT/MR images. We propose a learning-based, unified random forest regression and classification framework to tackle these two problems. More specifically, in the first stage, the localization of 3D vertebral bodies is solved with random forest regression where we aggregate the votes from a set of randomly sampled image patches to get a probability map of the center of a target vertebral body in a given image. The resultant probability map is then further regularized by Hidden Markov Model (HMM) to eliminate potential ambiguity caused by the neighboring vertebral bodies. The output from the first stage allows us to define a region of interest (ROI) for the segmentation step, where we use random forest classification to estimate the likelihood of a voxel in the ROI being foreground or background. The estimated likelihood is combined with the prior probability, which is learned from a set of training data, to get the posterior probability of the voxel. The segmentation of the target vertebral body is then done by a binary thresholding of the estimated probability. We evaluated the present approach on two openly available datasets: 1) 3D T2-weighted spine MR images from 23 patients and 2) 3D spine CT images from 10 patients. Taking manual segmentation as the ground truth (each MR image contains at least 7 vertebral bodies from T11 to L5 and each CT image contains 5 vertebral bodies from L1 to L5), we evaluated the present approach with leave-one-out experiments. Specifically, for the T2-weighted MR images, we achieved for localization a mean error of 1.6 mm, and for segmentation a mean Dice metric of 88.7% and a mean surface distance of 1.5 mm, respectively. For the CT images we achieved for localization a mean error of 1.9 mm, and for segmentation a mean Dice metric of 91.0% and a mean surface distance of 0.9 mm, respectively. PMID:26599505

  12. Localization of α-synuclein in teleost central nervous system: immunohistochemical and Western blot evidence by 3D5 monoclonal antibody in the common carp, Cyprinus carpio.

    PubMed

    Vaccaro, Rosa; Toni, Mattia; Casini, Arianna; Vivacqua, Giorgio; Yu, Shun; D'este, Loredana; Cioni, Carla

    2015-05-01

    Alpha synuclein (α-syn) is a 140 amino acid vertebrate-specific protein, highly expressed in the human nervous system and abnormally accumulated in Parkinson's disease and other neurodegenerative disorders, known as synucleinopathies. The common occurrence of α-syn aggregates suggested a role for α-syn in these disorders, although its biological activity remains poorly understood. Given the high degree of sequence similarity between vertebrate α-syns, we investigated this proteins in the central nervous system (CNS) of the common carp, Cyprinus carpio, with the aim of comparing its anatomical and cellular distribution with that of mammalian α-syn. The distribution of α-syn was analyzed by semiquantitative western blot, immunohistochemistry, and immunofluorescence by a novel monoclonal antibody (3D5) against a fully conserved epitope between carp and human α-syn. The distribution of 3D5 immunoreactivity was also compared with that of choline acetyltransferase (ChAT), tyrosine hydroxylase (TH), and serotonin (5HT) by double immunolabelings. The results showed that a α-syn-like protein of about 17 kDa is expressed to different levels in several brain regions and in the spinal cord. Immunoreactive materials were localized in neuronal perikarya and varicose fibers but not in the nucleus. The present findings indicate that α-syn-like proteins may be expressed in a few subpopulations of catecholaminergic and serotoninergic neurons in the carp brain. However, evidence of cellular colocalization 3D5/TH or 3D5/5HT was rare. Differently, the same proteins appear to be coexpressed with ChAT by cholinergic neurons in several motor and reticular nuclei. These results sustain the functional conservation of the α-syn expression in cholinergic systems and suggest that α-syn modulates similar molecular pathways in phylogenetically distant vertebrates.

  13. B4 2 After, 3D Deformation Field From Matching Pre- To Post-Event Aerial LiDAR Point Clouds, The 2010 El Mayor-Cucapah M7.2 Earthquake Case

    NASA Astrophysics Data System (ADS)

    Hinojosa-Corona, A.; Nissen, E.; Limon-Tirado, J. F.; Arrowsmith, R.; Krishnan, A.; Saripalli, S.; Oskin, M. E.; Glennie, C. L.; Arregui, S. M.; Fletcher, J. M.; Teran, O. J.

    2013-05-01

    Aerial LiDAR surveys reconstruct with amazing fidelity the sinuosity of terrain relief. In this research we explore the 3D deformation field at the surface after a big earthquake (M7.2) by comparing pre- to post-event aerial LiDAR point clouds. The April 4 2010 earthquake produced a NW-SE surface rupture ~110km long with right-lateral normal slip up to 3m in magnitude over a very favorable target: scarcely vegetated and unaltered desert mountain range, sierras El Mayor and Cucapah, in northern Baja California, close to the US-México border. It is a plate boundary region between the Pacific and North American plates. The pre-event LiDAR with lower point density (0.013-0.033 pts m-2) required filtering and post-processing before comparing with the denser (9-18 pts m-2) more accurate post event dataset. The 3D surface displacement field was determined using an adaptation of the Iterative Closest Point (ICP) algorithm, implemented in the open source Point Cloud Library (PCL). The LiDAR datasets are first split into a grid of windows, and for each one, ICP iteratively converges on the rigid body transformation (comprising translations and rotations) that best aligns the pre- to post-event points. Perturbing the pre- and post-event point clouds independently with a synthetic right lateral inverse displacements of known magnitude along a proposed fault, ICP recovered the synthetically introduced translations. Windows with dimensions of 100-200m gave the best results for datasets with these densities. The simplified surface rupture photo interpreted and mapped in the field, delineates very well the vertical displacements patterns unveiled by ICP. The method revealed block rotations, some with clockwise and others counter clockwise direction along the simplified surface rupture. As ground truth, displacements from ICP have similar values as those measured in the field along the main rupture by Fletcher and collaborators. The vertical component was better estimated than the

  14. Studying local earthquakes in the area Baltic-Bothnia Megashear using the data of the POLENET/LAPNET temporary array

    NASA Astrophysics Data System (ADS)

    Usoltseva, Olga; Kozlovskaya, Elena

    2016-07-01

    Earthquakes in areas within continental plates are still not completely understood, and progress on understanding intraplate seismicity is slow due to a short history of instrumental seismology and sparse regional seismic networks in seismically non-active areas. However, knowledge about position and depth of seismogenic structures in such areas is necessary in order to estimate seismic hazard for such critical facilities such as nuclear power plants and nuclear waste deposits. In the present paper we address the problem of seismicity in the intraplate area of northern Fennoscandia using the information on local events recorded by the POLENET/LAPNET (Polar Earth Observing Network) temporary seismic array during the International Polar Year 2007-2009. We relocate the seismic events using the program HYPOELLIPS (a computer program for determining local earthquake hypocentral parameters) and grid search method. We use the first arrivals of P waves of local events in order to calculate a 3-D tomographic P wave velocity model of the uppermost crust (down to 20 km) for a selected region inside the study area and show that the velocity heterogeneities in the upper crust correlate well with known tectonic units. We compare the position of the velocity heterogeneities with the seismogenic structures delineated by epicentres of relocated events and demonstrate that these structures generally do not correlate with the crustal units formed as a result of crustal evolution in the Archaean and Palaeoproterozoic. On the contrary, they correlate well with the postglacial faults located in the area of the Baltic-Bothnia Megashear (BBMS). Hypocentres of local events have depths down to 30 km. We also obtain the focal mechanism of a selected event with good data quality. The focal mechanism is of oblique type with strike-slip prevailing. Our results demonstrate that the Baltic-Bothnia Megashear is an important large-scale, reactivated tectonic structure that has to be taken into

  15. Toroidal mode number estimation of the edge-localized modes using the KSTAR 3-D electron cyclotron emission imaging system

    SciTech Connect

    Lee, J.; Yun, G. S. Lee, J. E.; Kim, M.; Choi, M. J.; Lee, W.; Park, H. K.; Domier, C. W.; Luhmann, N. C.; Sabbagh, S. A.; Park, Y. S.; Lee, S. G.; Bak, J. G.

    2014-06-15

    A new and more accurate technique is presented for determining the toroidal mode number n of edge-localized modes (ELMs) using two independent electron cyclotron emission imaging (ECEI) systems in the Korea Superconducting Tokamak Advanced Research (KSTAR) device. The technique involves the measurement of the poloidal spacing between adjacent ELM filaments, and of the pitch angle α{sub *} of filaments at the plasma outboard midplane. Equilibrium reconstruction verifies that α{sub *} is nearly constant and thus well-defined at the midplane edge. Estimates of n obtained using two ECEI systems agree well with n measured by the conventional technique employing an array of Mirnov coils.

  16. 3D He-3 diffusion MRI as a local in vivo morphometric tool to evaluate emphysematous rat lungs

    SciTech Connect

    Jacob, Rick E.; Minard, Kevin R.; Laicher, Gernot J.; Timchalk, Charles

    2008-08-21

    In this work, we validate 3He magnetic resonance imaging as a non-invasive morphometric tool to assess emphysematous disease state on a local level. Emphysema was induced intratracheally in rats with 25U/100g body weight of porcine pancreatic elastase dissolved in 200 μL saline. Rats were then paired with saline-dosed controls. Nine three-dimensional 3He diffusion-weighted images were acquired at one-, two-, or three-weeks post-dose, after which the lungs were harvested and prepared for histological analysis. Recently introduced indices sensitive to the heterogeneity of the airspace size distribution were calculated. These indices, D1 and D2, were derived from the moments of the mean equivalent airway diameters. Averaged over the entire lung, it is shown that the 3He diffusivity (Dave) and anisotropy (Dan) both correlate with histology (R = 0.85, p < 0.0001 and R = 0.88, p < 0.0001, respectively). By matching small (0.046 cm2) regions in 3He images with corresponding regions in histological slices, Dave and Dan each correlate significantly with both D1 and D2 (R = 0.93, p < 0.0001). It is concluded that 3He MRI is a viable non-invasive morphometric tool for localized in vivo emphysema assessment.

  17. A comparison study of atlas-based 3D cardiac MRI segmentation: global versus global and local transformations

    NASA Astrophysics Data System (ADS)

    Daryanani, Aditya; Dangi, Shusil; Ben-Zikri, Yehuda Kfir; Linte, Cristian A.

    2016-03-01

    Magnetic Resonance Imaging (MRI) is a standard-of-care imaging modality for cardiac function assessment and guidance of cardiac interventions thanks to its high image quality and lack of exposure to ionizing radiation. Cardiac health parameters such as left ventricular volume, ejection fraction, myocardial mass, thickness, and strain can be assessed by segmenting the heart from cardiac MRI images. Furthermore, the segmented pre-operative anatomical heart models can be used to precisely identify regions of interest to be treated during minimally invasive therapy. Hence, the use of accurate and computationally efficient segmentation techniques is critical, especially for intra-procedural guidance applications that rely on the peri-operative segmentation of subject-specific datasets without delaying the procedure workflow. Atlas-based segmentation incorporates prior knowledge of the anatomy of interest from expertly annotated image datasets. Typically, the ground truth atlas label is propagated to a test image using a combination of global and local registration. The high computational cost of non-rigid registration motivated us to obtain an initial segmentation using global transformations based on an atlas of the left ventricle from a population of patient MRI images and refine it using well developed technique based on graph cuts. Here we quantitatively compare the segmentations obtained from the global and global plus local atlases and refined using graph cut-based techniques with the expert segmentations according to several similarity metrics, including Dice correlation coefficient, Jaccard coefficient, Hausdorff distance, and Mean absolute distance error.

  18. Development of a locally mass flux conservative computer code for calculating 3-D viscous flow in turbomachines

    NASA Technical Reports Server (NTRS)

    Walitt, L.

    1982-01-01

    The VANS successive approximation numerical method was extended to the computation of three dimensional, viscous, transonic flows in turbomachines. A cross-sectional computer code, which conserves mass flux at each point of the cross-sectional surface of computation was developed. In the VANS numerical method, the cross-sectional computation follows a blade-to-blade calculation. Numerical calculations were made for an axial annular turbine cascade and a transonic, centrifugal impeller with splitter vanes. The subsonic turbine cascade computation was generated in blade-to-blade surface to evaluate the accuracy of the blade-to-blade mode of marching. Calculated blade pressures at the hub, mid, and tip radii of the cascade agreed with corresponding measurements. The transonic impeller computation was conducted to test the newly developed locally mass flux conservative cross-sectional computer code. Both blade-to-blade and cross sectional modes of calculation were implemented for this problem. A triplet point shock structure was computed in the inducer region of the impeller. In addition, time-averaged shroud static pressures generally agreed with measured shroud pressures. It is concluded that the blade-to-blade computation produces a useful engineering flow field in regions of subsonic relative flow; and cross-sectional computation, with a locally mass flux conservative continuity equation, is required to compute the shock waves in regions of supersonic relative flow.

  19. Efficient Unstructured Cartesian/Immersed-Boundary Method with Local Mesh Refinement to Simulate Flows in Complex 3D Geometries

    NASA Astrophysics Data System (ADS)

    de Zelicourt, Diane; Ge, Liang; Sotiropoulos, Fotis; Yoganathan, Ajit

    2008-11-01

    Image-guided computational fluid dynamics has recently gained attention as a tool for predicting the outcome of different surgical scenarios. Cartesian Immersed-Boundary methods constitute an attractive option to tackle the complexity of real-life anatomies. However, when such methods are applied to the branching, multi-vessel configurations typically encountered in cardiovascular anatomies the majority of the grid nodes of the background Cartesian mesh end up lying outside the computational domain, increasing the memory and computational overhead without enhancing the numerical resolution in the region of interest. To remedy this situation, the method presented here superimposes local mesh refinement onto an unstructured Cartesian grid formulation. A baseline unstructured Cartesian mesh is generated by eliminating all nodes that reside in the exterior of the flow domain from the grid structure, and is locally refined in the vicinity of the immersed-boundary. The potential of the method is demonstrated by carrying out systematic mesh refinement studies for internal flow problems ranging in complexity from a 90 deg pipe bend to an actual, patient-specific anatomy reconstructed from magnetic resonance.

  20. Scenarios for local seismic effects of Tulcea (Romania) crustal earthquakes, preliminary approach for the seismic microzoning of Tulcea city

    NASA Astrophysics Data System (ADS)

    Florin Bǎlan, Å.žTefan; Apostol, Bogdan; Chitea, F.; Anghelache, Mirela Adriana; Cioflan, Carmen O.; Serban, A.

    2010-05-01

    nonlinear variations of shear modulus and damping function with state of strain during the earthquakes are expected in superficial soil deposits. Also, the epicenter distributions, the isobats map and 3D image of focal distribution surface will be presented together with the focal mechanisms of the most significant earthquakes which had affected the zone. All these give us a very complete image of the crustal seismic hazard of the Tulcea zone. This study proposes itself to take in consideration only the local effects of the crustal seismic hazard from Tulcea zone, like a preliminary step for the seismic microzoning of Tulcea city. The latter is a broader research which implies the interdisciplinary work between specialists from different fields of research. Finally, by comparing the seismic microzoning map with the vulnerability distribution mapping for each building type and damage distribution maps, the general aspect of the real earthquake effects over the city is figured out. Acknowledgements: The research was performed with financial support from the CNMP within 31036/ 2007 scientific project.

  1. Localization of toroidal motion and shear heating in 3-D high Rayleigh number convection with temperature-dependent viscosity

    NASA Technical Reports Server (NTRS)

    Balachandar, S.; Yuen, D. A.; Reuteler, D. M.

    1995-01-01

    We have applied spectral-transform methods to study three-dimensional thermal convection with temperature-dependent viscosity. The viscosity varies exponentially with the form exp(-BT), where B controls the viscosity contrast and T is temperature. Solutions for high Rayleigh numbers, up to an effective Ra of 6.25 x 10(exp 6), have been obtained for an aspect-ratio of 5x5x1 and a viscosity contrast of 25. Solutions show the localization of toroidal velocity fields with increasing vigor of convection to a coherent network of shear-zones. Viscous dissipation increases with Rayleigh number and is particularly strong in regions of convergent flows and shear deformation. A time-varying depth-dependent mean-flow is generated because of the correlation between laterally varying viscosity and velocity gradients.

  2. Results and DVH analysis of late rectal bleeding in patients treated with 3D-CRT or IMRT for localized prostate cancer.

    PubMed

    Someya, Masanori; Hori, Masakazu; Tateoka, Kunihiko; Nakata, Kensei; Takagi, Masaru; Saito, Masato; Hirokawa, Naoki; Hareyama, Masato; Sakata, Koh-Ichi

    2015-01-01

    In patients undergoing radiotherapy for localized prostate cancer, dose-volume histograms and clinical variables were examined to search for correlations between radiation treatment planning parameters and late rectal bleeding. We analyzed 129 patients with localized prostate cancer who were managed from 2002 to 2010 at our institution. They were treated with 3D conformal radiation therapy (3D-CRT, 70 Gy/35 fractions, 55 patients) or intensity-modulated radiation therapy (IMRT, 76 Gy/38 fractions, 74 patients). All radiation treatment plans were retrospectively reconstructed, dose-volume histograms of the rectum were generated, and the doses delivered to the rectum were calculated. Time to rectal bleeding ranged from 9-53 months, with a median of 18.7 months. Of the 129 patients, 33 patients had Grade 1 bleeding and were treated with steroid suppositories, while 25 patients with Grade 2 bleeding received argon plasma laser coagulation therapy (APC). Three patients with Grade 3 bleeding required both APC and blood transfusion. The 5-year incidence rate of Grade 2 or 3 rectal bleeding was 21.8% for the 3D-CRT group and 21.6% for the IMRT group. Univariate analysis showed significant differences in the average values from V65 to V10 between Grades 0-1 and Grades 2-3. Multivariate analysis demonstrated that patients with V65 ≥ 17% had a significantly increased risk (P = 0.032) of Grade 2 or 3 rectal bleeding. Of the 28 patients of Grade 2 or 3 rectal bleeding, 17 patients (60.7%) were cured by a single session of APC, while the other 11 patients required two sessions. Thus, none of the patients had any further rectal bleeding after the second APC session.

  3. Accurate and Fully Automatic Hippocampus Segmentation Using Subject-Specific 3D Optimal Local Maps Into a Hybrid Active Contour Model

    PubMed Central

    Gkontra, Polyxeni; Daras, Petros; Maglaveras, Nicos

    2014-01-01

    Assessing the structural integrity of the hippocampus (HC) is an essential step toward prevention, diagnosis, and follow-up of various brain disorders due to the implication of the structural changes of the HC in those disorders. In this respect, the development of automatic segmentation methods that can accurately, reliably, and reproducibly segment the HC has attracted considerable attention over the past decades. This paper presents an innovative 3-D fully automatic method to be used on top of the multiatlas concept for the HC segmentation. The method is based on a subject-specific set of 3-D optimal local maps (OLMs) that locally control the influence of each energy term of a hybrid active contour model (ACM). The complete set of the OLMs for a set of training images is defined simultaneously via an optimization scheme. At the same time, the optimal ACM parameters are also calculated. Therefore, heuristic parameter fine-tuning is not required. Training OLMs are subsequently combined, by applying an extended multiatlas concept, to produce the OLMs that are anatomically more suitable to the test image. The proposed algorithm was tested on three different and publicly available data sets. Its accuracy was compared with that of state-of-the-art methods demonstrating the efficacy and robustness of the proposed method. PMID:27170866

  4. Localization of Metal Electrodes in the Intact Rat Brain Using Registration of 3D Microcomputed Tomography Images to a Magnetic Resonance Histology Atlas1,2,3

    PubMed Central

    Borg, Jana Schaich; Vu, Mai-Anh; Badea, Cristian; Badea, Alexandra; Johnson, G. Allan

    2015-01-01

    Abstract Simultaneous neural recordings taken from multiple areas of the rodent brain are garnering growing interest because of the insight they can provide about spatially distributed neural circuitry. The promise of such recordings has inspired great progress in methods for surgically implanting large numbers of metal electrodes into intact rodent brains. However, methods for localizing the precise location of these electrodes have remained severely lacking. Traditional histological techniques that require slicing and staining of physical brain tissue are cumbersome and become increasingly impractical as the number of implanted electrodes increases. Here we solve these problems by describing a method that registers 3D computed tomography (CT) images of intact rat brains implanted with metal electrode bundles to a magnetic resonance imaging histology (MRH) atlas. Our method allows accurate visualization of each electrode bundle’s trajectory and location without removing the electrodes from the brain or surgically implanting external markers. In addition, unlike physical brain slices, once the 3D images of the electrode bundles and the MRH atlas are registered, it is possible to verify electrode placements from many angles by “reslicing” the images along different planes of view. Furthermore, our method can be fully automated and easily scaled to applications with large numbers of specimens. Our digital imaging approach to efficiently localizing metal electrodes offers a substantial addition to currently available methods, which, in turn, may help accelerate the rate at which insights are gleaned from rodent network neuroscience. PMID:26322331

  5. Local D3/D7 μ-SPLIT SUSY, 125 GeV Higgs and Large Volume Ricci-Flat Swiss-Cheese Metrics:. a Brief Review

    NASA Astrophysics Data System (ADS)

    Misra, Aalok

    In this paper, we review briefly recent progress made in realizing local(ized around a mobile spacetime filling D3-brane in) D3/D7 μ-split Supersymmetry in (the large volume limit of Type IIB) String Theory (compactified on Swiss-Cheese Calabi-Yau orientifolds) as well as obtaining a 125 GeV (light) Higgs in the same setup. We also discuss obtaining the geometric Kähler potential (and hence the Ricci-flat metric) for the Swiss-Cheese Calabi-Yau in the large volume limit using the Donaldson's algorithm and intuition from GLSM-based calculations — we present new results for Swiss-Cheese Calabi-Yau (used in the setup) metrics at points finitely away from the "big" divisor.

  6. Local near instantaneously dynamically triggered aftershocks of large earthquakes

    NASA Astrophysics Data System (ADS)

    Fan, Wenyuan; Shearer, Peter M.

    2016-09-01

    Aftershocks are often triggered by static- and/or dynamic-stress changes caused by mainshocks. The relative importance of the two triggering mechanisms is controversial at near-to-intermediate distances. We detected and located 48 previously unidentified large early aftershocks triggered by earthquakes with magnitudes between ≥7 and 8 within a few fault lengths (approximately 300 kilometers), during times that high-amplitude surface waves arrive from the mainshock (less than 200 seconds). The observations indicate that near-to-intermediate-field dynamic triggering commonly exists and fundamentally promotes aftershock occurrence. The mainshocks and their nearby early aftershocks are located at major subduction zones and continental boundaries, and mainshocks with all types of faulting-mechanisms (normal, reverse, and strike-slip) can trigger early aftershocks.

  7. Local near instantaneously dynamically triggered aftershocks of large earthquakes.

    PubMed

    Fan, Wenyuan; Shearer, Peter M

    2016-09-01

    Aftershocks are often triggered by static- and/or dynamic-stress changes caused by mainshocks. The relative importance of the two triggering mechanisms is controversial at near-to-intermediate distances. We detected and located 48 previously unidentified large early aftershocks triggered by earthquakes with magnitudes between ≥7 and 8 within a few fault lengths (approximately 300 kilometers), during times that high-amplitude surface waves arrive from the mainshock (less than 200 seconds). The observations indicate that near-to-intermediate-field dynamic triggering commonly exists and fundamentally promotes aftershock occurrence. The mainshocks and their nearby early aftershocks are located at major subduction zones and continental boundaries, and mainshocks with all types of faulting-mechanisms (normal, reverse, and strike-slip) can trigger early aftershocks.

  8. Local near instantaneously dynamically triggered aftershocks of large earthquakes.

    PubMed

    Fan, Wenyuan; Shearer, Peter M

    2016-09-01

    Aftershocks are often triggered by static- and/or dynamic-stress changes caused by mainshocks. The relative importance of the two triggering mechanisms is controversial at near-to-intermediate distances. We detected and located 48 previously unidentified large early aftershocks triggered by earthquakes with magnitudes between ≥7 and 8 within a few fault lengths (approximately 300 kilometers), during times that high-amplitude surface waves arrive from the mainshock (less than 200 seconds). The observations indicate that near-to-intermediate-field dynamic triggering commonly exists and fundamentally promotes aftershock occurrence. The mainshocks and their nearby early aftershocks are located at major subduction zones and continental boundaries, and mainshocks with all types of faulting-mechanisms (normal, reverse, and strike-slip) can trigger early aftershocks. PMID:27609887

  9. Validation of hip joint center localization methods during gait analysis using 3D EOS imaging in typically developing and cerebral palsy children.

    PubMed

    Assi, Ayman; Sauret, Christophe; Massaad, Abir; Bakouny, Ziad; Pillet, Hélène; Skalli, Wafa; Ghanem, Ismat

    2016-07-01

    Localization of the hip joint center (HJC) is essential in computation of gait data. EOS low dose biplanar X-rays have been shown to be a good reference in evaluating various methods of HJC localization in adults. The aim is to evaluate predictive and functional techniques for HJC localization in typically developing (TD) and cerebral palsy (CP) children, using EOS as an image based reference. Eleven TD and 17 CP children underwent 3D gait analysis. Six HJC localization methods were evaluated in each group bilaterally: 3 predictive (Plug in Gait, Bell and Harrington) and 3 functional methods based on the star arc technique (symmetrical center of rotation estimate, center transformation technique and geometrical sphere fitting). All children then underwent EOS low dose biplanar radiographs. Pelvis, lower limbs and their corresponding external markers were reconstructed in 3D. The center of the femoral head was considered as the reference (HJCEOS). Euclidean distances between HJCs estimated by each of the 6 methods and the HJCEOS were calculated; distances were shown to be lower in predictive compared to functional methods (p<0.0001). Contrarily to findings in adults, functional methods were shown to be less accurate than predictive methods in TD and CP children, which could be mainly due to the shorter thigh segment in children. Harrington method was shown to be the most accurate in the prediction of HJC (mean error≈18mm, SD=9mm) and quasi-equivalent to the Bell method. The bias for each method was quantified, allowing its correction for an improved HJC estimation. PMID:27477704

  10. 2D and 3D Electrical Resistivity Tomography imaging of earthquake related ground deformations at the Ancient Roman Forum and Isis Temple of Baelo Claudia (Cádiz, South Spain).

    NASA Astrophysics Data System (ADS)

    Silva, Pablo G.

    2010-05-01

    The ancient roman city of Baelo Claudia has been subject of several papers on earthquake environmental effects (EEE) and well as earthquake archaeological effects (EAE). During the field training course on archaeoseismology and palaeoseismology conducted in September 2009 (INQUA-IGCP567 Workshop) held at Baelo Claudia, four Electric Resistivity Tomography (ERT) profiles were carried out, by the teams of the Salamanca University (Spain), RWTH Aachen University (Germany) and the Geological Survey of Spain (IGME). ERT surveys were developed in the eastern side of the ancient roman Forum across the unexcavated sector of the archaeological site heading on the 1st Century AD Isis Temple. Each ERT profile was constituted by a 48 multielectrode array with spacing of 2 m resulting in a total length of investigation of around 384 m. ERT lines were separated 10 m each other resulting in a total research area of 3840 m2 to a mean investigation depth of 16 m. The selected survey configurations were Pole-Dipole and Wenner in order to get detailed information about lateral resistivity contrasts, but with a reasonable depth of investigation. The resulting 2D resistivity pseudosections clearly display deformations of the buried roman pavements which propagated in depth within the pre-roman clayey substratum of the Bolonia Bay area.. 3D modelling of the 2D pseudosections indicates that the observed deformations are related to near-surface landsliding, being possible to calculate the minimum volume of mobilized material. ERT 3D imaging allow to refine previous GPR surveys conducted at this same area and to get a subsurface picture of ground deformations caused by repeated earthquakes during the 1st and 3rd Centuries AD. Preliminary calculated volume for the mobilized materials affecting the foundations of the Isis Temple and Forum clearly points to a minimum ESI-07 VIII Intensity validating previous research in the zone. This study has been supported by the Spanish Research Projects

  11. Importance of macroseismic data from moderate local earthquakes for seismic microzoning effects distribution during the 2003 Bardo, Tunisia, earthquake

    NASA Astrophysics Data System (ADS)

    Kacem, J.; Hfaiedh, M.

    2012-04-01

    The area considered in this study is located in Northern Tunisia. Being part of the western Mediterranean region, the geodynamic evolution of Northern Tunisia is closely related to the convergence between the African and the European tectonic plates. Numerous Quaternary fold, reverse and strike slip faults and historical earthquake indicate that the seismic hazard of Tunisia is considerable and a better strategy for seismic risk evaluation needs to be developed. In fact, the recent Quaternary activity in Tunisia has been proved and described by numerous authors. This activity sometimes affects Holocene to historic deposits. In particular, evidence of damage can be seen in several sites where constructions dating back to the Roman epoch have been affected. The large number of sites showing Holocene to Historic tectonic deformations cannot be explained by the relatively weak magnitude (M< 5), which characterizes the seismicity of Tunisia. These results suggest that Tunisia is characterized either by relatively important seismicity during the recent quaternary period or by a very shallow seismicity. The second hypothesis is supported by the recent macroseismicity data where several surface effects are observed in many examples of moderate earthquakes. To verify the results of seismic microzoning and to improve techniques, the macroseismic data of past strongly expressed earthquakes is an important key reference. The macroseismic and accelerometric data of the 2003 Bardo, Tunisia, earthquake in the epicentral region are collected and compiled to produce the most reliable and detailed isoseismal map. The area enclosed in the isoseismal with IV EMS degree is not symmetric with respect to the isoseismal with higher degree (V EMS). From this point of view, we can affirm that the attenuation was stronger on the western part than on the eastern one. Moreover, due to very local site effects, we found sporadic small areas with intensity up to IV EMS degree randomly distributed

  12. Crustal Structure Beneath Pleasant Valley, Nevada from Local and Regional Earthquake Travel Times

    NASA Astrophysics Data System (ADS)

    Kant, L. B.; Nabelek, J.; Braunmiller, J.

    2011-12-01

    In 1915 the Pleasant Valley fault in the Basin and Range Province of northern Nevada ruptured in a Mw~7 earthquake, one of the largest normal faulting earthquakes in U.S. history. We are currently operating a densely spaced linear array of broadband three-component seismometers across the Pleasant Valley fault to investigate the structure and the geometry of the fault zone. Here, we present a local crustal velocity model derived from P and S wave travel times of local and regional earthquakes recorded by the Pleasant Valley array. Regional events in northern California, eastern Nevada and Utah that occurred in line with the array are well recorded and provide constraints on upper mantle velocities. Many local seismic events were also observed. Only a few of these events were detected by the ANSS network, reflecting the limited detection capability in sparsely instrumented northern Nevada. The local event set includes earthquakes, mining blasts and sonic booms from nearby jet airplane flights. A subset of these events was located using Hypoinverse. Their travel time curves are used to estimate crustal structure and velocity in the Pleasant Valley region. This is an EarthScope FlexArray project.

  13. Inversion for rupture properties based upon 3-D directivity effect and application to deep earthquakes in the Sea of Okhotsk region

    NASA Astrophysics Data System (ADS)

    Park, Sunyoung; Ishii, Miaki

    2015-11-01

    Rupture properties, such as rupture direction, length, propagation speed and source duration, provide important insights into earthquake mechanisms. One approach to estimate these properties is to investigate the body-wave duration that depends upon the relative location of the station with respect to the rupture direction. Under the assumption that the propagation is unilateral, the duration can be expressed as a function of the dip and azimuth of the rupture. Examination of duration measurements with respect to both the take-off angle and the azimuth is crucial to obtain robust estimates of rupture parameters, especially for nearly vertical rupture propagation. Moreover, limited data coverage, such as using only teleseismic data, can bias the source duration estimate for dipping ruptures, and this bias can map into estimates of other source properties such as rupture extent and rupture speed. Based upon this framework, we introduce an inversion scheme that uses the duration measurements to obtain four parameters: the source duration, a measure of the rupture extent and speed, and dip and azimuth of the rupture propagation. The method is applied to two deep-focus events in the Sea of Okhotsk region, an Mw 7.7 event that occurred on 2012 August 14 and an Mw 8.3 event from 2013 May 24. The source durations are 26 ± 1 and 37 ± 1 s, and rupture speeds are 49 ± 4 per cent and 26 ± 3 per cent of shear wave speed for the Mw 7.7 and 8.3 events, respectively. The azimuths of the two ruptures are parallel to the trench, but are in opposite directions. The dips of the Mw 7.7 and 8.3 events are constrained to be 48° ± 8° downdip and 19° ± 8° updip, respectively. The fit to the data is significantly poorer for the Mw 8.3 event than the Mw 7.7 event, suggesting that the unilateral rupture may not be a good assumption. The analysis is expanded into a multi-episode model, and a secondary episode is determined for the Mw 8.3 event in the southeast direction. The two

  14. Local ISM 3D distribution and soft X-ray background. Inferences on nearby hot gas and the North Polar Spur

    NASA Astrophysics Data System (ADS)

    Puspitarini, L.; Lallement, R.; Vergely, J.-L.; Snowden, S. L.

    2014-06-01

    Three-dimensional (3D) interstellar medium (ISM) maps can be used to locate not only interstellar (IS) clouds, but also IS bubbles between the clouds that are blown by stellar winds and supernovae, and that are filled by hot gas. To demonstrate this and to derive a clearer picture of the local ISM, we compare our recent 3D maps of the IS dust distribution to the ROSAT diffuse X-ray background maps after removing heliospheric emission. In the Galactic plane, there is a good correspondence between the locations and extents of the mapped nearby cavities and the soft (0.25 keV) background emission distribution, showing that most of these nearby cavities contribute to this soft X-ray emission. Assuming a constant dust-to-gas ratio and homogeneous 106 K hot gas filling the cavities, we modeled the 0.25 keV surface brightness in a simple way along the Galactic plane as seen from the Sun, taking the absorption by the mapped clouds into account. The data-model comparison favors the existence of hot gas in the solar neighborhood, the so-called Local Bubble (LB). The inferred average mean pressure in the local cavities is found to be on the order of 10 000 cm-3 K, in agreement with previous studies, providing a validation test for the method. On the other hand, the model overestimates the emission from the huge cavities located in the third quadrant. Using CaII absorption data, we show that the dust-to-CaII ratio is very low in this region, implying there is a large quantity of lower temperature (non-X-ray emitting) ionized gas and, as a consequence, a reduction in the volume filled by hot gas, explaining at least part of the discrepancy. In the meridian plane, the main two brightness enhancements coincide well with the LB's most elongated parts and chimneys connecting the LB to the halo, but no particular nearby cavity is found towards the enhancement in the direction of the bright North Polar Spur (NPS) at high latitude. We searched in the 3D maps for the source regions of

  15. Crustal Velocity Structure of the Rio Grande Rift and Rocky Mountains from Local Earthquakes and Blasts Recorded by USArray and CREST

    NASA Astrophysics Data System (ADS)

    Nakai, J.; Sheehan, A. F.; Bilek, S. L.

    2015-12-01

    Arrival times from over 3,100 earthquakes and 2,800 mine blasts recorded at USArray Transportable Array (TA) and other regional broadband seismic stations are inverted to find the regional P and S velocity structure in Colorado and New Mexico. Knowledge of the crustal structure in Colorado will help inform to what extent this structure and composition influences the isostatic compensation of high topography in the region. The relationship between the Rio Grande rift and the surrounding physiographic provinces remains enigmatic, and neither the geology nor geophysical surveys have clearly resolved the rift in Colorado. Therefore, tomography may supply more information about velocity variations along the rift within the context of the Colorado Plateau, the Great Plains, and the Rocky Mountains. Thus far, applications with the TA data to resolve P wave crustal structure are rare due to distant station spacing and small magnitude and shallow (mid to upper crustal) local earthquakes. The depths of the earthquakes range from 4 km to the mid-crust, so we expect dense ray coverage in the upper crust. In order to increase the number of crossing rays, we use mine blast P wave arrivals to constrain shallow surface structure. A total of 70,000 P wave arrivals and 18,000 S wave arrivals constitute the dataset. We develop a reliable 1D regional velocity model using 500 of the largest earthquakes with a fixed Vp/Vs ratio from the arrival data, then use this model as an input to investigate the feasibility of utilization of a 3D inversion algorithm. While use of a 3D inversion algorithm will be explored, construction of a series of 1D velocity and Vp/Vs models may prove to be more robust.

  16. Joint Inversion of Earthquake Source Parameters with local and teleseismic body waves

    NASA Astrophysics Data System (ADS)

    Chen, W.; Ni, S.; Wang, Z.

    2011-12-01

    In the classical source parameter inversion algorithm of CAP (Cut and Paste method, by Zhao and Helmberger), waveform data at near distances (typically less than 500km) are partitioned into Pnl and surface waves to account for uncertainties in the crustal models and different amplitude weight of body and surface waves. The classical CAP algorithms have proven effective for resolving source parameters (focal mechanisms, depth and moment) for earthquakes well recorded on relatively dense seismic network. However for regions covered with sparse stations, it is challenging to achieve precise source parameters . In this case, a moderate earthquake of ~M6 is usually recorded on only one or two local stations with epicentral distances less than 500 km. Fortunately, an earthquake of ~M6 can be well recorded on global seismic networks. Since the ray paths for teleseismic and local body waves sample different portions of the focal sphere, combination of teleseismic and local body wave data helps constrain source parameters better. Here we present a new CAP mothod (CAPjoint), which emploits both teleseismic body waveforms (P and SH waves) and local waveforms (Pnl, Rayleigh and Love waves) to determine source parameters. For an earthquake in Nevada that is well recorded with dense local network (USArray stations), we compare the results from CAPjoint with those from the traditional CAP method involving only of local waveforms , and explore the efficiency with bootstraping statistics to prove the results derived by CAPjoint are stable and reliable. Even with one local station included in joint inversion, accuracy of source parameters such as moment and strike can be much better improved.

  17. Shear Wave Splitting from Local Earthquakes in the New Madrid Seismic Zone

    NASA Astrophysics Data System (ADS)

    Martin, P.; Arroucau, P.; Vlahovic, G.

    2012-12-01

    In this study we investigate crustal anisotropy in the New Madrid seismic zone (NMSZ), by analyzing shear wave splitting from local earthquake data. The NMSZ is centrally located in the United States, spanning portions of western Tennessee, northeastern Arkansas, and southeastern Missouri. The NMSZ is also the location in which three of the largest known earthquakes took place in North America, occurring in 1811-1812. Although many seismic studies have been performed in this region, there is no consensus about which driving mechanism could satisfy both the current observations, as well as the historically observed seismicity. Therefore, it is important to continue investigating the NMSZ, to gain a better understanding of its seismicity, and the possible mechanisms that drive it. The automated technique developed by Savage et al. (2010) is used to perform the shear wave splitting measurements at 120 seismic stations within the NMSZ. The Center for Earthquake Research and Information (CERI) at the University of Memphis provided data for 1151 earthquakes spanning the years 2003-2011. The initial event selection was reduced to 245 earthquakes ranging in magnitude from 2.0 to 4.6, which fell within the shear wave window of one or more of the stations. The results of this study provide information about orientation of microcracks in the upper portion of the crust; future work will include analysis for temporal and spatial variations in order to assess the state of stress in the region.

  18. Improved Detection of Local Earthquakes in the Vienna Basin (Austria), using Subspace Detectors

    NASA Astrophysics Data System (ADS)

    Apoloner, Maria-Theresia; Caffagni, Enrico; Bokelmann, Götz

    2016-04-01

    The Vienna Basin in Eastern Austria is densely populated and highly-developed; it is also a region of low to moderate seismicity, yet the seismological network coverage is relatively sparse. This demands improving our capability of earthquake detection by testing new methods, enlarging the existing local earthquake catalogue. This contributes to imaging tectonic fault zones for better understanding seismic hazard, also through improved earthquake statistics (b-value, magnitude of completeness). Detection of low-magnitude earthquakes or events for which the highest amplitudes slightly exceed the signal-to-noise-ratio (SNR), may be possible by using standard methods like the short-term over long-term average (STA/LTA). However, due to sparse network coverage and high background noise, such a technique may not detect all potentially recoverable events. Yet, earthquakes originating from the same source region and relatively close to each other, should be characterized by similarity in seismic waveforms, at a given station. Therefore, waveform similarity can be exploited by using specific techniques such as correlation-template based (also known as matched filtering) or subspace detection methods (based on the subspace theory). Matching techniques basically require a reference or template event, usually characterized by high waveform coherence in the array receivers, and high SNR, which is cross-correlated with the continuous data. Instead, subspace detection methods overcome in principle the necessity of defining template events as single events, but use a subspace extracted from multiple events. This approach theoretically should be more robust in detecting signals that exhibit a strong variability (e.g. because of source or magnitude). In this study we scan the continuous data recorded in the Vienna Basin with a subspace detector to identify additional events. This will allow us to estimate the increase of the seismicity rate in the local earthquake catalogue

  19. A novel vector potential formulation of 3D Navier-Stokes equations with through-flow boundaries by a local meshless method

    NASA Astrophysics Data System (ADS)

    Young, D. L.; Tsai, C. H.; Wu, C. S.

    2015-11-01

    An alternative vector potential formulation is used to solve the Navier-Stokes (N-S) equations in 3D incompressible viscous flow problems with and without through-flow boundaries. Difficulties of the vector potential formulation include the implementation of boundary conditions for through-flow boundaries and the numerical treatment of fourth-order partial differential equations. The advantages on the other hand are the automatic satisfaction of the continuity equation; and pressure is decoupled from the velocity. The objective of this paper is to introduce the appropriate gauge and boundary conditions on the vector potential formulation by a localized meshless method. To handle the divergence-free property, a Coulomb gauge condition is enforced on the vector potential to ensure its existence and uniqueness mathematically. We further improve the algorithm to through-flow problems for the boundary conditions of vector potential by introducing the concept of Stokes' theorem. Based on this innovation, there is no need to include an additional variable to tackle the through-flow fields. This process will greatly simplify the imposition of boundary conditions by the vector potential approach. Under certain conditions, the coupled fourth-order partial differential equations can be easily solved by using this meshless local differential quadrature (LDQ) method. Due to the LDQ capability to deal with the high order differential equations, this algorithm is very attractive to solve this fourth-order vector potential formulation for the N-S equations as comparing to the conventional numerical schemes such as finite element or finite difference methods. The proposed vector potential formulation is simpler and has improved accuracy and efficiency compared to other pressure-free or pressure-coupled algorithms. This investigation can be regarded as the first complete study to obtain the N-S solutions by vector potential formulation through a LDQ method. Two classic 3D benchmark

  20. Earthquake swarms and local crustal spreading along major strike-slip faults in California

    USGS Publications Warehouse

    Weaver, C.S.; Hill, D.P.

    1978-01-01

    Earthquake swarms in California are often localized to areas within dextral offsets in the linear trend in active fault strands, suggesting a relation between earthquake swarms and local crustal spreading. Local crustal spereading is required by the geometry of dextral offsets when, as in the San Andreas system, faults have dominantly strike-slip motion with right-lateral displacement. Three clear examples of this relation occur in the Imperial Valley, Coso Hot Springs, and the Danville region, all in California. The first two of these areas are known for their Holocene volcanism and geothermal potential, which is consistent with crustal spreading and magmatic intrusion. The third example, however, shows no evidence for volcanism or geothermal activity at the surface. ?? 1978 Birkha??user Verlag.

  1. Clustering and interpretation of local earthquake tomography models in the southern Dead Sea basin

    NASA Astrophysics Data System (ADS)

    Bauer, Klaus; Braeuer, Benjamin

    2016-04-01

    The Dead Sea transform (DST) marks the boundary between the Arabian and the African plates. Ongoing left-lateral relative plate motion and strike-slip deformation started in the Early Miocene (20 MA) and produced a total shift of 107 km until presence. The Dead Sea basin (DSB) located in the central part of the DST is one of the largest pull-apart basins in the world. It was formed from step-over of different fault strands at a major segment boundary of the transform fault system. The basin development was accompanied by deposition of clastics and evaporites and subsequent salt diapirism. Ongoing deformation within the basin and activity of the boundary faults are indicated by increased seismicity. The internal architecture of the DSB and the crustal structure around the DST were subject of several large scientific projects carried out since 2000. Here we report on a local earthquake tomography study from the southern DSB. In 2006-2008, a dense seismic network consisting of 65 stations was operated for 18 months in the southern part of the DSB and surrounding regions. Altogether 530 well-constrained seismic events with 13,970 P- and 12,760 S-wave arrival times were used for a travel time inversion for Vp, Vp/Vs velocity structure and seismicity distribution. The work flow included 1D inversion, 2.5D and 3D tomography, and resolution analysis. We demonstrate a possible strategy how several tomographic models such as Vp, Vs and Vp/Vs can be integrated for a combined lithological interpretation. We analyzed the tomographic models derived by 2.5D inversion using neural network clustering techniques. The method allows us to identify major lithologies by their petrophysical signatures. Remapping the clusters into the subsurface reveals the distribution of basin sediments, prebasin sedimentary rocks, and crystalline basement. The DSB shows an asymmetric structure with thickness variation from 5 km in the west to 13 km in the east. Most importantly, a well-defined body

  2. Preliminary results of local earthquake tomography around Bali, Lombok, and Sumbawa regions

    SciTech Connect

    Nugraha, Andri Dian Puspito, Nanang T; Yudistira, Tedi; Kusnandar, Ridwan; Sakti, Artadi Pria

    2015-04-24

    Bali, Sumbawa, and Lombok regions are located in active tectonic influence by Indo-Australia plate subducts beneath Sunda plate in southern part and local back-arc thrust in northern part the region. Some active volcanoes also lie from eastern part of Java, Bali, Lombok and Sumbawa regions. Previous studies have conducted subsurface seismic velocity imaging using regional and global earthquake data around the region. In this study, we used P-arrival time from local earthquake networks compiled by MCGA, Indonesia within time periods of 2009 up to 2013 to determine seismic velocity structure and simultaneously hypocenter adjustment by applying seismic tomography inversion method. For the tomographic inversion procedure, we started from 1-D initial velocity structure. We evaluated the resolution of tomography inversion results through checkerboard test and calculating derivative weigh sum. The preliminary results of tomography inversion show fairly clearly high seismic velocity subducting Indo-Australian and low velocity anomaly around volcano regions. The relocated hypocenters seem to cluster around the local fault system such as back-arc thrust fault in northern part of the region and around local fault in Sumbawa regions. Our local earthquake tomography results demonstrated consistent with previous studies and improved the resolution. For future works, we will determine S-wave velocity structure using S-wave arrival time to enhance our understanding of geological processes and for much better interpretation.

  3. OREGANO_VE: a new parallelised 3D solver for the general (non-)linear Maxwell visco-elastic problem: validation and application to the calculation of surface deformation in the earthquake cycle

    NASA Astrophysics Data System (ADS)

    Yamasaki, Tadashi; Houseman, Gregory; Hamling, Ian; Postek, Elek

    2010-05-01

    We have developed a new parallelized 3-D numerical code, OREGANO_VE, for the solution of the general visco-elastic problem in a rectangular block domain. The mechanical equilibrium equation is solved using the finite element method for a (non-)linear Maxwell visco-elastic rheology. Time-dependent displacement and/or traction boundary conditions can be applied. Matrix assembly is based on a tetrahedral element defined by 4 vertex nodes and 6 nodes located at the midpoints of the edges, and within which displacement is described by a quadratic interpolation function. For evaluating viscoelastic relaxation, an explicit time-stepping algorithm (Zienkiewicz and Cormeau, Int. J. Num. Meth. Eng., 8, 821-845, 1974) is employed. We test the accurate implementation of the OREGANO_VE by comparing numerical and analytic (or semi-analytic half-space) solutions to different problems in a range of applications: (1) equilibration of stress in a constant density layer after gravity is switched on at t = 0 tests the implementation of spatially variable viscosity and non-Newtonian viscosity; (2) displacement of the welded interface between two blocks of differing viscosity tests the implementation of viscosity discontinuities, (3) displacement of the upper surface of a layer under applied normal load tests the implementation of time-dependent surface tractions (4) visco-elastic response to dyke intrusion (compared with the solution in a half-space) tests the implementation of all aspects. In each case, the accuracy of the code is validated subject to use of a sufficiently small time step, providing assurance that the OREGANO_VE code can be applied to a range of visco-elastic relaxation processes in three dimensions, including post-seismic deformation and post-glacial uplift. The OREGANO_VE code includes a capability for representation of prescribed fault slip on an internal fault. The surface displacement associated with large earthquakes can be detected by some geodetic observations

  4. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  5. Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3D localization of fluorescent cells in the mouse retina.

    PubMed

    Zawadzki, Robert J; Zhang, Pengfei; Zam, Azhar; Miller, Eric B; Goswami, Mayank; Wang, Xinlei; Jonnal, Ravi S; Lee, Sang-Hyuck; Kim, Dae Yu; Flannery, John G; Werner, John S; Burns, Marie E; Pugh, Edward N

    2015-06-01

    Adaptive optics scanning laser ophthalmoscopy (AO-SLO) has recently been used to achieve exquisite subcellular resolution imaging of the mouse retina. Wavefront sensing-based AO typically restricts the field of view to a few degrees of visual angle. As a consequence the relationship between AO-SLO data and larger scale retinal structures and cellular patterns can be difficult to assess. The retinal vasculature affords a large-scale 3D map on which cells and structures can be located during in vivo imaging. Phase-variance OCT (pv-OCT) can efficiently image the vasculature with near-infrared light in a label-free manner, allowing 3D vascular reconstruction with high precision. We combined widefield pv-OCT and SLO imaging with AO-SLO reflection and fluorescence imaging to localize two types of fluorescent cells within the retinal layers: GFP-expressing microglia, the resident macrophages of the retina, and GFP-expressing cone photoreceptor cells. We describe in detail a reflective afocal AO-SLO retinal imaging system designed for high resolution retinal imaging in mice. The optical performance of this instrument is compared to other state-of-the-art AO-based mouse retinal imaging systems. The spatial and temporal resolution of the new AO instrumentation was characterized with angiography of retinal capillaries, including blood-flow velocity analysis. Depth-resolved AO-SLO fluorescent images of microglia and cone photoreceptors are visualized in parallel with 469 nm and 663 nm reflectance images of the microvasculature and other structures. Additional applications of the new instrumentation are discussed.

  6. Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3D localization of fluorescent cells in the mouse retina

    PubMed Central

    Zawadzki, Robert J.; Zhang, Pengfei; Zam, Azhar; Miller, Eric B.; Goswami, Mayank; Wang, Xinlei; Jonnal, Ravi S.; Lee, Sang-Hyuck; Kim, Dae Yu; Flannery, John G.; Werner, John S.; Burns, Marie E.; Pugh, Edward N.

    2015-01-01

    Adaptive optics scanning laser ophthalmoscopy (AO-SLO) has recently been used to achieve exquisite subcellular resolution imaging of the mouse retina. Wavefront sensing-based AO typically restricts the field of view to a few degrees of visual angle. As a consequence the relationship between AO-SLO data and larger scale retinal structures and cellular patterns can be difficult to assess. The retinal vasculature affords a large-scale 3D map on which cells and structures can be located during in vivo imaging. Phase-variance OCT (pv-OCT) can efficiently image the vasculature with near-infrared light in a label-free manner, allowing 3D vascular reconstruction with high precision. We combined widefield pv-OCT and SLO imaging with AO-SLO reflection and fluorescence imaging to localize two types of fluorescent cells within the retinal layers: GFP-expressing microglia, the resident macrophages of the retina, and GFP-expressing cone photoreceptor cells. We describe in detail a reflective afocal AO-SLO retinal imaging system designed for high resolution retinal imaging in mice. The optical performance of this instrument is compared to other state-of-the-art AO-based mouse retinal imaging systems. The spatial and temporal resolution of the new AO instrumentation was characterized with angiography of retinal capillaries, including blood-flow velocity analysis. Depth-resolved AO-SLO fluorescent images of microglia and cone photoreceptors are visualized in parallel with 469 nm and 663 nm reflectance images of the microvasculature and other structures. Additional applications of the new instrumentation are discussed. PMID:26114038

  7. Local magnitude determinations for intermountain seismic belt earthquakes from broadband digital data

    USGS Publications Warehouse

    Pechmann, J.C.; Nava, S.J.; Terra, F.M.; Bernier, J.C.

    2007-01-01

    The University of Utah Seismograph Stations (UUSS) earthquake catalogs for the Utah and Yellowstone National Park regions contain two types of size measurements: local magnitude (ML) and coda magnitude (MC), which is calibrated against ML. From 1962 through 1993, UUSS calculated ML values for southern and central Intermountain Seismic Belt earthquakes using maximum peak-to-peak (p-p) amplitudes on paper records from one to five Wood-Anderson (W-A) seismographs in Utah. For ML determinations of earthquakes since 1994, UUSS has utilized synthetic W-A seismograms from U.S. National Seismic Network and UUSS broadband digital telemetry stations in the region, which numbered 23 by the end of our study period on 30 June 2002. This change has greatly increased the percentage of earthquakes for which ML can be determined. It is now possible to determine ML for all M ???3 earthquakes in the Utah and Yellowstone regions and earthquakes as small as M <1 in some areas. To maintain continuity in the magnitudes in the UUSS earthquake catalogs, we determined empirical ML station corrections that minimize differences between MLs calculated from paper and synthetic W-A records. Application of these station corrections, in combination with distance corrections from Richter (1958) which have been in use at UUSS since 1962, produces ML values that do not show any significant distance dependence. ML determinations for the Utah and Yellowstone regions for 1981-2002 using our station corrections and Richter's distance corrections have provided a reliable data set for recalibrating the MC scales for these regions. Our revised ML values are consistent with available moment magnitude determinations for Intermountain Seismic Belt earthquakes. To facilitate automatic ML measurements, we analyzed the distribution of the times of maximum p-p amplitudes in synthetic W-A records. A 30-sec time window for maximum amplitudes, beginning 5 sec before the predicted Sg time, encompasses 95% of the

  8. Decoding 3D reach and grasp from hybrid signals in motor and premotor cortices: spikes, multiunit activity, and local field potentials.

    PubMed

    Bansal, Arjun K; Truccolo, Wilson; Vargas-Irwin, Carlos E; Donoghue, John P

    2012-03-01

    Neural activity in motor cortex during reach and grasp movements shows modulations in a broad range of signals from single-neuron spiking activity (SA) to various frequency bands in broadband local field potentials (LFPs). In particular, spatiotemporal patterns in multiband LFPs are thought to reflect dendritic integration of local and interareal synaptic inputs, attentional and preparatory processes, and multiunit activity (MUA) related to movement representation in the local motor area. Nevertheless, the relationship between multiband LFPs and SA, and their relationship to movement parameters and their relative value as brain-computer interface (BCI) control signals, remain poorly understood. Also, although this broad range of signals may provide complementary information channels in primary (MI) and ventral premotor (PMv) areas, areal differences in information have not been systematically examined. Here, for the first time, the amount of information in SA and multiband LFPs was compared for MI and PMv by recording from dual 96-multielectrode arrays while monkeys made naturalistic reach and grasp actions. Information was assessed as decoding accuracy for 3D arm end point and grip aperture kinematics based on SA or LFPs in MI and PMv, or combinations of signal types across areas. In contrast with previous studies with ≤16 simultaneous electrodes, here ensembles of >16 units (on average) carried more information than multiband, multichannel LFPs. Furthermore, reach and grasp information added by various LFP frequency bands was not independent from that in SA ensembles but rather typically less than and primarily contained within the latter. Notably, MI and PMv did not show a particular bias toward reach or grasp for this task or for a broad range of signal types. For BCIs, our results indicate that neuronal ensemble spiking is the preferred signal for decoding, while LFPs and combined signals from PMv and MI can add robustness to BCI control. PMID:22157115

  9. 3D-2D image registration for target localization in spine surgery: investigation of similarity metrics providing robustness to content mismatch

    NASA Astrophysics Data System (ADS)

    De Silva, T.; Uneri, A.; Ketcha, M. D.; Reaungamornrat, S.; Kleinszig, G.; Vogt, S.; Aygun, N.; Lo, S.-F.; Wolinsky, J.-P.; Siewerdsen, J. H.

    2016-04-01

    In image-guided spine surgery, robust three-dimensional to two-dimensional (3D-2D) registration of preoperative computed tomography (CT) and intraoperative radiographs can be challenged by the image content mismatch associated with the presence of surgical instrumentation and implants as well as soft-tissue resection or deformation. This work investigates image similarity metrics in 3D-2D registration offering improved robustness against mismatch, thereby improving performance and reducing or eliminating the need for manual masking. The performance of four gradient-based image similarity metrics (gradient information (GI), gradient correlation (GC), gradient information with linear scaling (GS), and gradient orientation (GO)) with a multi-start optimization strategy was evaluated in an institutional review board-approved retrospective clinical study using 51 preoperative CT images and 115 intraoperative mobile radiographs. Registrations were tested with and without polygonal masks as a function of the number of multistarts employed during optimization. Registration accuracy was evaluated in terms of the projection distance error (PDE) and assessment of failure modes (PDE  >  30 mm) that could impede reliable vertebral level localization. With manual polygonal masking and 200 multistarts, the GC and GO metrics exhibited robust performance with 0% gross failures and median PDE  <  6.4 mm (±4.4 mm interquartile range (IQR)) and a median runtime of 84 s (plus upwards of 1-2 min for manual masking). Excluding manual polygonal masks and decreasing the number of multistarts to 50 caused the GC-based registration to fail at a rate of  >14% however, GO maintained robustness with a 0% gross failure rate. Overall, the GI, GC, and GS metrics were susceptible to registration errors associated with content mismatch, but GO provided robust registration (median PDE  =  5.5 mm, 2.6 mm IQR) without manual masking and with an improved

  10. 3D-2D image registration for target localization in spine surgery: investigation of similarity metrics providing robustness to content mismatch.

    PubMed

    De Silva, T; Uneri, A; Ketcha, M D; Reaungamornrat, S; Kleinszig, G; Vogt, S; Aygun, N; Lo, S-F; Wolinsky, J-P; Siewerdsen, J H

    2016-04-21

    In image-guided spine surgery, robust three-dimensional to two-dimensional (3D-2D) registration of preoperative computed tomography (CT) and intraoperative radiographs can be challenged by the image content mismatch associated with the presence of surgical instrumentation and implants as well as soft-tissue resection or deformation. This work investigates image similarity metrics in 3D-2D registration offering improved robustness against mismatch, thereby improving performance and reducing or eliminating the need for manual masking. The performance of four gradient-based image similarity metrics (gradient information (GI), gradient correlation (GC), gradient information with linear scaling (GS), and gradient orientation (GO)) with a multi-start optimization strategy was evaluated in an institutional review board-approved retrospective clinical study using 51 preoperative CT images and 115 intraoperative mobile radiographs. Registrations were tested with and without polygonal masks as a function of the number of multistarts employed during optimization. Registration accuracy was evaluated in terms of the projection distance error (PDE) and assessment of failure modes (PDE  >  30 mm) that could impede reliable vertebral level localization. With manual polygonal masking and 200 multistarts, the GC and GO metrics exhibited robust performance with 0% gross failures and median PDE < 6.4 mm (±4.4 mm interquartile range (IQR)) and a median runtime of 84 s (plus upwards of 1-2 min for manual masking). Excluding manual polygonal masks and decreasing the number of multistarts to 50 caused the GC-based registration to fail at a rate of >14%; however, GO maintained robustness with a 0% gross failure rate. Overall, the GI, GC, and GS metrics were susceptible to registration errors associated with content mismatch, but GO provided robust registration (median PDE  =  5.5 mm, 2.6 mm IQR) without manual masking and with an improved runtime (29.3 s). The GO metric improved

  11. Time-Reversal to Estimate Focal Depth for Local, Shallow Earthquakes in Southern California

    NASA Astrophysics Data System (ADS)

    Pearce, F.; Lu, R.; Toksoz, N.

    2007-12-01

    Current approaches for focal depth estimation are typically based on travel times and result in large uncertainties primarily due to poor data coverage and inaccurate travel time picks. We propose an alternative method based on an adaptation of time-reversed acoustics (TRA). In the context of TRA theory, the autocorrelation of an earthquake recording can be thought of as the convolution of the source autocorrelation function with the autocorrelation of the Green's function describing propagation between source and receiver. Furthermore, the signal to noise ratio (S/N) of stationary phases in the Green's function may be improved by stacking the autocorrelations from many receivers. In this study, we employ such an approach to estimate the focal depth of shallow earthquakes based on the time lag between the direct P phase and pP converted phase, which is assumed to be stationary across the receiver array. Focal depth estimates are easily obtained by multiplying half the pP time lag by the average velocity above the earthquake. We apply this methodology to estimate focal depths for several local earthquakes in Southern California. Earthquake recordings were obtained from the Southern California Earthquake Center (SCEC) for events with accurate, independent estimates of focal depth below about 15 km, and local magnitudes between 4.0 and 6.0. We observe pP in the stacked autocorrelations that correspond to the focal depths listed in the SCEC catalog for earthquakes located throughout Southern California. The predictive capability of the method is limited by S/N, defined as the pP amplitude divided by the background noise level of the stacked correlation. By considering subsets of the Southern California array, we explore the sensitivity of the S/N on station density and location (i.e. epicentral distance & azimuth). We find S/N is generally better for subsets of receivers within regions with relatively simple geologic structure. We are currently developing an extension

  12. Imaging the Alpine Fault, South Island, New Zealand, using local earthquake coda

    NASA Astrophysics Data System (ADS)

    Bannister, S.; Louie, J.; Henrys, S.

    2004-12-01

    The major strike-slip Alpine fault marks the boundary between the obliquely converging Pacific and Australian plates in South Island, New Zealand. Previous studies have inferred a total strike-slip displacement of c. 450 km along this transpressional section of the plate boundary, and an estimated c. 100 km of shortening, which has resulted in the uplift of the Southern Alps mountain range. Active-source seismic reflection imaging suggests that the Alpine fault dips southeast at c. 40 degrees, to a depth of around 22 km (Davey et al., 1998). Here, we attempt to directly image the Alpine fault zone using back-projection migration of local-earthquake coda. We specifically use records from aftershocks of the Mw 6.7 Arthur's Pass earthquake, the largest earthquake in the region for 65 years, which occurred about 25 km southeast of the Alpine fault. The aftershocks of this earthquake were well recorded by a 6-station portable array (Abercrombie et al., 2000). Pre-processing involved relocation of these aftershocks with the double difference technique, utilising cross-correlation differences between the waveforms. This relocation substantially improved relative event locations, and highlighted the Bruce fault and other secondary faults in the region. Subsequent back-projection imaging, using station gathers of the seismograms of the relocated events, results in reflectivity images of the mid-crust near the Alpine fault and beneath the aftershock sequence.

  13. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The Apollo implementation of PLOT3D uses some of the capabilities of

  14. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The Apollo implementation of PLOT3D uses some of the capabilities of

  15. 3d-3d correspondence revisited

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  16. 3d-3d correspondence revisited

    DOE PAGES

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  17. The ATLAS3D project - XXI. Correlations between gradients of local escape velocity and stellar populations in early-type galaxies

    NASA Astrophysics Data System (ADS)

    Scott, Nicholas; Cappellari, Michele; Davies, Roger L.; Kleijn, Gijs Verdoes; Bois, Maxime; Alatalo, Katherine; Blitz, Leo; Bournaud, Frédéric; Bureau, Martin; Crocker, Alison; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2013-07-01

    We explore the connection between the local escape velocity, Vesc, and the stellar population properties in the ATLAS3D survey, a complete, volume-limited sample of nearby early-type galaxies. We make use of ugriz photometry to construct Multi-Gaussian Expansion models of the surface brightnesses of our galaxies. We are able to fit the full range of surface brightness profiles found in our sample, and in addition we reproduce the results of state-of-the-art photometry in the literature with residuals of 0.04 mag. We utilize these photometric models and SAURON integral-field spectroscopy, combined with Jeans dynamical modelling, to determine the local Vesc derived from the surface brightness. We find that the local Vesc is tightly correlated with the Mg b and Fe5015 line strengths and optical colours, and anti-correlated with the Hβ line strength. In the case of the Mg b and colour-Vesc relations we find that the relation within individual galaxies follows the global relation between different galaxies. We intentionally ignored any uncertain contribution due to dark matter since we are seeking an empirical description of stellar population gradients in early-type galaxies that is ideal for quantitative comparison with model predictions. We also make use of single stellar population (SSP) modelling to transform our line strength index measurements into the SSP-equivalent parameters age (t), metallicity ([Z/H]) and α-enhancement [α/Fe]. The residuals from the relation are correlated with age, [α/Fe], molecular gas mass and local environmental density. We identify a population of galaxies that occur only at low Vesc that exhibit negative gradients in the Mg b- and Colour-Vesc relations. These galaxies typically have young central stellar populations and contain significant amounts of molecular gas and dust. Combining these results with N-body simulations of binary mergers we use the Mg b-Vesc relation to constrain the possible number of dry mergers experienced by

  18. Evaluation of local electric fields generated by transcranial direct current stimulation with an extracephalic reference electrode based on realistic 3D body modeling

    NASA Astrophysics Data System (ADS)

    Im, Chang-Hwan; Park, Ji-Hye; Shim, Miseon; Chang, Won Hyuk; Kim, Yun-Hee

    2012-04-01

    In this study, local electric field distributions generated by transcranial direct current stimulation (tDCS) with an extracephalic reference electrode were evaluated to address extracephalic tDCS safety issues. To this aim, we generated a numerical model of an adult male human upper body and applied the 3D finite element method to electric current conduction analysis. In our simulations, the active electrode was placed over the left primary motor cortex (M1) and the reference electrode was placed at six different locations: over the right temporal lobe, on the right supraorbital region, on the right deltoid, on the left deltoid, under the chin, and on the right buccinator muscle. The maximum current density and electric field intensity values in the brainstem generated by the extracephalic reference electrodes were comparable to, or even less than, those generated by the cephalic reference electrodes. These results suggest that extracephalic reference electrodes do not lead to unwanted modulation of the brainstem cardio-respiratory and autonomic centers, as indicated by recent experimental studies. The volume energy density was concentrated at the neck area by the use of deltoid reference electrodes, but was still smaller than that around the active electrode locations. In addition, the distributions of elicited cortical electric fields demonstrated that the use of extracephalic reference electrodes might allow for the robust prediction of cortical modulations with little dependence on the reference electrode locations.

  19. On the local acceleration and flow trajectory of jet flows from circular and semi-circular pipes via 3D particle tracking velocimetry

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Tae; Liberzon, Alex; Chamorro, Leonardo P.

    2015-11-01

    The distinctive differences between two jet flows that share the same hydraulic diameter dh = 0.01 m and Re ~ 6000, but different (nozzle) shape are explored via 3D Particle Tracking Velocimetry using OpenPTV (http://www.openptv.net). The two jets are formed from circular and semicircular pipes and released in a quiescent water tank of 40 dh height, 40 dh wide, and 200 dh long. The recirculating system is seeded with 100 μm particles, where flow measurements are performed in the intermediate flow field (14.5 < x /dh <18.5) at 550Hz for a total of ~ 30,000 frames. Analysis is focused on the spatial distribution of the local flow acceleration and curvature of the Lagrangian trajectories. The velocity and acceleration of particles are estimated by low-pass filtering their position with a moving cubic spline fitting, while the curvature is obtained from the Frenet-Serret equations. Probability density functions (p.d.f.) of these quantities are obtained at various sub-volumes containing a given streamwise velocity range, and compared between the two cases to evaluate the memory effects in the intermediate flow field.

  20. Local heat transfer estimation in microchannels during convective boiling under microgravity conditions: 3D inverse heat conduction problem using BEM techniques

    NASA Astrophysics Data System (ADS)

    Luciani, S.; LeNiliot, C.

    2008-11-01

    Two-phase and boiling flow instabilities are complex, due to phase change and the existence of several interfaces. To fully understand the high heat transfer potential of boiling flows in microscale's geometry, it is vital to quantify these transfers. To perform this task, an experimental device has been designed to observe flow patterns. Analysis is made up by using an inverse method which allows us to estimate the local heat transfers while boiling occurs inside a microchannel. In our configuration, the direct measurement would impair the accuracy of the searched heat transfer coefficient because thermocouples implanted on the surface minichannels would disturb the established flow. In this communication, we are solving a 3D IHCP which consists in estimating using experimental data measurements the surface temperature and the surface heat flux in a minichannel during convective boiling under several gravity levels (g, 1g, 1.8g). The considered IHCP is formulated as a mathematical optimization problem and solved using the boundary element method (BEM).

  1. Enhancing Macrophage Drug Delivery Efficiency via Co-Localization of Cells and Drug-Loaded Microcarriers in 3D Resonant Ultrasound Field.

    PubMed

    Lee, Yu-Hsiang; Wu, Zhen-Yu

    2015-01-01

    In this study, a novel synthetic 3D molecular transfer system which involved the use of model drug calcein-AM-encapsulated poly(lactic-co-glycolic acid) microspheres (CAPMs) and resonant ultrasound field (RUF) with frequency of 1 MHz and output intensity of 0.5 W/cm2 for macrophage drug delivery was explored. We hypothesized that the efficiency of CAPMs-mediated drug delivery aided by RUF can be promoted by increasing the contact opportunities between cells and the micrometer-sized drug carriers due to effects of acoustic radiation forces generated by RUF. Through the fluoromicroscopic and flow cytometric analyses, our results showed that both DH82 macrophages and CAPMs can be quickly brought to acoustic pressure nodes within 20 sec under RUF exposure, and were consequently aggregated throughout the time course. The efficacy of cellular uptake of CAPMs was enhanced with increased RUF exposure time where a 3-fold augmentation (P < 0.05) was obtained after 15 min of RUF exposure. We further demonstrated that the enhanced CAPM delivery efficiency was mainly contributed by the co-localization of cells and CAPMs resulting from the application of the RUF, rather than from sonoporation. In summary, the developed molecular delivery approach provides a feasible means for macrophage drug delivery. PMID:26267789

  2. Enhancing Macrophage Drug Delivery Efficiency via Co-Localization of Cells and Drug-Loaded Microcarriers in 3D Resonant Ultrasound Field

    PubMed Central

    Lee, Yu-Hsiang; Wu, Zhen-Yu

    2015-01-01

    In this study, a novel synthetic 3D molecular transfer system which involved the use of model drug calcein-AM-encapsulated poly(lactic-co-glycolic acid) microspheres (CAPMs) and resonant ultrasound field (RUF) with frequency of 1 MHz and output intensity of 0.5 W/cm2 for macrophage drug delivery was explored. We hypothesized that the efficiency of CAPMs-mediated drug delivery aided by RUF can be promoted by increasing the contact opportunities between cells and the micrometer-sized drug carriers due to effects of acoustic radiation forces generated by RUF. Through the fluoromicroscopic and flow cytometric analyses, our results showed that both DH82 macrophages and CAPMs can be quickly brought to acoustic pressure nodes within 20 sec under RUF exposure, and were consequently aggregated throughout the time course. The efficacy of cellular uptake of CAPMs was enhanced with increased RUF exposure time where a 3-fold augmentation (P < 0.05) was obtained after 15 min of RUF exposure. We further demonstrated that the enhanced CAPM delivery efficiency was mainly contributed by the co-localization of cells and CAPMs resulting from the application of the RUF, rather than from sonoporation. In summary, the developed molecular delivery approach provides a feasible means for macrophage drug delivery. PMID:26267789

  3. Robust method to detect and locate local earthquakes by means of amplitude measurements.

    NASA Astrophysics Data System (ADS)

    del Puy Papí Isaba, María; Brückl, Ewald

    2016-04-01

    In this study we present a robust new method to detect and locate medium and low magnitude local earthquakes. This method is based on an empirical model of the ground motion obtained from amplitude data of earthquakes in the area of interest, which were located using traditional methods. The first step of our method is the computation of maximum resultant ground velocities in sliding time windows covering the whole period of interest. In the second step, these maximum resultant ground velocities are back-projected to every point of a grid covering the whole area of interest while applying the empirical amplitude - distance relations. We refer to these back-projected ground velocities as pseudo-magnitudes. The number of operating seismic stations in the local network equals the number of pseudo-magnitudes at each grid-point. Our method introduces the new idea of selecting the minimum pseudo-magnitude at each grid-point for further analysis instead of searching for a minimum of the L2 or L1 norm. In case no detectable earthquake occurred, the spatial distribution of the minimum pseudo-magnitudes constrains the magnitude of weak earthquakes hidden in the ambient noise. In the case of a detectable local earthquake, the spatial distribution of the minimum pseudo-magnitudes shows a significant maximum at the grid-point nearest to the actual epicenter. The application of our method is restricted to the area confined by the convex hull of the seismic station network. Additionally, one must ensure that there are no dead traces involved in the processing. Compared to methods based on L2 and even L1 norms, our new method is almost wholly insensitive to outliers (data from locally disturbed seismic stations). A further advantage is the fast determination of the epicenter and magnitude of a seismic event located within a seismic network. This is possible due to the method of obtaining and storing a back-projected matrix, independent of the registered amplitude, for each seismic

  4. Northern California Seismic Attenuation: 3-D Qp and Qs models

    NASA Astrophysics Data System (ADS)

    Eberhart-Phillips, D. M.

    2015-12-01

    The northern California crust exhibits a wide range of rock types and deformation processes which produce pronounced heterogeneity in regional attenuation. Using local earthquakes, 3-D Qp and Qs crustal models have been obtained for this region which includes the San Andreas fault system, the Central Valley, the Sierra Nevada batholith, and the Mendocino subduction volcanic system. Path attenuation t* values were determined from P and S spectra of 959 spatially distributed earthquakes, magnitude 2.5-6.0 from 2005-2014, using 1254 stations from NCEDC networks and IRIS Mendocino and Sierra Nevada temporary arrays. The t* data were used in Q inversions, using existing hypocenters and 3-D velocity models, with basic 10-km node spacing. The uneven data coverage was accounted for with linking of nodes into larger areas in order to provide useful Q images across the 3-D volume. The results at shallow depth (< 2 km) show very low Q in the Sacramento Delta, the Eureka area, and parts of the Bay Area. In the brittle crust, fault zones that have high seismicity exhibit low Q. In the lower crust, low Q is observed along fault zones that have large cumulative displacement and have experienced grain size reduction. Underlying active volcanic areas, low Q features are apparent below 20-km depth. Moderately high Q is associated with igneous rocks of the Sierra Nevada and Salinian block, while the Franciscan subduction complex shows moderately low Q. The most prominent high Q feature is related to the Great Valley Ophiolite.

  5. Studying local earthquakes in the northern Fennoscandian Shield using the data of the POLENET/LAPNET temporary array

    NASA Astrophysics Data System (ADS)

    Usoltseva, O. A.; Kozlovskaya, E. G.

    2015-12-01

    Earthquakes within areas inside continental plates are still not completely understood and the progress in understanding intraplate seismicity is slow due to short history of instrumental seismology and sparse regional seismic networks in seismically non-active areas. However, knowledge about position and depth of seismogenic structures in such areas is necessary, in order to estimate seismic hazard for such critical facilities as nuclear power plants and nuclear waste deposits. In the present paper we address the problem of seismicity in the intraplate area of northern Fennoscandia using the information on local events recorded by the POLENET/LAPNET temporary seismic array during the International Polar Year 2007-2009. We relocate the seismic events by the program HYPOELLIPS and grid search method. We use the first arrivals of P-waves of local events in order to calculate a 3-D tomographic P-wave velocity model of the uppermost crust (down to 20 km) for selected region inside the study area and show that the velocity heterogeneities in the upper crust correlate well with known tectonic units. We compare position of the velocity heterogeneities with the seismogenic structures delineated by epicentres of relocated events and demonstrate that these structures generally do not correlate with the crustal units formed as a result of crustal evolution in Archean and Paleoproterozoic. On the contrary, they correlate well with the post-glacial faults located in the area of the Baltic-Bothnia Megashear (BBMS). Hypocentres of local events have depths down to 30 km. We also obtain focal mechanisms of two selected events with good data quality. Both focal mechanisms are of strike-slip type in which shift prevails over uplift. Our results demonstrate that Baltic-Bothnia Megashear is an important large-scale, reactivated tectonic structure that has to be taken into account in estimating seismic hazard in northern Fennoscandia.

  6. Local deformations around volcanoes associated with the 2011 off the Pacific coast of Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Ozawa, T.; Fujita, E.

    2013-01-01

    An Mw 9.0 great earthquake struck northeast Japan on 11 March 2011, causing crustal deformation of 1 to 2 m in volcanic areas. We applied synthetic aperture radar interferometry using Phased Array type L-band Synthetic Aperture Radar on the ALOS satellite to investigate local deformation around volcanoes associated with the earthquake. We estimated the fault-slip distribution along the trough based on obtained interferograms and crustal deformation from GEONET, and the estimated fault model explained the observed coseismic deformations well. The residual suggested local deformation around the Akita-Komagatake, Kurikoma, Zao, Azuma, and Nasu volcanoes. Their deformations were obtained from independent synthetic aperture radar pairs. Additionally, deformations in the Kurikoma, Zao, and Azuma volcanoes were confirmed by GEONET data (no GEONET stations are located in the deformation areas of other volcanoes). These facts indicate that the obtained local deformations must be actual deformations, rather than noise. Our hypothesis is that coseismic extensional deformation concentrates in the soft medium under a volcano (e.g., magma and its surrounding rock) and that this deformation has caused local deformation with subsidence. To validate this hypothesis, we carried out numerical experiments using the finite element method for a soft medium under a volcano. Distributions of observed local deformations stretch in the direction of the minor principal axis of strain, and such distributions were obtained in this experiment, indicating that the hypothesis is plausible. Conceivably, such a concentration of coseismic deformation in a magma chamber may induce a volcanic eruption.

  7. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  8. The 9/21 earthquake in Taiwan: a local government disaster rescue system.

    PubMed

    Yang, Yungnane

    2010-01-01

    This paper employs a three-element model to examine how the disaster rescue system of the government of Nantou County in Middle Taiwan functioned following the earthquake of 21 September 1999. The three elements are information gathering, local government mobilisation, and inter-organisational cooperation. The paper finds that the Nantou County government needs to address many problems associated with these three elements. Disaster information, for example, was not processed instantly because of the destruction of the electricity and telephone systems in the earthquake. Insufficient information caused ineffectiveness in the realms of mobilisation and inter-organisational cooperation. As for mobilisation, while the Nantou County magistrate successfully used specific information to encourage flows of huge resources in the county, he did not successfully mobilise human resources there. With regard to inter-organisational cooperation, myriad voluntary actors and international rescue teams travelled to Nantou County, but the fire and police services experienced cooperation and coordination problems.

  9. Deep low-frequency earthquakes in tremor localize to the plate interface in multiple subduction zones

    USGS Publications Warehouse

    Brown, J.R.; Beroza, G.C.; Ide, S.; Ohta, K.; Shelly, D.R.; Schwartz, S.Y.; Rabbel, W.; Thorwart, M.; Kao, H.

    2009-01-01

    Deep tremor under Shikoku, Japan, consists primarily, and perhaps entirely, of swarms of low-frequency earthquakes (LFEs) that occur as shear slip on the plate interface. Although tremor is observed at other plate boundaries, the lack of cataloged low-frequency earthquakes has precluded a similar conclusion about tremor in those locales. We use a network autocorrelation approach to detect and locate LFEs within tremor recorded at three subduction zones characterized by different thermal structures and levels of interplate seismicity: southwest Japan, northern Cascadia, and Costa Rica. In each case we find that LFEs are the primary constituent of tremor and that they locate on the deep continuation of the plate boundary. This suggests that tremor in these regions shares a common mechanism and that temperature is not the primary control on such activity. Copyright 2009 by the American Geophysical Union.

  10. Persistent water level changes in a well near Parkfield, California, due to local and distant earthquakes

    NASA Astrophysics Data System (ADS)

    Roeloffs, Evelyn A.

    1998-01-01

    Coseismic water level rises in the 30-m deep Bourdieu Valley (BV) well near Parkfield, California, have occurred in response to three local and five distant earthquakes. Coseismic changes in static strain cannot explain these water level rises because (1) the well is insensitive to strain at tidal periods; (2) for the distant earthquakes, the expected coseismic static strain is extremely small; and (3) the water level response is of the incorrect sign for the local earthquakes. These water level changes must therefore be caused by seismic waves, but unlike seismic water level oscillations, they are monotonic, persist for days or weeks, and seem to be caused by waves with periods of several seconds rather than long-period surface waves. Other investigators have reported a similar phenomenon in Japan. Certain wells consistently exhibit this type of coseismic water level change, which is always in the same direction, regardless of the earthquake's azimuth or focal mechanism, and approximately proportional to the inverse square of hypocentral distance. To date, the coseismic water level rises in the B V well have never exceeded the seasonal water level maximum, although their sizes are relatively well correlated with earthquake magnitude and distance. The frequency independence of the well's response to barometric pressure in the frequency band 0.1 to 0.7 cpd implies that the aquifer is fairly well confined. High aquifer compressibility, probably due to a gas phase in the pore space, is the most likely reason why the well does not respond to Earth tides. The phase and amplitude relationships between the seasonal water level and precipitation cycles constrain the horizontal hydraulic diffusivity to within a factor of 4.5, bounding hypothetical earthquake-induced changes in aquifer hydraulic properties. Moreover, changes of hydraulic conductivity and/or diffusivity throughout the aquifer would not be expected to change the water level in the same direction at every time

  11. Persistent water level changes in a well near Parkfield, California, due to local and distant earthquakes

    USGS Publications Warehouse

    Roeloffs, E.A.

    1998-01-01

    Coseismic water level rises in the 30-m deep Bourdieu Valley (BV) well near Parkfield, California, have occurred in response to three local and five distant earthquakes. Coseismic changes in static strain cannot explain these water level rises because (1) the well is insensitive to strain at tidal periods; (2) for the distant earthquakes, the expected coseismic static strain is extremely small; and (3) the water level response is of the incorrect sign for the local earthquakes. These water level changes must therefore be caused by seismic waves, but unlike seismic water level oscillations, they are monotonic, persist for days or weeks, and seem to be caused by waves with periods of several seconds rather than long-period surface waves. Other investigators have reported a similar phenomenon in Japan. Certain wells consistently exhibit this type of coseismic water level change, which is always in the same direction, regardless of the earthquake's azimuth or focal mechanism, and approximately proportional to the inverse square of hypocentral distance. To date, the coseismic water level rises in the BV well have never exceeded the seasonal water level maximum, although their sizes are relatively well correlated with earthquake magnitude and distance. The frequency independence of the well's response to barometric pressure in the frequency band 0.1 to 0.7 cpd implies that the aquifer is fairly well confined. High aquifer compressibility, probably due to a gas phase in the pore space, is the most likely reason why the well does not respond to Earth tides. The phase and amplitude relationships between the seasonal water level and precipitation cycles constrain the horizontal hydraulic diffusivity to within a factor of 4.5, bounding hypothetical earthquake-induced changes in aquifer hydraulic properties. Moreover, changes of hydraulic conductivity and/or diffusivity throughout the aquifer would not be expected to change the water level in the same direction at every time

  12. SU-E-J-13: Six Degree of Freedom Image Fusion Accuracy for Cranial Target Localization On the Varian Edge Stereotactic Radiosurgery System: Comparison Between 2D/3D and KV CBCT Image Registration

    SciTech Connect

    Xu, H; Song, K; Chetty, I; Kim, J; Wen, N

    2015-06-15

    Purpose: To determine the 6 degree of freedom systematic deviations between 2D/3D and CBCT image registration with various imaging setups and fusion algorithms on the Varian Edge Linac. Methods: An anthropomorphic head phantom with radio opaque targets embedded was scanned with CT slice thicknesses of 0.8, 1, 2, and 3mm. The 6 DOF systematic errors were assessed by comparing 2D/3D (kV/MV with CT) with 3D/3D (CBCT with CT) image registrations with different offset positions, similarity measures, image filters, and CBCT slice thicknesses (1 and 2 mm). The 2D/3D registration accuracy of 51 fractions for 26 cranial SRS patients was also evaluated by analyzing 2D/3D pre-treatment verification taken after 3D/3D image registrations. Results: The systematic deviations of 2D/3D image registration using kV- kV, MV-kV and MV-MV image pairs were within ±0.3mm and ±0.3° for translations and rotations with 95% confidence interval (CI) for a reference CT with 0.8 mm slice thickness. No significant difference (P>0.05) on target localization was observed between 0.8mm, 1mm, and 2mm CT slice thicknesses with CBCT slice thicknesses of 1mm and 2mm. With 3mm CT slice thickness, both 2D/3D and 3D/3D registrations performed less accurately in longitudinal direction than thinner CT slice thickness (0.60±0.12mm and 0.63±0.07mm off, respectively). Using content filter and using similarity measure of pattern intensity instead of mutual information, improved the 2D/3D registration accuracy significantly (P=0.02 and P=0.01, respectively). For the patient study, means and standard deviations of residual errors were 0.09±0.32mm, −0.22±0.51mm and −0.07±0.32mm in VRT, LNG and LAT directions, respectively, and 0.12°±0.46°, −0.12°±0.39° and 0.06°±0.28° in RTN, PITCH, and ROLL directions, respectively. 95% CI of translational and rotational deviations were comparable to those in phantom study. Conclusion: 2D/3D image registration provided on the Varian Edge radiosurgery, 6 DOF

  13. P wave crustal velocity structure in the greater Mount Rainier area from local earthquake tomography

    USGS Publications Warehouse

    Moran, S.C.; Lees, J.M.; Malone, S.D.

    1999-01-01

    We present results from a local earthquake tomographic imaging experiment in the greater Mount Rainier area. We inverted P wave arrival times from local earthquakes recorded at permanent and temporary Pacific Northwest Seismograph Network seismographs between 1980 and 1996. We used a method similar to that described by Lees and Crosson [1989], modified to incorporate the parameter separation method for decoupling the hypocenter and velocity problems. In the upper 7 km of the resulting model there is good correlation between velocity anomalies and surface geology. Many focal mechanisms within the St. Helens seismic zone have nodal planes parallel to the epicentral trend as well as to a north-south trending low-velocity trough, leading us to speculate that the trough represents a zone of structural weakness in which a moderate (M 6.5-7.0) earthquake could occur. In contrast, the western Rainier seismic zone does not correlate in any simple way with anomaly patterns or focal mechanism fault planes, leading us to infer that it is less likely to experience a moderate earthquake. A ???10 km-wide low-velocity anomaly occurs 5 to 18 km beneath the summit of Mount Rainier, which we interpret to be a signal of a region composed of hot, fractured rock with possible small amounts of melt or fluid. No systematic velocity pattern is observed in association with the southern Washington Cascades conductor. A midcrustal anomaly parallels the Olympic-Wallowa lineament as well as several other geophysical trends, indicating that it may play an important role in regional tectonics. Copyright 1999 by the American Geophysical Union.

  14. Earthquake deformation in the Zagros Simply Folded Belt (Iran) from radar interferometry and local seismic data

    NASA Astrophysics Data System (ADS)

    Nissen, E.; Jackson, J. A.; Yamini-Fard, F.; Tatar, M.; Roustaei, M.; Gholamzadeh, A.; Parsons, B.

    2009-12-01

    the 10 September 2008 earthquake was orthogonal to the trend of fold axes at the surface. This implies that locally, faulting and folding are decoupled. However, a number of neighboring anticlines are strongly asymmetric, with steep or overturned southern limbs, and are presumably cored by thrust faults. We therefore suggest that the Zagros contains a combination of detachment folds and fault propagation folds. We also studied the distribution of aftershocks following the 27 November 2005 and 25 March 2006 earthquakes, using data from local seismic networks. Most aftershocks occurred within the crystalline basement, at depths of ~10 km to ~25 km, substantially and resolvably deeper than the lower limit of coseismic faulting in the mainshocks. The vertical separation between the main earthquakes and aftershock activity indicates that the main earthquakes failed to rupture the full thickness of the seismogenic layer. The lower, crystalline part of the seismogenic layer may fail in separate events, although we have not yet observed one of these earthquakes with InSAR.

  15. Automatic localization of vertebral levels in x-ray fluoroscopy using 3D-2D registration: a tool to reduce wrong-site surgery

    NASA Astrophysics Data System (ADS)

    Otake, Y.; Schafer, S.; Stayman, J. W.; Zbijewski, W.; Kleinszig, G.; Graumann, R.; Khanna, A. J.; Siewerdsen, J. H.

    2012-09-01

    Surgical targeting of the incorrect vertebral level (wrong-level surgery) is among the more common wrong-site surgical errors, attributed primarily to the lack of uniquely identifiable radiographic landmarks in the mid-thoracic spine. The conventional localization method involves manual counting of vertebral bodies under fluoroscopy, is prone to human error and carries additional time and dose. We propose an image registration and visualization system (referred to as LevelCheck), for decision support in spine surgery by automatically labeling vertebral levels in fluoroscopy using a GPU-accelerated, intensity-based 3D-2D (namely CT-to-fluoroscopy) registration. A gradient information (GI) similarity metric and a CMA-ES optimizer were chosen due to their robustness and inherent suitability for parallelization. Simulation studies involved ten patient CT datasets from which 50 000 simulated fluoroscopic images were generated from C-arm poses selected to approximate the C-arm operator and positioning variability. Physical experiments used an anthropomorphic chest phantom imaged under real fluoroscopy. The registration accuracy was evaluated as the mean projection distance (mPD) between the estimated and true center of vertebral levels. Trials were defined as successful if the estimated position was within the projection of the vertebral body (namely mPD <5 mm). Simulation studies showed a success rate of 99.998% (1 failure in 50 000 trials) and computation time of 4.7 s on a midrange GPU. Analysis of failure modes identified cases of false local optima in the search space arising from longitudinal periodicity in vertebral structures. Physical experiments demonstrated the robustness of the algorithm against quantum noise and x-ray scatter. The ability to automatically localize target anatomy in fluoroscopy in near-real-time could be valuable in reducing the occurrence of wrong-site surgery while helping to reduce radiation exposure. The method is applicable beyond

  16. Coseismic slip distribution of the 2015 Mw7.8 Gorkha, Nepal, earthquake from joint inversion of GPS and InSAR data for slip within a 3-D heterogeneous Domain

    NASA Astrophysics Data System (ADS)

    Tung, Sui; Masterlark, Timothy

    2016-05-01

    We derive a coseismic slip model of the 2015 Mw7.8 Gorkha earthquake on the basis of GPS and line-of-sight displacements from ALOS-2 descending interferograms, using Green's functions calculated with a 3-D finite element model (FEM). The FEM simulates a nonuniform distribution of elastic material properties and a precise geometric configuration of the irregular topographical surface. The rupturing fault is modeled as a low-angle and north dipping surface within the Main Frontal Thrust along the convergent margin of the Himalayas. The optimal model that inherits heterogeneous material properties provides a significantly better solution than that in a homogenous domain at the 95% confidence interval. The best fit solution for the domain having a nonuniform distribution of material properties reveals a rhombus-shaped slip zone of three composite asperities. Slip is primarily concentrated at a depth of 15 km with both dip-slip (maximum 6.54 m) and strike-slip (maximum 2.0 m) components, giving rise to a geodetic-based moment of 1.09 × 1021 Nm in general agreement with the seismological estimate. The optimal relative weights among GPS and interferometric synthetic aperture radar (InSAR) are deduced from a new method, MC-HVCE which combines a Monte Carlo search and a Helmert Method of Variance Components Estimation. This method determines the relative weights in a systemic approach which preserves the intrinsic solution smoothness. The joint solution is significantly better than those inverted from each individual data set. This methodology allows us to integrate multiple data sets of geodetic observations with seismic tomography, in an effort to achieve a better understanding of seismic ruptures within crustal heterogeneity.

  17. Earthquakes' local site effects in Christchurch revealed by Cosmo-Skymed and Envisat radar images

    NASA Astrophysics Data System (ADS)

    Closson, Damien; Abou Karaki, N.; Pasquali, P.; Holecz, P.; Riccardi, P.; Milisavljevic, N.; Bouaraba, A.

    2012-04-01

    In September 4th, 2010, and February 22nd, 2011, a 7.1 and 6.3 earthquakes have strongly affected the city of Chirstchurch, New Zealand. The hypocenters were located 40 km westwards and 10 km southwards respectively. The shallow depths of the epicenter were estimated to 10 and 5 km. The deformation field associated with the first event was mapped with Envisat data (C band). One month later, the Italian Space Agency started the surveillance of the city of Chirstchurch. Cosmo-Skymed images (X band) in spotlight mode (pixel of about one meter) were collected from November onwards with a minimum of four days between repeated acquisitions. In that framework, it was possible to study with great accuracy and precision the ground deformations caused by the aftershock that took place on February 22nd, 2011. One image was acquired three days before and another scene one day after. Moreover, two days after this event that killed 181 persons; an aerial survey was performed leading to an orthophoto of the city having a pixel size of 20 cm. An interferometric processing was applied to the Cosmo-Skymed scenes. The interferogram revealed the fringes of the major displacement with a precision of 1.5 cm (half of the wavelenght). At closer look, the general dislocation pattern shown numerous irregularities that have been interpreted as local sites effects. One of the most obvious evidence of local site effects can be seen in the kilometric abandoned landfill of Barwood. Field observations and interviews of local people support the observations regarding the limits of specific zones in the urban area. This research is still in progress and comparisons are currently performed with other earthquakes in Chili and Turkey. This work suggests that an independent method could provide new original data in the frame of the mapping of earthquakes local sites effects.

  18. Presentation of a High Resolution Time Lapse 3D Groundwater Model of Metsähovi for Calculating the Gravity Effect of Groundwater in Local Scale

    NASA Astrophysics Data System (ADS)

    Hokkanen, T. M.; Hartikainen, A.; Raja-Halli, A.; Virtanen, H.; Makinen, J.

    2015-12-01

    INTRODUCTION The aim of this study is to construct a fine resolution time lapse groundwater (GW) model of Metsähovi (MH). GW, geological, and soil moisture (SM) data were collected for several years to achieve the goal. The knowledge of the behavior of the GW at local scale is essential for superconductive gravimeter (SG) investigations performing in MH. DESCRIPTION OF THE DATA Almost 50 sensors have been recorded SM data some 6 years with 1 to 5 minutes sampling frequency. The GW table has been monitored, both in bedrock and in soil, in many stages with all together 15 piezometers. Two geological sampling campaigns were conducted to get the knowledge of hydrological properties of soil in the study area of 200×200 m2 around SG station in MH. PRINCIPLE OF TIME LAPSE 3D HYDROGEOLOGICAL MODEL The model of study site consists of the surfaces of ground and bedrock gridded with 2×2 m2 resolution. The height of GW table was interpolated to 2×2×0.1 m3 grid between GW and SM monitoring points. Close to the outline of the study site and areas lacking of sensors GW table was defined by extrapolation and considering the geological information of the area. The bedrock porosity is 2% and soil porosity determined by geological information and SM recordings is from 5 to 35%. Only fully saturated media is considered in the time lapse model excluding unsaturated one. BENEFICIERS With a new model the fluctuation of GW table can be followed with ranging time lapses from 1 minute to 1 month. The gravity effect caused by the variation of GW table can be calculated more accurate than before in MH. Moreover, the new model can be validated and refined by measured gravity, i.e. hydrological model can be improved by SG recordings (Figure 1).

  19. Polycaprolactone-Coated 3D Printed Tricalcium Phosphate Scaffolds for Bone Tissue Engineering: In Vitro Alendronate Release Behavior and Local Delivery Effect on In Vivo Osteogenesis

    PubMed Central

    2015-01-01

    The aim of this work was to evaluate the effect of in vitro alendronate (AD) release behavior through polycaprolactone (PCL) coating on in vivo bone formation using PCL-coated 3D printed interconnected porous tricalcium phosphate (TCP) scaffolds. Higher AD and Ca2+ ion release was observed at lower pH (5.0) than that at higher pH (7.4). AD and Ca2+ release, surface morphology, and phase analysis after release indicated a matrix degradation dominated AD release caused by TCP dissolution. PCL coating showed its effectiveness for controlled and sustained AD release. Six different scaffold compositions, namely, (i) TCP (bare TCP), (ii) TCP + AD (AD-coated TCP), (iii) TCP + PCL (PCL-coated TCP), (iv) TCP + PCL + AD, (v) TCP + AD + PCL, and (vi) TCP + AD + PCL + AD were tested in the distal femoral defect of Sprague–Dawley rats for 6 and 10 weeks. An excellent bone formation inside the micro and macro pores of the scaffolds was observed from histomorphology. Histomorphometric analysis revealed maximum new bone formation in TCP + AD + PCL scaffolds after 6 weeks. No adverse effect of PCL on bioactivity of TCP and in vivo bone formation was observed. All scaffolds with AD showed higher bone formation and reduced TRAP (tartrate resistant acid phosphatase) positive cells activity compared to bare TCP and TCP coated with only PCL. Bare TCP scaffolds showed the highest TRAP positive cells activity followed by TCP + PCL scaffolds, whereas TCP + AD scaffolds showed the lowest TRAP activity. A higher TRAP positive cells activity was observed in TCP + AD + PCL compared to TCP + AD scaffolds after 6 weeks. Our results show that in vivo local AD delivery from PCL-coated 3DP TCP scaffolds could further induce increased early bone formation. PMID:24826838

  20. Local Earthquakes Tomography in the Southern Tyrrhenian Region (Italy): Geophysical and Petrological Inferences on Subducting Lithosphere

    NASA Astrophysics Data System (ADS)

    Calo, M.; Dorbath, C.; Luzio, D.; Rotolo, S. G.; D'Anna, G.

    2007-12-01

    The Calabrian Arc, Southern Italy, is characterised by the subduction of the Ionian lithosphere -since Middle Miocene- beneath the Tyrrhenian basin. The related Benioff zone is seismically active to a depth > 500 km. The tomoDD code [Zhang and Thurber, 2003] was adopted to perform the tomography, using a set of 2463 earthquakes located in the window 14°30' E - 17°E and 37°N - 41°N, and recorded by seismic networks of the INGV in the period 1981-2005. Several inversions were performed using different selections of absolute and differential data obtained varying the maximum RMS and the threshold of the inter-event distance. Various synthetic and experimental tests were executed to evaluate the resolution and stability of the tomographic inversion. The inversions carried out for the synthetic and the restoration-resolution test [Zhao et al., 1992] were repeated several times with the same procedure used in the inversion of experimental data. The lack of bias in the models, related to the different grid- node positions, was tested performing inversions rotating, translating and deforming the original grid. To evaluate the dependence on the initial model, several inversions were also done using different 1D and 3D models simulating slab features. Finally, 35 models resulting from the inversions were synthesized in an average model obtained by interpolating each velocity model into a fixed grid. Each velocity value interpolated was weighted with a corresponding DWS (Derivative Weight Sum) resulting thus a Weighted Average Velocity model. The highly resolved sections through the average Vp, Vs and Vp/Vs models allowed us to image several relevant features of the structure of the subducting Ionian slab and of the Southern Tyrrhenian mantle: -the hypocenters are localized in the NW dipping fast area (Vp>8.2 km/s), 50-60 km thick, most likely composed litospheric mantle. Just below, an aseismic low Vp zone (6.6 - 7.7 km/s) 20-25 km thick, is assigned to the partially

  1. Ground motion estimation in Delhi from postulated regional and local earthquakes

    NASA Astrophysics Data System (ADS)

    Mittal, Himanshu; Kumar, Ashok; Kamal

    2013-04-01

    Ground motions are estimated at 55 sites in Delhi, the capital of India from four postulated earthquakes (three regional M w = 7.5, 8.0, and 8.5 and one local). The procedure consists of (1) synthesis of ground motion at a hard reference site (NDI) and (2) estimation of ground motion at other sites in the city via known transfer functions and application of the random vibration theory. This work provides a more extensive coverage than earlier studies (e.g., Singh et al., Bull Seism Soc Am 92:555-569, 2002; Bansal et al., J Seismol 13:89-105, 2009). The Indian code response spectra corresponding to Delhi (zone IV) are found to be conservative at hard soil sites for all postulated earthquakes but found to be deficient for M w = 8.0 and 8.5 earthquakes at soft soil sites. Spectral acceleration maps at four different natural periods are strongly influenced by the shallow geological and soil conditions. Three pockets of high acceleration values are seen. These pockets seem to coincide with the contacts of (a) Aravalli quartzite and recent Yamuna alluvium (towards the East), (b) Aravalli quartzite and older quaternary alluvium (towards the South), and (c) older quaternary alluvium and recent Yamuna alluvium (towards the North).

  2. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  3. Determining hypocentral parameters for local earthquakes under ill conditions using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Kim, Woohan; Hahm, In-Kyeong; Kim, Won-Young; Lee, Jung Mo

    2010-10-01

    We demonstrate that GA-MHYPO determines accurate hypocentral parameters for local earthquakes under ill conditions, such as limited number of stations (phase data), large azimuthal gap, and noisy data. The genetic algorithm (GA) in GA-MHYPO searches for the optimal 1-D velocity structure which provides the minimum traveltime differences between observed (true) and calculated P and S arrivals within prescribed ranges. GA-MHYPO is able to determine hypocentral parameters more accurately in many circumstances than conventional methods which rely on an a priori (and possibly incorrect) 1-D velocity model. In our synthetic tests, the accuracy of hypocentral parameters obtained by GA-MHYPO given ill conditions is improved by more than a factor of 20 for error-free data, and by a factor of five for data with errors, compared to that obtained by conventional methods such as HYPOINVERSE. In the case of error-free data, GA-MHYPO yields less than 0.1 km errors in focal depths and hypocenters without strong dependence on azimuthal coverage up to 45°. Errors are less than 1 km for data with errors of a 0.1-s standard deviation. To test the performance using real data, a well-recorded earthquake in the New Madrid seismic zone and earthquakes recorded under ill conditions in the High Himalaya are relocated by GA-MHYPO. The hypocentral parameters determined by GA-MHYPO under both good and ill conditions show similar computational results, which suggest that GA-MHYPO is robust and yields more reliable hypocentral parameters than standard methods under ill conditions for natural earthquakes.

  4. Localized damage caused by topographic amplification during the 2010 M7.0 Haiti earthquake

    USGS Publications Warehouse

    Hough, S.E.; Altidor, J.R.; Anglade, D.; Given, D.; Janvier, M.G.; Maharrey, J.Z.; Meremonte, M.; Mildor, B.S.-L.; Prepetit, C.; Yong, A.

    2010-01-01

    Local geological conditions, including both near-surface sedimentary layers and topographic features, are known to significantly influence ground motions caused by earthquakes. Microzonation maps use local geological conditions to characterize seismic hazard, but commonly incorporate the effect of only sedimentary layers. Microzonation does not take into account local topography, because significant topographic amplification is assumed to be rare. Here we show that, although the extent of structural damage in the 2010 Haiti earthquake was primarily due to poor construction, topographic amplification contributed significantly to damage in the district of Petionville, south of central Port-au-Prince. A large number of substantial, relatively well-built structures situated along a foothill ridge in this district sustained serious damage or collapse. Using recordings of aftershocks, we calculate the ground motion response at two seismic stations along the topographic ridge and at two stations in the adjacent valley. Ground motions on the ridge are amplified relative to both sites in the valley and a hard-rock reference site, and thus cannot be explained by sediment-induced amplification. Instead, the amplitude and predominant frequencies of ground motion indicate the amplification of seismic waves by a narrow, steep ridge. We suggest that microzonation maps can potentially be significantly improved by incorporation of topographic effects. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  5. Earthquake and tsunami hazard in West Sumatra: integrating science, outreach, and local stakeholder needs

    NASA Astrophysics Data System (ADS)

    McCaughey, J.; Lubis, A. M.; Huang, Z.; Yao, Y.; Hill, E. M.; Eriksson, S.; Sieh, K.

    2012-04-01

    The Earth Observatory of Singapore (EOS) is building partnerships with local to provincial government agencies, NGOs, and educators in West Sumatra to inform their policymaking, disaster-risk-reduction, and education efforts. Geodetic and paleoseismic studies show that an earthquake as large as M 8.8 is likely sometime in the coming decades on the Mentawai patch of the Sunda megathrust. This earthquake and its tsunami would be devastating for the Mentawai Islands and neighboring areas of the western Sumatra coast. The low-lying coastal Sumatran city of Padang (pop. ~800,000) has been the object of many research and outreach efforts, especially since 2004. Padang experienced deadly earthquakes in 2007 and 2009 that, though tragedies in their own right, served also as wake-up calls for a larger earthquake to come. However, there remain significant barriers to linking science to policy: extant hazard information is sometimes contradictory or confusing for non-scientists, while turnover of agency leadership and staff means that, in the words of one local advocate, "we keep having to start from zero." Both better hazard knowledge and major infrastructure changes are necessary for risk reduction in Padang. In contrast, the small, isolated villages on the outlying Mentawai Islands have received relatively fewer outreach efforts, yet many villages have the potential for timely evacuation with existing infrastructure. Therefore, knowledge alone can go far toward risk reduction. The tragic October 2010 Mentawai tsunami has inspired further disaster-risk reduction work by local stakeholders. In both locations, we are engaging policymakers and local NGOs, providing science to help inform their work. Through outreach contacts, the Mentawai government requested that we produce the first-ever tsunami hazard map for their islands; this aligns well with scientific interests at EOS. We will work with the Mentawai government on the presentation and explanation of the hazard map, as

  6. Parallel 3D Simulation of Seismic Wave Propagation in the Structure of Nobi Plain, Central Japan

    NASA Astrophysics Data System (ADS)

    Kotani, A.; Furumura, T.; Hirahara, K.

    2003-12-01

    We performed large-scale parallel simulations of the seismic wave propagation to understand the complex wave behavior in the 3D basin structure of the Nobi Plain, which is one of the high population cities in central Japan. In this area, many large earthquakes occurred in the past, such as the 1891 Nobi earthquake (M8.0), the 1944 Tonankai earthquake (M7.9) and the 1945 Mikawa earthquake (M6.8). In order to mitigate the potential disasters for future earthquakes, 3D subsurface structure of Nobi Plain has recently been investigated by local governments. We referred to this model together with bouguer anomaly data to construct a detail 3D basin structure model for Nobi plain, and conducted computer simulations of ground motions. We first evaluated the ground motions for two small earthquakes (M4~5); one occurred just beneath the basin edge at west, and the other occurred at south. The ground motions from these earthquakes were well recorded by the strong motion networks; K-net, Kik-net, and seismic intensity instruments operated by local governments. We compare the observed seismograms with simulations to validate the 3D model. For the 3D simulation we sliced the 3D model into a number of layers to assign to many processors for concurrent computing. The equation of motions are solved using a high order (32nd) staggered-grid FDM in horizontal directions, and a conventional (4th-order) FDM in vertical direction with the MPI inter-processor communications between neighbor region. The simulation model is 128km by 128km by 43km, which is discritized at variable grid size of 62.5-125m in horizontal directions and of 31.25-62.5m in vertical direction. We assigned a minimum shear wave velocity is Vs=0.4km/s, at the top of the sedimentary basin. The seismic sources for the small events are approximated by double-couple point source and we simulate the seismic wave propagation at maximum frequency of 2Hz. We used the Earth Simulator (JAMSTEC, Yokohama Inst) to conduct such

  7. Tsunami Mapping Related to Local Earthquakes on the French-Italian Riviera (Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Ioualalen, Mansour; Larroque, Christophe; Scotti, Oona; Daubord, Camille

    2014-07-01

    The Ligurian coast, located at the French-Italian border, is densely populated as well as a touristic area. It is also a location where earthquakes and underwater landslides are recurrent. The nature of the local tsunamigenesis is therefore a legitimate question, because no tsunami warning system can resolve tsunami arrival times of a few minutes, which is the case for the area. As far as the seismicity of the area is concerned, the frequent recurrent earthquakes are generally of moderate magnitude: most of them are lower than M w 5. However, the relatively large M w 6.9 earthquake (Larroque et al., in Geophys J Int, 2012. doi: 10.1111/j.1365-246X.2012.05498.x) that occurred on the February 23, 1887, offshore of Imperia (Italian Riviera) is quite emblematic. This unusual event for the region merits a complete study: the quantification of its rupture mechanism is essential (1) to understand the regional active deformation, but also (2) to evaluate its tsunamigenesis potential by deriving relevant rupture scenarios obtained from our knowledge of the event; for that purpose the event is extensively described here. The first point has been the subject of quite a few studies based on the seismotectonics of the area. The last documented approach has been completed by Larroque et al. (Geophys J Int, 2012. doi: 10.1111/j.1365-246X.2012.05498.x) who proposed a rupture scenario involving a reverse faulting along a north dipping fault and favoring a M w 6.9 magnitude. In the present paper (1) we study the accuracy of their solutions in relation to the computational grid spacing and the dispersive/nondispersive parameterization, (2) based on an uncertainty on the recorded wave amplitude of the Genoa tide gauge they used, we propose a M w 6.7 earthquake magnitude solution for the event (the kinematics is unchanged), co-existing with the M w 6.9, (3) we evaluate the tsunami coastal impact of the 1887 event, and (4) we test a range of possible ruptures that local faults may

  8. LASTRAC.3d: Transition Prediction in 3D Boundary Layers

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan

    2004-01-01

    Langley Stability and Transition Analysis Code (LASTRAC) is a general-purpose, physics-based transition prediction code released by NASA for laminar flow control studies and transition research. This paper describes the LASTRAC extension to general three-dimensional (3D) boundary layers such as finite swept wings, cones, or bodies at an angle of attack. The stability problem is formulated by using a body-fitted nonorthogonal curvilinear coordinate system constructed on the body surface. The nonorthogonal coordinate system offers a variety of marching paths and spanwise waveforms. In the extreme case of an infinite swept wing boundary layer, marching with a nonorthogonal coordinate produces identical solutions to those obtained with an orthogonal coordinate system using the earlier release of LASTRAC. Several methods to formulate the 3D parabolized stability equations (PSE) are discussed. A surface-marching procedure akin to that for 3D boundary layer equations may be used to solve the 3D parabolized disturbance equations. On the other hand, the local line-marching PSE method, formulated as an easy extension from its 2D counterpart and capable of handling the spanwise mean flow and disturbance variation, offers an alternative. A linear stability theory or parabolized stability equations based N-factor analysis carried out along the streamline direction with a fixed wavelength and downstream-varying spanwise direction constitutes an efficient engineering approach to study instability wave evolution in a 3D boundary layer. The surface-marching PSE method enables a consistent treatment of the disturbance evolution along both streamwise and spanwise directions but requires more stringent initial conditions. Both PSE methods and the traditional LST approach are implemented in the LASTRAC.3d code. Several test cases for tapered or finite swept wings and cones at an angle of attack are discussed.

  9. Intensity-Modulated and 3D-Conformal Radiotherapy for Whole-Ventricular Irradiation as Compared With Conventional Whole-Brain Irradiation in the Management of Localized Central Nervous System Germ Cell Tumors

    SciTech Connect

    Chen, Michael Jenwei; Silva Santos, Adriana da; Sakuraba, Roberto Kenji; Lopes, Cleverson Perceu; Goncalves, Vinicius Demanboro; Weltman, Eduardo; Ferrigno, Robson; Cruz, Jose Carlos

    2010-02-01

    Purpose: To compare the sparing potential of cerebral hemispheres with intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3D-CRT) for whole-ventricular irradiation (WVI) and conventional whole-brain irradiation (WBI) in the management of localized central nervous system germ cell tumors (CNSGCTs). Methods and Materials: Ten cases of patients with localized CNSGCTs and submitted to WVI by use of IMRT with or without a 'boost' to the primary lesion were selected. For comparison purposes, similar treatment plans were produced by use of 3D-CRT (WVI with or without boost) and WBI (opposed lateral fields with or without boost), and cerebral hemisphere sparing was evaluated at dose levels ranging from 2 Gy to 40 Gy. Results: The median prescription dose for WVI was 30.6 Gy (range, 25.2-37.5 Gy), and that for the boost was 16.5 Gy (range, 0-23.4 Gy). Mean irradiated cerebral hemisphere volumes were lower for WVI with IMRT than for 3D-CRT and were lower for WVI with 3D-CRT than for WBI. Intensity-modulated radiotherapy was associated with the lowest irradiated volumes, with reductions of 7.5%, 12.2%, and 9.0% at dose levels of 20, 30, and 40 Gy, respectively, compared with 3D-CRT. Intensity-modulated radiotherapy provided statistically significant reductions of median irradiated volumes at all dose levels (p = 0.002 or less). However, estimated radiation doses to peripheral areas of the body were 1.9 times higher with IMRT than with 3D-CRT. Conclusions: Although IMRT is associated with increased radiation doses to peripheral areas of the body, its use can spare a significant amount of normal central nervous system tissue compared with 3D-CRT or WBI in the setting of CNSGCT treatment.

  10. A simulation of Earthquake Loss Estimation in Southeastern Korea using HAZUS and the local site classification Map

    NASA Astrophysics Data System (ADS)

    Kang, S.; Kim, K.

    2013-12-01

    Regionally varying seismic hazards can be estimated using an earthquake loss estimation system (e.g. HAZUS-MH). The estimations for actual earthquakes help federal and local authorities develop rapid, effective recovery measures. Estimates for scenario earthquakes help in designing a comprehensive earthquake hazard mitigation plan. Local site characteristics influence the ground motion. Although direct measurements are desirable to construct a site-amplification map, such data are expensive and time consuming to collect. Thus we derived a site classification map of the southern Korean Peninsula using geologic and geomorphologic data, which are readily available for the entire southern Korean Peninsula. Class B sites (mainly rock) are predominant in the area, although localized areas of softer soils are found along major rivers and seashores. The site classification map is compared with independent site classification studies to confirm our site classification map effectively represents the local behavior of site amplification during an earthquake. We then estimated the losses due to a magnitude 6.7 scenario earthquake in Gyeongju, southeastern Korea, with and without the site classification map. Significant differences in loss estimates were observed. The loss without the site classification map decreased without variation with increasing epicentral distance, while the loss with the site classification map varied from region to region, due to both the epicentral distance and local site effects. The major cause of the large loss expected in Gyeongju is the short epicentral distance. Pohang Nam-Gu is located farther from the earthquake source region. Nonetheless, the loss estimates in the remote city are as large as those in Gyeongju and are attributed to the site effect of soft soil found widely in the area.

  11. Local amplification of seismic waves from the Denali earthquake and damaging seiches in Lake Union, Seattle, Washington

    USGS Publications Warehouse

    Barberopoulou, A.; Qamar, A.; Pratt, T.L.; Creager, K.C.; Steele, W.P.

    2004-01-01

    The Mw7.9 Denali, Alaska earthquake of 3 November, 2002, caused minor damage to at least 20 houseboats in Seattle, Washington by initiating water waves in Lake Union. These water waves were likely initiated during the large amplitude seismic surface waves from this earthquake. Maps of spectral amplification recorded during the Denali earthquake on the Pacific Northwest Seismic Network (PNSN) strong-motion instruments show substantially increased shear and surface wave amplitudes coincident with the Seattle sedimentary basin. Because Lake Union is situated on the Seattle basin, the size of the water waves may have been increased by local amplification of the seismic waves by the basin. Complete hazard assessments require understanding the causes of these water waves during future earthquakes. Copyright 2004 by the American Geophysical Union.

  12. The 2008 M7.9 Wenchuan earthquake - Result of Local and Abnormal Mass Imbalances?

    NASA Astrophysics Data System (ADS)

    Klose, C. D.

    2008-12-01

    The May 12, 2008 M7.9 Wenchuan earthquake occurred along the Longmen Shan margin of the eastern Tibetan plateau in the Sichuan province of the People's Republic of China. A complex and NNW dipping reverse fault system including the Beichuan fault ruptured 250-300 km parallel to the Longmen Shan thrust belt. This region has been tectonically loaded for >10kyr. It has low deformation rates of less than 1.0±1.0 mm yr-1 resulting in no major seismic activity during the Quaternary period. Several geophysical observations suggest that this M7.9 earthquake was triggered by local and abnormal mass imbalances on the surface of the Earth's crust. These observations include (1) elastostatic response of the crust to the mass changes (2) slip distribution of the main rupture, and (3) aftershock distribution. Initially, approximately 2 years prior the nucleation of the mainshock, at least 320 million tonnes of water accumulated within the upper Min river valley. It enters the Chengdu plain of the Sichuan basin, a stable continental region (SCR). The water volume amplified the strain energy on the Earth's crust. Shear stresses increased by >1kPa on the Beichuan fault at the nucleation point in about 20km depth. Normal stresses decreased by <-4kPa and weakened the fault strength. Pore pressure increases might have additionally destabilized the fault locally due to pore pressure diffusion. This effect, however, might be minor in 20km depth, because of low lateral fracture connectivity and permeability between the area of water accumulation and the Beichuan fault. Overall, the stress alterations within a 120±70km2 large area resulted in the Beichuan fault coming closer to failure. Such an area ruptured would account for a M7.2±0.1 earthquake assuming only 10 MPa stress drop. Secondly, a reverse fault focal mechanism dominated, in particular, during the first 50 seconds of the main M7.9 rupture. The Beichuan fault slipped up to 7m upward peaking at shallow depth (<7km) (Nishimura

  13. Crustal shear-wave splitting from local earthquakes in the Hengill triple junction, southwest Iceland

    USGS Publications Warehouse

    Evans, J.R.; Foulger, G.R.; Julian, B.R.; Miller, A.D.

    1996-01-01

    The Hengill region in SW Iceland is an unstable ridge-ridge-transform triple junction between an active and a waning segment of the mid-Atlantic spreading center and a transform that is transgressing southward. The triple junction contains active and extinct spreading segments and a widespread geothermal area. We evaluated shear-wave birefringence for locally recorded upper-crustal earthquakes using an array of 30 three-component digital seismographs. Fast-polarization directions, ??, are mostly NE to NNE, subparallel to the spreading axis and probably caused by fissures and microcracks related to spreading. However, there is significant variability in ?? throughout the array. The lag from fast to slow S is not proportional to earthquake depth (ray length), being scattered at all depths. The average wave-speed difference between qS1 and qS2 in the upper 2-5 km of the crust is 2-5%. Our results suggest considerable heterogeneity or strong S scattering.

  14. Tomographic imaging of local earthquake delay times for three-dimensional velocity variation in western Washington

    SciTech Connect

    Lees, J.M.; Crosson, R.S. )

    1990-04-10

    Tomographic inversion is applied to delay times from local earthquakes to image three dimensional velocity variations in the Puget Sound region of western Washington. The 37,500 square km region is represented by nearly cubic blocks of 5 km per side. P-wave arrival time observations from 4,387 crustal earthquakes, with depths of 0 to 40 km, were used as sources producing 36,865 rays covering the target region. A conjugate gradient method (LSQR) is used to invert the large, sparse system of equations. To diminish the effects of noisy data, the Laplacian is constrained to be zero within horizontal layers, providing smoothing of the model. The resolution is estimated by calculating impulse responses at blocks of interest and estimates of standard errors are calculated by the jackknife statistical procedure. Results of the inversion are correlated with some known geologic features and independent geophysical measurements. High P-wave velocities along the eastern flank of the Olympic Peninsula are interpreted to reflect the subsurface extension of Crescent terrane. Low velocities beneath the Puget Sound further to the east are inferred to reflect thick sediment accumulations. The Crescent terrane appears to extend beneath Puget Sound, consistent with its interpretation as a major accretionary unit. In the southern Puget Sound basin, high velocity anomalies at depths of 10-20 km are interpreted as Crescent terrane and are correlated with a region of low seismicity. Near Mt. Ranier, high velocity anomalies may reflect buried plutons.

  15. Shallow low-velocity zone of the San Jacinto fault from local earthquake waveform modelling

    NASA Astrophysics Data System (ADS)

    Yang, Hongfeng; Zhu, Lupei

    2010-10-01

    We developed a method to determine the depth extent of low-velocity zone (LVZ) associated with a fault zone (FZ) using S-wave precursors from local earthquakes. The precursors are diffracted S waves around the edges of LVZ and their relative amplitudes to the direct S waves are sensitive to the LVZ depth. We applied the method to data recorded by three temporary arrays across three branches of the San Jacinto FZ. The FZ dip was constrained by differential traveltimes of P waves between stations at two side of the FZ. Other FZ parameters (width and velocity contrast) were determined by modelling waveforms of direct and FZ-reflected P and S waves. We found that the LVZ of the Buck Ridge fault branch has a width of ~150 m with a 30-40 per cent reduction in Vp and a 50-60 per cent reduction in Vs. The fault dips 70 +/- 5° to southwest and its LVZ extends only to 2 +/- 1 km in depth. The LVZ of the Clark Valley fault branch has a width of ~200 m with 40 per cent reduction in Vp and 50 per cent reduction in Vs. The Coyote Creek branch is nearly vertical and has a LVZ of ~150 m in width and of 25 per cent reduction in Vp and 50 per cent reduction in Vs. The LVZs of these three branches are not centred at the surface fault trace but are located to their northeast, indicating asymmetric damage during earthquakes.

  16. Real time magma transport imaging and earthquake localization using seismic amplitude ratio analysis

    NASA Astrophysics Data System (ADS)

    Taisne, B.; Brenguier, F.; Nercessian, A.; Beauducel, F.; Smith, P. J.

    2011-12-01

    Seismic amplitude ratio analysis (SARA) has been used successfully to track the sub-surface migration of magma prior to an eruption at Piton de la Fournaise volcano, La Réunion. The methodology is based on the temporal analysis of the seismic amplitude ratio between different pairs of stations, along with a model of seismic wave attenuation. This method has already highlighted the complexity of magma migration in the shallower part of the volcanic edifice during a seismic crisis using continuous records. We will see that this method can also be applied to the localization of individual earthquakes triggered by monitoring systems, prior to human intervention such as phase picking. As examples, the analysis is performed on two kinds of seismic events observed at Soufrière Hills Volcano, Montserrat during the last 15 years, namely: Hybrids events and Volcano-Tectonic earthquakes. Finally, we present the implementation of a fully automatic SARA method for monitoring of Piton de la Fournaise volcano using continuous data in real-time.

  17. An Unusual Cluster of Low-Frequency Earthquakes at Mount Baker, Washington, as Detected by a Local Broadband Network

    NASA Astrophysics Data System (ADS)

    Caplan-Auerbach, J.; Thelen, W. A.; Moran, S. C.

    2009-12-01

    A recent cluster of shallow low-frequency earthquakes on Mount Baker volcano marks one of the most seismically active periods in the volcano’s instrumented history (since 1972). Although Mount Baker, the northernmost of the U. S. Cascade volcanoes, has a history of recorded unrest (including an episode of geothermal unrest in 1975-6), it has never exhibited high levels of seismicity. Most of Baker’s seismicity has been associated with glacial earthquakes and deep long-period events. However, between June and September 2009 at least 39 low-frequency events were recorded at Mount Baker, 21 of which were located by the Pacific Northwest Seismic Network (PNSN). Locations are shallow and are scattered over a 5 x 5 km area around the southwest flank of the edifice. However, waveform similarity between many events suggests that most are located fairly close together and that the scatter apparent in PNSN locations is largely because of picking errors and a sparse network. To better constrain earthquake locations and source mechanism, a network of five broadband seismometers was deployed on Mount Baker between July and October 2009. This network greatly reduced the magnitude threshold for locatable events, with approximately three times as many earthquakes located by the local network than with the existing regional network. The additional stations also provided better depth constraints. The local network detected a larger number of events than identical temporary networks deployed in 2007 and 2008, suggesting that the increase in seismicity is real. Earthquakes located with the addition of data from the local network still locate at shallow depths beneath the southwest flank, but location uncertainty is significantly improved. We are using waveform similarity to evaluate relative event locations and investigate possible source mechanisms for the earthquakes, and are developing a more accurate velocity model that includes station elevations. This will better determine

  18. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  19. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  20. Bootstrapping 3D fermions

    DOE PAGES

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  1. Local Earthquake Velocity and Attenuation Tomography of the Jalisco, Mexico Region

    NASA Astrophysics Data System (ADS)

    Watkins, W. D.; Thurber, C. H.; Abbott, E. R.; Brudzinski, M.; Grand, S. P.

    2015-12-01

    The states of Jalisco, Colima, and Michoacan in western Mexico overlie the boundary of the subducting Rivera and Cocos plates, presenting an appealing target for seismological inquiry to better understand the resulting mantle flow and regional volcanism. The different dips between the subducting plates is thought to provide a mantle conduit that has contributed to the Colima Volcanic Complex, but there is considerable debate on the shallowness of the Rivera plate and width of the resulting conduit. With data from the Mapping the Rivera Subduction Zone (MARS) and Colima Deep Seismic Experiment (CODEX) networks, two temporary broadband arrays deployed in the region between 2006-2008, we invert for three-dimensional P- and S- wave velocity and later attenuation structure of the upper ~80 km of the crust and mantle in the Jalisco region. We improve upon previous tomography work by utilizing double-difference tomography, which enables the use of higher-accuracy differential times to sharpen the earthquake locations, and the inclusion of S-wave data. Current models that utilize only analyst-picked phase arrivals from 590 earthquakes yield P-wave high velocity anomalies that suggest a slab under the coastal regions at 15-25 km depth, and low velocity anomalies that may be related to Colima Volcano or other geologic features. Most of the S-wave model is poorly resolved. We will use a newly developed auto-picker to attempt to substantially increase the size of the S-wave dataset and to a lesser extent the P wave dataset, in order to densify ray coverage and improve model resolution. Additionally, we plan to employ the waveforms from this expanded dataset to compute a path attenuation operator for each arrival, which will then be used to invert for 3D P and S-wave attenuation models. The attenuation models combined with the velocity models will provide multiple constraints on physical properties of the crust in this region as well as those of specific geologic features.

  2. Auto Correlation Analysis of Coda Waves from Local Earthquakes for Detecting Temporal Changes in Shallow Subsurface Structures: the 2011 Tohoku-Oki, Japan Earthquake

    NASA Astrophysics Data System (ADS)

    Nakahara, Hisashi

    2015-02-01

    For monitoring temporal changes in subsurface structures I propose to use auto correlation functions of coda waves from local earthquakes recorded at surface receivers, which probably contain more body waves than surface waves. Use of coda waves requires earthquakes resulting in decreased time resolution for monitoring. Nonetheless, it may be possible to monitor subsurface structures in sufficient time resolutions in regions with high seismicity. In studying the 2011 Tohoku-Oki, Japan earthquake (Mw 9.0), for which velocity changes have been previously reported, I try to validate the method. KiK-net stations in northern Honshu are used in this analysis. For each moderate earthquake normalized auto correlation functions of surface records are stacked with respect to time windows in the S-wave coda. Aligning the stacked, normalized auto correlation functions with time, I search for changes in phases arrival times. The phases at lag times of <1 s are studied because changes at shallow depths are focused. Temporal variations in the arrival times are measured at the stations based on the stretching method. Clear phase delays are found to be associated with the mainshock and to gradually recover with time. The amounts of the phase delays are 10 % on average with the maximum of about 50 % at some stations. The deconvolution analysis using surface and subsurface records at the same stations is conducted for validation. The results show the phase delays from the deconvolution analysis are slightly smaller than those from the auto correlation analysis, which implies that the phases on the auto correlations are caused by larger velocity changes at shallower depths. The auto correlation analysis seems to have an accuracy of about several percent, which is much larger than methods using earthquake doublets and borehole array data. So this analysis might be applicable in detecting larger changes. In spite of these disadvantages, this analysis is still attractive because it can

  3. One dimensional P wave velocity structure of the crust beneath west Java and accurate hypocentre locations from local earthquake inversion

    SciTech Connect

    Supardiyono; Santosa, Bagus Jaya

    2012-06-20

    A one-dimensional (1-D) velocity model and station corrections for the West Java zone were computed by inverting P-wave arrival times recorded on a local seismic network of 14 stations. A total of 61 local events with a minimum of 6 P-phases, rms 0.56 s and a maximum gap of 299 Degree-Sign were selected. Comparison with previous earthquake locations shows an improvement for the relocated earthquakes. Tests were carried out to verify the robustness of inversion results in order to corroborate the conclusions drawn out from our reasearch. The obtained minimum 1-D velocity model can be used to improve routine earthquake locations and represents a further step toward more detailed seismotectonic studies in this area of West Java.

  4. Coda Q Attenuation and Source Parameters Analysis in North East India Using Local Earthquakes

    NASA Astrophysics Data System (ADS)

    Mohapatra, A. K.; Mohanty, W. K.; Earthquake Seismology

    2010-12-01

    Alok Kumar Mohapatra1* and William Kumar Mohanty1 *Corresponding author: alokgpiitkgp@gmail.com 1Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur, West Bengal, India. Pin-721302 ABSTRACT In the present study, the quality factor of coda waves (Qc) and the source parameters has been estimated for the Northeastern India, using the digital data of ten local earthquakes from April 2001 to November 2002. Earthquakes with magnitude range from 3.8 to 4.9 have been taken into account. The time domain coda decay method of a single back scattering model is used to calculate frequency dependent values of Coda Q (Qc) where as, the source parameters like seismic moment(Mo), stress drop, source radius(r), radiant energy(Wo),and strain drop are estimated using displacement amplitude spectrum of body wave using Brune's model. The earthquakes with magnitude range 3.8 to 4.9 have been used for estimation Qc at six central frequencies 1.5 Hz, 3.0 Hz, 6.0 Hz, 9.0 Hz, 12.0 Hz, and 18.0 Hz. In the present work, the Qc value of local earthquakes are estimated to understand the attenuation characteristic, source parameters and tectonic activity of the region. Based on a criteria of homogeneity in the geological characteristics and the constrains imposed by the distribution of available events the study region has been classified into three zones such as the Tibetan Plateau Zone (TPZ), Bengal Alluvium and Arakan-Yuma Zone (BAZ), Shillong Plateau Zone (SPZ). It follows the power law Qc= Qo (f/fo)n where, Qo is the quality factor at the reference frequency (1Hz) fo and n is the frequency parameter which varies from region to region. The mean values of Qc reveals a dependence on frequency, varying from 292.9 at 1.5 Hz to 4880.1 at 18 Hz. Average frequency dependent relationship Qc values obtained of the Northeastern India is 198 f 1.035, while this relationship varies from the region to region such as, Tibetan Plateau Zone (TPZ): Qc= 226 f 1.11, Bengal Alluvium

  5. A local earthquake coda magnitude and its relation to duration, moment M sub O, and local Richter magnitude M sub L

    NASA Technical Reports Server (NTRS)

    Suteau, A. M.; Whitcomb, J. H.

    1977-01-01

    A relationship was found between the seismic moment, M sub O, of shallow local earthquakes and the total duration of the signal, t, in seconds, measured from the earthquakes origin time, assuming that the end of the coda is composed of backscattering surface waves due to lateral heterogenity in the shallow crust following Aki. Using the linear relationship between the logarithm of M sub O and the local Richter magnitude M sub L, a relationship between M sub L and t, was found. This relationship was used to calculate a coda magnitude M sub C which was compared to M sub L for Southern California earthquakes which occurred during the period from 1972 to 1975.

  6. Venus in 3D

    NASA Astrophysics Data System (ADS)

    Plaut, J. J.

    1993-08-01

    Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.

  7. 3D reservoir visualization

    SciTech Connect

    Van, B.T.; Pajon, J.L.; Joseph, P. )

    1991-11-01

    This paper shows how some simple 3D computer graphics tools can be combined to provide efficient software for visualizing and analyzing data obtained from reservoir simulators and geological simulations. The animation and interactive capabilities of the software quickly provide a deep understanding of the fluid-flow behavior and an accurate idea of the internal architecture of a reservoir.

  8. Crustal Deformation Analysis Using a 3D FE High-fidelity Model with a Fast Computation Method and Its Application to Inversion Analysis of Fault Slip in the 2011 Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Agata, R.; Ichimura, T.; Hori, T.; Hirahara, K.; Hori, M.

    2012-12-01

    Crustal deformation analysis is important in order to understand the interplate coupling and coseismic fault slips. To perform it more accurately, we need a high-fidelity crustal structure model. However, in spite of accumulated crustal data, models with simplified flat shapes or relatively low resolution have been used, because the computation cost using high-fidelity models with a large degree-of-freedom (DOF) could be significantly high. Especially, estimation of the interplate coupling and coseismic fault slip requires the calculation of Green's function (the response displacement due to unit fault slip). To execute this computation in a realistic time, we need to reduce the computation cost. The objectives of our research is following: (1)To develop a method to generate 3D Finite Element (FE) models which represent heterogeneous crustal layers with the complex shape of crustal structure; (2)To develop a fast FE analysis method to perform crustal deformation analysis many times using single computation node, supposing the use of a small-scale computation environment. We developed an automatic FE model generation method using background grids with high quality meshes in a large area by extending the method of (Ichimura et al, 2009). We used Finite Element Method (FEM) because it has an advantage in representing the shape. Hybrid meshes consisting of tetrahedral and voxel elements are generated; the former is used when the interface surfaces and the grids intersect so that the shape of the crust is represented well, while the latter is used in the homogeneous areas. Also, we developed a method for crustal deformation analysis due to fault slip, which solves the FEM equation Ku=f assuming that the crust is an elastic body. To compute it fast, firstly we solved the problem by CG method with a simple preconditioning, parallelizing it by OpenMP. However, this computation took a long time, so we improved the method by introducing Multigrid Method (Saam, 2003) to the

  9. Non-volcanic tremor characteristics and tremor generation environment in Taiwan and a case study of their stress interaction with local earthquakes

    NASA Astrophysics Data System (ADS)

    Chao, K.; Obara, K.; Nagai, S.; Hirata, N.; Pu, H.; Peng, Z.; Hsu, Y.; Wech, A.; Ching, K.; Leu, P.; Shin, T.; Huang, B.

    2013-12-01

    Jiashian earthquake. To better constrain the tremor location and especially the depth, we used a high-dense array data surrounding the active tremor sources operated from March to May in 2005 with a total of 40 three-component seismometers deployed by Earthquake Research Institute, the University of Tokyo and Institute of Earth Sciences, Academia Sinica. Based on the aforementioned WECC tremor catalog, this array has recorded at least 12 clear ambient tremor episodes, including tremor triggered by the 27 March 2005, Mw8.6 Nias earthquake. We used a modified envelope cross-correlation technique and conduct a 3D grid search to relocate individual ambient and triggered tremor bursts. Our preliminary results suggest that most of tremor occurs between 16 to 33km in depth and ~80% of tremor are located between 20 to 30km, with an average depth error of ~3km. Tremor tends to become deeper to the southeast direction, and the dipping angle is qualitatively consistent with a shallow detachment fault model. Our next step is to apply the same procedure to other recent dataset to better quantify the tremor behavior with local earthquakes, including the 26 February 2012, Mw5.9 Wutai earthquake that occurred ~36 km south from the tremor sources.

  10. Location and local magnitude of the Tocopilla earthquake sequence of Northern Chile

    NASA Astrophysics Data System (ADS)

    Fuenzalida, A.; Lancieri, M.; Madariaga, R. I.; Sobiesiak, M.

    2010-12-01

    The Northern Chile gap is generally considered to the site of the next megathurst event in Chile. The Tocopilla earthquake of 14 November 2007 (Mw 7.8) and aftershock series broke the southern end of this gap. The Tocopilla event ruptured a narrow strip of 120 km of length and a width that (Peyrat et al.; Delouis et al. 2009) estimated as 30 km. The aftershock sequence comprises five large thrust events with magnitude greater than 6. The main aftershock of Mw 6.7 occurred on November 15, at 15:06 (UTM) seawards of the Mejillones Peninsula. One month later, on December 16 2007, a strong (Mw 6.8) intraplate event with slab-push mechanism occurred near the bottom of the rupture zone. These events represent a unique opportunity for the study of earthquakes in Northern Chile because of the quantity and quality of available data. In the epicentral area, the IPOC network was deployed by GFZ, CNRS/INSU and DGF before the main event. This is a digital, continuously recording network, equipped with both strong-motion and broad-band instrument. On 29 November 2007 a second network named “Task Force” (TF) was deployed by GFZ to study the aftershocks. This is a dense network, installed near the Mejillones peninsula. It is composed by 20 short-period instruments. The slab-push event of 16 december 2007 occurred in the middle of the area covered by the TF network. Aftershocks were detected using an automatic procedure and manually revised in order to pick P and S arrivals. In the 14-28 November period, we detected 635 events recorded at the IPOC network; and a further 552 events were detected between 29 November and 16 December before the slab-push event using the TF network. The events were located using a vertically layered velocity model (Husen et al. 1999), using the NLLoc software of Lomax et al. From the broadband data we estimated the moment magnitude from the displacement spectra of the events. From the short-period instruments we evaluated local magnitudes using the

  11. GPU-Accelerated Denoising in 3D (GD3D)

    2013-10-01

    The raw computational power GPU Accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. This software addresses two facets of this promising application: what tuning is necessary to achieve optimal performance on a modern GPU? And what parameters yield the best denoising results in practice? To answer the first question, the software performs an autotuning step to empirically determine optimal memory blocking on the GPU. To answer themore » second, it performs a sweep of algorithm parameters to determine the combination that best reduces the mean squared error relative to a noiseless reference image.« less

  12. 3D rapid mapping

    NASA Astrophysics Data System (ADS)

    Isaksson, Folke; Borg, Johan; Haglund, Leif

    2008-04-01

    In this paper the performance of passive range measurement imaging using stereo technique in real time applications is described. Stereo vision uses multiple images to get depth resolution in a similar way as Synthetic Aperture Radar (SAR) uses multiple measurements to obtain better spatial resolution. This technique has been used in photogrammetry for a long time but it will be shown that it is now possible to do the calculations, with carefully designed image processing algorithms, in e.g. a PC in real time. In order to get high resolution and quantitative data in the stereo estimation a mathematical camera model is used. The parameters to the camera model are settled in a calibration rig or in the case of a moving camera the scene itself can be used for calibration of most of the parameters. After calibration an ordinary TV camera has an angular resolution like a theodolite, but to a much lower price. The paper will present results from high resolution 3D imagery from air to ground. The 3D-results from stereo calculation of image pairs are stitched together into a large database to form a 3D-model of the area covered.

  13. P-Wave Velocity Tomography from Local Earthquakes in Western Mexico

    NASA Astrophysics Data System (ADS)

    Ochoa-Chávez, Juan A.; Escudero, Christian R.; Núñez-Cornú, Francisco J.; Bandy, William L.

    2015-11-01

    In western Mexico, the subduction of the Rivera and Cocos plates beneath the North America plate has deformed and fragmented the overriding plate, forming several structural rifts and crustal blocks. To obtain a reliable subsurface image of the continental crust and uppermost mantle in this complex area, we used P-wave arrivals of local earthquakes along with the Fast Marching Method tomography technique. We followed an inversion scheme consisting of (1) the use of a high-quality earthquake catalog and corrected phase picks, (2) the selection of earthquakes using a maximum location error threshold, (3) the estimation of an improved 1-D reference velocity model, and (4) the use of checkerboard testing to determine the optimum configuration of the velocity nodes and inversion parameters. Surprisingly, the tomography results show a very simple δVp distribution that can be described as being controlled by geologic structures formed during two stages of the separation of the Rivera and Cocos plates. The earlier period represents the initial stages of the separation of the Rivera and Cocos plates beneath western Mexico; the later period represents the more advanced stage of rifting where the Rivera and Cocos plates had separated sufficiently to allow melt to accumulate below the Colima Volcanic complex. During the earlier period (14 or 10-1.6 Ma), NE-SW-oriented structures/lineaments (such as the Southern Colima Rift) were formed as the two plates separated. During the second period (1.6 Ma to the present), the deformation is attributed to magma, generated within and above the tear zone between the Rivera and Cocos plates, rising beneath the region of the Colima Volcanic Complex. The rising magma fractured the overlying crust, forming a classic triple-rift junction geometry. This triple-rift system is confined to the mid- to lower crust perhaps indicating that this rifting process is still in an early stage. This fracturing, along with fluid circulation and associated

  14. Determination of source parameters for local and regional earthquakes in Israel

    NASA Astrophysics Data System (ADS)

    Ataeva, G.; Shapira, A.; Hofstetter, A.

    2015-04-01

    We have investigated earthquake source parameters and seismic moment-magnitude relations from 103 regional and local earthquakes with moment magnitude 2.6 to 7.2, which occurred in a distance range from 4.5 to 550 km during 1995-2012 by applying Brune's seismic source model (J Geophys Res 75:4997-5009, 1970, J Geophys Res 76:5002, 1971) for P- and S/Lg-wave displacement spectra. Considering P- and S-wave data separately, we first studied the empirical dependence of the Fourier spectral amplitudes Ω due to the geometrical spreading and the inelastic attenuation and of the corner frequency, f 0, with the epicentral distances, R. We found the distance correction parameters, Re 0.0042 R and R 0.8333 e 0.00365 R for the low-frequency spectral amplitudes and f 0 = f {0/'} e 0.00043 R and f 0 = f {0/'} e 0.00044 R for the corner frequency at the source, f 0, and observed at the station, f {0/'}, from P-wave and S-wave spectra, respectively. Applying the distance correction procedure, we determined the source displacement spectrum of P and S waves for each earthquake to estimate the seismic moment, M 0; the moment magnitude, M W; the source radius, r; and the stress drop, Δσ. The seismic moments range from 1.06 × 1013 to 7.67 × 1019 N m, and their corresponding moment magnitudes are in the range of 2.6-7.2. Values of stress drop Δσ vary from 0.1 to 44 MPa. It was found that the stress drop increases with the increasing seismic moment in the range of 1013-1016 N m and possibly becomes constant at higher magnitudes, reaching a maximum value of about 40-45 MPa. We demonstrate that the values of the M 0 and M W estimated from P-wave and S-wave analysis are consistent and confirmed by the results of waveform inversions, i.e., centroid moment tensor (CMT) solution.

  15. P-Wave Velocity Tomography from Local Earthquakes in Western Mexico

    NASA Astrophysics Data System (ADS)

    Ochoa-Chávez, Juan A.; Escudero, Christian R.; Núñez-Cornú, Francisco J.; Bandy, William L.

    2016-10-01

    In western Mexico, the subduction of the Rivera and Cocos plates beneath the North America plate has deformed and fragmented the overriding plate, forming several structural rifts and crustal blocks. To obtain a reliable subsurface image of the continental crust and uppermost mantle in this complex area, we used P-wave arrivals of local earthquakes along with the Fast Marching Method tomography technique. We followed an inversion scheme consisting of (1) the use of a high-quality earthquake catalog and corrected phase picks, (2) the selection of earthquakes using a maximum location error threshold, (3) the estimation of an improved 1-D reference velocity model, and (4) the use of checkerboard testing to determine the optimum configuration of the velocity nodes and inversion parameters. Surprisingly, the tomography results show a very simple δVp distribution that can be described as being controlled by geologic structures formed during two stages of the separation of the Rivera and Cocos plates. The earlier period represents the initial stages of the separation of the Rivera and Cocos plates beneath western Mexico; the later period represents the more advanced stage of rifting where the Rivera and Cocos plates had separated sufficiently to allow melt to accumulate below the Colima Volcanic complex. During the earlier period (14 or 10-1.6 Ma), NE-SW-oriented structures/lineaments (such as the Southern Colima Rift) were formed as the two plates separated. During the second period (1.6 Ma to the present), the deformation is attributed to magma, generated within and above the tear zone between the Rivera and Cocos plates, rising beneath the region of the Colima Volcanic Complex. The rising magma fractured the overlying crust, forming a classic triple-rift junction geometry. This triple-rift system is confined to the mid- to lower crust perhaps indicating that this rifting process is still in an early stage. This fracturing, along with fluid circulation and associated

  16. Stress in the contorted Nazca Plate beneath southern Peru from local earthquakes

    NASA Astrophysics Data System (ADS)

    Schneider, John F.; Sacks, I. Selwyn

    1987-12-01

    We study earthquake focal mechanisms in a region of highly contorted subducting lithosphere to identify dominant sources of stress in the subduction process. We observe a stress pattern in the contorted Nazca plate beneath southern Peru from an analysis of hypocentral trend and focal mechanisms of intermediate-depth earthquakes. Expanding on previous studies, we examine the hypocentral trend using 1673 of 2178 well-located local events from the nine-station Arequipa network. The dip of the plate beneath southern Peru averages 25°-30° from 25- to 100-km depth. Below this depth there is an 80- to 100-km-wide contortion between a zone of increasing dip (convex) to the southeast and a flat lying (concave) zone to the northwest. Using more than 6000 P wave first motions of events deeper than 50 km, we derive stress orientations from a moving average of composite focal mechanisms across a 200 by 350 km region including the contortion. The in-plate distribution of tension (T) and compression (P) axes reveals a coherent stress pattern. The trend is most clear beneath south-central Peru (NW section) and below 100- km depth in southernmost Peru (SE section). Both T and P axes tend to be dominantly in plate, especially below 100-km depth. T axes orient toward the contortion in a fan-shaped trend, which suggests that the deepest part of the seismic zone, within the convex SE section, is sinking and pulling the more buoyant NW section. We conclude that from 50- to 200-km depth, slab-pull forces are dominant in the observed stress. Our results suggest that a significant amount of plate extension occurs in this region of intermediate-depth subduction.

  17. Effect of anelastic and scattering structures of the lithosphere on the shape of local earthquake coda

    USGS Publications Warehouse

    Chouet, B.

    1990-01-01

    A simple model of single acoustic scattering is used to study the dependence of the shape of local earthquake coda on the anelastic and scattering structures of the lithosphere. The model is applied to the coda of earthquakes located near Stone Canyon, central California, and provides an explanation for the features observed in the data, which include an interesting temporal variation in the coda shape. A surficial layer with a Q of 50 and thickness of 10 or 25 km underlain by a zone with a Q of 1000 extending to the bottom of the lithosphere, together with a scattering scale length, a, that varies with depth z according to the relation a=0.3 exp[-(z/45)2] are found to constitute the simplest structure of the medium compatible with the coda data and with body and surface wave attenuation data. The profile of heterogeneity sizes implies that the scattering strength increases strongly with depth, a constraint required by the necessity to boost the energy of the later coda without forcing the intrinsic Q to be excessively high in the uppermost mantle. This constraint is viewed as an artifact of the single scattering model which overstimates the scattering coefficient due to the neglect of multiple scattering. The observed temporal variation of the signal is difficult to explain by a simple change of the intrinsic Q at some depth. Rather, it is suggested that the scattering properties at depth changed with time through a variation of the fractional rms velocity fluctuation on the order of one percent. ?? 1990 Birkha??user Verlag.

  18. VP Structure of Mount St. Helens, Washington, USA, imaged with local earthquake tomography

    USGS Publications Warehouse

    Waite, G.P.; Moran, S.C.

    2009-01-01

    We present a new P-wave velocity model for Mount St. Helens using local earthquake data recorded by the Pacific Northwest Seismograph Stations and Cascades Volcano Observatory since the 18 May 1980 eruption. These data were augmented with records from a dense array of 19 temporary stations deployed during the second half of 2005. Because the distribution of earthquakes in the study area is concentrated beneath the volcano and within two nearly linear trends, we used a graded inversion scheme to compute a coarse-grid model that focused on the regional structure, followed by a fine-grid inversion to improve spatial resolution directly beneath the volcanic edifice. The coarse-grid model results are largely consistent with earlier geophysical studies of the area; we find high-velocity anomalies NW and NE of the edifice that correspond with igneous intrusions and a prominent low-velocity zone NNW of the edifice that corresponds with the linear zone of high seismicity known as the St. Helens Seismic Zone. This low-velocity zone may continue past Mount St. Helens to the south at depths below 5??km. Directly beneath the edifice, the fine-grid model images a low-velocity zone between about 2 and 3.5??km below sea level that may correspond to a shallow magma storage zone. And although the model resolution is poor below about 6??km, we found low velocities that correspond with the aseismic zone between about 5.5 and 8??km that has previously been modeled as the location of a large magma storage volume. ?? 2009 Elsevier B.V.

  19. Uncertainty in local and regional tsunami earthquake source parameters: Implications for scenario based hazard assessment and forecasting

    NASA Astrophysics Data System (ADS)

    Müller, Christof; Power, William; Burbidge, David; Wang, Xiaoming

    2016-04-01

    Over the last decade tsunami propagation models have been used extensively for both tsunami forecasting, hazard and risk assessment. However, the effect of uncertainty in the earthquake source parameters, such as location and distribution of slip in the earthquake source on the results of the tsunami model has not always been examined in great detail. We have developed a preliminary combined and continuous Hikurangi-Kermadec subduction zone interface model. The model is defined by a spline surface and is based on a previously published spline model for Hikurangi interface and a more traditional unit source model for the Kermadec interface. The model allows to freely position and vary the earthquake epicenter and to consider non-uniform slip. Using this model we have investigated the effects of variability in non-uniform slip and epicenter location on the distribution of offshore maximum wave heights for local New Zealand targets. Which scenario out of an ensemble is responsible for the maximum wave height locally is a spatially highly variable function of earthquake location and/or the distribution of slip. We use the Coefficient of Variation (CoV) to quantify the variability of offshore wave heights as a function of source location and distribution of slip. CoV increases significantly with closer proximity to the shore, in bays and in shallow water. The study has implication for tsunami hazard assessment and forecasting. As an example, our results challenge the concept of hazard assessment using a single worst case scenario in particular for local tsunami.

  20. States of local stresses in the Sea of Marmara through the analysis of large numbers of small earthquakes

    NASA Astrophysics Data System (ADS)

    Korkusuz Öztürk, Yasemin; Meral Özel, Nurcan; Özbakir, Ali Değer

    2015-12-01

    We invert the present day states of stresses for five apparent earthquake clusters in the Northern branch of the North Anatolian Fault in the Sea of Marmara. As the center of the Sea of Marmara is prone to a devastating earthquake within a seismic gap between these selected clusters, sensitive analyses of the understanding of the stress and strain characteristics of the region are all-important. We use high quality P and S phases, and P-wave first motion polarities from 398 earthquakes with ML ≥ 1.5 using at least 10 P-wave first motion polarities (FMPs), and a maximum of 1 inconsistent station, obtained from a total of 105 seismic stations, including 5 continuous OBSs. We report here on large numbers of simultaneously determined individual fault plane solutions (FPSs), and orientations of principal stress axes, which previously have not been determined with any confidence from the basins of the Sea of Marmara and prominent fault branches. We find NE-SW trending transtensional stress structures, predominantly in the earthquake clusters of the Eastern Tekirdağ Basin, Eastern Çınarcık Basin, Yalova and Gemlik areas. We infer that a dextral strike-slip deformation exist in the Eastern Ganos Offshore cluster. Furthermore, we analyze FPSs of four ML ≥ 4.0 earthquakes, occurred in seismically quiet regions after 1999 Izmit earthquake. Stress tensor solutions from a cluster of small events that we have obtained, correlate with FPSs of these moderate size events as a demonstration of the effectiveness of the small earthquakes in the derivation of states of local stresses. Consequently, our analyses of seismicity and large numbers of FPSs using the densest seismic network of Turkey contribute to better understanding of the present states of the stresses and seismotectonics of the Sea of Marmara.

  1. Localized surface disruptions observed by InSAR during strong earthquakes in Java and Hawai'i

    USGS Publications Warehouse

    Poland, M.

    2010-01-01

    Interferometric Synthetic Aperture Radar data spanning strong earthquakes on the islands of Java and Hawai‘i in 2006 reveal patches of subsidence and incoherence indicative of localized ground failure. Interferograms spanning the 26 May 2006 Java earthquake suggest an area of about 7.5 km2 of subsidence (~2 cm) and incoherence south of the city of Yogyakarta that correlates with significant damage to housing, high modeled peak ground accelerations, and poorly consolidated geologic deposits. The subsidence and incoherence is inferred to be a result of intense shaking and/or damage. At least five subsidence patches on the west side of the Island of Hawai‘i, ranging 0.3–2.2 km2 in area and 3–8 cm in magnitude, occurred as a result of a pair of strong earthquakes on 15 October 2006. Although no felt reports or seismic data are available from the areas in Hawai‘i, the Java example suggests that the subsidence patches indicate areas of amplified earthquake shaking. Surprisingly, all subsidence areas in Hawai‘i were limited to recent, and supposedly stable, lava flows and may reflect geological conditions not detectable at the surface. In addition, two ‘a‘ā lava flows in Hawai‘i were partially incoherent in interferograms spanning the earthquakes, indicating surface disruption as a result of the earthquake shaking. Coearthquake incoherence of rubbly deposits, like ‘a‘ā flows, should be explored as a potential indicator of earthquake intensity and past strong seismic activity.

  2. Three-dimensional crustal structure of the Mendocino Triple Junction region from local earthquake travel times

    NASA Astrophysics Data System (ADS)

    Verdonck, David; Zandt, George

    1994-12-01

    The large-scale, three-dimensional geometry of the Mendocino Triple Junction at Cape Mendocino, California, was investigated by inverting nearly 19,000 P wave arrival times from over 1400 local earthquakes to estimate the three-dimensional velocity structure and hypocentral parameters. A velocity grid 175 km (N-S) by 125 km (E-W) centered near Garberville, California, was constructed with 25 km horizontal and 5 km vertical mode spacing. The model was well resolved near Cape Mendocino, where the earthquakes and stations are concentrated. At about 40.6 N latitude a high-velocity gradient between 6.5 and 7.5 km/s dips gently to the south and east from about 15 km depth near the coast. Relocated hypocenters concentrate below this high gradient which we interpret as the oceanic crust of the subducted Gorda Plate. Therefore the depth to the top of the Gorda Plate near Cape Mendocino is interpreted to be approximately 15 km. The Gorda Plate appears intact and dipping approximately 8 deg eastward due to subduction and flexing downward 6 deg - 12 deg to the south. Both hypocenters and velocity structure suggest that the southern edge of the plate intersects the coastline at 40.3 N latitude and maintains a linear trend 15 deg south of east to at least 123 W longitude. The top of a large low-velocity region at 20-30 km depth extends about 50 km N-S and 75 km E-W (roughly between Garberville and Covelo) and is located above and south of the southern edge of the Gorda Plate. We interpret this low velocity area to be locally thickened crust (8-10 km) due to either local compressional forces associated with north-south compression caused by the northward impingement of the rigid Pacific Plate or by underthrusting of the base of the accretionary subduction complex at the southern terminous of the Cascadia Subduction Zone. South of Cape Mendocino and southwest of the Garberville fault, high velocities indicative of oceanic crust are detected at 15 km depth. We interpret this

  3. [3D reconstructions in radiotherapy planning].

    PubMed

    Schlegel, W

    1991-10-01

    3D Reconstructions from tomographic images are used in the planning of radiation therapy to study important anatomical structures such as the body surface, target volumes, and organs at risk. The reconstructed anatomical models are used to define the geometry of the radiation beams. In addition, 3D voxel models are used for the calculation of the 3D dose distributions with an accuracy, previously impossible to achieve. Further uses of 3D reconstructions are in the display and evaluation of 3D therapy plans, and in the transfer of treatment planning parameters to the irradiation situation with the help of digitally reconstructed radiographs. 3D tomographic imaging with subsequent 3D reconstruction must be regarded as a completely new basis for the planning of radiation therapy, enabling tumor-tailored radiation therapy of localized target volumes with increased radiation doses and improved sparing of organs at risk. 3D treatment planning is currently being evaluated in clinical trials in connection with the new treatment techniques of conformation radiotherapy. Early experience with 3D treatment planning shows that its clinical importance in radiotherapy is growing, but will only become a standard radiotherapy tool when volumetric CT scanning, reliable and user-friendly treatment planning software, and faster and cheaper PACS-integrated medical work stations are accessible to radiotherapists.

  4. Moment tensor inversion of recent local moderate sized Van Earthquakes: seismicity and active tectonics of the Van region : Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Kalafat, D.; Suvarikli, M.; Ogutcu, Z.; Kekovali, K.; Ocal, M. F.; Gunes, Y.; Pinar, A.

    2013-12-01

    The study area of the present research, the Van Region is located at the norththern end of the collision zone between the Anatolia and Arabian plates. Therefore, the southeast border of the Anatolian plate collides with the Arabian plate along the Bitlis Suture Zone. This zone is formed by collision of Arabian and in large scale Eurasian plates at mid-Miocen age. This type of thrust generation as a result of compressional regime extends east-west. The largest recorded earthquakes have all taken place along Southern Turkey (e.g. Lice, 1971; Varto, 1966; Caldiran, 1976). On the 23th of October 2011, an earthquake shook the Van Lake, Eastern Turkey, following a seismic sequence of more than three months in an unprecedented episode for this region characterized by null or low seismicity. The October 23, 2011 Van-Ercis Earthquake (Mw=7.1) was the most devastating resulting in loss of life and destruction. In order to study the aftershocks' activity of this main event, we installed and kept a seismic network of 10 broad-band (BB) stations in the area for an interval of nearly fifteen months. We characterized the seismogenic structure of the zone by calculating a minimum 1-D local velocity model and obtaining precise hypocentre locations. We also calculated fault plane solutions for more than 200 moderate sized earthquakes based on first motion polarities and commonly Moment Tensor Inversion Methods. The seismogenic zone would be localized at aproximately 10 km depth. Generally, the distribution of the important moderate earthquakes and the aftershock distribution shows that the E-W and NE-SW oriented fault segments cause the earthquake activities. Aftershock events are located along the eastern border of Lake Van and mainly between 5 and 10 km depth and disposed in two alignments: a ~E-W-trending alignment that matches with the trace of the Van Trust fault Zone and a NE-trending which could correspond to an structure not previously seen. Selected focal mechanisms show a

  5. Crust-mantle boundaries in the Taiwan - Luzon arc-continent collision system determined from local earthquake tomography and layered Vp models

    NASA Astrophysics Data System (ADS)

    Ustaszewski, K. M.; Wu, Y.; Suppe, J.; Huang, H.; Carena, S.; Chang, C.

    2011-12-01

    We performed 3D mapping of crust-mantle boundaries in the Taiwan-Luzon arc-continent collision zone using a local earthquake tomographic model, providing better insight into the mode of subduction polarity reversal. The mapped crust-mantle discontinuities include three tectonically distinct Mohos. Furthermore, a crust-mantle boundary marks the eastern limit of the Eurasian lower crust against the mantle of the Philippine Sea plate. It dips steeply to the east underneath eastern and southern Taiwan and steepens progressively towards north until it becomes vertical at 23.7°N. From there it continues northward in a slightly overturned orientation, where the limit of the tomographic model at the northern tip of the island prevents further mapping. In order to map several Moho discontinuities, we contoured a surface of constant Vp = 7.5 km s-1 constrained from local earthquake tomography and confined to regions with a minimum of 500 rays per tomography cell. Additional constraints for the Moho were derived from layered (1D) Vp models using P-wave arrivals of local earthquakes recorded at 52 seismic stations, employing a genetic algorithm. The Moho of the Eurasian and the Philippine Sea plates are topologically disconnected across the plate boundary. Beneath southern Taiwan, the Eurasian Moho dips to the E at 50-60°, following the orientation of the plate boundary and continuous with the Benioff zone. Towards north, the Eurasian Moho twists to become subvertical, again together with the plate boundary. At the same time, it steps westward into a more external position underneath the thrust belt, giving way to the north-dipping Philippine Sea plate. The Philippine Sea plate Moho shallows towards the surface along the Longitudinal Valley suture. It forms a synform-like crustal root with an axis parallel to the trend of geological units at surface and it is interpreted as the base of the magmatic Luzon arc. Towards the north, the crustal root deepens from 30 km to about 70

  6. Late Cretaceous Localized Crustal Thickening as a Primary Control on the 3-D Architecture and Exhumation Histories of Cordilleran Metamorphic Core Complexes

    NASA Astrophysics Data System (ADS)

    Gans, P. B.; Wong, M.

    2014-12-01

    The juxtaposition of mylonitic mid-crustal rocks and faulted supracrustal rocks in metamorphic core complexes (MMCs) is usually portrayed in 2 dimensions and attributed to a single event of large-scale slip ± isostatic doming along a low-angle "detachment fault"/ shear zone. This paradigm does not explain dramatic along strike (3-D) variations in slip magnitude, footwall architecture, and burial / exhumation histories of most MMCs. A fundamental question posed by MMCs is how did their earlier thickening and exhumation histories influence the geometric evolution and 3-D slip distribution on the subsequent detachment faults? New geologic mapping and 40Ar/39Ar thermochronology from the Snake Range-Kern Mts-Deep Creek Mts (SKDC) complex in eastern Nevada offer important insights into this question. Crustal shortening and thickening by large-scale non-cylindrical recumbent folds and associated thrust faults during the late Cretaceous (90-80 Ma) resulted in deep burial (650°C, 20-25 km) of the central part of the footwall, but metamorphic grade decreases dramatically to the N and S in concert with decreasing amplitude on the shortening structures. Subsequent Paleogene extensional exhumation by normal faulting and ESE-directed mylonitic shearing is greatest in areas of maximum earlier thickening and brought highest grade rocks back to depths of~10-12 km. After ≥15 Ma of quiescence, rapid E-directed slip initiated along the brittle Miocene Snake Range detachment at 20 Ma and reactivated the Eocene shear zone. The ≥200°C gradient across the footwall at this time implies that the Miocene slip surface originated as a moderately E-dipping normal fault. This Miocene slip surface can be tracked for more than 100 km along strike, but the greatest amount of Miocene slip also coincides with parts of the footwall that were most deeply buried in the Cretaceous. These relations indicate that not only is the SKDC MMC a composite feature, but that the crustal welt created by

  7. Taming supersymmetric defects in 3d-3d correspondence

    NASA Astrophysics Data System (ADS)

    Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; Yamazaki, Masahito

    2016-07-01

    We study knots in 3d Chern-Simons theory with complex gauge group {SL}(N,{{C}}), in the context of its relation with 3d { N }=2 theory (the so-called 3d-3d correspondence). The defect has either co-dimension 2 or co-dimension 4 inside the 6d (2,0) theory, which is compactified on a 3-manifold \\hat{M}. We identify such defects in various corners of the 3d-3d correspondence, namely in 3d {SL}(N,{{C}}) CS theory, in 3d { N }=2 theory, in 5d { N }=2 super Yang-Mills theory, and in the M-theory holographic dual. We can make quantitative checks of the 3d-3d correspondence by computing partition functions at each of these theories. This Letter is a companion to a longer paper [1], which contains more details and more results.

  8. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  9. Estimation of coda wave attenuation for NW Himalayan region using local earthquakes

    NASA Astrophysics Data System (ADS)

    Kumar, Naresh; Parvez, Imtiyaz A.; Virk, H. S.

    2005-08-01

    The attenuation of seismic wave energy in NW Himalayas has been estimated using local earthquakes. Most of the analyzed events are from the vicinity of the Main Boundary Thrust (MBT) and the Main Central Thrust (MCT), which are well-defined tectonic discontinuities in the Himalayas. The time-domain coda-decay method of a single back-scattering model is employed to calculate frequency dependent values of Coda Q (Qc). A total of 36 local earthquakes of magnitude range 2.1-4.8 have been used for Qc estimation at central frequencies 1.5, 3.0, 6.0, 9.0, 12.0 and 18.0 Hz through eight lapse time windows from 25 to 60 s starting at double the time of the primary S-wave from the origin time. The estimated average frequency dependence quality factor gives the relation, Qc = 158 f1.05, while the average Qc values vary from 210 at 1.5 Hz to 2861 at 18 Hz central frequencies. The observed coda quality factor is strongly dependent on frequency, which indicates that the region is seismic and tectonically active with high heterogeneities. The variation of the quality factor Qc has been estimated at different lapse times to observe its effect with depth. The estimated average frequency dependent relations of Qc vary from 85 f1.16 to 216 f0.91 at 25 to 60 s lapse window length respectively. For 25 s lapse time window, the average Qc value of the region varies from 131 ± 36 at 1.5 Hz to 2298 ± 397 at 18 Hz, while for 60 s lapse time window its variation is from 285 ± 95 at 1.5 Hz to 2868 ± 336 at 18 Hz of central frequency. The variation of Qc with frequency and lapse time shows that the upper crustal layers are seismically more active compared to the lower lithosphere. The decreasing value of the frequency parameter with increasing lapse time shows that the lithosphere acquires homogeneity with depth.

  10. The IPOC Creepmeter Array in N-Chile: Monitoring Slip Accumulation Triggered By Local or Remote Earthquakes

    NASA Astrophysics Data System (ADS)

    Victor, P.; Schurr, B.; Oncken, O.; Sobiesiak, M.; Gonzalez, G.

    2014-12-01

    The Atacama Fault System (AFS) is an active trench-parallel fault, located above the down-dip end of coupling of the north Chilean subduction zone. About 3 M=7 Earthquakes in the past 10 ky have been documented in the paleoseismological record, demonstrating the potential of large events in the future. To investigate the current surface creep rate and to deduce the mode of strain accumulation, we deployed an array of 11 creepmeters along four branches of the AFS. This array monitors the interaction of earthquake activity on the subduction zone and a trench-parallel fault in the overriding forearc. The displacement across the fault is continuously monitored with 2 samples/min with a resolution of 1μm. Collocated seismometers record the seismicity at two of the creepmeters, whereas control of the regional seismicity is provided by the IPOC Seismological Networks. Continuous time series of the creepmeter stations since 2009 show that the shallow segments of the fault do not creep permanently. Instead the accumulation of permanent deformation occurs by triggered slip recorded as well-defined steps caused by local or remote earthquakes. The 2014 Mw=8.2 Pisagua Earthquake, located close to the creepmeter array, triggered large displacement events on all stations. Another event recorded on all stations was the 2010 Mw=8.8 Maule earthquake located 1500km south of the array. All of the stations showed a triggered displacement event 6-8 min after origin time of the main shock, at the same time as the arrival of the surface waves recorded at nearby IPOC stations. This points to a dynamic triggering process caused by transient stresses during passage of the surface wave. Investigation of seismic events with Magnitudes <6 show displacement events triggered during P and S wave passage, pointing to static as well as dynamic stress changes for proximal events. Analyzing the causative earthquakes we find that the most effective way to trigger displacement events on the AFS are

  11. Empirical Green's functions from small earthquakes: A waveform study of locally recorded aftershocks of the 1971 San Fernando earthquake

    SciTech Connect

    Hutchings, L.; Wu, F. )

    1990-02-10

    Seismograms from 52 aftershocks of the 1971 San Fernando earthquake recorded at 25 stations distributed across the San Fernando Valley are examined to identify empirical Green's functions, and characterize the dependence of their waveforms on moment, focal mechanism, source and recording site spatial variations, recording site geology, and recorded frequency band. Recording distances ranged from 3.0 to 33.0 km, hypocentral separations ranged from 0.22 to 28.4 km, and recording site separations ranged from 0.185 to 24.2 km. The recording site geologies are diorite gneiss, marine and nonmarine sediments, and alluvium of varying thicknesses. Waveforms of events with moment below about 1.5 {times} 10{sup 21} dyn cm are independent of the source-time function and are termed empirical Green's functions. Waveforms recorded at a particular station from events located within 1.0 to 3.0 km of each other, depending upon site geology, with very similar focal mechanism solutions are nearly identical for frequencies up to 10 Hz. There is no correlation to waveforms between recording sites at least 1.2 km apart, and waveforms are clearly distinctive for two sites 0.185 km apart. The geologic conditions of the recording site dominate the character of empirical Green's functions. Even for source separations of up to 20.0 km, the empirical Green's functions at a particular site are consistent in frequency content, amplification, and energy distribution. Therefore, it is shown that empirical Green's functions can be used to obtain site response functions. The observations of empirical Green's functions are used as a basis for developing the theory for using empirical Green's functions in deconvolution for source pulses and synthesis of seismograms of larger earthquakes.

  12. Three-dimensional P-wave velocity structure derived from local earthquakes at the Katmai group of volcanoes, Alaska

    USGS Publications Warehouse

    Jolly, A.D.; Moran, S.C.; McNutt, S.R.; Stone, D.B.

    2007-01-01

    The three-dimensional P-wave velocity structure beneath the Katmai group of volcanoes is determined by inversion of more than 10,000 rays from over 1000 earthquakes recorded on a local 18 station short-period network between September 1996 and May 2001. The inversion is well constrained from sea level to about 6??km below sea level and encompasses all of the Katmai volcanoes; Martin, Mageik, Trident, Griggs, Novarupta, Snowy, and Katmai caldera. The inversion reduced the average RMS travel-time error from 0.22??s for locations from the standard one-dimensional model to 0.13??s for the best three-dimensional model. The final model, from the 6th inversion step, reveals a prominent low velocity zone (3.6-5.0??km/s) centered at Katmai Pass and extending from Mageik to Trident volcanoes. The anomaly has values about 20-25% slower than velocities outboard of the region (5.0-6.5??km/s). Moderately low velocities (4.5-6.0??km/s) are observed along the volcanic axis between Martin and Katmai Caldera. Griggs volcano, located about 10??km behind (northwest of) the volcanic axis, has unremarkable velocities (5.0-5.7??km/s) compared to non-volcanic regions. The highest velocities are observed between Snowy and Griggs volcanoes (5.5-6.5??km/s). Relocated hypocenters for the best 3-D model are shifted significantly relative to the standard model with clusters of seismicity at Martin volcano shifting systematically deeper by about 1??km to depths of 0 to 4??km below sea level. Hypocenters for the Katmai Caldera are more tightly clustered, relocating beneath the 1912 scarp walls. The relocated hypocenters allow us to compare spatial frequency-size distributions (b-values) using one-dimensional and three-dimensional models. We find that the distribution of b is significantly changed for Martin volcano, which was characterized by variable values (0.8 < b < 2.0) with standard locations and more uniform values (0.8 < b < 1.2) after relocation. Other seismic clusters at Mageik (1.2 < b

  13. GIS-based 3D visualization of the Mw 7.7, 2007, Tocopilla aftershocks

    NASA Astrophysics Data System (ADS)

    Eggert, S.; Sobiesiak, M.; Altenbrunn, K.

    2009-12-01

    The November 14, 2007 Mw 7.7 earthquake nucleated on the west coast of northern Chile about 40 km east of the city of Tocopilla. It took place in the southern part of a large seismic gap, the Iquique subduction zone segment which is supposed to be at the end of its seismic cycle. The Tocopilla fault plane appears to be the northern continuation of the Mw 8.0, 1995 Antofagasta earthquake. We present a complex 3D model of the rupture area including first hypocenter localizations of aftershocks following the event. The data was recorded during a mission of the German Task Force for Earthquakes after the 2007 Tocopilla earthquake. The seismic stations were recording the aftershocks from November 2007 until May 2008. In general, subduction zones have a complex structure where most of the volumes examined are characterized by strong variations in physical and material parameters. Therefore, 3D representation of the geophysical and geological conditions to be found are of great importance to understand such a subduction environment. We start with a two-dimensional visualization of the geological and geophysical setting. In a second step, we use GIS as a three-dimensional modeling tool which gives us the possibility to visualize the complex geophysical processes. One can easily add and delete data and focus on the information one needs. This allows us to investigate the aftershock distribution along the subducting slab and identify clear structures and clusters within the data set. Furthermore we combine the 2007 Tocopilla data set with the 1995 Antofagasta aftershocks which provides a new, three-dimensional insight into the segment boundary of these two events. Analyzing the aftershock sequence with a GIS-based model will not only help to visualize the setting but also be the base for various calculations and further explorations of the complex structures. Aftershocks following the 1995 Antofagasta earthquake and the 2007 Tocopilla earthquake

  14. Scoops3D: software to analyze 3D slope stability throughout a digital landscape

    USGS Publications Warehouse

    Reid, Mark E.; Christian, Sarah B.; Brien, Dianne L.; Henderson, Scott T.

    2015-01-01

    The computer program, Scoops3D, evaluates slope stability throughout a digital landscape represented by a digital elevation model (DEM). The program uses a three-dimensional (3D) method of columns approach to assess the stability of many (typically millions) potential landslides within a user-defined size range. For each potential landslide (or failure), Scoops3D assesses the stability of a rotational, spherical slip surface encompassing many DEM cells using a 3D version of either Bishop’s simplified method or the Ordinary (Fellenius) method of limit-equilibrium analysis. Scoops3D has several options for the user to systematically and efficiently search throughout an entire DEM, thereby incorporating the effects of complex surface topography. In a thorough search, each DEM cell is included in multiple potential failures, and Scoops3D records the lowest stability (factor of safety) for each DEM cell, as well as the size (volume or area) associated with each of these potential landslides. It also determines the least-stable potential failure for the entire DEM. The user has a variety of options for building a 3D domain, including layers or full 3D distributions of strength and pore-water pressures, simplistic earthquake loading, and unsaturated suction conditions. Results from Scoops3D can be readily incorporated into a geographic information system (GIS) or other visualization software. This manual includes information on the theoretical basis for the slope-stability analysis, requirements for constructing and searching a 3D domain, a detailed operational guide (including step-by-step instructions for using the graphical user interface [GUI] software, Scoops3D-i) and input/output file specifications, practical considerations for conducting an analysis, results of verification tests, and multiple examples illustrating the capabilities of Scoops3D. Easy-to-use software installation packages are available for the Windows or Macintosh operating systems; these packages

  15. Seismicity, faulting, and structure of the Koyna-Warna seismic region, Western India from local earthquake tomography and hypocenter locations

    USGS Publications Warehouse

    Dixit, Madan M.; Kumar, Sanjay; Catchings, Rufus D.; Suman, K.; Sarkar, Dipankar; Sen, M.K.

    2014-01-01

    Although seismicity near Koyna Reservoir (India) has persisted for ~50 years and includes the largest induced earthquake (M 6.3) reported worldwide, the seismotectonic framework of the area is not well understood. We recorded ~1800 earthquakes from 6 January 2010 to 28 May 2010 and located a subset of 343 of the highest-quality earthquakes using the tomoDD code of Zhang and Thurber (2003) to better understand the framework. We also inverted first arrivals for 3-D Vp, Vs, and Vp/Vs and Poisson's ratio tomography models of the upper 12 km of the crust. Epicenters for the recorded earthquakes are located south of the Koyna River, including a high-density cluster that coincides with a shallow depth (<1.5 km) zone of relatively high Vp and low Vs (also high Vp/Vs and Poisson's ratios) near Warna Reservoir. This anomalous zone, which extends near vertically to at least 8 km depth and laterally northward at least 15 km, is likely a water-saturated zone of faults under high pore pressures. Because many of the earthquakes occur on the periphery of the fault zone, rather than near its center, the observed seismicity-velocity correlations are consistent with the concept that many of the earthquakes nucleate in fractures adjacent to the main fault zone due to high pore pressure. We interpret our velocity images as showing a series of northwest trending faults locally near the central part of Warna Reservoir and a major northward trending fault zone north of Warna Reservoir.

  16. Three-dimensional velocity structure of the Galeras volcano (Colombia) from passive local earthquake tomography

    NASA Astrophysics Data System (ADS)

    Vargas, Carlos Alberto; Torres, Roberto

    2015-08-01

    A three-dimensional estimation of the Vp, Vs and Vp/Vs ratio structure at Galeras volcano was conducted by means of passive local earthquake tomography. 14,150 volcano-tectonic events recorded by 58 stations in the seismological network established for monitoring the volcanic activity by the Colombian Geological Survey - Pasto Volcano Observatory between the years 1989 and 2015, were inverted by using the LOTOS code. The seismic events are associated with shear-stress fractures in solid rock as a response to pressure induced by magma flow. Tomography resolution tests suggest a depth of imaging that yield 10 km from the summit of the main crater, illuminating a large portion of the volcanic structure and the interaction of tectonic features like the Buesaco and Silvia-Pijao faults. Full catalog tomographic inversion, that represents the stacked image of the volcanic structure or the most permanent features underneath the volcano, shows vertical structures aligned with seismicity beneath the main crater. We hypothesize that these structures correspond to a system of ducts or fractures through which magma and fluid phases flow up from deeper levels toward the top and related with the intersection of the surface traces of the Silvia-Pijao and Buesaco faults.

  17. Insilico Structural 3D Modelling of Novel Cry1Ib9 and Cry3A Toxins from Local Isolates of Bacillus thuringiensis.

    PubMed

    Mahadeva Swamy, H M; Asokan, R; Mahmood, Riaz

    2014-03-01

    Three-dimensional (3D) models for the 79.2 kDa activated Cry1Ib9 and 77.4 kDa activated Cry3A δ-endotoxins from Bacillus thuringiensis (Bt) native isolates that are specifically toxic to Coleopteran insect pests were constructed by utilizing homology modeling online tool. Evidences presented here, based on the identification of structural equivalent residues of Cry1Ib9 and Cry3A toxin through homology modelling indicate that, they share a common Bt toxin tridimensional structure. The main differences observed in Cry1I9 domain I at positions α2b (S56-I60), α4 (F78-l93) and additionally β0 (Q10-L12), α8a (T280-V282) were observed, in domain II at positions α9b (P333-L339), β6(T390-Q393), β7(V398-W404), β8 (V418-W425), β9 (E453-N454), β10 (S470-I479) where as in domain III the changes were observed at positions β19 (R601-F607), β20 (609-L613), β21 (S618-F627) and α11a (K655-F664), α13, α14 components present at downstream sites, where as in Cry3A main differences observed in domain I is at the position of α4 (P105-I152), α5 (Q163-A185), β1A(E190-L192), α6 (F193-Y217), Domain II is not consevered and main variations were observed at β2 (E292-L295), β3(V299-L308), β4(I340-F347), β5(D356-P368), β6(I375-T377), β7(V389-F394), β8(K398-N405), β9(Y416-Y427), β10 (T436-Y439), β12(G476-H495), β12A (M503-I504) where as in domain III main variations observed at positions of β18 (P583-I593), β19(F604-S610), β20(P611-L615), β21(N619-G626). Cry1Ib9 and Cry3A contain the most variable regions in the loops of domain II, which determine the specificity of these toxins. These are the first models of Coleopteran-active protein from native isolates of Bt and its importance can be perceived since members of this group of toxins are potentially important candidates for coleoptera insect pest control programs. PMID:24426173

  18. Three-dimensional crustal structure in the Southern Alps region of New Zealand from inversion of local earthquake and active source data

    NASA Astrophysics Data System (ADS)

    Eberhart-Phillips, Donna; Bannister, Stephen

    2002-10-01

    P and S-P arrival time data from 311 earthquakes and several thousand offshore and onshore shots have been used in simultaneous inversion for hypocenters, three-dimensional (3-D) Vp and Vp/Vs models in the Southern Alps region, New Zealand. The combined data result in a highly nonuniform ray path distribution, and linked nodes are used in sparsely sampled areas. Gravity data are used to improve the model below 20-km depth, where it is poorly sampled by local earthquakes. The crustal Vp from 5 to 25 km depth is fairly uniform, generally ranging from 5.5 to 6.5 km/s, typical of graywacke and schist. Active fault zones tend to be correlated with low-velocity zones. Where the Alpine fault is primarily strike slip, it is characterized by a vertical low-velocity zone, to at least 15-km depth. Where the fault is dipping and has a large dip-slip component, it is characterized by a large region of low velocity above and southeast of the fault, to at least 14-km depth, consistent with fluids and fracture density from active deformation. A large high-velocity, high-resistivity feature in the eastern Southern Alps may represent Mesozoic schist of higher metamorphic grade than its surroundings, which is relatively rigid and serves to both reduce deformation in the overlying basin and concentrate deformation in the adjoining low-velocity region. The imaged crustal root is deepest 80-km south of Mt. Cook and is asymmetric with a sharper gradient on the northwestern side. The approximate Moho shows regional variation, with 5-10 km thicker crust in Otago than Canterbury.

  19. The impact of non-local buoyancy flux on the convective boundary layer development as simulated by a 3-D TKE-based subgrid mixing scheme in a mesoscale model

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Bao, Jian-Wen; Chen, Baode

    2016-04-01

    This presentation highlights a study in which a series of dry convective boundary layer (CBL) simulations are carried out using a generalized 3-dimensional (3-D) TKE-based parameterization scheme of sub-grid turbulent mixing in the Weather Research and Forecasting (WRF) model. The simulated characteristics of dry CBL are analyzed for the purpose of evaluating this scheme in comparison with a commonly-used scheme for sub-grid turbulent mixing in NWP models (i.e., the Mellor-Yamada 1.5-order TKE scheme). The same surface layer scheme is used in all the simulations so that only the sensitivity of the WRF model to different parameterizations of the sub-grid turbulent mixing above the surface layer is examined. The effect of horizontal grid resolution on the simulated CBL is also examined by running the model with grid sizes of 200, 400 m, 600 m, 1 km and 3 km. We will first compare the characteristics of the simulated CBL using the two schemes with the WRF LES dataset. We will then illustrate the importance of including the non-local component in the vertical buoyancy specification in the 3-D TKE-based scheme. Finally, comparing the results from the simulations against coarse-grained WRF LES dataset, we will show the feasibility and advantage of replacing conventional planetary boundary layer parameterization schemes with a scale-aware 3-D TKE-based scheme in the WRF model.

  20. Velocity structure around the Baikal rift zone from teleseismic and local earthquake traveltimes and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Petit, Carole; Koulakov, Ivan; Deverchère, Jacques

    1998-10-01

    We present new results on the velocity structure of the Baikal rift zone, Asia, deduced from a comparative teleseismic and local tomography analysis. The aim of this paper is to better identify the role of deep mantle processes versus that of far-field tectonic effects on the occurrence of extensional tectonics within a continental plate. We use 36000 traveltimes of P-refracted waves from the ISC catalogues and Pg and Pn traveltimes of 578 earthquakes recorded by the Russian regional network to determine a velocity model by the use of local and teleseismic inversion procedures. The models show that some velocity patterns are continuous from the surface down to at least 400 km. Among them, a narrow negative anomaly goes through Mongolia and follows the southern and eastern margins of the Siberian craton: this structure is interpreted as a thin mantle plume rising beneath the rift axis. However, our results do not evidence any wide asthenospheric upwarp at this place. Other velocity anomalies observed near the surface are not deeply rooted. In particular, a negative anomaly is observed at shallow levels (48 km) beneath the northern third of Lake Baikal, which is disconnected from deeper structures. It may be explained by the existence of underplated magmatic material at the bottom of the crust. By comparing the geometry of deep-rooted anomalies to the present-day stress field patterns, we conclude that the sub-lithospheric mantle dynamics is not the main factor controlling extensional processes in the Baikal rift. However, it does contribute to a thermal weakening of the lithosphere along a mechanical discontinuity bounding the Siberian shield. We finally conclude that three favourable conditions are gathered in the Baikal area to generate extension: far-field extensional stress field, mechanical inherited lithospheric weakness and heat supply. Further studies should help to precise the genetic link between these three factors.

  1. Seismic structure of subducted Philippine Sea plate beneath the southern Ryukyu arc by receiver function and local earthquakes tomography

    NASA Astrophysics Data System (ADS)

    Nakamura, M.

    2012-12-01

    Seismic coupling of the Ryukyu subduction zone is assumed to be weak from the lack of historical interplate large earthquakes. However, recent investigation of repeating slow slip events (Heki & Kataoka, 2008), shallow low frequency earthquakes (Ando et al., 2012), and source of 1771 Yaeyama mega-tsunami (Nakamura, 2009), showed that the interplate coupling is not weak in the south of Ryukyu Trench. The biannually repeating SSEs (Mw=6.5) occur at the depth of 20-40 km on the upper interface of the subducted Philippine Sea plate beneath Yaeyama region, where earthquake swarm occurred on 1991 and 1992. To reveal the relation among the crustal structure, earthquake swarms, and occurrence of slow slip events (SSE), local earthquake tomography and receiver function (RF) analysis was computed in the southwestern Ryukyu arc. A tomographic inversion was used to determine P and S wave structures beneath Iriomote Island in the southwestern Ryukyu region for comparison with the locations of the SSE. The seismic tomography (Thurber & Eberhart-Phillips, 1999) was employed. The P- and S- wave arrival time data picked manually by Japan Meteorological Agency (JMA) are used. The 6750 earthquakes from January 2000 to July 2012 were used. For the calculation of the receiver function, the 212 earthquakes whose magnitudes are over 6.0 and epicentral distances are between 30 and 90 degrees were selected. The teleseicmic waveforms observed at two short-period seismometers of the JMA, and one broadband seismometer of F-net of National Research Institute for Earth Science and Disaster Prevention were used. The water level method (the water level is 0.01) is applied to original waveforms. Assuming that each later phase in a RF is the wave converted from P to S at a depth, I transformed the time domain RF into the depth domain one along each ray path in a reference velocity model. The JMA2001 velocity model is used in this study. The results of tomography show that the low Vp and high Vp

  2. One-dimensional velocity model of the Middle Kura Depresion from local earthquakes data of Azerbaijan

    NASA Astrophysics Data System (ADS)

    Yetirmishli, G. C.; Kazimova, S. E.; Kazimov, I. E.

    2011-09-01

    We present the method for determining the velocity model of the Earth's crust and the parameters of earthquakes in the Middle Kura Depression from the data of network telemetry in Azerbaijan. Application of this method allowed us to recalculate the main parameters of the hypocenters of the earthquake, to compute the corrections to the arrival times of P and S waves at the observation station, and to significantly improve the accuracy in determining the coordinates of the earthquakes. The model was constructed using the VELEST program, which calculates one-dimensional minimal velocity models from the travel times of seismic waves.

  3. 3D imaging of the Corinth rift from a new passive seismic tomography and receiver function analysis

    NASA Astrophysics Data System (ADS)

    Godano, Maxime; Gesret, Alexandrine; Noble, Mark; Lyon-Caen, Hélène; Gautier, Stéphanie; Deschamps, Anne

    2016-04-01

    The Corinth Rift is the most seismically active zone in Europe. The area is characterized by very localized NS extension at a rate of ~ 1.5cm/year, the occurrence of frequent and intensive microseismic crises and occasional moderate to large earthquakes like in 1995 (Mw=6.1). Since the year 2000, the Corinth Rift Laboratory (CRL, http://crlab.eu) consisting in a multidisciplinary natural observatory, aims at understanding the mechanics of faulting and earthquake nucleation in the Rift. Recent studies have improved our view about fault geometry and mechanics within CRL, but there is still a critical need for a better knowledge of the structure at depth both for the accuracy of earthquake locations and for mechanical interpretation of the seismicity. In this project, we aim to analyze the complete seismological database (13 years of recordings) of CRL by using recently developed methodologies of structural imaging, in order to determine at the same time and with high resolution, the local 3D structure and the earthquake locations. We perform an iterative joint determination of 3D velocity model and earthquake coordinates. In a first step, P and S velocity models are determined using first arrival time tomography method proposed by Taillandier et al. (2009). It consists in the minimization of the cost function between observed and theoretical arrival times which is achieved by the steepest descent method (e.g. Tarantola 1987). This latter requires computing the gradient of the cost function by using the adjoint state method (Chavent 1974). In a second step, earthquakes are located in the new velocity model with a non-linear inversion method based on a Bayesian formulation (Gesret et al. 2015). Step 1 and 2 are repeated until the cost function no longer decreases. We present preliminary results consisting in: (1) the adjustement of a 1D velocity model that is used as initial model of the 3D tomography and (2) a first attempt of the joint determination of 3D velocity

  4. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen.

    PubMed

    Luo, Kun; Roberts, Matthew R; Hao, Rong; Guerrini, Niccoló; Pickup, David M; Liu, Yi-Sheng; Edström, Kristina; Guo, Jinghua; Chadwick, Alan V; Duda, Laurent C; Bruce, Peter G

    2016-07-01

    During the charging and discharging of lithium-ion-battery cathodes through the de- and reintercalation of lithium ions, electroneutrality is maintained by transition-metal redox chemistry, which limits the charge that can be stored. However, for some transition-metal oxides this limit can be broken and oxygen loss and/or oxygen redox reactions have been proposed to explain the phenomenon. We present operando mass spectrometry of (18)O-labelled Li1.2[Ni0.13(2+)Co0.13(3+)Mn0.54(4+)]O2, which demonstrates that oxygen is extracted from the lattice on charging a Li1.2[Ni0.13(2+)Co0.13(3+)Mn0.54(4+)]O2 cathode, although we detected no O2 evolution. Combined soft X-ray absorption spectroscopy, resonant inelastic X-ray scattering spectroscopy, X-ray absorption near edge structure spectroscopy and Raman spectroscopy demonstrates that, in addition to oxygen loss, Li(+) removal is charge compensated by the formation of localized electron holes on O atoms coordinated by Mn(4+) and Li(+) ions, which serve to promote the localization, and not the formation, of true O2(2-) (peroxide, O-O ~1.45 Å) species. The quantity of charge compensated by oxygen removal and by the formation of electron holes on the O atoms is estimated, and for the case described here the latter dominates. PMID:27325095

  5. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen.

    PubMed

    Luo, Kun; Roberts, Matthew R; Hao, Rong; Guerrini, Niccoló; Pickup, David M; Liu, Yi-Sheng; Edström, Kristina; Guo, Jinghua; Chadwick, Alan V; Duda, Laurent C; Bruce, Peter G

    2016-07-01

    During the charging and discharging of lithium-ion-battery cathodes through the de- and reintercalation of lithium ions, electroneutrality is maintained by transition-metal redox chemistry, which limits the charge that can be stored. However, for some transition-metal oxides this limit can be broken and oxygen loss and/or oxygen redox reactions have been proposed to explain the phenomenon. We present operando mass spectrometry of (18)O-labelled Li1.2[Ni0.13(2+)Co0.13(3+)Mn0.54(4+)]O2, which demonstrates that oxygen is extracted from the lattice on charging a Li1.2[Ni0.13(2+)Co0.13(3+)Mn0.54(4+)]O2 cathode, although we detected no O2 evolution. Combined soft X-ray absorption spectroscopy, resonant inelastic X-ray scattering spectroscopy, X-ray absorption near edge structure spectroscopy and Raman spectroscopy demonstrates that, in addition to oxygen loss, Li(+) removal is charge compensated by the formation of localized electron holes on O atoms coordinated by Mn(4+) and Li(+) ions, which serve to promote the localization, and not the formation, of true O2(2-) (peroxide, O-O ~1.45 Å) species. The quantity of charge compensated by oxygen removal and by the formation of electron holes on the O atoms is estimated, and for the case described here the latter dominates.

  6. The M 7.7 Tocopilla earthquake and its aftershock sequence: deployment of a Task Force local network

    NASA Astrophysics Data System (ADS)

    Sobiesiak, M.; Eggert, S.; Woith, H.; Grosser, H.; Peyrat, S.; Vilotte, J.; Medina, E.; Ruch, J.; Walter, T.; Victor, P.; Barrientos, S.; Gonzalez, G.

    2008-05-01

    After the November 14, 2007 Tocopilla earthquake in northern Chile, a local network of 20 short period seismic stations, 5 strong motion instruments, 6 GPS stations and 3 extensometers has been installed in the fault plane area between Tocopilla and Antofagasta by the German Task Force for earthquakes (GFZ Potsdam). The hydrogeology group of the TF sampled 20 thermal water sources in the area of the El Tatio geyser field, located about 170 km E of the epicentre. In collaboration with the IPG Paris, 4 broad band stations were deployed at the northern end of the fault plane between Tocopilla and Maria Elena. Major targets of the investigations of the aftershock sequence are the segment boundary between the 1995 Antofagasta earthquake and the recent Tocopilla event, stress transfer between both successively ruptured subduction zone segments, structural properties of the fault plane, possible consequences for the northern adjacent Iquique segment, and the influence of earthquake seismic waves on the El Tatio hydrothermal field. In our presentation we would like to show first results on the spatial distribution of the aftershocks and discuss these in relation to studies we have made on the Antofagasta aftershock sequence.

  7. Walker Ranch 3D seismic images

    DOE Data Explorer

    Robert J. Mellors

    2016-03-01

    Amplitude images (both vertical and depth slices) extracted from 3D seismic reflection survey over area of Walker Ranch area (adjacent to Raft River). Crossline spacing of 660 feet and inline of 165 feet using a Vibroseis source. Processing included depth migration. Micro-earthquake hypocenters on images. Stratigraphic information and nearby well tracks added to images. Images are embedded in a Microsoft Word document with additional information. Exact location and depth restricted for proprietary reasons. Data collection and processing funded by Agua Caliente. Original data remains property of Agua Caliente.

  8. Testing long-period ground-motion simulations of scenario earthquakes using the Mw 7.2 El Mayor-Cucapah mainshock: Evaluation of finite-fault rupture characterization and 3D seismic velocity models

    USGS Publications Warehouse

    Graves, Robert W.; Aagaard, Brad T.

    2011-01-01

    Using a suite of five hypothetical finite-fault rupture models, we test the ability of long-period (T>2.0 s) ground-motion simulations of scenario earthquakes to produce waveforms throughout southern California consistent with those recorded during the 4 April 2010 Mw 7.2 El Mayor-Cucapah earthquake. The hypothetical ruptures are generated using the methodology proposed by Graves and Pitarka (2010) and require, as inputs, only a general description of the fault location and geometry, event magnitude, and hypocenter, as would be done for a scenario event. For each rupture model, two Southern California Earthquake Center three-dimensional community seismic velocity models (CVM-4m and CVM-H62) are used, resulting in a total of 10 ground-motion simulations, which we compare with recorded ground motions. While the details of the motions vary across the simulations, the median levels match the observed peak ground velocities reasonably well, with the standard deviation of the residuals generally within 50% of the median. Simulations with the CVM-4m model yield somewhat lower variance than those with the CVM-H62 model. Both models tend to overpredict motions in the San Diego region and underpredict motions in the Mojave desert. Within the greater Los Angeles basin, the CVM-4m model generally matches the level of observed motions, whereas the CVM-H62 model tends to overpredict the motions, particularly in the southern portion of the basin. The variance in the peak velocity residuals is lowest for a rupture that has significant shallow slip (<5 km depth), whereas the variance in the residuals is greatest for ruptures with large asperities below 10 km depth. Overall, these results are encouraging and provide confidence in the predictive capabilities of the simulation methodology, while also suggesting some regions in which the seismic velocity models may need improvement.

  9. 3D acoustic atmospheric tomography

    NASA Astrophysics Data System (ADS)

    Rogers, Kevin; Finn, Anthony

    2014-10-01

    This paper presents a method for tomographically reconstructing spatially varying 3D atmospheric temperature profiles and wind velocity fields based. Measurements of the acoustic signature measured onboard a small Unmanned Aerial Vehicle (UAV) are compared to ground-based observations of the same signals. The frequency-shifted signal variations are then used to estimate the acoustic propagation delay between the UAV and the ground microphones, which are also affected by atmospheric temperature and wind speed vectors along each sound ray path. The wind and temperature profiles are modelled as the weighted sum of Radial Basis Functions (RBFs), which also allow local meteorological measurements made at the UAV and ground receivers to supplement any acoustic observations. Tomography is used to provide a full 3D reconstruction/visualisation of the observed atmosphere. The technique offers observational mobility under direct user control and the capacity to monitor hazardous atmospheric environments, otherwise not justifiable on the basis of cost or risk. This paper summarises the tomographic technique and reports on the results of simulations and initial field trials. The technique has practical applications for atmospheric research, sound propagation studies, boundary layer meteorology, air pollution measurements, analysis of wind shear, and wind farm surveys.

  10. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  11. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  12. Martian terrain - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This area of terrain near the Sagan Memorial Station was taken on Sol 3 by the Imager for Mars Pathfinder (IMP). 3D glasses are necessary to identify surface detail.

    The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  13. Analysis of the 23 June 2001 Southern Peru Earthquake Using Locally Recorded Seismic Data

    NASA Astrophysics Data System (ADS)

    Tavera, H.; Comte, D.; Boroschek, R.; Dorbath, L.; Portugal, D.; Haessler, H.; Montes, H.; Bernal, I.; Antayhua, Y.; Salas, H.; Inza, A.; Rodriguez, S.; Glass, B.; Correa, E.; Balmaceda, I.; Meneses, C.

    2001-12-01

    The 23 June 2001, Mw=8.4 southern Peru earthquake ruptured the northern and central part of the previous large earthquake occurred on 13 August 1868, Mw ~9. A detailed analysis of the aftershock sequence was possible due to the deployment of a temporary seismic network along the coast in the Arequipa and Moquegua districts, complementing the Peruvian permanent stations. The deployed temporary network included 10 short period three component stations from the U. of Chile-IRD-France and 7 broad-band seismic stations from the Instituto Geofísico del Perú. This network operated during the first weeks after the mainshock and recorded the major aftershocks like the larger one occurred on 7 July 2001, Mw=7.5, this event defines the southern limit of the rupture area of the 2001 Peruvian earthquake. The majority of the aftershocks shows a thrusting fault focal mechanisms according with the average convergence direction of the subducting Nazca plate, however, normal faulting events are also present in the aftershock sequence like the 5 July 2001, Mw=6.6 one. The depth distribution of the events permitted a detailed definition of the Wadati-Benioff zone in the region. The segment between Ilo and Tacna did not participated in the rupture process of the 2001 southern Peru earthquake. Seismicity located near the political Peruvian-Chilean boundary was reliable determined using the data recorded by the northern Chile permanent network. Analysis of the mainshock and aftershock acelerograms recorded in Arica, northern Chile are also included. The occurrence of the 1995 Antofagasta (Mw=8.0) and the 2001 southern Peru earthquakes suggests that the probability of having a major earthquake in the northern Chile region increased, considering that the previous large earthquake in this region happened in 1877 (Mw ~9), and since that time no earthquake with magnitude Mw>8 had occurred inside of the 1877 estimated rupture area (between Arica and Antofagasta).

  14. SU-C-213-07: Fabrication and Testing of a 3D-Printed Small Animal Rectal Cooling Device to Evaluate Local Hypothermia as a Radioprotector During Prostate SBRT

    SciTech Connect

    Hrycushko, B; Chopra, R; Futch, C; Bing, C; Wodzak, M; Stojadinovic, S; Jiang, S; Medin, P

    2015-06-15

    Purpose: The protective effects of induced or even accidental hypothermia on the human body are widespread with several medical uses currently under active research. In vitro experiments using human cell lines have shown hypothermia provides a radioprotective effect that becomes more pronounced at large, single-fraction doses common to SBRT treatments. Relevant to prostate SBRT, this work details the fabrication and testing of a 3D-printed cooling device to facilitate the investigation of the radioprotective effect of local hypothermia on the rat rectum. Methods: A 3cm long, two-channel rectal cooling device was designed in SOLIDWORKS CAD for 3D printing. The water intake nozzle is connected to a 1mm diameter brass pipe from which water flows and circulates back around to the exit nozzle. Both nozzles are connected by plastic tubing to a water chiller pump. Following leak-proof testing, fiber optic temperature probes were used to evaluate the temperature over time when placed adjacent to the cooling device within a rat rectum. MRI thermometry characterized the relative temperature distribution in concentric ROIs surrounding the probe. CBCT images from a small-animal irradiator were evaluated for imaging artifacts which could affect Monte Carlo dose calculations during treatment planning. Results: The rectal temperature adjacent to the cooling device decreased from body temperature (37°C) to 15°C in 10–20 minutes from device insertion. Rectal temperature was maintained at 15±3°C during active cooling. MRI thermometry tests revealed a steep temperature gradient with increasing distance from the cooling device, with the desired temperature range maintained within the surrounding few millimeters. Conclusion: A 3D printed rectal cooling device was fabricated for the purpose of inducing local hypothermia in rat rectums. Rectal cooling capabilities were characterized in-vivo to facilitate an investigation of the radioprotective effect of hypothermia for late rectal

  15. On 3d bulk geometry of Virasoro coadjoint orbits: orbit invariant charges and Virasoro hair on locally AdS_3 geometries

    NASA Astrophysics Data System (ADS)

    Sheikh-Jabbari, M. M.; Yavartanoo, H.

    2016-09-01

    Expanding upon [arXiv:1404.4472, arXiv:1511.06079], we provide a further detailed analysis of Bañados geometries, the most general solutions to the AdS_3 Einstein gravity with Brown-Henneaux boundary conditions. We analyze in some detail the causal, horizon, and boundary structure, and the geodesic motion on these geometries, as well as the two classes of symplectic charges one can associate with these geometries: charges associated with the exact symmetries and the Virasoro charges. We elaborate on the one-to-one relation between the coadjoint orbits of two copies of the Virasoro group and Bañados geometries. We discuss that the information as regards the Bañados goemetries falls into two categories: "orbit invariant" information and "Virasoro hairs". The former concerns geometric quantities, while the latter are specified by the non-local surface integrals. We elaborate on multi-BTZ geometries which have a number of disconnected pieces at the horizon bifurcation curve. We study multi-BTZ black hole thermodynamics and discuss that the thermodynamic quantities are orbit invariants. We also comment on the implications of our analysis for a 2d CFT dual which could possibly be dual to AdS_3 Einstein gravity.

  16. 3D local structure around copper site of rabbit prion-related protein: Quantitative determination by XANES spectroscopy combined with multiple-scattering calculations

    NASA Astrophysics Data System (ADS)

    Cui, P. X.; Lian, F. L.; Wang, Y.; Wen, Yi; Chu, W. S.; Zhao, H. F.; Zhang, S.; Li, J.; Lin, D. H.; Wu, Z. Y.

    2014-02-01

    Prion-related protein (PrP), a cell-surface copper-binding glycoprotein, is considered to be responsible for a number of transmissible spongiform encephalopathies (TSEs). The structural conversion of PrP from the normal cellular isoform (PrPC) to the post-translationally modified form (PrPSc) is thought to be relevant to Cu2+ binding to histidine residues. Rabbits are one of the few mammalian species that appear to be resistant to TSEs, because of the structural characteristics of the rabbit prion protein (RaPrPC) itself. Here we determined the three-dimensional local structure around the C-terminal high-affinity copper-binding sites using X-ray absorption near-edge structure combined with ab initio calculations in the framework of the multiple-scattering (MS) theory. Result shows that two amino acid resides, Gln97 and Met108, and two histidine residues, His95 and His110, are involved in binding this copper(II) ion. It might help us understand the roles of copper in prion conformation conversions, and the molecular mechanisms of prion-involved diseases.

  17. 3-D transient analysis of pebble-bed HTGR by TORT-TD/ATTICA3D

    SciTech Connect

    Seubert, A.; Sureda, A.; Lapins, J.; Buck, M.; Bader, J.; Laurien, E.

    2012-07-01

    As most of the acceptance criteria are local core parameters, application of transient 3-D fine mesh neutron transport and thermal hydraulics coupled codes is mandatory for best estimate evaluations of safety margins. This also applies to high-temperature gas cooled reactors (HTGR). Application of 3-D fine-mesh transient transport codes using few energy groups coupled with 3-D thermal hydraulics codes becomes feasible in view of increasing computing power. This paper describes the discrete ordinates based coupled code system TORT-TD/ATTICA3D that has recently been extended by a fine-mesh diffusion solver. Based on transient analyses for the PBMR-400 design, the transport/diffusion capabilities are demonstrated and 3-D local flux and power redistribution effects during a partial control rod withdrawal are shown. (authors)

  18. Retardations in fault creep rates before local moderate earthquakes along the San Andreas fault system, central California

    USGS Publications Warehouse

    Burford, R.O.

    1988-01-01

    Records of shallow aseismic slip (fault creep) obtained along parts of the San Andreas and Calaveras faults in central California demonstrate that significant changes in creep rates often have been associated with local moderate earthquakes. An immediate postearthquake increase followed by gradual, long-term decay back to a previous background rate is generally the most obvious earthquake effect on fault creep. This phenomenon, identified as aseismic afterslip, usually is characterized by above-average creep rates for several months to a few years. In several cases, minor step-like movements, called coseismic slip events, have occurred at or near the times of mainshocks. One extreme case of coseismic slip, recorded at Cienega Winery on the San Andreas fault 17.5 km southeast of San Juan Bautista, consisted of 11 mm of sudden displacement coincident with earthquakes of ML=5.3 and ML=5.2 that occurred 2.5 minutes apart on 9 April 1961. At least one of these shocks originated on the main fault beneath the winery. Creep activity subsequently stopped at the winery for 19 months, then gradually returned to a nearly steady rate slightly below the previous long-term average. The phenomena mentioned above can be explained in terms of simple models consisting of relatively weak material along shallow reaches of the fault responding to changes in load imposed by sudden slip within the underlying seismogenic zone. In addition to coseismic slip and afterslip phenomena, however, pre-earthquake retardations in creep rates also have been observed. Onsets of significant, persistent decreases in creep rates have occurred at several sites 12 months or more before the times of moderate earthquakes. A 44-month retardation before the 1979 ML=5.9 Coyote Lake earthquake on the Calaveras fault was recorded at the Shore Road creepmeter site 10 km northwest of Hollister. Creep retardation on the San Andreas fault near San Juan Bautista has been evident in records from one creepmeter site for

  19. An initial study on the estimation of time-varying volumetric treatment images and 3D tumor localization from single MV cine EPID images

    SciTech Connect

    Mishra, Pankaj Mak, Raymond H.; Rottmann, Joerg; Bryant, Jonathan H.; Williams, Christopher L.; Berbeco, Ross I.; Lewis, John H.; Li, Ruijiang

    2014-08-15

    Purpose: In this work the authors develop and investigate the feasibility of a method to estimate time-varying volumetric images from individual MV cine electronic portal image device (EPID) images. Methods: The authors adopt a two-step approach to time-varying volumetric image estimation from a single cine EPID image. In the first step, a patient-specific motion model is constructed from 4DCT. In the second step, parameters in the motion model are tuned according to the information in the EPID image. The patient-specific motion model is based on a compact representation of lung motion represented in displacement vector fields (DVFs). DVFs are calculated through deformable image registration (DIR) of a reference 4DCT phase image (typically peak-exhale) to a set of 4DCT images corresponding to different phases of a breathing cycle. The salient characteristics in the DVFs are captured in a compact representation through principal component analysis (PCA). PCA decouples the spatial and temporal components of the DVFs. Spatial information is represented in eigenvectors and the temporal information is represented by eigen-coefficients. To generate a new volumetric image, the eigen-coefficients are updated via cost function optimization based on digitally reconstructed radiographs and projection images. The updated eigen-coefficients are then multiplied with the eigenvectors to obtain updated DVFs that, in turn, give the volumetric image corresponding to the cine EPID image. Results: The algorithm was tested on (1) Eight digital eXtended CArdiac-Torso phantom datasets based on different irregular patient breathing patterns and (2) patient cine EPID images acquired during SBRT treatments. The root-mean-squared tumor localization error is (0.73 ± 0.63 mm) for the XCAT data and (0.90 ± 0.65 mm) for the patient data. Conclusions: The authors introduced a novel method of estimating volumetric time-varying images from single cine EPID images and a PCA-based lung motion model

  20. Transition from a localized to wide deformation along Eastern branch of Central East African Rift: Insights from 3D numerical models

    NASA Astrophysics Data System (ADS)

    Leroy, S. D.; Koptev, A.; Burov, E. B.; Calais, E.; Gerya, T.

    2015-12-01

    The Central East African Rift (CEAR) bifurcates in two branches (eastern, magma-rich and western, magma-poor) surrounding strong Tanzanian craton. Intensive magmatism and continental flood basalts are largely present in many of the eastern rift segments, but other segments, first of all the western branch, exhibit very small volcanic activity. The Eastern rift is characterized by southward progression of the onset of volcanism, the extensional features and topographic expression of the rift vary significantly north-southward: in northern Kenya the deformation is very wide (some 150-250 km in E-W direction), to the south the rift narrows to 60-70 km, yet further to the south the deformation widens again in the so-called Tanzania divergence zone. Widening of the Eastern branch within its southern part is associated with the impingement of the southward-propagating rift on the strong Masai block situated to east of the Tanzanian craton. To understand the mechanisms behind this complex deformation distribution, we implemented a 3Dl ultra-high resolution visco-plastic thermo-mechanical numerical model accounting for thermo-rheological structure of the lithosphere and hence captures essential features of the CEAR. The preferred model has a plume seeded slightly to the northeast of the craton center, consistent with seismic tomography, and produces surface strain distribution that is in good agreement with observed variation of deformation zone width along eastern side of Tanzanian craton: localized above bulk of mantle material deflected by cratonic keel narrow high strain zone (Kenia Rift) is replaced by wide distributed deformations within areas situated to north (northern Kenya, Turkana Rift) and to south (Tanzania divergence, Masai block) of it. These results demonstrate significant differences in the impact of the rheological profile on rifting style in case of dominant active rifting compared to dominant passive rifting. Narrow rifting, conventionally attributed to

  1. Localized Damage Associated with Topographic Amplification During the 12 January 2010 Haiti Earthquake

    NASA Astrophysics Data System (ADS)

    Hough, S. E.; Yong, A.; Altidor, J.; Dieuseul, A.; Given, D. D.; Mildor, B. S.

    2010-12-01

    Following the devastating M7.0 Haiti earthquake of 12 January 2010 we deployed strong-motion instruments in Port-au-Prince to investigate the variability of shaking due to local geological structure. A total of nine stations were deployed between late January and mid-April, 2010. Analysis of M3.5-4.5 aftershocks events recorded across the urban array reveals, as expected, amplification of ground motions at sites within the Cul de Sac Valley, which underlies most of the city. The strongest amplifications, however, are observed at two sites along a foothill ridge in the Petionville District. The steepness of the topography as well as direct estimates from surface-wave techniques (Cox et al., in review, 2010) indicate that the ridge is characterized by higher shallow impedance than the adjacent valley. The observed amplifications, which reach factors of 4-5 for frequencies ranging from a few to 10 Hz, and factors of 2-3 for peak acceleration, thus cannot be explained by traditional near-surface sediment-induced amplification. We also consider the distribution of damage in the foothill region. The overall damage pattern throughout Port-au-Prince is complex, and reflects a number of factors including structural vulnerability and distance from the mainshock rupture. In the Petionville region, however, damage was generally not as severe as in other parts of the city; it is therefore reasonable to assume that small-scale variability of damage reflects the local variability of shaking. Considering the distribution of damage interpreted by DLR (German Remote Sensing Data Center) from optical imagery, we show that a swath of unusually high damage corresponds with the extent of the ridge where high amplifications are observed. We use ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer)-based global Digital Elevation Models and automated terrain classification methods to map geological and topographic structure, including a delineation of the small

  2. Rupture directivity and local site effects: the M7.3 Honduras earthquake of May 23, 2009

    NASA Astrophysics Data System (ADS)

    Shulman, D.; Mooney, W. D.

    2009-12-01

    On May 28, 2009, at 2:24 AM local time, a M 7.3 earthquake struck off the coast of Honduras on the Motagua-Swan Fault System (MSFS), part of the boundary between the North America and Caribbean plates. This plate boundary has an average slip rate of 20 mm/year. This left-lateral earthquake had an average slip of 1.5 m on a 100-km-long near-vertical fault plane (Hayes and Ji, 2009). The hypocenter depth is estimated at 10 km. The main shock caused 130 structures, including homes and office buildings, to collapse or suffer significant damage in northern Honduras. Seven deaths were reported. Due to a lack of recordings in the area, the available documentation of the local effects of this earthquake are the USGS "Did you feel it?" responses and the data collected during our field seismic intensity investigation. We conducted a field investigation in Honduras between May 30 and June 6, 2009, focused on areas with local reports of damage, including the cities of La Ceiba, El Progresso, San Pedro Sula, Puerto Cortes in northern Honduras and the island of Roatan in the Caribbean Sea. The damage ascertained at these five sites shows that the severity of damage did not decrease with distance from the epicenter as predicted by standard attenuation relations. Instead, a concentration of damage was observed in El Progresso, approximately 75 km directly south from the SW end of the rupture and 160 km from the epicenter. The island of Roatan, just 30 km from the epicenter, was graded as VI on the Modified Mercalli Intensity scale while, El Progresso was graded as VIII (one unit higher than “Did you feel it?”). These intensity anomalies can be explained by two factors: (1) SW-directed rupture propagation and proximity to a localized 3.0m slip pulse (asperity) that occurred near the SW end of the fault (Hayes and Ji, 2009) that focused energy toward the city of El Progress on the mainland and; (2) local site effects, particularly the Precambrian schists and gneisses on the

  3. Seafloor Deformation and Localized Source Mechanisms of the 2011 M9 Tohoku Earthquake and Tsunami.

    NASA Astrophysics Data System (ADS)

    Masterlark, T.; Grilli, S. T.; Tappin, D. R.; Kirby, J. T.

    2012-12-01

    The 2011 M9 Tohoku Earthquake (TE) ruptured the interface separating the Pacific and Okhotsk Plates. This rupture was about hundred kilometers in the along-strike direction and 200 kilometers in the down-dip direction. The TE was primarily thrust having substantial slip along the up-dip portion of the rupture, near the Japan Trench. The regional-scale seafloor deformation from the TE triggered a tsunami with run-ups of a few tens of meters that caused extensive damage along the east coast of Tohoku, Japan. We construct finite element models (FEMs) to simulate the deformation caused by a distribution of coseismic slip along the curved rupture surface of the TE. The FEMs include a distribution of material properties that accounts for the subduction zone structure -a weak forearc, volcanic arc, and backarc basin of the overriding Okhotsk Plate overriding the relatively strong subducting slab that is capped by basaltic oceanic crust. The coseismic rupture is simulated as a distribution of elastic dislocations along the interface separating the forearc of the overriding plate and the oceanic crust of the subducting slab. The slip distribution is calibrated to both onshore and offshore geodetic data, using linear least-squares inverse methods with FEM-generated Greens Functions and second order regularization. The regularization is imposed with a conductance matrix, constructed using Galerkin's Method to account for the curvilinear relationships among the dislocating node pairs. The estimated slip distribution is generally characterized as a few tens of meters of slip over the entire rupture, with greater slip magnitudes (>50 meters) concentrated up-dip and near the Japan Trench. The offshore geodetic data provide critical constraints for the location of the polarity reversal of predicted seafloor vertical deformation. Wave models excited by the predicted regional-scale seafloor deformation generally well predict observed tsunami run-ups and the vertical displacement

  4. HYPOELLIPSE; a computer program for determining local earthquake hypocentral parameters, magnitude, and first-motion pattern

    USGS Publications Warehouse

    Lahr, John C.

    1999-01-01

    This report provides Fortran source code and program manuals for HYPOELLIPSE, a computer program for determining hypocenters and magnitudes of near regional earthquakes and the ellipsoids that enclose the 68-percent confidence volumes of the computed hypocenters. HYPOELLIPSE was developed to meet the needs of U.S. Geological Survey (USGS) scientists studying crustal and sub-crustal earthquakes recorded by a sparse regional seismograph network. The program was extended to locate hypocenters of volcanic earthquakes recorded by seismographs distributed on and around the volcanic edifice, at elevations above and below the hypocenter. HYPOELLIPSE was used to locate events recorded by the USGS southern Alaska seismograph network from October 1971 to the early 1990s. Both UNIX and PC/DOS versions of the source code of the program are provided along with sample runs.

  5. Case report of a child's anxiety disorder precipitated by tremors from a distant earthquake that was extensively covered in local news stories

    PubMed Central

    BHATIA, M.S.; GAUTAM, Priyanka

    2016-01-01

    Earthquakes are relatively common natural disasters in many parts of the world, but research about the mental health effects of earthquakes remains limited. Individuals experiencing an earthquake often suffer significant loss and are at increased risk for developing mental disorders. However, the prevalence of mental disorders following less dramatic or non-destructive earthquake phenomena is unknown. We report the case of a 10-year-old girl who came to a psychiatric outpatient department with a 2-week history of severe, disabling anxiety symptoms precipitated by non-destructive tremors from a distant earthquake that received extensive coverage in the local press. Her condition did not meet criteria for any of the specific anxiety-related disorders, so the non-specific DSM-5 category 'Other Specified Anxiety Disorder' was considered most appropriate. Her symptoms resolved over 4 weeks when treated with both a benzodiazepine and a selective serotonin reuptake inhibitor. PMID:27688646

  6. Case report of a child's anxiety disorder precipitated by tremors from a distant earthquake that was extensively covered in local news stories.

    PubMed

    Bhatia, M S; Gautam, Priyanka

    2016-02-25

    Earthquakes are relatively common natural disasters in many parts of the world, but research about the mental health effects of earthquakes remains limited. Individuals experiencing an earthquake often suffer significant loss and are at increased risk for developing mental disorders. However, the prevalence of mental disorders following less dramatic or non-destructive earthquake phenomena is unknown. We report the case of a 10-year-old girl who came to a psychiatric outpatient department with a 2-week history of severe, disabling anxiety symptoms precipitated by non-destructive tremors from a distant earthquake that received extensive coverage in the local press. Her condition did not meet criteria for any of the specific anxiety-related disorders, so the non-specific DSM-5 category 'Other Specified Anxiety Disorder' was considered most appropriate. Her symptoms resolved over 4 weeks when treated with both a benzodiazepine and a selective serotonin reuptake inhibitor.

  7. Case report of a child's anxiety disorder precipitated by tremors from a distant earthquake that was extensively covered in local news stories.

    PubMed

    Bhatia, M S; Gautam, Priyanka

    2016-02-25

    Earthquakes are relatively common natural disasters in many parts of the world, but research about the mental health effects of earthquakes remains limited. Individuals experiencing an earthquake often suffer significant loss and are at increased risk for developing mental disorders. However, the prevalence of mental disorders following less dramatic or non-destructive earthquake phenomena is unknown. We report the case of a 10-year-old girl who came to a psychiatric outpatient department with a 2-week history of severe, disabling anxiety symptoms precipitated by non-destructive tremors from a distant earthquake that received extensive coverage in the local press. Her condition did not meet criteria for any of the specific anxiety-related disorders, so the non-specific DSM-5 category 'Other Specified Anxiety Disorder' was considered most appropriate. Her symptoms resolved over 4 weeks when treated with both a benzodiazepine and a selective serotonin reuptake inhibitor. PMID:27688646

  8. Case report of a child's anxiety disorder precipitated by tremors from a distant earthquake that was extensively covered in local news stories

    PubMed Central

    BHATIA, M.S.; GAUTAM, Priyanka

    2016-01-01

    Earthquakes are relatively common natural disasters in many parts of the world, but research about the mental health effects of earthquakes remains limited. Individuals experiencing an earthquake often suffer significant loss and are at increased risk for developing mental disorders. However, the prevalence of mental disorders following less dramatic or non-destructive earthquake phenomena is unknown. We report the case of a 10-year-old girl who came to a psychiatric outpatient department with a 2-week history of severe, disabling anxiety symptoms precipitated by non-destructive tremors from a distant earthquake that received extensive coverage in the local press. Her condition did not meet criteria for any of the specific anxiety-related disorders, so the non-specific DSM-5 category 'Other Specified Anxiety Disorder' was considered most appropriate. Her symptoms resolved over 4 weeks when treated with both a benzodiazepine and a selective serotonin reuptake inhibitor.

  9. Further evidence of localized geomagnetic field changes before the 1974 Thanksgiving Day Earthquake, Hollister, California

    NASA Astrophysics Data System (ADS)

    Davis, Paul M.; Jackson, David D.; Johnston, Malcolm J. S.

    1980-07-01

    Seven weeks prior to the M=5.1 Hollister, Calif., Thanksgiving Day earthquake of 28 November, 1974, an anomalous magnetic variation was observed at one of the magnetometers of the USGS array. The anomaly lasted for about three weeks. Recently developed methods of reducing noise on magnetic records reveal that anomalous magnetic changes occurred at about the same time at three, of the six stations analysed. Such changes have not been seen either previously or subsequently. The largest variation occurred at the two stations closest to the earthquake, but a change also occurred at a station 44 km to the south.

  10. Further evidence of localized geomagnetic field changes before the 1974 Thanksgiving Day earthquake, Hollister, California

    SciTech Connect

    Davis, P.M.; Jackson, D.D.; Johnston, M.J.S.

    1980-07-01

    Seven weeks prior to he M=5.1 Hollister, Calif., Thanksgiving Day earthquake of 28 November, 1974, and anomalous magnetic variation was observed at one of the magnetometers of the USGS array. The anomaly lasted for about three weeks. Recently developed methods or reducing noise on magnetic records reveal that anomalous magnetic changes occurred at about the same time at three of the six stations analysed. Such changes have not been seen either previously or subsequently. The largest variation occurred at the two stations closest to the earthquake, but a change also occurred at a station 44 km to the south.

  11. Additively Manufactured 3D Porous Ti-6Al-4V Constructs Mimic Trabecular Bone Structure and Regulate Osteoblast Proliferation, Differentiation and Local Factor Production in a Porosity and Surface Roughness Dependent Manner

    PubMed Central

    Cheng, Alice; Humayun, Aiza; Cohen, David J.; Boyan, Barbara D.; Schwartz, Zvi

    2014-01-01

    Additive manufacturing by laser sintering is able to produce high resolution metal constructs for orthopaedic and dental implants. In this study, we used a human trabecular bone template to design and manufacture Ti-6Al-4V constructs with varying porosity via laser sintering. Characterization of constructs revealed interconnected porosities ranging from 15–70% with compressive moduli of 2063–2954 MPa. These constructs with macro porosity were further surface-treated to create a desirable multi-scale micro-/nano-roughness, which has been shown to enhance the osseointegration process. Osteoblasts (MG63 cells) exhibited high viability when grown on the constructs. Proliferation (DNA) and alkaline phosphatase specific activity (ALP), an early differentiation marker, decreased as porosity increased, while osteocalcin (OCN), a late differentiation marker, as well as osteoprotegerin (OPG), vascular endothelial growth factor (VEGF) and bone morphogenetic proteins 2 and 4 (BMP2, BMP4) increased with increasing porosity. 3D constructs with the highest porosity and surface modification supported the greatest osteoblast differentiation and local factor production. These results indicate that additively manufactured 3D porous constructs mimicking human trabecular bone and produced with additional surface treatment can be customized for increased osteoblast response. Increased factors for osteoblast maturation and differentiation on high porosity constructs suggest the enhanced performance of these surfaces for increasing osseointegration in vivo. PMID:25287305

  12. Earthquake occurrence and effects.

    PubMed

    Adams, R D

    1990-01-01

    Although earthquakes are mainly concentrated in zones close to boundaries of tectonic plates of the Earth's lithosphere, infrequent events away from the main seismic regions can cause major disasters. The major cause of damage and injury following earthquakes is elastic vibration, rather than fault displacement. This vibration at a particular site will depend not only on the size and distance of the earthquake but also on the local soil conditions. Earthquake prediction is not yet generally fruitful in avoiding earthquake disasters, but much useful planning to reduce earthquake effects can be done by studying the general earthquake hazard in an area, and taking some simple precautions. PMID:2347628

  13. 3-D Perspective Pasadena, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This perspective view shows the western part of the city of Pasadena, California, looking north towards the San Gabriel Mountains. Portions of the cities of Altadena and La Canada, Flintridge are also shown. The image was created from three datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation data; Landsat data from November 11, 1986 provided the land surface color (not the sky) and U.S. Geological Survey digital aerial photography provides the image detail. The Rose Bowl, surrounded by a golf course, is the circular feature at the bottom center of the image. The Jet Propulsion Laboratory is the cluster of large buildings north of the Rose Bowl at the base of the mountains. A large landfill, Scholl Canyon, is the smooth area in the lower left corner of the scene. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Wildfires strip the mountains of vegetation, increasing the hazards from flooding and mudflows for several years afterwards. Data such as shown on this image can be used to predict both how wildfires will spread over the terrain and also how mudflows will be channeled down the canyons. The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency

  14. Assessing 3d Photogrammetry Techniques in Craniometrics

    NASA Astrophysics Data System (ADS)

    Moshobane, M. C.; de Bruyn, P. J. N.; Bester, M. N.

    2016-06-01

    Morphometrics (the measurement of morphological features) has been revolutionized by the creation of new techniques to study how organismal shape co-varies with several factors such as ecophenotypy. Ecophenotypy refers to the divergence of phenotypes due to developmental changes induced by local environmental conditions, producing distinct ecophenotypes. None of the techniques hitherto utilized could explicitly address organismal shape in a complete biological form, i.e. three-dimensionally. This study investigates the use of the commercial software, Photomodeler Scanner® (PMSc®) three-dimensional (3D) modelling software to produce accurate and high-resolution 3D models. Henceforth, the modelling of Subantarctic fur seal (Arctocephalus tropicalis) and Antarctic fur seal (Arctocephalus gazella) skulls which could allow for 3D measurements. Using this method, sixteen accurate 3D skull models were produced and five metrics were determined. The 3D linear measurements were compared to measurements taken manually with a digital caliper. In addition, repetitive measurements were recorded by varying researchers to determine repeatability. To allow for comparison straight line measurements were taken with the software, assuming that close accord with all manually measured features would illustrate the model's accurate replication of reality. Measurements were not significantly different demonstrating that realistic 3D skull models can be successfully produced to provide a consistent basis for craniometrics, with the additional benefit of allowing non-linear measurements if required.

  15. Still one evidence of the local ULF lithospheric magnetic activity before Mw=9.0 Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Dudkin, Fedir; Korepanov, Valery; Dudkin, Denys; Ogawa, Yasuo

    2013-04-01

    The ultra low frequency (ULF) lithospheric magnetic activity in the frequency range below 1 Hz is recently considered as one of the most informative evidence of an earthquake preparation process. However, the detection of such an activity meets some serious difficulties being touched the separation of such signals on the background of comparatively very intensive Pc3-Pc5 ionospheric/magnetospheric signals. Another hard problem is localization of signal source at so low frequencies. For overcoming these obstacles the space selection method was developed in the Laboratory of Electromagnetic Investigations (LEMI) of Lviv Centre of Institute for Space Research. This method is based on synchronous data processing from two or more spaced magnetometers with use of magnetic field polarization ellipse technique. The method can be effectively applied to detection just a lithosperic magnetic activity and its separation from ionospheric/magnetospheric one [1]. The topic of keen interest is to apply this technique at the study of the pre-earthquake lithospheric magnetic activity for one of the greatest recent Earth's shock that was happened in Japan. On March 11, 2011 at 05:46:24 UTC the undersea megathrust earthquake hit the eastern coast of Japan with magnitude Mw=9.0 (so-called Tohoku earthquake). Its epicentre was in the point 38.30° N, 142.37° E with the nearest distance to Japan coast about 70 km. The hypocentre was at depth 29 km. The data from two 3-component fluxgate magnetometers with sampling rate 1 Hz for period from January 1 to March 22, 2011 have been analyzed. The magnetometers are located in Esashi (ESA) geomagnetic observatory and Akasaka (AKSK) temporary measuring site with coordinates 39.18° N, 141.75° E, 39.24° N, 141.36° E respectively. The fluxgate magnetometer in AKSK site is a part of the long-period magnetotelluric station LEMI-417M. The distance between measuring points is about 35 km, while the mean distance from them to the epicenter of Tohoku

  16. Fuzzy Discrimination Analysis Method for Earthquake Energy K-Class Estimation with respect to Local Magnitude Scale

    NASA Astrophysics Data System (ADS)

    Mumladze, T.; Gachechiladze, J.

    2014-12-01

    The purpose of the present study is to establish relation between earthquake energy K-class (the relative energy characteristic) defined as logarithm of seismic waves energy E in joules obtained from analog stations data and local (Richter) magnitude ML obtained from digital seismograms. As for these data contain uncertainties the effective tools of fuzzy discrimination analysis are suggested for subjective estimates. Application of fuzzy analysis methods is an innovative approach to solving a complicated problem of constracting a uniform energy scale through the whole earthquake catalogue, also it avoids many of the data collection problems associated with probabilistic approaches; and it can handle incomplete information, partial inconsistency and fuzzy descriptions of data in a natural way. Another important task is to obtain frequency-magnitude relation based on K parameter, calculation of the Gutenberg-Richter parameters (a, b) and examining seismic activity in Georgia. Earthquake data files are using for periods: from 1985 to 1990 and from 2004 to 2009 for area j=410 - 430.5, l=410 - 470.

  17. ASDP: a PC-based program using a multi-algorithm approach for automatic detection and location of local earthquakes

    NASA Astrophysics Data System (ADS)

    Patanè, Domenico; Ferrari, Ferruccio

    1999-06-01

    A few automated data acquisition and processing systems operate on mainframes, some are run on UNIX-based workstations and others on personal computer, equipped with either DOS or UNIX-derived operating systems. Several large and complex software packages for automatic and interactive analysis of seismic data have been developed in recent years mainly for UNIX-based systems, and some of these programs use a variety of artificial intelligence techniques. Here, the first operational version of a new software package, named PC-Seism, for analyzing seismic data from a local network is presented. This package, composed of three separate modules, provides an example of a new generation of visual object-oriented programs for interactive and automatic seismic data processing run on a personal computer. In particular, we discuss the automatic procedures implemented in the ASDP (Automatic Seismic Data Processing) module. A multi-algorithm approach to the on-line detection and location of local earthquakes is adopted in ASDP, and its operative mode is similar to that used in more complex systems, where the algorithms run on different processors and parallel computations are generally performed. Since highly complex computation routines may still be prohibitive for current PC when the number of analyzing traces becomes large, we have opted for simplicity and have planned three main routines (working in cascade mode) and a multi-station analysis (MSA) procedure in ASDP, to recognize phase picking, declare and locate earthquakes. Basically, signal detection on a single-component trace is obtained by a short-term average to long-term average ratio (STA/LTA) taken along a characteristic function (CF) envelope generated from the seismogram. To confirm and identify earthquake phase arrivals and to discard noise disturbances, two other sections of analysis are applied on short signal windows after the declared triggers. A spectral analysis is applied as detector of earthquake phase

  18. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  19. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  20. Probabilistic point source inversion of strong-motion data in 3-D media using pattern recognition: A case study for the 2008 Mw 5.4 Chino Hills earthquake

    NASA Astrophysics Data System (ADS)

    Käufl, Paul; Valentine, Andrew P.; Trampert, Jeannot

    2016-08-01

    Despite the ever increasing availability of computational power, real-time source inversions based on physical modeling of wave propagation in realistic media remain challenging. We investigate how a nonlinear Bayesian approach based on pattern recognition and synthetic 3-D Green's functions can be used to rapidly invert strong-motion data for point source parameters by means of a case study for a fault system in the Los Angeles Basin. The probabilistic inverse mapping is represented in compact form by a neural network which yields probability distributions over source parameters. It can therefore be evaluated rapidly and with very moderate CPU and memory requirements. We present a simulated real-time inversion of data for the 2008 Mw 5.4 Chino Hills event. Initial estimates of epicentral location and magnitude are available ˜14 s after origin time. The estimate can be refined as more data arrive: by ˜40 s, fault strike and source depth can also be determined with relatively high certainty.

  1. Modeling Broadband motions from the Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Li, D.; Chu, R.; Graves, R. W.; Helmberger, D. V.; Clayton, R. W.

    2011-12-01

    The 2011 M9 Tohoku earthquake produced an extraordinary dataset of over 2000 broadband regional and teleseismic records. While considerable progress has been made in modeling the longer period (>3 s) waveforms, the shorter periods (1-3 s) prove more difficult. Since modeling high frequency waveforms in 3D is computationally expensive, we follow the approach proposed by Helmberger and Vidale (1988), which interfaces the Cagniard-de Hoop analytical source description with a 2D numerical code to account for earthquake radiation patterns. We extend this method to a staggered grid finite difference code, which is stable in the presence of water. The code adapts the Convolutional PML boundary condition, and uses the "following the wavefront" technique and multiple GPUs, which significantly reduces computing time. We test our method against existing 1D and 3D codes, and examine the effects of slab structure, ocean bathymetry and local basins in an attempt to better explain the observed shorter period response.

  2. Earthquake watch

    USGS Publications Warehouse

    Hill, M.

    1976-01-01

     When the time comes that earthquakes can be predicted accurately, what shall we do with the knowledge? This was the theme of a November 1975 conference on earthquake warning and response held in San Francisco called by Assistant Secretary of the Interior Jack W. Carlson. Invited were officials of State and local governments from Alaska, California, Hawaii, Idaho, Montana, Nevada, utah, Washington, and Wyoming and representatives of the news media. 

  3. The First Results of Testing Methods and Algorithms for Automatic Real Time Identification of Waveforms Introduction from Local Earthquakes in Increased Level of Man-induced Noises for the Purposes of Ultra-short-term Warning about an Occurred Earthquake

    NASA Astrophysics Data System (ADS)

    Gravirov, V. V.; Kislov, K. V.

    2009-12-01

    The chief hazard posed by earthquakes consists in their suddenness. The number of earthquakes annually recorded is in excess of 100,000; of these, over 1000 are strong ones. Great human losses usually occur because no devices exist for advance warning of earthquakes. It is therefore high time that mobile information automatic systems should be developed for analysis of seismic information at high levels of manmade noise. The systems should be operated in real time with the minimum possible computational delays and be able to make fast decisions. The chief statement of the project is that sufficiently complete information about an earthquake can be obtained in real time by examining its first onset as recorded by a single seismic sensor or a local seismic array. The essential difference from the existing systems consists in the following: analysis of local seismic data at high levels of manmade noise (that is, when the noise level may be above the seismic signal level), as well as self-contained operation. The algorithms developed during the execution of the project will be capable to be used with success for individual personal protection kits and for warning the population in earthquake-prone areas over the world. The system being developed for this project uses P and S waves as well. The difference in the velocities of these seismic waves permits a technique to be developed for identifying a damaging